The Common Object Request Broker:
Architecture and Specification

Revised Edition: July 1995
Updated: July 1996
Revision2.1: August 1997
Revision2.2: February 1998

Copyright 1995, 1996 BNR Europe Ltd.

Copyright 1998, Borland International

Copyright 1991, 1992, 1995, 1996 by Digital Equipment Corporation
Copyright 1995, 1996 Expersoft Corporation

Copyright FUJITSU LIMITED 1996, 1997

Copyright 1996 Genesis Development Corporation

Copyright 1989, 1990, 1991, 1992, 1995, 1996 by Hewlett-Packard Company
Copyright 1991, 1992, 1995, 1996 by HyperDesk Corporation
Copyright International Business Machines Corporation 1996, 1997
Copyright 1995, 1996 ICL, plc

Copyright International Computers Limited 1996, 1997

Copyright 1995, 1996 IONA Technologies, Ltd.

Copyright Micro Focus Limited 1996, 1997

Copyright 1991, 1992, 1995, 1996 by NCR Corporation

Copyright 1995, 1996 Novell USG

Copyright 1991,1992, 1995, 1996 by Object Design, Inc.

Copyright 1991, 1992, 1995, 1996 Object Management Group, Inc.
Copyright 1996 Siemens Nixdorf Informationssysteme AG
Copyright 1991, 1992, 1995, 1996 by Sun Microsystems, Inc.
Copyright 1995, 1996 SunSoft, Inc.

Copyright 1996 Sybase, Inc.

Copyright 1998 Telefonica Investigacion y Desarrollo S.A. Unipersonal
Copyright 1996 Visual Edge Software, Ltd.

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free, paid u
worldwide license to copy and distribute this document and to modify this document and distribute copies of the modified ver
sion. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed the copyrigh
the included material of any such copyright holder by reason of having used the specification set forth herein or having con
formed any computer software to the specification.

PATENT

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may require use
of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a license may be
required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of those patents that are
brought to its attention. OMG specifications are prospective and advisory only. Prospective users are responsible for prote
ing themselves against liability for infringement of patents.

NOTICE

The information contained in this document is subject to change without notice. The material in this document details an
Object Management Group specification in accordance with the license and notices set forth on this page. This document do
not represent a commitment to implement any portion of this specification in any company's products.

WHILE THE INFORMATION IN THIS PUBLICATION IS BELIEVED TO BE ACCURATE, THE OBJECT MANAGE-

MENT GROUP AND THE COMPANIES LISTED ABOVE MAKE NO WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, WITH REGARD TO THIS MATERIAL INCLUDING, BUT NOT LIMITED TO ANY WARRANTY OF TITLE

OR OWNERSHIP, IMPLIED WARRANTY OF MERCHANTABILITY OR WARRANTY OF FITNESS FOR PARTICU-

LAR PURPOSE OR USE. In no event shall The Object Management Group or any of the companies listed above be liable fo

errors contained herein or for indirect, incidental, special, consequential, reliance or cover damages, including lass of profit
revenue, data or use, incurred by any user or any third party. The copyright holders listed above acknowledge that the Obje
Management Group (acting itself or through its designees) is and shall at all times be the sole entity that may authorize de\
opers, suppliers and sellers of computer software to use certification marks, trademarks or other special designations to inc
cate compliance with these materials. This document contains information which is protected by copyright. All Rights
Reserved. No part of this work covered by copyright herein may be reproduced or used in any form or by any means--graphi
electronic, or mechanical, including photocopying, recording, taping, or information storage and retrieval systems--without
permission of the copyright owner. RESTRICTED RIGHTS LEGEND. Use, duplication, or disclosure by government is sub-:
ject to restrictions as set forth in subdivision (c) (1) (ii) of the Right in Technical Data and Computer Software Clause at
DFARS 252.227.7013 OMG/ and Object Management are registered trademarks of the Object Management Group, Inc.
Object Request Broker, OMG IDL, ORB, CORBA, CORBAfacilities, CORBAservices, and COSS are trademarks of the
Object Management Group, Inc. X/Open is a trademark of X/Open Company Ltd.

ISSUE REPORTING

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage readers tc
report any ambiguities, inconsistencies, or inaccuracies they may find by completing the issue reporting form at
http://www.omg.org/library/issuerpt.htm.

Contents

Preface XXVii
0.1 About ThisDocument XXVil
0.1.1 Object Management Group. XXVii
0.1.2 X/IOpen. XXVili
0.2 Intended Audience XXViii
0.3 Contextof CORBA XXViii
0.4 Associated Documents.c.iiii... XXiX
0.5 Definition of CORBA Compliance. XXX
0.6 Structureof ThisManual XXXi
0.7 Acknowledgements XXXIil
0.8 References i XXXIV
1. TheObjectModel 1-1
1.1 OVEIVIEW . .ttt e e e e 1-1
1.2 ObjectSemantics 1-2
121 Objects...... .. e 1-3
122 Requests........... .., 1-3
1.2.3 Object Creation and Destruction. 1-4
1.24 TYPES .. 1-4
125 Interfaces i 1-5
126 Operationsuiiiiiinnn... 1-6
1.2.7 Attributes 1-7
1.3 Object Implementation. 1-8
1.3.1 The Execution Model: Performing Services... 1-8
1.3.2 The Construction Model. 1-8
2. CORBA OVEIVIEBW . . . ottt et e e 2-1
2.1 Structure of an Object Request Broker. 2-2
2.1.1 ObjectRequestBroker 2-6
21.2 Clients. 2-7
2.1.3 Object Implementations 2-7
214 ObjectReferences. 2-8
2.1.5 OMG Interface Definition Language 2-8
2.1.6 Mapping of OMG IDL to Programming
Languages. 2-8
217 ClientStubs 2-9
2.1.8 Dynamic Invocation Interface. 2-9
2.1.9 Implementation Skeleton 2-9
2.1.10 Dynamic Skeleton Interface 2-10
2.1.11 ObjectAdapters 2-10
CORBAV2.2 February 1998 i

Contents

2112 ORBlnterface.......... 2-10
2.1.13 Interface Repository 2-11
2.1.14 Implementation Repository. 2-11
22 Example ORBs.......... 2-11
2.2.1 Client- and Implementation-resident ORB 2-11
2.2.2 Server-basedORB 2-12
2.2.3 System-basedORB...................... 2-12
2.2.4 Library-basedORB. 2-12
2.3 StructureofaClient.......... 2-12
2.4 Structure of an Object Implementation. 2-13
2.5 Structure of an Object Adapter. 2-15
2.6 CORBA Required Object Adapter. 2-17
2.6.1 Portable Object Adapter. 2-17
2.7 The Integration of Foreign Object Systems 2-18
3. OMG IDL Syntax and Semantics. 3-1
3.1 OVEIVIEW . .ot 3-2
3.2 Lexical Conventions.t 3-3
321 Tokens........... .. 3-6
3.22 Comments......... 3-6
3.2.3 ldentifiers........ 3-6
324 Keywords i 3-7
325 Literals........ 3-7
3.3 Preprocessing. 3-9
3.4 OMGIDLGrammar. 3-10
3.5 OMGIDL Specification. 3-14
3.5.1 Module Declaration 3-14
3.5.2 Interface Declaration 3-15
3.6 Inheritance 3-16
3.7 ConstantDeclaration 3-18
371 Syntax. 3-18
3.7.2 Semantics........... .. 3-20
3.8 TypeDeclaration i 3-22
3.81 BasicTypes........... ... 3-23
3.8.2 Constructed Types 3-25
3.83 Template Types............ ... 3-27
3.8.4 Complex Declarator 3-29
3.85 NativeTypes.......... ... 3-29
3.9 ExceptionDeclaration 3-30
CORBAV2.2 February 1998

Contents

3.10 Operation Declaration 3-31
3.10.1 Operation Attribute. 3-31
3.10.2 Parameter Declarations. 3-32
3.10.3 RaisesExpressions...................... 3-32
3.10.4 Context Expressions. 3-33
3.11 Attribute Declaration 3-33
3.12 CORBAModule. 3-34
3.13 Namesand SCopinguuiin 3-35
3.14 Differencesfrom C++ 3-37
3.15 Standard Exceptions. 3-37
3.15.1 Standard Exceptions Definitions 3-38
3.15.2 Object Non-Existence. 3-39
3.15.3 Transaction Exceptions. 3-39
4. ORBInterface. 4-1
4.1 OVEIVIEW . .ot e 4-1
4.1.1 Converting Object References to Strings 4-3
4.1.2 Getting Service Information. 4-3
4.2 Object Reference Operations 4-4
4.2.1 Determining the Object Interface 4-4
4.2.2 Duplicating and Releasing Copies of Object
References 4-5
4.2.3 Nil Object References. 4-5
4.2.4 Equivalence Checking Operation 4-5
4.2.5 Probing for Object Non-Existence 4-6
4.2.6 Object Reference Identity. 4-6
4.2.7 Getting Policy Associated with the Object.... 4-7
4.2.8 Getting the Domain Managers Associated with
theObject........... 4-8
4.3 ORB and OA Initialization and Initial References 4-8
4.4 ORBInitialization 4-8
4.5 Obtaining Initial Object References. 4-10
46 CurrentObject 4-12
4.7 PolicyObject 4-12
4.8 Management of Policy Domains 4-14
48.1 BasicConcepts.............. ..., 4-14
4.8.2 Domain Management Operations. 4-16
4.9 Thread-related operations 4-19
49.1 work pending............. 4-19
CORBAV2.2 February 1998 iii

Contents

49.2 perform_work. o 4-19

4.9.3 rUN .. 4-20

49.4 shutdown......... 4-20

5. Dynamic Invocation Interface 5-1

5.1 OVEeIVIEW . . 5-2
5.1.1 Common Data Structures 5-2

512 MemoryUsage...........ccuviiiiinnn. 5-4

5.1.3 Return Status and Exceptions. 5-4
5.2 RequestOperationsc..iiiiiinnrnn.. 5-5
5.2.1 create_request. 5-5

522 add arg.......... ... 5-7

523 nvoKe....... 5-8

524 delete 5-8
5.3 Deferred Synchronous Operations 5-8
531 send........ .. 5-8

5.3.2 send_multiple_requests. 5-9

533 getresponse........... ... 5-10

5.3.4 get_next_response. 5-10

5.4 ListOperations. 5-11
541 create list............ 5-12

542 addiitem.......... 5-12

543 free 5-12

544 free_memory.......... ..., 5-13

545 getcount 5-13

5.4.6 create_operation_ list..................... 5-13
5,5 ContextObjects 5-13
5.6 Context ObjectOperations. 5-14
5.6.1 get default context...................... 5-15

56.2 setonewvalue.......................... 5-16

56.3 setwvalues.............. 5-16

56.4 getvalues..........., 5-16

56,5 delete values 5-17

5.6.6 create child 5-17

56.7 delete 5-17

5.7 Native Data Manipulation 5-17

6. Dynamic Skeleton Interface. 6-1
6.1 Introduction 6-1
6.2 OVEIVIEW . .ot 6-2

iv CORBAV2.2 February 1998

Contents

6.3 ServerRequestPseudo-Object....................... 6-3
6.3.1 ExplicitRequest State: ServerRequestPseudo-
Object. 6-3
6.4 DSI:Language Mappingouuiininnan... 6-4
6.4.1 ServerRequest’s Handling of Operation
Parameters 6-4
6.4.2 Registering Dynamic Implementation Routines 6-5
7. Dynamic managementof Anyvalues.................. 7-1
7.1 OVEIVIEW . .ot e e 7-2
7.2 DynAny APL. 7-3
7.2.1 Locality and usage constraints 7-5
7.2.2 Creatinga DynAnyobject 7-5
7.2.3 TheDynAnyinterface 7-7
7.2.4 The DynFixedinterface 7-10
7.25 TheDynEnuminterface 7-10
7.2.6 The DynStructinterface 7-11
7.2.7 The DynUnioninterface.................. 7-12
7.2.8 The DynSequence interface 7-13
7.2.9 TheDynArrayinterface 7-13
7.3 UsageinC++languageciiiann. 7-14
7.3.1 Dynamic creation of CORBA::Any values. ... 7-14
7.3.2 Dynamic interpretation of CORBA::Any values 7-15
8. The Interface Repository. 8-1
8.1 OVEIVIEW . ..o 8-1
8.2 Scope of an Interface Repository 8-2
8.3 Implementation Dependencies. 8-4
8.3.1 Managing Interface Repositories 8-5
8.4 BasiCS........ . 8-6
8.4.1 Namesand ldentifiers.................... 8-6
8.4.2 Typesand TypeCodes.................... 8-6
8.4.3 Interface Objects. 8-7
8.4.4 Structure and Navigation of Interface Objects . 8-7
8.5 Interface Repository Interfaces. 8-9
8.5.1 Supporting Type Definitions. 8-9
852 IRObject...... 8-10
853 Contained............ 8-11
854 Container 8-13
855 IDLTYPE ..o ot e e e 8-17
85.6 Repository 8-17
CORBAV2.2 February 1998 Y

Contents

8.5.7 ModuleDef.......... 8-19
8.5.8 ConstantDef Interface. 8-19
8.5.9 StructDef 8-20
8.5.10 UnionDef 8-21
8.5.11 EnumDef......... 8-22
8.5.12 AliasDef......... 8-22
8.5.13 PrimitiveDef. 8-23
8.5.14 StringDef 8-23
8.5.15 WstringDef............ 8-24
8.5.16 FixedDef. 8-24
8.5.17 SequenceDef........ 8-24
8.5.18 ArrayDef. 8-25
8.5.19 ExceptionDef 8-26
8.5.20 AttributeDef 8-26
8.5.21 OperationDef 8-27
8.5.22 InterfaceDef 8-29
8.6 Repositorylds. 8-31
86.1 OMGIDLFormat....................... 8-31
8.6.2 DCEUUIDFormat...................... 8-31
8.6.3 LOCALFormat 8-32
8.6.4 Pragma Directives for Repositoryld 8-32
8.6.5 For More Information. 8-34
8.6.6 RepositorylDs for OMG-Specified Types. 8-34
8.7 TypeCodes 8-35
8.7.1 The TypeCode Interface 8-36
8.7.2 TypeCodeConstants. 8-40
8.7.3 CreatingTypeCodes 8-41
8.8 OMG IDL for Interface Repository 8-44
9. The Portable Object Adaptor 9-1
9.1 OVEIVIEW . . oot 9-1
9.2 Abstract Model Description. 9-2
9.2.1 ModelComponents. 9-2
9.2.2 Model Architecture. 9-4
9.23 POACreation............ ... 9-6
9.2.4 ReferenceCreation...................... 9-7
9.2.5 Object Activation States 9-8
9.2.6 RequestProcessing...................... 9-9
9.2.7 Implicit Activation 9-10
9.2.8 Multi-threading 9-11

Vi CORBAV2.2 February 1998

Contents

9.2.9 Dynamic Skeleton Interface 9-12
9.2.10 Location Transparency 9-13
9.3 Interfaces 9-13
9.3.1 TheServantIDLType 9-14
9.3.2 POAManager Interface................... 9-14
9.3.3 AdapterActivator Interface 9-19
9.3.4 ServantManager Interface. 9-20
9.3.5 ServantActivator Interface 9-21
9.3.6 ServantLocator Interface. 9-24
9.3.7 POAPolicyObjects 9-25
9.3.8 POAInterface............ 9-30
9.3.9 Currentoperations....................... 9-38
9.4 IDL for PortableServermodule 9-38
9.5 UML Description of PortableServer. 9-46
9.6 Usage SCeNarios.uiiinini . 9-47
9.6.1 GettingtherootPOA 9-48
9.6.2 CreatingaPOA. 9-48
9.6.3 Explicit Activation with POA-assigned
Objectlds. i, 9-48
9.6.4 Explicit activation with user assigned Object Ids 9-49
9.6.5 Creating references before activation 9-50
9.6.6 Servant Manager Definition and Creation. 9-51
9.6.7 Object activationondemand. 9-52
9.6.8 Persistent objects with POA-assigned Ids. 9-54
9.6.9 Multiple Object Ids Mapping to a Single Servant9-54
9.6.10 One Servant for all Objects. 9-54
9.6.11 Single Servant, many objects and types,
usingDSI. 9-57
10. Interoperability Overview. 10-1
10.1 Elements of Interoperability. 10-1
10.1.1 ORSB Interoperability Architecture 10-2
10.1.2 Inter-ORB Bridge Support 10-2
10.1.3 General Inter-ORB Protocol (GIOP) 10-3
10.1.4 Internet Inter-ORB Protocol (IIOP) 10-3
10.1.5 Environment-Specific Inter-ORB Protocols
(ESIOPS) . .. oo 10-4
10.2 Relationship to Previous Versions of CORBA 10-4
10.3 Examples of Interoperability Solutions 10-5
10.3.1 Example 1. 10-5
10.3.2 Example 2. 10-5

CORBAV2.2 February 1998 vii

Contents

10.3.3 Example 3. 10-5
10.3.4 Interoperability Compliance............... 10-5
10.4 Motivating Factors 10-8
10.4.1 ORB Implementation Diversity 10-8
10.4.2 ORBBoundaries........................ 10-8
10.4.3 ORBs Vary in Scope, Distance, and Lifetime.. 10-9
10.5 Interoperability Design Goals. 10-9
10.5.1 Non-Goals. 10-10
11. ORB Interoperability Architecture 11-1
111 OVEIVIEW . oot e e e e 11-1
1111 DOMains . ..ot 11-2
11.1.2 BridgingDomains. 11-2
11.2 ORBsandORB Servicescouiiiun... 11-3
11.2.1 The Nature of ORB Services 11-3
11.2.2 ORB Services and Object Requests 11-3
11.2.3 Selection of ORB Services. 11-4
11.3 DOMAINS . .« .ottt e 11-5
11.3.1 DefinitionofaDomain................... 11-5
11.3.2 Mapping Between Domains: Bridging 11-6
11.4 Interoperability Between ORBs 11-7
11.4.1 ORB Servicesand Domains 11-7
11.42 ORBsandDomains 11-7
11.4.3 Interoperability Approaches............... 11-8
11.4.4 Policy-Mediated Bridging. 11-10
11.4.5 Configurations of Bridges in Networks. 11-11
11.5 Object Addressingc. .. 11-11
11.5.1 Domain-relative Object Referencing 11-12
11.5.2 Handling of Referencing Between Domains. . . 11-12
11.6 An Information Model for Object References 11-14
11.6.1 What Information Do Bridges Need?........ 11-14
11.6.2 Interoperable Object References: IORs 11-14
11.6.3 Standard IOR Components. 11-17
11.6.4 Profile and Component Composition in IORs. . 11-18
11.6.5 IOR Creationand Scope.................. 11-19
11.6.6 Stringified Object References.............. 11-19
11.6.7 Object Service Context. 11-20
11.7 Code Set Conversioncouiiiiinnn... 11-22
11.7.1 Character Processing Terminology.......... 11-22

viii CORBAV2.2 February 1998

Contents

11.7.2 Code
Set Conversion Framework. 11-25
11.7.3 Mapping to Generic Character Environments. . 11-33
11.8 Example of Generic Environment Mapping............ 11-34
11.8.1 GenericMappings. 11-35
11.8.2 Interoperation and Generic Mappings. 11-35
11.9 Relevant OSFM Registry Interfaces. 11-35
11.9.1 Character and Code Set Registry 11-35
11.9.2 AccessRoutines........................ 11-36
12. Building Inter-ORB Bridges 12-1
12.1 In-Line and Request-Level Bridging 12-2
12.1.1 In-lineBridging 12-3
12.1.2 Request-level Bridging................... 12-3
12.1.3 CollocatedORBs 12-4
12.2 Proxy Creation and Management. 12-5
12.3 Interface-specific Bridges and Generic Bridges 12-6
12.4 Building Generic Request-Level Bridges. 12-6
12.5 Bridging Non-Referencing Domains 12-7
12.6 Bootstrapping Bridges o . 12-7
13. General Inter-ORB Protocol. 13-1
13.1 Goals of the General Inter-ORB Protocol. 13-2
13.2 GIOPOVEIVIEWo 13-2
13.2.1 Common Data Representation (CDR) 13-3
13.2.2 GIOP Message Overview 13-3
13.2.3 GIOP Message Transfer 13-4
13.3 CDR Transfer Syntax.iiinae.. 13-4
13.3.1 Primitive Types. 13-5
13.3.2 OMG IDL Constructed Types. 13-10
13.3.3 Encapsulation.......................... 13-12
13.3.4 Pseudo-ObjectTypes 13-13
13.3.5 ObjectReferences. 13-18
134 GIOP Message Formats 13-19
13.4.1 GIOP Message Header 13-19
1342 ReplyMessage 13-24
13.4.3 CancelRequestMessage 13-26
13.4.4 LocateRequestMessage 13-27
13.4.5 LocateReply Message.................... 13-28
13.4.6 CloseConnectionMessage 13-29

CORBAV2.2 February 1998 ¢

Contents

13.4.7 MessageError Message. 13-29
13.4.8 FragmentMessage 13-29
13.5 GIOP Message Transport., .. 13-30
13.5.1 Connection Management 13-30
13.5.2 Message Ordering. 13-32
13.6 ObjectLocation 13-32
13.7 Internet Inter-ORB Protocol (IIOP) 13-33
13.7.1 TCP/IP ConnectionUsage 13-34
13.7.2 NIOPIORProfiles. 13-34
13.7.3 1IOP IOR Profile Components 13-37
13.8 OMGIDL. ... 13-37
13.8.1 GIOPModule............... 13-37
13.8.2 lIOPModule. 13-39
14. The DCEESIOP. i 14-1
14.1 Goals of the DCE Common Inter-ORB Protocol 14-1
14.2 DCE Common Inter-ORB Protocol Overview 14-2
14.2.1 DCE-CIOPRPC......... ..., 14-2
14.2.2 DCE-CIOP Data Representation. 14-3
142.3 DCE-CIOPMessages. 14-4
14.2.4 Interoperable Object Reference (IOR) 14-5
14.3 DCE-CIOP Message Transport 14-5
14.3.1 Pipe-basedInterface..................... 14-6
14.3.2 Array-based Interface 14-8
14.4 DCE-CIOP Message Formats. 14-11
14.4.1 DCE_CIOP Invoke Request Message. 14-11
14.4.2 DCE-CIOP Invoke Response Message. 14-12
14.4.3 DCE-CIOP Locate Request Message 14-14
14.4.4 DCE-CIOP Locate Response Message. 14-15
14.5 DCE-CIOP Object References. 14-16
14.5.1 DCE-CIOP String Binding Component 14-17
14.5.2 DCE-CIOP Binding Name Component 14-18
14.5.3 DCE-CIOP No Pipes Component. 14-19
14.5.4 Complete Object Key Component 14-19
14.5.5 Endpoint ID Position Component. 14-20
14.5.6 Location Policy Component............... 14-20
14.6 DCE-CIOP Object Location. 14-22
14.6.1 Location Mechanism Overview 14-22
14.6.2 Activation.......... 14-23
14.6.3 Basic Location Algorithm. 14-23

CORBAV2.2 February 1998

Contents

14.6.4 Use of the Location Policy and the Endpoint ID14-24

14.7 OMG IDL forthe DCE CIOP Module 14-25
14.8 ReferencesforthisChapter 14-26
15. Interworking Architecture. 15-1
15.1 Purpose of the Interworking Architecture 15-2
15.1.1 Comparing COM Objects to CORBA Objects . 15-2
15.2 Interworking Object Model 15-3
15.2.1 Relationship to CORBA Object Model. 15-3
15.2.2 Relationship to the OLE/COM Model 15-4
15.2.3 Basic Description of the Interworking Model. . 15-4
15.3 Interworking Mapping Issues. 15-8
15.4 Interface Mapping i 15-8
15.4.1 CORBA/ICOM 15-9
15.4.2 CORBA/Automation. 15-9
1543 COM/CORBA 15-10
15.4.4 Automation/CORBA. 15-10
15.5 Interface Composition Mappings. 15-11
15.5.1 CORBA/COM i, 15-11
15.5.2 Detailed MappingRules. 15-13
15.5.3 Example of Applying Ordering Rules. 15-14
15.5.4 Mapping Interface Identity 15-16
15.6 Object Identity, Binding, and Life Cycle 15-18
15.6.1 ObjectldentityIssues.................... 15-18
15.6.2 Bindingand LifeCycle................... 15-20
15.7 Interworking Interfaces 15-23
15.7.1 SimpleFactory Interface 15-23
15.7.2 IMonikerProvider Interface and Moniker Use . 15-23
15.7.3 ICORBAFactory Interface 15-24
15.7.4 IForeignObject Interface. 15-26
15.7.5 ICORBAObDjectInterface 15-27
15.7.6 IORBObjectInterface.................... 15-28
15.7.7 Naming Conventions for View Components. . . 15-29
15.8 Distribution 15-32
15.8.1 Bridge Locality. 15-32
15.8.2 Distribution Architecture 15-33
15.9 Interworking Targets, 15-34
15.10 Compliance to COM/CORBA Interworking. 15-34
15.10.1 Products Subject to Compliance............ 15-34
CORBAV2.2 February 1998 Xi

Contents

15.10.2 Compliance Points 15-36
16. Mapping: COMand CORBA 16-1
16.1 DataTypeMappingo .. 16-1
16.2 CORBA to COM Data Type Mapping 16-2
16.2.1 Mapping for Basic Data Types 16-2
16.2.2 MappingforConstants. 16-2
16.2.3 Mapping for Enumerators. 16-3
16.2.4 Mapping for String Types. 16-4
16.2.5 Mapping for Struct Types. 16-5
16.2.6 Mapping for Union Types. 16-6
16.2.7 Mapping for Sequence Types 16-8
16.2.8 Mapping for Array Types 16-9
16.2.9 Mapping fortheany Type................. 16-10
16.2.10 Interface Mapping. 16-11
16.2.11 Inheritance Mapping. oL 16-25
16.2.12 Mapping for Pseudo-Objects 16-28
16.2.13 Interface Repository Mapping 16-31
16.3 COM to CORBA Data Type Mapping 16-32
16.3.1 Mapping for Basic Data Types 16-32
16.3.2 MappingforConstants. 16-33
16.3.3 Mapping for Enumerators. 16-33
16.3.4 Mapping for String Types. 16-34
16.3.5 Mapping for Structure Types 16-36
16.3.6 Mapping for Union Types. 16-37
16.3.7 Mapping for Array Types 16-39
16.3.8 Mapping for VARIANT 16-40
16.3.9 Mapping for Pointers 16-43
16.3.10 Interface Mapping. L 16-43
16.3.11 Mapping for Read-Only Attributes. 16-48
16.3.12 Mapping for Read-Write Attributes 16-48
17. Mapping: OLE Automationand CORBA 17-1
17.1 Mapping CORBA Objects to OLE Automation......... 17-2
17.1.1 Architectural Overview. 17-2
17.1.2 Main Features of the Mapping 17-3
17.1.3 Mapping for Interfaces 17-3
17.1.4 Mapping for Basic Data Types 17-9
17.1.5 Special Cases of Basic Data Type Mapping ... 17-11
17.1.6 Mappingfor Strings 17-11

Xii CORBAV2.2 February 1998

Contents

17.1.7 A Complete IDL to ODL Mapping for the Basic

DataTypes 17-12
17.1.8 Mapping for Object References 17-16
17.1.9 Mapping for Enumerated Types 17-18
17.1.10 Mapping for Arrays and Sequences 17-19
17.1.11 Mapping for CORBA Complex Types 17-20
17.1.12 Mapping for TypeCodes 17-23
17.1.13 Mapping foranys 17-24
17.1.14 Mapping for Typedefs. 17-25
17.1.15 Mapping for Constants 17-25

17.1.16 Getting Initial CORBA Object References. ... 17-26
17.1.17 Creating Initial in Parameters for Complex

TYPES o 17-27
17.1.18 Mapping CORBA Exceptions to Automation
Exceptions 17-29
17.1.19 Conventions for Naming Components of the
Automation View 17-36
17.1.20 Naming Conventions for Pseudo-Structs, Pseudo-
Unions, and Pseudo-Exceptions 17-36
17.1.21 Automation View Interface as a Dispatch Interface
(Nondual).o 17-36
17.1.22 Aggregation of Automation Views 17-37
17.1.23DlHand DSl 17-37
17.2 Automation Objects as CORBA Objects 17-38
17.2.1 Architectural Overview. 17-38
17.2.2 Main Features of the Mapping 17-39
17.2.3 Getting Initial Object References 17-39
17.2.4 Mapping for Interfaces 17-40
17.2.5 Mapping for Inheritance. 17-40

CORBAV2.2

17.2.6 Mapping for ODL Properties and Methods. . .. 17-41
17.2.7 Mapping for Automation Basic Data Types .. .17-42

17.2.8 ConversionErrors. 17-43
17.2.9 Special Cases of Data Type Conversion 17-43
17.2.10 A Complete OMG IDL to ODL Mapping for

the BasicDataTypes 17-43
17.2.11 Mapping for Object References 17-46
17.2.12 Mapping for Enumerated Types 17-47
17.2.13 Mapping for SafeArrays. 17-47
17.2.14 Mapping for Typedefs. 17-48
17.2.15 Mapping for VARIANTS 17-48

17.2.16 Mapping Automation Exceptions to CORBA. . 17-48

February 1998 Xiii

Contents

17.3 Older OLE Automation Controllers. 17-49
17.3.1 Mapping for OMG IDL Arrays and Sequences to
Collections 17-49
17.4 Example Mappings.o 17-50
17.4.1 Mapping the OMG Naming Service to OLE
Automation. 17-50
17.4.2 Mapping a COM Serviceto OMG IDL 17-51
17.4.3 Mapping an OMG Object Service to OLE
Automation. 17-55
18. Interceptors 18-1
18.1 Introduction. 18-1
18.1.1 ORB Core and ORB Services. 18-2
18.2 Interceptors.t 18-2
18.2.1 Generic ORB Services and Interceptors. 18-2
18.2.2 Request-Level Interceptors 18-3
18.2.3 Message-Level Interceptors 18-3
18.2.4 Selecting Interceptors. 18-4
18.3 Client-TargetBinding. 18-4
18.3.1 BindingModel 18-5
18.3.2 Establishing the Binding and Interceptors 18-5
18.4 Using Interceptors 18-6
18.4.1 Request-Level Interceptors. 18-6
18.4.2 Message-Level Interceptors 18-7
18.5 Interceptorinterfaces................ 18-7
18.5.1 Clientand TargetInvoke.................. 18-8
18.5.2 Send and Receive Message. 18-8
18.6 IDLforInterceptors. 18-9
19. CLanguage Mappingco ittt 19-1
19.1 Requirements for a Language Mapping 19-2
19.1.1 BasicDataTypesc..... 19-3
19.1.2 Constructed DataTypes 19-3
19.1.3 Constants i 19-3
19.1.4 Objectsot 19-3
19.1.5 Invocation of Operations. 19-4
19.1.6 Exceptions i, 19-4
19.1.7 Attributes 19-5
19.1.8 ORBlnterfaces......................... 19-5
19.2 Scoped Names i 19-5
19.3 Mapping forInterfaces. 19-6

Xiv CORBAV2.2 February 1998

Contents

19.4

19.5

19.6

19.7

19.8

19.9

19.10
19.11
19.12
19.13
19.14
19.15
19.16
19.17
19.18
19.19
19.20
19.21
19.22
19.23
19.24
19.25

19.26

19.27

19.28

CORBAV2.2

Inheritance and Operation Names 19-8
Mapping for Attributes. 19-8
Mapping forConstants. 19-10
Mapping for Basic Data Types., 19-10
Mapping Considerations for Constructed Types. 19-11
Mapping for Structure Types 19-12
Mapping forUnion Types. i 19-12
Mapping for Sequence Types. 19-13
Mapping for Strings 19-16
Mapping for Wide Strings o 19-18
MappingforFixed 19-18
Mapping for Arrays i 19-19
Mapping for Exception Types 19-20
Implicit Arguments to Operations 19-21
Interpretation of Functions with Empty Argument Lists . . 19-21
Argument Passing Considerations 19-21
Return Result Passing Considerations 19-22
Summary of Argument/Result Passing. 19-23
Handling Exceptions 19-26
Method Routine Signatures 19-29
Include Files. 19-29
Pseudo-objects L 19-29
19.25.1 ORBOperations, 19-30
Mapping for Object Implementations. 19-30
19.26.1 Operation-specific Details 19-31
19.26.2 PortableServer Functions 19-31
19.26.3 Mapping for PortableServer::Servant
Locator::Cookie, 19-31
19.26.4 Servant Mapping. i 19-32
19.26.5 Interface Skeletons 19-33
19.26.6 Servant Structure Initialization. 19-35
19.26.7 Application Servants. 19-37
19.26.8 Method Signatures 19-39
Mapping of the Dynamic Skeleton InterfacetoC 19-40
19.27.1 Mapping of ServerRequesttoC 19-40
19.27.2 Mapping of Dynamic Implementation
RoutinetoC 19-42
ORB Initialization Operations 19-44

February 1998 XV

Contents

XVi

20. Mappingof OMGIDL toC++. it 20-1
20.1 Preliminary Information. 20-3
20.1.1 QVerviewcoui 20-3
20.1.2 ScopedNames 20-4
20.1.3 C++ Type Size Requirements. 20-5
20.1.4 CORBAModule........................ 20-5
20.2 MappingforModules. 20-5
20.3 Mapping forinterfaces. 20-6
20.3.1 Object Reference Types 20-6
20.3.2 Widening Object References 20-7
20.3.3 Object Reference Operations 20-8
20.3.4 Narrowing Object References. 20-9
20.3.5 Nil Object Reference 20-10
20.3.6 Object Reference Out Parameter. 20-10
20.3.7 Interface Mapping Example 20-11
20.4 MappingforConstants. 20-13
20.5 Mapping forBasicDataTypes...................... 20-15
20.6 MappingforEnums 20-16
20.7 Mapping for String Types.o 20-17
20.8 Mapping for Wide String Types. oL 20-20
20.9 Mapping for Structured Types 20-21
20.9.1 T varTypes ... v it 20-22
20.9.2 T OULTYPES .. .ot 20-25
20.10 Mapping for Struct Types.o 20-27
20.11 MappingforFixed 20-29
20.11.1 Fixed T_varand T_out Types. 20-31
20.12 Mapping for Union Types. 20-31
20.13 Mapping for Sequence Types. 20-35
20.13.1 Sequence Example 20-38
20.13.2 Using the “release” Constructor Parameter. . . . 20-39

20.13.3 Additional Memory Management Functions . . 20-40

20.13.4 Sequence T_varand T_out Types........... 20-41
20.14 Mapping For Array TYpesSt 20-41
20.15 Mapping For Typedefs. 20-44
20.16 Mapping forthe Any Type 20-46
20.16.1 Handling Typed Values. 20-46
20.16.2 Insertionintoanyooov.... 20-46
20.16.3 Extractionfromany 20-49

CORBAV2.2 February 1998

Contents

20.17
20.18
20.19
20.20

20.21
20.22
20.23
20.24
20.25

20.26

20.27

20.28

20.29

CORBAV2.2

20.16.4 Distinguishing boolean, octet, char, wchar, bounded

string, and bounded wstring 20-52
20.16.5 Wideningto Object. 20-55
20.16.6 Handling Untyped Values. 20-56
20.16.7 Any Constructors, Destructor, Assignment
Operator i 20-57
20.16.8 The Any Classciiiiinnn.. 20-57
20.16.9 TheAny varClass 20-57
Mapping for Exception Types 20-58
Mapping For Operations and Attributes. 20-61
Implicit Arguments to Operations 20-62
Argument Passing Considerations 20-62
20.20.1 Operation Parameters and Signatures........ 20-65
Mapping of Pseudo Objectsto C++. 20-68
USage . . . o 20-69
MappingRules. 20-69
Relationtothe CPIDLMapping 20-70
Environment. 20-71
20.25.1 Environment Interface 20-71
20.25.2 EnvironmentC++Class 20-72
20.25.3 Differencesfrom C-PIDL. 20-72
20.25.4 Memory Management. 20-72
NamedValue. i 20-72
20.26.1 NamedValue Interface. 20-73
20.26.2 NamedValue C++Class 20-73
20.26.3 Differencesfrom C-PIDL. 20-73
20.26.4 Memory Management. 20-73
NVLISt . .. 20-73
20.27.1 NVListiInterface. 20-74
20272 NVListC++Class ..., 20-74
20.27.3 Differencesfrom C-PIDL. 20-75
20.27.4 Memory Management. 20-75
Request. 20-75
20.28.1 RequestInterface 20-77
20.28.2 RequestC++Classcov i 20-78
20.28.3 Differencesfrom C-PIDL. 20-79
20.28.4 Memory Management. 20-80
Context. 20-80
20.29.1 Context Interface 20-80

February 1998 XVii

Contents

XVili

20.30

20.31

20.32

20.33

20.34

20.35

20.36

20.37
20.38

20.39

20.29.2 ContextC++ Class 20-81
20.29.3 Differences from C-PIDL. 20-81
20.29.4 Memory Management. 20-81
TypeCode 20-81
20.30.1 TypeCode Interface. 20-82
20.30.2 TypeCode C++Class 20-82
20.30.3 Differences from C-PIDL. 20-83
20.30.4 Memory Management. 20-83
ORB . . 20-83
20.31.1 ORBnterface. 20-83
2031.20RBC++Classovvi i 20-84
20.31.3 Differencesfrom C-PIDL. 20-85
20.31.4 Mapping of ORB Initialization Operations. . . . 20-85
ObjeCt. . . 20-86
20.32.1 ObjectInterface 20-87
20.32.2 ObjectC++Classo oo i 20-87
Server-Side Mapping 20-88
Implementing Interfaces. 20-89
20.34.1 Mapping of PortableServer::Servant. 20-89
20.34.2 Skeleton Operations 20-90

20.34.3 Inheritance-Based Interface Implementation . . 20-91
20.34.4 Delegation-Based Interface Implementation. . . 20-93

Implementing Operations. 20-97
20.35.1 Skeleton Derivation From Object. 20-99

Mapping of Dynamic Skeleton Interface to C++ 20-99
20.36.1 Mapping of ServerRequestto C++.......... 20-99

20.36.2 Handling Operation Parameters and Results. 20-100
20.36.3 Mapping of PortableServer Dynamic

Implementation Routine 20-100
PortableServer Functions 20-101
Mapping for PortableServer::ServantManager. 20-102

20.38.1 Mapping for Cookie 20-102
20.38.2 ServantManagers and AdapterActivators ... 20-102
C++ Definitionsfor CORBA 20-103
20.39.1 Primitive Types. i 20-103
20.39.2 String_var and String_ outClass.......... 20-104
20.39.3 WString_var and WString_out 20-104
20.39.4 Any Classo 20-105
20395 Any varClass. 20-107

CORBAV2.2 February 1998

Contents

20.39.6 ExceptionClass 20-108
20.39.7 SystemExceptionClass. 20-108
20.39.8 UserExceptionClass. 20-108
20.39.9 UnknownUserExceptionClass 20-109
20.39.10releaseandis nil 20-109
20.39.110bjectClass. 20-110
20.39.12EnvironmentClass. 20-111
20.39.13NamedValue Class 20-111
20.39.14NVListClass covii i 20-111
20.39.15ExceptionListClass 20-112
20.39.16ContextListClass. 20-112
20.39.17RequestClass.o 20-112
20.39.18ContextClass.o 20-113
20.39.19TypeCode Classco v 20-113
20.39.200RBClasS . . . oo oo 20-114
20.39.210RSB Initialization 20-115
20.39.22General T_out Types 20-115
20.40 Alternative Mappings For C++ Dialects. 20-116
20.40.1 Without Namespaces 20-116
20.40.2 Without Exception Handling 20-116
2041 CH+KeYWOrdS . . .o oottt 20-118
21. Mapping of OMG IDL to Smalltalk. 21-1
21.1 Mapping SUMMaArY. 21-3
21.2 KeyDesignDecisionsciiiiiin.. 21-4
21.2.1 Consistency of Style, Flexibility and Portability
of Implementation. 21-5
21.3 Implementation Constraints 21-5
21.3.1 Avoiding Name Space Collisions 21-5
21.3.2 Limitations on OMG IDL Types. 21-6
21.4 Smalltalk Implementation Requirements 21-6
21.5 Conversion of Names to Smalltalk Identifiers 21-7
21.6 Mapping forinterfaces................... 21-8
21.7 MemoryUsage.t 21-8
21.8 Mapping forObjects. 21-8
21.9 Invocation of Operations, 21-8
21.10 Mapping for Attributes. 21-9
21.10.1 Mapping forConstants. 21-10
21.11 Mapping for BasicData Types. 21-10
CORBAV2.2 February 1998 XiX

Contents

XX

21.12 Mapping forthe Any Type. 21-12
21.13 MappingforEnums 21-12
21.14 Mapping for Struct Types. oo oo 21-13
21.15 Mapping for Fixed Types 21-14
21.16 Mapping forUnion Types. 21-14
21.16.1 ImplicitBinding 21-14
21.16.2 ExplicitBinding 21-15
21.17 Mapping for Sequence Types. 21-15
21.18 Mapping for String Types. oo 21-15
21.19 Mapping for Wide String Types 21-15
21.20 Mapping for Array TYPesS. . . . oo v ittt 21-15
21.21 Mapping for Exception Types 21-15
21.22 Mapping forOperations. 21-16
21.23 Implicit Arguments to Operations 21-16
21.24 Argument Passing Considerations 21-17
21.25 Handling Exceptions 21-17
21.26 ExceptionValues 21-18
21.26.1 The CORBAEXxceptionValue Protocol 21-19
21.27 CORBA:Request. i 21-19
21.28 CORBA:CONtEXt. . ..o e e e 21-20
21.29 CORBA:Object. e 21-21
21.30 CORBA:ORB e 21-21
21.31 CORBA:NamedValue 21-22
21.32 CORBA:INVLISt ... 21-23
22. Mappingof OMG IDLtoCobol. 22-1
221 OVEIVIEW . oottt et et 22-2
22.2 Mappingof IDLtoCOBOL. 22-2
22.2.1 Mapping of IDL Identifiers to COBOL 22-2
22.3 Scoped Namest 22-3
22.4 Memory Management, 22-4
22,5 Mapping forinterfaces. 22-5
22.5.1 ObjectReferences....................... 22-5
22.5.2 Object References as Arguments 22-5
22.5.3 Inheritance and Interface Names 22-6
22.6 Mapping for Attributes. L 22-6
22.7 MappingforConstants. 22-7

CORBAV2.2 February 1998

Contents

22.8

22.9

22.10
22.11
22.12

22.13

22.14
22.15
22.16

22.17

22.18

22.19

22.20

CORBAV2.2

Mapping for Basic Data Types. 22-7
22.8.1 Boolean............. 22-8
22.8.2 ENUM. ... 22-8
22.8.3 ANy ... e 22-9

Mapping for Fixed Types it 22-10

Mapping for Struct Types. 22-10

Mapping forUnion Types. o i 22-10

Mapping for Sequence Types. i .. 22-11
22.12.1 Bounded Sequence 22-11
22.12.2 Unbounded Sequence 22-12
22.12.3 Sequence Element Accessor Functions. 22-12
22.12.4 Nested Sequences. 22-13
22.12.5 Sequence parameter passing considerations . . . 22-14

Mapping for Strings 22-15
22.13.1 How string is mapped to COBOL. 22-15
22.13.2 How wstring is mapped to COBOL 22-16
22.13.3 string / wstring argument passing

considerations. 22-18

Mapping for Arrays 22-19

Mapping for Exception Types 22-19

Argument Conventions. 22-19
22.16.1 Implicit Arguments to Operations. 22-19
22.16.2 Argument passing Considerations 22-20
22.16.3 Summary of Argument/Result Passing. 22-22

Memory Management 22-23
22.17.1 Summary of Parameter Storage

Responsibilities. 22-23

Handling Exceptions 22-25
22.18.1 Passing Exception details back to the caller . . . 22-25
22.18.2 Exception Handling Functions 22-26
22.18.3 Example of how to handle the CORBA-

Exception parameter. 22-27

Pseudo Objects. 22-29
22.19.1 Mapping Pseudo Objectsto COBOL 22-29
22.19.2 Pseudo-Object mapping example 22-30

Mapping of the Dynamic Skeleton Interface to COBOL . . 22-39
22.20.1 Mapping of the ServerRequest to COBOL 22-40

22.20.2 Mapping of Dynamic Implementation Routine
toCOBOL ... 22-41

February 1998 XXi

Contents

XXil

23.

22.21 ORSB Initialization Operations 22-44
22.22 Operations for Obtaining Initial Object References. 22-45
22.23 ORB Supplied Functions for Mapping. 22-46
22.23.1 Memory Management routines. 22-46
22.24 Accessor FuNnctions i 22-47
22.24.1 CORBA-sequence-element-get and CORBA-
sequence-element-set 22-47

22.24.2 CORBA-string-get and CORBA-string-set. . . . 22-48
22.24.3 CORBA-wstring-get & CORBA-wstring-set . . 22-49

22.25 Extensionsto COBOL85.......... 22-49
22.25.1 Untyped Pointers and Pointer manipulation . . . 22-50
22.25.2 Pointer Manipulation 22-50
22.25.3 Floatingpoint.......................... 22-50
22254 Constants 22-51
22255 Typedefs 22-51
22.26 References ... 22-53
Mapping of OMG IDLtoAda. 23-1
231 OVeIVIEW . .. 23-1
23.1.1 Ada Implementation Requirements 23-2
23.2 Mapping SUMMaArY.ottt e e e 23-2
23.2.1 Interfaces and Tagged Types. 23-2
23.2.2 Operations ... 23-3
23.2.3 Attributes 23-3
23.2.4 Inheritance 23-4
23.25 DataTypes 23-4
23.2.6 EXCeptions 23-4
23.2.7 Namesand Scoping 23-5
23.3 Other Mapping Requirements 23-5
23.3.1 Implementation Considerations 23-5
23.3.2 Calling Convention...................... 23-5
23.3.3 Memory Management. 23-5
23.34 Tasking......... ... 23-5
23.4 Lexical Mapping 23-6
23.4.1 Mapping of Identifiers 23-6
23.4.2 Mappingofliterals 23-6
23.4.3 Mapping of Constant Expressions 23-8
23.5 Mappingof IDLtoAda 23-10
2351 Names............ i 23-10
23.5.2 IDLFiles 23-11

CORBAV2.2 February 1998

Contents

23.5.3 CORBA Subsystem 23-12
23.5.4 MappingModules. 23-12
23.5.5 Mapping for Interfaces (Client-Side Specific) . 23-12
23.5.6 MappingforTypes 23-20
23.5.7 MappingforAny Type 23-29
23.5.8 Mapping for Exception Types. 23-30
23.5.9 Mapping for Operations and Attributes
(Client-Side Specific) 23-35
23.5.10 Argument Passing Considerations 23-36
23.5.11 Tasking Considerations. 23-36
23.6 Mapping of Pseudo-ObjectstoAda 23-36
23.6.1 NamedValue............. 23-37
23.6.2 NVLiSt 23-37
23.6.3 Request. i 23-38
23.6.4 Context...........c.iiiiiiiiin.. 23-39
23.65 Principal 23-40
23.6.6 TypeCode 23-40
23.6.7 ORB 23-42
23.6.8 Object. i 23-42
23.6.9 Environment.............., 23-43
23.7 Server-SideMapping 23-43
23.7.1 Implementing Interfaces. 23-44
23.7.2 Implementing Operations and Attributes 23-44
23.7.3 Examples 23-44
23.8 Predefined Language Environment: Subsystem CORBA. . 23-45
23.8.1 Package CORBA 23-45
23.8.2 Package CORBA.Bounded_Strings;......... 23-50
23.8.3 Package CORBA.Context. 23-50
23.8.4 Package CORBA.Environment............. 23-51
23.8.5 Package CORBA.Forward 23-51
23.8.6 Package CORBA. lterate_Over_Any_Elements 23-51
23.8.7 Package CORBA.NVList................. 23-52
23.8.8 Package CORBA.Object. 23-52
23.8.9 Package CORBAORB................... 23-53
23.8.10 Package CORBA.Principal 23-54
23.8.11 Package CORBA.Request. 23-54
23.8.12 Package CORBA.Sequences. 23-55
23.8.13 Package CORBA.Sequences.Bounded 23-56
23.8.14 Package CORBA.Sequences.Unbounded 23-61
23.9 Glossaryof AdaTerms. 23-65

CORBAV2.2 February 1998 xxiii

Contents

XXiV

24. Mappingof OMG IDLtoJava.covvuun.. 24-1
241 NAMES . . . 24-2
24.1.1 ReservedNames........................ 24-2
24.2 MappingofModule 24-3
2421 Example 24-3
24.3 MappingforBasicTypes 24-3
24.3.1 Introduction 24-3
24.3.2 Boolean. 24-8
24.3.3 Character Types 24-8
2434 OcCtet. 24-8
2435 Sting TYypeSo 24-8
24.3.6 Integer TypesS 24-8
24.3.7 Floating PointTypes. 24-8
24.3.8 Future Fixed Point Types 24-9
24.3.9 Future Long Double Types. 24-9
244 HelperClassest 24-9
2441 Examples 24-10
245 MappingforConstant. 24-10
24.5.1 Constants Within An Interface 24-10
24.5.2 Constants Not Within An Interface. 24-11
246 MappingforEnum. 24-11
24.6.1 Example 24-13
247 Mappingfor Struct. 24-13
24.7.1 Example 24-14
24.8 MappingforUnion. 24-14
248.1 Example 24-16
249 Mappingfor Sequence 24-17
24.9.1 Example 24-17
24.10 Mapping for Arrayot 24-18
24101 Example 24-18
24.11 Mapping forInterface. 24-19
24111 BaSiCS . . v oot 24-19
24.11.2 Parameter PassingModes. 24-21
24.12 Mapping for Exception. 24-22
24.12.1 User Defined Exceptions 24-23
24.12.2 System Exceptions 24-24
24.13 Mapping forthe Any Type oo 24-26
24.14 Mapping for Certain Nested Types. 24-29
24141 Example 24-29

CORBAV2.2 February 1998

Contents

24.15 Mapping for Typedef 24-30
24.15.1 Simple IDLtypes i 24-30
24.15.2 Complex IDL types. 24-30
24.16 Mapping Pseudo ObjectstoJava.................... 24-31
24.16.1 Introduction 24-31
24.16.2 Certain Exceptions 24-32
24.16.3 Environment. 24-32
24.16.4 NamedValue 24-33
24165 NVList 24-34
24.16.6 ExceptionList 24-34
24.16.7 Context. o 24-35
24.16.8 ContextList. 24-36
24169 Request. 24-37
24.16.10ServerRequest and Dynamic Implementation . 24-38
24.16.11TypeCode. 24-39
24.16.120RB. 24-42
24.16.13CORBA::Object. 24-46
24.16.14CuUrrent. 24-47
24.16.15Principal. 24-47
24.17 Server-Side Mapping 24-48
24.17.1 Introduction 24-48
24.17.2 TransientObjects 24-48
24.18 Java ORB Portability Interfaces 24-49
24.18.1 Introduction 24-49
24.18.2 Architecture 24-50
24.18.3 Streamable APIs., 24-52
24.18.4 Streaming APIs. 24-52
24.18.5 Portability Stub Interfaces. 24-55
24186 Delegate 24-57
24.18.7 Skeleton 24-58
24.18.8 ORB Initialization. 24-58
CORBAV2.2 February 1998 XXV

Contents

XXVi CORBAV2.2 February 1998

Preface

0.1 About This Document

Under the terms of the collaboration between OMG and X/Open Co Ltd., this
document is a candidate for endorsement by X/Open, initially as a Preliminary
Specification and later as a full CAE Specification. The collaboration between OMG
and X/Open Co Ltd. ensures joint review and cohesive support for emerging object-
based specifications.

X/Open Preliminary Specifications undergo close scrutiny through a review process at
X/Open before publication and are inherently stable specifications. Upgrade to full
CAE Specification, after a reasonable interval, takes place following further review by
X/Open. This further review considers the implementation experience of members and
the full implications of conformance and branding.

0.1.1 Object Management Group

The Object Management Group, Inc. (OMG) is an international organization supported
by over 800 members, including information system vendors, software developers and
users. Founded in 1989, the OMG promotes the theory and practice of object-oriented
technology in software development. The organization's charter includes the
establishment of industry guidelines and object management specifications to provide a
common framework for application development. Primary goals are the reusability,
portability, and interoperability of object-based software in distributed, heterogeneous
environments. Conformance to these specifications will make it possible to develop a
heterogeneous applications environment across all major hardware platforms and
operating systems.

OMG's objectives are to foster the growth of object technology and influence its
direction by establishing the Object Management Architecture (OMA). The OMA
provides the conceptual infrastructure upon which all OMG specifications are based.

CORBAV2.2 February 1998 XXVii

0.1.2 X/Open

X/Open is an independent, worldwide, open systems organization supported by most of
the world's largest information system suppliers, user organizations and software
companies. Its mission is to bring to users greater value from computing, through the
practical implementation of open systems. X/Open’s strategy for achieving its mission
is to combine existing and emerging standards into a comprehensive, integrated
systems environment called the Common Applications Environment (CAE).

The components of the CAE are defined in X/Open CAE specifications. These contain,
among other things, an evolving portfolio of practical application programming
interfaces (APIs), which significantly enhance portability of application programs at
the source code level. The APls also enhance the interoperability of applications by
providing definitions of, and references to, protocols and protocol profiles.

The X/Open specifications are also supported by an extensive set of conformance tests
and by the X/Open trademark (XPG brand), which is licensed by X/Open and is carried
only on products that comply with the CAE specifications.

0.2 Intended Audience

The architecture and specifications described in this manual are aimed at software
designers and developers who want to produce applications that comply with OMG
standards for the Object Request Broker (ORB). The benefit of compliance is, in
general, to be able to produce interoperable applications that are based on distributed,
interoperating objects. As defined by the Object Management Group (OMG) in the
Object Management Architecture Guidae ORB provides the mechanisms by which
objects transparently make requests and receive responses. Hence, the ORB provides
interoperability between applications on different machines in heterogeneous
distributed environments and seamlessly interconnects multiple object systems.

0.3 Context of CORBA

The key to understanding the structure of the CORBA architecture is the Reference
Model, which consists of the following components:

» Object Request Broker, which enables objects to transparently make and receive
requests and responses in a distributed environment. It is the foundation for
building applications from distributed objects and for interoperability between
applications in hetero- and homogeneous environments. The architecture and
specifications of the Object Request Broker are described in this manual

» Object Services a collection of services (interfaces and objects) that support
basic functions for using and implementing objects. Services are necessary to
construct any distributed application and are always independent of application
domains. For example, the Life Cycle Service defines conventions for creating,
deleting, copying, and moving objects; it does not dictate how the objects are
implemented in an application. Specifications for Object Services are contained in
CORBAservices: Common Object Services Specification.

XXViil CORBAV2.2 February 1998

« Common Facilities, a collection of services that many applications may share,
but which are not as fundamental as the Object Services. For instance, a system
management or electronic mail facility could be classified as a common facility.
Information about Common Facilities will be containedG®RBAfacilities:

Common Facilities Architecture

» Application Objects, which are products of a single vendor on in-house
development group which controls their interfaces. Application Objects
correspond to the traditional notion of applications, so they are not standardized
by OMG. Instead, Application Objects constitute the uppermost layer of the
Reference Model.

The Object Request Broker, then, is the core of the Reference Model. It is like a
telephone exchange, providing the basic mechanism for making and receiving calls.
Combined with the Object Services, it ensures meaningful communication between
CORBA-compliant applications.

0.4 Associated Documents

The CORBA documentation set includes the following books:

« Object Management Architecture Guidefines the OMG's technical objectives
and terminology and describes the conceptual models upon which OMG standards
are based. It also provides information about the policies and procedures of OMG,
such as how standards are proposed, evaluated, and accepted.

« CORBA: Common Object Request Broker Architecture and Specificediotiains
the architecture and specifications for the Object Request Broker.

* CORBAservices: Common Object Services Specificzibmtains specifications
for the Object Services.

+ CORBAfacilities: Common Facilities Architectuecentains the architecture for
Common Facilities.

OMG collects information for each book in the documentation set by issuing Requests
for Information, Requests for Proposals, and Requests for Comment and, with its
membership, evaluating the responses. Specifications are adopted as standards only
when representatives of the OMG membership accept them as such by vote.

To obtain books in the documentation set, or other OMG publications, refer to the
enclosed subscription card or contact the Object Management Group, Inc. at:

OMG Headquarters
492 Old Connecticut Path
Framingham, MA 01701
USA
Tel: +1-508-820 4300
Fax: +1-508-820 4303
pubs@omg.org
http://www.omg.org

CORBAV2.2 Associated Documents February 1998 XXiX

0.5 Definition of CORBA Compliance

As described in th©MA Guide the OMG’s Core Object Model consists of a core and
components. Likewise, the body BIORBAspecifications is divided into core and
component-like specifications. The structure of this manual reflects that division.

The CORBAspecifications are categorized as follows:

CORBA Core, as specified in Chapters 1-9

CORBA Interoperability , as specified in Chapters 10-14

CORBA Interworking , as specified in Chapters 15, 16, and 17

Mapping of OMG IDL to the C programming language, as specified in Chapter 18

Mapping of OMG IDL to the C++ programming language, as specified in
Chapter 19

Mapping of OMG IDL to the Smalltalk programming language, as specified in
Chapter 20

Mapping of OMG IDL to the COBOL programming language , as specified in
Chapter 21

Mapping of OMG IDL to the Ada programming language, as specified in
Chapter 22

Mapping of OMG IDL to the Java programming language, as specified in
Chapter 23

The minimum required for a CORBA-compliant system is adherence to the
specifications in CORBA Core and one mapping. Each additional language mapping is
a separate, optional compliance point. Optional means users aren’t required to
implement these points if they are unnecessary at their site, but if implemented, they
must adhere to th€EORBAspecifications to be called CORBA-compliant. For instance,

if a vendor supports C++, their ORB must comply with the OMG IDL to C++ binding
specified in this manual.

Interoperability and Interworking are separate compliance points. For detailed
information about Interworking compliance, refer to “Products Subject to Compliance”
on page 15-34.

XXX CORBAV2.2 February 1998

0.6 Structure of This Manual

This manual is divided into the categories of Core, Interoperability, Interworking, and
individual Language Mappings. These divisions reflect the compliance points of
CORBA. In addition to this prefac&ORBA: Common Object Request Broker
Architecture and Specificatiooontains the following chapters

Core

Chapter 1 -- The Object Model describes the computation model that underlies the
CORBA architecture.

Chapter 2 -- CORBA Overview describes the overall structure of the ORB
architecture and includes information about CORBA interfaces and implementations.

Chapter 3 -- OMG IDL Syntax and Semanticsdescribes OMG interface definition
language (OMG IDL), which is the language used to describe the interfaces that client
objects call and object implementations provide.

Chapter 4-- ORB Interface describes the interface to the ORB functions that do not
depend on object adapters: these operations are the same for all ORBs and object
implementations.

Chapter 5-- The Dynamic Invocation Interface describes the DII, the client’s side of
the interface that allows dynamic creation and invocation of request to objects.

Chapter 6 -- The Dynamic Skeleton Interfacedescribeghe DSI, the server's-side
interface that can deliver requests from an ORB to an object implementation that does
not have compile-time knowledge of the type of the object it is implementing. DSI is
the server’s analogue of the client’s Dynamic Invocation Interface (DII).

Chapter 7 -- Dynamic Management of Any Valuesdescribes the interface for the
Dynamic Any type. This interface allows statically-typed programming languages such
as C and Java to create or receive values of type Any without compile-time knowledge
that the typer contained in the Any.

Chapter 8 -- Interface Repositorydescribes the component of the ORB that manages
and provides access to a collection of object definitions.

Chapter 9-- Portable Object Adapter describes a group of IDL interfaces than an
implementation uses to access ORB functions.

Interoperability

Chapter 10-- Interoperability Overview explains the interoperability architecture and
introduces the subjects pertaining to interoperability: inter-ORB bridges; general and
Internet inter-ORB protocols (GIOP and 110OP); and environment-specific, inter-ORB
protocols (ESIOPS).

CORBAV2.2 Structure of This Manual February 1998 XXXi

XXXii

Chapter 11 -- ORB Interoperability Architecture introduces the framework of ORB
interoperability, including information about domains; approaches to inter-ORB
bridges; what it means to be compliant with ORB interoperability; and ORB Services
and Requests.

Chapter 12 -- Building Inter-ORB Bridges explains how to build bridges for an
implementation of interoperating ORBs.

Chapter 13 -- General Inter-ORB Protocol describes the general inter-ORB protocol
(GIOP) and includes information about the GIOP’s goals, syntax, format, transport,
and object location. This chapter also includes information about the Internet inter-
ORB protocol (110P).

Chapter 14 -- DCE ESIOP - Environment-Specific Inter-ORB Protocol (ESIOP)
describes a protocol for the OSF DCE environment. The protocol is called the DCE
Environment Inter-ORB Protocol (DCE ESIOP).

Interworking

Chapter 15 -- Interworking Architecture describes the architecture for
communication between two object management systems: Microsoft's COM (including
OLE) and the OMG’s CORBA.

Chapter 16 -- Mapping: COM and CORBA describes the data type and interface
mapping between COM and CORBA. The mappings are described in the context of
both Win16 and Win32 COM.

Chapter 17 -- Mapping: OLE Automation and CORBA describes the two-way
mapping between OLE Automation (in ODL) and CORBA (in OMG IDL).

Note: Chapter 17 also includes an appendix describing solutions that vendors might
implement to support existing and older OLE Automation controllers and an appendix
that provides an example of how the Naming Service could be mapped to an OLE
Automation interface according to the Interworking specification.

Language Mappings

Chapter 18 -- C Language Mappingdefines the mapping of OMG IDL to the C
programming language.

Chapter 19 -- Mapping of OMG IDL to C++ - Includes the following information:
* Mapping of OMG IDL to C++ maps the constructs of OMG IDL to the C++
programming language.
* Mapping of Pseudo Objects to C++ maps OMG IDL pseudo objects to the C++
programming language.
« Server-Side Mapping explains the portability constraints for an object
implementation written in C++.

* The C++ language mapping also includes several appendices. One contains C++
definitions for CORBA, another contains alternate C++ mappings, and another
contains C++ keywords.

CORBAV2.2 February 1998

Chapter 20-- Mapping OMG IDL to Smalltalk - includes the following information:

* Mapping of OMG IDL to Smalltalk maps the constructs of OMG IDL to the
Smalltalk programming language.

* Mapping of Pseudo Objects to Smalltalk maps OMG IDL pseudo-objects to
Smalltalk.

Chapter 21 -- Mapping of OMG IDL to COBOL maps the constructs of OMG IDL
to the COBOL programming language.

Chapter 22 - Mapping of OMG IDL to Ada maps the constructs of OMG IDL to the
Ada programming language.

Chapter 23 - Mapping of OMG IDL to Java maps the constructs of OMG IDL to the
Java programming language.

Appendix A- contains OMG IDL tags that can identify an Object Service, a
component, or a profile.

0.7 Acknowledgements

The following companies submitted parts of the specifications that were approved by
the Object Management Group to beco@®@RBA:

* BNR Europe Ltd.

» Defense Information Systems Agency
» Expersoft Corporation

e FUJITSU LIMITED

» Genesis Development Corporation

* Gensym Corporation

« IBM Corporation

« ICL plc

* IONA Technologies Ltd.

« Digital Equipment Corporation

» Hewlett-Packard Company

» HyperDesk Corporation

* Micro Focus Limited

« MITRE Corporation

* NCR Corporation

* Novell USG

» Object Design, Inc.

» Objective Interface Systems, Inc.

e OC Systems, Inc.

« Open Group - Open Software Foundation
« Siemens Nixdorf Informationssysteme AG
e Sun Microsystems Inc.

e SunSoft, Inc.

» Sybase, Inc.

CORBAV2.2 Acknowledgements February 1998 XXXiii

0.8 References

XXXIV

« Telefénica Investigacion y Desarrollo S.A. Unipersonal
* Visigenic Software, Inc.
 Visual Edge Software, Ltd.

In addition to the preceding contributors, the OMG would like to acknowledge Mark
Linton at Silicon Graphics and Doug Lea at the State University of New York at
Oswego for their work on the C++ mapping.

IDL Type Extensions RFP, March 1995. OMG TC Document 95-1-35.

The Common Object Request Broker: Architecture and Specification, Revision 2.1,
August 1997.

CORBAservices: Common Object Services Specification, Revised Edition, OMG TC
Document 95-3-31.

COBOL Language Mapping RFP, December 1995. OMG TC document 95-12-10.
COBOL 85 ANSI X3.23-1985 / ISO 1989-1985.
IEEE Standard for Binary Floating-Point Arithmetic, ANIS/IEEE Std 754-1985.

XDR: External Data Representation Standard, RFC1832, R. Srinivasan, Sun Micro-
systems, August 1995.

OSF Character and Code Set Registry, OSF DCE SIG RFC 40.1 (Public Version), S.
(Martin) O’'Donnell, June 1994.

RPC Runtime Support For 18N Characters — Functional Specification, OSF DCE
SIG RFC 41.2, M. Romagna, R. Mackey, November 1994.

X/Open System Interface Definitions, Issue 4 Version 2, 1995.

CORBAV2.2 February 1998

1.1 Overview

The Object Model 1

This chapter describes the concrete object model that underlies the CORBA
architecture. The model is derived from the abstract Core Object Model defined by the
Object Management Group in tl@@bject Management Architecture Guide

(Information about th®©MA Guideand other books in the CORBA documentation set

is provided in this document’s preface.)

Contents

This chapter contains the following sections.

Section Title Page
“Overview” 1-1
“Object Semantics” 1-2
“Object Implementation” 1-8

The object model provides an organized presentation of object concepts and
terminology. It defines a partial model for computation that embodies the key
characteristics of objects as realized by the submitted technologies. The OMG object
model isabstractin that it is not directly realized by any particular technology. The
model described here isancreteobject model. A concrete object model may differ
from the abstract object model in several ways:

CORBAV2.2 February 1998 1-1

« It may elaboratethe abstract object model by making it more specific, for
example, by defining the form of request parameters or the language used to
specify types.

« It may populatethe model by introducing specific instances of entities defined by
the model, for example, specific objects, specific operations, or specific types.

« It may restrict the model by eliminating entities or placing additional restrictions
on their use.

An object system is a collection of objects that isolates the requestors of services
(clients) from the providers of services by a well-defined encapsulating interface. In
particular, clients are isolated from the implementations of services as data
representations and executable code.

The object model first describes concepts that are meaningful to clients, including such
concepts as object creation and identity, requests and operations, types and signatures.
It then describes concepts related to object implementations, including such concepts
as methods, execution engines, and activation.

The object model is most specific and prescriptive in defining concepts meaningful to
clients. The discussion of object implementation is more suggestive, with the intent of
allowing maximal freedom for different object technologies to provide different ways
of implementing objects.

There are some other characteristics of object systems that are outside the scope of the
object model. Some of these concepts are aspects of application architecture, some are
associated with specific domains to which object technology is applied. Such concepts
are more properly dealt with in an architectural reference model. Examples of excluded
concepts are compound objects, links, copying of objects, change management, and
transactions. Also outside the scope of the object model are the details of control
structure: the object model does not say whether clients and/or servers are single-
threaded or multi-threaded, and does not specify how event loops are programmed nor
how threads are created, destroyed, or synchronized.

This object model is an example of a classical object model, where a client sends a
message to an object. Conceptually, the object interprets the message to decide what
service to perform. In the classical model, a message identifies an object and zero or
more actual parameters. As in most classical object models, a distinguished first
parameter is required, which identifies the operation to be performed; the interpretation
of the message by the object involves selecting a method based on the specified
operation. Operationally, of course, method selection could be performed either by the
object or the ORB.

1.2 Object Semantics

An object system provides services to clientsclient of a service is any entity
capable of requesting the service.

This section defines the concepts associated with object semantics, that is, the concepts
relevant to clients.

CORBAV2.2 February 1998

1.2.1 Objects

An object system includes entities known as objects.objectis an identifiable,
encapsulated entity that provides one or more services that can be requested by a
client.

1.2.2 Requests

Clients request services by issuing requestseduestis an event (i.e., something that
occurs at a particular time). The information associated with a request consists of an
operation, a target object, zero or more (actual) parameters, and an optional request
context.

A request formis a description or pattern that can be evaluated or performed multiple
times to cause the issuing of requests. As described in the OMG IDL Syntax and
Semantics chapter, request forms are defined by particular language bindings. An
alternative request form consists of calls to the dynamic invocation interface to create
an invocation structure, add arguments to the invocation structure, and to issue the
invocation (refer to the Dynamic Invocation Interface chapter for descriptions of these
request forms).

A valueis anything that may be a legitimate (actual) parameter in a request. More
particularly, a value is an instance of an OMG IDL data type. There are non-object
values, as well as values that reference objects.

An object referencés a value that reliably denotes a particular object. Specifically, an
object reference will identify the same object each time the reference is used in a
request (subject to certain pragmatic limits of space and time). An object may be
denoted by multiple, distinct object references.

A request may have parameters that are used to pass data to the target object; it may
also have a request context which provides additional information about the request. A
request context is a mapping from strings to strings.

A request causes a service to be performed on behalf of the client. One possible
outcome of performing a service is returning to the client the results, if any, defined for
the request.

If an abnormal condition occurs during the performance of a request, an exception is
returned. The exception may carry additional return parameters particular to that
exception.

The request parameters are identified by position. A parameter may be an input
parameter, an output parameter, or an input-output parameter. A request may also
return a singleeturn result valugas well as the results stored into the output and
input-output parameters.

The following semantics hold for all requests:

< Any aliasing of parameter values is neither guaranteed removed nor guaranteed to
be preserved.

« The order in which aliased output parameters are written is not guaranteed.

CORBAV2.2 Object Semantics February 1998 1-3

» The return result and the values stored into the output and input-output
parameters are undefined if an exception is returned.

For descriptions of the values and exceptions that are permitted, see “Types” on
page 1-4 and “Exceptions” on page 1-7.

1.2.3 Object Creation and Destruction

Objects can be created and destroyed. From a client’s point of view, there is no special
mechanism for creating or destroying an object. Objects are created and destroyed as
an outcome of issuing requests. The outcome of object creation is revealed to the client
in the form of an object reference that denotes the new object.

1.2.4 Types

A typeis an identifiable entity with an associated predicate (a single-argument
mathematical function with a boolean result) defined over values. A \sdtisfiesa
type if the predicate is true for that value. A value that satisfies a type is called a
member of the type

Types are used in signatures to restrict a possible parameter or to characterize a
possible result.

The extension of a typés the set of values that satisfy the type at any particular time.

An object typeis a type whose members are object references. In other words, an
object type is satisfied only by object references.

Constraints on the data types in this model are shown in this section.

Basic types

« 16-bit, 32-bit, and 64-bit signed and unsigned 2’s complement integers.

* Single-precision (32-bit), double-precision (64-bit), and double-extended (a
mantissa of at least 64 bits, a sign bit and an exponent of at least 15 bits) IEEE
floating point numbers.

 Fixed-point decimal numbers of up to 31 significant digits.

e Characters, as defined in ISO Latin-1 (8859.1) and other single- or multi-byte
character sets.

» A boolean type taking the values TRUE and FALSE.

* An 8-bit opaque detectable, guaranteechtd undergo any conversion during
transfer between systems.

« Enumerated types consisting of ordered sequences of identifiers.

A string type, which consists of a variable-length array of characters (a null
character is one whose character code is 0); the length of the string is a positive
integer, and is available at run-time.

< A container type “any,” which can represent any possible basic or constructed

type.
« Wide characters that may represent characters from any wide character set.

CORBAV2.2 February 1998

1

» Wide character strings, which consist of a length, available at runtime, and a
variable-length array of (fixed width) wide characters.

Constructed types:

« A record type (called struct), which consists of an ordered set of (name,value)

pairs.

« A discriminated union type, which consists of a discriminator (whose exact value
is always available) followed by an instance of a type appropriate to the

discriminator value.

» A sequence type, which consists of a variable-length array of a single type; the

length of the sequence is available at run-time.

< An array type, which consists of a fixed-shape multidimensional array of a single

type.

* An interface type, which specifies the set of operations which an instance of that

type must support.

Values in a request are restricted to values that satisfy these type constraints. The legal
values are shown in Figure 1-1 on page 1-5. No particular representation for values is

defined.

Object Reference

Value Basic Value

Constructed Value

Figure 1-1 Legal Values

1.2.5 Interfaces

Struct
Sequence
Union
Array

Short
Long
LongLong
UShort
Ulong
UlongLong
Float
Double
LongDouble
Fixed
Char
Wchar
String
Wstring
Boolean
Octet
Enum

Any

An interfaceis a description of a set of possible operations that a client may request of
an object. An objecsatisfiesan interface if it can be specified as the target object in

each potential request described by the interface.

An object types a type that is satisfied by any object reference whose referent satisfies
an interface that describes the object type.

CORBAV2.2 Object Semantics

February 1998

1-5

Interfaces are specified in OMG IDL. Interface inheritance provides the composition
mechanism for permitting an object to support multiple interfaces.prhrecipal
interfaceis simply the most-specific interface that the object supports, and consists of
all operations in the transitive closure of the interface inheritance graph.

1.2.6 Operations

An operationis an identifiable entity that denotes a service that can be requested and
is identified by anoperation identifier An operation is not a value.

An operation has a signature that describes the legitimate values of request parameters
and returned results. In particularsgnatureconsists of:

» A specification of the parameters required in requests for that operation.

» A specification of the result of the operation.

« An identification of the user exceptions that may be raised by a request for the
operation.

A specification of additional contextual information that may affect the request.

« An indication of the execution semantics the client should expect from a request
for the operation.

Operations are (potentially) generic, meaning that a single operation can be uniformly
requested on objects with different implementations, possibly resulting in observably
different behavior. Genericity is achieved in this model via interface inheritance in IDL
and the total decoupling of implementation from interface specification.

The general form for an operation signature is:

[oneway] <op_type_spec> <identifier> (paraml, ..., paramL)
[raises(exceptl,...,exceptN)] [context(namel, ..., nameM)]

where

* The optionaloneway keyword indicates that best-effort semantics are expected
of requests for this operation; the default semantics are exactly-once if the
operation successfully returns results or at-most-once if an exception is returned.

» The<op_type_spec> is the type of the return result.

« The<identifier> provides a name for the operation in the interface.

« The operation parameters needed for the operation; they are flagged with the
modifiersin, out, orinout to indicate the direction in which the information
flows (with respect to the object performing the request).

» The optionalraises expression indicates which user-defined exceptions can be
signaled to terminate a request for this operation; if such an expression is not
provided, no user-defined exceptions will be signaled.

» The optionalcontext expression indicates which request context information
will be available to the object implementation; no other contextual information is
required to be transported with the request.

CORBAV2.2 February 1998

Parameters

A parameter is characterized by its mode and its type.mbdeindicates whether the
value should be passed from client to serian (from server to client@ut), or both
(inout). The parameter’s type constrains the possible value which may be passed in
the directions dictated by the mode.

Return Result

The return result is a distinguishedit parameter.

Exceptions

An exception is an indication that an operation request was not performed successfully.
An exception may be accompanied by additional, exception-specific information.

The additional, exception-specific information is a specialized form of record. As a
record, it may consist of any of the types described in “Types” on page 1-4.

All signatures implicitly include the system exceptions; the standard system exceptions
are described in “Standard Exceptions” on page 3-37.

Contexts

A request context provides additional, operation-specific information that may affect
the performance of a request.

Execution Semantics

Two styles of execution semantics are defined by the object model:

« At-most-once: if an operation request returns successfully, it was performed
exactly once; if it returns an exception indication, it was performed at-most-once.

« Best-effort: a best-effort operation is a request-only operation, i.e. it cannot return
any results and the requester never synchronizes with the completion, if any, of
the request.

The execution semantics to be expected is associated with an operation. This prevents
a client and object implementation from assuming different execution semantics.

Note that a client is able to invoke an at-most-once operation in a synchronous or
deferred-synchronous manner.

1.2.7 Attributes

An interface may have attributes. An attribute is logically equivalent to declaring a pair
of accessor functions: one to retrieve the value of the attribute and one to set the value
of the attribute.

CORBAV2.2 Object Semantics February 1998 1-7

An attribute may be read-only, in which case only the retrieval accessor function is
defined.

1.3 Object Implementation

This section defines the concepts associated with object implementation, i.e. the
concepts relevant to realizing the behavior of objects in a computational system.

The implementation of an object system carries out the computational activities needed
to effect the behavior of requested services. These activities may include computing
the results of the request and updating the system state. In the process, additional
requests may be issued.

The implementation model consists of two parts: the execution model and the
construction model. The execution model describes how services are performed. The
construction model describes how services are defined.

1.3.1 The Execution Model: Performing Services

A requested service is performed in a computational system by executing code that
operates upon some data. The data represents a component of the state of the
computational system. The code performs the requested service, which may change the
state of the system.

Code that is executed to perform a service is calledezhod A method is an

immutable description of a computation that can be interpreted by an execution engine.
A method has an immutable attribute callechathod formathat defines the set of
execution engines that can interpret the method eRe@cution enginé an abstract
machine (not a program) that can interpret methods of certain formats, causing the
described computations to be performed. An execution engine defines a dynamic
context for the execution of a method. The execution of a method is calteeltlxod
activation

When a client issues a request, a method of the target object is called. The input
parameters passed by the requestor are passed to the method and the output and inpu
output parameters and return result value (or exception and its parameters) are passed
back to the requestor.

Performing a requested service causes a method to execute that may operate upon an
object’s persistent state. If the persistent form of the method or state is not accessible
to the execution engine, it may be necessary to first copy the method or state into an
execution context. This process is callectivation the reverse process is called
deactivation

1.3.2 The Construction Model

A computational object system must provide mechanisms for realizing behavior of
requests. These mechanisms include definitions of object state, definitions of methods,
and definitions of how the object infrastructure is to select the methods to execute and

CORBAV2.2 February 1998

1

to select the relevant portions of object state to be made accessible to the methods.
Mechanisms must also be provided to describe the concrete actions associated with
object creation, such as association of the new object with appropriate methods.

An object implementatior-or implementationfor short—is a definition that provides

the information needed to create an object and to allow the object to participate in
providing an appropriate set of services. An implementation typically includes, among
other things, definitions of the methods that operate upon the state of an object. It also
typically includes information about the intended types of the object.

CORBAV2.2 ObjectImplementation February 1998 1-9

1-10 CORBAV2.2 February 1998

CORBAOverview

The Common Object Request Broker Architecture (CORBA) is structured to allow

integration of a wide variety of object systems. The motivation for some of the features
may not be apparent at first, but as we discuss the range of implementations, policies,
optimizations, and usages we expect to encompass, the value of the flexibility becomes

more clear.

Contents

This chapter contains the following sections.

Section Title Page
“Structure of an Object Request Broker” 2-2
“Example ORBs” 2-11
“Structure of a Client” 2-12
“Structure of an Object Implementation” 2-13
“Structure of an Object Adapter” 2-15
“CORBA Required Object Adapter” 2-17
“The Integration of Foreign Object Systems” 2-18

CORBAV2.2 February 1998

2-1

2.1 Structure of an Object Request Broker

Figure 2-1 on page 2-2 shows a request being sent by a client to an object
implementation. The Client is the entity that wishes to perform an operation on the
object and the Object Implementation is the code and data that actually implements the
object.

Client) G)bject Implementation

equest ‘

ORB

Figure 2-1 A Request Being Sent Through the Object Request Broker

The ORB is responsible for all of the mechanisms required to find the object
implementation for the request, to prepare the object implementation to receive the
request, and to communicate the data making up the request. The interface the client
sees is completely independent of where the object is located, what programming
language it is implemented in, or any other aspect which is not reflected in the object’s
interface.

Figure 2-2 on page 2-3 shows the structure of an individual Object Request Broker
(ORB). The interfaces to the ORB are shown by striped boxes, and the arrows indicate
whether the ORB is called or performs an up-call across the interface.

2-2 CORBAV2.2 February 1998

Client Object Implementation

- - > -

Dynamic IDL ORB Static IDL | | Dynamic Object
Invocation Stubs Interface Skeleton Skeleton Adapter

ORB Core

N Interface identical for all ORB implementations
N There may be multiple object adapters
B There are stubs and a skeleton for each object type * Normal call interface
[1 ORB-dependent interface

f Up-call interface

Figure 2-2 The Structure of Object Request Interfaces

To make a request, the Client can use the Dynamic Invocation interface (the same
interface independent of the target object’s interface) or an OMG IDL stub (the specific
stub depending on the interface of the target object). The Client can also directly
interact with the ORB for some functions.

The Object Implementation receives a request as an up-call either through the OMG
IDL generated skeleton or through a dynamic skeleton. The Object Implementation
may call the Object Adapter and the ORB while processing a request or at other times.

Definitions of the interfaces to objects can be defined in two ways. Interfaces can be
defined statically in an interface definition language, called the OMG Interface
Definition Language (OMG IDL). This language defines the types of objects according
to the operations that may be performed on them and the parameters to those
operations. Alternatively, or in addition, interfaces can be added to an Interface
Repository service; this service represents the components of an interface as objects,
permitting run-time access to these components. In any ORB implementation, the
Interface Definition Language (which may be extended beyond its definition in this
document) and the Interface Repository have equivalent expressive power.

CORBAV2.2 Structure of an Object Request Broker ~ February 1998 2-3

2-4

The client performs a request by having access to an Object Reference for an object
and knowing the type of the object and the desired operation to be performed. The
client initiates the request by calling stub routines that are specific to the object or by
constructing the request dynamically (see Figure 2-3 on page 2-4).

Invocation

N Interface identical for all ORB implementations

I There are stubs and a skeleton for each object type
[| ORB-dependent interface

Figure 2-3 A Client Using the Stub or Dynamic Invocation Interface

The dynamic and stub interface for invoking a request satisfy the same request
semantics, and the receiver of the message cannot tell how the request was invoked.

The ORB locates the appropriate implementation code, transmits parameters, and
transfers control to the Object Implementation through an IDL skeleton or a dynamic
skeleton (see Figure 2-4 on page 2-5). Skeletons are specific to the interface and the
object adapter. In performing the request, the object implementation may obtain some
services from the ORB through the Object Adapter. When the request is complete,
control and output values are returned to the client.

CORBAV2.2 February 1998

Object Implementation

ORB Static IDL
Interface Skeleton

Dynamic
Skeleton

Object
Adapter

ORB Core

N Interface identical for all ORB implementations
N There may be multiple object adapters
I There are stubs and a skeleton for each object type ‘ Normal call interface
[1 ORB-dependent interface

? Up-call interface

Figure 2-4 An Object Implementation Receiving a Request

The Object Implementation may choose which Object Adapter to use. This decision is
based on what kind of services the Object Implementation requires.

Figure 2-5 on page 2-6 shows how interface and implementation information is made
available to clients and object implementations. The interface is defined in OMG IDL

and/or in the Interface Repository; the definition is used to generate the client Stubs

and the object implementation Skeletons.

CORBAV2.2 Structure of an Object Request Broker ~ February 1998 2-5

2-6

IDL

Definitions Installation

Implementation

Implementation
Interface Stubs Skeletons RepOSIt_Ory
Repository — |
Client Object Implementation

Figure 2-5 Interface and Implementation Repositories

The object implementation information is provided at installation time and is stored in
the Implementation Repository for use during request delivery.

2.1.1 Object Request Broker

In the architecture, the ORB is not required to be implemented as a single component,
but rather it is defined by its interfaces. Any ORB implementation that provides the
appropriate interface is acceptable. The interface is organized into three categories:

1. Operations that are the same for all ORB implementations
2. Operations that are specific to particular types of objects
3. Operations that are specific to particular styles of object implementations

Different ORBs may make quite different implementation choices, and, together with
the IDL compilers, repositories, and various Object Adapters, provide a set of services
to clients and implementations of objects that have different properties and qualities.

There may be multiple ORB implementations (also described as multiple ORBs) which
have different representations for object references and different means of performing
invocations. It may be possible for a client to simultaneously have access to two object

CORBAV2.2 February 1998

2

references managed by different ORB implementations. When two ORBs are intended
to work together, those ORBs must be able to distinguish their object references. It is
not the responsibility of the client to do so.

The ORB Core is that part of the ORB that provides the basic representation of objects
and communication of requests. CORBA is designed to support different object
mechanisms, and it does so by structuring the ORB with components above the ORB
Core, which provide interfaces that can mask the differences between ORB Cores.

2.1.2 Clients

A client of an object has access to an object reference for the object, and invokes
operations on the object. A client knows only the logical structure of the object
according to its interface and experiences the behavior of the object through
invocations. Although we will generally consider a client to be a program or process
initiating requests on an object, it is important to recognize that something is a client
relative to a particular object. For example, the implementation of one object may be a
client of other objects.

Clients generally see objects and ORB interfaces through the perspective of a language
mapping, bringing the ORB right up to the programmer’s level. Clients are maximally
portable and should be able to work without source changes on any ORB that supports
the desired language mapping with any object instance that implements the desired
interface. Clients have no knowledge of the implementation of the object, which object
adapter is used by the implementation, or which ORB is used to access it.

2.1.3 Object Implementations

An object implementation provides the semantics of the object, usually by defining
data for the object instance and code for the object’'s methods. Often the
implementation will use other objects or additional software to implement the behavior
of the object. In some cases, the primary function of the object is to have side-effects
on other things that are not objects.

A variety of object implementations can be supported, including separate servers,
libraries, a program per method, an encapsulated application, an object-oriented
database, etc. Through the use of additional object adapters, it is possible to support
virtually any style of object implementation.

Generally, object implementations do not depend on the ORB or how the client invokes
the object. Object implementations may select interfaces to ORB-dependent services
by the choice of Object Adapter.

CORBAV2.2 Structure of an Object Request Broker ~ February 1998 2-7

2.1.4 Object References

An Object Reference is the information needed to specify an object within an ORB.
Both clients and object implementations have an opaque notion of object references
according to the language mapping, and thus are insulated from the actual
representation of them. Two ORB implementations may differ in their choice of Object
Reference representations.

The representation of an object reference handed to a client is only valid for the
lifetime of that client.

All ORBs must provide the same language mapping to an object reference (usually
referred to as an Object) for a particular programming language. This permits a
program written in a particular language to access object references independent of the
particular ORB. The language mapping may also provide additional ways to access
object references in a typed way for the convenience of the programmer.

There is a distinguished object reference, guaranteed to be different from all object
references, that denotes no object.

2.1.5 OMG Interface Definition Language

The OMG Interface Definition Language (OMG IDL) defines the types of objects by
specifying their interfaces. An interface consists of a set of named operations and the
parameters to those operations. Note that although IDL provides the conceptual
framework for describing the objects manipulated by the ORB, it is not necessary for
there to be IDL source code available for the ORB to work. As long as the equivalent
information is available in the form of stub routines or a run-time interface repository,
a particular ORB may be able to function correctly.

IDL is the means by which a particular object implementation tells its potential clients
what operations are available and how they should be invoked. From the IDL
definitions, it is possible to map CORBA objects into particular programming
languages or object systems.

2.1.6 Mapping of OMG IDL to Programming Languages

Different object-oriented or non-object-oriented programming languages may prefer to
access CORBA objects in different ways. For object-oriented languages, it may be
desirable to see CORBA objects as programming language objects. Even for non-
object-oriented languages, it is a good idea to hide the exact ORB representation of the
object reference, method names, etc. A particular mapping of OMG IDL to a
programming language should be the same for all ORB implementations. Language
mapping includes definition of the language-specific data types and procedure
interfaces to access objects through the ORB. It includes the structure of the client stub
interface (not required for object-oriented languages), the dynamic invocation
interface, the implementation skeleton, the object adapters, and the direct ORB
interface.

CORBAV2.2 February 1998

2

A language mapping also defines the interaction between object invocations and the
threads of control in the client or implementation. The most common mappings
provide synchronous calls, in that the routine returns when the object operation
completes. Additional mappings may be provided to allow a call to be initiated and
control returned to the program. In such cases, additional language-specific routines
must be provided to synchronize the program’s threads of control with the object
invocation.

2.1.7 Client Stubs

For the mapping of a non—object—oriented language, there will be a programming
interface to the stubs for each interface type. Generally, the stubs will present access to
the OMG IDL-defined operations on an object in a way that is easy for programmers to
predict once they are familiar with OMG IDL and the language mapping for the
particular programming language. The stubs make calls on the rest of the ORB using
interfaces that are private to, and presumably optimized for, the particular ORB Core.
If more than one ORB is available, there may be different stubs corresponding to the
different ORBs. In this case, it is necessary for the ORB and language mapping to
cooperate to associate the correct stubs with the particular object reference.

Object-oriented programming languages, such as C++ and Smalltalk, do not require
stub interfaces.

2.1.8 Dynamic Invocation Interface

An interface is also available that allows the dynamic construction of object
invocations, that is, rather than calling a stub routine that is specific to a particular
operation on a particular object, a client may specify the object to be invoked, the
operation to be performed, and the set of parameters for the operation through a call or
sequence of calls. The client code must supply information about the operation to be
performed and the types of the parameters being passed (perhaps obtaining it from an
Interface Repository or other run-time source). The nature of the dynamic invocation
interface may vary substantially from one programming language mapping to another.

2.1.9 Implementation Skeleton

For a particular language mapping, and possibly depending on the object adapter, there
will be an interface to the methods that implement each type of object. The interface
will generally be an up-call interface, in that the object implementation writes routines
that conform to the interface and the ORB calls them through the skeleton.

The existence of a skeleton does not imply the existence of a corresponding client stub
(clients can also make requests via the dynamic invocation interface).

It is possible to write an object adapter that does not use skeletons to invoke
implementation methods. For example, it may be possible to create implementations
dynamically for languages such as Smalltalk.

CORBAV2.2 Structure of an Object Request Broker ~ February 1998 2-9

2-10

2.1.10 Dynamic Skeleton Interface

An interface is available which allows dynamic handling of object invocations. That is,
rather than being accessed through a skeleton that is specific to a particular operation,
an object’s implementation is reached through an interface that provides access to the
operation name and parameters in a manner analogous to the client side’s Dynamic
Invocation Interface. Purely static knowledge of those parameters may be used, or
dynamic knowledge (perhaps determined through an Interface Repository) may be also
used, to determine the parameters.

The implementation code must provide descriptions of all the operation parameters to
the ORB, and the ORB provides the values of any input parameters for use in
performing the operation. The implementation code provides the values of any output
parameters, or an exception, to the ORB after performing the operation. The nature of
the dynamic skeleton interface may vary substantially from one programming language
mapping or object adapter to another, but will typically be an up-call interface.

Dynamic skeletons may be invoked both through client stubs and through the dynamic
invocation interface; either style of client request construction interface provides
identical results.

2.1.11 Object Adapters

An object adapter is the primary way that an object implementation accesses services
provided by the ORB. There are expected to be a few object adapters that will be
widely available, with interfaces that are appropriate for specific kinds of objects.
Services provided by the ORB through an Object Adapter often include: generation
and interpretation of object references, method invocation, security of interactions,
object and implementation activation and deactivation, mapping object references to
implementations, and registration of implementations.

The wide range of object granularities, lifetimes, policies, implementation styles, and
other properties make it difficult for the ORB Core to provide a single interface that is
convenient and efficient for all objects. Thus, through Object Adapters, it is possible
for the ORB to target particular groups of object implementations that have similar
requirements with interfaces tailored to them.

2.1.12 ORB Interface

The ORB Interface is the interface that goes directly to the ORB which is the same for
all ORBs and does not depend on the object’s interface or object adapter. Because most
of the functionality of the ORB is provided through the object adapter, stubs, skeleton,
or dynamic invocation, there are only a few operations that are common across all
objects. These operations are useful to both clients and implementations of objects.

CORBAV2.2 February 1998

2.1.13 Interface Repository

The Interface Repository is a service that provides persistent objects that represent the
IDL information in a form available at run-time. The Interface Repository information
may be used by the ORB to perform requests. Moreover, using the information in the
Interface Repository, it is possible for a program to encounter an object whose
interface was not known when the program was compiled, yet, be able to determine
what operations are valid on the object and make an invocation on it.

In addition to its role in the functioning of the ORB, the Interface Repository is a
common place to store additional information associated with interfaces to ORB
objects. For example, debugging information, libraries of stubs or skeletons, routines
that can format or browse particular kinds of objects, etc., might be associated with the
Interface Repository.

2.1.14 Implementation Repository

The Implementation Repository contains information that allows the ORB to locate
and activate implementations of objects. Although most of the information in the
Implementation Repository is specific to an ORB or operating environment, the
Implementation Repository is the conventional place for recording such information.
Ordinarily, installation of implementations and control of policies related to the
activation and execution of object implementations is done through operations on the
Implementation Repository.

In addition to its role in the functioning of the ORB, the Implementation Repository is
a common place to store additional information associated with implementations of

ORB objects. For example, debugging information, administrative control, resource

allocation, security, etc., might be associated with the Implementation Repository.

2.2 Example ORBs

There are a wide variety of ORB implementations possible within the Common ORB
Architecture. This section will illustrate some of the different options. Note that a
particular ORB might support multiple options and protocols for communication.

2.2.1 Client- and Implementation-resident ORB

If there is a suitable communication mechanism present, an ORB can be implemented
in routines resident in the clients and implementations. The stubs in the client either
use a location-transparent IPC mechanism or directly access a location service to
establish communication with the implementations. Code linked with the
implementation is responsible for setting up appropriate databases for use by clients.

CORBAV2.2 Example ORBs February 1998 2-11

2.2.2 Server-based ORB

To centralize the management of the ORB, all clients and implementations can
communicate with one or more servers whose job it is to route requests from clients to
implementations. The ORB could be a normal program as far as the underlying
operating system is concerned, and normal IPC could be used to communicate with the
ORB.

2.2.3 System-based ORB

To enhance security, robustness, and performance, the ORB could be provided as a
basic service of the underlying operating system. Object references could be made
unforgeable, reducing the expense of authentication on each request. Because the
operating system could know the location and structure of clients and implementations,
it would be possible for a variety of optimizations to be implemented, for example,
avoiding marshalling when both are on the same machine.

2.2.4 Library-based ORB

For objects that are light-weight and whose implementations can be shared, the
implementation might actually be in a library. In this case, the stubs could be the actual
methods. This assumes that it is possible for a client program to get access to the data
for the objects and that the implementation trusts the client not to damage the data.

2.3 Structure of a Client

A client of an object has an object reference that refers to that object. An object
reference is a token that may be invoked or passed as a parameter to an invocation on
a different object. Invocation of an object involves specifying the object to be invoked,
the operation to be performed, and parameters to be given to the operation or returned
from it.

The ORB manages the control transfer and data transfer to the object implementation
and back to the client. In the event that the ORB cannot complete the invocation, an
exception response is provided. Ordinarily, a client calls a routine in its program that
performs the invocation and returns when the operation is complete.

Clients access object-type-specific stubs as library routines in their program (see
Figure 2-6 on page 2-13). The client program thus sees routines callable in the normal
way in its programming language. All implementations will provide a language-
specific data type to use to refer to objects, often an opaque pointer. The client then
passes that object reference to the stub routines to initiate an invocation. The stubs

2-12 CORBAV2.2 February 1998

2

have access to the object reference representation and interact with the ORB to
perform the invocation. (See the C Language Mapping chapter for additional, general
information on language mapping of object references.)

-

Client Program)

Language-dependent object references

ORB object references

Dynamic Invocation Stubs for Stubs for
Interface Interface A Interface B

_

J

Figure 2-6 The Structure of a Typical Client

An alternative set of library code is available to perform invocations on objects, for
example when the object was not defined at compile time. In that case, the client
program provides additional information to name the type of the object and the method
being invoked, and performs a sequence of calls to specify the parameters and initiate
the invocation.

Clients most commonly obtain object references by receiving them as output
parameters from invocations on other objects for which they have references. When a
client is also an implementation, it receives object references as input parameters on
invocations to objects it implements. An object reference can also be converted to a
string that can be stored in files or preserved or communicated by different means and
subsequently turned back into an object reference by the ORB that produced the string.

2.4 Structure of an Object Implementation

An object implementation provides the actual state and behavior of an object. The
object implementation can be structured in a variety of ways. Besides defining the
methods for the operations themselves, an implementation will usually define

CORBAV2.2 Structure of an Object Implementation February 1998 2-13

2-14

procedures for activating and deactivating objects and will use other objects or non-
object facilities to make the object state persistent, to control access to the object, as
well as to implement the methods.

The object implementation (see Figure 2-7 on page 2-14) interacts with the ORB in a
variety of ways to establish its identity, to create new objects, and to obtain ORB-
dependent services. It primarily does this via access to an Object Adapter, which
provides an interface to ORB services that is convenient for a particular style of object
implementation.

Object Implementation

Methods for
Interface A

Q Object data

ORB object references

Ia
Ch

ry Routines

Skeleton for
Interface A

Dynamic Object adapter
Skeleton routines

,

Figure 2-7 The Structure of a Typical Object Implementatio

Because of the range of possible object implementations, it is difficult to be definitive
about how an object implementation is structured. See the chapters on the Portable
Object Adapter.

When an invocation occurs, the ORB Core, object adapter, and skeleton arrange that a
call is made to the appropriate method of the implementation. A parameter to that
method specifies the object being invoked, which the method can use to locate the data
for the object. Additional parameters are supplied according to the skeleton definition.
When the method is complete, it returns, causing output parameters or exception
results to be transmitted back to the client.

CORBAV2.2 February 1998

2

When a new object is created, the ORB may be notified so that it knows where to find
the implementation for that object. Usually, the implementation also registers itself as
implementing objects of a particular interface, and specifies how to start up the
implementation if it is not already running.

Most object implementations provide their behavior using facilities in addition to the
ORB and object adapter. For example, although the Portable Object Adapter provides
some persistent data associated with an object (its OID or Object ID), that relatively
small amount of data is typically used as an identifier for the actual object data stored
in a storage service of the object implementation’s choosing. With this structure, it is
not only possible for different object implementations to use the same storage service,
it is also possible for objects to choose the service that is most appropriate for them.

2.5 Structure of an Object Adapter

An object adapter (see Figure 2-8 on page 2-16) is the primary means for an object
implementation to access ORB services such as object reference generation. An object
adapter exports a public interface to the object implementation, and a private interface
to the skeleton. It is built on a private ORB-dependent interface.

Object adapters are responsible for the following functions:
« Generation and interpretation of object references
* Method invocation
» Security of interactions
» Object and implementation activation and deactivation
* Mapping object references to the corresponding object implementations
* Registration of implementations

These functions are performed using the ORB Core and any additional components
necessary. Often, an object adapter will maintain its own state to accomplish its tasks.
It may be possible for a particular object adapter to delegate one or more of its
responsibilities to the Core upon which it is constructed.

CORBAV2.2 Structure of an Object Adapter February 1998 2-15

2-16

o

Object Implementation

Interface A Interface B
Methods Methods

Dynamic Interface A Interface B Obiect
Skeleton Skeleton jec
Skeleton Adapter
Interface
ORB Core

Figure 2-8 The Structure of a Typical Object Adapte

As shown in Figure 2-8 on page 2-16, the Object Adapter is implicitly involved in
invocation of the methods, although the direct interface is through the skeletons. For
example, the Object Adapter may be involved in activating the implementation or
authenticating the request.

The Object Adapter defines most of the services from the ORB that the Object
Implementation can depend on. Different ORBs will provide different levels of service
and different operating environments may provide some properties implicitly and
require others to be added by the Object Adapter. For example, it is common for
Object Implementations to want to store certain values in the object reference for easy
identification of the object on an invocation. If the Object Adapter allows the
implementation to specify such values when a new object is created, it may be able to
store them in the object reference for those ORBs that permit it. If the ORB Core does
not provide this feature, the Object Adapter would record the value in its own storage
and provide it to the implementation on an invocation. With Object Adapters, it is
possible for an Object Implementation to have access to a service whether or not it is
implemented in the ORB Core—if the ORB Core provides it, the adapter simply
provides an interface to it; if not, the adapter must implement it on top of the ORB
Core. Every instance of a particular adapter must provide the same interface and
service for all the ORBs it is implemented on.

It is also not necessary for all Object Adapters to provide the same interface or
functionality. Some Object Implementations have special requirements, for example, an
object-oriented database system may wish to implicitly register its many thousands of
objects without doing individual calls to the Object Adapter. In such a case, it would be

CORBAV2.2 February 1998

2

impractical and unnecessary for the object adapter to maintain any per-object state. By
using an object adapter interface that is tuned towards such object implementations, it
is possible to take advantage of particular ORB Core details to provide the most
effective access to the ORB.

2.6 CORBA Required Object Adapter

There are a variety of possible object adapters. However, since the object adapter
interface is something that object implementations depend on, it is desirable that there
be as few as practical. Most object adapters are designed to cover a range of object
implementations, so only when an implementation requires radically different services
or interfaces should a new object adapter be considered. In this section, we briefly
describe the object adapter defined in this specification.

2.6.1 Portable Object Adapter

This specification defines a Portable Object Adapter that can be used for most ORB
objects with conventional implementations. (See the Portable Object Adapter chapter
for more information.) The intent of the POA, as its name suggests, is to provide an
Object Adapter that can be used with multiple ORBs with a minimum of rewriting
needed to deal with different vendors’ implementations.

This specification allows several ways of using servers but it does not deal with the
administrative issues of starting server programs. Once started, however, there can be a
servant started and ended for a single method call, a separate servant for each object, or
a shared servant for all instances of the object type. It allows for groups of objects to be
associated by means of being registered with different instances of the POA object and
allows implementations to specify their own activation techniques. If the
implementation is not active when an invocation is performed, the POA will start one.
The POA is specified in IDL, so its mapping to languages is largely automatic,

following the language mapping rules. (The primary task left for a language mapping

is the definition of the Servant type.)

CORBAV2.2 CORBA Required Object Adapter February 1998 2-17

2.7 The Integration of Foreign Object Systems

The Common ORB Architecture is designed to allow interoperation with a wide range
of object systems (see Figure 2-9 on page 2-18). Because there are many existing
object systems, a common desire will be to allow the objects in those systems to be
accessible via the ORB. For those object systems that are ORBs themselves, they may
be connected to other ORBs through the mechanisms described throughout this
manual.

Object system as Object system as

~a POA object an implementation

implementation with a special-purpose

object adapter
Portable Object Special-purpose
Adapter Adapter
Object system as
ORB Core another ORB
interoperating via a
gateway

Gateway

2-18

Figure 2-9 Different Ways to Integrate Foreign Object Systems

For object systems that simply want to map their objects into ORB objects and receive
invocations through the ORB, one approach is to have those object systems appear to
be implementations of the corresponding ORB objects. The object system would
register its objects with the ORB and handle incoming requests, and could act like a
client and perform outgoing requests.

In some cases, it will be impractical for another object system to act like a POA object
implementation. An object adapter could be designed for objects that are created in
conjunction with the ORB and that are primarily invoked through the ORB. Another
object system may wish to create objects without consulting the ORB, and might
expect most invocations to occur within itself rather than through the ORB. In such a
case, a more appropriate object adapter might allow objects to be implicitly registered
when they are passed through the ORB.

CORBAV2.2 February 1998

OMG IDL Syntax and Semantics 3

This chapter describes OMG Interface Definition Language (IDL) semantics and gives
the syntax for OMG IDL grammatical constructs.

Contents

This chapter contains the following sections.

Section Title Page
“Overview” 3-2
“Lexical Conventions” 3-3
“Preprocessing” 3-9
“OMG IDL Grammar” 3-10
“OMG IDL Specification” 3-14
“Inheritance” 3-16
“Constant Declaration” 3-18
“Type Declaration” 3-22
“Exception Declaration” 3-30
“Operation Declaration” 3-31
“Attribute Declaration” 3-33
“CORBA Module” 3-34
“CORBA Module” 3-34
“Differences from C++” 3-37
“Standard Exceptions” 3-37

CORBAV2.2 February 1998 3-1

3-2

3.1 Overview

The OMG Interface Definition Language (IDL) is the language used to describe the
interfaces that client objects call and object implementations provide. An interface
definition written in OMG IDL completely defines the interface and fully specifies
each operation’s parameters. An OMG IDL interface provides the information needed
to develop clients that use the interface’s operations.

Clients are not written in OMG IDL, which is purely a descriptive language, but in
languages for which mappings from OMG IDL concepts have been defined. The
mapping of an OMG IDL concept to a client language construct will depend on the
facilities available in the client language. For example, an OMG IDL exception might
be mapped to a structure in a language that has no notion of exception, or to an
exception in a language that does. The binding of OMG IDL concepts to several
programming languages is described in this manual.

OMG IDL obeys the same lexical rules as dﬂ-ﬁlthough new keywords are

introduced to support distribution concepts. It also provides full support for standard
C++ preprocessing features. The OMG IDL specification is expected to track relevant
changes to C++ introduced by the ANSI standardization effort.

The description of OMG IDL's lexical conventions is presented in “Lexical
Conventions” on page 3-3. A description of OMG IDL preprocessing is presented in
“Preprocessing” on page 3-9. The scope rules for identifiers in an OMG IDL
specification are described in “CORBA Module” on page 3-34.

The OMG IDL grammar is a subset of the proposed ANSI C++ standard, with
additional constructs to support the operation invocation mechanism. OMG IDL is a
declarative language. It supports C++ syntax for constant, type, and operation
declarations; it does not include any algorithmic structures or variables. The grammar
is presented in “OMG IDL Grammar” on page 3-10.

OMG IDL-specific pragmas (those not defined for C++) may appear anywhere in a
specification; the textual location of these pragmas may be semantically constrained by
a particular implementation.

A source file containing interface specifications written in OMG IDL must have an
“.idl” extension. The file orb.idl contains OMG IDL type definitions and is available on
every ORB implementation.

1. Ellis, Margaret A. and Bjarne Stroustruphe Annotated C++ Reference Manuatd-
ison-Wesley Publishing Company, Reading, Massachusetts, 1990, ISBN 0-201-51459-1

CORBAV2.2 February 1998

3

The description of OMG IDL grammar uses a syntax notation that is similar to
Extended Backus-Naur Format (EBNF). Table 3-1 lists the symbols used in this format
and their meaning.

Table 3-1 IDL EBNF

Symbol Meaning

i= Is defined to be

| Alternatively

<text> Nonterminal

“text” Literal

* The preceding syntactic unit can be repeated zero or more times
+ The preceding syntactic unit can be repeated one or more times

{ The enclosed syntactic units are grouped as a single syntactic unit

1] The enclosed syntactic unit is optional—may occur zero or one time

3.2 Lexical Conventions

This sectio presents the lexical conventions of OMG IDL. It defines tokens in an
OMG IDL specification and describes comments, identifiers, keywords, and
literals—integer, character, and floating point constants and string literals.

An OMG IDL specification logically consists of one or more files. A file is
conceptually translated in several phases.

The first phase is preprocessing, which performs file inclusion and macro substitution.
Preprocessing is controlled by directives introduced by lines having # as the first
character other than white space. The result of preprocessing is a sequence of tokens.
Such a sequence of tokens, that is, a file after preprocessing, is called a translation unit.

OMG IDL uses the ISO Latin-1 (8859.1) character set. This character set is divided
into alphabetic characters (letters), digits, graphic characters, the space (blank)
character and formatting characters. Table 3-2 shows the OMG IDL alphabetic
characters; upper- and lower-case equivalencies are paired.

Table 3-2 The 114 Alphabetic Characters (Letters)

Char. Description Char. Description

Aa Upper/Lower-case A Aa Upper/Lower-case A with grave accent

Bb Upper/Lower-case B Aa Upper/Lower-case A with acute accent

Cc Upper/Lower-case C Aa Upper/Lower-case A with circumflex accent
Dd Upper/Lower-case D A& Upper/Lower-case A with tilde

Ee Upper/Lower-case E Aa Upper/Lower-case A with diaeresis

Ff Upper/Lower-case F A& Upper/Lower-case A with ring above

2. This section is an adaptationTdie Annotated C++ Reference Manu@hapter 2; it
differs in the list of legal keywords and punctuation.

CORBAV2.2 Lexical Conventions February 1998 3-3

Table 3-2 The 114 Alphabetic Characters (Letter@lontinued)

Char. Description Char. Description
Gg Upper/Lower-case G fEe Upper/Lower-case dipthong A with E
Hh Upper/Lower-case H Cc Upper/Lower-case C with cedilla
li Upper/Lower-case | Ee Upper/Lower-case E with grave accent
Jj Upper/Lower-case J Eé Upper/Lower-case E with acute accent
Kk Upper/Lower-case K Eé Upper/Lower-case E with circumflex accent
LI Upper/Lower-case L Eé Upper/Lower-case E with diaeresis
Mm Upper/Lower-case M Ii Upper/Lower-case | with grave accent
Nn Upper/Lower-case N fi Upper/Lower-case | with acute accent
Oo Upper/Lower-case O) Upper/Lower-case | with circumflex accent
Pp Upper/Lower-case P Ti Upper/Lower-case | with diaeresis
Qq Upper/Lower-case Q N Upper/Lower-case N with tilde
Rr Upper/Lower-case R 0o Upper/Lower-case O with grave accent
Ss Upper/Lower-case S 06 Upper/Lower-case O with acute accent
Tt Upper/Lower-case T 0ob Upper/Lower-case O with circumflex accent
Uu Upper/Lower-case U 0b Upper/Lower-case O with tilde
Vv Upper/Lower-case V 06 Upper/Lower-case O with diaeresis
Ww Upper/Lower-case W 0]} Upper/Lower-case O with oblique stroke
XX Upper/Lower-case X Ul Upper/Lower-case U with grave accent
Yy Upper/Lower-case Y Ua Upper/Lower-case U with acute accent
Zz Upper/Lower-case Z Oa Upper/Lower-case U with circumflex accent
Ui Upper/Lower-case U with diaeresis
3 Lower-case German sharp S

Lower-case Y with diaeresis

Table 3-3 lists the decimal digit characters.

Table 3-3 Decimal Digits
0123456789

Table 3-4 shows the graphic characters.

Table 3-4 The 65 Graphic Characters

Char. Description Char. Description
! exclamation point i inverted exclamation mark
" double quote ¢ cent sign
number sign £ pound sign
$ dollar sign o currency sign
% percent sign ¥ yen sign
& ampersand broken bar
CORBAV2.2 February 1998

Table 3-4 The 65 Graphic Character@Continued)

Char. Description Char. Description
’ apostrophe § section/paragraph sign
(left parenthesis : diaeresis
) right parenthesis © copyright sign
* asterisk a feminine ordinal indicator
+ plus sign « left angle quotation mark
, comma - not sign
- hyphen, minus sign soft hyphen
period, full stop ® registered trade mark sign
/ solidus N macron
colon ° ring above, degree sign
; semicolon + plus-minus sign
< less-than sign 2 superscript two
= equals sign 8 superscript three
> greater-than sign acute
? guestion mark V] micro
@ commercial at 9 pilcrow
[left square bracket . middle dot
\ reverse solidus , cedilla
] right square bracket 1 superscript one
N circumflex ° masculine ordinal indicator
_ low line, underscore » right angle quotation mark
‘ grave vulgar fraction 1/4
{ left curly bracket vulgar fraction 1/2
| vertical line vulgar fraction 3/4
} right curly bracket inverted question mark

~ tilde

multiplication sign
division sign

The formatting characters are shown in Table 3-5.

Table 3-5 The Formatting Characters

Description Abbreviation ISO 646 Octal Value
alert BEL 007
backspace BS 010
horizontal tab HT 011
newline NL, LF 012
vertical tab VT 013
form feed FF 014
carriage return CR 015

CORBAV2.2

Lexical Conventions

February 1998

3-5

3.2.1 Tokens

There are five kinds of tokens: identifiers, keywords, literals, operators, and other
separators. Blanks, horizontal and vertical tabs, newlines, formfeeds, and comments
(collective, “white space”), as described below, are ignored except as they serve to
separate tokens. Some white space is required to separate otherwise adjacent
identifiers, keywords, and constants.

If the input stream has been parsed into tokens up to a given character, the next token
is taken to be the longest string of characters that could possibly constitute a token.

3.2.2 Comments

The characters /* start a comment, which terminates with the characters */. These
comments do not nest. The characters // start a comment, which terminates at the end
of the line on which they occur. The comment characters //, /*, and */ have no special
meaning within a // comment and are treated just like other characters. Similarly, the
comment characters // and /* have no special meaning within a /* comment. Comments
may contain alphabetic, digit, graphic, space, horizontal tab, vertical tab, form feed,
and newline characters.

3.2.3 ldentifiers

An identifier is an arbitrarily long sequence of alphabetic, digit, and underscore (*_")
characters. The first character must be an alphabetic character. All characters are
significant.

Identifiers that differ only in case collide and yield a compilation error. An identifier
for a definition must be spelled consistently (with respect to case) throughout a
specification.

When comparing two identifiers to see if they collide:

< Upper- and lower-case letters are treated as the same letter. Table 3-2 on page 3-3
defines the equivalence mapping of upper- and lower-case letters.

» The comparison doasot take into account equivalences between digraphs and
pairs of letters (e.g., “@” and “ae” are not considered equivalent) or equivalences
between accented and non-accented letters (e.g., “A” and “A” are not considered
equivalent).

 All characters are significant.

There is only one namespace for OMG IDL identifiers. Using the same identifier for a
constant and an interface, for example, produces a compilation error.

CORBAV2.2 February 1998

3.2.4 Keywords

The identifiers listed in Table 3-6 are reserved for use as keywords and may not be
used otherwise

Table 3-6 Keywords

any double interface readonly unsigned
attribute enum long sequence union
boolean exception module short void
case FALSE Object string wchar
char fixed octet struct wstring
const float oneway switch

context in out TRUE

default inout raises typedef

Keywords obey the rules for identifiers (see“ldentifiers” on page 3-6) and must be
written exactly as shown in the above list. For exampl®diean " is correct;
“Boolean " produces a compilation error. The keywor@bject” can be used as a
type specifier.

OMG IDL specifications use the characters shown in Table 3-7 as punctuation.

Table 3-7 Punctuation Characters
; { } : . = + - () < > []
' " \ | N & * / % ~

In addition, the tokens listed in Table 3-8 are used by the preprocessor.

Table 3-8 Preprocessor Tokens

#o | I &&
3.2.5 Literals
This section describes the following literals:
* Integer

» Character

* Floating-point
» String
 Fixed-point

Integer Literals

An integer literal consisting of a sequence of digits is taken to be decimal (base ten)
unless it begins with 0 (digit zero). A sequence of digits starting with 0 is taken to be
an octal integer (base eight). The digits 8 and 9 are not octal digits. A sequence of

CORBAV2.2 Lexical Conventions February 1998 3-7

3-8

digits preceded by Ox or 0X is taken to be a hexadecimal integer (base sixteen). The
hexadecimal digits include a or A through f or F with decimal values ten through
fifteen, respectively. For example, the number twelve can be written 12, 014, or 0XC.

Character Literals

A character literal is one or more characters enclosed in single quotes, as in 'x'.
Character literals have typshar.

A character is an 8-bit quantity with a numerical value between 0 and 255 (decimal).
The value of a space, alphabetic, digit, or graphic character literal is the numerical
value of the character as defined in the ISO Latin-1 (8859.1) character set standard
(See Table 3-2 on page 3-3, Table 3-3 on page 3-4, and Table 3-4 on page 3-4). The
value of a null is 0. The value of a formatting character literal is the numerical value of
the character as defined in the 1ISO 646 standard (See Table 3-5 on page 3-5). The
meaning of all other characters is implementation-dependent.

Nongraphic characters must be represented using escape sequences as defined below i
Table 3-9. Note that escape sequences must be used to represent single quote and
backslash characters in character literals.

Table 3-9 Escape Sequences

Description Escape Sequence
newline \n
horizontal tab \t
vertical tab \v
backspace \b
carriage return \r
form feed \f
alert \a
backslash \\
question mark \?
single quote \
double quote \"
octal number \ooo
hexadecimal \xhh
number

If the character following a backslash is not one of those specified, the behavior is
undefined. An escape sequence specifies a single character.

The escape \ooo consists of the backslash followed by one, two, or three octal digits
that are taken to specify the value of the desired character. The escape \xhh consists of
the backslash followed by x followed by one or two hexadecimal digits that are taken
to specify the value of the desired character. A sequence of octal or hexadecimal digits

CORBAV2.2 February 1998

3

3.3 Preprocessing

is terminated by the first character that is not an octal digit or a hexadecimal digit,
respectively. The value of a character constant is implementation dependent if it
exceeds that of the largest char.

Wide character and wide string literals are specified exactly like character and string
literals. All character and string literals, both wide and non-wide, may only be
specified (portably) using the characters found in the ISO 8859-1 character set, that is
interface names, operation names, type names, etc., will continue to be limited to the
ISO 8859-1 character set.

Floating-point Literals

A floating-point literal consists of an integer part, a decimal point, a fraction part, an e
or E, and an optionally signed integer exponent. The integer and fraction parts both
consist of a sequence of decimal (base ten) digits. Either the integer part or the fraction
part (but not both) may be missing; either the decimal point or the letter e (or E) and
the exponent (but not both) may be missing.

String Literals

A string literal is a sequence of characters (as defined in “Character Literals” on page
3-8) surrounded by double quotes, as in "...".

Adjacent string literals are concatenated. Characters in concatenated strings are kept
distinct. For example,

II\XAII IIBII

contains the two characters "\xA' and 'B' after concatenation (and not the single
hexadecimal character "\xAB").

The size of a string literal is the number of character literals enclosed by the quotes,
after concatenation. The size of the literal is associated with the literal. Within a string,
the double quote charactémust be preceded by a \.

A string literal may not contain the character \0'.

Fixed-Point Literals

A fixed-point decimal literal consists of an integer part, a decimal point, a fraction part
and a d or D. The integer and fraction parts both consist of a sequence of decimal (base
10) digits. Either the integer part or the fraction part (but not both) may be missing; the
decimal point (but not the letter d (or D)) may be missing.

OMG IDL preprocessing, which is based on ANSI C++ preprocessing, provides macro
substitution, conditional compilation, and source file inclusion. In addition, directives
are provided to control line numbering in diagnostics and for symbolic debugging, to

CORBAV2.2 Preprocessing February 1998 3-9

generate a diagnostic message with a given token sequence, and to perform
implementation-dependent actions (tgagma directive). Certain predefined names
are available. These facilities are conceptually handled by a preprocessor, which may
or may not actually be implemented as a separate process.

Lines beginning with # (also called “directives”) communicate with this preprocessor.
White space may appear before the #. These lines have syntax independent of the rest
of OMG IDL; they may appear anywhere and have effects that last (independent of the
OMG IDL scoping rules) until the end of the translation unit. The textual location of
OMG IDL-specific pragmas may be semantically constrained.

A preprocessing directive (or any line) may be continued on the next line in a source
file by placing a backslash character (“\"), immediately before the newline at the end
of the line to be continued. The preprocessor effects the continuation by deleting the
backslash and the newline before the input sequence is divided into tokens. A
backslash character may not be the last character in a source file.

A preprocessing token is an OMG IDL token (see “Tokens” on page 3-6), a file name
as in a#include directive, or any single character other than white space that does not
match another preprocessing token.

The primary use of the preprocessing facilities is to include definitions from other
OMG IDL specifications. Text in files included with#include directive is treated as
if it appeared in the including file. A complete description of the preprocessing
facilities may be found imThe Annotated C++ Reference Manudlhe #pragma
directive that is used to include Repositorylds is described in Section 8.6,
“Repositorylds,” on page 8-32.

3.4 OMG IDL Grammar

3-10

(1)
(2)

3)
(4)

()
(6)
(7)
(8)
(9)

(10

<specification> ::= <definition> *
<definition> <type_dc|> u;u
<const_dcl>*}"

|

| <except_dcl>*;"
| <interface>"*;”

|

<module>*;"
<module> := “module” <identifier> “{* <definition> p
<interface> ::= <interface_dcl>
| <forward_dcl>
<interface_dcl> := <interface_header> “{" <interface_body> “}’
<forward_dcl> ::= ‘“interface” <identifier>
<interface_header> ::= “interface” <identifier> [<inheritance_spec>]
<interface_body> := <export> *
<export> ;= <type_dcl>*“"
| <const_dcl>*"
| <except_dcl>*"
| <attr_dcl>*}"
| <op_dcl>*”
<inheritance_spec> := “" <scoped_name> {)’ <scoped _name>} *

CORBAV2.2 February 1998

(11)

(12)

(13)

(14)
(15)

(16)
(17)

(18)

(19)

(20)

(21)

(22)

(23)

(24)

<scoped_name> :=
|
|

<const_dcl> ::=

<const_type> =
|
|
|
|
|
|
|
|

<const_exp> =
<or_expr> =

<xor_expr> =
<and_expr> =

<shift_expr> ::=
<add_expr> =
<mult_expr> =
<unary_expr> =
<unary_operator>

<primary_expr>

<literal>

<identifier>
“." <identifier>
<scoped_name> “:." <identifier>
“const” <const_type> <identifier> “="
<const_exp>
<integer_type>
<char_type>
<wide_char_type>
<boolean_type>
<floating_pt_type>
<string_type>
<wide_string_type>
<fixed_pt_const_type>
<scoped_name>
<or_expr>
<xor_expr>
<or_expr>"“|" <xor_expr>
<and_expr>
<xor_expr>“" <and_expr>
<shift_expr>
<and_expr> “&”" <shift_expr>
<add_expr>
<shift_expr> “>>" <add_expr>
<shift_expr> “<<” <add_expr>
<mult_expr>
<add_expr> “+" <mult_expr>
<add_expr> “-" <mult_expr>
<unary_expr>
<mult_expr> “*" <unary_expr>
<mult_expr>“/" <unary_expr>
<mult_expr> “%” <unary_expr>
<unary_operator> <primary_expr>
<primary_expr>
oy
<scoped_name>
<literal>
“(" <const_exp>*)"
<integer_literal>
<string_literal>
<wide_string_literal>
<character_literal>
<wide_character_literal>
<fixed_pt_literal>
<floating_pt_literal>
<boolean_literal>

CORBAV2.2 OMG IDL Grammar February 1998 3-11

3-12

(25)

(26)
(27)

(28)
(29)

(30)

(31)

(32)

(33)

(34)
(35)

(36)
37)
(38)

(39)
(40)
(41)
(42)

(43)
(44)

<boolean_literal>

<positive_int_const>
<type_dcl>

<type_declarator>
<type_spec>

<simple_type spec>

<base_type_spec>

<template_type spec>

<constr_type spec>
<declarators>
<declarator>

<simple_declarator>
<complex_declarator>
<floating_pt_type>

<integer_type>
<signed_int>
<signed_short_int>
<signed_long_int>

<signed_longlong_int>
<unsigned_int>

CORBAV2.2

= “TRUE”
| “FALSE”
= <const_exp>

= “typedef” <type_declarator>

| <struct_type>
| <union_type>
| <enum_type>
|

“native” <simple_declarator>
<type_spec> <declarators>

== <simple_type_spec>

| <constr_type_spec>
= <base_type_ spec>

| <template_type_spec>
| <scoped_name>

= <floating_pt_type>

| <integer_type>

| <char_type>

| <wide_char_type>
| <boolean_type>

| <octet_type>

| <any_type>

| <object_type>

= <sequence_type>

| <string_type>

| <wide_string_type>
| <fixed_pt type>

= <struct_type>

| <union_type>

| <enum_type>

;= <declarator> { “” <declarator> }

::= <simple_declarator>

| <complex_ declarator>
::= <identifier>
== <array_declarator>

= “float”
| “double”
| “long” “double”
;= <signed_int>
| <unsigned_int>
= <signed_short_int>
| <signed_long_int>
| <signed_longlong_int>
= “short”
= “long”
2= “long” “long”
::= <unsigned_short_int>
| <unsigned_long_int>

February 1998

(45)
(46)

<unsigned_short_int>
<unsigned_long_int>

(47) <unsigned_longlong_int>

(48)
(49)
(50)
(51)
(52)
(53)
(54)
(55)
(56)
(57)

(58)

(59)
(60)
(61)

(62)
(63)

(64)
(65)
(66)
(67)
(68)

(69)
(70)

(71)
(72)

(73)

CORBAV2.2

<char_type>
<wide_char_type>
<boolean_type>
<octet_type>
<any_type>
<object_type>
<struct_type>
<member_list>
<member>
<union_type>

<switch_type_spec>

<switch_body>
<case>
<case_label>

<element_spec>
<enum_type>

<enumerator>
<sequence_type>
<string_type>
<wide_string_type>
<array_declarator>

<fixed_array_size>
<attr_dcl>

<except_dcl>
<op_dcl>

<op_attribute>

<unsigned_longlong_int>
“unsigned” “short”
“unsigned” “long”
“unsigned” “long” “long”

.= “char”

= “wchar”

= “boolean”

= “octet”

= “any”

;.= “Object”

i:= “struct” <identifier> “{* <member_list> “}"

;= <member>

+

= <type_spec> <declarators> “;"
= “union” <identifier> “switch” “("

|
| <boolean_type>
|
|

<switch_type_spec> “)" “{” <switch_body>
u}H

<integer_type>
<char_type>

<enum_type>

<scoped_name>

<case> "~

= <case_label> * <element_spec> *;”
= “case” <const_exp> “"

“default” “:”

;i= <type_spec> <declarator>

= “enum” <identifier> “{" <enumerator> { “,

<enumerator> } U4

;1= <identifier>

= “sequence” “<” <simple_type_spec>

<positive_int_const> “>"
“sequence” “<" <simple_type_spec> “>"

= “string” “<” <positive_int_const> “>"
“string”
“wstring” “<” <positive_int_const> “>"
“wstring”

<identifier> <fixed_array_size> *

.= “[" <positive_int_const> “”
= [“readonly”] “attribute”

<param_type_spec> <simple_declarator> {
“’ <simple_declarator> }*

= “exception” <identifier> “{* <member>* *}”

= [<op_attribute>] <op_type_spec> <identi-
fier> <parameter_dcls> [<raises_expr>] [
<context_expr>]

= “oneway”

OMG IDL Grammar February 1998 3-13

(74) <op_type_spec> := <param_type_spec>
| “void”
(75) <parameter_dcls> := “(" <param_dcl> {“” <param_dcl>} Dy
|)
(76) <param_dcl> ::= <param_attribute> <param_type_spec>
<simple_declarator>
(77) <param_attribute> := “in”
| “out”
| “inout”
(78) <raises_expr> = “raises” “(" <scoped_name> {"“)

<scoped_name>} 4y

“context” “(" <string_literal> { “)
<string_literal>} "%

<base_type_spec>
<string_type>
<wide_string_type>
<fixed_pt_type>
<scoped_name>

“fixed” “<" <positive_int_const>“
<integer_literal> “>"

(82) <fixed pt_const_type> := “fixed”

(79) <context_expr>

(80) <param_type_spec>

(81) <fixed_pt_type>

3.5 OMG IDL Specification

An OMG IDL specification consists of one or more type definitions, constant
definitions, exception definitions, or module definitions. The syntax is:

<specification>::=<definition> *

<definition>::=<type_dcl> ;"
| <const_dcl>*”
| <except_dcl>*;"
| <interface>*;”
| <module>*“;”

See “Constant Declaration” on page 3-18, “Type Declaration” on page 3-22, and
“Exception Declaration” on page 3-30, respectively, for specifications of
<const_dcl> , <type_dcl> , and<except_dcl> .

3.5.1 Module Declaration
A module definition satisfies the following syntax:
<module>::="module” <identifier> “{" <definition> e

The module construct is used to scope OMG IDL identifiers; see “CORBA Module” on
page 3-34 for details.

3-14 CORBAV2.2 February 1998

3.5.2 Interface Declaration

An interface definition satisfies the following syntax:

<interface> .= <interface_dcl>

| <forward_dcl>
<interface_dcl> := <interface_header> “{" <interface_ body> “}"
<forward_dcl> = “interface” <identifier>

<interface_header>::= “interface” <identifier> [<inheritance_spec>]

*

<interface_body> ::= <export>

<export> = <type_dcl>*}”

| <const_dcl>*”

| <except_dcl>*”
| <attr_dcl>*}”

| <op_dcl>*”

Interface Header

The interface header consists of two elements:
« The interface name. The name must be preceded by the keymterface , and
consists of an identifier that names the interface.
« An optional inheritance specification. The inheritance specification is described in
the next section.

The<identifier> that names an interface defines a legal type name. Such a type name
may be used anywhere aidentifier> is legal in the grammar, subject to semantic
constraints as described in the following sections. Since one can only hold references
to an object, the meaning of a parameter or structure member which is an interface
type is as aeferenceto an object supporting that interface. Each language binding
describes how the programmer must represent such interface references.

Inheritance Specification

The syntax for inheritance is as follows:

<inheritance_spec>::= “.” <scoped_name> {“” <scoped_name>}*
<scoped_name> ::= <identifier>
| “::” <identifier>

| <scoped_name> “::" <identifier>

Each<scoped_name> in an<inheritance_spec> must denote a previously defined
interface. See “Inheritance” on page 3-16 for the description of inheritance.

CORBAV2.2 OMG IDL Specification February 1998 3-15

3.6

3-16

Inheritance

Interface Body

The interface body contains the following kinds of declarations:

« Constant declarations, which specify the constants that the interface exports;
constant declaration syntax is described in “Constant Declaration” on page 3-18.

» Type declarations, which specify the type definitions that the interface exports;
type declaration syntax is described in “Type Declaration” on page 3-22.

« Exception declarations, which specify the exception structures that the interface
exports; exception declaration syntax is described in “Exception Declaration” on
page 3-30.

« Attribute declarations, which specify the associated attributes exported by the
interface; attribute declaration syntax is described in “Attribute Declaration” on
page 3-33.

» Operation declarations, which specify the operations that the interface exports and
the format of each, including operation name, the type of data returned, the types
of all parameters of an operation, legal exceptions which may be returned as a
result of an invocation, and contextual information which may affect method
dispatch; operation declaration syntax is described in “Operation Declaration” on
page 3-31.

Empty interfaces are permitted (that is, those containing no declarations).

Some implementations may require interface-specific pragmas to precede the interface
body.

Forward Declaration

A forward declaration declares the name of an interface without defining it. This
permits the definition of interfaces that refer to each other. The syntax consists simply
of the keywordinterface followed by an<identifier> that names the interface. The
actual definition must follow later in the specification.

Multiple forward declarations of the same interface name are legal.

An interface can be derived from another interface, which is then callezka

interface of the derived interface. A derived interface, like all interfaces, may declare
new elements (constants, types, attributes, exceptions, and operations). In addition,
unless redefined in the derived interface, the elements of a base interface can be
referred to as if they were elements of the derived interface. The name resolution
operator (“::") may be used to refer to a base element explicitly; this permits reference
to a name that has been redefined in the derived interface.

A derived interface may redefine any of the type, constant, and exception names which
have been inherited; the scope rules for such names are described in “CORBA
Module” on page 3-34.

CORBAV2.2 February 1998

3

An interface is called a direct base if it is mentioned in #iigheritance_spec> and
an indirect base if it is not a direct base but is a base interface of one of the interfaces
mentioned in theinheritance_spec> .

An interface may be derived from any number of base interfaces. Such use of more
than one direct base interface is often called multiple inheritance. The order of
derivation is not significant.

An interface may not be specified as a direct base interface of a derived interface more
than once; it may be an indirect base interface more than once. Consider the following
example:

interface A{... }
interface B: A{... }
interface C: A{... }
interface D: B, C { ... }

The relationships between these interfaces is shown in Figure on page 3-17. This
“diamond” shape is legal.

A

D

Figure 3-1 Legal Multiple Inheritance Example

Reference to base interface elements must be unambiguous. Reference to a base
interface element is ambiguous if the expression used refers to a constant, type, or
exception in more than one base interface. (It is currently illegal to inherit from two
interfaces with the same operation or attribute name, or to redefine an operation or
attribute name in the derived interface.) Ambiguities can be resolved by qualifying a
name with its interface name (that is, usingcgcoped_name>).

References to constants, types, and exceptions are bound to an interface when it is
defined (i.e., replaced with the equivalent glokatoped_name> s). This guarantees

that the syntax and semantics of an interface are not changed when the interface is a
base interface for a derived interface. Consider the following example:

CORBAV2.2 Inheritance February 1998 3-17

constlong L = 3;

interface A {
typedef float coord[L]):
void f (in coord s); // s has three floats

h

interface B {
constlong L = 4;

h
interface C: B, A {}// what is f()’s signature?

The early binding of constants, types, and exceptions at interface definition guarantees
that the signature of operatidrin interfaceC is

typedef float coord[3];
void f (in coord s);

which is identical to that in interfacA. This rule also prevents redefinition of a
constant, type, or exception in the derived interface from affecting the operations and
attributes inherited from a base interface.

Interface inheritance causes all identifiers in the closure of the inheritance tree to be
imported into the current naming scope. A type name, constant name, enumeration
value name, or exception name from an enclosing scope can be redefined in the current
scope. An attempt to use an ambiguous name without qualification is a compilation
error.

Operation names are used at run-time by both the stub and dynamic interfaces. As a
result, all operations that might apply to a particular object must have unique names.
This requirement prohibits redefining an operation name in a derived interface, as well
as inheriting two operations with the same name.

3.7 Constant Declaration

This section describes the syntax for constant declarations.

3.7.1 Syntax

The syntax for a constant declaration is:

<const_dcl> = “const” <const_type> <identifier> “="
<const_exp>

<const_type> = <integer_type>
| <char_type>
| <boolean_type>
| <floating_pt_type>

3-18 CORBAV2.2 February 1998

<const_exp>

<or_expr>

<xor_expr>

<and_expr>

<shift_expr>

<add_expr>

<mult_expr>

<unary_expr>

<unary_operator>

<primary_expr>

<literal>

<boolean_literal> n=

<positive_int_const> ::=

CORBAV2.2

<string_type>
<scoped_name>

<or_expr>

<xor_expr>
<or_expr> “|" <xor_expr>

<and_expr>
<xor_expr>“N" <and_expr>

<shift_expr>
<and_expr> “&” <shift_expr>

<add_expr>
<shift_expr> “>>" <add_expr>
<shift_expr> “<<” <add_expr>

<mult_expr>
<add_expr> “+” <mult_expr>
<add_expr> “-" <mult_expr>

<unary_expr>
<mult_expr> “*" <unary_expr>
<mult_expr>“/" <unary_expr>
<mult_expr> “%" <unary_expr>

<unary_operator> <primary_expr>
<primary_expr>

u+n

<scoped_name>
<literal>
H(H <COnSt_eXp> “)H

<integer_literal>
<string_literal>
<character_literal>
<floating_pt_literal>
<boolean_literal>

“TRUE”
“FALSE”

<const_exp>

Constant Declaration February 1998 3-19

3.7.2 Semantics

The<scoped_name> in the<const_type> production must be a previously defined
name of ar<integer_type> , <char_type> , <wide_ char_type> ,

<boolean_type> , <floating_pt_type> , <fixed_pt_const_type> , <string_type>,

or <wide_string_type> constant.

An infix operator can combine two integers, floats or fixeds, but not mixtures of these.
Infix operators are applicable only to integer, float and fixed types.

If the type of an integer constantlieng or unsigned long , then each subexpression
of the associated constant expression is treated assigned long by default, or a
signedlong for negated literals or negative integer constants. It is an error if any
subexpression values exceed the precision of the assignedidyie d¢r unsigned
long), or if a final expression value (of typensigned long) exceeds the precision of
the target typeléng).

If the type of an integer constantlisng long or unsigned long long , then each
subexpression of the associated constant expression is treatediasigmed long
long by default, or a signetbng long for negated literals or negative integer
constants. It is an error if any subexpression values exceed the precision of the
assigned typelgng long or unsigned long long), or if a final expression value (of
type unsigned long long) exceeds the precision of the target typeng long).

If the type of a floating-point constant double , then each subexpression of the
associated constant expression is treated dgudle. It is an error if any
subexpression value exceeds the precisiodafble .

If the type of a floating-point constant isng double , then each subexpression of the
associated constant expression is treatedlaagdouble . It is an error if any
subexpression value exceeds the precisioloing double .

Fixed-point decimal constant expressions are evaluated as follows. A fixed-point literal
has the apparent number of total and fractional digits, except that leading and trailing
zeros are factored out, including non-significant zeros before the decimal point. For
example,0123.450d is considered to béxed<5,2> and3000.00 is fixed<1,-3>.

Prefix operators do not affect the precision; a prefis optional, and does not change
the result. The upper bounds on the number of digits and scale of the result of an infix
expressionfixed<dl1,s1> op fixed<d2,s2> , are shown in the following table:

Op Result: fixed<d,s>

+ fixed<max(d1-s1,d2-s2) + max(sl,s2) + 1, max(sl,s2)>
- fixed<max(dl-s1,d2-s2) + max(sl,s2) + 1, max(sl1,s2)>
* fixed<d1+d2, s1+s2>

/ fixed<(d1-s1+s2) + S ¢, Sinf™

3-20 CORBAV2.2 February 1998

3

A quotient may have an arbitrary number of decimal places, denoted by a scgjg of

The computation proceeds pairwise, with the usual rules for left-to-right association,
operator precedence, and parentheses. If an individual computation between a pair of
fixed-point literals actually generates more than 31 significant digits, then a 31-digit
result is retained as follows:

fixed<d,s> => fixed<31, 31-d+s>

Leading and trailing zeros are not considered significant. The omitted digits are
discarded; rounding is not performed. The result of the individual computation then
proceeds as one literal operand of the next pair of fixed-point literals to be computed.

Unary (+ -) and binary t / + -) operators are applicable in floating-point and fixed-
point expressions. Unary+(- ~) and binary ¥/ % + - << >> & | *) operators are
applicable in integer expressions.

The “~" unary operator indicates that the bit-complement of the expression to which it
is applied should be generated. For the purposes of such expressions, the values are 2's
complement numbers. As such, the complement can be generated as follows:

Integer Constant Expression Type | Generated 2's Complement Numbers
long long -(value+1)

unsigned long unsigned long (2**32-1) - value

long long long long -(value+1)

unsigned long long unsigned long (2**64-1) - value

The “%” binary operator yields the remainder from the division of the first expression
by the second. If the second operand of “%” is 0, the result is undefined; otherwise

(a/b)*b + a%b

is equal to a. If both operands are nonnegative, then the remainder is nonnegative; if
not, the sign of the remainder is implementation dependent.

The “<<"binary operator indicates that the value of the left operand should be shifted
left the number of bits specified by the right operand, with 0 fill for the vacated bits.
The right operand must be in the range 0 <= right operand < 64.

The “>>" binary operator indicates that the value of the left operand should be shifted
right the number of bits specified by the right operand, with O fill for the vacated bits.
The right operand must be in the range 0 <= right operand < 64.

The “&” binary operator indicates that the logical, bitwise AND of the left and right
operands should be generated.

The “|” binary operator indicates that the logical, bitwise OR of the left and right
operands should be generated.

CORBAV2.2 Constant Declaration February 1998 3-21

The “N binary operator indicates that the logical, bitwise EXCLUSIVE-OR of the left
and right operands should be generated.

<positive_int_const> must evaluate to a positive integer constant.

3.8 Type Declaration

OMG IDL provides constructs for naming data types; that is, it provides C language-
like declarations that associate an identifier with a type. OMG IDL uses$ythexlef
keyword to associate a name with a data type; a name is also associated with a data
type via thestruct , union, enum, andnative declarations; the syntax is:

<type_dcl> = “typedef” <type_declarator>
| <struct_type>
| <union_type>
| <enum_type>
| “native” <simple_declarator>

<type_declarator> ::= <type spec> <declarators>

For type declarations, OMG IDL defines a set of type specifiers to represent typed
values. The syntax is as follows:
<type_spec> = <simple_type_spec>

| <constr_type_spec>

= <base_type_spec>
| <template_type spec>
| <scoped_name>

<simple_type_spec>

<base_type_spec> n= <floating_pt_type>
| <integer_type>
| <char_type>
| <wide_char_type>
| <boolean_type>
| <octet_type>
| <any_type>

<template_type_spec>::=<sequence_type>
| <string_type>
| <wide_string_type>
| <fixed_pt_type>

<constr_type_spec> = <struct_type>
| <union_type>
|

<enum_type>

<declarators>::=<declarator> { “,” <declarator> } .
<declarator> R <simple_declarator>

| <complex_declarator>
<simple_declarator> n= <identifier>
<complex_declarator> n= <array_declarator>

3-22 CORBAV2.2 February 1998

3

The <scoped_name> in <simple_type spec> must be a previously defined type.

As seen above, OMG IDL type specifiers consist of scalar data types and type
constructors. OMG IDL type specifiers can be used in operation declarations to assign
data types to operation parameters. The next sections describe basic and constructed

type specifiers.

3.8.1 Basic Types

The syntax for the supported basic types is as follows:

<floating_pt_type> = “float”

| “double”

| “long” “double”
<integer_type>: ;= <signed_int>

| <unsigned_int>

<signed_int> ;= <signed_long_int
| <signed_short_int>
| <signed_longlong_int>

<signed_long_int> = ‘“long”
<signed_short_int> = “short”
<signed_longlong_int> ::= *“long” “long”

= <unsigned_long_int>
| <unsigned_short_int>
| <unsigned_longlong_int>

<unsigned_int>

<unsigned_long_int> = ‘“unsigned” “long”
<unsigned_short_int> ;= ‘“unsigned” “short”
<unsigned_longlong_int>::= *“unsigned” “long” “long”
<char_type> = “char”
<wide_char_type> = “wchar”
<boolean_type> = “boolean”
<octet_type> = ‘“octet”

<any_type> n= “any”

Each OMG IDL data type is mapped to a native data type via the appropriate language
mapping. Conversion errors between OMG IDL data types and the native types to
which they are mapped can occur during the performance of an operation invocation.
The invocation mechanism (client stub, dynamic invocation engine, and skeletons) may
signal an exception condition to the client if an attempt is made to convert an illegal
value. The standard exceptions which are to be signalled in such situations are defined
in “Standard Exceptions” on page 3-37.

CORBAV2.2 Type Declaration February 1998 3-23

Integer Types

OMG IDL integer types arshort , unsigned short , long, unsigned long , long
long andunsigned long long , representing integer values in the range indicated
below in Table 3-10.

Table 3-10Range of integer types

short 215 2151
long 281 231y
long long 268 2631
unsigned short 0.216.1
unsigned long 0.2%2.1
unsigned long long 0.2%-1

Floating-Point Types

OMG IDL floating-point types ardloat , double andlong double . Thefloat type
represents IEEE single-precision floating point numbersditigble type represents

IEEE double-precision floating point numbers.Tlbag double data type represents

an IEEE double-extended floating-point number, which has an exponent of at least 15
bits in length and a signed fraction of at least 64 bits. l#eE Standard for Binary
Floating-Point Arithmetic ANSI/IEEE Standard 754-1985, for a detailed specification.

Char Type

OMG IDL defines achar data type that is an 8-bit quantity which (1) encodes a
single-byte character from any byte-oriented code set, or (2) when used in an array,
encodes a multi-byte character from a multi-byte code set. In other words, an
implementation is free to use any code set internally for encoding character data,
though conversion to another form may be required for transmission.

The ISO 8859-1 (Latinl) character set standard defines the meaning and representation
of all possible graphic characters used in OMG IDL (i.e., the space, alphabetic, digit
and graphic characters defined in Table 3-2 on page 3-3, Table 3-3 on page 3-4, and
Table 3-4 on page 3-4). The meaning and representation of the null and formatting
characters (see Table 3-5 on page 3-5) is the numerical value of the character as
defined in the ASCII (ISO 646) standard. The meaning of all other characters is
implementation-dependent.

During transmission, characters may be converted to other appropriate forms as
required by a particular language binding. Such conversions may change the
representation of a character but maintain the character’s meaning. For example, a
character may be converted to and from the appropriate representation in international
character sets.

3-24 CORBAV2.2 February 1998

Wide Char Type

OMG IDL defines awchar data type which encodes wide characters from any
character set. As with character data, an implementation is free to use any code set
internally for encoding wide characters, though, again, conversion to another form may
be required for transmission. The sizeve¢har is implementation-dependent.

Boolean Type

Theboolean data type is used to denote a data item that can only take one of the
values TRUE and FALSE.

Octet Type

The octet type is an 8-bit quantity that is guaranteed not to undergo any conversion
when transmitted by the communication system.

Any Type

Theany type permits the specification of values that can express any OMG IDL type.

3.8.2 Constructed Types

The constructed types are:
<constr_type_spec> = <struct_type>
| <union_type>
|

<enum_type>

Although the IDL syntax allows the generation of recursive constructed type
specifications, the only recursion permitted for constructed types is through the use of
thesequence template type. For example, the following is legal:

struct foo {
long value;
sequence<foo> chain;

}

See “Sequences” on page 3-27 for details of¢hguence template type.

Structures

The structure syntax is:

<struct_type> ::= “struct” <identifier> “{” <member_list> “}”
<member_list>::= <member> *

<member> 1= <type_spec> <declarators> “;”

The <identifier> in <struct_type> defines a new legal type. Structure types may
also be named usingtgpedef declaration.

CORBAV2.2 Type Declaration February 1998 3-25

3-26

Name scoping rules require that the member declarators in a particular structure be
unique. The value of atruct is the value of all of its members.

Discriminated Unions

The discriminatedunion syntax is:

<union_type> == “union” <identifier> “switch” “("
<switch_type_spec> “)”
“{" <switch_body> “}"

<switch_type_spec> := <integer_type>
| <char_type>

| <boolean_type>
| <enum_type>

| <scoped_name>

<switch_body> = <case>
<case> n= <case_label> * <element_spec> *;”
<case_label> i= “case” <const_exp>“"
“default” “:"
<element_spec> = <type_spec> <declarator>

OMG IDL unions are a cross between theu@ion andswitch statements. IDL

unions must be discriminated; that is, the union header must specify a typed tag field
that determines which union member to use for the current instance of a call. The
<identifier> following theunion keyword defines a new legal type. Union types may
also be named usingtgpedef declaration. Thesconst_exp> in a<case_label>

must be consistent with theswitch_type_spec> . A default case can appear at most
once. The<scoped_name> in the <switch_type_spec> production must be a
previously definednteger, char, boolean or enum type.

Case labels must match or be automatically castable to the defined type of the
discriminator. The complete set of matching rules are shown in Table 3-11.

Table 3-11Case Label Matching
Discriminator Type Matched By

long any integer value in the value range of long

long long any integer value in the range of long long

short any integer value in the value range of short

unsigned long any integer value in the value range of unsigned long
unsigned long long any integer value in the range of unsigned long long
unsigned short any integer value in the value range of unsigned short
char char

wchar wchar

boolean TRUE or FALSE

enum any enumerator for the discriminator enum type

CORBAV2.2 February 1998

3

Name scoping rules require that the element declarators in a particular union be
unique. If the<switch_type spec> is an<enum_type> , the identifier for the
enumeration is in the scope of the union; as a result, it must be distinct from the
element declarators.

It is not required that all possible values of the union discriminator be listed in the
<switch_body> . The value of a union is the value of the discriminator together with
one of the following:
« If the discriminator value was explicitly listed in@se statement, the value of
the element associated with thedise statement;
« If a defaultcase label was specified, the value of the element associated with the
defaultcase label;

* No additional value.

Access to the discriminator and the related element is language-mapping dependent.

Enumerations

Enumerated types consist of ordered lists of identifiers. The syntax is:

<enum_type> = “enum” <identifier> “{” <enumerator> { “,
<enumerator> } U4

<enumerator > = <identifier>

A maximum of 22 identifiers may be specified in an enumeration; as such, the
enumerated names must be mapped to a native data type capable of representing a
maximally-sized enumeration. The order in which the identifiers are named in the
specification of an enumeration defines the relative order of the identifiers. Any
language mapping which permits two enumerators to be compared or defines
successor/predecessor functions on enumerators must conform to this ordering relation.
The <identifier> following theenum keyword defines a new legal type. Enumerated
types may also be named usingypedef declaration.

3.8.3 Template Types

The template types are:

<template_type_spec> ::= <sequence_type>
[<string_type>
[<wide_string_type>
[<fixed_pt_type>

Sequences

OMG IDL defines the sequence tygequence . A sequence is a one-dimensional
array with two characteristics: a maximum size (which is fixed at compile time) and a
length (which is determined at run time).

CORBAV2.2 Type Declaration February 1998 3-27

3-28

The syntax is:
<sequence_type> n= “sequence” “<” <simple_type_spec>“
<positive_int_const> “>"

| “sequence” “<” <simple_type_spec> “>"

The second parameter in a sequence declaration indicates the maximum size of the
sequence. If a positive integer constant is specified for the maximum size, the sequence
is termed a bounded sequence. Prior to passing a bounded sequence as a function
argument (or as a field in a structure or union), the length of the sequence must be set
in a language-mapping dependent manner. After receiving a sequence result from an
operation invocation, the length of the returned sequence will have been set; this value
may be obtained in a language-mapping dependent manner.

If no maximum size is specified, size of the sequence is unspecified (unbounded). Prior
to passing such a sequence as a function argument (or as a field in a structure or
union), the length of the sequence, the maximum size of the sequence, and the address
of a buffer to hold the sequence must be set in a language-mapping dependent manner.
After receiving such a sequence result from an operation invocation, the length of the
returned sequence will have been set; this value may be obtained in a language-
mapping dependent manner.

A sequence type may be used as the type parameter for another sequence type. For
example, the following:

typedef sequence< sequence<long> > Fred;

declares Fred to be of type “unbounded sequence of unbounded sequence of long”.
Note that for nested sequence declarations, white space must be used to separate the
two “>" tokens ending the declaration so they are not parsed as a single “>>" token.

Strings

OMG IDL defines the string typstring consisting of all possible 8-bit quantities
except null. A string is similar to a sequence of char. As with sequences of any type,
prior to passing a string as a function argument (or as a field in a structure or union),
the length of the string must be set in a language-mapping dependent manner. The
syntax is:

<string_type> ::= “string
| “string”

<" <positive_int_const> “>"

The argument to the string declaration is the maximum size of the string. If a positive
integer maximum size is specified, the string is termed a bounded string; if no
maximum size is specified, the string is termed an unbounded string.

Strings are singled out as a separate type because many languages have special built-ir
functions or standard library functions for string manipulation. A separate string type
may permit substantial optimization in the handling of strings compared to what can be
done with sequences of general types.

CORBAV2.2 February 1998

Wide Char String Type

Thewstring data type represents a null-terminated (note: a wide character null)
sequence ofvchar. Typewstring is analogous tatring , except that its element type
is wchar instead ofchar.

Fixed Type

Thefixed data type represents a fixed-point decimal number of up to 31 significant
digits. The scale factor is normally a non-negative integer less than or equal to the total
number of digits (note that constants with effectively negative scale, such as 10000, are
always permitted.). However, some languages and environments may be able to
accommodate types that have a negative scale or a scale greater than the number of
digits.

3.8.4 Complex Declarator

Arrays

OMG IDL defines multidimensional, fixed-size arrays. An array includes explicit sizes
for each dimension.

The syntax for arrays is:

<array_declarator> :=<identifier> <fixed_array_size> *

<fixed_array_size> :="[" <positive_int_const>‘]"

The array size (in each dimension) is fixed at compile time. When an array is passed as
a parameter in an operation invocation, all elements of the array are transmitted.

The implementation of array indices is language mapping specific; passing an array
index as a parameter may yield incorrect results.

3.8.5 Native Types

OMG IDL provides a declaration for use by object adapters to define an opaque type
whose representation is specified by the language mapping for that object adapter.

The syntax is:

<type_dcl> ::= "native" <simple_declarator>
<simple_declarator> ::= <identifier>

This declaration defines a new type with the specified name. A native type is similar
to an IDL basic type. The possible values of a native type are language-mapping
dependent, as are the means for constructing them and manipulating them. Any
interface that defines a native type requires each language mapping to define how the
native type is mapped into that programming language.

CORBAV2.2 Type Declaration February 1998 3-29

A native type may be used to define operation parameters and results. However, there
is no requirement that values of the type be permitted in remote invocations, either
directly or as a component of a constructed type. Any attempt to transmit a value of a
native type in a remote invocation may raise the MARSHAL standard exception.

It is recommended that native types be mapped to equivalent type names in each
programming language, subject to the normal mapping rules for type names in that
language. For example, in a hypothetical Object Adapter IDL module

module HypotheticalObjectAdapter {
native Servant;
interface HOA {
Object activate_object(in Servant x);
%
%
the IDL type Servant would map to HypotheticalObjectAdapter::Servant in C++ and

the activate_object operation would map to the following C++ member function
signature:

CORBA::Object_ptr activate_object(
HypotheticalObjectAdapter::Servant x);

The definition of the C++ type HypotheticalObjectAdapter::Servant would be provided
as part of the C++ mapping for the HypotheticalObjectAdapter module.

Note — The native type declaration is provided specifically for use in object adapter
interfaces, which require parameters whose values are concrete representations of
object implementation instances. It is strongly recommended that it not be used in
service or application interfaces. The native type declaration allows object adapters to
define new primitive types without requiring changes to the OMG IDL language or to
OMG IDL com

3.9 Exception Declaration

3-30

Exception declarations permit the declaration of struct-like data structures which may
be returned to indicate that an exceptional condition has occurred during the
performance of a request. The syntax is as follows:

<except_dcl>: :="exception” <identifier> “{* <member>* “}"

Each exception is characterized by its OMG IDL identifier, an exception type
identifier, and the type of the associated return value (as specified bynteenber>

in its declaration). If an exception is returned as the outcome to a request, then the
value of the exception identifier is accessible to the programmer for determining which
particular exception was raised.

If an exception is declared with members, a programmer will be able to access the
values of those members when an exception is raised. If no members are specified, no
additional information is accessible when an exception is raised.

CORBAV2.2 February 1998

3

A set of standard exceptions is defined corresponding to standard run-time errors
which may occur during the execution of a request. These standard exceptions are
documented in “Standard Exceptions” on page 3-37.

3.10 Operation Declaration

Operation declarations in OMG IDL are similar to C function declarations. The syntax
is:

<op_dcl> := [<op_attribute>] <op_type_spec> <identifier>
<parameter_dcls>

[<raises_expr>] [<context_expr>]
<op_type_spec>::=<param_type_spec>

| “void”

An operation declaration consists of:

» An optional operation attribute that specifies which invocation semantics the
communication system should provide when the operation is invoked. Operation
attributes are described in “Operation Attribute” on page 3-31.

« The type of the operation’s return result; the type may be any type which can be
defined in OMG IDL. Operations that do not return a result must specifyadic:
type.

« An identifier that names the operation in the scope of the interface in which it is
defined.

» A parameter list that specifies zero or more parameter declarations for the
operation. Parameter declaration is described in “Parameter Declarations” on page
3-32.

< An optional raises expression which indicates which exceptions may be raised as
a result of an invocation of this operation. Raises expressions are described in
“Raises Expressions” on page 3-32.

« An optional context expression which indicates which elements of the request
context may be consulted by the method that implements the operation. Context
expressions are described in “Context Expressions” on page 3-33.

Some implementations and/or language mappings may require operation-specific
pragmas to immediately precede the affected operation declaration.

3.10.1 Operation Attribute

The operation attribute specifies which invocation semantics the communication
service must provide for invocations of a particular operation. An operation attribute is
optional. The syntax for its specification is as follows:

<op_attribute>::="oneway”

When a client invokes an operation with tbeeway attribute, the invocation
semantics are best-effort, which does not guarantee delivery of the call; best-effort
implies that the operation will be invoked at most once. An operation with the

CORBAV2.2 Operation Declaration February 1998 3-31

3-32

oneway attribute must not contain any output parameters and must speedida
return type. An operation defined with tlomeway attribute may not include a raises
expression; invocation of such an operation, however, may raise a standard exception.

If an <op_attribute> is not specified, the invocation semantics is at-most-once if an
exception is raised; the semantics are exactly-once if the operation invocation returns
successfully.

3.10.2 Parameter Declarations

Parameter declarations in OMG IDL operation declarations have the following syntax:

<parameter_dcls>::="(" <param_dcl> { “," <param_dcl> } Dy
|
<param_dcl>::=<param_attribute> <param_type_spec> <simple_declarator>
<param_attribute>::="in"
| “out”
| “inout”
<param_type_spec>::=<base_type_spec>
| <string_type>
| <scoped_name>

A parameter declaration must have a directional attribute that informs the
communication service in both the client and the server of the direction in which the
parameter is to be passed. The directional attributes are:

« in - the parameter is passed from client to server.
» out - the parameter is passed from server to client.
 inout - the parameter is passed in both directions.

It is expected that an implementation wilbt attempt to modify ann parameter. The
ability to even attempt to do so is language-mapping specific; the effect of such an
action is undefined.

If an exception is raised as a result of an invocation, the values of the return result and
anyout andinout parameters are undefined.

When an unboundestring or sequence is passed as amout parameter, the
returned value cannot be longer than the input value.

3.10.3 Raises Expressions

A raises expression specifies which exceptions may be raised as a result of an
invocation of the operation. The syntax for its specification is as follows:

<raises_expr>::="raises” “(" <scoped_name> { “) <scoped_name>} ey

The <scoped_name> s in theraises expression must be previously defined
exceptions.

CORBAV2.2 February 1998

3

In addition to any operation-specific exceptions specified inrthges expression,

there are a standard set of exceptions that may be signalled by the ORB. These
standard exceptions are described in “Standard Exceptions” on page 3-37. However,
standard exceptions manot be listed in araises expression.

The absence of eises expression on an operation implies that there are no
operation-specific exceptions. Invocations of such an operation are still liable to
receive one of the standard exceptions.

3.10.4 Context Expressions

A context expression specifies which elements of the client’s context may affect the
performance of a request by the object. The syntax for its specification is as follows:

<context_expr>::="“context” “(" <string_literal> {)" <string_literal> } Dy

The run-time system guarantees to make the value (if any) associated with each
<string_literal> in the client’'s context available to the object implementation when
the request is delivered. The ORB and/or object is free to use information in this
request contexduring request resolution and performance.

The absence of a context expression indicates that there is no request context
associated with requests for this operation.

Eachstring_literal is an arbitrarily long sequence of alphabetic, digit, period (“."),
underscore (*_"), and asterisk (“*") characters. The first character of the string must be
an alphabetic character. An asterisk may only be used as the last character of the
string. Some implementations may use the period character to partition the name
space.

The mechanism by which a client associates values with the context identifiers is
described in the Dynamic Invocation Interface chapter.

3.11 Attribute Declaration

An interface can have attributes as well as operations; as such, attributes are defined as
part of an interface. An attribute definition is logically equivalent to declaring a pair of
accessor functions; one to retrieve the value of the attribute and one to set the value of
the attribute.

The syntax forattribute declaration is:

<attr_dcl> ::=[“readonly”] “attribute” <param_type_spec>
<simple_declarator>
{" <simple_declarator> }*

The optionakeadonly keyword indicates that there is only a single accessor
function—the retrieve value function. Consider the following example:

CORBAV2.2 Attribute Declaration February 1998 3-33

interface foo {

enum material_t {rubber, glass};
struct position_t {

float x, v;

h

attribute float radius;
attribute material_t material;
readonly attribute position_t position;

h

The attribute declarations are equivalent to the following pseudo-specification
fragment:

float _get radius ();

void _set_radius (in float r);
material_t _get material ();

void _set_material (in material_t m);
position_t _get position ();

The actual accessor function names are language-mapping specific. The C, C++, and
Smalltalk mappings are described in separate chapters. The attribute name is subject to
OMG IDL's name scoping rules; the accessor function names are guararietd

collide with any legal operation names specifiable in OMG IDL.

Attribute operations return errors by means of standard exceptions.

Attributes are inherited. An attribute namannotbe redefined to be a different type.
See “CORBA Module” on page 3-34 for more information on redefinition constraints
and the handling of ambiguity.

3.12 CORBA Module

In order to prevent names defined in tBORBAspecification from clashing with

names in programming languages and other software systems, all names defined in
CORBAare treated as if they were defined within a module named CORBA. In an
OMG IDL specification, however, OMG IDL keywords such as Object must not be
preceded by a “CORBA::" prefix. Other interface names such as TypeCode are not
OMG IDL keywords, so they must be referred to by their fully scoped names (e.g.,
CORBA::TypeCode) within an OMG IDL specification.

3-34 CORBAV2.2 February 1998

3.13 Names and Scoping

An entire OMG IDL file forms a naming scope. In addition, the following kinds of
definitions form nested scopes:

* module

* interface
* structure
e union

* operation
* exception

Identifiers for the following kinds of definitions are scoped:
* types
* constants
e enumeration values
* exceptions
* interfaces
* attributes
e operations

An identifier can only be defined once in a scope. However, identifiers can be redefined
in nested scopes. An identifier declaring a module is considered to be defined by its
first occurrence in a scope. Subsequent occurrences of a module declaration within the
same scope reopen the module allowing additional definitions to be added to it.

Due to possible restrictions imposed by future language bindings, OMG IDL identifiers
are case insensitive; that is, two identifiers that differ only in the case of their
characters are considered redefinitions of one another. However, all references to a
definition must use the same case as the defining occurrence. (This allows natural
mappings to case-sensitive languages.)

Type names defined in a scope are available for immediate use within that scope. In
particular, see “Constructed Types” on page 3-25 on cycles in type definitions.

A name can be used in an unqualified form within a particular scope; it will be

resolved by successively searching farther out in enclosing scopes. Once an unqualified
name is used in a scope, it cannot be redefined (i.e., if one has used a name defined in
an enclosing scope in the current scope, one cannot then redefine a version of the name
in the current scope). Such redefinitions yield a compilation error.

A qualified name (one of the form <scoped-name>::<identifier>) is resolved by first
resolving the qualifier <scoped-name> to a scope S, and then locating the definition of
<identifier> within S. The identifier must be directly defined in S or (if S is an
interface) inherited into S. The <identifier> is not searched for in enclosing scopes.

When a qualified name begins with “::”, the resolution process starts with the file
scope and locates subsequent identifiers in the qualified name by the rule described in
the previous paragraph.

CORBAV2.2 Names and Scoping February 1998 3-35

3-36

Every OMG IDL definition in a file has a global name within that file. The global
name for a definition is constructed as follows.

Prior to starting to scan a file containing an OMG IDL specification, the name of the
current root is initially empty (“") and the name of the current scope is initially empty
(*"). Whenever amodule keyword is encountered, the string “::” and the associated
identifier are appended to the name of the current root; upon detection of the
termination of thenodule , the trailing “::” and identifier are deleted from the name of
the current root. Whenever anterface , struct , union , or exception keyword is
encountered, the string “:;” and the associated identifier are appended to the name of
the current scope; upon detection of the termination ofitkerface , struct , union ,

or exception , the trailing “::” and identifier are deleted from the name of the current
scope. Additionally, a new, unnamed, scope is entered when the parameters of an
operation declaration are processed; this allows the parameter names to duplicate other
identifiers; when parameter processing has completed, the unnamed scope is exited.

The global name of an OMG IDL definition is the concatenation of the current root,
the current scope, a “::", and the <identifier>, which is the local name for that
definition.

Note that the global name in an OMG IDL files corresponds to an absolute
ScopedName in the Interface Repository. (See “Supporting Type Definitions” on
page 8-9).

Inheritance produces shadow copies of the inherited identifiers; that is, it introduces
names into the derived interface, but these names are considered to be semantically the
same as the original definition. Two shadow copies of the same original (as results
from the diamond shape in Figure 3-1 on page 3-17) introduce a single name into the
derived interface and don't conflict with each other.

Inheritance introduces multiple global OMG IDL names for the inherited identifiers.
Consider the following example:

interface A {
exception E {
long L;

3
void f() raises(E);

interface B: A {
void g() raises(E);
J

In this example, the exception is known by the global nam&sE and::B::E.

Ambiguity can arise in specifications due to the nested naming scopes. For example:
interface A {

typedef string<128> string_t;
I3

CORBAV2.2 February 1998

interface B {
typedef string<256> string_t;

interface C: A, B {
attribute string_t Title;/* AMBIGUOUS!! */

3

The attribute declaration in C is ambiguous, since the compiler does not know which
string_t is desired. Ambiguous declarations yield compilation errors.

3.14 Differences from C++

The OMG IDL grammar, while attempting to conform to the C++ syntax, is somewhat
more restrictive. The current restrictions are as follows:

« A function return type is mandatory.
« A name must be supplied with each formal parameter to an operation declaration.

« A parameter list consisting of the single tokesid is not permitted as a synonym
for an empty parameter list.

« Tags are required for structures, discriminated unions, and enumerations.

« Integer types cannot be defined as simply int or unsigned; they must be declared
explicitly asshort orlong .

» char cannot be qualified bgigned or unsigned keywords.

3.15 Standard Exceptions

This section presents the standard exceptions defined for the ORB. These exception
identifiers may be returned as a result of any operation invocation, regardless of the
interface specification. Standard exceptions may not be listedises expressions.

In order to bound the complexity in handling the standard exceptions, the set of
standard exceptions should be kept to a tractable size. This constraint forces the
definition of equivalence classes of exceptions rather than enumerating many similar
exceptions. For example, an operation invocation can fail at many different points due
to the inability to allocate dynamic memory. Rather than enumerate several different
exceptions corresponding to the different ways that memory allocation failure causes
the exception (during marshalling, unmarshalling, in the client, in the object
implementation, allocating network packets, ...), a single exception corresponding to
dynamic memory allocation failure is defined. Each standard exception includes a
minor code to designate the subcategory of the exception; the assignment of values to
the minor codes is left to each ORB implementation.

CORBAV2.2 Differences from C++ February 1998 3-37

3-38

Each standard exception also includeoapletion_status code which takes one of
the values {COMPLETED_YES, COMPLETED_NO, COMPLETED_MAYBE}.
These have the following meanings:

COMPLETED_YES The object implementation has completed
processing prior to the exception being raised.

COMPLETED_NO The object implementation was never initiated
prior to the exception being raised.

COMPLETED_MAYBE The status of implementation completion is
indeterminate.

3.15.1 Standard Exceptions Definitions

The standard exceptions are defined below. Clients must be prepared to handle system
exceptions that are not on this list, both because future versions of this specification
may define additional standard exceptions, and because ORB implementations may
raise non-standard s