The Common Object Request Broker:
Architecture and Specification

Revised Edition: July 1995
Updated: July 1996

Revision 2.1: August 1997
Revision 2.2: February 1998
Revision 2.3: June1999
Minorrevision 2.3.1: October 1999

Copyright 1997, 1998, 1999 BEA Systems, Inc.

Copyright 1995, 1996 BNR Europe Ltd.

Copyright 1998, Borland International

Copyright 1991, 1992, 1995, 1996 Digital Equipment Corporation
Copyright 1995, 1996 Expersoft Corporation

Copyright 1996, 1997 FUJITSU LIMITED

Copyright 1996 Genesis Development Corporation

Copyright 1989, 1990, 1991, 1992, 1995, 1996 Hewlett-Packard Company
Copyright 1991, 1992, 1995, 1996 HyperDesk Corporation

Copyright 1998 Inprise Corporation

Copyright 1996, 1997 International Business Machines Corporation
Copyright 1995, 1996 ICL, plc

Copyright 1995, 1996 IONA Technologies, Ltd.

Copyright 1996, 1997 Micro Focus Limited

Copyright 1991, 1992, 1995, 1996 NCR Corporation

Copyright 1995, 1996 Novell USG

Copyright 1991,1992, 1995, 1996 by Object Design, Inc.

Copyright 1991, 1992, 1995, 1996, 1999 Object Management Group, Inc.
Copyright 1996 Siemens Nixdorf Informationssysteme AG

Copyright 1991, 1992, 1995, 1996 Sun Microsystems, Inc.

Copyright 1995, 1996 SunSoft, Inc.

Copyright 1996 Sybase, Inc.

Copyright 1998 Telefénica Investigacion y Desarrollo S.A. Unipersonal
Copyright 1996 Visual Edge Software, Ltd.

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free, paid |
worldwide license to copy and distribute this document and to modify this document and distribute copies of the modified
version. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed the copyr
in the included material of any such copyright holder by reason of having used the specification set forth herein or having
conformed any computer software to the specification.

PATENT

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may require us
of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a license may be
required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of those patents that are
brought to its attention. OMG specifications are prospective and advisory only. Prospective users are responsible for
protecting themselves against liability for infringement of patents.

NOTICE

The information contained in this document is subject to change without notice. The material in this document details an
Object Management Group specification in accordance with the license and notices set forth on this page. This document d
not represent a commitment to implement any portion of this specification in any company's products.

WHILE THE INFORMATION IN THIS PUBLICATION IS BELIEVED TO BE ACCURATE, THE OBJECT
MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE MAKE NO WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL INCLUDING, BUT NOT LIMITED TO ANY
WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF MERCHANTABILITY OR WARRANTY OF

FITNESS FOR PARTICULAR PURPOSE OR USE. In no event shall The Object Management Group or any of the
companies listed above be liable for errors contained herein or for indirect, incidental, special, consequential, redisamce or ¢
damages, including loss of profits, revenue, data or use, incurred by any user or any third party. The copyright holders liste
above acknowledge that the Object Management Group (acting itself or through its designees) is and shall at all times be
sole entity that may authorize developers, suppliers and sellers of computer software to use certification marks, trademarks
other special designations to indicate compliance with these materials. This document contains information which is protect
by copyright. All Rights Reserved. No part of this work covered by copyright herein may be reproduced or used in any form c
by any means--graphic, electronic, or mechanical, including photocopying, recording, taping, or information storage and
retrieval systems--without permission of the copyright owner.

RESTRICTED RIGHTS LEGEND. Use, duplication, or disclosure by government is subject to restrictions as set forth in
subdivision (c) (1) (ii) of the Right in Technical Data and Computer Software Clause at DFARS 252.227.7038ndMG
Object Management are registered trademarks of the Object Management Group, Inc. Object Request Broker, OMG IDL,
ORB, CORBA, CORBAfacilities, CORBAservices, COSS, and IIOP are trademarks of the Object Management Group, Inc.
X/Open is a trademark of X/Open Company Ltd.

ISSUE REPORTING

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage readers tc
report any ambiguities, inconsistencies, or inaccuracies they may find by completing the issue reporting form at
http://www.omg.org/library/issuerpt.htm.

Contents

Preface e XXVii
0.1 About ThisDocument XXVil
0.1.1 Object ManagementGroup XXVil
0.1.2 X/IOpen i e XXVii
0.2 Intended Audience XXVili
0.3 Contextof CORBA e XXViil
0.4 Associated Documents. XXiX
0.5 Definition of CORBA Compliance XXX
0.6 Structure of ThisManual XXX
0.7 Acknowledgements XXX
0.8 References XXXili
1. TheObjectModel 1-1
1.1 OVEIVIEW . oottt 1-1
1.2 ObjectSemantics 1-2
121 Objects....... ... e 1-3
122 Requests 1-3
1.2.3 Object Creation and Destruction 1-4
1.2.4 TYPES .. 1-4
124.1BasiCtypes 1-4
1.2.4.2 Constructed types. 1-5
125 Interfaces 1-6
1.26 ValueTypesiiiiiinnnn.. 1-6
1.2.7 AbstractInterfaces 1-7
1.28 Operations 1-7
1.28.1Parameters, 1-8
1282ReturnResult 1-8
1.283Exceptions 1-8
1284C0oNtEXIS . . .o oo 1-8
1.2.8.5 Execution Semantics 1-8
1.2.9 Attributes 1-9
1.3 Object Implementation 1-9
1.3.1 The Execution Model: Performing Services .. 1-9
1.3.2 The Construction Model 1-10
2. CORBA OVEIVIEW ..ttt e et 2-1
2.1 Structure of an Object Request Broker 2-2
2.1.1 Object RequestBroker................... 2-6
212 Clients 2-7
2.1.3 Object Implementations 2-7
2.1.4 ObjectReferences 2-8
2.1.5 OMG Interface Definition Language 2-8

CORBAV2.3 June 1999 i

Contents

2.2

2.3
2.4
2.5
2.6

2.7

3.1
3.2

3.3

2.1.6

2.1.7
2.1.8
2.1.9
2.1.10
2.1.11
2.1.12
2.1.13
2.1.14

Example ORBs

221
2.2.2
2.2.3
224

Structure of a Client
Structure of an Object Implementation
Structure of an Object Adapter
CORBA Required Object Adapter

Mapping of OMG IDL to Programming
Languages
Client Stubs
Dynamic Invocation Interface
Implementation Skeleton
Dynamic Skeleton Interface
Object Adapters
ORB Interface
Interface Repository
Implementation Repository

Client- and Implementation-resident ORB
Server-based ORB
System-based ORB
Library-based ORB

2.6.1 Portable Object Adapter
The Integration of Foreign Object Systems

3. OMG IDL Syntax and Semantics
OVEIVIEW . . .
Lexical Conventions
3.21 TOKENS ..
3.22 Comments
3.2.3 Identifiers
3.2.3.1 Escaped Identifiers
324 Keywordsiiiii e
3.25 Literals

3.2.5.1 Integer Literals

3.2.5.2 Character Literals

3.2.5.3 Floating-point Literals

3.254 String Literals

3.2.5.5 Fixed-Point Literals
Preprocessing

3.4
3.5
3.6
3.7

ii CORBAV2.3

OMG IDL Grammar
OMG IDL Specification
Module Declaration
Interface Declaration

June 1999

Contents

3.7.1 Interface Header 3-18
3.7.2 Interface Inheritance Specification 3-18
3.7.3 InterfaceBody 3-19
3.7.4 Forward Declaration 3-19
3.7.5 Interface Inheritance 3-20
3.8 Value Declaration 3-23
3.8.1 RegularValueType 3-23
3.8.1.1ValueHeader 3-23
3.8.1.2ValueElement 3-23
3.8.1.3 Value Inheritance Specification 3-23
3.8.1l4 StateMembers 3-24
3.8.15 Initializers 3-24
3.8.1.6 Value Type Example 3-25
3.8.2 BoxedValueTypec.... 3-25
3.8.3 AbstractValueType 3-26
3.8.4 Value Forward Declaration 3-26
3.8.5 \Valuetype Inheritance 3-27
3.9 ConstantDeclaration 3-28
3.9.1 Syntax ... 3-28
3.9.2 Semantics 3-29
3.10 TypeDeclaration 3-31
3.10.1 BasiCTypeS 3-32
3.10.1.1 Integer Types 3-33
3.10.1.2 Floating-Point Types 3-34
3.10.1.3CharTypet 3-34
3.10.1.4 Wide Char Type 3-34
3.10.1.5BooleanType.. 3-34
3.10.1.60ctetType ..., 3-35
31017 ANY TYPE o oo e e 3-35
3.10.2 Constructed Types 3-35
3.10.2.1Structures . ..o oo 3-35
3.10.2.2 Discriminated Unions. 3-36
3.10.2.3 Enumerations 3-37
3.10.3 Template Types 3-37
3.10.3.1 Sequences ... 3-37
3.10.3.2StNgGS .. 3-38
3.103.3Wstrings . ..o oo o 3-39
3.10.3.4Fixed TYPE . . oo v 3-39
3.10.4 Complex Declarator 3-39
31041 AmMayS .. 3-39
3.10.5 Native Typescciiiin.n. 3-39
3.11 ExceptionDeclaration 3-40
3.12 OperationDeclaration 3-41
3.12.1 Operation Attribute 3-42
3.12.2 Parameter Declarations 3-42

CORBAV2.3 June 1999 iii

Contents

3.13
3.14
3.15

3.16
3.17

4. ORB Interface

4.1
4.2

iv CORBAV2.3

3.12.3 Raises Expressions 3-43
3.12.4 Context Expressions 3-43
Attribute Declaration 3-43
CORBAModule 3-44
Namesand Scoping, 3-45
3.15.1 Qualified Names 3-45
3.15.2 Scoping Rules and Name Resolution 3-47
3.15.3 Special Scoping Rules for Type Names 3-50
Differencesfrom C++ 3-51
Standard Exceptions oo 3-51
3.17.1 Standard Exception Definitions 3-52
3.17.L.1UNKNOWN o 3-54
3.17.1.2BAD_PARAM 3-54
3.17.2.3NO_MEMORY 3-54
317124 IMP_LIMIT ..o 3-54
31715 COMM_FAILURE 3-54
3.17.16INV_OBJREF 3-54
3.17.1.7 NO_PERMISSION 3-54
317.18INTERNAL 3-55
317.19MARSHAL 3-55
3.17.1.10INITIALIZE 3-55
3.17.1.11 NO_IMPLEMENT. 3-55
3.17.1.12 BAD_TYPECODE. 3-55
3.17.1.13 BAD_OPERATION. 3-55
3.17.1.14 NO_RESOURCES 3-55
3.17.1.15NO_RESPONSE 3-55
3.17.1.16 PERSIST _STORE 3-56
3.17.1.17 BAD_INV_ORDER 3-56
3.17.1. 18 TRANSIENT L 3-56
3.17.1.19 FREE_MEM 3-56
3.17.1.20 INV_IDENT 3-56
317.1.21INV_FLAG 3-56
3.17.1.22INTF_REPOS 3-56
3.17.1.23 BAD_CONTEXT 3-56
3.17.1.24 OBJ_ADAPTER 3-57
3.17.1.25 DATA_CONVERSION 3-57
3.17.1.26 OBJECT_NOT_EXIST 3-57
3.17.1.27 TRANSACTION_REQUIRED 3-57
3.17.1.28 TRANSACTION_ROLLEDBACK .. 3-57
3.17.1.29 INVALID_TRANSACTION 3-57
3.17.1.30INV_POLICY 3-57
3.17.1.31 CODESET_INCOMPATIBLE 3-58
3.17.2 Standard Minor Exception Codes 3-58
................................... 4-1
OVEIVIBW . . ot 4-2
The ORB Operations 4-2
4.2.1 Converting Object References to Strings 4-7
4.2.1.10bject to_string 4-7
June 1999

Contents

4.3

4.4
4.5
4.6
4.7
4.8
4.9

CORBAV2.3

4.2.2

Object Reference Operations

43.1

4.3.2

4.3.3

4.3.4

4.3.5

4.3.6

4.3.7

4.3.8

4.3.9

4.2.1.2 string_to_object
Getting Service Information.
4.2.2.1 get_service_information.

Determining the Object Interface
43.1.1qget interface

Duplicating and Releasing Copies of Object

References

432 1duplicate
4.3.22release

Nil Object References
4332i0s nil ...
Equivalence Checking Operation
434105 @ . oo
Probing for Object Non-Existence
435.1non existent..........
Object Reference ldentity

4.3.6.1 Hashing Object Identifiers
4.3.6.2 Equivalence Testing

Getting Policy Associated with the Object .
43.7.1get policy
Overriding Associated Policies on an Object
Reference
4.3.8.1 set_policy overrides
Getting the Domain Managers Associated

withthe Object
4.3.9.1 get_domain_managers

ValueBase Operations
ORB and OA Initialization and Initial References.
ORB Initialization
Obtaining Initial Object References
CurrentObject i e

Policy Object

49.1

4.9.2

4.9.3
49.4

Definition of Policy Object
49.1.1C0DPY. . it
49.1.2D€Stroy ...
49.1.3 Policy_type i

Creation of Policy Objects
4.9.2.1 PolicyErrorCode
49.2.2 PolicyError
49.23INV_POLICY
49.24 Create_policy,

Usages of Policy Objects
Policy Associated with the Execution
Environment

June 1999

Contents

4.9.5 Specification of New Policy Objects 4-25
4.9.6 Standard Policies 4-26
4.10 Management of Policy Domains 4-28
4.10.1 BasicConceptscciiiiiin..n. 4-28

4.10.1.1 PolicyDomain 4-28

4.10.1.2 Policy Domain Manager. 4-28

4.10.1.3 Policy Objects 4-28

4.10.1.4 Object Membership of Policy Domains 4-28
4.10.1.5 Domains Association at Object

Reference Creation 4-29
4.10.1.6 Implementor’s View of Object Creation 4-30
4.10.2 Domain Management Operations 4-31
4.10.2.1 Domain Manager 4-31
4.10.2.2 Construction Policy 4-32
4.11 Thread-Related Operations 4-33
4.11.1 work pending........... 4-33
4.11.2 perform_work 4-33
4.11.3 TUN . 4-34
4.11.4 shutdown 4-34
4115 destroyttt 4-35
5. Value Type Semantics 5-1
5.1 OVEIVIEW . oo 5-1
5.2 Architecture 5-2
5.2.1 AbstractValues............ 5-3
5,22 Operationsciiiiiiiinn... 5-3
5.2.3 Value Typevs.Interfaces 5-4
5.2.4 ParameterPassing 5-4
5.2.4.1 Value vs. Reference Semantics 5-4
5.2.4.2 Sharing Semantics 5-4
5.2.4.3 Identity Semantics 5-4
5.2.4.4 Any parametertype 5-5
5.2.5 Substitutability Issues 5-5
5.2.5.1 Value instance -> Interface type 5-5
5.2.5.2 Value instance -> Value type 5-5
5.2.6 Widening/Narrowing 5-6
527 ValueBaseTypec.cciiiiion.. 5-6
5.2.8 LifeCycleissues 5-6
5.2.8.1 Creation and Factories 5-7
5.2.9 Security Considerations 5-7
5.29.1ValueasValue 5-8
5.2.9.2 Value as Object Reference 5-8
5.3 Standard Value Box Definitions 5-8
5.4 Language Mappingsc i 5-9
5.4.1 General Requirements 5-9

Vi CORBAV2.3 June 1999

Contents

5.4.2 Language Specific Marshaling 5-9
5.4.3 Language Specific Value Factory Requirements 5-9
5.4.4 Value Method Implementation 5-10
5,5 CustomMarshaling 5-10
5.5.1 Implementation of Custom Marshaling 5-11
5.5.2 Marshaling Streams 5-11
5.6 Access to the Sending Context Run Time 5-15
6. Abstract Interface Semantics 6-1
6.1 OVEIVIEW . . . 6-1
6.2 Semantics of Abstract Interfaces 6-1
6.3 Usage Guidelines i, 6-3
6.4 Example......... 6-3
6.5 Security Considerations 6-4
6.5.1 Passing Values to Trusted Domains 6-4
7. Dynamic Invocation Interface 7-1
7.1 OVEIVIEW . oo e 7-1
7.1.1 Common Data Structures 7-2
7.1.2 MemoryUsage 7-4
7.1.3 Return Status and Exceptions 7-4
7.2 RequestOperationsc.cu iy 7-4
7.2.1 create_request 7-5
7.22 add_arg 7-7
7.23 nVOKe 7-8
724 delete 7-8
7.3 Deferred Synchronous Operations 7-8
731 send ... 7-8
7.3.2 send_multiple_requests 7-9
7.3.3 pollresponse 7-9
7.3.4 get_response i, 7-9
7.3.5 get nextresponse 7-10
7.4 ListOperations 7-10
7.4.1 create list 7-10
742 add_item 7-11
743 free .. 7-11
7.4.4 free_memory 7-11
745 getcount 7-12
7.4.6 create_operation_list 7-12
75 ContextObjects 7-12
CORBA V2.3 June 1999 vii

Contents

7.6 Context Object Operations
7.6.1 get default_ context
762 setonewvalue
76.3 setwvalues
7.6.4 getwvalues
7.6.5 delete values,
76.6 create_child
7.6.7 delete
7.7 Native Data Manipulation
8. Dynamic Skeleton Interface.
8.1 Introduction
8.2 OVEeIVIEW . .o
8.3 ServerRequestPseudo-Object
8.3.1 ExplicitRequest State: ServerRequest
Pseudo-Object
8.4 DSl:Language Mappingiiiiiian.
8.4.1 ServerRequest’s Handling of Operation
Parameters
8.4.2 Registering Dynamic Implementation Routines

9. Dynamic Management of Any Values

9.1
9.2
9.2.1
9.2.2
9.2.3

9.2.4
9.2.5
9.2.6

viii CORBAV2.3

Overview
DynAny API

Locality and usage constraints
Creating a DynAny object

The DynAny interface
9.2.3.1 Obtaining the TypeCode associated
with a DynAny object
9.2.3.2 Initializing a DynAny object from
another DynAny object
9.2.3.3 Initializing a DynAny object from an
any value
9.2.3.4 Generating an any value from a
DynAny object
9.2.3.5 Comparing DynAny values
9.2.3.6 Destroying a DynAny object
9.2.3.7 Creating a copy of a DynAny object
9.2.3.8 Accessing a value of some basic type
in a DynAny object
9.2.3.9 Iterating through components of a
DynAny
The DynFixed interface
The DynEnum interface

The DynStruct interface

June 1999

8-5

Contents

9.2.7 The DynUnioninterface 9-17
9.2.8 The DynSequenceinterface 9-19
9.2.9 The DynArrayinterface 9-21
9.2.10 The DynValueinterface 9-21
9.3 UsageinC++Language 9-22
9.3.1 Dynamic creation of CORBA::Any values ... 9-22
9.3.1.1 Creating an any which contains a struct . 9-22
9.3.2 Dynamic interpretation of CORBA::Any values 9-23
9.3.2.1 Filteringofevents 9-23
10. The Interface Repository 10-1
10.1 OVEIVIEW . . oo e 10-1
10.2 Scope of an Interface Repository 10-2
10.3 Implementation Dependencies 10-4
10.3.1 Managing Interface Repositories 10-5
10.4 BaSiCS ..o i it e 10-6
10.4.1 Names and Identifiers 10-6
10.4.2 Typesand TypeCodes 10-7
10.4.3 Interface Repository Objects 10-7
10.4.4 Structure and Navigation of the
Interface Repository 10-8
10.5 Interface Repository Interfaces 10-9
10.5.1 Supporting Type Definitions 10-10
10.5.2 IRObject i 10-11
10.5.2.1 Read Interface 10-11
10.5.2.2 Write Interface 10-11
10.5.3 Contained 10-12
10.5.3.1 Read Interface 10-12
10.5.3.2 Write Interface 10-13
10.5.4 Container i, 10-14
10.54.1Read Interface 10-17
10.5.4.2 Write Interface 10-18
1055 IDLTYPE . .o oot 10-19
10.5.6 Repository 10-19
10.5.6.1 Read Interface 10-20
10.5.6.2 Write Interface 10-21
10.5.7 ModuleDef 10-21
10.5.8 ConstantDef 10-22
10.5.8.1 Read Interface 10-22
10.5.8.2 Write Interface 10-22
10.5.9 TypedefDef 10-23
10.5.10 StructDef 10-23
10.5.10.1 Read Interface 10-23
10.5.10.2 Write Interface 10-24
CORBA V2.3 June 1999 ix

Contents

10.5.11 UnionDef o 10-24
10.5.11.1 Read Interface 10-24
10.5.11.2 Write Interface 10-24
10.5.12 EnumbDef 10-25
10.5.12.1 Read Interface. 10-25
10.5.12.2 Write Interface 10-25
10.5.13 AliasDef 10-25
10.5.13.1 Read Interface 10-25
10.5.13.2 Write Interface 10-25
10.5.14 PrimitiveDef 10-26
10.5.15 StringDef 10-26
10.5.16 WstringDef 10-27
10.5.17 FixedDef 10-27
10.5.18 SequenceDef oo 10-27
10.5.18.1 Read Interface 10-28
10.5.18.2 Write Interface 10-28
10.5.19 ArrayDef 10-28
10.5.19.1 Read Interface 10-28
10.5.19.2 Write Interface 10-28
10.5.20 ExceptionDef 10-29
10.5.20.1 Read Interface 10-29
10.5.20.2 Write Interface 10-29
10.5.21 AttributeDef 10-29
10.5.21.1 Read Interface 10-30
10.5.21.2 Write Interface 10-30
10.5.22 OperationDef 10-30
10.5.22.1 Read Interface 10-31
10.5.22.2 Write Interface 10-32
10.5.23 InterfaceDef 10-32
10.5.23.1 Read Interface 10-33
10.5.23.2 Write Interface 10-34
10.5.24 ValueDef. 10-34
10.5.24.1 Read Interface 10-36
10.5.24.2 Write Interface 10-37
10.5.25 ValueBoxDef 10-38
10.5.25.1 Read Interface 10-38
10.5.25.2 Write Interface 10-38
10.5.26 NativeDef 10-38
10.6 Repositorylds 10-39
10.6.1 OMGIDLFormat 10-39
10.6.2 RMIHashed Format 10-40
10.6.3 DCEUUID Format 10-41
10.6.4 LOCALFormat, 10-41
10.6.5 Pragma Directives for Repositoryld 10-42
10.6.5.1 ThelDPragma 10-42
10.6.5.2 The Prefix Pragma 10-42
10.6.5.3 The VersionPragma 10-45

CORBAV2.3

June 1999

Contents

10.6.5.4 Generation of OMG IDL - Format IDs . 10-46

10.6.6 For More Information 10-47
10.6.7 RepositorylDs for OMG-Specified Types 10-47
10.7 TypeCodest 10-48
10.7.1 The TypeCode Interface 10-48
10.7.2 TypeCode Constants 10-52
10.7.3 Creating TypeCodes 10-53
10.8 OMG IDL for Interface Repository 10-56
11. The Portable Object Adaptor 11-1
111 OVEIVIEW . .ot e e e e 11-1
11.2 Abstract Model Description 11-2
11.2.1 Model Components 11-2
11.2.2 Model Architecture 11-4
11.2.3 POACreation 11-6
11.2.4 Reference Creation 11-7
11.2.5 Object Activation States 11-8
11.2.6 RequestProcessing 11-9
11.2.7 Implicit Activation 11-10
11.2.8 Multi-threading 11-11
11.2.8.1 POA Threading Models 11-11
11.2.8.2 Using the Single Thread Model 11-11
11.2.8.3 Using the ORB Controlled Model 11-11
11.2.8.4 Limitations When Using Multiple
Threads 11-12
11.2.9 Dynamic Skeleton Interface 11-12
11.2.10 Location Transparency 11-13
11.3 Interfaces 11-13
11.3.1 The ServantIDLType 11-14
11.3.2 POAManager Interface................... 11-15
11.3.2.1 Processing States 11-15
11.3.2.2 Locality Constraints 11-18
11.323activate 11-18
11.3.24hold requests 11-18
11.3.2.5discard_requests 11-19
11.3.2.6deactivate 11-19
11.327¢get state 11-20
11.3.3 AdapterActivator Interface 11-20
11.3.3.1 Locality Constraints 11-20
11.3.3.2 unknown_adapter 11-20
11.3.4 ServantManager Interface 11-21
11.3.4.1 Common information for servant
managertypesiiii. .. 11-22
11.3.4.2 Locality Constraints 11-22
11.3.5 ServantActivator Interface 11-23

CORBAV2.3 June 1999 Xi

Contents

11.35.1incarnate 11-23
11.35.2 etherealize 11-24
11.3.6 ServantLocator Interface 11-25
11.36.1preinvoke 11-26
11.3.6.2 postinvoke 11-26
11.3.7 POAPolicyObjects 11-27
11.3.7.1 Thread Policy 11-27
11.3.7.2 Lifespan Policy 11-28
11.3.7.3 Object Id Uniqueness Policy 11-28
11.3.7.41d Assignment Policy 11-29
11.3.7.5 Servant Retention Policy 11-29
11.3.7.6 Request Processing Policy 11-29
11.3.7.7 Implicit Activation Policy 11-31
11.3.8 POAInterface 11-31
11.3.8.1 Locality Constraints 11-32
11.382create_ POA 11-32
11.3.83find POA 11-32
11.3.84destroy 11-33
11.3.8.5 Policy Creation Operations 11-34
11.3.8.6the name 11-34
11.38.7the parent 11-34
11.3.8.8the_children 11-34
11.3.8.9the_POAManager. 11-35
11.3.8.10the_activator. 11-35
11.3.8.11 get_servant_manager 11-35
11.3.8.12 set_servant_manager 11-35
11.3.8.13get_servant 11-36
11.38.14set servant 11-36
11.3.8.15 activate_object 11-36
11.3.8.16 activate_object_with_id............ 11-36
11.3.8.17 deactivate_object 11-37
11.3.8.18 create_reference 11-37
11.3.8.19 create_reference_with_id........... 11-38
11.38.20servant to id 11-38
11.3.8.21 servant_to _reference 11-39
11.3.8.22 reference_to _servant 11-39
11.3.8.23reference_to id 11-40
11.3.8.24id to servant 11-40
11.3.8.25id_to_reference 11-40
11.3.9 Currentoperations 11-41
11.3.9.1get POA 11-41
11.39.2get object id 11-41
11.4 IDL for PortableServermodule 11-41
11.5 UML Description of PortableServer 11-48
11.6 Usage SCeNnariosuuiiineneininnn 11-49
11.6.1 GettingtherootPOA 11-49
11.6.2 CreatingaPOA 11-50
11.6.3 Explicit Activation with POA-assigned
Objectlds 11-50

Xii CORBAV2.3 June 1999

Contents

11.6.4 Explicit Activation with User-assigned

Objectlds 11-51
11.6.5 Creating References before Activation 11-52
11.6.6 Servant Manager Definition and Creation 11-52
11.6.7 Object Activationon Demand 11-54
11.6.8 Persistent Objects with POA-assigned Ids 11-56
11.6.9 Multiple Object Ids Mapping to a Single
Servant 11-56
11.6.10 One Servant for all Objects 11-56
11.6.11 Single Servant, Many Objects and Types,
UsingDSI 11-59
12. Interoperability Overview 12-1
12.1 Elements of Interoperability 12-1
12.1.1 ORSB Interoperability Architecture.......... 12-2
12.1.2 Inter-ORB Bridge Support 12-2
12.1.3 General Inter-ORB Protocol (GIOP) 12-3
12.1.4 Internet Inter-ORB Protocol (IIOP) 12-3
12.1.5 Environment-Specific Inter-ORB Protocols
(ESIOPS) ... 12-4
12.2 Relationship to Previous Versions of CORBA 12-4
12.3 Examples of Interoperability Solutions 12-5
1231 Examplel 12-5
12.3.2 Example 2 12-5
1233 Example3 12-5
12.3.4 Interoperability Compliance 12-5
12.4 Motivating Factors 12-8
12.4.1 ORB Implementation Diversity 12-8
12.4.2 ORBBoundaries 12-8
12.4.3 ORBs Vary in Scope, Distance, and Lifetime . 12-9
12.5 Interoperability Design Goals 12-9
1251 Non-Goals 12-10
13. ORB Interoperability Architecture 13-1
131 OVEIVIEW . . .ot e 13-2
13.1.1 Domains 13-2
13.1.2 BridgingDomains 13-3
13.2 ORBsand ORB Services 13-3
13.2.1 The Nature of ORB Services 13-3
13.2.2 ORB Services and Object Requests 13-4
13.2.3 Selection of ORB Services 13-4

CORBAV2.3 June 1999 Xiii

Contents

Xiv

13.3

13.4

13.5

13.6

13.7

CORBAV2.3

DoOmains 13-5
13.3.1 DefinitionofaDomain 13-6
13.3.2 Mapping Between Domains: Bridging 13-6

Interoperability Between ORBs 13-7
13.4.1 ORB Services and Domains 13-7
13.4.2 ORBsandDomains 13-8
13.4.3 Interoperability Approaches 13-9

13.4.3.1 Mediated Bridging 13-9
13.4.3.2 Immediate Bridging 13-9
13.4.3.3 Location of Inter-Domain Functionality 13-10
13.4.3.4 BridgingLevel 13-10
13.4.4 Policy-Mediated Bridging 13-11
13.4.5 Configurations of Bridges in Networks 13-11

Object Addressing i 13-12
13.5.1 Domain-relative Object Referencing 13-13
13.5.2 Handling of Referencing Between Domains .. 13-13

An Information Model for Object References 13-15
13.6.1 What Information Do Bridges Need? 13-15
13.6.2 Interoperable Object References: IORs 13-15

13.6.2.1 TheTAG_INTERNET _IOPProfile . 13-17
13.6.2.2 TheTAG_MULTIPLE
COMPONENTSProfile 13-17
13.6.2.3I0R Components 13-18
13.6.3 Standard IOR Components 13-18
13.6.3.17TAG_ORB_TYPEComponent 13-19
13.6.3.2TAG_ALTERNATE_IIOP_
ADDRESSComponent 13-19
13.6.3.3 Other Components 13-20
13.6.4 Profile and Component Composition in IORs . 13-21
13.6.5 IOR Creationand Scope 13-21
13.6.6 Stringified Object References 13-21
13.6.7 Object Service Context 13-22

Code Set Conversiont 13-27

13.7.1 Character Processing Terminology 13-27
13.7.1.1 CharacterSet 13-27
13.7.1.2 Coded Character Set, or Code Set 13-27
13.7.1.3 Code Set Classifications 13-27
13.7.1.4 Narrow and Wide Characters 13-28
13.7.1.5 Char Data and Wchar Data. 13-28
13.7.1.6 Byte-Oriented Code Set 13-28
13.7.1.7 Multi-Byte Character Strings 13-28
13.7.1.8 Non-Byte-Oriented Code Set 13-29
13.7.1.9 Char Transmission Code Set (TCS-C) and

Wchar Transmission Code Set (TCS-W) 13-29
13.7.1.10 Process Code Set and File Code Set .. 13-29
13.7.1.11 Native Code Set 13-29
13.7.1.12 Transmission Code Set 13-30
June 1999

Contents

13.7.1.13 Conversion Code Set (CCS) 13-30
13.7.2 Code Set Conversion Framework 13-30
13.7.2.1 Requirements 13-30
13.7.2.2 Overview of the Conversion
Framework. 13-31
13.7.2.3 ORB Databases and Code Set
Converters 13-32
13.7.2.4 CodeSet Component of IOR
Multi-Component Profile 13-33
13.7.2.5 GIOP Code Set Service Context 13-34
13.7.2.6 Code Set Negotiation 13-34
13.7.3 Mapping to Generic Character Environments . 13-37
13.7.3.1 Describing Generic Interfaces 13-38
13.7.3.2 Interoperation 13-39
13.8 Example of Generic Environment Mapping 13-39
13.8.1 GenericMappingscii.. 13-39
13.8.2 Interoperation and Generic Mappings 13-40
13.9 Relevant OSFM Registry Interfaces 13-40
13.9.1 Character and Code Set Registry 13-40
13.9.2 AccessRoutines 13-41
13.9.21dce cs loc to rgy 13-41
13.9.22dce csrgy toloc................. 13-42
13.9.2.3 rpc_cs_char_set_compat_check 13-44
13.9.2.4 rpc_rgy_get_max_bytes............. 13-45
14. Building Inter-ORB Bridges 14-1
14.1 Introduction i 14-1
14.2 In-Line and Request-Level Bridging 14-2
14.2.1 In-lineBridging 14-3
14.2.2 Request-level Bridging 14-3
14.2.3 CollocatedORBS 14-4
14.3 Proxy Creation and Management 14-5
14.4 Interface-specific Bridges and Generic Bridges 14-6
14.5 Building Generic Request-Level Bridges 14-6
14.6 Bridging Non-Referencing Domains 14-7
14.7 BootstrappingBridges o 14-7
15. General Inter-ORB Protocol 15-1
15.1 Goals of the General Inter-ORB Protocol 15-2
15.2 GIOPOverview 15-2
15.2.1 Common Data Representation (CDR) 15-3
15.2.2 GIOP Message Overview 15-3
15.2.3 GIOP Message Transfer. 15-4
153 CDR TransferSyntax, 15-5

CORBAV2.3 June 1999 XV

Contents

15.3.1 Primitive Types 15-5
15.3.1.1 Alignment 15-5
15.3.1.2 Integer Data Types 15-6
15.3.1.3 Floating Point Data Types 15-7
15314 0ctet ... 15-10
15.3.15Boolean. 15-10
15.3.1.6 Character Typescv ... 15-10
15.3.2 OMG IDL Constructed Types 15-11
15.3.21 Alignment 15-11
153.22Struct ... 15-11
15.323UnioN ... 15-11
15324 A1MAY ..o 15-11
15.3.25Sequence 15-12
15326 Enum ... 15-12
15.3.2.7 Strings and Wide Strings 15-12
15.3.2.8 Fixed-Point Decimal Type........... 15-12
15.3.3 Encapsulation 15-13
15.3.4 ValueTypes ..., 15-14
15.3.4.1 Partial Type Information and Versioning 15-15
15342Example 15-16
15.3.4.3 Scope of the Indirections 15-18
15.3.4.4 Other Encoding Information 15-18
15.3.4.5 Fragmentation. 15-18
15346 Notation 15-21
15.34.7TheFormat 15-21
15.3.5 Pseudo-Object Types 15-22
1535.1TypeCode. ..., 15-22
15352ANny ... 15-27
15353 Principal 15-28
15354 Context ... 15-28
15.355Exception 15-28
15.3.6 ObjectReferences 15-28
15.3.7 AbstractInterfaces 15-29
154 GIOP Message Formats 15-29
15.4.1 GIOP Message Header 15-29
1542 RequestMessageciinun.. 15-32
15.4.2.1 RequestHeader. 15-32
15422 RequestBody 15-34
154.3 ReplyMessage 15-35
15431 ReplyHeader 15-35
15.43.2ReplyBody.o 15-36
15.4.4 CancelRequestMessage 15-38
15.4.4.1 Cancel Request Header 15-38
15.4.5 LocateRequestMessage 15-39
15.4.5.1 LocateRequest Header. 15-39
15.4.6 LocateReplyMessage 15-40
15.4.6.1 Locate Reply Header 15-40
15.4.6.2 LocateReplyBody 15-41
15.4.7 CloseConnectionMessage 15-42

XVi CORBAV2.3 June 1999

Contents

15.4.8 MessageError Message 15-42
1549 FragmentMessage 15-42
15,5 GIOP Message Transport., 15-43
15.5.1 Connection Management 15-44
15.5.1.1 Connection Closure 15-45
15.5.1.2 Multiplexing Connections 15-46
15.5.2 Message Ordering 15-46
15.6 ObjectLocation 5-46
15.7 Internet Inter-ORB Protocol (IIOP) 15-48
15.7.1 TCP/IP ConnectionUsage 15-48
15.7.2 1IOPIOR Profiles 15-49
15.7.3 IIOP IOR Profile Components 15-51
15.8 Bi-Directional GIOP 15-52
15.8.1 Bi-Directional IOP 15-54
15.8.1.1 lIOP/SSL considerations 15-55
15.9 Bi-directional GIOP policy 15-55
1510 OMGIIDL . .. o e 15-56
15.10.1 GIOP Module 15-56
15.10.2 lIOP Module 15-60
15.10.3 BiDirPolicy Module 15-61
16. The DCEESIOP 16-1
16.1 Goals of the DCE Common Inter-ORB Protocol 16-1
16.2 DCE Common Inter-ORB Protocol Overview 16-2
16.2.1 DCE-CIOPRPC 16-2
16.2.2 DCE-CIOP Data Representation 16-3
16.2.3 DCE-CIOP Messages 16-4
16.2.4 Interoperable Object Reference (IOR) 16-5
16.3 DCE-CIOP Message Transport 16-5
16.3.1 Pipe-based Interface 16-6
16.3.1.11Invoke 16-8
16.3.1.2Locate 16-8
16.3.2 Array-based Interface 16-8
16.3.211Invoke. 16-10
16.3.22Locate 16-11
16.4 DCE-CIOP Message Formats 16-11
16.4.1 DCE_CIOP Invoke Request Message 16-11
16.4.1.1 Invoke request header 16-11
16.4.1.2 Invoke requestbody 16-12
16.4.2 DCE-CIOP Invoke Response Message 16-12
16.4.2.1 Invoke response header 16-13
16.4.2.2 Invoke Response Body 16-13
16.4.3 DCE-CIOP Locate Request Message 16-14

CORBAV2.3 June 1999 Xvii

Contents

XVviii

16.4.3.1 Locate Request Header 16-14
16.4.4 DCE-CIOP Locate Response Message 16-15
16.4.4.1 Locate Response Header 16-15
16.4.4.2 Locate Response Body 16-16
16.5 DCE-CIOP Object References 16-16
16.5.1 DCE-CIOP String Binding Component 16-17
16.5.2 DCE-CIOP Binding Name Component 16-18
16.5.2.1 BindingNameComponent 16-18
16.5.3 DCE-CIOP No Pipes Component 16-19
16.5.4 Complete Object Key Component 16-19
16.5.5 Endpoint ID Position Component 16-20
16.5.6 Location Policy Component 16-20
16.6 DCE-CIOP Object Location 16-21
16.6.1 Location Mechanism Overview 16-22
16.6.2 Activation 16-23
16.6.3 Basic Location Algorithm 16-23
16.6.4 Use of the Location Policy and the Endpoint ID 16-24
16.6.4.1 Current location policy 16-24
16.6.4.2 Original location policy 16-24
16.6.4.3 Original EndpointID 16-24
16.7 OMG IDL for the DCE CIOP Module 16-25
16.8 References for this Chapter 16-26
17. Interworking Architecture 17-1
17.1 Purpose of the Interworking Architecture 17-2
17.1.1 Comparing COM Objects to CORBA Objects . 17-2
17.2 Interworking ObjectModel 17-3
17.2.1 Relationship to CORBA Object Model 17-3
17.2.2 Relationship to the OLE/COM Model 17-4
17.2.3 Basic Description of the Interworking Model . 17-4
17.3 Interworking Mapping Issues 17-8
17.4 Interface Mapping i 17-8
17.4.1 CORBA/ICOM i 17-9
17.4.2 CORBA/Automation 17-9
17.43 COM/CORBA i 17-10
17.4.4 Automation/CORBA 17-10
17.5 Interface Composition Mappings 17-11
17.5.1 CORBA/ICOM i 17-11
1751 1COM/CORBA 17-12
17.5.1.2 CORBA/Automation 17-12
17.5.1.3 Automation/CORBA 17-13
17.5.2 Detailed MappingRules 17-13
17.5.2.1 Ordering Rules for the CORBA->MIDL
CORBA V2.3 June 1999

Contents

Transformation 17-13
17.5.2.2 Ordering Rules for the CORBA->
Automation Transformation 17-13
17.5.3 Example of Applying Ordering Rules 17-14
17.5.4 Mapping Interface Identity 17-16
17.5.4.1 Mapping Interface Repository IDs to
COMIIDS ... 17-17
17.5.4.2 Mapping COM IIDs to CORBA
Interface IDS 17-18
17.6 Obiject Identity, Binding, and Life Cycle 17-18
17.6.1 ObjectIdentityIssues 17-19
17.6.1.1 CORBA Object Identity and Reference
Properties i 17-19
17.6.1.2 COM Object Identity and Reference
Properties 17-19
17.6.2 BindingandLifeCycle 17-20
17.6.2.1 Lifetime Comparison 17-20
17.6.2.2 Binding Existing CORBA Objects
toCOMViews 17-21
17.6.2.3 Binding COM Objects to CORBA Views 17-22
17.6.2.4 COM View of CORBA Life Cycle 17-22
17.6.2.5 CORBA View of COM/Automation
LifeCycle i, 17-23
17.7 Interworking Interfaces 17-23
17.7.1 SimpleFactory Interface 17-23
17.7.2 IMonikerProvider Interface and Moniker Use . 17-23
17.7.3 ICORBAFactory Interface 17-24
17.7.4 IForeignObject Interface 17-26
17.7.5 ICORBAObject Interface 17-27
17.7.6 ICORBAObject2 17-28
17.7.7 10ORBObject Interface 17-28
17.7.8 Naming Conventions for View Components. .. 17-30
17.7.8.1 Naming the COM View Interface 17-30
17.7.8.2 Tag for the Automation Interface Id ... 17-30
17.7.8.3 Naming the Automation View Dispatch
Interface 17-30
17.7.8.4 Naming the Automation View Dual
Interface 17-31
17.7.8.5 Naming the Program Id for the COM
Class 17-31
17.7.8.6 Naming the Class Id for the COM
Class ... 17-31
17.8 Distribution 17-32
17.8.1 Bridge Locality. 17-32
17.8.2 Distribution Architecture 17-33
17.9 Interworking Targetsiiinnnnn.. 17-33
17.10 Compliance to COM/CORBA Interworking 17-34

CORBAV2.3 June 1999 XiX

Contents

XX

17.10.1 Products Subject to Compliance 17-34
17.10.1.1 Interworking solutions 17-34
17.10.1.2 Mapping solutions 17-34
17.10.1.3 Mapped components 17-35
17.10.2 Compliance Points 17-35
18. Mapping: COMand CORBA 18-1
18.1 DataType Mapping 18-1
18.2 CORBAto COM Data TypeMapping 18-2
18.2.1 Mapping for Basic Data Types 18-2
18.2.2 Mapping for Constants 18-2
18.2.3 Mapping for Enumerators 18-3
18.2.4 Mapping for String Types 18-4
18.2.4.1 Mapping for Unbounded String Types . 18-4
18.2.4.2 Mapping for Bounded String Types ... 18-5
18.2.5 Mapping for Struct Types 18-5
18.2.6 Mapping for Union Types 18-6
18.2.7 Mapping for Sequence Types 18-8
18.2.7.1 Mapping for Unbounded Sequence
TYPES . oo 18-8
18.2.7.2 Mapping for Bounded Sequence
TYPES . oo 18-8
18.2.8 Mapping for Array Types 18-9
18.2.9 Mapping fortheany Type 18-9
18.2.10 Interface Mapping 18-11
18.2.10.1 Mapping for interface identifiers 18-11
18.2.10.2 Mapping for exception types 18-11
18.2.10.3 Mapping for Nested Types 18-21
18.2.10.4 Mapping for Operations 18-22
18.2.10.5 Mapping for Oneway Operations 18-24
18.2.10.6 Mapping for Attributes. 18-24
18.2.10.7 Indirection Levels for Operation
Parameters 18-26
18.2.11 Inheritance Mapping 18-26
18.2.12 Mapping for Pseudo-Objects 18-29

18.2.12.1 Mapping for TypeCode pseudo-object 18-29
18.2.12.2 Mapping for context pseudo-object . . . 18-32
18.2.12.3 Mapping for principal pseudo-object . 18-32

18.2.13 Interface Repository Mapping 18-33
18.3 COM to CORBA Data Type Mapping 18-33
18.3.1 Mapping for Basic Data Types 18-33
18.3.2 Mapping for Constants 18-34
18.3.3 Mapping for Enumerators 18-34
18.3.4 Mapping for String Types 18-35
18.3.4.1 Mapping for unbounded string types . . . 18-36
18.3.4.2 Mapping for bounded string types 18-36

CORBAV2.3

18.3.4.3 Mapping for Unicode Unbounded

June 1999

Contents

String Types 18-36
18.3.4.4 Mapping for unicode bound
Stringtypes ... 18-37
18.3.5 Mapping for Structure Types 18-37
18.3.6 Mapping for Union Types 18-38
18.3.6.1 Mapping for Encapsulated Unions 18-38
18.3.6.2 Mapping for nonencapsulated
UNIONS. .« oottt e 18-39
18.3.7 Mapping for Array Types 18-40
18.3.7.1 Mapping for nonfixed arrays 18-40
18.3.7.2 Mapping for SAFEARRAY 18-40
18.3.8 Mapping for VARIANT 18-41
18.3.9 Mapping for Pointers 18-44
18.3.10 Interface Mapping 18-44
18.3.10.1 Mapping for Interface Identifiers 18-44
18.3.10.2 Mapping for COM Errors 18-45
18.3.10.3 Mapping of Nested Data Types 18-47
18.3.10.4 Mapping of Names 18-48
18.3.10.5 Mapping for Operations 18-48
18.3.10.6 Mapping for Properties 18-49
18.3.11 Mapping for Read-Only Attributes 18-50
18.3.12 Mapping for Read-Write Attributes 18-50
18.3.12.1 Inheritance Mapping 18-50
18.3.12.2 Type Library Mapping. 18-52
19. Mapping: Automationand CORBA 19-1
19.1 Mapping CORBA Objects to Automation 19-2
19.1.1 Architectural Overview 19-2
19.1.2 Main Features of the Mapping 19-3
19.2 Mapping for Interfaces 19-3
19.2.1 Mapping for Attributes and Operations 19-4
19.2.2 Mapping for OMG IDL Single Inheritance ... 19-5
19.2.3 Mapping of OMG IDL Multiple Inheritance .. 19-6
19.3 Mapping for Basic Data Types 19-9
19.3.1 Basic Automation Types 19-9

19.3.2 Special Cases of Basic Data Type Mapping .. 19-10
19.3.2.1 Converting Automation long to

CORBAunsignedlong 19-10
19.3.2.2 Demoting CORBA unsigned long

to Automationlong 19-11
19.3.2.3 Demoting Automation long to

CORBA unsigned short 19-11

19.3.2.4 Converting Automation boolean to
CORBA boolean and CORBA boolean to

Automation boolean 19-11
19.3.3 MappingforStrings 19-11
194 IDLtoODLMappingcuuiiiiiiinnen.. 19-12

CORBAV2.3 June 1999 XXi

Contents

XXil

19.4.1 A Complete IDL to ODL Mapping for the

BasicDataTypes 19-12
19.5 Mapping for Object References 19-15
1951 TypeMappingcoiiiii... 19-15
19.5.2 Object Reference Parameters and
IForeignObject 19-16
19.6 Mapping for Enumerated Types 19-17
19.7 Mapping for Arrays and Sequences 19-18
19.8 Mapping for CORBA Complex Types 19-19
19.8.1 Mapping for Structure Types 19-20
19.8.2 Mapping for Union Types 19-21
19.8.3 Mapping for TypeCodes 19-23
19.8.4 Mappingforanys....................... 19-24
19.8.5 Mapping for Typedefs 19-25
19.8.6 Mapping for Constants 19-25
19.8.7 Getting Initial CORBA Object References ... 19-26
19.8.8 Creating Initial in Parameters for
Complex Types 19-27
19.8.8.1 ITypeFactory Interface 19-28
19.8.8.2 DIObjectiInfo Interface 19-29
19.8.9 Mapping CORBA Exceptions to Automation
Exceptions 19-30
19.8.9.1 Overview of Automation Exception
Handling 19-30
19.8.9.2 CORBA Exceptions 19-30
19.8.9.3 CORBA User Exceptions 19-31
19.8.9.4 Operations that Raise User Exceptions . 19-32
19.8.9.5 CORBA System Exceptions. 19-33
19.8.9.6 Operations that raise system exceptions 19-34
19.8.10 Conventions for Naming Components of the
AutomationView 19-36
19.8.11 Naming Conventions for Pseudo-Structs,
Pseudo-Unions, and Pseudo-Exceptions 19-36
19.8.12 Automation View Interface as a Dispatch
Interface (Nondual) 19-36
19.8.13 Aggregation of Automation Views 19-38
198.14 Dlland DSl 19-38
19.9 Mapping Automation Objects as CORBA Objects 19-38
19.9.1 Architectural Overview 19-38
19.9.2 Main Features of the Mapping 19-39
19.9.3 Getting Initial Object References 19-40
19.9.4 Mapping for Interfaces 19-40
19.9.5 Mapping for Inheritance 19-40
CORBA V2.3 June 1999

Contents

19.9.6 Mapping for ODL Properties and Methods ... 19-41
19.9.7 Mapping for Automation Basic Data Types ... 19-42

19.9.7.1 Basic automation types. 19-42
19.9.8 ConversionErrors 19-43
19.9.9 Special Cases of Data Type Conversion 19-43
19.9.9.1 Translating COM::Currency to
Automation CURRENCY 19-43
19.9.9.2 Translating CORBA double to
Automation DATE 19-43

19.9.9.3 Translating CORBA boolean to
Automation boolean and Automation

boolean to CORBA boolean 19-43
19.9.10 A Complete OMG IDL to ODL Mapping
for the Basic Data Types 19-44
19.9.11 Mapping for Object References 19-46
19.9.12 Mapping for Enumerated Types 19-47
19.9.13 Mapping for SafeArrays 19-48
19.9.13.1 Multidimensional SafeArrays 19-48
19.9.14 Mapping for Typedefs. 19-48
19.9.15 Mapping for VARIANTS 19-49
19.9.16 Mapping Automation Exceptions to CORBA. . 19-49
19.10 Older Automation Controllers 19-49
19.10.1 Mapping for OMG IDL Arrays and
Sequences to Collections 19-50
19.11 Example Mappings i 19-51
19.11.1 Mapping the OMG Naming Service
to Automation 19-51
19.11.2 Mapping a COM Serviceto OMG IDL 19-52
19.11.3 Mapping an OMG Object Service to
Automation 19-56
20. Interoperability with non-CORBA Systems 20-1
20.1 IntroducCtion 20-1
20.1.1 COM/CORBA PartA 20-2
20.2 Conformancelssues 20-2
20.2.1 Performancelssues 20-3
20.2.2 ScalabilityIssues 20-3
20.2.3 CORBA Clients for DCOM Servers 20-3
20.3 LocalityoftheBridge 20-4
20.4 Extent Definition 20-5
20.4.1 Marshaling Constraints 20-6
20.4.2 MarshalingKey 20-6
20.4.3 ExtentFormat 20-7

CORBAV2.3 June 1999 XXiii

Contents

2043.1DVO_EXTENT 20-7
2043.2DVO_IFACE oL 20-8
20.4.3.3 DVO_IMPLDATA 20-8
20434DVO BLOB 20-8
20.5 Request/Reply Extent Semantics 20-8
20.6 CONSIStENCYttt e 20-9
20.6.1 IValueObject. 20-10
20.6.2 ISynchronize and DISynchronize 20-10
20.6.2.1 Mode Property 20-11
20.6.2.2 SyncNow Method. 20-11
20.6.2.3 ReCopy Method 20-11
20.7 DCOM Value Objects i, 20-11
20.7.1 Passing Automation Compound Types
as DCOM Value Objects 20-11
20.7.2 Passing CORBA-Defined Pseudo-Obijects
as DCOM Value Objects 20-11
20.7.3 IForeignObject 20-12
20.7.4 DIForeignComplexType 20-12
20.7.5 DIForeignException. 20-12
20.7.6 DISystemException 20-12
20.7.7 DICORBAUserException 20-13
20.7.8 DICORBAStruct 20-13
20.7.9 DICORBAUNION 20-13
20.7.10 DICORBATypeCode and ICORBATypeCode . 20-13
20.7.11 DICORBAANY 20-14
20.7.12 ICORBAANY 20-14
20.7.13 User Exceptions INCOM 20-15
20.8 Chain Avoidance i 20-16
20.8.1 CORBA Chain Avoidance 20-16
20.8.2 COM Chain Avoidance 20-17
20.9 Chain Bypassiiiii e 20-19
20.9.1 CORBAChainBypass................... 20-19
20.9.2 COMChainBypassccovvu... 20-20
20.10 Thread Identification 20-21
21, INterceptorso 21-1
21.1 Introduction 21-1
21.1.1 ORB Core and ORB Services. 21-2
21.2 INterCeplorsSot e 21-2
21.2.1 Generic ORB Services and Interceptors 21-2
21.2.2 Request-Level Interceptors 21-3
21.2.3 Message-Level Interceptors 21-3

XXV CORBA V2.3 June 1999

Contents

21.2.4 Selecting Interceptors 21-4
21.3 Client-TargetBinding 21-4
21.3.1 BindingModel 21-4
21.3.2 Establishing the Binding and Interceptors 21-5
21.4 UsingInterceptors, 21-6
21.4.1 Request-Level Interceptors 21-6
21.4.2 Message-Level Interceptors 21-7
21.5 Interceptorinterfaces 21-7
21.5.1 Clientand Targetinvoke 21-8
21.5.2 Send and Receive Message 21-8
21.6 IDLforlInterceptors 21-9
Appendix A-OMGIDLTagsvcovviiiiiniinnnnn. A-1

CORBA V2.3 June 1999 XXV

Contents

XXVi CORBA V2.3 June 1999

Preface

0.1 About This Document

Under the terms of the collaboration between OMG and X/Open Co Ltd., this
document is a candidate for endorsement by X/Open, initially as a Preliminary
Specification and later as a full CAE Specification. The collaboration between OMG
and X/Open Co Ltd. ensures joint review and cohesive support for emerging object-
based specifications.

X/Open Preliminary Specifications undergo close scrutiny through a review process at
X/Open before publication and are inherently stable specifications. Upgrade to full
CAE Specification, after a reasonable interval, takes place following further review by
X/Open. This further review considers the implementation experience of members and
the full implications of conformance and branding.

0.1.1 Object Management Group

The Object Management Group, Inc. (OMG) is an international organization supported
by over 800 members, including information system vendors, software developers and
users. Founded in 1989, the OMG promotes the theory and practice of object-oriented
technology in software development. The organization's charter includes the
establishment of industry guidelines and object management specifications to provide a
common framework for application development. Primary goals are the reusability,
portability, and interoperability of object-based software in distributed, heterogeneous
environments. Conformance to these specifications will make it possible to develop a
heterogeneous applications environment across all major hardware platforms and
operating systems.

OMG's objectives are to foster the growth of object technology and influence its
direction by establishing the Object Management Architecture (OMA). The OMA
provides the conceptual infrastructure upon which all OMG specifications are based.

CORBAV2.3.1 October 1999 XXVi

0.1.2 X/Open

X/Open is an independent, worldwide, open systems organization supported by most of
the world's largest information system suppliers, user organizations and software
companies. Its mission is to bring to users greater value from computing, through the
practical implementation of open systems. X/Open'’s strategy for achieving its mission
is to combine existing and emerging standards into a comprehensive, integrated
systems environment called the Common Applications Environment (CAE).

The components of the CAE are defined in X/Open CAE specifications. These contain,
among other things, an evolving portfolio of practical application programming
interfaces (APIs), which significantly enhance portability of application programs at
the source code level. The APIs also enhance the interoperability of applications by
providing definitions of, and references to, protocols and protocol profiles.

The X/Open specifications are also supported by an extensive set of conformance tests
and by the X/Open trademark (XPG brand), which is licensed by X/Open and is carried
only on products that comply with the CAE specifications.

0.2 Intended Audience

The architecture and specifications described in this manual are aimed at software
designers and developers who want to produce applications that comply with OMG
standards for the Object Request Broker (ORB). The benefit of compliance is, in
general, to be able to produce interoperable applications that are based on distributed,
interoperating objects. As defined by the Object Management Group (OMG) in the
Object Management Architecture Guidee ORB provides the mechanisms by which
objects transparently make requests and receive responses. Hence, the ORB provides
interoperability between applications on different machines in heterogeneous
distributed environments and seamlessly interconnects multiple object systems.

0.3 Context of CORBA

The key to understanding the structure of the CORBA architecture is the Reference
Model, which consists of the following components:

» Object Request Broker which enables objects to transparently make and receive
requests and responses in a distributed environment. It is the foundation for
building applications from distributed objects and for interoperability between
applications in hetero- and homogeneous environments. The architecture and
specifications of the Object Request Broker are described in this manual

» Object Services a collection of services (interfaces and objects) that support
basic functions for using and implementing objects. Services are necessary to
construct any distributed application and are always independent of application
domains. For example, the Life Cycle Service defines conventions for creating,
deleting, copying, and moving objects; it does not dictate how the objects are
implemented in an application. Specifications for Object Services are contained in
CORBAservices: Common Object Services Specification.

XXVili CORBAV2.3.1 October 1999

« Common Facilities a collection of services that many applications may share,
but which are not as fundamental as the Object Services. For instance, a system
management or electronic mail facility could be classified as a common facility.
Information about Common Facilities will be containedd®RBAfacilities:

Common Facilities Architecture

» Application Objects, which are products of a single vendor on in-house
development group which controls their interfaces. Application Objects
correspond to the traditional notion of applications, so they are not standardized
by OMG. Instead, Application Objects constitute the uppermost layer of the
Reference Model.

The Object Request Broker, then, is the core of the Reference Model. It is like a
telephone exchange, providing the basic mechanism for making and receiving calls.
Combined with the Object Services, it ensures meaningful communication between
CORBA-compliant applications.

0.4 Associated Documents

The CORBA documentation set includes the following books:

» Object Management Architecture Guidefines the OMG'’s technical objectives
and terminology and describes the conceptual models upon which OMG standards
are based. It alsprovides information about the policies and procedures of OMG,
such as how standards are proposed, evaluated, and accepted.

« CORBA: Common Object Request Broker Architecture and Specificatidains
the architecture and specifications for the Object Request Broker.

» CORBAservices: Common Object Services Specificabatains specifications
for the Object Services.

« CORBAfacilities: Common Facilities Architectucentains the architecture for
Common Facilities.

OMG collects information for each book in the documentation set by issuing Requests
for Information, Requests for Proposals, and Requests for Comment and, with its
membership, evaluating the responses. Specifications are adopted as standards only
when representatives of the OMG membership accept them as such by vote.

To obtain books in the documentation set, or other OMG publications, refer to the
enclosed subscription card or contact the Object Management Group, Inc. at:

OMG Headquarters
492 Old Connecticut Path
Framingham, MA 01701
USA
Tel: +1-508-820 4300
Fax: +1-508-820 4303
pubs@omg.org
http://www.omg.org

CORBAV2.3.1 Associated Documents October 1999 XXiX

XXX

0.5 Definition of CORBA Compliance

The minimum required for a CORBA-compliant system is adherence to the
specifications in CORBA Core and one mapping. Each additional language mapping is
a separate, optional compliance point. Optional means users aren’t required to
implement these points if they are unnecessary at their site, but if implemented, they
must adhere to theORBAspecifications to be called CORBA-compliant. For instance,

if a vendor supports C++, their ORB must comply with the OMG IDL to C++ binding
specified in theC++ Language Mapping Specification

Interoperability and Interworking are separate compliance points. For detailed
information about Interworking compliance, refer to “Compliance to COM/CORBA
Interworking” on page 17-34.

As described in th©®MA Guide the OMG’s Core Object Model consists of a core and
components. Likewise, the body 6GORBAspecifications is divided into core and
component-like specifications. The structure of this manual reflects that division.

The CORBAcore specifications are categorized as follows:
CORBA Core, as specified in Chapters 1-11

CORBA Interoperability , as specified in Chapters 12-16
CORBA Interworking , as specified in Chapters 17-21

Note —The CORBA Language Mappings have been separated from the CORBA Core
and each language mapping is its own separate book. Refer to the CORBA Language
Mapping area on the OMG website for this information.

0.6 Structure of This Manual

This manuals divided into the categories @fore, Interoperability, Interworking, and
individual Language Mappings (located in a separate binder). These divisions reflect
the compliance points of CORBA. In addition to this prefl®RBA: Common

Object Request Broker Architecture and Specificationtains the following chapters

Core

Chapter 1 -- The Object Modeldescribes the computation model that underlies the
CORBA architecture.

Chapter 2 -- CORBA Overviewcontains the overall structure of the ORB architecture
and includes information about CORBA interfaces and implementations.

Chapter 3 -- OMG IDL Syntax and Semanticsdetails the OMG interface definition
language (OMG IDL), which is the language used to describe the interfaces that client
objects call and object implementations provide.

CORBAV2.3.1 October 1999

Chapter 4-- ORB Interface defines the interface to the ORB functions that do not
depend on object adapters: these operations are the same for all ORBs and object
implementations.

Chapter 5-- Value Type Semanticslescribes the semantics of passing an object by
value, which is similar to that of standard programming languages.

Chapter 6-- Abstract Interface Semanticsexplains an IDL abstract interface, which
provides the capability to defer the determination of whether an object is passed by
reference or by value until runtime.

Chapter 7-- The Dynamic Invocation Interfacedetails the DII, the client’s side of
the interface that allows dynamic creation and invocation of request to objects.

Chapter 8 -- The Dynamic Skeleton Interfacedescribegthe DSI, the server’s-side
interface that can deliver requests from an ORB to an object implementation that does
not have compile-time knowledge of the type of the object it is implementing. DSI is
the server’s analogue of the client's Dynamic Invocation Interface (DIlI).

Chapter 9-- Dynamic Management of Any Valuegletails the interface for the

Dynamic Any type. This interface allows statically-typed programming languages such
as C and Java to create or receive values of type Any without compile-time knowledge
that the typer contained in the Any.

Chapter 10-- Interface Repositoryexplains the component of the ORB that manages
and provides access to a collection of object definitions.

Chapter 11-- Portable Object Adapterdefines a group of IDL interfaces than an
implementation uses to access ORB functions.

Interoperability

Chapter 12-- Interoperability Overview describes the interoperability architecture
and introduces the subjects pertaining to interoperability: inter-ORB bridges; general
and Internet inter-ORB protocols (GIOP and IIOP); and environment-specific, inter-
ORB protocols (ESIOPSs).

Chapter 13 -- ORB Interoperability Architecture introduces the framework of ORB
interoperability, including information about domains; approaches to inter-ORB
bridges; what it means to be compliant with ORB interoperability; and ORB Services
and Requests.

Chapter 14 -- Building Inter-ORB Bridges explains how to build bridges for an
implementation of interoperating ORBs.

Chapter 15 -- General Inter-ORB Protocoldescribes the general inter-ORB protocol
(GIOP) and includes information about the GIOP’s goals, syntax, format, transport,
and object location. This chapter also includes information about the Internet inter-
ORB protocol (IIOP).

CORBAV2.3.1 Structure of This Manual October 1999 XXXi

Chapter 16 -- DCE ESIOP - Environment-Specific Inter-ORB Protocol (ESIOP)
details a protocol for the OSF DCE environment. The protocol is called the DCE
Environment Inter-ORB Protocol (DCE ESIOP).

Interworking

Chapter 17 -- Interworking Architecture describes the architecture for
communication between two object management systems: Microsoft's COM (including
OLE) and the OMG’s CORBA.

Chapter 18 -- Mapping: COM and CORBA explains the data type and interface
mapping between COM and CORBA. The mappings are described in the context of
both Win16 and Win32 COM.

Chapter 19 -- Mapping: OLE Automation and CORBA details the two-way
mapping between OLE Automation (in ODL) and CORBA (in OMG IDL).

Note: Chapter 19 also includes appendix describing solutions that vendors might
implement to support existing and older OLE Automation controllers and an appendix
that provides an example of how the Naming Service could be mapped to an OLE
Automation interface according to the Interworking specification.

Chapter 20-- Interoperability with non-CORBA Systemsdescribes the effective
access to CORBA servers through DCOM and the reverse.

Chapter 21-- Interceptorsdefines ORB operations that allow services such as
security to be inserted in the invocation path.

Appendix A-- containsOMG IDL tags that can identify a profile, service, component,
or policy.

0.7 Acknowledgements

XXXii

The following companies submitted parts of the specifications that were approved by
the Object Management Group to becoG@RBA:

* BEA Systems, Inc.

* BNR Europe Ltd.

» Defense Information Systems Agency
« Expersoft Corporation

» FUJITSU LIMITED

» Genesis Development Corporation
* Gensym Corporation

« IBM Corporation

 ICL plc

* Inprise Corporation

« IONA Technologies Ltd.

« Digital Equipment Corporation

» Hewlett-Packard Company

CORBAV2.3.1 October 1999

0.8 References

» HyperDesk Corporation

» Micro Focus Limited

* MITRE Corporation

* NCR Corporation

* Novell USG

» Object Design, Inc.

* Objective Interface Systems, Inc.

¢ OC Systems, Inc.

» Open Group - Open Software Foundation
» Siemens Nixdorf Informationssysteme AG
e Sun Microsystems Inc.

* SunSoft, Inc.

» Sybase, Inc.

 Telefonica Investigaciéon y Desarrollo S.A. Unipersonal
* Visual Edge Software, Ltd.

In addition to the preceding contributors, the OMG would like to acknowledge Mark
Linton at Silicon Graphics and Doug Lea at the State University of New York at
Oswego for their work on the C++ mapping.

IDL Type Extensions RFP, March 1995. OMG TC Document 95-1-35.

The Common Object Request Broker: Architecture and Specification, Revision 2.2,
February 1998.

CORBAservices: Common Object Services Specification, Revised Edition, OMG TC
Document 95-3-31.

COBOL Language Mapping RFP, December 1995. OMG TC document 95-12-10.
COBOL 85 ANSI X3.23-1985 / ISO 1989-1985.
IEEE Standard for Binary Floating-Point Arithmetic, ANIS/IEEE Std 754-1985.

XDR: External Data Representation Standard, RFC1832, R. Srinivasan, Sun Micro-
systems, August 1995.

OSF Character and Code Set Registry, OSF DCE SIG RFC 40.1 (Public Version), S.
(Martin) O’Donnell, June 1994.

RPC Runtime Support For 118N Characters — Functional Specification, OSF DCE
SIG RFC 41.2, M. Romagna, R. Mackey, November 1994.

X/Open System Interface Definitions, Issue 4 Version 2, 1995.

CORBAV2.3.1 References October 1999 XXXiii

XXXV CORBAV2.3.1 October 1999

1.1 Overview

The Object Model 1

The Object Model chapter has been updated based on CORE changes from
ptc/98-09-04 and the Object by Value specification (orbos/98-01-18).

This chapter describes the concrete object model that underlies the CORBA
architecture. The model is derived from the abstract Core Object Model defined by the
Object Management Group in tibject Management Architecture Guide

(Information about th©MA Guide and other books in the CORBA documentation set

is provided in this document’s preface.)

Contents

This chapter contains the following sections.

Section Title Page
“Overview” 1-1
“Object Semantics” 1-2
“Object Implementation” 1-9

The object model provides an organized presentation of object concepts and
terminology. It defines a partial model for computation that embodies the key
characteristics of objects as realized by the submitted technologies. The OMG object
model isabstractin that it is not directly realized by any particular technology. The
model described here iscancreteobject model. A concrete object model may differ
from the abstract object model in several ways:

CORBA V2.3 Overview June 1999 1-1

« It may elaboratethe abstract object model by making it more specific, for
example, by defining the form of request parameters or the language used to
specify types.

« It may populatethe model by introducing specific instances of entities defined by
the model, for example, specific objects, specific operations, or specific types.

« It may restrict the model by eliminating entities or placing additional restrictions
on their use.

An object system is a collection of objects that isolates the requestors of services
(clients) from the providers of services by a well-defined encapsulating interface. In
particular, clients are isolated from the implementations of services as data
representations and executable code.

The object model first describes concepts that are meaningful to clients, including such
concepts as object creation and identity, requests and operations, types and signatures
It then describes concepts related to object implementations, including such concepts
as methods, execution engines, and activation.

The object model is most specific and prescriptive in defining concepts meaningful to
clients. The discussion of object implementation is more suggestive, with the intent of
allowing maximal freedom for different object technologies to provide different ways
of implementing objects.

There are some other characteristics of object systems that are outside the scope of the
object model. Some of these concepts are aspects of application architecture, some are
associated with specific domains to which object technology is applied. Such concepts
are more properly dealt with in an architectural reference model. Examples of excluded
concepts are compound objects, links, copying of objects, change management, and
transactions. Also outside the scope of the object model are the details of control
structure: the object model does not say whether clients and/or servers are single-
threaded or multi-threaded, and does not specify how event loops are programmed nor
how threads are created, destroyed, or synchronized.

This object model is an example otkassical object modeilvhere a client sends a
message to an object. Conceptually, the object interprets the message to decide what
service to perform. In the classical model, a message identifies an object and zero or
more actual parameters. As in most classical object models, a distinguished first
parameter is required, which identifies the operation to be performed; the interpretation
of the message by the object involves selecting a method based on the specified
operation. Operationally, of course, method selection could be performed either by the
object or the ORB.

1.2 Object Semantics

An object system provides services to clientxliant of a service is any entity
capable of requesting the service.

This section defines the concepts associated with object semantics, that is, the concept:
relevant to clients.

CORBA V2.3 Object Semantics June 1999

1.2.1 Objects

An object system includes entities known as objectsobjpectis an identifiable,
encapsulated entity that provides one or more services that can be requested by a
client.

1.2.2 Requests
Clients request services by issuing requests.

The termrequestis broadly used to refer to the entire sequence of causally related
events that transpires between a client initiating it and the last event causally associated
with that initiation. For example:

« the client receives the final response associated withréfaestfrom the server,

« the server carries out the associated operation in case of a oneway request, or

« the sequence of events associated withréheestterminates in a failure of some
sort. The initiation of a Request is an event.

The information associated with a request consists of an operation, a target object, zero
or more (actual) parameters, and an optional request context.

A request fornis a description or pattern that can be evaluated or performed multiple
times to cause the issuing of requests. As described in the OMG IDL Syntax and
Semantics chapter, request forms are defined by particular language bindings. An
alternative request form consists of calls to the dynamic invocation interface to create
an invocation structure, add arguments to the invocation structure, and to issue the
invocation (refer to the Dynamic Invocation Interface chapter for descriptions of these
request forms).

A valueis anything that may be a legitimate (actual) parameter in a request. More
particularly, a value is an instance of an OMG IDL data type. There are non-object
values, as well as values that reference objects.

An objectreferenceis a value that reliably denotes a particular object. Specifically, an
object reference will identify the same object each time the reference is used in a
request (subject to certain pragmatic limits of space and time). An object may be
denoted by multiple, distinct object references.

A request may have parameters that are used to pass data to the target object; it may
also have a request context which provides additional information about the request. A
request context is a mapping from strings to strings.

A request causes a service to be performed on behalf of the client. One possible
outcome of performing a service is returning to the client the results, if any, defined for
the request.

If an abnormal condition occurs during the performance of a request, an exception is
returned. The exception may carry additional return parameters particular to that
exception.

CORBA V2.3 Object Semantics June 1999 1-3

The request parameters are identified by position. A parameter may be an input
parameter, an output parameter, or an input-output parameter. A request may also
return a singleeturn result valugas well as the results stored into the output and
input-output parameters.

The following semantics hold for all requests:

* Any aliasing of parameter values is neither guaranteed removed nor guaranteed to
be preserved.

* The order in which aliased output parameters are written is not guaranteed.

» The return result and the values stored into the output and input-output
parameters are undefined if an exception is returned.

For descriptions of the values and exceptions that are permitted, see Section 1.2.4,
“Types,” on page 1-4 and Section 1.2.8.3, “Exceptions,” on page 1-8.

1.2.3 Object Creation and Destruction

Objects can be created and destroyed. From a client’s point of view, there is no special
mechanism for creating or destroying an object. Objects are created and destroyed as
an outcome of issuing requests. The outcome of object creation is revealed to the client
in the form of an object reference that denotes the new object.

1.2.4 Types

A typeis an identifiable entity with an associated predicate (a single-argument
mathematical function with a boolean result) defined over entities. An satigfiesa
type if the predicate is true for that entity. An entity that satisfies a type is called a
member of the type

Types are used in signatures to restrict a possible parameter or to characterize a
possible result.

The extension of a typis the set of entities that satisfy the type at any particular time.

An object typeis a type whose members are object references. In other words, an
object type is satisfied only by object references.

Constraints on the data types in this model are shown in this section.

1.2.4.1 Basictypes

» 16-bit, 32-bit, and 64-bit signed and unsigned 2’s complement integers.

« Single-precision (32-bit), double-precision (64-bit), and double-extended (a
mantissa of at least 64 bits, a sign bit and an exponent of at least 15 bits) IEEE
floating point numbers.

 Fixed-point decimal numbers of up to 31 significant digits.

« Characters, as defined in ISO Latin-1 (8859.1) and other single- or multi-byte
character sets.

» A boolean type taking the values TRUE and FALSE.

CORBA V2.3 Object Semantics June 1999

1

« An 8-bit opaque detectable, guaranteedi@dbundergo any conversion during
transfer between systems.

* Enumerated types consisting of ordered sequences of identifiers.

« A string type, which consists of a variable-length array of characters; the length
of the string is a non-negative integer, and is available at run-time. The length
may have a maximum bound defined.

» A wide character string type, which consist of a variable-length array of (fixed
width) wide characters; the length of the wide string is a non-negative integer, and
is available at run-time. The length may have a maximum bound defined.

» A container type “any,” which can represent any possible basic or constructed
type.

» Wide characters that may represent characters from any wide character set.

» Wide character strings, which consist of a length, available at runtime, and a
variable-length array of (fixed width) wide characters.

1.2.4.2 Constructed types

» A record type (called struct), which consists of an ordered set of (name,value)
pairs.

« A discriminated union type, which consists of a discriminator (whose exact value
is always available) followed by an instance of a type appropriate to the
discriminator value.

» A sequence type, which consists of a variable-length array of a single type; the
length of the sequence is available at run-time.

« An array type, which consists of a fixed-shape multidimensional array of a single
type.

* An interface type, which specifies the set of operations which an instance of that
type must support.

« A value type, which specifies state as well as a set of operations which an
instance of that type must support.

Entities in a request are restricted to values that satisfy these type constraints. The legal
entities are shown in Figure 1-1. No particular representation for entities is defined.

CORBA V2.3 Object Semantics June 1999 1-5

1-6

Short
Object Reference Long
LongLong
UShort
Ulong
UlongLong
Float
Double
LongDouble
Fixed

Char
Wchar
String
Wstring
Boolean
Octet
Enum

Any

J— Value Type

— Abstract Interface

| Entity Basic Value

Struct
Sequence
Union
Array

Constructed Values

Figure 1-1 Legal Values

1.2.5 Interfaces

An interfaceis a description of a set of possible operations that a client may request of
an object, through that interface. It provides a syntactic description of how a service
provided by an object supporting this interface, is accessed via this set of operations.
An objectsatisfiesan interface if it provides its service through the operations of the
interface according to the specification of the operations (see Section 1.2.8,
“Operations,” on page 1-7).

The interface typefor a given interface is an object type, such that an object reference
will satisfy the type, if and only if the referent object also satisfies the interface.

Interfaces are specified in OMG IDL. Interface inheritance provides the composition
mechanism for permitting an object to support multiple interfaces pfiheipal

interfaceis simply the most-specific interface that the object supports, and consists of
all operations in the transitive closure of the interface inheritance graph.

1.2.6 Value Types

A value typeis an entity which shares many of the characteristics of interfaces and
structs. It is a description of both a set of operations that a client may request and of
state that is accessible to a client. Instances of a value type are always local concrete
implementations in some programming language.

A value type, in addition to the operations and state defined for itself, may also inherit
from other value types, and through multiple inheritance support other interfaces.

Value types are specified in OMG IDL.

CORBA V2.3 Object Semantics June 1999

1

An abstract value typedescribes a value type that is a “pure” bundle of operations
with no state.

1.2.7 Abstract Interfaces

An abstract interfacds an entity which may at runtime represent either a regular
interface (see Section 1.2.5, “Interfaces,” on page 1-6) or a value type (see

Section 1.2.6, “Value Types,” on page 1-6). Like an abstract value type, it is a pure
bundle of operations with no state. Unlike an abstract value type, it does not imply
pass-by-value semantics, and unlike a regular interface type, it does not imply pass-by-
reference semantics. Instead, the entity's runtime type determines which of these
semantics are used.

1.2.8 Operations

An operationis an identifiable entity that denotes the indivisible primitive of service
provision that can be requested. The act of requesting an operation is referred to as
invoking the operationAn operation is identified by apperation identifier

An operation has aignaturethat describes the legitimate values of request parameters
and returned results. In particularsignatureconsists of:

A specification of the parameters required in requests for that operation.
* A specification of the result of the operation.

« An identification of the user exceptions that may be raised by an invocation of the
operation.

» A specification of additional contextual information that may affect the
invocation.

« An indication of the execution semantics the client should expect from an
invocation of the operation.

Operations are (potentiallgeneric meaning that a single operation can be uniformly
invoked on objects with different implementations, possibly resulting in observably
different behavior. Genericity is achieved in this model via interface inheritance in IDL
and the total decoupling of implementation from interface specification.

The general form for an operation signature is:

[oneway] <op_type_spec> <identifier> (param1, ..., paramL)
[raises(exceptl,...,exceptN)] [context(namel, ..., nameM)]

where:

» The optionaloneway keyword indicates that best-effort semantics are expected
of requests for this operation; the default semantics are exactly-once if the
operation successfully returns results or at-most-once if an exception is returned.

» The<op_type_spec> is the type of the return result.
» The<identifier> provides a name for the operation in the interface.

CORBA V2.3 Object Semantics June 1999 1-7

* The operation parameters needed for the operation; they are flagged with the
modifiersin, out, orinout to indicate the direction in which the information
flows (with respect to the object performing the request).

» The optionalraises expression indicates which user-defined exceptions can be
signaled to terminate an invocation of this operation; if such an expression is not
provided, no user-defined exceptions will be signaled.

» The optionakontext expression indicates which request context information will
be available to the object implementation; no other contextual information is
required to be transported with the request.

1.2.8.1 Parameters

A parameter is characterized by its mode and its typeniddeindicates whether the
value should be passed from client to serie), from server to clientout), or both

(inout). The parameter’s type constrains the possible value which may be passed in the
directions dictated by the mode.

1.2.8.2 Return Result

The return result is a distinguishedt parameter.

1.2.8.3 Exceptions

An exceptionis an indication that an operation request was not performed successfully.
An exception may be accompanied by additional, exception-specific information.

The additional, exception-specific information is a specialized form of record. As a
record, it may consist of any of the types described in Section 1.2.4, “Types,” on
page 1-4.

All signatures implicitly include the system exceptions; the standard system exceptions
are described in Section 3.17, “Standard Exceptions,” on page 3-51.

1.2.8.4 Contexts

A request contexprovides additional, operation-specific information that may affect
the performance of a request.

1.2.8.5 Execution Semantics

Two styles of execution semantics are defined by the object model:
» At-most-once: if an operation request returns successfully, it was performed
exactly once; if it returns an exception indication, it was performed at-most-once.
 Best-effort: a best-effort operation is a request-only operation (i.e., it cannot
return any results and the requester never synchronizes with the completion, if
any, of the request).

1-8 CORBA V2.3 Object Semantics June 1999

1

The execution semantics to be expected is associated with an operation. This prevents
a client and object implementation from assuming different execution semantics.

Note that a client is able to invoke an at-most-once operation in a synchronous or
deferred-synchronous manner.

1.2.9 Attributes

An interface may have attributes. An attribute is logically equivalent to declaring a pair
of accessor functions: one to retrieve the value of the attribute and one to set the value
of the attribute.

An attribute may be read-only, in which case only the retrieval accessor function is
defined.

1.3 Object Implementation

This section defines the concepts associated with object implementation (i.e., the
concepts relevant to realizing the behavior of objects in a computational system).

The implementation of an object system carries out the computational activities needed
to effect the behavior of requested services. These activities may include computing
the results of the request and updating the system state. In the process, additional
requests may be issued.

The implementation model consists of two parts: the execution model and the
construction model. The execution model describes how services are performed. The
construction model describes how services are defined.

1.3.1 The Execution Model: Performing Services

A requested service is performed in a computational system by executing code that
operates upon some data. The data represents a component of the state of the
computational system. The code performs the requested service, which may change the
state of the system.

Code that is executed to perform a service is calledthod A method is an

immutable description of a computation that can be interpreted by an execution engine.
A method has an immutable attribute callesh@thod formathat defines the set of
execution engines that can interpret the methodexetution enginé an abstract
machine (not a program) that can interpret methods of certain formats, causing the
described computations to be performed. An execution engine defines a dynamic
context for the execution of a method. The execution of a method is catiethad
activation

When a client issues a request, a method of the target object is called. The input
parameters passed by the requestor are passed to the method and the output and inpt
output parameters and return result value (or exception and its parameters) are passec
back to the requestor.

CORBA V2.3 Object Implementation June 1999 1-9

Performing a requested service causes a method to execute that may operate upon an
object’s persistent state. If the persistent form of the method or state is not accessible
to the execution engine, it may be necessary to first copy the method or state into an
execution context. This process is cal&divation the reverse process is called
deactivation

1.3.2 The Construction Model

A computational object system must provide mechanisms for realizing behavior of
requests. These mechanisms include definitions of object state, definitions of methods,
and definitions of how the object infrastructure is to select the methods to execute and
to select the relevant portions of object state to be made accessible to the methods.
Mechanisms must also be provided to describe the concrete actions associated with
object creation, such as association of the new object with appropriate methods.

An object implementatier-or implementationfor short—is a definition that provides

the information needed to create an object and to allow the object to participate in
providing an appropriate set of services. An implementation typically includes, among
other things, definitions of the methods that operate upon the state of an object. It also
typically includes information about the intended types of the object.

1-10 CORBA V2.3 Object Implementation June 1999

CORBA Overview

The Common Object Request Broker Architecture (CORBA) is structured to allow
integration of a wide variety of object systems. The motivation for some of the features
may not be apparent at first, but as we discuss the range of implementations, policies,
optimizations, and usages we expect to encompass, the value of the flexibility becomes

more clear.

Note —Changes from the CORBA Core RTF (ptc/98-07-05) have been incorporated

into this chapter.

Contents

This chapter contains the following sections.

Section Title Page
“Structure of an Object Request Broker” 2-2
“Example ORBs” 2-11
“Structure of a Client” 2-12
“Structure of an Object Implementation” 2-13
“Structure of an Object Adapter” 2-15
“CORBA Required Object Adapter” 2-17
“The Integration of Foreign Object Systems” 2-17

CORBAV2.3 June 1999

2-1

2.1 Structure of an Object Request Broker

Figure 2-1 shows a request being sent by a client to an object implementation. The
Client is the entity that wishes to perform an operation on the object and the Object
Implementation is the code and data that actually implements the object.

Client] @bject Implementation

ORB

2-2

Figure 2-1 A Request Being Sent Through the Object Request Broker

The ORB is responsible for all of the mechanisms required to find the object
implementation for the request, to prepare the object implementation to receive the
request, and to communicate the data making up the request. The interface the client
sees is completely independent of where the object is located, what programming
language it is implemented in, or any other aspect which is not reflected in the object’s
interface.

Figure 2-2 on page 2-3 shows the structure of an individual Object Request Broker
(ORB). The interfaces to the ORB are shown by striped boxes, and the arrows indicate
whether the ORB is called or performs an up-call across the interface.

CORBA V2.3 June 1999

Client Object Implementation
Dynamic IDL ORB Static IDL | | Dynamic Object
Invocation Stubs Interface Skeleton Skeleton Adapter

ORB Core

N Interface identical for all ORB implementations
iz There may be multiple object adapters
I There are stubs and a skeleton for each object type * Normal call interface

f Up-call interface

H

ORB-dependent interface

Figure 2-2 The Structure of Object Request Interfaces

To make a request, the Client can use the Dynamic Invocation interface (the same
interface independent of the target object’s interface) or an OMG IDL stub (the specific
stub depending on the interface of the target object). The Client can also directly
interact with the ORB for some functions.

The Object Implementation receives a request as an up-call either through the OMG
IDL generated skeleton or through a dynamic skeleton. The Object Implementation
may call the Object Adapter and the ORB while processing a request or at other times.

Definitions of the interfaces to objects can be defined in two ways. Interfaces can be
defined statically in an interface definition language, called the OMG Interface
Definition Language (OMG IDL). This language defines the types of objects according
to the operations that may be performed on them and the parameters to those
operations. Alternatively, or in addition, interfaces can be added to an Interface
Repository service; this service represents the components of an interface as objects,
permitting run-time access to these components. In any ORB implementation, the
Interface Definition Language (which may be extended beyond its definition in this
document) and the Interface Repository have equivalent expressive power.

CORBA V2.3 Structure of an Object Request Broker June 1999 2-3

2-4

The client performs a request by having access to an Object Reference for an object
and knowing the type of the object and the desired operation to be performed. The
client initiates the request by calling stub routines that are specific to the object or by
constructing the request dynamically (see Figure 2-3).

Client

Invocation

N Interface identical for all ORB implementations

I There are stubs and a skeleton for each object type
[] ORB-dependent interface

Figure 2-3 A Client Using the Stub or Dynamic Invocation Interface

The dynamic and stub interface for invoking a request satisfy the same request
semantics, and the receiver of the message cannot tell how the request was invoked.

The ORB locates the appropriate implementation code, transmits parameters, and
transfers control to the Object Implementation through an IDL skeleton or a dynamic
skeleton (see Figure 2-4 on page 2-5). Skeletons are specific to the interface and the
object adapter. In performing the request, the object implementation may obtain some
services from the ORB through the Object Adapter. When the request is complete,
control and output values are returned to the client.

CORBA V2.3 June 1999

Object Implementation

Static IDL | | Dynamic
Interface Skeleton Skeleton

Adapter

ORB Core

AMMMMMMY
I

H

Interface identical for all ORB implementations ? Up-call interface
There may be multiple object adapters
There are stubs and a skeleton for each object type ‘ Normal call interface

ORB-dependent interface
Figure 2-4 An Object Implementation Receiving a Request

The Object Implementation may choose which Object Adapter to use. This decision is
based on what kind of services the Object Implementation requires.

Figure 2-5 on page 2-6 shows how interface and implementation information is made
available to clients and object implementations. The interface is defined in OMG IDL
and/or in the Interface Repository; the definition is used to generate the client Stubs
and the object implementation Skeletons.

CORBA V2.3 Structure of an Object Request Broker June 1999 2-5

2-6

IDL

Definitions Installation

Implementation

Implementation
Interface Stubs Skeletons RePOSIt_Ory
Repository — .
Client Object Implementation

Figure 2-5 Interface and Implementation Repositories

The object implementation information is provided at installation time and is stored in
the Implementation Repository for use during request delivery.

2.1.1 Object Request Broker

In the architecture, the ORB is not required to be implemented as a single component,
but rather it is defined by its interfaces. Any ORB implementation that provides the
appropriate interface is acceptable. The interface is organized into three categories:

1. Operations that are the same for all ORB implementations
2. Operations that are specific to particular types of objects
3. Operations that are specific to particular styles of object implementations

Different ORBs may make quite different implementation choices, and, together with
the IDL compilers, repositories, and various Object Adapters, provide a set of services
to clients and implementations of objects that have different properties and qualities.

There may be multiple ORB implementations (also described as multiple ORBs) which
have different representations for object references and different means of performing
invocations. It may be possible for a client to simultaneously have access to two object

CORBA V2.3 June 1999

2

references managed by different ORB implementations. When two ORBs are intended
to work together, those ORBs must be able to distinguish their object references. It is
not the responsibility of the client to do so.

The ORB Core is that part of the ORB that provides the basic representation of objects
and communication of requests. CORBA is designed to support different object
mechanisms, and it does so by structuring the ORB with components above the ORB
Core, which provide interfaces that can mask the differences between ORB Cores.

2.1.2 Clients

A client of an object has access to an object reference for the object, and invokes
operations on the object. A client knows only the logical structure of the object
according to its interface and experiences the behavior of the object through
invocations. Although we will generally consider a client to be a program or process
initiating requests on an object, it is important to recognize that something is a client
relative to a particular object. For example, the implementation of one object may be a
client of other objects.

Clients generally see objects and ORB interfaces through the perspective of a language
mapping, bringing the ORB right up to the programmer’s level. Clients are maximally
portable and should be able to work without source changes on any ORB that supports
the desired language mapping with any object instance that implements the desired
interface. Clients have no knowledge of the implementation of the object, which object
adapter is used by the implementation, or which ORB is used to access it.

2.1.3 Object Implementations

An object implementation provides the semantics of the object, usually by defining
data for the object instance and code for the object’s methods. Often the
implementation will use other objects or additional software to implement the behavior
of the object. In some cases, the primary function of the object is to have side-effects
on other things that are not objects.

A variety of object implementations can be supported, including separate servers,
libraries, a program per method, an encapsulated application, an object-oriented
database, etc. Through the use of additional object adapters, it is possible to support
virtually any style of object implementation.

Generally, object implementations do not depend on the ORB or how the client invokes
the object. Object implementations may select interfaces to ORB-dependent services
by the choice of Object Adapter.

CORBA V2.3 Structure of an Object Request Broker June 1999 2-7

2.1.4 Object References

An Object Reference is the information needed to specify an object within an ORB.
Both clients and object implementations have an opaque notion of object references
according to the language mapping, and thus are insulated from the actual
representation of them. Two ORB implementations may differ in their choice of Object
Reference representations.

The representation of an object reference handed to a client is only valid for the
lifetime of that client.

All ORBs must provide the same language mapping to an object reference (usually
referred to as an Object) for a particular programming language. This permits a
program written in a particular language to access object references independent of the
particular ORB. The language mapping may also provide additional ways to access
object references in a typed way for the convenience of the programmer.

There is a distinguished object reference, guaranteed to be different from all object
references, that denotes no object.

2.1.5 OMG Interface Definition Language

The OMG Interface Definition Language (OMG IDL) defines the types of objects by
specifying their interfaces. An interface consists of a set of named operations and the
parameters to those operations. Note that although IDL provides the conceptual
framework for describing the objects manipulated by the ORB, it is not necessary for
there to be IDL source code available for the ORB to work. As long as the equivalent
information is available in the form of stub routines or a run-time interface repository,
a particular ORB may be able to function correctly.

IDL is the means by which a particular object implementation tells its potential clients
what operations are available and how they should be invoked. From the IDL
definitions, it is possible to map CORBA objects into particular programming
languages or object systems.

2.1.6 Mapping of OMG IDL to Programming Languages

Different object-oriented or non-object-oriented programming languages may prefer to
access CORBA objects in different ways. For object-oriented languages, it may be
desirable to see CORBA objects as programming language objects. Even for non-
object-oriented languages, it is a good idea to hide the exact ORB representation of the
object reference, method names, etc. A particular mapping of OMG IDL to a
programming language should be the same for all ORB implementations. Language
mapping includes definition of the language-specific data types and procedure
interfaces to access objects through the ORB. It includes the structure of the client stub
interface (not required for object-oriented languages), the dynamic invocation
interface, the implementation skeleton, the object adapters, and the direct ORB
interface.

CORBA V2.3 June 1999

2

A language mapping also defines the interaction between object invocations and the
threads of control in the client or implementation. The most common mappings
provide synchronous calls, in that the routine returns when the object operation
completes. Additional mappings may be provided to allow a call to be initiated and
control returned to the program. In such cases, additional language-specific routines
must be provided to synchronize the program’s threads of control with the object
invocation.

2.1.7 Client Stubs

For the mapping of a non-object-oriented language, there will be a programming
interface to the stubs for each interface type. Generally, the stubs will present access to
the OMG IDL-defined operations on an object in a way that is easy for programmers to
predict once they are familiar with OMG IDL and the language mapping for the
particular programming language. The stubs make calls on the rest of the ORB using
interfaces that are private to, and presumably optimized for, the particular ORB Core.
If more than one ORB is available, there may be different stubs corresponding to the
different ORBs. In this case, it is hecessary for the ORB and language mapping to
cooperate to associate the correct stubs with the particular object reference.

Object-oriented programming languages, such as C++ and Smalltalk, do not require
stub interfaces.

2.1.8 Dynamic Invocation Interface

An interface is also available that allows the dynamic construction of object
invocations, that is, rather than calling a stub routine that is specific to a particular
operation on a particular object, a client may specify the object to be invoked, the
operation to be performed, and the set of parameters for the operation through a call or
sequence of calls. The client code must supply information about the operation to be
performed and the types of the parameters being passed (perhaps obtaining it from an
Interface Repository or other run-time source). The nature of the dynamic invocation
interface may vary substantially from one programming language mapping to another.

2.1.9 Implementation Skeleton

For a particular language mapping, and possibly depending on the object adapter, there
will be an interface to the methods that implement each type of object. The interface
will generally be an up-call interface, in that the object implementation writes routines
that conform to the interface and the ORB calls them through the skeleton.

The existence of a skeleton does not imply the existence of a corresponding client stub
(clients can also make requests via the dynamic invocation interface).

It is possible to write an object adapter that does not use skeletons to invoke
implementation methods. For example, it may be possible to create implementations
dynamically for languages such as Smalltalk.

CORBA V2.3 Structure of an Object Request Broker June 1999 2-9

2-10

2.1.10 Dynamic Skeleton Interface

An interface is available which allows dynamic handling of object invocations. That is,
rather than being accessed through a skeleton that is specific to a particular operation,
an object’'s implementation is reached through an interface that provides access to the
operation name and parameters in a manner analogous to the client side’s Dynamic
Invocation Interface. Purely static knowledge of those parameters may be used, or
dynamic knowledge (perhaps determined through an Interface Repository) may be also
used, to determine the parameters.

The implementation code must provide descriptions of all the operation parameters to
the ORB, and the ORB provides the values of any input parameters for use in
performing the operation. The implementation code provides the values of any output
parameters, or an exception, to the ORB after performing the operation. The nature of
the dynamic skeleton interface may vary substantially from one programming language
mapping or object adapter to another, but will typically be an up-call interface.

Dynamic skeletons may be invoked both through client stubs and through the dynamic
invocation interface; either style of client request construction interface provides
identical results.

2.1.11 Object Adapters

An object adapter is the primary way that an object implementation accesses services
provided by the ORB. There are expected to be a few object adapters that will be
widely available, with interfaces that are appropriate for specific kinds of objects.
Services provided by the ORB through an Object Adapter often include: generation
and interpretation of object references, method invocation, security of interactions,
object and implementation activation and deactivation, mapping object references to
implementations, and registration of implementations.

The wide range of object granularities, lifetimes, policies, implementation styles, and
other properties make it difficult for the ORB Core to provide a single interface that is
convenient and efficient for all objects. Thus, through Object Adapters, it is possible
for the ORB to target particular groups of object implementations that have similar
requirements with interfaces tailored to them.

2.1.12 ORB Interface

The ORB Interface is the interface that goes directly to the ORB which is the same for
all ORBs and does not depend on the object’s interface or object adapter. Because mos
of the functionality of the ORB is provided through the object adapter, stubs, skeleton,
or dynamic invocation, there are only a few operations that are common across all
objects. These operations are useful to both clients and implementations of objects.

CORBA V2.3 June 1999

2.1.13 Interface Repository

The Interface Repository is a service that provides persistent objects that represent the
IDL information in a form available at run-time. The Interface Repository information
may be used by the ORB to perform requests. Moreover, using the information in the
Interface Repository, it is possible for a program to encounter an object whose
interface was not known when the program was compiled, yet, be able to determine
what operations are valid on the object and make an invocation on it.

In addition to its role in the functioning of the ORB, the Interface Repository is a
common place to store additional information associated with interfaces to ORB
objects. For example, debugging information, libraries of stubs or skeletons, routines
that can format or browse particular kinds of objects might be associated with the
Interface Repository.

2.1.14 Implementation Repository

The Implementation Repository contains information that allows the ORB to locate
and activate implementations of objects. Although most of the information in the
Implementation Repository is specific to an ORB or operating environment, the
Implementation Repository is the conventional place for recording such information.
Ordinarily, installation of implementations and control of policies related to the
activation and execution of object implementations is done through operations on the
Implementation Repository.

In addition to its role in the functioning of the ORB, the Implementation Repository is
a common place to store additional information associated with implementations of
ORB objects. For example, debugging information, administrative control, resource
allocation, security, etc., might be associated with the Implementation Repository.

2.2 Example ORBs

There are a wide variety of ORB implementations possible within the Common ORB
Architecture. This section will illustrate some of the different options. Note that a
particular ORB might support multiple options and protocols for communication.

2.2.1 Client- and Implementation-resident ORB

If there is a suitable communication mechanism present, an ORB can be implemented
in routines resident in the clients and implementations. The stubs in the client either
use a location-transparent IPC mechanism or directly access a location service to
establish communication with the implementations. Code linked with the
implementation is responsible for setting up appropriate databases for use by clients.

CORBAV2.3 Example ORBs June 1999 2-11

2.2.2 Server-based ORB

To centralize the management of the ORB, all clients and implementations can
communicate with one or more servers whose job it is to route requests from clients to
implementations. The ORB could be a normal program as far as the underlying
operating system is concerned, and normal IPC could be used to communicate with the
ORB.

2.2.3 System-based ORB

To enhance security, robustness, and performance, the ORB could be provided as a
basic service of the underlying operating system. Object references could be made
unforgeable, reducing the expense of authentication on each request. Because the
operating system could know the location and structure of clients and implementations,
it would be possible for a variety of optimizations to be implemented, for example,
avoiding marshalling when both are on the same machine.

2.2.4 Library-based ORB

For objects that are light-weight and whose implementations can be shared, the
implementation might actually be in a library. In this case, the stubs could be the actual
methods. This assumes that it is possible for a client program to get access to the dats
for the objects and that the implementation trusts the client not to damage the data.

2.3 Structure of a Client

A client of an object has an object reference that refers to that object. An object
reference is a token that may be invoked or passed as a parameter to an invocation or
a different object. Invocation of an object involves specifying the object to be invoked,
the operation to be performed, and parameters to be given to the operation or returned
from it.

The ORB manages the control transfer and data transfer to the object implementation
and back to the client. In the event that the ORB cannot complete the invocation, an
exception response is provided. Ordinarily, a client calls a routine in its program that
performs the invocation and returns when the operation is complete.

Clients access object-type-specific stubs as library routines in their program (see
Figure 2-6 on page 2-13). The client program thus sees routines callable in the normal
way in its programming language. All implementations will provide a language-
specific data type to use to refer to objects, often an opaque pointer. The client then
passes that object reference to the stub routines to initiate an invocation. The stubs

2-12 CORBA V2.3 June 1999

2

have access to the object reference representation and interact with the ORB to perform
the invocation. (See the C Language Mapping chapter for additional, general
information on language mapping of object references.)

r

Client Program)

Language-dependent object references

ORB object references

Dynamic Invocation Stubs for Stubs for
Interface Interface A Interface B

\

Y,

Figure 2-6 The Structure of a Typical Client

An alternative set of library code is available to perform invocations on objects, for
example when the object was not defined at compile time. In that case, the client
program provides additional information to name the type of the object and the method
being invoked, and performs a sequence of calls to specify the parameters and initiate
the invocation.

Clients most commonly obtain object references by receiving them as output
parameters from invocations on other objects for which they have references. When a
client is also an implementation, it receives object references as input parameters on
invocations to objects it implements. An object reference can also be converted to a
string that can be stored in files or preserved or communicated by different means and
subsequently turned back into an object reference by the ORB that produced the string

2.4 Structure of an Object Implementation

An object implementation provides the actual state and behavior of an object. The
object implementation can be structured in a variety of ways. Besides defining the
methods for the operations themselves, an implementation will usually define

CORBA V2.3 Structure of an Object Implementation June 1999 2-13

2-14

procedures for activating and deactivating objects and will use other objects or non-
object facilities to make the object state persistent, to control access to the object, as
well as to implement the methods.

The object implementation (see Figure 2-7) interacts with the ORB in a variety of ways
to establish its identity, to create new objects, and to obtain ORB-dependent services. It
primarily does this via access to an Object Adapter, which provides an interface to
ORB services that is convenient for a particular style of object implementation.

Object Implementation

Methods for
Interface A

© Object data

Skeleton for
Interface A

Dynamic Object adapter
Skeleton routines

J

Figure 2-7 The Structure of a Typical Object Implementatio

Because of the range of possible object implementations, it is difficult to be definitive
about how an object implementation is structured. See the chapters on the Portable
Object Adapter.

When an invocation occurs, the ORB Core, object adapter, and skeleton arrange that a
call is made to the appropriate method of the implementation. A parameter to that
method specifies the object being invoked, which the method can use to locate the data
for the object. Additional parameters are supplied according to the skeleton definition.
When the method is complete, it returns, causing output parameters or exception
results to be transmitted back to the client.

CORBA V2.3 June 1999

2

When a new object is created, the ORB may be notified so that it knows where to find
the implementation for that object. Usually, the implementation also registers itself as
implementing objects of a particular interface, and specifies how to start up the
implementation if it is not already running.

Most object implementations provide their behavior using facilities in addition to the
ORB and object adapter. For example, although the Portable Object Adapter provides
some persistent data associated with an object (its OID or Object ID), that relatively
small amount of data is typically used as an identifier for the actual object data stored
in a storage service of the object implementation’s choosing. With this structure, it is
not only possible for different object implementations to use the same storage service,
it is also possible for objects to choose the service that is most appropriate for them.

2.5 Structure of an Object Adapter

An object adapter (see Figure 2-8 on page 2-16) is the primary means for an object
implementation to access ORB services such as object reference generation. An object
adapter exports a public interface to the object implementation, and a private interface
to the skeleton. It is built on a private ORB-dependent interface.

Object adapters are responsible for the following functions:

® Generation and interpretation of object references

® Method invocation

® Security of interactions

® Object and implementation activation and deactivation

® Mapping object references to the corresponding object implementations

® Registration of implementations
These functions are performed using the ORB Core and any additional components
necessary. Often, an object adapter will maintain its own state to accomplish its tasks.

It may be possible for a particular object adapter to delegate one or more of its
responsibilities to the Core upon which it is constructed.

CORBA V2.3 Structure of an Object Adapter June 1999 2-15

2-16

N\

Object Implementation

Interface A Interface B

Methods Methods

Dynamic Interface A Interface B Obiect
Skeleton Skeleton JeC
Skeleton Adapter
Interface
ORB Core

Figure 2-8 The Structure of a Typical Object Adapte

As shown in Figure 2-8, the Object Adapter is implicitly involved in invocation of the
methods, although the direct interface is through the skeletons. For example, the Object
Adapter may be involved in activating the implementation or authenticating the
request.

The Object Adapter defines most of the services from the ORB that the Object
Implementation can depend on. Different ORBs will provide different levels of service
and different operating environments may provide some properties implicitly and
require others to be added by the Object Adapter. For example, it is common for
Object Implementations to want to store certain values in the object reference for easy
identification of the object on an invocation. If the Object Adapter allows the
implementation to specify such values when a new object is created, it may be able to
store them in the object reference for those ORBs that permit it. If the ORB Core does
not provide this feature, the Object Adapter would record the value in its own storage
and provide it to the implementation on an invocation. With Object Adapters, it is
possible for an Object Implementation to have access to a service whether or not it is
implemented in the ORB Core—if the ORB Core provides it, the adapter simply
provides an interface to it; if not, the adapter must implement it on top of the ORB
Core. Every instance of a particular adapter must provide the same interface and
service for all the ORBs it is implemented on.

It is also not necessary for all Object Adapters to provide the same interface or
functionality. Some Object Implementations have special requirements. For example,
an object-oriented database system may wish to implicitly register its many thousands
of objects without doing individual calls to the Object Adapter. In such a case, it would

CORBA V2.3 June 1999

2

be impractical and unnecessary for the object adapter to maintain any per-object state.
By using an object adapter interface that is tuned towards such object implementations,
it is possible to take advantage of particular ORB Core details to provide the most
effective access to the ORB.

2.6 CORBA Required Object Adapter

There are a variety of possible object adapters; however, since the object adapter
interface is something that object implementations depend on, it is desirable that there
be as few as practical. Most object adapters are designed to cover a range of object
implementations, so only when an implementation requires radically different services
or interfaces should a new object adapter be considered. In this section, we briefly
describe the object adapter defined in this specification.

2.6.1 Portable Object Adapter

This specification defines a Portable Object Adapter that can be used for most ORB
objects with conventional implementations. (See the Portable Object Adapter chapter
for more information.) The intent of the POA, as its hame suggests, is to provide an
Object Adapter that can be used with multiple ORBs with a minimum of rewriting
needed to deal with different vendors’ implementations.

This specification allows several ways of using servers but it does not deal with the
administrative issues of starting server programs. Once started, however, there can be a
servant started and ended for a single method call, a separate servant for each object, o
a shared servant for all instances of the object type. It allows for groups of objects to be
associated by means of being registered with different instances of the POA object and
allows implementations to specify their own activation techniques. If the
implementation is not active when an invocation is performed, the POA will start one.
The POA is specified in IDL, so its mapping to languages is largely automatic,
following the language mapping rules. (The primary task left for a language mapping
is the definition of the Servant type.)

2.7 The Integration of Foreign Object Systems

The Common ORB Architecture is designed to allow interoperation with a wide range
of object systems (see Figure 2-9 on page 2-18). Because there are many existing
object systems, a common desire will be to allow the objects in those systems to be
accessible via the ORB. For those object systems that are ORBs themselves, they may
be connected to other ORBs through the mechanisms described throughout this
manual.

CORBA V2.3 CORBA Required Object Adapter June 1999 2-17

2-18

Object system as Object system as
~aPOA object an implementation
implementation ith a special-purpose

object adapter

Portable Object Special-purpose
Adapter Adapter
Object system as
ORB Core another ORB
interoperating via a
gateway

Gateway

Figure 2-9 Different Ways to Integrate Foreign Object Systems

For object systems that simply want to map their objects into ORB objects and receive
invocations through the ORB, one approach is to have those object systems appear to
be implementations of the corresponding ORB objects. The object system would
register its objects with the ORB and handle incoming requests, and could act like a
client and perform outgoing requests.

In some cases, it will be impractical for another object system to act like a POA object
implementation. An object adapter could be designed for objects that are created in
conjunction with the ORB and that are primarily invoked through the ORB. Another
object system may wish to create objects without consulting the ORB, and might
expect most invocations to occur within itself rather than through the ORB. In such a
case, a more appropriate object adapter might allow objects to be implicitly registered
when they are passed through the ORB.

CORBA V2.3 June 1999

OMG IDL Syntax and Semantics 3

This chapter has been updated based on CORE changes from ptc/98-09-04 and the
Objects by Value documents (ptc/98-07-05 and orbos/98-01-18). This chapter describes
OMG Interface Definition Language (IDL) semantics and gives the syntax for OMG
IDL grammatical constructs.

Contents

This chapter contains the following sections.

Section Title Page
“Overview” 3-2
“Lexical Conventions” 3-3
“Preprocessing” 3-12
“OMG IDL Grammar” 3-12
“OMG IDL Specification” 3-17
“Module Declaration” 3-17
“Interface Declaration” 3-18
“Value Declaration” 3-23
“Constant Declaration” 3-28
“Type Declaration” 3-31
“Exception Declaration” 3-40
“Operation Declaration” 3-41
“Attribute Declaration” 3-43

CORBAV2.3 June 1999 3-1

3-2

3.1 Overview

Section Title Page
“CORBA Module” 3-44

“Names and Scoping” 3-45
“Differences from C++” 3-51
“Standard Exceptions” 3-51

The OMG Interface Definition Language (IDL) is the language used to describe the
interfaces that client objects call and object implementations provide. An interface
definition written in OMG IDL completely defines the interface and fully specifies
each operation’s parameters. An OMG IDL interface provides the information needed
to develop clients that use the interface’s operations.

Clients are not written in OMG IDL, which is purely a descriptive language, but in
languages for which mappings from OMG IDL concepts have been defined. The
mapping of an OMG IDL concept to a client language construct will depend on the
facilities available in the client language. For example, an OMG IDL exception might
be mapped to a structure in a language that has no notion of exception, or to an
exception in a language that does. The binding of OMG IDL concepts to several
programming languages is described in this manual.

OMG IDL obeys the same lexical rules as G+although new keywords are

introduced to support distribution concepts. It also provides full support for standard
C++ preprocessing features. The OMG IDL specification is expected to track relevant
changes to C++ introduced by the ANSI standardization effort.

The description of OMG IDL's lexical conventions is presented in Section 3.2, “Lexical
Conventions,” on page 3-3. A description of OMG IDL preprocessing is presented in
Section 3.3, “Preprocessing,” on page 3-12. The scope rules for identifiers in an OMG
IDL specification are described in Section 3.14, “CORBA Module,” on page 3-44.

The OMG IDL grammar is a subset of the proposed ANSI C++ standard, with
additional constructs to support the operation invocation mechanism. OMG IDL is a
declarative language. It supports C++ syntax for constant, type, and operation
declarations; it does not include any algorithmic structures or variables. The grammar
is presented in Section 3.4, “OMG IDL Grammar,” on page 3-12.

OMG IDL-specific pragmas (those not defined for C++) may appear anywhere in a
specification; the textual location of these pragmas may be semantically constrained by
a particular implementation.

1. Ellis, Margaret A. and Bjarne Stroustrdde Annotated C++ Reference Manuadid-
ison-Wesley Publishing Company, Reading, Massachusetts, 1990, ISBN 0-201-51459-1

CORBA V2.3 Overview June 1999

3

A source file containing interface specifications written in OMG IDL must have an
“.idl” extension. The file orb.idl contains OMG IDL type definitions and is available on
every ORB implementation.

The description of OMG IDL grammar uses a syntax notation that is similar to
Extended Backus-Naur Format (EBNF). Table 3-1 lists the symbols used in this format
and their meaning.

Table 3-1 IDL EBNF

Symbol Meaning

u= Is defined to be

| Alternatively

<text> Nonterminal

“text” Literal

* The preceding syntactic unit can be repeated zero or more times

+ The preceding syntactic unit can be repeated one or more times

{ The enclosed syntactic units are grouped as a single syntactic unit
1 The enclosed syntactic unit is optional—may occur zero or one time

3.2 Lexical Conventions

This sectioR presents the lexical conventions of OMG IDL. It defines tokens in an
OMG IDL specification and describes comments, identifiers, keywords, and
literals—integer, character, and floating point constants and string literals.

An OMG IDL specification logically consists of one or more files. A file is
conceptually translated in several phases.

The first phase is preprocessing, which performs file inclusion and macro substitution.
Preprocessing is controlled by directives introduced by lines having # as the first
character other than white space. The result of preprocessing is a sequence of tokens.
Such a sequence of tokens, that is, a file after preprocessing, is called a translation unit

OMG IDL uses the ASCII character set, except for string literals and character literals,
which use the ISO Latin-1 (8859.1) character set. The ISO Latin-1 character set is
divided into alphabetic characters (letters) digits, graphic characters, the space (blank)

2. This section is an adaptationTdie Annotated C++ Reference Manu@hapter 2; it
differs in the list of legal keywords and punctuation.

CORBA V2.3 Lexical Conventions June 1999 3-3

character, and formatting characters. Table 3-2 shows the ISO Latin-1 alphabetic
characters; upper and lower case equivalences are paired. The ASCII alphabetic

characters are shown in the left-hand column of Table 3-2.

Table 3-2 The 114 Alphabetic Characters (Letters)

Char. | Description Char. Description
Aa Upper/Lower-case A Aa Upper/Lower-case A with grave accent
Bb Upper/Lower-case B Aa Upper/Lower-case A with acute accent
Cc Upper/Lower-case C Aa Upper/Lower-case A with circumflex accent
Dd Upper/Lower-case D Aa Upper/Lower-case A with tilde
Ee Upper/Lower-case E Aa Upper/Lower-case A with diaeresis
Ff Upper/Lower-case F Aa Upper/Lower-case A with ring above
Gg Upper/Lower-case G fExe Upper/Lower-case dipthong A with E
Hh Upper/Lower-case H Cc Upper/Lower-case C with cedilla
li Upper/Lower-case | Ee Upper/Lower-case E with grave accent
Jj Upper/Lower-case J Eé Upper/Lower-case E with acute accent
Kk Upper/Lower-case K Eé Upper/Lower-case E with circumflex accent
LI Upper/Lower-case L Ee Upper/Lower-case E with diaeresis
Mm Upper/Lower-case M 0 Upper/Lower-case | with grave accent
Nn Upper/Lower-case N ii Upper/Lower-case | with acute accent
Oo Upper/Lower-case O h Upper/Lower-case | with circumflex accent
Pp Upper/Lower-case P Ti Upper/Lower-case | with diaeresis
Qq Upper/Lower-case Q \[j Upper/Lower-case N with tilde
Rr Upper/Lower-case R 0o Upper/Lower-case O with grave accent
Ss Upper/Lower-case S (o)) Upper/Lower-case O with acute accent
Tt Upper/Lower-case T (o)s] Upper/Lower-case O with circumflex accent
Uu Upper/Lower-case U (o)} Upper/Lower-case O with tilde
Vv Upper/Lower-case V 06 Upper/Lower-case O with diaeresis
Ww Upper/Lower-case W 0] Upper/Lower-case O with oblique stroke
XX Upper/Lower-case X Uu Upper/Lower-case U with grave accent
Yy Upper/Lower-case Y Ua Upper/Lower-case U with acute accent
Zz Upper/Lower-case Z Ga Upper/Lower-case U with circumflex accent
Ui Upper/Lower-case U with diaeresis
) Lower-case German sharp S
y Lower-case Y with diaeresis

Table 3-3 lists the decimal digit characters.

Table 3-3 Decimal Digits
0123456789

CORBAV2.3

Lexical Conventions

June 1999

Table 3-4 shows the graphic characters.

Table 3-4 The 65 Graphic Characters

Char. | Description Char. Description
! exclamation point i inverted exclamation mark
" double quote ¢ cent sign
number sign £ pound sign
$ dollar sign a currency sign
% percent sign ¥ yen sign
& ampersand broken bar
’ apostrophe § section/paragraph sign
(left parenthesis " diaeresis
) right parenthesis © copyright sign
* asterisk a feminine ordinal indicator
+ plus sign « left angle quotation mark
, comma - not sign
- hyphen, minus sign soft hyphen
period, full stop ® registered trade mark sign
/ solidus B macron
colon ° ring above, degree sign
; semicolon + plus-minus sign
< less-than sign 2 superscript two
= equals sign 3 superscript three
greater-than sign acute
? question mark V] micro
@ commercial at 1 pilcrow
[left square bracket . middle dot
\ reverse solidus s cedilla
] right square bracket 1 superscript one
N circumflex ° masculine ordinal indicator
_ low line, underscore » right angle quotation mark
‘ grave vulgar fraction 1/4
{ left curly bracket vulgar fraction 1/2
| vertical line vulgar fraction 3/4
} right curly bracket é inverted question mark
~ tilde multiplication sign
+ division sign
CORBA V2.3 Lexical Conventions June 1999

3-5

The formatting characters are shown in Table 3-5.

Table 3-5 The Formatting Characters

Description Abbreviation IS0 646 Octal Value
alert BEL 007
backspace BS 010
horizontal tab HT 011
newline NL, LF 012
vertical tab VT 013
form feed FF 014
carriage return CR 015
3.2.1 Tokens

There are five kinds of tokens: identifiers, keywords, literals, operators, and other
separators. Blanks, horizontal and vertical tabs, newlines, formfeeds, and comments
(collective, “white space”), as described below, are ignored except as they serve to
separate tokens. Some white space is required to separate otherwise adjacent
identifiers, keywords, and constants.

If the input stream has been parsed into tokens up to a given character, the next token
is taken to be the longest string of characters that could possibly constitute a token.

3.2.2 Comments

The characters /* start a comment, which terminates with the characters */. These
comments do not nest. The characters // start a comment, which terminates at the end
of the line on which they occur. The comment characters //, /*, and */ have no special
meaning within a // comment and are treated just like other characters. Similarly, the
comment characters // and /* have no special meaning within a /* comment. Comments
may contain alphabetic, digit, graphic, space, horizontal tab, vertical tab, form feed,
and newline characters.

3.2.3 ldentifiers

An identifier is an arbitrarily long sequence of ASCII alphabetic, digit, and underscore
(*_") characters. The first character must be an ASCII alphabetic character. All
characters are significant.

When comparing two identifiers to see if they collide:

» Upper- and lower-case letters are treated as the same letter. Table 3-2 on page 3-4
defines the equivalence mapping of upper- and lower-case letters.

« All characters are significant.

Identifiers that differ only in case collide, and will yield a compilation error under
certain circumstances. An identifier for a given definition must be spelled identically
(e.g., with respect to case) throughout a specification.

CORBA V2.3 Lexical Conventions June 1999

3

There is only one namespace for OMG IDL identifiers in each scope. Using the same
identifier for a constant and an interface, for example, produces a compilation error.

For example:

module M {
typedef long Foo;
const long thing = 1;

interface thing { /I error: reuse of identifier
void doit (
in Foo foo Il error: Foo and foo collide and refer to

different things
)i

readonly attribute long Attribute; // error: Attribute collides with
keyword attribute
h
h

3.2.3.1 Escaped Identifiers

As IDL evolves, new keywords that are added to the IDL language may inadvertently
collide with identifiers used in existing IDL and programs that use that IDL. Fixing
these collisions will require not only the IDL to be modified, but programming
language code that depends upon that IDL will have to change as well. The language
mapping rules for the renamed IDL identifiers will cause the mapped identifier names
(e.g., method names) to be changed.

To minimize the amount of work, users may lexically “escape” identifiers by
prepending an underscore (_) to an identifier. This is a purely lexical convention which
ONLY turns off keyword checking. The resulting identifier follows all the other rules
for identifier processing. For example, the identifiémldentifier is treated as if it

were Anldentifier .

The following is a non-exclusive list of implications of these rules:
» The underscore does not appear in the Interface Repository.
* The underscore is not used in the DIl and DSI.
» The underscore is not transmitted over “the wire.”

» Case sensitivity rules are applied to the identifier after stripping off the leading
underscore.

For example:

CORBA V2.3 Lexical Conventions June 1999 3-7

3-8

module M {
interface thing {
attribute boolean abstract; /I error: abstract collides with
/I keyword abstract
attribute boolean _abstract; // ok: abstract is an identifier
h
h

To avoid unnecessary confusion for readers of IDL, it is recommended that interfaces
only use the escaped form of identifiers when the unescaped form clashes with a newly
introduced IDL keyword. It is also recommended that interface designers avoid
defining new identifiers that are known to require escaping. Escaped literals are only
recommended for IDL that expresses legacy interface, or for IDL that is mechanically
generated.

3.2.4 Keywords

The identifiers listed in Table 3-6 are reserved for use as keywords and may not be
used otherwise, unless escaped with a leading underscore

Table 3-6 Keywords

abstract double long readonly unsigned
any enum module sequence union
attribute exception native short ValueBase
boolean factory Object string valuetype
case FALSE octet struct void

char fixed oneway supports wchar
const float out switch wstring
context in private TRUE

custom inout public truncatable

default interface raises typedef

Keywords must be written exactly as shown in the above list. Identifiers that collide
with keywords (see Section 3.2.3, “Identifiers,” on page 3-6) are illegal. For example,
“boolean " is a valid keyword; Boolean ” and “BOOLEAN" are illegal identifiers.

For example:

module M {
typedef Long Foo;
typedef boolean BOOLEAN;

/l Error: keyword is long not Long
Il Error: BOOLEAN collides with
Il the keyword boolean;

CORBA V2.3 Lexical Conventions June 1999

3

OMG IDL specifications use the characters shown in Table 3-7 as punctuation.

Table 3-7 Punctuation Characters
{ } : ; = + - () < > []
" \ [A & * / % ~

In addition, the tokens listed in Table 3-8 are used by the preprocessor.

Table 3-8 Preprocessor Tokens

#eoo| I &&
3.2.5 Literals
This section describes the following literals:
* Integer

» Character

* Floating-point
 String
 Fixed-point

3.2.5.1 Integer Literals

An integer literal consisting of a sequence of digits is taken to be decimal (base ten)
unless it begins with O (digit zero). A sequence of digits starting with O is taken to be
an octal integer (base eight). The digits 8 and 9 are not octal digits. A sequence of
digits preceded by Ox or OX is taken to be a hexadecimal integer (base sixteen). The
hexadecimal digits include a or A through f or F with decimal values ten through
fifteen, respectively. For example, the number twelve can be written 12, 014, or 0XC.

3.2.5.2 Character Literals

A character literal is one or more characters enclosed in single quotes, as in 'X'.
Character literals have tymphar.

A character is an 8-bit quantity with a numerical value between 0 and 255 (decimal).
The value of a space, alphabetic, digit, or graphic character literal is the numerical
value of the character as defined in the ISO Latin-1 (8859.1) character set standard
(See Table 3-2 on page 3-4, Table 3-3 on page 3-4, and Table 3-4 on page 3-5). The
value of a null is 0. The value of a formatting character literal is the numerical value of
the character as defined in the ISO 646 standard (see Table 3-5 on page 3-6). The
meaning of all other characters is implementation-dependent.

CORBA V2.3 Lexical Conventions June 1999 3-9

3-10

Nongraphic characters must be represented using escape sequences as defined below
Table 3-9. Note that escape sequences must be used to represent single quote and
backslash characters in character literals.

Table 3-9 Escape Sequences

Description Escape Sequence
newline \n
horizontal tab \t
vertical tab \v
backspace \b
carriage return \r
form feed \f
alert \a
backslash \\
question mark \?
single quote \
double quote \"
octal number \ooo
hexadecimal \xhh
number

unicode \uhhhh
character

If the character following a backslash is not one of those specified, the behavior is
undefined. An escape sequence specifies a single character.

The escape \ooo consists of the backslash followed by one, two, or three octal digits
that are taken to specify the value of the desired character. The escape \xhh consists o
the backslash followed by x followed by one or two hexadecimal digits that are taken
to specify the value of the desired character.

The escape \uhhhh consists of a backslash followed by the character ‘u’, followed by
one, two, three or four hexadecimal digits. This represents a unicode character literal.
Thus the literal “\uOO2E" represents the unicode period ‘.’ character and the literal
“\u3BC” represents the unicode greek small letter ‘mu’. The \u escape is valid only
with wchar and wstring types. Since wide string literal is defined as a sequence of wide
character literals a sequence of \u literals can be used to define a wide string literal.
Attempt to set a char type to a \u defined literal or a string type to a sequence of \u
literals result in an error.

A sequence of octal or hexadecimal digits is terminated by the first character that is not
an octal digit or a hexadecimal digit, respectively. The value of a character constant is
implementation dependent if it exceeds that of the largest char.

Wide character literals have anprefix, for example:

CORBA V2.3 Lexical Conventions June 1999

const wchar C1 = L'X";

Attempts to assign a wide character literal to a non-wide character constant or to assign
a non-wide character literal to a wide character constant result in a compile-time
diagnostic.

Both wide and non-wide character literals must be specified using characters from the
ISO 8859-1 character set.

3.2.5.3 Floating-point Literals

A floating-point literal consists of an integer part, a decimal point, a fraction part, an e
or E, and an optionally signed integer exponent. The integer and fraction parts both
consist of a sequence of decimal (base ten) digits. Either the integer part or the fraction
part (but not both) may be missing; either the decimal point or the letter e (or E) and
the exponent (but not both) may be missing.

3.2.5.4 String Literals

A string literal is a sequence of characters (as defined in Section 3.2.5.2, “Character
Literals,” on page 3-9) surrounded by double quotes, as in "...".

Adjacent string literals are concatenated. Characters in concatenated strings are kept
distinct. For example,

"\XA" "B"

contains the two characters "\xA' and 'B' after concatenation (and not the single
hexadecimal character "\xAB").

The size of a string literal is the number of character literals enclosed by the quotes,
after concatenation. The size of the literal is associated with the literal. Within a string,
the double quote characteémust be preceded by a \.

A string literal may not contain the character \0'.

Wide string literals have an L prefix, for example:

const wstring S1 = L"Hello";

Attempts to assign a wide string literal to a non-wide string constant or to assign a
non-wide string literal to a wide string constant result in a compile-time diagnostic.

Both wide and non-wide string literals must be specified using characters from the 1ISO
8859-1 character set.

A wide string literal shall not contain the wide character with value zero.

CORBA V2.3 Lexical Conventions June 1999 3-11

3.3 Preprocessing

3.2.5.5 Fixed-Point Literals

A fixed-point decimal literal consists of an integer part, a decimal point, a fraction part
and a d or D. The integer and fraction parts both consist of a sequence of decimal (base
10) digits. Either the integer part or the fraction part (but not both) may be missing; the
decimal point (but not the letter d (or D)) may be missing.

OMG IDL preprocessing, which is based on ANSI C++ preprocessing, provides macro
substitution, conditional compilation, and source file inclusion. In addition, directives
are provided to control line numbering in diagnostics and for symbolic debugging, to
generate a diagnostic message with a given token sequence, and to perform
implementation-dependent actions (#magma directive). Certain predefined names
are available. These facilities are conceptually handled by a preprocessor, which may
or may not actually be implemented as a separate process.

Lines beginning with # (also called “directives”) communicate with this preprocessor.
White space may appear before the #. These lines have syntax independent of the res
of OMG IDL; they may appear anywhere and have effects that last (independent of the
OMG IDL scoping rules) until the end of the translation unit. The textual location of
OMG IDL-specific pragmas may be semantically constrained.

A preprocessing directive (or any line) may be continued on the next line in a source
file by placing a backslash character (“\"), immediately before the newline at the end
of the line to be continued. The preprocessor effects the continuation by deleting the
backslash and the newline before the input sequence is divided into tokens. A
backslash character may not be the last character in a source file.

A preprocessing token is an OMG IDL token (see Section 3.2.1, “Tokens,” on
page 3-6), a file name as intnclude directive, or any single character other than
white space that does not match another preprocessing token.

The primary use of the preprocessing facilities is to include definitions from other
OMG IDL specifications. Text in files included with#nclude directive is treated as
if it appeared in the including file. A complete description of the preprocessing
facilities may be found iThe Annotated C++ Reference Manud@he #pragma
directive that is used to include Repositorylds is described in Section 10.6,
“Repositorylds,” on page 10-39.

3.4 OMG IDL Grammar

3-12

1)
2

®)

<specification> ::= <definition>
<definition> <type_dcl> u;n
<const_dcl>*}"

|

| <except_dcl>*;"
| <interface>*;"

| <module>*”

| <value>*“;”

<module> := “module” <identifier> “{* <definition> e

CORBA V2.3 Preprocessing June 1999

4) <interface> := <interface_dcl>
| <forward_dcl>
(5) <interface_dcl> := <interface header> “{" <interface body> “}"
(6) <forward_dcl> := [“abstract’] “interface” <identifier>
@) <interface_header> ::= [“abstract”] “interface” <identifier>
[<interface_inheritance_spec> |
(8) <interface_body> := <export> *
9) <export> := <type_dcl>*}"
| <const_dcl>*"
| <except_dcl>*;"
| <attr_dcl>*"
| <op_dcl>*"
(10)<interface_inheritance_spec>::=":" <interface_name>
{“” <interface_name>} "
(11) <interface_name> := <scoped_name>
(12) <scoped_name> := <identifier>
| “" <identifier>
| <scoped_name> “:” <identifier>
(13) <value> := (<value_dcl> | <value_abs_dcl> |
<value_box_dcl>| <value_forward_dcl>)
(14) <value_forward_dcl> ::= [“abstract’] “valuetype” <identifier>
(15) <value_box_dcl> := “valuetype” <identifier> <type spec>
(16) <value_abs_dcl> := “abstract” “valuetype” <identifier>

[<value_inheritance_spec>]
u{u <eXpOI‘t>* u}n

an <value_dcl> := <value_header>“{* <value_element>* “}"
(18) <value_header> := [‘custom”] “valuetype” <identifier>

[<value_inheritance_spec>]
(19)<value_inheritance_spec> ::= [“"[“truncatable”] <value_name>

{",” <value_name>}]
[“supports” <interface_name>
{",” <interface_name> }*]

(20) <value_name> := <scoped_name>
(21) <value_element> := <export> | < state_member> | <init_dcl>
(22) <state_member> ::= (“public” | “private”)
<type_spec> <declarators> “;"
(23) <init_dcl> ::= “factory” <identifier>
“(* [<init_param_decls>] “)"*"
(24) <init_param_decls> := <init_param_decl> {"“,” <init_param_decl> }
(25) <init_param_decl> ::= <init_param_attribute> <param_type_spec>
<simple_declarator>
(26) <init_param_attribute> := "in”
27) <const_dcl> := <const_dcl>::=“const” <const_type>

<identifier> “=" <const_exp>
= <integer_type>

| <char_type>

| <wide_char_type>

(28) <const_type>

CORBA V2.3 OMG IDL Grammar June 1999 3-13

(29)
(30)

(1)
(32)

(33)

(34)

(39)

(36)

(37)

(38)

(39)

(40)

(41)
(42)

3-14

CORBAV2.3

<const_exp>
<or_expr>

<Xxor_expr>
<and_expr>

<shift_expr>

<add_expr>

<mult_expr>

<unary_expr>

<unary_operator>

<primary_expr>

<literal>

<boolean_literal>

<positive_int_const>
<type_dcl>

<boolean_type>
<floating_pt_type>
<string_type>
<wide_string_type>
<fixed_pt_const_type>
<scoped_name>
<octet_type>

= <or_expr>
= <xor_expr>

<or_expr> “|" <xor_expr>

= <and_expr>

<xor_expr>“*" <and_expr>

= <shift_expr>

<and_expr> “&" <shift_expr>

= <add_expr>

<shift_expr> “>>" <add_expr>
<shift_expr> “<<” <add_expr>

= <mult_expr>

<add_expr> “+" <mult_expr>
<add_expr> “-" <mult_expr>

= <unary_expr>

|
| H+H
|

I
I
I
I
| <fixed_pt_literal>
|
I

<mult_expr> “*" <unary_expr>
<mult_expr>“/" <unary_expr>
<mult_expr> “%" <unary_expr>
<unary_operator> <primary_expr>
<primary_expr>

“__n

:= <scoped_name>

<literal>
“ (H <C0nst_exp> H)H

= <integer_literal>

<string_literal>
<wide_string_literal>
<character_literal>
<wide_character_literal>

<floating_pt_literal>

<boolean_literal>
“TRUE”

“FALSE”

<const_exp>

= “typedef” <type_declarator>

<struct_type>
<union_type>
<enum_type>
“native” <simple_declarator>

OMG IDL Grammar June 1999

(43) <type_declarator> := <type_ spec> <declarators>
(44) <type_spec> := <simple_type_spec>
<constr_type_spec>
<base_type_spec>
<template_type_spec>
<scoped_name>

(46) <base_type spec> := <floating_pt_type>
<integer_type>
<char_type>
<wide_char_type>
<boolean_type>
<octet_type>
<any_type>
<object_type>
<value_base_type>
<sequence_type>
<string_type>
<wide_string_type>
<fixed_pt_type>

(45) <simple_type_spec>

(47) <template_type spec>

(48) <constr_type_spec> <struct_type>
<union_type>
<enum_type>

(49) <declarators> := <declarator> {“,” <declarator> }

(50) <declarator> ::= <simple_declarator>

| <complex_declarator>

(51) <simple_declarator> ::= <identifier>

(52) <complex_declarator> := <array_declarator>

(53) <floating_pt_type> := “float”

| “double”
| “long” “double”
(54) <integer_type> := <signed_int>
| <unsigned_int>
(55) <signed_int> ::= <signed_short_int>
| <signed_long_int>
| <signed_longlong_int>

(56) <signed_short_int> ::= “short”

(57) <signed_long_int> := “long”

(58) <signed_longlong_int> ::= “long” “long”

(59) <unsigned_int> <unsigned_short_int>

<unsigned_longlong_int>

| <unsigned_long_int>
|
= “unsigned” “short”

(60) <unsigned_short_int>

” o«

(61) <unsigned_long_int> ::= “unsigned” “long”

(62) <unsigned_longlong_int> ::= “unsigned” “long” “long”
(63) <char_type> := “char”

(64) <wide_char_type> := “wchar”

(65) <boolean_type> ::= “boolean”

CORBA V2.3 OMG IDL Grammar June 1999

O

3-15

3-16

(66)
(67)
(68)
(69)
(70)
(71)
(72)

(73)

(74)
(75)
(76)

(77)
(78)

(79)
(80)
(81)
(82)
(83)

(84)
(85)

(86)
(87)

(88)
(89)
(90)
(91)

(92)

<octet_type> := “octet”
<any_type> := “any’
<object_type> := “Object”
<struct_type> := “struct” <identifier> “{” <member_list> “}"
<member_list> ::= <member> *
<member> := <type_spec> <declarators>*;"
<union_type> := “union” <identifier> “switch”

<switch_type_spec>

<switch_body> <case>
<case> 1= <case_label> * <element_spec> “;"
<case_label> := “case” <const_exp>""
| “default” *:”
<element_spec> := <type_spec> <declarator>

<enum_type>

<sequence_type> := “sequence” “<” <simple_type_spec>

|
<string_type> := “string” “<” <positive_int_const> “>"

| “string”

<wide_string_type> := “wstring” “<” <positive_int_const> “>"
| “wstring”

<array_declarator> := <identifier> <fixed_array_size>

<fixed_array_size> := “[” <positive_int_const> “]"

<attr_dcl> = [“readonly”] “attribute”

<op_attribute> ::= “oneway”
<op_type_spec> := <param_type_spec>
| “void”
<parameter_dcls> := “(" <param_dcl> {"“,” <param_dcl>}
|
<param_dcl> := <param_attribute> <param_type_spec>
<simple_declarator>
<param_attribute> := “in”
CORBA V2.3 OMG IDL Grammar June 1999

“(" <switch_type_spec>*“)”
‘" <switch_body> “}"

<integer_type>
<char_type>
<boolean_type>
<enum_type>
<scoped_nhame>

+

= “enum” <identifier>

“{” <enumerator> {
<enumerator> ::= <identifier>

“” <enumerator> }

<positive_int_const> “>"
“sequence” “<" <simple_type_spec> “>”

O “p

<param_type_spec> <simple_declarator>
{ “” <simple_declarator> }*

<except_dcl> := “exception” <identifier> “{* <member>* *}"
<op_dcl> = [<op_attribute>] <op_type_spec>
<identifier> <parameter_dcls>

[<raises_expr>] [<context_expr>]

O u)ﬂ

| “out
| “inout”
(93) <raises_expr> = “raises” ‘(" <scoped_name>
{“" <scoped_name>} U«

(94) <context_expr> := “context” “(" <string_literal>
{“" <string_literal>} U*)"
(95) <param_type_spec> := <base type spec>
| <string_type>
| <wide_string_type>
| <scoped name>
(96) <fixed_pt_type> := “fixed” “<" <positive_int_const>*“"
<positive_int_const> “>"
(97) <fixed_pt_const_type> := “fixed”
(98) <value_base_type> :="“ValueBase”

3.5 OMG IDL Specification

An OMG IDL specification consists of one or more type definitions, constant
definitions, exception definitions, or module definitions. The syntax is:

<specification> = <definition> *
<definition> = <type_dcl> "
<const_dcl> ;"

|

| <except_dcl>*;"
| <interface>*;"

| <module>*;"

| <value>*“;”

See Section 3.9, “Constant Declaration,” on page 3-28, Section 3.10, “Type
Declaration,” on page 3-31, and Section 3.11, “Exception Declaration,” on page 3-40
respectively for specifications efconst_dcl> , <type_dcl> , and<except_dcl> .

See Section 3.7, “Interface Declaration,” on page 3-18 for the specification of
<interface>.

See Section 3.6, “Module Declaration,” on page 3-17 for the specification of
<module>.

See Section 3.8, “Value Declaration,” on page 3-23 for the specification of <value>.

3.6 Module Declaration

A module definition satisfies the following syntax:

<module>::="module” <identifier> “{* <definition> 1

The module construct is used to scope OMG IDL identifiers; see Section 3.14,
“CORBA Module,” on page 3-44 for details.

CORBA V2.3 OMG IDL Specification June 1999 3-17

3.7

3-18

Interface Declaration

An interface definition satisfies the following syntax:

<interface> = <interface_dcl>
| <forward_dcl>

<interface_dcl> ;= <interface_header> “{" <interface_body> “}"

<forward_dcl> [“abstract”] “interface” <identifier>

<interface_header> ::= [“abstract”] “interface” <identifier>

[<interface_inheritance_spec>]

*

<interface_body> = <export>

<type_dcl>*“"
<const_dcl> ;"

<export> =
|
| <except_dcl>*“}"
|
|

<attr_dcl> ;"
<Op_dC|> u;u

3.7.1 Interface Header

The interface header consists of three elements:
« An optional modifier specifying if the interface is an abstract interface.
* The interface name. The name must be preceded by the keiyenfdce , and
consists of an identifier that names the interface.
« An optional inheritance specification. The inheritance specification is described in
the next section.

The<identifier> that names an interface defines a legal type name. Such a type name
may be used anywhere aidentifier> is legal in the grammar, subject to semantic
constraints as described in the following sections. Since one can only hold references
to an object, the meaning of a parameter or structure member which is an interface
type is as aeferenceto an object supporting that interface. Each language binding
describes how the programmer must represent such interface references.

Abstract interfaces have slightly different rules and semantics from “regular” interfaces
as described in Chapter 6, “Abstract Interface Semantics”. They also follow different

language mapping rules.

3.7.2 Interface Inheritance Specification

The syntax for inheritance is as follows:
<interface_inheritance_spec>::=“" <interface_name>
{*,” <interface_name>}*

<interface_name> .= <scoped_name>

CORBA V2.3 Interface Declaration June 1999

<scoped_name> ::= <identifier>
| “” <identifier>
| <scoped_name> “:” <identifier>

Each<scoped_name> in an<interface inheritance_spec> must denote a
previously defined interface. See Section 3.7.5, “Interface Inheritance,” on page 3-20
for the description of inheritance.

3.7.3 Interface Body

The interface body contains the following kinds of declarations:

« Constant declarations, which specify the constants that the interface exports;
constant declaration syntax is described in Section 3.9, “Constant Declaration,”
on page 3-28.

» Type declarations, which specify the type definitions that the interface exports;
type declaration syntax is described in Section 3.10, “Type Declaration,” on
page 3-31.

« Exception declarations, which specify the exception structures that the interface
exports; exception declaration syntax is described in Section 3.11, “Exception
Declaration,” on page 3-40.

* Attribute declarations, which specify the associated attributes exported by the
interface; attribute declaration syntax is described in Section 3.13, “Attribute
Declaration,” on page 3-43.

» Operation declarations, which specify the operations that the interface exports and
the format of each, including operation name, the type of data returned, the types
of all parameters of an operation, legal exceptions which may be returned as a
result of an invocation, and contextual information which may affect method
dispatch; operation declaration syntax is described in Section 3.12, “Operation
Declaration,” on page 3-41.

Empty interfaces are permitted (that is, those containing no declarations).

Some implementations may require interface-specific pragmas to precede the interface
body.

3.7.4 Forward Declaration

A forward declaration declares the name of an interface without defining it. This
permits the definition of interfaces that refer to each other. The syntax consists simply
of the keywordnterface followed by an<identifier> that names the interface. The
actual definition must follow later in the specification.

Multiple forward declarations of the same interface name are legal.

It is illegal to inherit from a forward-declared interface whose definition has not yet
been seen:

CORBA V2.3 Interface Declaration June 1999 3-19

module Example {
interface base; /l Forward declaration

...

interface derived : base {};// Error
interface base {}; /I Define base
interface derived : base {};// OK

3.7.5 Interface Inheritance

An interface can be derived from another interface, which is then cabaedea

interface of the derived interface. A derived interface, like all interfaces, may declare
new elements (constants, types, attributes, exceptions, and operations). In addition,
unless redefined in the derived interface, the elements of a base interface can be
referred to as if they were elements of the derived interface. The name resolution
operator (“::") may be used to refer to a base element explicitly; this permits reference
to a name that has been redefined in the derived interface.

A derived interface may redefine any of the type, constant, and exception names which
have been inherited; the scope rules for such names are described in Section 3.14,
“CORBA Module,” on page 3-44.

An interface is called a direct base if it is mentioned in the
<interface_inheritance_spec> and an indirect base if it is not a direct base but is a
base interface of one of the interfaces mentioned in the
<interface_inheritance_spec>

An interface may be derived from any number of base interfaces. Such use of more
than one direct base interface is often called multiple inheritance. The order of
derivation is not significant.

An abstract interface may only inherit from other abstract interfaces.

An interface may not be specified as a direct base interface of a derived interface more
than once; it may be an indirect base interface more than once. Consider the following
example:

interface A {... }
interface B: A{ ...}
interface C: A{ ...}
interface D: B, C{... }
interface E: A,B{... }; /I OK

3-20 CORBA V2.3 Interface Declaration June 1999

3

The relationships between these interfaces is shown in Figure 3-1. This “diamond”
shape is legal, as is the definition of E on the right.

A

/'A‘\\
B\/C o C
D

Figure 3-1 Legal Multiple Inheritance Example

References to base interface elements must be unambiguous. A Reference to a base
interface element is ambiguous if the name is declared as a constant, type, or exception
in more than one base interface. Ambiguities can be resolved by qualifying a name
with its interface name (that is, usingcscoped_name>). It is illegal to inherit from

two interfaces with the same operation or attribute name, or to redefine an operation or
attribute name in the derived interface.

So for example in:

interface A {
typedef long L1;
short opA(in L1 1_1);
h

interface B {
typedef short L1;
L1 opB(in long I);

¥
interface C: B, A {
typedef L1 L2; /[Error: L1 ambiguous
typedef A::L1 L3; /I A::L1is OK
B::L1 opC(in L3 1_3); // all OK no ambiguities
¥

References to constants, types, and exceptions are bound to an interface when it is
defined (i.e., replaced with the equivalent glokstoped_name> s). This guarantees

that the syntax and semantics of an interface are not changed when the interface is a
base interface for a derived interface. Consider the following example:

CORBA V2.3 Interface Declaration June 1999 3-21

3-22

constlong L = 3;

interface A {
typedef float coord[L]:
void f (in coord s); Il s has three floats

I3

interface B {
constlong L = 4;

¥
interface C: B, A{}; /I what is C::f()’'s signature?

The early binding of constants, types, and exceptions at interface definition guarantees
that the signature of operatidrin interfaceC is

typedef float coord[3];
void f (in coord s);

which is identical to that in interfac®. This rule also prevents redefinition of a
constant, type, or exception in the derived interface from affecting the operations and
attributes inherited from a base interface.

Interface inheritance causes all identifiers in the closure of the inheritance tree to be
imported into the current naming scope. A type name, constant name, enumeration
value name, or exception name from an enclosing scope can be redefined in the current
scope. An attempt to use an ambiguous name without qualification produces a
compilation error. Thus in

interface A {
typedef string<128> string_t;

I3

interface B {
typedef string<256> string_t;

¥

interface C: A, B {
attribute string_t Title; [/l Error: string_t ambiguous
attribute A::string_t Name; Il OK
attribute B::string_t City; /I OK

¥

Operation and attribute names are used at run-time by both the stub and dynamic
interfaces. As a result, all operations attributes that might apply to a particular object
must have unique names. This requirement prohibits redefining an operation or
attribute name in a derived interface, as well as inheriting two operations or attributes
with the same name.

CORBA V2.3 Interface Declaration June 1999

interface A {
void make_it_so();

k

interface B: A {
short make_it_so(in long times); // Error: redefinition of make_it_so

k

3.8 Value Declaration

There are several kinds of value type declarations: “regular” value types, boxed value
types, abstract value types, and forward declarations.

A value declaration satisfies the following syntax:

<value> = (<value_dcl>
| <value_abs_dcl>
| <value_box_dcl>
| <value_forward_dcl>) ;"

3.8.1 Regular Value Type

A regular value type satisfies the following syntax:

<value_dcl> := <value_header>“{" <value_element >* “}"

[“‘custom”] “valuetype” <identifier>
[<value_inheritance_spec>]

<value_header>

<value_element> := <export>
| < state_member>
| <init_dcl>

3.8.1.1 Value Header

The value header consists of two elements:
* The value type’s name and optional modifier specifying whether the value type
uses custom marshaling.
» An optional value inheritance specification. The value inheritance specification is
described in the next section.

3.8.1.2 Value Element

A value can contain all the elements that an interface can as well as the definition of
state members, and initializers for that state.

3.8.1.3 Value Inheritance Specification

<value_inheritance_spec> ::= [" [“truncatable”] <value_name>
{",” <value_name> }*]

CORBA V2.3 Value Declaration June 1999 3-23

3-24

3.8.14

3.8.1.5

[“supports” <interface_name>
{“,” interface_name> }*]

<value_name> == <scoped_name>

Each<value_name> and <interface_name> in a<value_inheritance_spec>
must denote previously defined value type or interface. See Section 3.8.5, “Valuetype
Inheritance,” on page 3-27 for the description of value type inheritance.

Thetruncatable modifier may not be used if the value type being defined is a custom
value.

State Members
<state_member> ::=(“public” | “private”) <type_spec> <declarators> *}"

Each<state_member> defines an element of the state, which is marshaled and sent
to the receiver when the value type is passed as a parameter. A state member is eithe
public or private. The annotation directs the language mapping to hide or expose the
different parts of the state to the clients of the value type. The private part of the state
is only accessible to the implementation code and the marshaling routines.

Note that certain programming languages may not have the built in facilities needed to
distinguish between the public and private members. In these cases, the language
mapping specifies the rules that programmers are responsible for following.

Initializers
<init_dcl> = “factory” <identifier>
“(* [<init_param_decls>] “)"*”
<init_param_decls> := <init_param_decl> {“,” <init_param_decl>}
<init_param_decl> = <init_param_attribute> <param_type_spec>
<simple_declarator>
<init_param_attribute> ::= “in”

In order to ensure portability of value implementations, designers may also define the
signatures of initializers (or constructors) for non abstract value types. Syntactically
these look like local operation signatures except that they are prefixed with the
keywordfactory , have no return type, and must use only in parameters. There may be
any number of factory declarations. The names of the initializers are part of the name
scope of the value type.

CORBA V2.3 Value Declaration June 1999

3

If no initializers are specified in IDL, the value type does not provide a portable way of
creating a runtime instance of its type. There is no default initializer. This allows the
definition of IDL value types which are not intended to be directly instantiated by
client code.

3.8.1.6 Value Type Example

interface Tree {
void print()
h

valuetype WeightedBinaryTree {
/I state definition
private unsigned long weight;
private WeightedBinaryTree left;
private WeightedBinaryTree right;
Il initializer
factory init(in unsigned long w);
/l'local operations
WeightSeq pre_order();
WeightSeq post_order();
¥
valuetype WTree: WeightedBinaryTree supports Tree {};

3.8.2 Boxed Value Type
<value_box_dcl> := "valuetype” <identifier> <type_spec>

It is often convenient to define a value type with no inheritance or operations and with
a single state member. A shorthand IDL notation is used to simplify the use of value
types for this kind of simple containment, referred to as a “value box.”

This is particularly useful for strings and sequences. Basically one does not have to
create what is in effect an additional namespace that will contain only one name.

An example is the following IDL:

module Example {
interface Foo {
... I* anything */
h
valuetype FooSeq sequence<Foo>;
interface Bar {
void dolt (in FooSeq seql);
¥
¥

The above IDL provides similar functionality to writing the following IDL. However
the type identities (repository ID’s) would be different.

CORBA V2.3 Value Declaration June 1999 3-25

3-26

module Example {
interface Foo {
... I* anything */
h
valuetype FooSeq {
public sequence<Foo> data;
h
interface Bar {
void dolt (in FooSeq seq);
h
h

The former is easier to manipulate after it is mapped to a concrete programming
language.

The declaration of a boxed value type does not open a new scope.Thus a construction
such as:

valuetype FooSeq sequence <FooSeq>;

is not legal IDL. The identifier being declared as a boxed value type cannot be used
subsequent to its initial use and prior to the completion of the boxed value declaration.

3.8.3 Abstract Value Type

<value_abs_dcl> := “abstract” “valuetype” <identifier>
[<value_inheritance_spec> | “{" <export>* “}”

Value types may also be abstract. They are called abstract because an abstract value
type may not be instantiated. No <state_member> or <initializers> may be specified.
However, local operations may be specified. Essentially they are a bundle of operation
signatures with a purely local implementation.

Note that a concrete value type with an empty state is not an abstract value type.

3.8.4 Value Forward Declaration

<value_forward_dcl> ::= [“abstract”] “valuetype” <identifier>

A forward declaration declares the name of a value type without defining it. This
permits the definition of value types that refer to each other. The syntax consists
simply of the keywordraluetype followed by an<identifier> that names the value
type. The actual definition must follow later in the specification.

Multiple forward declarations of the same value type name are legal.

Boxed value types cannot be forward declared; such a forward declaration would refer
to a normal value type.

It is illegal to inherit from a forward-declared value type whose definition has not yet
been seen.

CORBA V2.3 Value Declaration June 1999

3.8.5 Valuetype Inheritance

The terminology that is used to describe value type inheritance is directly analogous to
that used to describe interface inheritance (see Section 3.7.5, “Interface Inheritance,”
on page 3-20).

The name scoping and name collision rules for valuetypes are identical to those for
interfaces. In addition, no valuetype may be specified as a direct abstract base of a
derived valuetype more than once; it may be an indirect abstract base more than once.
See Section 3.7.5, “Interface Inheritance,” on page 3-20 for a detailed description of
the analogous properties for interfaces.

Values may be derived from other values and can support an interface and any number
of abstract interfaces.

Once implementation (state) is specified at a particular point in the inheritance
hierarchy, all derived value types (which must of course implement the state) may only
derive from a single (concrete) value type. They can however derive from other
additional abstract values and support an additional interface.

The single immediate base concrete value type, if present, must be the first element
specified in the inheritance list of the value declaration’s IDL. It may be followed by
other abstract values from which it inherits. The interface and abstract interfaces that it
supports are listed following treupports keyword.

A stateful value that derives from another stateful value may specify that it is
truncatable. This means that it is to “truncate” (see Section 5.2.5.2, “Value instance ->
Value type,” on page 5-5) an instance to be an instance of any of its truncatable parent
(stateful) value types under certain conditions. Note that all the intervening types in the
inheritance hierarchy must be truncatable in order for truncation to a particular type to
be allowed.

Because custom values require an exact type match between the sending and receiving
context,truncatable may not be specified for a custom value type.

Non-custom value types may not (transitively) inherit from custom value types.
Boxed value types may not be derived from, nor may they derive from anything else.
These rules are summarized in the following table:

Table 3-10 Allowable Inheritance Relationships

May inherit from: | Interface Abstract Abstract Stateful Value Boxed value
Interface Value
Interface multiple multiple no no no
Abstract Interface | no multiple no no no
Abstract Value supports supports multiple no no
supports single| supports multiple single (may heno
Stateful Value truncatable)
Boxed Value no no no no no
CORBA V2.3 Value Declaration June 1999 3-27

3.9 Constant Declaration

This section describes the syntax for constant declarations.

3.9.1 Syntax

The syntax for a constant declaration is:

<const_dcl>

<const_type>

<const_exp>

<or_expr>

<Xor_expr>

<and_expr>

<shift_expr>

<add_expr>

<mult_expr>

<unary_expr>

<unary_operator>

<primary_expr>

“const” <const_type> <identifier>
“=" <const_exp>

<integer_type>
<char_type>
<wide_char_type>
<boolean_type>
<floating_pt_type>
<string_type>
<wide_string_type>
<fixed_pt_const_type>
<scoped_name>
<octet_type>

<or_expr>

<Xor_expr>
<or_expr> “|" <xor_expr>

<and_expr>
<xor_expr> “" <and_expr>

<shift_expr>
<and_expr> “&” <shift_expr>

<add_expr>
<shift_expr> “>>" <add_expr>
<shift_expr> “<<” <add_expr>

<mult_expr>
<add_expr> “+" <mult_expr>
<add_expr> “-" <mult_expr>

<unary_expr>
<mult_expr> “*" <unary_expr>
<mult_expr>“/" <unary_expr>
<mult_expr> “%" <unary_expr>

<unary_operator> <primary_expr>
<primary_expr>

uyn

<scoped_nhame>
<literal>
u(!l <C0nSt_eXp> H)H

3-28 CORBA V2.3 Constant Declaration June 1999

<literal> = <integer_literal>
<string_literal>
<character_literal>
<floating_pt_literal>
<boolean_literal>

<boolean_literal> = “TRUE"
| “FALSE”
<positive_int_const> ::= <const_exp>

3.9.2 Semantics

The<scoped_name> in the<const type> production must be a previously defined
name of arxinteger_type> , <char_type> , <wide_char_type> , <boolean_type> ,
<floating_pt_type> , <string_type>, <wide_string_type> , <octet type> , or
<enum_type> constant.

An infix operator can combine two integers, floats or fixeds, but not mixtures of these.
Infix operators are applicable only to integer, float and fixed types.

If the type of an integer constantlieg or unsigned long , then each subexpression
of the associated constant expression is treated ass&gned long by default, or a
signedlong for negated literals or negative integer constants. It is an error if any
subexpression values exceed the precision of the assignedaygeof unsigned
long), or if a final expression value (of typ@signed long) exceeds the precision of
the target typeléng).

If the type of an integer constantl@g long or unsigned long long , then each
subexpression of the associated constant expression is treatedrasgaed long

long by default, or a signelbng long for negated literals or negative integer
constants. It is an error if any subexpression values exceed the precision of the
assigned typelgng long orunsigned long long), or if a final expression value (of
type unsigned long long) exceeds the precision of the target tyload long).

If the type of a floating-point constantdeuble , then each subexpression of the
associated constant expression is treateddmsible. It is an error if any
subexpression value exceeds the precisiotiooble .

If the type of a floating-point constantl@ng double , then each subexpression of the
associated constant expression is treatedlasgadouble . It is an error if any
subexpression value exceeds the precisidoraf double .

Fixed-point decimal constant expressions are evaluated as follows. A fixed-point literal
has the apparent number of total and fractional digits, except that leading and trailing
zeros are factored out, including non-significant zeros before the decimal point. For
example,0123.450d is considered to bfixed<5,2> and3000.00D is fixed<1,-3>.

Prefix operators do not affect the precision; a prefig optional, and does not change

CORBA V2.3 Constant Declaration June 1999 3-29

3-30

the result. The upper bounds on the number of digits and scale of the result of an infix
expressionfixed<d1,s1> op fixed<d2,s2> , are shown in the following table:

Op Result: fixed<d,s>

+ fixed<max(dl-s1,d2-s2) + max(sl,s2) + 1, max(sl,s2)>
- fixed<max(dl-s1,d2-s2) + max(sl,s2) + 1, max(sl,s2)>
* fixed<d1+d2, s1+s2>

/ fixed<(d1-s1+s2) + S i, Sini>

A quotient may have an arbitrary number of decimal places, denoted by a ssgle of
The computation proceeds pairwise, with the usual rules for left-to-right association,
operator precedence, and parentheses. All intermediate computations shall be
performed using double precision (i.e., 62 digit) arithmetic. If an individual
computation between a pair of fixed-point literals actually generates more than 31
significant digits, then a 31-digit result is retained as follows:

fixed<d,s> => fixed<31, 31-d+s>

Leading and trailing zeros are not considered significant. The omitted digits are
discarded; rounding is not performed. The result of the individual computation then
proceeds as one literal operand of the next pair of fixed-point literals to be computed.

Unary @ -) and binary {/ + -) operators are applicable in floating-point and fixed-
point expressions. Unary (- ~) and binary {/ % + - << >> & | *) operators are
applicable in integer expressions.

The “~" unary operator indicates that the bit-complement of the expression to which it
is applied should be generated. For the purposes of such expressions, the values are 2’
complement numbers. As such, the complement can be generated as follows:

Integer Constant Expression Type | Generated 2's Complement Numbers
long long -(value+1)

unsigned long unsigned long (2**32-1) - value

long long long long -(value+1)

unsigned long long unsigned long (2**64-1) - value

The “%” binary operator yields the remainder from the division of the first expression
by the second. If the second operand of “%” is 0, the result is undefined; otherwise

(a/b)*b + a%b

is equal to a. If both operands are nonnegative, then the remainder is nonnegative; if
not, the sign of the remainder is implementation dependent.

CORBA V2.3 Constant Declaration June 1999

3

The “<<"binary operator indicates that the value of the left operand should be shifted
left the number of bits specified by the right operand, with 0 fill for the vacated bits.
The right operand must be in the range 0 <= right operand < 64.

The “>>” binary operator indicates that the value of the left operand should be shifted
right the number of bits specified by the right operand, with O fill for the vacated bits.
The right operand must be in the range 0 <= right operand < 64.

The “&” binary operator indicates that the logical, bitwise AND of the left and right
operands should be generated.

The “|” binary operator indicates that the logical, bitwise OR of the left and right
operands should be generated.

The “A” binary operator indicates that the logical, bitwise EXCLUSIVE-OR of the left
and right operands should be generated.

<positive_int_const> must evaluate to a positive integer constant.

An octet constant can be defined using an integer literal or an integer constant
expression, for example:

const octet O1 = 0x1;
constlong L = 3;
constoctet 02 =5+ L;

Values for an octet constant outside the range 0 - 255 shall cause a compile-time error.

An enum constant can only be defined using a scoped name for the enumerator. The
scoped name is resolved using the normal scope resolution rules Section 3.15, “Names
and Scoping,” on page 3-45. For example:

enum Color { red, green, blue };
const Color FAVORITE_COLOR = red;

module M {

enum Size { small, medium, large };
h
const M::Size MYSIZE = M::medium,;

The constant name for the RHS of an enumerated constant definition must denote one
of the enumerators defined for the enumerated type of the constant. For example:

const Color col =red; //is OK but
const Color another = M::medium; // is an error

3.10 Type Declaration

OMG IDL provides constructs for naming data types; that is, it provides C language-
like declarations that associate an identifier with a type. OMG IDL usetypkdef
keyword to associate a name with a data type; a name is also associated with a data
type via thestruct , union , enum, andnative declarations; the syntax is:

CORBA V2.3 Type Declaration June 1999 3-31

<type_dcl> = “typedef” <type_declarator>
| <struct_type>
| <union_type>
| <enum_type>
| “pative” <simple_declarator>

<type_declarator> = <type_spec> <declarators>

For type declarations, OMG IDL defines a set of type specifiers to represent typed
values. The syntax is as follows:

<type_spec> = <simple_type_spec>

| <constr_type_spec>

= <base_type_spec>

| <template_type_spec>

| <scoped_name>

<simple_type_spec>

<base_type_spec> = <floating_pt_type>
| <integer_type>

| <char_type>

| <wide_char_type>

| <boolean_type>

| <octet_type>

| <any_type>

| <object-type>

| <value_base_ type>

= <sequence_type>

| <string_type>

| <wide_string_type>
| <fixed_pt_type>

<template_type_spec>::

= <struct_type>
| <union_type>
| <enum_type>

<constr_type_spec>

<declarators> ;= <declarator> { “,” <declarator> } .

<declarator> = <simple_declarator>
| <complex_declarator>

<simple_declarator> ::= <identifier>
<complex_declarator> ::= <array_declarator>
The <scoped_name> in <simple_type_spec> must be a previously defined type.

As seen above, OMG IDL type specifiers consist of scalar data types and type
constructors. OMG IDL type specifiers can be used in operation declarations to assign
data types to operation parameters. The next sections describe basic and constructed

type specifiers.

3.10.1 Basic Types

The syntax for the supported basic types is as follows:

3-32 CORBA V2.3 Type Declaration June 1999

<floating_pt_type> = “float”
| “double”
| “long” “double”

<integer_type>:

<signed_int>
| <unsigned_int>
<signed_int> ::= <signed_long_int
| <signed_short_int>
| <signed_longlong_int>

<signed_long_int> = “long”
<signed_short_int> = “short”
<signed_longlong_int>::= “long” “long”
<unsigned_int> ::= <unsigned_long_int>

| <unsigned_short_int>
| <unsigned_longlong_int>

” o

<unsigned_long_int> := “unsigned” “long”
<unsigned_short_int> ::= “unsigned” “short”
<unsigned_longlong_int>::= “unsigned” “long” “long”
<char_type> = “char”
<wide_char_type> ©= “wchar”
<boolean_type> == “boolean”

<octet_type> = “octet”

<any_type> ©= “any”

Each OMG IDL data type is mapped to a native data type via the appropriate language
mapping. Conversion errors between OMG IDL data types and the native types to
which they are mapped can occur during the performance of an operation invocation.
The invocation mechanism (client stub, dynamic invocation engine, and skeletons) may
signal an exception condition to the client if an attempt is made to convert an illegal
value. The standard exceptions which are to be signalled in such situations are defined
in Section 3.17, “Standard Exceptions,” on page 3-51.

3.10.1.1 Integer Types

OMG IDL integer types arshort , unsigned short, long, unsigned long, long
long andunsigned long long, representing integer values in the range indicated
below in Table 3-11.

Table 3-11 Range of integer types

short 215 2151
long 281 281y
long long 263 283.1
unsigned short 0.216.1

CORBA V2.3 Type Declaration June 1999 3-33

Table 3-11 Range of integer types
unsigned long 0.2%2.1

unsigned long long 0.2%4.1

3.10.1.2 Floating-Point Types

OMG IDL floating-point types aréloat, double andlong double . Thefloat type
represents IEEE single-precision floating point numbersdthile type represents

IEEE double-precision floating point numbers.Theg double data type represents

an IEEE double-extended floating-point number, which has an exponent of at least 15
bits in length and a signed fraction of at least 64 bits.ISE& Standard for Binary
Floating-Point Arithmetic ANSI/IEEE Standard 754-1985, for a detailed specification.

3.10.1.3 Char Type

OMG IDL defines achar data type that is an 8-bit quantity which (1) encodes a
single-byte character from any byte-oriented code set, or (2) when used in an array,
encodes a multi-byte character from a multi-byte code set. In other words, an
implementation is free to use any code set internally for encoding character data,
though conversion to another form may be required for transmission.

The ISO 8859-1 (Latinl) character set standard defines the meaning and representatior
of all possible graphic characters used in OMG IDL (i.e., the space, alphabetic, digit
and graphic characters defined in Table 3-2 on page 3-4, Table 3-3 on page 3-4, and
Table 3-4 on page 3-5). The meaning and representation of the null and formatting
characters (see Table 3-5 on page 3-6) is the numerical value of the character as
defined in the ASCII (ISO 646) standard. The meaning of all other characters is
implementation-dependent.

During transmission, characters may be converted to other appropriate forms as
required by a particular language binding. Such conversions may change the
representation of a character but maintain the character's meaning. For example, a
character may be converted to and from the appropriate representation in international
character sets.

3.10.1.4 Wide Char Type

OMG IDL defines awchar data type which encodes wide characters from any
character set. As with character data, an implementation is free to use any code set
internally for encoding wide characters, though, again, conversion to another form may
be required for transmission. The sizengthar is implementation-dependent.

3.10.1.5 Boolean Type

Theboolean data type is used to denote a data item that can only take one of the
values TRUE and FALSE.

3-34 CORBA V2.3 Type Declaration June 1999

3.10.1.6 Octet Type

The octet type is an 8-bit quantity that is guaranteed not to undergo any conversion
when transmitted by the communication system.

3.10.1.7 Any Type

The any type permits the specification of values that can express any OMG IDL type.

An any logically contains a TypeCode (see Section 3.10, “Type Declaration,” on
page 3-31) and a value that is described by the TypeCode. Each IDL language mapping

provides operations that allow programers to insert and access the TypeCode and value
contained in an any.

3.10.2 Constructed Types

The constructed types are:

<constr_type_spec> := <struct_type>
| <union_type>
| <enum_type>

Although the IDL syntax allows the generation of recursive constructed type
specifications, the only recursion permitted for constructed types is through the use of
the sequence template type. For example, the following is legal:

struct foo {
long value;
sequence<foo> chain;

}

See Section 3.10.3.1, “Sequences,” on page 3-37 for details sédnence template
type.

3.10.2.1 Structures

The structure syntax is:
<struct_type> ::= “struct” <identifier> “{” <member_list> “}"
<member_list>::= <member> *

<member> = <type_spec> <declarators> “;"

The<identifier> in <struct_type> defines a new legal type. Structure types may also
be named using ypedef declaration.

Name scoping rules require that the member declarators in a particular structure be
unigue. The value of struct is the value of all of its members.

CORBA V2.3 Type Declaration June 1999 3-35

3.10.2.2 Discriminated Unions

The discriminatedinion syntax is:

<union_type> = “union” <identifier> “switch”
“(" <switch_type_spec> “)”
‘" <switch_body> “}"

<switch_type_spec> := <integer_type>
| <char_type>
| <boolean_type>
| <enum_type>
| <scoped_name>

<switch_body> = <case>
<case> = <case_label> * <element_spec> “;"
<case_label> = “case” <const_exp>*“"
| “default” “:"
<element_spec> 1= <type_spec> <declarator>

OMG IDL unions are a cross between theiion andswitch statements. IDL

unions must be discriminated; that is, the union header must specify a typed tag field
that determines which union member to use for the current instance of a call. The
<identifier> following theunion keyword defines a new legal type. Union types may
also be named usingtgpedef declaration. Thecconst_exp> in a<case_label>

must be consistent with thaswitch_type_spec> . A default case can appear at most
once. The<scoped_name> in the<switch_type spec> production must be a
previously definednteger , char, boolean or enum type.

Case labels must match or be automatically castable to the defined type of the
discriminator. The complete set of matching rules are shown in Table 3-12.

Table 3-12 Case Label Matching

Discriminator Type Matched By

long any integer value in the value range of long

long long any integer value in the range of long long

short any integer value in the value range of short
unsigned long any integer value in the value range of unsigned long
unsigned long long any integer value in the range of unsigned long long
unsigned short any integer value in the value range of unsigned short
char char

wchar wchar

boolean TRUE or FALSE

enum any enumerator for the discriminator enum type

3-36 CORBA V2.3 Type Declaration June 1999

3

Name scoping rules require that the element declarators in a particular union be
unique. If the<switch_type spec> is an<enum_type> , the identifier for the
enumeration is in the scope of the union; as a result, it must be distinct from the
element declarators.

It is not required that all possible values of the union discriminator be listed in the
<switch_body> . The value of a union is the value of the discriminator together with
one of the following:

« If the discriminator value was explicitly listed incase statement, the value of
the element associated with tltatse statement;

- If a defaultcase label was specified, the value of the element associated with the
defaultcase label,

* No additional value.

Access to the discriminator and the related element is language-mapping dependent.

3.10.2.3 Enumerations

Enumerated types consist of ordered lists of identifiers. The syntax is:

<enum_type> “enum” <identifier> “{” <enumerator> { “,”

<enumerator> } U4}
<enumerator> ;= <identifier>

A maximum of 22 identifiers may be specified in an enumeration; as such, the
enumerated names must be mapped to a native data type capable of representing a
maximally-sized enumeration. The order in which the identifiers are named in the
specification of an enumeration defines the relative order of the identifiers. Any
language mapping which permits two enumerators to be compared or defines
successor/predecessor functions on enumerators must conform to this ordering relation.
The <identifier> following theenum keyword defines a new legal type. Enumerated
types may also be named usintypedef declaration.

3.10.3 Template Types

The template types are:

<template_type_spec>::= <sequence_type>
| <string_type>
| <wide_string_type>
| <fixed_pt_type>

3.10.3.1 Sequences

OMG IDL defines the sequence typequence . A sequence is a one-dimensional
array with two characteristics: a maximum size (which is fixed at compile time) and a
length (which is determined at run time).

The syntax is:

CORBA V2.3 Type Declaration June 1999 3-37

3-38

<sequence_type> ::= “sequence” “<” <simple_type_spec>""
<positive_int_const> “>"
| “sequence” “<” <simple_type_spec> “>"

The second parameter in a sequence declaration indicates the maximum size of the
sequence. If a positive integer constant is specified for the maximum size, the sequence
is termed a bounded sequence. Prior to passing a bounded sequence as a function
argument (or as a field in a structure or union), the length of the sequence must be set
in a language-mapping dependent manner. After receiving a sequence result from an
operation invocation, the length of the returned sequence will have been set; this value
may be obtained in a language-mapping dependent manner.

If no maximum size is specified, size of the sequence is unspecified (unbounded). Prior
to passing such a sequence as a function argument (or as a field in a structure or
union), the length of the sequence, the maximum size of the sequence, and the addres:
of a buffer to hold the sequence must be set in a language-mapping dependent manner
After receiving such a sequence result from an operation invocation, the length of the
returned sequence will have been set; this value may be obtained in a language-
mapping dependent manner.

A sequence type may be used as the type parameter for another sequence type. For
example, the following:

typedef sequence< sequence<long> > Fred,;

declares Fred to be of type “unbounded sequence of unbounded sequence of long”.
Note that for nested sequence declarations, white space must be used to separate the
two “>" tokens ending the declaration so they are not parsed as a single “>>" token.

3.10.3.2 Strings

OMG IDL defines the string typstring consisting of all possible 8-bit quantities
except null. A string is similar to a sequence of char. As with sequences of any type,
prior to passing a string as a function argument (or as a field in a structure or union),
the length of the string must be set in a language-mapping dependent manner. The
syntax is:

<string_type> ::= “string” “<” <positive_int_const> “>"
| “string”

The argument to the string declaration is the maximum size of the string. If a positive
integer maximum size is specified, the string is termed a bounded string; if no
maximum size is specified, the string is termed an unbounded string.

Strings are singled out as a separate type because many languages have special built-i
functions or standard library functions for string manipulation. A separate string type
may permit substantial optimization in the handling of strings compared to what can be
done with sequences of general types.

CORBA V2.3 Type Declaration June 1999

3.10.3.3 Wstrings

Thewstring data type represents a sequence of wchar, except the wide character null.
The type wstring is similar to that of type string, except that its element type is wchar
instead of char. The actual length of a wstring is set at run-time and, if the bounded
form is used, must be less than or equal to the bound.

The syntax for defining a wstring is:

<wide_string_type> ::= "wstring" "<" <positive_int_const> ">"
| "wstring"

3.10.3.4 Fixed Type

Thefixed data type represents a fixed-point decimal number of up to 31 significant
digits. The scale factor is a non-negative integer less than or equal to the total number
of digits (note that constants with effectively negative scale, such as 10000, are always
permitted).

Thefixed data type will be mapped to the native fixed point capability of a
programming language, if available. If there is not a native fixed point type, then the
IDL mapping for that language will provide a fixed point data type. Applications that
use the IDL fixed point type across multiple programming languages must take into
account differences between the languages in handling rounding, overflow, and
arithmetic precision.

3.10.4 Complex Declarator

3.10.4.1 Arrays

OMG IDL defines multidimensional, fixed-size arrays. &may includes explicit sizes
for each dimension.

The syntax for arrays is:

<array_declarator> :=<identifier> <fixed_array_size> *

<fixed_array_size> :="[" <positive_int_const> “]"

The array size (in each dimension) is fixed at compile time. When an array is passed as
a parameter in an operation invocation, all elements of the array are transmitted.

The implementation of array indices is language mapping specific; passing an array
index as a parameter may yield incorrect results.

3.10.5 Native Types

OMG IDL provides a declaration for use by object adapters to define an opaque type
whose representation is specified by the language mapping for that object adapter.

The syntax is:

CORBA V2.3 Type Declaration June 1999 3-39

<type_dcl> ::= "native” <simple_declarator>

<simple_declarator> ::= <identifier>

This declaration defines a new type with the specified name. A native type is similar
to an IDL basic type. The possible values of a native type are language-mapping
dependent, as are the means for constructing them and manipulating them. Any
interface that defines a native type requires each language mapping to define how the
native type is mapped into that programming language.

A native type may be used to define operation parameters and results. However, there
is no requirement that values of the type be permitted in remote invocations, either
directly or as a component of a constructed type. Any attempt to transmit a value of a
native type in a remote invocation may raise M&@RSHAL standard exception.

It is recommended that native types be mapped to equivalent type names in each
programming language, subject to the normal mapping rules for type names in that
language. For example, in a hypothetical Object Adapter IDL module

module HypotheticalObjectAdapter {
native Servant;
interface HOA {
Object activate_object(in Servant x);
3
3

the IDL type Servant would map tdypotheticalObjectAdapter::Servant in C++
and theactivate_object operation would map to the following C++ member function
signature:

CORBA::Object_ptr activate_object(
HypotheticalObjectAdapter::Servant x);

The definition of the C++ typelypotheticalObjectAdapter::Servant
would be provided as part of the C++ mapping for the HypotheticalObjectAdapter
module.

Note —The native type declaration is provided specifically for use in object adapter
interfaces, which require parameters whose values are concrete representations of
object implementation instances. It is strongly recommended that it not be used in
service or application interfaces. The native type declaration allows object adapters to
define new primitive types without requiring changes to the OMG IDL language or to
OMG IDL compiler.

3.11 Exception Declaration

3-40

Exception declarations permit the declaration of struct-like data structures which may
be returned to indicate that an exceptional condition has occurred during the
performance of a request. The syntax is as follows:

<except_dcl> := “exception” <identifier> “{* <member>* “}"

CORBA V2.3 Exception Declaration June 1999

3

Each exception is characterized by its OMG IDL identifier, an exception type
identifier, and the type of the associated return value (as specified kyn#raber>

in its declaration). If an exception is returned as the outcome to a request, then the
value of the exception identifier is accessible to the programmer for determining which
particular exception was raised.

If an exception is declared with members, a programmer will be able to access the
values of those members when an exception is raised. If no members are specified, no
additional information is accessible when an exception is raised.

A set of standard exceptions is defined corresponding to standard run-time errors
which may occur during the execution of a request. These standard exceptions are
documented in Section 3.17, “Standard Exceptions,” on page 3-51.

3.12 Operation Declaration

Operation declarations in OMG IDL are similar to C function declarations. The syntax

is:
<op_dcl> = [<op_attribute>] <op_type_spec> <identifier>
<parameter_dcls> [<raises_expr>]
[<context_expr>]
<op_type_spec> := <param_type_spec>

| uvoidﬂ

An operation declaration consists of:

» An optional operation attribute that specifies which invocation semantics the
communication system should provide when the operation is invoked. Operation
attributes are described in Section 3.12.1, “Operation Attribute,” on page 3-42.

» The type of the operation’s return result; the type may be any type which can be
defined in OMG IDL. Operations that do not return a result must specifipitie
type.

« An identifier that names the operation in the scope of the interface in which it is
defined.

» A parameter list that specifies zero or more parameter declarations for the
operation. Parameter declaration is described in Section 3.12.2, “Parameter
Declarations,” on page 3-42.

« An optional raises expression which indicates which exceptions may be raised as
a result of an invocation of this operation. Raises expressions are described in
Section 3.12.3, “Raises Expressions,” on page 3-43.

» An optional context expression which indicates which elements of the request
context may be consulted by the method that implements the operation. Context
expressions are described in Section 3.12.4, “Context Expressions,” on page 3-43.

Some implementations and/or language mappings may require operation-specific
pragmas to immediately precede the affected operation declaration.

CORBA V2.3 Operation Declaration June 1999 3-41

3-42

3.12.1 Operation Attribute

The operation attribute specifies which invocation semantics the communication
service must provide for invocations of a particular operation. An operation attribute is
optional. The syntax for its specification is as follows:

<op_attribute>::="oneway”

When a client invokes an operation with threeway attribute, the invocation
semantics are best-effort, which does not guarantee delivery of the call; best-effort
implies that the operation will be invoked at most once. An operation witindveay
attribute must not contain any output parameters and must speafgt aeturn type.
An operation defined with theneway attribute may not include a raises expression;
invocation of such an operation, however, may raise a standard exception.

If an <op_attribute> is not specified, the invocation semantics is at-most-once if an
exception is raised; the semantics are exactly-once if the operation invocation returns
successfully.

3.12.2 Parameter Declarations

Parameter declarations in OMG IDL operation declarations have the following syntax:

<parameter_dcls> = (" <param_dcl> { “,” <param_dcl> } Dy
| u(H H)n

<param_dcl> ;.= <param_attribute> <param_type_spec>
<simple_declarator>

<param_attribute> 2= fin”
| uoutn
| “inout”

<param_type_spec> := <base_type_spec>

| <string_type>
| <scoped_name>

A parameter declaration must have a directional attribute that informs the
communication service in both the client and the server of the direction in which the
parameter is to be passed. The directional attributes are:

« in - the parameter is passed from client to server.
* out - the parameter is passed from server to client.
 inout - the parameter is passed in both directions.

It is expected that an implementation wibht attempt to modify ain parameter. The
ability to even attempt to do so is language-mapping specific; the effect of such an
action is undefined.

If an exception is raised as a result of an invocation, the values of the return result and
anyout andinout parameters are undefined.

CORBA V2.3 Operation Declaration June 1999

3.12.3 Raises Expressions

A raises expression specifies which exceptions may be raised as a result of an
invocation of the operation. The syntax for its specification is as follows:

<raises_expr>::="raises” “(" <scoped_name> { “,” <scoped name> } Dy

The <scoped_name> s in theraises expression must be previously defined
exceptions.

In addition to any operation-specific exceptions specified irrdises expression,
there are a standard set of exceptions that may be signalled by the ORB. These
standard exceptions are described in Section 3.17, “Standard Exceptions,” on
page 3-51. However, standard exceptions matybe listed in aaises expression.

The absence of mises expression on an operation implies that there are no
operation-specific exceptions. Invocations of such an operation are still liable to
receive one of the standard exceptions.

3.12.4 Context Expressions

A context expression specifies which elements of the client's context may affect the
performance of a request by the object. The syntax for its specification is as follows:

<context_expr>::=“context” “(" <string_literal> { “,” <string_literal> } Dy

The run-time system guarantees to make the value (if any) associated with each
<string_literal> in the client’s context available to the object implementation when
the request is delivered. The ORB and/or object is free to use information in this
request contexduring request resolution and performance.

The absence of a context expression indicates that there is no request context
associated with requests for this operation.

Eachstring_literal is an arbitrarily long sequence of alphabetic, digit, period (“.”),
underscore (*_"), and asterisk (“*") characters. The first character of the string must be
an alphabetic character. An asterisk may only be used as the last character of the string
Some implementations may use the period character to partition the name space.

The mechanism by which a client associates values with the context identifiers is
described in the Dynamic Invocation Interface chapter.

3.13 Attribute Declaration

An interface can have attributes as well as operations; as such, attributes are defined a:
part of an interface. An attribute definition is logically equivalent to declaring a pair of
accessor functions; one to retrieve the value of the attribute and one to set the value of
the attribute.

The syntax forattribute declaration is:

CORBA V2.3 Attribute Declaration June 1999 3-43

<attr_dcl> = [“readonly”] “attribute” <param_type_spec>
<simple_declarator>
{",” <simple_declarator> }*

The optionaleadonly keyword indicates that there is only a single accessor
function—the retrieve value function. Consider the following example:

interface foo {
enum material_t {rubber, glass};
struct position_t {
float x, y;

I3

attribute float radius;
attribute material_t material;
readonly attribute position_t position;

I3

The attribute declarations are equivalent to the following pseudo-specification
fragment, assuming that one of the leading ‘_’'s is removed by application of the
Escaped Ildentifier rule described in Section 3.2.3.1, “Escaped ldentifiers,” on page 3-7:

float __get_radius ();

void __set _radius (in float r);
material_t _ _get material ();

void ___set_material (in material_t m);
position_t _ _get_position ();

The actual accessor function names are language-mapping specific. The attribute name
is subject to OMG IDL's name scoping rules; the accessor function names are
guaranteeahot to collide with any legal operation names specifiable in OMG IDL.

Attribute operations return errors by means of standard exceptions.

Attributes are inherited. An attribute naro@nnotbe redefined to be a different type.
See Section 3.14, “CORBA Module,” on page 3-44 for more information on
redefinition constraints and the handling of ambiguity.

3.14 CORBA Module

Names defined by the CORBA specification are in a module named CORBA. In an
OMG IDL specification, however, OMG IDL keywords suchQ@igject must not be
preceded by aCORBA:: " prefix. Other interface names such as TypeCode are not
OMG IDL keywords, so they must be referred to by their fully scoped names (e.qg.,
CORBA::TypeCode) within an OMG IDL specification.

For example in:

3-44 CORBAV2.3 CORBA Module June 1999

#include <orb.idl>

module M {
typedef CORBA::Object myObjRef; /I Error: keyword Object scoped
typedef TypeCode myTypeCode; [/l Error: TypeCode undefined

typedef CORBA::TypeCode TypeCode;// OK
h

The file orb.idl contains the IDL definitions for the CORBA module. The &tb.idl
must be included in IDL files that use names defined in the CORBA module.

The version ofCORBA specified in this release of the specification is versiony>,
and this is reflected in the IDL for tt@ORBA module by including the following
pragma version (see Section 10.6.5.3, “The Version Pragma,” on page 10-45):

#pragma version CORBA <x.y>

as the first line immediately following the very fiGORBA module introduction line,

which in effect associates that version number withGBR¥RBA entry in thelR. The

version number in that version pragma line must be changed whenever any changes are
made to any remotely accessible parts ofGERBA module in an officially released

OMG standard.

3.15 Names and Scoping

OMG IDL identifiers are case insensitive; that is, two identifiers that differ only in the
case of their characters are considered redefinitions of one another. However, all
references to a definition must use the same case as the defining occurrence. This
allows natural mappings to case-sensitive languages. So for example:

module M {
typedef long Long; /I Error: Long clashes with keyword long
typedef long TheThing;
interface | {
typedef long MyLong;
myLong op1(/I Error: inconsistent capitalization
in TheThing thething; // Error: TheThing clashes with thething

3.15.1 Qualified Names

A qualified name (one of the form <scoped-name>::<identifier>) is resolved by first
resolving the qualifier <scoped-name> to a scope S, and then locating the definition of
<identifier> within S. The identifier must be directly defined in S or (if S is an
interface) inherited into S. The <identifier> is not searched for in enclosing scopes.

CORBA V2.3 Names and Scoping June 1999 3-45

3-46

When a qualified name begins with “::”, the resolution process starts with the file
scope and locates subsequent identifiers in the qualified name by the rule described in
the previous paragraph.

Every OMG IDL definition in a file has a global name within that file. The global
name for a definition is constructed as follows.

Prior to starting to scan a file containing an OMG IDL specification, the name of the
current root is initially empty (*”) and the name of the current scope is initially empty
(*"). Whenever amodule keyword is encountered, the string “::” and the associated
identifier are appended to the name of the current root; upon detection of the
termination of thenodule , the trailing “::” and identifier are deleted from the name of
the current root. Whenever amterface , struct , union, or exception keyword is
encountered, the string “::” and the associated identifier are appended to the name of
the current scope; upon detection of the termination ointieeface , struct , union,

or exception , the trailing “::” and identifier are deleted from the name of the current
scope. Additionally, a new, unnamed, scope is entered when the parameters of an
operation declaration are processed; this allows the parameter names to duplicate other
identifiers; when parameter processing has completed, the unnamed scope is exited.

The global name of an OMG IDL definition is the concatenation of the current root,
the current scope, a “::”, and the <identifier>, which is the local hame for that
definition.

Note that the global name in an OMG IDL files corresponds to an absolute
ScopedName in the Interface Repository. (See Section 10.5.1, “Supporting Type
Definitions,” on page 10-10).

Inheritance produces shadow copies of the inherited identifiers; that is, it introduces
names into the derived interface, but these names are considered to be semantically the
same as the original definition. Two shadow copies of the same original (as results
from the diamond shape in Figure 3-1 on page 3-21) introduce a single name into the
derived interface and don't conflict with each other.

Inheritance introduces multiple global OMG IDL names for the inherited identifiers.
Consider the following example:

interface A {
exception E {
long L;
¥
void f() raises(E);
h

interface B: A {
void g() raises(E);

In this example, the exception is known by the global namdef and::B:E .

Ambiguity can arise in specifications due to the nested naming scopes. For example:

CORBA V2.3 Names and Scoping June 1999

interface A {
typedef string<128> string_t;
h

interface B {
typedef string<256> string_t;

h

interface C: A, B {
attribute string_t Title; /I Error: Ambiguous
attribute A::string_t Name; Il OK
attribute B::string_t City; /I OK

h

The declaration of attribut€&itle in interfaceC is ambiguous, since the compiler does
not know whichstring_t is desired. Ambiguous declarations yield compilation errors.

3.15.2 Scoping Rules and Name Resolution

Contents of an entire OMG IDL file, together with the contents of any files referenced
by #include statements, forms a naming scope. Definitions that do not appear inside a
scope are part of the global scope. There is only a single global scope, irrespective of
the number of source files that form a specification.

The following kinds of definitions form scopes:

* module

* interface

* valuetype

* struct

* union

 operation

* exception

The scope for module, interface, valuetype, struct and exception begins immediately
following its opening '{' and ends immediately preceding its closing '}'. The scope of
an operation begins immediately following its '(" and ends immediately preceding its
closing ')'. The scope of an union begins immediately following the ‘(' following the
keywordswitch , and ends immediately preceding its closing }'. The appearance of the
declaration of any of these kinds in any scope, subject to semantic validity of such
declaration, opens a nested scope associated with that declaration.

An identifier can only be defined once in a scope. However, identifiers can be
redefined in nested scopes. An identifier declaring a module is considered to be
defined by its first occurrence in a scope. Subsequent occurrences of a module
declaration with the same identifier within the same scope reopens the module and
hence its scope, allowing additional definitions to be added to it.

The name of an interface, value type, struct, union, exception or a module may not be
redefined within the immediate scope of the interface, value type, struct, union,
exception, or the module. For example:

CORBA V2.3 Names and Scoping June 1999 3-47

3-48

module M {
typedef short M; // Error: M is the name of the module
1 in the scope of which the typedef is.
interface | {

void i (in shortj); // Error: i clashes with the interface name |
h
h

An identifier from a surrounding scope is introduced into a scope if it is used in that
scope. An identifier is not introduced into a scope by merely being visible in that
scope. The use of a scoped name introduces the identifier of the outermost scope of the
scoped name. For example in:

module M {
module Innerl {
typedef string S1;

h

module Inner2 {
typedef string inner1; Il OK
¥
}

The declaration olner2::iinnerl is OK because the identifiégnnerl, while visible
in modulelnner2, has not been introduced into modtriaeer2 by actual use of it. On
the other hand, if modulmner2 were:

module Inner2{
typedef Innerl::S1 S2; // Innerl introduced
typedef string inner1; I/l Error
typedef string S1; Il OK

k

The definition ofinnerl is now an error because the identifienerl referring to the
module Innerl has been introduced in the scope of modiuber2 in the first line of
the module declaration. Also, the declaratiorSafin the last line is OK since the
identifier S1 was not introduced into the scope by the usmoérl::S1 in the first
line.

Enumeration value names are introduced into the enclosing scope and then are treatec
like any other declaration in that scope. For example:

CORBA V2.3 Names and Scoping June 1999

interface A {
enum E { E1, E2, E3 }; /l'line 1

enum BadE { E3, E4, E5 }; // Error: E3 is already introduced
/l into the A scope in line 1 above

k

interface C {
enum AnotherE { E1, E2, E3 };

k

interface D : C, A{
union U switch (E) {
case A::E1 : boolean b;// OK.
case E2 : long |; /I Error: E2 is ambiguous (notwithstanding
/I the switch type specification!!)
h
h

Type names defined in a scope are available for immediate use within that scope. In
particular, see Section 3.10.2, “Constructed Types,” on page 3-35 on cycles in type
definitions.

A name can be used in an unqualified form within a particular scope; it will be
resolved by successively searching farther out in enclosing scopes, while taking into
consideration inheritance relationships among interfaces. For example:

module M {
typedef long ArgType;
typedef ArgType AType; /l'line 11
interface B {
typedef string ArgType; // line I3
ArgType opb(in AType i); //lineI2

h
h
module N {
typedef char ArgType; /l'line 14
interface Y : M::B {
void opy(in ArgType i); /l'line 15
h
h

The following scopes are searched for the declaratidkrgfype used orine I5:
1. Scope oN::Y before the use dhrgType .

2. Scope oN::Y's base interfac::B. (inherited scope)

3. Scope ofmodule N before the definition oN::Y.

4. Global scope before the definition Mgf

CORBA V2.3 Names and Scoping June 1999 3-49

3-50

M::B::ArgType is found instep 2 in line I3, and that is the definition that is used in
line I5, henceArgType inline |5 is string . It should be noted thatrgType is not
char inline I5. Now if line I3 were removed from the definition of interfabk:B
thenArgType online I5 would bechar from line |4 which is found instep 3.

Following analogous search steps for the types used in the opdvatiRiropb on
line 12, the type ofAType used orline 12 islong from thetypedef inline I1 and the
return typeArgType is string from line 3.

3.15.3 Special Scoping Rules for Type Names

Once a type has beaefinedanywhere within the scope of a module, interface or
valuetype, it may not be redefined except within the scope of a nested module or
interface. For example:

module M {
typedef long ArgType;
interface A {
typedef string ArgType; // OK, redefined in nested scope

struct S {
ArgType X; /I x is a string
¥
¥
typedef double ArgType; /I Error: redefinition in same scope

h

Once a type identifier has beasedanywhere within the scope of an interface or
valuetype, it may not be redefined within the scope of that interface or valuetype. Use
of type names within nested scopes created by structs, unions, and exceptions, as well
as within the unnamed scope created by an operation parameter list, are for these
purposes considered to occur within the scope of the enclosing interface or valuetype.
For example:

module M {
typedef long ArgType;
const long | = 10;

typedef short Y;
interface A {
struct S {
ArgType X[l]; // xis a long[10], ArgType and | are used
long y; /I Note: a new y is defined; the existing Y is not used
h
typedef string ArgType; // Error: ArgType redefined after use
enum | {11, 12}; /I Error: | redefined after use
typedef short Y; /l OK because Y has not been used yet!

k
k

Note that redefinition of a type after use in a module is OK as in the example:

CORBA V2.3 Names and Scoping June 1999

typedef long ArgType;

module M {
struct S {
ArgType X; /I x is a long
h
typedef string ArgType; // OK!
struct T {
ArgType y; // Ugly but OK, y is a string
h
h

3.16 Differences from C++

The OMG IDL grammar, while attempting to conform to the C++ syntax, is somewhat
more restrictive. The restrictions are as follows:

A function return type is mandatory.
« A name must be supplied with each formal parameter to an operation declaration.

« A parameter list consisting of the single tokeid is not permitted as a synonym
for an empty parameter list.

» Tags are required for structures, discriminated unions, and enumerations.

Integer types cannot be defined as simply int or unsigned; they must be declared
explicitly asshort, long orlong long .

» char cannot be qualified bgigned or unsigned keywords.

3.17 Standard Exceptions

This section presents the standard exceptions defined for the ORB. These exception
identifiers may be returned as a result of any operation invocation, regardless of the
interface specification. Standard exceptions may not be listeadlses expressions.

In order to bound the complexity in handling the standard exceptions, the set of
standard exceptions should be kept to a tractable size. This constraint forces the
definition of equivalence classes of exceptions rather than enumerating many similar
exceptions. For example, an operation invocation can fail at many different points due
to the inability to allocate dynamic memory. Rather than enumerate several different
exceptions corresponding to the different ways that memory allocation failure causes
the exception (during marshaling, unmarshaling, in the client, in the object
implementation, allocating network packets), a single exception corresponding to
dynamic memory allocation failure is defined.

Each standard exception includes a minor code to designate the subcategory of the
exception.

Minor exception codes are of typasigned long and consist of a 20-bit “Vendor
Minor Codeset ID"YMCID), which occupies the high order 20 bits, and the minor
code which occupies the low order 12 bits.

CORBA V2.3 Differences from C++ June 1999 3-51

Minor codes for the standard exceptions are prefaced ByNi@&D assigned to OMG,
defined as the unsigned long const@aRBA::OMGVMCID , which has the VMCID
allocated to OMG occupying the high order 20 bits. The minor exception codes

associated with the standard exceptions that are found in Table 3-13 on page 3-58 are

or-ed withOMGVMCID to get the minor code value that is returned inethebody
structure (see Section 3.17.1, “Standard Exception Definitions,” on page 3-52 and
Section 3.17.2, “Standard Minor Exception Codes,” on page 3-58).

Within a vendor assigned space, the assignment of values to minor codes is left to the

vendor. Vendors may request allocationVdICIDs by sending email to tag-
request@omg.org

The VMCID 0 and\xfffff are reserved for experimental use. MCID OMGVMCID
(Section 3.17.1, “Standard Exception Definitions,” on page 3-52)1athdough \xfare
reserved for OMG use.

Each standard exception also includeompletion_status code which takes one of
the values {COMPLETED_YES, COMPLETED_NO, COMPLETED_MAYBE}.
These have the following meanings:

COMPLETED_YES

The object implementation has completed processing prior to the exception being
raised.

COMPLETED_NO

The object implementation was never initiated prior to the exception being raised.

COMPLETED_MAYBE

The status of implementation completion is indeterminate.

3.17.1 Standard Exception Definitions

3-52

The standard exceptions are defined below. Clients must be prepared to handle systern

exceptions that are not on this list, both because future versions of this specification
may define additional standard exceptions, and because ORB implementations may
raise non-standard system exceptions.

module CORBA {
const unsigned long OMGVMCID = \x4f4d0000;

#define ex_body {unsigned long minor; completion_status completed;}
enum completion_status { COMPLETED_YES,
COMPLETED_NO,
COMPLETED_MAYBE},

enum exception_type { NO_EXCEPTION,
USER_EXCEPTION,
SYSTEM_EXCEPTION};

exception UNKNOWN ex_body; // the unknown exception
exception BAD_PARAM ex_body; // an invalid parameter was

Il passed
exception NO_MEMORY ex_body; // dynamic memory allocation

CORBA V2.3 Standard Exceptions June 1999

CORBA V2.3

exception IMP_LIMIT
exception COMM_FAILURE
exception INV_OBJREF
exception NO_PERMISSION

exception INTERNAL
exception MARSHAL

exception INITIALIZE
exception NO_IMPLEMENT

exception BAD_TYPECODE
exception BAD_OPERATION
exception NO_RESOURCES

exception NO_RESPONSE

exception PERSIST_STORE
exception BAD_INV_ORDER

exception TRANSIENT

exception FREE_MEM
exception INV_IDENT
exception INV_FLAG
exception INTF_REPOS

exception BAD_CONTEXT

exception OBJ_ADAPTER

exception DATA_CONVERSION
exception OBJECT_NOT_EXIST ex_body;

ex_body;
ex_body;
ex_body;
ex_body;

ex_body;
ex_body;

ex_body;
ex_body;

ex_body;
ex_bhody;
ex_body;

ex_body;

ex_body;
ex_body;

ex_body;

ex_body;
ex_body;
ex_body;
ex_body;

ex_body;

ex_body;

exception TRANSACTION_REQUIRED

ex_body;

[l failure
I violated implementation
/I limit
/I communication failure
// invalid object reference
// no permission for
/I attempted op.
/I ORB internal error
/l error marshaling
[/l param/result

/I ORB initialization failure
// operation implementation
/I unavailable

/l bad typecode
/l invalid operation
/I insufficient resources
/I for req.
I/l response to req. not yet

/I available
/I persistent storage failure
/l routine invocations
/I out of order
/I transient failure - reissue
/I request

/I cannot free memory

/I invalid identifier syntax

/I invalid flag was specified

I error accessing interface
/I repository

/I error processing context
/l object

// failure detected by object
/[adapter

/I data conversion error
/I non-existent object,
/I delete reference

ex_body; //transaction required
exception TRANSACTION_ROLLEDBACK
ex_body; //transaction rolled

exception INVALID_TRANSACTION

exception INV_POLICY

ex_body;
ex_bhody;

exception CODESET_INCOMPATIBLE

Standard Exceptions

ex_body

/I back

/I invalid transaction
// invalid policy

June 1999

/I incompatible code set

3-53

3.17.1.1 UNKNOWN

This exception is raised if an operation implementation throws a non-CORBA
exception (such as an exception specific to the implementation's programming
language), or if an operation raises a user exception that does not appear in the
operation's raises expressidWiNKNOWN is also raised if the server returns a system
exception that is unknown to the client. (This can happen if the server uses a later
version of CORBA than the client and new system exceptions have been added to the
later version.)

3.17.1.2 BAD_PARAM

A parameter passed to a call is out of range or otherwise considered illegal. An ORB
may raise this exception if null values or null pointers are passed to an operation (for
language mappings where the concept of a null pointers or null values applies).
BAD_PARAM can also be raised as a result of client generating requests with incorrect
parameters using the DII.

3.17.1.3 NO_MEMORY

The ORB run time has run out of memory.

3.17.1.4 IMP_LIMIT

This exception indicates that an implementation limit was exceeded in the ORB run
time. For example, an ORB may reach the maximum number of references it can hold
simultaneously in an address space, the size of a parameter may have exceeded the
allowed maximum, or an ORB may impose a maximum on the number of clients or
servers that can run simultaneously.

3.17.1.5 COMM_FAILURE

This exception is raised if communication is lost while an operation is in progress,
after the request was sent by the client, but before the reply from the server has been
returned to the client.

3.17.1.6 INV_OBJREF

This exception indicates that an object reference is internally malformed. For example,
the repository ID may have incorrect syntax or the addressing information may be
invalid. This exception is raised IyRB::string_to_object if the passed string does

not decode correctly.

An ORB may choose to detect calls via nil references (but is not obliged to do detect
them).INV_OBJREF is used to indicate this.

3.17.1.7 NO_PERMISSION

An invocation failed because the caller has insufficient privileges.

3-54 CORBA V2.3 Standard Exceptions June 1999

3.17.1.8 INTERNAL

This exception indicates an internal failure in an ORB, for example, if an ORB has
detected corruption of its internal data structures.

3.17.1.9 MARSHAL

A request or reply from the network is structurally invalid. This error typically

indicates a bug in either the client-side or server-side run time. For example, if a reply
from the server indicates that the message contains 1000 bytes, but the actual messag
is shorter or longer than 1000 bytes, the ORB raises this excelptARSHAL can

also be caused by using the DIl or DSI incorrectly, for example, if the type of the
actual parameters sent does not agree with IDL signature of an operation.

3.17.1.10 INITIALIZE

An ORB has encountered a failure during its initialization, such as failure to acquire
networking resources or detecting a configuration error.

3.17.1.11 NO_IMPLEMENT

This exception indicates that even though the operation that was invoked exists (it has
an IDL definition), no implementation for that operation exisdt®_IMPLEMENT

can, for example, be raised by an ORB if a client asks for an object's type definition
from the interface repository, but no interface repository is provided by the ORB.

3.17.1.12 BAD_TYPECODE

The ORB has encountered a malformed type code (for example, a type code with an
invalid TCKind value).

3.17.1.13 BAD_OPERATION

This indicates that an object reference denotes an existing object, but that the object
does not support the operation that was invoked.

3.17.1.14 NO_RESOURCES

The ORB has encountered some general resource limitation. For example, the run time
may have reached the maximum permissible number of open connections.

3.17.1.15 NO_RESPONSE

This exception is raised if a client attempts to retrieve the result of a deferred
synchronous call, but the response for the request is not yet available.

CORBA V2.3 Standard Exceptions June 1999 3-55

3.17.1.16 PERSIST_STORE

This exception indicates a persistent storage failure, for example, failure to establish a
database connection or corruption of a database.

3.17.1.17 BAD_INV_ORDER

This exception indicates that the caller has invoked operations in the wrong order. For
example, it can be raised by an ORB if an application makes an ORB-related call
without having correctly initialized the ORB first.

3.17.1.18 TRANSIENT

TRANSIENT indicates that the ORB attempted to reach an object and failed. It is not
an indication that an object does not exist. Instead, it simply means that no further
determination of an object's status was possible because it could not be reached. This
exception is raised if an attempt to establish a connection fails, for example, because
the server or the implementation repository is down.

3.17.1.19 FREE_MEM

The ORB failed in an attempt to free dynamic memory, for example because of heap
corruption or memory segments being locked.

3.17.1.20 INV_IDENT

This exception indicates that an IDL identifier is syntactically invalid. It may be raised
if, for example, an identifier passed to the interface repository does not conform to IDL
identifier syntax, or if an illegal operation name is used with the DII.

3.17.1.21 INV_FLAG

An invalid flag was passed to an operation (for example, when creating a DIl request).

3.17.1.22 INTF_REPOS

An ORB raises this exception if it cannot reach the interface repository, or some other
failure relating to the interface repository is detected.

3.17.1.23 BAD_CONTEXT

An operation may raise this exception if a client invokes the operation but the passed
context does not contain the context values required by the operation.

CORBA V2.3 Standard Exceptions June 1999

3.17.1.24 OBJ_ADAPTER

This exception typically indicates an administrative mismatch. For example, a server
may have made an attempt to register itself with an implementation repository under a
name that is already in use, or is unknown to the repos@By. ADAPTER is also

raised by the POA to indicate problems with application-supplied servant managers.

3.17.1.25 DATA_CONVERSION

This exception is raised if an ORB cannot convert the representation of data as
marshaled into its native representation or vice-versa. For example,
DATA_CONVERSION can be raised if wide character codeset conversion fails, or if
an ORB cannot convert floating point values between different representations.

3.17.1.26 OBJECT_NOT_EXIST

The OBJECT_NOT_EXIST exception is raised whenever an invocation on a deleted
object was performed. It is an authoritative “hard” fault report. Anyone receiving it is
allowed (even expected) to delete all copies of this object reference and to perform
other appropriate “final recovery” style procedures.

Bridges forward this exception to clients, also destroying any records they may hold
(for example, proxy objects used in reference translation). The clients could in turn
purge any of their own data structures.

3.17.1.27 TRANSACTION_REQUIRED

The TRANSACTION_REQUIRED exception indicates that the request carried a null
transaction context, but an active transaction is required.

3.17.1.28 TRANSACTION_ROLLEDBACK

The TRANSACTION_ROLLEDBACK exception indicates that the transaction
associated with the request has already been rolled back or marked to roll back. Thus,
the requested operation either could not be performed or was not performed because
further computation on behalf of the transaction would be fruitless.

3.17.1.29 INVALID_TRANSACTION
TheINVALID_TRANSACTION indicates that the request carried an invalid transaction

context. For example, this exception could be raised if an error occurred when trying to
register a resource.

3.17.1.30 INV_POLICY

INV_POLICY is raised when an invocation cannot be made due to an incompatibility
between Policy overrides that apply to the particular invocation.

CORBA V2.3 Standard Exceptions June 1999 3-57

3.17.1.31 CODESET_INCOMPATIBLE

This exception is raised whenever meaningful communication is not possible between
client and server native code sets. See Section 13.7.2.6, “Code Set Negotiation,” on

page 13-34.

3.17.2 Standard Minor Exception Codes

The following table specifies standard minor exception codes that have been assigned
for the standard exceptions. The actual value that is to be found miribe field of
theex_body structure is obtained by or-ing the values in this table with the

OMGVMCID constant. For example “Missing local value implementation” for the
exceptionNO_IMPLEMENT would be denoted by thainor value\x4f4d0001.

Table 3-13 Minor Exception Codes

SYSTEM EXCEPTION

MINOR CODE

EXPLANATION

BAD_PARAM

1

Failure to register, unregister or lookup val
factory

e

RID already defined in IFR

Name already used in the context in IFR

Target is not a valid container

Name clash in inherited context

Incorrect type for abstract interface

MARSHAL

Unable to locate value factory

NO_IMPLEMENT

Missing local value implementation

Incompatible value implementation version

BAD_INV_ORDER

RPN WIN

Dependency exists in IFR preventing
destruction of this object

Attempt to destroy indestructible objects ir
IFR

Operation would deadlock

ORB has shutdown

OBJECT_NOT_EXIST

Attempt to pass an unactivated (unregisterg
value as an object reference

2d)

3-58 CORBA V2.3

Standard Exceptions

June 1999

ORB Interface 4

The ORB Interface chapter has been updated based on the CORE changes from
(ptc/98-09-04) and the Objects by Value documents (ptc/98-07-06) and (orbos/98-01-
18). Changes from RTF 2.4 (ptc/99-03-01) and policy management related material
from the Messaging specification (orbos/98-05-05) have also been incorporated.

Contents

This chapter contains the following sections.

Section Title Page
“Overview” 4-2
“The ORB Operations” 4-2
“Object Reference Operations” 4-8
“ValueBase Operations” 4-16
“ORB and OA Initialization and Initial References” 4-16
“ORB Initialization” 4-16
“Obtaining Initial Object References” 4-18
“Current Object” 4-19
“Policy Object” 4-20
“Management of Policy Domains” 4-28
“Thread-Related Operations” 4-33

CORBAV2.3 June 1999 4-1

4

4-2

4.1 Overview

This chapter introduces the operations that are implemented by the ORB core, and
describes some basic ones, while providing reference to the description of the
remaining operations that are described elsewhere. The ORB interface is the interface
to those ORB functions that do not depend on which object adapter is used. These
operations are the same for all ORBs and all object implementations, and can be
performed either by clients of the objects or implementations. The Object interface
contains operations that are implemented by the ORB, and are accessed as implicit
operations of the Object Reference. The ValueBase interface contains operations that
are implemented by the ORB, and are accessed as implicit operations of the ValueBase
Reference.

Because the operations in this section are implemented by the ORB itself, they are not
in fact operations on objects, although they are described that way for the @bject
ValueBase interface operations and the language binding will, for consistency, make
them appear that way.

4.2 The ORB Operations

The ORB interface contains the operations that are available to both clients and
servers. These operations do not depend on any specific object adapter or any specific
object reference.

module CORBA {

interface NVList; / forward declaration
interface OperationDef; // forward declaration
interface TypeCode; /l forward declaration

typedef short PolicyErrorCode;
/I for the definition of consts see “PolicyErrorCode” on page 4-22

interface Request; // forward declaration
typedef sequence <Request> RequestSeq;

native AbstractBase;
exception PolicyError {PolicyErrorCode reason;};

typedef string Repositoryld,;
typedef string Identifier;

/I StructMemberSeq defined in Chapter 10
/I UnionMemberSeq defined in Chapter 10
/I EnumMemberSeq defined in Chapter 10

typedef unsigned short ServiceType;

typedef unsigned long ServiceOption;
typedef unsigned long ServiceDetailType;

CORBA V2.3 June 1999

const ServiceType Security = 1;

struct ServiceDetall {
ServiceDetailType service_detail_type;
seguence <octet> service_detalil;

k

struct Servicelnformation {
sequence <ServiceOption> service_options;
sequence <ServiceDetail> service_details;

h
native ValueFactory;

interface ORB { / PIDL
#pragma version ORB 2.3

typedef string Objectld;
typedef sequence <Objectld> ObjectldList;

exception InvalidName {};

string object_to_string (
in Object obj
);

Object string_to_object (
in string str

);
/I Dynamic Invocation related operations

void create_list (
in long count,
out NVList new_list

);

void create_operation_list (
in OperationDef oper,
out NVList new_list

);

void get_default_context (
out Context ctx

);

void send_multiple_requests_oneway/(
in RequestSeq req

):

void send_multiple_requests_deferred(

CORBAV2.3 The ORB Operations June 1999 4-3

4-4

in RequestSeq req
);

boolean poll_next_response();

void get_next_response(
out Request req

);
/I Service information operations

boolean get_service_information (
in ServiceType service_type,

out Servicelnformation service_information

);
ObijectldList list_initial_services ();
/I Initial reference operation

Object resolve_initial_references (
in Objectld identifier
) raises (InvalidName);

/I Type code creation operations

TypeCode create_struct_tc (
in Repositoryld id,
in Identifier name,
in StructMemberSeq members

);

TypeCode create_union_tc (
in Repositoryld id,
in Identifier name,
in TypeCode discriminator_type,
in UnionMemberSeq members

):

TypeCode create_enum_tc (
in Repositoryld id,
in Identifier name,
in EnumMemberSeq members

);

TypeCode create_alias_tc (

in Repositoryld id,

in Identifier name,

in TypeCode original_type
)i

CORBA V2.3 June 1999

TypeCode create_exception_tc (
in Repositoryld id,
in Identifier name,
in StructMemberSeq members

);

TypeCode create_interface_tc (
in Repositoryld id,
in Identifier name

);

TypeCode create_string_tc (
in unsigned long bound

);

TypeCode create_wstring_tc (
in unsigned long bound

);

TypeCode create_fixed_tc (
in unsigned short digits,
in short scale

);

TypeCode create_sequence_tc (
in unsigned long bound,
in TypeCode element type

);

TypeCode create_recursive_sequence_tc // deprecated
in unsigned long bound,
in unsigned long offset

);

TypeCode create_array_tc (
in unsigned long length,
in TypeCode element_type

);

TypeCode create_value_tc (

in Repositoryld id,

in ldentifier name,

in ValueModifier type_modifier,
in TypeCode concrete_base,

in ValueMembersSeq members

);

TypeCode create_value_box_tc (

in Repositoryld id,
in ldentifier name,
in TypeCode boxed_type

CORBAV2.3 The ORB Operations June 1999 4-5

4-6

);
TypeCode create_native_tc (
in Repositoryld id,
in Identifier name
);
TypeCode create_recursive_tc(
in Repositoryld id
);
TypeCode create_abstract_interface_tc(
in Repositoryld id,
in ldentifier name

);

/I Thread related operations
boolean work_pending();
void perform_work();

void run();

void shutdown(
in boolean wait_for_completion

)i
void destroy();
/I Policy related operations
Policy create_policy(
in PolicyType type,
in any val

) raises (PolicyError);

/I Dynamic Any related operations deprecated and removed
[/l from primary list of ORB operations

/I Value factory operations
ValueFactory register_value_factory(
in Repositoryld id,
in ValueFactory factory
)i

void unregister_value_factory(in Repositoryld id);

ValueFactory lookup_value_factory(in Repositoryld id);

CORBA V2.3 June 1999

k

All types defined in this chapter are part of the CORBA module. When referenced in
OMG IDL, the type names must be prefixed BORBA:: ".

The operation®bject to_string andstring_to_object are described in
“Converting Object References to Strings” on page 4-7.

For a description of thereate_list andcreate_operation_list operations, see
Section 7.4, “List Operations,” on page 7-10. Tget_default_context operation is
described in the section Section 7.6.1, “get_default_context,” on page 7-14. The
send_multiple_requests_oneway andsend_multiple_requests_deferred
operations are described in the section Section 7.3.2, “send_multiple_requests,” on
page 7-9. Theoll_next response andget next_response operations are
described in the section Section 7.3.5, “get_next_response,” on page 7-10.

Thelist_intial_services andresolve_initial_references operations are described
in “Obtaining Initial Object References” on page 4-18.

The Type code creation operations with names of the fveate_<type> tc are
described in Section 10.7.3, “Creating TypeCodes,” on page 10-53.

Thework_pending , perform_work , shutdown , destroy andrun operations are
described in “Thread-Related Operations” on page 4-33.

Thecreate_policy operations is described in “Create_policy” on page 4-23.

Theregister_value_factory , unregister_value_factory and
lookup_value_factory operations are described in Section 5.4.3, “Language Specific
Value Factory Requirements,” on page 5-9.

4.2.1 Converting Object References to Strings

4.2.1.1 object_to_string

string object_to_string (
in Object obj
);

4.2.1.2 string_to_object

Object string_to_object (
in string str

):

Because an object reference is opaque and may differ from ORB to ORB, the object
reference itself is not a convenient value for storing references to objects in persistent
storage or communicating references by means other than invocation. Two problems

CORBAV2.3 The ORB Operations June 1999 4-7

must be solved: allowing an object reference to be turned into a value that a client can
store in some other medium, and ensuring that the value can subsequently be turned
into the appropriate object reference.

An object reference may be translated into a string by the operation
object_to_string . The value may be stored or communicated in whatever ways
strings may be manipulated. Subsequently,sthieg_to_object operation will
accept a string produced bgbject_to_string and return the corresponding object
reference.

To guarantee that an ORB will understand the string form of an object reference, that
ORB’s object_to_string operation must be used to produce the string. For all
conforming ORBS, ibbj is a valid reference to an object, then
string_to_object(object_to_string(obj)) will return a valid reference to the same
object, if the two operations are performed on the same ORB. For all conforming
ORB's supporting IOP, this remains true even if the two operations are performed on
different ORBs.

4.2.2 Getting Service Information

4.2.2.1 get_service_information

boolean get_service_information (
in ServiceType service_type;
out Servicelnformation service_information;

);

Theget_service_information operation is used to obtain information about CORBA
facilities and services that are supported by this ORB. The service type for which
information is being requested is passed in as the in parasegtéce_type , the

values defined by constants in the CORBA module. If service information is available
for that type, that is returned in the out paramseevice_information , and the

operation returns the value TRUE. If no information for the requested services type is
available, the operation returns FALSE (i.e., the service is not supported by this ORB).

4.3 Object Reference Operations

There are some operations that can be done on any object. These are not operations i
the normal sense, in that they are implemented directly by the ORB, not passed on to
the object implementation. We will describe these as being operations on the object
reference, although the interfaces actually depend on the language binding. As above,
where we used interfad@bject to represent the object reference, we define an

interface forObject :

module CORBA {

interface DomainManager; // forward declaration
typedef sequence <DomainManager> DomainManagersList;

CORBA V2.3 June 1999

interface Policy; /I forward declaration
typedef sequence <Policy> PolicyList;

typedef unsigned long PolicyType;

interface Context; / forward declaration

typedef string Identifier;

interface Request; / forward declaration
interface NVList; /I forward declaration
struct NamedValue{}; /l an implicitly well known type

typedef unsigned long Flags;
interface InterfaceDef;

enum SetOverrideType {SET_OVERRIDE, ADD_OVERRIDE};
interface Object { // PIDL

InterfaceDef get_interface ();

boolean is_nil();

Object duplicate ();

void release ();

booleanis_a (

in string logical_type_id
);
boolean non_existent();

boolean is_equivalent (

in Object other_object
);
unsigned long hash(
in unsigned long maximum
);
void create_request (
in Context ctx
in Identifier operation,
in NVList arg_list,
inout NamedValue result,
out Request request,
in Flags req_flag

);
Policy get_policy (

in PolicyType policy_type
);

CORBAV2.3 Object Reference Operations June 1999 4-9

DomainManagersList get_domain_managers ();

Object set_policy_overrides(
in PolicyList policies,
in SetOverrideType set_add
);
h
I3

The create_request operation is part of the Object interface because it creates a
pseudo-object (a Request) for an object. It is described with the other Request
operations in the section Section 7.2, “Request Operations,” on page 7-4.

Unless otherwise stated below, the operations in the IDL above do not require access to
remote information.

4.3.1 Determining the Object Interface

4.3.1.1 get_interface

InterfaceDef get_interface();

An operation on the object referenget_interface , returns an object in the Interface
Repository, which provides type information that may be useful to a program. See the
Interface Repository chapter for a definition of operations on the Interface Repository.
The implementation of this operation may involve contacting the ORB that implements
the target object.

4.3.2 Duplicating and Releasing Copies of Object References

4.3.2.1 duplicate

Object duplicate();

4.3.2.2 release

void release();

Because object references are opaque and ORB-dependent, it is not possible for clients
or implementations to allocate storage for them. Therefore, there are operations
defined to copy or release an object reference.

If more than one copy of an object reference is needed, the client may create a
duplicate. Note that the object implementation is not involved in creating the duplicate,
and that the implementation cannot distinguish whether the original or a duplicate was
used in a particular request.

4-10 CORBA V2.3 June 1999

4

When an object reference is no longer needed by a program, its storage may be
reclaimed by use of theelease operation. Note that the object implementation is not
involved, and that neither the object itself nor any other references to it are affected by
therelease operation.

4.3.3 Nil Object References

4.3.3.1 is_nil

boolean is_nil();

An object reference whose valueQ8JECT NIL denotes no object. An object
reference can be tested for this value byishail operation. The object
implementation is not involved in the nil test.

4.3.4 Equivalence Checking Operation

4.3.4.1 is_a

boolean is_a(
in Repositoryld logical_type_id
)i

An operation is defined to facilitate maintaining type-safety for object references over
the scope of an ORB.

Thelogical type_id is a string denoting a shared type identifieegositoryld).
The operation returns true if the object is really an instance of that type, including if
that type is an ancestor of the “most derived” type of that object.

Determining whether an object's type is compatible withldbeal type_id may

require contacting a remote ORB or interface repository. Such an attempt may fail at
either the local or the remote endidfa cannot make a reliable determination of type
compatibility due to failure, it raises an exception in the calling application code. This
enables the application to distinguish amongTR&E, FALSE, and indeterminate
cases.

This operation exposes to application programmers functionality that must already
exist in ORBs which support “type safe narrow” and allows programmers working in
environments that do not have compile time type checking to explicitly maintain type
safety.

4.3.5 Probing for Object Non-Existence
4.3.5.1 non_existent

boolean non_existent ();

CORBAV2.3 Object Reference Operations June 1999 4-11

4-12

The non_existent operation may be used to test whether an object (e.g., a proxy
object) has been destroyed. It does this without invoking any application level
operation on the object, and so will never affect the object itself. It returns true (rather
than raisingCORBA::OBJECT_NOT_EXIST) if the ORB knows authoritatively that

the object does not exist; otherwise, it returns false.

Services that maintain state that includes object references, such as bridges, event
channels, and base relationship services, might use this operation in their “idle time” to
sift through object tables for objects that no longer exist, deleting them as they go, as a
form of garbage collection. In the case of proxies, this kind of activity can cascade,
such that cleaning up one table allows others then to be cleaned up.

Probing for object non-existence may require contacting the ORB that implements the
target object. Such an attempt may fail at either the local or the remote end. If non-
existent cannot make a reliable determination of object existence due to failure, it
raises an exception in the calling application code. This enables the application to
distinguish among the true, false, and indeterminate cases.

4.3.6 Object Reference Identity

4.3.6.1

In order to efficiently manage state that include large numbers of object references,
services need to support a notion of object reference identity. Such services include not
just bridges, but relationship services and other layered facilities.

Two identity-related operations are provided. One maps object references into disjoint
groups of potentially equivalent references, and the other supports more expensive
pairwise equivalence testing. Together, these operations support efficient maintenance
and search of tables keyed by object references.

Hashing Object Identifiers

hash

unsigned long hash(
in unsigned long maximum

):

Object references are associated with ORB-internal identifiers which may indirectly be
accessed by applications using ttash operation. The value of this identifier does

not change during the lifetime of the object reference, and so neither will any hash
function of that identifier.

The value of this operation is not guaranteed to be unique; that is, another object
reference may return the same hash value. However, if two object references hash
differently, applications can determine that the two object referencesotidentical.

CORBA V2.3 June 1999

4

The maximum parameter to theash operation specifies an upper bound on the hash
value returned by the ORB. The lower bound of that value is zero. Since a typical use
of this feature is to construct and access a collision chained hash table of object
references, the more randomly distributed the values are within that range, and the
cheaper those values are to compute, the better.

For bridge construction, note that proxy objects are themselves objects, so there could
be many proxy objects representing a given “real” object. Those proxies would not
necessarily hash to the same value.

4.3.6.2 Equivalence Testing

is_equivalent

boolean is_equivalent(
in Object other_object
)i

Theis_equivalent operation is used to determine if two object references are
equivalent, so far as the ORB can easily determine. It returns TRUE if the target object
reference is known to be equivalent to the other object reference passed as its
parameter, and FALSE otherwise.

If two object references are identical, they are equivalent. Two different object
references which in fact refer to the same object are also equivalent.

ORBs are allowed, but not required, to attempt determination of whether two distinct
object references refer to the same object. In general, the existence of reference
translation and encapsulation, in the absence of an omniscient topology service, can
make such determination impractically expensive. This means that a FALSE return
from is_equivalent should be viewed as only indicating that the object references are
distinct, and not necessarily an indication that the references indicate distinct objects.

A typical application use of this operation is to match object references in a hash table.
Bridges could use it to shorten the lengths of chains of proxy object references.
Externalization services could use it to “flatten” graphs that represent cyclical
relationships between objects. Some might do this as they construct the table, others
during idle time.

4.3.7 Getting Policy Associated with the Object

4.3.7.1 get_policy

The get_policy operation returns the policy object of the specified type (see “Policy
Object” on page 4-20), which applies to this objéicteturns theeffectivePolicy for

the object reference. The effectiRelicy is the one that would be used if a request
were made. Thi®olicy is determined first by obtaining thedfective overriddor the
PolicyType as returned byget_client_policy . The effective override is then
compared with théolicy as specified in the IOR. The effectielicy is the

CORBAV2.3 Object Reference Operations June 1999 4-13

4-14

intersection of the values allowed by the effective override and the IOR-specified
Policy . If the intersection is empty, the system excepthv_POLICY is raised.
Otherwise, &olicy with a value legally within the intersection is returned as the
effectivePolicy . The absence ofRolicy value in the IOR implies that any legal value
may be used. Invokingon_existent on an object reference prior ¢@t_policy

ensures the accuracy of the returned effeddolicy . If get_policy is invoked prior

to the object reference being bound, the returned effeBoliey is implementation
dependent. In that situation, a compliant implementation may do any of the following:
raise the system excepti®@AD_INV_ORDER, return some value for that

PolicyType which may be subject to change once a binding is performed, or attempt
a binding and then return the effectielicy . Note that if the effectiv®olicy may
change from invocation to invocation due to transparent rebinding.

Policy get_policy (
in PolicyType policy type
);

Parameter(s)
policy type - The type of policy to be obtained.

Return Value
A Policy object of the type specified by tipelicy_type parameter.

Exception(s)
CORBA:INV_POLICY - raised when the value of policy type is not valid either because

the specified type is not supported by this ORB or because a policy object of that type
is not associated with this Object.

The implementation of this operation may involve remote invocation of an operation
(e.g.DomainManager::get_domain_policy = for some security policies) for some

policy types.

4.3.8 Overriding Associated Policies on an Object Reference

4.3.8.1 set_policy_overrides

The set_policy_overrides operation returns a new object reference with the new
policies associated with it. It takes two input parameters. The first pargmoébées

is a sequence of referencesPwlicy objects. The second parameset_add of type
SetOverrideType indicates whether these policies should be added onto any other
overrides that already exisADD_OVERRIDE) in the object reference, or they should
be added to a clean override free object refereBEd (OVERRIDE). This operation
associates the policies passed in the first parameter with a newly created object
reference that it returns. Only certain policies that pertain to the invocation of an
operation at the client end can be overridden using this operation. Attempts to override
any other policy will result in the raising of ti@ORBA::NO_PERMISSION

exception.

CORBA V2.3 June 1999

enum SetOverrideType {SET_OVERRIDE, ADD_OVERRIDE};

Object set_policy _overrides(

in PolicyList policies,
in SetOverrideType set_add
)i
Parameter(s)

policies - a sequence dfolicy objects that are to be associated with the new copy of
the object reference returned by this operation

set_add - whether the association is in addition ADO_OVERRIDE) or as
replacement ofYET_OVERRIDE) any existing overrides already associated with the
object reference.

Return Value

A copy of the object reference with the overrides frpoolicies associated with it in
accordance with the value sét_add .

Exception(s)

CORBA::NO_PERMISSION - raised when an attempt is made to override any policy
that cannot be overridden.

4.3.9 Getting the Domain Managers Associated with the Object

4.3.9.1 get_domain_managers

The get_domain_managers operation allows administration services (and
applications) to retrieve the domain managers (see “Management of Policy Domains”
on page 4-28), and hence the security and other policies applicable to individual
objects that are members of the domain.

typedef sequence <DomainManager> DomainManagersList;

DomainManagersList get_domain_managers ();

Return Value

The list of immediately enclosing domain managers of this object. At least one domain
manager is always returned in the list since by default each object is associated with at
least one domain manager at creation.

The implementation of this operation may involve contacting the ORB that implements
the target object.

CORBAV2.3 Object Reference Operations June 1999 4-15

4

4.4 ValueBase Operations

ValueBase serves a similar role for value types tldiject serves for interfaces. Its
mapping is language-specific and must be explicitly specified for each language.

Typically it is mapped to a concrete language type which serves as a base for all value
types. Any operations that are required to be supported for all values are conceptually
defined onValueBase , although in reality their actual mapping depends upon the
specifics of any particular language mapping.

Analogous to the definition of th@bject interface for implicit operations of object
references, the implicit operations \#lueBase are defined on a pseudaluetype
as follows:

module CORBA {
valuetype ValueBase{ PIDL
ValueDef get_value_def();
I3
h

Theget_value_def () operation returns a description of the value’s definition as
described in the interface repository (Section 10.5.24, “ValueDef,” on page 10-34).

4.5 ORB and OA Initialization and Initial References

Before an application can enter the CORBA environment, it must first:
¢ Be initialized into the ORB and possibly the object adapter (POA) environments.

¢ Get references to ORB pseudo-object (for use in future ORB operations) and
perhaps other objects (including the root POA or some Object Adapter objects).

The following operations are provided to initialize applications and obtain the
appropriate object references:

¢ Operations providing access to the ORB. These operations reside in the CORBA
module, but not in the ORB interface and are described in Section 4.6, “ORB
Initialization,” on page 4-16.

¢ Operations providing access to Object Adapters, Interface Repository, Naming
Service, and other Object Services. These operations reside in the ORB interface
and are described in Section 4.7, “Obtaining Initial Object References,” on
page 4-18.

4.6 ORB Initialization

4-16

When an application requires a CORBA environment it needs a mechanism to get the
ORB pseudo-object reference and possibly an OA object reference (such as the root
POA). This serves two purposes. First, it initializes an application into the ORB and
OA environments. Second, it returns the ORB pseudo-object reference and the OA
object reference to the application for use in future ORB and OA operations.

CORBA V2.3 June 1999

4

The ORB and OA initialization operations must be ordered with ORB occurring before
OA: an application cannot call OA initialization routines until ORB initialization
routines have been called for the given ORB. The operation to initialize an application
in the ORB and get its pseudo-object reference is not performed on an object. This is
because applications do not initially have an object on which to invoke operations. The
ORSB initialization operation is an application’s bootstrap call into the CORBA world.
The ORB_init call is part of the CORBA module but not part of the ORB interface.

Applications can be initialized in one or more ORBs. When an ORB initialization is
complete, its pseudo reference is returned and can be used to obtain other references
for that ORB.

In order to obtain an ORB pseudo-object reference, applications c&liRBe init
operation. The parameters to the call comprise an identifier for the ORB for which the
pseudo-object reference is required, ancuan list , which is used to allow
environment-specific data to be passed into the call. PIDL for the ORB initialization is
as follows:

// PIDL
module CORBA {

typedef string ORBId;

typedef sequence <string> arg_list;

ORB ORB._init (inout arg_list argv, in ORBId orb_identifier);
¥

The identifier for the ORB will be a name of ty@®RBA::ORBId . All ORBId

strings other than the empty string are allocated by ORB administrators and are not
managed by the OMGDRBId strings other than the empty string are intended to be
used to uniquely identify each ORB used within the same address space in a multi-
ORB application. These speci@RBid strings are specific to each ORB

implementation and the ORB administrator is responsible for ensuring that the names
are unambiguous.

If an emptyORBId string is passed tORB_init , then thearg_list arguments shall be
examined to determine if they indicate an ORB reference that should be returned. This
is achieved by searching tlaeg_list parameters for one preceded b@RBIid"” for
example, “ORBid example_orb " (the white space after theORBId” tag is

ignored) or “ORBidMyFavoriteORB " (with no white space following the-ORBid”

tag). Alternatively, two sequential parameters with the first being the st®igBid”
indicates that the second is to be treated &RBid parameter. If an empty string is
passed and narg_list parameters indicate the ORB reference to be returned, the
default ORB for the environment will be returned.

Other parameters of significance to the ORB can also be identifigy_ifist , for

example, Hostname ,” “ SpawnedServer ,” and so forth. To allow for other

parameters to be specified without causing applications to be re-written, it is necessary
to specify the parameter format that ORB parameters may take. In general, parameters
shall be formatted as either one singtg_list parameter:

—ORB-<suffix><optional white space> <value>

CORBA V2.3 ORB Initialization June 1999 4-17

or as two sequentiarg_list parameters:
-ORB<suffix>

<value>

Regardless of whether an empty or non-en@®RBBid string is passed tORB_init,
thearg_list arguments are examined to determine if any ORB parameters are given. If
a non-emptyORBId string is passed tORB_init, all ORBid parameters in the

arg_list are ignored. All otherORB<suffix> parameters in tharg_list may be of
significance during the ORB initialization process.

BeforeORB_init returns, it will remove from tharg_list parameter all strings that
match the ORB<suffix> pattern described above and that are recognized by that ORB
implementation, along with any associated sequential parameter strings. If any strings
in arg_list that match this pattern are not recognized by the ORB implementation,
ORB_init will raise theBAD_PARAM system exception instead.

The ORB_init operation may be called any number of times and shall return the same
ORB reference when the saf®®Bid string is passed, either explicitly as an argument
to ORB_init or through thearg_list . All other -ORB<suffix> parameters in the

arg_list may be considered on subsequent call®RB_init .

4.7 Obtaining Initial Object References

4-18

Applications require a portable means by which to obtain their initial object references.
References are required for the root POA, POA Current, Interface Repository and
various Object Services instances. (The POA is described in the Portable Object
Adaptor chapter; the Interface Repository is described in the Interface Repository
chapter; Object Services are describe@€®RBAservices: Common Object Services
Specification) The functionality required by the application is similar to that provided
by the Naming Service. However, the OMG does not want to mandate that the Naming
Service be made available to all applications in order that they may be portably
initialized. Consequently, the operations shown in this section provide a simplified,
local version of the Naming Service that applications can use to obtain a small, defined
set of object references which are essential to its operation. Because only a small well-
defined set of objects are expected with this mechanism, the naming context can be
flattened to be a single-level name space. This simplification results in only two
operations being defined to achieve the functionality required.

Initial references are not obtained via a new interface; instead two operations are
provided in the ORB pseudo-object interface, providing facilities to list and resolve
initial object references.

list_initial_services

typedef string Objectld;
typedef sequence <Objectld> ObjectldList;
ObijectldList list_initial_services ();

CORBA V2.3 June 1999

resolve_initial_references

exception InvalidName {};

Object resolve_initial_references (
in Objectld identifier
) raises (InvalidName);

Theresolve_initial_references oOperation is an operation on the ORB rather than

the Naming Service’dlamingContext . The interface differs from the Naming

Service’s resolve in thabjectld (a string) replaces the more complex Naming

Service construct (a sequence of structures containing string pairs for the components
of the name). This simplification reduces the name space to one context.

Objectlds are strings that identify the object whose reference is required. To maintain
the simplicity of the interface for obtaining initial references, only a limited set of
objects are expected to have their references found via this route. Unlike the ORB
identifiers, theObjectld name space requires careful management. To achieve this, the
OMG may, in the future, define which services are required by applications through
this interface and specify names for those services.

Currently, reserve@®bjectlds areRootPOA , POACurrent , InterfaceRepository,
NameService , TradingService , SecurityCurrent , TransactionCurrent, and
DynAnyFactory .

To allow an application to determine which objects have references available via the
initial references mechanism, thist_initial_services operation (also a call on the
ORB) is provided. It returns a@bjectldList , which is a sequence @bjectlds .

Objectlds are typed as strings. Each object, which may need to be made available at
initialization time, is allocated a string value to represent it. In addition to defining the
id, the type of object being returned must be defined (ileterfaceRepository ”

returns an object of typRepository , and ‘NameService ” returns a

CosNamingContext object).

The application is responsible for narrowing the object reference returned from
resolve_initial_references to the type which was requested in the Objectld. For
example, for InterfaceRepository the object returned would be narrowed to
Repository type.

In the future, specifications for Object Services Qi@RBAservices: Common Object
Services Specificatigmvill state whether it is expected that a service’s initial reference
be made available via thiesolve_initial_references operation or not (i.e., whether
the service is necessary or desirable for bootstrap purposes).

4.8 Current Object

ORB and CORBA services may wish to provide access to information (context)
associated with the thread of execution in which they are running. This information is
accessed in a structured manner using interfaces derived fraGuttent interface
defined in the CORBA module.

CORBAV2.3 Current Object June 1999 4-19

4.9 Policy Object

Each ORB or CORBA service that needs its own context derives an interface from the
CORBA module'Current . Users of the service can obtain an instance of the
appropriateCurrent interface by invokindORB::resolve_initial_references . For
example the Security service obtains @&rent relevant to it by invoking

ORB::resolve_initial_references(“SecurityCurrent”)

A CORBA service does not have to use this method of keeping context but may choose
to do so.

module CORBA {
/I interface for the Current object
interface Current {
I3

2

Operations on interfaces derived fr@@orrent access state associated with the thread

in which they are invoked, not state associated with the thread from whiCluient

was obtained. This prevents one thread from manipulating another thread's state, and
avoids the need to obtain and narrow a i@wrent in each method's thread context.

Current objects must not be exported to other processes, or externalized with
ORB::object_to_string . If any attempt is made to do so, the offending operation will
raise aMARSHAL system exceptiorCurrent s are per-process singleton objects, so
no destroy operation is needed.

4.9.1 Definition of Policy Object

4-20

An ORB or CORBA service may choose to allow access to certain choices that affect
its operation. This information is accessed in a structured manner using interfaces
derived from thePolicy interface defined in the CORBA module. A CORBA service
does not have to use this method of accessing operating options, but may choose to dc
s0. TheSecurity Servicén particular uses this technique for associaSegurity Policy

with objects in the system.

module CORBA {
typedef unsigned long PolicyType;

// Basic IDL definition
interface Policy {
readonly attribute PolicyType policy_type;

Policy copy();
void destroy();

h

typedef sequence <Policy> PolicyList;

h

CORBA V2.3 June 1999

4

PolicyType defines the type dPolicy object. In general the constant values that are
allocated are defined in conjunction with the definition of the correspoririiticy
object. The values dPolicyTypes for policies that are standardized by OMG are
allocated by OMG. Additionally, vendors may reserve blocks of 4096 PolicyType
values identified by a 20 bitendor PolicyType Valueset IWPVID) for their own use.

PolicyType which is an unsigned long consists of the 20M3VID in the high order
20 bits, and the vendor assigned policy value in the low order 12 bits/AViDs 0
through \xfare reserved for OMG. All values for the standBoticyTypes are
allocated within this range by OMG. Additionally, ti®VIDs \xfffff is reserved for
experimental use amdMGVMCID (Section 3.17.1, “Standard Exception Definitions,”
on page 3-52) is reserved for OMG use. These will not be allocated to anybody.
Vendors can request allocation \@#PVID by sending mail to tagequest@omg.org

When aVMCID (Section 3.17, “Standard Exceptions,” on page 3-51) is allocated to a
vendor automatically the same valueMi#VID is reserved for the vendor and vice
versa. So once a vendor gets eith®MCID or aVPVID registered they can use that
value for both their minor codes and their policy types.

49.1.1 Copy
Policy copy();

Return Value

This operation copies the policy object. The copy does not retain any relationships that
the policy had with any domain, or object.

4.9.1.2 Destroy

void destroy();

This operation destroys the policy object. It is the responsibility of the policy object to
determine whether it can be destroyed.

Exception(s)

CORBA::NO_PERMISSION - raised when the policy object determines that it cannot be
destroyed.

4.9.1.3 Policy_type
readonly attribute policy_type
Return Value

This readonly attribute returns the constant value of BgeyType that corresponds
to the type of thé&olicy object.

CORBA V2.3 Policy Object June 1999 4-21

4.9.2 Creation of Policy Objects

A generic ORB operation for creating new instances of Policy objects is provided as
described in this section.

module CORBA {

typedef short PolicyErrorCode;

const PolicyErrorCode BAD_POLICY = 0;

const PolicyErrorCode UNSUPPORTED_POLICY = 1;

const PolicyErrorCode BAD_POLICY_TYPE = 2;

const PolicyErrorCode BAD_POLICY_VALUE = 3;

const PolicyErrorCode UNSUPPORTED_POLICY_VALUE = 4;

exception PolicyError {PolicyErrorCode reason;};

interface ORB {

Policy create_policy(
in PolicyType type,
in any val

) raises(PolicyError);

h
h

4.9.2.1 PolicyErrorCode
A request to create Rolicy may be invalid for the following reasons:

BAD_POLICY - the requesteBolicy is not understood by the ORB.

UNSUPPORTED_POLICY - the requeste&olicy is understood to be valid by the
ORB, but is not currently supported.

BAD_POLICY_TYPE - The type of the value requested for Badicy is not valid for
that Policy Type .

BAD_POLICY_VALUE - The value requested for tiRelicy is of a valid type but is
not within the valid range for that type.

UNSUPPORTED_POLICY_VALUE - The value requested for tRelicy is of a valid
type and within the valid range for that type, but this valid value is not currently
supported.

4.9.2.2 PolicyError

exception PolicyError {PolicyErrorCode reason;};

4-22 CORBA V2.3 June 1999

4

PolicyError exception is raised to indicate problems with parameter values passed to
the ORB::create_policy operation. Possible reasons are described above.

4.9.2.3 INV_POLICY

exception INV_POLICY

Due to an incompatibility betwedpolicy overrides, the invocation cannot be made.
This is a standard system exception that can be raised from any invocation.

4.9.2.4 Create_policy

The ORB operatiomreate_policy can be invoked to create new instances of policy
objects of a specific type with specified initial statecrate policy fails to

instantiate a newolicy object due to its inability to interpret the requested type and
content of the policy, it raises tRolicyError exception with the appropriate reason as
described in “PolicyErrorCode” on page 4-22.

Policy create_policy(
in PolicyType type,
in any val

) raises(PolicyError);

Parameter(s)
type - thePolicyType of the policy object to be created.

val - the value that will be used to set the initial state oPtley object that is created.

ReturnValue

Reference to a newly creat®dlicy object of type specified by thgpe parameter
and initialized to a state specified by ted parameter.

Exception(s)

PolicyError - raised when the requested policy is not supported or a requested initial
state for the policy is not supported.

When new policy types are added to CORBA or CORBA Services specification, it is
expected that the IDL type and the valid values that can be passeghte policy
also be specified.

4.9.3 Usages of Policy Objects

Policy Objects are used in general to encapsulate information about a specific policy,
with an interface derived from the policy interface. The type of the Policy object
determines how the policy information contained within it is used. Usually a Policy
object is associated with another object to associate the contained policy with that
object.

CORBA V2.3 Policy Object June 1999 4-23

4-24

Objects with which policy objects are typically associated are Domain Managers, POA,
the execution environment, both the process/capsule/ORB instance and thread of
execution (Current object) and object references. Only certain types of policy object
can be meaningfully associated with each of these types of objects.

These relationships are documented in sections that pertain to these individual objects
and their usages in various core facilities and object services. The use of Policy
Objects with the POA are discussed in Huetable Object Adaptochapter. The use of
Policy objects in the context of the Security services, involving their association with
Domain Managers as well as with the Execution Environment are discussed in
CORBAservicesSecurity Servicehapter.

In the following section the association of Policy objects with the Execution
Environment is discussed. In “Management of Policy Domains” on page 4-28 the use
of Policy objects in association with Domain Managers is discussed.

4.9.4 Policy Associated with the Execution Environment

Certain policies that pertain to services like security (e.g., QOP, Mechanism, invocation
credentials etc.) are associated by default with the process/capsule(RM-ODP)/ORB
instance (hereinafter referred to as “capsule”) when the application is instantiated
together with the capsule. By default these policies are applicable whenever an
invocation of an operation is attempted by any code executing in the said capsule. The
Security service provides operations for modulating these policies on a per-execution
thread basis using operations in therrent interface. Certain of these policies (e.g.,
invocation credentials, gop, mechanism etc.) which pertain to the invocation of an
operation through a specific object reference can be further modulated at the client
end, using theet_policy_overrides operation of theébject reference. For a
description of this operation see “Overriding Associated Policies on an Object
Reference” on page 4-14. It associates a specified set of policies with a newly created
object reference that it returns.

The association of these overridden policies with the object reference is a purely local
phenomenon. These associations are never passed on in any IOR or any other
marshaled form of the object reference. the associations last until the object reference
in the capsule is destroyed or the capsule in which it exists is destroyed.

The policies thus overridden in this new object reference and all subsequent duplicates
of this new object reference apply to all invocations that are done through these object
references. The overridden policies apply even when the default policy associated with
Current is changed. It is always possible that the effective policy on an object
reference at any given time will fail to be successfully applied, in which case the
invocation attempt using that object reference will fail and return a
CORBA::NO_PERMISSION exception. Only certain policies that pertain to the
invocation of an operation at the client end can be overridden using this operation.
These are listed in the Security specification. Attempts to override any other policy

will result in the raising of th€ ORBA::NO_PERMISSION exception.

CORBA V2.3 June 1999

4

In general the policy of a specific type that will be used in an invocation through an
specific object reference using a specific thread of execution is determined first by
determining if that policy type has been overridden in that object reference. if so then
the overridden policy is used. if not then if the policy has been set in the thread of
execution then that policy is used. If not then the policy associated with the capsule is
used. For policies that matter, the ORB ensures that there is a default policy object of
each type that matters associated with each capsule (ORB instance). Hence, in a
correctly implemented ORB there is no case when a required type policy is not
available to use with an operation invocation.

4.9.5 Specification of New Policy Objects

When newPolicyType s are added to CORBA specifications, the following details
must be defined. It must be clearly stated which particular uses of a new policy are
legal and which are not:

« Specify the assigne@ORBA::PolicyType and the policy's interface definition.

» If the Policy can be created througdORBA::ORB::create_policy , specify the
allowable values for the any argument 'val' and how they correspond to the initial
state/behavior of thaolicy (such as initial values of attributes). For example, if a
Policy has multiple attributes and operations, it is most likely that create_policy will
receive some complex data for the implementation to initialize the state of the
specific policy:

//IDL

struct MyPolicyRange {
long low;
long high;

¥

const CORBA::PolicyType MY_POLICY_TYPE = 666;
interface MyPolicy : Policy {

readonly attribute long low;

readonly attribute long high;
I3

If this sampleMyPolicy can be constructed via create_policy, the specification of
MyPolicy will have a statement such as: “When instanceédy#olicy are created,

a value of typeMyPolicyRang e is passed t€ORBA::ORB::create_policy and
the resulting MyPolicy's attribute 'low' has the same value adlyf®®licyRange
member 'low' and attribute 'high' has the same value aglyRelicyRange

member 'high'.

e If the Policy can be passed as an argumerR@A:.create_ POA , specify the
effects of the new policy on th®OA. Specifically define incompatibilities (or
inter-dependencies) with othBOA policies, effects on the behavior of invocations
on objects activated with tHeOA, and whether or not presence of the POA policy
implies somdOR profile/component contents for object references created with

CORBA V2.3 Policy Object June 1999 4-25

that POA. If the POA policy implies some addition/modification to the object
reference it is marked as “client-exposed” and the exact details are specified
including which profiles are affected and how the effects are represented.

« If the component which is used to carry this information. can be set within a client
to tune the client's behavior, specify the policy's effects on the client specifically
with respect to (a) establishment of connections and reconnections for an object
reference; (b) effects on marshaling of requests; (c) effects on insertion of service
contexts into requests; (d) effects upon receipt of service contexts in replies. In
addition, incompatibilities (or inter-dependencies) with other client-side policies are
stated. For policies that cause service contexts to be added to requests, the exact
details of this addition are given.

« If the Policy can be used witROA creation to tundOR contents and can also be
specified (overridden) in the client, specify how to reconcile the policy's presence
from both the client and server. It is strongly recommended to avoid this case! As an
exercise in completeness, m&DA policies can probably be extended to have
some meaning in the client and vice versa, but this does not help make usable
systems, it just makes them more complicated without adding really useful features.
There are very few cases where a policy is really appropriate to specify in both
places, and for these policies the interaction between the two must be described.

¢ Pure client-side policies are assumed to be immutable. This allows efficient
processing by the runtime that can avoid re-evaluating the policy upon every
invocation and instead can perform updates only when new overrides are set (or
policies change due to rebind). If the newly specified policy is mutable, it must be
clearly stated what happens if non-readonly attributes are set or operations are
invoked that have side-effects.

« For certain policy types, override operations may be disallowed. If this is the case,
the policy specification must clearly state what happens if such overrides are
attempted.

4.9.6 Standard Policies

Table 4-1 below lists the standard policy types that are defined by various parts of
CORBA and CORBA Services in this version of CORBA.

Table 4-1 Standard Policy Types

Policy Type Policy Interface Defined in Uses
Sect./Page create_
policy
SecClientinvocationAccess SecurityAdmin::AccessPolicy Security Service No
SecTargetlnvocationAccess SecurityAdmin::AccessPolicy Security Service No
SecApplicationAccess SecurityAdmin::AccessPolicy Security Service No
SecClientinvocationAudit SecurityAdmin::AuditPolicy Security Service No
SecTargetlnvocationAudit SecurityAdmin::AuditPolicy Security Service No

4-26

CORBA V2.3 June 1999

Table 4-1 Standard Policy Types

Policy Type Policy Interface Defined in Uses

Sect./Page create_

policy

SecApplicationAudit SecurityAdmin::AuditPolicy Security Service No
SecDelegation SecurityAdmin::DelegationPolicy Security Service No
SecClientSecurelnvocation SecurityAdmin::SecurelnvocationPolicy Security Service No
SecTargetSecurelnvocation SecurityAdmin::SecurelnvocationPolicy Security Service No
SecNonRepudiation NRService::NRPolicy Security Service No
SecConstruction CORBA::SecConstruction CORBA Core - ORRo

Interface chapter
SecMechanismPolicy SecurityLevel2::MechanismPolicy Security Service Yes
SeclnvocationCredentialsPolicy SecurityLevel2::InvocationCredentialsPolicy Security Servicg Yes
SecFeaturesPolicy SecurityLevel2::FeaturesPolicy Security Service Yes
SecQOPPolicy SecurityLevel2::QOPPolicy Security Service Yes
THREAD_POLICY_ID PortableServer::ThreadPolicy CORBA Core - Yes

Portable Object

Adapter chapter
LIFESPAN_POLICY_ID PortableServer::LifespanPolicy CORBA Core - | Yes

Portable Object

Adapter chapter

Core Chapter 11
ID_UNIQUENESS_POLICY_ID PortableServer::ldUniquenessPolicy CORBA Core - | Yes

Portable Object

Adapter chapter

Core Chapter 11
ID_ASSIGNMENT_POLICY_ID PortableServer::ldAssignmentPolicy CORBA Core - | Yes

Portable Object

Adapter chapter
IMPLICIT_ACTIVATION_POLICY_ID PortableServer::ImplicitActivationPolicy CORBA Core - Yes

Portable Object

Adapter chapter
SERVENT_RETENTION_POLICY_ID PortableServer::ServentRetentionPolicy CORBA Core - | Yes

Portable Object

Adapter chapter
REQUEST_PROCESSING_POLICY_ID PortableServer::RequestProcessingPolicy CORBA Core | Yes

Portable Object

Adapter chapter
BIDIRECTIONAL_POLICY_TYPE BiDirPolicy::BidirectionalPolicy CORBA Core - Yes

General Inter-ORB

Protocol chapter
SecDelegationDirectivePolicy SecurityLevel2::DelegtionDirectivePolicy Security Service Yes
SecEstablishTrustPolicy SecurityLevel2::EstablishTrustPolicy Security Service Yes

CORBA V2.3 Policy Object June 1999 4-27

4

4.10 Management of Policy Domains

4-28

4.10.1 Basic Concepts

This section describes how policies, such as security policies, are associated with
objects that are managed by an ORB. The interfaces and operations that facilitate this
aspect of management is described in this section together with the section describing
Policy objects.

4.10.1.1 Policy Domain

A policy domainis a set of objects to which the policies associated with that domain
apply. These objects are the domain members. The policies represent the rules and
criteria that constrain activities of the objects which belong to the domain. On object
reference creation, the ORB implicitly associates the object reference with one or more
policy domains. Policy domains provide leverage for dealing with the problem of scale
in policy management by allowing application of policy at a domain granularity rather
than at an individual object instance granularity.

4.10.1.2 Policy Domain Manager

A policy domain includes a unique object, one per policy domain, called the domain
manager, which has associated with it the policy objects for that domain. The domain
manager also records the membership of the domain and provides the means to add
and remove members. The domain manager is itself a member of a domain, possibly
the domain it manages.

4.10.1.3 Policy Objects

A policy object encapsulates a policy of a specific type. The policy encapsulated in a
policy object is associated with the domain by associating the policy object with the
domain manager of the policy domain.

There may be several policies associated with a domain, with a policy object for each.
There is at most one policy of each type associated with a policy domain. The policy
objects are thus shared between objects in the domain, rather than being associated
with individual objects. Consequently, if an object needs to have an individual policy,
then it must be a singleton member of a domain.

4.10.1.4 Object Membership of Policy Domains

Since the only way to access objects is through object references, associating object
references with policy domains, implicitly associates the domain policies with the
object associated with the object reference. Care should be taken by the application
that is creating object references using POA operations to ensure that object references

CORBA V2.3 June 1999

4

to the same object are not created by the server of that object with different domain
associations. Henceforth whenever the concept of “object membership” is used, it
actually means the membership of an object reference to the object in question.

An object can simultaneously be a member of more than one policy domain. In that
case the object is governed by all policies of its enclosing domains. The reference
model allows an object to be a member of multiple domains, which may overlap for
the same type of policy (for example, be subject to overlapping access policies). This
would require conflicts among policies defined by the multiple overlapping domains to
be resolved. The specification does not include explicit support for such overlapping
domains and, therefore, the use of policy composition rules required to resolve
conflicts at policy enforcement time.

Policy domain managers and policy objects have two types of interfaces:

« The operational interfaces used when enforcing the policies. These are the
interfaces used by the ORB during an object invocation. Some policy objects may
also be used by applications, which enforce their own policies.

The caller asks for the policy of a particular type (e.g., the delegation policy), and
then uses the policy object returned to enforce the policy. The caller finding a policy
and then enforcing it does not see the domain manager objects and the domain
structure.

« The administrative interfaces used to set policies (e.g., specifying which events to
audit or who can access objects of a specified type in this domain). The
administrator sees and navigates the domain structure, so he is aware of the scope o
what he is administering.

Note —This specification does not include any explicit interfaces for managing the
policy domains themselves: creating and deleting them; moving objects between them;
changing the domain structure and adding, changing, and removing policies applied to
the domains.

4.10.1.5 Domains Association at Object Reference Creation

When a new object reference is created, the ORB implicitly associates the object
reference (and hence the object that it is associated witth)the following elements
forming its environment:

* One or mordPolicy Domains defining all the policies to which the object
associated with the object reference is subject.

* The TechnologyDomains,characterizing the particular variants of mechanisms
(including security) available in the ORB.

The ORB will establish these associations when one of the object reference creation
operations of the POA is called. Some or all of these associations may subsequently be
explicitly referenced and modified by administrative or application activity, which

might be specifically security-related but could also occur as a side-effect of some
other activity, such as moving an object to another host machine.

CORBAV2.3 Management of Policy Domains June 1999 4-29

4-30

In some cases, when a new object reference is created, it needs to be associated with
new domain. Within a given domain a construction policy can be associated with a
specific object type thus causing a new domain (i.e., a domain manager object) to be
created whenever an object reference of that type is created and the newly created
object reference associated with the new domain manager. This construction policy is
enforced at the same time as the domain membership (i.e., by the POA when it creates
an object reference).

4.10.1.6 Implementor’s View of Object Creation

For policy domains, the construction policy of the application or factory creating the
object proceeds as follows. The application (which may be a generic factory) calls one
of the object reference creation operations of the POA to create the new object
reference. The ORB obtains the construction policy associated with the creating object,
or the default domain absent a creating object.

By default, the new object reference that is created is made a member of the domain to
which the parent belongs. Non-object applications on the client side are associated
with a default, per-ORB instance policy domain by the ORB.

Each domain manager has a construction policy associated with it, which controls
whether, in addition to creating the specified new object reference, a new domain
manager is created with it. This object provides a single operation
make_domain_manager which can be invoked with theonstr_policy parameter

set to TRUE to indicate to the ORB that new object references of the specified type are
to be associated their own separate domains. Once such a construction policy is set, if
can be reversed by invokimgake _domain_manager again with theconstr_policy
parameter set to FALSE.

When creating an object reference of the type specified in the

make_domain_manager call with constr_policy set to TRUE, the ORB must also
create a new domain for the newly created object reference. If a new domain is needed,
the ORB creates both the requested object reference and a domain manager object. A
reference to this domain manager can be found by cajiétgdomain_managers

on the newly created object reference.

While the management interface to the construction policy object is standardized, the
interface from the ORB to the policy object is assumed to be a private one, which may
be optimized for different implementations.

If a new domain is created, the policies initially applicable to it are the policies of the
enclosing domain. The ORB will always arrange to provide a default enclosing domain
with default ORB policies associated with it, in those cases where there would be no
such domain as in the case of a non-object client invoking object creation operations.

The calling application, or an administrative application later, can change the domains
to which this object belongs, using the domain management interfaces, which will be
defined in the future.

CORBA V2.3 June 1999

4

Since the ORB has control only over domain associations with object references, it is
the responsibility of the creator of new object to ensure that the object references that
are created to the new object are associated meaningfully with domains.

4.10.2 Domain Management Operations

This section defines the interfaces and operations needed to find domain managers anc
find the policies associated with these. However, it does not include operations to
manage domain membership, structure of domains, or to manage which policies are
associated with domains.

This section also includes the interface to the construction policy object, as that is
relevant to domains. The basic definitions of the interfaces and operations related to
these are part of the CORBA module, since other definitions in the CORBA module
depend on these.

module CORBA {
interface DomainManager {
Policy get_domain_policy (
in PolicyType policy_type
);
3

const PolicyType SecConstruction = 11;

interface ConstructionPolicy: Policy{
void make_domain_manager(
in CORBA::InterfaceDef object_type,
in boolean constr_policy
);
¥

typedef sequence <DomainManager> DomainManagersList;

4.10.2.1 Domain Manager

The domain manager provides mechanisms for:
« Establishing and navigating relationships to superior and subordinate domains.

¢ Creating and accessing policies.

There should be no unnecessary constraints on the ordering of these activities, for
example, it must be possible to add new policies to a domain with a preexisting
membership. In this case, some means of determining the members that do not
conform to a policy that may be imposed is required. It should be noted that interfaces
for adding new policies to domains or for changing domain memberships have not
currently been standardized.

CORBAV2.3 Management of Policy Domains June 1999 4-31

4-32

All domain managers provide tlget_domain_policy operation. By virtue of being

an object, the Domain Managers also havegiie policy and

get_domain_managers operations, which is available on all objects (see “Getting
Policy Associated with the Object” on page 4-13 and “Getting the Domain Managers
Associated with the Object” on page 4-15).

CORBA::DomainManager::get_domain_policy

This returns the policy of the specified type for objects in this domain.

Policy get_domain_policy (
in PolicyType policy_type
)i

Parameter(s)

policy_type - The type of policy for objects in the domain which the application
wants to administer. For security, the possible policy typesleseribed in
CORBAservices: Common Object Services Specificafieaurity chapter, Security
Policies Introduction section.

Return Value
A reference to the policy object for the specified type of policy in this domain.

Exception(s)

CORBA::INV_POLICY - raised when the value of policy type is not valid either
because the specified type is not supported by this ORB or because a policy object of that
type is not associated with this Object.

4.10.2.2 Construction Policy

The construction policy object allows callers to specify that when instances of a
particular object reference are created, they should be automatically assigned
membership in a newly created domain at creation time.

CORBA::ConstructionPolicy::make_domain_manager

This operation enables the invoker to set the construction policy that is to be in effect
in the domain with which thi€onstructionPolicy object is associated. Construction
Policy can either be set so that when an object reference of the type specified by the
input parameter is created, a new domain manager will be created and the newly
created object reference will respondgeet_domain_managers by returning a
reference to this domain manager. Alternatively the policy can be set to associate the
newly created object reference with the domain associated with the creator. This policy
is implemented by the ORB during execution of any one of the object reference
creation operations of the POA, and results in the construction of the application-
specified object reference and a Domain Manager object if so dictated by the policy in
effect at the time of the creation of the object reference.

CORBA V2.3 June 1999

void make_domain_manager (
in InterfaceDef object_type,
in boolean constr_policy

):

Parameter(s)

object_type - The type of the object references for which Domain Managers will be
created. If this is nil, the policy applies to all object references in the domain.

constr_policy - If TRUE the construction policy is set to create a new domain
manager associated with the newly created object reference of this type in this domain.
If FALSE construction policy is set to associate the newly created object references
with the domain of the creator or a default domain as described above.

| 4.11 Thread-Related Operations

To support single-threaded ORBs, as well as multi-threaded ORBs that run multi-

thread-unaware code, several operations are included in the ORB interface. These

operations can be used by single-threaded and multi-threaded applications. An

application that is a pure ORB client would not need to use these operations. Both the
| ORB::run andORB::shutdown are useful in fully multi-threaded programs.

Note —These operations are defined on the ORB rather than on an object adapter to

allow the main thread to be used for all kinds of asynchronous processing by the ORB.
Defining these operations on the ORB also allows the ORB to support multiple object
adapters, without requiring the application main to know about all the object adapters.
The interface between the ORB and an object adapter is not standardized.

4.11.1 work_pending

| boolean work_pending();

This operation returns an indication of whether the ORB needs the main thread to
perform some work.

A result of TRUE indicates that the ORB needs the main thread to perform some work
and a result of FALSE indicates that the ORB does not need the main thread.

4.11.2 perform_work

void perform_work();

If called by the main thread, this operation performs an implementation-defined unit of
work; otherwise, it does nothing.

It is platform-specific how the application and ORB arrange to use compatible
threading primitives.

CORBAV2.3 Thread-Related Operations June 1999 4-33

4-34

4.11.3 run

Thework_pending() andperform_work() operations can be used to write a simple
polling loop that multiplexes the main thread among the ORB and other activities.
Such a loop would most likely be needed in a single-threaded server. A multi-threaded
server would need a polling loop only if there were both ORB and other code that
required use of the main thread.

Here is an example of such a polling loop:

/I C++
for (;;) {
if (orb->work_pending()) {
orb->perform_work();
k
/I do other things
I sleep?

k

Once the ORB has shutdowmork_pending andperform_work will raise the
BAD_INV_ORDER exception with minor code 4. An application can detect this
exception to determine when to terminate a polling loop.

void run();

This operation provides execution resources to the ORB so that it can perform its
internal functions. Single threaded ORB implementations, and some multi-threaded
ORB implementations, need the use of the main thread in order to function properly.
For maximum portability, an application should call eithen or perform_work on

its main threadrun may be called by multiple threads simultaneously.

This operation will block until the ORB has completed the shutdown process, initiated
when some thread cal&hutdown .

4.11.4 shutdown

void shutdown(
in boolean wait_for_completion

):

This operation instructs the ORB to shut down, that is, to stop processing in
preparation for destruction.

Shutting down the ORB causes all object adapters to be destroyed, since they cannot
exist in the absence of an ORB. Shut down is complete when all ORB processing
(including request processing and object deactivation or other operations associated
with object adapters) has completed and the object adapters have been destroyed. In
the case of th®OA, this means that all object etherealizations have finished and root
POA has been destroyed (implying that all descen®&hs have also been

destroyed).

CORBA V2.3 June 1999

4

If the wait_for_completion parameter iFRUE, this operation blocks until the shut
down is complete. If an application does this in a thread that is currently servicing an
invocation, theBAD_INV_ORDER system exception will be raised with the OMG
minor code 3, since blocking would result in a deadlock.

If the wait_for_completion parameter i$ALSE, thenshutdown may not have
completed upon return. An ORB implementation may require the application to call (or
have a pending call taun or perform_work aftershutdown has been called with

its parameter set tBALSE, in order to complete the shutdown process.

While the ORB is in the process of shutting down, the ORB operates as normal,
servicing incoming and outgoing requests until all requests have been completed. An
implementation may impose a time limit for requests to complete wistei@own

is pending.

Once an ORB has shutdown, only object reference management opedatitinate ,
release andis_nil) may be invoked on the ORB or any object reference obtained
from it. An application may also invoke the destroy operation on the ORB itself.
Invoking any other operation will raise tBAD _INV_ORDER system exception with
the OMG minor code 4.

4.11.5 destroy

void destroy();

This operation destroys the ORB so that its resources can be reclaimed by the
application. Any operation invoked on a destroyed ORB reference will raise the
OBJECT_NOT_EXIST exception. Once an ORB has been destroyed, another call to
ORB_init with the sameéORBId will return a reference to a newly constructed ORB.

If destroy is called on an ORB that has not been shut down, it will start the shut down
process and block until the ORB has shut down before it destroys the ORB. If an
application callglestroy in a thread that is currently servicing an invocation, the
BAD_INV_ORDER system exception will be raised with the OMG minor code 3,
since blocking would result in a deadlock.

For maximum portability and to avoid resource leaks, an application should always call
shutdown anddestroy on all ORB instances before exiting.

CORBAV2.3 Thread-Related Operations June 1999 4-35

4-36 CORBA V2.3 June 1999

Value Type Semantics)

The Value Type Semantics chapter includes information from the Objects by Value
documents and describes the semantics of value types. Details specific to particular
aspects of the ORB may be found in other chapters.

Contents

This chapter contains the following sections.

Section Title Page
“Overview” 5-1
“Architecture” 5-2
“Standard Value Box Definitions” 5-8
“Language Mappings” 5-9
“Custom Marshaling” 5-10

5.1 Overview

Objects, more specifically, interface types that objects support, are defined by an IDL
interface, allowing arbitrary implementations. There is great value, which is described
in great detail elsewhere, in having a distributed object system that places almost no
constraints on implementations.

However there are many occasions in which it is desirable to be able to pass an object
by value, rather than by reference. This may be particularly useful when an object’s
primary “purpose” is to encapsulate data, or an application explicitly wishes to make a
“copy” of an object.

CORBAV2.3.1 October 1999 5-1

5-2

5.2 Architecture

The semantics of passing an object by value are similar to that of standard
programming languages. The receiving side of a parameter passed by value receives &
description of the “state” of the object. It then instantiates a new instance with that
state but having a separate identity from that of the sending side. Once the parameter
passing operation is complete, no relationship is assumed to exist between the two
instances.

Because it is necessary for the receiving side to instantiate an instance, it must
necessarily know something about the object’s state and implementation.

Valuetype(s) provide semantics that bridge between CORBA structs and CORBA
interfaces:

« They support description of complex state (i.e., arbitrary graphs, with recursion
and cycles)

« Their instances are always local to the context in which they are used (because
they are always copied when passed as a parameter to a remote call)

« They support both public and private (to the implementation) data members.

« They can be used to specify the state of an object implementation (i.e., they can
support an interface).

* They support single inheritance (edluetype) and can support anterface .
* They may be also babstract .

The basic notion is relatively simple.value type is, in some sense, half way

between a “regular” IDL interface type and a struct. The use of a value type is a signal
from the designer that some additional properties (state) and implementation details be
specified beyond that of an interface type. Specification of this information puts some
additional constraints on the implementation choices beyond that of interface types.
This is reflected in both the semantics specified herein, and in the language mappings

An essential property of value types is that their implementations are always local.
That is, the explicit use of value type in a concrete programming language is always
guaranteed to use a local implementation, and will not require a remote call. They have
no identity (their value is their identity) and they are not “registered” with the ORB.

There are two kinds of value types, concrete (or stateful) value types, and abstract
(stateless) ones. As explained below the essential characteristics of both are the same
The differences between them result from the differences in the way they are mapped
in the language mappings. In this specification the semantics of value types apply to
both kinds, unless specifically stated otherwise.

Concrete (stateful) values add to the expressive power of (IDL) structs by supporting:
® single derivation (from other value types)
® support of multiple interfaces

® arbitrary recursive value type definitions, with sharing semantics providing the
ability to define lists, trees, lattices and more generally arbitrary graphs using value
types.

CORBAV2.3.1 October 1999

* null value semantics

When an instance of such a type is passed as a parameter, the sending context marsha
the state (data) and passes it to the receiving context. The receiving context instantiates
a new instance using the information in the GIOP request and unmarshals the state. It
is assumed that the receiving context has available to it an implementation that is
consistent with the sender’s (i.e., only needs the state information), or that it can
somehow download a usable implementation. Provision is made in the on-the-wire
format to support the carrying of an optional call back objecdéBase) to the

sending context which enables such downloading when it is appropriate.

It should be noted that it is possible to define a concrete value type with an empty state
as a degenerate case.

5.2.1 Abstract Values

Value types may also be abstract. They are called abstract because an abstract value
type may not be instantiated. Only concrete types derived from them may be actually
instantiated and implemented. Their implementation, of course, is still local. However,
because no state information may be specified (only local operations are allowed),
abstract value types are not subject to the single inheritance restrictions placed upon
concrete value types. Essentially they are a bundle of operation signatures with a
purely local implementation. This distinction is made clear in the language mappings
for abstract values.

Note that a concrete value type with an empty state is not an abstract value type. They
are considered to be stateful, may be instantiated, marshaled and passed as actual
parameters. Consider them to be a degenerate case of stateful values.

5.2.2 Operations

Operations defined on a value type specify signatures whose implementation can only
be local. Because these operations are local, they must be directly implemented by a
body of code in the language mapping (no proxy or indirection is involved).

The language mappings of such operations require that instances of value types passe
into and returned by such local methods are passed by reference (programming
language reference semantics, not CORBA object reference semantics) and that a copy
is not made. Note, such a (local) invocation is not a CORBA invocation. Hence it is not
mediated by the ORB, although the API to be used is specified in the language

mapping.

The (copy) semantics for instances of value type are only guaranteed when instances of
these value types are passed as a parameter to an operation defined on a CORBA
interface, and hence mediated by the ORB. If an instance of a value type is passed as ¢
parameter to a method of another value type in an invocation, then this call is a
“normal” programming language call. In this case both of the instances are local
programming language constructs. No CORBA style copy semantics are used and
programming language reference semantics apply.

CORBAV2.3.1 Architecture October 1999 5-3

Operations on the value type are supported in order to guarantee the portability of the
client code for these value types. They have no representation on the wire and hence nc
impact on interoperability.

5.2.3 Value Type vs. Interfaces

By default value types are not CORBA Objects. In particular instances of value types
do not inherit from CORBA::Object and do not support normal object reference
semantics. However it is always possible to explicitly declare that a given value type
supports an interface type. In this case instances of the type may support CORBA
object reference semantics (if they are registered with the ORB using an object
adapter).

5.2.4 Parameter Passing

5.24.1

5.2.4.2

This section describes semantics when a value instance is passed as parameter in a
CORBA invocation. It does not deal with the case of calling another non-CORBA (i.e.,
local) programming method which happens to have a parameter of the same type.

Value vs. Reference Semantics

Determination of whether a parameter is to be passed by value or reference is made by
examining the parameter’s formal type (i.e., the signature of the operation it is being
passed to). If it is a value type then it is passed by value. If it is an ordinary interface
then it is passed by reference (the case today for all CORBA objects). This rule is
simple and consistent with the handling of the same situation in recursive state
definitions or in structs.

In the case of abstract interfaces, the determination is made at runtime. See
Section 6.2, “Semantics of Abstract Interfaces,” on page 6-1 for a description of the
rules.

Sharing Semantics

In order to be expressive enough to describe arbitrary graphs, lattice, trees etc., value
types support sharing and null semantics. Instances of a value type can be shared by
others across or within other instances. They can also be null. This is unlike other IDL
data types such as structs, unions, and sequences which can never be shared. The
sharing of values within and between the parameters to an operation, is preserved
across an invocation (i.e., the graph which is reconstructed in the receiving context is
structurally isomorphic to the sending context’s).

5.2.4.3 ldentity Semantics

When an instance of the value type is passed as a parameter, an independent copy of
the instance is instantiated in the receiving context. That copy is a separate independen
entity and there is no explicit or implicit sharing of state.

CORBAV2.3.1 October 1999

5.2.4.4

Any parameter type

When an instance of a value type is passed t@angnas with all cases of passing
instances to aany, it is the responsibility of the implementer to insert and extract the
value according to the language mapping specification.

5.2.5 Substitutability Issues

5.25.1

5.2.5.2

The substitutability requirements for CORBA require the definition of what happens
when an instance of a derived value type is passed as a parameter that is declared to b
a base value type or an instance of a value type that supports an interface is passed a
a parameter that is declared as the interface type.

There are two cases to consider: the parameter type is an interface, and the paramete
type is a value type.

Value instance -> Interface type

Assume that we have an instance of a value type that supports an interface type. We
have an IDL operation whose signature contains a parameter whose formal type is the
interface. The following rule applies to this situation:
« If the value type instance (in the sending context) has not been registered with
ORB, then arOBJECT_NOT_EXIST exception with an identified minor code
(see Section 3.17.2, “Standard Minor Exception Codes,” on page 3-58) is raised.
Otherwise the instance’s object reference is used and it is passed as normal.

Value instance -> Value type

In this case the receiving context is expecting to receive a value type. If the receiving
context currently has the appropriate implementation class then there is no problem.

If the receiving context does not currently hold an implementation with which to
reconstruct the original type then the following algorithm is used to find such an
implementation:

1. Load - Attempt to load (locally in C/C++, possibly remotely in Java and other
“portable” languages) the real type of the object (with its methods). If this succeeds,
OK

2. Truncate - Truncate the type of the object to the base type (if specified as
truncatable in the IDL). Truncation can never lead to faulty programs because,
from a structural point view base types structurally subsume a derived type and an
object created in the receiving context bears no relationship with the original one.
However, it might be semantically puzzling, as the derived type may completely re-
interpret the meaning of the state of the base. For that reason a derived value needs
to indicate if it is safe to truncate to its immediate non-abstract parent.

3. Raise Exceptiont If none of these work or are possible, then raise the
NO_IMPLEMENT exception.

CORBAV2.3.1 Architecture October 1999 5-5

Truncatability is a transitive property.

Example

valuetype EmployeeRecord { // note this is not a CORBA::Object
/I state definition
private string name;
private string email;
private string SSN;
Il initializer
factory init(in string name, in string SSN);

I3

valuetype ManagerRecord: truncatable EmployeeRecord {
/I state definition
private sequence<EmployeeRecord> direct_reports;

h

5.2.6 Widening/Narrowing

As has been described above, value type instances may be widened/narrowed to othel
value types. Each language mapping is responsible for specifying how these operations
are made available to the programmer.

Narrowing from an interface type instance to a value type instance is not allowed. If
the interface designer wants to allow the receiving context to create a local
implementation of the value type (i.e., a value representing the interface) an operation
which returns the appropriate value type may be defined.

5.2.7 Value Base Type

All value types have a conventional base type calteddeBase . This is a type which
fulfills a role that is similar to that played Iybject. Conceptually it supports the
common operations available on all value types. See Section 4.4, “ValueBase
Operations,” on page 4-16 for a description of those operations. In each language
mappingValueBase will be mapped to an appropriate base type that supports the
marshaling/unmarshaling protocol as well as the model for custom marshaling.

The mapping for other operations which all value types must support, such as getting
meta information about the type, may be found in the specifics for each language
mapping.

5.2.8 Life Cycle issues

Value type instances are always local to their creating context. For example, in a given
language mapping an instance of a value type is always created as a local “language”
object with no POA semantics attached to it initially.

CORBAV2.3.1 October 1999

5

5.2.8.1

When passed using a CORBA invocation, a copy of the value is made in the receiving
context and that copy starts its life as a local programming language entity with no
POA semantics attached to it.

If a value type supports an ordinary interface type, its instances may also be passed by
reference when the formal parameter type is an interface type (see Section 5.2.4,
“Parameter Passing,” on page 5-4). In this case they behave like ordinary object
implementations and must be associated with a POA policy and also be registered with
the ORB (e.g., POA::activate_object() before they can be passed by reference. Not
registering the value as a CORBA object and/or not associating an appropriate policy
with it results in an exception when trying to use it as a remote object, the “normal”
behavior. The exception raised shall®BJECT_NOT_EXIST with an identified

minor code (see Section 3.17.2, “Standard Minor Exception Codes,” on page 3-58).

Creation and Factories

When an instance of a value type is received by the ORB, it must be unmarshaled and
an appropriate factory for its actual type found in order for the new instance to be
created. The type is encoded by the RepositorylD which is passed over the wire as part
of an invocation. The mapping between the type (as specified by the RepositorylD) and
the factory is language specific. In certain languages it may be possible to specify
default policies that are used to find the factory, without requiring that specific routines
be called. In others the runtime and/or generated code may have to explicitly specify
the mapping on a per type basis. In others a combination may be used. In any event the
ORB implementation is responsible for maintaining this mapping See Section 5.4.3,
“Language Specific Value Factory Requirements,” on page 5-9 for more details on the
requirements for each language mapping.

5.2.9 Security Considerations

The addition of value types has few impacts on the CORBA security model. In
essence, the security implications in defining and using value types are similar to those
involved with the use of IDL structs. Instances of value types are mapped to local,
concrete programming language constructs. Except for providing the marshaling
mechanisms, the ORB is not directly involved with accessing value type
implementations. This specification is mostly about two things: how value types
manifest themselves as concrete programming language constructs and how they are
transmitted.

To see this consider how value types are actually used. The IDL definition of a value
type in conjunction with a programming language mapping is used to generate the
concrete programming language definitions for that type.

Let us consider its life cycle. In order to use it, the programmer uses the mechanisms
in the programming language to instantiate an instance. This is instance is a local
programming language construct. It is not “registered” with the ORB, object adapter,
etc. The programmer may manipulate this programming construct just like any other
programming language construct. So far there are no security implications. As long as
no ORB-mediated invocations are made, the programmer may manipulate the

CORBAV2.3.1 Architecture October 1999 5-7

5-8

5.2.9.1

5.2.9.2

construct. Note, this includes making “local,” non ORB-mediated calls to any locally
implemented operations. Any assignments to the construct are the responsibility of the
programmer and have no special security implications.

Things get interesting when the program attempts to pass one of these constructs
through an orb-mediated invocation (i.e., calls a stub which uses it as a parameter type,
or uses the DIl). There are two cases to consider:

Value as Value

The formal type of the parameter is a value. This case is no different from using any
other kind of a value (long, string, struct) in a CORBA invocation, with respect to
security. The value (data) is marshaled and delivered to the receiving context. On the
receiving context, the knowledge of the type is used (at least implicitly) to find the
factory to create the correct local programming language construct. The data is then
unmarshaled to fill in the newly created construct. This is similar to using other values
(longs, strings, structs) except that the knowledge of the factory is not “built-in” to the
ORB'’s skeleton/DSI engine.

Value as Object Reference

The formal type of the parameter is an interface type which is supported by a value.
The program must have “registered” the value with an object adapter and is really
using the returned object reference (see for the specific rules.) Thus this case “reduces”
to a regular CORBA invocation, using a regular object reference. An IOR is passed to
the receiving context. All the “normal” security considerations apply. From the point of
view of the receiving context, the IOR is a “normal” object reference. No “special”
rules, with respect to security or otherwise, apply to it. The fact that it is ultimately a
reference to an implementation that was created from instantiating and registering an
value type implementation is not relevant.

In both of these cases, security considerations are involved with the decision to allow
the ORB-mediated invocation to proceed. The fact that a value type is involved is not
material.

5.3 Standard Value Box Definitions

For some CORBA-defined types for which preservation of sharing and transmission of
nulls are likely to be important, the following value box type definitions are added to
the CORBA module:

module CORBA {
valuetype StringValue string;
valuetype WStringValue wstring;

I3

CORBAV2.3.1 October 1999

5.4 Language Mappings

5.4.1 General Requirements

A concrete value is mapped to a concrete usable “class” construct in each
programming language, plus possibly some helper classes where appropriate. In Java,
C++, and Smalltalk this is a real concrete class. In C it is a struct.

An abstract value is mapped to some sort of an abstract construct--an interface in Java,
and an abstract class with pure virtual function members in C++.

Tools that implement the language mapping are free to “extend” the implementation
classes with “extra” data members and methods. When an instance of such a class is
used as a parameter, only the portions that correspond directly to the IDL declaration,
are marshaled and delivered to the receiving context. This allows freedom of
implementations while preserving the notion of contract and type safety in IDL.

5.4.2 Language Specific Marshaling

Each language mapping defines an appropriate marshaling/unmarshaling API and the
entry point for custom marshaling/unmarshaling.

5.4.3 Language Specific Value Factory Requirements

Each language mapping specifies the algorithm and means by which RepositorylDs are
used to find the appropriate factory for an instance of a value type so that it may be
created as it is unmarshaled “off the wire.”

It is desirable, where it makes sense, to specify a “default” policy for automatically
using RepositoryIDs that are in common formats to find the appropriate factory. Such
a policy can be thought of as an implicit registration.

Each language mapping specifies how and when the registration occurs, both explicit
and implicit. The registration must occur before an attempt is made to unmarshal an
instance of a value type. If the ORB is unable to locate and use the appropriate factory,
then aMARSHAL exception with an identified minor code (see Section 3.17.2,
“Standard Minor Exception Codes,” on page 3-58) is raised.

Because the type of the factory is programming language specific and each
programming language platform has different policies, the factory type is specified as
native. It is the responsibility of each language mapping to specify the actual
programming language type of the factory.

module CORBA {

/I IDL
native ValueFactory;

I3

CORBAV2.3.1 Language Mappings October 1999 5-9

5.4.4 Value Method Implementation

The mapped class must support method bodies (i.e., code) that implement the required
IDL operations. The means by which this association is accomplished is a language
mapping “detail” in much the same way that an IDL compiler is.

5.5 Custom Marshaling

5-10

Value types can override the default marshaling/unmarshaling model and provide their
own way to encode/decode their state. Custom marshaling is intended to be used to
facilitate integration of existing “class libraries” and other legacy systems. It is
explicitly not intended to be a standard practice, nor used in other OMG specifications
to avoid “standard ORB” marshaling.

The fact that a value type has some custom marshaling code is declared explicitly in
the IDL. This explicit declaration has two goals:

« type safety stub and skeleton can know statically that a given type is custom
marshaled and can then do sanity check on what is coming over the wire.

- efficiency - for value types that are not custom marshaled no run time test is
necessary in the marshaling code.

If a custom marshaled value type has a state definition, the state definition is treated
the same as that of a non custom value type for mapping purposes (i.e., the fields show
up in the same fashion in the concrete programming language). It is provided to help
with application portability.

A custom marshaled value type is always a stateful value type.
/I Example IDL

custom valuetype T {
Il optional state definition

k

Custom value types can never be safely truncated to base (i.e., they always require an
exact match for their Repositoryld in the receiving context).

Once a value type has been marked as custom, it needs to provide an implementation
which marshals and unmarshals the valuetype. The marshaling code encapsulates the
application code that can marshal and unmarshal instances of the value type over a
stream using the CDR encoding. It is the responsibility of the implementation to
marshal the state of all of its base types.

The following sections define the operations and streams that are used for custom
marshaling.

CORBAV2.3.1 October 1999

5.5.1 Implementation of Custom Marshaling

Once a value type has been marked as custom, an implementation of the custom
marshaling code must be provided. This is specified by providing a concrete
implementation of an abstract value ty@stomMarshal , as part of the
implementation of the value typ€ustomMarshal encapsulates the application code
that can marshal and unmarshal instances of the value type over a stream using the
CDR encoding.

The following IDL defines the interfaces that are used to support the definition and use
of custom marshaling.

module CORBA {
abstract valuetype CustomMarshal {
void marshal (in DataOutputStream 0s);
void unmarshal (in DatalnputStream is);
¥
h

CustomMarshal is an abstract value type that is meant to be used by the ORB, not
the user. Semantically it is treated as a custom valuetype’s implicit base class, although
the custom valuetype does not actually inherit it in IDL. The implementor of a custom
value type provides an implementation of thestomMarshal operations. The

manner in which this is done is specified for each language mapping. Each custom
marshaled value type has its own implementation. The interface is exposed in the
CORBA module so that the implementor can use the skeletons generated by the IDL
compiler as the basis for the implementation. Hence there is no need for the
application to acquire a reference to a Stream.

Note that while nothing prevents a user from writing IDL that inherits from
CustomMarshal , doing so will not make the type custom, nor will it cause the ORB
to treat it as custom.

The implementation requirements of the streaming mechanism require that the
implementations must be local since local memory addresses (i.e., the marshal buffers)
have to be manipulated.

5.5.2 Marshaling Streams

The streams used for marshaling are defined below. They are responsible for
marshaling and demarshaling the data that makes up a custom value in CDR format.

module CORBA {

typedef sequence<any> AnySeq;

typedef sequence<boolean> BooleanSeq;
typedef sequence<char> CharSeq;

typedef sequence<wchar> WCharSeq;

typedef sequence<octet> OctetSeq;

typedef sequence<short> ShortSeq;

typedef sequence<unsigned short> UShortSeq;

CORBAV2.3.1 Custom Marshaling October 1999 5-11

5-12

typedef sequence<long> LongSeq;

typedef sequence<unsigned long> ULongSeq;
typedef sequence<long long> LongLongSeq;
typedef sequence<unsigned long long> ULongLongSeq;

typedef sequence<float> FloatSeq;

typedef sequence<double> DoubleSeq;

abstract valuetype DataOutputStream {

void write_any

void write_boolean
void write_char
void write_wchar
void write_octet
void write_short
void write_ushort
void write_long
void write_ulong
void write_longlong
void write_ulonglong
void write_float

void write_double
void write_longdouble
void write_string

void write_wstring
void write_Object
void write_Abstract

void write_Value

void write_TypeCode

void write_any_array(

void write_boolean_array(

void write_char_array(

void write_wchar_array(

void write_octet_array(

void write_short_array(

void write_ushort_array(

CORBAV2.3.1

(in any value);

(in boolean value);

(in char value);

(in wchar value);

(in octet value);

(in short value);

(in unsigned short value);
(in long value);

(in unsigned long value);
(in long long value);

(in unsigned long long value);
(in float value);

(in double value);

(in long double value);
(in string value);

(in wstring value);

(in Object value);

(in AbstractBase value);

(in ValueBase value);
(in TypeCode value);

in AnySeq seq,

in unsigned long offset,

in unsigned long length);
in BooleanSeq seq,

in unsigned long offset,

in unsigned long length);
in CharSeq seq,

in unsigned long offset,

in unsigned long length);
in WCharSeq seq,

in unsigned long offset,

in unsigned long length);
in OctetSeq seq,

in unsigned long offset,

in unsigned long length);
in ShortSeq seq,

in unsigned long offset,

in unsigned long length);
in UShortSeq seq,

in unsigned long offset,

in unsigned long length);

October 1999

void write_long_array(in LongSeq seq,

in unsigned long offset,

in unsigned long length);
void write_ulong_array(in ULongSeq seq,

in unsigned long offset,

in unsigned long length);
void write_ulonglong_array(in ULongLongSeq seq,

in unsigned long offset,

in unsigned long length);
void write_longlong_array(in LongLongSeq seq,

in unsigned long offset,

in unsigned long length);
void write_float_array(in FloatSeq seq,

in unsigned long offset,

in unsigned long length);
void write_double_array(in DoubleSeq seq,

in unsigned long offset,

in unsigned long length);

k

abstract valuetype DatalnputStream {
any read_any();
boolean read_boolean();
char read_char();
wchar read_wchar();
octet read_octet();
short read_short();
unsigned short read_ushort();
long read_long();
unsigned long read_ulong();
long long read_longlong();
unsigned long long read_ulonglong();
float read_float();
double read_double();
long double read_longdouble();
string read_string();
wstring read_wstring();
Object read_Object();
AbstractBase read_Abstract();
ValueBase read_Value();
TypeCode read_TypeCode();

void read_any_array(inout AnySeq seq,
in unsigned long offset,
in unsigned long length);
void read_boolean_array(inout BooleanSeq seq,
in unsigned long offset,
in unsigned long length);
void read_char_array(inout CharSeq seq,
in unsigned long offset,
in unsigned long length);

CORBAV2.3.1 Custom Marshaling October 1999 5-13

void read_wchar_array(inout WCharSeq seq,
in unsigned long offset,
in unsigned long length);
void read_octet_array(inout OctetSeq seq,
in unsigned long offset,
in unsigned long length);
void read_short_array(inout ShortSeq seq,
in unsigned long offset,
in unsigned long length);
void read_ushort_array(inout UShortSeq seq,
in unsigned long offset,
in unsigned long length);
void read_long_array(inout LongSeq seq,
in unsigned long offset,
in unsigned long length);
void read_ulong_array(inout ULongSeq seq,
in unsigned long offset,
in unsigned long length);
void read_ulonglong_array(inout ULongLongSeq seq,
in unsigned long offset,
in unsigned long length);
void read_longlong_array(inout LongLongSeq seq,
in unsigned long offset,
in unsigned long length);
void read_float_array(inout FloatSeq seq,
in unsigned long offset,
in unsigned long length);
void read_double_array(inout DoubleSeq seq,
in unsigned long offset,
in unsigned long length);
¥
I3

Note that the Data streams are abstract value types. This ensures that their
implementation will be local, which is required in order for them to properly flatten
and encode nested value types.

The ORB (i.e., the CDR encoding engine) is responsible for actually constructing the
value’s encoding. The application marshaling code merely calls the above operations.
The details of writing the value tag, header information, end tag(s) are specifically not
exposed to the application code. In particular the size of the custom data is not written
by the application. This guarantees that the custom marshaling (and unmarshaling
code) cannot corrupt the other parameters of the call.

If an inconsistency is detected, then the standard system exchbpiRSHAL is
raised.

A possible implementation might have the engine determine that a custom marshal
parameter is “next.” It would then write the value tag and other header information and
then return control back to the application defined marshaling policy which would do
the marshaling by calling the DataOutputStream operations to write the data as

5-14 CORBAV2.3.1 October 1999

5

appropriate. (Note the stream takes care of breaking the data into chunks, if necessary.)
When control was returned back to the engine, it performs any other cleanup activities
to complete the value type, and then proceeds onto the next parameter. How this is
actually accomplished is an implementation detail of the ORB.

The Data Streams shall test for possible shared or null values and place appropriate
indirections or null encodings (even when used from the custom streaming policy).

There are no explicit operations for creating the streams. It is assumed that the ORB
implicitly acts as a factory. In a sense they are always available.

5.6 Access to the Sending Context Run Time

There are two cases where a receiving context might want to access the run time
environment of the sending context:

* To attempt the downloading of some missing implementation for the value.

®* To access some meta information about the version of the value just received.

In order to provide that kind of service a call back object interface is defined. It may
optionally be supported by the sending context (it can be seen as a service). If such a
callback object is supported its IOR may be added to an optional service context in the
GIOP header passed from the sending context to the receiving context.

A service context tagged with the ServiceéBgndingContextRunTime (see

Section 13.6.7, “Object Service Context,” on page 13-22) contains an encapsulation of
the IOR for aSendingContext::RunTime object. Because ORBs are always free to
skip a service context they don't understand, this addition does not impact IIOP
interoperability.

module SendingContext {

interface RunTime {}; // so that we can provide more
/I sending context run time
Il services in the future

interface CodeBase: RunTime {
typedef string URL; // blank-separated list of one or more URLs
typedef sequence<URL> URLSeq;
typedef sequence
<CORBA::ValueDef::FullValueDescription> ValueDescSeq;

/I Operation to obtain the IR from the sending context
CORBA::Repository get_ir();

/I Operations to obtain a location of the implementation code
URL implementation(in CORBA::Repositoryld x);
URLSeq implementations(in CORBA::RepositoryldSeq x);

/I Operations to obtain complete meta information about a Value
/I This is just a performance optimization the IR can provide

CORBAV2.3.1 Accessto the Sending Context Run Time October 1999 5-15

5-16

/l the same information
CORBA::FullValueDescription meta(in CORBA::Repositoryld x);
ValueDescSeq metas(in CORBA::RepositoryldSeq x);

/l To obtain a type graph for a value type
/l same comment as before the IR can provide similar
/l information
CORBA::RepositoryldSeq bases(in CORBA::Repositoryld x);
¥
I3

Supporting the CodeBase interface for a given ORB run time is an issue of quality of
service. The point here is that if the sending context does not support a CodeBase then
the receiving context will simply raise an exception with which the sending context

had to be prepared to deal. There will always be cases where a receiving context will
get a value type and won'’t be able to interpret it because:

® |t can't get a legal implementation for it (even if it knows where it is, possibly due
to security and/or resource access issues).

® Its local version is so radically different that it cannot make sense out of the piece
of state being provided.

These two failure modes will be represented by the CORBA system exception
NO_IMPLEMENT with identified minor codes, for a missing local value
implementation and for incompatible versions (see Section 3.17.2, “Standard Minor
Exception Codes,” on page 3-58).

Under certain conditions it is possible that when several values of the same CORBA
type (same repository id) are sent in either a request or reply, that the reality is that
they have distinct implementations. In this case, in addition to the codebase URL(S)
sent in the service context, each value which has a different codebase may have
codebase URL(s) associated with it. This is encoded by using a different tag to encode
the value on the wire.

CORBAV2.3.1 October 1999

Abstract Interface Semantics 6

This chapter describes the semantics of abstract interfaces. Other details specific to
particular aspects of the ORB may be found in other chapters.

Contents

This chapter contains the following sections.

Section Title Page
“Overview” 6-1
“Semantics of Abstract Interfaces” 6-1
“Usage Guidelines” 6-3
“Example” 6-3
“Security Considerations” 6-4

6.1 Overview

In many cases it may be useful to defer the determination of whether an object is
passed by reference or by value until runtime. An IDL abstract interface provides this
capability. See Section 6.4, “Example,” on page 3 for an example of when this might
be useful.

6.2 Semantics of Abstract Interfaces

Abstract interfaces differ from regular IDL interfaces in the following ways:

CORBAV2.3 June 1999 6-1

6-2

. When used in an operation signature, they do not determine whether actual

parameters are passed as an object reference or by value. Instead, the type of the
actual parameter (regular interface or value) is used to make this determination
using the following rules:

* The actual parameter is passed as an object reference if it is a regular interface
type (or a subtype of a regular interface type), and that regular interface type is a
subtype of the signature abstract interface type, and the object is already
registered with the ORB/OA.

« The actual parameter is passed as a value if it cannot be passed as an object
reference but can be passed as a value. Otherwiz&@DaPARAM exception is
raised.

. The GIOP encoding of an abstract interface type is a union with a boolean

discriminator (TRUE if it is an IOR, FALSE if it is a value) followed by either the
IOR or the value. This allows the demarshaling code to determine whether an object
reference or a value was passed.

. Abstract interfaces do not implicitly inherit froBORBA::Object. This is because

they can represent either value types or CORBA object references, and value types
do not necessarily support the object reference operations (see Section 4.3, “Object
Reference Operations,” on page 4-8). If an IDL abstract interface type can be
successfully narrowed to an object reference type (a regular IDL interface), then the
CORBA::Object operations can be invoked on the narrowed object reference.

. Abstract interfaces implicitly inherit fro@ORBA::AbstractBase . This type is

defined as native. It is the responsibility of each language mapping to specify the
actual programming language type that is used for this type.

module CORBA {
/I DL
native AbstractBase;

k

. Abstract interfaces do not imply copy semantics for value types passed as

arguments to their operations. This is because their operations may be either
CORBA invocations (for abstract interfaces that represent CORBA object
references) or local programming language calls (for abstract interfaces that
represent CORBA value types). See Section 5.2.2, “Operations,” on page 5-3 and
Section 5.2.4, “Parameter Passing,” on page 5-4 for details of these differences.

. Abstract interfaces may only inherit from other abstract interfaces.

. Value types may support any number of abstract interfaces, but no more than one

regular interface.

. In other respects, abstract interfaces are identical to regular IDL interfaces.

For example, consider the following operatiod() in abstract interfac®o:
abstract interface foo {

void m1(in AninterfaceType X, in AnAbstractinterfaceType y,
in AvValueType z);

CORBA V2.3 June 1999

x's are always passed by reference,

Z's are:
« passed as copied valuedadb refers to an ordinary interface.
 passed as non-copied valuesoid refers to a value type

y’'s are:

» passed as reference if their concrete type is an ordinary interface subtype of
AnAbstractinterfaceType (registered with the ORB), no matter wifiab's
concrete type is.

» passed as copied values if their concrete type is valuéoarsl concrete type is
ordinary interface.

» passed as non-copied values if their concrete type is valufle@iscconcrete type
is value.

6.3 Usage Guidelines

6.4 Example

Abstract interfaces are intended for situations where it cannot be known at compile
time whether an object reference or a value will be passed. In other cases, a regular
interface or value type should be used. Abstract interfaces are not intended to replace
regular CORBA interfaces in situations where there is no clear need to provide runtime
flexibility to pass either an object reference or a value. If reference semantics are
intended, regular interfaces should be used.

For example, in a business application it is extremely common to need to display a list
of objects of a given type, with some identifying attribute like account number and a
translated text description such as “Savings Account.” A developer might define an
interface such aBescribable whose methods provide this information, and

implement this interface on a wide range of types. This allows the method that displays
items to take an argument of typescribable and query it for the necessary
information. TheDescribable objects passed in to tldgsplay method may be either
CORBA interface types (passed in as object references) or CORBA value types (passed
in by value).

In this examplePescribable is used as a polymorphic abstract type. No instances of
type Describable exist, but many different instances have interfaces that support the
Describable type abstraction. In C+escribable would be an abstract base class;
in Java, an interface. In statically typed languages, the compiler can check that the
actual parameter type passed by callergigglay is a valid subtype dbescribable

and therefore supports the methods defineDéscribable . Thedisplay method can
simply invoke the methods dfescribable on the objects that it receives, without
concern for any details of their implementation.

CORBA V2.3 Usage Guidelines June 1999 6-3

Describable could not be declared as a regular IDL interface. This is because
arguments of declared interface type are always passed as object references (see
Section 5.2.4, “Parameter Passing,” on page 5-4) and we also walglay method

to be able to accept value type objects that can only be passed by value. Similarly we
cannot defindDescribable as a value type because thendisplay method would

not be able to accept actual parameter objects that only support passing as an object
reference. Abstract interfaces are needed to cover such cases.

The Describable abstract interface could be defined and used by the following IDL:

abstract interface Describable {
string get_description();

h

interface Example {
void display (in Describable anObject);

b

interface Account : Describable {// passed by reference
[/l add Account methods here

h

valuetype Currency supports Describable {// passed by value
/I add Currency methods here

b

If Describable were defined as a regular interface instead of an abstract interface,
then it would not be possible to pas€arrency value to the display method, even
though theCurrency IDL type supports th®escribable interface.

6.5 Security Considerations

Security considerations for abstract interfaces are similar to those for regular interfaces
and values (see Section 5.2.9, “Security Considerations,” on page 5-7). This is because
an abstract interface formal parameter type allows either a regular interface (IOR) or a
value to be passed. Likewise, an operation defined in an abstract interface can be
implemented by either a regular interface (with “normal” security considerations) or by
a value type (in which case it is a local call, not mediated by the ORB). The security
implication of making the choice between these alternatives a runtime determination is
that the programmer must ensure that for both alternatives, no security violations can
occur. For example, a technique similar to that described in Section 6.5.1, “Passing
Values to Trusted Domains,” on page 6-4 could be used to avoid inadvertently passing
values outside a domain of trust.

6.5.1 Passing Values to Trusted Domains

When a server passes an object reference, it can be sure that access control policies
will apply to any attempt to access anything through that object reference. When the
underlying object is passed as a value, the granularity and level/semantics of access

CORBA V2.3 June 1999

6

control are different. In the “by value” case, all the data for the object is passed, and
method invocations on the passed object are local calls that are not mediated by the
ORB. Whether the server wants to use the (potentially more permissive) pass by value
access control or not could depend on the security domain which is receiving the said
object or object reference.

Consider the case where the server S has an object O that it is willing to pass only in
the form of an object reference Or' to a domain Du that it does not trust, but is willing
to pass the object by value Ow to another domain Ot that it trusts.

This flexibility is not possible without abstract interfaces. Signatures would have to be
written to either always pass references or always pass values, irrespective of the level
of trust of the invocation target domain. However, abstract interfaces provide the
necessary flexibility. The formal parameter tygdgType can be declared as an

abstract interface and the method invocation can be coded along the lines of

myExample->foo(security_check(myExample,mydata));
where thesecurity_check function determines the level of trustmmffExample 's
domain and returns an regular interface subtypdyoafype for untrusted domains and

a value subtype dflyType for trusted domains. The rules for abstract interfaces will
then pass the correct thing in both these cases.

CORBAV2.3 Security Considerations June 1999 6-5

6-6

CORBA V2.3

June 1999

7.1 Overview

Dynamic Invocation Interface !

This chapter has been updated based on the CORE document (ptc/98-09-04).

The Dynamic Invocation Interface (DIl) describes the client’s side of the interface that
allows dynamic creation and invocation of request to objects. All types defined in this
chapter are part of the CORBA module. When referenced in OMG IDL, the type
names must be prefixed bCORBA:: ".

Contents

This chapter contains the following sections.

Section Title Page
“Overview” 7-1
“Request Operations” 7-4
“Deferred Synchronous Operations” 7-8
“List Operations” 7-10
“Context Objects” 7-12
“Context Object Operations” 7-13
“Native Data Manipulation” 7-16

The Dynamic Invocation Interface (DIl) allows dynamic creation and invocation of
requests to objects. A client using this interface to send a request to an object obtains
the same semantics as a client using the operation stub generated from the type
specification.

CORBAV2.3 June 1999 7-1

7-2

A request consists of an object reference, an operation, and a list of parameters. The
ORB applies the implementation-hiding (encapsulation) principle to requests.

In the Dynamic Invocatiointerface, parameters in a request are supplied as elements
of a list. Each element is an instance dfamedValue (see Section 7.1.1, “Common
Data Structures,” on page 7-2). Each parameter is passed in its native data form.

Parameters supplied to a request may be subject to run-time type checking upon
request invocation. Parameters must be supplied in the same order as the parameters
defined for the operation in the Interface Repository.

The user exceptiowrongTransaction is defined in the CORBA module, prior to the
definitions of the ORB and Request interfaces, as follows:

exception WrongTransaction {};

This exception can be raised only if the request is implicitly associated with a
transaction (the current transaction at the time that the request was issued).

7.1.1 Common Data Structures

The typeNamedValue is a well-known data type in OMG IDL. It can be used either

as a parameter type directly or as a mechanism for describing arguments to a request.
The typeNVList is a pseudo-object useful for constructing parameter lists. The types
are described in OMG IDL as:

typedef unsigned long Flags;

struct NamedValue { PIDL
Identifier name; /[argument name
any argument; // argument
long len; [/l length/count of argument value
Flags arg_modes;// argument mode flags

¥

NamedValue andFlags are defined in the CORBA module.

The NamedValue andNVList structures are used in the request operations to
describe arguments and return values. They are also used in the context object routines
to pass lists of property names and values. Despite the above declarabidfifstr ,

the NVList structure is partially opaque and may only be created by using the ORB
create_list operation.

For out parameters, applications can setafgeiment member of thdNamedValue
structure to a value that includes either a NULL or a non-NULL storage pointer. If a
non-null storage pointer is provided for an out parameter, the ORB will attempt to use
the storage pointed to for holding the value of the out parameter. If the storage pointed
to is not sufficient to hold the value of the out parameter, the behavior is undefined.

CORBA V2.3 June 1999

v

A named value includes an argument name, argument value éy grength of the
argument, and a set of argument mode flags. When named value structures are used t
describe arguments to a request, the names are the argument identifiers specified in the
OMG IDL definition for a specific operation.

As described in Section 19.7, “Mapping for Basic Data Types,” on page 19-hbyan
consists of a TypeCode and a pointer to the data value. The TypeCode is a well-known
opaque type that can encode a description of any type specifiable in OMG IDL. See
this section for a full description of TypeCodes.

For most data typesen is the actual number of bytes that the value occupies. For
object referenceden is 1. Table 7-1shows the length of data values for the C language
binding. The behavior of a NamedValue is undefined iflémevalue is inconsistent

with the TypeCode.

Table 7-1 C Type Lengths

Data type: X Length (X)

short sizeof (CORBA_short)

unsigned short sizeof (CORBA _unsigned_short)

long sizeof (CORBA_long)

unsigned long sizeof (CORBA _unsigned_long)

long long sizeof (CORBA_long_long)

unsigned long long sizeof (CORBA _unsigned_long_long)

float sizeof (CORBA_float)

double sizeof (CORBA _double)

long double sizeof (CORBA_long_double)

fixed<d,s> sizeof (CORBA _fixed_d_s)

char sizeof (CORBA_char)

wchar sizeof (CORBA_wchar)

boolean sizeof (char)

octet sizeof (CORBA_octet)

string strlen (string) /* does NOT include \0’ byte! */

wstring number of wide characters in string, not including wide null
terminator

enum E {}; sizeof (CORBA_enum)

union U { }; sizeof (U)

struct S { }; sizeof (S)

Object 1

array N of type T1 Length (T1) * N

sequence V of type T2 Length (T2) *V /* Vs the actual, dynamic, number of
elements */

CORBA V2.3 Overview June 1999 7-3

Thearg_modes field is defined as a bitmask (long) and may contain the following

flag values:
CORBA::ARG_IN The associated value is an input only argument.
CORBA::ARG_OUT The associated value is an output only argument.
CORBA::ARG_INOUT | The associated value is an in/out argument.

These flag values identify the parameter passing mode for arguments. Additional flag
values have specific meanings for request and list routines, and are documented with
their associated routines.

All other bits are reserved. The high-order 16 bits are reserved for implementation-
specific flags.

7.1.2 Memory Usage

The values for output argument data types that are unbounded strings or unbounded
sequences are returned as pointers to dynamically allocated memory. In order to
facilitate the freeing of all “out-arg memory,” the request routines provide a

mechanism for grouping, or keeping track of, this memory. If so specified, out-arg
memory is associated with the argument list passed to the create request routine. Wher
the list is deleted, the associated out-arg memory will automatically be freed.

If the programmer chooses not to associate out-arg memory with an argument list, the
programmer is responsible for freeing each out parameter GEMRBA_free() ,

which is discussed in th@ Language Mappingpecification Kapping for Structure
Typessection).

7.1.3 Return Status and Exceptions

In the Dynamic Invocation interface, routines typically indicate errors or exceptional
conditions either via programming language exception mechanisms, or via an
Environment parameter for those languages that do not support exceptions. Thus, the
return type of these routines is void.

7.2 Request Operations

The request operations are defined in terms oRbguest pseudo-object. The
Request routines use th8lVList definition defined in the preceding section.

module CORBA {
native OpaqueValue;
interface Request { /I PIDL

void add_arg (

CORBA V2.3 June 1999

in Identifier name, /l argument name
in TypeCode arg_type, /I argument datatype
in OpaqueValue value, /I argument value to be added
in long len, I/ length/count of argument
value
in Flags arg_flags /I argument flags
)i
void invoke (
in Flags invoke_flags // invocation flags
)i

void delete ();

void send (
in Flags invoke_flags // invocation flags

)i
void get_response () raises (WrongTransaction);

boolean poll_response();
h
%

In IDL, The native type OpaqueValue is used to identify the type of the
implementation language representation of the value that is to be passed as a
parameter. For example in the C language this is the C languag@/tyghe)

Each language mapping specifies wBahqueValue maps to in that specific
language.

7.2.1 create_request

Because it creates a pseudo-object, this operation is defined @bjbet interface
(see Section 4.3, “Object Reference Operations,” on page 4-8 for the complete
interface definition). Thereate _request operation is performed on ti@bject
which is to be invoked.

void create_request (/ PIDL
in Context ctx, I/ context object for operation
in Identifier operation, /I intended operation on object
in NVList arg_list, /I args to operation
inout NamedValue result, Il operation result
out Request request, /I newly created request
in Flags req_flags /I request flags

)i

This operation creates an ORB request. The actual invocation occurs by icaiike
or by using thesend / get_response calls.

CORBA V2.3 Request Operations June 1999 7-5

7-6

The operation name specified oreate_request is the same operation identifier that

is specified in the OMG IDL definition for this operation. In the case of attributes, it is
the name as constructed following the rules specified ilsémeerRequest interface

as described in the DSI in Section 8.3, “ServerRequestPseudo-Object,” on page 8-3.

The arg_list , if specified, contains a list of arguments (input, output, and/or
input/output) which become associated with the requestglflist is omitted
(specified adNULL), the arguments (if any) must be specified usingattek arg call
below.

Arguments may be associated with a request by passing in an argument list or by using
repetitive calls taadd_arg . One mechanism or the other may be used for supplying
arguments to a given request; a mixture of the two approaches is not supported.

If specified, thearg_list becomes associated with the request; untilittieke call
has completed (or the request has been deleted), the ORB assuraeg tisit (and
any values it points to) remains unchanged.

When specifying an argument list, thalue andlen for each argument must be
specified. An argument’s datatype, name, and usage flags (i.e., in, out, inout) may also
be specified; if so indicated, arguments are validated for data type, order, name, and
usage correctness against the set of arguments expected for the indicated operation.

An implementation of the request services may relax the order constraint (and allow
arguments to be specified out of order) by doing ordering based upon argument name.

The context properties associated with the operation are passed to the object
implementation. The object implementation may not modify the context information
passed to it.

The operation result is placed in thesult argument after the invocation completes.

Thereq_flags argument is defined as a bitmasing) that may contain the following
flag values:

CORBA::OUT_LIST_MEMORY indicates that any out-arg memory is associated with
the argument listNVList).

Setting theODUT_LIST_MEMORY flag controls the memory allocation mechanism for
out-arg memory (output arguments, for which memory is dynamically allocated). If
OUT_LIST_MEMORY is specified, an argument list must also have been specified on
the create_request call. When output arguments of this type are allocated, they are
associated with the list structure. When the list structure is freed (see below), any
associated out-arg memory is also freed.

If OUT_LIST_MEMORY is not specified, then each piece of out-arg memory remains
available until the programmer explicitly frees it with procedures provided by the
language mappings (see tBel anguage Mappingpecification Argument Passing
Considerationssection);C++ Language Mappingpecification NVList section; and

the COBOL Language Mappingpecification, Argument Passing Considerations
section).

CORBA V2.3 June 1999

v

The implicit object reference operatiomsn_existent ,is_a, andget_interface may
be invoked using DII. No other implicit object reference operations may be invoked via
DlI.

To create a request for any one of these allowed implicit object reference operations,
create_request must be passed the name of the operation with' @repended, in

the parameter "operation.” For example to create a DIl requessfa, the name
passed ta@reate_request must be "is_a". If the name of an implicit operation that

is not ivocable through DIl is passeddieate request with a " " prepended,
create_request shall raise 8AD_PARAM exception. For example, if

" is_equivalent " is passed to create request as thpetation " parameter will cause

create_request to raise thaBAD_PARAM exception.

7.2.2 add_arg
void add_arg (/ PIDL
in Identifier name, /I argument name
in TypeCode arg_type, // argument datatype
in OpaqueValue value, /l argument value to be added
in long len, /I length/count of argument value
in Flags arg_flags // argument flags

);
add_arg incrementally adds arguments to the request.

For each argument, minimally itelue andlen must be specified. An argument’s data
type, name, and usage flags (i.e., in, out, inout) may also be specified. If so indicated,
arguments are validated for data type, order, name, and usage correctness against the
set of arguments expected for the indicated operation.

An implementation of the request services may relax the order constraint (and allow
arguments to be specified out of order) by doing ordering based upon argument name.

The arguments added to the request become associated with the request and are
assumed to be unchanged until the invoke has completed (or the request has been
deleted).

Arguments may be associated with a request by specifying them on the
create_request call or by adding them via calls &ld_arg . Using both methods for
specifying arguments for the same request is not supported.

In addition to the argument modes defined in “Common Data Structures” on page 7-2,
arg_flags may also take the flag valud_COPY_VALUE. The argument passing

flags defined in “Common Data Structures” on page 7-2 may be used here to indicate
the intended parameter passing mode of an argument.

If the IN_COPY_VALUE flag is set, a copy of the argument value is made and used
instead. This flag is ignored for inout and out arguments.

CORBA V2.3 Request Operations June 1999 7-7

7.2.3 invoke

void invoke (/I PIDL
in Flags invoke_flags /l invocation flags

);

This operation calls the ORB, which performs method resolution and invokes an
appropriate method. If the method returns successfully, its result is placedasuhe
argument specified ocreate_request . The behavior is undefined if tHRequest
pseudo-object has already been used with a previous dallake , send, or
send_multiple_requests

7.2.4 delete

void delete (); /I PIDL

This operation deletes the request. Any memory associated with the request (i.e., by
using thelN_COPY_VALUE flag) is also freed.

7.3 Deferred Synchronous Operations

7.3.1 send

void send (/ PIDL
in Flags invoke_flags /I invocation flags

):

Send initiates an operation according to the information inReguest . Unlike

invoke, send returns control to the caller without waiting for the operation to finish.
To determine when the operation is done, the caller must uggetheesponse or
get_next_response operations described below. The out parameters and return value
must not be used until the operation is done.

Although it is possible for some standard exceptions to be raised Berite

operation, there is no guarantee that all possible errors will be detected. For example,
if the object reference is not valisend might detect it and raise an exception, or

might return before the object reference is validated, in which case the exception will
be raised wheget_response is called.

If the operation is defined to lmeway or if INV_NO_RESPONSE is specified,
thenget_response does not need to be called. In such cases, some errors might go
unreported, since if they are not detected be$ered returns there is no way to

inform the caller of the error.

The following invocation flag is currently defined feend .

CORBA V2.3 June 1999

v

CORBA::INV_NO_RESPONSE indicates that the invoker does not intend to wait

for a response, nor does it expect any of the output arguments (in/out and out) to be
updated. This option may be specified even if the operation has not been defined to
be oneway.

7.3.2 send_multiple_requests

interface Request; /I forward declaration
typedef sequence <Request> RequestSeq;

void send_multiple_requests_oneway(in RequestSeq req);
void send_multiple_requests_deferred(in RequestSeq req);

send_multiple_requests initiates more than one request in parallel. Lskead,
send_multiple_requests returns to the caller without waiting for the operations to
finish. To determine when each operation is done, the caller must use the
get_response or get_next_response operations described below.

7.3.3 poll_response

/I PIDL
boolean poll_response (in Request req);

poll_response determines whether the request has completeBRBE return
indicates that it hasfALSE indicates it has not.

Return is immediate, whether the response has completed or not. Values in the request
are not changed.

7.3.4 get_response

/IPIDL
void get_response () raises (WrongTransaction);

get_response returns the result of a requestglt response is called before the
request has completed, it blocks until the request has completed. Upon return, the out
parameters and return values defined inRleguest are set appropriately and they

may be treated as if tHeequest invoke operation had been used to perform the
request.

A request has an associated transaction context if the thread originating the request hac
a non-null transaction context and the target object is a transactional object. The
get_response operation may raise th&rongTransaction exception if the request

has an associated transaction context, and the thread ingsdingesponse either

has a null transaction context or a non-null transaction context that differs from that of
the request.

CORBA V2.3 Deferred Synchronous Operations June 1999 7-9

7.3.5 get_next_response

interface Request; /l forward declaration

boolean poll_next_response();
void get_next_response(out Request req) raises (WrongTransaction);

Poll_next_response determines whether any request has completetRBE return
indicates that at least one h&&LSE indicates that none have completed. Return is
immediate, whether any response has completed or not.

Get_next_response returns the next request that completes. Despite the name, there
is no guaranteed ordering among the completed requests, so the order in which they are
returned from successiget next_response calls is not necessarily related to the

order in which they finish.

A request has an associated transaction context if the thread originating the request hac
a non-null transaction context and the target object is a transactional object. The
get_next_response operation may raise th&rongTransaction exception if the

request has an associated transaction context, and the thread invoking
get_next_response has a non-null transaction context that differs from that of the
request.

7.4 List Operations

7-10

The list operations use the named-value structure defined above.The list operations that
createNVList objects are defined in the ORB interface described in the ORB Interface
chapter, but are described in this section. NMtist interface is shown below.

interface NVList { /l PIDL
void add_item (
in Identifier item_name, // name of item
in TypeCode item_type, /I item datatype
in OpaqueValue value, / item value
in long value_len, /' length of item value
in Flags item_flags I/l item flags
)i
void free ();

void free_memory ();
void get_count (
out long count /[l number of entries in the list
)i
h

InterfaceNVList is defined in the CORBA module.

7.4.1 create_list

This operation, which creates a pseudo-object, is defined in the ORB interface and
excerpted below.

CORBA V2.3 June 1999

void create_list (/IPIDL
in long count, /I number of items to allocate for list
out NVList new_list // newly created list

):

This operation allocates a list and clears it for initial use. The specified count is a
“hint” to help with the storage allocation. List items may be added to the list using the
add_item routine. Items are added starting with tlséot() ,” in the next available

slot.

An NVList is a partially opaque structure. It may only be allocated via a call to

create_list.
7.4.2 add_item

void add_item (/I PIDL
in Identifier item_name, /I name of item
in TypeCode item_type, /I item datatype
in OpaqueValue value, / item value
in long value_len, /' length of item value
in Flags item_flags I item flags

)i

This operation adds a new item to the indicated list. The item is added after the
previously added item.

In addition to the argument modes defined in Section 7.1.1, “Common Data
Structures,” on page 7-2em_flags may also take the following flag values:
IN_COPY_VALUE, DEPENDENT_LIST. The argument passing flags defined in
Section 7.1.1, “Common Data Structures,” on page 7-2 may be used here to indicate
the intended parameter passing mode of an argument.

If the IN_COPY_VALUE flag is set, a copy of the argument value is made and used
instead.

If a list structure is added as an item (e.g., a “sublist”) XB@ENDENT_LIST flag
may be specified to indicate that the sublist should be freed when the parent list is
freed.

7.4.3 free

void free (); // PIDL

This operation frees the list structure and any associated memory (an implicit call to
the listfree_memory operation is done).

7.4.4 free_memory

void free_memory (); / PIDL

CORBA V2.3 List Operations June 1999 7-11

This operation frees any dynamically allocated out-arg memory associated with the
list. The list structure itself is not freed.

7.4.5 get_count

void get_count (/I PIDL
out long count /I number of entries in the list

);

This operation returns the total number of items added to the list.

7.4.6 create_operation_list

This operation, which creates a pseudo-object, is defined in the ORB interface.

void create_operation_list (/I PIDL
in OperationDef oper, /I operation
out NVList new_list [/l argument definitions
);

This operation returns aMVList initialized with the argument descriptions for a given
operation. The information is returned in a form that may be usBgrnamic
Invocationrequests. The arguments are returned in the same order as they were defined
for the operation.

The listfree operation is used to free the returned information.

7.5 Context Objects

7-12

A context object contains a list of properties, each consisting of a name and a string
value associated with that name. By convention, context properties represent
information about the client, environment, or circumstances of a request that are
inconvenient to pass as parameters.

Context properties can represent a portion of a client’'s or application’s environment
that is meant to be propagated to (and made implicitly part of) a server’'s environment
(for example, a window identifier, or user preference information). Once a server has
been invoked (i.e., after the properties are propagated), the server may query its context
object for these properties.

In addition, the context associated with a particular operation is passed as a
distinguished parameter, allowing particular ORBs to take advantage of context
properties, for example, using the values of certain properties to influence method
binding behavior, server location, or activation policy.

An operation definition may contain a clause specifying those context properties that
may be of interest to a particular operation. These context properties comprise the
minimum set of properties that will be propagated to the server’s environment
(although a specified property may have no value associated with it). The ORB may
choose to pass more properties than those specified in the operation declaration.

CORBA V2.3 June 1999

v

When a context clause is present on an operation declaration, an additional argument is
added to the stub and skeleton interfaces. When an operation invocation occurs via
either the stub or Dynamic Invocation interface, the ORB causes the properties which
were named in the operation definition in OMG IDL and which are present in the
client’s context object, to be provided in the context object parameter to the invoked
method.

Context property names (which are strings) typically have the form of an OMG IDL
identifier, or a series of OMG IDL identifiers separated by periods. A context property
name pattern is either a property name, or a property name followed by a single “*.”
Property name patterns are used indbmtext clause of an operation definition and in
the get_values operation (described below).

A property name pattern without a trailing “*” is said to match only itself. A property
name pattern of the form “<name>*" matches any property name that starts with
<name> and continues with zero or more additional characters.

Context objects may be created and deleted, and individual context properties may be
set and retrieved. There will often be context objects associated with particular
processes, users, or other things depending on the operating system, and there may b
conventions for having them supplied to calls by default.

It may be possible to keep context information in persistent implementations of context
objects, while other implementations may be transient. The creation and modification
of persistent context objects, however, is not addressed in this specification.

Context objects may be “chained” together to achieve a particular defaulting behavior.

Properties defined in a particular context object effectively override those properties in
the next higher level. This searching behavior may be restricted by specifying the
appropriate scope and the “restrict scope” option on the Cogeextalues call.

Context objects may be named for purposes of specifying a starting search scope.

7.6 Context Object Operations

When performing operations on a context object, properties are represented as named
value lists. Each property value corresponds to a named value item in the list.

A property name is represented by a string of characters (see Section 3.2.3,
“Identifiers,” on page 3-6 for the valid set of characters that are allowed).

The Context interface is shown below.

module CORBA {

interface Context { /I PIDL
void set_one_value (
in ldentifier prop_name, // property name to add
in string value Il property value to add
);

void set_values (

CORBAV2.3 Context Object Operations June 1999 7-13

in NVList values Il property values to be
changed
);
void get_values (
in ldentifier start_scope, // search scope
in Flags op_flags, // operation flags
in Identifier prop_name, // name of property(s) to
retrieve
out NVList values /l requested property(s)
);
void delete_values (
in ldentifier prop_name /l name of property(s) to
delete
)i
void create_child (
in ldentifier ctx_name, /I name of context object
out Context child_ctx /I newly created context
object
)i
void delete (
in Flags del_flags /I flags controlling deletion
)i

7.6.1 get_default_context

This operation, which createsContext pseudo-object, is defined in tigRB
interface (see Section 4.2.1, “Converting Object References to Strings,” on page 4-7
for the complete ORB definition).

void get_default_context (/I PIDL
out Context ctx /I context object

);

This operation returns a reference to the default process context object. The default
context object may be chained into other context objects. For example, an ORB
implementation may chain the default context object into its User, Group, and System
context objects.

7.6.2 set_one value

void set_one_value (/I PIDL
in ldentifier prop_name, /I property name to add
in string value Il property value to add
);

This operation sets a single context object property.

7-14 CORBA V2.3 June 1999

7.6.3 set values

void set_values (/l PIDL
in NVList values Il property values to be changed

);

This operation sets one or more property values in the context object. N thst ,
theflags field must be set to zero, and the TypeCode field associated with an attribute
value must b&C_string .

7.6.4 get _values

void get_values (/ PIDL
in lIdentifier start_scope, // search scope
in Flags op_flags, // operation flags
in ldentifier prop_name, // name of property(s) to
retrieve
out NVList values /l requested property(s)
);

This operation retrieves the specified context property value(gjopf_ hame has a
trailing wildcard character (“*”), then all matching properties and their values are
returned. The values returned may be freed by a call to thieeléstoperation.

If prop_name is an empty string then tt@ORBA::BAD_PARAM exception is
raised. If a property named lpyop_name is not found then the
CORBA::BAD_CONTEXT and no property list is returned. The
CORBA::NO_MEMORY exception is raised if dynamic memory allocation fails.

Scope indicates the context object level at which to initiate the search for the specified
properties (e.g., “USER”, * _SYSTEM?"). If the property is not found at the indicated
level, the search continues up the context object tree until a match is found or all
context objects in the chain have been exhausted.

If scope name is omitted, the search begins with the specified context object. If the
specified scope name is not found, an exception is returned.

The following operation flag may be specified:

® CORBA:CTX_RESTRICT_SCOPE - Searching is limited to the specified search
scope or context object.

7.6.5 delete_values

void delete_values (/ PIDL
in Identifier prop_name /[name of property(s) to delete

);

This operation deletes the specified property value(s) from the context object. If
prop_name has a trailing wildcard character (“*), then all property names that
match will be deleted.

CORBAV2.3 Context Object Operations June 1999 7-15

Search scope is always limited to the specified context object.

If prop_name is an empty string thEORBA::BAD_PARAM exception is raised. If
no matching property is found, ti@ORBA::BAD_CONTEXT exception is raised.

7.6.6 create_child

void create_child (/I PIDL
in Identifier ctx_name, /[l name of context object
out Context child_ctx /I newly created context object
);

This operation creates a child context object.

The returned context object is chained into its parent context. That is, searches on the
child context object will look in the parent context (and so on, up the context tree), if
necessary, for matching property names.

Context object names follow the rules for OMG IDL identifiers (see Section 3.2.3,
“Identifiers,” on page 3-6).

7.6.7 delete

void delete (/ PIDL
in Flags del_flags /I flags controlling deletion

);
This operation deletes the indicated context object.

The following option flags may be specified:

CORBA::CTX_DELETE_DESCENDENTS deletes the indicated context object
and all of its descendent context objects, as well.

The exceptiorCORBA::BAD_PARAM is raised if there are one or more child
context objects and theTX_DELETE_DESCENDENTS flag was not set.

7.7 Native Data Manipulation

A future version of this specification will define routines to facilitate the conversion of
data between the list layout foundNiVList structures and the compiler native layout.

7-16 CORBA V2.3 June 1999

Dynamic Skeleton Interface 8

The Dynamic Skeleton Interface (DSI) allows dynamic handling of object invocations.
That is, rather than being accessed through a skeleton that is specific to a particular
operation, an object’s implementation is reached through an interface that provides
access to the operation name and parameters in a manner analogous to the client side’
Dynamic Invocation Interface. Purely static knowledge of those parameters may be
used, or dynamic knowledge (perhaps determined through an Interface Repository)
may also be used, to determine the parameters.

Contents

This chapter contains the following sections.

Section Title Page
“Introduction” 8-1
“Overview” 8-2
“ServerRequestPseudo-Object” 8-3
“DSI: Language Mapping” 8-4

8.1 Introduction

The Dynamic Skeleton Interface is a way to deliver requests from an ORB to an object
implementation that does not have compile-time knowledge of the type of the object it
is implementing. This contrasts with the type-specific, OMG IDL-based skeletons, but

serves the same architectural role.

CORBAV2.3 June 1999 8-1

8-2

DSl is the server side’s analogue to the client side’s Dynamic Invocation Interface
(D). Just as the implementation of an object cannot distinguish whether its client is
using type-specific stubs or the DI, the client who invokes an object cannot determine
whether the implementation is using a type-specific skeleton or the DSI to connect the
implementation to the ORB.

Dynamic Object Implementation

Dynanmy€ Skeleton Skeleton

/ Object Adapter

/ ORB Core

8.2 Overview

Figure 8-1 Requests are delivered through skeletons, including dynamic ones

DS, like DII, has many applications beyond interoperability solutions. Uses include
interactive software development tools based on interpreters, debuggers and monitors
that want to dynamically interpose on objects, and support for dynamically-typed
languages such as LISP.

The basic idea of the DSI is to implement all requests on a particular object by having
the ORB invoke the same upcall routine, a Dynamic Implementation Routine (DIR).
Since in any language binding all DIRs have the same signature, a single DIR could be
used as the implementation for many objects, with different interfaces.

The DIR is passed all the explicit operation parameters, and an indication of the object
that was invoked and the operation that was requested. The information is encoded in
the request parameters. The DIR can use the invoked object, its object adapter, and the
Interface Repository to learn more about the particular object and invocation. It can
access and operate on individual parameters. It can make the same use of an object
adapter as other object implementations.

This chapter describes the elements of the DSI that are common to all object adapters
that provide a DSI. See Section 11.6.11, “Single Servant, Many Objects and Types,
Using DSI,” on page 11-59 for the specification of the DSI for the Portable Object
Adapter.

CORBA V2.3 June 1999

8.3 ServerRequestPseudo-Object

8.3.1 ExplicitRequest State: ServerRequestPseudo-Object

The ServerRequest pseudo-object captures the explicit state of a request for the DSI,
analogous to the Request pseudo-object in the DIl. The object adapter dispatches an
invocation to a DSI-based object implementation by passing an instance of
ServerRequest to the DIR associated with the object implementation. The following
shows how it provides access to the request information:

module CORBA {

interface ServerRequest { // PIDL
readonly attribute Identifier operation;
void arguments(inout NVList nv);
Context ctx();
void set_result(in Any val);
void set_exception(in Any val);

h
h

The identity and/or reference of the target object of the invocation is provided by the
object adapter and its language mapping. In the context of a bridge, the target object will
typically be a proxy for an object in some other ORB.

The operation attribute provides the identifier naming the operation being invoked;
according to OMG IDL's rules, these names must be unique among all operations
supported by the object's "most-derived" interface. Note that the operation hames for
getting and setting attributes arget_<attribute_name> and

set<attribute_name> , respectively. The operation attribute can be accessed by the
DIR at any time.

Operation parameter types will be specified, and "in" and "inout" argument values will
be retrieved, witharguments . Unless it callset_exception , the DIR must call
arguments exactly once, even if the operation signature contains no parameters. Once
arguments or set_exception has been called, callirmrguments on the same
ServerRequest will result in aBAD_INV_ORDER system exception. The DIR must
pass in taarguments anNVList initialized with TypeCodes and Flags describing the
parameter types for the operation, in the order in which they appear in the IDL
specification (left to right). A potentially-differeVList will be returned from

arguments , with the "in" and "inout" argument values supplied. If it does not call
set_exception , the DIR must supply the returndfy/List with return values for any

"out" arguments before returning, and may also change the return values for any "inout"
arguments.

CORBAV2.3 ServerRequestPseudo-Object June 1999 8-3

When the operation is not an attribute access, and the operation's IDL definition contains
a context expressioetx will return the context information specified in IDL for the
operation. Otherwise it will return a r@lontext reference. Callingtx before

arguments has been called or aftetx, set_result , or set_exception has been

called will result in @BAD_INV_ORDER system exception.

Theset_result operation is used to specify any return value for the call. Unless
set_exception is called, if the invoked operation has a non-void result type,
set_result must be called exactly once before the DIR returns. If the operation has a
void result typeset_result may optionally be called once with &my whose type is
tk_void . Callingset_result beforearguments has been called or afteet_result or
set_exception has been called will result inBAAD_INV_ORDER system exception.
Calling set_result without having previously calledx when the operation IDL
contains a context expression, or whenNhist passed targuments did not

describe all parameters passed by the client, may resuMBRSHAL system

exception.

The DIR may calket_exception at any time to return an exception to the client. The
Any passed tget_exception must contain either a system exception or one of the user
exceptions specified in thraises expression of the invoked operation’s IDL definition.
Passing in ar\ny that does not contain an exception will result BAD PARAM

system exception. Passing in an unlisted user exception will result in either the DIR
receiving aBAD_PARAM system exception or in the client receiving an
UNKNOWN_EXCEPTION system exception.

See each language mapping for a description of the memory management aspects of the
parameters to thBerverRequest operations.

8.4 DSI: Language Mapping

Because DSl is defined in terms of a pseudo-object, special attention must be paid to it
in the language mapping. This section provides general information about mapping the
Dynamic Skeleton Interface to programming languages. Each language provides its
own mapping for DSI.

8.4.1 ServerRequest’s Handling of Operation Parameters

There is no requirement thatServerRequest pseudo-object be usable as a general
argument in OMG IDL operations, or listed in “orb.idl.”

The client-side memory management rules normally applied to pseudo-objects do not
strictly apply to a ServerRequest's handling of operation parameters. Instead, the
memory associated with parameters follows the memory management rules applied to
data passed from skeletons into statically typed implementation routines, and vice
versa.

CORBA V2.3 June 1999

8.4.2 Registering Dynamic Implementation Routines

In an ORB implementation, the Dynamic Skeleton Interface is supported entirely through
the Object Adapter. An Object Adapter does not have to support the Dynamic Skeleton
Interface but, if it does, the Object Adapter is responsible for the details.

CORBAV2.3 DSI: Language Mapping June 1999 8-5

8-6

CORBA V2.3

June 1999

Dynamic Management of Any Values 9

Please note that this document is based on ptc/99-03-02. All changes took place in the
2.4 RTF

An any can be passed to a program that doesn’t have any static information for the
type of theany (code generated for the type by an IDL compiler has not been
compiled with the object implementation). As a result, the object receivirgnthe
does not have a portable method of using it.

The facility presented here enables traversal of the data value associatedamighadn
runtime and extraction of the primitive constituents of the data value. This is especially
helpful for writing powerful generic servers (bridges, event channels supporting
filtering).

Similarly, this facility enables the construction of amy at runtime, without having
static knowledge of its type. This is especially helpful for writing generic clients
(bridges, browsers, debuggers, user interface tools).

Contents

This chapter contains the following sections.

Section Title Page
“Overview” 9-2
“DynAny API” 9-3
“Usage in C++ Language” 9-22

CORBAV2.3 June 1999 9-1

9-2

9.1 Overview

Unless explicitly stated otherwise, all IDL presented in section 9.1 through section 9.3
is part of theDynamicAny module.

Any values can be dynamically interpreted (traversed) and constructed through
DynAny objects. ADynAny obiject is associated with a data value which corresponds
to a copy of the value inserted into amy.

A DynAny object may be viewed as an ordered collection of compdgminy s.

For DynAny s representing a basic type, suchHaag , or a type without components,

such as an empty exception, the ordered collection of components is empty. Each
DynAny object maintains the notion of a current position into its collection of
componenDynAny s. The current position is identified by an index value that runs
from O to r-1, where n is the number of components. The special index v&lue
indicates a current position that points nowhere. For values that cannot have a current
position (such as an empty exception), the index value is fixed.df a DynAny is
initialized with a value that has components, the index is initialized to 0. After creation
of an uninitializedDynAny (that is, aDynAny that has no value butigpeCode that
permits components), the current position depends on the type of value represented by
the DynAny . (The current position is set to 0 6t, depending on whether the new
DynAny gets default values for its components.)

The iteration operationgwind , seek, andnext can be used to change the current
position and theurrent_component operation returns the component at the current
position. Thecomponent_count operation returns the number of components of a
DynAny . Collectively, these operations enable iteration over the components of a
DynAny, for example, to (recursively) examine its contents.

A constructedDynAny object is aDynAny object associated with a constructed type.
There is a different interface, inheriting from tBgnAny interface, associated with
each kind of constructed type in IDL (fixed, enum, struct, sequence, union, array,
exception, and valuetype).

A constructedDynAny object exports operations that enable the creation of new
DynAny objects, each of them associated with a component of the constructed data
value.

As an example, ®ynStruct is associated with a struct value. This means that the
DynStruct may be seen as owning an ordered collection of components, one for each
structure member. THaynStruct object exports operations that enable the creation of
new DynAny objects, each of them associated with a member of the struct.

If a DynAny object has been obtained from another (constru@gdpny object,
such as DynAny representing a structure member that was created from a
DynStruct , the membebynAny is logically contained in thBynStruct .

Destroying a top-leveDynAny object (one that was not obtained as a component of
anotherDynAny) also destroys any componddynAny objects obtained from it.
Destroying a non-top levé&ynAny object does nothing. Invoking operations on a
destroyed top-leveDynAny or any of its descendants rai<eBJECT_NOT_EXIST.

CORBA V2.3 Overview June 1999

Note that simply releasing all references t@ymAny object does not delete the
DynAny or components; eaddynAny created with one of the create operations or
with thecopy operation must be explicitly destroyed to avoid memory leaks.

If the programmer wants to destroyDgnAny object but still wants to manipulate

some component of the data value associated with it, then he or she should first create
aDynAny for the component and, after that, make a copy of the cr&atedny

object.

The behavior oDynAny objects has been defined in order to enable efficient
implementations in terms of allocated memory space and speed of dogeday
objects are intended to be used for traversing values extractedifiosnor
constructing values adnys at runtime. Their use for other purposes is not
recommended.

9.2 DynAny API

The DynAny API comprises the following IDL definitions, located in the
DynamicAny module:

// 1DL

/I File: DynamicAny.idl

#ifndef _DYNAMIC_ANY_IDL_
#define _DYNAMIC_ANY_IDL_
#pragma prefix “omg.org”
#include <orb.idl>

module DynamicAny {
interface DynAny {

exception InvalidValue {};
exception TypeMismatch {};
CORBA::TypeCode type();
void assign(in DynAny dyn_any) raises(TypeMismatch);
void from_any(in any value) raises(TypeMismatch, InvalidValue);
any to_any();
boolean equal(in DynAny dyn_any);

void destroy();
DynAny copy();

CORBA V2.3 DynAny AP June 1999 9-3

void insert_boolean(in boolean value)
raises(TypeMismatch, InvalidValue);
void insert_octet(in octet value)
raises(TypeMismatch, InvalidValue);
void insert_char(in char value)
raises(TypeMismatch, InvalidValue);
void insert_short(in short value)
raises(TypeMismatch, InvalidValue);
void insert_ushort(in unsigned short value)
raises(TypeMismatch, InvalidValue);
void insert_long(in long value)
raises(TypeMismatch, InvalidValue);
void insert_ulong(in unsigned long value)
raises(TypeMismatch, InvalidValue);
void insert_float(in float value)
raises(TypeMismatch, InvalidValue);
void insert_double(in double value)
raises(TypeMismatch, InvalidValue);
void insert_string(in string value)
raises(TypeMismatch, InvalidValue);
void insert_reference(in Object value)
raises(TypeMismatch, InvalidValue);
void insert_typecode(in CORBA::TypeCode value)
raises(TypeMismatch, InvalidValue);
void insert_longlong(in long long value)
raises(TypeMismatch, InvalidValue);
void insert_ulonglong(in unsigned long long value)
raises(TypeMismatch, InvalidValue);
void insert_longdouble(in long double value)
raises(TypeMismatch, InvalidValue);
void insert_wchar(in wchar value)
raises(TypeMismatch, InvalidValue);
void insert_wstring(in wstring value)
raises(TypeMismatch, InvalidValue);
void insert_any(in any value)
raises(TypeMismatch, InvalidValue);
void insert_dyn_any(in DynAny value)
raises(TypeMismatch, InvalidValue);
void insert_val(in ValueBase value)
raises(TypeMismatch, InvalidValue);

boolean get_boolean()

raises(TypeMismatch, InvalidValue);
octet get_octet()

raises(TypeMismatch, InvalidValue);
char get_char()

raises(TypeMismatch, InvalidValue);
short get_short()

raises(TypeMismatch, InvalidValue);
unsigned short get_ushort()

raises(TypeMismatch, InvalidValue);

CORBA V2.3 DynAny API June 1999

long get_long()
raises(TypeMismatch, InvalidValue);
unsigned long get_ulong()
raises(TypeMismatch, InvalidValue);
float get_float()
raises(TypeMismatch, InvalidValue);
double get_double()
raises(TypeMismatch, InvalidValue);
string get_string()
raises(TypeMismatch, InvalidValue);
Object get_reference()
raises(TypeMismatch, InvalidValue);
CORBA::TypeCode get_typecode()
raises(TypeMismatch, InvalidValue);
long long get_longlong()
raises(TypeMismatch, InvalidValue);
unsigned long long get_ulonglong()
raises(TypeMismatch, InvalidValue);
long double get_longdouble()
raises(TypeMismatch, InvalidValue);
wchar get_wchar()
raises(TypeMismatch, InvalidValue);
wstring get_wstring()
raises(TypeMismatch, InvalidValue);
any get_any()
raises(TypeMismatch, InvalidValue);
DynAny get_dyn_any()
raises(TypeMismatch, InvalidValue);
ValueBase get_val()
raises(TypeMismatch, InvalidValue);

boolean seek(in long index);

void rewind();

boolean next();

unsigned long component_count();

DynAny current_component() raises(TypeMismatch);

k

interface DynFixed : DynAny {
string get_value();
boolean set_value(in string val) raises(TypeMismatch, InvalidValue);

k

interface DynEnum : DynAny {
string get_as_string();
void set_as_string(in string value) raises(InvalidValue);
unsigned long get_as_ulong();
void set_as_ulong(in unsigned long value) raises(InvalidValue);

CORBA V2.3 DynAny AP June 1999

typedef string FieldName;

struct NameValuePair {
FieldName id;
any value;

¥

typedef sequence<NameValuePair> NameValuePairSeq;

struct NameDynAnyPair {
FieldName id;
DynAny value;
I3
typedef sequence<NameDynAnyPair> NameDynAnyPairSeq;

interface DynStruct : DynAny {

FieldName current_member_name()
raises(TypeMismatch, InvalidValue);

CORBA::TCKind current_member_kind()
raises(TypeMismatch, InvalidValue);

NameValuePairSeq get_members();

void set_members(in NameValuePairSeq value)
raises(TypeMismatch, InvalidValue);

NameDynAnyPairSeq get_members_as_dyn_any();

void set_members_as_dyn_any(in NameDynAnyPairSeq value)
raises(TypeMismatch, InvalidValue);

I3

interface DynUnion : DynAny {
DynAny get_discriminator();
void set_discriminator(in DynAny d) raises(TypeMismatch);
void set_to_default_member() raises(TypeMismatch);
void set_to_no_active_member() raises(TypeMismatch);
boolean has_no_active_member();
CORBA::TCKind discriminator_kind();
DynAny member() raises(InvalidValue);
FieldName member_name() raises(InvalidValue);
CORBA::TCKind member_kind() raises(InvalidValue);

CORBA V2.3 DynAny API June 1999

typedef sequence<any> AnySeq;
typedef sequence<DynAny> DynAnySeq;

interface DynSequence : DynAny {

unsigned long get_length();

void set_length(in unsigned long len) raises(InvalidValue);

AnySeq get_elements();

void set_elements(in AnySeq value)
raises(TypeMismatch, InvalidValue);

DynAnySeq get_elements_as_dyn_any();

void set_elements_as_dyn_any(in DynAnySeq value)
raises(TypeMismatch, InvalidValue);

k

interface DynArray : DynAny {
AnySeq get_elements();
void set_elements(in AnySeq value)
raises(TypeMismatch, InvalidValue);
DynAnySeq get_elements_as_dyn_any();
void set_elements_as_dyn_any(in DynAnySeq value)
raises(TypeMismatch, InvalidValue);

k

interface DynValue : DynAny {

FieldName current_member_name()
raises(TypeMismatch, InvalidValue);

CORBA::TCKind current_member_kind()
raises(TypeMismatch, InvalidValue);

NameValuePairSeq get_members();

void set_members(in NameValuePairSeq value)
raises(TypeMismatch, InvalidValue);

NameDynAnyPairSeq get_members_as_dyn_any();

void set_members_as_dyn_any(in NameDynAnyPairSeq value)
raises(TypeMismatch, InvalidValue);

k

interface DynAnyFactory {
exception InconsistentTypeCode {};
DynAny create_dyn_any(in any value)
raises(InconsistentTypeCode);
DynAny
create_dyn_any_from_type_code(in CORBA:: TypeCode type)
raises(InconsistentTypeCode);

I3
}; // module DynamicAny
#endif // _DYNAMIC_ANY_IDL_

CORBA V2.3 DynAny AP June 1999 9-7

9.2.1 Locality and usage constraints

DynAny andDynAnyFactory objects are intended to be local to the process in which
they are created and used. This means that referenBgsmAmy and

DynAnyFactory objects cannot be exported to other processes, or externalized with
ORB::0object_to_string . If any attempt is made to do so, the offending operation will
raise aMARSHAL system exception.

Since their interfaces are specified in IynAny objects export operations defined
in the standar€€ORBA::Object interface. However, any attempt to invoke operations
exported through th®bject interface may raise the standd@® IMPLEMENT
exception.

An attempt to use BynAny object with the DIl may raise tiéO_IMPLEMENT
exception.

9.2.2 Creating a DynAny object

A DynAny object can be created as a result of:
® invoking an operation on an existifllynAny object

® invoking an operation on BynAnyFactory object

A constructedDynAny object supports operations that enable the creation of new
DynAny objects encapsulating access to the value of some constiyemny
objects also support tteopy operation for creating ne®ynAny objects.

In addition,DynAny objects can be created by invoking operations on the
DynAnyFactory object. A reference to tHeynAnyFactory object is obtained by
calling CORBA::ORB::resolve_initial_references with theidentifier parameter
set to“DynAnyFactory”

interface DynAnyFactory {
exception InconsistentTypeCode {};
DynAny create_dyn_any(in any value)
raises(InconsistentTypeCode);
DynAny create_dyn_any from_type_ code(in CORBA:: TypeCode type)
raises(InconsistentTypeCode);

k

The create_dyn_any operation creates a nddynAny object from arany value. A
copy of theTypeCode associated with thany value is assigned to the resulting
DynAny object. The value associated with hgnAny object is a copy of the value

in the original any. Thereate_dyn_any operation sets the current position of the
createdDynAny to zero if the passed value has components; otherwise, the current
position is set te-1. The operation raisdaconsistentTypeCode if value has a
TypeCode with aTCKind of tk_Principal , tk_native , ortk_abstract_interface .

CORBA V2.3 DynAny API June 1999

The create_dyn_any from_type _code operation creates BynAny from a
TypeCode . Depending on th&ypeCode, the created object may be of type
DynAny, or one of its derived types, suchgnStruct . The returned reference can
be narrowed to the derived type.

In all cases, ®ynAny constructed from @ypeCode has an initial default value. The
default values of basic types are:

®* FALSE for Boolean

® zero for numeric types

® zero for typesoctet, char, andwchar

* the empty string fostring andwstring

® nil for object references

® a type code with FCKind value oftk_null for type codes

¢ for any values, arany containing a type code with&CKind value oftk_null
type and no value

For complex types, creation of the corresponddygpAny assigns a default value as
follows:

®* For DynSequence , the operation sets the current position-1oand creates an
empty sequence.

®* For DynEnum , the operation sets the current position-1oand sets the value of
the enumerator to the first enumerator value indicated by\theCode .

* For DynFixed , operations set the current positiontband sets the value zero.

® For DynStruct , the operation sets the current position-1ofor empty exceptions
and to zero for all othefypeCode s. The members (if any) are (recursively)
initialized to their default values.

* For DynArray , the operation sets the current position to zero and (recursively)
initializes elements to their default value.

® For DynUnion , the operation sets the current position to zero. The discriminator
value is set to a value consistent with the first named member of the union. That
member is activated and (recursively) initialized to its default value.

® For DynValue, the members are initialized as @ynStruct .

Dynamic interpretation of aany usually involves creating RynAny object using
DynAnyFactory::.create_dyn_any as the first step. Depending on the type of the
any, the resultinddynAny object reference can be narrowed tDymFixed ,
DynStruct , DynSequence , DynArray , DynUnion , DynEnum , or DynValue

object reference.

Dynamic creation of aany involves creating ®ynAny object using
DynAnyFactory:.create_dyn_any from_type code , passing thdypeCode
associated with the value to be created. The returned reference is narrowed to one of

CORBA V2.3 DynAny API June 1999 9-9

the complex types, such BynStruct , if appropriate. Then, the value can be
initialized by means of invoking operations on the resulting object. Finallyptlzay
operation can be invoked to createaany value from the constructddynAny .

9.2.3 The DynAny interface

The following operations can be applied t®@nAny object:

® Obtaining theTypeCode associated with thBynAny object

® Generating amny value from theDynAny object

®* Comparing twoDynAny objects for equality

® Destroying theDynAny object

® Creating aDynAny object as a copy of theynAny object

® Inserting/getting a value of some basic type into/fromDiirAny object
® |[terating through the components oDgnAny

® |nitializing a DynAny object from anotheDynAny object

® |nitializing aDynAny object from arany value

9.2.3.1 Obtaining the TypeCode associated with a DynAny object

CORBA:: TypeCode type();

A DynAny obiject is created with @ypeCode value assigned to it. This/peCode
value determines the type of the value handled througbyhAny object. Thetype
operation returns th&ypeCode associated with BynAny object.

Note that thelypeCode associated with BynAny object is initialized at the time the
DynAny is created and cannot be changed during lifetime oDgh®Any object.

9.2.3.2 Initializing a DynAny object from another DynAny object

void assign(in DynAny dyn_any) raises(TypeMismatch);

The assign operation initializes the value associated witdyaAny object with the
value associated with anothBynAny object.

If the type of the passddynAny is not equivalent to the type of targ@ynAny, the
operation raiseSypeMismatch. The current position of the targeynAny is set to
zero for values that have components andltdor values that do not have
components.

9-10 CORBA V2.3 DynAny API June 1999

9.2.3.3 Initializing a DynAny object from an any value

void from_any(in any value) raises(TypeMismatch, InvalidValue);

Thefrom_any operation initializes the value associated witbyaAny object with
the value contained in amy.

If the type of the passefiny is not equivalent to the type of tardgynAny, the
operation raise$ypeMismatch. If the passedny does not contain a legal value (such
as a null string), the operation raidasalidValue. The current position of the target
DynAny is set to zero for values that have components anti for values that do not
have components.

9.2.3.4 Generating an any value from a DynAny object

any to_any();

Theto_any operation creates amny value from aDynAny object. A copy of the
TypeCode associated with thBynAny object is assigned to the resultiagy. The
value associated with tH@ynAny object is copied into thany.

9.2.3.5 Comparing DynAny values

boolean equal(in DynAny dyn_any);

Theequal operation compares twidynAny values for equality and returns true of the
DynAny s are equal, false otherwise. TBgnAny values are equal if their
TypeCodes are equivalent and, recursively, all componeghAnys have equal
values. The current position of the tdgynAny s being compared has no effect on the
result ofequal .

9.2.3.6 Destroying a DynAny object

void destroy();

The destroy operation destroys RynAny object. This operation frees any resources
used to represent the data value associated wynany object.destroy must be
invoked on references obtained from one of the creation operations Q@RBe
interface or on a reference returnedynAny::copy to avoid resource leaks.
Invoking destroy on componenbDynAny objects (for example, on objects returned by
the current_component operation) does nothing.

Destruction of &DynAny object implies destruction of dllynAny objects obtained
from it. That is, references to components of a destr@®yethny become invalid;
invocations on such references ra®BJECT_NOT_EXIST.

It is possible to manipulate a component d@ymAny beyond the life time of the
DynAny from which the component was obtained by making a copy of the component
with thecopy operation before destroying tibyynAny from which the component

was obtained.

CORBA V2.3 DynAny APl June 1999 9-11

9-12

9.2.3.7 Creating a copy of a DynAny object

DynAny copy();

The copy operation creates a nddynAny object whose value is a deep copy of the
DynAny on which it is invoked. The operation is polymorphic, that is, invoking it on
one of the types derived froBynAny, such aDynStruct , creates the derived type
but returns its reference as tbgnAny base type.

9.2.3.8 Accessing a value of some basic type in a DynAny object

The insert and get operations enable insertion/extraction of basic data type values
into/from aDynAny object.

Both bounded and unbounded strings are inserted ussegt_string and
insert_wstring . These operations raise thwalidValue exception if the string
inserted is longer than the bound of a bounded string.

Calling an insert or get operation obgnAny that has components but has a current
position of-1 raisesinvalidValue .

Get operations raiseypeMismatch if the accessed component in hgnAny is of a
type that is not equivalent to the requested type. (Notegitastring and
get_wstring are used for both unbounded and bounded strings.)

A type is consistent for inserting or extracting a value iTitpeCode is equivalent to
the TypeCode contained in th®ynAny or, if theDynAny has components, is
equivalent to thdypeCode of theDynAny at the current position.

Theget_dyn_any andinsert_dyn_any operations are provided to deal wihy
values that contain anotheny .

Calling an insert or get operation leaves the current position unchanged.

These operations are necessary to handle Bggidny objects but are also helpful to
handle constructeBynAny objects. Inserting a basic data type value into a constructed
DynAny object implies initializing the current component of the constructed data value
associated with thBynAny object. For example, invokingsert_boolean on a
DynStruct implies inserting a boolean data value at the current position of the
associated struct data valuedifn_construct points to a constructddynAny

object, then:

result = dyn_construct->get_boolean();

has the same effect as:

DynamicAny::DynAny_var temp =
dyn_construct->current_component();
result = temp->get_boolean();

Calling an insert or get operation orDgnAny whose current component itself has
components raiseB/peMismatch.

CORBA V2.3 DynAny API June 1999

9

9.2.3.9

In addition, availability of these operations enable the traversalys associated with
sequences of basic data types without the need to genddgteday object for each
element in the sequence.

Iterating through components of a DynAny

The DynAny interface allows a client to iterate through the components of the values
pointed to byDynStruct , DynSequence , DynArray , DynUnion , DynAny , and
DynValue objects.

As mentioned previously, BynAny object may be seen as an ordered collection of
components, together with a current position.

boolean seek(in long index);

The seek operation sets the current positioniridex . The current position is indexed

0 to n-1, that is, index zero corresponds to the first component. The operation returns
true if the resulting current position indicates a component obym&ny and false if

index indicates a position that does not correspond to a component.

Calling seek with a negative index is legal. It sets the current positiofiltto indicate

no component and returns false. Passing a non-negative index valuayfoAmy that

does not have a component at the corresponding position sets the current position to
1 and returns false.

void rewind();

Therewind operation is equivalent to callirmpek(0);

boolean next();

Thenext operation advances the current position to the next component. The operation
returns true while the resulting current position indicates a component, false otherwise.
A false return value leaves the current positiorlatinvokingnext on aDynAny

without components leaves the current positionrlatind returns false.

unsigned long component_count();

The component_count operation returns the number of components DiaAny .

For aDynAny without components, it returns zero. The operation only counts the
components at the top level. For examplesafmponent_count is invoked on a
DynStruct with a single member, the return value is 1, irrespective of the type of the
member.

For sequences, the operation returns the current number of elements. For structures,
exceptions, and valuetypes, the operation returns the number of members. For arrays,
the operation returns the number of elements. For unions, the operation returns 2 if the
discriminator indicates that a named member is active; otherwise, it returns 1. For
DynFixed andDynEnum , the operation returns zero.

CORBA V2.3 DynAny APl June 1999 9-13

DynAny current_component() raises(TypeMismatch);

The current_component operation returns thBynAny for the component at the
current position. It does not advance the current position, so repeated calls to
current_component without an intervening call teewind , next, orseek return the
same component.

The returnedynAny object reference can be used to get/set the value of the current
component. If the current component represents a complex type, the returned reference
can be narrowed based on fhgeCode to get the interface corresponding to the to

the complex type.

Calling current_component on aDynAny that cannot have components, such as a
DynEnum or an empty exception, rais&gpeMismatch. Calling

current_component on aDynAny whose current position isl returns a nil
reference.

The iteration operations, together withrrent_component , can be used to
dynamically compose aany value. After creating a dynamic any, such as a
DynStruct , current_component andnext can be used to initialize all the
components of the value. Once the dynamic value is completely initiatzeshy
creates the correspondiagy value.

9.2.4 The DynFixed interface

DynFixed objects are associated with values of the fDkd type.

interface DynFixed : DynAny {
string get_value();
boolean set_value(in string val)
raises (TypeMismatch, InvalidValue);

k

Because IDL does not have a generic type that can represent fixed types with arbitrary
number of digits and arbitrary scale, the operations use thestiiblg type.

The get_value operation returns the value oDgnFixed .

Theset_value operation sets the value of tbgnFixed . Theval string must contain
afixed string constant in the same format as used for IDL fixed-point literals.
However, the trailingl or D is optional. Ifval contains a value whose scale exceeds
that of theDynFixed or is not initialized, the operation raisesalidValue. The return
value is true ifval can be represented as fgnFixed without loss of precision. If
val has more fractional digits than can be represented iDyh&ixed , fractional
digits are truncated and the return value is falseallfdoes not contain a valid fixed-
point literal or contains extraneous characters other than leading or trailing white
space, the operation raisggpeMismatch.

9.2.5 The DynEnum interface

DynEnum objects are associated with enumerated values.

9-14 CORBA V2.3 DynAny API June 1999

interface DynEnum : DynAny {
string get_as_string();
void set_as_string(in string value) raises(InvalidValue);
unsigned long get_as_ulong();
void set_as_ulong(in unsigned long value) raises(InvalidValue);

h
Theget_as_string operation returns the value of tBgnEnum as an IDL identifier.

Theset_as_string operation sets the value of tBgnEnum to the enumerated value
whose IDL identifier is passed in thvalue parameter. Ialue contains a string that

is not a valid IDL identifier for the corresponding enumerated type, the operation raises
InvalidValue.

Theget_as_ulong operation returns the value of tbynEnum as the enumerated
value’s ordinal value. Enumerators have ordinal values G-19 as they appear from
left to right in the corresponding IDL definition.

The set_as_ulong operation sets the value of tBgnEnum as the enumerated
value’s ordinal value. IValue contains a value that is outside the range of ordinal
values for the corresponding enumerated type, the operation iaraéidValue.

The current position of BynEnum is always-1.

9.2.6 The DynStruct interface

DynStruct objects are associated with struct values and exception values.
typedef string FieldName;

struct NameValuePair {
FieldName id;
any value;

h

typedef sequence<NameValuePair> NameValuePairSeq;

struct NameDynAnyPair {
FieldName id;
DynAny value;
h
typedef sequence<NameDynAnyPair> NameDynAnyPairSeq;

CORBAV2.3 DynAnyAPl June 1999 9-15

9-16

interface DynStruct : DynAny {

FieldName current_member_name()
raises(TypeMismatch, InvalidValue);

CORBA::TCKind current_member_kind()
raises(TypeMismatch, InvalidValue);

NameValuePairSeq get_members();

void set_members(in NameValuePairSeq value)
raises(TypeMismatch, InvalidValue);

NameDynAnyPairSeq get_members_as_dyn_any();

void set_members_as_dyn_any(in NameDynAnyPairSeq value)
raises(TypeMismatch, InvalidValue);

FieldName current_member_name()
raises(TypeMismatch, InvalidValue);

The current_member_name operation returns the name of the member at the
current position. If th®ynStruct represents an empty exception, the operation raises
TypeMismatch. If the current position does not indicate a member, the operation raises
InvalidValue.

This operation may return an empty string sinceTygeCode of the value being
manipulated may not contain the names of members.

CORBA::TCKind current_member_kind()
raises(TypeMismatch, InvalidValue);

current._member_kind returns theTCKind associated with the member at the

current position. If thé®ynStruct represents an empty exception, the operation raises
TypeMismatch. If the current position does not indicate a member, the operation raises
InvalidValue.

NameValuePairSeq get_members();

The get_members operation returns a sequence of name/value pairs describing the
name and the value of each member in the struct associated BythSaruct object.

The sequence contains members in the same order as the declaration order of member
as indicated by thBynStruct 's TypeCode . The current position is not affected. The
member names in the returned sequence will be empty stringsDiyti&ruct ’s

TypeCode does not contain member names.

void set_members(in NameValuePairSeq value)
raises(TypeMismatch, InvalidValue);

The set_members operation initializes the struct data value associated with a
DynStruct object from a sequence of name value pairs. The operation sets the current
position to zero if the passed sequences has non-zero length; otherwise, if an empty
sequence is passed, the current position is s€t.to

Members must appear in theameValuePairSeq in the order in which they appear in
the IDL specification of the struct. If one or more sequence elements have a type that
is not equivalent to th&ypeCode of the corresponding member, the operation raises

CORBA V2.3 DynAny API June 1999

9

TypeMismatch. If the passed sequence has a humber of elements that disagrees with
the number of members as indicated by DlyaStruct 's TypeCode , the operation
raiseslnvalidValue.

If member names are supplied in the passed sequence, they must either match the
corresponding member name in DgnStruct 's TypeCode or must be empty strings,
otherwise, the operation raisggpeMismatch. Members must be supplied in the same
order as indicated by tHaynStruct 's TypeCode . (The operation makes no attempt
to assignh member values based on member names.)

Theget members_as_dyn_any andset_members_as_dyn_any operations have
the same semantics as th&mmy counterparts, but accept and return values of type
DynAny instead ofAny.

DynStruct objects can also be used for handling exception values. In that case,
members of the exceptions are handled in the same way as members of a struct.

9.2.7 The DynUnion interface

DynUnion objects are associated with unions.

interface DynUnion : DynAny {

DynAny get_discriminator();

void set_discriminator(in DynAny d)
raises(TypeMismatch);

void set_to_default_member()
raises(TypeMismatch);

void set_to_no_active_member()
raises(TypeMismatch);

boolean has_no_active_member()
raises(InvalidVvalue);

CORBA::TCKind discriminator_kind();

DynAny member()
raises(InvalidVvalue);

FieldName member_name()
raises(InvalidVvalue);

CORBA:: TCKind member_kind()
raises(InvalidVvalue);

h
The DynUnion interface allows for the insertion/extraction of an OMG IDL union

type into/from aDynUnion object.

A union can have only two valid current positions: zero, which denotes the
discriminator, and one, which denotes the active membercdimponent_count
value for a union depends on the current discriminator: it is 2 for a union whose
discriminator indicates a named member, and 1 otherwise.

CORBAV2.3 DynAnyAPl June 1999 9-17

9-18

DynAny get_discriminator()
raises(InvalidVvalue);

The get_discriminator operation returns the current discriminator value of the
DynUnion .

void set_discriminator(in DynAny d)
raises(TypeMismatch);

The set_discriminator operation sets the discriminator of thgnUnion to the
specified value. If th8ypeCode of thed parameter is not equivalent to the
TypeCode of the union’s discriminator, the operation rai3gpeMismatch.

Setting the discriminator to a value that is consistent with the currently active union
member does not affect the currently active member. Setting the discriminator to a
value that is inconsistent with the currently active member deactivates the member and
activates the member that is consistent with the new discriminator value (if there is a
member for that value) by initializing the member to its default value.

Setting the discriminator of a union sets the current position to O if the discriminator
value indicates a non-existent union memies(no_active_member returns true

in this case). Otherwise, if the discriminator value indicates a named union member,
the current position is set to has_no_active_member returns false and
component_count returns 2 in this case).

void set_to_default_member()
raises(TypeMismatch);

The set_to_default_member operation sets the discriminator to a value that is
consistent with the value of thiefault case of a union; it sets the current position to
zero and causeomponent_count to return 2. Callingset_to_default_member

on a union that does not have an explilgfault case raise3ypeMismatch.

void set_to_no_active_member()
raises(TypeMismatch);

Theset _to_no_active_member operation sets the discriminator to a value that does
not correspond to any of the union’s case labels; it sets the current position to zero and
causesomponent_count to return 1. Callinggset_to_no_active_member on a

union that has an explicitefault case or on a union that uses the entire range of
discriminator values for explicitase labels raise§ypeMismatch.

boolean has_no_active_member();

Thehas_no_active_member operation returns true if the union has no active
member (that is, the union’s value consists solely of its discriminator because the
discriminator has a value that is not listed as an exmlasé label). Calling this
operation on a union that haglefault case returns false. Calling this operation on a
union that uses the entire range of discriminator values for expdisd labels returns
false.

CORBA V2.3 DynAny API June 1999

CORBA::TCKind discriminator_kind();

Thediscriminator_kind operation returns th€CKind value of the discriminator’s
TypeCode .

CORBA::TCKind member_kind()
raises(InvalidVvalue);

The member_kind operation returns th€CKind value of the currently active
member’sTypeCode . Calling this operation on a union that does not have a currently
active member raisdavalidValue.

DynAny member()
raises(Invalidvalue);

The member operation returns the currently active member. If the union has no active
member, the operation raiskwalidValue. Note that the returned reference remains
valid only for as long as the currently active member does not change. Using the
returned reference beyond the life time of the currently active member raises
OBJECT_NOT_EXIST.

FieldName member_name()
raises(InvalidVvalue);

Themember_name operation returns the name of the currently active member. If the
union’s TypeCode does not contain a member name for the currently active member,
the operation returns an empty string. Callmgmber_name on a union without an
active member raisdavalidValue.

CORBA:: TCKind member_kind()
raises(InvalidVvalue);

The member_kind operation returns th€CKind value of theTypeCode of the
currently active member. If the union has no active member, the operation raises
InvalidValue.

9.2.8 The DynSequence interface

DynSequence objects are associated with sequences.

typedef sequence<any> AnySeq;
typedef sequence<DynAny> DynAnySeq;

interface DynSequence : DynAny {
unsigned long get_length();
void set_length(in unsigned long len)
raises(InvalidVvalue);
AnySeq get_elements();

CORBA V2.3 DynAny APl June 1999 9-19

9-20

void set_elements(in AnySeq value)
raises(TypeMismatch, InvalidValue);

DynAnySeq get_elements_as_dyn_any();

void set_elements_as_dyn_any(in DynAnySeq value)
raises(TypeMismatch, InvalidValue);

unsigned long get_length();

The get_length operation returns the current length of the sequence.

void set_length(in unsigned long len)
raises(TypeMismatch, InvalidValue);

The set_length operation sets the length of the sequence. Increasing the length of a
sequence adds new elements at the tail without affecting the values of already existing
elements. Newly added elements are default-initialized.

Increasing the length of a sequence sets the current position to the first newly-added
element if the previous current position weak Otherwise, if the previous current
position was not1, the current position is not affected.

Increasing the length of a bounded sequence to a value larger than the bound raises
InvalidValue.

Decreasing the length of a sequence removes elements from the tail without affecting
the value of those elements that remain. The new current position after decreasing the
length of a sequence is determined as follows:

* |f the length of the sequence is set to zero, the current position is-skt to
* |f the current position is'1 before decreasing the length, it remainsiat

® |f the current position indicates a valid element and that element is not removed
when the length is decreased, the current position remains unaffected.

* |f the current position indicates a valid element and that element is removed, the
current position is set tel.

DynAnySeq get_elements();

The get_elements operation returns the elements of the sequence.

void set_elements(in AnySeq value)
raises(TypeMismatch, InvalidValue);

The set_elements operation sets the elements of a sequence. The length of the
DynSequence is set to the length ofalue . The current position is set to zero if
value has non-zero length and 44 if value is a zero-length sequence.

If value contains one or more elements whoggeCode is not equivalent to the
elementTypeCode of theDynSequence , the operation rais€g/peMismatch. If the
length of value exceeds the bound of a bounded sequence, the operation raises
InvalidValue.

CORBA V2.3 DynAny API June 1999

9

Theget_elements_as_dyn_any andset_elements_as_dyn_any operations have
the same semantics, but accept and return values oDiyp&ny instead ofAny.

9.2.9 The DynArray interface

DynArray objects are associated with arrays.

interface DynArray : DynAny {
AnySeq get_elements();
void set_elements(in AnySeq value)
raises(TypeMismatch, InvalidValue);
DynAnySeq get_elements_as_dyn_any();
void set_elements_as_dyn_any(in DynAnySeq value)
raises(TypeMismatch, InvalidValue);

DynAnySeq get_elements();

The get_elements operation returns the elements of thynArray .

void set_elements(in DynAnySeq value)
raises(TypeMismatch, InvalidValue);

Theset_elements operation sets theynArray to contain the passed elements. If the

sequence does not contain the same number of elements as the array dimension, the
operation raiselmvalidValue. If one or more elements have a type that is inconsistent

with the DynArray 's TypeCode , the operation raiseB/peMismatch.

Theget_elements_as_dyn_any andset_elements_as_dyn_any operations have
the same semantics as th&my counterparts, but accept and return values of type
DynAny instead ofAny.

Note that the dimension of the array is contained inf{fpeCode which is accessible
through thetype attribute. It can also be obtained by calling teenponent_count
operation.

9.2.10 The DynValue interface

DynValue objects are associated with value types.

interface DynValue : DynAny {
FieldName current_member_name()
raises(TypeMismatch, InvalidValue);
CORBA::TCKind current_member_kind()
raises(TypeMismatch, InvalidValue);

CORBAV2.3 DynAnyAPl June 1999 9-21

NameValuePairSeq get_members();

void set_members(in NameValuePairSeq value)
raises(TypeMismatch, InvalidValue);

NameDynAnyPairSeq get_members_as_dyn_any();

void set_members_as_dyn_any(in NameDynAnyPairSeq value)
raises(TypeMismatch, InvalidValue);

I3

Operations on th®ynValue interface have semantics as faynStruct .
9.3 Usage in C++ Language

9.3.1 Dynamic creation of CORBA::Any values

9.3.1.1 Creating an any which contains a struct

Consider the following IDL definition:

/I IDL

struct MyStruct {
long memberl;
boolean member2;

I3

The following example illustrates howG@GORBA::Any value may be constructed on
the fly containing a value of typdyStruct :

/I C++
CORBA::ORB_varorb=..;;
DynamicAny::DynAnyFactory var dafact

= orb->resolve_initial_references(“DynAnyFactory”);
CORBA::StructMemberSeq mems(2);
CORBA::Any_var result;
CORBA::.Long valuel =99;
CORBA::Boolean value2 = 1;
mems.length(2);

mems|[0].name = CORBA::string_dup(“memberl”);
mems|[0].type = CORBA::TypeCode::_duplicate(CORBA::_tc_long);
mems[1].name = CORBA::string_dup(“member2”);

mems[1].type
= CORBA::TypeCode::_duplicate(CORBA::_tc_boolean);

CORBA::TypeCode_var new_tc = orb->create_struct_tc(
“|DL:MyStruct:1.0”,
“MyStruct”,
mems

9-22 CORBA V2.3 Usage in C++ Language June 1999

/I Construct the DynStruct object. Values for members are
/ the valuel and value2 variables

DynamicAny::DynAny_ptr dyn_any

= dafact->create_dyn_any(new_tc);
DynamicAny::DynStruct_ptr dyn_struct

= DynamicAny::DynStruct:;_narrow(dyn_any);
CORBA::release(dyn_any);
dyn_struct->insert_long(valuel);

dyn_struct->next();
dyn_struct->insert_boolean(value2);
result = dyn_struct->to_any();
dyn_struct->destroy();
CORBA::release(dyn_struct);

9.3.2 Dynamic interpretation of CORBA::Any values

9.3.2.1 Filtering of events

Suppose there is a CORBA object which receives events and prints all those events
which correspond to a data structure containing a member dalledient whose
value is true.

The following fragment of code corresponds to a method which determines if an event
should be printed or not. Note that the program allows several struct events to be
filtered with respect to some common member.

Il C++

CORBA::Boolean Tester::eval_filter(
DynamicAny::DynAnyFactory ptr dafact,
const CORBA::Any & event

CORBA::Boolean success = FALSE;
DynamicAny::DynAny_var;
try {
/I First, convert the event to a DynAny.
/I Then attempt to narrow it to a DynStruct.
/I The _narrow only returns a reference
/I if the event is a struct.

CORBA V2.3 Usage in C++ Language June 1999 9-23

dyn_var = dafact->create_dyn_any(event);
DynamicAny::DynStruct_var dyn_struct
= DynamicAny::DynStruct::_narrow(dyn_any);
if {CORBA::is_nil(dyn_struct)) {
CORBA::Boolean found = FALSE;
do {
CORBA::String_var member_name
= dyn_struct->current_member_name();
found = (strcmp(member_name, "is_urgent") == 0);
} while (found && dyn_struct->next());
if (found) {
/' We only create a DynAny object for the member
/I we were looking for:
DynamicAny::DynAny_var dyn_member
= dyn_struct->current_component();
success = dyn_member->get_boolean();

}
}
catch(...) {};
if /CORBA::is_nil(dyn_var))

dyn_var->destroy();
return success;

9-24 CORBA V2.3 Usage in C++ Language June 1999

The Interface Repository 10

The Interface Repository chapter has been updated based on CORE changes from
ptc/98-09-04 and the Object by Value documents (orbos/98-01-18 and ptc/98-07-06).

Contents

This chapter contains the following sections.

Section Title Page
“Overview” 10-1

“Scope of an Interface Repository” 10-2
“Implementation Dependencies” 10-4
“Basics” 10-6

“Interface Repository Interfaces” 10-9
“Repositorylds” 10-39
“TypeCodes” 10-48
“OMG IDL for Interface Repository” 10-56

10.1 Overview

The Interface Repository is the component of the ORB that provides persistent storage
of interface definitions—it manages and provides access to a collection of object
definitions specified in OMG IDL.

CORBAV2.3 June 1999 10-1

10

An ORB provides distributed access to a collection of objects using the objects’
publicly defined interfaces specified in OMG IDL. The Interface Repository provides
for the storage, distribution, and management of a collection of related objects’
interface definitions.

For an ORB to correctly process requests, it must have access to the definitions of the
objects it is handling. Object definitions can be made available to an ORB in one of
two forms:

1. By incorporating the information procedurally into stub routines (e.g., as code that
maps C language subroutines into communication protocols).

2. As objects accessed through the dynamically accessible Interface Repository (i.e.,
as interface objects accessed through OMG IDL-specified interfaces).

In particular, the ORB can use object definitions maintained in the Interface Repository
to interpret and handle the values provided in a request to:

« Provide type-checking of request signatures (whether the request was issued
through the DIl or through a stub).

e Assist in checking the correctness of interface inheritance graphs.

¢ Assist in providing interoperability between different ORB implementations.

As the interface to the object definitions maintained in an Interface Repository is
public, the information maintained in the Repository can also be used by clients and
services. For example, the Repository can be used to:

« Manage the installation and distribution of interface definitions.
* Provide components of a CASE environment (for example, an interface browser).
¢ Provide interface information to language bindings (such as a compiler).

* Provide components of end-user environments (for example, a menu bar
constructor).

The complete OMG IDL specification for the Interface Repository is in Section 10.8,
“OMG IDL for Interface Repository,” on page 10-56; however, fragments of the
specification are used throughout this chapter as necessary.

10.2 Scope of an Interface Repository

10-2

Interface definitions are maintained in the Interface Repository as a set of objects that
are accessible through a set of OMG IDL-specified interface definitions. An interface
definition contains a description of the operations it supports, including the types of the
parameters, exceptions it may raise, and context information it may use.

In addition, the interface repository stores constant values, which might be used in
other interface and value definitions or might simply be defined for programmer
convenience and it stores typecodes, which are values that describe a type in structural
terms.

CORBA V2.3 June 1999

10

The Interface Repository uses modules as a way to group interfaces and to navigate
through those groups by name. Modules can contain constants, typedefs, exceptions,
interface definitions, and other modules. Modules may, for example, correspond to the
organization of OMG IDL definitions. They may also be used to represent
organizations defined for administration or other purposes.

The Interface Repository consists of a seintdérface repository objecthat represent

the information in it. There are operations that operate on this apparent object
structure. It is an implementation’s choice whether these objects exist persistently or
are created when referenced in an operation on the repository. There are also
operations that extract information in an efficient form, obtaining a block of
information that describes a whole interface or a whole operation.

An ORB may have access to multiple Interface Repositories. This may occur because

« two ORBs have different requirements for the implementation of the Interface
Repository,

¢ an object implementation (such as an OODB) prefers to provide its own type
information, or

e it is desired to have different additional information stored in different repositories.

The use of typecodes and repository identifiers is intended to allow different
repositories to keep their information consistent.

As shown in Figure 10-1 on page 10-4, the same inteffaxeis installed in two

different repositories, one at SoftCo, Inc., which sells Doc objects, and one at
Customer, Inc., which buys Doc objects from SoftCo. SoftCo sets the repository id for
the Doc interface when it defines it. Customer might first install the interface in its
repository in a module where it could be tested before exposing it for general use.
Because it has the same repository id, even though the Doc interface is stored in a
different repository and is nested in a different module, it is known to be the same.

CORBAV2.3 Scope of an Interface Repository June 1999 10-3

10

Meanwhile at SoftCo, someone working on a new Doc interface has given it a new
repository id 456, which allows the ORBs to distinguish it from the current product
Doc interface.

SoftCo, Inc., Repository Customer, Inc., Repository
module softco { module testfirst {

interface Doc <id 123> { module softco {

void print(); interface Doc <id 123> {

5 \ void print():

h %
h
h

module newrelease {
interface Doc <id 456> {
void print();
I3
3

Figure 10-1 Using Repository IDs to establish correspondence between repositories

Not all interfaces will be visible in all repositories. For example, Customer employees
cannot see the new release of the Doc interface. However, widely used interfaces will
generally be visible in most repositories.

This Interface Repository specification defines operations for retrieving information
from the repository as well as creating definitions within it. There may be additional
ways to insert information into the repository (for example, compiling OMG IDL
definitions, copying objects from one repository to another).

A critical use of the interface repository information is for connecting ORBs together.
When an object is passed in a request from one ORB to another, it may be necessary tc
create a new object to represent the passed object in the receiving ORB. This may
require locating the interface information in an interface repository in the receiving
ORB. By getting the repository id from a repository in the sending ORB, it is possible
to look up the interface in a repository in the receiving ORB. To succeed, the interface
for that object must be installed in both repositories with the same repository id.

10.3 Implementation Dependencies

10-4

An implementation of an Interface Repository requires some form of persistent object
store. Normally the kind of persistent object store used determines how interface
definitions are distributed and/or replicated throughout a network domain. For
example, if an Interface Repository is implemented using a filing system to provide
object storage, there may be only a single copy of a set of interfaces maintained on a

CORBA V2.3 June 1999

10

single machine. Alternatively, if an OODB is used to provide object storage, multiple
copies of interface definitions may be maintained each of which is distributed across
several machines to provide both high-availability and load-balancing.

The kind of object store used may determine the scope of interface definitions provided
by an implementation of the Interface Repository. For example, it may determine
whether each user has a local copy of a set of interfaces or if there is one copy per
community of users. The object store may also determine whether or not all clients of
an interface set see exactly the same set at any given point in time or whether latency
in distributing copies of the set gives different users different views of the set at any
point in time.

An implementation of the Interface Repository is also dependent on the security
mechanism in use. The security mechanism (usually operating in conjunction with the
object store) determines the nature and granularity of access controls available to
constrain access to objects in the repository.

10.3.1 Managing Interface Repositories

Interface Repositories contain the information necessary to allow programs to
determine and manipulate the type information at run-time. Programs may attempt to
access the interface repository at any time by usingehenterface operation on

the object reference. Once information has been installed in the repository, programs,
stubs, and objects may depend on it. Updates to the repository must be done with care
to avoid disrupting the environment. A variety of techniques are available to help do
so.

A coherent repository is one whose contents can be expressed as a valid collection of
OMG IDL definitions. For example, all inherited interfaces exist, there are no duplicate
operation names or other name collisions, all parameters have known types, and so
forth. As information is added to the repository, it is possible that it may pass through
incoherent states. Media failures or communication errors might also cause it to appear
incoherent. In general, such problems cannot be completely eliminated.

Replication is one technique to increase the availability and performance of a shared
database. It is likely that the same interface information will be stored in multiple
repositories in a computing environment. Using repository IDs, the repositories can
establish the identity of the interfaces and other information across the repositories.

Multiple repositories might also be used to insulate production environments from
development activity. Developers might be permitted to make arbitrary updates to their
repositories, but administrators may control updates to widely used repositories. Some
repository implementations might permit sharing of information, for example, several
developers’ repositories may refer to parts of a shared repository. Other repository
implementations might instead copy the common information. In any case, the result
should be a repository facility that creates the impression of a single, coherent
repository.

The interface repository itself cannot make all repositories have coherent information,
and it may be possible to enter information that does not make sense. The repository
will report errors that it detects (e.g., defining two attributes with the same name) but

CORBAV2.3 Implementation Dependencies June 1999 10-5

10

10.4 Basics

might not report all errors, for example, adding an attribute to a base interface may or
may not detect a name conflict with a derived interface. Despite these limitations, the
expectation is that a combination of conventions, administrative controls, and tools that
add information to the repository will work to create a coherent view of the repository

information.

Transactions and concurrency control mechanisms defined by the Object Services may
be used by some repositories when updating the repository. Those services are
designed so that they can be used without changing the operations that update the
repository. For example, a repository that supports the Transaction Service would
inherit the Repository interface, which contains the update operations, as well as the
Transaction interface, which contains the transaction management operations. (For
more information about Object Services, including the Transaction and Concurrency
Control Services, refer t6ORBAservices: Common Object Service Specifica)ions

Often, rather than change the information, new versions will be created, allowing the
old version to continue to be valid. The new versions will have distinct repository IDs
and be completely different types as far as the repository and the ORBs are concerned.
The IR provides storage for version identifiers for named types, but does not specify
any additional versioning mechanism or semantics.

This section introduces some basic ideas that are important to understanding the
Interface Repository. Topics addressed in this section are:

« Names and ldentifiers
« Types and TypeCodes
¢ Interface Repository Objects

e Structure and Navigation of the Interface Repository

10.4.1 Names and Identifiers

10-6

Simple names are not necessarily unique within an Interface Repository; they are
always relative to an explicit or implicit module. In this context, interface, struct,
union, exception and value type definitions are considered implicit modules.

Scoped names uniquely identify modules, interfaces, value types, value members,
value boxes, constant, typedefs, exceptions, attributes, and operations in an Interface
Repository.

Repository identifiers globally identify modules, interfaces, value types, value
members, value boxes, constants, typedefs, exceptions, attributes, and operations. The
can be used to synchronize definitions across multiple ORBs and Repositories.

CORBA V2.3 June 1999

10

10.4.2 Types and TypeCodes

The Interface Repository stores information about types that are not interfaces in a data
value called a TypeCode. From the TypeCode alone it is possible to determine the
complete structure of a type. See Section 10.7, “TypeCodes,” on page 10-48 for more
information on the internal structure of TypeCodes.

10.4.3 Interface Repository Objects

Information about the entities that are managed in an Interface Repository is
maintained as a collection ofterface repository objectsf the following types:

« Repository : the top-level module for the repository name space; it contains
constants, typedefs, exceptions, interface or value type definitions, and modules.

* ModuleDef : a logical grouping of interfaces and value types; it contains constants,
typedefs, exceptions, interface or value type definitions, and other modules.

« InterfaceDef : an interface definition; it contains lists of constants, types,
exceptions, operations, and attributes.

* ValueDef: a value type definition which contains lists of constants, types,
exceptions, operations, attributes and members

¢ ValueBoxDef : the definition of a boxed value type.
« ValueMemberDef : the definition of a member of the value type.
¢ AttributeDef : the definition of an attribute of the interface or value type.

* OperationDef : the definition of an operation of the interface or value type; it
contains lists of parameters and exceptions raised by this operation.

« TypedefDef : base interface for definitions of named types that are not interfaces or
value types.

* ConstantDef : the definition of a named constant.

« ExceptionDef : the definition of an exception that can be raised by an operation.

The interface specifications for eartierface repository objedists the attributes
maintained by that object (see Section 10.5, “Interface Repository Interfaces,” on
page 10-9). Many of these attributes correspond directly to OMG IDL statements. An
implementation can choose to maintain additional attributes to facilitate managing the
Repository or to record additional (proprietary) information about an interface.
Implementations that extend the IR interfaces shall do so by deriving new interfaces,
not by modifying the standard interfaces.

The CORBAspecification defines a minimal set of operationsifiterface repository
objects Additional operations that an implementation of the Interface Repository may
provide could include operations that provide for the versioning of entities and for the
reverse compilation of specifications (i.e., the generation of a file containing an
object's OMG IDL specification).

CORBA V2.3 Basics June 1999 10-7

10

10-8

10.4.4 Structure and Navigation of the Interface Repository

The definitions in the Interface Repository are structured as a gaedhace
repository objectsThese objects are structured the same way definitions are
structured—some objects (definitions) “contain” other objects.

The containment relationships for timerface repository objectypes in the Interface
Repository are shown in Figure 10-2

Repository Each interface repository is represented
by a global root repository object.

ConstantDef The Repository IR object represents the constants,
TypedefDef typedefs, exceptions, interfaces, valuetypes,
ExceptionDef value boxes and modules that are defined outside
InterfaceDef the scope of a module.
ValueDef
ValueBoxDef
ModuleDef
ConstantDef The Module IR object represents the constants,
TypedefDef typedefs, exceptions, interfaces, valuetypes,
ExceptionDef value boxes and other modules defined within
ValueBoxDef the scope of the module.
ModuleDef
InterfaceDef

An Interface IR object represents constants,

ConstantDef typedefs, exceptions, attributes, and operations
TypedefDef defined within or inherited by the interface.
ExceptionDef
AttributeDef))
OperationDef Operation IR objects reference
exception objects.
ValueDef
ConstantDef A Valuetype IR object represents constants,

typedefs, exceptions, attributes, and operations
TypedefDef - i : - -
ExceptionDef defined within or inherited by the interface.

AttributeDef _ _
OperationDef Operation IR objects reference
ValueMemberDef exception objects.

Figure 10-2 Interface Repository Object Containment

There are three ways to locate an interface in the Interface Repository, by:
1. Obtaining arinterfaceDef object directly from the ORB.
2. Navigating through the module name space using a sequence of names.

3. Locating thelinterfaceDef object that corresponds to a particular repository
identifier.

CORBA V2.3 June 1999

10

Obtaining aninterfaceDef object directly is useful when an object is encountered
whose type was not known at compile time. By usinggite interface operation on
the object reference, it is possible to retrieve the Interface Repository information
about the object. That information could then be used to perform operations on the
object.

Navigating the module name space is useful when information about a particular
named interface is desired. Starting at the root module of the repository, it is possible
to obtain entries by name.

Locating thelnterfaceDef object by ID is useful when looking for an entry in one
repository that corresponds to another. A repository identifier must be globally unique.
By using the same identifier in two repositories, it is possible to obtain the interface
identifier for an interface in one repository, and then obtain information about that
interface from another repository that may be closer or contain additional information
about the interface.

| Analogous operations are provided for manipulating value types.

10.5 Interface Repository Interfaces

Several interfaces are usedtsse interface$or objects in the IR. Thedmase
interfaces are not instantiable.

A common set of operations is used to locate objects within the Interface Repository.
These operations are defined in the interfdB&3bject, Container , andContained
described below. All IR objects inherit from tHRObject interface, which provides an
operation for identifying the actual type of the object. Objects that are containers
inherit navigation operations from ti@ontainer interface. Objects that are contained

by other objects inherit navigation operations from @oatained interface.

The IDLType interface is inherited by all IR objects that represent IDL types,
including interfaces, typedefs, and anonymous types.TypedefDef interface is
inherited by all named non-interface types.

| The base interface$RObject , Contained , Container , IDLType, andTypedefDef
are not instantiable.

All string data in the Interface Repository are encoded as defined by the ISO 8859-1
coded character set.

Interface Repository operations indicate error conditions using the system exceptions
BAD_PARAM andBAD_INV_ORDER with specific minor codes. Which specific
operations raise these exceptions are documented in the description of the operations.
For a description of how these minor codes are encoded in the ex_body of standard

CORBA V2.3 Interface Repository Interfaces June 1999 10-9

10

10-10

exceptions see Section 3.17, “Standard Exceptions,” on page 3-51 and Section 3.17.2,
“Standard Minor Exception Codes,” on page 3-58. The exceptions and minor codes
that are used by Interface Repository interfaces are as follows:

Table 10-1 Standard Exceptions used by the Interface Repository Operations

Exception

Minor Code | Explanation

BAD_PARAM

RID is already defined in IFR

Name already used in the context in IFR

Target is not a valid container

Name clash in inherited context

BAD_INV_ORDER

RO bW N

Dependency exists in IFR preventing destruction of this
object

2 Attempt to destroy indestructible objects in IFR

10.5.1 Supporting Type Definitions

Several types are used throughout the IR interface definitions.

module CORBA {

typedef string Identifier;
typedef string ScopedName;
typedef string Repositoryld;

enum DefinitionKind {
dk_none, dk_all,
dk_Attribute, dk_Constant, dk_Exception, dk_Interface,
dk_Module, dk_Operation, dk_Typedef,
dk_Alias, dk_Struct, dk_Union, dk_Enum,
dk_Primitive, dk_String, dk_Sequence, dk_Array,
dk_Repository,
dk_Wstring, dk_Fixed,
dk Value, dk_ValueBox, dk_ValueMember,
dk_Native

h

h

Identifier s are the simple names that identify modules, interfaces, value types, value
members, value boxes, constants, typedefs, exceptions, attributes, operations and native
types. They correspond exactly to OMG IDL identifiers. l8antifier is not

necessarily unique within an entire Interface Repository; it is unique only within a
particularRepository, ModuleDef , InterfaceDef , ValueDef or OperationDef .

A ScopedName is a hame made up of one or mddentifier s separated by the
characters “::". They correspond to OMG IDL scoped names.

CORBA V2.3 June 1999

10

An absoluteScopedName is one that begins with “::” and unambiguously identifies
a definition in aRepository . An absoluteScopedName in a Repository

corresponds to global namein an OMG IDL file. Arelative ScopedName does not
begin with “:” and must be resolved relative to some context.

A Repositoryld is an identifier used to uniquely and globally identify a module,
interface, value type, value member, value box, native type, constant, typedef,
exception, attribute or operation. Repositoryld s are defined as strings, they can be
manipulated (e.g., copied and compared) using a language binding’s string
manipulation routines.

A DefinitionKind identifies the type of an IR object.

10.5.2 IRObject

The base interfacéRObject represents the most generic interface from which all
other Interface Repository interfaces are derived, even the Repository itself.

module CORBA {
interface IRObject {

I read interface
readonly attribute DefinitionKind def_kind,;

/I write interface
void destroy ();

10.5.2.1 Read Interface

Thedef_kind type_name attribute identifies the type of the definition.

10.5.2.2 Write Interface

Thedestroy operation causes the object to cease to exist. If the obje€dstainer ,
destroy is applied to all its contents. If the object contain$lidType attribute for an
anonymous type, thaDLType is destroyed. If the object is currently contained in
some other object, it is removed.déstroy is invoked on &Repository or on a
PrimitiveDef then theBAD_INV_ORDER exception is raised with minor value 2.
Implementations may vary in their handling of references to an object that is being
destroyed, but the Repository should not be left in an incoherent state. Attempt to
destroy an object that would leave the repository in an incoherent state shall cause
BAD_INV_ORDER exception to be raised with the minor code 1.

CORBA V2.3 Interface Repository Interfaces June 1999 10-11

10

10.5.3 Contained

The base interfac&Contained is inherited by all Interface Repository interfaces that
are contained by other IR objects. All objects within the Interface Repository, except
the root objectRepository) and definitions of anonymouéirayDef , StringDef,
WstringDef, FixedDef and SequenceDef), and primitive types are contained by
other objects.

module CORBA {
typedef string VersionSpec;

interface Contained : IRObject {
/I read/write interface

attribute Repositoryld id;
attribute Identifier name;
attribute VersionSpec version;

/I read interface

readonly attribute Container
readonly attribute ScopedName
readonly attribute Repository

defined_in;
absolute_name;
containing_repository;

struct Description {
DefinitionKind kind;
any value;

h
Description describe ();

/I write interface

void move (
in Container new_container,
in Identifier new_name,

in VersionSpec new_version

);

10.5.3.1 Read Interface

An object that is contained by another object haglaattribute that identifies it
globally, and aname attribute that identifies it uniquely within the enclosing
Container object. It also has eersion attribute that distinguishes it from other
versioned objects with the samame. IRs are not required to support simultaneous
containment of multiple versions of the same named object. Supporting multiple
versions will require mechanisms and policy not specified in this document.

10-12 CORBA V2.3 June 1999

10

Contained objects also have @efined_in attribute that identifies th€ontainer

within which they are defined. Objects can be contained either because they are
defined within the containing object (for example, an interface is defined within a
module) or because they are inherited by the containing object (for example, an
operation may be contained by an interface because the interface inherits the operation
from another interface). If an object is contained through inheritanceefimed_in

attribute identifies thénterfaceDef or ValueDef from which the object is inherited.

The absolute_name attribute is an absoluteécopedName that identifies a
Contained object uniquely within its enclosingepository . If this object’s
defined_in attribute references Repository , theabsolute_name is formed by
concatenating the string “::” and this objeatame attribute. Otherwise, the
absolute_name is formed by concatenating tlabsolute_name attribute of the
object referenced by this objectlefined_in attribute, the string:¥”, and this object’s
name attribute.

The containing_repository attribute identifies th&epository that is eventually
reached by recursively following the objeatlsfined_in attribute.

The within operation returns the list of objects that contain the object. If the object is
an interface or module it can be contained only by the object that defines it. Other
objects can be contained by the objects that define them and by the objects that inherit
them.

Thedescribe operation returns a structure containing information about the interface.
The description structure associated with each interface is provided below with the
interface’s definition. The kind of definition described by name of the structure
returned is provided with the returned structure. Kihd field of the returned
Description struct shall give th®efinitionKind for the most derived type of the
object. For example, if thédescribe operation is invoked on an attribute object, the
kind field containsdk_Attribute name field contains “AttributeDescription” and the
value field contains amny, which contains thdttributeDescription structure. The

kind field in this must containlk_attribute and not the kind of anlRObject from
which theattribute object is derived. For example returnidig all would be an error.

10.5.3.2 Write Interface

Setting thed attribute changes the global identity of this definitionBAD PARAM
exception is raised with minor code 2 if an object with the speddieattribute
already exists within this objectRepository .

Setting thename attribute changes the identity of this definition withinGentainer .

A BAD_PARAM exception is raised with minor code 1 if an object with the specified
name attribute already exists within this objec€ontainer . Theabsolute_name
attribute is also updated, along with any other attributes that reflect the name of the
object. If this object is &ontainer , theabsolute_name attribute of any objects it
contains are also updated.

The move operation atomically removes this object from its cur@omntainer , and
adds it to theContainer specified bynew_container must satisfy the following
conditions:

CORBA V2.3 Interface Repository Interfaces June 1999 10-13

10

e It must be in the samRRepository. If it is not, thenBAD_PARAM exception is
raised with minor code.4

¢ It must be capable of containing this object’s type (see Section 10.4.4, “Structure
and Navigation of the Interface Repository,” on page 10-8). If it is not, then
BAD_PARAM exception is raised with minor code 4.

¢ It must not already contain an object with this object's name (unless multiple
versions are supported by the IR). If this condition is not satisfied, then
BAD_PARAM exception is raised with minor code 3.

Thename attribute is changed ttew_name , and theversion attribute is changed to
new_version .

The defined_in andabsolute_name attributes are updated to reflect the new
container andhame. If this object is also &ontainer , theabsolute_name
attributes of any objects it contains are also updated.

10.5.4 Container

The base interfac&ontainer is used to form a containment hierarchy in the Interface
Repository. AContainer can contain any number of objects derived from the
Contained interface. AllContainer s, except folRepository , are also derived from
Contained .

module CORBA {
typedef sequence <Contained> ContainedSeq;

interface Container : IRObject {
/l read interface

Contained lookup (in ScopedName search_name);

ContainedSeq contents (

in DefinitionKind limit_type,
in boolean exclude_inherited
);
ContainedSeq lookup_name (
in ldentifier search_name,
in long levels_to_search,
in DefinitionKind limit_type,
in boolean exclude_inherited
);
struct Description {
Contained contained_object;
DefinitionKind kind;
any value;

I3

10-14 CORBA V2.3 June 1999

10

typedef sequence<Description> DescriptionSeq;

DescriptionSeq describe_contents (

);

in DefinitionKind
in boolean
in long

/I write interface

limit_type,

exclude_inherited,
max_returned_objs

ModuleDef create_module (

);

in Repositoryld id,
in Identifier name,
in VersionSpec version

ConstantDef create_constant (

in Repositoryld id,
in Identifier name,
in VersionSpec version,
in IDLType type,
in any value
);
StructDef create_struct (
in Repositoryld id,
in Identifier name,
in VersionSpec version,
in StructMemberSeq members
);
UnionDef create_union (
in Repositoryld id,
in Identifier name,
in VersionSpec version,
in IDLType discriminator_type,
in UnionMemberSeq members
);
EnumDef create_enum (
in Repositoryld id,
in ldentifier name,
in VersionSpec version,
in EnumMemberSeq members
);
AliasDef create_alias (
in Repositoryld id,
in ldentifier name,
in VersionSpec version,
in IDLType original_type

CORBAV2.3

Interface Repository Interfaces June 1999

10-15

10

):

InterfaceDef create_interface (

in Repositoryld id,
in Identifier name,
in VersionSpec version,
in InterfaceDefSeq base_interfaces,
in boolean is_abstract
);
ExceptionDef create_exception(
in Repositoryld id,
in Identifier name,
in VersionSpec version,

);

ValueDef create_value(

in StructMemberSeq members

in Repositoryld id,

in ldentifier name,

in VersionSpec version,

in boolean is_custom,

in boolean is_abstract,

in ValueDef base value,

in boolean is_truncatable,

in ValueDefSeq
in InterfaceDefSeq
in InitializerSeq

abstract_base_values,
supported_interfaces,
initializers

10-16

);

ValueBoxDef create_value_box(

);

NativeDef create native(

);

in Repositoryld id,

in Identifier name,

in VersionSpec version,

in IDLType original_type_def

in Repositoryld id,
in Identifier name,
in VersionSpec version

CORBA V2.3

June 1999

10

10.5.4.1 Read Interface

Thelookup operation locates a definition relative to this container given a scoped
name using OMG IDL's nhame scoping rules. An absolute scoped name (beginning with

::") locates the definition relative to the enclosiRgpository . If no object is found,
a nil object reference is returned.

The contents operation returns the list of objects directly contained by or inherited
into the object. The operation is used to navigate through the hierarchy of objects.
Starting with the Repository object, a client uses this operation to list all of the objects
contained by the Repository, all of the objects contained by the modules within the
Repository, and then all of the interfaces and value types within a specific module, and
S0 on.

limit_type If limit_type is set todk_all “all”, objects of all
interface types are returned. For example, if this is an
InterfaceDef , the attribute, operation, and exception
objects are all returned. lifnit_type is setto a
specific interface, only objects of that interface type
are returned. For example, only attribute objects are
returned iflimit_type is set todk_Attribute
“AttributeDef".

exclude_inherited If set toTRUE, inherited objects (if there are any) are
not returned. If set t6ALSE, all contained
objects—whether contained due to inheritance or
because they were defined within the object—are
returned.

Thelookup_name operation is used to locate an object by name within
a particular object or within the objects contained by that object. Use of
values oflevels_to_search of 0 or of negative numbers other than -1 is
undefined.

search_name Specified which name is to be searched for.

levels_to_search Controls whether the lookup is constrained to the
object the operation is invoked on or whether it
should search through objects contained by the object
as well.

Settinglevels_to_search to -1 searches the current object and all
contained objects. Settirigvels_to_search to 1 searches only the

current object. Use of values lefvels_to_search of 0 or of negative
numbers other than -1 is undefined.

CORBA V2.3 Interface Repository Interfaces June 1999 10-17

10

10-18

Thedescribe_contents operation combines tl@mntentsoperation and
thedescribe operation. For each object returned by ¢batents
operation, the description of the object is returned (i.e., the object’s
describe operation is invoked and the results returned).

max_returned_objs Limits the number of objects that can be returned in
an invocation of the call to the number provided.
Setting the parameter to -1 means return all contained
objects.

10.5.4.2 Write Interface

The Container interface provides operations to cre®teduleDef s, ConstantDef s,
StructDef s, UnionDef s, EnumDef s, AliasDef s, InterfaceDef s, ValueDefs
ValueBoxDef s andNativeDef s, as contained objects. THefined_in attribute of a
definition created with any of these operations is initialized to identifyCibrgtainer
on which the operation is invoked, and tantaining_repository attribute is
initialized to itsRepository .

The create_<type> operations all taked andname parameters which are used to
initialize the identity of the created definition. BAD_PARAM exception is raised
with minor code 2 if an object with the specifiedalready exists in thRepository .

A BAD_PARAM exception with minor code 3 is raised if the specifiathe already
exists within thisContainer and multiple versions are not supported.Certain
interfaces derived frorContainer may restrict the types of definitions that they may
contain. Anycreate_<type> operation that would insert a definition that is not
allowed by a Container will raise tiBAD_PARAM exception with minor code 4.

The create_module operation returns a new emp#oduleDef . Definitions can be
added usingContainer::.create_<type> operations on the new module, or by using
the Contained::move operation.

The create_constant operation returns a ne@onstantDef with the specifiedype
andvalue.

The create_struct operation returns a neftructDef with the specifiednembers .
Thetype member of theStructMember structures is ignored, and should be set to
TC_void . See “StructDef” on page 10-23 for more information.

Thecreate_union operation returns a neldnionDef with the specified
discriminator_type andmembers . Thetype member of thé&JnionMember
structures is ignored, and should be sef@ void . See “UnionDef” on page 10-24
for more information.

Thecreate_enum operation returns a neenumDef with the specifiednembers .
See “EnumDef” on page 10-25 for more information.

Thecreate_alias operation returns a neMiasDef with the specified
original_type .

CORBA V2.3 June 1999

10

Thecreate_interface operation returns a new emptyerfaceDef with the specified
base_interfaces . Type, exception, and constant definitions can be added using
Container:.create_<type> operations on the neilmterfaceDef . OperationDefs
can be added usingterfaceDef:.create_operation andAttributeDefs can be
added usindnterface::create_attribute . Definitions can also be added using the
Contained::move operation.

The create_value operation returns a new emp#lueDef with the specified base
interfaces and valuebdse value , supported_interfaces , and

abstract_base values) as well as the other information describing the new values
characteristicsig_custom , is_abstract , is_truncatable , andinitializers). Type,
exception, and constant definitions can be added Gamgainer::create_<type>
operations on the neWalueDef. OperationDefs can be added using
ValueDef::create_operation andAttributeDefs can be added using
Value::create_attribute . Definitions can also be added using @entained::move
operation.

Thecreate_value_box operation returns a neMalueBoxDef with the specified
original_type_def .

The create_exception operation returns a neléxceptionDef with the specified
members. Théype member of théStructMember structures should be set to
TC_void .

The create_native operation returns a neNWativeDef with the specifiechame.

10.5.5 IDLType

The base interfacdDLType is inherited by all IR objects that represent OMG IDL
types. It provides access to thgpeCode describing the type, and is used in defining
other interfaces wherever definitions of IDL types must be referenced.

module CORBA {
interface IDLType : IRObject {
readonly attribute TypeCode type;
h
h

Thetype attribute describes the type defined by an object derived iy pe .

10.5.6 Repository

Repository is an interface that provides global access to the Interface Repository. The
Repository object can contain constants, typedefs, exceptions, interfaces, value types,
value boxes, native types and modules. As it inherits fGammtainer , it can be used

to look up any definition (whether globally defined or defined within a module or
interface) either bypame or byid.

SinceRepository derives only fronContainer and not fromContained , it does not
have aRepositoryld associated with it. By default it is deemed to have the
Repositoryld " (the empty string) for purposes of assigning a value to the

CORBA V2.3 Interface Repository Interfaces June 1999 10-19

10

defined_in field of thedescription structure ofModuleDef , InterfaceDef ,
ValueDef, ValueBoxDef, TypedefDef , ExceptionDef andConstantDef that are
contained immediately in the Repository object.

There may be more than one Interface Repository in a particular ORB environment
(although some ORBs might require that definitions they use be registered with a
particular repository). Each ORB environment will provide a means for obtaining
object references to the Repositories available within the environment.

module CORBA {
interface Repository : Container {
I read interface

Contained lookup_id (in Repositoryld search_id);
TypeCode get_canonical_typecode(in TypeCode tc);
PrimitiveDef get_primitive (in PrimitiveKind kind);

/I write interface

StringDef create_string (in unsigned long bound);
WstringDef create_wstring(in unsigned long bound);
SequenceDef create_sequence (

in unsigned long bound,
in IDLType element_type

);

ArrayDef create_array (
in unsigned long length,
in IDLType element_type

);

FixedDef create_fixed(
in unsigned short digits,
in short scale

10.5.6.1 Read Interface

Thelookup_id operation is used to lookup an object iRepository given its
Repositoryld . If the Repository does not contain a definition feearch_id , a nil
object reference is returned.

10-20 CORBA V2.3 June 1999

10

The get_canonical_typecode operation looks up th&peCode in the Interface
Repository and returns an equival@ypeCode that includes altepository ids,
names, andmember_names . If the top levelTypeCode does not contain a
Repositoryld , such as array and sequefiggeCodes , or TypeCodes from older
ORBs, or if it contains &epositoryld that is not found in the targBepository ,
then a newTypeCode is constructed by recursively calling
get_canonical_typecode on each membéeFypeCode of the originalTypeCode .

The get_primitive operation returns a reference t@@mitiveDef (see
Section 10.5.14, “PrimitiveDef,” on page 10-26) with the specikiedl attribute. All
PrimitiveDef s are immutable and are owned by Repository .

10.5.6.2 Write Interface

The five create_<type> operations that create new IR objects defining anonymous
types. As these interfaces are not derived f@ontained , it is the caller’s
responsibility to invokelestroy on the returned object if it is not successfully used in
creating a definition that is derived froBontained . Each anonymous type definition
must be used in defining exactly one other object.

1. Thecreate_string operation returns a neftringDef with the specifiedbound ,
which must be non-zero. Thget_primitive operation is used for unbounded
strings.

2. Thecreate_wstring operation returns a neWstringDef with the specified
bound , which must be non-zero. Tlyet_primitive operation is used for
unbounded strings.

3. Thecreate_sequence operation returns a ne®equenceDef with the specified
bound andelement_type .

4. Thecreate_array operation returns a nedrrayDef with the specifiedength
andelement_type .

5. Thecreate_fixed operation returns a nelixedDef with the specified number of
digits and scale. The number of digits must be from 1 to 31, inclusive.

10.5.7 ModuleDef

A ModuleDef can contain constants, typedefs, exceptions, interfaces, value types,
value boxes, native types and other module objects.

module CORBA {
interface ModuleDef : Container, Contained {};

struct ModuleDescription {
Identifier name;
Repositoryld id;
Repositoryld defined _in;

CORBA V2.3 Interface Repository Interfaces June 1999 10-21

10

VersionSpec version;
h
h
The inheriteddescribe operation for aModuleDef object returns a
ModuleDescription .

10.5.8 ConstantDef

A ConstantDef object defines a named constant.

module CORBA {
interface ConstantDef : Contained {
readonly attribute TypeCode type;

attribute IDLType type_def;
attribute any value;
h
struct ConstantDescription {
Identifier name;
Repositoryld id;
Repositoryld defined _in;
VersionSpec version;
TypeCode type;
any value;

10.5.8.1 Read Interface

Thetype attribute specifies th&ypeCode describing the type of the constant. The

type of a constant must be one of the primitive types allowed in constant declarations
(see Section 3.9, “Constant Declaration,” on page 3-28).tyife def attribute

identifies the definition of the type of the constant.

Thevalue attribute contains the value of the constant, not the computation of the value
(e.g., the fact that it was defined as “1+2").

The describe operation for aConstantDef object returns £onstantDescription

10.5.8.2 Write Interface
Setting thetype_def attribute also updates tiype attribute.

When setting thealue attribute, theTypeCode of the supplied any must be equal to
thetype attribute of theConstantDef .

10-22 CORBA V2.3 June 1999

10

10.5.9 TypedefDef

The base interfac@ypedefDef is inherited by all named non-objdgpes (structures,
unions, enumerations, and aliases). TiipedefDef interface is not inherited by the
definition objects for primitive or anonymous types.

module CORBA {
interface TypedefDef : Contained, IDLType {};

struct TypeDescription {

Identifier name;
Repositoryld id;
Repositoryld defined _in;
VersionSpec version;
TypeCode type;
h
h
The inheriteddescribe operation for interfaces derived frongpedefDef returns a
TypeDescription .

10.5.10 StructDef

A StructDef represents an OMG IDL structure definition. It can contain structs,
unions, and enums.

module CORBA {

struct StructMember {

Identifier name;
TypeCode type;
IDLType type_def;

h
typedef sequence <StructMember> StructMemberSeq;

interface StructDef : TypedefDef, Container {
attribute StructMemberSeq members;

k

10.5.10.1 Read Interface
The members attribute contains a description of each structure member.

The inheritedtype attribute is ak_struct TypeCode describing the structure.

CORBA V2.3 Interface Repository Interfaces June 1999 10-23

10

10-24

10.5.10.2 Write Interface

Setting themembers attribute also updates thgpe attribute. When setting the
members attribute, theype member of thestructMember structure should be set
to TC_void .

A StructDef used as &£ontainer may only contairStructDef , UnionDef , or
EnumDef definitions.

10.5.11 UnionDef

A UnionDef represents an OMG IDL union definition.

module CORBA {
struct UnionMember {

Identifier name;
any label;
TypeCode type;
IDLType type_def;

k

typedef sequence <UnionMember> UnionMemberSeq;

interface UnionDef : TypedefDef, Container {
readonly attribute TypeCode discriminator_type;
attribute IDLType discriminator_type_def;
attribute UnionMemberSeq members;

k

10.5.11.1 Read Interface

The discriminator_type anddiscriminator_type def attributes describe and
identify the union’s discriminator type.

The members attribute contains a description of each union member.abiet of
eachUnionMemberDescription is a distinct value of thdiscriminator_type
Adjacent members can have the sarame. Members with the santeame must also
have the samgpe. A label with typeoctet and value O indicates the default union
member.

The inheritedtype attribute is ak _union TypeCode describing the union.

10.5.11.2 Write Interface

Setting thediscriminator_type_def attribute also updates théscriminator_type
attribute and setting thaiscriminator_type _def ormembers attribute also updates
thetype attribute.

When setting thenembers attribute, theype member of thé&JnionMember
structure should be set T&C_void .

CORBA V2.3 June 1999

10

A UnionDef used as &ontainer may only contairStructDef , UnionDef, or
EnumDef definitions.

10.5.12 EnumDef

An EnumbDef represents an OMG IDL enumeration definition.

module CORBA {
typedef sequence <Identifier> EnumMemberSeq;

interface EnumDef : TypedefDef {
attribute EnumMemberSeq members;

k
k
10.5.12.1 Read Interface

The members attribute contains a distinct name for each possible value of the
enumeration.

The inheritedtype attribute is ak_enum TypeCode describing the enumeration.

10.5.12.2 Write Interface

Setting themembers attribute also updates tlgpe attribute.

10.5.13 AliasDef

An AliasDef represents an OMG IDL typedef that aliases another definition.

module CORBA {
interface AliasDef : TypedefDef {
attribute IDLType original_type_def;

k
k

10.5.13.1 Read Interface

The original_type_def attribute identifies the type being aliased.

The inheritedtype attribute is ak alias TypeCode describing the alias.

10.5.13.2 Write Interface

Setting theoriginal_type_def attribute also updates thgpe attribute.

CORBA V2.3 Interface Repository Interfaces June 1999 10-25

10

10-26

10.5.14 PrimitiveDef

A PrimitiveDef represents one of the OMG IDL primitive types. As primitive types
are unnamed, this interface is not derived friypedefDef or Contained .

module CORBA {
enum PrimitiveKind {
pk_null, pk_void, pk_short, pk_long, pk_ushort, pk_ulong,
pk_float, pk_double, pk_boolean, pk_char, pk_octet,
pk_any, pk_TypeCode, pk_Principal, pk_string, pk_objref,
pk_longlong, pk_ulonglong, pk_longdouble, pk_wchar, pk_wstring,
pk_value_base

k

interface PrimitiveDef: IDLType {
readonly attribute PrimitiveKind kind;
h
h

Thekind attribute indicates which primitive type tRimitiveDef represents. There
are noPrimitiveDef s with kindpk_null . A PrimitiveDef with kind pk_string
represents an unbounded stringPAmitiveDef with kind pk_objref represents the
IDL type Object. A PrimitiveDef with kind pk_value_base represents the IDL
type ValueBase .

The inheritedtype attribute describes the primitive type.

All PrimitiveDef s are owned by the Repository. References to them are obtained
usingRepository::get_primitive

10.5.15 StringDef

A StringDef represents an IDL bounded string type. The unbounded string type is
represented asRrimitiveDef . As string types are anonymous, this interface is not
derived fromTypedefDef or Contained .

module CORBA {
interface StringDef : IDLType {
attribute unsigned long bound;

3
|3

Thebound attribute specifies the maximum number of characters in the string and
must not be zero.

The inheritedtype attribute is ak_string TypeCode describing the string.

CORBA V2.3 June 1999

10

10.5.16 WstringDef

A WstringDef represents an IDL wide string. The unbounded wide string type is
represented asPRrimitiveDef . As wide string types are anonymous, this interface is
not derived fromTypedefDef or Contained.

module CORBA {
interface WstringDef : IDLType {
attribute unsigned long bound;
h
h
Thebound attribute specifies the maximum number of wide characters in a wide

string, and must not be zero.

The inheritedtype attribute is ak wstring TypeCode describing the wide string.

10.5.17 FixedDef

A FixedDef represents an IDL fixed point type.

module CORBA {
interface FixedDef : IDLType {
attribute unsigned short digits;
attribute short scale;
h
h

The digits attribute specifies the total number of decimal digits in the number, and
must be from 1 to 31, inclusive. Tiseale attribute specifies the position of the
decimal point.

The inheritedtype attribute is ak fixed TypeCode , which describes a fixed-point
decimal number.

10.5.18 SequenceDef

A SequenceDef represents an IDL sequence type. As sequence types are anonymous,
this interface is not derived froifypedefDef or Contained .

module CORBA {
interface SequenceDef : IDLType {

attribute unsigned long bound;
readonly attribute TypeCode element_type;
attribute IDLType element_type_def;

3
3

CORBA V2.3 Interface Repository Interfaces June 1999 10-27

10

10-28

10.5.18.1 Read Interface

Thebound attribute specifies the maximum number of elements in the sequence. A
bound of zero indicates an unbounded sequence.

The type of the elements is describedeigment_type and identified by
element_type_def .

The inheritedtype attribute is ak _sequence TypeCode describing the sequence.

10.5.18.2 Write Interface

Setting theelement_type_def attribute also updates tledement_type attribute.

Setting thebound or element_type_def attribute also updates tlgpe attribute.

10.5.19 ArrayDef

An ArrayDef represents an IDL array type. As array types are anonymous, this
interface is not derived froffiypedefDef or Contained .

module CORBA {
interface ArrayDef : IDLType {

attribute unsigned long length;
readonly attribute TypeCode element_type;
attribute IDLType element_type_def;

3
|3

10.5.19.1 Read Interface

Thelength attribute specifies the number of elements in the array.

The type of the elements is describedeigment_type and identified by
element_type_def . Since amirrayDef only represents a single dimension of an
array, multi-dimensional IDL arrays are represented by mulfiplayDef objects, one
per array dimension. Thelement_type_def attribute of theArrayDef representing
the leftmost index of the array, as defined in IDL, will refer to AlneyDef
representing the next index to the right, and so on. The inneAmagDef represents
the rightmost index and the element type of the multi-dimensional OMG IDL array.

The inheritedtype attribute is ak _array TypeCode describing the array.

10.5.19.2 Write Interface

Setting theelement_type_def attribute also updates tledement_type attribute.
Setting thebound or element_type_def attribute also updates tiygpe attribute.

CORBA V2.3 June 1999

10

10.5.20 ExceptionDef

An ExceptionDef represents an exception definition. It can contain structs, unions,
and enums.

module CORBA {
interface ExceptionDef : Contained, Container {
readonly attribute TypeCode type;
attribute StructMemberSeq members;

h

struct ExceptionDescription {
Identifier name;
Repositoryld id;
Repositoryld defined_in;
VersionSpec version;
TypeCode type;

h

10.5.20.1 Read Interface
Thetype attribute is ak_except TypeCode describing the exception.
The membersattribute describes any exception members.

The describe operation for é&ExceptionDef object returns an
ExceptionDescription

10.5.20.2 Write Interface

Setting themembers attribute also updates thgpe attribute. When setting the
members attribute, thetype member of theStructMember structure is ignored and
should be set taC_void .

A ExceptionDef used as &ontainer may only contairtructDef , UnionDef, or
EnumbDef definitions.

10.5.21 AttributeDef

An AttributeDef represents the information that defines an attribute of an interface.

module CORBA {
enum AttributeMode {ATTR_NORMAL, ATTR_READONLY},

interface AttributeDef : Contained {
readonly attribute TypeCode type;
attribute IDLType type_def;
attribute AttributeMode mode;

CORBA V2.3 Interface Repository Interfaces June 1999 10-29

10

struct AttributeDescription {

Identifier name;
Repositoryld id;
Repositoryld defined_in;
VersionSpec version;
TypeCode type;

AttributeMode mode;

10.5.21.1 Read Interface

Thetype attribute provides th@&ypeCode describing the type of this attribute. The
type_def attribute identifies the object defining the type of this attribute.

The mode attribute specifies read only or read/write access for this attribute.

The describe operation for arAttributeDef object returns an
AttributeDescription

10.5.21.2 Write Interface

Setting thetype_def attribute also updates tiype attribute.

10.5.22 OperationDef

An OperationDef represents the information needed to define an operation of an
interface.

module CORBA {
enum OperationMode {OP_NORMAL, OP_ONEWAY};

enum ParameterMode {PARAM_IN, PARAM_OUT, PARAM_INOUT};

struct ParameterDescription {

Identifier name;
TypeCode type;
IDLType type_def;

ParameterMode mode;
I3

typedef sequence <ParameterDescription> ParDescriptionSeq;

typedef Identifier Contextldentifier;
typedef sequence <Contextldentifier> ContextldSeq;

typedef sequence <ExceptionDef> ExceptionDefSeq;
typedef sequence <ExceptionDescription> ExcDescriptionSeq;

interface OperationDef : Contained {
readonly attribute TypeCode result;

10-30 CORBA V2.3 June 1999

10

attribute IDLType result_def;
attribute ParDescriptionSeq params;
attribute OperationMode mode;
attribute ContextldSeq contexts;
attribute ExceptionDefSeq exceptions;
h
struct OperationDescription {
Identifier name;
Repositoryld id;
Repositoryld defined _in;
VersionSpec version;
TypeCode result;
OperationMode mode;
ContextldSeq contexts;

ParDescriptionSeq parameters;
ExcDescriptionSeq exceptions;

10.5.22.1 Read Interface

Theresult attribute is alypeCode describing the type of the value returned by the
operation. Theesult_def attribute identifies the definition of the returned type.

The params attribute describes the parameters of the operation. It is a sequence of
ParameterDescription structures. The order of thRarameterDescription s in the
sequence is significant. Tmame member of each structure provides the parameter
name. Theype member is &ypeCode describing the type of the parameter. The
type_def member identifies the definition of the type of the parameter.nidae
member indicates whether the parameter is an in, out, or inout parameter.

The operation’snode is either oneway (i.e., no output is returned) or normal.

Thekind attribute indicates whether tl@perationDef represents an IDL operation
(OP_IDL), or an accessor for a an IDL attribu@R_ATTR). For anOperationDef
representing an attribute accessor, thene parameter is generated by concatenating
either “_get_” or “_set_" with th@ame attribute of the correspondirfgtributeDef .

Only the “_get_" accessor is provided for readonly attributes. A “_get_" accessor takes
no parameters and its result type is the attribute type. A “_set " accessor takes a single
in parameter of the attribute type, and its result type is void.nTdde attribute of
accessor operations @P_NORMAL. AccessoiOperationDef s are contained in the
sameOperationDef s as their correspondimftributeDef s.

The contexts attribute specifies the list of context identifiers that apply to the
operation.

Theexceptions attribute specifies the list of exception types that can be raised by the
operation.

CORBA V2.3 Interface Repository Interfaces June 1999 10-31

10

The inheriteddescribe operation for arDperationDef object returns an
OperationDescription

10.5.22.2 Write Interface

Setting theresult_def attribute also updates thesult attribute.

The mode attribute can only be set @P_ONEWAY if the result isTC_void and all
elements oparams have amode of PARAM_IN.

10.5.23 InterfaceDef

An InterfaceDef object represents an interface definition. It can contain constants,
typedefs, exceptions, operations, and attributes.

module CORBA {
interface InterfaceDef;
typedef sequence <InterfaceDef> InterfaceDefSeq;
typedef sequence <Repositoryld> RepositoryldSeq;
typedef sequence <OperationDescription> OpDescriptionSeq;
typedef sequence <AttributeDescription> AttrDescriptionSeq;

interface InterfaceDef : Container, Contained, IDLType {
I read/write interface

attribute InterfaceDefSeq base_interfaces;
attribute boolean is_abstract;

I read interface
boolean is_a (in Repositoryld interface_id);

struct FullinterfaceDescription {

Identifier name;
Repositoryld id;

Repositoryld defined_in;
VersionSpec version;
OpDescriptionSeq operations;
AttrDescriptionSeq attributes;
RepositoryldSeq base_interfaces;
TypeCode type;

boolean is_abstract;

h
FullinterfaceDescription describe_interface();
[l write interface

AttributeDef create_attribute (
in Repositoryld id,

10-32 CORBA V2.3 June 1999

10

in Identifier name,
in VersionSpec version,
in IDLType type,
in AttributeMode mode

)i

OperationDef create_operation (
in Repositoryld id,
in Identifier name,
in VersionSpec version,
in IDLType result,
in OperationMode mode,

in ParDescriptionSeq params,
in ExceptionDefSeq exceptions,

in ContextldSeq contexts

);

h

struct InterfaceDescription {
Identifier name;
Repositoryld id;
Repositoryld defined _in;
VersionSpec version;
RepositoryldSeq base_interfaces;
boolean is_abstract;

10.5.23.1 Read Interface

Thebase_interfaces attribute lists all the interfaces from which this interface
inherits.

Theis_abstract attribute isTRUE if the interface is an abstract interface type.

Theis_a operation return§RUE if the interface on which it is invoked either is
identical to or inherits, directly or indirectly, from the interface identified by its
interface_id parameter. Otherwise it returRALSE.

The describe_interface operation returns BullinterfaceDescription describing
the interface, including its operations and attributes. dperations andattributes
fields of theFullinterfaceDescription structure include descriptions of all of the
operations and attributes in the transitive closure of the inheritance graph of the
interface being described.

The inheriteddescribe operation for arinterfaceDef returns an
InterfaceDescription

The inheritedcontents operation returns the list of constants, typedefs, and
exceptions defined in thimterfaceDef and the list of attributes and operations either
defined or inherited in thilterfaceDef . If the exclude_inherited parameter is set

CORBA V2.3 Interface Repository Interfaces June 1999 10-33

10

10-34

to TRUE, only attributes and operations defined within this interface are returned. If
the exclude_inherited parameter is set t6ALSE, all attributes and operations are
returned.

10.5.23.2 Write Interface

Setting thebase_interfaces attribute causes BAD PARAM exception with minor
code 5 to be raised if theame attribute of any object contained by thigerfaceDef
conflicts with thename attribute of any object contained by any of the specified base
InterfaceDef s.

The create_attribute operation returns a neattributeDef contained in the
InterfaceDef on which it is invoked. The&, name, version, type_def , andmode
attributes are set as specified. Tigpe attribute is also set. Thidefined_in attribute
is initialized to identify the containinigiterfaceDef . A BAD_PARAM exception with
minor code 2 is raised if an object with the specifitdlready exists in the
Repository . BAD_PARAM exception with minor code 3 is raised if an object with
the samename already exists in thimterfaceDef .

The create_operation operation returns a ne@perationDef contained in the
InterfaceDef on which it is invoked. The&, name, version , result_def , mode,
params , exceptions , andcontexts attributes are set as specified. Thsult
attribute is also set. Thaefined_in attribute is initialized to identify the containing
InterfaceDef . An error is returned if an object with the specifiddalready exists
within this object'sRepository , or if an object with the specifiathme already exists
within this InterfaceDef .

An InterfaceDef used as &ontainer may only contairiTypedefDef, (including
definitions derived fronTypedefDef), ConstantDef , andExceptionDef definitions.

10.5.24 ValueDef

A ValueDef object represents a value definition. It can contain constants, typedefs,
exceptions, operations, and attributes.

module CORBA {
interface ValueDef;
typedef sequence <ValueDef> ValueDefSeq;

struct Initializer {
StructMemberSeq members;
Identifier name;

h
typedef sequence<initializer> InitializerSeq;
typedef short Visibility;

const Visibility PRIVATE_ MEMBER = 0;
const Visibility PUBLIC_MEMBER = 1;

CORBA V2.3 June 1999

10

struct ValueMember {

Identifier name;
Repositoryld id;
Repositoryld defined_in;
VersionSpec version;
TypeCode type;
IDLType type_def;
Visibility access;

h
typedef sequence <ValueMember> ValueMemberSeq;

interface ValueMemberDef : Contained {
readonly attribute TypeCode type;
attribute IDLType type_def;
attribute Visibility access;

k

interface ValueDef ; Container, Contained, IDLType {
I read/write interface

attribute InterfaceDefSeq supported_interfaces;

attribute InitializerSeq initializers;

attribute ValueDef base_value;

attribute ValueDefSeq abstract_base_ values;
attribute boolean is_abstract;

attribute boolean is_custom;

attribute boolean is_truncatable;

/I read interface
boolean is_a(

in Repositoryld id

);

struct FullValueDescription {
Identifier name;
Repositoryld id;
boolean is_abstract;
boolean is_custom;
Repositoryld defined_in;
VersionSpec version;

OpDescriptionSeq operations;
AttrDescriptionSeq attributes;

ValueMemberSeq members;
InitializerSeq initializers;
RepositoryldSeq supported_interfaces;
RepositoryldSeq abstract_base_values;
boolean is_truncatable;
Repositoryld base_value;
TypeCode type;

CORBA V2.3 Interface Repository Interfaces June 1999 10-35

10

10-36

FullValueDescription describe_value();

ValueMemberDef create_value_member(

in Repositoryld
in Identifier
in VersionSpec
in IDLType
in Visibility

);

id,
name,
version,

type,
access

AttributeDef create_attribute(

in Repositoryld
in Identifier

in VersionSpec
in IDLType

in AttributeMode

);

id,
name,
version,

type,
mode

OperationDef create_operation (

in Repositoryld
in Identifier
in VersionSpec
in IDLType

in OperationMode

id,
name,
version,
result,
mode,

in ParDescriptionSeq params,
in ExceptionDefSeq exceptions,

in ContextldSeq
)i
h

struct ValueDescription {

Identifier
Repositoryld
boolean

boolean
Repositoryld
VersionSpec
RepositoryldSeq
RepositoryldSeq
boolean
Repositoryld

10.5.24.1 Read Interface

contexts

name;
id;
is_abstract;
is_custom;
defined_in;
version;
supported_interfaces;
abstract_base values;
is_truncatable;
base value;

The supported_interfaces attribute lists the interfaces which this value type

supports.

Theinitializers attribute lists the initializers this value type supports.

CORBA V2.3

June 1999

10

The base_value attribute describes the value type from which this value inherits.

The abstract_base_values attribute lists the abstract value types from which this
value inherits.

Theis_abstract attribute isTRUE if the value is an abstract value type.
Theis_custom attribute isTRUE if the value uses custom marshaling.

Theis_truncatable attribute isTRUE if the value inherits “safely” (i.e., supports
truncation) from another value.

Theis_a operation return§RUE if the value on which it is invoked either is identical
to or inherits, directly or indirectly, from the interface or value identified bidits
parameter. Otherwise it returRALSE.

Thedescribe_value operation returns BullValueDescription describing the value,
including its operations and attributes.

The inheriteddescribe operation for arvalueDef returns arValueDescription .

The inheritedcontents operation returns the list of constants, typedefs, and
exceptions defined in thigalueDef and the list of attributes, operations and members
either defined or inherited in thigalueDef. If the exclude_inherited parameter is

set toTRUE, only attributes, operations and members defined within this value are
returned. If theexclude_inherited parameter is set 8ALSE, all attributes,
operations and members are returned.

10.5.24.2 Write Interface

Setting thesupported_interfaces, base_value, or abstract _base values

attribute causes RAD _PARAM exception with minor code 5 to be raised if tfagne
attribute of any object contained by tMalueDef conflicts with thename attribute of
any object contained by any of the specified bases.

Thecreate_value_member operation returns a neialueMemberDef contained in
the ValueDef on which it is invoked. Thi&, name, version, type_def , andaccess
attributes are set as specified. Tigpe attribute is also set. Thiefined_in attribute

is initialized to identify the containingalueDef. A BAD_PARAM exception with
minor code 2 is raised if an object with the specifibdilready exists in the
Repository . A BAD_PARAM exception with minor code 3 is raised if an object with
the samename already exists in thi¥alueDef.

The create_attribute operation returns a neittributeDef contained in the
ValueDef on which it is invoked. Thel, name, version, type_def , andmode
attributes are set as specified. Tigpe attribute is also set. Thiefined_in attribute

is initialized to identify the containingalueDef. A BAD_PARAM exception with
minor code 2 is raised if an object with the specifibdilready exists in the
Repository . A BAD_PARAM exception with minor code 3 is raised if an object with
the samename already exists in thi¥alueDef.

CORBA V2.3 Interface Repository Interfaces June 1999 10-37

10

10-38

The create_operation operation returns a ne@perationDef contained in the
ValueDef on which it is invoked. Thé&, name, version , result_def , mode,
params , exceptions , andcontexts attributes are set as specified. Thsult
attribute is also set. Thaefined_in attribute is initialized to identify the containing
ValueDef. A BAD_PARAM exception with minor code 2 is raised if an object with
the specifiedd already exists in thRepository . A BAD_PARAM exception with
minor code 3 is raised if an object with the samame already exists in this
ValueDef.

A ValueDef used as &£ontainer may only contairfypedefDef, (including
definitions derived fronTypedefDef), ConstantDef , andExceptionDef definitions.

10.5.25 ValueBoxDef

A ValueBoxDef object represents a value box definition. It merely identifies the IDL
type_def that is being “boxed.”

module CORBA {
interface ValueBoxDef : TypedefDef {
attribute IDLType original_type_def;

k
k

10.5.25.1 Read Interface

The original_type_def attribute identifies the type being boxed.

The inheritedtype attribute is ak value_box TypeCode describing the value box.

10.5.25.2 Write Interface

Setting theoriginal_type def attribute also updates thgpe attribute.

10.5.26 NativeDef

A NativeDef object represents a native definition.

module CORBA {
interface NativeDef : TypedefDef {};

h
The inheritedtype attribute is ak native TypeCode describing the native type.

CORBA V2.3 June 1999

10

10.6 Repositorylds

Repositorylds are values that can be used to establish the identity of information in
the repository. ARepositoryld is represented as a string, allowing programs to store,
copy, and compare them without regard to the structure of the value. It does not matter
what format is used for any particulgepositoryld . However, conventions are used

to manage the name space created by these IDs.

Repositoryld s may be associated with OMG IDL definitions in a variety of ways.
Installation tools might generate them, they might be defined with pragmas in OMG
IDL source, or they might be supplied with the package to be installed. Ensuring
consistency oRepositoryld s with the IDL source or the IR contents is the
responsibility of the programmer allocatiRgpositoryid s.

The format of the id is a short format name followed by a colon (“:") followed by
characters according to the format. This specification defines four formats: one derived
from OMG IDL names, one that uses Java class names and Java serialization version
UIDs, one that uses DCE UUIDs, and another intended for short-term use, such as in a
development environment.

Since new repository ID formats may be added from time to time, compliant IDL
compilers must accept any string value of the form

“<format>:<string>"

provided as the argument to the id pragma and use it as the repository ID. The OMG
maintains a registry of allocated format identifiers. ®f@mat> part of the ID may
not contain a colon (:) character.

The version and prefix pragmas only affect default repository IDs that are generated by
the IDL compiler using the IDL format.

10.6.1 OMG IDL Format

The OMG IDL format forRepositorylds primarily uses OMG IDL scoped names to
distinguish between definitions. It also includes an optional unique prefix, and major
and minor version numbers.

The Repositoryld consists of three components, separated by colons, (*“:")
The first component is the format name, “IDL.”

The second component is a list of identifiers, separated by “/” characters. These
identifiers are arbitrarily long sequences of alphabetic, digit, underscore (“_"), hyphen

(“-"), and period (“.") characters. Typically, the first identifier is a unique prefix, and
the rest are the OMG IDL Identifiers that make up the scoped name of the definition.

The third component is made up of major and minor version numbers, in decimal
format, separated by a “.”. When two interfaces Hagpositoryld s differing only in

minor version number it can be assumed that the definition with the higher version
number is upwardly compatible with (i.e., can be treated as derived from) the one with
the lower minor version number.

CORBA V2.3 Repositorylds June 1999 10-39

10

10-40

10.6.2 RMI Hashed Format

The OMG IDL format defined above does not include any structural information.
Identity of IDL types determined for this format depends upon the names used in the
RepositorylD being correctFor interfaces, if stubs and skeletons are not actually in
synch, even though thRepositorylds report they are, the worst that can happen is
that the result of an invocation isBAD_OPERATION exception. With value types,
these kinds of errors are more problematic. An inconsistency between the stub and
skeleton marshaling/unmarshaling code can confuse the marshaling engine and may
even corrupt memory and/or cause a crash failure.

The RMI Hashed format is used for Java RMI values mapped to IDL using the Java to
IDL Mapping (see the Java/IDL Language Mapping document). It is computed based
upon the structural information of the original Java definition. Whenever the Java
definition changes, the hash function will (statistically) produce a hash code which is
different from the previous one. When an ORB run time receiwedua with a

different hash from what is expected, it is free to rai8A\® PARAM exception. It

may also try to resolve the incompatibility by some means. If it is not successful, then
it shall raise thaBAD_PARAM exception.

An RMI HashedRepositoryld consists of either three or four components, separated
by colons:

RMI: <class name> : <hash code> [: <serialization version UID>]

The class name is a Java class name as returned ggthteeme method of
java.lang.Class . Any characters not itSO Latin lare replaced by\U”
followed by the 4 hexadecimal characters (in upper case) representidgitivele
value.

For classes that do not impleméana.io.Serializable , and for interfaces, the
hash code is always zero, and BepositorylD does not contain serial version
uID.

For classes that implemejatva.io.Externalizable , the hash code is always
the 64-bit value 1

For classes that implemejatva.io.Serializable but not
java.io.Externalizable , the hash code is@4-bit hash of a stream of bytes
An instance ofava.lang.DataOutputStream is used to convert primitive data

types to a sequence of bytes. The sequence of items in the stream is as follows:
1. The hash code of the superclass, written as a 64-bit long.

2. The value 1 if the class has woiteObject method, or the value 2 if the class
has awriteObject method, written as a 32-bit integer.

3. For each field of the class that is mapped to IDL, sorted lexicographically by Java
field name, in increasing order:

a. Java field name, iDTF encoding

CORBA V2.3 June 1999

10

b. field descriptor, as defined by tlava Virtual Machine Specificatioin UTF
encoding

The National Institute of Standards and TechnoldbyST) Secure Hash Algorithm
(SHA-) is executed on the stream of bytes produce®daOutputStream

producing a20 byte array of values, sha[0.]J19he hash code is assembled from the
first 8 bytesof this array as follows:

long hash = 0;

for (inti = 0; i < Math.min(8, sha.length); i++) {
hash += (long)(shali] & 255) << (i * 8);

}

If the actual serialization versiddIiD for the Java class differs from the hash code, a
colon and the actual serialization versldiD (transcribed as a 16 digit upper-case hex
string) shall be appended to tRepositoryld after the hash code.

Examples for the valuetypdoo::bar would be

RMI:foo/bar;:1234567812345678
RMI:foo/bar;:1234567812345678:ABCD123456781234

An example of a Java array of valuetypeo::bar would be

RMI:[Lfoo.bar;:1234567812345678:ABCD123456781234

For a Java classu03bCy which contains a Unicode character not in ISO Latin 1, an
exampleRepositoryld is

RMI:foo.x\UO3BCy:8765432187654321

A conforming implementation which uses this format shall implement the standard
hash algorithm defined above.

10.6.3 DCE UUID Format

DCE UUID formatRepositoryld s start with the characters “DCE:” and are followed
by the printable form of the UUID, a colon, and a decimal minor version number, for
example: “DCE:700dc518-0110-11ce-ac8f-0800090b5d3e:1".

10.6.4 LOCAL Format

Local formatRepositoryld s start with the characters “LOCAL:” and are followed by

an arbitrary string. Local format IDs are not intended for use outside a particular
repository, and thus do not need to conform to any particular convention. Local IDs
that are just consecutive integers might be used within a development environment to
have a very cheap way to manufacture the IDs while avoiding conflicts with well-
known interfaces.

CORBA V2.3 Repositorylds June 1999 10-41

10

10.6.5 Pragma Directives for Repositoryld

Three pragma directives (id, prefix, and version), are specified to accommodate
arbitraryRepositoryld formats and still support the OMG IDRepositoryld format

with minimal annotation. The prefix and version pragma directives apply only to the
IDL format. An IDL compiler must interpret these annotations as specified.
Conforming IDL compilers may support additional non-standard pragmas, but must not
refuse to compile IDL source containing non-standard pragmas that are not understood
by the compiler.

10.6.5.1 The ID Pragma

An OMG IDL pragma of the format

#pragma ID <name> “<id>"

associates an arbitraRepositoryld string with a specific OMG IDL name. The
<name> can be a fully or partially scoped name or a simple identifier, interpreted
according to the usual OMG IDL name lookup rules relative to the scope within which
the pragma is contained.

The <id> must be a repository ID of the form described in Section 10.6,
“Repositorylds,” on page 10-39.

If an attempt is made to assign a repository ID to the same IDL construct a second
time, a compile-time diagnostic shall be emitted, regardless of whether the second ID
is in conflict or not:

interface A {};
#pragma ID A “IDL:A:1.1"
#pragma ID A “IDL:X:1.1" /I Compile-time error

interface B {};
#pragma ID B “IDL:BB:1.1"
#pragma ID B “IDL:BB:1.1” /I Compile-time error

It is also an error to apply an ID to a forward-declared interface and then later assign
the same or a different ID to that interface.

10.6.5.2 The Prefix Pragma

An OMG IDL pragma of the format:

#pragma prefix “<string>"

sets the current prefix used in generating OMG IDL forRepositoryld s. The

specified prefix applies to Repositorylds generated after the pragma until the end of the
current scope is reached or another prefix pragma is encountered. An IDL file forms a

scope for this purpose, so a prefix resets to the previous prefix at the end of the scope
of an included file:

10-42 CORBA V2.3 June 1999

10

/I Aidl
#pragma prefix “A”
interface A {};

// B.idI

#pragma prefix “B”
#include “A.idl”
interface B {};

The repository IDs for interfaces A and B in this case are:

IDL:A/A:1.0
IDL:B/B:1.0

Similarly, a prefix in an including file does not affect the prefix of an included file:

/Il C.idl
interface C {};

// D.idl

#pragma prefix “D”
#include “C.idI"”
interface D {};

The repository IDs for interface C and D in this case are:

IDL:C:1.0
IDL:D/D:1.0

If an included file does not contain a #pragma prefix, the current prefix implicitly
resets to the empty prefix:

/l E.idl
interface E {};

/I Fidl
module M {
#include <E.idI>

3
The repository IDs for module M and interface E in this case are:

IDL:M:1.0
IDL:E:1.0

If a #include directive appears at non-global scope and the included file contains a
prefix pragma, the included file's prefix takes precedence, for example:

I A.idl

#pragma prefix “A”
interface A {};

CORBA V2.3 Repositorylds June 1999 10-43

10

// B.idl

#pragma prefix “B”
module M {
#include “A.idl”

I3

The repository ID for module M and interface A in this case are:

IDL:B/M:1.0
IDL:A/A:1.0

Attempts to assign a prefix to a forward-declared interface and a different prefix to that

interface later result in a compile-time diagnostic:

#pragma prefix “A”
interface A; /l Forward decl.

#pragma prefix “B”
interface A; /I Compile-time error

#pragma prefix “C”

interface A { /I Compile-time error
void op();

¥

A prefix pragma of the form
#pragma prefix *”

resets the prefix to the empty string. For example:

#pragma prefix “X”
interface X {};
#pragma prefix
interface Y {};

The repository IDs for interface X and Y in this case are:

IDL:X/X:1.0
IDL:Y:1.0

If a specification contains both a prefix pragma and an ID or version pragma, the prefix
pragma does not affect the repository ID for an ID pragma, but does affect the

repository ID for a version pragma:

#pragma prefix “A”

interface A {};

interface B {};

interface C {};

#pragma ID B “IDL:myB:1.0”
#pragma version C 9.9

The repository IDs for this specification are

10-44 CORBA V2.3 June 1999

10

IDL:A/A:1.0
IDL:myB:1.0
IDL:A/C:9.9

A #pragma prefix must appear before the beginning of an IDL definition. Placing a
#pragma prefix elsewhere has undefined behavior, for example:

interface Bar
#pragma prefix “foo” /I Undefined behavior

{
...

I3

For example, th&epositoryld for the initial version of interfacBrinter defined on
moduleOffice by an organization known as “SoftCo” might be
“IDL:SoftCo/Office/Printer:1.0".

This format makes it convenient to generate and manage a set of IDs for a collection of
OMG IDL definitions. The person creating the definitions sets a prefix (“SoftCo”), and
the IDL compiler or other tool can synthesize all the needed IDs.

BecauseRepositoryld s may be used in many different computing environments and
ORBs, as well as over a long period of time, care must be taken in choosing them.
Prefixes that are distinct, such as trademarked names, domain names, UUIDs, and so
forth, are preferable to generic names such as “document.”

10.6.5.3 The Version Pragma

An OMG IDL pragma of the format:

#pragma version <name> <major>.<minor>

provides the version specification used in generating an OMG IDL format
Repositoryld for a specific OMG IDL name. Thename> can be a fully or partially
scoped name or a simple identifier, interpreted according to the usual OMG IDL name
lookup rules relative to the scope within which the pragma is containedckriampr>
and<minor> components are decimal unsigned shorts.

If no version pragma is supplied for a definition, version 1.0 is assumed.

If an attempt is made to change the version of a repository ID that was specified with
an ID pragma, a compliant compiler shall emit a diagnostic:

interface A {};
#pragma ID A “IDL:myA:1.1"
#pragma version A 9.9 /I Compile-time error

If an attempt is made to assign a version to the same IDL construct a second time, a
compile-time diagnostic shall be emitted, regardless of whether the second version is in
conflict or not:

interface A {};

CORBA V2.3 Repositorylds June 1999 10-45

10

10-46

#pragma version A 1.1
#pragma version A 2.2 /I Compile-time error

interface B {};
#pragma version B 1.1
#pragma version B 1.1 /I Compile-time error

10.6.5.4 Generation of OMG IDL - Format IDs

A definition is globally identified by an OMG IDL - form&epositoryld if no ID
pragma is encountered for it.

The ID string can be generated by starting with the string “IDL:”. Then, if any prefix
pragma applies, it is appended, followed by a “/” character. Next, the components of
the scoped name of the definition, relative to the scope in which any prefix that applies
was encountered, are appended, separated by “/” characters. Finally, a “:” and the
version specification are appended.

For example, the following OMG IDL:

module M1 {
typedef long T1;
typedef long T2;
#pragma ID T2 “DCE:d62207a2-011e-11ce-88b4-0800090b5d3e:3”

¥
#pragma prefix “P1”
module M2 {
module M3 {
#pragma prefix “P2”
typedef long T3;
¥
typedef long T4;
#pragma version T4 2.4

h
specifies types with the following scoped names RBegositoryld s:

:M1:T1IDL:M1/T1:1.0

:M1::T2 DCE:d62207a2-011e-11ce-88b4-0800090b5d3e:3
:M2::M3::T3IDL:P2/T3:1.0

:M2::T41DL:P1/M2/T4:2.4

For this scheme to provide reliable global identity, the prefixes used must be unique.
Two non-colliding options are suggested: Internet domain names and DCE UUIDs.

CORBA V2.3 June 1999

10

Furthermore, in a distributed world, where different entities independently evolve
types, a convention must be followed to avoid the sRefgositoryld being used for

two different types. Only the entity that created the prefix has authority to create new
IDs by simply incrementing the version number. Other entities must use a new prefix,
even if they are only making a minor change to an existing type.

Prefix pragmas can be used to preserve the existing IDs when a module or other
container is renamed or moved.

module M4 {
#pragma prefix “P1/M2”
module M3 {
#pragma prefix “P2”
typedef long T3;
3
typedef long T4;
#pragma version T4 2.4

|3

This OMG IDL declares types with the same global identities as those declared in
module M2 above.

10.6.6 For More Information

“OMG IDL for Interface Repository” on page 10-56 shows the OMG IDL specification
of the IR, including the #pragma directive. Section 3.3, “Preprocessing,” on page 3-12
contains additional, general information on the pragma directive.

10.6.7 RepositorylDs for OMG-Specified Types

Interoperability between implementations of official OMG specifications, including but
not limited to CORBA, CORBAservices, and CORBAfacilities, depends on
unambiguous specification &fepositoryld s for all IDL-defined types in such
specifications.

All official OMG IDL files shall contain the following pragma prefix directive:

#pragma prefix “omg.org”

unless said file already contains a pragma prefix identifying the original source of the
file (e.g., ‘w3c.org ").

Revisions to existing OMG specifications must not change the definition of an existing
type in any way. Two types with different repository Ids are considered different types,
regardless of which part of the repository Id differs.

If an implementation must extend an OMG-specified interface, interoperability
requires it to derive a new interface from the standard interface, rather than modify the
standard definition.

CORBA V2.3 Repositorylds June 1999 10-47

10

10.7 TypeCodes

TypeCode s are values that represent invocation argument types and attribute types.
They can be obtained from the Interface Repository or from IDL compilers.

TypeCode s have a number of uses. They are used in the dynamic invocation interface
to indicate the types of the actual arguments. They are used by an Interface Repository
to represent the type specifications that are part of many OMG IDL declarations.
Finally, they are crucial to the semantics of #my type.

Abstractly, TypeCode s consist of a “kind” field, and a set of parameters appropriate
for that kind. For example, thieypeCode describing OMG IDL typdong has kind
tk_long and no parameters. TAgpeCode describing OMG IDL type
sequence<boolean,10> has kindtk_se