TheCommon Object Request Broker:
Architectureand Specification

Revision2.5
September 2001

Copyright 1998, 1999, Alcatel

Copyright 1997, 1998, 1999 BEA Systems, Inc.

Copyright 1995, 1996 BNR Europe Ltd.

Copyright 1998, Borland International

Copyright 1998, Cooperative Research Centre for Distributed Systems Technology (DSTC Pty Ltd)
Copyright 1991, 1992, 1995, 1996, Digital Equipment Corporation
Copyright 2001, Eternal Systems, Inc.

Copyright 1995, 1996, 1998, Expersoft Corporation

Copyright 1996, 1997 FUJITSU LIMITED

Copyright 1996, Genesis Devel opment Corporation

Copyright 1989- 2001, Hewlett-Packard Company

Copyright 2001, HighComm

Copyright 1998, 1999, Highlander Communications, L.C.
Copyright 1991, 1992, 1995, 1996 HyperDesk Corporation
Copyright 1998, 1999, Inprise Corporation

Copyright 1996, 1997, 1998, International Business Machines Corporation
Copyright 1995, 1996 ICL, plc

Copyright 1998 - 2001, Inprise Corporation

Copyright 1998, International Computers, Ltd.

Copyright 1995 - 2001, IONA Technologies, Ltd.

Copyright 1998 - 2001, L ockheed Martin Federa Systems, Inc.
Copyright 1998, 1999, 2001, Lucent Technologies, Inc.

Copyright 1996, 1997 Micro Focus Limited

Copyright 1991, 1992, 1995, 1996 NCR Corporation

Copyright 1998, NEC Corporation

Copyright 1998, Netscape Communications Corporation

Copyright 1998, 1999, Nortel Networks

Copyright 1998, 1999, Northern Telecom Corporation

Copyright 1995, 1996, 1998, Novell USG

Copyright 1991, 1992, 1995, 1996 by Object Design, Inc.
Copyright 1991- 2001 Object Management Group, Inc.

Copyright 1998, 1999, 2001, Objective Interface Systems, Inc.
Copyright 1998, 1999, Object-Oriented Concepts, Inc.

Copyright 1998, 2001, Oracle Corporation

Copyright 1998, PeerLogic, Inc.

Copyright 1996, Siemens Nixdorf Informationssysteme AG
Copyright 1991, 1992, 1995, 1996, 1998, 1999, 2001, Sun Microsystems, Inc.
Copyright 1995, 1996, SunSoft, Inc.

Copyright 1996, Sybase, Inc.

Copyright 1998, Telefénica Investigacion y Desarrollo S.A. Unipersona
Copyright 1998, TIBCO, Inc.

Copyright 1998, 1999, Tri-Pacific Software, Inc.

Copyright 1996, Visua Edge Software, Ltd.

The companies listed above have granted to the Object Management Group, Inc. (OMG) anonexclusive, royalty-free, paid up,
worldwide license to copy and distribute this document and to modify this document and distribute copies of the modified
version. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed the copyright
in theincluded material of any such copyright holder by reason of having used the specification set forth herein or having
conformed any computer software to the specification.

PATENT

The attention of adoptersisdirected to the possibility that compliance with or adoption of OMG specifications may require use
of an invention covered by patent rights. OMG shall not be responsible for identifying patentsfor which alicense may be
required by any OMG specification, or for conducting legal inquiriesinto the legal validity or scope of those patentsthat are
brought to its attention. OMG specifications are prospective and advisory only. Prospective users are responsible for
protecting themselves against liability for infringement of patents.

NOTICE

The information contained in this document is subject to change without notice. The material in this document details an
Object Management Group specification in accordance with the license and notices set forth on thispage. This document does
not represent a commitment to implement any portion of this specification in any company's products.

WHILE THE INFORMATION IN THIS PUBLICATION ISBELIEVED TO BEACCURATE, THE OBJECT
MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE MAKE NO WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL INCLUDING, BUT NOT LIMITED TO ANY
WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF MERCHANTABILITY OR WARRANTY OF
FITNESS FOR PARTICULAR PURPOSE OR USE. In no event shall The Object Management Group or any of the
companies listed above be liable for errors contained herein or for indirect, incidental, special, consequential, reliance or cover
damages, including loss of profits, revenue, data or use, incurred by any user or any third party. The copyright holderslisted
above acknowledge that the Object Management Group (acting itself or through its designees) is and shall at all times be the
sole entity that may authorize developers, suppliers and sellers of computer software to use certification marks, trademarks or
other specia designations to indicate compliance with these materials. This document containsinformation which is protected
by copyright. All Rights Reserved. No part of thiswork covered by copyright herein may be reproduced or used in any form or
by any means--graphic, electronic, or mechanical, including photocopying, recording, taping, or information storage and
retrieval systems--without permission of the copyright owner.

RESTRICTED RIGHTS LEGEND. Use, duplication, or disclosure by government is subject to restrictions as set forth in
subdivision (c) (1) (ii) of the Rightin Technical Data and Computer Software Clause at DFARS 252.227.7013 OMG®and
Object Management are registered trademarks of the Object M anagement Group, Inc. Object Request Broker, OMG IDL,
ORB, CORBA, CORBAfacilities, CORBAservices, COSS, and I10OP are trademarks of the Object Management Group, Inc.
X/Open isatrademark of X/Open Company Ltd.

ISSUE REPORTING

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage readersto
report any ambiguities, inconsistencies, or inaccuracies they may find by completing the issue reporting form at
http://www.omg.org/library/issuerpt.htm.

September 2001

Contents

Preface XXXIX

1. TheObjectModel it 1-1
11 OVEIVIEBW .o e 1-1

1.2 Object SemantiCsS.o 1-2

121 Objects. ... 1-2

122 RequestS.coiiiiii 1-3

1.2.3 Object Creation and Destruction. 1-4

124 TYPES .ot 1-4
1241BaSICtYPES . .o v e 1-4

1.2.4.2 Constructed types 1-5

125 Interfaces i 1-6

126 VaueTypes ... 1-6

127 AbstractInterfaces...................... 1-7

128 Operationsc.oviririinennae... 1-7
1281Parameterst 1-8

1282ReturnResult 1-8

1283EXCEPLions 1-8

1284Contextsot 1-8

1.2.8.5 Execution Semantics 1-8

129 Attributes......... 1-9

1.3 Object Implementation. 1-9

1.3.1 The Execution Model: Performing Services... 1-9

1.3.2 TheConstructionModel.................. 1-10

2. CORBA OVEIVIBW . ..ot e e e 2-1
2.1 Structure of an Object Request Broker. 2-1

211 Object RequestBroker 2-6

Common Object Request Broker Architecture (CORBA), v2.5 i

Contents

212 Clients 2-7
2.1.3 Object Implementations. 2-7
214 ObjectReferences....................... 2-8
2.1.5 OMG Interface Definition Language 2-8
2.1.6 Mapping of OMG IDL to Programming
Languagest 2-8
217 ClientStubs 2-9
2.1.8 Dynamic Invocation Interface. 2-9
2.19 Implementation Skeleton 2-9
2.1.10 Dynamic Skeleton Interface............... 2-10
2.1.11 ObjectAdapters............ ..., 2-10
2112 ORBlinterface. 2-10
2.1.13 Interface Repository 2-11
2.1.14 Implementation Repository 2-11
22 ExampleORBS. 2-11
2.2.1 Client- and Implementation-resident ORB 2-11
222 Server-basedORB 2-12
223 System-basedORB...................... 2-12
224 Library-basedORB 2-12
23 Structureof aClient.o .. 2-12
2.4 Structure of an Object Implementation 2-13
25 Structure of an Object Adapter. 2-15
2.6 CORBA Required Object Adapter 2-17
2.6.1 Portable Object Adapter.................. 2-17
2.7 Thelntegration of Foreign Object Systems 2-17
3. OMG IDL Syntaxand Semantics..................... 31
31 OVEIVIBW . .ot 3-2
3.2 Lexical Conventions.couuiiiniinnnannnnn 3-3
321 TOKENS 3-5
322 Comments............. it 3-5
3.23 ldentifiers. 3-6
3.2.3.1 Escaped Identifiers 3-6
324 Keywords.............ooiiiiiiiiiii. 3-7
325 Literals. ... 3-8
3.25.1Integer Literals 3-8
3.25.2 Character Literdls 3-8
3.2.5.3 Floating-point Literals 310
3254 SringLiterdls 310
3.25.5 Fixed-Paint Literals 311
3.3 PreproCeSSINg. . .. vvvi e 3-11

i Common Object Request Broker Architecture (CORBA), v2.5

September 2001

Contents

34 OMGIDLGrammar.ouuiiiiin e 3-11
35 OMG IDL Specification.cciuuvuann.. 3-16
3.6 ModuleDeclarationc ... 3-16
3.7 InterfaceDeclaration 3-17
3.71 InterfaceHeader.............. 3-17
3.7.2 Interface Inheritance Specification.......... 3-17
3.73 InterfaceBody 3-18
3.74 Forward Declaration. 3-18
3.7.5 Interface Inheritance. 3-19
3.8 VaueDeclaration i 3-24
3.81 RegularValueType...................... 3-24
38.11VaueHeader 3-24
38.1.2VaueElement 324
3.8.1.3 Value Inheritance Specification 325
3814 StateMembersl 325
3.8.15Initializers L 325
38.1.6VaueTypeExample 3-26
382 BoxedVaueType.............covvinnn.. 3-26
3.8.3 Abstract ValueType 3-27
3.8.4 Vaue Forward Declaration. 3-27
3.85 Vauetypelnheritance.................... 3-28
3.9 ConstantDeclaration oo, 3-29
391 Syntax..........i 3-29
392 Semantics............. i 3-30
310 TypeDeclaration 3-33
3.10.1 BasiCTYPES. v vt 3-34
31011 Integer Typeso v i 335
3.10.1.2 Floating-Point Types 335
310.13Char Type ... v i 3-36
3.10.14WideChar Type 3-36
3.10.15Boolean Typeccovvnnn... 3-36
31016 OCtet TYPe ..o ovveeeeeeeeeenn 3-36
3101 7Any Type 3-36
3.10.2 Constructed Typescoiiven... 3-37
31021 Structureso 3-37
3.10.2.2 Discriminated Unions 3-37
3.10.2.3 Constructed Recursive Types and
Forward Declarations 3-39
31024 Enumerations 341
3.10.3 Template Types.o, 3-41
3103.1Sequences 341
31032SHiNGS. .« oo 342
31033WSNGS. .« 342
31034 FixedType. ..o 343
3.10.4 Complex Declarator 3-43
31041 AIMAYS ..ot 3-43

September 2001 Common Object Request Broker Architecture (CORBA), v2.5 iii

Contents

3.10.5 NativeTypes.o 3-43
3.11 ExceptionDeclaration, 3-47
3.12 OperationDeclaration, 3-47
3.12.1 Operation Attribute. 3-48
3.12.2 Parameter Declarations. 3-48
3.12.3 RaisesExpressions...................... 3-49
3.12.4 Context Expressions. 3-49
3.13 Attribute Declaration 3-50
314 CORBA MoOdUIE. 3-51
315 Namesand SCopingovvvn et 3-52
3.15.1 QualifiedNames. 3-52
3.15.2 Scoping Rules and Name Resolution 3-54
3.15.3 Special Scoping Rulesfor Type Names 3-57
4. ORBINnterface.o 4-1
41 OVEIVIEW . .ottt e 4-1
42 TheORB Operationsovuiiiiiannn 4-2
421 ORBldentitycoviiiiiin... 4-7
42220d .. 4-7
4.2.2 Converting Object Referencesto Strings 4-8
422.10bject to string 4-8
4.22.2string_to_object 4-8
4.2.3 Getting Service Information............... 4-8
4.2.3.1 get_service information 4-8
4.2.4 Thread-Related Operations................ 4-9
424 1work pendingl 4-9
4242 peform_work 4-9
4243TUN L 4-10
4244shutdown ... 4-10
4245destroy ... 4-11
4.3 Object Reference Operations.covvn.. 4-12
4.3.1 Determining the Object Interface 4-13
4311get interfface, 4-13

4.3.2 Duplicating and Releasing Copies of
Object References. 4-14
4321duplicatel 4-14
4322release 4-14
4.3.3 Nil Object References. 4-14
4332isnnil ... 4-14
4.3.4 Equivalence Checking Operation........... 4-14
43400S @it 4-14
4.3.5 Probing for Object Non-Existence 4-15
4351non existent............. ol 4-15
4.3.6 Object Reference Identity. 4-16

Common Object Request Broker Architecture (CORBA), v2.5 September 2001

Contents

September 2001

4.3.6.1 Hashing Object Identifiers............ 4-16
4.3.6.2 EquivalenceTesting 4-16
4.3.7 Getting Policy Associated with the Object. ... 4-17
437.1get policy ... 4-17
4.3.7.2 get_client_policy 4-18
4.3.7.3 get_policy_overrides 4-18
4.3.8 Overriding Associated Policieson
an Object Reference. 4-19
4.3.8.1 set_policy overrides 4-19
439 Validating Connection 4-20
4.3.9.1vaidate connection 4-20
4.3.10 Getting the Domain Managers Associated
withtheObject............ 4-20
4.3.10.1 get domain_managers. 4-20
44 VaueBase Operationscoiiiiinnanan.. 4-21
45 ORB and OA Initialization and Initial References. 4-21
451 ORB Initidization 4-21
45.2 Obtaining Initial Object References. 4-23
45.3 Configuring Initial Service References. 4-26
4.5.3.1 ORB-specific Configuration 4-26
45320RBInitRef L 4-26
4.5.3.3 ORBDefaultlnitRef 4-26
4.5.3.4 Configuration Effect on
resolve initial_references 4-27
4.5.3.5 Configuration Effect on
list_initial_services 4-28
46 ContextObject......... ... i 4-28
4.6.1 Introduction, 4-28
4.6.2 Context Object Operations. 4-29
4.6.2.1 get_default context 4-30
46.22st onevaue 4-30
4623set vaues ... 4-30
4624¢0et vaues i 4-30
46.25delete values 4-31
46.26create child 4-31
4627delete ... 4-32
47 CurrentObject 4-32
48 Policy Object 4-33
4.8.1 Definition of Policy Object. 4-33
4811CODRY i 4-34
4812DESIOYot 4-34
48.1.3Policy type ... 4-34
4.8.2 Creation of Policy Objects 4-34
4.8.2.1 PolicyErrorCode 4-35
4822 PolicyError ..., 4-35
4.8.2.3Create poliCycovviiinnn... 4-35
4.83 Usagesof Policy Objects 4-36
Common Object Request Broker Architecture (CORBA), v2.5 v

Contents

4.8.4 Policy Associated with the Execution

Environment.............. 4-36

485 Specification of New Policy Objects 4-37

486 StandardPolicies 4-39

4.9 Management of Policies. 4-42
49.1 Client Side Policy Management 4-42

49.2 Server SidePolicy Management. 4-42

49.3 Policy Management Interfaces............. 4-43
4.93.1linterface PolicyManager 4-43

4.9.3.2interface PolicyCurrent 4-45

410 Management of Policy Domains 4-45
4.10.1 BasicCoNncepts..........ovuvviiunnannnn. 4-45
4.10.1.1PolicyDomain.................... 4-45

4.10.1.2 Policy Domain Manager 4-46

4.10.1.3 Policy Objects 4-46

4.10.1.4 Object Membership of Policy Domains 4-46
4.10.1.5 Domains Association at Object

ReferenceCreation 4-47

4.10.1.6 Implementer’s View of Object Creation 4-47

4.10.2 Domain Management Operations. 4-48
41021 DomanManager 4-49

4.10.2.2 Construction Policy 4-50

411 EXCEPLIONS . ..ottt it it 4-50
4.11.1 Definitionof Terms 4-51
4.11.2 SystemEXceptions...................... 4-51
4.11.3 Standard System Exception Definitions 4-53
41131 UNKNOWN, 4-55
41132BAD PARAM 4-55
411.33NO_MEMORY, 4-55
41134IMP_LIMIT ..o 4-55
41135COMM_FAILURE 4-55
41136INV_OBJREF 4-56
411.3.7NO_PERMISSION 4-56
411.38INTERNALot 4-56
41139MARSHAL i 4-56
411310INITIALIZE oot 4-56

411311 NO_IMPLEMENT 4-56
411.312BAD_TYPECODE 4-56
411.3.13BAD_OPERATION 4-57
411.314NO_RESOURCES 4-57

411315NO RESPONSE 4-57

411316 PERSIST STORE 4-57
411.3.17BAD_INV_ORDER 4-57

411318 TRANSIENTt 4-57
411.319FREE MEM 4-57

411320 INV_IDENT 4-57

411321 INV_FLAG it 4-57
411322INTF_ REPOS 4-58
411.323BAD_CONTEXT 4-58
411.3240BJ ADAPTER 4-58

vi Common Object Request Broker Architecture (CORBA), v2.5 September 2001

Contents

411.325DATA_CONVERSION 4-58
411326 OBJECT_NOT EXIST 4-58
411.3.27 TRANSACTION_REQUIRED 4-58
411328 TRANSACTION_ROLLEDBACK .. 4-58
411329 INVALID_TRANSACTION 4-59
411330INV_POLICY, 4-59
4.11.3.31 CODESET_INCOMPATIBLE 4-59
411332REBIND 4-59
411333TIMEOUT, 4-59
411.3.34 TRANSACTION_UNAVAILABLE . 4-59
4.11.3.35 TRANSACTION_MODE 4-59
411.336BAD QOS............ ..l 4-60
4.11.4 Standard Minor Exception Codes. 4-60
5. ValueTypeSemantics............ ..., 5-1
51 OVEIVIBW . .ottt 5-1
52 Architecture. 5-2
521 AbstractValues.............., 5-3
522 Opeationscc.oviiiiiiii., 5-3
523 VaueTypevs. Interfaces 5-4
524 Parameter Passing. 5-4
5.2.4.1 Vauevs. Reference Semantics 5-4
5.2.4.2 Sharing Semantics 5-4
5.2.4.3 |dentity Semantics 5-4
5.2.4.4 Any parametertype 5-5
5.25 Substitutability Issues.................... 5-5
5.2.5.1 Vaueinstance -> Interfacetype 5-5
5.2.5.2 VaueInstance-> Abstract interfacetype 5-5
5.2.5.3 Vaueinstance-> Valuetype 5-5
5.2.6 Widening/Narrowing 5-6
527 VaueBaseType.......... ..., 5-6
528 LifeCycleissues 5-7
5.2.8.1 Creation and Factories 5-7
5.2.9 Security Considerations 5-7
529.1VaueasVaue..................... 5-8
5.2.9.2 Vaueas Object Reference 5-8
5.3 Standard Value Box Definitions. 5-9
54 Language MappingsS.oov ittt 5-9
54.1 General Requirements 5-9
5.4.2 Language Specific Marshaling............. 5-9
5.4.3 Language Specific Value Factory
Requirementst 5-9
5.4.4 Vaue Method Implementation............. 5-10
55 CustomMarshalingcooiuiiiiiian.. 5-10
5.5.1 Implementation of Custom Marshaling 5-11
552 MarshalingStreams 5-11

September 2001 Common Object Request Broker Architecture (CORBA), v2.5 vii

Contents

5.6 Accessto the Sending Context RunTime 5-18
6. Abstract InterfaceSemantics........................ 6-1
B.1 OVEIVIAN ..ot e e 6-1
6.2 Semanticsof Abstract Interfaces 6-1
6.3 UsageGuidelines.ccoiiiiinan.. 6-3
6.4 Example...... 6-3
6.5 Security Considerations.ciiian.. 6-4
6.5.1 Passing Valuesto Trusted Domains 6-4

7. Dynamiclnvocation Interface 7-1
7.1 OVEIVION .o e e e 7-1
7.1.1 CommonDataStructures................. 7-2

712 MemoryUsage..................coooun.. 7-4

7.1.3 Return Status and Exceptions. 7-4

7.2 RequestOperationsc.cuuuiiiinnnennan.. 7-4
721 create request............... ... 7-5

722 add arg.............iii 7-7

723 0nVOKe. 7-8

724 delete.......... L. 7-8

725 send 7-8

726 poll_response......... ..., 7-9

727 Qel_Iesponse.coviiinininne.. 7-9

728 sendp ... 7-9

729 Prepare 7-10

7210 sendc........... 7-10

7.3 ORBOPEaions.cvviiii i 7-10
7.3.1 send_multiple_requests 7-10

7.3.2 get_next_response and poll_next_response ... 7-11

74 Polling 7-12
7.4.1 Abstract ValuetypePollable 7-13
7410isready 7-13

7.4.12create pollable set 7-14

7.4.2 Abstract Valuetype DIIPollable................. 7-14

7.4.3 interfacePollableSet 7-14
7.4.3.1create dii_pollable 7-14

7432add pollable 7-14

7433 get_ready pollable 7-15

TA3416MOVE ... ot 7-15

7435number left 7-16

7.5 ListOperations.t 7-16
751 createlist........ 7-16

viii Common Object Request Broker Architecture (CORBA), v2.5 September 2001

Contents

752 additem........... 7-17
753 free. ... 7-17
754 freememoryc.oiiiiiiiian.. 7-17
755 get_count 7-17
7.5.6 create operation_ list 7-18
8. Dynamic Skeleton Interface. 8-1
81 Introduction............. 8-1
8.2 OVEIVIEW ..ot 8-2
8.3 ServerRequestPseudo-Object....................... 8-3
8.3.1 ExplicitRequest State:
ServerRequestPseudo-Object 8-3
84 DSl:LanguageMappingcoviuiiiiinn.. 8-4
8.4.1 ServerRequest’s Handling of
Operation Parameters. 8-4
8.4.2 Registering Dynamic Implementation
Routines. 8-4
9. Dynamic Management of Any Values.................. 9-1
9.1 OVEIVIEW ..ot 9-1
9.2 DynAny APl ... 9-3
9.21 Locality and usage constraints 9-9
9.2.2 CreatingaDynAnyobject 9-9
9.23 TheDynAnyinterface 9-11
9.2.3.1 Obtaining the TypeCode associated
withaDynAny object 9-11
9.2.3.2 Initializing aDynAny object from
another DynAny object 9-12
9.2.3.3 Initializing aDynAny object from an
anyvalue 9-12
9.2.3.4 Generating an any valuefrom a
DynAnyobject.co i 9-12
9.2.3.5 Comparing DynAny values 9-12
9.2.3.6 Destroying aDynAny object 9-13
9.2.3.7 Creating acopy of aDynAny object 9-13
9.2.3.8 Accessing a value of some basic type
inaDynAnyobject 9-13
9.2.3.9 Iterating through components of
aDynAny 9-15
9.24 TheDynFixedInterface 9-16
9.25 TheDynEnuminterface.................. 9-16
9.2.6 TheDynStructinterface.................. 9-17
9.27 TheDynUnioninterface.................. 9-19
9.2.8 TheDynSequenceinterface 9-21
9.29 TheDynArrayinterface 9-22

September 2001 Common Object Request Broker Architecture (CORBA), v2.5 ix

Contents

9.2.10 TheDynValueCommon interface........... 9-23
9.211 TheDynVaueinterface 9-24
9.212 TheDynValueBox interface............... 9-24
9.3 UsageinC++Language.............cooivuvnannn.. 9-25

9.3.1 Dynamic creation of CORBA::Any values. ... 9-25
9.3.1.1 Creating an any that containsastruct ... 9-25
9.3.2 Dynamic interpretation of

CORBA:Anyvalues 9-26
9.32.1Filteringofevents 9-26
10. Thelnterface Repository. 10-1
101 OVEIVIAW .o 10-1
10.2 Scope of an Interface Repository 10-2
10.3 Implementation Dependencies. 10-4
10.3.1 Managing Interface Repositories 10-4
1044 BaSiCS. . ..ot 10-5
10.4.1 Namesand ldentifiers.................... 10-6
10.4.2 Typesand TypeCodes.................... 10-6
10.4.3 Interface Repository Objects 10-6
10.4.4 Structure and Navigation of the
Interface Repository 10-7
10.5 |Interface Repository Interfaces 10-9
10.5.1 Supporting Type Definitions. 10-10
1052 IRObject. 10-11
10521 Read Interface 10-11
10.5.2.2 Writelnterface 10-11
1053 Contained............c.cciiiiiiiin... 10-11
10531 Read Interface, 10-12
10.5.3.2 Writelnterface 10-13
1054 Containerccouiiiiniinnnnnnn.. 10-14
10541 Read Interface, 10-17
10.5.4.2 WritelInterface 10-18
1055 IDLType . ..o 10-19
10.5.6 ReposSitoryc..iiriiiiiiinn... 10-20
10.5.6.1 Read Interface 10-21
10.5.6.2 WritelInterface 10-21
10.5.7 ModuleDef 10-22
1058 ConstantDef 10-22
10581 Read Interface 10-22
10.5.8.2 Writelnterface 10-23
10.5.9 TypedefDef........... 10-23
10.5.10 StructDef 10-23
10.5.10.1 Read Interface 10-24
10.5.10.2 WritelInterface 10-24

X Common Object Request Broker Architecture (CORBA), v2.5 September 2001

Contents

10.5.11 UnionDef 10-24
105111 Read Interface 10-24

10.5.11.2 WriteInterface 10-25

10.5.12 EnumDef 10-25
105.12.1 Read Interface 10-25

10.5.12.2 WriteInterface 10-25

10513 AliasDef oo 10-25
105.13.1Read Interface 10-26

10.5.13.2 WriteInterface 10-26

10.5.14 PrimitiveDef 10-26
10.5.15 StringDef 10-26
10516 WstringDef 10-27
10.5.17 FixedDef.o 10-27
10.5.18 SequenceDef. i 10-27
105.181Read Interface 10-28

10.5.18.2 WriteInterface 10-28

10.5.19 ArrayDef. 10-28
105.19.1Read Interface 10-28

10.5.19.2 WriteInterface 10-28

10.5.20 ExceptionDef 10-29
105.20.1Read Interface 10-29

10.5.20.2 WriteInterface 10-29

10.5.21 AttributeDef 10-29
10521.1Read Interface 10-30

10.5.21.2 WriteInterface 10-30

10.5.22 OperationDef, 10-30
10.5.22.1 Read Interface 10-31

10.5.22.2 WriteInterface 10-32

10.5.23 InterfaceDef 10-32
10.5.23.1 Read Interface 10-33

10.5.23.2 WriteInterface 10-34

10.5.24 AbstractinterfaceDef 10-34
105241 Read Interface 10-34

10.5.24.2 WriteInterface 10-35

10.5.25 LocalInterfaceDef. 10-35
10.5.25.1 Read Interface 10-36

10.5.25.2 WriteInterface 10-36

10.5.26 VaueMemberDef 10-37
10.5.26.1 Read Interface 10-37

10.5.26.2 WriteInterface 10-38

10.5.27 ValueDef. 10-38
105271 Read Interface 10-40

10.5.27.2 WriteInterface 10-40

10.5.28 ValueBoxDef 10-41
105281 Read Interface 10-41

10.5.28.2 WriteInterface 10-41

10.5.29 NativeDefo 10-41
10.6 ReposItorylds.o 10-42

September 2001 Common Object Request Broker Architecture (CORBA), v2.5 Xi

Contents

106.1 OMGIDLFormat. 10-42
10.6.2 RMI| Hashed Format..................... 10-43
10.6.3 DCEUUID Format. 10-44
1064 LOCAL Formatcovvvn... 10-45
10.6.5 PragmaDirectivesfor Repositoryld 10-45
10651 ThelDPragma 10-45
10.6.5.2 ThePrefix Pragma................. 10-45
10.6.5.3 TheVersonPragma 10-48
10.6.5.4 Generation of OMG IDL -

FormatIDs 10-49
10.6.6 For More Information.................... 10-50
10.6.7 RepositorylDs for OMG-Specified Types. 10-50
10.7 TYPeCOUESottt e 10-51
10.7.1 TheTypeCodelnterface.................. 10-51
10.7.2 TypeCodeConstants. 10-55
10.7.3 Creating TypeCodes. 10-56
10.8 OMG IDL for Interface Repository 10-60
11. ThePortable Object Adapter 11-1
111 OVEIVIEW .o e 11-1
11.2 Abstract Model Description., 11-2
11.2.1 Model Components 11-2
11.2.2 Model Architecture. 11-4
1123 POACreation.c.covviinnnn.. 11-6
11.2.4 ReferenceCreation...................... 11-7
11.2.5 Object Activation States. 11-8
11.2.6 Request Processing. 11-9
11.2.7 Implicit Activation 11-10
11.2.8 Multi-threading 11-11
11.2.8.1 POA Threading Models. 11-11
11.2.8.2 Using the Single Thread Modd 11-11
11.2.8.3 Using the ORB Controlled Model 11-12
11.2.8.4 Using the Main Thread Model 11-12

11.2.8.5 Limitations When Using Multiple
Threadso i 11-12
11.2.9 Dynamic Skeleton Interface............... 11-12
11.2.10 Location Transparency 11-14
113 Interfaces. ... 11-14
11.31 TheServantIDL Type 11-15
11.3.2 POAManager Interface. 11-15
11.3.2.1 Processing States 11-16
11.3.2.2 Locdlity Constraints 11-18
11.323activate. 11-18
11.324 hold_requestsoonnn 11-18
11.325discard requests 11-19

Xii Common Object Request Broker Architecture (CORBA), v2.5 September 2001

Contents

11.326deactivate. ... 11-19
11.327get State 11-20
11.3.3 AdapterActivator Interface. 11-21
11.3.3.1 Locality Constraints 11-21
11.3.3.2 unknown_adapter 11-21
11.3.4 ServantManager Interface. 11-22
11.3.4.1 Common Information for Servant
Manager Types, 11-22
11.3.4.2 Locality Congtraints 11-23
11.3.5 ServantActivator Interface 11-23
11.351incarmnate, 11-24
11.352etherealize 11-25
11.3.6 ServantLocator Interface 11-26
11361 preinvoke L. 11-27
11.3.6.2 postinvoke 11-27
11.3.6.3 ServantLocator and Location
Determination 11-28
11.3.7 POA Policy Objectscovu... 11-28
11.3.71 Thread Policy 11-28
11.3.7.2 Lifespan Policy 11-29
11.3.7.3 Object Id Uniqueness Policy 11-29
11.3.7.41d Assignment Policy 11-30
11.3.7.5 Servant Retention Policy 11-30
11.3.7.6 Request Processing Policy 11-31
11.3.7.7 Implicit Activation Policy 11-32
11.3.8 POA Interface. 11-33
11.3.8.1 Locality Constraints 11-33
11.3.82create POA 11-33
11.383find POA 11-34
11.38.4destroy 11-34
11.3.8.5 Policy Creation Operations 11-35
11.386thename 11-36
11.38.7the parent 11-36
11.388the children 11-36
11.3.8.9the POAManager 11-36
11.3.8.10the activator 11-36
11.3.8.11 get_servant_manager 11-36
11.3.8.12 set_servant_manager 11-37
11.3813¢get servant 11-37
11.3814set servant ... 11-37
11.3.8.15activate object 11-38
11.3.8.16 activate object with id............ 11-38
11.3.8.17 deactivate object 11-38
11.3.8.18 create reference. 11-39
11.3.8.19 create_reference with_id 11-39
11.38.20servant to id 11-40
11.3.8.21 servant_to _reference 11-40
11.3.8.22 reference to servant 11-41
11.38.23reference to id 11-41
11.3824id to servant 11-42
11.3.8.25id to reference 11-42
11.382610d ... 11-42
11.3.9 Current Operationsc.c.co.... 11-43

September 2001 Common Object Request Broker Architecture (CORBA), v2.5 Xiii

Contents

11.39.1get POA 11-43
11.3.9.2 get object idoiiii... 11-43
11393 get reference 11-43
11394 get servantl 11-44
114 IDL for PortableServer Module. 11-44
11.5 UML Description of PortableServer. 11-50
116 Usage SCeNarioS. vvve vt 11-51
11.6.1 GettingtheRoot POA. 11-51
11.6.2 CreatingaPOA.. 11-52

11.6.3 Explicit Activation with POA-assigned
Objectlds.coiviiiiii.. 11-52

11.6.4 Explicit Activation with User-assigned
Objectlds., 11-53
11.6.5 Creating References before Activation. 11-54
11.6.6 Servant Manager Definition and Creation 11-54
11.6.7 Object ActivationonDemand 11-56

11.6.8 Persistent Objects with POA-assigned Ids 11-58
11.6.9 Multiple Object Ids Mapping to a

SingleServant. 11-58
11.6.10 One Servant for All Objects. 11-58

11.6.11 Single Servant, Many Objects and
Types, UsngDSl 11-61
12. Interoperability Overviewooo... 12-1
12.1 Elementsof Interoperability. 12-1
12.1.1 ORSB Interoperability Architecture.......... 12-2
12.1.2 Inter-ORB Bridge Support 12-2
12.1.3 General Inter-ORB Protocol (GIOP) 12-3
12.1.4 Internet Inter-ORB Protocol (I11OP) 12-3

12.1.5 Environment-Specific Inter-ORB
Protocols (ESIOPS).t 12-4
12.2 Relationship to Previous Versionsof CORBA 12-4
12.3 Examples of Interoperability Solutions 12-5
1231 Examplel.o i 12-5
1232 Example2........ ..o i 12-5
1233 Example3....o i 12-5
12.3.4 Interoperability Compliance............... 12-5
124 MotivatingFactors. i 12-8
12.4.1 ORB Implementation Diversity 12-8
1242 ORBBoundaries........................ 12-8

12.4.3 ORBs Vary in Scope, Distance,

andLifetime.............. 12-9

Xiv Common Object Request Broker Architecture (CORBA), v2.5 September 2001

Contents

September 2001

12,5 Interoperability DesignGoals 12-9
1251 Non-Goasccoviiiiii... 12-10
13. ORB Interoperability Architecture 13-1
131 OVEIVIAW .o 131
1311 DOMaiNS. ..ot 13-2
13.1.2 BridgingDomains 13-2
132 ORBsandORB Services.couiueunne... 13-3
13.2.1 TheNatureof ORB Services 13-3
13.2.2 ORB Services and Object Requests 13-3
13.2.3 Selection of ORB Services. 13-4
133 DOMaiNS. . ..ot e 13-5
13.3.1 Definitionof aDomain. 13-5
13.3.2 Mapping Between Domains: Bridging 13-6
13.4 Interoperability BetweenORBS. 13-7
13.41 ORB Servicesand Domains............... 13-7
1342 ORBsandDomains 13-7
13.4.3 Interoperability Approaches............... 13-8
13.4.3.1 Mediated Bridging 13-8
13.4.3.2 Immediate Bridging 13-9
13.4.3.3 Location of Inter-Domain
Functionality, 13-9
13.434BridgingLevel 13-10
13.4.4 Policy-Mediated Bridging 13-10
13.4.5 Configurations of Bridgesin Networks 13-11
135 Object ADressing 13-11
13.5.1 Domain-relative Object Referencing 13-12
13.5.2 Handling of Referencing Between Domains. . . 13-12
13.6 An Information Model for Object References.......... 13-14
13.6.1 What Information Do Bridges Need?. 13-14
13.6.2 Interoperable Object References:. IORs 13-14
13.6.3 IORProfiles.......... 13-15
13.6.4 Standard IOR Profiles.................... 13-17

13.6.4.1 The TAG_INTERNET_IOP Profile ... 13-17
13.6.4.2 The TAG_MULTIPLE_

COMPONENTSProfile 13-18
13.6.4.3 The TAG_SCCP_IOP Profile 13-18
1365 IORComponentscovvue.n. 13-18
13.6.6 Standard IOR Components. 13-19
13.6.6.1 TAG_ORB_TYPE Component 13-20
13.6.6.2 TAG_ALTERNATE_IIOP_
ADDRESS Component 13-20
13.6.6.3 Other Components.. 13-20

13.6.7 Profile and Component Compositionin IORs . 13-21

Common Object Request Broker Architecture (CORBA), v2.5 XV

Contents

13.6.8 IOR Creationand Scope. 13-22
13.6.9 Stringified Object References. 13-22
13.6.10 Object URLS.t 13-23
13.6.10.1corbalocURL 13-24
13.6.10.2 corbaloc:rirURL 13-25
13.6.10.3 corbaloc:iiop URL 13-26
13.6.10.4 corbaloc Server Implementation 13-27
13.6.10.5corbanameURL 13-27
13.6.10.6 Future corbaloc URL Protocols. 13-27
13.6.10.7 Future URL Schemes 13-27
13.7 ServiceContextt 13-28
13.7.1 Standard Service Contexts 13-29
13.7.2 Service Context ProcessingRules 13-31
13.8 Coder/Decoder Interfaces. oo, 13-31
13.8.1 Codeclinterface......................... 13-31
13.8.1.1Exceptionsooviiinn... 13-32
13.8.1.20perationsiiiiiiii 13-32
13.8.2 CodecFactory.oovuiininin... 13-33
13.8.2.1 Encoding Structure 13-34
13.8.2.2 CodecFactory Interface 13-34
13.9 Feature Support and GIOP Versions. 13-35
13.10 Code Set Conversioncoieiieiieenennnn. 13-36
13.10.1 Character Processing Terminology.......... 13-36
13101 1Character Set 13-36
13.10.1.2 Coded Character Set, or Code Set 13-36
13.10.1.3 Code Set Classifications 13-37
13.10.1.4 Narrow and Wide Characters 13-37
13.10.1.5 Char Dataand WcharData 13-38
13.10.1.6 Byte-Oriented Code Set 13-38
13.10.1.7 Multi-Byte Character Strings 13-38
13.10.1.8 Non-Byte-Oriented Code Set 13-38
13.10.1.9 Char and Wchar Transmission
Code Set (TCSCand TCSW) 13-38
13.10.1.10 Process Code Set and File
CodeSet ..o 13-38
13.10.1.11 NativeCode Set 13-39
13.10.1.12 Transmission Code Set 13-39
13.10.1.13 Conversion Code Set (CCS) 13-39
13.10.2 Code Set Conversion Framework 13-39
13.10.2.1 Requirements. 13-39
13.10.2.2 Overview of the Conversion
Framework 13-40
13.10.2.3 ORB Databases and Code Set
Converters 13-41
13.10.2.4 CodeSet Component of IOR
Multi-Component Profile 13-42
13.10.2.5 GIOP Code Set Service Context 13-43
13.10.2.6 Code Set Negotiation. 13-44

XVi Common Object Request Broker Architecture (CORBA), v2.5 September 2001

Contents

September 2001

13.10.3 Mapping to Generic Character

Environments. L 13-47
13.10.3.1 Describing Generic Interfaces 13-48
13.10.3.2 Interoperation 13-48
13.10.4 Example of Generic Environment

Mappingot 13-48
13.10.4.1 GenericMappings 13-49

13.10.4.2 Interoperation and Generic
MapPINGS . -« oot 13-49
13.10.5 Relevant OSFM Registry Interfaces. 13-49
13.10.5.1 Character and Code Set Registry 13-49
13.10.5.2 AccessRoutines 13-50
14. BuildingInter-ORBBridgesooo... 14-1
141 IntroduCtiont 14-1
14.2 In-Lineand Reguest-Level Bridging 14-2
1421 In-lineBridging i 14-3
14.2.2 Request-level Bridging. 14-3
142.3 Collocated ORBScivvinn.. 14-4
14.3 Proxy Creation and Management. 14-5
144 Interface-specific Bridges and Generic Bridges. 14-6
145 Building Generic Request-Level Bridges. 14-6
14.6 Bridging Non-Referencing Domains. 14-7
14.7 BootstrappingBridges i 14-7
15. General Inter-ORB Protocol. 15-1
15.1 Goalsof the General Inter-ORB Protocol 15-2
152 GIOPOVEIVIEW . . oo e 15-2
15.2.1 Common Data Representation (CDR) 15-3
15.2.2 GIOPMessage Overview 15-3
1523 GIOPMessage Transfer 15-4
153 CDRTransfer Syntax............ ..., 15-4
15.3.1 PrimitiveTypes.......... ..., 15-5
15311 Alignment ...l 15-5
15.3.1.2 Integer DataTypes 15-6
15.3.1.3 Floating Point Data Types 15-7
153140ctet ... 15-10
15315Booleanl 15-10
15.3.1.6 Character Types.ovvenn.. 15-10
15.3.2 OMG IDL Constructed Types. 15-11
15321 Alignment 15-11
15.3228truct ... 15-12
15323UnioNn ... 15-12
15324 Armay ... 15-12
15325Sequence 15-12
15326Enum 15-12

Common Object Request Broker Architecture (CORBA), v2.5 Xvii

Contents

Xviii

15.3.2.7 Stringsand Wide Strings 15-12
15.3.2.8 Fixed-Point Decimal Type 15-13
15.3.3 Encapsulation............... 15-14
1534 VaueTypes ... 15-15

15.3.4.1 Partial Type Information and
VESIONING .o vveeeei e 15-16
15342Example. i 15-17
15.3.4.3 Scope of the Indirections 15-19
15344 Nul Values 15-19
15.3.4.5 Other Encoding Information 15-19
15.3.4.6 Fragmentation 15-19
15347 Notation i 15-22
15348 TheFormat 15-22
15.3.5 Pseudo-Object Typesc.o.... 15-23
15351 TypeCodecconn... 15-23
15352ANY 15-29
15353 Principal 15-29
15354Context ... 15-29
15355Exception, 15-29
15.3.6 Object References. 15-30
15.3.7 Abstract Interfaces. 15-30
154 GIOPMessageFormats.coviieieennn.... 15-30
1541 GIOPMessageHeader 15-31
1542 RequestMessagec.couvvur.n. 15-33
15421 RequestHeader 15-33
15422 RequestBody 15-36
1543 ReplyMessagecovviviininnn... 15-36
15.43.1Reply Header 15-37
15432ReplyBody 15-38
1544 CancelRequest Message. 15-40
15.4.4.1 Cancel Request Header 15-40
1545 LocateRequestMessage. 15-40
15.45.1 LocateRequest Header. 15-41
15.4.6 LocateReply Message. 15-42
15.4.6.1 Locate Reply Header 15-42
15.4.6.2 LocateReply Body 15-43

15.4.6.3 Handling ForwardRequest

Exception from ServantLocator 15-44
15.4.7 CloseConnectionMessage 15-44
15.4.8 MessageError Message. 15-44
1549 FragmentMessage 15-44
155 GIOPMessage Transport. 15-45
15.5.1 Connection Management 15-46
15.5.1.1 ConnectionClosure 15-47
15.5.1.2 Multiplexing Connections 15-48
1552 Message Ordering.cvvvvenvn... 15-48
156 Object LoCationc.uiieiuiiiinnann. 15-48

Common Object Request Broker Architecture (CORBA), v2.5 September 2001

Contents

September 2001

15.7 Internet Inter-ORB Protocol (IIOP) 15-50
15.7.1 TCP/IP ConnectionUsage 15-50

15.7.2 1IOPIORProfiles. 15-51

15.7.3 1IOPIOR Profile Components 15-54

15.8 Bi-Directional GIOP i, 15-55
15.8.1 Bi-Directiona IIOP 15-57

15.8.1.1 IIOP/SSL considerations 15-58

15.9 Bi-directional GIOPpolicy 15-58
1510 OMGIIDL. . ..o e 15-59
15.10.1 GIOPModule. 15-59

15.10.2 lIOPModule. 15-63

15.10.3 BiDirPolicy Module 15-64

16. TheDCEESIOP. e 16-1
16.1 Goalsof the DCE Common Inter-ORB Protocol 16-1
16.2 DCE Common Inter-ORB Protocol Overview 16-2
16.21 DCE-CIOPRPC............ ..., 16-2

16.2.2 DCE-CIOP Data Representation 16-3

16.2.3 DCE-CIOPMessages.ovvvvnn.. 16-4

16.2.4 Interoperable Object Reference (IOR) 16-5

16.3 DCE-CIOPMessage Transport 16-5
16.3.1 Pipe-based Interface..................... 16-6
16.3.2.21Invoke ... 16-8

16.3.1.2L0cateot 16-8

16.3.2 Array-based Interface.................... 16-8
16.3221Invoke 16-10

16.3.22L0cate 16-11

16.4 DCE-CIOPMessage Formats. 16-11
16.4.1 DCE_CIOP Invoke Request Message. 16-11

16.4.1.1 Invokerequest header 16-11

16.4.1.2 Invokerequestbody 16-12

16.4.2 DCE-CIOP Invoke Response Message. 16-12

16.4.2.1 Invokeresponse header 16-13

16.4.2.2 Invoke ResponseBody 16-13

16.4.3 DCE-CIOP Locate Request Message.. 16-14

16.4.3.1 Locate Request Header 16-14

16.4.4 DCE-CIOP Locate Response Message. 16-15

16.4.4.1 Locate Response Header 16-15

16.4.4.2 Locate ResponseBody 16-16

16,5 DCE-CIOPObject References. 16-16
16.5.1 DCE-CIOP String Binding Component 16-17

16.5.2 DCE-CIOP Binding Name Component 16-18

16.5.2.1 BindingNameComponent 16-18

Common Object Request Broker Architecture (CORBA), v2.5 Xix

Contents

16.5.3 DCE-CIOP No Pipes Component. 16-19
16.5.4 Complete Object Key Component 16-19
16.5.5 Endpoint ID Position Component. 16-20
16.5.6 Location Policy Component............... 16-20
16.6 DCE-CIOPObjectLocation.c.covvvnn.. 16-21
16.6.1 Location Mechanism Overview 16-22
16.6.2 Activation.......... ... 16-23
16.6.3 Basic Location Algorithm 16-23

16.6.4 Useof the Location Policy and
theEndpointID 16-24
16.6.4.1 Current location policy 16-24
16.6.4.2 Original location policy 16-24
16.6.4.3 Original EndpointID 16-24
16.7 OMG IDL for theDCECIOP Module. 16-25
16.8 ReferencesforthisChapter 16-26
17. Interworking Architecture............ 17-1
17.1 Purpose of the Interworking Architecture 17-2

17.1.1 Comparing COM Objectsto CORBA
Objects. 17-2
17.2 Interworking Object Model 17-3
17.2.1 Relationship to CORBA Object Model. 17-3
17.2.2 Relationship to the OLE/COM Model 17-4
17.2.3 Basic Description of the Interworking

Model 17-4
17.3 Interworking Mapping ISsues. 17-8
174 InterfaceMappingt 17-8
1741 CORBA/COM 17-9
17.42 CORBA/Automation 17-9
1743 COM/CORBA 17-10
17.44 Automation/CORBA 17-10
17.5 Interface Composition Mappings. 17-11
1751 CORBA/COMo, 17-11
17511COM/CORBAt 17-12
17.5.1.2 CORBA/Automation 17-12
17.5.1.3 Automation/CORBA 17-13
17.5.2 Detailed MappingRules. 17-13

17.5.2.1 Ordering Rules for the
CORBA->MIDL Transformation 17-13

17.5.2.2 Ordering Rules for the
CORBA->Automation Transformation 17-13
17.5.3 Example of Applying Ordering Rules 17-14
17.5.4 Mapping Interfaceldentity 17-16

XX Common Object Request Broker Architecture (CORBA), v2.5 September 2001

Contents

September 2001

17.5.4.1 Mapping Interface Repository 1Ds
IOCOMIIDS ...

17.5.4.2 Mapping COM |IDsto CORBA
InterfaceIDS

17.6 Object Identity, Binding, and LifeCycle..............

17.6.1 Object Identity Issues.
17.6.1.1 CORBA Object Identity and
Reference Properties
17.6.1.2 COM Object Identity and
Reference Properties
17.6.2 BindingandLifeCycle
17.6.2.1 Lifetime Comparison
17.6.2.2 Binding Existing CORBA Objects
tOCOM Viewsccoiiiiinnn..
17.6.2.3 Binding COM Objectsto
CORBAVIEWSciiiiiiiiiin
17.6.2.4 COM View of CORBA LifeCycle
17.6.2.5 CORBA View of COM/Automation
LifeCycle ...

17.7 Interworking Interfaces
17.7.1 SimpleFactory Interface.
17.7.2 IMonikerProvider Interface and Moniker Use .
17.7.3 ICORBAFactory Interface
17.7.4 |ForeignObject Interface.
17.7.5 ICORBAObDjectInterface.................
17.7.6 ICORBAObject2.
17.7.7 10ORBODbject Interface....................

17.7.8 Naming Conventions for View Components. . .
17.7.8.1 Naming the COM View Interface
17.7.8.2 Tag for the Automation Interfaceld . ..
17.7.8.3 Naming the Automation View

Dispatch Interface
17.7.8.4 Naming the Automation View

Dud Interface
17.7.8.5 Naming the Program Id for the

COMCIBSS ... viiiee e iiiiiiiinns
17.7.8.6 Naming the Class Id for the

COMCIBSS ..t

17.8 Distribution
17.8.1 BridgelLocality................
17.8.2 Distribution Architecture
179 Interworking Targetsc.iiiinenne...

17.10 Compliance to COM/CORBA Interworking

17.10.1 Products Subject to Compliance.

17.10.1.1 Interworking solutions
17.10.1.2 Mapping solutions
17.10.1.3 Mapped components

Common Object Request Broker Architecture (CORBA), v2.5

XXi

Contents

17.10.2 Compliance Points 17-36
18. Mapping: COM andCORBA 18-1
18.1 DataTypeMappingouuiiiiinnnanennn... 18-1
18.2 CORBA to COM Data TypeMapping 18-2
18.2.1 Mapping for Basic DataTypes............. 18-2
18.2.2 Mappingfor Constants. 18-2
18.2.3 Mapping for Enumerators. 18-3
18.2.4 Mapping for String Types. 18-4
18.2.4.1 Mapping for Unbounded String
TYPES oo 18-4
18.2.4.2 Mapping for Bounded String Types ... 18-5
18.2.5 Mapping for Struct Types. 18-5
18.2.6 Mapping for Union Types. 18-6
18.2.7 Mapping for Sequence Types. 18-8
18.2.7.1 Mapping for Unbounded Seguence
TYPES oo 18-8
18.2.7.2 Mapping for Bounded Sequence
TYPES oo 18-8
18.2.8 Mapping for Array Types. 18-9
18.2.9 Mapping for theany Type................. 18-9
18.2.10 Interface Mappingc...... 18-11
18.2.10.1 Mapping for interface identifiers. 18-11
18.2.10.2 Mapping for exception types.. 18-11
18.2.10.3 Mapping for Nested Types 18-21
18.2.10.4 Mapping for Operations 18-22
18.2.10.5 Mapping for Oneway Operations 18-24
18.2.10.6 Mapping for Attributes 18-24
18.2.10.7 Indirection Levels for Operation
Parameters, 18-26
18.2.11 Inheritance Mapping.c.covu... 18-26
18.2.12 Mapping for Pseudo-Objects 18-29
18.2.12.1 Mapping for TypeCode
pseudo-objectl 18-29

18.2.12.2 Mapping for context pseudo-object . .. 18-31
18.2.12.3 Mapping for principal pseudo-object . 18-32

18.2.13 Interface Repository Mapping 18-32
18.3 COM to CORBA Data TypeMapping 18-33
18.3.1 Mapping for Basic DataTypes............. 18-33
18.3.2 Mappingfor Constants. 18-34
18.3.3 Mapping for Enumerators. 18-34
18.3.4 Mapping for String Types. 18-35
18.3.4.1 Mapping for unbounded string types. .. 18-35
18.3.4.2 Mapping for bounded string types. 18-36
18.3.4.3 Mapping for Unicode Unbounded
StNG TYPES o 18-36

18.3.4.4 Mapping for unicode bound string types 18-37

xxii Common Object Request Broker Architecture (CORBA), v2.5 September 2001

Contents

September 2001

18.3.5 Mapping for Structure Types

18.3.6 Mapping for Union Types.
18.3.6.1 Mapping for Encapsulated Unions
18.3.6.2 Mapping for nonencapsulated unions . .
18.3.7 Mapping for Array Types.
18.3.7.1 Mapping for nonfixed arrays
18.3.7.2 Mapping for SAFEARRAY

18.3.8 Mapping for VARIANT
18.3.9 Mapping for Pointers

18.3.10 Interface Mapping
18.3.10.1 Mapping for Interface Identifiers
18.3.10.2 Mapping for COM Errors
18.3.10.3 Mapping of Nested Data Types.
18.3.10.4 Mapping of Names
18.3.10.5 Mapping for Operations
18.3.10.6 Mapping for Properties

18.3.11 Mapping for Read-Only Attributes.
18.3.12 Mapping for Read-Write Attributes

18.3.12.1 InheritanceMapping
18.3.12.2 Type Library Mapping

19. Mapping: Automationand CORBA.

19.1

19.2

19.3

194

195

Mapping CORBA Objectsto Automation

19.1.1 Architectural Overview
19.1.2 Main Features of the Mapping

Mapping for Interfaces.

19.2.1 Mapping for Attributes and Operations
19.2.2 Mapping for OMG IDL Single Inheritance . ..
19.2.3 Mapping of OMG IDL Multiple Inheritance . .

Mapping for Basic Data Types.

19.3.1 Basic Automation Types.

19.3.2 Special Cases of Basic Data Type Mapping . . .
19.3.2.1 Converting Automation long to
CORBA unsignedlong
19.3.2.2 Demoting CORBA unsigned long to
Automationlong,
19.3.2.3 Demoting Automation long to
CORBA unsigned short
19.3.2.4 Converting Automation boolean to
CORBA boolean and CORBA boolean to
Automationboolean

19.3.3 Mappingfor Strings.

IDLtoODL Mappingovuiniiiianannn

19.4.1 A Complete IDL to ODL Mapping for the
BasicDataTypes,

Mapping for Object References.

Common Object Request Broker Architecture (CORBA), v2.5

19-11
19-11

19-12

19-12
19-15

XXiii

Contents

1951 TypeMapping.cooviuiininin... 19-15

19.5.2 Object Reference Parameters and
[ForeignObject 19-16
19.6 Mapping for Enumerated Types. 19-17
19.7 Mapping for Arraysand Sequences. 19-18
19.8 Mapping for CORBA Complex Types. 19-19
19.8.1 Mapping for Structure Types 19-20
19.8.2 Mapping for Union Types. 19-21
19.8.3 Mapping for TypeCodes. 19-22
19.8.4 Mappingforanys. 19-24
19.8.5 Mappingfor Typedefs.................... 19-25
19.8.6 Mapping for Constants. 19-25

19.8.7 Getting Initial CORBA Object References. . . . 19-26
19.8.8 Creating Initial in Parameters for

Complex Types. 19-27
19.8.8.1 ITypeFactory Interface 19-29
19.8.8.2 DIObjectInfo Interface 19-29
19.8.9 Mapping CORBA Exceptions to
Automation Exceptions 19-30
19.8.9.1 Overview of Automation
ExceptionHandling..................... 19-30
19.8.9.2 CORBA Exceptions 19-30
19.8.9.3 CORBA User Exceptions 19-31
19.8.9.4 Operations that Raise User Exceptions . 19-32
19.8.9.5 CORBA System Exceptions 19-33
19.8.9.6 Operations that raise system
eXCeptions 19-34
19.8.10 Conventions for Naming Components of the
AutomationView 19-36
19.8.11 Naming Conventions for Pseudo-Structs, Pseudo-
Unions, and Pseudo-Exceptions.. 19-36
19.8.12 Automation View Interface as a Dispatch
Interface (Nondual) 19-36
19.8.13 Aggregation of Automation Views.......... 19-38
19814 DIl andDSl ... 19-38
19.9 Mapping Automation Objects as CORBA Objects. 19-38
19.9.1 Architectural Overview 19-38
19.9.2 Main Features of theMapping 19-39
19.9.3 Getting Initial Object References. 19-40
19.9.4 Mapping for Interfaces. 19-40
19.9.5 Mapping for Inheritance. 19-40

19.9.6 Mapping for ODL Properties and Methods . .. 19-41

19.9.7 Mapping for Automation Basic Data Types . . . 19-42
19.9.7.1 Basic automation types 19-42

XXiV Common Object Request Broker Architecture (CORBA), v2.5 September 2001

Contents

19.9.8 Conversion Errors. 19-43
19.9.9 Specia Cases of Data Type Conversion.. 19-43
19.9.9.1 TrandatingOM ::Currendd utomati 0BBURRENCY
19-43
19.9.9.2 TranslatingCORBA doubletoAutomationDATE
19-43

19.9.9.3 Translating CORBA boolean to
Automation boolean and Automation boolean to

CORBADbooleancnnt. 19-43
19.9.10 A Complete OMG IDL to ODL Mapping
for the Basic Data Types. 19-44
19.9.11 Mapping for Object References 19-46
19.9.12 Mapping for Enumerated Types. 19-47
19.9.13 Mapping for SafeArrays. 19-48
19.9.13.1 Multidimensional SafeArrays 19-48
19.9.14 Mapping for Typedefs. 19-48
19.9.15 Mapping for VARIANTS 19-48
19.9.16 Mapping Automation Exceptions to CORBA . . 19-49
19.10 Older Automation Controllers. 19-49
19.10.1 Mapping for OMG IDL Arrays and Sequences
toCollections. 19-49
19.11 Example Mappings.o oi i 19-51
19.11.1 Mapping the OMG Naming Service
to Automation. 19-51
19.11.2 Mapping a COM ServicetoOMGIDL 19-51
19.11.3 Mapping an OMG Object Serviceto
Automation. 19-55
20. Interoperability with non-CORBA Systems 20-1
20.1 INtroduCtion 20-1
20.1.1 COM/CORBA PartA............. 20-2
20.2 ConformanCcelssues.vivviiiinnnnnn.. 20-2
20.2.1 Performancelssues...................... 20-3
20.2.2 ScalabilityIssues 20-3
20.2.3 CORBA Clientsfor DCOM Servers......... 20-3
20.3 LocalityoftheBridge L 20-4
204 ExtentDefinition i 20-5
20.4.1 Marshaling Constraints. 20-6
20.42 MarshalingKey 20-6
2043 ExtentFormat.......................... 20-7
2043 1DVO EXTENTttt 20-7
20432DVO IFACE it 20-8
20.43.3DVO_IMPLDATA 20-8
20434DVOBLOBt 20-8

September 2001 Common Object Request Broker Architecture (CORBA), v2.5 XXV

Contents

20.5 Request/Reply Extent Semantics.................... 20-8
20.6 CONSISLENCY . ..ottt 20-9
20.6.1 IValueObject. 20-10
20.6.2 |Synchronize and DISynchronize........... 20-10
20.6.2.1 ModeProperty i 20-11
20.6.2.2 SyncNow Method 20-11
20.6.2.3 ReCopy Method 20-11
20.7 DCOM VaueObjects. 20-11
20.7.1 Passing Automation Compound Types as
DCOM ValueObjects., 20-11
20.7.2 Passing CORBA-Defined Pseudo-Objects
asDCOM Value Objects. 20-11
20.7.3 IForeignObject, 20-12
20.7.4 DIlForeignComplexType. 20-12
20.7.5 DIForeignException. 20-12
20.7.6 DISystemException 20-12
20.7.7 DICORBAUSserException. 20-13
20.7.8 DICORBAStruCt.oooviinnnn. 20-13
20.7.9 DICORBAUNION. 20-13
20.7.10 DICORBATypeCode and ICORBATypeCode. . 20-13
20.7.11 DICORBAANY . . .t 20-14
20.7.12 ICORBAANY . ..t 20-15
20.7.13 User ExceptionsINCOM 20-15
20.8 ChainAvoidancecouiiiiiiinan.. 20-16
20.8.1 CORBA ChainAvoidance 20-16
20.8.2 COM ChainAvoidance. 20-17
209 ChainBypass.iiiiiii i 20-19
20.9.1 CORBA ChainBypass................... 20-19
20.9.2 COM ChainBypasscovvuvn... 20-20
20.10 Thread Identification 20-21
21. Portablelnterceptors ... 21-1
211 INtroduCtion 21-1
21.1.1 ObjectCreation.............c.covuinvn... 21-2
21.1.2 ClientSendsRequest 21-3
21.1.3 Server ReceivesRequest. 21-4
21.1.4 Server SendsReply...................... 21-4
21.1.5 Client ReceivesReply.................... 21-5
21.2 Interceptor Interface. i 21-5
21.3 RequestiInterceptors.ciiiiiii.. 21-6
21.3.1 DesignPrinciples....................... 21-6

XXVi Common Object Request Broker Architecture (CORBA), v2.5 September 2001

Contents

21.3.2 Genera FlowRules 21-7
21.3.3 TheFlow Stack Visual Moddl. 21-8
21.3.4 TheRequest Interceptor Points. 21-8
21.35 Client-Sidelnterceptor 21-9
21.3.6 Client-Side Interception Points. 21-9
21.36.1send_request 21-9
21.36.2send_poll 21-9
21.3.6.3receive reply ..., 21-10
21.3.6.4 receive_exception 21-10
21.3.65receive other 21-11
21.3.7 Client-Side Interception Point Flow 21-11
21.3.7.1 Client-sideFlowRules. 21-11
21.3.7.2 Additiond Client-side Details 21-12
21.3.7.3 Client-side Flow Examples 21-12
21.3.8 Server-Side Interceptor. 21-14
21.3.9 Server-Side Interception Points 21-14
21.3.9.1 receive_request_service _contexts 21-14
21.39.2receive_request 21-15
21.393send_reply ... 21-15
21.3.9.4 send_exception 21-16
21.395send other L 21-16
21.3.10 Server-Side Interception Point Flow. 21-17
21.3.10.1 Server-sideFlow Rules 21-17
21.3.10.2 Additional Server-side Details 21-17
21.3.10.3 Server-side Flow Examples 21-18
21.3.11 Request Information. 21-20
21.3.12 Requestinfo Interface. 21-21
21.3121request_id ...l 21-21
21.3.12.2 0peration ... 21-21
21.3123arguments ... 21-21
21.3.12.4 exceptions ... 21-22
21.3125contextsl 21-22
21.3.12.6 operation_context 21-22
21322 7result .. 21-22
21.3.12.8response expectedl 21-23
21.3.12.9SyNC SCOPE. . ..o oie et 21-23
21.3.12.10reply status 21-23
21.3.12.11 forward_reference 21-24
21.31212¢get ot ... 21-24
21.3.12.13 get_request_service _context 21-25
21.3.12.14 get_reply_service context 21-25
21.3.13 ClientRequestinfo Interface 21-25
21.3131target ... 21-27
21.3.13.2 effective target 21-27
21.3.13.3 effective profile 21-27
21.3.13.4 received_exception 21-27
21.3.13.5received_exception id 21-27
21.3.13.6 get_effective_component 21-27
21.3.13.7 get_effective_components.......... 21-28
21.3.13.8 get_request_policy 21-28
21.3.13.9 add _request_service context........ 21-28

September 2001 Common Object Request Broker Architecture (CORBA), v2.5 XXVil

Contents

XXVili

Common Object Request Broker Architecture (CORBA), v2.5

21.3.14 ServerRequestinfo Interface...............
21.3.14.1 sending_exception
21.3.14.20bject idl
21.3.143adapter_id ...l
21.3.14.4 target_most_derived interface.
21.3.145¢et_server_policy
21.3246set slot
213147target iSsa ...
21.3.14.8 add reply_service context

21.3.15 ForwardRequest Exception.

21.4 Portable Interceptor Current.t
2141 OVEIVIEW ..o
21.4.2 Obtaining the Portable Interceptor Current. . . .

21.4.3 Portable Interceptor Current Interface
21431 ¢get slot ...
21432set dot

21.4.4 Useof Portable Interceptor Current
21.4.4.1 Client-sideuseof PICurrent
21.4.4.2 Example of PICurrent to Handle

Client-side Recursion
21.4.4.3 Server-sideuseof PICurrent
21.4.4.4 Request Scope vs Thread Scope.
21.4.4.5 Flow of PICurrent between Scopes
21.4.4.6 Notes on PICurrent and Scopes.

215 IORINterceptort
2151 OVEIVIEW ...t

21.5.2 IORInterceptor Interface.
21.5.2.1 establish_components
2153 IORInfolnterface.

21.5.3.1 get_effective_policy
21.5.3.2 add_ior_component
21.5.3.3 add_ior_component_to_profile

21.6 PolicyFactory

21.6.1 PolicyFactory Interface.
21.6.1.1create policyo,

21.7 Registering Interceptors.cc i

21.7.1 ORBlnitializer Interface.
2171 2preinit.. ...
21.722post init

21.7.2 ORBlInitinfo Interface....................
21.7.2.1 DuplicateName Exception
21.7.2.2 InvalidName Exception
21723 aguments
21724 0b id. ...
21.7.25codec factory,
21.7.2.6 register_initial_reference............
21.7.2.7 resolve _initid_references
21.7.2.8 add_client_request_interceptor
21.7.2.9 add_server_request_interceptor

September 2001

Contents

September 2001

21.7.2.10add ior_interceptor 21-46
21.7.211 dlocate slot_id 21-46
21.7.2.12 register_policy factory 21-46
21.7.3 register_orb_initializer Operation. 21-47
21.7.3.1 Mappings of register_orb_initializer ... 21-47
21.7.4 Notes about Registering Interceptors 21-49
21.8 Dynamic Initial References 21-49
21.8.1 register_initial_reference 21-49
219 ModuleDynamicC.o 21-50
21.9.1 NVList PIDL Represented by
ParameterList IDL 21-50
21.9.2 ContextList PIDL Represented by
ContextListIDL ot 21-50
21.9.3 ExceptionList PIDL Represented by
ExceptionList IDL 21-51
21.9.4 Context PIDL Represented by
RequestContext IDL 21-51
21.10 Portable Interceptor IDL, 21-51
22. CORBAMESSAQING . . o .o oti et e e 22-1
22.1 Introduction to Quality of Service 22-2
22.2 Messaging Quality of Service 22-2
22.2.1 Rebind Support............ ... 22-5
22.2.1.1 typedef short RebindMode 22-5
22.2.1.2 interface RebindPolicy 22-5
22.2.2 Synchronization Scope. 22-6
22.2.2.1 typedef short SyncScope 22-6
22.2.2.2 interface SyncScopePolicy 22-7
22.2.3 Request and Reply Priority. 22-7
22.2.3.1 struct PriorityRange 22-7
22.2.3.2 interface RequestPriorityPolicy 22-7
22.2.3.3 interface ReplyPriorityPolicy 22-8
22.2.4 Request and Reply Timeout 22-8
22.2.4.1 interface RequestStartTimePoalicy 22-8
22.2.4.2 interface RequestEndTimePolicy 22-9
22.2.4.3 interface ReplyStartTimePolicy 22-9
22.2.4 4 interface ReplyEndTimePolicy 22-9
22.2.4.5 interface
RelativeRequestTimeoutPolicy 22-9
22.2.4.6 interface
RelativeRoundtripTimeoutPolicy 22-10
2225 ROULING.ot 22-10
22.2.5.1 typedef short RoutingType 22-10
22.2.5.2 struct RoutingTypeRange 22-10
22.2.5.3 interface RoutingPolicy 22-11
22.2.5.4 interface MaxHopsPolicy 22-11
2226 QueueOrderingcouuvuinen... 22-11
Common Object Request Broker Architecture (CORBA), v2.5 XXiX

Contents

XXX

22.3

224
225
22.6

227

22.8

229

22.10

22.11

22.2.6.1 typedef short Ordering 22-11
22.2.6.2 interface QueueOrderPolicy 22-12
Propagation of MessagingQoS 22-12
2231 Structures.t 22-12
22.3.2 Messaging QoS Profile Component 22-13
22.3.3 Messaging QoS Service Context 22-13
Introduction to Messaging Programming Model 22-13
Running Example. i 22-15
Async Operation Mapping, 22-16
22.6.1 Callback Model Signatures (sendc) 22-16
22.6.1.1 Implied-IDL for Operations 22-16
22.6.1.2 Implied-IDL for Attributes 22-17
22613Example. ... 22-17
22.6.2 Polling Model Signatures (sendp). 22-18
22.6.2.1 Implied-IDL for Operations 22-18
22.6.2.2 Implied-IDL for Attributes 22-19
22623Example. ... i 22-19
Exception Delivery in the Callback Model. 22-20
22.7.1 Generic ExceptionHolder Value. 22-20
22.7.2 Type-Specific ExceptionHolder Mapping. 22-21
2273 Example. 22-21
Type-Specific ReplyHandler Mapping. 22-22

22.8.1 ReplyHandler Operations for
NO_EXCEPTION Replies. 22-23

22.8.2 ReplyHandler Operations for
Exceptional Replies 22-24
2283 Example...... 22-24
GenericPollerValue 22-25
22.9.1 operation_target 22-26
22.9.2 operation_nNamec.ouieiunn.. 22-26
22.9.3 associated handler 22-26
229.4 is from_poller 22-26
Type-Specific Poller Mapping 22-26
22.10.1 Basic Type-SpecificPoller 22-27

22.10.1.1 Paller operations for
Interface operations 22-27
22.10.1.2 Paller operations for

Interface attributes 22-28
22.10.2 Persistent Type-SpecificPoller............. 22-29
22103 Example 22-29
Example ProgrammerUsage 22-30

22.11.1 Example Programmer Usage
(Examples Mappedto C++) 22-30

Common Object Request Broker Architecture (CORBA), v2.5 September 2001

Contents

September 2001

22.11.2 Client-Side C++ Example for the

Asynchronous Method Signatures 22-31
22.11.3 Client-Side C++ Example of the
Calback Model 22-32
22.11.3.1 C++ Example of Generated
ExceptionHolder 22-32
22.11.3.2 C++ Example of Generated
ReplyHandler 22-33
22.11.3.3 C++ Example of User-Implemented
ReplyHandler.......................... 22-34
22.11.3.4 C++ Example of Callback Client
Program it 22-38
22.11.4 Client-Side C++ Example of the Polling
Model 22-39

22.11.4.1 C++ Example of Generated Poller ... 22-39
22.11.4.2 C++ Example of Polling Client

Program it 22-40
22.11.4.3 C++ Example of Using PollableSet
inaClientProgram 22-42
22115 ServerSide. 22-44
22.12 Introduction to Message Routing Interoperability 22-45
22.13 Routing Object References.t 22-46
22.14 Message Routing ot 22-47
22141 SUUCIUrES . . . oot e e 22-49
221411 MessageBody 22-49
221412 RequestMessage 22-49
22.14.1.3 ReplyDestination 22-50
221414 Requestinfo 22-50
22142 Interfaces 22-51
22142 1ReplyHandler, 22-51
221422 ROUErt 22-51
22.1423send_request ... 22-51
22.14.2.4 send_multiple requests 22-51
22.14.2.5 UntypedReplyHandler 22-51
22.1426reply ..o 22-51
22.14.2.7 PersistentRequest 22-52
22.14.2.8 readonly attributereply_available 22-52
22.1429¢get reply ... 22-52
22.14.2.10 attribute associated_handler 22-52
22.14.2.11 PersistentRequestRouter 22-53
22.14.2.12 create_persistent_request 22-53
22.14.3 Routing Protocol. 22-53
22.14.3.1 InvokingClient 22-54
22.14.3.2 Initid Request Router 22-55
22.14.3.3 Request Routing Algorithm 22-55
22.14.3.4 Intermediate Request Router 22-56
221435 TargetRouter 22-56
22.14.3.6 Replying to a Type-specific
ReplyHandler 22-58
22.14.3.7 Replying to an
UntypedReplyHandler 22-58

Common Object Request Broker Architecture (CORBA), v2.5 XXXI

Contents

XXXil

22.14.3.8 Handling of Service Contexts 22-58

22.14.3.9 Handling LOCATION_FORWARD
Replies. ... 22-59
22.14.3.10 Routing of Replies............... 22-59
22.14.3.11 UntypedReplyHandler 22-59
22.15 Router Administration 22-60
22151 Constants 22-63
22.15.1.1 typedef short RegistrationState 22-63
22152 EXCEPLIONS . . . oo vt 22-64
22.15.2.1 exception InvalidState 22-64
22153 ValUBLYPES . . oot 22-64
22.153.1RetryPolicy 22-64
22.15.3.2 ImmediateSuspend 22-64
221533 UnlimitedPing 22-64
22.15.34LimitedPing 22-64
22.15.3.5DecayPolicy 22-65
22.15.3.6 ResumePolicy 22-65
22154 Interfaceso 22-65
221541 RouterAdmin 22-65
22.15.4.2 register_destination 22-65
22.15.4.3 suspend_destination 22-65
22.15.4.4resume_destination 22-65
22.15.4.5 unregister_destination 22-66
23. Minimum CORBA. 23-1
23.1 Introduction i 23-2
232 DL . 23-2
23.3 CORBA OmittedFeatures 23-2
234 ORB InterfaceOmissions., 23-3
2341 ORB 23-3
2342 Object. 23-4
23.4.3 ConstructionPalicy 23-4
23,5 Dynamic Invocation Interface 23-5
23.6 Dynamic Skeleton Interface. 23-5
237 DynamiCANY. ... 23-5
23.8 Interface Repository. ... 23-5
2381 TypeCode..........ccoviiiiiinnnnn.. 23-5
239 Portable Object Adapter. oot 23-6
239.1 Interfaces 23-6
239.1L1POA ... 23-6
239.12Current 23-6
239.1.3 Policy interfaces 23-7
239.14POAManagerooviiiii 23-7
23.9.1.5 AdapterActivator 23-7
23916 ServantManagers 23-7
2392 Policies....... ... 23-7

Common Object Request Broker Architecture (CORBA), v2.5 September 2001

Contents

23.9.2.1 ThreadPolicy 23-7

23.9.2.2 LifespanPolicy 23-8

23.9.2.3 ObjectldUniquenessPolicy 23-8

23.9.2.4 IdAssignmentPolicy 23-8

23.9.2.5 ServantRetentionPolicy 23-8

23.9.2.6 RequestProcessingPolicy 23-8

23.9.2.7 ImplicitActivationPolicy 23-9

23.10 Interoperability. 23-9
23.10.1 DCE Interoperability 23-9

23.11 COM/CORBA Interworkingc.o... 23-10
2312 INErCEPLOrS . ..ottt 23-10
23.13 Language Mappings.o e 23-10
23.13.1 C++ Mapping Specificlssues. 23-10

23.13.2 Java Mapping Specificlssues. 23-10

23.14 minimumCORBAOMGIDLot 23-11
23141 0ORBlinterface. 23-11

23.14.2 Dynamic Invocation Interface. 23-14

23.14.3 Dynamic Skeleton Interface 23-14

23.14.4 Dynamic Management of Any Values 23-14

23.145 Interface Repositoryt 23-14

23.14.6 Portable Object Adapter 23-22

23147 Interceptors.o 23-29

24. Real-TImeCORBA e 24-1
241 Goalsof the Specification 24-2
242 ExtendingCORBA. i 24-3
243 Approachto Real-TimeCORBA 24-3
24.3.1 TheNatureof Real-Time................. 24-3

24.3.2 Meeting Real-Time Requirements 24-4

2433 activities. 24-4

24.3.4 End-to-End Predictability................. 24-5

24.3.5 Management of Resources 24-6

244 Compatibility 24-6
2441 |Interoperability............., 24-6

2442 Portability.......... 24-7

2443 CORBA - Real-Time CORBA Interworking. .. 24-7

245 Real-Time CORBA Architectural Overview 24-7
2451 Rea-Time CORBA Modules.............. 24-8

2452 Rea-TimeORB 24-8

2453 Thread Scheduling 24-9

2454 Rea-Time CORBA Priority 24-9

September 2001 Common Object Request Broker Architecture (CORBA), v2.5 XXXl

Contents

2455 Native Priority and PriorityMappings. 24-9
2456 Rea-TimeCORBA Current............... 24-9
2457 PriorityModels. oo 24-10
24.5.8 Real-Time CORBA Mutexes and
Priority Inheritance. 24-10
2459 Threadpools.......... 24-10
24.5.10 Priority Banded Connections 24-11
24.5.11 Non-Multiplexed Connections 24-11
24.5.12 Invocation Timeouts 24-11
24.5.13 Client and Server Protocol Configuration. 24-11
24.5.14 Real-Time CORBA Configuration 24-11
24.5.15 Scheduling Service. 24-12
246 Rea-TimeORBt 24-12
24.6.1 Real-Time ORB Initialization. 24-13
24.6.2 Real-Time CORBA System Exceptions.. 24-13
247 Read-TimePOA 24-14
24.8 Native Thread Priorities. 24-15
249 CORBA Priority.cui i 24-16
24.10 CORBA Priority Mappingsovvuvuennn.. 24-16

24.10.1 C Language binding for PriorityMapping. 24-17
24.10.2 C++ Language binding for PriorityMapping . . 24-17
24.10.3 AdaLanguage binding for PriorityMapping. . . 24-18
24.10.4 Java Language binding for PriorityMapping . . 24-18

24105 Semantics. 24-18
2411 Rea-TimeCurrentt 24-19
24.12 Real-Time CORBA Priority Models 24-20
24.12.1 PriorityModelPolicy 24-20
24.12.2 Scope of PriorityModelPolicy 24-21
24.12.3 Client Propagated Priority Model 24-22
24.12.4 Server Declared Priority Model 24-23

24.12.5 Setting Server Priority on a per-Object
ReferenceBasist 24-23
24.13 Priority Transforms 24-25

24.13.1 C Language Binding for PriorityTransform . . . 24-26
24.13.2 C++ Language Binding for PriorityTransform . 24-26
24.13.3 AdalLanguage binding for PriorityTransform . 24-27
24.13.4 Java Language binding for PriorityTransform . 24-27
24135 SemanticS. 24-27

24.14 Mutex Interface 24-28

XXXIV Common Object Request Broker Architecture (CORBA), v2.5 September 2001

Contents

24.15

24.16
24.17

24.18
24.19
24.20

24.21
24.22
24.23
24.24
24.25

25. Fault Tolerant CORBA

251

September 2001

Common Object Request Broker Architecture (CORBA), v2.5

Threadpools. 24-29
24.15.1 Creation of Threadpool without Lanes. 24-31
24.15.2 Creation of Threadpool withLanes 24-32
24.15.3 Request Buffering. 24-32
24.15.4 Scope of ThreadpoolPolicy. 24-33

Implicit and Explicit Binding. 24-33

Priority Banded Connections. 24-34
24.17.1 Scope of PriorityBandedConnectionPolicy. . . . 24-35
24.17.2 Binding of Priority Banded Connection 24-36

PrivateConnectionPolicy 24-37

Invocation TIMeOoUt e 24-38

Protocol Configuration. 24-38
24.20.1 ServerProtocolPolicy 24-39
24.20.2 Scope of ServerProtocolPolicy............. 24-41
24.20.3 ClientProtocolPolicy. 24-41
24.20.4 Scope of ClientProtocolPolicy 24-42
24.20.5 Protocol Configuration Semantics 24-42

Consolidated IDLo 24-43

Introduction 24-48

DL . . 24-49

SEMANtiCS. . ..o o 24-50

Example. 24-51
24.25.1 Server C++ ExampleCode. 24-51
24.25.2 Client C++ ExampleCode 24-52
24.25.3 Explanation of Example. 24-53

............................. 25-1

Fault Tolerant CORBA 25-1
25.1.1 Fault Tolerance for Diverse Applications. 25-1
25.1.2 Objectives. 25-2
25.1.3 BasicConcepts.covviiiininin... 25-3

25.1.3.1 Replication and Object Groups 25-3

25.1.3.2 Fault ToleranceDomains 25-3

25.1.3.3 Fault Tolerance Properties........... 25-3

25.1.3.4 Strong ReplicaConsistency 25-4

25.1.4 Architectural Overview 25-4
25.1.4.1 Fault Tolerance Property

Management 25-6

25.1.4.2 Replication Management 25-6

25.1.4.3 Fault Detection and Natification 25-7

25.1.4.4 Logging and Recovery 25-7

2515 RequirementS................uiuinin... 25-8

XXXV

Contents

XXXVi

25.1.6 Limitations.c .

25.2 Basic Fault Tolerance Mechanisms
2521 OVEIVIEW . oot e e e

25.2.2 Interoperable Object Group References..
25.2.2.1 TAG_FT_GROUP Component
25.2.2.2 TAG_FT_PRIMARY Component

25.2.3 Interoperable Object Group Reference

Operations
25231 ¢get interface L
2523208 @ it
25233isnil ...
25.234non existent
25.235i0s equivalent.
25236hash. ...
25.2.3.7 create_request
25238¢et policy il
25.2.3.9 get_domain managers.
25.2.3.10 set_policy_overrides

25.2.4 Modes of Profile Addressing
25.2.4.1 Profiles That Address Object Group

Members
25.2.4.2 Profiles That Address Gateways
25.2.4.3 Choice of Profile Addressing Mode. . ..

25.2.5 Accessing Server Object Groups
25.2.5.1 Access viallOP Directly to the

Primary Member
25.2.5.2 AccessviallOP and a Gateway
25.2.5.3 Access viaaMulticast Group

Communication Protocol

25.2.6 Extensionsto CORBA Failover Semantics. . . .

25.2.7 Most Recent Object Group Reference
25.2.7.1 FT_GROUP_VERSION Service
Contextv i
25.2.8 Transparent Reinvocation.
25.2.8.1 FT_REQUEST Service Context
25.2.8.2 Request Duration Policy
25.2.8.3 Fault Handling for GIOP Messages . ..
25.2.9 Transport Heartbeats.
25.29.1 TAG_FT_HEARTBEAT_ENABLED
Component i
25.2.9.2 Heartbeat Policy
25.2.9.3 Heartbeat Enabled Policy

25.3 ReplicationManagement,
2531 OVEIVIEW ...t

25.3.2 Fault Tolerance Properties
25.3.2.1 ReplicationStyle
25.3.2.2 MembershipStyle
25.3.2.3 ConsistencyStyle
25.3.2.4 FaultMonitoringStyle
25.3.2.5 FaultMonitoringGranularity

Common Object Request Broker Architecture (CORBA), v2.5 September 2001

Contents

September 2001

25326 Factories 25-36
25.3.2.7 InitiadlNumberReplicas 25-37
25.3.2.8 MinimumNumberReplicas 25-37
25.3.3 FaultMonitoringintervalAndTimeout 25-37
25.3.4 Checkpointinterval 25-37
2535 CommonTypes..........covvvivinnnn.. 25-38
25.35.1 Identifiers. ...l 25-40
2535.2EXCeptions 25-43
25.3.6 ReplicationManager 25-44
2536.10perations ... 25-45
25.3.7 PropertyManager 25-45
253.7.10perations 25-46
25.3.7.2 get_properties ...l 25-49
25.3.8 ObjectGroupManager.................... 25-50
25381 0perations ... 2551
25.3.9 GenericFactory 25-57
25.39.1 Identifiers. 25-60
2539.20perations 25-60
25.3.10 Obtaining the Reference for the
Replication Manager 25-62
25311 USeCasesS. . o oot it e 25-62
25.3.11.1 Infrastructure-Controlled Membership
Style .o 25-62
25.3.11.2 Application-Controlled Membership
Style .o 25-64
25.3.11.3 Unreplicated Object Creation and
Deetioncciiiiiiiii 25-66
254 FaultManagemento 25-67
2541 OVEIVIEW ...t 25-67
25.4.2 Architecture 25-68
25.4.2.1 Fault Detection 25-69
25.4.2.2 Fault Notification 25-69
25423 Fault Analysis ol 25-69
25424 Scalability ... 25-69
25.4.2.5 Deployment of Fault Detectors 25-70
25.4.3 Connecting Fault Detectorsto Applications. . . 25-71
25.4.4 Pull-Based Monitoring 25-72
25.4.4.1 PULL Fault Monitoring Style 25-72
25.4.4.2 PullMonitorable Interface 25-72
2545 FaultEvent Types.............covuiun.. 25-73
25.4.5.1 ObjectCrashFault 25-73
25.4.6 Fault Notifier 25-74
25.4.6.1 Identifiers. 25-76
254.6.20perations 25-76
25463 Filtering 25-78
25.4.6.4 Mapping of the Fault Notifier to the
CosNotification Service 25-79
2547 USeCaseS. ... oi ittt 25-80

25.4.7.1 The Fault Detector as a Fault

Common Object Request Broker Architecture (CORBA), v2.5 XXXVii

Contents

Notification Supplier 25-80

25.4.7.2 The Replication Manager asa
Fault Notification Consumer 25-81
255 Logging & Recovery Management 25-82
2551 OVEerVIieWw 25-82
25.5.2 Logging Mechanism..................... 25-82
25.5.3 Recovery Mechanism.................... 25-83
25.5.4 Checkpointable and Updateable Interfaces. . . . 25-85
255.4.1 Identifiers. i 25-86
25542 EXCeptions 25-86
25543 0perations 25-87
25544 st update ... 25-88
2555 UseCase.vviiiiiii i 25-88

25.5.5.1 Infrastructure-Controlled

Consistency Style ..., 25-88
Appendix A Consolidated IDL 25-90
AppendixB Glossary 25-97
Appendix C Compliance, 25-106
Appendix A-OMGIDLTagsovvvveiiian A-1
GloSSarY . .o 1
INAEX. . . 1

XXXViii Common Object Request Broker Architecture (CORBA), v2.5

September 2001

About This Document

Preface

Under the terms of the collaboration between OMG and X/Open Co Ltd., this
document is a candidate for endorsement by X/Open, initialy as a Preliminary
Specification and later as a full CAE Specification. The collaboration between OMG
and X/Open Co Ltd. ensures joint review and cohesive support for emerging object-
based specifications.

X/Open Preliminary Specifications undergo close scrutiny through a review process at
X/Open before publication and are inherently stable specifications. Upgrade to full
CAE Specification, after a reasonable interval, takes place following further review by
X/Open. This further review considers the implementation experience of members and
the full implications of conformance and branding.

Object Management Group

September 2001

The Object Management Group, Inc. (OMG) isan international organization supported
by over 800 members, including information system vendors, software developers and
users. Founded in 1989, the OM G promotes the theory and practice of object-oriented
technology in software development. The organization's charter includes the
establishment of industry guidelines and object management specifications to provide a
common framework for application development. Primary goals are the reusability,
portability, and interoperability of object-based software in distributed, heterogeneous
environments. Conformance to these specifications will make it possible to develop a
heterogeneous applications environment across all major hardware platforms and
operating systems.

OMG's objectives are to foster the growth of object technology and influence its
direction by establishing the Object Management Architecture (OMA). The OMA
provides the conceptual infrastructure upon which all OMG specifications are based.

Common Object Request Broker Architecture (CORBA), v2.5

X/Open

| ntended Audience

Context of CORBA

X/Open is an independent, worldwide, open systems organization supported by most of
the world's largest information system suppliers, user organizations and software
companies. Its mission is to bring to users greater value from computing, through the
practical implementation of open systems. X/Open'’s strategy for achieving its mission
is to combine existing and emerging standards into a comprehensive, integrated
systems environment called the Common Applications Environment (CAE).

The components of the CAE are defined in X/Open CAE specifications. These contain,
among other things, an evolving portfolio of practical application programming
interfaces (APIs), which significantly enhance portability of application programs at
the source code level. The APIs also enhance the interoperability of applications by
providing definitions of, and references to, protocols and protocol profiles.

The X/Open specifications are also supported by an extensive set of conformance tests
and by the X/Open trademark (XPG brand), which islicensed by X/Open and is carried
only on products that comply with the CAE specifications.

The architecture and specifications described in this manual are aimed at software
designers and developers who want to produce applications that comply with OMG
standards for the Object Request Broker (ORB). The benefit of compliance is, in
general, to be able to produce interoperable applications that are based on distributed,
interoperating objects. As defined by the Object Management Group (OMG) in the
Object Management Architecture Guide, the ORB provides the mechanisms by which
objects transparently make requests and receive responses. Hence, the ORB provides
interoperability between applications on different machines in heterogeneous
distributed environments and seamlessly interconnects multiple object systems.

The key to understanding the structure of the CORBA architecture is the Reference
Model, which consists of the following components:

* Object Request Broker, which enables objects to transparently make and receive
reguests and responses in a distributed environment. It is the foundation for
building applications from distributed objects and for interoperability between
applications in hetero- and homogeneous environments. The architecture and
specifications of the Object Request Broker are described in this manual.

* Object Services, a collection of services (interfaces and objects) that support
basic functions for using and implementing objects. Services are necessary to
construct any distributed application and are always independent of application
domains. For example, the Life Cycle Service defines conventions for creating,
deleting, copying, and moving objects; it does not dictate how the objects are
implemented in an application. Specifications for Object Services are contained in
CORBAservices: Common Object Services Specification.

Common Object Request Broker Architecture (CORBA), v2.5 September 2001

Associated Documents

September 2001

» Common Facilities, a collection of services that many applications may share,
but which are not as fundamental as the Object Services. For instance, a system
management or electronic mail facility could be classified as a common facility.
Information about Common Facilities will be contained in CORBAfacilities:
Common Facilities Architecture.

« Application Objects, which are products of a single vendor on in-house
development group that controls their interfaces. Application Objects correspond
to the traditional notion of applications, so they are not standardized by OMG.
Instead, Application Objects constitute the uppermost layer of the Reference
Model.

The Object Request Broker, then, is the core of the Reference Model. It is like a
telephone exchange, providing the basic mechanism for making and receiving calls.
Combined with the Object Services, it ensures meaningful communication between
CORBA-compliant applications.

The CORBA documentation set includes the following books:

« Object Management Architecture Guide defines the OMG's technical objectives
and terminology and describes the conceptual models upon which OM G standards
are based. It also provides information about the policies and procedures of OMG,
such as how standards are proposed, evaluated, and accepted.

« CORBA: Common Object Request Broker Architecture and Specification contains

the architecture and specifications for the Object Request Broker.

« CORBAservices: Common Object Services Specification contains specifications

for the Object Services.

* CORBAfacilities: Common Facilities Architecture contains the architecture for

Common Facilities.

OMG collects information for each book in the documentation set by issuing Requests
for Information, Requests for Proposals, and Requests for Comment and, with its
membership, evaluating the responses. Specifications are adopted as standards only
when representatives of the OMG membership accept them as such by vote.

To obtain books in the documentation set, or other OMG publications, refer to the
enclosed subscription card or contact the Object Management Group, Inc. at:

OMG Headquarters
250 First Avenue, Suite 201
Needham, MA 02494
USA
Tel: +1-781-444-0404
Fax: +1-781-444-0320
pubs@omg.org
http://www.omg.org

CORBA, v2.5: Associated Documents iii

Definition of CORBA Compliance

The minimum required for a CORBA-compliant system is adherence to the
specifications in CORBA Core and one mapping. Each additional language mapping is
a separate, optional compliance point. Optional means users aren’t required to
implement these points if they are unnecessary at their site, but if implemented, they
must adhere to the CORBA specifications to be called CORBA-compliant. For instance,
if avendor supports C++, their ORB must comply with the OMG IDL to C++ binding
specified in the C++ Language Mapping Specification.

Interoperability and Interworking are separate compliance points. For detailed
information about Interworking compliance, refer to “Compliance to COM/CORBA
Interworking” on page 17-34.

As described in the OMA Guide, the OMG’s Core Object Model consists of a core and
components. Likewise, the body of CORBA specifications is divided into core and
component-like specifications. The structure of this manual reflects that division.

The CORBA core specifications are categorized as follows:
CORBA Caore, as specified in Chapters 1-11
CORBA Interoperability, as specified in Chapters 12-16

CORBA Interworking, as specified in Chapters 17-21

Note — The CORBA Language Mappings have been separated from the CORBA Core
and each language mapping is its own separate book. Refer to CORBA Language
Mappings at the OMG Formal Document web area for this information.

Structure of ThisManual

This manual is divided into the categories of Core, Interoperability, and Interworking.
These divisions reflect the compliance points of CORBA. In addition to this preface,
CORBA: Common Object Request Broker Architecture and Specification contains the
following chapters:

Core

Chapter 1 - The Object Model describes the computation model that underlies the
CORBA architecture.

Chapter 2 - CORBA Overview contains the overall structure of the ORB architecture
and includes information about CORBA interfaces and implementations.

Chapter 3- OMG IDL Syntax and Semantics details the OMG interface definition
language (OMG IDL), which is the language used to describe the interfaces that client
objects call and object implementations provide.

Common Object Request Broker Architecture (CORBA), v2.5 September 2001

September 2001

Chapter 4 - ORB Interface defines the interface to the ORB functions that do not
depend on object adapters: these operations are the same for all ORBs and object
implementations.

Chapter 5 - Value Type Semantics describes the semantics of passing an object by
value, which is similar to that of standard programming languages.

Chapter 6 - Abstract Interface Semantics explains an IDL abstract interface, which
provides the capability to defer the determination of whether an object is passed by
reference or by value until runtime.

Chapter 7 - The Dynamic Invocation | nterface details the DII, the client’s side of
the interface that allows dynamic creation and invocation of request to objects.

Chapter 8 -- The Dynamic Skeleton I nterface describes the DSI, the server's-side
interface that can deliver requests from an ORB to an object implementation that does
not have compile-time knowledge of the type of the object it is implementing. DSI is
the server’s analogue of the client’s Dynamic Invocation Interface (DII).

Chapter 9 - Dynamic Management of Any Values details the interface for the
Dynamic Any type. This interface allows statically-typed programming languages such
as C and Java to create or receive values of type Any without compile-time knowledge
that the typer contained in the Any.

Chapter 10 - Interface Repository explains the component of the ORB that manages
and provides access to a collection of object definitions.

Chapter 11 - Portable Object Adapter defines a group of IDL interfaces than an
implementation uses to access ORB functions.

I nter oper ability

Chapter 12 - Interoperability Overview describes the interoperability architecture
and introduces the subjects pertaining to interoperability: inter-ORB bridges; general
and Internet inter-ORB protocols (GIOP and 110P); and environment-specific, inter-
ORB protocols (ESIOPs).

Chapter 13 - ORB Interoperability Architecture introduces the framework of ORB
interoperability, including information about domains; approaches to inter-ORB
bridges; what it means to be compliant with ORB interoperability; and ORB Services
and Requests.

Chapter 14 - Building Inter-ORB Bridges explains how to build bridges for an
implementation of interoperating ORBs.

Chapter 15 - General Inter-ORB Protocol describes the general inter-ORB protocol
(GIOP) and includes information about the GIOP's goals, syntax, format, transport,
and object location. This chapter also includes information about the Internet inter-
ORB protocol (110P).

CORBA, v2.5: Structureof This Manual Y,

Acknowl edgements

Vi

Chapter 16 - DCE ESIOP - Environment-Specific I nter-ORB Protocol (ESIOP)
details a protocol for the OSF DCE environment. The protocol is called the DCE
Environment Inter-ORB Protocol (DCE ESIOP).

Interworking

Chapter 17 - Interworking Architecture describes the architecture for
communication between two object management systems: Microsoft’s COM (including
OLE) and the OMG's CORBA.

Chapter 18 - Mapping: COM and CORBA explains the data type and interface
mapping between COM and CORBA. The mappings are described in the context of
both Win16 and Win32 COM.

Chapter 19 - Mapping: OLE Automation and CORBA details the two-way mapping
between OLE Automation (in ODL) and CORBA (in OMG IDL).

Note: Chapter 19 also includes an appendix describing solutions that vendors might
implement to support existing and older OLE Automation controllers and an appendix
that provides an example of how the Naming Service could be mapped to an OLE
Automation interface according to the Interworking specification.

Chapter 20 - Interoperability with non-CORBA Systems describes the effective
access to CORBA servers through DCOM and the reverse.

Chapter 21 - Portable Interceptors defines ORB operations that allow services such
as security to be inserted in the invocation path.

Quality of Service (QoS)

Chapter 22 - CORBA Messaging includes three general topics: Quality of Service,
Asynchronous Method Invocations (to include Time-Independent or “Persistent”
Requests), and the specification of interoperable Routing interfaces to support the
transport of requests asynchronously from the handling of their replies.

Chapter 23 - Minimum CORBA describes minimumCORBA, a subset of CORBA
designed for systems with limited resources.

Chapter 24 - Real-Time CORBA defines an optional set of extensions to CORBA
tailored to equip ORBs to be used as a component of a Real-Time system.

Chapter 25 - Fault Tolerant CORBA describes Fault Tolerant systems, basic fault
tolerance mechanisms, replication management, and logging and recovery
management.

The following companies submitted and/or supported parts of the specifications that
were approved by the Object Management Group to become CORBA:

¢ Alcatel

Common Object Request Broker Architecture (CORBA), v2.5 September 2001

September 2001

BEA Systems, Inc.

BNR Europe Ltd.

Borland International, Inc.

Cooperative Research Centre for Distributed Systems Technology (DSTC)
Defense Information Systems Agency
Digital Equipment Corporation
Ericsson

Eterna Systems, Inc.

Expersoft Corporation

France Telecom

FUJTSU LIMITED

Genesis Development Corporation
Gensym Corporation

Hewlett-Packard Company

HighComm

Highlander Communications, L.C.
Humboldt-University

HyperDesk Corporation

ICL, Plc.

Inprise Corporation

International Business Machines Corporation
International Computers, Inc.

IONA Technologies, Plc.

Lockheed Martin Federa Systems, Inc.
Lucent Technologies, Inc.

Micro Focus Limited

MITRE Corporation

Motorola, Inc.

NCR Corporation

NEC Corporation

Netscape Communications Corporation
Nortel Networks

Northern Telecom Corporation

Novell, Inc.

Object Design, Inc.

Objective Interface Systems, Inc.
Object-Oriented Concepts, Inc.

OC Systems, Inc.

Open Group - Open Software Foundation
Oracle Corporation

PeerLogic, Inc.

Siemens Nixdorf Informationssysteme AG

CORBA, v2.5: Acknowledgements

vii

* SPAWAR Systems Center
e Sun Microsystems, Inc.
e SunSoft, Inc.
e Sybase, Inc.
« Telefénica Investigacion y Desarrollo S.A. Unipersonal
e TIBCO, Inc.
 Tri-Pacific Software, Inc.
« University of California, Santa Barbara
* University of Rhode Island
 Visual Edge Software, Ltd.
» Washington University
In addition to the preceding contributors, the OMG would like to acknowledge Mark

Linton at Silicon Graphics and Doug Lea at the State University of New York at
Oswego for their work on the C++ mapping.

References
IDL Type Extensions RFR, March 1995. OMG TC Document 95-1-35.

The Common Object Request Broker: Architecture and Specification, Revision 2.2,
February 1998.

CORBAservices: Common Object Services Specification, Revised Edition, OMG TC
Document 95-3-31.

COBOL Language Mapping RFP, December 1995. OMG TC document 95-12-10.
COBOL 85 ANSI X3.23-1985 / SO 1989-1985.
|EEE Standard for Binary Floating-Point Arithmetic, ANIS/IEEE Std 754-1985.

XDR: External Data Representation Standard, RFC1832, R. Srinivasan, Sun Micro-
systems, August 1995.

OSF Character and Code Set Registry, OSF DCE SIG RFC 40.1 (Public Version), S.
(Martin) O'Donnell, June 1994.

RPC Runtime Support For 118N Characters — Functional Specification, OSF DCE
SIG RFC 41.2, M. Romagna, R. Mackey, November 1994.

X/Open System Interface Definitions, Issue 4 Version 2, 1995.

viii Common Object Request Broker Architecture (CORBA), v2.5 September 2001

1.1 Overview

September 2001

TheObject Model 1

This chapter describes the concrete object model that underlies the CORBA
architecture. The model is derived from the abstract Core Object Model defined by the
Object Management Group in the Object Management Architecture Guide.
(Information about the OMA Guide and other books in the CORBA documentation set
is provided in this document’s preface.)

Contents

This chapter contains the following sections.

Section Title Page
“Overview” 1-1
“Object Semantics” 1-2
“Object Implementation” 1-9

The object model provides an organized presentation of object concepts and
terminology. It defines a partial model for computation that embodies the key
characteristics of objects as realized by the submitted technologies. The OMG object
model is abstract in that it is not directly realized by any particular technology. The
model described here is a concrete object model. A concrete object model may differ
from the abstract object model in several ways:

® It may elaborate the abstract object model by making it more specific, for example,
by defining the form of request parameters or the language used to specify types.

® |t may populate the model by introducing specific instances of entities defined by
the model, for example, specific objects, specific operations, or specific types.

Common Object Request Broker Architecture (CORBA), v2.5 1-1

® |t may restrict the model by eliminating entities or placing additional restrictions on
their use.

An object system is a collection of objects that isolates the regquestors of services
(clients) from the providers of services by a well-defined encapsulating interface. In
particular, clients are isolated from the implementations of services as data
representations and executable code.

The object model first describes concepts that are meaningful to clients, including such
concepts as object creation and identity, requests and operations, types and signatures.
It then describes concepts related to object implementations, including such concepts
as methods, execution engines, and activation.

The object model is most specific and prescriptive in defining concepts meaningful to
clients. The discussion of object implementation is more suggestive, with the intent of
allowing maximal freedom for different object technologies to provide different ways
of implementing objects.

There are some other characteristics of object systems that are outside the scope of the
object model. Some of these concepts are aspects of application architecture, some are
associated with specific domains to which object technology is applied. Such concepts
are more properly dealt with in an architectural reference model. Examples of excluded
concepts are compound objects, links, copying of objects, change management, and
transactions. Also outside the scope of the object model are the details of control
structure: the object model does not say whether clients and/or servers are single-
threaded or multi-threaded, and does not specify how event loops are programmed nor
how threads are created, destroyed, or synchronized.

This object model is an example of aclassical object model, where a client sends a
message to an object. Conceptually, the object interprets the message to decide what
service to perform. In the classical model, a message identifies an object and zero or
more actual parameters. As in most classical object models, a distinguished first
parameter is required, which identifies the operation to be performed; the interpretation
of the message by the object involves selecting a method based on the specified
operation. Operationally, of course, method selection could be performed either by the
object or the ORB.

1.2 Object Semantics

An object system provides services to clients. A client of a service is any entity
capable of requesting the service.

This section defines the concepts associated with object semantics, that is, the concepts
relevant to clients.

1.2.1 Objects

An object system includes entities known as objects. An object is an identifiable,
encapsulated entity that provides one or more services that can be requested by a
client.

Common Object Request Broker Architecture (CORBA), v2.5 September 2001

September 2001

1.2.2 Requests

Clients request services by issuing requests.

The term request is broadly used to refer to the entire sequence of causally related
events that transpires between a client initiating it and the last event causally associated
with that initiation. For example:
« the client receives the final response associated with that request from the server,
« the server carries out the associated operation in case of a oneway request, or

« the sequence of events associated with the request terminates in afailure of some
sort. The initiation of a Request is an event.

The information associated with a request consists of an operation, a target object, zero
or more (actual) parameters, and an optional request context.

A request form is a description or pattern that can be evaluated or performed multiple
times to cause the issuing of requests. As described in the OMG IDL Syntax and
Semantics chapter, request forms are defined by particular language bindings. An
alternative request form consists of calls to the dynamic invocation interface to create
an invocation structure, add arguments to the invocation structure, and to issue the
invocation (refer to the Dynamic Invocation Interface chapter for descriptions of these
reguest forms).

A value is anything that may be a legitimate (actual) parameter in a request. More
particularly, avaue is an instance of an OMG IDL data type. There are non-object
values, as well as values that reference objects.

An object reference is avalue that reliably denotes a particular object. Specifically, an
object reference will identify the same object each time the reference is used in a
request (subject to certain pragmatic limits of space and time). An object may be
denoted by multiple, distinct object references.

A request may have parameters that are used to pass data to the target object; it may
also have a request context that provides additional information about the request. A
reguest context is a mapping from strings to strings.

A request causes a service to be performed on behalf of the client. One possible
outcome of performing a service isreturning to the client the results, if any, defined for
the request.

If an abnormal condition occurs during the performance of a request, an exception is
returned. The exception may carry additional return parameters particular to that
exception.

The request parameters are identified by position. A parameter may be an input
parameter, an output parameter, or an input-output parameter. A request may also
return a single return result value, as well as the results stored into the output and
input-output parameters.

The following semantics hold for al requests:

® Any diasing of parameter values is neither guaranteed removed nor guaranteed to
be preserved.

CORBA, v2.5: Object Semantics 1-3

1-4

® The order in which aliased output parameters are written is not guaranteed.

® The return result and the values stored into the output and input-output parameters
are undefined if an exception is returned.

For descriptions of the values and exceptions that are permitted, see Section 1.2.4,
“Types,” on page 1-4 and Section 1.2.8.3, “Exceptions,” on page 1-8.

1.2.3 Object Creation and Destruction

1.2.4 Types

1241

Objects can be created and destroyed. From a client’s point of view, thereis no special
mechanism for creating or destroying an object. Objects are created and destroyed as
an outcome of issuing requests. The outcome of object creation isrevealed to the client
in the form of an object reference that denotes the new object.

A type is an identifiable entity with an associated predicate (a single-argument
mathematical function with a boolean result) defined over entities. An entity satisfiesa
type if the predicate is true for that entity. An entity that satisfies a type is called a
member of the type.

Types are used in signatures to restrict a possible parameter or to characterize a
possible result.

The extension of a type is the set of entities that satisfy the type at any particular time.

An object type is a type whose members are object references. In other words, an
object type is satisfied only by object references.

Constraints on the data types in this model are shown in this section.

Basic types
® 16-bit, 32-hit, and 64-bit signed and unsigned 2's complement integers.

® Single-precision (32-bit), double-precision (64-bit), and double-extended (a
mantissa of at least 64 bits, a sign bit and an exponent of at least 15 bits) IEEE
floating point numbers.

® Fixed-point decimal numbers of up to 31 significant digits.

® Characters, as defined in 1SO Latin-1 (8859.1) and other single- or multi-byte
character sets.

® A boolean type taking the values TRUE and FAL SE.

® An 8-bit opaque detectable, guaranteed to not undergo any conversion during
transfer between systems.

® Enumerated types consisting of ordered sequences of identifiers.

Common Object Request Broker Architecture (CORBA), v2.5 September 2001

1

® A string type, which consists of a variable-length array of characters; the length of
the string is a non-negative integer, and is available at run-time. The length may
have a maximum bound defined.

® A wide character string type, which consist of a variable-length array of (fixed
width) wide characters; the length of the wide string is a non-negative integer, and
is available at run-time. The length may have a maximum bound defined.

® A container type “any,” which can represent any possible basic or constructed type.
® Wide characters that may represent characters from any wide character set.

® Wide character strings, which consist of a length, available at runtime, and a
variable-length array of (fixed width) wide characters.

1.2.4.2 Constructed types

® A record type (called struct), which consists of an ordered set of (name,value) pairs.

® A discriminated union type, which consists of a discriminator (whose exact value is
always available) followed by an instance of atype appropriate to the discriminator
value.

® A sequence type, which consists of a variable-length array of a single type; the
length of the sequenceis available at run-time.

® An array type, which consists of a fixed-shape multidimensional array of a single
type.

® Aninterface type, which specifies the set of operations that an instance of that type
must support.

® A valuetype, which specifies state aswell as a set of operations that an instance of
that type must support.

Entitiesin arequest are restricted to values that satisfy these type constraints. The legal
entities are shown in . No particular representation for entities is defined.

September 2001 CORBA, v2.5: Object Semantics 1-5

Short
Object Reference Long
LongLong
UShort
Ulong
UlongLong
Float
Double
LongDouble
Fixed

Char
Wchar
String
Wstring
Boolean
Octet
Enum

Any

— Value Type

—— Abstract Interface

Entity Basic Value

Struct
Sequence
Union
Array

Constructed Value

Figure1l-1 Lega Values

1.2.5 Interfaces

An interfaceis adescription of a set of possible operations that a client may request of
an object, through that interface. It provides a syntactic description of how a service
provided by an object supporting this interface, is accessed via this set of operations.
An object satisfies an interface if it provides its service through the operations of the
interface according to the specification of the operations (see Section 1.2.8,
“Operations,” on page 1-7).

The interface type for a given interface is an object type, such that an object reference
will satisfy the type, if and only if the referent object also satisfies the interface.

Interfaces are specified in OMG IDL. Interface inheritance provides the composition
mechanism for permitting an object to support multiple interfaces. The principal
interface is simply the most-specific interface that the object supports, and consists of
all operations in the transitive closure of the interface inheritance graph.

Interfaces satisfy the Liskov substitution principle. If interface A is derived from
interface B, then a reference to an object that supports interface A can be used where
the formal type of a parameter is declared to be B.

1.2.6 Value Types

A value type is an entity, which shares many of the characteristics of interfaces and
structs. It is a description of both a set of operations that a client may request and of
state that is accessible to a client. Instances of a value type are always local concrete
implementations in some programming language.

Common Object Request Broker Architecture (CORBA), v2.5 September 2001

1

September 2001

A value type, in addition to the operations and state defined for itself, may also inherit
from other value types, and through multiple inheritance support other interfaces.

Value types are specified in OMG IDL.

An abstract value types describes a value type that is a “pure” bundle of operations
with no state.

1.2.7 Abstract Interfaces

An abstract interface is an entity, which may at runtime represent either a regular
interface (see Section 1.2.5, “Interfaces,” on page 1-6) or a value type (see

Section 1.2.6, “Value Types,” on page 1-6). Like an abstract value type, it is a pure
bundle of operations with no state. Unlike an abstract value type, it does not imply
pass-by-value semantics, and unlike a regular interface type, it does not imply pass-by-
reference semantics. Instead, the entity’s runtime type determines which of these
semantics are used.

1.2.8 Operations

An operation is an identifiable entity that denotes the indivisible primitive of service
provision that can be requested. The act of requesting an operation is referred to as
invoking the operation. An operation is identified by an operation identifier.

An operation has a signature that describes the legitimate values of request parameters
and returned results. In particular, a signature consists of:

® A gspecification of the parameters required in requests for that operation.
® A gpecification of the result of the operation.

® Anidentification of the user exceptions that may be raised by an invocation of the
operation.

® A gpecification of additional contextual information that may affect the invocation.

® Anindication of the execution semantics the client should expect from an
invocation of the operation.

Operations are (potentially) generic, meaning that a single operation can be uniformly
invoked on objects with different implementations, possibly resulting in observably
different behavior. Genericity is achieved in this model via interface inheritancein IDL
and the total decoupling of implementation from interface specification.

The general form for an operation signature is:

[oneway] <op_type_spec> <identifier> (paraml, ..., paramL)
[raises(exceptl,....exceptN)] [context(namel, ..., nameM)]

where:

® The optional oneway keyword indicates that best-effort semantics are expected of
reguests for this operation; the default semantics are exactly-once if the operation
successfully returns results or at-most-once if an exception is returned.

CORBA, v2.5: Object Semantics 1-7

1-8

1281

1.2.8.2

1.2.8.3

1.2.84

1.2.85

® The <op_type_spec> isthe type of the return result.
® The <identifier> provides a name for the operation in the interface.

® The operation parameters needed for the operation; they are flagged with the
modifiersin, out, or inout to indicate the direction in which the information flows
(with respect to the object performing the request).

® The optional raises expression indicates which user-defined exceptions can be
signaled to terminate an invocation of this operation; if such an expression is not
provided, no user-defined exceptions will be signaled.

® The optional context expression indicates which request context information will
be available to the object implementation; no other contextual information is
required to be transported with the request.

Parameters

A parameter is characterized by its mode and its type. The mode indicates whether the
value should be passed from client to server (in), from server to client (out), or both
(inout). The parameter’s type constrains the possible value, which may be passed in
the directions dictated by the mode.

Return Result

The return result is a distinguished out parameter.

Exceptions

An exception is an indication that an operation request was not performed successfully.
An exception may be accompanied by additional, exception-specific information.

The additional, exception-specific information is a specialized form of record. As a
record, it may consist of any of the types described in Section 1.2.4, “Types,” on

page 1-4.

All signatures implicitly include the system exceptions; the standard system exceptions
are described in Section 4.11.2, “System Exceptions,” on page 4-51.

Contexts

A request context provides additional, operation-specific information that may affect
the performance of a reguest.

Execution Semantics

Two styles of execution semantics are defined by the object model:

® At-most-once: if an operation request returns successfully, it was performed exactly
once; if it returns an exception indication, it was performed at-most-once.

Common Object Request Broker Architecture (CORBA), v2.5 September 2001

® Best-effort: a best-effort operation is a request-only operation; that is, it cannot
return any results and the requester never synchronizes with the completion, if any,
of the request.

The execution semantics to be expected is associated with an operation. This prevents
a client and object implementation from assuming different execution semantics.

Note that aclient is able to invoke an at-most-once operation in a synchronous or
deferred-synchronous manner.

1.2.9 Attributes

An interface may have attributes. An attribute islogically equivalent to declaring a pair
of accessor functions: one to retrieve the value of the attribute and one to set the value
of the attribute.

An attribute may be read-only, in which case only the retrieval accessor function is
defined.

1.3 Object Implementation

September 2001

This section defines the concepts associated with object implementation; that is, the
concepts relevant to realizing the behavior of objects in a computational system.

The implementation of an object system carries out the computational activities needed
to effect the behavior of regquested services. These activities may include computing
the results of the request and updating the system state. In the process, additional
requests may be issued.

The implementation model consists of two parts: the execution model and the
construction model. The execution model describes how services are performed. The
construction model describes how services are defined.

1.3.1 The Execution Model: Performing Services

A requested service is performed in a computational system by executing code that
operates upon some data. The data represents a component of the state of the
computationa system. The code performs the requested service, which may change the
state of the system.

Code that is executed to perform a service is called a method. A method is an
immutabl e description of a computation that can be interpreted by an execution engine.
A method has an immutable attribute called a method format that defines the set of
execution engines that can interpret the method. An execution engine is an abstract
machine (not a program) that can interpret methods of certain formats, causing the
described computations to be performed. An execution engine defines a dynamic
context for the execution of a method. The execution of a method is called a method
activation.

CORBA, v2.5: Object Implementation 1-9

1-10

When a client issues a request, a method of the target object is called. The input
parameters passed by the requestor are passed to the method and the output and input-
output parameters and return result value (or exception and its parameters) are passed
back to the requestor.

Performing a regquested service causes a method to execute that may operate upon an
object’s persistent state. If the persistent form of the method or state is not accessible
to the execution engine, it may be necessary to first copy the method or state into an
execution context. This process is called activation; the reverse process is called
deactivation.

1.3.2 The Construction Model

A computational object system must provide mechanisms for realizing behavior of
requests. These mechanisms include definitions of object state, definitions of methods,
and definitions of how the object infrastructure is to select the methods to execute and
to select the relevant portions of object state to be made accessible to the methods.
Mechanisms must also be provided to describe the concrete actions associated with
object creation, such as association of the new object with appropriate methods.

An object implementation—or implementation, for short—is a definition that provides
the information needed to create an object and to allow the object to participate in
providing an appropriate set of services. An implementation typically includes, among
other things, definitions of the methods that operate upon the state of an object. It also
typically includes information about the intended types of the object.

Common Object Request Broker Architecture (CORBA), v2.5 September 2001

CORBAOverview 2

The Common Object Request Broker Architecture (CORBA) is structured to allow
integration of awide variety of object systems. The motivation for some of the features
may not be apparent at first, but as we discuss the range of implementations, policies,
optimizations, and usages we expect to encompass, the value of the flexibility becomes
more clear.

Contents

This chapter contains the following sections.

Section Title Page
“Structure of an Object Request Broker” 2-1
“Example ORBS’ 2-11
“Structure of a Client” 2-12
“Structure of an Object Implementation” 2-13
“Structure of an Object Adapter” 2-15
“CORBA Required Object Adapter” 2-17
“The Integration of Foreign Object Systems” 2-17

2.1 Structure of an Object Request Broker

Figure 2-1 shows a request being sent by a client to an object implementation. The
Client is the entity that wishes to perform an operation on the object and the Object
Implementation is the code and data that actually implements the object.

September 2001 Common Object Request Broker Architecture (CORBA), v2.5 2-1

2-2

:) (E)bjectln1plen1entatk)n

Request

ORB

Figure2-1 A Request Being Sent Through the Object Request Broker

The ORB is responsible for all of the mechanisms required to find the object
implementation for the request, to prepare the object implementation to receive the
request, and to communicate the data making up the request. The interface the client
sees is completely independent of where the object is located, what programming
language it is implemented in, or any other aspect that is not reflected in the object’s
interface.

Figure 2-2 on page 2-3 shows the structure of an individual Object Request Broker
(ORB). The interfaces to the ORB are shown by striped boxes, and the arrows indicate
whether the ORB is called or performs an up-call across the interface.

Common Object Request Broker Architecture (CORBA), v2.5 September 2001

Client Object Implementation
Dynamic IDL ORB Static IDL| | Dynamic Object
Invocation Stubs Interface Skeleton | | Skeleton Adapter
ORB Core
[1 Interface identical for all ORB implementations .
Up-call interface

[1 There may be multiple object adapters
I There are stubs and a skeleton for each object type ‘ Normal call interface
[1 ORB-dependent interface

September 2001

Figure2-2 The Structure of Object Request Interfaces

To make a request, the Client can use the Dynamic Invocation interface (the same
interface independent of the target object’s interface) or an OMG IDL stub (the specific
stub depending on the interface of the target object). The Client can also directly
interact with the ORB for some functions.

The Object Implementation receives a request as an up-call either through the OMG
IDL generated skeleton or through a dynamic skeleton. The Object |mplementation
may call the Object Adapter and the ORB while processing a request or at other times.

Definitions of the interfaces to objects can be defined in two ways. Interfaces can be
defined statically in an interface definition language, called the OMG Interface
Definition Language (OMG IDL). This language defines the types of objects according
to the operations that may be performed on them and the parameters to those
operations. Alternatively, or in addition, interfaces can be added to an Interface
Repository service; this service represents the components of an interface as objects,
permitting run-time access to these components. In any ORB implementation, the
Interface Definition Language (which may be extended beyond its definition in this
document) and the Interface Repository have equivalent expressive power.

CORBA, v2.5: Sructure of an Object Request Broker 2-3

2-4

The client performs a request by having access to an Object Reference for an object
and knowing the type of the object and the desired operation to be performed. The
client initiates the request by calling stub routines that are specific to the object or by
constructing the request dynamically (see Figure 2-3).

Client

Dynami
Invocatio

[1 Interface identical for all ORB implementations

I There are stubs and a skeleton for each object type
[1 ORB-dependent interface

Figure2-3 A Client Using the Stub or Dynamic Invocation Interface

The dynamic and stub interface for invoking a request satisfy the same request
semantics, and the receiver of the message cannot tell how the request was invoked.

The ORB locates the appropriate implementation code, transmits parameters, and
transfers control to the Object Implementation through an IDL skeleton or a dynamic
skeleton (see Figure 2-4 on page 2-5). Skeletons are specific to the interface and the
object adapter. In performing the request, the object implementation may obtain some
services from the ORB through the Object Adapter. When the request is complete,
control and output values are returned to the client.

Common Object Request Broker Architecture (CORBA), v2.5 September 2001

Object Implementation

ORB Static IDL| | Dynamic
Interface Skeleton | | Skeleto

Object
Adapter

ORB Core

[1 Interface identical for all ORB implementations

1 Up-call interface

[1 There may be multiple object adapters
I There are stubs and a skeleton for each object type ‘ Normal call interface
[1 ORB-dependent interface

September 2001

Figure2-4 An Object Implementation Receiving a Request

The Object Implementation may choose which Object Adapter to use. This decision is
based on what kind of services the Object Implementation requires.

Figure 2-5 on page 2-6 shows how interface and implementation information is made
available to clients and object implementations. The interface is defined in OMG IDL
and/or in the Interface Repository; the definition is used to generate the client Stubs
and the object implementation Skeletons.

CORBA, v2.5: Sructure of an Object Request Broker 2-5

2-6

IDL

Definitions Installation

Implementation

Interface
Repository

Implementation
Repository
Stubs Skeletons :

Client Object Implementation

Figure2-5 Interface and Implementation Repositories

The object implementation information is provided at installation time and is stored in
the Implementation Repository for use during request delivery.

2.1.1 Object Request Broker

In the architecture, the ORB is not required to be implemented as a single component,
but rather it is defined by its interfaces. Any ORB implementation that provides the
appropriate interface is acceptable. The interface is organized into three categories:

1. Operations that are the same for al ORB implementations
2. Operations that are specific to particular types of objects
3. Operations that are specific to particular styles of object implementations

Different ORBs may make quite different implementation choices, and, together with
the IDL compilers, repositories, and various Object Adapters, provide a set of services
to clients and implementations of objects that have different properties and qualities.

There may be multiple ORB implementations (also described as multiple ORBS),
which have different representations for object references and different means of
performing invocations. It may be possible for a client to simultaneously have access to

Common Object Request Broker Architecture (CORBA), v2.5 September 2001

2

two object references managed by different ORB implementations. When two ORBs
are intended to work together, those ORBs must be able to distinguish their object
references. It is not the responsibility of the client to do so.

The ORB Coreisthat part of the ORB that provides the basic representation of objects
and communication of requests. CORBA is designed to support different object
mechanisms, and it does so by structuring the ORB with components above the ORB
Core, which provide interfaces that can mask the differences between ORB Cores.

2.1.2 Clients

A client of an object has access to an object reference for the object, and invokes
operations on the object. A client knows only the logical structure of the object
according to its interface and experiences the behavior of the object through
invocations. Although we will generally consider a client to be a program or process
initiating requests on an object, it isimportant to recognize that something is a client
relative to a particular object. For example, the implementation of one object may be a
client of other objects.

Clients generally see objects and ORB interfaces through the perspective of alanguage
mapping, bringing the ORB right up to the programmer’s level. Clients are maximally
portable and should be able to work without source changes on any ORB that supports
the desired language mapping with any object instance that implements the desired
interface. Clients have no knowledge of the implementation of the object, which object
adapter is used by the implementation, or which ORB is used to access it.

2.1.3 Object Implementations

An object implementation provides the semantics of the object, usually by defining
data for the object instance and code for the object’s methods. Often the
implementation will use other objects or additional software to implement the behavior
of the object. In some cases, the primary function of the object is to have side-effects
on other things that are not objects.

A variety of object implementations can be supported, including separate servers,
libraries, a program per method, an encapsulated application, an object-oriented
database, etc. Through the use of additional object adapters, it is possible to support
virtually any style of object implementation.

Generally, object implementations do not depend on the ORB or how the client invokes
the object. Object implementations may select interfaces to ORB-dependent services
by the choice of Object Adapter.

September 2001 CORBA, v2.5: Sructure of an Object Request Broker 2-7

2.1.4 Object References

An Object Reference is the information needed to specify an object within an ORB.
Both clients and object implementations have an opague notion of object references
according to the language mapping, and thus are insulated from the actual
representation of them. Two ORB implementations may differ in their choice of Object
Reference representations.

The representation of an object reference handed to a client is only valid for the
lifetime of that client.

All ORBs must provide the same language mapping to an object reference (usually
referred to as an Object) for a particular programming language. This permits a
program written in a particular language to access object references independent of the
particular ORB. The language mapping may aso provide additional ways to access
object references in atyped way for the convenience of the programmer.

There is a distinguished object reference, guaranteed to be different from all object
references, that denotes no object.

2.1.5 OMG Interface Definition Language

The OMG Interface Definition Language (OMG IDL) defines the types of objects by
specifying their interfaces. An interface consists of a set of named operations and the
parameters to those operations. Note that although IDL provides the conceptual
framework for describing the objects manipulated by the ORB, it is not necessary for
there to be IDL source code available for the ORB to work. As long as the equival ent
information is available in the form of stub routines or a run-time interface repository,
a particular ORB may be able to function correctly.

IDL isthe means by which a particular object implementation tells its potentia clients
what operations are available and how they should be invoked. From the IDL
definitions, it is possible to map CORBA objects into particular programming
languages or object systems.

2.1.6 Mapping of OMG IDL to Programming Languages

Different object-oriented or non-object-oriented programming languages may prefer to
access CORBA objects in different ways. For object-oriented languages, it may be
desirable to see CORBA objects as programming language objects. Even for non-
object-oriented languages, it is a good idea to hide the exact ORB representation of the
object reference, method names, etc. A particular mapping of OMG IDL to a
programming language should be the same for all ORB implementations. Language
mapping includes definition of the language-specific data types and procedure
interfaces to access objects through the ORB. It includes the structure of the client stub
interface (not required for object-oriented languages), the dynamic invocation
interface, the implementation skeleton, the object adapters, and the direct ORB
interface.

Common Object Request Broker Architecture (CORBA), v2.5 September 2001

2

September 2001

A language mapping also defines the interaction between object invocations and the
threads of control in the client or implementation. The most common mappings
provide synchronous calls, in that the routine returns when the object operation
completes. Additional mappings may be provided to allow a call to be initiated and
control returned to the program. In such cases, additional language-specific routines
must be provided to synchronize the program’s threads of control with the object
invocation.

2.1.7 Client Subs

For the mapping of a non—object—oriented language, there will be a programming
interface to the stubs for each interface type. Generally, the stubs will present access to
the OMG IDL-defined operations on an object inaway that iseasy for programmersto
predict once they are familiar with OMG IDL and the language mapping for the
particular programming language. The stubs make calls on the rest of the ORB using
interfaces that are private to, and presumably optimized for, the particular ORB Core.
If more than one ORB is available, there may be different stubs corresponding to the
different ORBs. In this case, it is necessary for the ORB and language mapping to
cooperate to associate the correct stubs with the particular object reference.

Object-oriented programming languages, such as C++ and Smalltalk, do not require
stub interfaces.

2.1.8 Dynamic Invocation Interface

An interface is also available that allows the dynamic construction of object
invocations, that is, rather than calling a stub routine that is specific to a particular
operation on a particular object, a client may specify the object to be invoked, the
operation to be performed, and the set of parameters for the operation through a call or
sequence of calls. The client code must supply information about the operation to be
performed and the types of the parameters being passed (perhaps obtaining it from an
Interface Repository or other run-time source). The nature of the dynamic invocation
interface may vary substantially from one programming language mapping to another.

2.1.9 Implementation Skeleton

For a particular language mapping, and possibly depending on the object adapter, there
will be an interface to the methods that implement each type of object. The interface
will generally be an up-call interface, in that the object implementation writes routines
that conform to the interface and the ORB calls them through the skeleton.

The existence of a skeleton does not imply the existence of a corresponding client stub
(clients can also make requests via the dynamic invocation interface).

It is possible to write an object adapter that does not use skeletons to invoke
implementation methods. For example, it may be possible to create implementations
dynamically for languages such as Smalltalk.

CORBA, v2.5: Sructure of an Object Request Broker 2-9

2.1.10 Dynamic Skeleton Interface

An interfaceis available, which allows dynamic handling of object invocations. That is,
rather than being accessed through a skeleton that is specific to a particular operation,
an object’s implementation is reached through an interface that provides access to the
operation name and parameters in a manner anaogous to the client side’s Dynamic
Invocation Interface. Purely static knowledge of those parameters may be used, or
dynamic knowledge (perhaps determined through an Interface Repository) may be also
used, to determine the parameters.

The implementation code must provide descriptions of all the operation parameters to
the ORB, and the ORB provides the values of any input parameters for use in
performing the operation. The implementation code provides the values of any output
parameters, or an exception, to the ORB after performing the operation. The nature of
the dynamic skeleton interface may vary substantially from one programming language
mapping or object adapter to another, but will typically be an up-call interface.

Dynamic skeletons may be invoked both through client stubs and through the dynamic
invocation interface; either style of client request construction interface provides
identical results.

2.1.11 Object Adapters

An object adapter is the primary way that an object implementation accesses services
provided by the ORB. There are expected to be a few object adapters that will be
widely available, with interfaces that are appropriate for specific kinds of objects.
Services provided by the ORB through an Object Adapter often include: generation
and interpretation of object references, method invocation, security of interactions,
object and implementation activation and deactivation, mapping object references to
implementations, and registration of implementations.

The wide range of object granularities, lifetimes, policies, implementation styles, and
other properties make it difficult for the ORB Core to provide asingle interface that is
convenient and efficient for all objects. Thus, through Object Adapters, it is possible
for the ORB to target particular groups of object implementations that have similar
requirements with interfaces tailored to them.

2.1.12 ORB Interface

The ORB Interface is the interface that goes directly to the ORB, which isthe same for
all ORBs and does not depend on the objedt’s interface or object adapter. Because most
of the functionality of the ORB is provided through the object adapter, stubs, skeleton,
or dynamic invocation, there are only a few operations that are common across all
objects. These operations are useful to both clients and implementations of objects.

2-10 Common Object Request Broker Architecture (CORBA), v2.5 September 2001

2.1.13 Interface Repository

The Interface Repository is a service that provides persistent objects that represent the
IDL information in aform available at run-time. The Interface Repository information
may be used by the ORB to perform requests. Moreover, using the information in the
Interface Repository, it is possible for a program to encounter an object whose
interface was not known when the program was compiled, yet, be able to determine
what operations are valid on the object and make an invocation on it.

In addition to its role in the functioning of the ORB, the Interface Repository is a
common place to store additional information associated with interfaces to ORB
objects. For example, debugging information, libraries of stubs or skeletons, routines
that can format or browse particular kinds of objects might be associated with the
Interface Repository.

2.1.14 Implementation Repository

The Implementation Repository contains information that allows the ORB to locate
and activate implementations of objects. Although most of the information in the
Implementation Repository is specific to an ORB or operating environment, the
Implementation Repository is the conventional place for recording such information.
Ordinarily, installation of implementations and control of policies related to the
activation and execution of object implementations is done through operations on the
Implementation Repository.

In addition to its role in the functioning of the ORB, the Implementation Repository is
a common place to store additional information associated with implementations of
ORB objects. For example, debugging information, administrative control, resource
allocation, security, etc., might be associated with the Implementation Repository.

2.2 Example ORBs

There are a wide variety of ORB implementations possible within the Common ORB
Architecture. This section will illustrate some of the different options. Note that a
particular ORB might support multiple options and protocols for communication.

2.2.1 Client- and Implementation-resident ORB

If there is a suitable communication mechanism present, an ORB can be implemented
in routines resident in the clients and implementations. The stubs in the client either
use a location-transparent |PC mechanism or directly access a location service to
establish communication with the implementations. Code linked with the
implementation is responsible for setting up appropriate databases for use by clients.

September 2001 CORBA, v2.5: Example ORBs 2-11

2.2.2 Server-based ORB

To centralize the management of the ORB, all clients and implementations can
communicate with one or more servers whose job it is to route requests from clients to
implementations. The ORB could be a normal program as far as the underlying
operating system is concerned, and normal |PC could be used to communicate with the
ORB.

2.2.3 System-based ORB

To enhance security, robustness, and performance, the ORB could be provided as a
basic service of the underlying operating system. Object references could be made
unforgeable, reducing the expense of authentication on each request. Because the
operating system could know the location and structure of clients and i mplementations,
it would be possible for a variety of optimizations to be implemented, for example,
avoiding marshalling when both are on the same machine.

2.2.4 Library-based ORB

For objects that are light-weight and whose implementations can be shared, the
implementation might actually be in alibrary. In this case, the stubs could be the actual
methods. This assumes that it is possible for a client program to get access to the data
for the objects and that the implementation trusts the client not to damage the data.

2.3 Sructureof aClient

2-12

A client of an object has an object reference that refers to that object. An object
reference is a token that may be invoked or passed as a parameter to an invocation on
adifferent object. Invocation of an object involves specifying the object to be invoked,
the operation to be performed, and parameters to be given to the operation or returned
from it.

The ORB manages the control transfer and data transfer to the object implementation
and back to the client. In the event that the ORB cannot complete the invocation, an
exception response is provided. Ordinarily, a client calls a routine in its program that
performs the invocation and returns when the operation is complete.

Clients access object-type-specific stubs as library routines in their program (see
Figure 2-6 on page 2-13). The client program thus sees routines callable in the norma
way in its programming language. All implementations will provide a language-
specific data type to use to refer to objects, often an opaque pointer. The client then
passes that object reference to the stub routines to initiate an invocation. The stubs

Common Object Request Broker Architecture (CORBA), v2.5 September 2001

2

have access to the object reference representation and interact with the ORB to perform
the invocation. (See the C Language Mapping specification for additional, general
information on language mapping of object references.)

N\

Client Program

Language-dependent object references

ORB object references

Dynamic Invocation Stubs for Stubs for
Interface Interface A Interface B

.

J

Figure2-6 The Structure of a Typical Client

An alternative set of library code is available to perform invocations on objects, for
example when the object was not defined at compile time. In that case, the client
program provides additional information to name the type of the object and the method
being invoked, and performs a sequence of calls to specify the parameters and initiate
the invocation.

Clients most commonly obtain object references by receiving them as output
parameters from invocations on other objects for which they have references. When a
client is also an implementation, it receives object references as input parameters on
invocations to objects it implements. An object reference can aso be converted to a
string that can be stored in files or preserved or communicated by different means and
subsequently turned back into an object reference by the ORB that produced the string.

2.4 Sructure of an Object |mplementation

September 2001

An object implementation provides the actual state and behavior of an object. The
object implementation can be structured in a variety of ways. Besides defining the
methods for the operations themselves, an implementation will usually define

CORBA, v2.5: Sructure of an Object Implementation 2-13

2-14

procedures for activating and deactivating objects and will use other objects or non-
object facilities to make the object state persistent, to control access to the object, as
well as to implement the methods.

The object implementation (see Figur e2-7) interacts with the ORB in avariety of ways
to establish itsidentity, to create new objects, and to obtain ORB-dependent services. It
primarily does this via access to an Object Adapter, which provides an interface to
ORB services that is convenient for a particular style of object implementation.

Object Implementation

© Object data

Methods for
Interface A

ORB object references

ary Routines

Skeleton for Dynamic Object adapter

Interface A Skeleton routines

. J

Figure2-7 The Structure of a Typical Object Implementation

Because of the range of possible object implementations, it is difficult to be definitive
about how an object implementation is structured. See the Portable Object Adapter
chapter.

When an invocation occurs, the ORB Core, object adapter, and skeleton arrange that a
call is made to the appropriate method of the implementation. A parameter to that
method specifies the object being invoked, which the method can use to locate the data
for the object. Additional parameters are supplied according to the skeleton definition.
When the method is complete, it returns, causing output parameters or exception
results to be transmitted back to the client.

Common Object Request Broker Architecture (CORBA), v2.5 September 2001

2

When a new object is created, the ORB may be notified so that it knows where to find
the implementation for that object. Usualy, the implementation also registers itself as
implementing objects of a particular interface, and specifies how to start up the
implementation if it is not already running.

Most object implementations provide their behavior using facilities in addition to the
ORB and object adapter. For example, athough the Portable Object Adapter provides
some persistent data associated with an object (its OID or Object ID), that relatively

small amount of datais typically used as an identifier for the actual object data stored
in a storage service of the object implementation’s choosing. With this structure, it is
not only possible for different object implementations to use the same storage service,
it is also possible for objects to choose the service that is most appropriate for them.

2.5 Sructure of an Object Adapter

An object adapter (see Figure 2-8 on page 2-16) is the primary means for an object
implementation to access ORB services such as object reference generation. An object
adapter exports a public interface to the object implementation, and a private interface
to the skeleton. It is built on a private ORB-dependent interface.

Object adapters are responsible for the following functions:

® Generation and interpretation of object references

® Method invocation

® Security of interactions

® Object and implementation activation and deactivation

® Mapping object references to the corresponding object implementations

® Registration of implementations

These functions are performed using the ORB Core and any additional components
necessary. Often, an object adapter will maintain its own state to accomplish its tasks.
It may be possible for a particular object adapter to delegate one or more of its
responsibilities to the Core upon which it is constructed.

September 2001 CORBA, v2.5: Sructure of an Object Adapter 2-15

2-16

-

Object Implementation

Interface A Interface B
Methods Methods

Dynamic Interface A Interface B _
Skeleton Skeleton Skeleton Object
Adapter
Interface
ORB Core

Figure2-8 The Structure of a Typical Object Adapter

As shown in Figure 2-8, the Object Adapter isimplicitly involved in invocation of the
methods, although the direct interface is through the skeletons. For example, the Object
Adapter may be involved in activating the implementation or authenticating the
request.

The Object Adapter defines most of the services from the ORB that the Object
Implementation can depend on. Different ORBs will provide different levels of service
and different operating environments may provide some properties implicitly and
reguire others to be added by the Object Adapter. For example, it is common for
Object Implementations to want to store certain values in the object reference for easy
identification of the object on an invocation. If the Object Adapter allows the
implementation to specify such values when anew object is created, it may be able to
store them in the object reference for those ORBs that permit it. If the ORB Core does
not provide this feature, the Object Adapter would record the value in its own storage
and provide it to the implementation on an invocation. With Object Adapters, it is
possible for an Object Implementation to have access to a service whether or not it is
implemented in the ORB Core—if the ORB Core provides it, the adapter simply
provides an interface to it; if not, the adapter must implement it on top of the ORB
Core. Every instance of a particular adapter must provide the same interface and
service for al the ORBs it is implemented on.

It is also not necessary for all Object Adapters to provide the same interface or
functionality. Some Object Implementations have special reguirements. For example,
an object-oriented database system may wish to implicitly register its many thousands
of objects without doing individual calls to the Object Adapter. In such a case, it would

Common Object Request Broker Architecture (CORBA), v2.5 September 2001

2

be impractical and unnecessary for the object adapter to maintain any per-object state.
By using an object adapter interface that is tuned towards such object implementations,
it is possible to take advantage of particular ORB Core details to provide the most
effective access to the ORB.

2.6 CORBA Required Object Adapter

There are a variety of possible object adapters; however, since the object adapter
interface is something that object implementations depend on, it is desirable that there
be as few as practical. Most object adapters are designed to cover a range of object
implementations, so only when an implementation requires radically different services
or interfaces should a new object adapter be considered. In this section, we briefly
describe the object adapter defined in this specification.

2.6.1 Portable Object Adapter

This specification defines a Portable Object Adapter that can be used for most ORB
objects with conventional implementations. (See the Portable Object Adapter chapter
for more information.) The intent of the POA, as its name suggests, is to provide an
Object Adapter that can be used with multiple ORBs with a minimum of rewriting
needed to dea with different vendors' implementations.

This specification allows severa ways of using servers but it does not deal with the
administrative issues of starting server programs. Once started, however, there can be a
servant started and ended for a single method call, a separate servant for each object, or
a shared servant for all instances of the object type. It allows for groups of objects to be
associated by means of being registered with different instances of the POA object and
allows implementations to specify their own activation techniques. If the
implementation is not active when an invocation is performed, the POA will start one.
The POA is specified in IDL, so its mapping to languages is largely automatic,
following the language mapping rules. (The primary task left for a language mapping
is the definition of the Servant type.)

2.7 ThelIntegration of Foreign Object Systems

September 2001

The Common ORB Architecture is designed to allow interoperation with a wide range
of object systems (see Figure 2-9 on page 2-18). Because there are many existing
object systems, a common desire will be to allow the objects in those systems to be
accessible via the ORB. For those object systems that are ORBs themselves, they may
be connected to other ORBs through the mechanisms described throughout this
manual.

CORBA, v2.5: CORBA Required Object Adapter 2-17

2-18

Object system as
a POA object
implementation

Object system as
an implementation
with a special-purpose
object adapter

Portable Object
Adapter

Special-purpose
Adapter

ORB Core another ORB

Object system as

interoperating via a

atewa
Gateway . Y

Figure2-9 Different Ways to Integrate Foreign Object Systems

For object systems that simply want to map their objects into ORB objects and receive
invocations through the ORB, one approach is to have those object systems appear to
be implementations of the corresponding ORB objects. The object system would
register its objects with the ORB and handle incoming requests, and could act like a
client and perform outgoing requests.

In some cases, it will be impractical for another object system to act like aPOA object
implementation. An object adapter could be designed for objects that are created in
conjunction with the ORB and that are primarily invoked through the ORB. Another
object system may wish to create objects without consulting the ORB, and might
expect most invocations to occur within itself rather than through the ORB. In such a
case, a more appropriate object adapter might allow objects to be implicitly registered
when they are passed through the ORB.

Common Object Request Broker Architecture (CORBA), v2.5 September 2001

OMG DL Syntaxand Semantics 3

This chapter describes OMG Interface Definition Language (IDL) semantics and gives
the syntax for OMG IDL grammatical constructs.

Contents

This chapter contains the following sections.

Section Title Page
“Overview” 32
“Lexical Conventions’ 3-3
“Preprocessing” 3-11
“OMG IDL Grammar” 3-11
“OMG IDL Specification” 3-16
“Module Declaration” 3-16
“Interface Declaration” 3-17
“Value Declaration” 3-24
“Constant Declaration” 3-29
“Type Declaration” 3-33
“Exception Declaration” 3-47
“Operation Declaration” 3-47
“Attribute Declaration” 3-50
“CORBA Module” 3-51
“Names and Scoping” 3-52

September 2001 Common Object Request Broker Architecture (CORBA), v2.5 31

3-2

3.1 Overview

The OMG Interface Definition Language (IDL) is the language used to describe the
interfaces that client objects call and object implementations provide. An interface
definition written in OMG IDL completely defines the interface and fully specifies
each operation’s parameters. An OMG IDL interface provides the information needed
to develop clients that use the interface’s operations.

Clients are not written in OMG IDL, which is purely a descriptive language, but in
languages for which mappings from OMG IDL concepts have been defined. The
mapping of an OMG IDL concept to a client language construct will depend on the
facilities available in the client language. For example, an OMG IDL exception might
be mapped to a structure in a language that has no notion of exception, or to an
exception in a language that does. The binding of OMG IDL concepts to several
programming languages is described in this manual.

The description of OMG IDL's lexical conventionsis presented in Section 3.2, “Lexical
Conventions,” on page 3-3. A description of OMG IDL preprocessing is presented in
Section 3.3, “Preprocessing,” on page 3-11. The scope rules for identifiersin an OMG
IDL specification are described in Section 3.15, “Names and Scoping,” on page 3-52.

OMG IDL is a declarative language. The grammar is presented in Section 3.4, “OMG
IDL Grammar,” on page 3-11 and associated semantics is described in the rest of this
chapter either in place or through references to other sections of this standard.

OMG IDL-specific pragmas (those not defined for C++) may appear anywhere in a
specification; the textual location of these pragmas may be semantically constrained by
a particular implementation.

A source file containing interface specifications written in OMG IDL must have an
“.idl” extension.

The description of OMG IDL grammar uses a syntax notation that is similar to
Extended Backus-Naur Format (EBNF). Table 3-1 lists the symbols used in this format
and their meaning.

Table3-1 IDL EBNF

Symbol Meaning

i= Is defined to be

| Alternatively

<text> Nonterminal

“text” Literal

* The preceding syntactic unit can be repeated zero or more times
+ The preceding syntactic unit can be repeated one or more times

The enclosed syntactic units are grouped as a single syntactic unit

1 The enclosed syntactic unit is optional—may occur zero or one time

Common Object Request Broker Architecture (CORBA), v2.5 September 2001

3.2 Lexical Conventions

This section! presents the lexical conventions of OMG IDL. It defines tokens in an
OMG IDL specification and describes comments, identifiers, keywords, and
literals—integer, character, and floating point constants and string literals.

An OMG IDL specification logically consists of one or more files. A fileis
conceptually translated in several phases.

The first phase is preprocessing, which performs file inclusion and macro substitution.
Preprocessing is controlled by directives introduced by lines having # as the first

character other than white space. The result of preprocessing is a sequence of tokens.
Such a sequence of tokens, that is, afile after preprocessing, is called a translation unit.

OMG IDL uses the ASCII character set, except for string literals and character literals,
which use the ISO Latin-1 (8859.1) character set. The SO Latin-1 character set is
divided into alphabetic characters (letters) digits, graphic characters, the space (blank)
character, and formatting characters. Table 3-2 shows the 1SO Latin-1 alphabetic
characters; upper and lower case equivalences are paired. The ASCII alphabetic
characters are shown in the left-hand column of Table 3-2.

Table3-2 The 114 Alphabetic Characters (Letters)

Char. | Description Char. | Description

Aa Upper/Lower-case A Aa Upper/Lower-case A with grave accent

Bb Upper/Lower-case B Aa Upper/Lower-case A with acute accent

Cc Upper/Lower-case C Aa Upper/Lower-case A with circumflex accent
Dd Upper/Lower-case D Aa Upper/Lower-case A with tilde

Ee Upper/Lower-case E Aa Upper/Lower-case A with diaeresis

Ff Upper/Lower-case F Aa Upper/Lower-case A with ring above

Gg Upper/Lower-case G AEee Upper/Lower-case dipthong A with E

Hh Upper/Lower-case H Cc Upper/Lower-case C with cedilla

li Upper/Lower-case | Ee Upper/Lower-case E with grave accent

Jj Upper/Lower-case J Eé Upper/Lower-case E with acute accent

Kk Upper/Lower-case K Eé Upper/Lower-case E with circumflex accent
LI Upper/Lower-case L Ee Upper/Lower-case E with diaeresis

Mm Upper/Lower-case M i Upper/Lower-case | with grave accent

Nn Upper/Lower-case N ii Upper/Lower-case | with acute accent

Oo Upper/Lower-case O [Upper/Lower-case | with circumflex accent
Pp Upper/Lower-case P Ti Upper/Lower-case | with diaeresis

Qq Upper/Lower-case Q \y Upper/Lower-case N with tilde

Rr Upper/Lower-case R 0o Upper/Lower-case O with grave accent

Ss Upper/Lower-case S 06 Upper/Lower-case O with acute accent

September 2001

1. Thissection is an adaptation of The Annotated C++ Reference Manual, Chapter 2; it differs

in the list of legal keywords and punctuation.

CORBA, v2.5: Lexical Conventions

3-3

Table3-2 The 114 Alphabetic Characters (Letters) (Continued)

Char. | Description Char. | Description
Tt Upper/Lower-case T 0o Upper/Lower-case O with circumflex accent
Uu Upper/Lower-case U 0o Upper/Lower-case O with tilde
Vv Upper/Lower-case V 06 Upper/Lower-case O with diaeresis
Ww Upper/Lower-case W Do Upper/Lower-case O with oblique stroke
Xx Upper/Lower-case X Uu Upper/Lower-case U with grave accent
Yy Upper/Lower-case Y Ua Upper/Lower-case U with acute accent
Zz Upper/Lower-case Z Oa Upper/Lower-case U with circumflex accent
Ui Upper/Lower-case U with diaeresis
3 Lower-case German sharp S
y Lower-case Y with diaeresis

Table 3-3 lists the decimal digit characters.

Table3-3 Decimal Digits
0123456789

Table 3-4 shows the graphic characters.

Table 3-4 The 65 Graphic Characters

Char. | Description Char. | Description
! exclamation point i inverted exclamation mark
" double quote ¢ cent sign
number sign £ pound sign
$ dollar sign o currency sign
% percent sign ¥ yen sign
& ampersand broken bar
’ apostrophe § section/paragraph sign
(left parenthesis diaeresis
) right parenthesis © copyright sign
* asterisk a feminine ordinal indicator
+ plus sign « left angle quotation mark
, comma - not sign
- hyphen, minus sign soft hyphen
period, full stop ® registered trade mark sign
/ solidus - macron
colon ° ring above, degree sign
; semicolon * plus-minus sign
< less-than sign 2 superscript two
= equals sign s superscript three
> greater-than sign acute

Common Object Request Broker Architecture (CORBA), v2.5

September 2001

Table 3-4 The 65 Graphic Characters (Continued)

Char. | Description Char. | Description
? guestion mark 1] micro
@ commercial at | pilcrow
left square bracket . middle dot
reverse solidus) cedilla

right square bracket superscript one

S|—| — |

circumflex ° masculine ordinal indicator
_ low line, underscore » right angle quotation mark
grave vulgar fraction 1/4
{ left curly bracket vulgar fraction 1/2
| vertical line vulgar fraction 3/4
} right curly bracket ¢ inverted question mark
~ tilde X multiplication sign
+ division sign

The formatting characters are shown in Table 3-5.

Table 3-5 The Formatting Characters

Description | Abbreviation | SO 646 Octal Value
alert BEL 007
backspace BS 010
horizontal tab HT 011
newline NL, LF 012
vertical tab VT 013
form feed FF 014
carriage return CR 015

3.2.1 Tokens

There are five kinds of tokens: identifiers, keywords, literals, operators, and other
separators. Blanks, horizontal and vertical tabs, newlines, formfeeds, and comments
(collective, “white space”), as described below, are ignored except as they serve to
separate tokens. Some white space is required to separate otherwise adjacent
identifiers, keywords, and constants.

If the input stream has been parsed into tokens up to a given character, the next token
is taken to be the longest string of characters that could possibly constitute a token.
3.2.2 Comments

The characters /* start a comment, which terminates with the characters */. These
comments do not nest. The characters // start a comment, which terminates at the end
of the line on which they occur. The comment characters //, /*, and */ have no special

September 2001 CORBA, v2.5: Lexical Conventions 3-5

3-6

meaning within a// comment and are treated just like other characters. Similarly, the
comment characters// and /* have no special meaning within a/* comment. Comments
may contain alphabetic, digit, graphic, space, horizontal tab, vertical tab, form feed,
and newline characters.

3.2.3 ldentifiers

3231

An identifier is an arbitrarily long sequence of ASCII alphabetic, digit, and underscore
(“_") characters. The first character must be an ASCII aphabetic character. All
characters are significant.

When comparing two identifiers to see if they collide:

« Upper- and lower-case |etters are treated as the same letter. Table 3-2 on page 3-3
defines the equivalence mapping of upper- and lower-case letters.

¢ All characters are significant.

Identifiers that differ only in case collide, and will yield a compilation error under
certain circumstances. An identifier for a given definition must be spelled identically
(e.g., with respect to case) throughout a specification.

There is only one namespace for OMG IDL identifiers in each scope. Using the same
identifier for a constant and an interface, for example, produces a compilation error.

For example:
module M {

typedef long Foo;
const long thing = 1;

interface thing { /I error: reuse of identifier
void doit (
in Foo foo /I error: Foo and foo collide and refer to

different things
);

readonly attribute long Attribute; // error: Attribute collides with
keyword attribute
¥
3

Escaped Identifiers

As IDL evolves, new keywords that are added to the IDL language may inadvertently
collide with identifiers used in existing IDL and programs that use that IDL. Fixing
these collisions will require not only the IDL to be modified, but programming
language code that depends upon that IDL will have to change as well. The language
mapping rules for the renamed IDL identifiers will cause the mapped identifier names
(e.g., method names) to be changed.

Common Object Request Broker Architecture (CORBA), v2.5 September 2001

To minimize the amount of work, users may lexically “escape’ identifiers by
prepending an underscore (L) to an identifier. Thisis a purely lexical convention that
ONLY turns off keyword checking. The resulting identifier follows all the other rules
for identifier processing. For example, the identifier _Anldentifier is treated as if it
were Anldentifier.

The following is a non-exclusive list of implications of these rules:
e The underscore does not appear in the Interface Repository.

* The underscore is not used in the DIl and DSI.

e The underscore is not transmitted over “the wire.”

» Case sensitivity rules are applied to the identifier after stripping off the leading
underscore.

For example:

module M {
interface thing {
attribute boolean abstract; /l error: abstract collides with
/I keyword abstract

attribute boolean _abstract; // ok: abstract is an identifier

b
b

To avoid unnecessary confusion for readers of IDL, it is recommended that interfaces
only use the escaped form of identifiers when the unescaped form clashes with a newly
introduced IDL keyword. It is also recommended that interface designers avoid
defining new identifiers that are known to require escaping. Escaped literals are only
recommended for IDL that expresses legacy interface, or for IDL that is mechanically
generated.

3.2.4 Keywords

The identifiers listed in Table 3-6 are reserved for use as keywords and may not be
used otherwise, unless escaped with a leading underscore.

Table3-6 Keywords

September 2001

abstract double local raises typedef
any exception long readonly unsigned
attribute enum module sequence union
boolean factory native short ValueBase
case FALSE Object string valuetype
char fixed octet struct void

const float oneway supports wchar
context in out switch wstring
custom inout private TRUE

default interface public truncatable

CORBA, v2.5: Lexical Conventions

3-7

3-8

Keywords must be written exactly as shown in the above list. Identifiers that collide
with keywords (see Section 3.2.3, “Identifiers,” on page 3-6) are illegal. For example,
“boolean” is avalid keyword; “Boolean” and “BOOLEAN" are illegal identifiers.

For example:
module M {
typedef Long Foo; /I Error: keyword is long not Long
typedef boolean BOOLEAN,; /I Error: BOOLEAN collides with
/I the keyword boolean;
¥

OMG IDL specifications use the characters shown in Table 3-7 as punctuation.

Table 3-7 Punctuation Characters

«c - =+ -) < > []
N A e %~

In addition, the tokens listed in Table 3-8 are used by the preprocessor.

Table 3-8 Preprocessor Tokens
o I &&

3.25 Literals

3251

3.25.2

This section describes the following literals:
e Integer
e Character
* Floating-point
e String
* Fixed-point

Integer Literals

An integer literal consisting of a sequence of digits is taken to be decimal (base ten)
unless it begins with 0 (digit zero). A sequence of digits starting with 0 is taken to be
an octal integer (base eight). The digits 8 and 9 are not octal digits. A sequence of
digits preceded by Ox or OX is taken to be a hexadecimal integer (base sixteen). The
hexadecimal digitsinclude a or A through f or F with decimal values ten through
fifteen, respectively. For example, the number twelve can be written 12, 014, or 0XC.

Character Literals

A character literal is one or more characters enclosed in single quotes, asin 'x.’
Character literas have type char.

Common Object Request Broker Architecture (CORBA), v2.5 September 2001

3

September 2001

A character is an 8-bit quantity with a numerical value between 0 and 255 (decimal).
The value of a space, aphabetic, digit, or graphic character literal is the numerical
value of the character as defined in the 1SO Latin-1 (8859.1) character set standard
(See Table 3-2 on page 3-3, Table 3-3 on page 3-4, and Table 3-4 on page 3-4). The
value of anull is0. The value of a formatting character literal isthe numerical value of
the character as defined in the 1SO 646 standard (see Table 3-5 on page 3-5). The
meaning of all other characters is implementation-dependent.

Nongraphic characters must be represented using escape sequences as defined below in
Table 3-9. Note that escape sequences must be used to represent single quote and
backslash characters in character literals.

Table 3-9 Escape Sequences

Description Escape Sequence
newline \n
horizontal tab \t
vertical tab \v
backspace \b
carriage return \r
form feed \f
alert \a
backslash \\
question mark \?
single quote \
double quote \"
octal number \ooo
hexadecimal number \xhh
unicode character \uhhhh

If the character following a backslash is not one of those specified, the behavior is
undefined. An escape sequence specifies a single character.

The escape \ooo consists of the backslash followed by one, two, or three octal digits
that are taken to specify the value of the desired character. The escape \xhh consists of
the backslash followed by x followed by one or two hexadecimal digits that are taken
to specify the value of the desired character.

The escape \uhhhh consists of a backslash followed by the character ‘u’, followed by
one, two, three or four hexadecimal digits. This represents a unicode character literal.
Thus the literal “\UOO2E” represents the unicode period ‘.’ character and the literal
“\u3BC” represents the unicode greek small letter ‘mu’. The \u escape is valid only
with wchar and wstring types. Because awide string literal is defined as a sequence of
wide character literals a sequence of \u literals can be used to define a wide string
literal. Attempts to set a char type to a\u defined literal or a string type to a sequence
of \u literals result in an error.

CORBA, v2.5: Lexical Conventions 3-9

3-10

3.253

3254

A sequence of octal or hexadecimal digitsis terminated by thefirst character that is not
an octal digit or a hexadecimal digit, respectively. The value of a character constant is
implementation dependent if it exceeds that of the largest char.

Wide character literals have an L prefix, for example:

const wchar C1 =L'X'";

Attempts to assign awide character litera to a non-wide character constant or to assign
a non-wide character literal to a wide character constant result in a compile-time
diagnostic.

Both wide and non-wide character literals must be specified using characters from the
SO 8859-1 character set.

Floating-point Literals

A floating-point literal consists of an integer part, adecimal point, afraction part, an e
or E, and an optionally signed integer exponent. The integer and fraction parts both
consist of a sequence of decimal (base ten) digits. Either the integer part or the fraction
part (but not both) may be missing; either the decimal point or the letter e (or E) and
the exponent (but not both) may be missing.

Sring Literals

A string literal is a sequence of characters (as defined in Section 3.2.5.2, “ Character
Literals,” on page 3-8) surrounded by double quotes, asin “...".

Adjacent string literals are concatenated. Characters in concatenated strings are kept
distinct. For example,

"\xA" "B"

contains the two characters ‘\xA’ and ‘B’ after concatenation (and not the single
hexadecimal character ‘\xAB’).

The size of a string literal is the number of character literals enclosed by the quotes,
after concatenation. Within a string, the double quote character " must be preceded by
a\.

A string literal may not contain the character ‘\0'.

Wide string literals have an L prefix, for example:

const wstring S1 = L"Hello";

Attempts to assign a wide string literal to a non-wide string constant or to assign a
non-wide string literal to a wide string constant result in a compile-time diagnostic.

Both wide and non-wide string literals must be specified using characters from the 1SO
8859-1 character set.

Common Object Request Broker Architecture (CORBA), v2.5 September 2001

3.25.5

3.3 Preprocessing

A wide string literal shall not contain the wide character with value zero.

Fixed-Point Literals

A fixed-point decimal literal consists of an integer part, a decimal point, a fraction part
and ad or D. The integer and fraction parts both consist of a sequence of decimal (base
10) digits. Either the integer part or the fraction part (but not both) may be missing; the
decimal point (but not the letter d (or D)) may be missing.

OMG IDL is preprocessed according to the specification of the preprocessor in
“International Organization for Standardization. 1998. ISO/IEC 14882 Standard for the
C++ Programming Language. Geneva: International Organization for Standardization.”
The preprocessor may be implemented as a separate process or built into the IDL
compiler.

Lines beginning with # (also called “directives’) communicate with this preprocessor.
White space may appear before the #. These lines have syntax independent of the rest
of OMG IDL; they may appear anywhere and have effects that last (independent of the
OMG IDL scoping rules) until the end of the trandlation unit. The textual location of
OMG IDL-specific pragmas may be semanticaly constrained.

A preprocessing directive (or any line) may be continued on the next line in a source
file by placing a backslash character (“\"), immediately before the newline at the end
of the line to be continued. The preprocessor effects the continuation by deleting the
backslash and the newline before the input sequence is divided into tokens. A
backslash character may not be the last character in a source file.

A preprocessing token is an OMG IDL token (see Section 3.2.1, “Tokens,” on
page 3-5), afile name as in a#include directive, or any single character other than
white space that does not match another preprocessing token.

The primary use of the preprocessing facilities is to include definitions from other
OMG IDL specifications. Text in files included with a #include directiveis treated as
if it appeared in the including file. The #pragma directive that is used to include
Repositorylds is described in Section 10.6, “Repositorylds,” on page 10-42.

3.4 OMG IDL Grammar

September 2001

@)
)

®)
(4)

<specification> ::= <definition>*

<definition> ::= <type_dcl>";"
| <const_dcl>*;"
| <except_dcl>*“;"
| <interface>";"
| <module>"*;”
| <value>*;”

<module> ::= “module” <identifier>“{* <definition>**}"
<interface> ::= <interface dcl>
CORBA, v2.5: Preprocessing 311

®)
(6)
™)

®)
9)

<interface_dcl>
<forward_dcl>
<interface_header>

<interface_body>
<export>

(10)<interface_inheritance_spec>::

11
12)

(13)
(14)

(15)
(16)

17
(18)

<interface_name>
<scoped_name>

<value>
<value forward_dcl>

<value_box_dcl>
<value_abs_dcl>

<value_dcl>
<value_header>

(19)<value_inheritance_spec>

(20)
(1)
(22)
(23)

(24)
(25)

(26)
(27)

(28)

3-12

<value_name>
<value_element>
<state_member>

<init_dcl>

<init_param_decls>
<init_param_decl>

<init_param_attribute>
<const_dcl>

<const_type>

<forward_dcl>

<interface_header> “{" <interface_body>"“}"
[“abstract” | “local”] “interface” <identifier>
[“abstract” | “local”] “interface” <identifier>
[<interface_inheritance_spec>]

<export>"

<type_dcl>";"

<const_dcl>";”

<except_dcl>*“;"

<attr_dcl>*“;”

<op_dcl>";”

“:” <interface_name> .

{",” <interface_name>}

<scoped_name>

<identifier>

“::" <identifier>

<scoped_name>“::" <identifier>
(<value_dcl> | <value_abs_dcl> |
<value_box_dcl> | <value_forward_dcl>)

[“abstract”] “valuetype” <identifier>

= “valuetype” <identifier> <type_spec>

“abstract” “valuetype” <identifier>

[<value_inheritance_spec>]

“{" <export>**“}”

<value_header>“{" <value_element>**“}"
[“custom”] “valuetype” <identifier>

[<value_inheritance_spec>]

[“:” [“truncatable”] <value_name>

{",” <value_name>}*]

[“supports” <interface_name>

{",” <interface_name> }*]
<scoped_name>

<export> | < state_member> | <init_dcl>
(“public” | “private”)

<type_spec> <declarators>*“;"

“factory” <identifier>

“(* [<init_param_decls>] “)" “;”
<init_param_decl> { “,” <init_param_decl> }*
<init_param_attribute> <param_type_spec>
<simple_declarator>

uinn
“const” <const_type>
<identifier> “=" <const_exp>

<integer_type>
<char_type>
<wide_char_type>
<boolean_type>

Common Object Request Broker Architecture (CORBA), v2.5 September 2001

September 2001

(29)
(30)

(1)
(32

(33)

(34)

(35)

(36)

37

(38)

(39)

(40)

(41)
(42)

<const_exp>
<or_expr>

<xor_expr>
<and_expr>

<shift_expr>

<add_expr>

<mult_expr>

<unary_expr>

<unary_operator>

<primary_expr>

<literal>

<boolean_literal>

<positive_int_const>
<type_dcl>

CORBA, v2.5: OMG IDL Grammar

<floating_pt_type>
<string_type>
<wide_string_type>
<fixed_pt_const_type>
<scoped_name>
<octet_type>

= <or_expr>

<xor_expr>
<or_expr>"“|" <xor_expr>
<and_expr>

<xor_expr>“~” <and_expr>
<shift_expr>

<and_expr>“&" <shift_expr>
<add_expr>

<shift_expr>“>>" <add_expr>
<shift_expr>“<<” <add_expr>
<mult_expr>

<add_expr>“+" <mult_expr>
<add_expr>“-" <mult_expr>
<unary_expr>

<mult_expr>“*" <unary_expr>
<mult_expr>"“/" <unary_expr>
<mult_expr>“%" <unary_expr>
<unary_operator> <primary_expr>
<primary_expr>

“r

<scoped_name>

<literal>

“(" <const_exp>")"
<integer_literal>
<string_literal>
<wide_string_literal>
<character_literal>
<wide_character_literal>
<fixed_pt_literal>
<floating_pt_literal>
<boolean_literal>

“TRUE”"

“FALSE”

<const_exp>

= “typedef” <type_declarator>

<struct_type>

<union_type>

<enum_type>

“native” <simple_declarator>
<constr_forward_decl>

3-13

(43) <type_declarator> ::= <type_spec> <declarators>
(44) <type_spec> ::= <simple_type_spec>

| <constr_type spec>
(45) <simple_type_spec> := <base type spec>

| <template_type_spec>

| <scoped_name>
(46) <base_type spec> ::= <floating_pt_type>
<integer_type>
<char_type>
<wide_char_type>
<boolean_type>
<octet_type>
<any_type>
<object_type>
<value_base type>
(47) <template_type_spec> ::= <sequence_type>

| <string_type>

| <wide_string_type>

| <fixed_pt_type>
(48) <constr_type_spec> ::= <struct_type>

| <union_type>

| <enum_type>

(49) <declarators> ::= <declarator>{“,” <declarator> }"
(50) <declarator> ::= <simple_declarator>

| <complex_declarator>
(51) <simple_declarator> ::= <identifier>
(52) <complex_declarator> ::= <array_declarator>
(53) <floating_pt_type> ::= “float”

| “double”

| “long” “double”
(54) <integer_type> ::= <signhed_int>

| <unsigned_int>
(55) <signed_int> ::= <signed_short_int>

| <signed_long_int>
| <signed_longlong_int>

(56) <signed_short_int> ::= “short”

(57) <signed_long_int> ::= “long”

(58) <signed_longlong_int> ::= “long” “long”

(59) <unsigned_int> ::= <unsigned_short_int>

| <unsigned_long_int>
| <unsigned_longlong_int>

(60) <unsigned_short_int> ::= “unsigned” “short”

(61) <unsigned_long_int> ::= “unsigned” “long”

(62) <unsigned_longlong_int> ::= “unsigned” “long” “long”
(63) <char_type> ::= “char”

(64) <wide_char_type> ::= “wchar”

(65) <boolean_type> ::= “boolean”

3-14 Common Object Request Broker Architecture (CORBA), v2.5 September 2001

September 2001

(66)
(67)
(68)
(69)
(70)
(71)
(72)

(73)

(74)
(75)
(76)

(77)
(78)

(79)
(80)
(81)
(82)
(83)

(84)
(85)

(86)
(87)

(88)
(89)
(90)
(91)

(92)

<octet_type> ::=
<any_type> ::=
<object_type> ::=
<struct_type> ::=
<member_list> ::=
<member> ::=
<union_type> =

<switch_type_spec> ::=

<switch_body> ::=
<case> :.=
<case_label> ::=

<element_spec> :::=
<enum_type> ::=

<enumerator> ::=
<sequence_type> ::=
<string_type> ::=
<wide_string_type> ::=
<array_declarator> ::=

<fixed_array_size> ::=
<attr_dcl> ::=

<except_dcl> ::=
<op_dcl> :=

<op_attribute> ::=
<op_type_spec> :=
<parameter_dcls> ::=
<param_dcl> :=

<param_attribute> ::=

CORBA, v2.5: OMG IDL Grammar

“octet”
“any”
“Object”
“struct” <identifier>“{" <member_list>*“}"
<member>"

<type_spec> <declarators> ;"

“union” <identifier>“switch”

“ (” <SWi'[Ch_'[ype_spec> “)"

“{” <switch_body>*“}"

<integer_type>

<char_type>

<boolean_type>

<enum_type>

<scoped_name>

<case>"

<case_label>* <element_spec>*“;"

“case” <const_exp>*“:"

“default” “:”

<type_spec> <declarator>

“enum” <identifier>

“{” <enumerator>{ “,” <enumerator> }7}”
<identifier>

“sequence” “<” <simple_type_spec>""
<positive_int_const>“>"

“sequence” “<” <simple_type_spec>“>"

“string” “<” <positive_int_const>"“>"
“string”

“wstring” “<” <positive_int_const>"“>"
“wstring”

<identifier> <fixed_array_size>"*

“[" <positive_int_const>"“]"

[“readonly”] “attribute”
<param_type_spec> <simple_declarator>
{ “,” <simple_declarator> }*

“exception” <identifier>“{* <member>*“}"
[<op_attribute>] <op_type_spec>
<identifier> <parameter_dcls>

[<raises_expr>][<context_expr>]
“oneway”

<param_type_spec>

“void”

“(" <param_dcl>{ “,” <param_dcl> }7«)"
w sy

<param_attribute> <param_type_spec>
<simple_declarator>

n

3-15

(93)
(94)

(95)

(96)

(97)
(98)
(99)

<raises_expr>
<context_expr>

<param_type_spec>

<fixed_pt_type>

<fixed_pt_const_type>
<value_base_type>
<constr_forward_decl>

3.5 OMG IDL Specification

An OMG IDL specification consists of one or more type definitions, constant
definitions, exception definitions, or module definitions. The syntax is:

@)
)

<specification>
<definition>

out
“inout”

“raises” “ (" <scoped_name>

{“ <scoped_name>}D“)"
“context” “(” <string_literal>

{“,” <string_literal>} D“)"
<base_type_spec>

<string_type>

<wide_string_type>
<scoped_name>

“fixed” “<" <positive_int_const>""
<positive_int_const>"“>"

“fixed”

“ValueBase”

“struct” <identifier>

“union” <identifier>

<definition>*
<type_dcl>*“;"
<const_dcl>";”
<except_dcl>*“;"
<interface>*“;”
<module>“;”
<value>"“;”

See Section 3.6, “Module Declaration,” on page 3-16, for the specification of

<module>.

See Section 3.7, “Interface Declaration,” on page 3-17, for the specification of

<interface>.

See Section 3.8, “Value Declaration,” on page 3-24, for the specification of <value>.

See Section 3.9, “Constant Declaration,” on page 3-29, Section 3.10, “Type
Declaration,” on page 3-33, and Section 3.11, “Exception Declaration,” on page 3-47
respectively for specifications of <const_dcl>, <type_dcl>, and <except_dcl>.

3.6 ModuleDeclaration

3-16

©)

A module definition satisfies the following syntax:

<module>

Common Object Request Broker Architecture (CORBA), v2.5

= “module” <identifier>*{* <definition>**“}"

September 2001

The module construct is used to scope OMG IDL identifiers; see Section 3.14,
“CORBA Module,” on page 3-51 for details.

3.7 InterfaceDeclaration

(4)

®)
(6)
@)

®)
9)

An interface definition satisfies the following syntax:

<interface> ::= <interface dcl>

| <forward_dcl>
<interface_dcl> ::= <interface_header>“{" <interface_body>"}"
<forward_dcl> ::= [“abstract” | “local”] “interface” <identifier>
<interface_header> ::= [“abstract” | “local”] “interface” <identifier>

[<interface_inheritance_spec>]
<interface_body> ::= <export>"
<export> ::= <type_dcl>*“;”

<const_dcl>";”
<except_dcl>*“;"
<attr_dcl>*“;”
<op_dcl>"“;”

3.7.1 Interface Header

The interface header consists of three elements:
1. An optional modifier specifying if the interface is an abstract interface.

2. The interface name. The name must be preceded by the keyword interface, and
consists of an identifier that names the interface.

3. An optional inheritance specification. The inheritance specification is described in
the next section.

The<identifier> that names an interface defines alegal type name. Such atype name
may be used anywhere an <identifier> is legal in the grammar, subject to semantic
constraints as described in the following sections. Since one can only hold references
to an object, the meaning of a parameter or structure member, which is an interface
type is as a reference to an object supporting that interface. Each language binding
describes how the programmer must represent such interface references.

Abstract interfaces have slightly different rules and semantics from “regular”
interfaces, as described in Section 6.2, “ Semantics of Abstract Interfaces” on page6-1.
They also follow different language mapping rules.

3.7.2 Interface Inheritance Specification

September 2001

The syntax for inheritance is as follows:

CORBA, v2.5: Interface Declaration 3-17

3-18

(10)<interface_inheritance_spec>::=":" <interface_name>
{“,” <interface_name>}

(12) <interface_name> ::= <scoped_name>
(12) <scoped_name> ::= <identifier>
| “:” <identifier>
| <scoped_name>“:" <identifier>

Each <scoped_name> in an <interface_inheritance_spec> must denote a
previously defined interface. See Section 3.7.5, “Interface Inheritance,” on page 3-19
for the description of inheritance.

3.7.3 Interface Body

The interface body contains the following kinds of declarations:

« Constant declarations, which specify the constants that the interface exports;
constant declaration syntax is described in Section 3.9, “Constant Declaration,” on
page 3-29.

e Type declarations, which specify the type definitions that the interface exports; type
declaration syntax is described in Section 3.10, “ Type Declaration,” on page 3-33.

« Exception declarations, which specify the exception structures that the interface
exports; exception declaration syntax is described in Section 3.11, “Exception
Declaration,” on page 3-47.

« Attribute declarations, which specify the associated attributes exported by the
interface; attribute declaration syntax is described in Section 3.13, “Attribute
Declaration,” on page 3-50.

e Operation declarations, which specify the operations that the interface exports and
the format of each, including operation name, the type of data returned, the types of
all parameters of an operation, legal exceptions that may be returned as a result of
an invocation, and contextual information that may affect method dispatch;
operation declaration syntax is described in Section 3.12, “Operation Declaration,”
on page 3-47.

Empty interfaces are permitted (that is, those containing no declarations).

Some implementations may require interface-specific pragmas to precede the interface
body.

3.7.4 Forward Declaration

A forward declaration declares the name of an interface without defining it. This
permits the definition of interfaces that refer to each other. The syntax is: optionally
the keyword abstract, followed by the keyword interface, followed by an
<identifier> that names the interface.

Multiple forward declarations of the same interface name are legal.

Common Object Request Broker Architecture (CORBA), v2.5 September 2001

3

September 2001

It isillegal to inherit from a forward-declared interface whose definition has not yet
been seen:

module Example {
interface base; /l Forward declaration

...

interface derived : base {}; I/l Error
interface base {}; /l Define base
interface derived : base {}; /I OK

b

3.7.5 Interface Inheritance

An interface can be derived from another interface, which is then called a base
interface of the derived interface. A derived interface, like all interfaces, may declare
new elements (constants, types, attributes, exceptions, and operations). In addition,
unless redefined in the derived interface, the elements of a base interface can be
referred to as if they were elements of the derived interface. The name resolution
operator (“::") may be used to refer to a base element explicitly; this permits reference
to a name that has been redefined in the derived interface.

A derived interface may redefine any of the type, constant, and exception names that
have been inherited; the scope rules for such names are described in Section 3.14,
“CORBA Module,” on page 3-51.

An interfaceis called a direct base if it is mentioned in the
<interface_inheritance_spec> and an indirect base if it is not adirect base but is a
base interface of one of the interfaces mentioned in the
<interface_inheritance_spec>.

An interface may be derived from any number of base interfaces. Such use of more
than one direct base interface is often called multiple inheritance. The order of
derivation is not significant.

An abstract interface may only inherit from other abstract interfaces.

An interface may not be specified as a direct base interface of a derived interface more
than once; it may be an indirect base interface more than once. Consider the following
example:

interface A{ ...}

interface B: A{ ...}

interface C: A{ ...}

interface D: B, C{ ... }

interface E: A,B{ ... }; /I OK

CORBA, v2.5: Interface Declaration 3-19

3-20

/\
B\/C N ’
D

The relationships between these interfaces is shown in Figure 3-1. This “diamond”
shape is legal, as is the definition of E on the right.

A

Figure3-1 Lega Multiple Inheritance Example

References to base interface elements must be unambiguous. A Reference to a base
interface element is ambiguous if the name is declared as a constant, type, or exception
in more than one base interface. Ambiguities can be resolved by qualifying a name
with its interface name; that is, using a <scoped_name>. It isillegal to inherit from
two interfaces with the same operation or attribute name, or to redefine an operation or
attribute name in the derived interface.

So for example in:

interface A {
typedef long L1,
short opA(in L11_1);
¥

interface B {
typedef short L1;
L1 opB(in long I);

3

interface C: B, A {
typedef L1 L2; /I Error: L1 ambiguous
typedef A::L1L3; /I'A::L1is OK
B::L1opC(in L31_3); //all OK no ambiguities

¥

References to constants, types, and exceptions are bound to an interface when it is
defined; that is, replaced with the equivalent global <scoped_name>s. This
guarantees that the syntax and semantics of an interface are not changed when the
interface is a base interface for a derived interface. Consider the following example:
constlong L = 3;

interface A {

Common Object Request Broker Architecture (CORBA), v2.5 September 2001

September 2001

typedef float coord[L]:
void f (in coord s); /I's has three floats

b

interface B {
const long L = 4;

¥
interface C: B, A{}; /l what is C::f()'s signature?

The early binding of constants, types, and exceptions at interface definition guarantees
that the signature of operation f in interface C is

typedef float coord[3];
void f (in coord s);

which isidentica to that in interface A. This rule also prevents redefinition of a
constant, type, or exception in the derived interface from affecting the operations and
attributes inherited from a base interface.

Interface inheritance causes al identifiers defined in base interfaces, both direct and
indirect, to be visible in the current naming scope. A type name, constant name,
enumeration value name, or exception name from an enclosing scope can be redefined
in the current scope. An attempt to use an ambiguous name without qualification
produces a compilation error. Thusin

interface A {
typedef string<128> string_t;
¥

interface B {
typedef string<256> string_t;

3

interface C: A, B {
attribute string_t Title; /I Error: string_t ambiguous
attribute A::string_t Name; /I OK
attribute B::string_t City; /I OK

3

Operation and attribute names are used at run-time by both the stub and dynamic
interfaces. As aresult, all operations attributes that might apply to a particular object
must have unique names. This requirement prohibits redefining an operation or
attribute name in a derived interface, as well as inheriting two operations or attributes
with the same name.

interface A {
void make_it_so();

b

interface B: A {

CORBA, v2.5: Interface Declaration 3-21

3-22

b

short make_it_so(in long times); // Error: redefinition of make_it_so

For a complete summary of allowable inheritance and supporting relationships among
interfaces and valuetypes see Table 3-10 on page 3-29.

3.7.6 Local Interface

3.76.1

Semantics

The semantics associated with local types are as follows:

An interface declaration containing the keyword local declares a local interface.
An interface declaration not containing the keyword local is referred to as an
unconstrained interface. An object implementing alocal interfaces is referred to as
alocal object.

A local interface may inherit from other local or unconstrained interfaces.

An unconstrained interface may not inherit from alocal interface. An interface
derived from alocal interface must be explicitly declared local.

A valuetype may support a local interface.

Any IDL type, including an unconstrained interface, may appear as a parameter,
attribute, return type, or exception declaration of alocal interface.

A local interface is a local type, as is any non-interface type declaration
constructed using a local interface or other local type. For example, a struct,
union, or exception with a member that is alocal interface is also itself alocal

type.

A local type may be used as a parameter, attribute, return type, or exception
declaration of alocal interface or of avaluetype.

A local type may not appear as a parameter, attribute, return type, or exception
declaration of an unconstrained interface or as a state member of a valuetype.

Local types cannot be marshaled and referencesto local objects cannot be converted
to strings. Any attempt to marshal alocal object, such as via an unconstrained base
interface, as an Object, or as the contents of an any, or to pass alocal object to
ORB::object_to_string, shal result in a MARSHAL system exception with OMG
minor code 2.

The usage of client side language mappings for local types shall be identical to
those of eguivalent unconstrained types.

The DIl is not supported on local objects, nor are asynchronous invocation
interfaces.

Thenon_existent, is_equivalent and hash CORBA::Object pseudo-operations
shall be supported by references to local objects.

Common Object Request Broker Architecture (CORBA), v2.5 September 2001

September 2001

3.7.6.2

e Theis_a, get_interface, get_domain_managers, get_policy,
get_client_policy, set_policy_overrides, get_policy_overrides, and
validate_connection pseudo-operations, and any DIl support pseudo-operations,
may result in a NO_IMPLEMENT system exception with minor code 3 when
invoked on areference to a local object.

¢ Language mappings shall specify server side mechanisms, including base classes
and/or skeletons if necessary, for implementing local objects, so that invocation
overhead is minimized.

¢ Invocations on local objects are not ORB mediated. Specifically, parameter copy
semantics are not honored, interceptors are not invoked, and the execution context
of alocal object does not have ORB service Current object contexts that are
distinct from those of the caller. Implementations of local interfaces are responsible
for providing the parameter copy semantics expected by clients.

¢ Local objects have no inherent identities beyond their implementations’ identities as
programming objects. The lifecycle of the implementation is the same as the
lifecycle of the reference.

¢ Instances of local objects defined as part of OMG specifications to be supplied by
ORB products or object service products shall be exposed through the
ORB::resolve_initial_references operation or through some other local object
obtained from resolve_initial _references.

Local Object

Local interfaces are implemented by using CORBA::LocalObject to provide
implementations of Object pseudo operations and any other ORB specific support
mechanisms that are appropriate for such objects. Object implementation techniques
are inherently language mapping specific. Therefore, the LocalObject type is not
defined in IDL, but is specified by each language mapping.

The LocalObject type provides implementations of the following Cbj ect pseudo-
operations that raise the NO_IMPLEMENT system exception:

e is_a

e get_interface

e get_domain_managers

e get_policy

e get_client_policy

e set_policy_overrides

e get_policy_overrides

« validate_connection

Additionally, it provides implementations of the following pseudo-operations:
e non_existent - always returns false.

¢ hash - returns a hash value that is consistent for the lifetime of the object.

CORBA, v2.5: Interface Declaration 3-23

e is_equivalent - returns true if the references refer to the same LocalObject
implementation.

Attempting to use a LocalObject to create a DIl request resultsin a
NO_IMPLEMENT system exception with standard minor code 4. Attempting to
marshal or stringify a LocalObject results in a MARSHAL system exception with
standard minor code 4. Narrowing and widening of references to LocalObjects must
work as for regular object references.

For a complete summary of allowable inheritance and supporting relationships among
interfaces and valuetypes see Table 3-10 on page 3-29.

3.8 \alueDeclaration

There are several kinds of value type declarations: “regular” value types, boxed value
types, abstract value types, and forward declarations.

A value declaration satisfies the following syntax:

(13) <value> ::= (<value_dcl>| <value_abs_dcl> |
<value_box_dcl> | <value_forward_dcl>)

3.8.1 Regular Value Type

A regular value type satisfies the following syntax:

a7) <value_dcl> ::= <value_header>"“{" <value_element>*"“}"
(18) <value_header> ::= [“custom”] “valuetype” <identifier>
[<value_inheritance_spec>]
(22) <value_element> ::= <export>
| < state_member> |
| <init_dcl>

3.8.1.1 ValueHeader

The value header consists of two elements:

1. Thevalue type's name and optional modifier specifying whether the val ue type uses
custom marshaling.

2. An optional value inheritance specification. The value inheritance specification is
described in the next section.

3.8.1.2 ValueElement

A value can contain all the elements that an interface can as well as the definition of
state members, and initializers for that state.

3-24 Common Object Request Broker Architecture (CORBA), v2.5 September 2001

September 2001

3.8.1.3

Value Inheritance Specification

(19)<value_inheritance_spec> ::= [“:" [“truncatable”] <value_name>

(20)

38.14
(22)

3.8.1.5
(23)

(24)
(25)

(26)

{",” <value_name>}*]

[“supports” <interface_name>

{“,” <interface_name> }*]
<value_name> ::= <scoped_name>

Each <value_name> and <interface_name> in a <value_inheritance_spec>
must denote previously defined value type or interface. See Section 3.8.5, “Valuetype
Inheritance,” on page 3-28 for the description of value type inheritance.

The truncatable modifier may not be used if the value type being defined is a custom
value.

A valuetype that supports a local interface does not itself become local (i.e.,
unmarshalable) as a result of that support.

Sate Members

<state_member> ::= (“public” | “private”)
<type_spec> <declarators>*“;”"

Each <state_member> defines an element of the state, which is marshaled and sent
to the receiver when the value type is passed as a parameter. A state member is either
public or private. The annotation directs the language mapping to hide or expose the
different parts of the state to the clients of the value type. The private part of the state
is only accessible to the implementation code and the marshaling routines.

A valuetype that has a state member that is local (i.e., non-marshaable like a local
interface), isitself rendered local. That is, such valuetypes behave similar to local
interfaces when an attempt is made to marshal them.

Note that certain programming languages may not have the built in facilities needed to
distinguish between the public and private members. In these cases, the language
mapping specifies the rules that programmers are responsible for following.

Initializers
<init_dcl> ::= “factory” <identifier>
“(* [<init_param_decls>] “)" “;”
<init_param_decls> ::= <init_param_decl> {“,” <init_param_decl> }*
<init_param_decl> ::= <init_param_attribute> <param_type_spec>
<simple_declarator>

n

<init_param_attribute>

In order to ensure portability of value implementations, designers may also define the
signatures of initializers (or constructors) for non abstract value types. Syntactically
these look like local operation signatures except that they are prefixed with the
keyword factory, have no return type, and must use only in parameters. There may be
any number of factory declarations. The names of the initializers are part of the name

CORBA, v2.5: Value Declaration 3-25

3-26

3.8.1.6

scope of the value type. Initializers defined in a valuetype are not inherited by derived
valuetypes, and hence the names of the initializers are free to be reused in a derived
valuetype.

If no initializers are specified in IDL, the value type does not provide a portable way of
creating a runtime instance of its type. There is no default initializer. This alows the
definition of IDL value types, which are not intended to be directly instantiated by
client code.

Value Type Example

interface Tree {
void print()
¥

valuetype WeightedBinaryTree {
Il state definition
private unsigned long weight;
private WeightedBinaryTree left;
private WeightedBinaryTree right;
[/l initializer
factory init(in unsigned long w);
/I local operations
WeightSeq pre_order();
WeightSeq post_order();
3
valuetype WTree: WeightedBinaryTree supports Tree {};

3.8.2 Boxed Value Type

(15)

<value_box_dcl> ::= “valuetype” <identifier> <type_spec>

It is often convenient to define a value type with no inheritance or operations and with
a single state member. A shorthand IDL notation is used to simplify the use of value
types for this kind of simple containment, referred to as a “value box.”

Value box is particularly useful for strings and sequences. Basically one does not have
to create what is in effect an additional namespace that will contain only one name.

An example is the following IDL:

module Example {
interface Foo {
... I*anything */
3
valuetype FooSeq sequence<Foo0>;
interface Bar {
void dolt (in FooSeq seql);
¥

Common Object Request Broker Architecture (CORBA), v2.5 September 2001

3

September 2001

The above IDL provides similar functionality to writing the following IDL. However
the type identities (repository ID’s) would be different.

module Example {
interface Foo {
... I*anything */
¥
valuetype FooSeq {
public sequence<Foo> data;
3
interface Bar {
void dolt (in FooSeq seq);
¥

b

The former is easier to manipulate after it is mapped to a concrete programming
language.

Any IDL type may be used to declare a value box except for a valuetype.

The declaration of a boxed value type does not open a new scope.Thus a construction
such as:

valuetype FooSeq sequence <FooSeq>;

isnot legal IDL. The identifier being declared as a boxed value type cannot be used
subsequent to its initial use and prior to the completion of the boxed value declaration.

3.8.3 Abstract Value Type

(15)

<value_abs_dcl> ::= “abstract” “valuetype” <identifier>
[<value_inheritance_spec>]
u{u <eXpOI"[>* u}u

Value types may also be abstract. They are called abstract because an abstract value
type may not be instantiated. No <state_member> or <initializers> may be
specified. However, local operations may be specified. Essentially they are abundle of
operation signatures with a purely local implementation.

Note that a concrete value type with an empty state is not an abstract value type.

3.8.4 Value Forward Declaration

(14)

<value_forward_dcl> ::= [“abstract” | “valuetype” <identifier>

A forward declaration declares the name of a value type without defining it. This
permits the definition of value types that refer to each other. The syntax consists
simply of the keyword valuetype followed by an <identifier> that names the value
type.

Multiple forward declarations of the same value type name are legal.

CORBA, v2.5: Value Declaration 3-27

3-28

Boxed value types cannot be forward declared; such aforward declaration would refer
to anormal value type.

It isillegal to inherit from a forward-declared value type whose definition has not yet
been seen.

3.8.5 Valuetype Inheritance

The terminology that is used to describe value type inheritance is directly analogous to
that used to describe interface inheritance (see Section 3.7.5, “Interface Inheritance,”
on page 3-19).

The name scoping and name coallision rules for valuetypes are identical to those for
interfaces. In addition, no valuetype may be specified as a direct abstract base of a
derived valuetype more than once; it may be an indirect abstract base more than once.
See Section 3.7.5, “Interface Inheritance,” on page 3-19 for a detailed description of
the analogous properties for interfaces.

Values may be derived from other values and can support an interface and any number
of abstract interfaces.

Once implementation (state) is specified at a particular point in the inheritance
hierarchy, all derived value types (which must of course implement the state) may only
derive from a single (concrete) value type. They can however derive from other
additional abstract values and support an additional interface.

The single immediate base concrete value type, if present, must be the first element
specified in the inheritance list of the value declaration’s IDL. It may be followed by
other abstract values from which it inherits. The interface and abstract interfaces that it
supports are listed following the supports keyword.

A stateful value that derives from another stateful value may specify that it is
truncatable. This means that it isto “truncate” (see Section 5.2.5.3, “ Vaue instance ->
Value type,” on page 5-5) an instance to be an instance of any of its truncatable parent
(stateful) value types under certain conditions. Note that all the intervening typesin the
inheritance hierarchy must be truncatable in order for truncation to a particular type to
be allowed.

Because custom val ues require an exact type match between the sending and receiving
context, truncatable may not be specified for a custom value type.

Non-custom value types may not (transitively) inherit from custom value types.

Boxed value types may not be derived from, nor may they derive from anything else.

Common Object Request Broker Architecture (CORBA), v2.5 September 2001

3.9 Constant Declaration

September 2001

These rules are summarized in the following table:

Table 3-10 Allowable Inheritance Relationships

May inherit from: | Interface Abstract Abstract Stateful Value | Boxed value
Interface Value
Interface multiple no no no
Abstract Interface multiple no no no
supports single | supports multiple no no
Abstract Value multiple
supports single | supports multiple single (may be no
Stateful Value multiple truncatable)
Boxed Value no no no no

This section describes the syntax for constant declarations.

3.9.1 Syntax

The syntax for a constant declaration is:

(27)

(28)

(29)
(30)

(€1
(32)

(33)

(34)

CORBA, v2.5: Constant Declaration

<const_dcl>

<const_type>

<const_exp>
<or_expr>

<xor_expr>
<and_expr>

<shift_expr>

<add_expr>

“const” <const_type>
<identifier> “=" <const_exp>
<integer_type>
<char_type>
<wide_char_type>
<boolean_type>
<floating_pt_type>
<string_type>
<wide_string_type>
<fixed_pt_const_type>
<scoped_name>
<octet_type>
<or_expr>

= <Xor_expr=

<or_expr>"“|" <xor_expr>
<and_expr>

<xor_expr>“~" <and_expr>
<shift_expr>

<and_expr>"“&”" <shift_expr>
<add_expr>
<shift_expr>“>>" <add_expr>
<shift_expr> “<<” <add_expr>
<mult_expr>

<add_expr>“+" <mult_expr>
<add_expr>"“-" <mult_expr>

3-29

3-30

(35)

(36)

37

(38)

(39)

(40)

(41)

<mult_expr> ::= <unary_expr>
| <mult_expr>*“*" <unary_expr>
| <mult_expr>*“/" <unary_expr>
| <mult_expr>*“%" <unary_expr>
<unary_expr> ::= <unary_operator> <primary_expr>
| <primary_expr>
<unary_operator> = “-"
|
| e
<primary_expr> ::= <scoped_name>
| <literal>
| “(" <const_exp>")"
<literal> ::= <integer_literal>
<string_literal>
<wide_string_literal>
<character_literal>
<wide_character_literal>
<fixed_pt_literal>
<floating_pt_literal>
<boolean_literal>
<boolean_literal> ::= “TRUE”
| “FALSE”

<positive_int_const> ::= <const_exp>

3.9.2 Semantics

The <scoped_name> in the <const_type> production must be a previously defined
name of an <integer_type>, <char_type>, <wide_char_type>, <boolean_type>,
<floating_pt_type>, <string_type>, <wide_string_type>, <octet_type>, or
<enum_type> constant.

Integer literals have positive integer values. Only integer values can be assigned to
integer type (short, long, long long) constants. Only positive integer values can be
assigned to unsigned integer type constants. If the value of the right hand side of an
integer constant declaration is too large to fit in the actual type of the constant on the
left hand side; for example,

const short s = 655592,

or is inappropriate for the actual type of the left hand side; for example,

const octet o = -54;
it shall be flagged as a compile time error.

Floating point literals have floating point values. Only floating point values can be
assigned to floating point type (float, double, long double) constants. If the value of
the right hand side is too large to fit in the actua type of the constant to which it is
being assigned it shall be flagged as a compile time error.

Common Object Request Broker Architecture (CORBA), v2.5 September 2001

3

September 2001

Fixed point literals have fixed point values. Only fixed point values can be assigned to
fixed point type constants. If the fixed point value in the expression on the right hand
side istoo large to fit in the actual fixed point type of the constant on the left hand
side, then it shall be flagged as a compile time error.

An infix operator can combine two integers, floats or fixeds, but not mixtures of these.
Infix operators are applicable only to integer, float and fixed types.

If the type of an integer constant is long or unsigned long, then each subexpression
of the associated constant expression is treated as an unsigned long by default, or a
signed long for negated literals or negative integer constants. It is an error if any
subexpression values exceed the precision of the assigned type (long or unsigned
long), or if afina expression value (of type unsigned long) exceeds the precision of
the target type (long).

If the type of an integer constant islong long or unsigned long long, then each
subexpression of the associated constant expression is treated as an unsigned long
long by default, or a signed long long for negated literals or negative integer
constants. It is an error if any subexpression values exceed the precision of the
assigned type (long long or unsigned long long), or if afinal expression value (of
type unsigned long long) exceeds the precision of the target type (long long).

If the type of a floating-point constant is double, then each subexpression of the
associated constant expression is treated as a double. Itisan error if any
subexpression value exceeds the precision of double.

If the type of afloating-point constant islong double, then each subexpression of the
associated constant expression is treated as along double. It is an error if any
subexpression value exceeds the precision of long double.

Fixed-point decimal constant expressions are evaluated asfollows. A fixed-point literal
has the apparent number of total and fractional digits. For example, 0123.450d is
considered to be fixed<7,3> and 3000.00d is fixed<6,2>. Prefix operators do not
affect the precision; a prefix + is optional, and does not change the result. The upper
bounds on the number of digits and scale of the result of an infix expression,
fixed<dl,s1> op fixed<d2,s2>, are shown in the following table.

Op Result: fixed<d,s>

+ fixed<max(d1-s1,d2-s2) + max(sl,s2) + 1, max(sl,s2)>
- fixed<max(d1-s1,d2-s2) + max(sl,s2) + 1, max(sl,s2)>
* fixed<d1+d2, sl+s2>

/ fixed<(d1-s1+s2) + Sjuf, Sinf>

A quotient may have an arbitrary number of decimal places, denoted by a scale of sj.
The computation proceeds pairwise, with the usual rules for left-to-right association,
operator precedence, and parentheses. All intermediate computations shall be
performed using double precision (i.e., 62 digit) arithmetic. If an individual
computation between a pair of fixed-point literals actually generates more than 31
significant digits, then a 31-digit result is retained as follows:

CORBA, v2.5: Constant Declaration 3-31

3-32

fixed<d,s> => fixed<31, 31-d+s>

Leading and trailing zeros are not considered significant. The omitted digits are
discarded; rounding is not performed. The result of the individual computation then
proceeds as one literal operand of the next pair of fixed-point literals to be computed.

Unary (+ -) and binary (* / + -) operators are applicable in floating-point and fixed-
point expressions. Unary (+ - ~) and binary (* / % + - << >> & |) operators are
applicable in integer expressions.

The“~" unary operator indicates that the bit-complement of the expression to which it
is applied should be generated. For the purposes of such expressions, the values are 2's
complement numbers. As such, the complement can be generated as follows:

Integer Constant Expression Type | Generated 2's Complement Numbers
long long -(value+1)

unsigned long unsigned long (2**32-1) - value

long long long long -(value+1)

unsigned long long unsigned long (2**64-1) - value

The“%" binary operator yields the remainder from the division of thefirst expression
by the second. If the second operand of “%” is 0, the result is undefined; otherwise

(a/b)*b + a%b

isequal to a. If both operands are nonnegative, then the remainder is nonnegative; if
not, the sign of the remainder is implementation dependent.

The “<<"binary operator indicates that the value of the left operand should be shifted
left the number of bits specified by the right operand, with O fill for the vacated bits.
The right operand must be in the range 0 <= right operand < 64.

The “>>" binary operator indicates that the value of the left operand should be shifted
right the number of bits specified by the right operand, with O fill for the vacated bits.
The right operand must be in the range 0 <= right operand < 64.

The “&” binary operator indicates that the logical, bitwise AND of the left and right
operands should be generated.

The “|" binary operator indicates that the logical, bitwise OR of the left and right
operands should be generated.

The “~" binary operator indicates that the logical, bitwise EXCLUSIVE-OR of the left
and right operands should be generated.

<positive_int_const> must evaluate to a positive integer constant.

An octet constant can be defined using an integer literal or an integer constant
expression, for example:

Common Object Request Broker Architecture (CORBA), v2.5 September 2001

const octet O1 =0x1;
const long L =3;
const octet 02=5+1L;

Values for an octet constant outside the range 0 - 255 shall cause a compile-time error.

An enum constant can only be defined using a scoped name for the enumerator. The
scoped name is resolved using the normal scope resolution rules Section 3.15, “Names
and Scoping,” on page 3-52. For example:

enum Color { red, green, blue };
const Color FAVORITE_COLOR =red;

module M {

enum Size { small, medium, large };
b
const M::Size MYSIZE = M::medium;
The constant name for the RHS of an enumerated constant definition must denote one
of the enumerators defined for the enumerated type of the constant. For example:

const Color col =red; //is OK but
const Color another = M::medium; // is an error

3.10 TypeDeclaration

September 2001

(42)

(43)

(44)

(45)

(46)

OMG IDL provides constructs for naming data types; that is, it provides C language-
like declarations that associate an identifier with a type. OMG IDL uses the typedef
keyword to associate a name with a data type; a name is also associated with a data

type via the struct, union, enum, and native declarations; the syntax is:

<type_dcl> ::= “typedef” <type_declarator>
<struct_type>

<union_type>

<enum_type>

“native” <simple_declarator>
<constr_forward_decl>

<type_declarator> ::= <type_spec> <declarators>

For type declarations, OMG IDL defines a set of type specifiers to represent typed
values. The syntax is as follows:

<type_spec> ::= <simple_type_spec>
| <constr_type spec>
<simple_type_spec> := <base type spec>

| <template_type spec>

| <scoped_name>
<base_type spec> ::= <floating_pt_type>

| <integer_type>

| <char_type>

CORBA, v2.5: TypeDeclaration 3-33

(47)

(48)
(49)
(50)

(51)
(52)

<wide_char_type>
<boolean_type>
<octet_type>
<any_type>
<object_type>
<value_base_type>
<template_type_spec> ::= <sequence_type>

| <string_type>

| <wide_string_type>

| <fixed_pt_type>

<constr_type_spec> ::= <struct_type>
| <union_type>
| <enum_type>
<declarators> ::= <declarator>{“,” <declarator> }"

<declarator> ::= <simple_declarator>
| <complex_declarator>

<simple_declarator> ::= <identifier>
<complex_declarator> ::= <array_declarator>

The <scoped_name> in <simple_type_spec> must be a previously defined type
introduced by an interface declaration (<interface_dcl> - see Section 3.7, “Interface
Declaration), a value declaration (<value_dcl>, <value_box_dcl> or
<abstract_value_dcl> - see Section 3.8, “Value Declaration) or a type declaration
(<type_dcl> - see Section 3.10, “Type Declaration). Note that exceptions are not
considered types in this context.

As seen above, OMG IDL type specifiers consist of scalar data types and type
constructors. OMG IDL type specifiers can be used in operation declarations to assign
data types to operation parameters. The next sections describe basic and constructed
type specifiers.

3.10.1 Basic Types

(53)

(54)
(55)
(56)
(57)

(58)
(59)

3-34

The syntax for the supported basic types is as follows:

<floating_pt_type> ::= “float”
| “double”
| “long” “double”
<integer_type> ::= <sighed_int>
| <unsigned_int>
<signed_int> ::= <signed_short_int>
| <signed_long_int>
| <signed_longlong_int>

<signed_short_int> ::= “short”
<signed_long_int> ::= “long”
<signed_longlong_int> ::= “long” “long”

<unsigned_int> ::= <unsigned_short_int>
| <unsigned_long_int>

Common Object Request Broker Architecture (CORBA), v2.5 September 2001

| <unsigned_longlong_int>

(60) <unsigned_short_int> ::= “unsigned” “short”
(61) <unsigned_long_int> ::= “unsigned” “long”
(62) <unsigned_longlong_int> ::= “unsigned” “long” “long”
(63) <char_type> ::= “char”
(64) <wide_char_type> ::= “wchar”
(65) <boolean_type> ::= “boolean”
(66) <octet_type> ::= “octet”
(67) <any_type> ::= “any”
Each OMG IDL datatype is mapped to a native data type via the appropriate language
mapping. Conversion errors between OMG IDL data types and the native types to
which they are mapped can occur during the performance of an operation invocation.
The invocation mechanism (client stub, dynamic invocation engine, and skeletons) may
signal an exception condition to the client if an attempt is made to convert an illegal
value. The standard system exceptions that are to be raised in such situations are
defined in Section 4.11, “Exceptions,” on page 4-50.
3.10.1.1 Integer Types
OMG IDL integer types are short, unsigned short, long, unsigned long, long
long and unsigned long long, representing integer values in the range indicated
below in Table 3-11.
Table 3-11 Range of integer types
short 215 2159
long 281 281
long long 263 283,71
unsigned short 0.216.1
unsigned long 0..2%.1
unsigned long long 0..204.1
3.10.1.2 Floating-Point Types

September 2001

OMG IDL floating-point types are float, double and long double. The float type
represents |EEE single-precision floating point numbers; the double type represents
|EEE double-precision floating point numbers.The long double data type represents
an |EEE double-extended floating-point number, which has an exponent of at least 15
bits in length and a signed fraction of at least 64 bits. See IEEE Standard for Binary
Floating-Point Arithmetic, ANSI/IEEE Standard 754-1985, for a detailed specification.

CORBA, v2.5: TypeDeclaration 3-35

3-36

3.10.1.3

3.10.1.4

3.10.1.5

3.10.1.6

3.10.1.7

Char Type

OMG IDL defines a char datatype that is an 8-bit quantity that (1) encodes a single-
byte character from any byte-oriented code set, or (2) when used in an array, encodes a
multi-byte character from a multi-byte code set. In other words, an implementation is
free to use any code set internally for encoding character data, though conversion to
another form may be required for transmission.

The SO 8859-1 (Latinl) character set standard defines the meaning and representation
of al possible graphic characters used in OMG IDL (i.e., the space, alphabetic, digit
and graphic characters defined in Table 3-2 on page 3-3, Table 3-3 on page 3-4, and
Table 3-4 on page 3-4). The meaning and representation of the null and formatting
characters (see Table 3-5 on page 3-5) is the numerical value of the character as
defined in the ASCII (ISO 646) standard. The meaning of all other characters is
implementation-dependent.

During transmission, characters may be converted to other appropriate forms as
required by a particular language binding. Such conversions may change the
representation of a character but maintain the character’'s meaning. For example, a
character may be converted to and from the appropriate representation in international
character sets.

W de Char Type

OMG IDL defines awchar data type that encodes wide characters from any character
set. As with character data, an implementation is free to use any code set internally for
encoding wide characters, though, again, conversion to another form may be required
for transmission. The size of wchar is implementation-dependent.

Boolean Type

The boolean datatype is used to denote a data item that can only take one of the
values TRUE and FALSE.

Octet Type

The octet type is an 8-bit quantity that is guaranteed not to undergo any conversion
when transmitted by the communication system.

Any Type
The any type permits the specification of values that can express any OMG IDL type.

An any logically contains a TypeCode (see Section 10.7, “TypeCodes,” on page 10-51)
and a value that is described by the TypeCode. Each IDL language mapping provides
operations that allow programers to insert and access the TypeCode and value
contained in an any.

Common Object Request Broker Architecture (CORBA), v2.5 September 2001

3.10.2 Constructed Types

Structs, unions and enums are the constructed types. Their syntax is presented in
this section:

(42) <type_dcl> ::= “typedef” <type_declarator>
<struct_type>
<union_type>
<enum_type>
“native” <simple_declarator>
<constr_forward_decl>
(48) <constr_type_spec> ::= <struct_type>

| <union_type>

| <enum_type>
(99) <constr_forward_decl> ::= “struct” <identifier>

| “union” <identifier>

3.10.2.1 Sructures

The syntax for struct typeis:

(69) <struct_type> ::= “struct” <identifier>“{” <member_list>*}”
(70) <member_list> ::= <member>"
(71) <member> ::= <type_spec> <declarators>"“;”

The<identifier>in <struct_type> definesanew legal type. Structure types may also
be named using atypedef declaration.

Name scoping rules require that the member declarators in a particular structure be
unique. The value of a struct isthe value of all of its members.

3.10.2.2 Discriminated Unions

The discriminated union syntax is:

(72) <union_type> ::= “union” <identifier>"“switch”
“(" <switch_type_spec>")"
“{" <switch_body>"}"

(73) <switch_type_spec> ::= <integer_type>

<char_type>

<boolean_type>

<enum_type>

<scoped_name>

(74) <switch_body> ::= <case>"
(75) <case> ::= <case_label>" <element_spec>*;”
(76) <case_label> ::= “case” <const_exp>"“:"

| “default” “:”

September 2001 CORBA, v2.5: TypeDeclaration 3-37

3-38

(77)

<element_spec> ::= <type_spec> <declarator>

OMG IDL unions are a cross between the C uni on and swi t ch statements. IDL
unions must be discriminated; that is, the union header must specify a typed tag field
that determines which union member to use for the current instance of a call. The
<identifier> following the union keyword defines a new legal type. Union types may
also be named using a typedef declaration. The <const_exp> in a<case_label>
must be consistent with the <switch_type_spec>. A default case can appear at most
once. The <scoped_name> in the <switch_type_spec> production must be a
previously defined integer, char, boolean or enum type.

Case labels must match or be automatically castable to the defined type of the
discriminator. Name scoping rules reguire that the element declarators in a particular
union be unique. If the <switch_type_spec>isan <enum_type>, theidentifier for
the enumeration is in the scope of the union; as a result, it must be distinct from the
element declarators.

It is not required that all possible values of the union discriminator be listed in the
<switch_body>. The value of a union is the value of the discriminator together with
one of the following:

« |If the discriminator value was explicitly listed in a case statement, the value of the
element associated with that case statement;

e If adefault case label was specified, the value of the element associated with the
default case label;

* No additional value.

The values of the constant expressions for the case labels of a single union definition
must be distinct. A union type can contain a default label only where the values given
in the non-default labels do not cover the entire range of the union’s discriminant type.

Access to the discriminator and the related element is language-mapping dependent.

Note — While any ISO Latin-1 (8859.1) IDL character literal may be used in a
<case_label> in aunion definition whose discriminator typeis char, not all of these
characters are present in all transmission code sets that may be negotiated by GIOP or
in al native code sets that may be used by implementation language compilers and
runtimes.

When an attempt is made to marshal to CDR a union whose discriminator value of
char type is not available in the negotiated transmission code set, or to demarshal from
CDR aunion whose discriminator value of char type is not available in the native
code set, a DATA_ CONVERSION system exception is raised. Therefore, to ensure
portability and interoperability, care must be exercised when assigning the
<case_label> for aunion member whose discriminator type is char. Due to these
issues, use of char types as the discriminator type for unions is not recommended.

Common Object Request Broker Architecture (CORBA), v2.5 September 2001

September 2001

3.10.2.3 Constructed Recursive Types and Forward Declarations

The IDL syntax allows the generation of recursive structures and unions via members
that have a sequence type. The element type of a recursive sequence struct or union
member must identify a struct, union, or valuetype. (A valuetype is alowed to have a
member of its own type either directly or indirectly through a member of a constructed
type—see Section 3.8.1.6, “Value Type Example,” on page 3-26.) For example, the
following is legal:

struct Foo {
long value;
sequence<Foo> chain; /l Deprecated (see Section 3.10.6)

}
See “Sequences” on page 3-41 for details of the sequence template type.

IDL supports recursive types via a forward declaration for structures and unions (as
well as for valuetypes—see Section 3.8.1.6, “Value Type Example,” on page 3-26).
Because anonymous types are deprecated (see Section 3.10.6, “ Deprecated Anonymous
Types,” on page 3-44), the previous example is better written as:

struct Foo; /I Forward declaration
typedef sequence<Foo> FooSeq;
struct Foo {

long value;

FooSeq chain;

b

The forward declaration for the structure enables the definition of the sequence type
FooSeq, which is used as the type of the recursive member.

Forward declarations are legal for structures and unions. A structure or union typeis
termed incomplete until its full definition is provided; that is, until the scope of the
structure or union definition is closed by aterminating “}”. For example:

struct Foo; /I Introduces Foo type name,
/I Foo is incomplete now
...
struct Foo {
...
h /l Foo is complete at this point

If a structure or union is forward declared, a definition of that structure or union must
follow the forward declaration in the same source file. Compilers shall issue a
diagnostic if thisrule is violated. Multiple forward declarations of the same structure
or union are legal.

If a recursive structure or union member is used, sequence members that are recursive
must refer to an incomplete type currently under definition. For example

struct Foo; /l Forward declaration
typedef sequence<Foo> FooSeq;

CORBA, v2.5: TypeDeclaration 3-39

3-40

struct Bar {

long value;

FooSeq chain; /llllegal, Foo is not an enclosing struct or union
¥

Compilers shall issue a diagnostic if this rule is violated.

Recursive definitions can span multiple levels. For example:

union Bar; /I Forward declaration
typedef sequence<Bar> BarSeq;
union Bar switch(long) { // Define incomplete union
case O:
long I_mem;
case 1:
struct Foo {
double d_mem;
BarSeq nested; // OK, recurse on enclosing
/l incomplete type
}s_mem;

b

An incomplete type can only appear as the element type of a sequence definition. A
sequence with incomplete element type is termed an incomplete sequence type:

struct Foo; /I Forward declaration
typedef sequence<Foo> FooSeq; /I incomplete

An incompl ete sequence type can appear only as the element type of another sequence,
or as the member type of a structure or union definition. For example:

struct Foo; /I Forward declaration
typedef sequence<Foo> FooSeq; /I OK
typedef sequence<FooSeq> FooTree; // OK
interface | {
FooSeq opl(); /I llegal, FooSeq is incomplete
void op2(/I lllegal, FooTree is incomplete
in FooTree t
);
¥
struct Foo { /I Provide definition of Foo
long I_mem;
FooSeq chain; /I OK
FooTree tree; /I OK
¥

interface J {
FooSeq opl(); /I OK, FooSeq is complete
void op2(
in FooTreet // OK, FooTree is complete

Common Object Request Broker Architecture (CORBA), v2.5 September 2001

September 2001

3.10.2.4

(78)

(79)

);
b

Compilers shall issue a diagnostic if this rule is violated.

Enumerations

Enumerated types consist of ordered lists of identifiers. The syntax is:

<enum_type> ::= “enum” <identifier>
“{" <enumerator>{ “,” <enumerator> }7«}"
<enumerator> ::= <identifier>

A maximum of 2% identifiers may be specified in an enumeration; as such, the
enumerated names must be mapped to a native data type capable of representing a
maximally-sized enumeration. The order in which the identifiers are named in the
specification of an enumeration defines the relative order of the identifiers. Any
language mapping that permits two enumerators to be compared or defines
successor/predecessor functions on enumerators must conform to this ordering relation.
The <identifier> following the enum keyword defines a new legal type. Enumerated
types may also be named using a typedef declaration.

3.10.3 Template Types

(47)

3.10.3.1

(80)

The template types are:

<template_type_spec> ::= <sequence_type>
| <string_type>
| <wide_string_type>
| <fixed_pt_type>

Sequences

OMG IDL defines the sequence type sequence. A sequence is a one-dimensional
array with two characteristics: a maximum size (which is fixed at compile time) and a
length (which is determined at run time).

The syntax is:

<sequence_type> := “sequence” “<” <simple_type_spec>"“,
<positive_int_const>“>"
| “sequence” “<” <simple_type_spec>“>"

The second parameter in a sequence declaration indicates the maximum size of the
sequence. If a positive integer constant is specified for the maximum size, the sequence
is termed a bounded sequence. If no maximum size is specified, size of the sequence is
unspecified (unbounded).

CORBA, v2.5: TypeDeclaration 341

Prior to passing a bounded or unbounded sequence as a function argument (or as a
field in a structure or union), the length of the sequence must be set in a language-
mapping dependent manner. After receiving a sequence result from an operation
invocation, the length of the returned sequence will have been set; this value may be
obtained in a language-mapping dependent manner.

A sequence type may be used as the type parameter for another sequence type. For
example, the following:

typedef sequence< sequence<long> > Fred;

declares Fred to be of type “unbounded sequence of unbounded sequence of long.”
Note that for nested sequence declarations, white space must be used to separate the
two “>" tokens ending the declaration so they are not parsed as a single “>>" token.

3.10.3.2 Srings

OMG IDL defines the string type string consisting of all possible 8-bit quantities
except null. A string is similar to a sequence of char. As with sequences of any type,
prior to passing a string as a function argument (or as a field in a structure or union),
the length of the string must be set in a language-mapping dependent manner. The
syntax is:
(81) <string_type> ::= “string” “
| “string”

<" <positive_int_const>"“>"

The argument to the string declaration is the maximum size of the string. If a positive
integer maximum size is specified, the string is termed a bounded string; if no
maximum size is specified, the string is termed an unbounded string.

Strings are singled out as a separate type because many languages have special built-in
functions or standard library functions for string manipulation. A separate string type
may permit substantial optimization in the handling of strings compared to what can be
done with sequences of general types.

3.10.3.3 Wstrings

The wstring data type represents a sequence of wchar, except the wide character null.
The type wstring is similar to that of type string, except that its element type is wchar
instead of char. The actual length of a wstring is set at run-time and, if the bounded
form is used, must be less than or equal to the bound.

The syntax for defining a wstring is:

(82) <wide_string_type> ::= “wstring” “<” <positive_int_const>"“>"

| “wstring”

3-42 Common Object Request Broker Architecture (CORBA), v2.5 September 2001

September 2001

3.10.3.4

(97)

(98)

Fixed Type

The fixed data type represents a fixed-point decimal number of up to 31 significant
digits. The scale factor is a non-negative integer less than or equal to the total number
of digits (note that constants with effectively negative scale, such as 10000, are aways
permitted).

The fixed data type will be mapped to the native fixed point capability of a
programming language, if available. If there is not a native fixed point type, then the
IDL mapping for that language will provide a fixed point data type. Applications that
use the IDL fixed point type across multiple programming languages must take into
account differences between the languages in handling rounding, overflow, and
arithmetic precision.

The syntax of fixed typeis:

<fixed_pt_type> “fixed” “<" <positive_int_const>""
<positive_int_const>“>"

“fixed”

<fixed_pt_const_type>

3.10.4 Complex Declarator

3.104.1

(83)
(84)

Arrays

OMG IDL defines multidimensional, fixed-size arrays. An array includes explicit sizes
for each dimension.

The syntax for arrays is:
<array_declarator> ::= <identifier> <fixed_array_size>*
<fixed_array_size> ::= “[" <positive_int_const>"“]"

The array size (in each dimension) isfixed at compile time. When an array is passed as
a parameter in an operation invocation, all elements of the array are transmitted.

The implementation of array indices is language mapping specific; passing an array
index as a parameter may yield incorrect results.

3.10.5 Native Types

(42)
(51)

OMG IDL provides a declaration for use by object adapters to define an opaque type
whose representation is specified by the language mapping for that object adapter.

The syntax is:

<type_dcl>
<simple_declarator>

“native” <simple_declarator>
<identifier>

CORBA, v2.5: TypeDeclaration 3-43

3-44

This declaration defines a new type with the specified name. A native typeis similar to
an IDL basic type. The possible values of a native type are language-mapping
dependent, as are the means for constructing them and manipulating them. Any
interface that defines a native type requires each language mapping to define how the
native type is mapped into that programming language.

A native type may be used only to define operation parameters and results. Native type
parameters are permitted only in operations of local interfaces or valuetypes. Any
attempt to transmit a value of a native type in a remote invocation may raise the
MARSHAL standard system exception.

It is recommended that native types be mapped to equivalent type names in each
programming language, subject to the normal mapping rules for type names in that
language. For example, in a hypothetical Object Adapter IDL module

module HypotheticalObjectAdapter {
native Servant;
interface HOA {
Object activate_object(in Servant x);
b
b

the IDL type Servant would map to HypotheticalObjectAdapter::Servant in C++
and the activate_object operation would map to the following C++ member function
signature:

CORBA: : Obj ect _ptr activate_object(
Hypot het i cal Obj ect Adapter:: Servant x);

The definition of the C++ type Hypot het i cal Obj ect Adapt er: : Ser vant
would be provided as part of the C++ mapping for the
Hypot heti cal Obj ect Adapt er module.

Note — The native type declaration is provided specifically for use in object adapter
interfaces, which require parameters whose values are concrete representations of
object implementation instances. It is strongly recommended that it not be used in
service or application interfaces. The native type declaration allows object adapters to
define new primitive types without requiring changes to the OMG IDL language or to
OMG IDL compiler.

3.10.6 Deprecated Anonymous Types

IDL currently permits the use of anonymous types in a number of places. For example:
struct Foo {

long value;
sequence<Foo> chain; /l Legal (but deprecated)

Common Object Request Broker Architecture (CORBA), v2.5 September 2001

September 2001

Anonymous types cause a humber of problems for language mappings and are
therefore deprecated by this specification. Anonymous types will be removed in a
future version, so new IDL should avoid use of anonymous types and use a typedef to
name such types instead. Compilers need not issue awarning if a deprecated construct
is encountered.

The following (non-exhaustive) examples illustrate deprecated uses of anonymous
types.

Anonymous bounded string and bounded wide string types are deprecated. This rule
affects constant definitions, attribute declarations, return value and parameter type
declarations, sequence and array element declarations, and structure, union, exception,
and valuetype member declarations. For example

const string<5> GREETING = “Hello”; /I Deprecated
interface Foo {

readonly attribute wstring<5> name; /l Deprecated

wstring<5> op(in wstring<5> param); // Deprecated
b
typedef sequence<wstring<5> > WS5Seq; /l Deprecated
typedef wstring<5> NameVector [10]; /I Deprecated
struct A {

wstring<5> mem; /I Deprecated
b

/I Anonymous member type in unions, exceptions,
/I and valuetypes are deprecated as well.

This is better written as:

typedef string<5> GreetingType;
const GreetingType GREETING = “Hello”;

typedef wstring<5> ShortWName;
interface Foo {
readonly attribute ShortWName name;
ShortWName op(in ShortWName param);
3
typedef sequence<ShortWName> NameSeq;
typedef ShortWName NameVector[10];
struct A {
GreetingType mem;

b

Anonymous fixed-point types are deprecated. This rule affects attribute declarations,
return value and parameter type declarations, sequence and array element declarations,
and structure, union, exception, and valuetype member declarations.

struct Foo {

fixed<10,5> member; /I Deprecated

b

CORBA, v2.5: TypeDeclaration 3-45

3-46

This is better written as:

typedef fixed<10,5> MyType;
struct Foo {
MyType member;

b

Anonymous member types in structures, unions, exceptions, and valuetypes are
deprecated:

union U switch(long) {

case 1:

long array_mem[10]; /I Deprecated
case 2:

sequence<long> seq_mem,; /I Deprecated
case 3:

string<5> bstring_mem;

b

This is better written as:

typedef long LongArray[10];
typedef sequence<long> LongSeq;
typedef string<5> ShortName,;
union U switch (long) {
case 1:
LongArray array_mem;
case 2:
LongSeq seq_mem,;
case 3:
ShortName bstring_mem,;

b

Anonymous array and sequence elements are deprecated:

typedef sequence<sequence<long> > NumberTree; // Deprecated
typedef fixed<10,2> FixedArray[10];

This is better written as:

typedef sequence<long> ListOfNumbers;
typedef sequence<ListOfNumbers> NumberTree;
typedef fixed<10,2> Fixed_10_2;

typedef Fixed_10_2 FixedArray[10];

The preceding examples are not exhaustive. They simply illustrate the rule that, for a
type to be used in the definition of another type, constant, attribute, return value,
parameter, or member, that type must have a name. Note that the following exampleis
not deprecated (even though stylistically poor):

struct Foo {
struct Bar {

Common Object Request Broker Architecture (CORBA), v2.5 September 2001

long I_mem;
double d_mem;
} bar_mem_1; /l OK, not anonymous
Bar bar_mem_2; /I OK, not anonymous
¥
typedef sequence<Foo::Bar> FooBarSeq; /I Scoped names are OK

3.11 Exception Declaration

Exception declarations permit the declaration of struct-like data structures, which may
be returned to indicate that an exceptional condition has occurred during the
performance of a request. The syntax is as follows:

(86) <except_dcl> ::= “exception” <identifier>“{* <member>**“}"

Each exception is characterized by its OMG IDL identifier, an exception type
identifier, and the type of the associated return value (as specified by the <member>
in its declaration). If an exception is returned as the outcome to a request, then the
value of the exception identifier is accessible to the programmer for determining which
particular exception was raised.

If an exception is declared with members, a programmer will be able to access the
values of those members when an exception israised. If no members are specified, no
additional information is accessible when an exception is raised.

An identifier declared to be an exception identifier may thereafter appear only in a
raises clause of an operation declaration, and nowhere else.

A set of standard system exceptions is defined corresponding to standard run-time
errors, which may occur during the execution of a request. These standard system
exceptions are documented in Section 4.11, “Exceptions,” on page 4-50.

3.12 Operation Declaration

Operation declarationsin OMG IDL are similar to C function declarations. The syntax

is:
(87) <op_dcl> ::= [<op_attribute>] <op_type_spec>
<identifier> <parameter_dcls>
[<raises_expr>] [<context_expr>]
(89) <op_type_spec> ::= <param_type_spec>

| “ VO I d ”
An operation declaration consists of:

* An optional operation attribute that specifies which invocation semantics the
communication system should provide when the operation is invoked. Operation
attributes are described in Section 3.12.1, “Operation Attribute,” on page 3-48.

e The type of the operation’s return result; the type may be any type that can be
defined in OMG IDL. Operations that do not return a result must specify the void

type.

September 2001 CORBA, v2.5: Exception Declaration 3-47

3-48

e Anidentifier that names the operation in the scope of the interface in which it is
defined.

e A parameter list that specifies zero or more parameter declarations for the
operation. Parameter declaration is described in Section 3.12.2, “ Parameter
Declarations,” on page 3-48.

* An optional raises expression that indicates which exceptions may be raised as a
result of an invocation of this operation. Raises expressions are described in
Section 3.12.3, “Raises Expressions,” on page 3-49.

e An optiona context expression that indicates which elements of the request context
may be consulted by the method that implements the operation. Context expressions
are described in Section 3.12.4, “Context Expressions,” on page 3-49.

Some implementations and/or language mappings may require operation-specific
pragmas to immediately precede the affected operation declaration.

3.12.1 Operation Attribute

(88)

The operation attribute specifies which invocation semantics the communication
service must provide for invocations of a particular operation. An operation attribute is
optional. The syntax for its specification is as follows:

<op_attribute> ::= “oneway”

When a client invokes an operation with the oneway attribute, the invocation
semantics are best-effort, which does not guarantee delivery of the call; best-effort
implies that the operation will beinvoked at most once. An operation with theoneway
attribute must not contain any output parameters and must specify a void return type.
An operation defined with the oneway attribute may not include a raises expression;
invocation of such an operation, however, may raise a standard system exception.

If an <op_attribute> is not specified, the invocation semantics is at-most-once if an
exception is raised; the semantics are exactly-once if the operation invocation returns
successfully.

3.12.2 Parameter Declarations

(90)
(91)

(92)

(95)

Parameter declarations in OMG IDL operation declarations have the following syntax:

<parameter_dcls> ::= “(" <param_dcl>{"“" <param_dc|>}D“)"

[Oy
<param_dcl> ::= <param_attribute> <param_type_spec>
<simple_declarator>

<param_attribute> ::= “in”
| “out”
| “inout”

<param_type_spec> ::= <base_type_spec>

| <string_type>

Common Object Request Broker Architecture (CORBA), v2.5 September 2001

| <wide_string_type>
| <scoped_name>

A parameter declaration must have a directional attribute that informs the
communication service in both the client and the server of the direction in which the
parameter is to be passed. The directional attributes are:

e in - the parameter is passed from client to server.
e out - the parameter is passed from server to client.

e inout - the parameter is passed in both directions.

It is expected that an implementation will not attempt to modify an in parameter. The
ability to even attempt to do so is language-mapping specific; the effect of such an
action is undefined.

If an exception israised as aresult of an invocation, the values of the return result and
any out and inout parameters are undefined.

3.12.3 Raises Expressions

A raises expression specifies which exceptions may be raised as a result of an
invocation of the operation. The syntax for its specification is as follows:

(93) <raises_expr> ::= “raises” “(" <scoped_name>
{“ <scoped_name>}D*)"

The <scoped_name>s in theraises expression must be previously defined
exceptions.

In addition to any operation-specific exceptions specified in the raises expression,
there are a standard set of system exceptions that may be signalled by the ORB. These
standard system exceptions are described in Section 4.11.3, “ Standard System
Exception Definitions,” on page 4-53. However, standard system exceptions may not
be listed in araises expression.

The absence of araises expression on an operation implies that there are no
operation-specific exceptions. Invocations of such an operation are still liable to
receive one of the standard system exceptions.

3.12.4 Context Expressions

A context expression specifies which elements of the client’s context may affect the
performance of arequest by the object. The syntax for its specification is as follows:

(94) <context_expr> ::= “context” “(" <string_literal>
{",” <string_literal>} D“)"

September 2001 CORBA, v2.5: Operation Declaration 3-49

The run-time system guarantees to make the value (if any) associated with each
<string_literal> in the client’s context available to the object implementation when
the request is delivered. The ORB and/or object is free to use information in this
request context during request resolution and performance.

The absence of a context expression indicates that there is no request context
associated with requests for this operation.

Each string_literal is an arbitrarily long sequence of alphabetic, digit, period (“."),
underscore (“_"), and asterisk (“*") characters. The first character of the string must be
an alphabetic character. An asterisk may only be used as the last character of the string.
Some implementations may use the period character to partition the name space.

The mechanism by which a client associates values with the context identifiers is
described in Section 4.6, “ Context Object,” on page 4-28.

3.13 Attribute Declaration

3-50

(85)

An interface can have attributes as well as operations; as such, attributes are defined as
part of an interface. An attribute definition is logically equivalent to declaring a pair of
accessor functions; one to retrieve the value of the attribute and one to set the value of
the attribute.

The syntax for attribute declaration is:

<attr_dcl> ::= [“readonly”] “attribute”
<param_type_spec> <simple_declarator>
{ “,” <simple_declarator> }*

The optional readonly keyword indicates that there is only a single accessor
function—the retrieve value function. Consider the following example:

interface foo {
enum material_t {rubber, glass};
struct position_t {
float x, y;

b

attribute float radius;
attribute material_t material;
readonly attribute position_t position;

b

The attribute declarations are equivalent to the following pseudo-specification
fragment, assuming that one of the leading ‘ s is removed by application of the
Escaped Identifier rule described in Section 3.2.3.1, “Escaped ldentifiers,” on page 3-6:

float __get_radius ();

Common Object Request Broker Architecture (CORBA), v2.5 September 2001

3.14 CORBA Module

September 2001

void __set_radius (in float r);
material_t __ get_material ();
void __set_material (in material_t m);

position_t _ get_position ();

The actual accessor function names are language-mapping specific. The attribute name
is subject to OMG IDL’s name scoping rules; the accessor function names are
guaranteed not to collide with any legal operation names specifiable in OMG IDL.

Attribute operations return errors by means of system exceptions.

Attributes are inherited. An attribute name cannot be redefined to be a different type.
See Section 3.14, “CORBA Module,” on page 3-51 for more information on
redefinition constraints and the handling of ambiguity.

Names defined by the CORBA specification are in a module named CORBA. In an
OMG IDL specification, however, OMG IDL keywords such as Object must not be
preceded by a “CORBA::" prefix. Other interface names such as TypeCode are not
OMG IDL keywords, so they must be referred to by their fully scoped names (e.g.,
CORBA::TypeCode) within an OMG IDL specification.

For example in:

#include <orb.idl>

module M {
typedef CORBA::Object myObjRef; /I Error: keyword Object scoped
typedef TypeCode myTypeCode; /I Error: TypeCode undefined

typedef CORBA::TypeCode TypeCode;// OK
¥

The file orb.idl contains the IDL definitions for the CORBA module. Except for
CORBA::TypeCode, thefile orb.idl must be included in IDL files that use names
defined in the CORBA module. IDL filesthat use CORBA::TypeCode may obtain its
definition by including either the file orb.idl or the file TypeCode.idl.

The exact contents of TypeCode.idl are implementation dependent. One possible
implementation of TypeCode.idl may be:

/I PIDL
#ifndef TYPECODE_IDL_
#define _TYPECODE_IDL_
#pragma prefix "omg.org"
module CORBA {

interface TypeCode;
h
#endif //_TYPECODE_IDL_

For IDL compilers that implicitly define CORBA::TypeCode, TypeCode.idl could
consist entirely of a comment as shown below:

CORBA, v2.5: CORBA Module 3-51

/l PIDL
/I CORBA::TypeCode implicitly built into the IDL compiler
/I Hence there are no declarations in this file

Because the compiler implicitly contains the required declaration, this file meets the
requirement for compliance.

The version of CORBA specified in this release of the specification is version <x.y>,
and this is reflected in the IDL for the CORBA module by including the following
pragma version (see Section 10.6.5.3, “The Version Pragma,” on page 10-48):

#pragma version CORBA <x.y>

asthe first line immediately following the very first CORBA module introduction line,
which in effect associates that version number with the CORBA entry in the IR. The

version number in that version pragma line must be changed whenever any changes are
made to any remotely accessible parts of the CORBA module in an officially released
OMG standard.

3.15 Namesand Scoping

3-52

OMG IDL identifiers are case insensitive; that is, two identifiers that differ only in the
case of their characters are considered redefinitions of one another. However, all
references to a definition must use the same case as the defining occurrence. This
allows natural mappings to case-sensitive languages. So for example:

module M {
typedef long Long; /I Error: Long clashes with keyword long
typedef long TheThing;
interface | {
typedef long MyLong;
myLong op1(/I Error: inconsistent capitalization
in TheThing thething; // Error: TheThing clashes with thething

3.15.1 Qualified Names

A qualified name (one of the form <scoped-name>::<identifier>) is resolved by first
resolving the qualifier <scoped-name> to a scope S, and then locating the definition of
<identifier> within S. The identifier must be directly defined in S or (if Sisan
interface) inherited into S. The <identifier> is not searched for in enclosing scopes.

When a qualified name begins with “::”, the resolution process starts with the file
scope and locates subsequent identifiersin the qualified name by the rule described in
the previous paragraph.

Every OMG IDL definition in a file has a global name within that file. The global
name for a definition is constructed as follows.

Common Object Request Broker Architecture (CORBA), v2.5 September 2001

3

September 2001

Prior to starting to scan afile containing an OMG IDL specification, the name of the
current root is initially empty (*”) and the name of the current scope is initially empty
(*"). Whenever amodule keyword is encountered, the string “::” and the associated
identifier are appended to the name of the current root; upon detection of the
termination of themodule, thetrailing “::” and identifier are deleted from the name of
the current root. Whenever an interface, struct, union, or exception keyword is
encountered, the string “::” and the associated identifier are appended to the name of
the current scope; upon detection of the termination of the interface, struct, union,
or exception, the trailing “::” and identifier are deleted from the name of the current
scope. Additionally, a new, unnamed, scope is entered when the parameters of an
operation declaration are processed; this allows the parameter names to duplicate other
identifiers, when parameter processing has completed, the unnamed scope is exited.

The global name of an OMG IDL definition is the concatenation of the current root,
the current scope, a “::”, and the <identifier>, which is the local name for that
definition.

Note that the global name in an OMG IDL files corresponds to an absolute

ScopedName in the Interface Repository. (See Section 10.5.1, “ Supporting Type
Definitions,” on page 10-10).

Inheritance causes al identifiers defined in base interfaces, both direct and indirect, to
be visible in derived interfaces. Such identifiers are considered to be semantically the
same as the original definition. Multiple paths to the same original identifier (as results
from the diamond shape in Figure 3-1 on page 3-20) do not conflict with each other.

Inheritance introduces multiple global OMG IDL names for the inherited identifiers.
Consider the following example:

interface A {
exception E {
long L;

v’oid f() raises(E);
b

interface B: A {
void g() raises(E);
¥

In this example, the exception is known by the global names ::A::E and ::B::E.

Ambiguity can arise in specifications due to the nested naming scopes. For example:

interface A {
typedef string<128> string_t;

b

interface B {
typedef string<256> string_t;

b

CORBA, v2.5: Namesand Scoping 3-53

3-54

interface C: A, B {

attribute string_t Title; /I Error: Ambiguous
attribute A::string_t Name; /I OK
attribute B::string_t City; /I OK

b

The declaration of attribute Title in interface C is ambiguous, since the compiler does
not know which string_t is desired. Ambiguous declarations yield compilation errors.

3.15.2 Scoping Rules and Name Resolution

Contents of an entire OMG IDL file, together with the contents of any files referenced
by #include statements, forms a naming scope. Definitions that do not appear inside a
scope are part of the global scope. There is only a single global scope, irrespective of
the number of source files that form a specification.

The following kinds of definitions form scopes:
e module

e interface

e valuetype

 struct

e union

e operation

e exception

The scope for module, interface, valuetype, struct, and exception begins immediately
following its opening ‘{* and ends immediately preceding its closing ‘}’. The scope of
an operation begins immediately following its ‘(' and ends immediately preceding its
closing *)’. The scope of a union begins immediately following the *(* following the

keyword switch, and ends immediately preceding its closing ‘}’. The appearance of

the declaration of any of these kinds in any scope, subject to semantic validity of such
declaration, opens a nested scope associated with that declaration.

An identifier can only be defined once in a scope. However, identifiers can be
redefined in nested scopes. An identifier declaring a module is considered to be
defined by its first occurrence in a scope. Subsequent occurrences of a module
declaration with the same identifier within the same scope reopens the module and
hence its scope, allowing additional definitions to be added to it.

The name of an interface, value type, struct, union, exception or a module may not be
redefined within the immediate scope of the interface, value type, struct, union,
exception, or the module. For example:

module M {
typedef short M; /I Error: M is the name of the module
1 in the scope of which the typedef is.
interface | {

Common Object Request Broker Architecture (CORBA), v2.5 September 2001

September 2001

void i (in shortj); // Error: i clashes with the interface name |
3
5

An identifier from a surrounding scope is introduced into a scope if it is used in that
scope. An identifier is not introduced into a scope by merely being visible in that
scope. The use of a scoped name introduces the identifier of the outermost scope of the
scoped name. For example in:

module M {
module Innerl {
typedef string S1;
¥

module Inner2 {
typedef string inner1, /I OK
¥
}

The declaration of Inner2::innerl is OK because the identifier Inner1, while visible
in module Inner2, has not been introduced into module Inner2 by actual use of it. On
the other hand, if module Inner2 were:

module Inner2{
typedef Innerl::S1 S2; /I Innerl introduced
typedef string inner1; I/l Error
typedef string S1; /I OK

b

The definition of innerl isnow an error because the identifier Innerl referring to the
module Innerl has been introduced in the scope of module Inner2 in the first line of
the module declaration. Also, the declaration of S1 in thelast lineis OK since the
identifier S1 was not introduced into the scope by the use of Inner1::S1 in the first
line.

Only thefirst identifier in aqualified name is introduced into the current scope. Thisis
illustrated by Innerl::S1 in the example above, which introduces “Innerl” into the
scope of “Inner2” but does not introduce “S1.” A qualified name of the form
“::X::Y::Z" does not cause “X” to be introduced, but a qualified name of the form
“X::Y::Z" does.

Enumeration value names are introduced into the enclosing scope and then are treated
like any other declaration in that scope. For example:

interface A {
enum E { E1, E2, E3 }; /l'ine 1

enum BadE { E3, E4, E5 }; // Error: E3 is already introduced
/l into the A scope inline 1 above

b

interface C {

CORBA, v2.5: Namesand Scoping 3-55

enum AnotherE { E1, E2, E3 };
b

interface D : C, A {
union U switch (E) {
case A::E1: boolean b;// OK.
case E2: long [; /I Error: E2 is ambiguous (notwithstanding
/I the switch type specification!!)

b

Type names defined in a scope are available for immediate use within that scope. In
particular, see Section 3.10.2, “Constructed Types,” on page 3-37 on cycles in type
definitions.

A name can be used in an unqualified form within a particular scope; it will be
resolved by successively searching farther out in enclosing scopes, while taking into
consideration inheritance relationships among interfaces. For example:

module M {
typedef long ArgType;
typedef ArgType AType; /l'line 11
interface B {
typedef string ArgType; //line |3
ArgType opb(in ATypei); //linel2

b
b
module N {
typedef char ArgType; /l'line 14
interface Y : M::B {
void opy(in ArgType i); /l'line I5
b
b

The following scopes are searched for the declaration of ArgType used on line |I5:
1. Scope of N::Y before the use of ArgType.

2. Scope of N::Y’'s base interface M::B. (inherited scope)

3

. Scope of module N before the definition of N::Y.

SN

. Global scope before the definition of N.

M::B::ArgType isfound in step 2 in line 13, and that is the definition that is used in
line 15, hence ArgType in line 15 is string. It should be noted that ArgType is not
char inline I5. Now if line |13 were removed from the definition of interface M::B
then ArgType on line |5 would be char from line 14, which is found in step 3.

Following analogous search steps for the types used in the operation M::B::opb on
line 12, the type of AType used on line 12 islong from the typedef in line |11 and the
return type ArgType is string from line 13.

3-56 Common Object Request Broker Architecture (CORBA), v2.5 September 2001

3.15.3 Special Scoping Rules for Type Names

The scope of atype definition extends from the point of definition to the end of its
enclosing scope. (Constant and exception definitions are considered type definitions.)
A type isintroduced into a scope by its use in that scope, if the type name is not a
fully-qualified type name. For example:

typedef short TempType; /I Scope of TempType begins here
module M {
typedef string ArgType; // Scope of ArgType begins here
struct S{

::M::ArgType al; // Nothing introduced here

M::ArgType a2; /I M introduced here

::TempType temp; // Nothing introduced here
/I Scope of (introduced) M ends here

b /I Scope of ArgType ends here

/I Scope of global TempType ends here (at end of file)

The scope of an introduced type name is from the point of introduction to the end of its
enclosing scope.

However, if atype name is introduced into a scope that is nested in a non-module
scope definition, its potential scope extends over all its enclosing scopes out to the
enclosing non-module scope. (For types that are defined outside a non-module scope,
the scope and the potential scope are identical.)

For example:

module M {
typedef long ArgType;
const long | = 10;
typedef short Y;

interface A {

struct S{
struct T {
ArgType x[I]; // ArgType and |l introduced
longy; /[l anewy is defined, the existing Y
/l'is not used
pm;
¥
typedef string ArgType; // Error: ArgType redefined
enum 1 {11,12}; /I Error: | redefined
typedef short Y; /I OK

}; [/l Potential scope of ArgType and | ends here

September 2001 CORBA, v2.5: Namesand Scoping 3-57

A type may not be redefined within its scope or potential scope, as shown in the
preceding example. This rule prevents type names from changing their meaning
throughout a non-modul e scope definition, and ensures that reordering of definitionsin
the presence of introduced types does not affect the semantics of a specification.

Note that, in the following, the definition of M::A::U::l is legal because it is outside
the potentia scope of the | introduced in the definition of M::A::S::T::ArgType.
However, the definition of M::A::lis dtill illegal becauseit iswithin the potential scope
of the | introduced in the definition of M::A::S::T::ArgType.

module M {
typedef long ArgType;
const long | = 10;

interface A {

struct S{
struct T {
ArgType x[I]; // ArgType and | introduced
pm;
¥
struct U {
long I; /I OK, l'is not atype name
¥

enum | {I11,12}; /I Error: | redefined
}; I/ Potential scope of ArgType and | ends here
¥

Note that redefinition of a type after use in a module is OK as in the example:

typedef long ArgType;

module M {
struct S{
ArgType X; /I x is along
b
typedef string ArgType; // OK!
struct T {
ArgTypey; /' Ugly but OK, y is a string
b

3-58 Common Object Request Broker Architecture (CORBA), v2.5 September 2001

4.1 Overview

September 2001

ORB Interface 4

Contents

This chapter contains the following sections.

Section Title Page
“Overview” 4-1
“The ORB Operations’ 4-2
“Object Reference Operations” 4-12
“ValueBase Operations’ 4-21
“ORB and OA Initialization and Initial References” 4-21
“Context Object” 4-28
“Current Object” 4-32
“Policy Object” 4-33
“Management of Policies’ 4-42
“Management of Policy Domains’ 4-45
“Exceptions” 4-50

This chapter introduces the operations that are implemented by the ORB core, and
describes some basic ones, while providing reference to the description of the
remaining operations that are described elsewhere. The ORB interface is the interface
to those ORB functions that do not depend on which object adapter is used. These
operations are the same for all ORBs and all object implementations, and can be

Common Object Request Broker Architecture (CORBA), v2.5 4-1

performed either by clients of the objects or implementations. The Object interface
contains operations that are implemented by the ORB, and are accessed as implicit
operations of the Object Reference. The ValueBase interface contains operations that
are implemented by the ORB, and are accessed as implicit operations of the ValueBase
Reference.

Because the operations in this section are implemented by the ORB itself, they are not
in fact operations on objects, although they are described that way for the Object or
ValueBase interface operations and the language binding will, for consistency, make
them appear that way.

4.2 The ORB Operations

The ORB interface contains the operations that are available to both clients and
servers. These operations do not depend on any specific object adapter or any specific
object reference.

module CORBA {

interface NVList; /l forward declaration
interface OperationDef; // forward declaration
interface TypeCode; /l forward declaration

typedef short PolicyErrorCode;
/I for the definition of consts see “PolicyErrorCode” on pa ge4-35
typedef unsigned long PolicyType;

interface Request; /l forward declaration
typedef sequence <Request> RequestSeq;

native AbstractBase;
exception PolicyError {PolicyErrorCode reason;};

typedef string Repositoryld;
typedef string Identifier;

/I StructMemberSeq defined in Chapter 10
/' UnionMemberSeq defined in Chapter 10
/ EnumMemberSeq defined in Chapter 10

typedef unsigned short ServiceType;
typedef unsigned long ServiceOption;
typedef unsigned long ServiceDetailType;

const ServiceType Security = 1;
struct ServiceDetail {

ServiceDetailType service_detail_type;
sequence <octet> service_detail;

4-2 Common Object Request Broker Architecture (CORBA), v2.5 September 2001

b

struct Servicelnformation {
sequence <ServiceOption> service_options;
sequence <ServiceDetail> service_details;

5

native ValueFactory;
typedef string ORBId;
interface ORB {

typedef string Objectld;
typedef sequence <Objectld> ObjectldList;

exception InvalidName {};
ORBid id();

string object_to_string (
in Object obj
);

Object string_to_object (
in string str

);
/ Dynamic Invocation related operations

void create_list (
in long count,
out NVList new_list

);

void create_operation_list (
in OperationDef oper,
out NVList new_list

);

void get_default_context (
out Context ctx

);

void send_multiple_requests_oneway(
in RequestSeq req

);
void send_multiple_requests_deferred(

in RequestSeq req
);

September 2001 CORBA, v2.5: The ORB Operations 4-3

boolean poll_next_response();

void get_next_response(
out Request req

);
/I Service information operations

boolean get_service_information (
in ServiceType service_type,
out Servicelnformation service_information

);
ObjectldList list_initial_services ();
/I Initial reference operation

Object resolve_initial_references (
in Objectld identifier
) raises (InvalidName);

/I Type code creation operations

TypeCode create_struct_tc (
in Repositoryld id,
in Identifier name,
in StructMemberSeq members

);

TypeCode create_union_tc (
in Repositoryld id,
in Identifier name,
in TypeCode discriminator_type,
in UnionMemberSeq members

);

TypeCode create_enum_tc (
in Repositoryld id,
in Identifier name,
in EnumMemberSeq members

);

TypeCode create_alias_tc (
in Repositoryld id,
in Identifier name,
in TypeCode original_type
);
TypeCode create_exception_tc (

in Repositoryld id,
in Identifier name,

Common Object Request Broker Architecture (CORBA), v2.5 September 2001

in StructMemberSeq members

);

TypeCode create_interface_tc (
in Repositoryld id,
in Identifier name

);

TypeCode create_string_tc (
in unsigned long bound

);

TypeCode create_wstring_tc (
in unsigned long bound

);

TypeCode create_fixed_tc (
in unsigned short digits,
in short scale

);

TypeCode create_sequence_tc (
in unsigned long bound,
in TypeCode element type

);

TypeCode create_recursive_sequence_tc (// deprecated
in unsigned long bound,
in unsigned long offset

);

TypeCode create_array_tc (
in unsigned long length,
in TypeCode element_type

);
TypeCode create_value_tc (
in Repositoryld id,
in Identifier name,
in ValueModifier type_modifier,
in TypeCode concrete_base,
in ValueMembersSeq members
);
TypeCode create_value _box_tc (
in Repositoryld id,
in Identifier name,
in TypeCode boxed_type

);

TypeCode create_native_tc (

September 2001 CORBA, v2.5: The ORB Operations 4-5

in Repositoryld id,

in Identifier name

);

TypeCode create_recursive_tc(
in Repositoryld id

);

TypeCode create_abstract_interface_tc(
in Repositoryld id,
in Identifier name

)i

TypeCode create_local_interface_tc(
in Repositoryld id,
in Identifier name

);

/I Thread related operations
boolean work_pending();
void perform_work();

void run();

void shutdown(
in boolean wait_for_completion

);
void destroy();
/l Policy related operations

Policy create_policy(
in PolicyType type,
in any val

) raises (PolicyError);

/ Dynamic Any related operations deprecated and removed
/l from primary list of ORB operations

/I Value factory operations
ValueFactory register_value_factory(
in Repositoryld id,
in ValueFactory factory

);

void unregister_value_factory(in Repositoryld id);

Common Object Request Broker Architecture (CORBA), v2.5 September 2001

ValueFactory lookup_value_factory(in Repositoryld id);

void register_initial_reference(
in Objectld id,
in Object obj
) raises (InvalidName);
¥
¥

All types defined in this chapter are part of the CORBA module. When referenced in
OMG IDL, the type names must be prefixed by “CORBA::".

The operations object_to_string and string_to_object are described in Section
4.2.2, “Converting Object References to Strings” on page 4-8.

For a description of the create_list and create_operation_list operations, see
Section 7.4, “Polling” on page 7-12. The get_default_context operation is described
in the section Section 4.6.2.1, “get_default_context” on page 4-30. The
send_multiple_requests_oneway and send_multiple_requests_deferred
operations are described in the section Section 7.3.1, “send_multiple_requests” on
page 7-10. The poll_next_response and get_next_response operations are
described in the section Section 7.3.2, “get_next_response and poll_next_response” on
page 7-11.

The list_intial_services and resolve_initial_references operations are described
in Section 4.5.2, “Obtaining Initial Object References’ on page 4-23.

The Type code creation operations with names of the form create_<type>_tc are
described in Section 10.7.3, “Creating TypeCodes’ on page 10-56.

The work_pending, perform_work, shutdown, destroy and run operations are
described in Section 4.2.4, “Thread-Related Operations” on page 4-9.

The create_policy operations is described in Section 4.8.2.3, “Create_policy” on
page 4-35.

Theregister_value_factory, unregister_value_factory and
lookup_value_factory operations are described in Section 5.4.3, “Language Specific
Value Factory Requirements” on page 5-9.

The register_initial_reference operation is described in Section 21.8.1,
“register_initial_reference” on page 21-49.

4.2.1 ORB ldentity

42.11 id

ORBid id();

September 2001 CORBA, v2.5: The ORB Operations 4-7

The id operation returns the identity of the ORB. The returned ORBid is the string
that was passed to ORB_init (see Section 4.5.1, “ORB Initialization” on page 4-21) as
the orb_identifier parameter when the ORB was created. If that was the empty string,
the returned string is the value associated with the -ORBid tag in the arg_list
parameter. Calling id on the default ORB returns the empty string.

4.2.2 Converting Object References to Strings

4.2.2.1 object_to_string

string object_to_string (
in Object obj
);

4.2.2.2 string_to_object

Object string_to_object (
in string str
);

Because an object reference is opaque and may differ from ORB to ORB, the object
reference itself is not a convenient value for storing references to objects in persistent
storage or communicating references by means other than invocation. Two problems
must be solved: allowing an object reference to be turned into a value that a client can
store in some other medium, and ensuring that the value can subsequently be turned
into the appropriate object reference.

An object reference may be translated into a string by the operation
object_to_string. The value may be stored or communicated in whatever ways
strings may be manipulated. Subsequently, the string_to_object operation will
accept a string produced by object_to_string and return the corresponding object
reference.

To guarantee that an ORB will understand the string form of an object reference, that
ORB’s object_to_string operation must be used to produce the string. For all
conforming ORBs, if obj is a valid reference to an object, then
string_to_object(object_to_string(obj)) will return a valid reference to the same
object, if the two operations are performed on the same ORB. For all conforming
ORB'’s supporting | OP, this remains true even if the two operations are performed on
different ORBs.

4.2.3 Getting Service Information

4.2.3.1 get_service_information

boolean get_service_information (
in ServiceType service_type;

Common Object Request Broker Architecture (CORBA), v2.5 September 2001

September 2001

out Servicelnformation service_information;

);

Theget_service_information operation isused to obtain information about CORBA
facilities and services that are supported by this ORB. The service type for which
information is being requested is passed in as the in parameter service_type, the
values defined by constants in the CORBA module. If service information is available
for that type, that is returned in the out parameter service_information, and the
operation returns the value TRUE. If no information for the requested services typeis
available, the operation returns FALSE; that is, the service is not supported by this
ORB.

4.2.4 Thread-Related Operations

4.24.1

4.2.4.2

To support single-threaded ORBSs, as well as multi-threaded ORBs that run multi-
thread-unaware code, several operations are included in the ORB interface. These
operations can be used by single-threaded and multi-threaded applications. An
application that is a pure ORB client would not need to use these operations. Both the
ORB::run and ORB::shutdown are useful in fully multi-threaded programs.

These operations are defined on the ORB rather than on an object adapter to allow the
main thread to be used for al kinds of asynchronous processing by the ORB. Defining
these operations on the ORB also allows the ORB to support multiple object adapters,
without requiring the application main to know about all the object adapters. The
interface between the ORB and an object adapter is not standardized.

work_pending

boolean work_pending();

This operation returns an indication of whether the ORB needs the main thread to
perform some work.

A result of TRUE indicates that the ORB needs the main thread to perform some work
and aresult of FALSE indicates that the ORB does not need the main thread.

perform_work

void perform_work();

If called by the main thread, this operation performs an implementation-defined unit of
work; otherwise, it does nothing.

It is platform-specific how the application and ORB arrange to use compatible
threading primitives.

CORBA, v2.5: The ORB Operations 4-9

4-10

4.2.4.3

4.2.4.4

The work_pending() and perform_work() operations can be used to write a simple
polling loop that multiplexes the main thread among the ORB and other activities.
Such aloop would most likely be needed in a single-threaded server. A multi-threaded
server would need a polling loop only if there were both ORB and other code that
required use of the main thread.

Here is an example of such a polling loop:

[l Ct++
for (;;) {
if (orb->work_pending()) {
or b- >perform work();

b
/1 do other things
/'l sleep?

b

Once the ORB has shutdown, work_pending and perform_work will raise the
BAD_INV_ORDER exception with minor code 4. An application can detect this
exception to determine when to terminate a polling loop.

run

void run();

This operation provides execution resources to the ORB so that it can perform its
internal functions. Single threaded ORB implementations, and some multi-threaded
ORB implementations, need the use of the main thread in order to function properly.
For maximum portability, an application should call either run or perform_work on
its main thread. run may be called by multiple threads simultaneously.

This operation will block until the ORB has completed the shutdown process, initiated
when some thread calls shutdown.

shutdown

void shutdown(
in boolean wait_for_completion

);

This operation instructs the ORB to shut down, that is, to stop processing in
preparation for destruction.

Shutting down the ORB causes all object adapters to be destroyed, since they cannot
exist in the absence of an ORB. Shut down is complete when all ORB processing
(including reguest processing and object deactivation or other operations associated
with object adapters) has completed and the object adapters have been destroyed. In
the case of the POA, this means that all object etherealizations have finished and root
POA has been destroyed (implying that all descendent POASs have also been
destroyed).

Common Object Request Broker Architecture (CORBA), v2.5 September 2001

4

If the wait_for_completion parameter is TRUE, this operation blocks until the shut
down is complete. If an application does thisin a thread that is currently servicing an
invocation, the BAD_INV_ORDER system exception will be raised with the OMG
minor code 3, since blocking would result in a deadlock.

If the wait_for_completion parameter is FALSE, then shutdown may not have
completed upon return. An ORB implementation may require the application to call (or
have a pending call to) run or perform_work after shutdown has been called with
its parameter set to FALSE, in order to complete the shutdown process.

Additionally in systems that have Portable Object Adapters (see Chapter 11)
shutdown behaves as if POA::destroy is called on the Root POA with its first
parameter set to TRUE and the second parameter set to the value of the
wait_for_completion parameter that shutdown is invoked with.

While the ORB isin the process of shutting down, the ORB operates as normal,
servicing incoming and outgoing requests until all requests have been completed. An
implementation may impose a time limit for requests to complete while a shutdown
is pending.

Once an ORB has shutdown, only object reference management operations
(duplicate, release and is_nil) may be invoked on the ORB or any object reference
obtained from it. An application may also invoke the destroy operation on the ORB
itself. Invoking any other operation will raise the BAD_INV_ORDER system
exception with the OMG minor code 4.

4.2.4.5 destroy

void destroy();

This operation destroys the ORB so that its resources can be reclaimed by the
application. Any operation invoked on a destroyed ORB reference will raise the
OBJECT_NOT_EXIST exception. Once an ORB has been destroyed, another call to
ORB_init with the same ORBIid will return a reference to a newly constructed ORB.

If destroy is called on an ORB that has not been shut down, it will start the shut down
process and block until the ORB has shut down before it destroys the ORB. The
behavior is similar to that achieved by calling shutdown with the
wait_for_completion parameter set to TRUE. If an application calls destroy in a
thread that is currently servicing an invocation, the BAD_INV_ORDER system
exception will be raised with the OMG minor code 3, since blocking would result in a
deadlock.

For maximum portability and to avoid resource leaks, an application should always call
shutdown and destroy on all ORB instances before exiting.

September 2001 CORBA, v2.5: The ORB Operations 4-11

4

4.3 Object Reference Operations

There are some operations that can be done on any object. These are not operationsin
the normal sense, in that they are implemented directly by the ORB, not passed on to
the object implementation. We will describe these as being operations on the object
reference, although the interfaces actually depend on the language binding. As above,
where we used interface Object to represent the object reference, we define an

interface for Object:
module CORBA {

interface DomainManager;

/l forward declaration

typedef sequence <DomainManager> DomainManagersList;

4-12

interface Policy; /l forward declaration

typedef sequence <Policy> PolicyList;

typedef sequence<PolicyType> Policy TypeSeq;

exception InvalidPolicies { sequence <unsigned short> indices; };

interface Context; /l forward declaration

typedef string Identifier;

interface Request; /l forward declaration
interface NVList; /l forward declaration
struct NamedValue{}; /I an implicitly well known type

typedef unsigned long Flags;
interface InterfaceDef;

enum SetOverrideType {SET_OVERRIDE, ADD_OVERRIDE},
interface Object { /l PIDL

InterfaceDef get_interface ();

boolean is_nil();

Object duplicate ();

void release ();

booleanis_a (

in Repositoryld logical_type_id
);
boolean non_existent();

boolean is_equivalent (
in Object other_object
);

Common Object Request Broker Architecture (CORBA), v2.5 September 2001

September 2001

unsigned long hash(
in unsigned long

);

void create_request (
in Context
in Identifier
in NVList

inout NamedValue
out Request
in Flags

);

Policy get_policy (
in PolicyType
);

DomainManagersList get_domain_managers ();

maximum

ctx
operation,
arg_list,
result,
request,
req_flag

policy_type

Object set_policy_overrides(

in PolicyList
in SetOverrideType
) raises (InvalidPolicies);

Policy get_client_policy(
in PolicyType type
);

policies,
set_add

PolicyList get_policy_overrides(

in PolicyTypeSeq
);

types

boolean validate_connection(

out PolicyList

);
b

inconsistent_policies

The create_request operation is part of the Object interface because it creates a

pseudo-object (a Request) for an object. It is described with the other Request

operations in Section 7.2, “Reguest Operations” on page 7-4.

Unless otherwise stated below, the operationsin the IDL above do not require access to

remote information.
4.3.1 Determining the Object Interface

4.3.1.1 get_interface

InterfaceDef get_interface();

CORBA, v2.5: Object Reference Operations

4-13

4-14

An operation on the object reference, get_interface, returns an object in the Interface
Repository, which provides type information that may be useful to a program. See the
Interface Repository chapter for a definition of operations on the Interface Repository.
The implementation of this operation may involve contacting the ORB that implements
the target object.

4.3.2 Duplicating and Releasing Copies of Object References

43.2.1

4.3.2.2

duplicate

Object duplicate();

release

void release();

Because object references are opaque and ORB-dependent, it is not possible for clients
or implementations to allocate storage for them. Therefore, there are operations
defined to copy or release an object reference.

If more than one copy of an object reference is needed, the client may create a
duplicate. Note that the object implementation is not involved in creating the duplicate,
and that the implementation cannot distinguish whether the original or a duplicate was
used in a particular request.

When an object reference is no longer needed by a program, its storage may be
reclaimed by use of the release operation. Note that the object implementation is not
involved, and that neither the object itself nor any other referencesto it are affected by
the release operation.

4.3.3 Nil Object References

4.3.3.1

is_nil
boolean is_nil();

An object reference whose value is OBJECT_NIL denotes no object. An object
reference can be tested for this value by the is_nil operation. The object
implementation is not involved in the nil test.

4.3.4 Equivalence Checking Operation

4.34.1

is a

boolean is_a(

Common Object Request Broker Architecture (CORBA), v2.5 September 2001

September 2001

in Repositoryld logical_type_id
);

An operation is defined to facilitate maintaining type-safety for object references over
the scope of an ORB.

The logical_type_id is a string denoting a shared type identifier (Repositoryld).
The operation returns true if the object is really an instance of that type, including if
that type is an ancestor of the “most derived” type of that object.

Determining whether an object’s type is compatible with the logical_type_id may
require contacting a remote ORB or interface repository. Such an attempt may fail at
either the local or the remote end. If is_a cannot make a reliable determination of type
compatibility due to failure, it raises an exception in the calling application code. This
enables the application to distinguish among the TRUE, FALSE, and indeterminate
cases.

This operation exposes to application programmers functionality that must already
exist in ORBs that support “type safe narrow” and allows programmers working in
environments that do not have compile time type checking to explicitly maintain type
safety.

This operation aways return TRUE for the logical_type_id
IDL:omg.org/CORBA/Object:1.0

4.3.5 Probing for Object Non-Existence

4.3.5.1 non_existent

boolean non_existent ();

The non_existent operation may be used to test whether an object (for example, a
proxy object) has been destroyed. It does this without invoking any application level
operation on the object, and so will never affect the object itself. It returns true (rather
than raising CORBA::OBJECT_NOT_EXIST) if the ORB knows authoritatively that
the object does not exist; otherwise, it returns false.

Services that maintain state that includes object references, such as bridges, event
channels, and base relationship services, might use this operation in their “idle time” to
sift through object tables for objects that no longer exist, deleting them as they go, as a
form of garbage collection. In the case of proxies, this kind of activity can cascade,
such that cleaning up one table allows others then to be cleaned up.

Probing for object non-existence may require contacting the ORB that implements the
target object. Such an attempt may fail at either the local or the remote end. If non-
existent cannot make a reliable determination of object existence due to failure, it
raises an exception in the calling application code. This enables the application to
distinguish among the true, false, and indeterminate cases.

CORBA, v2.5: Object Reference Operations 4-15

4-16

4.3.6 Object Reference ldentity

4.3.6.1

4.3.6.2

In order to efficiently manage state that include large numbers of object references,
services need to support a notion of object reference identity. Such services include not
just bridges, but relationship services and other layered facilities.

Two identity-related operations are provided. One maps object references into disjoint
groups of potentially equivalent references, and the other supports more expensive
pairwise equivalence testing. Together, these operations support efficient maintenance
and search of tables keyed by object references.

Hashing Object Identifiers

hash

unsigned long hash(
in unsigned long maximum

);

Object references are associated with ORB-internal identifiers which may indirectly be
accessed by applications using the hash operation. The value of this identifier does
not change during the lifetime of the object reference, and so neither will any hash
function of that identifier.

The value of this operation is not guaranteed to be unique; that is, another object
reference may return the same hash value. However, if two object references hash
differently, applications can determine that the two object references are not identical.

The maximum parameter to the hash operation specifies an upper bound on the hash
value returned by the ORB. The lower bound of that value is zero. Since a typical use
of this feature is to construct and access a collision chained hash table of object
references, the more randomly distributed the values are within that range, and the
cheaper those values are to compute, the better.

For bridge construction, note that proxy objects are themselves objects, so there could
be many proxy objects representing a given “real” object. Those proxies would not
necessarily hash to the same value.

Equivalence Testing

is_equivalent

boolean is_equivalent(
in Object other_object

);

The is_equivalent operation is used to determine if two object references are
equivalent, so far asthe ORB can easily determine. It returns TRUE if the target object
reference is known to be equivalent to the other object reference passed as its
parameter, and FAL SE otherwise.

Common Object Request Broker Architecture (CORBA), v2.5 September 2001

September 2001

If two object references are identical, they are equivalent. Two different object
references, which in fact refer to the same object are also equivalent.

ORBs are allowed, but not required, to attempt determination of whether two distinct
object references refer to the same object. In general, the existence of reference
translation and encapsulation, in the absence of an omniscient topology service, can
make such determination impractically expensive. This means that a FALSE return
from is_equivalent should be viewed as only indicating that the object references are
distinct, and not necessarily an indication that the references indicate distinct objects.
Setting of local policies on the object reference is not taken into consideration for the
purposes of determining object reference equivalence.

A typical application use of this operation is to match object references in a hash table.
Bridges could use it to shorten the lengths of chains of proxy object references.
Externalization services could use it to “flatten” graphs that represent cyclical
relationships between objects. Some might do this as they construct the table, others
during idle time.

4.3.7 Getting Policy Associated with the Object

4.3.7.1 get_policy

The get_policy operation returns the policy object of the specified type (see Section
4.8, “Policy Object” on page 4-33), which applies to this object. It returns the effective
Policy for the object reference. The effective Policy is the one that would be used if a
reguest were made.

This Policy is determined first by obtaining the effective override for the Policy Type
as returned by get_client_policy. The effective override is then compared with the
Policy as specified in the IOR. The effective Policy is determined by reconciling the
effective override and the IOR-specified Policy (see Section 4.9.2, “ Server Side Policy
Management” on page 4-42). If the two policies cannot be reconciled, the standard
system exception INV_POLICY is raised with standard minor code 1. The absence of
a Policy value in the IOR implies that any legal value may be used.

Invoking non_existent on an object reference prior to get_policy ensures the
accuracy of the returned effective Policy. If get_policy isinvoked prior to the object
reference being bound, the returned effective Policy is implementation dependent. In
that situation, a compliant implementation may do any of the following:

¢ raise the standard system exception BAD_INV_ORDER,

e return some value for that Policy Type, which may be subject to change once a
binding is performed, or

e attempt a binding and then return the effective Policy.

Note that the effective Policy may change from invocation to invocation due to
transparent rebinding.

Policy get_policy (

CORBA, v2.5: Object Reference Operations 4-17

4-18

4.3.7.2

4.3.7.3

in PolicyType policy_type

Parameter (s)
policy_type - The type of policy to be obtained.

Return Value
A Policy object of the type specified by the policy _type parameter.

Exception(s)

CORBA::INV_POLICY - raised when the value of policy type is not valid either
because the specified type is not supported by this ORB or because a policy object of
that type is not associated with this Object.

The implementation of this operation may involve remote invocation of an operation
(for example, DomainManager::get_domain_policy for some security policies) for
some policy types.

get_client_policy

Policy get_client_policy(
in PolicyType type
);

Returns the effective overriding Policy for the object reference. The effective override
is obtained by first checking for an override of the given PolicyType at the Object
scope, then at the Current scope, and finally at the ORB scope. If no override is
present for the requested Policy Type, the system-dependent default value for that
PolicyType is used. Portable applications are expected to set the desired “ defaults” at
the ORB scope since default Policy values are not specified.

get_policy overrides

PolicyList get_policy_overrides(
in PolicyTypeSeq types
);

Returns the list of Policy overrides (of the specified policy types) set at the Object
scope. If the specified sequence is empty, all Policy overrides at this scope will be
returned. If none of the requested Policy Types are overridden at the Object scope,
an empty sequence is returned.

Common Object Request Broker Architecture (CORBA), v2.5 September 2001

September 2001

4.3.8 Overriding Associated Policies on an Object Reference

4.3.8.1 set policy overrides

The set_policy_overrides operation returns a new object reference with the new
policies associated with it. It takes two input parameters. The first parameter policies
is a sequence of references to Policy objects. The second parameter set_add of type
SetOverrideType indicates whether these policies should be added onto any other
overrides that already exist (ADD_OVERRIDE) in the object reference, or they should
be added to a clean override free object reference (SET_OVERRIDE). This operation
associates the policies passed in the first parameter with a newly created object
reference that it returns. Only certain policies that pertain to the invocation of an
operation at the client end can be overridden using this operation. Attempts to override
any other policy will result in the raising of the CORBA::NO_PERMISSION
exception.

enum SetOverrideType {SET_OVERRIDE, ADD_OVERRIDE},

Object set_policy_overrides(
in PolicyList policies,
in SetOverrideType set_add
) raises (InvalidPolicies);

Parameter(s)

policies - asequence of Policy objects that are to be associated with the new copy of
the object reference returned by this operation. If the sequence contains two or more
Policy objects with the same Policy Type value, the operation raises the standard
system exception BAD_PARAM with minor code 30.

set_add - whether the association is in addition to (ADD_OVERRIDE) or as a
replacement of (SET_OVERRIDE) any existing overrides already associated with the
object reference. If the value of this parameter is SET_OVERRIDE, the supplied
policies completely replace all existing overrides associated with the object reference.
If the value of this parameter is ADD_OVERRIDE, the supplied policies are added to
the existing overrides associated with the object reference, except that if a supplied
Policy object has the same Policy Type value as an existing override, the supplied
Policy object replaces the existing override.

Return Value

A copy of the object reference with the overrides from policies associated with it in
accordance with the value of set_add.

Exception(s)

InvalidPolicies - raised when an attempt is made to override any policy that cannot be
overridden.

CORBA, v2.5: Object Reference Operations 4-19

4-20

4.3.9 Validating Connection

4.3.9.1 validate connection

boolean validate_connection(
out PolicyList inconsistent_policies
);

Returns the value TRUE if the current effective policies for the Object will allow an
invocation to be made. If the object reference is not yet bound, a binding will occur as
part of this operation. If the object reference is already bound, but current policy
overrides have changed or for any other reason the binding is no longer valid, a rebind
will be attempted regardless of the setting of any RebindPolicy override. The
validate_connection operation is the only way to force such arebind when implicit
rebinds are disallowed by the current effective RebindPolicy. The attempt to bind or
rebind may involve processing GIOP LocateRequests by the ORB. Returns the value
FALSE if the current effective policies would cause an invocation to raise the standard
system exception INV_POLICY. If the current effective policies are incompatible, the
out parameter inconsistent_policies contains those policies causing the
incompatibility. This returned list of policiesis not guaranteed to be exhaustive. If the
binding fails due to some reason unrelated to policy overrides, the appropriate standard
system exception is raised.

4.3.10 Getting the Domain Managers Associated with the Object

4.3.10.1 get_domain_managers

The get_domain_managers operation allows administration services (and
applications) to retrieve the domain managers (see Section 4.9, “Management of
Policies” on page 4-42), and hence the security and other policies applicable to
individual objects that are members of the domain.

typedef sequence <DomainManager> DomainManagersList;

DomainManagersList get_domain_managers ();

Return Value

The list of immediately enclosing domain managers of this object. At least one domain
manager is always returned in the list since by default each object is associated with at
least one domain manager at creation.

The implementation of this operation may involve contacting the ORB that implements
the target object.

Common Object Request Broker Architecture (CORBA), v2.5 September 2001

4.4 ValueBase Operations

ValueBase serves asimilar role for value types that Object serves for interfaces. Its
mapping is language-specific and must be explicitly specified for each language.

Typically it is mapped to a concrete language type which serves as a base for all value
types. Any operations that are required to be supported for all values are conceptually
defined on ValueBase, adthough in reality their actual mapping depends upon the
specifics of any particular language mapping.

Analogous to the definition of the Object interface for implicit operations of object
references, the implicit operations of ValueBase are defined on a pseudo-valuetype
as follows:

module CORBA {
valuetype ValueBase{ PIDL
ValueDef get_value_def();
¥
¥

The get_value_def() operation returns a description of the value's definition as
described in the interface repository (Section 10.5.27, “ValueDef” on page 10-38).

4.5 ORB and OA Initialization and Initial References

September 2001

Before an application can enter the CORBA environment, it must first:
¢ Beinitialized into the ORB and possibly the object adapter (POA) environments.

« Get references to ORB pseudo-object (for use in future ORB operations) and
perhaps other objects (including the root POA or some Object Adapter objects).

The following operations are provided to initialize applications and obtain the
appropriate object references:

e Operations providing access to the ORB. These operations reside in the CORBA
module, but not in the ORB interface and are described in Section 4.5.1, “ORB
Initialization” on page 4-21.

e Operations providing access to Object Adapters, Interface Repository, Naming
Service, and other Object Services. These operations reside in the ORB interface
and are described in Section 4.5.2, “Obtaining Initial Object References” on page
4-23.

45.1 ORB Initialization

When an application requires a CORBA environment it needs a mechanism to get the
ORB pseudo-object reference and possibly an OA object reference (such as the root
POA). This serves two purposes. First, it initializes an application into the ORB and
OA environments. Second, it returns the ORB pseudo-abject reference and the OA
object reference to the application for use in future ORB and OA operations.

CORBA, v2.5: ValueBase Operations 4-21

4-22

The ORB and OA initialization operations must be ordered with ORB occurring before
OA: an application cannot call OA initialization routines until ORB initialization
routines have been called for the given ORB. The operation to initialize an application
in the ORB and get its pseudo-object reference is not performed on an object. Thisis
because applications do not initially have an object on which to invoke operations. The
ORSB initialization operation is an application’s bootstrap call into the CORBA world.
The ORB _init call is part of the CORBA module but not part of the ORB interface.

Applications can be initialized in one or more ORBs. When an ORB initialization is
complete, its pseudo reference is returned and can be used to obtain other references
for that ORB.

In order to obtain an ORB pseudo-object reference, applications call the ORB_init
operation. The parameters to the call comprise an identifier for the ORB for which the
pseudo-object reference is required, and an arg_list, which is used to allow
environment-specific data to be passed into the call. PIDL for the ORB initialization is
as follows:

/I PIDL
module CORBA {

typedef sequence <string> arg_list;

ORB ORB_init (inout arg_list argv, in ORBid orb_identifier);
5

The identifier for the ORB will be a name of type CORBA::ORBid. All ORBid
strings other than the empty string are alocated by ORB administrators and are not
managed by the OMG. ORB administration is the responsibility of each ORB supplier.
ORB suppliers may optionally delegate this responsibility. ORBid strings other than
the empty string are intended to be used to uniquely identify each ORB used within the
same address space in a multi-ORB application. These special ORBid strings are
specific to each ORB implementation and the ORB administrator is responsible for
ensuring that the names are unambiguous.

If an empty ORBid string is passed to ORB_init, then the arg_list arguments shall be
examined to determine if they indicate an ORB reference that should be returned. This
is achieved by searching the arg_list parameters for one preceded by “-ORBid” for
example, “-ORBid example_orb” (the white space after the “-ORBid” tag is
ignored) or “-ORBidMyFavoriteORB” (with no white space following the “-ORBid”
tag). Alternatively, two sequential parameters with the first being the string “ -ORBid”
indicates that the second is to be treated as an ORBIid parameter. If an empty string is
passed and no arg_list parameters indicate the ORB reference to be returned, the
default ORB for the environment will be returned.

Other parameters of significance to the ORB can also be identified in arg_list, for
example, “Hostname,” “SpawnedServer,” and so forth. To allow for other
parameters to be specified without causing applications to be rewritten, it is necessary
to specify the parameter format that ORB parameters may take. In general, parameters
shall be formatted as either one single arg_list parameter:

—ORB<suffix><optional white space> <value>

Common Object Request Broker Architecture (CORBA), v2.5 September 2001

September 2001

or as two sequential arg_list parameters:
-ORB<suffix>

<value>

Regardless of whether an empty or non-empty ORBId string is passed to ORB_init,
the arg_list arguments are examined to determine if any ORB parameters are given. If
a non-empty ORBId string is passed to ORB_init, all ORBid parametersin the
arg_list areignored. All other -ORB<suffix> parametersin the arg_list may be of
significance during the ORB initiaization process.

Before ORB_init returns, it will remove from the arg_list parameter al strings that
match the -ORB<suffix> pattern described above and that are recognized by that ORB
implementation, along with any associated sequential parameter strings. If any strings
in arg_list that match this pattern are not recognized by the ORB implementation,
ORB_init will raise the BAD_PARAM system exception instead.

The ORB_init operation may be called any number of times and shall return the same
ORB reference when the same ORBId string is passed, either explicitly as an argument
to ORB_init or through the arg_list. All other -ORB<suffix> parameters in the
arg_list may be considered on subsequent calls to ORB_init.

4.5.2 Obtaining Initial Object References

Applications require aportable means by which to obtain their initial object references.
References are required for the root POA, POA Current, Interface Repository, and
various Object Services instances. (The POA is described in the Portable Object
Adapter chapter; the Interface Repository is described in the Interface Repository
chapter; Object Services are described in the individual service specifications.) The
functionality required by the application is similar to that provided by the Naming
Service. However, the OMG does not want to mandate that the Naming Service be
made available to all applications in order that they may be portably initialized.
Consequently, the operations shown in this section provide a simplified, local version
of the Naming Service that applications can use to obtain a small, defined set of object
references that are essentia to its operation. Because only a small well-defined set of
objects are expected with this mechanism, the naming context can be flattened to be a
single-level name space. This simplification results in only two operations being
defined to achieve the functionality required.

Initial references are not obtained via a new interface; instead two operations are
provided in the ORB pseudo-object interface, providing facilities to list and resolve
initial object references.

list_initial_services

typedef string Objectld;
typedef sequence <Objectld> ObjectidList;
ObjectldList list_initial_services ();

CORBA, v2.5: ORB and OA Initialization and I nitial References 4-23

resolve initial_references

exception InvalidName {};

Object resolve_initial_references (
in Objectld identifier
) raises (InvalidName);

Theresolve_initial_references Operation is an operation on the ORB rather than
the Naming Service’s NamingContext. The interface differs from the Naming
Service's resolve in that Objectld (a string) replaces the more complex Naming
Service construct (a sequence of structures containing string pairs for the components
of the name). This simplification reduces the name space to one context.

Objectlds are strings that identify the object whose reference is required. To maintain
the simplicity of the interface for obtaining initial references, only a limited set of
objects are expected to have their references found via this route. Unlike the ORB
identifiers, the Objectld name space requires careful management. To achieve this, the
OMG may, in the future, define which services are required by applications through
this interface and specify names for those services.

Currently, reserved Objectlds are RootPOA, POACurrent, InterfaceRepository,
NameService, TradingService, SecurityCurrent, TransactionCurrent,
DynAnyFactory, ORBPolicyManager, PolicyCurrent, NotificationService,
TypedNotificationService, CodecFactory, and PICurrent.

Table4-1 Objectlds for resolve_initial_references

Objectld Type of Object Reference Reference

RootPOA PortableServer::POA Section 11.3.8, “POA Interface” on
page 11-33

POACurrent PortableServer::Current Section 11.3.8, “POA Interface” on
page 11-33

InterfaceRepository CORBA::Repository Section 10.5.6, “Repository” on
page 10-20

NameService CosNaming:: Naming Service specification

NamingContext (formal/01-02-65), the CosNaming

Module section.

TradingService

CosTrading::Lookup Trading Object Service
specification (formal/00-06-27), the
Functional Interfaces section.

SecurityCurrent

SecurityLevell::Current or Security Service specification
SecurityLevel2::Current (formal/01-03-08), the Security
Operations on Current section.

4-24

Common Object Request Broker Architecture (CORBA), v2.5 September 2001

Table4-1 Objectlds for resolve_initial_references

Objectld

Type of Object Reference

Reference

TransactionCurrent

CosTransaction::Current

Transaction Service specification
(formal/01-05-02), the Transaction
Service Interfaces section.

DynAnyFactory

DynamicAny::
DynAnyFactory

Section 9.2.2, “Creating a DynAny
object” on page 9-9

ORBPolicyManager

CORBA::PolicyManager

Section 4.9.3, “Policy Management
Interfaces’ on page 4-43

PolicyCurrent

CORBA::PolicyCurrent

Section 4.9.3, “Policy Management
Interfaces’ on page 4-43

NotificationService

CosNotifyChannelAdmin::
EventChannelFactory

Notification Service specification
(formal/00-06-20)

TypedNotificationService

CosTypedNotifyChannelAdmin::Typed
EventChannelFactory

Notification Service specification
(formal/00-06-20)

CodecFactory IOP::CodecFactory Section 13.8.2, “Codec Factory” on
page 13-33
PICurrent Portablelnterceptors::Current Section 21.4.3, “Portable

Interceptor Current Interface” on
page 21-33

September 2001

To alow an application to determine which objects have references available via the
initial references mechanism, the list_initial_services operation (also a call on the
ORB) is provided. It returns an ObjectldList, which is a sequence of Objectlds.
Objectlds are typed as strings. Each object, which may need to be made available at
initialization time, is allocated a string value to represent it. In addition to defining the
id, the type of object being returned must be defined; that is, “ InterfaceRepository”
returns an object of type Repository, and “NameService” returns a
CosNaming::NamingContext object.

The application is responsible for narrowing the object reference returned from
resolve_initial_references to the type that was requested in the Objectld. For
example, for InterfaceRepository the object returned would be narrowed to
Repository type.

Specifications for Object Services (see individual service specifications) state whether
it is expected that a service's initial reference be made available via the
resolve_initial_references operation or not; that is, whether the service is necessary
or desirable for bootstrap purposes.

CORBA, v2.5: ORB and OA Initialization and I nitial References 4-25

4-26

4.5.3 Configuring Initial Service References

453.1

4.5.3.2

4.5.3.3

ORB-specific Configuration

It is required that an ORB can be administratively configured to return an arbitrary
object reference from CORBA::ORB::resolve_initial_references for non-locality-
constrained objects.

In addition to this required implementation-specific configuration, two
CORBA::ORB_init arguments are provided to override the ORB initial reference
configuration.

ORBInitRef

The ORB initial reference argument, -ORBInitRef, allows specification of an arbitrary
object reference for an initial service. The format is:

-ORBInitRef <ObjectID>=<ObjectURL>

Examples of use are:
-ORBInitRef NameService=IOR:00230021AB...
-ORBInitRef NotificationService=corbaloc::5550bjs.com/NotificationService

-ORBInitRef TradingService=corbaname::5550bjs.com#Dev/Trader

<ObjectID> represents the well-known ObjectID for a service defined in the CORBA
specification, such as NameService. This mechanism alows an ORB to be
configured with new initial service Object IDs that were not defined when the ORB
was installed.

<ObjectURL> can be any of the URL schemes supported by
CORBA::ORB::string_to_object (Section 13.6.9, “ Stringified Object References’
on page 13-22 and Section 13.6.10, “Object URLS’ on page 13-23). If aURL is
syntactically malformed or can be determined to be invalid in an implementation
defined manner, ORB _init raises a BAD_PARAM exception.

ORBDefaultlnitRef

The ORB default initial reference argument, -ORBDefaultInitRef, assistsin
resolution of initial references not explicitly specified with - ORBInitRef.
-ORBDefaultInitRef requires a URL that, after appending a slash ‘/’ character and a
stringified object key, forms a new URL to identify an initial object reference. For
example:

-ORBDefaultInitRef corbaloc::5550bjs.com

A cdl to resolve_initial_references(“NotificationService”) with this argument
resultsin a new URL:

Common Object Request Broker Architecture (CORBA), v2.5 September 2001

September 2001

45.3.4

corbaloc::5550bjs.com/NotificationService

That URL is passed to CORBA::ORB::string_to_object to obtain the initial
reference for the service.

Another exampleis:

-ORBDefaultInitRef \
corbaname::555ResolveRefs.com,:555Backup.com#Prod/Local
After caling resolve_initial_references(*NameService”), one of thecorbaname
URLs

corbaname::555ResolveRefs.com#Prod/Local/NameService

or

corbaname::555Backup41l.com#Prod/Local/NameService

is used to obtain an object reference from string_to_object. (In this example,
Prod/Local/NameService represents a stringified CosNaming::Name).

Section 13.6.7, “Profile and Component Composition in IORs” on page 13-21 provides
details of the corbaloc and corbaname URL schemes. The -ORBDefaultInitRef
argument naturally extends to URL schemes that may be defined in the future,
provided the final part of the URL is an object key.

Configuration Effect onresolve_initial_references

Default Resolution Order

The default order for processing a call to
CORBA::ORB::resolve_initial_references for a given <ObjectID> is:
1. Resolve with register_initial_reference entry if possible.

2. Resolve with -ORBInitRef for this <ObjectID> if possible.

3. Resolve with pre-configured ORB settings if possible.

4. Resolve with an -ORBDefaultinitRef entry if possible.

ORB Configured Resolution Order

There are cases where the default resolution order may not be appropriate for all
services and use of -ORBDefaultinitRef may have unintended resolution side effects.
For example, an ORB may use a proprietary service, such as
ImplementationRepository, for internal purposes and may want to prevent a client
from unknowingly diverting the ORB’s reference to an implementation repository from
another vendor. To prevent this, an ORB is alowed to ignore the -ORBDefaultInitRef
argument for any or al <ObjectID>s for those services that are not OM G-specified

CORBA, v2.5: ORB and OA Initialization and I nitial References 4-27

4.5.3.5

4.6 Context Object

services with awell-known service name as accepted by resolve_initial_references.
An ORB can only ignore the -ORBDefaultInitRef argument but must always honor
the -ORBInitRef argument.

Configuration Effect on list_initial_services

The <ObjectID>s of all -ORBInitRef argumentsto ORB_init appear in the list of
tokens returned by list_initial_services aswell asal ORB-configured <ObjectID>s.
Any other tokens that may appear are implementation-dependent.

The list of <ObjectID>s returned by list_initial_services can be a subset of the
<ObjectID>s recognized as valid by resolve_initial_references.

4.6.1 Introduction

4-28

A context object contains a list of properties, each consisting of a hame and a string
value associated with that name. By convention, context properties represent
information about the client, environment, or circumstances of a request that are
inconvenient to pass as parameters.

Context properties can represent a portion of a client’s or application’s environment
that is meant to be propagated to (and made implicitly part of) a server’s environment
(for example, a window identifier, or user preference information). Once a server has
been invoked; that is, after the properties are propagated, the server may query its
context object for these properties.

In addition, the context associated with a particular operation is passed as a
distinguished parameter, alowing particular ORBs to take advantage of context
properties, for example, using the values of certain properties to influence method
binding behavior, server location, or activation policy.

An operation definition may contain a clause specifying those context properties that
may be of interest to a particular operation. These context properties comprise the
minimum set of properties that will be propagated to the server’'s environment
(although a specified property may have no value associated with it). The ORB may
choose to pass more properties than those specified in the operation declaration.

When a context clause is present on an operation declaration, an additional argument is
added to the stub and skeleton interfaces. When an operation invocation occurs via
either the stub or Dynamic Invocation interface, the ORB causes the properties which
were named in the operation definition in OMG IDL and which are present in the
client’s context object, to be provided in the context object parameter to the invoked
method.

Common Object Request Broker Architecture (CORBA), v2.5 September 2001

4

September 2001

Context property names (which are strings) typically have the form of an OMG IDL
identifier, or aseries of OMG IDL identifiers separated by periods. A context property
name pattern is either a property name, or a property name followed by a single “*.”
Property name patterns are used in the context clause of an operation definition and in
the get_values operation (described below).

A property name pattern without a trailing “*” is said to match only itself. A property
name pattern of the form “<name>*" matches any property name that starts with
<name> and continues with zero or more additional characters.

Context objects may be created and deleted, and individual context properties may be
set and retrieved. There will often be context objects associated with particular
processes, users, or other things depending on the operating system, and there may be
conventions for having them supplied to calls by default.

It may be possible to keep context information in persistent implementations of context
objects, while other implementations may be transient. The creation and modification
of persistent context objects, however, is not addressed in this specification. Context
objects may be “chained” together to achieve a particular defaulting behavior.

Properties defined in a particular context object effectively override those propertiesin
the next higher level. This searching behavior may be restricted by specifying the
appropriate scope and the “restrict scope” option on the Context get_values call.
Context objects may be named for purposes of specifying a starting search scope.

4.6.2 Context Object Operations

When performing operations on a context object, properties are represented as named
value lists. Each property value corresponds to a named value item in the list.

A property name is represented by a string of characters (see Section 3.2.3,
“ldentifiers” on page 3-6 for the valid set of characters that are allowed). The Context
interface is shown below.

module CORBA {

interface Context { /l PIDL
void set_one_value (
in Identifier prop_name,// property name to add
in string value /I property value to add
);
void set_values (
in NVList values /I property values to be changed
);
void get_values (
in Identifier start_scope,// search scope
in Flags op_flags, // operation flags
in Identifier prop_name,// name of property(s) to retrieve
out NVList values /I requested property(s)
);

void delete_values (

CORBA, v2.5: Context Object 4-29

4-30

4.6.2.1

4.6.2.2

4.6.2.3

4.6.2.4

in Identifier prop_name// name of property(s) to delete
);
void create_child (

in Identifier ctx_name, // name of context object

out Context child_ctx // newly created context object
);
void delete (

in Flags del_flags // flags controlling deletion
);

get_default_context

This operation, which creates a Context pseudo-object, is defined in the ORB
interface (see Section 4.2.2, “Converting Object Referencesto Strings” on page 4-8 for
the complete ORB definition).

void get_default_context (/l PIDL
out Context ctx /I context object
);

This operation returns a reference to the default process context object. The default
context object may be chained into other context objects. For example, an ORB
implementation may chain the default context object into its User, Group, and System
context objects.

set_one value

void set_one_value (/l PIDL
in Identifier prop_name, // property name to add
in string value /I property value to add
);

This operation sets a single context object property.

set_values
void set_values (/I PIDL
in NVList values /I property values to be changed
);

This operation sets one or more property values in the context object. In the NVList,
the flags field must be set to zero, and the TypeCode field associated with an
attribute value must be TC_string.

get_values

void get_values (/I PIDL

Common Object Request Broker Architecture (CORBA), v2.5 September 2001

September 2001

4.6.2.5

4.6.2.6

in Identifier start_scope, // search scope

in Flags op_flags, /I operation flags

in Identifier prop_name, /[name of property(s) to retrieve
out NVList values /I requested property(s)

);

This operation retrieves the specified context property value(s). If prop_name has a
trailing wildcard character (“*”), then all matching properties and their values are
returned. The values returned may be freed by a call to the list free operation.

If prop_name is an empty string, then the BAD_PARAM standard system exception
israised. If aproperty named by prop_name is not found, then the BAD_CONTEXT
standard system exception is raised and no property list is returned. The
NO_MEMORY exception is raised if dynamic memory allocation fails.

Scope indicates the context object level at which to initiate the search for the specified
properties (e.g., “*_USER",“_SYSTEM?"). If the property is not found at the indicated
level, the search continues up the context object tree until a match is found or all
context objects in the chain have been exhausted.

If scope name is omitted, the search begins with the specified context object. If the
specified scope name is not found, an exception is returned.

The following operation flag may be specified:

e CORBA::CTX_RESTRICT_SCOPE - Searching is limited to the specified search
scope or context object. The value of this flag is 15.

delete values
void delete_values (/I PIDL
in Identifier prop_name /l name of property(s) to delete
);

This operation deletes the specified property value(s) from the context object. If
prop_name has a trailing wildcard character (“*"), then all property names that
match will be deleted.

Search scope is always limited to the specified context object.

If prop_name is an empty string the BAD_PARAM standard system exception is
raised. If no matching property is found, the BAD_CONTEXT standard system
exception is raised.

create child
void create_child (/I PIDL
in Identifier ctx_name, /l name of context object
out Context child_ctx / newly created context object
);

This operation creates a child context object.

CORBA, v2.5: Context Object 4-31

4.6.2.7

4.7 Current Object

4-32

The returned context object is chained into its parent context. That is, searches on the
child context object will look in the parent context (and so on, up the context tree), if
necessary, for matching property names.

Context object names follow the rules for OMG IDL identifiers (see Section 3.2.3,
“ldentifiers” on page 3-6).

delete
void delete (/I PIDL
in Flags del_flags /I flags controlling deletion
);

This operation deletes the indicated context object.
The following option flags may be specified:

e CORBA::CTX_DELETE_DESCENDENTS deletes the indicated context object
and all of its descendent context objects, as well.

e The standard system exception BAD_PARAM is raised if there are one or more
child context objects and the CTX_DELETE_DESCENDENTS flag was not set.

ORB and CORBA services may wish to provide access to information (context)
associated with the thread of execution in which they are running. This information is
accessed in a structured manner using interfaces derived from the Current interface
defined in the CORBA module.

Each ORB or CORBA service that needs its own context derives an interface from the
CORBA module’'s Current. Users of the service can obtain an instance of the
appropriate Current interface by invoking ORB::resolve_initial_references. For
example the Security service obtains the Current relevant to it by invoking

ORB::resolve_initial_references(“ SecurityCurrent”)

A CORBA service does not have to use this method of keeping context but may choose
to do so.

module CORBA {

I/l interface for the Current object
interface Current {
¥
3

Operations on interfaces derived from Current access state associated with the thread
in which they are invoked, not state associated with the thread from which the Current
was obtained. This prevents one thread from manipulating another thread’s state, and

avoids the need to obtain and narrow a new Current in each method's thread context.

Common Object Request Broker Architecture (CORBA), v2.5 September 2001

4.8 Policy Object

Current objects must not be exported to other processes, or externalized with
ORB::object_to_string. If any attempt is made to do so, the offending operation will
raise a MARSHAL system exception. Currents are per-process singleton objects, so
no destroy operation is needed.

4.8.1 Definition of Policy Object

September 2001

An ORB or CORBA service may choose to allow access to certain choices that affect
its operation. This information is accessed in a structured manner using interfaces
derived from the Policy interface defined in the CORBA module. A CORBA service
does not have to use this method of accessing operating options, but may choose to do
s0. The Security Service in particular uses this technique for associating Security Policy
with objects in the system.

module CORBA {
typedef unsigned long PolicyType;

// Basic IDL definition

interface Policy {
readonly attribute PolicyType policy_type;
Policy copy();
void destroy();

¥

typedef sequence <Policy> PolicyList;
typedef sequence <PolicyType> PolicyTypeSeq;
¥

PolicyType defines the type of Policy object. In general the constant values that are
allocated are defined in conjunction with the definition of the corresponding Policy
object. The values of PolicyTypes for policies that are standardized by OMG are
allocated by OMG. Additionally, vendors may reserve blocks of 4096 PolicyType
values identified by a 20 bit Vendor PolicyType Valueset ID (VPVID) for their own use.

PolicyType which is an unsigned long consists of the 20-bit VPVID in the high order
20 bits, and the vendor assigned policy value in the low order 12 bits. The VPVIDs 0
through \xf are reserved for OMG. All values for the standard PolicyTypes are
allocated within this range by OMG. Additionally, the VPVIDs \xfffff is reserved for
experimental use and OMGVMCID (Section 4.11.3, “Standard System Exception
Definitions” on page 4-53) is reserved for OMG use. These will not be allocated to
anybody. Vendors can request allocation of VPVID by sending mail to tag-
request@omg.org.

When a VMCID (Section 4.11, “Exceptions” on page 4-50) is allocated to a vendor
automatically the same value of VPVID is reserved for the vendor and vice versa. So
once a vendor gets either a VMCID or a VPVID registered they can use that value for
both their minor codes and their policy types.

CORBA, v2.5: Policy Object 4-33

4-34

4.8.1.1

4.8.1.2

4.8.1.3

Copy
Policy copy();

Return Value

This operation copies the policy object. The copy does not retain any relationships that
the policy had with any domain, or object.

Destroy

void destroy();

This operation destroys the policy object. It is the responsibility of the policy object to
determine whether it can be destroyed.

Exception(s)

CORBA::NO_PERMISSION - raised when the policy object determines that it cannot
be destroyed.

Policy type
readonly attribute policy_type

Return Value

This readonly attribute returns the constant value of type Policy Type that corresponds
to the type of the Policy object.

4.8.2 Creation of Policy Objects

A generic ORB operation for creating new instances of Policy objectsis provided as
described in this section.

module CORBA {
typedef short PolicyErrorCode;
const PolicyErrorCode BAD_POLICY =0;
const PolicyErrorCode UNSUPPORTED_POLICY = 1;
const PolicyErrorCode BAD_POLICY_TYPE = 2;
const PolicyErrorCode BAD_POLICY_VALUE = 3;
const PolicyErrorCode UNSUPPORTED_POLICY_VALUE = 4;
exception PolicyError {PolicyErrorCode reason;};

interface ORB {

Common Object Request Broker Architecture (CORBA), v2.5 September 2001

September 2001

4821

4.8.2.2

4.8.2.3

Policy create_policy(
in PolicyType type,
in any val

) raises(PolicyError);

PolicyError Code

A request to create a Policy may be invalid for the following reasons:
BAD_POLICY - the requested Policy is not understood by the ORB.

UNSUPPORTED_POLICY - the requested Policy is understood to be valid by the
ORB, but is not currently supported.

BAD_POLICY_TYPE - The type of the value requested for the Policy is not valid for
that PolicyType.

BAD_POLICY_VALUE - The value requested for the Policy is of avalid type but is
not within the valid range for that type.

UNSUPPORTED_POLICY_VALUE - The value requested for the Policy is of avalid
type and within the valid range for that type, but this valid value is not currently
supported.

PolicyError

exception PolicyError {PolicyErrorCode reason;};

The PolicyError exception is raised to indicate problems with parameter values passed
to the ORB::create_policy operation. Possible reasons are described above.

Create policy

The ORB operation create_policy can be invoked to create new instances of policy
objects of a specific type with specified initial state. If create_policy failsto
instantiate a new Policy object due to its inability to interpret the requested type and
content of the policy, it raises the PolicyError exception with the appropriate reason as
described in “PolicyErrorCode” on page 4-35.

Policy create_policy(
in PolicyType type,
in any val

) raises(PolicyError);

Parameter(s)
type - the Policy Type of the policy object to be created.

val - the value that will be used to set the initial state of thePolicy object that is created.

CORBA, v2.5: Policy Object 4-35

4-36

ReturnValue

Reference to a newly created Policy object of type specified by the type parameter
and initialized to a state specified by the val parameter.

Exception(s)

PolicyError - raised when the requested policy is not supported or a requested initial
state for the policy is not supported.

When new policy types are added to the CORBA or CORBA Services specification, it is
expected that the IDL type and the valid values that can be passed to create_policy
also be specified.

4.8.3 Usages of Policy Objects

Policy Objects are used in general to encapsulate information about a specific policy,
with an interface derived from the policy interface. The type of the Policy object
determines how the policy information contained within it is used. Usually a Policy
object is associated with another object to associate the contained policy with that
object.

Objects with which policy objects are typically associated are Domain Managers, POA,
the execution environment, both the process/capsule/ORB instance and thread of
execution (Current object) and object references. Only certain types of policy object
can be meaningfully associated with each of these types of objects.

These relationships are documented in sections that pertain to these individual objects
and their usages in various core facilities and object services. The use of Policy
Objects with the POA are discussed in the Portable Object Adapter chapter. The use of
Policy objects in the context of the Security services, involving their association with
Domain Managers as well as with the Execution Environment are discussed in the
Security Service specification.

In the following section the association of Policy objects with the Execution
Environment is discussed. In Section 4.9, “Management of Policies” on page 4-42 the
use of Policy objects in association with Domain Managers is discussed.

4.8.4 Policy Associated with the Execution Environment

Certain policies that pertain to services like security (for example, QOP, Mechanism,
invocation credentials, etc.) are associated by default with the process/capsule (RM-
ODP)/ORB instance (hereinafter referred to as “capsule”) when the application is
instantiated together with the capsule. By default these policies are applicable
whenever an invocation of an operation is attempted by any code executing in the said
capsule. The Security service provides operations for modulating these policies on a
per-execution thread basis using operations in the Current interface. Certain of these
policies (for example, invocation credentials, qop, mechanism, etc.) that pertain to the
invocation of an operation through a specific object reference can be further modulated
at the client end, using the set_policy_overrides operation of the Object reference.

Common Object Request Broker Architecture (CORBA), v2.5 September 2001

4

For a description of this operation see Section 4.3.8, “Overriding Associated Policies
on an Object Reference” on page 4-19. It associates a specified set of policies with a
newly created object reference that it returns.

The association of these overridden policies with the object referenceis a purely local
phenomenon. These associations are never passed on in any IOR or any other
marshaled form of the object reference. The associations last until the object reference
in the capsule is destroyed or the capsule in which it exists is destroyed.

The policies thus overridden in this new object reference and all subsequent duplicates
of this new object reference apply to all invocations that are done through these object
references. The overridden policies apply even when the default policy associated with
Current is changed. It is always possible that the effective policy on an object
reference at any given time will fail to be successfully applied, in which case the
invocation attempt using that object reference will fail and return a
CORBA::NO_PERMISSION exception. Only certain policies that pertain to the
invocation of an operation at the client end can be overridden using this operation.
These are listed in the Security Service specification. Attempts to override any other
policy will result in the raising of the CORBA::NO_PERMISSION exception.

In general the policy of a specific type that will be used in an invocation through a
specific object reference using a specific thread of execution is determined first by
determining if that policy type has been overridden in that object reference. If so, then
the overridden policy is used. If not, then if the policy has been set in the thread of
execution, then that policy is used. If not, then the policy associated with the capsuleis
used. For policies that matter, the ORB ensures that there is a default policy object of
each type that matters associated with each capsule (ORB instance). Hence, in a
correctly implemented ORB there is no case when a required type policy is not
available to use with an operation invocation.

4.8.5 Specification of New Policy Objects

When new PolicyTypes are added to CORBA specifications, the following details
must be defined. It must be clearly stated which particular uses of a new policy are
legal and which are not:

* Specify the assigned CORBA::PolicyType and the policy” interface definition.

e If the Policy can be created through CORBA::ORB::create_policy, specify the
allowable values for the any argument ‘val’ and how they correspond to the initial
state/behavior of that Policy (such asinitia values of attributes). For example, if a
Policy has multiple attributes and operations, it is most likely that create_policy
will receive some complex data for the implementation to initialize the state of the
specific policy:

/DL

struct MyPolicyRange {
long low;
long high;

b

September 2001 CORBA, v2.5: Policy Object 4-37

4-38

const CORBA::PolicyType MY_POLICY_TYPE = 666;
interface MyPolicy : Policy {

readonly attribute long low;

readonly attribute long high;

b

If this sample MyPolicy can be constructed via create_policy, the specification of
MyPolicy will have a statement such as: “When instances of MyPolicy are created,
avalue of type MyPolicyRange is passed to CORBA::ORB::create_policy and
the resulting MyPolicy’s attribute ‘low’ has the same value as the MyPolicyRange
member ‘low’ and attribute ‘high’ has the same value as the MyPolicyRange
member ‘high.

If the Policy can be passed as an argument to POA::create_POA, specify the
effects of the new policy on that POA. Specifically define incompatibilities (or
inter-dependencies) with other POA policies, effects on the behavior of invocations
on objects activated with the POA, and whether or not presence of the POA policy
implies some IOR profile/component contents for object references created with
that POA. If the POA policy implies some addition/modification to the object
reference, it is marked as “client-exposed” and the exact details are specified
including which profiles are affected and how the effects are represented.

If the component that is used to carry this information can be set within a client to
tune the client’s behavior, specify the policy’s effects on the client specifically with
respect to (@) establishment of connections and reconnections for an object
reference; (b) effects on marshaling of requests; (c) effects on insertion of service
contexts into requests; (d) effects upon receipt of service contextsin replies. In
addition, incompatibilities (or inter-dependencies) with other client-side policies are
stated. For policies that cause service contexts to be added to requests, the exact
details of this addition are given.

If the Policy can be used with POA creation to tune IOR contents and can aso be
specified (overridden) in the client, specify how to reconcile the policy’s presence
from both the client and server. It is strongly recommended to avoid thiscase! Asan
exercise in completeness, most POA policies can probably be extended to have
some meaning in the client and vice versa, but this does not help make usable
systems, it just makes them more complicated without adding really useful features.
There are very few cases where a policy is really appropriate to specify in both
places, and for these policies the interaction between the two must be described.

Pure client-side policies are assumed to be immutable. This allows efficient
processing by the runtime that can avoid re-evaluating the policy upon every
invocation and instead can perform updates only when new overrides are set (or
policies change due to rebind). If the newly specified policy is mutable, it must be
clearly stated what happens if non-readonly attributes are set or operations are
invoked that have side-effects.

For certain policy types, override operations may be disallowed. If thisis the case,
the policy specification must clearly state what happens if such overrides are
attempted.

Common Object Request Broker Architecture (CORBA), v2.5 September 2001

4.8.6 Sandard Policies

Table 4-2 below lists the standard policy types that are defined by various parts of

CORBA and CORBA Servicesin this version of CORBA.

Table4-2 Standard Policy Types
Policy Type Policy Interface Tag | Defined in Uses
Sect./Page create
policy
SecClientlnvocationAccess SecurityAdmin:: 1 Security Service No
AccessPolicy specification
SecTargetinvocationAccess SecurityAdmin:: 2 (formal/00-06-25) No
AccessPolicy
SecApplicationAccess SecurityAdmin:: 3 No
AccessPolicy
SecClientInvocationAudit SecurityAdmin::AuditPolicy 4 No
SecTargetlnvocationAudit SecurityAdmin::AuditPolicy 5 No
SecApplicationAudit SecurityAdmin::AuditPolicy 6 No
SecDelegation SecurityAdmin::Delegation 7 No
Policy
SecClientSecurelnvocation SecurityAdmin:: 8 No
SecurelnvocationPolicy
SecTargetSecurelnvocation SecurityAdmin:: 9 No
SecurelnvocationPolicy
SecNonRepudiation NRService::NRPolicy 10 No
SecConstruction CORBA::SecConstruction 11 | CORBA Core - No
ORB Interface
(chapter 4)
SecMechanismPolicy SecurityLevel2:: 12 Security Service Yes
MechanismPolicy specification
SeclnvocationCredentialsPolicy SecurityLevel2:: 13 (formal/00-06-25) Yes
InvocationCredentialsPolicy
SecFeaturesPolicy SecurityLevel2:: 14 Yes
FeaturesPolicy
SecQOPPolicy SecurityLevel2::QOPPolicy 15 Yes

September 2001

CORBA, v2.5: Policy Object

4-39

Table4-2 Standard Policy Types
Policy Type Policy Interface Tag | Defined in Uses
Sect./Page create
policy
THREAD_POLICY_ID PortableServer:: 16 | CORBA Core - Yes
ThreadPolicy Portable Object
LIFESPAN_POLICY_ID PortableServer:: 17 Adapter Yes
LifespanPolicy (chapter 11)
ID_UNIQUENESS_POLICY_ID PortableServer:: 18 Yes
IdUniquenessPolicy
ID_ASSIGNMENT_POLICY_ID PortableServer:: 19 Yes
IdAssignmentPolicy
IMPLICIT_ACTIVATION_POLICY_ID PortableServer:: 20 Yes
ImplicitActivationPolicy
SERVENT_RETENTION_POLICY_ID PortableServer:: 21 Yes
ServentRetentionPolicy
REQUEST_PROCESSING_POLICY_ID PortableServer:: 22 Yes
RequestProcessingPolicy
REBIND_POLICY_TYPE Messaging::RebindPolicy 23 CORBA Core Yes
- Asynchronous
SYNC_SCOPE_POLICY_TYPE Messaging:: 24 |\ . Yes
SyncScopePolicy ging
(chapter 22)
REQUEST_PRIORITY_POLICY_TYPE Messaging:: 25 Yes
RequestPriorityPolicy
REPLY_PRIORITY_POLICY_TYPE Messaging:: 26 Yes
ReplyPriorityPolicy
REQUEST_START_TIME_POLICY_TYPE Messaging:: 27 Yes
RequestStartTimePolicy
REQUEST_END_TIME_POLICY_TYPE Messaging:: 28 Yes
RequestEndTimePolicy
REPLY_START_TIME_POLICY_TYPE Messaging:: 29 Yes
ReplyStartTimePolicy
REPLY_END_TIME_POLICY_TYPE Messaging:: 30 Yes
ReplyEndTimePolicy
RELATIVE_REQ_TIMEOUT_POLICY_TYPE Messaging:: 31 Yes
RelativeRequestTimeoutPolicy
RELATIVE_RT_TIMEOUT_POLICY_TYPE Messaging:: 32 Yes
RelativeRoundtripTimeout
Policy
ROUTING_POLICY_TYPE Messaging::RoutingPolicy 33 Yes
MAX_HOPS_POLICY_TYPE Messaging::MaxHopsPolicy 34 Yes
QUEUE_ORDER_POLICY_TYPE Messaging:: 35 Yes
QueueOrderPolicy
FIREWALL_POLICY_TYPE Firewall::FirewallPolicy 36 Firewall Yes
specification
(orbos/98-05-04)
4-40 Common Object Request Broker Architecture (CORBA), v2.5 September 2001

Table4-2 Standard Policy Types
Policy Type Policy Interface Tag | Defined in Uses
Sect./Page create
policy
BIDIRECTIONAL_POLICY_TYPE BiDirPolicy:: 37 CORBA Core - Yes
BidirectionalPolicy General Inter-
ORB Protocol
(chapter 15)
SecDelegationDirectivePolicy SecurityLevel2:: 38 Security Service Yes
DelegtionDirectivePolicy specification
SecEstablishTrustPolicy SecurityLevel2:: 39 (formal/00-06-25) Yes
EstablishTrustPolicy
PRIORITY_MODEL_POLICY_TYPE RTCORBA:: 40 CORBA Core - Yes
PriorityModelPolicy Real-Time
THREADPOOL_POLICY_TYPE RTCORBA:: 41 | CORBA Yes
ThreadpoolPolicy (chapter 24)
SERVER_PROTOCOL_POLICY_TYPE RTCORBA:: 42 Yes
ServerProtocolPolicy
CLIENT_PROTOCOL_POLICY_TYPE RTCORBA:: 43 Yes
ClientProtocolPolicy
PRIVATE_CONNECTION_POLICY_TYPE RTCORBA:: 44 Yes
PrivateConnectionpolicy
PRIORITY_BANDED_CONNECTION_ RTCORBA:: 45 Yes
POLICY_TYPE PriorityBandedConnection
Policy
TransactionPolicyType CosTransactions:: 46 | Object Yes
TransactionPolicy Transaction
Service
specification
(formal/00-06-28)
IMMEDIATE_SUSPEND_POLICY_TYPE valuetype MessageRouting:: 50 CORBA Core- No
ImmediateSuspend Asynchronous
UNLIMITED_PING_POLICY_TYPE valuetype MessageRouting:: 51 | Messaging No
UnlimitedPing (chapter 22)
LIMITED_PING_POLICY_TYPE valuetype MessageRouting:: 52 No
LimitedPing
DECAY_POLICY_TYPE valuetype MessageRouting:: 53 No
DecayPolicy
RESUME_POLICY_TYPE valuetype MessageRouting:: 54 No
ResumePolicy
INVOCATION_POLICY_TYPE CosTransactions:: 55 | Object Yes
InvocationPolicy Transaction
OTS_POLICY_TYPE CosTransactions:: 5 | Service Yes
OTSPolicy (formal/00-06-28)
NON_TX_TARGET_POLICY_TYPE CosTransactions:: 57 Yes

NonTxTargetPolicy

September 2001

CORBA, v2.5: Policy Object

4-41

4

4.9 Management of Policies

4-42

4.9.1 Client Sde Policy Management

Client-side Policy management is performed through operations accessible in the
following contexts:

ORB-level Policies - A locality-constrained PolicyManager is accessible through
the ORB interface. This PolicyManager has operations through which a set of
Policies can be applied and the current overriding Policy settings can be obtained.
Policies applied at the ORB level override any system defaults. The ORB’s
PolicyManager is obtained through an invocation of
ORB::resolve_initial_references, specifying an identifier of
“ORBPolicyManager.”

Thread-level Policies - A standard PolicyCurrent is defined with operations for
the querying and applying of quality of service values specific to a thread. Policies
applied at the thread level override any system defaults or values set a the ORB
level. The locality-constrained PolicyCurrent is obtained through an invocation of
ORB::resolve_initial_references, specifying an identifier of “PolicyCurrent.”
When accessed from a newly spawned thread, the PolicyCurrent initially has no
overridden policies. The PolicyCurrent also has no overridden values when a POA
with ThreadPolicy of ORB_CONTROL_MODEL dispatches an invocation to a
servant. Each time an invocation is dispatched through a
SINGLE_THREAD_MODEL POA, the thread-level overrides are reset to have no
overridden vaues.

Object-level Palicies - Operations are defined on the base Object interface through
which a set of Policies can be applied. Policies applied at the Object level override
any system defaults or values set at the ORB or Thread levels. In addition, accessors
are defined for querying the current overriding Policies set at the Object level, and
for obtaining the current effective client-side Policy of a given PolicyType. The
effective client-side Policy is the value of a PolicyType that would be in effect if
a request were made. Thisis determined by checking for overrides at the Object
level, then at the Thread level, and finally at the ORB level. If no overriding policies
are set at any level, the system-dependent default value is returned. Portable
applications are expected to override the ORB-level policies since default values are
not specified in most cases.

4.9.2 Server Sde Policy Management

Server-side Policy management is handled by associating Policy objects with a POA.
Since al policy objects are derived from interface Policy, those that are applicable to
server-side behavior can be passed as arguments to POA::create_ POA. Any such
Policies that affect the behavior of requests (and therefore must be accessible to the
ORB at the client side) are exported within the Object references that the POA creates.
It is clearly noted in a POA Policy definition when that Policy is of interest to the

Common Object Request Broker Architecture (CORBA), v2.5 September 2001

4

September 2001

Client. For those policies that can be exported within an Object reference, the absence
of avalue for that policy type implies that the target supports any legal value of that
PolicyType.

Most Policies are appropriate only for management at either the Server or Client, but
not both. For those Policies that can be established at the time of Object reference
creation (through POA Policies) and overridden by the client (through overrides set at
the ORB, thread, or Object reference scopes), reconciliation is done on a per-Policy
basis. Such Policies are clearly noted in their definitions and describe the mechanism
of reconciliation between the Policies that are set by the POA and overridden in the
client. Furthermore, obtaining the effective Policy of some PolicyTypes requires
evaluating the effective Policy of other types of Policies. Such hierarchical Policy
definitions are also noted clearly when used.

At the Thread and ORB scopes, the common operations for querying the current set of
policies and for overriding these settings are encapsulated in the PolicyManager
interface.

4.9.3 Policy Management Interfaces

module CORBA {
interface PolicyManager {
PolicyList get_policy_overrides(in PolicyTypeSeq ts);

void set_policy_overrides(
in PolicyList policies,
in SetOverrideType set_add
) raises (InvalidPolicies);

b

interface PolicyCurrent : PolicyManager, Current {
¥
¥

4.9.3.1 interface PolicyManager

The PolicyManager operations are used for setting and accessing Policy overrides at
a particular scope. For example, an instance of the PolicyCurrent is used for
specifying Policy overrides that apply to invocations from that thread (unless they are
overridden at the Object scope as described in Section 4.9.1, “Client Side Policy
Management” on page 4-42).

get_policy_overrides

PolicyList get_policy_overrides(in PolicyTypeSeq ts);

CORBA, v2.5: Management of Policies 4-43

4-44

Parameter

ts A sequence of overridden policy typesidentifying the policies that
areto beretrieved.

Return Value

policy list Thelist of overridden policies of the types specified by ts.

Exceptions

none

Returns a PolicyList containing the overridden Polices for the requested
PolicyTypes. If the specified sequence is empty, all Policy overrides at this scope
will be returned. If none of the requested Policy Types are overridden at the target
PolicyManager, an empty sequence is returned. This accessor returns only those
Policy overrides that have been set at the specific scope corresponding to the target
PolicyManager (no evaluation is done with respect to overrides at other scopes).

set_policy_overrides

void set_policy_overrides(
in PolicyList policies,
in SetOverrideType set_add
) raises (InvalidPolicies);

Parameter

palicies A sequence of Policy objects that are to be associated with the
PolicyManager object. If the sequence containstwo or more
Policy objects with the same Policy Type value, the operation
raises the standard system exception BAD _PARAM with standard
minor code 30.

set_add Whether the association isin addition to (ADD_OVERRIDE) or as
areplacement of (SET_OVERRIDE) any existing overrides
already associated with the PolicyManager object. If thevaue of
this parameter is SET_OVERRIDE, the supplied policies
completely replace all existing overrides associated with the
PolicyManager object. If the value of this parameter is
ADD_OVERRIDE, the supplied policies are added to the
existing overrides associated with the PolicyManager object,
except that if a supplied Policy object has the same PolicyType
value as an existing override, the supplied Policy object replaces
the existing override.

Return Value
none.

Exceptions
InvalidPolicies A list of indices identifying the position in the input policies list

Common Object Request Broker Architecture (CORBA), v2.5 September 2001

that are occupied by invalid policies.

Modifies the current set of overrides with the requested list of Policy overrides. The
first parameter policies is a sequence of references to Policy objects. The second
parameter set_add of type SetOverrideType indicates whether these policies should
be added onto any other overrides that already exist (ADD_OVERRIDE) in the
PolicyManager, or they should be added to a clean PolicyManager free of any
other overrides (SET_OVERRIDE). Invoking set_policy_overrides with an empty
sequence of policies and a mode of SET_OVERRIDE removes all overrides from a
PolicyManager. Only certain policies that pertain to the invocation of an operation at
the client end can be overridden using this operation. Attempts to override any other
policy will result in the raising of the CORBA::NO_PERMISSION exception. If the
request would put the set of overriding policies for the target PolicyManager in an
inconsistent state, no policies are changed or added, and the exception InvalidPolicies
israised. There is no evaluation of compatibility with policies set within other
PolicyManagers.

4.9.3.2 interface PolicyCurrent

This specific PolicyManager provides access to policies overridden at the Thread
scope. A reference to athread's PolicyCurrent is obtained through an invocation of
CORBA::ORB::resolve_initial_references.

4.10 Management of Policy Domains

4.10.1 Basic Concepts

This section describes how policies, such as security policies, are associated with
objects that are managed by an ORB. The interfaces and operations that facilitate this
aspect of management is described in this section together with the section describing
Policy objects.

4.10.1.1 Policy Domain

A policy domain is a set of objects to which the policies associated with that domain
apply. These objects are the domain members. The policies represent the rules and
criteria that constrain activities of the objects that belong to the domain. On object
reference creation, the ORB implicitly associates the object reference with one or more
policy domains. Policy domains provide leverage for dealing with the problem of scale
in policy management by allowing application of policy at a domain granularity rather
than at an individual object instance granularity.

September 2001 CORBA, v2.5: Management of Policy Domains 4-45

4.10.1.2 Policy Domain Manager

A policy domain includes a unique object, one per policy domain, called the domain
manager, which has associated with it the policy objects for that domain. The domain
manager also records the membership of the domain and provides the means to add
and remove members. The domain manager is itself a member of a domain, possibly
the domain it manages.

4.10.1.3 Policy Objects

A policy object encapsulates a policy of a specific type. The policy encapsulated in a
policy object is associated with the domain by associating the policy object with the
domain manager of the policy domain.

There may be several policies associated with a domain, with a policy object for each.
There is a most one policy of each type associated with a policy domain. The policy
objects are thus shared between objects in the domain, rather than being associated
with individual objects. Consequently, if an object needs to have an individua policy,
then it must be a singleton member of a domain.

4.10.1.4 Object Membership of Policy Domains

Since the only way to access objects is through object references, associating object
references with policy domains, implicitly associates the domain policies with the
object associated with the object reference. Care should be taken by the application
that is creating object references using POA operations to ensure that object references
to the same object are not created by the server of that object with different domain
associations. Henceforth whenever the concept of “object membership” is used, it
actually means the membership of an object reference to the object in question.

An object can simultaneously be a member of more than one policy domain. In that
case the object is governed by all policies of its enclosing domains. The reference
model allows an object to be a member of multiple domains, which may overlap for
the same type of policy (for example, be subject to overlapping access policies). This
would require conflicts among policies defined by the multiple overlapping domainsto
be resolved. The specification does not include explicit support for such overlapping
domains and, therefore, the use of policy composition rules required to resolve
conflicts at policy enforcement time.

Policy domain managers and policy objects have two types of interfaces:

e The operational interfaces used when enforcing the policies. These are the
interfaces used by the ORB during an object invocation. Some policy objects may
also be used by applications, which enforce their own policies.

The caller asks for the policy of a particular type (e.g., the delegation policy), and
then uses the policy object returned to enforce the policy. The caller finding a policy
and then enforcing it does not see the domain manager objects and the domain
structure.

4-46 Common Object Request Broker Architecture (CORBA), v2.5 September 2001

4

September 2001

4.10.15

4.10.1.6

e The administrative interfaces used to set policies (e.g., specifying which events to
audit or who can access objects of a specified type in this domain). The
administrator sees and navigates the domain structure, so heisaware of the scope of
what he is administering.

Note — This specification does not include any explicit interfaces for managing the
policy domains themselves: creating and deleting them; moving objects between them;
changing the domain structure and adding, changing, and removing policies applied to
the domains.

Domains Association at Object Reference Creation

When a new object reference is created, the ORB implicitly associates the object
reference (and hence the object that it is associated with) with the following elements
forming its environment:

¢ One or more Policy Domains, defining al the policies to which the object
associated with the object reference is subject.

» The Technology Domains, characterizing the particular variants of mechanisms
(including security) available in the ORB.

The ORB will establish these associations when one of the object reference creation
operations of the POA is called. Some or all of these associations may subsequently be
explicitly referenced and modified by administrative or application activity, which
might be specifically security-related but could also occur as a side-effect of some
other activity, such as moving an object to another host machine.

In some cases, when a new object reference iscreated, it needs to be associated with a
new domain. Within a given domain a construction policy can be associated with a
specific object type thus causing a new domain; that is, a domain manager object to be
created whenever an object reference of that type is created and the newly created
object reference associated with the new domain manager. This construction policy is
enforced at the same time as the domain membership; that is, by the POA when it
creates an object reference.

Implementer’s View of Object Creation

For policy domains, the construction policy of the application or factory creating the
object proceeds as follows. The application (which may be a generic factory) calls one
of the object reference creation operations of the POA to create the new object
reference. The ORB obtains the construction policy associated with the creating object,
or the default domain absent a creating object.

By default, the new object reference that is created is made a member of the domain to
which the parent belongs. Non-object applications on the client side are associated
with a default, per-ORB instance policy domain by the ORB.

CORBA, v2.5: Management of Policy Domains 4-47

4-48

Each domain manager has a construction policy associated with it, which controls
whether, in addition to creating the specified new object reference, a new domain
manager is created with it. This object provides a single operation
make_domain_manager which can be invoked with the constr_policy parameter
set to TRUE to indicate to the ORB that new object references of the specified type are
to be associated with their own separate domains. Once such a construction policy is
set, it can be reversed by invoking make_domain_manager again with the
constr_policy parameter set to FALSE.

When creating an object reference of the type specified in the
make_domain_manager call with constr_policy set to TRUE, the ORB must aso
create a new domain for the newly created object reference. If anew domain is needed,
the ORB creates both the requested object reference and a domain manager object. A
reference to this domain manager can be found by calling get_domain_managers
on the newly created object reference.

While the management interface to the construction policy object is standardized, the
interface from the ORB to the policy object is assumed to be a private one, which may
be optimized for different implementations.

If anew domain is created, the policies initially applicable to it are the policies of the
enclosing domain. The ORB will dways arrange to provide a default enclosing domain
with default ORB policies associated with it, in those cases where there would be no
such domain as in the case of a non-object client invoking object creation operations.

The calling application, or an administrative application later, can change the domains
to which this object belongs, using the domain management interfaces, which will be
defined in the future.

Since the ORB has control only over domain associations with object references, it is
the responsibility of the creator of new objects to ensure that the object references that
are created to the new object are associated meaningfully with domains.

4.10.2 Domain Management Operations

This section defines the interfaces and operations needed to find domain managers and
find the policies associated with these. However, it does not include operations to
manage domain membership, structure of domains, or to manage which policies are
associated with domains.

This section also includes the interface to the construction policy object, as that is
relevant to domains. The basic definitions of the interfaces and operations related to
these are part of the CORBA module, since other definitions in the CORBA module
depend on these.

module CORBA {
interface DomainManager {
Policy get_domain_policy (
in PolicyType policy_type
);
¥

Common Object Request Broker Architecture (CORBA), v2.5 September 2001

const PolicyType SecConstruction = 11;

interface ConstructionPolicy: Policy{
void make_domain_manager(
in CORBA::InterfaceDef object_type,
in boolean constr_policy

b

typedef sequence <DomainManager> DomainManagersList;

4.10.2.1 Domain Manager

The domain manager provides mechanisms for:
» Establishing and navigating relationships to superior and subordinate domains.
e Creating and accessing policies.

There should be no unnecessary constraints on the ordering of these activities, for
example, it must be possible to add new policies to a domain with a pre-existing
membership. In this case, some means of determining the members that do not
conform to a policy that may be imposed is required. It should be noted that interfaces
for adding new policies to domains or for changing domain memberships have not
currently been standardized.

All domain managers provide the get_domain_policy operation. By virtue of being
an object, the Domain Managers also have the get_policy and
get_domain_managers operations, which is available on al objects (see Section
4.3.7, “Getting Policy Associated with the Object” on page 4-17 and Section 4.3.10,
“Getting the Domain M anagers Associated with the Object” on page 4-20).

CORBA::DomainManager::get_domain_policy
This returns the policy of the specified type for objects in this domain.

Policy get_domain_policy (
in PolicyType policy_type
);

Parameter (s)

policy_type - Thetype of policy for objects in the domain that the application wants
to administer. For security, the possible policy types are described in the Security
Service specification, Security Policies Introduction section.

Return Value
A reference to the policy object for the specified type of policy in this domain.

September 2001 CORBA, v2.5: Management of Policy Domains 4-49

Exception(s)

CORBA::INV_POLICY - raised when the value of policy typeis not valid either
because the specified type is not supported by this ORB or because a policy object of that
type is not associated with this Object.

4.10.2.2 Construction Policy

The construction policy object allows callers to specify that when instances of a
particular object reference are created, they should be automatically assigned
membership in a newly created domain at creation time.

CORBA::ConstructionPolicy::make_domain_manager

This operation enables the invoker to set the construction policy that is to be in effect
in the domain with which this ConstructionPolicy object is associated. Construction
Policy can either be set so that when an object reference of the type specified by the
input parameter is created, a new domain manager will be created and the newly
created object reference will respond to get_domain_managers by returning a
reference to this domain manager. Alternatively the policy can be set to associate the
newly created object reference with the domain associated with the creator. This policy
is implemented by the ORB during execution of any one of the object reference
creation operations of the POA, and results in the construction of the application-
specified object reference and a Domain Manager object if so dictated by the policy in
effect at the time of the creation of the object reference.

void make_domain_manager (
in InterfaceDef object_type,
in boolean constr_policy

);

Parameter(s)

object_type - The type of the object references for which Domain Managers will be
created. If thisis nil, the policy applies to al object references in the domain.

constr_policy - If TRUE the construction policy is set to create a new domain
manager associated with the newly created object reference of this type in this domain.
If FALSE construction policy is set to associate the newly created object references
with the domain of the creator or a default domain as described above.

4.11 Exceptions

The terms “system” and “user” exception are defined in this section. Further the terms
“standard system exception” and “standard user exception” are defined, and then alist
of “standard system exceptions’ is provided.

4-50 Common Object Request Broker Architecture (CORBA), v2.5 September 2001

4.11.1 Definition of Terms

In general the following terms should be used consistently in all OMG standards
documents to refer to exceptions:

Standard Exception - Any exception that is defined in an OMG Standard.

System Exception - Clients must be prepared to handle these exceptions even though
they are not declared in araises clause. These exceptions cannot appear in a raises
clause. These have the structure defined in Section 4.11.2, “System Exceptions” on
page 4-51 and they are of type SYSTEM_EXCEPTION (see PIDL below).

Standard System Exception - A System Exception that is part of the CORBA
Standard as enumerated in Section 4.11.3, “ Standard System Exception Definitions” on
page 4-53.

Non-Standard System Exceptions - System exceptions that are proprietary to a
particular vendor/implementation.

User Exception - Exceptions that can be raised only by those operations that explicitly
declare them in the raises clause of their signature. These exceptions are of type
USER_EXCEPTION (see IDL below).

Standard User Exception - Any User Exception that is defined in a published OMG
standard (e.g., WrongTransaction). These are documented in the documentation of
individual interfaces.

Non-standard User Exception - User exceptions that are not defined in any published
OMG specification.

4.11.2 System Exceptions

In order to bound the complexity in handling the standard exceptions, the set of
standard exceptions should be kept to a tractable size. This constraint forces the
definition of equivalence classes of exceptions rather than enumerating many similar
exceptions. For example, an operation invocation can fail at many different points due
to the inability to allocate dynamic memory. Rather than enumerate several different
exceptions corresponding to the different ways that memory alocation failure causes
the exception (during marshaling, unmarshaling, in the client, in the object
implementation, allocating network packets), a single exception corresponding to
dynamic memory allocation failure is defined.

September 2001 CORBA, v2.5: Exceptions 4-51

module CORBA {
const unsigned long OMGVMCID = 0x4f4d0000;

#define ex_body {unsigned long minor; completion_status completed;}

enum completion_status {
COMPLETED_YES,
COMPLETED_NO,
COMPLETED_MAYBE

b

enum exception_type {
NO_EXCEPTION,
USER_EXCEPTION,
SYSTEM_EXCEPTION
¥
¥

Each system exception includes a minor code to designate the subcategory of the
exception.

Minor exception codes are of type unsigned long and consist of a 20-bit “Vendor
Minor Codeset ID” (VMCID), which occupies the high order 20 bits, and the minor
code that occupies the low order 12 bits.

The standard minor codes for the standard system exceptions are prefaced by the
VMCID assigned to OMG, defined as the unsigned long constant
CORBA::OMGVMCID, which has the VMCID allocated to OMG occupying the high
order 20 bits. The minor exception codes associated with the standard exceptions that
are found in Table 4-3 on page 4-60 are or-ed with OMGVMCID to get the minor code
value that is returned in the ex_body structure (see Section 4.11.3, “ Standard System
Exception Definitions’” on page 4-53 and Section 4.11.4, “Standard Minor Exception
Codes” on page 4-60).

Within a vendor assigned space, the assignment of values to minor codes is left to the
vendor. Vendors may request allocation of VMCIDs by sending email to tag-
request@omg.org.

The VMCID 0 and Oxfffff are reserved for experimental use. The VMCID OMGVMCID
(Section 4.11.3, “ Standard System Exception Definitions’ on page 4-53) and 1 through
Oxf are reserved for OMG use.

Each standard system exception also includes a completion_status code that takes
one of the values { COMPLETED_YES, COMPLETED_NO,
COMPLETED_MAYBE}.

4-52 Common Object Request Broker Architecture (CORBA), v2.5 September 2001

These have the following meanings:

COMPLETED_YES The object implementation has completed processing
prior to the exception being raised.
COMPLETED_NO The object implementation was never initiated prior

to the exception being raised.

COMPLETED_MAYBE | The status of implementation completion is
indeterminate.

Client applications must be prepared to handle system exceptions other than the
standard system exception defined below in Section 4.11.3, “ Standard System
Exception Definitions” on page 4-53, both because future versions of this specification
may define additional standard system exceptions, and because ORB implementations
may raise non-standard system exceptions.

Vendors may define non-standard system exceptions, but these exceptions are
discouraged because they are non-portable. A non-standard system exception, when
passed to an ORB that does not recognize it, shall be presented by that ORB as an
UNKNOWN standard system exception. The minor code and completion status from
the unrecognized exception shall be preserved in the UNKNOWN exception.

Non-standard system exceptions shall have the same structure as of standard standard
system exceptions as specified in section Section 4.11.3, “ Standard System Exception
Definitions” on page 4-53; that is, they have the same ex_body. They also shall follow
the same language mappings as standard system exceptions. Although they are PIDL,
vendors should ensure that their names do not clash with any other names following
the normal naming and scoping rules as they apply to regular IDL exceptions.

4.11.3 Sandard System Exception Definitions

The standard system exceptions are defined in this section.
module CORBA { /I PIDL

exception UNKNOWN ex_body;

/I the unknown exception
exception BAD_PARAM ex_body;

/l an invalid parameter was passed
exception NO_MEMORY ex_body;

/l dynamic memory allocation failure
exception IMP_LIMIT ex_body;

/I violated implementation limit
exception COMM_FAILURE ex_body;

/l communication failure
exception INV_OBJREF ex_body;

/I invalid object reference
exception NO_PERMISSION ex_body;

/ no permission for attempted op.

September 2001 CORBA, v2.5: Exceptions 4-53

exception INTERNAL ex_body;

/l ORB internal error
exception MARSHAL ex_body;

/I error marshaling param/result
exception INITIALIZE ex_body;

/l ORB initialization failure
exception NO_IMPLEMENT ex_body;

/I operation implementation unavailable
exception BAD_TYPECODE ex_body;

/I bad typecode
exception BAD_OPERATION ex_body;

/l invalid operation
exception NO_RESOURCES ex_body;

/I insufficient resources for req.
exception NO_RESPONSE ex_body;

/I response to req. not yet available
exception PERSIST_STORE ex_body;

Il persistent storage failure
exception BAD_INV_ORDER ex_body;

/l routine invocations out of order
exception TRANSIENT ex_body;

/I transient failure - reissue request
exception FREE_MEM ex_body;

/I cannot free memory
exception INV_IDENT ex_body;

/I invalid identifier syntax
exception INV_FLAG ex_body;

/I invalid flag was specified
exception INTF_REPOS ex_body;

/I error accessing interface repository
exception BAD_CONTEXT ex_body;

/I error processing context object
exception OBJ_ADAPTER ex_body;

/I failure detected by object adapter
exception DATA_CONVERSION ex_body;

/I data conversion error
exception OBJECT_NOT_EXIST ex_body;

/ non-existent object, delete reference
exception TRANSACTION_REQUIRED ex_body;

/l transaction required
exception TRANSACTION_ROLLEDBACK x_body;

/I transaction rolled back
exception INVALID_TRANSACTION ex_body;

/l invalid transaction
exception INV_POLICY ex_body;

/I invalid policy
exception CODESET_INCOMPATIBLE ex_body

/l incompatible code set
exception REBIND ex_body;
/I rebind needed

exception TIMEOUT ex_body;

4-54 Common Object Request Broker Architecture (CORBA), v2.5 September 2001

September 2001

41131

4.11.3.2

4.11.3.3

4.11.34

4.11.35

/I operation timed out
exception TRANSACTION_UNAVAILABLE ex_body;

/I no transaction
exception TRANSACTION_MODE ex_body;

/l invalid transaction mode
exception BAD_QOS ex_body;

/I bad quality of service

b

UNKNOWN

This exception is raised if an operation implementation throws a non-CORBA
exception (such as an exception specific to the implementation’s programming
language), or if an operation raises a user exception that does not appear in the
operation’s raises expression. UNKNOWN is aso raised if the server returns a system
exception that is unknown to the client. (This can happen if the server uses a later
version of CORBA than the client and new system exceptions have been added to the
later version.)

BAD_PARAM

A parameter passed to a call is out of range or otherwise considered illegal. An ORB
may raise this exception if null values or null pointers are passed to an operation (for
language mappings where the concept of null pointers or null values applies).
BAD_PARAM can also be raised asaresult of client generating requests with incorrect
parameters using the DII.

NO_MEMORY

The ORB run time has run out of memory.

IMP_LIMIT

This exception indicates that an implementation limit was exceeded in the ORB run
time. For example, an ORB may reach the maximum number of references it can hold
simultaneously in an address space, the size of a parameter may have exceeded the
allowed maximum, or an ORB may impose a maximum on the number of clients or
servers that can run simultaneously.

COMM_FAILURE

This exception is raised if communication is lost while an operation is in progress,
after the request was sent by the client, but before the reply from the server has been
returned to the client.

CORBA, v2.5: Exceptions 4-55

4-56

4.11.3.6

4.11.3.7

4.11.3.8

4.11.3.9

4.11.3.10

4.11.3.11

4.11.3.12

INV_OBJREF

This exception indicates that an object reference is internally malformed. For example,
the repository ID may have incorrect syntax or the addressing information may be
invalid.

An ORB may choose to detect calls via nil references (but is not obliged to detect
them). INV_OBJREF is used to indicate this.

If the client invokes an operation that results in an attempt by the client ORB to
marshal wchar or wstring data for an in parameter (or to unmarshal wchar or
wstring data for an infout parameter, out parameter, or the return value), and the
associated object reference does not contain a codeset component, the INV_OBJREF
standard system exception is raised.

NO_PERMISSION

An invocation failed because the caller has insufficient privileges.

INTERNAL

This exception indicates an internal failure in an ORB, for example, if an ORB has
detected corruption of its internal data structures.

MARSHAL

A request or reply from the network is structurally invalid. This error typically
indicates a bug in either the client-side or server-side run time. For example, if areply
from the server indicates that the message contains 1000 bytes, but the actual message
is shorter or longer than 1000 bytes, the ORB raises this exception. MARSHAL can
also be caused by using the DIl or DSI incorrectly, for example, if the type of the
actual parameters sent does not agree with IDL signature of an operation.

INITIALIZE

An ORB has encountered a failure during its initialization, such as failure to acquire
networking resources or detecting a configuration error.

NO_IMPLEMENT

This exception indicates that even though the operation that was invoked exists (it has
an IDL definition), no implementation for that operation exists. NO_IMPLEMENT
can, for example, be raised by an ORB if a client asks for an object’s type definition
from the interface repository, but no interface repository is provided by the ORB.

BAD_TYPECODE

The ORB has encountered a malformed type code (for example, a type code with an
invalid TCKind value).

Common Object Request Broker Architecture (CORBA), v2.5 September 2001

September 2001

4.11.3.13

4.11.3.14

4.11.3.15

4.11.3.16

4.11.3.17

4.11.3.18

4.11.3.19

4.11.3.20

4.11.3.21

BAD_OPERATION

This indicates that an object reference denotes an existing object, but that the object
does not support the operation that was invoked.

NO_RESOURCES

The ORB has encountered some general resource limitation. For example, the run time
may have reached the maximum permissible number of open connections.

NO_RESPONSE

This exception is raised if a client attempts to retrieve the result of a deferred
synchronous call, but the response for the request is not yet available.

PERSIST_STORE

This exception indicates a persistent storage failure, for example, failure to establish a
database connection or corruption of a database.

BAD_INV_ORDER

This exception indicates that the caller has invoked operations in the wrong order. For
example, it can be raised by an ORB if an application makes an ORB-related call
without having correctly initialized the ORB first.

TRANSENT

TRANSIENT indicates that the ORB attempted to reach an object and failed. It is not
an indication that an object does not exist. Instead, it smply means that no further
determination of an object's status was possible because it could not be reached. This
exception is raised if an attempt to establish a connection fails, for example, because
the server or the implementation repository is down.

FREE_MEM

The ORB failed in an attempt to free dynamic memory, for example because of heap
corruption or memory segments being locked.

INV_IDENT

This exception indicates that an IDL identifier is syntactically invalid. It may be raised
if, for example, an identifier passed to the interface repository does not conformto IDL
identifier syntax, or if an illegal operation name is used with the DII.

INV_FLAG

An invalid flag was passed to an operation (for example, when creating a DIl request).

CORBA, v2.5: Exceptions 4-57

4-58

4.11.3.22

4.11.3.23

4.11.3.24

4.11.3.25

4.11.3.26

4.11.3.27

4.11.3.28

INTF_REPOS

An ORB raises this exception if it cannot reach the interface repository, or some other
failure relating to the interface repository is detected.

BAD_CONTEXT

An operation may raise this exception if a client invokes the operation but the passed
context does not contain the context values required by the operation.

OBJ_ADAPTER

This exception typically indicates an administrative mismatch. For example, a server
may have made an attempt to register itself with an implementation repository under a
name that is already in use, or is unknown to the repository. OBJ_ADAPTER is also
raised by the POA to indicate problems with application-supplied servant managers.

DATA_CONVERSON

This exception is raised if an ORB cannot convert the representation of data as
marshaled into its native representation or vice-versa. For example,

DATA _CONVERSION can be raised if wide character codeset conversion fails, or if
an ORB cannot convert floating point values between different representations.

OBJECT _NOT_EXIST

The OBJECT_NOT_EXIST exception is raised whenever an invocation on a deleted
object was performed. It is an authoritative “hard” fault report. Anyone receiving it is
allowed (even expected) to delete all copies of this object reference and to perform
other appropriate “final recovery” style procedures.

Bridges forward this exception to clients, also destroying any records they may hold
(for example, proxy objects used in reference translation). The clients could in turn
purge any of their own data structures.

TRANSACTION_REQUIRED

The TRANSACTION_REQUIRED exception indicates that the request carried a null
transaction context, but an active transaction is required.

TRANSACTION_ROLLEDBACK

The TRANSACTION_ROLLEDBACK exception indicates that the transaction
associated with the request has already been rolled back or marked to roll back. Thus,
the requested operation either could not be performed or was not performed because
further computation on behalf of the transaction would be fruitless.

Common Object Request Broker Architecture (CORBA), v2.5 September 2001

September 2001

4.11.3.29

4.11.3.30

4.11.3.31

4.11.3.32

4.11.3.33

4.11.3.34

4.11.3.35

INVALID_TRANSACTION

The INVALID_TRANSACTION indicates that the request carried an invalid transaction
context. For example, this exception could be raised if an error occurred when trying to
register a resource.

INV_POLICY

INV_POLICY is raised when an invocation cannot be made due to an incompatibility
between Policy overrides that apply to the particular invocation.

CODESET_INCOMPATIBLE

This exception is raised whenever meaningful communication is not possible between
client and server native code sets. See Section 13.7.2.6, “Code Set Negotiation,” on
page 13-34.

REBIND

REBIND is raised when the current effective RebindPolicy, as described in Section
22.2.1.2, “interface RebindPolicy” on page 22-5, has a value of NO_REBIND or
NO_RECONNECT and an invocation on a bound object reference resultsin a
LocateReply message with status OBJECT_FORWARD or a Reply message with
status LOCATION_FORWARD. This exception is also raised if the current effective
RebindPolicy has a value of NO_RECONNECT and a connection must be re-
opened. Theinvocation can be retried once the effective RebindPolicy is changed to
TRANSPARENT or binding is re-established through an invocation of
CORBA::Object::validate_connection.

TIMEOUT

TIMEOUT is raised when no delivery has been made and the specified time-to-live
period has been exceeded. It is a standard system exception because time-to-live QoS
can be applied to any invocation.

TRANSACTION_UNAVAILABLE

TRANSACTION_UNAVAILABLE exception is raised by the ORB when it cannot
process a transaction service context because its connection to the Transaction Service
has been abnormally terminated.

TRANSACTION_MODE

TRANSACTION_MODE exception is raised by the ORB when it detects a mismatch
between the TransactionPolicy in the IOR and the current transaction mode.

CORBA, v2.5: Exceptions 4-59

4-60

4.11.3.36 BAD_QOS

The BAD_QOS exception is raised whenever an object cannot support the quality of
service required by an invocation parameter that has a quality of service semantics

associated with it.

4.11.4 Standard Minor Exception Codes

Table 4-3 specifies standard minor exception codes that have been assigned for the
standard system exceptions. The actual value that is to be found in the minor field of
the ex_body structure is obtained by or-ing the values in this table with the
OMGVMCID constant. For example “Missing local value implementation” for the
exception NO_IMPLEMENT would be denoted by the minor value 0x4f4d0001.

Table 4-3 Minor Exception Codes

SYSTEM EXCEPTION MINOR | EXPLANATION
CODE
UNKNOWN 1 Unlisted user exception received by client
2 Non-standard System Exception not supported.
BAD_PARAM 1 Failure to register, unregister, or lookup value factory.
2 RID already defined in IFR.
3 Name already used in the context in IFR.
4 Target is not a valid container.
5 Name clash in inherited context.
6 Incorrect type for abstract interface.
7 string_to_object conversion failed due to bad scheme name.
8 string_to_object conversion failed due to bad address.
9 string_to_object conversion failed due to bad bad schema
specific part.
10 string_to_object conversion failed due to non specific
reason.
11 Attempt to derive abstract interface from non-abstract base
interface in the Interface Repository.
BAD_PARAM 12 Attempt to let a ValueDef support more than one non-abstract
interface in the Interface Repository.
13 Attempt to use an incomplete TypeCode as a parameter.
14 Invalid object id passed to POA::create_reference_by id.
15 Bad name argument in TypeCode operation.
16 Bad Repositoryld argument in TypeCode operation.
17 Invalid member name in TypeCode operation.
18 Duplicate label value in create_union_tc.

Common Object Request Broker Architecture (CORBA), v2.5 September 2001

Table 4-3 Minor Exception Codes

SYSTEM EXCEPTION MINOR EXPLANATION
CODE
19 Incompatible TypeCode of label and discriminator in
create_union_tc.
20 Supplied discriminator type illegitimate in create_union_tc.
21 Any passed to ServerRequest::set_exception does not
contain an exception.
22 Unlisted user exception passed to
ServerRequest::set_exception.
23 wchar transmission code set not in service context.
24 Service context is not in OMG-defined range.
25 Enum value out of range.
26 Invalid service context Id in portable interceptor
27 Attempt to call register_initial_reference with a null
Object
28 Invalid component Id in portable interceptor
29 Invalid profile Id in portable interceptor
30 Two or more Policy objects with the same Policy Type value
supplied to Object::set_policy_overrides or
PolicyManager::set_policy_overrides.
IMP_LIMIT Unable to use any profile in IOR.
INV_OBJREF wchar Code Set support not specified.
Codeset component required for type using wchar or
wstring data
MARSHAL Unable to locate value factory.
ServerRequest::set_result called before
ServerRequest::ctx when the operation IDL contains a
context clause.
3 NVList passed to ServerRequest::arguments does not
describe all parameters passed by client.
Attempt to marshal Local object.
MARSHAL wchar or wstring data erroneously sent by client over GIOP
1.0 connection
6 wchar or wstring data erroneously returned by server over

GIOP 1.0 connection

BAD_TYPECODE

Attempt to marshal incomplete TypeCode.

Member type code illegitimate in TypeCode operation.

September 2001 CORBA, v2.5: Exceptions

4-61

4-62

Table 4-3 Minor Exception Codes

SYSTEM EXCEPTION

NO_IMPLEMENT

MINOR
CODE

EXPLANATION

1

Missing loca value implementation.

Incompatible value implementation version.

Unable to use any profile in IOR.

Attempt to use DIl on Local object.

NO_RESOURCE

Portable Interceptor operation not supported in this binding.

BAD_INV_ORDER

Rl R BAAODN

Dependency exists in IFR preventing destruction of this
object.

Attempt to destroy indestructible objects in IFR.

Operation would deadlock.

ORB has shutdown

al bl wN

Attempt to invoke send or invoke operation of the same
Request object more than once.

Attempt to set a servant manager after one has already been
set.

ServerRequest::arguments caled more than once or after
acall to ServerRequest:: set_exception.

ServerRequest::ctx caled more than once or before
ServerRequest::arguments or after
ServerRequest::ctx, ServerRequest::set_result or
ServerRequest::set_exception.

ServerRequest::set_result called more than once or before
ServerRequest::arguments or after
ServerRequest::set_result or
ServerRequest::set_exception.

10

Attempt to send a DIl request after it was sent
previously.

11

Attempt to poll a DIl request or to retrieve its result before the
request was sent.

12

Attempt to poll a DIl request or to retrieve its result after the
result was retrieved previously.

13

Attempt to poll a synchronous DIl request or to retrieve
results from a synchronous DIl request.

BAD_INV_ORDER

14

Invalid portable interceptor call

15

Service context add failed in portable interceptor because a
service context with the given id aready exists.

16

Registration of PolicyFactory failed because a factory
already exists for the given PolicyType.

17

POA cannot create POAs while undergoing destruction.

Common Object Request Broker Architecture (CORBA), v2.5 September 2001

Table 4-3 Minor Exception Codes

SYSTEM EXCEPTION

MINOR
CODE

EXPLANATION

TRANSIENT

1

Request discarded because of resource exhaustion in POA, or
because POA isin discarding state.

No usable profile in IOR

Request cancelled.

POA destroyed

OBJ_ADAPTER

[l E S BV V]

System exception in
AdapterActivator::unknown_adapter.

Servant not found [ServantManager].

No default servant available [POA policy].

No servant manager available [POA Policy].

Violation of POA policy by ServantActivator::incarnate.

DATA_CONVERSION

Character does not map to negotiated transmission code set.

OBJECT_NOT_EXIST

Pl OO OODN

Attempt to pass an unactivated (unregistered) value as an
object reference.

N

POAManager::incarnate failed to create POA.

INV_POLICY

Unable to reconcile IOR specified policy with effective policy
override.

Invalid Policy Type

No PolicyFactory has been registered for the given
PolicyType.

September 2001 CORBA, v2.5: Exceptions

4-63

4-64 Common Object Request Broker Architecture (CORBA), v2.5 September 2001

5.1 Overview

September 2001

Val ue Type Semantics 5

Contents

This chapter contains the following sections.

Section Title Page
“Overview” 5-1
“Architecture” 5-2
“Standard Value Box Definitions” 5-9
“Language Mappings’ 5-9
“Custom Marshaling” 5-10

Objects, more specifically, interface types that objects support, are defined by an IDL
interface, allowing arbitrary implementations. There is great value, which is described
in great detail elsewhere, in having a distributed object system that places amost no
constraints on implementations.

However there are many occasions in which it is desirable to be able to pass an object
by vaue, rather than by reference. This may be particularly useful when an object’s
primary “purpose” is to encapsulate data, or an application explicitly wishes to make a
“copy” of an object.

The semantics of passing an object by value are similar to that of standard
programming languages. The receiving side of a parameter passed by value receives a
description of the “state” of the object. It then instantiates a new instance with that

Common Object Request Broker Architecture (CORBA), v2.5 5-1

5-2

5.2 Architecture

state but having a separate identity from that of the sending side. Once the parameter
passing operation is complete, no relationship is assumed to exist between the two
instances.

Because it is necessary for the receiving side to instantiate an instance, it must
necessarily know something about the object’s state and implementation.

Value types provide semantics that bridge between CORBA structs and CORBA
interfaces:

e They support description of complex state; that is, arbitrary graphs, with recursion
and cycles.

e Their instances are always local to the context in which they are used (because they
are always copied when passed as a parameter to a remote call).

* They support both public and private (to the implementation) data members.

e They can be used to specify the state of an object implementation; that is, they can
support an interface.

e They support single inheritance (of valuetype) and can support an interface.

e They may be also be abstract.

The basic notion is relatively simple. A value type is, in some sense, half way
between a“regular” IDL interface type and a struct. The use of a value type is asignal
from the designer that some additional properties (state) and implementation details be
specified beyond that of an interface type. Specification of this information puts some
additional constraints on the implementation choices beyond that of interface types.
This is reflected in both the semantics specified herein, and in the language mappings.

An essential property of value types is that their implementations are always local.
That is, the explicit use of value type in a concrete programming language is always
guaranteed to use alocal implementation, and will not require aremote cal. They have
no identity (their value is their identity) and they are not “registered” with the ORB.

There are two kinds of value types, concrete (or stateful) vaue types, and abstract
(stateless) ones. As explained below the essential characteristics of both are the same.
The differences between them result from the differences in the way they are mapped
in the language mappings. In this specification the semantics of value types apply to
both kinds, unless specifically stated otherwise.

Concrete (stateful) values add to the expressive power of (IDL) structs by supporting:
e single derivation (from other value types)
e supports a single non-abstract interface

» arbitrary recursive value type definitions, with sharing semantics providing the
ability to define lists, trees, lattices and more generally arbitrary graphs using value

types.

Common Object Request Broker Architecture (CORBA), v2.5 September 2001

September 2001

e null value semantics

When an instance of such atype is passed as a parameter, the sending context marshals
the state (data) and passes it to the receiving context. The receiving context instantiates
a new instance using the information in the GIOP request and unmarshals the state. It
is assumed that the receiving context has available to it an implementation that is
consistent with the sender’s; that is, only needs the state information, or that it can
somehow download a usable implementation. Provision is made in the on-the-wire
format to support the carrying of an optional call back object (CodeBase) to the
sending context, which enables such downloading when it is appropriate.

It should be noted that it is possible to define a concrete value type with an empty state
as a degenerate case.

5.2.1 Abstract Values

Value types may also be abstract. They are called abstract because an abstract value
type may not be instantiated. Only concrete types derived from them may be actualy
instantiated and implemented. Their implementation, of course, is still local. However,
because no state information may be specified (only local operations are allowed),
abstract value types are not subject to the single inheritance restrictions placed upon
concrete value types. Essentially they are a bundle of operation signatures with a
purely local implementation. This distinction is made clear in the language mappings
for abstract values.

Note that a concrete value type with an empty state is not an abstract value type. They
are considered to be stateful, may be instantiated, marshaled, and passed as actual
parameters. Consider them to be a degenerate case of stateful values.

5.2.2 Operations

Operations defined on a value type specify signatures whose implementation can only
be local. Because these operations are local, they must be directly implemented by a
body of code in the language mapping (no proxy or indirection is involved).

The language mappings of such operations require that instances of value types passed
into and returned by such local methods are passed by reference (programming
language reference semantics, not CORBA object reference semantics) and that a copy
isnot made. Note, such a (local) invocation is not a CORBA invocation. Hence it is not
mediated by the ORB, although the API to be used is specified in the language

mapping.

The (copy) semantics for instances of value type are only guaranteed when instances of
these vaue types are passed as a parameter to an operation defined on a CORBA
interface, and hence mediated by the ORB. If an instance of a value typeis passed as a
parameter to a method of another value type in an invocation, then this call is a
“normal” programming language call. In this case both of the instances are local
programming language constructs. No CORBA style copy semantics are used and
programming language reference semantics apply.

CORBA, v2.5: Architecture 5-3

5-4

Operations on the value type are supported in order to guarantee the portability of the
client code for these value types. They have no representation on the wire and hence no
impact on interoperability.

5.2.3 Value Type vs. Interfaces

By default value types are not CORBA Objects. In particular instances of value types
do not inherit from CORBA::Object and do not support normal object reference
semantics. However it is always possible to explicitly declare that a given value type
supports an interface type. In this case instances of the type may support CORBA
object reference semantics (if they are registered with the ORB using an object
adapter).

5.2.4 Parameter Passing

5241

5242

5243

This section describes semantics when a value instance is passed as parameter in a
CORBA invocation. It does not deal with the case of calling another non-CORBA; that
is, local programming method, which happens to have a parameter of the same type.

Value vs. Reference Semantics

Determination of whether a parameter is to be passed by value or reference is made by
examining the parameter’sformal type; that is, the signature of the operation it is being
passed to. If it is a value type, then it is passed by value. If it is an ordinary interface,
then it is passed by reference (the case today for al CORBA objects). Thisruleis
simple and consistent with the handling of the same situation in recursive state
definitions or in structs.

In the case of abstract interfaces, the determination is made at runtime. See
Section 6.2, “Semantics of Abstract Interfaces,” on page 6-1 for a description of the
rules.

Sharing Semantics

In order to be expressive enough to describe arbitrary graphs, lattice, trees etc., value
types support sharing and null semantics. Instances of a value type can be shared by
others across or within other instances. They can also be null. Thisisunlike other IDL
data types such as structs, unions, and sequences that can never be shared. The sharing
of values within and between the parameters to an operation is preserved across an
invocation; that is, the graph that is reconstructed in the receiving context is structurally
isomorphic to the sending context’s.

|dentity Semantics

When an instance of the value type is passed as a parameter, an independent copy of
the instance is instantiated in the receiving context. That copy is a separate independent
entity and there is no explicit or implicit sharing of state.

Common Object Request Broker Architecture (CORBA), v2.5 September 2001

September 2001

5244

Any parameter type

When an instance of a value type is passed to an any, as with all cases of passing
instances to an anyj, it is the responsibility of the implementer to insert and extract the
value according to the language mapping specification.

5.2.5 Substitutability Issues

5251

5252

5253

The substitutability requirements for CORBA require the definition of what happens
when an instance of a derived value type is passed as a parameter that is declared to be
a base value type or an instance of avalue type that supports an interface is passed as
a parameter that is declared as the interface type.

There are three cases to consider:
1. The parameter type is a regular interface,
2. the parameter type is an abstract interface, and

3. the parameter type is a value type.

Valueinstance-> Interfacetype

A value type that supports a regular interface is not a subtype of that interface, and
hence cannot be substituted for that interface in aninvocation parameter. In this case an
object reference corresponding to the value type instance that has been registered with
the ORB must be obtained and this object reference must be used as the actual
parameter. Different language mappings provide different facilities to aid in such
parameter passing.

Value Instance -> Abstract interfacetype

A value type that supports an abstract interface is a subtype of that interface, and can
be substituted for that interface in an invocation parameter.

Valueinstance-> Valuetype

In this case the receiving context is expecting to receive a value type. If the receiving
context currently has the appropriate implementation class, then there is no problem.

If the receiving context does not currently hold an implementation with which to
reconstruct the original type, then the following algorithm is used to find such an
implementation:

1. Load - Attempt to load (locally in C/C++, possibly remotely in Java and other
“portable” languages) the real type of the object (with its methods). If this succeeds,
OK.

CORBA, v2.5: Architecture 5-5

2. Truncate - Truncate the type of the object to the base type (if specified as
truncatable in the IDL). Truncation can never lead to faulty programs because,
from a structural point of view base types structurally subsume a derived type and
an object created in the receiving context bears no relationship with the original
one. However, it might be semantically puzzling, as the derived type may
completely reinterpret the meaning of the state of the base. For that reason a derived
value needs to indicate if it is safe to truncate to its immediate non-abstract parent.

3. Raise Exception - If none of these work or are possible, then raise the
NO_IMPLEMENT exception with standard minor code 1.

Truncatability is a transitive property.

Example

valuetype EmployeeRecord { // note this is not a CORBA::Object
Il state definition
private string name;
private string email;
private string SSN;
I/l initializer
factory init(in string name, in string SSN);

b

valuetype ManagerRecord: truncatable EmployeeRecord {
Il state definition
private sequence<EmployeeRecord> direct_reports;

b

5.2.6 Widening/Narrowing

As has been described above, value type instances may be widened/narrowed to other
value types. Each language mapping isresponsible for specifying how these operations
are made available to the programmer.

Narrowing from an interface type instance to a value type instance is not alowed. If
the interface designer wants to allow the receiving context to create a local
implementation of the value type; that is, a value representing the interface, an
operation that returns the appropriate value type may be defined.

5.2.7 Value Base Type

All value types have a conventional base type called ValueBase. Thisis atype, which
fulfills arole that is similar to that played by Object. Conceptually it supports the
common operations available on all value types. See Section 4.4, “ValueBase
Operations,” on page 4-21 for a description of those operations. In each language
mapping ValueBase will be mapped to an appropriate base type that supports the
marshaling/unmarshaling protocol as well as the model for custom marshaling.

Common Object Request Broker Architecture (CORBA), v2.5 September 2001

5

September 2001

The mapping for other operations, which all value types must support, such as getting
meta information about the type, may be found in the specifics for each language
mapping.

5.2.8 Life Cycle issues

5281

Value type instances are aways local to their creating context. For example, in agiven
language mapping an instance of a value type is always created as a local “language”
object with no POA semantics attached to it initially.

When passed using a CORBA invocation, a copy of the value is made in the receiving
context and that copy starts its life as a local programming language entity with no
POA semantics attached to it.

If avalue type supports an ordinary interface type, its instances may also be passed by
reference when the formal parameter type is an interface type (see Section 5.2.4,
“Parameter Passing,” on page 5-4). In this case they behave like ordinary object
implementations and must be associated with a POA policy and also be registered with
the ORB (for example, POA::activate_object()) before they can be passed by
reference. Not registering the value as a CORBA object and/or not associating an
appropriate policy with it results in an exception when trying to use it as a remote
object, the “normal” behavior. The exception raised shall be OBJECT_NOT_EXIST
with standard minor code 1.

Creation and Factories

When an instance of avalue type is received by the ORB, it must be unmarshaled and
an appropriate factory for its actual type found in order for the new instance to be
created. The type is encoded by the RepositorylID, which is passed over the wire as
part of an invocation. The mapping between the type (as specified by the
RepositoryID) and the factory is language specific. In certain languages it may be
possible to specify default policies that are used to find the factory, without requiring
that specific routines be called. In others the runtime and/or generated code may have
to explicitly specify the mapping on a per type basis. In others a combination may be
used. In any event the ORB implementation is responsible for maintaining this
mapping. See Section 5.4.3, “Language Specific Value Factory Requirements,” on
page 5-9 for more details on the reguirements for each language mapping. Value box
types do not need or use factories.

5.2.9 Security Considerations

The addition of value types has few impacts on the CORBA security model. In
essence, the security implications in defining and using value types are similar to those
involved with the use of IDL structs. Instances of value types are mapped to local,
concrete programming language constructs. Except for providing the marshaling
mechanisms, the ORB is not directly involved with accessing value type
implementations. This specification is mostly about two things: 1) how value types
manifest themselves as concrete programming language constructs, and 2) how they
are transmitted.

CORBA, v2.5: Architecture 5-7

5-8

5291

5.2.9.2

To see this consider how value types are actually used. The IDL definition of a value
type in conjunction with a programming language mapping is used to generate the
concrete programming language definitions for that type.

Let us consider its life cycle. In order to use it, the programmer uses the mechanisms
in the programming language to instantiate an instance. This instance is a local
programming language construct. It is not “registered” with the ORB, object adapter,
etc. The programmer may manipulate this programming construct just like any other
programming language construct. So far there are no security implications. As long as
no ORB-mediated invocations are made, the programmer may manipulate the
construct. Note, this includes making “local,” non ORB-mediated calls to any locally
implemented operations. Any assignments to the construct are the responsibility of the
programmer and have no special security implications.

Things get interesting when the program attempts to pass one of these constructs
through an orb-mediated invocation; that is, calls a stub that uses it as a parameter
type, or uses the DII. There are two cases to consider: 1) Value as Value, and2) Value
as Object Reference.

Value as Value

The formal type of the parameter is a value. This case is no different from using any
other kind of a value (long, string, struct) in a CORBA invocation, with respect to
security. The value (data) is marshaled and delivered to the receiving context. On the
receiving context, the knowledge of the type is used (at least implicitly) to find the
factory to create the correct local programming language construct. The data is then
unmarshaled to fill in the newly created construct. Thisis similar to using other values
(longs, strings, structs) except that the knowledge of the factory is not “built-in” to the
ORB'’s skeleton/DSI| engine.

Val ue as Object Reference

The formal type of the parameter is an interface type that is supported by avalue. The
program must have “registered” the value with an object adapter and is really using the
returned object reference. Thus this case “reduces” to a regular CORBA invocation,
using a regular object reference. An IOR is passed to the receiving context. All the
“normal” security considerations apply. From the point of view of the receiving
context, the IOR is a “normal” object reference. No “special” rules, with respect to
security or otherwise, apply to it. The fact that it is ultimately a reference to an
implementation that was created from instantiating and registering a value type
implementation is not relevant.

In both of these cases, security considerations are involved with the decision to allow
the ORB-mediated invocation to proceed. The fact that a value type is involved is not
material.

Common Object Request Broker Architecture (CORBA), v2.5 September 2001

5.3 Sandard Value Box Definitions

For some CORBA-defined types for which preservation of sharing and transmission of
nulls are likely to be important, the following value box type definitions are added to
the CORBA module:

module CORBA {
valuetype StringValue string;
valuetype WStringValue wstring;

5.4 Language Mappings

September 2001

5.4.1 General Requirements

A concrete value is mapped to a concrete usable “class” construct in each
programming language, plus possibly some helper classes where appropriate. In Java,
C++, and Smalltalk thisis areal concrete class. In C it is a struct.

An abstract value is mapped to some sort of an abstract construct--an interface in Java,
and an abstract class with pure virtual function members in C++.

Tools that implement the language mapping are free to “extend” the implementation
classes with “extra” data members and methods. When an instance of such aclass is
used as a parameter, only the portions that correspond directly to the IDL declaration,
are marshaled and delivered to the receiving context. This allows freedom of
implementations while preserving the notion of contract and type safety in IDL.

5.4.2 Language Specific Marshaling

Each language mapping defines an appropriate marshaling/unmarshaling API and the
entry point for custom marshaling/unmarshaling.

5.4.3 Language Soecific Value Factory Requirements

Each language mapping specifies the algorithm and means by which RepositorylDs are
used to find the appropriate factory for an instance of a value type so that it may be
created as it is unmarshaled “off the wire.”

It is desirable, where it makes sense, to specify a “default” policy for automatically
using RepositorylDsthat are in common formatsto find the appropriate factory. Such
a policy can be thought of as an implicit registration.

Each language mapping specifies how and when the registration occurs, both explicit
and implicit. The registration must occur before an attempt is made to unmarshal an
instance of avalue type. If the ORB is unable to locate and use the appropriate factory,
then a MARSHAL exception with standard minor code 1 is raised.

CORBA, v2.5: Standard Value Box Definitions 5-9

Because the type of the factory is programming language specific and each
programming language platform has different policies, the factory type is specified as
native. It is the responsibility of each language mapping to specify the actual
programming language type of the factory.

module CORBA {

// IDL
native ValueFactory;

5.4.4 Value Method Implementation

The mapped class must support method bodies; that is, code that implement the
required IDL operations. The means by which this association is accomplished is a
language mapping “detail” in much the same way that an IDL compiler is.

5.5 CustomMarshaling

5-10

Value types can override the default marshaling/unmarshaling model and provide their
own way to encode/decode their state. Custom marshaling is intended to be used to
facilitate integration of existing “class libraries” and other legacy systems. It is
explicitly not intended to be a standard practice, nor used in other OMG specifications
to avoid “standard ORB” marshaling.

The fact that a value type has some custom marshaling code is declared explicitly in
the IDL. This explicit declaration has two goals:

« type safety - stub and skeleton can know statically that a given type is custom
marshaled and can then do sanity check on what is coming over the wire.

« efficiency - for value types that are not custom marshaled no run time test is
necessary in the marshaling code.

If a custom marshaled value type has a state definition, the state definition is treated
the same as that of a non custom value type for mapping purposes; that is, the fields
show up in the same fashion in the concrete programming language. It is provided to
help with application portability.

A custom marshaled value type is always a stateful value type.
/l Example IDL

custom valuetype T {
/I optional state definition

b

Custom value types can never be safely truncated to base; that is, they always require
an exact match for their Repositoryld in the receiving context.

Common Object Request Broker Architecture (CORBA), v2.5 September 2001

5

Once a value type has been marked as custom, it needs to provide an implementation
that marshals and unmarshals the valuetype. The marshaling code encapsulates the
application code that can marshal and unmarshal instances of the value type over a
stream using the CDR encoding. It is the responsibility of the implementation to
marshal the state of all of its base types.

The following sections define the operations and streams that are used for custom
marshaling.

5.5.1 Implementation of Custom Marshaling

Once a value type has been marked as custom, an implementation of the custom
marshaling code must be provided. This is specified by providing a concrete
implementation of an abstract value type, CustomMarshal, as part of the
implementation of the value type. CustomMarshal encapsulates the application code
that can marshal and unmarshal instances of the value type over a stream using the
CDR encoding.

The following IDL defines the interfaces that are used to support the definition and use
of custom marshaling.

module CORBA {
abstract valuetype CustomMarshal {
void marshal (in DataOutputStream os);
void unmarshal (in DatalnputStream is);
¥
¥

CustomMarshal is an abstract value type that is meant to be used by the ORB, not
the user. Semantically it is treated as a custom valuetype's implicit base class, although
the custom val uetype does not actually inherit it in IDL. The implementer of a custom
value type provides an implementation of the CustomMarshal operations. The
manner in which this is done is specified for each language mapping. Each custom
marshaled value type has its own implementation. The interface is exposed in the
CORBA module so that the implementer can use the skeletons generated by the IDL
compiler as the basis for the implementation. Hence there is no need for the
application to acquire a reference to a Stream.

Note that while nothing prevents a user from writing IDL that inherits from
CustomMarshal, doing so will not make the type custom, nor will it cause the ORB
to treat it as custom.

The implementation reguirements of the streaming mechanism require that the
implementations must be local since local memory addresses; that is, the marshal
buffers have to be manipulated.

5.5.2 Marshaling Streams

The streams used for marshaling are defined below. They are responsible for
marshaling and demarshaling the data that makes up a custom value in CDR format.

September 2001 CORBA, v2.5: Custom Marshaling 5-11

module CORBA {

typedef sequence<any> AnySeq;

typedef sequence<boolean> BooleanSeq;
typedef sequence<char> CharSeq;

typedef sequence<wchar> WCharSeq;

typedef sequence<octet> OctetSeq;

typedef sequence<short> ShortSeq;

typedef sequence<unsigned short> UShortSeq;
typedef sequence<long> LongSeq;

typedef sequence<unsigned long> ULongSeq;
typedef sequence<long long> LongLongSeq;
typedef sequence<unsigned long long> ULonglLongSeq;
typedef sequence<float> FloatSeq;

typedef sequence<double> DoubleSeq;

typedef sequence<long double> LongDoubleSeq;

typedef sequence<string> StringSeq;
typedef sequence<wstring> WStringSeq;

exception BadFixedValue {
unsigned long offset;

b

abstract valuetype DataOutputStream {
void write_any(in any value);
void write_boolean(in boolean value);
void write_char(in char value);
void write_wchar(in wchar value);
void write_octet(in octet value);
void write_short(in short value);
void write_ushort(in unsigned short value);
void write_long(in long value);
void write_ulong(in unsigned long value);
void write_longlong(in long long value);
void write_ulonglong(in unsigned long long value);
void write_float(in float value);

void write_double(in double value);

void write_longdouble(in long double value);
void write_string(in string value);

void write_wstring(in wstring value);

void write_Object(in Object value);

void write_Abstract(in AbstractBase value);

void write_Value(in ValueBase value);
void write_TypeCode(in TypeCode value);

void write_any_array(
in AnySeq seq,
in unsigned long offset,
in unsigned long length

5-12 Common Object Request Broker Architecture (CORBA), v2.5 September 2001

);
void write_boolean_array(
in BooleanSeq seq,
in unsigned long offset,
in unsigned long length
);
void write_char_array(
in CharSeq seq,
in unsigned long offset,
in unsigned long length
);
void write_wchar_array(
in WCharSeq seq,
in unsigned long offset,
in unsigned long length
);
void write_octet_array(
in OctetSeq seq,
in unsigned long offset,
in unsigned long length
)i
void write_short_array(
in ShortSeq seq,
in unsigned long offset,
in unsigned long length
);
void write_ushort_array(
in UShortSeq seq,
in unsigned long offset,
in unsigned long length
);
void write_long_array(
in LongSeq seq,
in unsigned long offset,
in unsigned long length
)i
void write_ulong_array(
in ULongSeq seq,
in unsigned long offset,
in unsigned long length
);
void write_ulonglong_array(
in ULongLongSeq seq,
in unsigned long offset,
in unsigned long length
);
void write_longlong_array(
in LongLongSeq seq,
in unsigned long offset,
in unsigned long length

September 2001 CORBA, v2.5: Custom Marshaling 5-13

void write_float_array(
in FloatSeq seq,
in unsigned long offset,
in unsigned long length
);
void write_double_array(
in DoubleSeq seq,
in unsigned long offset,
in unsigned long length
);
void write_long_double_array(
in LongDoubleSeq seq,
in unsigned long offset,
in unsigned long length
);
void write_fixed(
in any fixed_value
) raises (BadFixedValue);
void write_fixed_array(
in AnySeq seq,
in unsigned long offset,
in unsigned long length
) raises (BadFixedValue);

b

abstract valuetype DatalnputStream {
any read_any();
boolean read_boolean();
char read_char();
wchar read_wchar();
octet read_octet();
short read_short();
unsigned short read_ushort();
long read_long();
unsigned long read_ulong();
long long read_longlong();
unsigned long long read_ulonglong();
float read_float();
double read_double();
long double read_longdouble();
string read_string();
wstring read_wstring();
Object read_Object();
AbstractBase read_Abstract();
ValueBase read_Value();
TypeCode read_TypeCode();

void read_any_array(
inout AnySeq seq,
in unsigned long offset,
in unsigned long length

5-14 Common Object Request Broker Architecture (CORBA), v2.5 September 2001

September 2001

);

void read_boolean_array(
inout BooleanSeq seq,
in unsigned long offset,
in unsigned long length

);

void read_char_array(
inout CharSeq seq,
in unsigned long offset,
in unsigned long length

);

void read_wchar_array(
inout WCharSeq seq,
in unsigned long offset,
in unsigned long length

);

void read_octet_array(
inout OctetSeq seq,
in unsigned long offset,
in unsigned long length

)i

void read_short_array(
inout ShortSeq seq,
in unsigned long offset,
in unsigned long length

);

void read_ushort_array(
inout UShortSeq seq,
in unsigned long offset,
in unsigned long length

);

void read_long_array(
inout LongSeq seq,
in unsigned long offset,
in unsigned long length

)i

void read_ulong_array(
inout ULongSeq seq,
in unsigned long offset,
in unsigned long length

void read_ulonglong_array(

inout ULongLongSeq seq,

in unsigned long offset,
in unsigned long length
);
void read_longlong_array(
inout LongLongSeq seq,
in unsigned long offset,
in unsigned long length

CORBA, v2.5: Custom Marshaling

5-15

5-16

void read_float_array(
inout FloatSeq seq,
in unsigned long offset,
in unsigned long length

);

void read_double_array(
inout DoubleSeq seq,
in unsigned long offset,
in unsigned long length

);

void read_long_double_array(
inout DoubleSeq seq,
in unsigned long offset,
in unsigned long length

);

any read_fixed(
in unsigned short digits,
in short scale

) raises (BadFixedValue);

void read_fixed_array(
inout AnySeq seq,
in unsigned long offset,
in unsigned long length,
in unsigned short digits,
in short scale

) raises (BadFixedValue);

¥
¥

Note that the Data streams are abstract value types. This ensures that their
implementation will be local, which is required in order for them to properly flatten
and encode nested vaue types.

The ORB; that is, the CDR encoding engineis responsible for actually constructing the
value's encoding. The application marshaling code merely calls the above operations.
The details of writing the value tag, header information, end tag(s) are specifically not
exposed to the application code. In particular the size of the custom datais not written
by the application. This guarantees that the custom marshaling (and unmarshaling
code) cannot corrupt the other parameters of the call.

If an inconsistency is detected, then the standard system exception MARSHAL is
raised.

A possible implementation might have the engine determine that a custom marshal
parameter is “next.” It would then write the value tag and other header information and
then return control back to the application defined marshaling policy, which would do
the marshaling by calling the DataOutputStream operations to write the data as
appropriate. (Note the stream takes care of breaking the data into chunks, if necessary.)
When control was returned back to the engine, it performs any other cleanup activities
to complete the value type, and then proceeds onto the next parameter. How thisis
actually accomplished is an implementation detail of the ORB.

Common Object Request Broker Architecture (CORBA), v2.5 September 2001

5

September 2001

The Data Streams shall test for possible shared or null values and place appropriate
indirections or null encodings (even when used from the custom streaming policy).

There are no explicit operations for creating the streams. It is assumed that the ORB
implicitly acts as a factory. In a sense they are always available.

For write_fixed, the fixed_value parameter must be an “any” containing a fixed
value. If the “any” passed in does not contain a fixed value, then a BadFixedValue
exception is raised with the offset field set to 0.

For write_fixed_array, the elements of the seq parameter that are specified by the
offset and length parameters must be a sequence of “any”s each of which contains a
fixed value. If any of these “any”s does not contain a fixed value, or if any of them
contains a fixed value whose digits and scale (as specified by the TypeCode in the
“any”) differ from those of the first of these “any”s (as specified by its TypeCode),
then a BadFixedValue exception is raised with the offset field set to a zero-origin
ordinal number indicating the position of the first incorrect "any" within the
subsequence of fixed values written to the stream.

For both write_fixed and write_fixed_array, the TypeCode within each “any”
being written specifies the digits and scale to be used to write the fixed value
contained in the “any.” The TypeCode itself is not written to the
DataOutputStream.

The read_fixed operation returns an “any” containing the fixed value that was read
from the DatalnputStream. The digits and scale in the TypeCode of the returned
“any” are set to the digits and scale parameters passed to read_fixed. If the fixed
value read from the DatalnputStream is incompatible with the digits and scale
parameters passed to read_fixed, then a BadFixedValue exception is raised with the
offset field set to 0.

Theread_fixed_array operation sets the elements of the seq parameter that are
specified by the offset and length parameters. These elements are set to “any”s with
TypeCodes specifying a fixed value whose digits and scale are the same as the
digits and scale parameters, and fixed values that were read from the
DatalnputStream. The previous contents of these “any”s, including their
TypeCodes, are destroyed by the read_fixed_array operation. Other “any”s in the
seq parameter (if any) are left unchanged. No TypeCode information is read from the
DatalnputStream. If any of the fixed values read from the DatalnputStream is
incompatible with the digits and scale parameters, then a BadFixedValue exception
is raised with the offset field set to a zero-origin ordinal number indicating the
position of the first incorrect “any” within the subsequence of fixed values read from
the stream.

The stream representation of afixed value is considered incompatible if its digit and
scale values do not match the digits and scale values being used to read it from the
stream.

CORBA, v2.5: Custom Marshaling 5-17

5.6 Accesstothe Sending Context Run Time

5-18

There are two cases where a receiving context might want to access the run time
environment of the sending context:

* To attempt the downloading of some missing implementation for the value.

» To access some meta information about the version of the value just received.

In order to provide that kind of service a call back object interface is defined. It may
optionally be supported by the sending context (it can be seen as a service). If such a
callback object is supported its IOR may be added to an optional service context in the
GIOP header passed from the sending context to the receiving context.

A service context tagged with the Serviceld SendingContextRunTime (see
Section 13.7, “Service Context,” on page 13-28) contains an encapsulation of the IOR
for a SendingContext::RunTime object. Because ORBs are always free to skip a
service context they don’t understand, this addition does not impact |1OP
interoperability.

module SendingContext {

interface RunTime {}; // so that we can provide more
/I sending context run time
/I services in the future

interface CodeBase: RunTime {
typedef string URL; // blank-separated list of one or more URLS
typedef sequence<URL> URLSeq;
typedef sequence
<CORBA::ValueDef::FullValueDescription> ValueDescSeq;

/I Operation to obtain the IR from the sending context
CORBA::Repository get_ir();

/I Operations to obtain alocation of the implementation code
URL implementation(in CORBA::Repositoryld x);
URLSeq implementations(in CORBA::RepositoryldSeq x);

/I Operations to obtain complete meta information about a Value
/I This is just a performance optimization the IR can provide

/l the same information

CORBA::FullValueDescription meta(in CORBA::Repositoryld x);
ValueDescSeq metas(in CORBA::RepositoryldSeq x);

/I To obtain a type graph for a value type

/l same comment as before the IR can provide similar

/I information

CORBA::RepositoryldSeq bases(in CORBA::Repositoryld x);

Common Object Request Broker Architecture (CORBA), v2.5 September 2001

5

Supporting the CodeBase interface for a given ORB run time is an issue of quality of
service. The point here is that if the sending context does not support a CodeBase,
then the receiving context will simply raise an exception with which the sending
context had to be prepared to deal. There will always be cases where a receiving
context will get a value type and won't be able to interpret it because:

e |tcan't get alegal implementation for it (even if it knows where it is, possibly due
to security and/or resource access iSsues).

e Itslocal version is so radically different that it cannot make sense out of the piece
of state being provided.

These two failure modes will be represented by the CORBA system exception
NO_IMPLEMENT with identified minor codes, for a missing loca vaue
implementation and for incompatible versions (see Section 4.11.4, “ Standard Minor
Exception Codes,” on page 4-60).

Under certain conditions it is possible that when several values of the sasme CORBA
type (same repository id) are sent in either a request or reply, that the reality is that
they have distinct implementations. In this case, in addition to the codebase URL(S)
sent in the service context, each value that has a different codebase may have codebase
URL (s) associated with it. This is encoded by using a different tag to encode the value
on the wire.

The sending context does not need to resend the same value for this service context on
subsequent requests over the same underlying connection. Resending a different value
for this service context is only necessary if the callback object reference in use is
changed by the sending context within the lifetime of the underlying connection.

September 2001 CORBA, v2.5: Accessto the Sending Context Run Time 5-19

5-20 Common Object Request Broker Architecture (CORBA), v2.5 September 2001

Abstract | nterface Semantics 6

This chapter describes the semantics of abstract interfaces. Other details specific to
particular aspects of the ORB may be found in other chapters.

Contents

This chapter contains the following sections.

Section Title Page
“Overview” 6-1
“Semantics of Abstract Interfaces’ 6-1
“Usage Guidelines’ 6-3
“Example” 6-3
“Security Considerations” 6-4

6.1 Overview

In many cases it may be useful to defer the determination of whether an object is
passed by reference or by value until runtime. An IDL abstract interface provides this
capability. See Section 6.4, “Example,” on page 6-3 for an example of when this might
be useful.

6.2 Semanticsof Abstract | nterfaces

Abstract interfaces differ from regular IDL interfaces in the following ways:

September 2001 Common Object Request Broker Architecture (CORBA), v2.5 6-1

1. When used in an operation signature, they do not determine whether actual
parameters are passed as an object reference or by value. Instead, the type of the
actual parameter (regular interface or value) is used to make this determination
using the following rules:

e The actual parameter is passed as an object reference if it is a regular interface
type (or a subtype of aregular interface type), and that regular interface typeis a
subtype of the signature abstract interface type, and the object is already
registered with the ORB/OA.

e The actual parameter is passed as a value if it cannot be passed as an object
reference but can be passed as a value. Otherwise, a BAD_PARAM exception is
raised.

2. The GIOP encoding of an abstract interface type is a union with a boolean
discriminator (TRUE if it isan IOR, FALSE if it is a value) followed by either the
IOR or the value. This allows the demarshaling code to determine whether an object
reference or a value was passed.

3. Abstract interfaces do not implicitly inherit from CORBA::Object. Thisis because
they can represent either value types or CORBA object references, and value types
do not necessarily support the object reference operations (see Section 4.3, “ Object
Reference Operations,” on page 4-12). If an IDL abstract interface type can be
successfully narrowed to an object reference type (aregular IDL interface), then the
CORBA::Object operations can be invoked on the narrowed object reference.

4. Abstract interfaces implicitly inherit from CORBA::AbstractBase. Thistypeis
defined as native. It is the responsibility of each language mapping to specify the
actual programming language type that is used for this type.

module CORBA {
// IDL
native AbstractBase;

b

5. Abstract interfaces do not imply copy semantics for value types passed as
arguments to their operations. This is because their operations may be either
CORBA invocations (for abstract interfaces that represent CORBA object
references) or local programming language calls (for abstract interfaces that
represent CORBA value types). See Section 5.2.2, “Operations,” on page 5-3 and
Section 5.2.4, “Parameter Passing,” on page 5-4 for details of these differences.

6. Abstract interfaces may only inherit from other abstract interfaces.

7. Value types may support any number of abstract interfaces, but no more than one
regular interface.

8. In other respects, abstract interfaces are identical to regular IDL interfaces.
For example, consider the following operation m1() in abstract interface foo:

Common Object Request Broker Architecture (CORBA), v2.5 September 2001

abstract interface foo {
void m1(in AninterfaceType x, in AnAbstractinterfaceType vy,
in AValueType z);

¥
x's are always passed by reference,

Z's are:
« passed as copied values if foo refers to an ordinary interface.
* passed as non-copied values if foo refers to a value type

y’'s are:

 passed as reference if their concrete type is an ordinary interface subtype of
AnAbstractinterfaceType (registered with the ORB), no matter what foo’s
concrete type is.

« passed as copied values if their concrete type is value and foo’s concrete type is
ordinary interface.

« passed as non-copied values if their concrete type isvalue and foo’s concrete type
is value.

6.3 UsageGuidelines

6.4 Example

September 2001

Abstract interfaces are intended for situations where it cannot be known at compile
time whether an object reference or a value will be passed. In other cases, a regular
interface or value type should be used. Abstract interfaces are not intended to replace
regular CORBA interfaces in situations where there is no clear need to provide runtime
flexibility to pass either an object reference or a value. If reference semantics are
intended, regular interfaces should be used.

For example, in a business application it is extremely common to need to display a list
of objects of a given type, with some identifying attribute like account number and a
translated text description such as “ Savings Account.” A developer might define an
interface such as Describable whose methods provide this information, and
implement this interface on a wide range of types. This allows the method that displays
items to take an argument of type Describable and query it for the necessary
information. The Describable objects passed in to the display method may be either
CORBA interface types (passed in as object references) or CORBA value types (passed
in by value).

In this example, Describable is used as a polymorphic abstract type. No instances of
type Describable exist, but many different instances have interfaces that support the
Describable type abstraction. In C++, Describable would be an abstract base class;
in Java, an interface. In statically typed languages, the compiler can check that the
actual parameter type passed by callers of display is avalid subtype of Describable
and therefore supports the methods defined by Describable. The display method can
simply invoke the methods of Describable on the objects that it receives, without
concern for any details of their implementation.

CORBA, v2.5: Usage Guidelines 6-3

Describable could not be declared as a regular IDL interface. This is because
arguments of declared interface type are always passed as object references (see
Section 5.2.4, “Parameter Passing,” on page 5-4) and we also want thedisplay method
to be able to accept value type objects that can only be passed by value. Similarly we
cannot define Describable as a value type because then the display method would
not be able to accept actual parameter objects that only support passing as an object
reference. Abstract interfaces are needed to cover such cases.

The Describable abstract interface could be defined and used by the following IDL:

abstract interface Describable {
string get_description();

b

interface Example {
void display (in Describable anObject);

b

interface Account : Describable {// passed by reference
/l add Account methods here

b

valuetype Currency supports Describable {// passed by value
/l add Currency methods here

b

If Describable were defined as a regular interface instead of an abstract interface,
then it would not be possible to pass a Currency value to the display method, even
though the Currency IDL type supports the Describable interface.

6.5 Security Considerations

Security considerations for abstract interfaces are similar to those for regular interfaces
and values (see Section 5.2.9, “ Security Considerations,” on page 5-7). Thisis because
an abstract interface formal parameter type alows either aregular interface (IOR) or a
value to be passed. Likewise, an operation defined in an abstract interface can be
implemented by either aregular interface (with “normal” security considerations) or by
avalue type (in which case it is alocal cal, not mediated by the ORB). The security
implication of making the choice between these alternaives a runtime determination is
that the programmer must ensure that for both aternatives, no security violations can
occur. For example, a technique similar to that described in Section 6.5.1, “Passing
Values to Trusted Domains,” on page 6-4 could be used to avoid inadvertently passing
values outside a domain of trust.

6.5.1 Passing Values to Trusted Domains

When a server passes an object reference, it can be sure that access control policies
will apply to any attempt to access anything through that object reference. When the
underlying object is passed as a value, the granularity and level/semantics of access

Common Object Request Broker Architecture (CORBA), v2.5 September 2001

6

September 2001

control are different. In the “by value” case, all the data for the object is passed, and
method invocations on the passed object are local calls that are not mediated by the
ORB. Whether the server wants to use the (potentially more permissive) pass by value
access control or not could depend on the security domain, which is receiving the said
object or object reference.

Consider the case where the server S has an object O that it is willing to pass only in
the form of an object reference Or to a domain Du that it does not trust, but is willing
to pass the object by value Ow to another domain Ot that it trusts.

This flexibility is not possible without abstract interfaces. Signatures would have to be
written to either always pass references or always pass values, irrespective of the level
of trust of the invocation target domain. However, abstract interfaces provide the
necessary flexibility. The formal parameter type MyType can be declared as an
abstract interface and the method invocation can be coded along the lines of

nyExanpl e- >f oo(security_check(myExanpl e, nydata));
where the securi ty_check function determines the level of trust of
ny Exanpl e’s domain and returns an regular interface subtype of My Ty pe for

untrusted domains and a value subtype of My Type for trusted domains. The rules for
abstract interfaces will then pass the correct thing in both these cases.

CORBA, v2.5: Security Considerations 6-5

6-6

Common Object Request Broker Architecture (CORBA), v2.5

September 2001

Dynamic Invocation | nterface !

The Dynamic Invocation Interface (DI1) describes the client's side of the interface that
allows dynamic creation and invocation of request to objects. All types defined in this
chapter are part of the CORBA module.

Contents

This chapter contains the following sections.

Section Title Page
“Overview"” 7-1
“Request Operations” 7-4
“ORB Operations’ 7-10
“Polling” 7-12
“List Operations’ 7-16

7.1 Overview

The Dynamic Invocation Interface (DIl) alows dynamic creation and invocation of
reguests to objects. A client using this interface to send a request to an object obtains
the same semantics as a client using the operation stub generated from the type
specification.

A request consists of an object reference, an operation, and a list of parameters. The
ORB applies the implementation-hiding (encapsulation) principle to requests.

In the Dynamic Invocation Interface, parameters in a request are supplied as elements
of alist. Each element is an instance of a NamedValue (see Section 7.1.1, “Common
Data Structures,” on page 7-2). Each parameter is passed in its native data form.

September 2001 Common Object Request Broker Architecture (CORBA), v2.5 7-1

Parameters supplied to a request may be subject to run-time type checking upon
reguest invocation. Parameters must be supplied in the same order as the parameters
defined for the operation in the Interface Repository.

The standard user exception WrongTransaction is defined in the CORBA module,
prior to the definitions of the ORB and Request interfaces, as follows:

exception WrongTransaction {};

This exception can be raised only if the request is implicitly associated with a
transaction (the current transaction at the time that the request was issued).
7.1.1 Common Data Structures

The type NamedValue is a well-known data type in OMG IDL. It can be used either
as a parameter type directly or as a mechanism for describing arguments to a request.
The type NVList is a pseudo-object useful for constructing parameter lists. The types
are described in OMG IDL as:

module CORBA {

typedef unsigned long Flags;

struct NamedValue { PIDL
Identifier name; /l argument name
any argument; // argument
long len; /I length/count of argument value
Flags arg_modes;// argument mode flags

¥

b

The NamedValue and NVLi st structures are used in the request operations to
describe arguments and return values. They are also used in the context object routines
to pass lists of property names and values. Despite the above declaration for NVLi st ,
the NVLi st structure is partially opague and may only be created by using the ORB
create_list operation.

For out parameters, applications can set the argument member of the NamedValue
structure to a value that includes either a NULL or a non-NULL storage pointer. If a
non-null storage pointer is provided for an out parameter, the ORB will attempt to use
the storage pointed to for holding the value of the out parameter. If the storage pointed
to is not sufficient to hold the value of the out parameter, the behavior is undefined.

A named value includes an argument name, argument value (as an any), length of the
argument, and a set of argument mode flags. When named val ue structures are used to
describe arguments to arequest, the names are the argument identifiers specified in the
OMG IDL definition for a specific operation.

Common Object Request Broker Architecture (CORBA), v2.5 September 2001

2

September 2001

As described in Section 19.7, “Mapping for Basic Data Types,” on page 19-10, an any
consists of a TypeCode and a pointer to the data value. The TypeCode is a well-
known opaque type that can encode a description of any type specifiablein OMG IDL.
See this section for a full description of TypeCodes.

For most data types, len is the actual number of bytes that the value occupies. For
object references, len is 1. Table 7-1showsthe length of data values for the C language
binding. The behavior of a NamedValue is undefined if the len value is inconsistent

with the TypeCode.

Table 7-1 C Type Lengths

Data type: X

Length (X)

short

sizeof (CORBA_short)

unsigned short

sizeof (CORBA_unsigned_short)

long

sizeof (CORBA_long)

unsigned long

sizeof (CORBA_unsigned_long)

long long

sizeof (CORBA_long_long)

unsigned long long

sizeof (CORBA_unsigned_long_long)

float sizeof (CORBA_float)

double sizeof (CORBA_double)

long double sizeof (CORBA_long_double)

fixed<d,s> sizeof (CORBA_fixed_d_s)

char sizeof (CORBA_char)

wchar sizeof (CORBA_wchar)

boolean sizeof (char)

octet sizeof (CORBA_octet)

string strlen (string) /* does NOT include \0’ byte! */

wstring number of wide characters in string, not including wide null
terminator

enum E {}; sizeof (CORBA_enum)

union U { }; sizeof (U)

struct S {}; sizeof (S)

Object 1

array N of type T1

Length (T1) * N

sequence V of type T2

Length (T2) *V /* Vis the actual, dynamic, number of
elements */

The arg_mode field is of type Flags which isan unsigned long. Thisfield is used
as follows in this structure. It should be noted that Flags type is used as parameter
type in many operations and the meaning of the constants passed in those cases are

CORBA, v2.5: Overview

7-3

specific to those operations. Those values should not be confused with the specific use
of this type in the context of the NamedValue structure. These values are reserved, as
are the high order 16 bits of the unsigned long.:

CORBA::ARG_IN 1 The associated value is an input only
argument.

CORBA::ARG_OUT 2 The associated value is an output only
argument.

CORBA::ARG_INOUT 3 The associated value is an infout argument.

The specific usage of Flags in other contexts are described as part of the description
of the operation that uses this type of parameters.

7.1.2 Memory Usage

The values for output argument data types that are unbounded strings or unbounded
sequences are returned as pointers to dynamically allocated memory. In order to
facilitate the freeing of all “out-arg memory,” the request routines provide a
mechanism for grouping, or keeping track of, this memory. If so specified, out-arg
memory is associated with the argument list passed to the create request routine. When
the list is deleted, the associated out-arg memory will automatically be freed.

If the programmer chooses not to associate out-arg memory with an argument list, the
programmer is responsible for freeing each out parameter using CORBA _free(),
which is discussed in the C Language Mapping specification (Mapping for Structure
Types section).

7.1.3 Return Satus and Exceptions

In the Dynamic Invocation interface, routines typically indicate errors or exceptional
conditions either via programming language exception mechanisms, or via an
Environment parameter for those languages that do not support exceptions. Thus, the
return type of these routines is void.

7.2 Request Operations
The request operations (except create_request) are defined in terms of the Request
pseudo-object. The Request routines use the NVLi st definition defined in the
preceding section.
module CORBA {
native OpaqueValue;

interface Request { /l PIDL

void add_arg (

Common Object Request Broker Architecture (CORBA), v2.5 September 2001

September 2001

in Identifier name, /l argument name
in TypeCode arg_type, // argument datatype
in OpaqueValue value, / argument value to be added
in long len, /I length/count of argument value
in Flags arg_flags // argument flags
);
void invoke (
in Flags invoke_flags //invocation flags
);
void delete ();
void send (
in Flags invoke_flags //invocation flags
);

void get_response () raises (WrongTransaction);
boolean poll_response();

Object sendp();

void prepare(in Object p);

void sendc(in Object handler);

b

In IDL, The native type OpaqueValue is used to identify the type of the
implementation language representation of the value that is to be passed as a
parameter. For example in the C language this is the C language type (voi d *).
Each language mapping specifies what OpaqueValue maps to in that specific
language.

For each Request pseudo-object instance, only one call to either the invoke or the
send operations is legal during the lifetime of the Request object. In addition, once
a Request object was passed to one of the send_multiple_requests_* operations,
neither invoke nor send can be called, nor can it be passed in another invocation of
send_multiple_request_* operation.Violations raise BAD_INV_ORDER with
standard minor code 5.

7.2.1 create request

Because it creates a pseudo-object, this operation is defined in the Object interface
(see Section 4.3, “Object Reference Operations,” on page 4-12 for the complete
interface definition). The create_request operation is performed on the Object that
is to be invoked.

module CORBA({

CORBA, v2.5: Request Operations 7-5

7-6

interface Object{ /I PIDL

void create_request (

in Context ctx, /I context object for operation
in Identifier operation, // intended operation on object
in NVList arg_list, /[args to operation

inout NamedValue result, /I operation result

out Request request, // newly created request

in Flags req_flags // request flags

);
b
b

This operation creates an ORB request. The actual invocation occurs by callinginvoke
or by using the send / get_response calls.

The operation name specified on create_request is the same operation identifier that
is specified in the OMG IDL definition for this operation. In the case of attributes, it is
the name as constructed following the rules specified in the ServerRequest interface
as described in the DSI in Section 8.3, “ ServerRequestPseudo-Object,” on page 8-3.

The arg_list, if specified, contains a list of arguments (input, output, and/or
input/output) that become associated with the request. If arg_list is omitted (specified
as NULL), the arguments (if any) must be specified using the add_arg call below.

Arguments may be associated with a request by passing in an argument list or by using
repetitive calls to add_arg. One mechanism or the other may be used for supplying
arguments to a given request; a mixture of the two approaches is not supported.

If specified, the arg_list becomes associated with the request; until the invoke call
has completed (or the request has been deleted), the ORB assumes that arg_list (and
any values it points to) remains unchanged.

When specifying an argument list, the value and len for each argument must be
specified. An argument’s datatype, name, and usage flags; that is, in, out, inout may
also be specified; if so indicated, arguments are validated for data type, order, name,
and usage correctness against the set of arguments expected for the indicated operation.

An implementation of the request services may relax the order constraint (and alow
arguments to be specified out of order) by doing ordering based upon argument name.

The context properties associated with the operation are passed to the object
implementation. The object implementation may not modify the context information
passed to it.

The operation result is placed in the result argument after the invocation completes.

Thereq_flags argument is defined asa bitmask (long) that may contain the following
flag values:

CORBA::OUT_LIST_MEMORY indicates that any out-arg memory is associated with
the argument list (NVList).

Common Object Request Broker Architecture (CORBA), v2.5 September 2001

2

September 2001

Setting the OUT_LIST_MEMORY flag controls the memory allocation mechanism for
out-arg memory (output arguments, for which memory is dynamically allocated). If
OUT_LIST_MEMORY is specified, an argument list must also have been specified on
the create_request call. When output arguments of this type are allocated, they are
associated with the list structure. When the list structure is freed (see below), any
associated out-arg memory is also freed.

If OUT_LIST_MEMORY is not specified, then each piece of out-arg memory remains
available until the programmer explicitly frees it with procedures provided by the
language mappings (see the C Language Mapping specification, Argument Passing
Considerations section; C++ Language Mapping specification, NVList section; and the
COBOL Language Mapping specification, Argument Passing Considerations section).

The implicit object reference operations non_existent, is_a and get_interface may
be invoked using DII. No other implicit object reference operations may beinvoked via
DlIl.

To create a request for any one of these allowed implicit object reference operations,
create_request must be passed the name of the operation with a“_" prepended, in
the parameter “operation.” For example to create a DIl request for “is_a”, the name
passed to create_request must be“_is_a.” If the name of an implicit operation that
is not invocable through DIl is passed to create_request with a“_" prepended,
create_request shall raise a BAD_PARAM standard system exception. For example,
if “_is_equivalent” is passed to create request as the “operation” parameter will
cause create_request to raise the BAD_PARAM standard system exception.

7.2.2 add arg

void add_arg (/l PIDL
in Identifier name, /l argument name
in TypeCode arg_type, // argument datatype
in OpaqueValue value, / argument value to be added
in long len, /I length/count of argument value
in Flags arg_flags // argument flags
);

add_arg incrementally adds arguments to the request.

For each argument, minimally itsvalue and len must be specified. An argument’s data
type, name, and usage flags; that is, in, out, inout may also be specified. If so
indicated, arguments are validated for data type, order, name, and usage correctness
against the set of arguments expected for the indicated operation.

An implementation of the request services may relax the order constraint (and alow
arguments to be specified out of order) by doing ordering based upon argument name.

The arguments added to the request become associated with the request and are
assumed to be unchanged until the invoke has completed (or the request has been
deleted).

CORBA, v2.5: Request Operations 7-7

7-8

Arguments may be associated with a request by specifying them on the
Object::create_request call or by adding them via calls to add_arg. Using both
methods for specifying arguments for the same request is not supported.

In addition to the argument modes defined in Section7.1.1, “Common Data
Structures,” on page 7-2, arg_flags may also take the flag value IN_COPY_VALUE.
The argument passing flags defined in Section 7.1.1, “Common Data Structures,” on
page 7-2 may be used here to indicate the intended parameter passing mode of an
argument.

If the IN_COPY_VALUE flag is set, a copy of the argument value is made and used
instead. This flag is ignored for inout and out arguments.

7.2.3 invoke

7.2.4 delete

7.2.5 send

void invoke (/I PIDL
in Flags invoke_flags /l invocation flags

);

This operation calls the ORB, which performs method resolution and invokes an
appropriate method. If the method returns successfully, itsresult is placed in the result
argument specified on create_request. Calling invoke on a Request after invoke,
send, or ORB::send_multiple_requests for that Request was called raises
BAD_INV_ORDER with standard minor code 10.

void delete (); /I PIDL

This operation deletes the request. Any memory associated with the request; that is, by
using the IN_COPY_VALUE flag is aso freed.

void send (/I PIDL
in Flags invoke_flags /I invocation flags

);

Send initiates an operation according to the information in the Request. Unlike
invoke, send returns control to the caller without waiting for the operation to finish.
To determine when the operation is done, the caller must use the get_response or
ORB::get_next_response operations described below. The out parameters and
return value must not be used until the operation is done.

Although it is possible for some standard system exceptions to be raised by the send
operation, there is no guarantee that all possible errors will be detected. For example,
if the object reference is not valid, send might detect it and raise an exception, or
might return before the object reference is validated, in which case the exception will
be raised when get_response is called.

Common Object Request Broker Architecture (CORBA), v2.5 September 2001

2

September 2001

7.2.8 sendp

If the operation is defined to be oneway or if INV_NO_RESPONSE is specified, and
the effective SyncScopePolicy does not have a value of WITH_SERVER or
WITH_TARGET, then get_response does not need to be called. In such cases, some
errors might go unreported, since if they are not detected before send returns there is
no way to inform the caller of the error.

The following invocation flags are currently defined for send:

CORBA::INV_NO_RESPONSE indicates that the invoker wishes the request to
be subject to the effective SyncScopePolicy. If the SyncScopePolicy has a
value of NONE or WITH_TRANSPORT, the invoker will not receive a response,
nor does it expect any of the output arguments (in/out and out) to be updated. This
option may be specified even if the operation has not been defined to be oneway.

7.2.6 poll_response

/l PIDL
boolean poll_response ();

poll_response determines whether the request has completed. A TRUE return
indicates that it has; FALSE indicates it has not.

Return is immediate, whether the response has completed or not. Values in the request
are not changed.

7.2.7 get_response

/IPIDL
void get_response () raises (WrongTransaction);

get_response returns the result of arequest. If get_response is called before the
request has completed, it blocks until the request has completed. Upon return, the out
parameters and return values defined in the Request are set appropriately and they
may be treated as if the Request invoke operation had been used to perform the
request.

A request has an associated transaction context if the thread originating the request had
a non-null transaction context and the target object is a transactional object. The
get_response operation may raise the WrongTransaction exception if the request
has an associated transaction context, and the thread invoking get_response either
has a null transaction context or a non-null transaction context that differs from that of
the request.

sendp initiates an operation according to the information in the Request and returns a
reference to a MessageRouting::PersistentRequest asa CORBA::Object. As
with send, the results of invocations made with sendp will be available once the
caller uses get_response or get_next_response. The out parameters and return

CORBA, v2.5: Request Operations 7-9

7.3 ORB Operations

7-10

value must not be used before the operation is done. A new CORBA::Request may
be constructed (in this same or a different process) and used to poll for the response to
this request by calling create_request, properly associating the out arguments and
return value with that request and then passing the PersistentRequest reference to
the new Request’'s prepare (described below). The caller can then invoke
get_response or get_next_response to obtain the operation results.

As with send, sendc may raise a standard system exception if afailure is detected
before control is returned to the client, but this is not guaranteed. All other exceptions
will be raised when get_response is called.

7.2.9 prepare

7.2.10 sendc

prepare is called to associate an initialized CORBA::Request with a previous
operation that was initiated via sendp. The Request must be created and associated
with the operation’s out arguments and return value prior to calling prepare. Once
prepare has been called, it is asif that prepared Request was the one that actually had
sendp used. Each Request is subject only to one of these operations, which puts it in
avalid state for an invocation of get_response: send, sendp, sendc, or
prepare. Invoking prepare on a Request that had previously been used for a send (or
one of its variants) raises the standard system exception BAD _INV_ORDER. Invoking
prepare with an object reference that was not previously returned from an invocation of
sendp raises the standard system exception BAD_PARAM.

sendc initiates an operation according to the information in the Request. Unlike
send, the results of invocations made with sendc will be available through the
callback Messaging::ReplyHandler passed into sendc as a base
CORBA::Object. A truly dynamic client can implement this ReplyHandler using
the DSI. Specifying anil ReplyHandler is equivalent to invoking send with a flag of
CORBA::INV_NO_RESPONSE.

As with send, sendc may raise a standard system exception if a failure is detected
before control is returned to the client, but this is not guaranteed. All other exceptions
will be passed to the ReplyHandler.

7.3.1 send _multiple_requests

module CORBA {

interface Request; /I forward declaration
typedef sequence <Request> RequestSeq;

interface ORB {

Common Object Request Broker Architecture (CORBA), v2.5 September 2001

void send_multiple_requests_oneway(
in RequestSeq req
);

void send_multiple_requests_deferred(
in RequestSeq req
);
¥
¥

send_multiple_requests initiates more than one request in parallel. Like send,
send_multiple_requests returns to the caller without waiting for the operations to
finish. To determine when each operation is done, the caller must use the
Request::get_response or get_next_response operations.

Calling send on arequest after invoke, send, or send_multiple_requests for that
request was called raises BAD_INV_ORDER with standard minor code 10.

Calling send_multiple_requests for a request after invoke, send, or
send_multiple_requests for that request was called raises BAD_INV_ORDER
with standard minor code 10. If send_multiple_requests raises
BAD_INV_ORDER, the actual number of requests that were sent is implementation
dependent.

7.3.2 get_next_response and poll_next_response
module CORBA {

interface Request; /I forward declaration
typedef sequence <Request> RequestSeq;

interface ORB {

boolean poll_next_response();

void get_next_response(
out Request req
) raises (WrongTransaction);
3
3

Poll_next_response determines whether any request has completed. A TRUE return
indicates that at least one has, FAL SE indicates that none have completed. Return is
immediate, whether any response has completed or not.

Get_next_response returns the next request that completes. Despite the name, there
isno guaranteed ordering among the completed requests, so the order in which they are
returned from successive get_next_response callsis not necessarily related to the
order in which they finish.

September 2001 CORBA, v2.5: ORB Operations 7-11

7.4 Polling

7-12

A request has an associated transaction context if the thread originating the request had
a non-null transaction context and the target object is a transactional object. The
get_next_response operation may raise the WrongTransaction exception if the
request has an associated transaction context, and the thread invoking
get_next_response has a non-null transaction context that differs from that of the
request.

Calling poll_response before send or send_multiple_requests for that request
raises BAD_INV_ORDER with standard minor code 11. Calling poll_response after
calling invoke raises BAD_INV_ORDER with standard minor code 13. Calling
poll_response &fter calling get_response raises BAD_INV_ORDER with
standard minor code 12. Calling poll_response after that request was returned by
get_next_response raises BAD_INV_ORDER with standard minor code 12.

Calling get_next_response or poll_next_response at atime when no requests are
outstanding raises BAD_INV_ORDER with standard minor code 11. If concurrent
callsto get_next_response or poll_next_response are in progress, the exact
outcome is implementation dependent; however, get_next_response is guaranteed
not to return the same completed request to more than one caller.

There are two types of Polling model invocations that allow a client to proceed before
the request finishes: The DII's send (which supports deferred synchronous
invocations) and the typed sendp variants of the interface stubs (which support both
deferred synchronous and asynchronous invocations). This section describes a single
mechanism that allows a client to query or block on the completion of outstanding
requests.

® For the typed polling model (sendp), a client invokes the request’s type-specific
Poller to receive the response. This poll can either block (wait for the completion)
or return immediately if the request isn't finished yet, depending on the value of the
first parameter. Alternately, a client can simply query whether the request has
completed by using the generic non-blocking CORBA::Pollable::is_ready()
operation defined on the base interface that is inherited by all type-specific pollers.
For the sake of efficiency, it must be possible to query or block on multiple async
pollersin a single operation. To do this, it is necessary to identify precisely, which
such pollers are to be polled.

® A client might want to mix deferred typed and dynamic operations. Deferred DI (in
some unholy combination of language mappings) has operations somewhat similar
to those of the typed Poller: ORB::poll_next_response and
ORB::get_next_response. It should be possible to mix the two kinds of polling:
typed and dynamic.

® Other potential happenings might occur that are susceptible to polling in current or
future CORBA. This mechanism is designed for extensibility so that other ORB
services can perform a poll as a part of the single poll operation described here.

The mechanism for generalized polling on multiple types of occurrences uses the
CORBA::PollableSet interface.

Common Object Request Broker Architecture (CORBA), v2.5 September 2001

September 2001

module CORBA {

b

interface PollableSet;

abstract valuetype Pollable {

boolean is_ready(
in unsigned long timeout
);

PollableSet create_pollable_set();

abstract valuetype DIIPollable : Pollable { };

interface PollableSet {

exception NoPossiblePollable {};
exception UnknownPollable { };

DllIPollable create_dii_pollable();
void add_pollable(

in Pollable potential
);

Pollable get_ready_pollable(
in unsigned long timeout
) raises(NoPossiblePollable);

void remove(
in Pollable potential
) raises(UnknownPollable);

unsigned short number_left();

7.4.1 Abstract Valuetype Pollable

A Pollable supports queries to seeiif it is ready to be used, and can be registered with
apollable set to alow a single client thread to block on multiple potential happenings
at the same time.

7411

is_ready

boolean is_ready(

);

in unsigned long timeout

CORBA, v2.5: Polling 7-13

7-14

74.1.2

Returns the value TRUE if and only if the specific happening represented by the
pollable is ready to be consumed. Returns the value FALSE if the pollable is not yet
ready to be consumed. If the timeout argument is the maximum value for unsigned
long, the operation will block until it can return the value TRUE indicating that its
happening is ready to be consumed. If the timeout argument is the value 0O, the
operation returns immediately.

create pollable set

PollableSet create_pollable_set();

Once thereis aPollable, it is possible to create a set of such pollables, which can be
queried or upon which a client can block. The create_pollable_set operation creates
a PollableSet object reference for an object with an empty set of pollable entities.

7.4.2 Abstract Valuetype DIlPollable

The specific Pollable that indicates interest in DIl requests. A DIIPollable can be
used in conjunction with a pollable set to allow a client to block or poll for the
completion of DIl requests, similar to the use of
CORBA::ORB::get_next_response. When the DIIPollable is returned from
PollableSet::poll, the reply to some DIl request must be ready for processing.

7.4.3 interface PollableSet

7431

7.4.3.2

The pollable set contains potential happenings for which a poll can be performed. The
client adds potential happenings to the set and later queries the set to see if any have
occurred. PollableSet is alocality constrained object.

Note — There is a factory for PollableSet on the generic Pollable interface. Some
implementation of this interface, such as a type-specific poller value, must first be
accessible before a client can create a PollableSet.

create_dii_pollable

DllIPollable create_dii_pollable();

Returns an instance of DIIPollable that can subsequently be registered to indicate
interest in replies to DIl requests.

add pollable

void add_pollable(
in Pollable potential
);

Common Object Request Broker Architecture (CORBA), v2.5 September 2001

The add_pollable operation adds a potential happening to the PollableSet. The
supplied Pollable parameter is some implementation that can be polled for readiness.
To register interest in DIl requests, an instance of DIIPollable is added to the pollable
Set.

7.4.3.3 get_ready pollable

Pollable get_ready_pollable(
in unsigned long timeout
) raises(NoPossiblePollable);

The get_ready_pollable operation asks the PollableSet if any of its potential
happenings have occurred. The timeout parameter indicates how many milliseconds
this call should wait until the response becomes available. If this timeout expires
before a reply is available, the operation raises the standard system exception
TIMEOUT. Any delegated invocations used by the implementation of this polling
operation are subject to the single timeout parameter, which supersedes any ORB or
thread-level timeout quality of service. Two specific values are of interest:
¢ 0 - the call is a non-blocking query that raises the standard system exception
NO_RESPONSE if the reply is not immediately available.
« 2%2.1 - the maximum value for unsigned long indicates no timeout should be
used. The query will not return until the reply is available.

If the PollableSet contains no potential happenings, the NoPossiblePollable
exception is raised. If an actual happening is returned, the PollableSet removes that
happening from the set. For the typed Poller, removing the happening is necessary
since its usefulness ends once the Poller completes. In the case of a DIl happening,
there may still be deferred requests outstanding; if this is the case, the client
application must add the DIIPollable again to the PollableSet.

When the get_ready_pollable operation blocks, the ORB has control of the thread
and can process any work it has (such asreceiving and dispatching requests through its
Object Adapter). The get_ready_pollable operation can be used in an “event-style
main loop” using ORB::work_pending and ORB::perform_work.

If the ORB supports multiple threads, one thread may be blocking on a PollableSet

while another is adding and removing potential happenings from the set. It is valid for
the PollableSet to change dynamically while a poll isin progress. If another thread’s
PollableSet::remove operation leaves the PollableSet empty, any blocked threads
raise the NoPossiblePollable exception.

7.4.3.4 remove

void remove(
in Pollable potential
) raises(UnknownPollable);

September 2001 CORBA, v2.5: Polling 7-15

7.4.3.5

7.5 List Operations

The remove operation deletes the potential happening identified by the potential
parameter from the PollableSet. If it was not a member of the set, the
UnknownPollable exception is raised.

number_left

unsigned short number_left();

The number_|eft operation returns the number of potential happeningsin the pollable
set. A returned value of zero means that there are no potential happenings in the set, in
which case a query on the set would raise the NoPossibleHappening exception.

The list operations use the named-val ue structure defined above.The list operations that
create NVList objects are defined in the ORB interface described in the ORB Interface
chapter, but are described in this section. The NVList interface is shown below.

interface NVList { /I PIDL
void add_item (
in Identifier item_name, // name of item
in TypeCode item_type, /l item datatype
in OpaqueValue value, /l item value
in long value_len, /I length of item value
in Flags item_flags /I item flags
);
void free ();

void free_memory ();
void get_count (
out long count / number of entries in the list
);
¥

Interface NVList is defined in the CORBA module.

7.5.1 create list

7-16

This operation, which creates a pseudo-object, is defined in the ORB interface and
excerpted below.

void create_list (//PIDL
in long count, / number of items to allocate for list
out NVList new_list // newly created list

);

This operation alocates a list and clearsit for initial use. The specified count is a
“hint” to help with the storage allocation. List items may be added to the list using the
add_item routine. Items are added starting with the “slot(),” in the next available
slot.

Common Object Request Broker Architecture (CORBA), v2.5 September 2001

An NVList is a partially opague structure. It may only be alocated via a cal to

create_list.
7.5.2 add item

void add_item (/I PIDL
in Identifier item_name, /l name of item
in TypeCode item_type, /l item datatype
in OpaqueValue value, /l item value
in long value_len, /I length of item value
in Flags item_flags /I item flags

);

This operation adds a new item to the indicated list. The item is added after the
previously added item.

In addition to the argument modes defined in Section7.1.1, “Common Data
Structures,” on page 7-2, item_flags may also take the following flag values:
IN_COPY_VALUE, DEPENDENT_LIST. The argument passing flags defined in
Section 7.1.1, “Common Data Structures,” on page 7-2 may be used here to indicate
the intended parameter passing mode of an argument.

If the IN_COPY_VALUE flag is set, a copy of the argument value is made and used
instead.

If alist structure is added as an item (e.g., a “sublist”), the DEPENDENT_LIST flag
may be specified to indicate that the sublist should be freed when the parent list is
freed.

7.5.3 free

void free (); /I PIDL

This operation frees the list structure and any associated memory (an implicit call to
the list free_memory operation is done).

7.5.4 free_memory

void free_memory (); /l PIDL

This operation frees any dynamically allocated out-arg memory associated with the
list. The list structure itself is not freed.

7.5.5 get_count

void get_count (/I PIDL
out long count /I number of entries in the list

);

September 2001 CORBA, v2.5: List Operations 7-17

7-18

This operation returns the total number of items added to the list.

7.5.6 create operation list

This operation, which creates a pseudo-object, is defined in the ORB interface.

void create_operation_list (/l PIDL
in OperationDef oper, /I operation
out NVList new_list /l argument definitions
);

This operation returns an NVList initialized with the argument descriptions for a given
operation. The information is returned in a form that may be used in Dynamic
Invocation requests. The arguments are returned in the same order as they were defined
for the operation.

The list free operation is used to free the returned information.

Common Object Request Broker Architecture (CORBA), v2.5 September 2001

8.1 Introduction

September 2001

Dynamic Skeleton Interface 8

The Dynamic Skeleton Interface (DSI) allows dynamic handling of object invocations.
That is, rather than being accessed through a skeleton that is specific to a particular
operation, an object’s implementation is reached through an interface that provides
access to the operation name and parameters in a manner analogous to the client side's
Dynamic Invocation Interface. Purely static knowledge of those parameters may be
used, or dynamic knowledge (perhaps determined through an Interface Repository)
may also be used, to determine the parameters.

Contents

This chapter contains the following sections.

Section Title Page
“Introduction” 81
“Overview” 8-2
“ ServerRequestPseudo-Object” 8-3
“DSI: Language Mapping” 8-4

The Dynamic Skeleton Interface is a way to deliver requests from an ORB to an object
implementation that does not have compile-time knowledge of the type of the object it
isimplementing. This contrasts with the type-specific, OMG IDL-based skeletons, but
serves the same architectural role.

Common Object Request Broker Architecture (CORBA), v2.5 8-1

8-2

DSl is the server side’s analogue to the client side’s Dynamic Invocation Interface
(D). Just as the implementation of an object cannot distinguish whether its client is
using type-specific stubs or the DII, the client who invokes an object cannot determine
whether the implementation is using atype-specific skeleton or the DSI to connect the
implementation to the ORB.

Dynamic Object Implementation

Dynamy€ Skeleton Skeleton

/ Object Adapter

/ ORB Core

8.2 Overview

Figure8-1 Requests are delivered through skeletons, including dynamic ones

DsSl, like DII, has many applications beyond interoperability solutions. Uses include
interactive software development tools based on interpreters, debuggers and monitors
that want to dynamically interpose on objects, and support for dynamically-typed
languages such as LISP.

The basic idea of the DSI is to implement all requests on a particular object by having
the ORB invoke the same upcall routine, a Dynamic |mplementation Routine (DIR).
Since in any language binding all DIRs have the same signature, a single DIR could be
used as the implementation for many objects, with different interfaces.

The DIR is passed all the explicit operation parameters, and an indication of the object
that was invoked and the operation that was requested. The information is encoded in
the request parameters. The DIR can use the invoked object, its object adapter, and the
Interface Repository to learn more about the particular object and invocation. It can
access and operate on individual parameters. It can make the same use of an object
adapter as other object implementations.

This chapter describes the elements of the DSI that are common to all object adapters
that provide a DSI. See Section 11.6.11, “Single Servant, Many Objects and Types,
Using DSI,” on page 11-61 for the specification of the DSI for the Portable Object
Adapter.

Common Object Request Broker Architecture (CORBA), v2.5 September 2001

8.3 ServerRequestPseudo-Object

September 2001

8.3.1 ExplicitRequest Sate: Server RequestPseudo-Object

The ServerReqguest pseudo-object captures the explicit state of arequest for the DSI,
analogous to the Request pseudo-object in the DII. The object adapter dispatches an
invocation to a DSI-based object implementation by passing an instance of
ServerRequest to the DIR associated with the object implementation. The following
shows how it provides access to the request information:

module CORBA {

interface ServerRequest { // PIDL

readonly attribute Identifier operation;
void arguments(inout NVList nv);
Context ctx();
void set_result(in Any val);
void set_exception(in Any val);

5

b

The identity and/or reference of the target object of the invocation is provided by the
object adapter and its language mapping. In the context of a bridge, the target object will
typically be a proxy for an object in some other ORB.

The operation attribute provides the identifier naming the operation being invoked;
according to OMG IDL’s rules, these names must be unigue among all operations
supported by the object’s “most-derived” interface. Note that the operation names for
getting and setting attributes are _get_<attribute_name> and
set<attribute_name>, respectively. The operation attribute can be accessed by the
DIR at any time.

Operation parameter types will be specified, and “in” and “inout” argument values will
be retrieved, with arguments. Unless it calls set_exception, the DIR must call
arguments exactly once, even if the operation signature contains no parameters. Once
arguments or set_exception has been caled, calling arguments on the same
ServerRequest will result in aBAD_INV_ORDER system exception with standard
minor code 7. The DIR must pass in to arguments an NVList initialized with
TypeCodes and Flags describing the parameter types for the operation, in the order in
which they appear in the IDL specification (left to right). A potentially-different NVList
will be returned from arguments, with the “in” and “inout” argument values supplied.
If it does not call set_exception, the DIR must supply the returned NVList with return
values for any “out” arguments before returning, and may aso change the return values
for any “inout” arguments.

When the operation is not an attribute access, and the operation's IDL definition contains
a context expression, ctx will return the context information specified in IDL for the
operation. Otherwise it will return a nil Context reference. Calling ctx before
arguments has been called or after ctx, set_result, or set_exception has been
called will result ina BAD_INV_ORDER system exception with standard minor code 8.

CORBA, v2.5: ServerRequestPseudo-Object 8-3

The set_result operation is used to specify any return value for the call. Unless
set_exception is called, if the invoked operation has a non-void result type,
set_result must be called exactly once before the DIR returns. |f the operation has a
void result type, set_result may optionaly be called once with an Any whose type is
tk_void. Calling set_result beforearguments has been caled or after set_result or
set_exception has been caled will result in aBAD_INV_ORDER system exception
with standard minor code 8. Calling set_result without having previously called ctx when
the operation IDL contains a context expression will result in a MARSHAL system
exception with standard minor code 2. If the NVList passed to arguments did not
describe al parameters passed by theclient, it may result in a MARSHAL system
exception with standard minor code 3.

The DIR may cdl set_exception at any time to return an exception to the client. The
Any passed to set_exception must contain either a system exception or one of the user
exceptions specified in the raises expression of theinvoked operation’s IDL definition.
Passing in an Any that does not contain an exception will result in a BAD_PARAM
system exception with standard minor code 21. Passing in an unlisted user exception
will result in either the DIR receiving a BAD_PARAM system exception with standard
minor code 22 or in the client receiving an UNKNOWN system exception with standard
minor code 1.

See each language mapping for a description of the memory management aspects of the
parameters to the ServerRequest operations.

8.4 DS: Language Mapping

Because DS is defined in terms of a pseudo-object, special attention must be paid to it
in the language mapping. This section provides general information about mapping the
Dynamic Skeleton Interface to programming languages. Each language provides its
own mapping for DSI.

8.4.1 ServerRegquest’s Handling of Operation Parameters

There is no requirement that a ServerRequest pseudo-object be usable as a general
argument in OMG IDL operations, or listed in “orb.idl.”

The client-side memory management rules normally applied to pseudo-objects do not
strictly apply to a ServerRequest’s handling of operation parameters. Instead, the
memory associated with parameters follows the memory management rules applied to
data passed from skeletons into statically typed implementation routines, and vice
versa.

8.4.2 Registering Dynamic I mplementation Routines

In an ORB implementation, the Dynamic Skeleton Interface is supported entirely through
the Object Adapter. An Object Adapter does not have to support the Dynamic Skeleton
Interface but, if it does, the Object Adapter is responsible for the details.

Common Object Request Broker Architecture (CORBA), v2.5 September 2001

9.1 Overview

September 2001

DynamicManagementof AnyValues 9

An any can be passed to a program that doesn’t have any static information for the
type of the any (code generated for the type by an IDL compiler has not been
compiled with the object implementation). As a result, the object receiving the any
does not have a portable method of using it.

The facility presented here enablestraversal of the data value associated with an any at
runtime and extraction of the primitive constituents of the data value. Thisis especialy
helpful for writing powerful generic servers (bridges, event channels supporting
filtering).

Similarly, this facility enables the construction of an any at runtime, without having
static knowledge of its type. This is especially helpful for writing generic clients
(bridges, browsers, debuggers, user interface tools).

Contents

This chapter contains the following sections.

Section Title Page
“Overview” 9-1
“DynAny API” 9-3
“Usage in C++ Language” 9-25

Unless explicitly stated otherwise, all IDL presented in Section 9.1, “Overview,” on
page 9-1 through Section 9.3, “Usage in C++ Language,” on page 9-25 is part of the
DynamicAny module.

Common Object Request Broker Architecture (CORBA), v2.5 9-1

9-2

Any values can be dynamically interpreted (traversed) and constructed through
DynAny objects. A DynAny object is associated with a data value, which corresponds
to a copy of the value inserted into an any.

A DynAny object may be viewed as an ordered collection of component DynAnys.
For DynAnys representing a basic type, such as long, or atype without components,
such as an empty exception, the ordered collection of components is empty. Each
DynAny object maintains the notion of a current position into its collection of
component DynAnys. The current position is identified by an index value that runs
from 0 to n—1, where n is the number of components. The special index value -1
indicates a current position that points nowhere. For values that cannot have a current
position (such as an empty exception), the index value is fixed at —1. If a DynAny is
initialized with a value that has components, the index isinitialized to 0. After creation
of an uninitialized DynAny (that is, aDynAny that has no value but a TypeCode that
permits components), the current position depends on the type of value represented by
the DynAny. (The current position is set to 0 or -1, depending on whether the new
DynAny gets default values for its components.)

The iteration operations rewind, seek, and next can be used to change the current
position and the current_component operation returns the component at the current
position. The component_count operation returns the number of components of a
DynAny. Collectively, these operations enable iteration over the components of a
DynAny, for example, to (recursively) examine its contents.

A constructed DynAny object is a DynAny object associated with a constructed type.
There is a different interface, inheriting from the DynAny interface, associated with
each kind of constructed type in IDL (fixed, enum, struct, sequence, union, array,
exception, and valuetype).

A constructed DynAny object exports operations that enable the creation of new
DynAny objects, each of them associated with a component of the constructed data
value.

As an example, a DynStruct is associated with a struct value. This means that the
DynStruct may be seen as owning an ordered collection of components, one for each
structure member. The DynStruct object exports operations that enable the creation of
new DynAny objects, each of them associated with a member of the struct.

If a DynAny object has been obtained from another (constructed) DynAny object,
such as a DynAny representing a structure member that was created from a
DynStruct, the member DynAny is logically contained in the DynStruct.

Destroying a top-level DynAny object (one that was not obtained as a component of
another DynAny) also destroys any component DynAny objects obtained from it.
Destroying a non-top level DynAny object does nothing. Invoking operations on a
destroyed top-level DynAny or any of its descendants raises OBJECT_NOT_EXIST.
Note that ssimply releasing all references to a DynAny object does not del ete the
DynAny or components; each DynAny created with one of the create operations or
with the copy operation must be explicitly destroyed to avoid memory leaks.

Common Object Request Broker Architecture (CORBA), v2.5 September 2001

If the programmer wants to destroy a DynAny object but still wants to manipulate
some component of the data value associated with it, then he or she should first create
a DynAny for the component and, after that, make a copy of the created DynAny
object.

The behavior of DynAny objects has been defined in order to enable efficient
implementations in terms of allocated memory space and speed of access. DynAny
objects are intended to be used for traversing values extracted from anys or
constructing values of anys at runtime. Their use for other purposes is not
recommended.

9.2 DynAnyAPI

The DynAny API comprises the following IDL definitions, located in the
DynamicAny module:

//'1IDL

/I File: DynamicAny.idl

#ifndef _DYNAMIC_ANY_IDL_
#define _DYNAMIC_ANY_IDL_
#pragma prefix “omg.org”
#include <orb.idl>

module DynamicAny {

interface DynAny {
exception InvalidValue {};
exception TypeMismatch {};

CORBA::TypeCode type();

void assign(in DynAny dyn_any) raises(TypeMismatch);
void from_any(in any value) raises(TypeMismatch, Invalidvalue);
any to_any();

boolean equal(in DynAny dyn_any);

void destroy();
DynAny copy();

void insert_boolean(in boolean value)
raises(TypeMismatch, InvalidValue);
void insert_octet(in octet value)
raises(TypeMismatch, InvalidValue);
void insert_char(in char value)
raises(TypeMismatch, InvalidValue);
void insert_short(in short value)
raises(TypeMismatch, InvalidValue);
void insert_ushort(in unsigned short value)
raises(TypeMismatch, InvalidValue);

September 2001 CORBA, v2.5: DynAny API 9-3

void insert_long(in long value)
raises(TypeMismatch, InvalidValue);

void insert_ulong(in unsigned long value)
raises(TypeMismatch, InvalidValue);

void insert_float(in float value)
raises(TypeMismatch, InvalidValue);

void insert_double(in double value)
raises(TypeMismatch, InvalidValue);

void insert_string(in string value)
raises(TypeMismatch, InvalidValue);

void insert_reference(in Object value)
raises(TypeMismatch, InvalidValue);

void insert_typecode(in CORBA::TypeCode value)
raises(TypeMismatch, InvalidValue);

void insert_longlong(in long long value)
raises(TypeMismatch, InvalidValue);

void insert_ulonglong(in unsigned long long value)
raises(TypeMismatch, InvalidValue);

void insert_longdouble(in long double value)
raises(TypeMismatch, InvalidValue);

void insert_wchar(in wchar value)
raises(TypeMismatch, InvalidValue);

void insert_wstring(in wstring value)
raises(TypeMismatch, InvalidValue);

void insert_any(in any value)
raises(TypeMismatch, InvalidValue);

void insert_dyn_any(in DynAny value)
raises(TypeMismatch, InvalidValue);

void insert_val(in ValueBase value)
raises(TypeMismatch, InvalidValue);

boolean get_boolean()

raises(TypeMismatch, InvalidValue);
octet get_octet()

raises(TypeMismatch, InvalidValue);
char get_char()

raises(TypeMismatch, InvalidValue);
short get_short()

raises(TypeMismatch, InvalidValue);
unsigned short get_ushort()

raises(TypeMismatch, InvalidValue);
long get_long()

raises(TypeMismatch, InvalidValue);
unsigned long get_ulong()

raises(TypeMismatch, InvalidValue);
float get_float()

raises(TypeMismatch, InvalidValue);
double get_double()

raises(TypeMismatch, InvalidValue);
string get_string()

raises(TypeMismatch, InvalidValue);

Common Object Request Broker Architecture (CORBA), v2.5 September 2001

Object get_reference()
raises(TypeMismatch, InvalidValue);
CORBA::TypeCode get_typecode()
raises(TypeMismatch, InvalidValue);
long long get_longlong()
raises(TypeMismatch, InvalidValue);
unsigned long long get_ulonglong()
raises(TypeMismatch, InvalidValue);
long double get_longdouble()
raises(TypeMismatch, InvalidValue);
wchar get_wchar()
raises(TypeMismatch, InvalidValue);
wstring get_wstring()
raises(TypeMismatch, InvalidValue);
any get_any()
raises(TypeMismatch, InvalidValue);
DynAny get_dyn_any()
raises(TypeMismatch, InvalidValue);
ValueBase get_val()
raises(TypeMismatch, InvalidValue);

boolean seek(in long index);

void rewind();

boolean next();

unsigned long component_count();

DynAny current_component() raises(TypeMismatch);

void insert_abstract(in CORBA::AbstractBase value)
raises(TypeMismatch, InvalidValue);

CORBA::AbstractBase get_abstract()
raises(TypeMismatch, InvalidValue);

void insert_boolean_seq(in CORBA::BooleanSeq value)
raises(TypeMismatch, InvalidValue);

void insert_octet_seq(in CORBA::OctetSeq value)
raises(TypeMismatch, InvalidValue);

void insert_char_seq(in CORBA::CharSeq value)
raises(TypeMismatch, InvalidVvalue);

void insert_short_seq(in CORBA::ShortSeq value)
raises(TypeMismatch, InvalidVvalue);

void insert_ushort_seq(in CORBA::UShortSeq value)
raises(TypeMismatch, InvalidValue);

void insert_long_seq(in CORBA::LongSeq value)
raises(TypeMismatch, InvalidValue);

void insert_ulong_seq(in CORBA::ULongSeq value)
raises(TypeMismatch, InvalidValue);

void insert_float_seq(in CORBA::FloatSeq value)
raises(TypeMismatch, InvalidValue);

void insert_double_seq(in CORBA::DoubleSeq value)
raises(TypeMismatch, InvalidValue);

void insert_longlong_seq(in CORBA::LongLongSeq value)

September 2001 CORBA, v2.5: DynAny API 9-5

raises(TypeMismatch, InvalidValue);

void insert_ulonglong_seq(in CORBA::ULongLongongSeq value)
raises(TypeMismatch, InvalidValue);

void insert_longdouble_seq(in CORBA::LongDoubleSeq value)
raises(TypeMismatch, InvalidValue);

void insert_wchar_seq(in CORBA::WCharSeq value)
raises(TypeMismatch, InvalidValue);

CORBA::BooleanSeq get_boolean_seq()
raises(TypeMismatch, InvalidValue);
CORBA::OctetSeq get_octet_seq()
raises(TypeMismatch, InvalidValue);
CORBA::CharSeq get_char_seq()
raises(TypeMismatch, InvalidValue);
CORBA::ShortSeq get_short_seq()
raises(TypeMismatch, InvalidValue);
CORBA::UShortSeq get_ushort_seq()
raises(TypeMismatch, InvalidValue);
CORBA::LongSeq get_long_seq()
raises(TypeMismatch, InvalidValue);
CORBA::ULongSeq get_ulong_seq()
raises(TypeMismatch, InvalidValue);
CORBA::FloatSeq get_float_seq()
raises(TypeMismatch, InvalidVvalue);
CORBA::DoubleSeq get_double_seq()
raises(TypeMismatch, InvalidValue);
CORBA::LongLongSeq get_longlong_seq()
raises(TypeMismatch, InvalidValue);
CORBA::ULongLongongSeq get_ulonglong_seq()
raises(TypeMismatch, InvalidVvalue);
CORBA::LongDoubleSeq get_longdouble_seq()
raises(TypeMismatch, InvalidVvalue);
CORBA::WCharSeq get_wchar_seq()
raises(TypeMismatch, InvalidVvalue);

b

interface DynFixed : DynAny {
string get_value();
boolean set_value(in string val) raises(TypeMismatch, Invalidvalue);

b

interface DynEnum : DynAny {
string get_as_string();
void set_as_string(in string value) raises(InvalidValue);
unsigned long get_as_ulong();
void set_as_ulong(in unsigned long value) raises(InvalidValue);

5
typedef string FieldName;

struct NameValuePair {

9-6 Common Object Request Broker Architecture (CORBA), v2.5 September 2001

FieldName id;
any value;

¥
typedef sequence<NameValuePair> NameValuePairSeq;

struct NameDynAnyPair {
FieldName id;
DynAny value;

5
typedef sequence<NameDynAnyPair> NameDynAnyPairSeq;

interface DynStruct : DynAny {

FieldName current_member_name()
raises(TypeMismatch, InvalidValue);

CORBA::TCKind current_member_kind()
raises(TypeMismatch, InvalidValue);

NameValuePairSeq get_members();

void set_members(in NameValuePairSeq value)
raises(TypeMismatch, InvalidValue);

NameDynAnyPairSeq get_members_as_dyn_any();

void set_members_as_dyn_any(in NameDynAnyPairSeq value)
raises(TypeMismatch, InvalidValue);

b

interface DynUnion : DynAny {
DynAny get_discriminator();
void set_discriminator(in DynAny d) raises(TypeMismatch);
void set_to_default_member() raises(TypeMismatch);
void set_to_no_active_member() raises(TypeMismatch);
boolean has_no_active_member();
CORBA::TCKind discriminator_kind();
DynAny member() raises(InvalidValue);
FieldName member_name() raises(InvalidVvalue);
CORBA::TCKind member_kind() raises(InvalidValue);

b

typedef sequence<any> AnySeq;
typedef sequence<DynAny> DynAnySeq;

interface DynSequence : DynAny {

unsigned long get_length();

void set_length(in unsigned long len) raises(InvalidValue);

AnySeq get_elements();

void set_elements(in AnySeq value)
raises(TypeMismatch, InvalidValue);

DynAnySeq get_elements_as_dyn_any();

void set_elements_as_dyn_any(in DynAnySeq value)
raises(TypeMismatch, InvalidValue);

September 2001 CORBA, v2.5: DynAny API 9-7

interface DynArray : DynAny {
AnySeq get_elements();
void set_elements(in AnySeq value)
raises(TypeMismatch, InvalidValue);
DynAnySeq get_elements_as_dyn_any();
void set_elements_as_dyn_any(in DynAnySeq value)
raises(TypeMismatch, InvalidValue);

b

interface DynValueCommon : DynAny {
boolean is_null();
void set_to_null();
void set_to_value();

b

interface DynValue : DynValueCommon {

FieldName current_member_name()
raises(TypeMismatch, InvalidValue);

CORBA::TCKind current_member_kind()
raises(TypeMismatch, InvalidValue);

NameValuePairSeq get_members()
raises(InvalidValue);

void set_members(in NameValuePairSeq value)
raises(TypeMismatch, InvalidVvalue);

NameDynAnyPairSeq get_members_as_dyn_any()
raises(InvalidValue);

void set_members_as_dyn_any(in NameDynAnyPairSeq value)

raises(TypeMismatch, InvalidValue);

b

interface DynValueBox : DynValueCommon {

any get_boxed_value()
raises(InvalidValue);

void set_boxed_value(in any boxed) raises(TypeMismatch);

DynAny get_boxed_value_as_dyn_any()
raises(InvalidValue);

void set_boxed_value_as_dyn_any(in DynAny boxed)
raises(TypeMismatch);

b

interface DynAnyFactory {
exception InconsistentTypeCode {};
DynAny create_dyn_any(in any value)
raises(InconsistentTypeCode);
DynAny
create_dyn_any_from_type_code(in CORBA::TypeCode type)
raises(InconsistentTypeCode);
3

}; // module DynamicAny
#endif // _DYNAMIC_ANY_IDL_

Common Object Request Broker Architecture (CORBA), v2.5 September 2001

September 2001

9.2.1 Locality and usage constraints

DynAny and DynAnyFactory objects are intended to be local to the process in which
they are created and used. This means that references to DynAny and
DynAnyFactory objects cannot be exported to other processes, or externalized with
ORB::object_to_string. If any attempt is made to do so, the offending operation will
raise a MARSHAL system exception.

Since their interfaces are specified in IDL, DynAny objects export operations defined
in the standard CORBA::Object interface. However, any attempt to invoke operations
exported through the Object interface may raise the standard NO_IMPLEMENT
exception.

An attempt to use a DynAny object with the DIl may raise the NO_IMPLEMENT
exception.

9.2.2 Creating a DynAny object

A DynAny object can be created as a result of:
® invoking an operation on an existing DynAny object
® invoking an operation on a DynAnyFactory object

A constructed DynAny object supports operations that enable the creation of new
DynAny objects encapsulating access to the value of some constituent. DynAny
objects also support the copy operation for creating new DynAny objects.

In addition, DynAny objects can be created by invoking operations on the
DynAnyFactory object. A reference to the DynAnyFactory object is obtained by
calling CORBA::ORB::resolve_initial_references with the identifier parameter
set to “DynAnyFactory”.

interface DynAnyFactory {
exception InconsistentTypeCode {};
DynAny create_dyn_any(in any value)
raises(InconsistentTypeCode);
DynAny create_dyn_any from_type_code(in CORBA::TypeCode type)
raises(InconsistentTypeCode);

b

The create_dyn_any operation creates a new DynAny object from an any value. A
copy of the TypeCode associated with the any value is assigned to the resulting
DynAny object. The value associated with the DynAny object is a copy of the value
in the original any. The create_dyn_any operation sets the current position of the
created DynAny to zero if the passed value has components; otherwise, the current
position is set to —1. The operation raises InconsistentTypeCode if value has a
TypeCode with a TCKind of tk_Principal or tk_native.

CORBA, v2.5: DynAny API 9-9

9-10

The create_dyn_any from_type code operation creates a DynAny from a
TypeCode. Depending on the TypeCode, the created object may be of type
DynAny, or one of its derived types, such as DynStruct. The returned reference can
be narrowed to the derived type.

For both create_dyn_any and create_dyn_any_from_type_code, the source type
code is copied into the DynAny object unchanged. This means that, after creation of a
DynAny aobject, the source type code and the type code inside the DynAny must
compare equal as determined by TypeCode::equal. The same is true for type codes
extracted from a DynAny with the type operation and for type codes that are part of
any values that are constructed from a DynAny: such type codes compare equal to to
the type code that was originally used to create the DynAny. For a given parent
DynAny with its associated TypeCode, the TypeCode of a component DynAny
also compares equal to the corresponding results of the member_type or
component_type operation on the parent TypeCode.

Creation of DynAnys with TCKind tk_null and tk_void islegal and resultsin the
creation of a DynAny without a value and with zero components.

In all cases, a DynAny constructed from a TypeCode has an initial default value. The
default values of basic types are:

® FALSE for Boolean

® zero for numeric types

® zero for types octet, char, and wchar

® the empty string for string and wstring

® nil for object references

® atype code with a TCKind value of tk_null for type codes

® for any values, an any containing a type code with a TCKind vaue of tk_null
type and no value

For complex types, creation of the corresponding DynAny assigns a default value as
follows:

®* For DynSequence, the operation sets the current position to —1 and creates an
empty sequence.

® For DynEnum, the operation sets the current position to —1 and sets the value of
the enumerator to the first enumerator value indicated by the TypeCode.

® For DynFixed, operations set the current position to —1 and sets the value zero.

® For DynStruct, the operation sets the current position to —1 for empty exceptions
and to zero for al other TypeCodes. The members (if any) are (recursively)
initialized to their default values.

® For DynArray, the operation sets the current position to zero and (recursively)
initializes elements to their default value.

Common Object Request Broker Architecture (CORBA), v2.5 September 2001

9

® For DynUnion, the operation sets the current position to zero. The discriminator
value is set to a value consistent with the first named member of the union. That
member is activated and (recursively) initialized to its default value.

®* DynValue and DynValueBox are initialized to a null value.

Dynamic interpretation of an any usually involves creating a DynAny object using
DynAnyFactory::create_dyn_any as thefirst step. Depending on the type of the
any, the resulting DynAny object reference can be narrowed to a DynFixed,
DynStruct, DynSequence, DynArray, DynUnion, DynEnum, or DynValue
object reference.

Dynamic creation of an any involves creating a DynAny object using
DynAnyFactory::create_dyn_any_from_type_code, passing the TypeCode
associated with the value to be created. The returned reference is narrowed to one of
the complex types, such as DynStruct, if appropriate. Then, the value can be
initialized by means of invoking operations on the resulting object. Findly, theto_any
operation can be invoked to create an any value from the constructed DynAny.

9.2.3 The DynAny interface

The following operations can be applied to a DynAny object:

® Obtaining the TypeCode associated with the DynAny object.

® Generating an any value from the DynAny object.

® Comparing two DynAny objects for equality.

® Destroying the DynAny object.

® Creating a DynAny object as a copy of the DynAny object.

® |nserting/getting a value of some basic type into/from the DynAny object.
® |terating through the components of a DynAny.

® |nitializing a DynAny object from another DynAny object.

® |nitializing a DynAny object from an any value.

9.2.3.1 Obtaining the TypeCode associated with a DynAny object

CORBA::TypeCode type();

A DynAny object is created with a TypeCode value assigned to it. This TypeCode
value determines the type of the value handled through the DynAny object. The type
operation returns the TypeCode associated with a DynAny object.

Notethat the TypeCode associated with aDynAny object isinitialized at the time the
DynAny is created and cannot be changed during lifetime of the DynAny abject.

September 2001 CORBA, v2.5: DynAny API 9-11

9-12

9.23.2

9.2.3.3

9.2.34

9.2.3.5

Initializing a DynAny object fromanother DynAny object

void assign(in DynAny dyn_any) raises(TypeMismatch);

The assign operation initializes the value associated with a DynAny object with the
value associated with another DynAny object.

If the type of the passed DynAny is not equivalent to the type of target DynAny, the
operation raises TypeMismatch. The current position of the target DynAny is set to
zero for values that have components and to —1 for values that do not have
components.

Initializing a DynAny object froman any value

void from_any(in any value) raises(TypeMismatch, Invalidvalue);

The from_any operation initializes the value associated with a DynAny object with
the value contained in an any.

If the type of the passed Any is not equivalent to the type of target DynAny, the
operation raises TypeMismatch. If the passed Any does not contain a legal value
(such as a null string), the operation raises InvalidValue. The current position of the
target DynAny is set to zero for values that have components and to —1 for values that
do not have components.

Generating an any value froma DynAny object

any to_any();

The to_any operation creates an any value from a DynAny object. A copy of the
TypeCode associated with the DynAny object is assigned to the resulting any. The
value associated with the DynAny object is copied into the any.

Comparing DynAny values

boolean equal(in DynAny dyn_any);

The equal operation comparestwo DynAny values for equality and returns true of the
DynAnys are equal, false otherwise. Two DynAny values are equal if their
TypeCodes are equivalent and, recursively, all component DynAnys have equal
values. The current position of the two DynAnys being compared has no effect on the
result of equal. To determine equality of object references, the equal operation uses
Object::is_equivalent. To determine equality of type codes, the equal operation uses
TypeCode::equivalent.

Common Object Request Broker Architecture (CORBA), v2.5 September 2001

September 2001

0.2.3.6

9.2.3.7

9.2.3.8

Note — If two DynAnys happen to contain *values* of type TypeCode, these values
are compared using TypeCode::equal. The type codes that *describe* the values of
DynAnys are always compared using TypeCode::equivalent, however. (In the case
of comparing two DynAnys containing type code values, the type codes describing
these type code values are tk_TypeCode in each DynAny, and will therefore always
compare as equivalent.)

Destroying a DynAny object

void destroy();

The destroy operation destroys a DynAny object. This operation frees any resources
used to represent the data value associated with a DynAny object. destroy must be
invoked on references obtained from one of the creation operations on the
DynAnyFactory interface or on a reference returned by DynAny::copy to avoid
resource leaks. Invoking destroy on component DynAny objects (for example, on
objects returned by the current_component operation) does nothing.

Destruction of a DynAny object implies destruction of all DynAny objects obtained
from it. That is, references to components of a destroyed DynAny become invalid;
invocations on such references raise OBJECT_NOT_EXIST.

It is possible to manipulate a component of a DynAny beyond the life time of the
DynAny from which the component was obtained by making acopy of the component
with the copy operation before destroying the DynAny from which the component
was obtained.

Creating a copy of a DynAny object

DynAny copy();

The copy operation creates a new DynAny object whose value is a deep copy of the
DynAny on which it is invoked. The operation is polymorphic, that is, invoking it on
one of the types derived from DynAny, such as DynStruct, creates the derived type
but returns its reference as the DynAny base type.

Accessing a value of some basic typein a DynAny object

The insert and get operations enable insertion/extraction of basic data type values
into/from a DynAny object.

Both bounded and unbounded strings are inserted using insert_string and
insert_wstring. These operations raise the InvalidValue exception if the string
inserted is longer than the bound of a bounded string.

Calling an insert or get operation on a DynAny that has components but has a current
position of -1 raises InvalidValue.

CORBA, v2.5: DynAny API 9-13

9-14

Get operations raise TypeMismatch if the accessed component in theDynAny isof a
type that is not equivalent to the requested type. (Note that get_string and
get_wstring are used for both unbounded and bounded strings.)

A type is consistent for inserting or extracting avalue if its TypeCode is equivalent to
the TypeCode contained in the DynAny or, if the DynAny has components, is
equivalent to the TypeCode of the DynAny at the current position.

The get_dyn_any and insert_dyn_any operations are provided to dea with any
values that contain another any. The operations behave identically to get_any and
insert_any, but use parameters of type DynAny (instead of any); they are useful to
avoid otherwise redundant conversions between any and DynAny.

Calling an insert or get operation leaves the current position unchanged.

These operations are necessary to handle basic DynAny objects but are also helpful to
handle constructed DynAny objects. Inserting a basic data type value into a
constructed DynAny object implies initializing the current component of the
constructed data value associated with the DynAny object. For example, invoking
insert_boolean on aDynStruct implies inserting a boolean data value at the current
position of the associated struct data value. If dyn_const r uct pointsto a
constructed DynAny object, then:

result = dyn_construct->get_bool ean();

has the same effect as:

Dynam cAny: : DynAny_var tenp =
dyn_construct->current_conponent () ;
result = tenp->get_bool ean();

Calling an insert or get operation on a DynAny whose current component itself has
components raises TypeMismatch.

In addition, availability of these operations enable the traversal of anys associated with
sequences of basic data types without the need to generate a DynAny object for each
element in the sequence.

In the same way that basic types are inserted/extracted from a DynAny object, arrays
or sequences of basic types can be inserted/extracted from a DynAny. For example,
the get_boolean_seq operation extracts a sequence of booleans from a DynAny
that contains either a sequence or an array of booleans, and the
insert_boolean_seq operation stores the sequence back into the DynAny.

The TypeCode of the DynAny, or the TypeCode of the component at the current
position of the DynAny, must be equivalent to a sequence or array TypeCode with
the basic type as its element, otherwise the operations raise TypeMismatch. For the
insert operations, if the length of the sequence is incompatible with a bounded
sequence or array represented by the DynAny, then the operations raise InvalidValue.

Common Object Request Broker Architecture (CORBA), v2.5 September 2001

9.2.3.9 lIterating through components of a DynAny

The DynAny interface allows aclient to iterate through the components of the values
pointed to by DynStruct, DynSequence, DynArray, DynUnion, DynAny, and
DynValue objects.

As mentioned previously, a DynAny object may be seen as an ordered collection of
components, together with a current position.

boolean seek(in long index);

The seek operation sets the current position to index. The current position is indexed
0 to n—1, that is, index zero corresponds to the first component. The operation returns
true if the resulting current position indicates a component of the DynAny and false if
index indicates a position that does not correspond to a component.

Calling seek with a negative index islegal. It sets the current position to—1 to indicate
no component and returns false. Passing a hon-negative index value for a DynAny that
does not have a component at the corresponding position sets the current position to —
1 and returns false.

void rewind();

The rewind operation is equivalent to calling seek(0);

boolean next();

The next operation advances the current position to the next component. The operation
returns true while the resulting current position indicates a component, false otherwise.
A false return vaue leaves the current position at —1. Invoking next on a DynAny
without components leaves the current position at —1 and returns false.

unsigned long component_count();

The component_count operation returns the number of components of a DynAny.
For a DynAny without components, it returns zero. The operation only counts the
components at the top level. For example, if component_count isinvoked on a
DynStruct with a single member, the return value is 1, irrespective of the type of the
member.

For sequences, the operation returns the current number of elements. For structures,
exceptions, and valuetypes, the operation returns the number of members. For arrays,
the operation returns the number of elements. For unions, the operation returns 2 if the
discriminator indicates that a named member is active; otherwise, it returns 1. For
DynFixed and DynEnum, the operation returns zero.

DynAny current_component() raises(TypeMismatch);

The current_component operation returns the DynAny for the component at the
current position. It does not advance the current position, so repeated calls to
current_component without an intervening call to rewind, next, or seek return the
same component.

September 2001 CORBA, v2.5: DynAny API 9-15

9-16

The returned DynAny object reference can be used to get/set the value of the current
component. If the current component represents a complex type, the returned reference
can be narrowed based on the TypeCode to get the interface corresponding to the to
the complex type.

Calling current_component on a DynAny that cannot have components, such as a
DynEnum or an empty exception, raises TypeMismatch. Calling
current_component on a DynAny whose current position is —1 returns a nil
reference.

The iteration operations, together with current_component, can be used to
dynamically compose an any value. After creating a dynamic any, such as a
DynStruct, current_component and next can be used to initialize al the
components of the value. Once the dynamic value is completely initialized, to_any
creates the corresponding any value.

9.2.4 The DynFixed Interface

DynFixed objects are associated with values of the IDL fixed type.

interface DynFixed : DynAny {
string get_value();
boolean set_value(in string val)
raises (TypeMismatch, InvalidValue);

b

Because IDL does not have a generic type that can represent fixed types with arbitrary
number of digits and arbitrary scale, the operations use the IDL string type.

The get_value operation returns the value of a DynFixed.

The set_value operation sets the value of the DynFixed. The val string must contain
afixed string constant in the same format as used for IDL fixed-point literals.
However, thetrailing d or D isoptional. If val has more fractional digits than specified
by the scale of the DynFixed, the extra digits are truncated. If the truncated value has
more digits than the DynFixed, the operation raises InvalidValue. If the value is not
too large, set_value returns TRUE if no truncation was required, FALSE otherwise.
The return value is TRUE if val can be represented as the DynFixed without loss of
precision. If val has more fractional digits than can be represented in the DynFixed,
fractional digits are truncated and the return value is FALSE. If val does not contain a
valid fixed-point literal or contains extraneous characters other than leading or trailing
white space, the operation raises TypeMismatch.

9.2.5 The DynEnum interface

DynEnum objects are associated with enumerated values.
interface DynEnum : DynAny {

string get_as_string();
void set_as_string(in string value) raises(InvalidValue);

Common Object Request Broker Architecture (CORBA), v2.5 September 2001

unsigned long get_as_ulong();
void set_as_ulong(in unsigned long value) raises(InvalidValue);

¥
The get_as_string operation returns the value of the DynEnum asan IDL identifier.

The set_as_string operation sets the value of the DynEnum to the enumerated value
whose IDL identifier is passed in the value parameter. If value contains a string that
isnot avalid IDL identifier for the corresponding enumerated type, the operation raises
InvalidValue.

The get_as_ulong operation returns the vaue of the DynEnum as the enumerated
value's ordinal value. Enumerators have ordinal values 0 to n—1, as they appear from
left to right in the corresponding IDL definition.

The set_as_ulong operation sets the value of the DynEnum as the enumerated
value's ordinal value. If value contains a value that is outside the range of ordinal
values for the corresponding enumerated type, the operation raises InvalidValue.

The current position of a DynEnum is always -1.

9.2.6 The DynSruct interface

DynStruct objects are associated with struct values and exception values.
typedef string FieldName;

struct NameValuePair {
FieldName id;
any value;

3

typedef sequence<NameValuePair> NameValuePairSeq;

struct NameDynAnyPair {
FieldName id;
DynAny value;
5
typedef sequence<NameDynAnyPair> NameDynAnyPairSeq;

interface DynStruct : DynAny {

FieldName current_member_name()
raises(TypeMismatch, InvalidValue);

CORBA::TCKind current_member_kind()
raises(TypeMismatch, InvalidValue);

NameValuePairSeq get_members();

void set_members(in NameValuePairSeq value)
raises(TypeMismatch, InvalidValue);

NameDynAnyPairSeq get_members_as_dyn_any();

void set_members_as_dyn_any(in NameDynAnyPairSeq value)
raises(TypeMismatch, InvalidValue);

September 2001 CORBA, v2.5: DynAny API 9-17

9-18

FieldName current_member_name()
raises(TypeMismatch, InvalidValue);

The current_member_name operation returns the name of the member at the
current position. If the DynStruct represents an empty exception, the operation raises
TypeMismatch. If the current position does not indicate a member, the operation
raises InvalidValue.

This operation may return an empty string since the TypeCode of the value being
manipulated may not contain the names of members.

CORBA::TCKind current_member_kind()
raises(TypeMismatch, InvalidValue);

current_member_kind returns the TCKind associated with the member at the
current position. If the DynStruct represents an empty exception, the operation raises
TypeMismatch. If the current position does not indicate a member, the operation
raises InvalidValue.

NameValuePairSeq get_members();

The get_members operation returns a sequence of name/value pairs describing the
name and the value of each member in the struct associated with a DynStruct object.
The sequence contains members in the same order as the declaration order of members
asindicated by the DynStruct’s TypeCode. The current position is not affected. The
member names in the returned sequence will be empty strings if the DynStruct’s
TypeCode does not contain member names.

void set_members(in NameValuePairSeq value)
raises(TypeMismatch, InvalidValue);

The set_members operation initializes the struct data value associated with a
DynStruct object from a sequence of name value pairs. The operation sets the current
position to zero if the passed sequences has non-zero length; otherwise, if an empty
sequence is passed, the current position is set to —1.

Members must appear in the NameValuePairSeq in the order in which they appear in
the IDL specification of the struct. If one or more sequence elements have a type that
is not equivalent to the TypeCode of the corresponding member, the operation raises
TypeMismatch. If the passed sequence has a number of elements that disagrees with
the number of members as indicated by the DynStruct’s TypeCode, the operation
raises InvalidValue.

If member names are supplied in the passed sequence, they must either match the
corresponding member name in the DynStruct’s TypeCode or must be empty strings,
otherwise, the operation raises TypeMismatch. Members must be supplied in the same
order as indicated by the DynStruct’s TypeCode. (The operation makes no attempt
to assign member values based on member names.)

Theget_members_as_dyn_any and set_members_as_dyn_any operations have
the same semantics as their Any counterparts, but accept and return values of type
DynAny instead of Any.

Common Object Request Broker Architecture (CORBA), v2.5 September 2001

September 2001

DynStruct objects can also be used for handling exception values. In that case,
members of the exceptions are handled in the same way as members of a struct.

9.2.7 The DynUnion interface

DynUnion objects are associated with unions.

interface DynUnion : DynAny {

DynAny get_discriminator();

void set_discriminator(in DynAny d)
raises(TypeMismatch);

void set_to_default_member()
raises(TypeMismatch);

void set_to_no_active_member()
raises(TypeMismatch);

boolean has_no_active_member()
raises(InvalidValue);

CORBA::TCKind discriminator_kind();

DynAny member()
raises(InvalidValue);

FieldName member_name()
raises(InvalidValue);

CORBA::TCKind member_kind()
raises(InvalidValue);

boolean is_set_to_default_member();

b

The DynUnion interface allows for the insertion/extraction of an OMG IDL union
type into/from a DynUnion object.

A union can have only two valid current positions: zero, which denotes the
discriminator, and one, which denotes the active member. The component_count
value for a union depends on the current discriminator: it is 2 for a union whose
discriminator indicates a named member, and 1 otherwise.

DynAny get_discriminator()
raises(InvalidValue);

The get_discriminator operation returns the current discriminator value of the
DynUnion.

void set_discriminator(in DynAny d)
raises(TypeMismatch);

The set_discriminator operation sets the discriminator of the DynUnion to the
specified value. If the TypeCode of the d parameter is not equivalent to the
TypeCode of the union’s discriminator, the operation raises TypeMismatch.

CORBA, v2.5: DynAny API 9-19

9-20

Setting the discriminator to a value that is consistent with the currently active union
member does not affect the currently active member. Setting the discriminator to a
value that is inconsistent with the currently active member deactivates the member and
activates the member that is consistent with the new discriminator value (if thereis a
member for that value) by initializing the member to its default value.

Setting the discriminator of a union sets the current position to O if the discriminator
value indicates a non-existent union member (has_no_active_member returns true
in this case). Otherwise, if the discriminator value indicates a named union member,
the current position is set to 1 (has_no_active_member returns false and
component_count returns 2 in this case).

void set_to_default_member()
raises(TypeMismatch);

The set_to_default_member operation sets the discriminator to a value that is
consistent with the value of the default case of aunion; it sets the current position to
zero and causes component_count to return 2. Calling set_to_default_member
on a union that does not have an explicit default case raises TypeMismatch.

void set_to_no_active_member()
raises(TypeMismatch);

Theset_to_no_active_member operation sets the discriminator to a value that does
not correspond to any of the union’s case labels; it sets the current position to zero and
causes component_count to return 1. Calling set_to_no_active_member on a
union that has an explicit default case or on a union that uses the entire range of
discriminator values for explicit case labels raises TypeMismatch.

boolean has_no_active_member();

The has_no_active_member operation returns true if the union has no active
member (that is, the union’s value consists solely of its discriminator because the
discriminator has a value that is not listed as an explicit case label). Calling this
operation on a union that has a default case returns false. Caling this operation on a
union that uses the entire range of discriminator values for explicit case labels returns
false.

CORBA::TCKind discriminator_kind();

The discriminator_kind operation returns the TCKind value of the discriminator’s
TypeCode.

CORBA::TCKind member_kind()
raises(InvalidValue);

The member_kind operation returns the TCKind value of the currently active
member’s TypeCode. Calling this operation on a union that does not have a currently
active member raises InvalidValue.

DynAny member()
raises(InvalidVvalue);

Common Object Request Broker Architecture (CORBA), v2.5 September 2001

9

September 2001

The member operation returns the currently active member. If the union has no active
member, the operation raises InvalidValue. Note that the returned reference remains
valid only for as long as the currently active member does not change. Using the
returned reference beyond the life time of the currently active member raises
OBJECT_NOT_EXIST.

FieldName member_name()
raises(InvalidVvalue);

The member_name operation returns the name of the currently active member. If the
union’s TypeCode does not contain a member name for the currently active member,
the operation returns an empty string. Calling member_name on a union without an
active member raises InvalidValue.

CORBA::TCKind member_kind()
raises(InvalidValue);

The member_kind operation returns the TCKind value of the TypeCode of the
currently active member. If the union has no active member, the operation raises
InvalidValue.

boolean is_set_to_default_member();

Theis_set_to_default_member operation returns TRUE if a union has an explicit
default label and the discriminator value does not match any of the union's other case
labels.

9.2.8 The DynSequence interface

DynSequence objects are associated with sequences.

typedef sequence<any> AnySeq;
typedef sequence<DynAny> DynAnySeq;

interface DynSequence : DynAny {

unsigned long get_length();

void set_length(in unsigned long len)
raises(InvalidValue);

AnySeq get_elements();

void set_elements(in AnySeq value)
raises(TypeMismatch, InvalidValue);

DynAnySeq get_elements_as_dyn_any();

void set_elements_as_dyn_any(in DynAnySeq value)
raises(TypeMismatch, InvalidValue);

unsigned long get_length();

The get_length operation returns the current length of the sequence.

void set_length(in unsigned long len)

CORBA, v2.5: DynAny API 9-21

9-22

raises(TypeMismatch, InvalidValue);

The set_length operation sets the length of the sequence. Increasing the length of a
sequence adds new elements at the tail without affecting the values of already existing
elements. Newly added elements are default-initialized.

Increasing the length of a sequence sets the current position to the first newly-added
element if the previous current position was —1. Otherwise, if the previous current
position was not —1, the current position is not affected.

Increasing the length of a bounded sequence to a value larger than the bound raises
InvalidValue.

Decreasing the length of a sequence removes elements from the tail without affecting
the value of those elements that remain. The new current position after decreasing the
length of a sequence is determined as follows:

® |f the length of the sequence is set to zero, the current position is set to —1.
® |f the current position is —1 before decreasing the length, it remains at -1.

® |f the current position indicates a valid element and that element is not removed
when the length is decreased, the current position remains unaffected.

® |f the current position indicates a valid element and that element is removed, the
current position is set to —1.

DynAnySeq get_elements();

The get_elements operation returns the elements of the sequence.

void set_elements(in AnySeq value)
raises(TypeMismatch, InvalidValue);

The set_elements operation sets the elements of a sequence. The length of the
DynSequence is set to the length of value. The current position is set to zero if
value has non-zero length and to -1 if value is a zero-length sequence.

If value contains one or more elements whose TypeCode is not equivalent to the
element TypeCode of the DynSequence, the operation raises TypeMismatch. If the
length of value exceeds the bound of a bounded sequence, the operation raises
InvalidValue.

Theget_elements_as_dyn_any and set_elements_as_dyn_any operations have
the same semantics, but accept and return values of type DynAny instead of Any.

9.2.9 The DynArray interface

DynArray objects are associated with arrays.

interface DynArray : DynAny {
AnySeq get_elements();
void set_elements(in AnySeq value)
raises(TypeMismatch, InvalidValue);

Common Object Request Broker Architecture (CORBA), v2.5 September 2001

DynAnySeq get_elements_as_dyn_any();
void set_elements_as_dyn_any(in DynAnySeq value)
raises(TypeMismatch, InvalidValue);

DynAnySeq get_elements();

The get_elements operation returns the elements of the DynArray.

void set_elements(in DynAnySeq value)
raises(TypeMismatch, InvalidValue);

The set_elements operation sets the DynArray to contain the passed elements. If the
sequence does not contain the same number of elements as the array dimension, the
operation raises InvalidValue. If one or more elements have a type that is inconsistent
with the DynArray’s TypeCode, the operation raises TypeMismatch.

Theget_elements_as_dyn_any and set_elements_as_dyn_any operations have
the same semantics as their Any counterparts, but accept and return values of type
DynAny instead of Any.

Note that the dimension of the array is contained in the TypeCode, which is
accessible through the type attribute. It can also be obtained by calling the
component_count operation.

9.2.10 The DynValueCommon interface

DynValueCommon provides operations supported by both the DynValue and
DynValueBox interfaces.

interface DynValueCommon : DynAny {
boolean is_null();
void set_to_null();
void set_to_value();

I
boolean is_null();

The is_null operation returns TRUE if the DynValueCommon represents a null
valuetype.

void set_to_null();

The set_to_null operation changes the representation of a DynValueCommon to a
null valuetype.

void set_to_value();

If the DynValueCommon represents a null valuetype, then set_to_value replaces it
with a newly constructed value, with its components initialized to default values as in
DynAnyFactory::create_dyn_any_from_type_code. If the DynValueCommon
represents a non-null valuetype, then this operation has no effect.

September 2001 CORBA, v2.5: DynAny API 9-23

9-24

9.2.11 The DynValue interface

DynValue objects are associated with non-boxed val uetypes.

interface DynValue : DynValueCommon {

FieldName current_member_name()
raises(TypeMismatch, InvalidValue);

CORBA::TCKind current_member_kind()
raises(TypeMismatch, InvalidValue);

NameValuePairSeq get_members()
raises(InvalidValue);

void set_members(in NameValuePairSeq value)
raises(TypeMismatch, InvalidValue);

NameDynAnyPairSeq get_members_as_dyn_any()
raises(InvalidValue);

void set_members_as_dyn_any(in NameDynAnyPairSeq value)
raises(TypeMismatch, InvalidValue);

b

The DynValue interface can represent both null and non-null valuetypes. For a
DynValue representing a non-null valuetype, the DynValue's components comprise
the public and private members of the valuetype, including those inherited from
concrete base valuetypes, in the order of definition. A DynValue representing a null
valuetype has no components and a current position of -1.

The remaining operations on the DynValue interface generally have equivalent
semantics to the same operations on DynStruct. When invoked on a DynValue
representing a null valuetype, get_members and get_members_as_dyn_any raise
InvalidValue. When invoked on a DynValue representing a null valuetype,
set_members and set_members_as_dyn_any convert the DynValue to a non-
null valuetype.

Note — Warning: Indiscriminately changing the contents of private valuetype members
can cause the valuetype implementation to break by violating internal constraints.
Access to private members is provided to support such activities as ORB bridging and
debugging and should not be used to arbitrarily violate the encapsulation of the
valuetype.

9.2.12 The DynValueBox interface

DynValueBox objects are associated with boxed valuetypes.

interface DynValueBox : DynValueCommon {
any get_boxed_value()
raises(InvalidValue);
void set_boxed_value(in any boxed)
raises(TypeMismatch);
DynAny get_boxed_value_as_dyn_any()
raises(InvalidValue);

Common Object Request Broker Architecture (CORBA), v2.5 September 2001

void set_boxed_value_as_dyn_any(in DynAny boxed)
raises(TypeMismatch);

b

The DynValueBox interface can represent both null and non-null valuetypes. For a
DynValueBox representing a non-null valuetype, the DynValueBox has a single
component of the boxed type. A DynValueBox representing a null valuetype has no
components and a current position of -1.

any get_boxed_value()
raises(InvalidValue);

The get_boxed_value operation returns the boxed value as an any. If the
DynBoxedValue represents a null valuetype, the operation raises InvalidValue.

void set_boxed_value(in any boxed)
raises(TypeMismatch);

The set_boxed_value replaces the boxed value with the specified value. If the
DynBoxedValue represents a null valuetype, it is converted to a non-null value.

The get_boxed_value_as_dyn_any and set_boxed_value_as_dyn_any have
the same semantics as their any counterparts, but accept and return values of type
DynAny instead of any.

9.3 Usagein C++ Language

September 2001

9.3.1 Dynamic creation of CORBA:: Any values

9.3.1.1 Creating an any that containsa struct

Consider the following IDL definition:

/l IDL

struct MyStruct {
long memberl;
boolean member2;

b

The following example illustrates how a CORBA: : Any value may be constructed on
the fly containing a value of type MyStruct:

/] C++
CORBA: : ORB var orb = ...;
Dynam cAny: : DynAnyFact ory_var daf act

= orb->resolve_initial_references("“DynAnyFactory”);
CORBA: : Struct Menber Seq nens(2);
CORBA: : Any_var result;
CORBA: : Long val uel
CORBA: : Bool ean val ue2

99;
1

CORBA, v2.5: Usagein C++ Language 9-25

mens. | engt h(2);
mens[0] . nane
mens[0] . type
mens[1] . nane
mens[1] . type

= CORBA: : TypeCode: : _duplicat e(CORBA:: _tc_bool ean);

CORBA: : string_dup(“menber1”);
CORBA: : TypeCode: : _duplicate(CORBA:: tc_Ilong);
CORBA: : st ring_dup(“menber2”);

CORBA: : TypeCode_var new tc = orb->create_struct _tc(
“IDL: MyStruct:1.07,
“MyStruct”,
mens

)

/1 Construct the DynStruct object. Values for menbers are
/1 the valuel and val ue2 vari abl es

Dynam cAny: : DynAny_ptr dyn_any
= daf act->create_dyn_any(new_ tc);
Dynam cAny: : DynStruct _ptr dyn_struct
= Dynami cAny:: DynStruct::_narrow(dyn_any);
CORBA: : rel ease(dyn_any);
dyn_struct->i nsert_Il ong(val uel);

dyn_struct->next ();

dyn_struct->i nsert_bool ean(val ue2);
result = dyn_struct->to_any();
dyn_struct->destroy();

CORBA: : rel ease(dyn_struct);

9.3.2 Dynamic interpretation of CORBA:: Any values

9.3.2.1 Filtering of events

Suppose there is a CORBA object that receives events and prints all those events,
which correspond to a data structure containing amember called i S_ur gent whose
valueis true.

The following fragment of code corresponds to a method that determines if an event
should be printed or not. Note that the program allows several struct events to be
filtered with respect to some common member.

/] C++

CORBA: : Bool ean Tester::eval _filter(
Dynam cAny: : DynAnyFactory_ptr daf act,
const CORBA:: Any & event

CORBA: : Bool ean success = FALSE;
Dynam cAny: : DynAny_var;
try {

9-26 Common Object Request Broker Architecture (CORBA), v2.5 September 2001

September 2001

/1 First, convert the event to a DynAny.
/1 Then attenpt to narrow it to a DynStruct.
/1 The _narrow only returns a reference
/1 if the event is a struct.
dyn_var = dafact->create_dyn_any(event);
Dynam cAny: : DynStruct _var dyn_struct
= Dynami cAny: : DynStruct::_narrow(dyn_any);
if (!CORBA: :is_nil(dyn_struct)) {
CORBA: : Bool ean found = FALSE
do {
CORBA: : String_var nenber_nane
= dyn_struct->current _nmenber_nane();

found = (strcnp(nenber _nane, "is_urgent") == 0);
} while (!found && dyn_struct->next());
if (found) {

/1 We only create a DynAny object for the nmenber
/1 we were | ooking for:
Dynam cAny: : DynAny_var dyn_nenber
= dyn_struct->current_conponent();
success = dyn_nenber - >get bool ean();

}

}
catch(...) {};

if (!'CORBA::is_nil(dyn_var))
dyn_var->destroy();
return success;

}

CORBA, v2.5: Usagein C++ Language

9-27

9-28 Common Object Request Broker Architecture (CORBA), v2.5 September 2001

10.1 Overview

September 2001

Thelnterface Repository

Contents

This chapter contains the following sections.

Section Title Page
“Overview” 10-1
“Scope of an Interface Repository” 10-2
“Implementation Dependencies” 10-4
“Basics’ 10-5
“Interface Repository Interfaces” 10-9
“Repositorylds” 10-42
“TypeCodes” 10-51
“OMG IDL for Interface Repository” 10-60

The Interface Repository is the component of the ORB that provides persistent storage
of interface definitions—it manages and provides access to a collection of object

definitions specified in OMG IDL.

An ORB provides distributed access to a collection of objects using the objects’
publicly defined interfaces specified in OMG IDL. The Interface Repository provides
for the storage, distribution, and management of a collection of related objects’

interface definitions.

Common Object Request Broker Architecture (CORBA), v2.5

10

For an ORB to correctly process requests, it must have access to the definitions of the
objects it is handling. Object definitions can be made available to an ORB in one of
two forms:

1. By incorporating the information procedurally into stub routines (for example, as
code that maps C language subroutines into communication protocols).

2. As objects accessed through the dynamically accessible Interface Repository; that
is, as interface objects accessed through OMG IDL -specified interfaces.

In particular, the ORB can use object definitions maintained in the Interface Repository
to interpret and handle the values provided in a request to:

® Provide type-checking of reguest signatures (whether the request was issued
through the DIl or through a stub).

® Assist in checking the correctness of interface inheritance graphs.

® Assist in providing interoperability between different ORB implementations.

As the interface to the object definitions maintained in an Interface Repository is
public, the information maintained in the Repository can also be used by clients and
services. For example, the Repository can be used to:

® Manage the installation and distribution of interface definitions.
® Provide components of a CASE environment (for example, an interface browser).
® Provide interface information to language bindings (such as a compiler).

® Provide components of end-user environments (for example, a menu bar
constructor).

The complete OMG IDL specification for the Interface Repository is in Section 10.8,
“OMG IDL for Interface Repository,” on page 10-60; however, fragments of the
specification are used throughout this chapter as necessary.

10.2 Scopeof an Interface Repository

10-2

Interface definitions are maintained in the Interface Repository as a set of objects that
are accessible through a set of OMG IDL-specified interface definitions. An interface
definition contains a description of the operations it supports, including the types of the
parameters, exceptions it may raise, and context information it may use.

In addition, the interface repository stores constant values, which might be used in
other interface and value definitions or might simply be defined for programmer
convenience and it stores typecodes, which are values that describe a type in structural
terms.

The Interface Repository uses modules as a way to group interfaces and to navigate
through those groups by name. Modules can contain constants, typedefs, exceptions,
interface definitions, and other modules. Modules may, for example, correspond to the
organization of OMG IDL definitions. They may also be used to represent
organizations defined for administration or other purposes.

Common Object Request Broker Architecture (CORBA), v2.5 September 2001

10

The Interface Repository consists of a set of interface repository objects that represent
the information in it. There are operations that operate on this apparent object
structure. It is an implementation’s choice whether these objects exist persistently or
are created when referenced in an operation on the repository. There are also
operations that extract information in an efficient form, obtaining a block of
information that describes a whole interface or a whole operation.

An ORB may have access to multiple Interface Repositories. This may occur because

® two ORBs have different requirements for the implementation of the Interface
Repository,

® an object implementation (such as an OODB) prefers to provide its own type
information, or

® itisdesired to have different additional information stored in different repositories.

The use of typecodes and repository identifiers is intended to allow different
repositories to keep their information consistent.

As shown in Figure 10-1 on page 10-3, the same interface Doc is installed in two
different repositories, one at SoftCo, Inc., which sells Doc objects, and one at
Customer, Inc., which buys Doc objects from SoftCo. SoftCo sets the repository id for
the Doc interface when it defines it. Customer might first install the interface in its
repository in a module where it could be tested before exposing it for general use.
Because it has the same repository id, even though the Doc interface is stored in a
different repository and is nested in a different module, it is known to be the same.

Meanwhile at SoftCo, someone working on a new Doc interface has given it a new
repository id 456, which allows the ORBs to distinguish it from the current product
Doc interface.

SoftCo, Inc., Repository Customer, Inc., Repository
module softco { module testfirst {

interface Doc <id 123> { module softco {

void print(); interface Doc <id 123> {

b \ void print();

I3 3
b
b

module newrelease {
interface Doc <id 456> {
void print();
¥
¥

Figure10-1 Using Repository IDs to establish correspondence between repositories

September 2001 CORBA, v2.5: Scopeof an Interface Repository 10-3

10

Not all interfaces will be visible in all repositories. For example, Customer employees
cannot see the new release of the Doc interface. However, widely used interfaces will
generally be visible in most repositories.

This Interface Repository specification defines operations for retrieving information
from the repository as well as creating definitions within it. There may be additional
ways to insert information into the repository (for example, compiling OMG IDL
definitions, copying objects from one repository to another).

A critical use of the interface repository information is for connecting ORBSs together.
When an object is passed in arequest from one ORB to another, it may be necessary to
create a new object to represent the passed object in the receiving ORB. This may
require locating the interface information in an interface repository in the receiving
ORB. By getting the repository id from arepository in the sending ORB, it is possible
to look up the interface in arepository in the receiving ORB. To succeed, the interface
for that object must be installed in both repositories with the same repository id.

10.3 Implementation Dependencies

10-4

An implementation of an Interface Repository requires some form of persistent object
store. Normally the kind of persistent object store used determines how interface
definitions are distributed and/or replicated throughout a network domain. For
example, if an Interface Repository is implemented using a filing system to provide
object storage, there may be only a single copy of a set of interfaces maintained on a
single machine. Alternatively, if an OODB is used to provide object storage, multiple
copies of interface definitions may be maintained each of which is distributed across
several machines to provide both high-availability and load-balancing.

The kind of object store used may determine the scope of interface definitions provided
by an implementation of the Interface Repository. For example, it may determine
whether each user has a local copy of a set of interfaces or if there is one copy per
community of users. The object store may also determine whether or not al clients of
an interface set see exactly the same set at any given point in time or whether latency
in distributing copies of the set gives different users different views of the set at any
point in time.

An implementation of the Interface Repository is also dependent on the security
mechanism in use. The security mechanism (usually operating in conjunction with the
object store) determines the nature and granularity of access controls available to
constrain access to objects in the repository.

10.3.1 Managing Interface Repositories

Interface Repositories contain the information necessary to allow programs to
determine and manipulate the type information at run-time. Programs may attempt to
access the interface repository at any time by using the get_interface operation on
the object reference. Once information has been installed in the repository, programs,
stubs, and objects may depend on it. Updates to the repository must be done with care
to avoid disrupting the environment. A variety of techniques are available to help do
0.

Common Object Request Broker Architecture (CORBA), v2.5 September 2001

10

10.4 Basics

September 2001

A coherent repository is one whose contents can be expressed as a valid collection of
OMG IDL definitions. For example, al inherited interfaces exist, there are no duplicate
operation names or other name collisions, all parameters have known types, and so
forth. Asinformation is added to the repository, it is possible that it may pass through
incoherent states. Media failures or communication errors might also cause it to appear
incoherent. In general, such problems cannot be completely eliminated.

Replication is one technique to increase the availability and performance of a shared
database. It is likely that the same interface information will be stored in multiple
repositories in a computing environment. Using repository 1Ds, the repositories can
establish the identity of the interfaces and other information across the repositories.

Multiple repositories might also be used to insulate production environments from
development activity. Developers might be permitted to make arbitrary updates to their
repositories, but administrators may control updates to widely used repositories. Some
repository implementations might permit sharing of information, for example, several
developers' repositories may refer to parts of a shared repository. Other repository
implementations might instead copy the common information. In any case, the result
should be a repository facility that creates the impression of a single, coherent
repository.

The interface repository itself cannot make all repositories have coherent information,
and it may be possible to enter information that does not make sense. The repository
will report errors that it detects (for example, defining two attributes with the same
name) but might not report al errors, for example, adding an attribute to a base
interface may or may not detect a name conflict with a derived interface. Despite these
limitations, the expectation is that a combination of conventions, administrative
controls, and tools that add information to the repository will work to create a coherent
view of the repository information.

Transactions and concurrency control mechanisms defined by the Object Services may
be used by some repositories when updating the repository. Those services are
designed so that they can be used without changing the operations that update the
repository. For example, a repository that supports the Transaction Service would
inherit the Repository interface, which contains the update operations, as well as the
Transaction interface, which contains the transaction management operations. (For
more information about Object Services, including the Transaction and Concurrency
Control Services, refer to the individual CORBA Services specifications).

Often, rather than change the information, new versions will be created, alowing the
old version to continue to be valid. The new versions will have distinct repository 1Ds
and be completely different types as far as the repository and the ORBs are concerned.
The IR provides storage for version identifiers for named types, but does not specify
any additional versioning mechanism or semantics.

This section introduces some basic ideas that are important to understanding the
Interface Repository. Topics addressed in this section are:

® Names and ldentifiers

CORBA, v2.5: Basics 10-5

10

10-6

® Types and TypeCodes
® [nterface Repository Objects

® Structure and Navigation of the Interface Repository

10.4.1 Names and ldentifiers

Simple names are not necessarily unique within an Interface Repository; they are
always relative to an explicit or implicit module. In this context, interface, struct,
union, exception, and value type definitions are considered implicit modules.

Scoped names uniquely identify modules, interfaces, value types, value members,
value boxes, constant, typedefs, exceptions, attributes, and operations in an Interface
Repository.

Repository identifiers globally identify modules, interfaces, value types, value
members, value boxes, constants, typedefs, exceptions, attributes, and operations. They
can be used to synchronize definitions across multiple ORBs and Repositories.

10.4.2 Types and TypeCodes

The Interface Repository stores information about types that are not interfaces in a data
value called a TypeCode. From the TypeCode alone it is possible to determine the
complete structure of a type. See Section 10.7, “TypeCodes,” on page 10-51 for more
information on the internal structure of TypeCodes.

10.4.3 Interface Repository Objects

Information about the entities that are managed in an Interface Repository is
maintained as a collection of interface repository objects of the following types:

®* Repository: the top-level module for the repository nhame space; it contains
constants, typedefs, exceptions, interface or value type definitions, and modules.

®* ModuleDef: alogical grouping of interfaces and value types; it contains constants,
typedefs, exceptions, interface or value type definitions, and other modules.

* InterfaceDef: an interface definition; it contains lists of constants, types,
exceptions, operations, and attributes.

®* AbstractinterfaceDef: an abstract interface definition; it contains lists of
constants, types, exceptions, operations, and attributes.

® | ocalinterfaceDef: alocal interface definition; it contains lists of constants, types,
exceptions, operations, and attributes.

® ValueDef: avalue type definition that contains lists of constants, types, exceptions,
operations, attributes and members

® ValueBoxDef: the definition of a boxed value type.

* ValueMemberDef: the definition of a member of the value type.

Common Object Request Broker Architecture (CORBA), v2.5 September 2001

10

® AttributeDef: the definition of an attribute of the interface or value type.

® OperationDef: the definition of an operation of the interface or value type; it
contains lists of parameters and exceptions raised by this operation.

* TypedefDef: base interface for definitions of named types that are not interfaces or
value types.

® ConstantDef: the definition of a named constant.

® ExceptionDef: the definition of an exception that can be raised by an operation.

The interface specifications for each interface repository object lists the attributes
maintained by that object (see Section 10.5, “Interface Repository Interfaces,” on
page 10-9). Many of these attributes correspond directly to OMG IDL statements. An
implementation can choose to maintain additional attributes to facilitate managing the
Repository or to record additional (proprietary) information about an interface.
Implementations that extend the IR interfaces shall do so by deriving new interfaces,
not by modifying the standard interfaces.

The CORBA specification defines a minimal set of operations for interface repository
objects. Additional operations that an implementation of the Interface Repository may
provide could include operations that provide for the versioning of entities and for the
reverse compilation of specifications; that is, the generation of a file containing an
object’s OMG IDL specification.

10.4.4 Structure and Navigation of the Interface Repository

The definitions in the Interface Repository are structured as a set of interface
repository objects. These objects are structured the same way definitions are
structured—some objects (definitions) “contain” other objects.

September 2001 CORBA, v2.5: Basics 10-7

10

10-8

The containment relationships for the interface repository objects types in the Interface
Repository are shown in Figure 10-2

Repository

ConstantDef
TypedefDef
ExceptionDef
InterfaceDef
ValueDef
ValueBoxDef
ModuleDef

ConstantDef

TypedefDef

ExceptionDef

ValueBoxDef

ModuleDef

[Abstract | local]InterfaceDef

ConstantDef
TypedefDef
ExceptionDef
AttributeDef
OperationDef

ValueDef

ConstantDef
TypedefDef
ExceptionDef
AttributeDef
OperationDef
ValueMemberDef

Each interface repository is represented
by a global root repository object.

The Repository IR object represents the constants,
typedefs, exceptions, interfaces, valuetypes,

value boxes and modules that are defined outside
the scope of a module.

The Module IR object represents the constants,
typedefs, exceptions, interfaces, valuetypes,
value boxes and other modules defined within
the scope of the module.

An Interface IR object represents constants,
typedefs, exceptions, attributes, and operations
defined within or inherited by the interface.

Operation IR objects reference
exception objects.

A Valuetype IR object represents constants,
typedefs, exceptions, attributes, and operations
defined within or inherited by the interface.

Operation IR objects reference
exception objects.

Figure 10-2 Interface Repository Object Containment

There are three ways to locate an interface in the Interface Repository:

1. Obtaining an InterfaceDef object directly from the ORB.

2. Navigating through the module name space using a sequence of names.

3. Locating the InterfaceDef object that corresponds to a particular repository

identifier.

Obtaining an InterfaceDef object directly is useful when an object is encountered
whose type was not known at compile time. By using the get_interface operation on
the object reference, it is possible to retrieve the Interface Repository information
about the object. That information could then be used to perform operations on the

object.

Common Object Request Broker Architecture (CORBA), v2.5

September 2001

10

Navigating the module name space is useful when information about a particular
named interface is desired. Starting at the root module of the repository, it is possible
to obtain entries by name.

L ocating the InterfaceDef object by ID is useful when looking for an entry in one
repository that corresponds to another. A repository identifier must be globally unique.
By using the same identifier in two repositories, it is possible to obtain the interface
identifier for an interface in one repository, and then obtain information about that
interface from another repository that may be closer or contain additional information
about the interface.

Analogous operations are provided for manipulating value types.

10.5 Interface Repository Interfaces

Several interfaces are used as base interfaces for objects in the IR. These base
interfaces are not instantiable.

A common set of operations is used to locate objects within the Interface Repository.
These operations are defined in the interfaces IRObject, Container, and Contained
described below. All IR objectsinherit from the IRObject interface, which provides an
operation for identifying the actual type of the object. Objects that are containers
inherit navigation operations from the Container interface. Objects that are contained
by other objects inherit navigation operations from the Contained interface.

The IDLType interface is inherited by all IR objects that represent IDL types,
including interfaces, typedefs, and anonymous types. The TypedefDef interface is
inherited by all named non-interface types.

The base interfaces IRObject, Contained, Container, IDLType, and TypedefDef
are not instantiable.

All string data in the Interface Repository are encoded as defined by the 1SO 8859-1
coded character set.

Interface Repository operations indicate error conditions using the system exceptions
BAD_PARAM and BAD_INV_ORDER with specific minor codes. The specific
operations that raise these exceptions are documented in the description of the
operations. For a description of how these minor codes are encoded in the ex_body of
standard exceptions see Section 4.11.2, “System Exceptions,” on page 4-51 and
Section 4.11.4, “ Standard Minor Exception Codes,” on page 4-60. The exceptions and
minor codes that are used by Interface Repository interfaces are as follows:

Table 10-1 Standard Exceptions used by the Interface Repository Operations

Exception

BAD_PARAM

September 2001

Minor Code | Explanation
2 RID is aready defined in IFR
3 Name already used in the context in IFR
4 Target is not a valid container
CORBA, v2.5: Interface Repository Interfaces 10-9

10

Table 10-1 Standard Exceptions used by the Interface Repository Operations

Exception Minor Code | Explanation
5 Name clash in inherited context
BAD_INV_ORDER 1 Dependency existsin IFR preventing destruction of this
object
2 Attempt to destroy indestructible objectsin IFR

10.5.1 Supporting Type Definitions

Several types are used throughout the IR interface definitions.

module CORBA {

typedef string Identifier;
typedef string ScopedName;
typedef string Repositoryld;

enum DefinitionKind {
dk_none, dk_all,
dk_Attribute, dk_Constant, dk_Exception, dk_Interface,
dk_Module, dk_Operation, dk_Typedef,
dk_Alias, dk_Struct, dk_Union, dk_Enum,
dk_Primitive, dk_String, dk_Sequence, dk_Array,
dk_Repository,
dk_Wstring, dk_Fixed,
dk_Value, dk_ValueBox, dk_ValueMember,
dk_Native,
dk_Abstractinterface,
dk_Locallnterface

b

b

Identifiers are the simple names that identify modules, interfaces, value types, value
members, value boxes, constants, typedefs, exceptions, attributes, operations, and
native types. They correspond exactly to OMG IDL identifiers. An Identifier is not
necessarily unique within an entire Interface Repository; it is unique only within a
particular Repository, ModuleDef, InterfaceDef, ValueDef or OperationDef.

A ScopedName is a name made up of one or more ldentifiers separated by the
characters “::". They correspond to OMG IDL scoped names.

An absolute ScopedName is one that begins with “::” and unambiguously identifies
a definition in a Repository. An absolute ScopedName in a Repository
corresponds to a global namein an OMG IDL file. A relative ScopedName does not
begin with “::” and must be resolved relative to some context.

10-10 Common Object Request Broker Architecture (CORBA), v2.5 September 2001

10

September 2001

A Repositoryld is an identifier used to uniquely and globally identify a module,
interface, value type, value member, value box, native type, constant, typedef,
exception, attribute or operation. As Repositoryldsare defined as strings, they can be
manipulated (e.g., copied and compared) using a language binding's string
manipulation routines.

A DefinitionKind identifies the type of an IR object.

10.5.2 |RObject

10.5.2.1

10.5.2.2

The base interface IRObject represents the most generic interface from which all
other Interface Repository interfaces are derived, even the Repository itself.

module CORBA {
interface IRObject {

/I read interface
readonly attribute DefinitionKind def_kind;

/I write interface
void destroy ();

Read Interface

The def_kind type_name attribute identifies the type of the definition.

Writelnterface

The destroy operation causes the object to ceaseto exist. If the object isa Container,
destroy isapplied to al its contents. If the object contains an IDLType attribute for an
anonymous type, that IDLType is destroyed. If the object is currently contained in
some other object, it is removed. If destroy isinvoked on a Repository or on a
PrimitiveDef then the BAD_INV_ORDER exception is raised with minor value 2.
Implementations may vary in their handling of references to an object that is being
destroyed, but the Repository should not be left in an incoherent state. Attempt to
destroy an object that would leave the repository in an incoherent state shall cause
BAD_INV_ORDER exception to be raised with the minor code 1.

10.5.3 Contained

The base interface Contained is inherited by all Interface Repository interfaces that
are contained by other IR objects. All objects within the Interface Repository, except
the root object (Repository) and definitions of anonymous (ArrayDef, StringDef,

WstringDef, FixedDef and SequenceDef), and primitive types are contained by

other objects.

CORBA, v2.5: Interface Repository Interfaces 10-11

10

10-12

10.5.3.1

module CORBA {
typedef string VersionSpec;

interface Contained : IRObject {
/l read/write interface

attribute Repositoryld id;
attribute Identifier name;
attribute VersionSpec version;

/I read interface

readonly attribute Container defined_in;
readonly attribute ScopedName absolute_name;
readonly attribute Repository containing_repository;

struct Description {
DefinitionKind kind;
any value;

b

Description describe ();

/I write interface

void move (
in Container new_container,
in Identifier new_name,

in VersionSpec new_version
);
b
b

Read Interface

An object that is contained by another object has an id attribute that identifies it
globally, and a name attribute that identifies it uniquely within the enclosing
Container object. It also has a version attribute that distinguishes it from other
versioned objects with the same name. IRs are not required to support simultaneous
containment of multiple versions of the same named object. Supporting multiple
versions will require mechanisms and policy not specified in this document.

Contained objects also have a defined_in attribute that identifies the Container
within which they are defined. Objects can be contained either because they are
defined within the containing object (for example, an interface is defined within a
module) or because they are inherited by the containing object (for example, an
operation may be contained by an interface because the interface inherits the operation
from another interface). If an object is contained through inheritance, the defined _in
attribute identifies the InterfaceDef or ValueDef from which the object is inherited.

Common Object Request Broker Architecture (CORBA), v2.5 September 2001

10

September 2001

10.5.3.2

The absolute_name attribute is an absolute ScopedName that identifies a
Contained object uniquely within its enclosing Repository. If this object’'s
defined_in attribute references a Repository, the absolute_name is formed by
concatenating the string “::” and this object’s name attribute. Otherwise, the
absolute_name is formed by concatenating the absolute_name attribute of the
object referenced by thisobject' s defined_in attribute, the string “::”, and thisobject’s
name attribute.

The containing_repository attribute identifies the Repository that is eventually
reached by recursively following the object’s defined_in attribute.

The within operation returns the list of objects that contain the object. If the object is
an interface or module it can be contained only by the object that defines it. Other
objects can be contained by the objects that define them and by the objects that inherit
them.

The describe operation returns a structure containing information about the interface.
The description structure associated with each interface is provided below with the
interface’s definition. The kind of definition described by name of the structure
returned is provided with the returned structure. The kind field of the returned
Description struct shall give the DefinitionKind for the most derived type of the
object. For example, if the describe operation is invoked on an attribute object, the
kind field contains dk_Attribute name field contains “AttributeDescription” and the
value field contains an any, which contains the AttributeDescription structure. The
kind field in this must contain dk_attribute and not the kind of any IRObject from
which the attribute object is derived. For example returning dk_all would be an error.

Writelnterface

Setting the id attribute changes the global identity of this definition. A BAD_PARAM
exception is raised with minor code 2 if an object with the specified id attribute
already exists within this object’s Repository.

Setting the name attribute changes the identity of this definition within its Container.
A BAD_PARAM exception is raised with minor code 1 if an object with the specified
name attribute already exists within this object’s Container. The absolute_name
attribute is also updated, along with any other attributes that reflect the name of the
object. If this object is a Container, the absolute_name attribute of any objects it
contains are also updated.

The move operation atomically removes this object from its current Container, and
adds it to the Container specified by new_container must satisfy the following
conditions:

® |t must be in the same Repository. If it is not, then BAD_PARAM exception is
raised with minor code 4.

® |t must be capable of containing this object’s type (see Section 10.4.4, “ Structure
and Navigation of the Interface Repository,” on page 10-7). If it is not, then
BAD_PARAM exception is raised with minor code 4.

CORBA, v2.5: Interface Repository Interfaces 10-13

10

® |t must not already contain an object with this object’s name (unless multiple
versions are supported by the IR). If this condition is not satisfied, then
BAD_PARAM exception is raised with minor code 3.

The name attribute is changed to new_name, and the version attribute is changed to
new_version.

The defined_in and absolute_name attributes are updated to reflect the new
container and name. If this object is also a Container, the absolute_name
attributes of any objects it contains are also updated.

10.5.4 Container

The base interface Container is used to form a containment hierarchy in the Interface
Repository. A Container can contain any number of objects derived from the
Contained interface. All Containers, except for Repository, are also derived from
Contained.

module CORBA {
typedef sequence <Contained> ContainedSeq;

interface Container : IRObject {
/I read interface

Contained lookup (in ScopedName search_name);

ContainedSeq contents (

in DefinitionKind limit_type,
in boolean exclude_inherited
);
ContainedSeq lookup_name (
in Identifier search_name,
in long levels_to_search,
in DefinitionKind limit_type,
in boolean exclude_inherited
);
struct Description {
Contained contained_object;
DefinitionKind kind;
any value;

¥
typedef sequence<Description> DescriptionSeq;

DescriptionSeq describe_contents (

in DefinitionKind limit_type,
in boolean exclude_inherited,
in long max_returned_objs

10-14 Common Object Request Broker Architecture (CORBA), v2.5 September 2001

10

);
/I write interface

ModuleDef create_module (

in Repositoryld id,
in Identifier name,
in VersionSpec version
);
ConstantDef create_constant (
in Repositoryld id,
in Identifier name,
in VersionSpec version,
in IDLType type,
in any value
);
StructDef create_struct (
in Repositoryld id,
in Identifier name,
in VersionSpec version,
in StructMemberSeq members
)i
UnionDef create_union (
in Repositoryld id,
in Identifier name,
in VersionSpec version,
in IDLType discriminator_type,
in UnionMemberSeq members
)i
EnumDef create_enum (
in Repositoryld id,
in Identifier name,
in VersionSpec version,
in EnumMemberSeq members
);
AliasDef create_alias (
in Repositoryld id,
in Identifier name,
in VersionSpec version,
in IDLType original_type
);
InterfaceDef create_interface (
in Repositoryld id,
in Identifier name,
in VersionSpec version,

September 2001 CORBA, v2.5: Interface Repository Interfaces 10-15

10

10-16

in InterfaceDefSeq

);

base_interfaces,

ExceptionDef create_exception(

in Repositoryld

in Identifier

in VersionSpec

in StructMemberSeq

);

ValueDef create_value(
in Repositoryld
in Identifier
in VersionSpec
in boolean
in boolean
in ValueDef
in boolean
in ValueDefSeq
in InterfaceDefSeq
in InitializerSeq

);

id,
name,
version,
members

id,

name,

version,

is_custom,
is_abstract,

base value,
is_truncatable,
abstract_base values,
supported_interfaces,
initializers

ValueBoxDef create_value_box(

in Repositoryld
in Identifier
in VersionSpec
in IDLType

);

NativeDef create_native(

in Repositoryld
in Identifier
in VersionSpec

);

id,

name,

version,
original_type_def

id,
name,
version

AbstractinterfaceDef create_abstract_interface(

in Repositoryld id,
in Identifier name,

in VersionSpec version,
in AbstractinterfaceDefSeq base_interfaces,

);

LocallnterfaceDef create_local_interface(

in Repositoryld id,
in Identifier name,

in VersionSpec version,
in InterfaceDefSeq base_interfaces

Common Object Request Broker Architecture (CORBA), v2.5

September 2001

10

10.5.4.1 Read Interface

The lookup operation locates a definition relative to this container given a scoped
name using OM G IDL’s name scoping rules. An absolute scoped name (beginning with
“::") locates the definition relative to the enclosing Repository. If no object is found,
anil object reference is returned.

The contents operation returns the list of objects directly contained by or inherited
into the object. The operation is used to navigate through the hierarchy of objects.
Starting with the Repository object, a client uses this operation to list all of the objects
contained by the Repository, all of the objects contained by the modules within the
Repository, and then all of the interfaces and value types within a specific module, and
so on.

limit_type If limit_type is set to dk_all “all”, objects of all
interface types are returned. For example, if thisis an
InterfaceDef, the attribute, operation, and exception
objects are al returned. If limit_type issetto a
specific interface, only objects of that interface type
are returned. For example, only attribute objects are
returned if limit_type is set to dk_Attribute
“AttributeDef”.

exclude_inherited If set to TRUE, inherited objects (if there are any) are
not returned. If set to FALSE, all contained
objects—whether contained due to inheritance or
because they were defined within the object—are
returned.

Thelookup_name operation is used to locate an object by name within
a particular object or within the objects contained by that object. Use of
values of levels_to_search of 0 or of negative numbers other than -1 is
undefined.

search_name Specifies which name is to be searched for.

levels_to_search Controls whether the lookup is constrained to the
object the operation is invoked on or whether it
should search through objects contained by the object
as well.

Setting levels_to_search to -1 searches the current object and all
contained objects. Setting levels_to_search to 1 searches only the
current object. Use of values of levels_to_search of 0 or of negative
numbers other than -1 is undefined.

September 2001 CORBA, v2.5: Interface Repository Interfaces 10-17

10

10-18

Thedescribe_contents operation combines the contents operation and
the describe operation. For each object returned by the contents
operation, the description of the object is returned (i.e., the object’s
describe operation is invoked and the results returned).

max_returned_objs Limits the number of objects that can be returned in
an invocation of the call to the number provided.
Setting the parameter to -1 means return all contained
objects.

10.5.4.2 Writelnterface

The Container interface provides operations to create ModuleDefs, ConstantDefs,
StructDefs, UnionDefs, EnumDefs, AliasDefs, InterfaceDefs, ValueDefs
ValueBoxDefs, and NativeDefs as contained objects. The defined_in attribute of a
definition created with any of these operationsis initialized to identify the Container
on which the operation is invoked, and the containing_repository attribute is
initialized to its Repository.

The create_<type> operations all take id and name parameters that are used to
initialize the identity of the created definition. A BAD_PARAM exception is raised
with minor code 2 if an object with the specified id already existsin the Repository.
A BAD_PARAM exception with minor code 3 israised if the specified name already
exists within this Container and multiple versions are not supported.Certain interfaces
derived from Container may restrict the types of definitions that they may contain.
Any create_<type> operation that would insert a definition that is not allowed by a
Container will raise the BAD_PARAM exception with minor code 4.

The create_module operation returns a new empty ModuleDef. Definitions can be
added using Container::create_<type> operations on the new module, or by using
the Contained::move operation.

The create_constant operation returns a new ConstantDef with the specified type
and value.

The create_struct operation returns a new StructDef with the specified members.
The type member of the StructMember structures is ignored, and should be set to
TC_void. See Section 10.5.10, “StructDef,” on page 10-23 for more information.

The create_union operation returns a new UnionDef with the specified
discriminator_type and members. The type member of the UnionMember
structures is ignored, and should be set to TC_void. See Section 10.5.11, “UnionDef,”
on page 10-24 for more information.

The create_enum operation returns a new EnumDef with the specified members.
See Section 10.5.12, “EnumDef,” on page 10-25 for more information.

The create_alias operation returns a new AliasDef with the specified
original_type.

Common Object Request Broker Architecture (CORBA), v2.5 September 2001

10

September 2001

The create_interface operation returns a new empty InterfaceDef with the specified
base_interfaces. Type, exception, and constant definitions can be added using
Container::create_<type> operations on the new InterfaceDef. OperationDefs
can be added using InterfaceDef::create_operation and AttributeDefs can be
added using Interface::create_attribute. Definitions can also be added using the
Contained::move operation.

The create_abstract_interface operation returns a new empty
AbstractinterfaceDef with the specified base_interfaces. Type, exception, and
constant definitions can be added using Container::create_<type> operations on the
new AbstractinterfaceDef. OperationDefs can be added using
AbstractinterfaceDef::create_operation and AttributeDefs can be added using
AbstractinterfaceDef::create_attribute. Definitions can also be added using the
Contained::move operation.

The create_local_interface operation returns a new empty LocallnterfaceDef with
the specified base_interfaces. Type, exception, and constant definitions can be
added using Container::create_<type> operations on the new LocallnterfaceDef.
OperationDefs can be added using LocallnterfaceDef::create_operation and
AttributeDefs can be added using LocallnterfaceDef::create_attribute.
Definitions can aso be added using the Contained::move operation.

The create_value operation returns a new empty ValueDef with the specified base
interfaces and values (base_value, supported_interfaces, and
abstract_base_values) as well as the other information describing the new values
characteristics (is_custom, is_abstract, is_truncatable, and initializers). Type,
exception, and constant definitions can be added using Container::create_<type>
operations on the new ValueDef. OperationDefs can be added using
ValueDef::create_operation and AttributeDefs can be added using
Value::create_attribute. Definitions can aso be added using the Contained::move
operation.

The create_value_box operation returns a new ValueBoxDef with the specified
original_type_def.

The create_exception operation returns a new ExceptionDef with the specified
members. The type member of the StructMember structures should be set to
TC void.

The create_native operation returns a new NativeDef with the specified name.

10.5.5 IDLType

The base interface IDLType is inherited by all IR objects that represent OMG IDL
types. It provides access to the TypeCode describing the type, and is used in defining
other interfaces wherever definitions of IDL types must be referenced.

module CORBA {
interface IDLType : IRObject {
readonly attribute TypeCode type;

b

CORBA, v2.5: Interface Repository Interfaces 10-19

10

10-20

¥
The type attribute describes the type defined by an object derived from IDLType.

10.5.6 Repository

Repository isan interface that provides global accessto the Interface Repository. The
Repository object can contain constants, typedefs, exceptions, interfaces, value types,
value boxes, native types, and modules. As it inherits from Container, it can be used
to look up any definition (whether globally defined or defined within a module or
interface) either by name or by id.

Since Repository derives only from Container and not from Contained, it does not
have a Repositoryld associated with it. By default it is deemed to have the
Repositoryld " (the empty string) for purposes of assigning a value to the
defined_in field of the description structure of ModuleDef, InterfaceDef,
ValueDef, ValueBoxDef, TypedefDef, ExceptionDef, and ConstantDef that are
contained immediately in the Repository object.

There may be more than one Interface Repository in a particular ORB environment
(although some ORBs might require that definitions they use be registered with a
particular repository). Each ORB environment will provide a means for obtaining
object references to the Repositories available within the environment.

module CORBA {
interface Repository : Container {

/l read interface
Contained lookup_id (in Repositoryld search_id);
TypeCode get_canonical_typecode(in TypeCode tc);
PrimitiveDef get_primitive (in PrimitiveKind kind);
/I write interface
StringDef create_string (in unsigned long bound);
WstringDef create_wstring(in unsigned long bound);
SequenceDef create_sequence (

in unsigned long bound,
in IDLType element_type

);

ArrayDef create_array (
in unsigned long length,
in IDLType element_type

);

Common Object Request Broker Architecture (CORBA), v2.5 September 2001

10

September 2001

10.5.6.1

10.5.6.2

FixedDef create_fixed(
in unsigned short digits,
in short scale

Read Interface

The lookup_id operation is used to lookup an object in a Repository given its
Repositoryld. If the Repository does not contain a definition for search_id, a nil
object reference is returned. The lookup_id operations always return a nil reference if
the value of search_id isIDL:omg.org/CORBA/Object:1.0, or
IDL:omg.org/CORBA/ValueBase:1.0, signifying the fact that the implicit base
types are not contained in the Interface Repository.

The get_canonical_typecode operation looks up the TypeCode in the Interface
Repository and returns an equivalent TypeCode that includes al repository ids,
names, and member_names. If the top level TypeCode does not contain a
Repositoryld, such as array and sequence TypeCodes, or TypeCodes from older
ORBs, or if it contains a Repositoryld that is not found in the target Repository,
then a new TypeCode is constructed by recursively calling
get_canonical_typecode on each member TypeCode of the original TypeCode.

The get_primitive operation returns a reference to a PrimitiveDef (see
Section 10.5.14, “PrimitiveDef,” on page 10-26) with the specified kind attribute. All
PrimitiveDefs are immutable and are owned by the Repository.

Writelnterface

The five create_<type> operations that create new IR objects defining anonymous
types. As these interfaces are not derived from Contained, it is the caller’'s
responsibility to invoke destroy on the returned object if it is not successfully used in
creating a definition that is derived from Contained. Each anonymous type definition
must be used in defining exactly one other object.

1. The create_string operation returns a new StringDef with the specified bound,
which must be non-zero. The get_primitive operation is used for unbounded
strings.

2. The create_wstring operation returns a new WstringDef with the specified
bound, which must be non-zero. The get_primitive operation is used for
unbounded strings.

3. The create_sequence operation returns a new SequenceDef with the specified
bound and element_type.

4. The create_array operation returns a new ArrayDef with the specified length
and element_type.

CORBA, v2.5: Interface Repository Interfaces 10-21

10

5. The create_fixed operation returns a new FixedDef with the specified humber of
digits and scale. The number of digits must be from 1 to 31, inclusive.

10.5.7 ModuleDef

A ModuleDef can contain constants, typedefs, exceptions, interfaces, value types,
value boxes, native types and other module objects.

module CORBA {
interface ModuleDef : Container, Contained {};

struct ModuleDescription {
Identifier name;
Repositoryld id;
Repositoryld defined_in;
VersionSpec version;
¥
5

The inherited describe operation for a ModuleDef object returns a
ModuleDescription.

10.5.8 ConstantDef

A ConstantDef object defines a named constant.

module CORBA {
interface ConstantDef : Contained {
readonly attribute TypeCode type;

attribute IDLType type_def;
attribute any value;
¥
struct ConstantDescription {
Identifier name;
Repositoryld id;
Repositoryld defined_in;
VersionSpec version;
TypeCode type;
any value;
3

b

10.5.8.1 Read Interface

The type attribute specifies the TypeCode describing the type of the constant. The
type of a constant must be one of the primitive types allowed in constant declarations
(see Section 3.9, “Constant Declaration,” on page 3-29). The type_def attribute
identifies the definition of the type of the constant.

10-22 Common Object Request Broker Architecture (CORBA), v2.5 September 2001

10

The value attribute contains the value of the constant, not the computation of the value
(e.g., the fact that it was defined as “1+2").

The describe operation for a ConstantDef object returns a ConstantDescription.

10.5.8.2 WriteInterface
Setting the type_def attribute also updates the type attribute.

When setting the value attribute, the TypeCode of the supplied any must be equal to
the type attribute of the ConstantDef.

10.5.9 TypedefDef

The base interface TypedefDef is inherited by al named non-object.types (structures,
unions, enumerations, and aliases). The TypedefDef interface is not inherited by the

definition objects for primitive or anonymous types.

module CORBA {
interface TypedefDef : Contained, IDLType {};

struct TypeDescription {

Identifier name;
Repositoryld id;
Repositoryld defined_in;
VersionSpec version;
TypeCode type;

¥
The inherited describe operation for interfaces derived from TypedefDef returns a
TypeDescription.

10.5.10 StructDef

A StructDef represents an OMG IDL structure definition. It can contain structs,
unions, and enums.

module CORBA {

struct StructMember {

Identifier name;
TypeCode type;
IDLType type_def;

b

typedef sequence <StructMember> StructMemberSeq;

September 2001 CORBA, v2.5: Interface Repository Interfaces 10-23

10

interface StructDef : TypedefDef, Container {
attribute StructMemberSeq members;

¥
¥
10.5.10.1 Read Interface
The members attribute contains a description of each structure member. The inherited
type attribute is atk_struct TypeCode describing the structure.

10.5.10.2 Writelnterface

Setting the members attribute also updates the type attribute. When setting the
members attribute, the type member of the StructMember structure should be set
to TC void.

A StructDef used as a Container may only contain StructDef, UnionDef, or
EnumDef definitions.

10.5.11 UnionDef

A UnionDef represents an OMG IDL union definition.

module CORBA {
struct UnionMember {

Identifier name;
any label;
TypeCode type;
IDLType type_def;

b

typedef sequence <UnionMember> UnionMemberSeq;

interface UnionDef : TypedefDef, Container {
readonly attribute TypeCode discriminator_type;
attribute IDLType discriminator_type_def;
attribute UnionMemberSeq members;
¥
¥

10.5.11.1 Read Interface

The discriminator_type and discriminator_type_def attributes describe and
identify the union’s discriminator type.

The members attribute contains a description of each union member. The label of
each UnionMemberDescription is a distinct value of the discriminator_type.
Adjacent members can have the same nhame. Members with the same name must also
have the same type. A label with type octet and value 0 indicates the default union
member.

10-24 Common Object Request Broker Architecture (CORBA), v2.5 September 2001

10

10.5.11.2

The inherited type attribute is atk_union TypeCode describing the union.

WriteInterface

Setting the discriminator_type_def attribute also updates the discriminator_type
attribute and setting the discriminator_type_def or members attribute also updates
the type attribute.

When setting the members attribute, the type member of the UnionMember
structure should be set to TC_void.

A UnionDef used as a Container may only contain StructDef, UnionDef, or
EnumDef definitions.

10.5.12 EnumDef

10.5.12.1

10.5.12.2

An EnumDef represents an OMG IDL enumeration definition.

module CORBA {
typedef sequence <Identifier> EnumMemberSeq;

interface EnumDef : TypedefDef {
attribute EnumMemberSeq members;

b

Read Interface

The members attribute contains a distinct name for each possible value of the
enumeration.

The inherited type attribute is atk_enum TypeCode describing the enumeration.

WriteInterface

Setting the members attribute also updates the type attribute.

10.5.13 AliasDef

September 2001

An AliasDef represents an OMG IDL typedef that aliases another definition.

module CORBA {
interface AliasDef : TypedefDef {
attribute IDLType original_type_def;
¥

CORBA, v2.5: Interface Repository Interfaces 10-25

10

10-26

10.5.13.1 Read Interface

The original_type_def attribute identifies the type being aliased.

The inherited type attribute is atk_alias TypeCode describing the alias.

10.5.13.2 Writelnterface

Setting the original_type_def attribute also updates the type attribute.

10.5.14 PrimitiveDef

A PrimitiveDef represents one of the OMG IDL primitive types. As primitive types
are unnamed, this interface is not derived from TypedefDef or Contained.

module CORBA {
enum PrimitiveKind {
pk_null, pk_void, pk_short, pk_long, pk_ushort, pk_ulong,
pk_float, pk_double, pk_boolean, pk_char, pk_octet,
pk_any, pk_TypeCode, pk_Principal, pk_string, pk_obijref,
pk_longlong, pk_ulonglong, pk_longdouble, pk_wchar, pk_wstring,
pk_value_base

b

interface PrimitiveDef: IDLType {
readonly attribute PrimitiveKind kind;
¥
¥

The kind attribute indicates which primitive type the PrimitiveDef represents. There
are no PrimitiveDefs with kind pk_null. A PrimitiveDef with kind pk_string
represents an unbounded string. A PrimitiveDef with kind pk_objref represents the
IDL type Object. A PrimitiveDef with kind pk_value_base represents the IDL
type ValueBase.

The inherited type attribute describes the primitive type.

All PrimitiveDefs are owned by the Repository. References to them are obtained
using Repository::get_primitive.

10.5.15 StringDef

A StringDef represents an IDL bounded string type. The unbounded string type is
represented as a PrimitiveDef. As string types are anonymous, this interface is not
derived from TypedefDef or Contained.

module CORBA {
interface StringDef : IDLType {
attribute unsigned long bound;

b

Common Object Request Broker Architecture (CORBA), v2.5 September 2001

10

b

The bound attribute specifies the maximum number of characters in the string and
must not be zero. The inherited type attribute is atk_string TypeCode describing
the string.

10.5.16 WstringDef

A WstringDef represents an IDL wide string. The unbounded wide string type is
represented as a PrimitiveDef. As wide string types are anonymous, this interface is
not derived from TypedefDef or Contained.

module CORBA {
interface WstringDef : IDLType {
attribute unsigned long bound;
3

b

The bound attribute specifies the maximum number of wide characters in a wide

string, and must not be zero. Theinherited type attributeisatk_wstring TypeCode
describing the wide string.

10.5.17 FixedDef

A FixedDef represents an IDL fixed point type.

module CORBA {
interface FixedDef : IDLType {
attribute unsigned short digits;
attribute short scale;

b

The digits attribute specifies the total number of decimal digits in the number, and
must be from 1 to 31, inclusive. The scale attribute specifies the position of the
decimal point.

The inherited type attribute is atk_fixed TypeCode, which describes a fixed-point
decimal number.

10.5.18 SequenceDef

September 2001

A SequenceDef represents an IDL sequence type. As sequence types are anonymous,
this interface is not derived from TypedefDef or Contained.

module CORBA {
interface SequenceDef : IDLType {

attribute unsigned long bound;
readonly attribute TypeCode element_type;
attribute IDLType element_type_def;

CORBA, v2.5: Interface Repository Interfaces 10-27

10

10-28

10.5.18.1 Read Interface

10.5.18.2

The bound attribute specifies the maximum number of elements in the sequence. A
bound of zero indicates an unbounded sequence.

The type of the elements is described by element_type and identified by
element_type_def. The inherited type attribute is atk_sequence TypeCode
describing the sequence.

WriteInterface

Setting the element_type_def attribute also updates the element_type attribute.
Setting the bound or element_type_def attribute also updates the type attribute.

10.5.19 ArrayDef

10.5.19.1

10.5.19.2

An ArrayDef represents an IDL array type. As array types are anonymous, this
interface is not derived from TypedefDef or Contained.

module CORBA {
interface ArrayDef : IDLType {

attribute unsigned long length;
readonly attribute TypeCode element_type;
attribute IDLType element_type_def;

Read Interface
The length attribute specifies the number of elements in the array.

The type of the elements is described by element_type and identified by
element_type_def. Since an ArrayDef only represents a single dimension of an
array, multi-dimensional IDL arrays are represented by multiple ArrayDef objects, one
per array dimension. The element_type_def attribute of the ArrayDef representing
the leftmost index of the array, as defined in IDL, will refer to the ArrayDef
representing the next index to the right, and so on. The innermost ArrayDef represents
the rightmost index and the element type of the multi-dimensional OMG IDL array.

The inherited type attribute is atk_array TypeCode describing the array.

WriteInterface

Setting the element_type_def attribute also updates the element_type attribute.
Setting the bound or element_type_def attribute also updates the type attribute.

Common Object Request Broker Architecture (CORBA), v2.5 September 2001

10

10.5.20 ExceptionDef

An ExceptionDef represents an exception definition. It can contain structs, unions,
and enums.

module CORBA {
interface ExceptionDef : Contained, Container {
readonly attribute TypeCode type;
attribute StructMemberSeq members;

¥

struct ExceptionDescription {
Identifier name;
Repositoryld id;
Repositoryld defined_in;
VersionSpec version;
TypeCode type;

¥

b

10.5.20.1 Read Interface

The type attribute is atk_except TypeCode describing the exception. The members
attribute describes any exception members. The describe operation for a
ExceptionDef object returns an ExceptionDescription.

10.5.20.2 Writelnterface

Setting the members attribute also updates the type attribute. When setting the
members attribute, the type member of the StructMember structure is ignored and
should be set to TC_void.

An ExceptionDef used as a Container may only contain StructDef, UnionDef, or
EnumDef definitions.

10.5.21 AttributeDef

An AttributeDef represents the information that defines an attribute of an interface.

module CORBA {
enum AttributeMode {ATTR_NORMAL, ATTR_READONLY};

interface AttributeDef : Contained {
readonly attribute TypeCode type;
attribute IDLType type_def;
attribute AttributeMode mode;

b

struct AttributeDescription {

September 2001 CORBA, v2.5: Interface Repository Interfaces 10-29

10

Identifier name;
Repositoryld id;
Repositoryld defined_in;
VersionSpec version;
TypeCode type;

AttributeMode mode;

10.5.21.1 Read Interface

The type attribute provides the TypeCode describing the type of this attribute. The
type_def attribute identifies the object defining the type of this attribute.

The mode attribute specifies read only or read/write access for this attribute.

The describe operation for an AttributeDef object returns an
AttributeDescription.

10.5.21.2 Writelnterface

Setting the type_def attribute also updates the type attribute.

10.5.22 OperationDef

An OperationDef represents the information needed to define an operation of an
interface.

module CORBA {
enum OperationMode {OP_NORMAL, OP_ONEWAY};

enum ParameterMode {PARAM_IN, PARAM_OUT, PARAM_INOUT};

struct ParameterDescription {

Identifier name;
TypeCode type;
IDLType type_def;

ParameterMode mode;

b

typedef sequence <ParameterDescription> ParDescriptionSeq;

typedef Identifier Contextldentifier;
typedef sequence <Contextldentifier> ContextldSeq;

typedef sequence <ExceptionDef> ExceptionDefSeq;
typedef sequence <ExceptionDescription> ExcDescriptionSeq;

interface OperationDef : Contained {

readonly attribute TypeCode result;
attribute IDLType result_def;

10-30 Common Object Request Broker Architecture (CORBA), v2.5 September 2001

10

September 2001

10.5.22.1

attribute ParDescriptionSeq params;

attribute OperationMode mode;
attribute ContextldSeq contexts;
attribute ExceptionDefSeq exceptions;
¥
struct OperationDescription {
Identifier name;
Repositoryld id;
Repositoryld defined_in;
VersionSpec version;
TypeCode result;
OperationMode mode;
ContextldSeq contexts;

ParDescriptionSeq parameters;
ExcDescriptionSeq exceptions;
¥
¥

Read Interface

The result attribute is a TypeCode describing the type of the value returned by the
operation. The result_def attribute identifies the definition of the returned type.

The params attribute describes the parameters of the operation. It is a sequence of
ParameterDescription structures. The order of the ParameterDescriptionsin the
sequence is significant. The name member of each structure provides the parameter
name. The type member is a TypeCode describing the type of the parameter. The
type_def member identifies the definition of the type of the parameter. The mode
member indicates whether the parameter is an in, out, or inout parameter.

The operation’s mode is either oneway (i.e., no output is returned) or normal.

The kind attribute indicates whether the OperationDef represents an IDL operation
(OP_IDL), or an accessor for aan IDL attribute (OP_ATTR). For an OperationDef
representing an attribute accessor, the name parameter is generated by concatenating
either “_get " or “_set " with the name attribute of the corresponding AttributeDef.
Only the“_get " accessor is provided for readonly attributes. A “_get_" accessor takes
no parameters and its result type is the attribute type. A “_set " accessor takes asingle
in parameter of the attribute type, and its result type is void. The mode attribute of
accessor operations is OP_NORMAL. Accessor OperationDefs are contained in the
same OperationDefs as their corresponding AttributeDefs.

The contexts attribute specifies the list of context identifiers that apply to the
operation.

The exceptions attribute specifies the list of exception types that can be raised by the
operation.

The inherited describe operation for an OperationDef object returns an
OperationDescription.

CORBA, v2.5: Interface Repository Interfaces 10-31

10

10.5.22.2 Writelnterface

Setting the result_def attribute also updates the result attribute.

The mode attribute can only be set to OP_ONEWAY if theresult is TC_void and all

elements of params have amode of PARAM_IN.

10.5.23 InterfaceDef

An InterfaceDef object represents interface definition. It can contain constants,

typedefs, exceptions, operations, and attributes.

module CORBA {
interface InterfaceDef;
typedef sequence <InterfaceDef> InterfaceDefSeq;
typedef sequence <Repositoryld> RepositoryldSeq;

typedef sequence <OperationDescription> OpDescriptionSeq;
typedef sequence <AttributeDescription> AttrDescriptionSeq;

interface InterfaceDef : Container, Contained, IDLType {
/I read/write interface

attribute InterfaceDefSeq base_interfaces;
/I read interface
boolean is_a (in Repositoryld interface_id);

struct FullinterfaceDescription {

Identifier name;
Repositoryld id;

Repositoryld defined_in;
VersionSpec version;
OpDescriptionSeq operations;
AttrDescriptionSeq attributes;
RepositoryldSeq base_interfaces;
TypeCode type;

¥
FullinterfaceDescription describe_interface();
/I write interface

AttributeDef create_attribute (

in Repositoryld id,

in Identifier name,
in VersionSpec version,
in IDLType type,

in AttributeMode mode

10-32 Common Object Request Broker Architecture (CORBA), v2.5

September 2001

10

September 2001

10.5.23.1

OperationDef create_operation (

in Repositoryld id,

in Identifier name,
in VersionSpec version,
in IDLType result,
in OperationMode mode,

in ParDescriptionSeq params,
in ExceptionDefSeq exceptions,

in ContextldSeq contexts

);

3

struct InterfaceDescription {
Identifier name;
Repositoryld id;
Repositoryld defined_in;
VersionSpec version;

RepositoryldSeq base_interfaces;
¥
¥

Read Interface

The base_interfaces attribute lists all the interfaces from which this interface
inherits.

The is_a operation returns TRUE if the interface on which it is invoked either is
identical to or inherits, directly or indirectly, from the interface identified by its
interface_id parameter. Otherwise it returns FALSE. If the value of interface_id is
IDL:omg.org/CORBA/Object:1.0, is_a returns TRUE signifying the fact that all
interfaces are implicitly derived from the base type Object.

The describe_interface operation returns a FullinterfaceDescription describing
the interface, including its operations and attributes. The operations and attributes
fields of the FullinterfaceDescription structure include descriptions of all of the
operations and attributes in the transitive closure of the inheritance graph of the
interface being described.

The inherited describe operation for an InterfaceDef returns an
InterfaceDescription.

The inherited contents operation returns the list of constants, typedefs, and
exceptions defined in this InterfaceDef and the list of attributes and operations either
defined or inherited in this InterfaceDef. If the exclude_inherited parameter is set
to TRUE, only attributes and operations defined within this interface are returned. If
the exclude_inherited parameter is set to FALSE, all attributes and operations are
returned.

CORBA, v2.5: Interface Repository Interfaces 10-33

10

10-34

10.5.23.2

WriteInterface

Setting the base_interfaces attribute causes a BAD_PARAM exception with minor
code 5 to be raised if the name attribute of any object contained by this InterfaceDef
conflicts with the name attribute of any object contained by any of the specified base
InterfaceDefs.

The create_attribute operation returns a new AttributeDef contained in the
InterfaceDef on which it is invoked. Theid, name, version, type_def, and mode
attributes are set as specified. The type attribute is also set. The defined_in attribute
isinitialized to identify the containing InterfaceDef. A BAD_PARAM exception with
standard minor code 2 is raised if an object with the specified id aready exists in the
Repository. BAD_PARAM exception with standard minor code 3 is raised if an
object with the same name already exists in this InterfaceDef.

The create_operation operation returns a new OperationDef contained in the
InterfaceDef on which it isinvoked. The id, name, version, result_def, mode,
params, exceptions, and contexts attributes are set as specified. The result
attribute is also set. The defined_in attribute is initialized to identify the containing
InterfaceDef. A BAD_PARAM exception with standard minor code 2 israised if an
object with the specified id already exists in the Repository. BAD_PARAM
exception with standard minor code 3 is raised if an object with the same name
already exists in this InterfaceDef.

An InterfaceDef used as a Container may only contain TypedefDef, (including
definitions derived from TypedefDef), ConstantDef, and ExceptionDef definitions.

10.5.24 AbstractlinterfaceDef

10.5.24.1

An AbstractinterfaceDef object represents a CORBA 2.3 abstract interface
definition. It can contain constants, typedefs, exceptions, operations, and attributes. Its
base interfaces can only contain AbstractinterfaceDefs.

module CORBA {
interfaceAbstractinterfaceDef;
typedef sequence <AbstractinterfaceDef> AbstractinterfaceDefSeq;

interface AbstractinterfaceDef : InterfaceDef {
¥
3

Read Interface

The inherited base_interfaces attribute returns alist of abstract interfaces from
which this abstract interface inherits.

Note — base_interfaces is of type InterfaceDefSeq, but since
AbstractinterfaceDef is derived from InterfaceDef, alist of
AbstractinterfaceDefs can legitimately be returned in an InterfaceDefSeq.

Common Object Request Broker Architecture (CORBA), v2.5 September 2001

10

10.5.24.2

The inherited is_a operation returns TRUE if the interface on which it is invoked
either is identical to or inherits, directly or indirectly, from the abstract interface
identified by itsinterface_id parameter, or if the value of interface_id is
IDL:omg.org/CORBA/AbstractBase:1.0. Otherwise it returns FALSE.

The inherited describe_interface operation returns a FullinterfaceDescription
describing the abstract interface, including its operations and attributes.

The inherited describe operation for an AbstractinterfaceDef returns an
InterfaceDescription.

The inherited contents operation returns the list of constants, typedefs, and
exceptions defined in this AbstractinterfaceDef and the list of attributes and
operations either defined or inherited in this AbstractinterfaceDef. If the
exclude_inherited parameter is set to TRUE, only attributes and operations defined
within this abstract interface are returned. If the exclude_inherited parameter is set
to FALSE, all attributes and operations are returned.

WriteInterface

Setting the inherited base_interfaces attribute causes a BAD_PARAM exception
with standard minor code 5 to be raised if the name attribute of any object contained
by this AbstractinterfaceDef conflicts with the name attribute of any object
contained by any of the specified base AbstractinterfaceDefs. If any of the
InterfaceDefs in base_interface are not AbstractinterfaceDefs then a
BAD_PARAM exception with standard minor code 11 is raised.

The inherited create_attribute operation returns a new AttributeDef contained in
the AbstractinterfaceDef on which it isinvoked. The id, name, version,
type_def, and mode attributes are set as specified. The type attribute is also set. The
defined_in attribute is initialized to identify the containing AbstractinterfaceDef.
A BAD_PARAM exception with standard minor code 2 is raised if an object with the
specified id already existsin the Repository. BAD_PARAM exception with standard
minor code 3 israised if an object with the same name aready exists in this
AbstractinterfaceDef.

The inherited create_operation operation returns a new OperationDef contained in
the AbstractinterfaceDef on which it is invoked. The id, name, version,
result_def, mode, params, exceptions, and contexts attributes are set as
specified. The result attribute is also set. The defined_in attribute is initialized to
identify the containing AbstractinterfaceDef. A BAD_PARAM exception with
standard minor code 2 is raised if an object with the specified id aready exists in the
Repository. BAD_PARAM exception with standard minor code 3 israised if an
object with the same name already exists in this AbstractinterfaceDef.

10.5.25 LocallnterfaceDef

September 2001

An LocallnterfaceDef object represents a local interface definition. It can contain
constants, typedefs, exceptions, operations, and attributes. Its base interfaces can only
contain InterfaceDefs or LocallnterfaceDefs.

CORBA, v2.5: Interface Repository Interfaces 10-35

10

10-36

10.5.25.1

10.5.25.2

module CORBA {
interfaceLocallnterfaceDef;
typedef sequence <LocallnterfaceDef> LocallnterfaceDefSeq;

interface LocallnterfaceDef : InterfaceDef {
¥
3

Read Interface

The inherited base_interfaces attribute returns a list of interfaces, local or otherwise,
from which this local interface inherits.

Note— base_interfaces is of type InterfaceDefSeq, but since LocallnterfaceDef
is derived from InterfaceDef, alist that consists of some regular InterfaceDefs and
some LocallnterfaceDefs can legitimately be returned in an InterfaceDefSeq.

The inherited is_a operation returns TRUE if the local interface on which it isinvoked
either isidentical to or inherits, directly or indirectly, from the local interface identified
by its interface_id parameter, or if the value of interface_id is
IDL:omg.org/CORBA/LocalBase:1.0. Otherwise it returns FALSE.

The inherited describe_interface operation returns a FullinterfaceDescription
describing the local interface, including its operations and attributes.

The inherited describe operation for a LocallnterfaceDef returns an
InterfaceDescription.

The inherited contents operation returns the list of constants, typedefs, and
exceptions defined in this LocallnterfaceDef and the list of attributes and operations
either defined or inherited in this LocallnterfaceDef. If the exclude_inherited
parameter is set to TRUE, only attributes and operations defined within this local
interface are returned. If the exclude_inherited parameter is set to FALSE, all
attributes and operations are returned.

WriteInterface

Setting the inherited base_interfaces attribute causes a BAD_PARAM exception
with standard minor code 5 to be raised if the name attribute of any object contained
by this LocallnterfaceDef conflicts with the name attribute of any object contained
by any of the specified base InterfaceDefs (local or otherwise).

The inherited create_attribute operation returns a new AttributeDef contained in
the LocallnterfaceDef on which it is invoked. The id, name, version, type_def,
and mode attributes are set as specified. The type attribute is also set. The

defined_in attribute is initialized to identify the containing LocallnterfaceDef. A
BAD_PARAM exception with standard minor code 2 is raised if an object with the

Common Object Request Broker Architecture (CORBA), v2.5 September 2001

10

specified id already existsin the Repository. BAD_PARAM exception with standard
minor code 3 is raised if an object with the same name already exists in this
LocallnterfaceDef.

The inherited create_operation operation returns a new OperationDef contained in
the LocallnterfaceDef on which it isinvoked. The id, name, version, result_def,
mode, params, exceptions, and contexts attributes are set as specified. The
result attribute is also set. The defined_in attribute is initialized to identify the
containing LocallnterfaceDef. A BAD_PARAM exception with standard minor code
2 israised if an object with the specified id already exists in the Repository.
BAD_PARAM exception with standard minor code 3 is raised if an object with the
same name already exists in this LocallnterfaceDef.

10.5.26 ValueMemberDef

September 2001

10.5.26.1

A ValueMemberDef IR Object represents a value member.

module CORBA {
typedef short Visibility;
const Visibility PRIVATE_ MEMBER = 0;
const Visibility PUBLIC_MEMBER = 1;

struct ValueMember {

Identifier name;
Repositoryld id;
Repositoryld defined_in;
VersionSpec version;
TypeCode type;
IDLType type_def;
Visibility access;

¥
typedef sequence <ValueMember> ValueMemberSeq;

interface ValueMemberDef : Contained {
readonly attribute TypeCode type;
attribute IDLType type_def;
attribute Visibility access;
¥
¥

Read Interface

The type attribute provides the TypeCode describing the type of this value member.
The type_def attribute identifies the object defining the type of this value member.
The access attribute specifies private or public access for this value member. The
describe operation for a ValueMemberDef object returns a ValueMember.

CORBA, v2.5: Interface Repository Interfaces 10-37

10

10.5.26.2 Writelnterface

Setting the type_def attribute also updates the type attribute.

10.5.27 ValueDef

A ValueDef object represents a value definition. It can contain constants, typedefs,
exceptions, operations, and attributes.

module CORBA {
interface ValueDef;
typedef sequence <ValueDef> ValueDefSeq;

struct Initializer {

StructMemberSeq members;
Identifier name;

5
typedef sequence<initializer> InitializerSeq;

interface ValueDef : Container, Contained, IDLType {
/I read/write interface

attribute InterfaceDefSeq supported_interfaces;

attribute InitializerSeq initializers;

attribute ValueDef base value;

attribute ValueDefSeq abstract_base values;
attribute boolean is_abstract;

attribute boolean is_custom;

attribute boolean is_truncatable;

/I read interface
boolean is_a(

in Repositoryld id

)i

struct FullValueDescription {
Identifier name;
Repositoryld id;
boolean is_abstract;
boolean is_custom;
Repositoryld defined_in;
VersionSpec version;

OpDescriptionSeq operations;
AttrDescriptionSeq attributes;

ValueMemberSeq members;
InitializerSeq initializers;
RepositoryldSeq supported_interfaces;
RepositoryldSeq abstract_base_values;
boolean is_truncatable;

10-38 Common Object Request Broker Architecture (CORBA), v2.5 September 2001

10

September 2001

b

struct ValueDescription {

Repositoryld
TypeCode
¥

base value;
type;

FullValueDescription describe_value();

ValueMemberDef create_value_member(

in Repositoryld
in Identifier
in VersionSpec
in IDLType
in Visibility

)i

id,
name,
version,

type,
access

AttributeDef create_attribute(

in Repositoryld
in Identifier
in VersionSpec
in IDLType

in AttributeMode

);

id,
name,
version,

type,
mode

OperationDef create_operation (

in Repositoryld
in Identifier
in VersionSpec
in IDLType

in OperationMode

id,
name,
version,
result,
mode,

in ParDescriptionSeq params,
in ExceptionDefSeq exceptions,

in ContextldSeq

);

Identifier
Repositoryld
boolean

boolean
Repositoryld
VersionSpec
RepositoryldSeq
RepositoryldSeq
boolean
Repositoryld

contexts

name;

id;

is_abstract;
is_custom;
defined_in;

version;
supported_interfaces;
abstract_base values;
is_truncatable;

base value;

CORBA, v2.5: Interface Repository Interfaces

10-39

10

10-40

10.5.27.1

10.5.27.2

Read Interface

The supported_interfaces attribute lists the interfaces that this value type supports.
The initializers attribute lists the initializers this value type supports.

The base_value attribute describes the value type from which this value inherits.

The abstract_base_values attribute lists the abstract value types from which this
value inherits.

The is_abstract attribute is TRUE if the value is an abstract value type.
The is_custom attribute is TRUE if the value uses custom marshaling.

Theis_truncatable attribute is TRUE if the value inherits “safely” (i.e., supports
truncation) from another vaue.

Theis_a operation returns TRUE if the value on which it isinvoked either is identical
to or inherits, directly or indirectly, from the interface or value identified by its id
parameter or if the value of id isIDL:omg.org/CORBA/ValueBase:1.0. Otherwise
it returns FALSE.

Thedescribe_value operation returns a FullValueDescription describing the value,
including its operations and attributes.

The inherited describe operation for an ValueDef returns an ValueDescription.

The inherited contents operation returns the list of constants, typedefs, and
exceptions defined in this ValueDef and the list of attributes, operations and members
either defined or inherited in this ValueDef. If the exclude_inherited parameter is
set to TRUE, only attributes, operations and members defined within this value are
returned. If the exclude_inherited parameter is set to FALSE, all attributes,
operations and members are returned.

WriteInterface

Setting the supported_interfaces, base_value, or abstract_base values
attribute causes a BAD_PARAM exception with minor code 5 to be raised if the name
attribute of any object contained by this ValueDef conflicts with the name attribute of
any object contained by any of the specified bases. If an attempt is made to set the
supported_interfaces attribute to an InterfaceDefSeq that contains more than one
InterfaceDef that is not an AbstractinterfaceDef, then the BAD_PARAM
exception shall be raised with standard minor code 12.

Thecreate_value_member operation returns a new ValueMemberDef contained in
the ValueDef on which it isinvoked. The id, name, version, type_def, and access
attributes are set as specified. The type attribute is also set. The defined_in attribute
isinitialized to identify the containing ValueDef. A BAD_PARAM exception with
minor code 2 is raised if an object with the specified id already existsin the
Repository. A BAD_PARAM exception with minor code 3 israised if an object with
the same name already exists in this ValueDef.

Common Object Request Broker Architecture (CORBA), v2.5 September 2001

10

The create_attribute operation returns a new AttributeDef contained in the
ValueDef on which it is invoked. The id, name, version, type_def, and mode
attributes are set as specified. The type attribute is also set. The defined_in attribute
isinitialized to identify the containing ValueDef. A BAD_PARAM exception with
minor code 2 is raised if an object with the specified id already existsin the
Repository. A BAD_PARAM exception with minor code 3 israised if an object with
the same name already exists in this ValueDef.

The create_operation operation returns a new OperationDef contained in the
ValueDef on which it isinvoked. The id, name, version, result_def, mode,
params, exceptions, and contexts attributes are set as specified. The result
attribute is also set. The defined_in attribute is initialized to identify the containing
ValueDef. A BAD_PARAM exception with minor code 2 is raised if an object with
the specified id aready existsin the Repository. A BAD_PARAM exception with
minor code 3 israised if an object with the same name aready exists in this
ValueDef.

A ValueDef used as a Container may only contain TypedefDef, (including
definitions derived from TypedefDef), ConstantDef, and ExceptionDef definitions.

10.5.28 ValueBoxDef

10.5.28.1

10.5.28.2

A ValueBoxDef object represents avalue box definition. It merely identifies the IDL
type_def that is being “boxed.”

module CORBA {
interface ValueBoxDef : TypedefDef {
attribute IDLType original_type_def;
¥
3

Read Interface

The original_type_def attribute identifies the type being boxed. The inherited type
attribute is atk_value_box TypeCode describing the value box.

WriteInterface

Setting the original_type_def attribute also updates the type attribute.

10.5.29 NativeDef

September 2001

A NativeDef object represents a native definition.

module CORBA {
interface NativeDef : TypedefDef {};

3
The inherited type attribute is atk_native TypeCode describing the native type.

CORBA, v2.5: Interface Repository Interfaces 10-41

10

10.6 Repositorylds

Repositorylds are values that can be used to establish the identity of information in
the repository. A Repositoryld is represented as a string, allowing programs to store,
copy, and compare them without regard to the structure of the value. It does not matter
what format is used for any particular Repositoryld. However, conventions are used
to manage the name space created by these IDs.

Repositorylds may be associated with OMG IDL definitions in a variety of ways.
Installation tools might generate them, they might be defined with pragmas in OMG
IDL source, or they might be supplied with the package to be installed. Ensuring
consistency of Repositorylds with the IDL source or the IR contents is the
responsibility of the programmer allocating Repositoryids.

The format of the id is a short format name followed by a colon (“:”) followed by
characters according to the format. This specification defines four formats:

1. one derived from OMG IDL names,

2. one that uses Java class hames and Java serialization version UIDs,

3. one that uses DCE UUIDs, and

4. another intended for short-term use, such as in a development environment.

Since new repository 1D formats may be added from time to time, compliant IDL
compilers must accept any string value of the form

“<format>:<string>"

provided as the argument to the id pragma and use it as the repository ID. The OMG
maintains a registry of allocated format identifiers. The <format> part of the ID may
not contain a colon (:) character.

The version and prefix pragmas only affect default repository IDs that are generated by
the IDL compiler using the IDL format.

10.6.1 OMG IDL Format

10-42

The OMG IDL format for Repositorylds primarily uses OMG IDL scoped names to
distinguish between definitions. It also includes an optional unique prefix, and major
and minor version numbers.

The Repositoryld consists of three components, separated by colons, (“:")
1. The first component is the format name, “IDL.”

2. The second component is alist of identifiers, separated by “/” characters. These
identifiers are arbitrarily long sequences of alphabetic, digit, underscore (*_"),
hyphen (“-"), and period (“.") characters. Typically, the first identifier is a unique
prefix, and the rest are the OMG IDL ldentifiers that make up the scoped name of

the definition.

Common Object Request Broker Architecture (CORBA), v2.5 September 2001

10

September 2001

3. The third component is made up of major and minor version numbers, in decimal
format, separated by a“.”. When two interfaces have Repositorylds differing only
in minor version number it can be assumed that the definition with the higher
version humber is upwardly compatible with; that is, can be treated as derived from

the one with the lower minor version number.

10.6.2 RMI Hashed Format

The OMG IDL format defined above does not include any structural information.
Identity of IDL types determined for this format depends upon the names used in the
RepositoryID being correct. For interfaces, if stubs and skeletons are not actually in
synch, even though the Repositorylds report they are, the worst that can happen is
that the result of an invocation is aBAD_OPERATION exception. With value types,
these kinds of errors are more problematic. An inconsistency between the stub and
skeleton marshaling/unmarshaling code can confuse the marshaling engine and may
even corrupt memory and/or cause a crash failure.

The RMI Hashed format is used for Java RMI values mapped to IDL using the Java to
IDL Mapping (see the Java/IDL Language Mapping document). It is computed based
upon the structural information of the original Java definition. Whenever the Java
definition changes, the hash function will (statistically) produce a hash code, which is
different from the previous one. When an ORB run time receives a value with a
different hash from what is expected, it is free to raise a BAD_PARAM exception. It
may also try to resolve the incompatibility by some means. If it is not successful, then
it shall raise the BAD_PARAM exception.

An RM| Hashed Repositoryld consists of either three or four components, separated
by colons:

RMI: <class name> : <hash code> [: <serialization version UID>]

The class name is a Java class name as returned by the get Name method of
java. |l ang. Cl ass. Any characters not in SO Latin 1 are replaced by “\U”
followed by the 4 hexadecimal characters (in upper case) representing the Unicode
value.

For classes that do not implement j ava. i 0. Seri al i zabl e, and for interfaces,
the hash code is always zero, and the RepositorylD does not contain a serial version
uUlD.

For classesthat implement j ava. i 0. Ext er nal i zabl e, the hash code is always
the 64-bit value 1.

For classes that implement j ava. i 0. Seri al i zabl e but not

java.i o. Ext ernal i zabl e, the hash code is a 64-bit hash of a stream of bytes.
(transcribed as a 16-digit upper case hex string). An instance of

j ava. |l ang. Dat aQut put St r eamis used to convert primitive data types to a
sequence of bytes. The sequence of items in the stream is as follows:

1. The hash code of the superclass, written as a 64-bit long.

CORBA, v2.5: Repositorylds 10-43

10

10-44

2. Thevdue 1if theclasshasno wr i t eCbj ect method, or the value 2 if the class
hasawr it eObj ect method, written as a 32-bit integer.

3. For each field of the class that is mapped to IDL, sorted lexicographically by Java
field name, in increasing order:

a Javafield name, in UTF encoding

b. field descriptor, as defined by the Java Virtual Machine Specification, in UTF
encoding

The National Institute of Standards and Technology (NIST) Secure Hash Algorithm
(SHA-1) is executed on the stream of bytes produced by DataOutputStream,
producing a 20 byte array of values, sha[0..19]. The hash code is assembled from the
first 8 bytes of this array as follows:

| ong hash = 0O;

for (int i =0; i < Math.mn(8, sha.length); i++) {
hash += (long)(sha[i] & 255) << (i * 8);

}

If the actual serialization version Ul D for the Java class differs from the hash code, a
colon and the actual seridization version Ul D (transcribed as a 16 digit upper-case hex
string) shall be appended to the Repositoryld after the hash code.

Examples for the valuetype ::foo::bar would be

RMI:foo/bar;:1234567812345678
RMI:foo/bar;:1234567812345678:ABCD123456781234

An example of a Java array of valuetype ::foo::bar would be

RMI:[Lfoo.bar;:1234567812345678:ABCD123456781234

For aJava class X\ uO3bCy that contains a Unicode character not in SO Latin 1, an
example Repositoryld is

RMI:foo.x\UO3BCy:8765432187654321

A conforming implementation that uses this format shall implement the standard hash
algorithm defined above.

10.6.3 DCE UUID Format

DCE UUID format Repositorylds start with the characters “DCE:” and are followed
by the printable form of the UUID, a colon, and a decimal minor version number, for
example: “DCE:700dc518-0110-11ce-ac8f-0800090b5d3e:1".

Common Object Request Broker Architecture (CORBA), v2.5 September 2001

10

September 2001

10.6.4 LOCAL Format

Local format Repositorylds start with the characters “LOCAL:” and are followed by
an arbitrary string. Local format 1Ds are not intended for use outside a particular
repository, and thus do not need to conform to any particular convention. Local I1Ds
that are just consecutive integers might be used within a development environment to
have a very cheap way to manufacture the IDs while avoiding conflicts with well-
known interfaces.

10.6.5 Pragma Directives for Repositoryld

10.6.5.1

10.6.5.2

Three pragma directives (id, prefix, and version), are specified to accommodate
arbitrary Repositoryld formats and still support the OMG IDL Repositoryld format
with minimal annotation. The prefix and version pragma directives apply only to the
IDL format. An IDL compiler must interpret these annotations as specified.
Conforming IDL compilers may support additional non-standard pragmas, but must not
refuse to compile IDL source containing non-standard pragmas that are not understood
by the compiler.

ThelD Pragma

An OMG IDL pragma of the format

#pragma ID <name> “<id>"

associates an arbitrary Repositoryld string with a specific OMG IDL name. The
<name> can be a fully or partially scoped name or a simple identifier, interpreted
according to the usual OMG IDL name lookup rules relative to the scope within which
the pragma is contained.The <id> must be a repository ID of the form described in
Section 10.6, “Repositorylds,” on page 10-42.

An attempt to assign arepository ID to the same IDL construct a second time shall be
an error unless the repository 1D used in the attempt is identica to the previous one.

interface A {};
#pragma ID A “IDL:A:1.1”
#pragma ID A “IDL:X:1.1” /l Compile-time error

interface B {};
#pragma ID B “IDL:BB:1.1"
#pragma ID B “IDL:BB:1.1" /l OK, same ID

It is also an error to apply an ID to aforward-declared IDL construct (interface,
valuetype, structure, and union) and then later assign a different ID to that IDL
construct.

The Prefix Pragma

An OMG IDL pragma of the format:

CORBA, v2.5: Repositorylds 10-45

10

10-46

#pragma prefix “<string>"

sets the current prefix used in generating OMG IDL format Repositorylds. For
example, the Repositoryld for the initial version of interface Printer defined on
module Office by an organization known as “ SoftCo” might be
“1DL:SoftCo/Office/Printer:1.0".

This format makes it convenient to generate and manage a set of IDs for a collection of
OMG IDL definitions. The person creating the definitions sets a prefix (“ SoftCo”), and
the IDL compiler or other tool can synthesize all the needed IDs.

Because Repositorylds may be used in many different computing environments and
ORBs, as well as over along period of time, care must be taken in choosing them.
Prefixes that are distinct, such as trademarked names, domain names, UUIDs, and so
forth, are preferable to generic names such as “document.”

The specified prefix applies to Repositorylds generated after the pragma until the end
of the current scope is reached or another prefix pragma is encountered. An IDL file
forms a scope for this purpose, so a prefix resets to the previous prefix at the end of the
scope of an included file:

/I ALidI
#pragma prefix “A”
interface A {};

// B.idl

#pragma prefix “B”
#include “A.idl”
interface B {};

The repository IDs for interfaces A and B in this case are:

IDL:A/A:1.0
IDL:B/B:1.0

Similarly, a prefix in an including file does not affect the prefix of an included file:

/I C.idl
interface C {};

// D.idl

#pragma prefix “D”
#include “C.idl"
interface D {};

The repository IDs for interface C and D in this case are:

IDL:C:1.0
IDL:D/D:1.0

If an included file does not contain a #pragma prefix, the current prefix implicitly
resets to the empty prefix:

Common Object Request Broker Architecture (CORBA), v2.5 September 2001

10

September 2001

/l E.idI
interface E {};

/I E.idl
module M {
#include <E.idl>

b

The repository IDs for module M and interface E in this case are:

IDL:M:1.0
IDL:E:1.0

If a#include directive appears at non-global scope and the included file contains a

prefix pragma, the included file's prefix takes precedence, for example:

/Al
#pragma prefix “A”
interface A {};

// B.idl

#pragma prefix “B”
module M {
#include “A.idl”

b

The repository ID for module M and interface A in this case are:

IDL:B/M:1.0
IDL:A/A:1.0

Forward-declared constructs (interfaces, value types, structures, and unions) must

have

the same prefix in effect wherever they appear. Attempts to assign conflicting prefixes

to a forward-declared construct result in a compile-time diagnostic. For example:

#pragma prefix “A”
interface A,; /I Forward decl.

#pragma prefix “B”
interface A; /[l Compile-time error

#pragma prefix “C”
interface A { /l Compile-time error
void op();

5
A prefix pragma of the form

#pragma prefix “”

resets the prefix to the empty string. For example:

CORBA, v2.5: Repositorylds

10-47

10

#pragma prefix “ X"
interface X {};
#pragma prefix
interface Y {};

The repository IDs for interface X and Y in this case are:

IDL:X/X:1.0
IDL:Y:1.0

If a specification contains both a prefix pragma and an ID or version pragma, the prefix
pragma does not affect the repository 1D for an ID pragma, but does affect the
repository ID for a version pragma:

#pragma prefix “A”
interface A {};

interface B {};

interface C {};

#pragma ID B “IDL:myB:1.0”
#pragma version C 9.9

The repository IDs for this specification are

IDL:A/A:1.0
IDL:myB:1.0
IDL:A/C:9.9

A #pragma prefix must appear before the beginning of an IDL definition. Placing a
#pragma prefix elsewhere has undefined behavior, for example:

interface Bar
#pragma prefix “foo” // Undefined behavior

{
...

¥
10.6.5.3 The\ersion Pragma

An OMG IDL pragma of the format:

#pragma version <name> <major>.<minor>

provides the version specification used in generating an OMG IDL format
Repositoryld for a specific OMG IDL name. The <name> can be afully or partially
scoped name or asimple identifier, interpreted according to the usual OMG IDL name
lookup rules relative to the scope within which the pragma is contained. The <major>
and <minor> components are decimal unsigned shorts.

If no version pragma is supplied for a definition, version 1.0 is assumed.

If an attempt is made to change the version of a repository ID that was specified with
an ID pragma, a compliant compiler shall emit a diagnostic:

10-48 Common Object Request Broker Architecture (CORBA), v2.5 September 2001

10

September 2001

interface A {};
#pragma ID A “IDL:myA:1.1”
#pragma version A 9.9 /I Compile-time error

An attempt to assign a version to the same IDL construct a second time shall be an
error unless the version used in the attempt is identical to the existing one.

interface A {};

#pragma version A 1.1

#pragma version A 1.1 /I OK
#pragma version A 1.2 Il Error

interface B {};
#pragma ID B “IDL:myB:1.2”
#pragma veersion B 1.2 /I OK

10.6.5.4 Generation of OMGIDL - Format IDs

A definition is globally identified by an OMG IDL - format Repositoryld if no ID
pragma is encountered for it.

The ID string shall be generated by starting with the string “IDL:". Then, if the current
prefix pragmais a non-empty string, it is appended, followed by a*“/” character. Next,
the components of the scoped name of the definition, relative to the scope in which any
prefix that applies was encountered, are appended, separated by “/” characters. Findly,
a“:” and the version specification are appended.

For example, the following OMG IDL:

module M1 {
typedef long T3,
typedef long T2;
#pragma ID T2 “DCE:d62207a2-011e-11ce-88b4-0800090b5d 3e: 3"

3
#pragma prefix “P1”

module M2 {
module M3 {
#pragma prefix “P2”
typedef long T3;
¥
typedef long T4;
#pragma version T4 2.4

b

specifies types with the following scoped names and Repositorylds:

M1::T1IDL:M1/T1:1.0
M1::T2 DCE:d62207a2-011e-11ce-88h4-0800090b5d3e: 3

CORBA, v2.5: Repositorylds 10-49

10

10-50

M2::M3::T3IDL:P2/T3:1.0
M2::T4IDL:P1/M2/T4:2.4

For this scheme to provide reliable global identity, the prefixes used must be unique.
Two non-colliding options are suggested: Internet domain names and DCE UUIDs.

Furthermore, in a distributed world where different entities independently evolve types,
a convention must be followed to avoid the same Repositoryld being used for two
different types. Only the entity that created the prefix has authority to create new IDs
by simply incrementing the version number. Other entities must use a new prefix, even
if they are only making a minor change to an existing type.

Prefix pragmas can be used to preserve the existing IDs when a module or other
container is renamed or moved.

module M4 {
#pragma prefix “P1/M2”
module M3 {
#pragma prefix “P2”
typedef long T3;

typedef long T4;
#pragma version T4 2.4

b

This OMG IDL declares types with the same global identities as those declared in
module M2 above.

See section 10.6.5.2 for further details of the effects of various prefix pragma settings
on the generated Repositorylds.

10.6.6 For More Information

Section 10.8, “OMG IDL for Interface Repository,” on page 10-60 shows the OMG
IDL specification of the IR, including the #pragma directive. Section 3.3,
“Preprocessing,” on page 3-11 contains additional, genera information on the pragma
directive.

10.6.7 RepositorylDs for OMG-Specified Types

Interoperability between implementations of official OMG specifications, including but
not limited to CORBA, CORBA Services, and CORBA Facilities, depends on
unambiguous specification of Repositorylds for al IDL-defined types in such
specifications.

All official OMG IDL files shall contain the following pragma prefix directive:

#pragma prefix “omg.org”

Common Object Request Broker Architecture (CORBA), v2.5 September 2001

10

unless said file already contains a pragma prefix identifying the original source of the
file (e.g., “w3c.org”).

Revisions to existing OMG specifications must not change the definition of an existing
type in any way. Two types with different repository Ids are considered different types,
regardless of which part of the repository Id differs.

If an implementation must extend an OM G-specified interface, interoperability
requiresit to derive a new interface from the standard interface, rather than modify the
standard definition.

10.7 TypeCodes

TypeCodes are values that represent invocation argument types and attribute types.
They can be obtained from the Interface Repository or from IDL compilers.

TypeCodes have anumber of uses. They are used in the dynamic invocation interface
to indicate the types of the actual arguments. They are used by an Interface Repository
to represent the type specifications that are part of many OMG IDL declarations.
Finally, they are crucial to the semantics of the any type.

Abstractly, TypeCodes consist of a “kind” field, and a set of parameters appropriate
for that kind. For example, the TypeCode describing OMG IDL type long has kind
tk_long and no parameters. The TypeCode describing OMG IDL type
sequence<boolean,10> has kind tk_sequence and two parameters. 10 and
boolean.

10.7.1 The TypeCode Interface

The PIDL interface for TypeCodes is as follows:

module CORBA {
enum TCKind {

tk_null, tk_void,
tk_short, tk_long, tk_ushort, tk_ulong,
tk_float, tk_double, tk_boolean, tk_char,
tk_octet, tk_any, tk_TypeCode, tk_Principal, tk_objref,
tk_struct, tk_union, tk_enum, tk_string,
tk_sequence, tk_array, tk_alias, tk_except,
tk_longlong, tk_ulonglong, tk_longdouble,
tk_wchar, tk_wstring, tk_fixed,
tk_value, tk_value _box,
tk_native,
tk_abstract_interface,
tk_local_interface

3
typedef short ValueModifier;

const ValueModifier VM_NONE = 0;
const ValueModifier VM_CUSTOM = 1;

September 2001 CORBA, v2.5: TypeCodes 10-51

10

10-52

const ValueModifier VM_ABSTRACT = 2;
const ValueModifier VM_TRUNCATABLE = 3;

interface TypeCode {

exception Bounds {};
exception BadKind {};

/l for all TypeCode kinds
boolean equal (in TypeCode tc);

boolean equivalent(in TypeCode tc);
TypeCode get_compact_typecode();

TCKind kind ();

/I for tk_objref, tk_struct, tk_union, tk_enum, tk_alias,

/I tk_value, tk_value_box, tk_native, tk_abstract_interface
/I tk_local_interface and tk_except

Repositoryld id () raises (BadKind);

/I for tk_objref, tk_struct, tk_union, tk_enum, tk_alias,

/I tk_value, tk_value_box, tk_native, tk_abstract_interface
/I tk_local_interface and tk_except

Identifier name () raises (BadKind);

/l for tk_struct, tk_union, tk_enum, tk_value,

/I and tk_except

unsigned long member_count () raises (BadKind);

Identifier member_name (in unsigned long index)
raises(BadKind, Bounds);

/l for tk_struct, tk_union, tk_value,

/I and tk_except

TypeCode member_type (in unsigned long index)
raises (BadKind, Bounds);

/l for tk_union

any member_label (in unsigned long index)
raises(BadKind, Bounds);

TypeCode discriminator_type () raises (BadKind);

long default_index () raises (BadKind);

/I for tk_string, tk_sequence, and tk_array
unsigned long length () raises (BadKind);

Il for tk_sequence, tk_array, tk_value_box and tk_alias
TypeCode content_type () raises (BadKind);

/I for tk_fixed
unsigned short fixed_digits() raises(BadKind);
short fixed_scale() raises(BadKind);

Common Object Request Broker Architecture (CORBA), v2.5 September 2001

10

September 2001

/l for tk_value
Visibility member_visibility(in unsigned long index)
raises(BadKind, Bounds);
ValueModifier type_modifier() raises(BadKind);
TypeCode concrete_base_type() raises(BadKind);
¥
¥

With the above operations, any TypeCode can be decomposed into its constituent
parts. The BadKind exception is raised if an operation is not appropriate for the
TypeCode kind it invoked.

The equal operation can be invoked on any TypeCode. The equal operation returns
TRUE if and only if for the target TypeCode and the TypeCode passed through the
parameter tc, the set of legal operations is the same and invoking any operation from
that set on the two TypeCodes return identical results.

The equivalent operation is used by the ORB when determining type equivalence for
values stored in an IDL any. TypeCodes are considered equivalent based on the
following semantics:

® |f the result of the kind operation on either TypeCode istk_alias, recursively
replace the TypeCode with the result of calling content_type, until thekind isno
longer tk_alias.

® |f results of the kind operation on each typecode differ, equivalent returns false.

® |f theid operation is valid for the TypeCode kind, equivalent returns TRUE if
the results of id for both TypeCodes are non-empty strings and both strings are
equal. If both ids are non-empty but are not equal, then equivalent returns FALSE.
If either or both id is an empty string, or the TypeCode kind does not support the
id operation, equivalent will perform a structural comparison of the TypeCodes
by comparing the results of the other TypeCode operations in the following bullet
items (ignoring aliases as described in the first bullet.). The structural comparison
only calls operations that are valid for the given TypeCode kind. If any of these
operations do not return equal results, then equivalent returns FALSE. If all
comparisons are equal, equivalent returns true.

® The results of the name and member_name operations are ignored and not
compared.

® The results of the member_count, default_index, length, digits, scale, and
type_modifier operations are compared.

® The results of the member_label operation for each member index of a union
TypeCode are compared for equality. Note that this means that unions whose
members are not defined in the same order are not considered structurally
equivaent.

® The results of the discriminator_type, member_type, and
concrete_base_type operation and for each member index, and the result of the
content_type operation are compared by recursively calling equivalent.

CORBA, v2.5: TypeCodes 10-53

10

10-54

® The results of the member_visibility operation are compared for each member
index.

Applications that need to distinguish between a type and different aliases of that type
can supplement equivalent by directly invoking the id operation and comparing the
results.

The get_compact_typecode operation strips out all optional name and member
name fields, but it leaves all alias typecodes intact.

The kind operation can be invoked on any TypeCode. Its result determines what
other operations can be invoked on the TypeCode.

The id operation can be invoked on object reference, valuetype, boxed valuetype,
abstract interface, loca interface, native, structure, union, enumeration, alias, and
exception TypeCodes. It returns the Repositoryld globally identifying the type.
Object reference, valuetype, boxed valuetype, native and exception TypeCodes
always have a Repositoryld. Structure, union, enumeration, and alias TypeCodes
obtained from the Interface Repository or the ORB::create_operation_list operation
also aways have a Repositoryld. Otherwise, the id operation can return an empty
string. When the id operation is invoked on an object reference TypeCode that
contains a base Object, the returned value is IDL:omg.org/CORBA/Object:1.0,
When it isinvoked on avaluetype TypeCode that contains a ValueBase, the returned
value is IDL:omg.org/CORBA/ValueBase:1.0.

The name operation can also be invoked on object reference, structure, union,
enumeration, alias, abstract interface, local interface, value type, boxed valuetype,
native, and exception TypeCodes. It returns the simple name identifying the type
within its enclosing scope. Since names are local to a Repository, the name returned
from a TypeCode may not match the name of the type in any particular Repository,
and may even be an empty string.

The order in which members are presented in the interface repository is the same as the
order in which they appeared in the IDL specification, and this ordering determines the
index value for each member. The first member has index value 0. For example for a
structure definition:

struct example {
short memberl;
short member2;
long members3;

b

In this example memberl hasindex = 0, member2 hasindex = 1, and member3
has index = 2. The value of member_count in this caseis 3.

The member_count and member_name operations can be invoked on structure,
union, non-boxed valuetype, exception, and enumeration TypeCodes.
Member_count returns the number of members congtituting the type.
Member_name returns the simple name of the member identified by index. Since

Common Object Request Broker Architecture (CORBA), v2.5 September 2001

10

September 2001

names are local to a Repository, the name returned from a TypeCode may not match
the name of the member in any particular Repository, and may even be an empty
string.

The member_type operation can be invoked on structure, non-boxed valuetype,
exception and union TypeCodes. It returns the TypeCode describing the type of the
member identified by index.

The member_label, discriminator_type, and default_index operations can only
be invoked on union TypeCodes. Member_label returns the label of the union
member identified by index. For the default member, the label is the zero octet. The
discriminator_type operation returns the type of all non-default member labels. The
default_index operation returns the index of the default member, or -1 if there is no
default member.

The member_visibility operation can only be invoked on non-boxed valuetype
TypeCodes. It returns the Visibility of the valuetype member identified by index.

The member_name, member_type, member_label and member_visibility
operations raise Bounds if the index parameter is greater than or equal to the number
of members constituting the type.

The content_type operation can be invoked on sequence, array, boxed valuetype and
alias TypeCodes. For sequences and arrays, it returns the element type. For aliases, it
returns the original type. For boxed valuetype, it returns the boxed type.

An array TypeCode only describes a single dimension of an OMG IDL array. Multi-
dimensional arrays are represented by nesting TypeCodes, one per dimension. The
outermost tk_array Typecode describes the leftmost array index of the array as
defined in IDL. Its content_type describes the next index. The innermost nested
tk_array TypeCode describes the rightmost index and the array element type.

The type_modifier and concrete_base_type operations can be invoked on non-
boxed valuetype TypeCodes. The type_modifier operation returns the
ValueModifier that applies to the valuetype represented by the target TypeCode. If
the valuetype represented by the target TypeCode has a concrete base valuetype, the
concrete_base_type operation returns a TypeCode for the concrete base, otherwise
it returns a nil TypeCode reference.

The length operation can be invoked on string, wide string, sequence, and array
TypeCodes. For strings and sequences, it returns the bound, with zero indicating an
unbounded string or sequence. For arrays, it returns the number of elements in the
array. For wide strings, it returns the bound, or zero for unbounded wide strings.

10.7.2 TypeCode Constants

For IDL type declarations, the IDL compiler produces (if asked) a declaration of a
TypeCode constant. See the language mapping rules for more information about the
names of the generated TypeCode constants. TypeCode constants include tk_alias
definitions wherever an IDL typedef is referenced. These constants can be used with
the dynamic invocation interface and other routines that require TypeCodes.

CORBA, v2.5: TypeCodes 10-55

10

The predefined TypeCode constants, named according to the C language mapping,

are:

TC null

TC void

TC short

TC_long

TC_longlong

TC _ushort

TC _ulong

TC_ulonglong

TC float

TC double

TC_longdouble

TC _boolean

TC char

TC wchar

TC_octet

TC any

TC_TypeCode

TC_Object = tk_objref {Object}
TC_string= tk_string {0} // unbounded
TC_wstring = tk_wstring{ 0} /// unbounded
TC_ValueBase = tk_value { ValueBase}

For the TC_Object TypeCode constant, calling id returns

"IDL:omg.org/CORBA/Object:1.0" and calling name returns "Object." For the

TC_ValueBase TypeCode constant, calling id returns

"IDL:omg.org/CORBA/ValueBase:1.0," calling name returns "ValueBase,"

calling member_count returns 0, calling type_modifier returns

CORBA::VM_NONE, and calling concrete_base_type returns a nil TypeCode.

10.7.3 Creating TypeCodes

When creating type definition objects in an Interface Repository, types are specified in
terms of object references, and the TypeCodes describing them are generated

automatically.

In some situations, such as bridges between ORBs, TypeCodes need to be constructed
outside of any Interface Repository. This can be done using operations on the ORB

pseudo-object.

module CORBA {
interface ORB {
/I other operations ...

TypeCode create_struct_tc (
in Repositoryld id;
in Identifier name,
in StructMemberSeq members

10-56 Common Object Request Broker Architecture (CORBA), v2.5

September 2001

10

September 2001

);
TypeCode create_union_tc (
in Repositoryld id,
in Identifier name,
in TypeCode discriminator_type,
in UnionMemberSeq members
);
TypeCode create_enum_tc (
in Repositoryld id,
in Identifier name,
in EnumMemberSeq members
);
TypeCode create_alias_tc (
in Repositoryld id,
in Identifier name,
in TypeCode original_type
)i
TypeCode create_exception_tc (
in Repositoryld id,
in Identifier name,
in StructMemberSeq members
);
TypeCode create_interface_tc (
in Repositoryld id,
in Identifier name
);
TypeCode create_string_tc (
in unsigned long bound
);
TypeCode create_wstring_tc (
in unsigned long bound
);
TypeCode create_fixed_tc (
in unsigned short digits,
in unsigned short scale
);
TypeCode create_sequence_tc (
in unsigned long bound,
in TypeCode element_type

);

TypeCode create_recursive_sequence_tc (// deprecated

CORBA, v2.5: TypeCodes

10-57

10

10-58

b

b

in unsigned long bound,
in unsigned long offset
);
TypeCode create_array_tc (
in unsigned long length,
in TypeCode element_type
);
TypeCode create_value_tc (
in Repositoryld id,
in Identifier name,
in ValueModifier type_modifier,

in TypeCode concrete_base,
in ValueMemberSeq members
);
TypeCode create_value_box_tc (
in Repositoryld id,
in Identifier name,
in TypeCode boxed_type
)i
TypeCode create_native_tc (
in Repositoryld id,
in Identifier name
);
TypeCode create_recursive_tc(
in Repositoryld id
);
TypeCode create_abstract_interface_tc(
in Repositoryld id,
in Identifier name
);
TypeCode create_local_interface_tc(
in Repositoryld id,
in Identifier name

Most of these operations are similar to corresponding IR operations for creating type
definitions. TypeCodes are used here instead of IDLType object references to refer to
other types. In the StructMember, UnionMember and ValueMember structures,

only the type is used, and the type_def should be set to nil.

Common Object Request Broker Architecture (CORBA), v2.5

September 2001

10

September 2001

Typecode creation operations that take name as an argument shall check that the name
isavalid IDL name or is a null string. If not, they shall raise the BAD_PARAM
exception with standard minor code 15. Operations that take a Repositoryld
argument shall check that the argument passed in is a string of the form
<format>:<string> and if not, then raise a BAD_PARAM exception with standard
minor code 16. Operations that take content or member types as arguments shall
check that they are legitimate (i.e., that they don’t have kinds tk_null, tk_void, or
tk_exception). If not, they shall raise the BAD_TYPECODE exception with
standard minor code 2. Operations that take members shall check that the member
names are valid IDL names and that they are unique within the member list, and if the
name is found to be incorrect, they shall raise aBAD_PARAM with standard minor
code 17.

The create_union_tc operation shall check that there are no duplicate label values. It
shall also check that each label TypeCode compares equivalent to the discriminator
TypeCode. If aduplicate label is found, raise BAD_PARAM with standard minor
code 18. If incompatible TypeCode of label and discriminator is found, raise
BAD_PARAM with standard minor code 19. The create_union_tc operation shall
also check that the supplied discriminator type is legitimate, and if the check fails,
raise BAD_PARAM with standard minor code 20.

Note — The create_recursive_sequence_tc operation is deprecated. No new code
should make use of this operation. Its functionality is subsumed by the new operation
create_recursive_tc. The create_recursive_sequence_tc operation will be
removed from a future revision of the standard.

The create_recursive_sequence_tc operation is used to create TypeCodes
describing recursive sequences that are members of structs or unions. The result of this
operation should be used as the typecode in the StructMemberSeq or
UnionMemberSeq arguments of the create_struct_tc or create_union_tc
operations. The offset parameter specifies which enclosing struct or union is the target
of the recursion, with the value 1 indicating the most immediate enclosing struct or
union, and larger values indicating successive enclosing struct or unions. For example,
the offset would be 1 for the following IDL structure:

struct foo {
long value;
sequence <foo> chain;

b

Once the recursive sequence TypeCode has been properly embedded in its enclosing
TypeCodes, it will function as a normal sequence TypeCode. Invoking operations
on the recursive sequence TypeCode before it has been embedded in the required
number of enclosing TypeCodes will result in undefined behavior. Attempt to
marshal incomplete typecodes shall raise the BAD_TYPECODE exception with
standard minor code 1. Attempt to use an incomplete TypeCode as a parameter of any
operation when detected shall cause the BAD_PARAM exception to be raised with
standard minor code 13.

CORBA, v2.5: TypeCodes 10-59

10

For create_value_tc operation, the concrete_base parameter is a TypeCode for
the immediate concrete valuetype base of the valuetype for which the TypeCode is
being created. If the valuetype does not have a concrete base, the concrete_base
parameter is a nil TypeCode reference.

The create_recursive_tc operation is used to create a recursive TypeCode, which
serves as a place holder for a concrete TypeCode during the process of creating
TypeCodesthat contain recursion. The id parameter specifies the repository id of the
type for which the recursive TypeCode is serving as a place holder. Once the
recursive TypeCode has been properly embedded in the enclosing TypeCode, which
corresponds to the specified repository id, it will function as a normal TypeCode.
Invoking operations on the recursive TypeCode before it has been embedded in the
enclosing TypeCode will result in undefined behavior. For example, the following
IDL type declarations contain recursion:

struct foo {
long value;
sequence<foo> chain;

b

valuetype V {
public V member;

b

To create a TypeCode for valuetype V, you would invoke the TypeCode creation
operations as shown below:

/] C++
TypeCode_var recursive_tc
= orb->create_recursive_tc(“IDL:V:1.0");

Val ueMenber Seq v_seq;

v_seq.l ength(1);

v_seq[0] . name = string_dup("“nember”);

v_seq[O0].type = recursive_tc;

v_seq[0] . access = PUBLI C_MEMBER

TypeCode_var v_val _tc

= orb->create_value_tc("“IDL:V:1.0",

P
VM_NONE,
TypeCode: : _nil (),
v_seq);

10.8 OMG IDL for Interface Repository

10-60

This section contains the complete OMG IDL specification for the Interface
Repository.

#pragma prefix “omg.org”

Common Object Request Broker Architecture (CORBA), v2.5 September 2001

10

module CORBA {
typedef string Identifier;
typedef string ScopedName;
typedef string Repositoryld;

enum DefinitionKind {
dk_none, dk_all,
dk_Attribute, dk_Constant, dk_Exception, dk_Interface,
dk_Module, dk_Operation, dk_Typedef,
dk_Alias, dk_Struct, dk_Union, dk_Enum,
dk_Primitive, dk_String, dk_Sequence, dk_Array,
dk_Repository,
dk_Wstring, dk_Fixed,
dk_Value, dk_ValueBox, dk_ValueMember,
dk_Native,
dk_Abstractinterface,
dk_Locallnterface

b

interface IRObject {
/I read interface
readonly attribute DefinitionKind def_kind;
/I write interface
void destroy ();

¥
typedef string VersionSpec;
interface Contained,;
interface Repository;
interface Container;
interface Contained : IRObject {
/I read/write interface
attribute Repositoryld id;
attribute ldentifier name;
attribute VersionSpec version;
/I read interface
readonly attribute Container defined_in;
readonly attribute ScopedName absolute_name;
readonly attribute Repository containing_repository;
struct Description {
DefinitionKind kind;

any value;

b

September 2001 CORBA, v2.5: OMG IDL for Interface Repository 10-61

10

10-62

Description describe ();

/I write interface

void move (
in Container new_container,
in Identifier new_name,
in VersionSpec new_version

);
b

interface ModuleDef;

interface ConstantDef;

interface IDLType;

interface StructDef;

interface UnionDef;

interface EnumDef;

interface AliasDef;

interface InterfaceDef;

interface ExceptionDef;

interface NativeDef;

typedef sequence <InterfaceDef> InterfaceDefSeq;
interface ValueDef;

typedef sequence <ValueDef> ValueDefSeq;
interface ValueBoxDef;

interface AbstractinterfaceDef;

typedef sequence <AbstractinterfaceDef> AbstractinterfaceDefSeq;

interface LocallnterfaceDef;

typedef sequence <LocallnterfaceDef> LocallnterfaceDefSeq;

typedef sequence <Contained> ContainedSeq;
struct StructMember {

Identifier name;
TypeCode type;
IDLType type_def;

¥
typedef sequence <StructMember> StructMemberSeq;

struct Initializer {
StructMemberSeq members;
Identifier name;

¥

typedef sequence <lInitializer> InitializerSeq;

struct UnionMember {

Identifier name;
any label;
TypeCode type;
IDLType type_def;

b

Common Object Request Broker Architecture (CORBA), v2.5

September 2001

10

September 2001

typedef sequence <UnionMember> UnionMemberSeq;
typedef sequence <Identifier> EnumMemberSeq;

interface Container : IRObject {

/I read interface

Contained lookup (
in ScopedName search_name);

ContainedSeq contents (

in DefinitionKind limit_type,
in boolean exclude_inherited
);
ContainedSeq lookup_name (
in Identifier search_name,
in long levels_to_search,
in DefinitionKind limit_type,
in boolean exclude_inherited
);
struct Description {
Contained contained_object;
DefinitionKind kind;
any value;

¥
typedef sequence<Description> DescriptionSeq;

DescriptionSeq describe_contents (

in DefinitionKind limit_type,
in boolean exclude_inherited,
in long max_returned_objs

);
/I write interface

ModuleDef create_module (

in Repositoryld id,
in Identifier name,
in VersionSpec version
);
ConstantDef create_constant (
in Repositoryld id,
in Identifier name,
in VersionSpec version,
in IDLType type,
in any value

CORBA, v2.5: OMG IDL for Interface Repository

10-63

10

10-64

StructDef create_struct (

in Repositoryld

in Identifier

in VersionSpec

in StructMemberSeq

);

UnionDef create_union (

in Repositoryld

in Identifier

in VersionSpec

in IDLType

in UnionMemberSeq

);

EnumDef create_enum (
in Repositoryld
in Identifier
in VersionSpec
in EnumMemberSeq

);

AliasDef create_alias (
in Repositoryld
in Identifier
in VersionSpec
in IDLType

);

id,
name,
version,
members

id,

name,

version,
discriminator_type,
members

id,
name,
version,
members

id,

name,
version,
original_type

InterfaceDef create_interface (

in Repositoryld

in Identifier

in VersionSpec

in InterfaceDefSeq

);

ValueDef create_value(
in Repositoryld
in Identifier
in VersionSpec
in boolean
in boolean
in ValueDef
in boolean
in ValueDefSeq
in InterfaceDefSeq
in InitializerSeq

);

id,

name,

version,
base_interfaces,

id,

name,

version,

is_custom,
is_abstract,

base value,
is_truncatable,
abstract_base values,
supported_interfaces,
initializers

ValueBoxDef create_value_box(

in Repositoryld

id,

Common Object Request Broker Architecture (CORBA), v2.5

September 2001

10

September 2001

in Identifier name,
in VersionSpec version,
in IDLType original_type_def
);
ExceptionDef create_exception(
in Repositoryld id,
in Identifier name,
in VersionSpec version,
in StructMemberSeq members
);
NativeDef create_native(
in Repositoryld id,
in Identifier name,
in VersionSpec version,

);

AbstractinterfaceDef create_abstract_interface (
in Repositoryld id,
in Identifier name,
in VersionSpec version,
in AbstractinterfaceDefSeq base_interfaces,

);

LocallnterfaceDef create_local_interface (
in Repositoryld id,
in Identifier name,
in VersionSpec version,
in InterfaceDefSeq base_interfaces
);
b

interface IDLType : IRObject {
readonly attribute TypeCode type;

b

interface PrimitiveDef;
interface StringDef;
interface SequenceDef;
interface ArrayDef;
interface WstringDef;
interface FixedDef;

enum PrimitiveKind {
pk_null, pk_void, pk_short, pk_long, pk_ushort, pk_ulong,
pk_float, pk_double, pk_boolean, pk_char, pk_octet,
pk_any, pk_TypeCode, pk_Principal, pk_string, pk_objref,
pk_longlong, pk_ulonglong, pk_longdouble,
pk_wchar, pk_wstring, pk_value_base

CORBA, v2.5: OMG IDL for Interface Repository

10-65

10

interface Repository : Container {
/I read interface

Contained lookup_id (in Repositoryld search_id);
TypeCode get_canonical_typecode(in TypeCode tc);
PrimitiveDef get_primitive (in PrimitiveKind kind);

/I write interface

StringDef create_string (in unsigned long bound);
WstringDef create_wstring (in unsigned long bound);

SequenceDef create_sequence (

in unsigned long bound,
in IDLType element_type
);
ArrayDef create_array (
in unsigned long length,
in IDLType element_type
);
FixedDef create_fixed (
in unsigned short digits,
in short scale
);
3
interface ModuleDef : Container, Contained {
3
struct ModuleDescription {
Identifier name;
Repositoryld id;
Repositoryld defined_in;
VersionSpec version;

b

interface ConstantDef : Contained {
readonly attribute TypeCode type;
attribute IDLType type_def;
attribute any value;

¥

struct ConstantDescription {
Identifier name;
Repositoryld id;
Repositoryld defined_in;

10-66 Common Object Request Broker Architecture (CORBA), v2.5 September 2001

10

September 2001

VersionSpec version;
TypeCode type;
any value;

¥

interface TypedefDef : Contained, IDLType {

¥

struct TypeDescription {
Identifier name;
Repositoryld id;
Repositoryld defined_in;
VersionSpec version;
TypeCode type;

b

interface StructDef : TypedefDef, Container {
attribute StructMemberSeq members;

b

interface UnionDef : TypedefDef, Container {
readonly attribute TypeCode discriminator_type;
attribute IDLType discriminator_type_def;
attribute UnionMemberSeq members;

b

interface EnumDef : TypedefDef {
attribute EnumMemberSeq members;

b

interface AliasDef : TypedefDef {
attribute IDLType original_type_def;

b

interface NativeDef : TypedefDef {
¥

interface PrimitiveDef: IDLType {
readonly attribute PrimitiveKind kind;

b

interface StringDef : IDLType {
attribute unsigned long bound;

b

interface WstringDef : IDLType {
attribute unsigned long bound;

b

interface FixedDef : IDLType {
attribute unsigned short digits;

CORBA, v2.5: OMG IDL for Interface Repository

10-67

10

10-68

attribute short scale;
¥
interface SequenceDef : IDLType {
attribute unsigned long bound;
readonly attribute TypeCode element_type;
attribute IDLType element_type_def;
¥
interface ArrayDef : IDLType {
attribute unsigned long length;
readonly attribute TypeCode element_type;
attribute IDLType element_type_def;
¥

interface ExceptionDef : Contained, Container {
readonly attribute TypeCode type;
attribute StructMemberSeq members;

¥

struct ExceptionDescription {
Identifier name;
Repositoryld id;
Repositoryld defined_in;
VersionSpec version;
TypeCode type;

¥

enum AttributeMode {ATTR_NORMAL, ATTR_READONLY};

interface AttributeDef : Contained {
readonly attribute TypeCode type;

attribute IDLType type_def;
attribute AttributeMode mode;
&

struct AttributeDescription {
Identifier name;
Repositoryld id;
Repositoryld defined_in;
VersionSpec version;
TypeCode type;
AttributeMode mode;

b

enum OperationMode {OP_NORMAL, OP_ONEWAY};

enum ParameterMode {PARAM_IN, PARAM_OUT, PARAM_INOUT};

struct ParameterDescription {
Identifier name;
TypeCode type;

Common Object Request Broker Architecture (CORBA), v2.5

September 2001

10

IDLType type_def;
ParameterMode mode;

b

typedef sequence <ParameterDescription> ParDescriptionSeq;
typedef Identifier Contextldentifier;

typedef sequence <Contextldentifier> ContextldSeq;

typedef sequence <ExceptionDef> ExceptionDefSeq;

typedef sequence <ExceptionDescription> ExcDescriptionSeq;

interface OperationDef : Contained {
readonly attribute TypeCode result;

attribute IDLType result_def;
attribute ParDescriptionSeq params;
attribute OperationMode mode;
attribute ContextldSeq contexts;
attribute ExceptionDefSeq exceptions;
¥
struct OperationDescription {
Identifier name;
Repositoryld id;
Repositoryld defined_in;
VersionSpec version;
TypeCode result;
OperationMode mode;
ContextldSeq contexts;

ParDescriptionSeq parameters;
ExcDescriptionSeq exceptions;

¥

typedef sequence <Repositoryld> RepositoryldSeq;

typedef sequence <OperationDescription> OpDescriptionSeq;
typedef sequence <AttributeDescription> AttrDescriptionSeq;

interface InterfaceDef : Container, Contained, IDLType {
/I read/write interface

attribute InterfaceDefSeq base_interfaces;
/I read interface

booleanis_a (

in Repositoryld interface_id
);
struct FulllnterfaceDescription {
Identifier name;
Repositoryld id;
Repositoryld defined_in;
VersionSpec version;

September 2001 CORBA, v2.5: OMG IDL for Interface Repository 10-69

10

OpDescriptionSeq operations;
AttrDescriptionSeq attributes;
RepositoryldSeq base_interfaces;
TypeCode type;

¥
FullinterfaceDescription describe_interface();

/I write interface
AttributeDef create_attribute (

in Repositoryld id,
in Identifier name,
in VersionSpec version,
in IDLType type,
in AttributeMode mode
);
OperationDef create_operation (
in Repositoryld id,
in Identifier name,
in VersionSpec version,
in IDLType result,
in OperationMode mode,
in ParDescriptionSeq params,
in ExceptionDefSeq exceptions,
in ContextldSeq contexts
);
¥
struct InterfaceDescription {
Identifier name;
Repositoryld id;
Repositoryld defined_in;
VersionSpec version;
RepositoryldSeq base_interfaces;
¥

typedef short Visibility;
const Visibility PRIVATE_MEMBER = 0;
const Visibility PUBLIC_MEMBER = 1;

struct ValueMember {

Identifier name;
Repositoryld id;
Repositoryld defined_in;
VersionSpec version;
TypeCode type;
IDLType type_def;
Visibility access;

10-70 Common Object Request Broker Architecture (CORBA), v2.5

September 2001

10

typedef sequence <ValueMember> ValueMemberSeq;

interface ValueMemberDef : Contained {
readonly attribute TypeCode type;
attribute IDLType type_def;
attribute Visibility access;

b

interface ValueDef : Container, Contained, IDLType {
I/l read/write interface

attribute InterfaceDefSeq supported_interfaces;
attribute InitializerSeq initializers;

attribute ValueDef base_value;

attribute ValueDefSeq abstract_base_values;
attribute boolean is_abstract;

attribute boolean is_custom;

attribute boolean is_truncatable;

/l read interface
boolean is_a(

September 2001

in Repositoryld id

);

struct FullValueDescription {
Identifier name;
Repositoryld id;
boolean is_abstract;
boolean is_custom;
Repositoryld defined_in;
VersionSpec version;
OpDescriptionSeq operations;
AttrDescriptionSeq attributes;
ValueMemberSeq members;
InitializerSeq initializers;
RepositoryldSeq supported_interfaces;
RepositoryldSeq abstract_base_values;
boolean is_truncatable;
Repositoryld base_value;
TypeCode type;

¥

FullValueDescription describe_value();

ValueMemberDef create_value_member(

in Repositoryld id,

in Identifier name,
in VersionSpec version,
in IDLType type,

in Visibility access

CORBA, v2.5: OMG IDL for Interface Repository

10-71

10

10-72

AttributeDef create_attribute(

in Repositoryld
in Identifier

in VersionSpec
in IDLType

in AttributeMode

);

id,
name,
version,
type,
mode

OperationDef create_operation (

in Repositoryld

in Identifier

in VersionSpec

in IDLType

in OperationMode

in ParDescriptionSeq
in ExceptionDefSeq
in ContextldSeq

id,

name,
version,
result,
mode,
params,
exceptions,
contexts

name;
id;
is_abstract;

);

¥

struct ValueDescription {
Identifier
Repositoryld
boolean
boolean

Repositoryld
VersionSpec
RepositoryldSeq
RepositoryldSeq
boolean
Repositoryld

¥

interface ValueBoxDef
attribute IDLType o

b

is_custom;
defined_in;

version;
supported_interfaces;
abstract_base values;
is_truncatable;

base_ value;

: TypedefDef {
riginal_type_def;

interface AbstractinterfaceDef : InterfaceDef {

b

interface LocallnterfaceDef : InterfaceDef {

3
enum TCKind {

tk_null, tk_void,

pragma version TCKind 2.3

tk_short, tk_long, tk_ushort, tk_ulong,
tk_float, tk_double, tk_boolean, tk_char,

tk_octet, tk_any, tk_TypeCode, tk_Principal, tk_objref,

tk_struct, tk_union

tk_sequence, tk_array, tk_alias, tk_except,

, tk_enum, tk_string,

Common Object Request Broker Architecture (CORBA), v2.5

September 2001

10

tk_longlong, tk_ulonglong, tk_longdouble,
tk_wchar, tk_wstring, tk_fixed,

tk_value, tk_value_box,

tk_native,

tk_abstract_interface,

tk_local_interface

¥
typedef short ValueModifier; /l PIDL
const ValueModifier VM_NONE = 0;
const ValueModifier VM_CUSTOM = 1;
const ValueModifier VM_ABSTRACT = 2;
const ValueModifier VM_TRUNCATABLE = 3;
interface TypeCode { /l PIDL
pragmaversion TypeCode 2.3

exception Bounds {};
exception BadKind {};

/l for all TypeCode kinds
boolean equal (in TypeCode tc);

boolean equivalent(in TypeCode tc);
TypeCode get_compact_typecode();

TCKind kind ();

/I for tk_objref, tk_struct, tk_union, tk_enum, tk_alias,

/I tk_value, tk_value_box, tk_native, tk_abstract_interface
/I tk_local_interface and tk_except

Repositoryld id () raises (BadKind);

/I for tk_objref, tk_struct, tk_union, tk_enum, tk_alias,

/I tk_value, tk_value_box, tk_native, tk_abstract_interface
/I tk_local_interface and tk_except

Identifier name () raises (BadKind);

/I for tk_struct, tk_union, tk_enum, tk_value,

/I and tk_except

unsigned long member_count () raises (BadKind);

Identifier member_name (in unsigned long index)
raises (BadKind, Bounds);

/l for tk_struct, tk_union, tk_value, and tk_except
TypeCode member_type (in unsigned long index)
raises (BadKind, Bounds);

/l for tk_union

any member_label (in unsigned long index)
raises (BadKind, Bounds);

TypeCode discriminator_type () raises (BadKind);

September 2001 CORBA, v2.5: OMG IDL for Interface Repository 10-73

10

10-74

b

long default_index () raises (BadKind);

/I for tk_string, tk_sequence, and tk_array
unsigned long length () raises (BadKind);

I/l for tk_sequence, tk_array, tk_value_box, and tk_alias
TypeCode content_type () raises (BadKind);

I for tk_fixed
unsigned short fixed_digits() raises (BadKind);
short fixed_scale() raises (BadKind);

/l for tk_value

Visibility member_visibility(in unsigned long index)
raises(BadKind, Bounds);

ValueModifier type_modifier() raises(BadKind);

TypeCode concrete_base_type() raises(BadKind);

/I Only the TypeCode related part of interface ORB shown below.
/l For complete description of interface ORB see Chapter 4.

interface ORB { /I PIDL
pragmaversion ORB 2.3
/I other operations ...
TypeCode create_struct_tc (
in Repositoryld id,
in Identifier name,
in StructMemberSeq members
);
TypeCode create_union_tc (
in Repositoryld id,
in Identifier name,
in TypeCode discriminator_type,
in UnionMemberSeq members
);
TypeCode create_enum_tc (
in Repositoryld id,
in Identifier name,
in EnumMemberSeq members
);
TypeCode create_alias_tc (
in Repositoryld id,
in Identifier name,
in TypeCode original_type
);
Common Object Request Broker Architecture (CORBA), v2.5

September 2001

10

TypeCode create_exception_tc (

in Repositoryld id,
in Identifier name,
in StructMemberSeq members
);
TypeCode create_interface_tc (
in Repositoryld id,
in Identifier name
);
TypeCode create_string_tc (
in unsigned long bound
);
TypeCode create_wstring_tc (
in unsigned long bound
);
TypeCode create_fixed_tc (
in unsigned short digits,
in unsigned short scale
)i
TypeCode create_sequence_tc (
in unsigned long bound,
in TypeCode element_type
);
TypeCode create_recursive_sequence_tc (// deprecated
in unsigned long bound,
in unsigned long offset
)i
TypeCode create_array_tc (
in unsigned long length,
in TypeCode element_type
);
TypeCode create_value_tc (
in Repositoryld id,
in Identifier name,
in ValueModifier type_modifier,
in TypeCode concrete_base,
in ValueMemberSeq members
);
TypeCode create_value_box_tc (
in Repositoryld id,
in Identifier name,
in TypeCode boxed_type

September 2001 CORBA, v2.5: OMG IDL for Interface Repository 10-75

10

);
TypeCode create_native_tc (
in Repositoryld id,
in Identifier name
);
TypeCode create_recursive_tc(
in Repositoryld id
);
TypeCode create_abstract_interface_tc(
in Repositoryld id,
in Identifier name
);
TypeCode create_local_interface_tc(
in Repositoryld id,
in Identifier name

10-76 Common Object Request Broker Architecture (CORBA), v2.5 September 2001

ThePortableObject Adapter 11

This chapter describes the Portable Object Adapter, or POA. It presents the design
goals, a description of the abstract model of the POA and its interfaces, followed by a
detailed description of the interfaces themselves.

Contents

This chapter contains the following sections.

Section Title Page
“Overview” 11-1

“Abstract Model Description” 11-2

“Interfaces” 11-14
“IDL for PortableServer Module” 11-44
“UML Description of PortableServer” 11-50
“Usage Scenarios” 11-51

11.1 Overview

The POA is designed to meet the following goals:

* Allow programmers to construct object implementations that are portable between
different ORB products.

® Provide support for objects with persistent identities. More precisely, the POA is
designed to allow programmers to build object implementations that can provide
consistent service for objects whose lifetimes (from the perspective of a client
holding a reference for such an object) span multiple server lifetimes.

September 2001 Common Object Request Broker Architecture (CORBA), v2.5 11-1

11

® Provide support for transparent activation of objects.
® Allow asingle servant to support multiple object identities simultaneously.
® Allow multiple distinct instances of the POA to exist in a server.

® Provide support for transient objects with minimal programming effort and
overhead.

® Provide support for implicit activation of servants with POA-allocated Object |ds.

* Allow object implementations to be maximally responsible for an object’ s behavior.
Specifically, an implementation can control an object s behavior by establishing the
datum that defines an object’s identity, determining the relationship between the
object’s identity and the object’s state, managing the storage and retrieval of the
object’s state, providing the code that will be executed in response to requests, and
determining whether or not the object exists at any point in time.

® Avoid requiring the ORB to maintain persistent state describing individual objects,
their identities, where their state is stored, whether certain identity val ues have been
previously used or not, whether an object has ceased to exist or not, and so on.

® Provide an extensible mechanism for associating policy information with objects
implemented in the POA.

® Allow programmers to construct object implementations that inherit from static
skeleton classes, generated by OMG IDL compilers, or a DSI implementation.

11.2 Abstract Model Description

11-2

The POA interfaces described in this chapter imply a particular abstract computational
model. This section presents that model and defines terminology and basic concepts
that will be used in subsequent sections.

This section provides the rationale for the POA design, describes some of its intended
uses, and provides a background for understanding the interface descriptions.

11.2.1 Model Components

The model supported by the POA is a specialization of the general object model
described in the OMA guide. Most of the elements of the CORBA object model are
present in the model described here, but there are some new components, and some of
the names of existing components are defined more precisely than they are in the
CORBA object model. The abstract model supported by the POA has the following
components:

® Client—A client is a computational context that makes requests on an object
through one of its references.

® Server—A server is a computational context in which the implementation of an
object exists. Generally, a server corresponds to a process. Note that client and
server are roles that programs play with respect to a given object. A program that is
aclient for one object may be the server for another. The same process may be both
client and server for a single object.

Common Object Request Broker Architecture (CORBA), v2.5 September 2001

11

September 2001

® Object—In this discussion, we use object to indicate a CORBA object in the

abstract sense, that is, a programming entity with an identity, an interface, and an

implementation. From a client’s perspective, the object sidentity is encapsulated in
the object’s reference. This specification defines the server's view of object idertity,
which is explicitly managed by object implementations through the POA interface.

Servant—A servant is a programming language object or entity that implements
reguests on one or more objects. Servants generally exist within the context of a
server process. Requests made on an object’s references are mediated by the ORB
and transformed into invocations on a particular servant. In the course of an object’s
lifetime it may be associated with; that is, requests on its references will be targeted
at multiple servants.

Object Id—An Object Id is avalue that is used by thePOA and by the user-supplied
implementation to identify a particular abstract CORBA object. Object Id values
may be assigned and managed by the POA, or they may be assigned and managed
by the implementation. Object Id values are hidden from clients, encapsulated by
references. Object |ds have no standard form; they are managed by the POA as
uninterpreted octet sequences.

Note that the Object I1d defined in this specification is amechanical device used by
an object implementation to correlate incoming requests with references it has
previously created and exposed to clients. It does not constitute a unique logical
identity for an object in any larger sense. The assignment and interpretation of
Object Id values is primarily the responsibility of the application devel oper, although
the SYSTEM_ID policy enables the POA to generate Object 1d values for the
application.

Object Reference—An object reference in this model is the same asin the CORBA
object model. This model implies, however, that a reference specifically
encapsulates an Object 1d and a POA identity.

Note that a concrete reference in a specific ORB implementation will contain more
information, such as the location of the server and POA in question. For example, it
might contain the full name of the POA (the names of all POAs starting from the
root and ending with the specific POA). The reference might not, in fact, actually
contain the Object Id, but instead contain more compact values managed by the
ORB that can be mapped to the Object Id. This is a description of the abstract
information model implied by the POA. Whatever encoding is used to represent the
POA name and the Object Id must not restrict the ability to use any legal character
in a POA name or any lega octet in an Object Id.

POA—A POA is an identifiable entity within the context of a server. Each POA
provides a namespace for Object Ids and a namespace for other (nested or child)
POAs. Policies associated with a POA describe characteristics of the objects
implemented in that POA. Nested POAs form a hierarchical name space for objects
within a server.

Policy—A Policy is an object associated with a POA by an application in order to
specify a characteristic shared by the objects implemented in that POA. This
specification defines policies controlling the POA's threading model as well as a

CORBA, v2.5: Abstract Model Description 11-3

11

11-4

variety of other options related to the management of objects. Other specifications
may define other policies that affect how an ORB processes requests on objects
implemented in the POA.

®* POA Manager—A POA manager is an object that encapsulates the processing state

of one or more POAs. Using operations on a POA manager, the developer can cause
reguests for the associated POAs to be queued or discarded. The developer can also
use the POA manager to deactivate the POAs.

® Servant Manager—A servant manager is an object that the application developer
can associate with a POA. The ORB will invoke operations on servant managers to
activate servants on demand, and to deactivate servants. Servant managers are
responsible for managing the association of an object (as characterized by its Object
Id value) with a particular servant, and for determining whether an object exists or
not. There are two kinds of servant managers, called ServantActivator and
ServantLocator; the type used in a particular situation depends on policies in the
POA.

® Adapter Activator—An adapter activator is an object that the application developer
can associate with a POA. The ORB will invoke an operation on an adapter
activator when a request is received for a child POA that does not currently exist.
The adapter activator can then create the required POA on demand.

11.2.2 Model Architecture

This section describes the architecture of the abstract model implied by the POA, and
the interactions between various components. The ORB is an abstraction visible to
both the client and server. The POA is an object visible to the server. User-supplied
implementations are registered with the POA (this statement is a simplification; more
detail is provided below). Clients hold references upon which they can make requests.
The ORB, POA, and implementation all cooperate to determine which servant the
operation should be invoked on, and to perform the invocation.

Figure 11-1 shows the detail of the relationship between the POA and the
implementation. Ultimately, a POA deals with an Object Id and an active servant. By
active servant, we mean a programming object that exists in memory and has been
presented to the POA with one or more associated object identities. There are several
ways for this association to be made.

Common Object Request Broker Architecture (CORBA), v2.5 September 2001

11

September 2001

Object Reference

Client

| Object I1d
/ ORB % I
POA
5 O
O
User-supplied
servants
POA
O
N J
Server

Figure11-1 Abstract POA Model

If the POA supports the RETAIN policy, it maintains a map, labeled Active Object Map,
that associates Object 1ds with active servants, each association constituting an active
object. If the POA has the USE_DEFAULT_SERVANT policy, a default servant may
be registered with the POA. Alternatively, if the POA has the
USE_SERVANT_MANAGER policy, a user-written servant manager may be
registered with the POA. If the Active Object Map is not used, or arequest arrives for an
object not present in the Active Object Map, the POA either uses the default servant to
perform the request or it invokes the servant manager to obtain a servant to perform the
request. If the RETAIN policy is used, the servant returned by a servant manager is
retained in the Active Object Map. Otherwise, the servant isused only to process the one
request.

In this specification, the term active is applied equally to servants, Object Ids, and
objects. An object is active in a POA if the POA’s Active Object Map contains an entry
that associates an Object 1d with an existing servant. When this specification refers to
active Object Ids and active servants, it means that the Object Id value or servant in
question is part of an entry in the Active Object Map. An Object Id can appear in a
POA's Active Object Map only once.

CORBA, v2.5: Abstract Model Description 11-5

11

11-6

/ root \

POA

Object 140

—0o—~To®a>

—o~< 0>

Active Object M User-supplied
. : // servant
Ob!ectld O] Ve e
""" Object 1d O —— Us=r =l [ServantManager.
---- ' O——— ser-supplied
- Object Id ——| covant —
Object Id —
\ j : User-supplied
3?/\ . . servant
P w' -
ol 7 Poas L [T
f‘ﬂ S -. sevantmg. |- servant
a 1
n Objectld 07+ User-supplied
a v Object1d O | —1 gervant PP
g | Object Id O
e R
w POA C User-supplied
[Object1d Of orvat
< .

User-supplied
servant

/ POA A \ User-supplied
/

servant

default servant |—1

[- - | AdapterActivator]
NI L/

------ > Object reference
— > Servant pointer

Figure11-2 POA Architecture

11.2.3 POA Creation

To implement an object using the POA requires that the server application obtain a
POA abject. A distinguished POA object, called theroot POA, is managed by the ORB
and provided to the application using the ORB initialization interface under the initial
object name “RootPOA.” The application developer can create objects using the root
POA if those default policies are suitable. The root POA has the following policies.

® Thread Policy: ORB_CTRL_MODEL

® Lifespan Palicy: TRANSIENT

® Object Id Uniqueness Policy: UNIQUE_ID

® |d Assignment Policy: SYSTEM_ID

® Servant Retention Policy: RETAIN

* Request Processing Policy: USE_ACTIVE_OBJECT_MAP_ONLY

Common Object Request Broker Architecture (CORBA), v2.5 September 2001

11

® Implicit Activation Policy: IMPLICIT_ACTIVATION

The developer can also create new POAS. Creating a new POA allows the application
devel oper to declare specific policy choicesfor the new POA and to provide a different
adapter activator and servant manager (these are callback objects used by the POA to
activate objects and nested POAs on demand). Creating new POAs also allows the
application developer to partition the name space of objects, as Object Ids are
interpreted relative to a POA. Finally, by creating new POAS, the developer can
independently control request processing for multiple sets of objects.

A POA is created as a child of an existing POA using the create_ POA operation on
the parent POA. When a POA is created, the POA is given a name that must be unique
with respect to al other POAs with the same parent.

POA abjects are not persistent. No POA state can be assumed to be saved by the ORB.
It is the responsibility of the server application to create and initialize the appropriate
POA objects during server initialization or to set an AdapterActivator to create POA
objects needed later.

Creating the appropriate POA objects is particularly important for persistent objects,
objects whose existence can span multiple server lifetimes. To support an object
reference created in a previous server process, the application must recreate the POA
that created the object reference as well as all of its ancestor POAs. To ensure
portability, each POA must be created with the same name as the corresponding POA
in the original server process and with the same policies. (It is the user’s responsibility
to create the POA with these conditions.)

A portable server application can presume that there is no conflict between its POA
names and the POA names chosen by other applications. It is the responsibility of the
ORB implementation to provide a way to support this behavior.

Each distinct ORB created as the result of an ORB _init call in an application has its
own separate root POA and POA namespace.

11.2.4 Reference Creation

Object references are created in servers. Once they are created, they may be exported
to clients.

From this model’s perspective, object references encapsulate object identity
information and information required by the ORB to identify and locate the server and
POA with which the object is associated (that is, in whose scope the reference was
created.) References are created in the following ways:

® The server application may directly create a reference with the create_reference
and create_reference_with_id operations on a POA object. These operations
collect the necessary information to constitute the reference, either from
information associated with the POA or as parameters to the operation. These
operations only create areference. In doing so, they bring the abstract object into
existence, but do not associate it with an active servant.

September 2001 CORBA, v2.5: Abstract Model Description 11-7

11

11-8

® The server application may explicitly activate aservant, associating it with an object
identity using the activate_object or activate_object_with_id operations. Once
a servant is activated, the server application can map the servant to its
corresponding reference using the servant_to_reference or id_to_reference
operations.

® The server application may cause a servant to implicitly activate itself. This

behavior can only occur if the POA has been created with the
IMPLICIT_ACTIVATION policy. If an attempt is made to obtain an object reference
corresponding to an inactive servant, the POA may automatically assign a generated
unique Object Id to the servant and activate the resulting object. The reference may
be obtained by invoking POA::servant_to_reference with an inactive servant, or
by performing an explicit or implicit type conversion from the servant to a reference
type in programming language mappings that permit this conversion.

Once areference is created in the server, it can be made available to clientsin a variety
of ways. It can be advertised through the OMG Naming and Trading Services. It can be
converted to a string via ORB::0object_to_string and published in some way that
allows the client to discover the string and convert it to a reference using
ORB::string_to_object. It can be returned as the result of an operation invocation.

Once areference becomes available to a client, that reference constitutesthe identity of
the object from the client’s perspective. As long as the client program holds and uses
that reference, requests made on the reference should be sent to the “same” object.

Note — The meaning of object identity and “sameness” is at present the subject of
debate in the OMG. This specification does not attempt to resolve that debate in any
way, particularly by defining a concrete notion of identity that is exposed to clients,
beyond the existing notions of identity described in the CORBA specifications and the
OMA guide.

The states of servers and implementation objects are opague to clients. This
specification deals primarily with the view of the ORB from the server’s perspective.

11.2.5 Object Activation Sates

At any point in time, a CORBA object may or may not be associated with an active
servant.

If the POA has the RETAIN policy, the servant and its associated Object Id are entered
into the Active Object Map of the appropriate POA. This type of activation can be
accomplished in one of the following ways.

® The server application itself explicitly activates individual objects (via the
activate_object or activate_object_with_id operations).

® The server application instructs the POA to activate objects on demand by having the
POA invoke a user-supplied servant manager. The server application registers this
servant manager with set_servant_manager.

Common Object Request Broker Architecture (CORBA), v2.5 September 2001

11

® Under some circumstances (when the IMPLICIT_ACTIVATION policy isasoin
effect and the language binding allows such an operation), the POA may implicitly
activate an object when the server application attempts to obtain areference for a
servant that is not aready active (that is, not associated with an Object 1d).

If the USE_DEFAULT_SERVANT policy is aso in effect, the server application
instructs the POA to activate unknown objects by having the POA invoke a single
servant no matter what the Object Id is. The server application registers this servant with
set_servant.

If the POA has the NON_RETAIN policy, for every reguest, the POA may use either a
default servant or a servant manager to locate an active servant. From the POA’s point of
view, the servant is active only for the duration of that one request. The POA does not
enter the servant-object association into the Active Object Map.

11.2.6 Request Processing

A request must be capable of conveying the Object Id of thetarget object as well as the
identification of the POA that created the target object reference. When a client issues
a request, the ORB first locates an appropriate server (perhaps starting one if needed)
and then it locates the appropriate POA within that server.

If the POA does not exist in the server process, the application has the opportunity to
re-create the required POA by using an adapter activator. An adapter activator is a user-
implemented object that can be associated with aPOA. It isinvoked by the ORB when
areguest is received for a non-existent child POA. The adapter activator has the
opportunity to create the required POA. If it does not, the client receives the
OBJECT_NOT_EXIST exception with standard minor code 2.

Once the ORB has located the appropriate POA, it delivers the request to that POA. The
further processing of that request depends both upon the poalicies associated with that
POA as well as the object's current state of activation.

If the POA hasthe RETAIN policy, the POA looksin the Active Object Map to find out
if thereis a servant associated with the Object I1d value from the request. If such a servant
exists, the POA invokes the appropriate method on the servant.

If the POA has the NON_RETAIN policy or has the RETAIN policy but didn't find a
servant in the Active Object Map, the POA takes the following actions:

® |f the POA hasthe USE_DEFAULT_SERVANT poalicy, a default servant has been
associated with the POA so the POA will invoke the appropriate method on that
servant. If no servant has been associated with the POA, the POA raises the
OBJ_ADAPTER system exception with standard minor code 3.

® |f the POA hasthe USE_SERVANT_MANAGER policy, a servant manager has
been associated with the POA so the POA will invoke incarnate or preinvoke on it
to find a servant that may handle the request. (The choice of method depends on the
NON_RETAIN or RETAIN policy of the POA.) If no servant manager has been
associated with the POA, the POA raisesthe OBJ_ADAPTER system exception with
standard minor code 4.

September 2001 CORBA, v2.5: Abstract Model Description 11-9

11

11-10

® |f the USE_OBJECT_MAP_ONLY policy isin effect, the POA raises the
OBJECT_NOT_EXIST system exception with standard minor code 2.

If a servant manager is located and invoked, but the servant manager is not directly
capable of incarnating the object, it (the servant manager) may deal with the
circumstance in a variety of ways, all of which are the application’s responsibility.
Any system exception raised by the servant manager will be returned to the client in
the reply. In addition to standard system exceptions, a servant manager is capable of
raising a ForwardRequest exception. This exception includes an object reference. The
ORB will process this exception as stated below.

11.2.7 Implicit Activation

A POA can be created with a policy that indicates that its objects may be implicitly
activated. This policy, IMPLICIT_ACTIVATION, also requires the SYSTEM_ID and
RETAIN policies.

When a POA supports implicit activation, an inactive servant may be implicitly activated
in that POA by certain operations that logically require an Object Id to be assigned to
that servant. (IMPLICIT_ACTIVATION does not disallow explicit activation; instead, it
enables both implicit and explicit activation.)

Implicit activation of an object involves alocating a system-generated Object Id and
registering the servant with that Object Id in the Active Object Map. The interface
associated with the implicitly activated object is determined from the servant (using
static information from the skeleton, or, in the case of a dynamic servant, using the
_primary_interface() operation).

The operations that support implicit activation include:

® The POA::servant_to_reference operation, which takes a servant parameter and
returns a reference.

® ThePOA::servant_to_id operation, which takes a servant parameter and returns an
Object Id.

® Operations supported by a language mapping to obtain an object reference or an
Object Id for a servant. For example, the_t hi s() servant member function in C++
returns an object reference for the servant.

® Implicit conversions supported by a language mapping that convert a servant to an
object reference or an Object 1d.

The last two categories of operations are language-mapping-dependent.

If the POA has the UNIQUE_ID policy, then implicit activation will occur when any of
these operations are performed on a servant that is not currently active (that is, it is
associated with no Object 1d in the POA’s Active Object Map).

If the POA has the MULTIPLE_ID policy, the servant_to_reference and
servant_to_id operationswill always perform implicit activation, even if the servant is
aready associated with an Object 1d. The behavior of language mapping operations in
the MULTIPLE_ID case is specified by the language mapping. For example, in C++, the

Common Object Request Broker Architecture (CORBA), v2.5 September 2001

11

September 2001

_t hi s() servant member function will not implicitly activatea MULTIPLE_ID
servant if the invocation of _t hi s() isimmediately within the dynamic context of a
request invocation directed by the POA to that servant; instead, it returns the object
reference used to issue the reguest.

Note — The exact timing of implicit activation is ORB implementation-dependent. For
example, instead of activating the object immediately upon creation of alocal object
reference, the ORB could defer the activation until the Object Id is actually needed (for
example, when the object reference is exported outside the process).

11.2.8 Multi-threading

11.2.8.1

11.2.8.2

The POA does not require the use of threads and does not specify what support is needed
from a threads package. However, in order to allow the development of portable servers
that utilize threads, the behavior of the POA and related interfaces when used within a
multiple-thread environment must be specified.

Specifying this behavior does not require that an ORB must support being used in a
threaded environment, nor does it require that an ORB must utilize threads in the
processing of requests. The only requirement given here is that if an ORB does provide
support for multi-threading, these are the behaviors that will be supported by that ORB.
This allows a programmer to take advantage of multiple ORBs that support threadsin a
portable manner across those ORBSs.

The POA’s processing is affected by the thread-related calls available in the ORB:
work_pending, perform_work, run, and shutdown.

POA Threading Models

The POA supports three models of threading when used in conjunction with multi-
threaded ORB implementations; ORB controlled, single thread and main-thread
behavior. The three models can be used together or independently. All can be used in
environments where a single-threaded ORB is used.

The threading model associated with a POA is indicated when the POA is created by
including a ThreadPolicy object in the policies parameter of the POA’s create_ POA
operation. Once a POA is created with one model, it cannot be changed to the other. All
uses of the POA within the server must conform to that threading model associated with
the POA.

Using the Single Thread Model

Requests for each single-threaded POA are processed sequentially. In a multi-threaded
environment, upcalls made by this POA to servants shall not be made concurrently. This
provides a degree of safety for code that is multi-thread-unaware.

CORBA, v2.5: Abstract Model Description 11-11

11

11-12

11.2.8.3

11.2.84

11.2.85

Note — In a multi-threaded environment, requests to distinct single-threaded POAs may
be processed concurrently.

The POA will still allow reentrant calls from an object implementation to itself, or to
another object implementation managed by the same POA.

Using the ORB Controlled Model

The ORB controlled model of threading is used in environments where the developer
wants the ORB/POA to control the use of threads in the manner provided by the ORB.
This model can also be used in environments that do not support threads.

In this model, the ORB is responsible for the creation, management, and destruction of
threads used with one or more POAS.

Using the Main Thread Model

Requests for all main-thread POAS are processed sequentially. In a multi-threaded
environment, all upcalls made by all POAs with this policy to servants are madein a
manner that is safe for code that is multi-thread-unaware.

If the environment has special requirements that some code must run on a distinguished
"main" thread, servant upcalls will be processed on that thread. (See Section 4.2.4,
“Thread-Related Operations,” on page 4-9.)

Note — Not all environments have such a specia requirement. If not, while requests will
be processed sequentially they might not all be processed by the same thread.

Limitations When Using Multiple Threads

There are no guarantees that the ORB and POA will do anything specific about
dispatching requests across threads with a single POA. Therefore, a server programmer
who wants to use one or more POAs within multiple threads must take on all of the
serialization of access to objects within those threads.

There may be requests active for the same object being dispatched within multiple
threads at the same time. The programmer must be aware of this possibility and code
with it in mind.

11.2.9 Dynamic Skeleton Interface

The POA is designed to enable programmers to connect servants to:
® type-specific skeletons, typically generated by OMG IDL compilers, or
® dynamic skeletons.

Common Object Request Broker Architecture (CORBA), v2.5 September 2001

11

September 2001

Servants that are members of type-specific skeleton classes are referred to as type-
specific servants. Servants connected to dynamic skeletons are used to implement the
Dynamic Skeleton Interface (DSI) and are referred to as DSI servants.

Whether a CORBA object is being incarnated by a DSI servant or a type-specific
servant is transparent to its clients. Two CORBA objects supporting the same interface
may be incarnated, one by a DSI servant and the other with a type-specific servant.
Furthermore, a CORBA object may be incarnated by a DSI servant only during some
period of time, while the rest of the time is incarnated by a static servant.

The mapping for POA DSI servants is language-specific, with each language providing
a set of interfaces to the POA. These interfaces are used only by the POA. The
interfaces required are the following.

® Takea CORBA::ServerRequest object from the POA and perform the processing
necessary to execute the request.

® Return the Interface Repository Id identifying the most-derived interface supported
by the target CORBA object in a request.

The reason for the first interface is the entire reason for existence of the DSI: to be able
to handle any request in the way the programmer wishes to handle it. A single DSI
servant may be used to incarnate severa CORBA objects, potentially supporting
different interfaces.

The reason for the second interface can be understood by comparing DSI servants to
type-specific servants.

A type-specific servant may incarnate several CORBA objects but all of them will
support the same IDL interface as the most-derived IDL interface. In C++, for
example, an IDL interface Window in module GraphicalSystem will generate a
type-specific skeleton class called Window in namespace POA_GraphicalSystem.
A type-specific servant that is directly derived from the
POA_GraphicalSystem::Window skeleton class may incarnate several CORBA
objects at atime, but all those CORBA objects will support the
GraphicalSystem::Window interface as the most-derived interface.

A DSl servant may incarnate several CORBA aobjects, not necessarily supporting the
same IDL interface as the most-derived IDL interface.

In both cases (type-specific and DSI) the POA may need to determine, at runtime, the
Interface Repository Id identifying the most-derived interface supported by the target
CORBA object in a reguest. The POA should be able to determine this by asking the
servant that is going to serve the CORBA object.

In the case of type-specific servants, the POA obtains that information from the type-
specific skeleton class from which the servant is directly derived. In the case of DSI
servants, the POA obtains that information by using the second language-specific
interface above.

CORBA, v2.5: Abstract Model Description 11-13

11

11.2.10 Location Transparency

The POA supports location transparency for objects implemented using the POA. Unless
explicitly stated to the contrary, all POA behavior described in this specification applies
regardless of whether the client is local (same process) or remote. For example, like a
request from a remote client, arequest from alocal client may cause object activation if
the object is not active, block indefinitely if the target object's POA is in the holding
state, be rejected if the target object's POA isin the discarding or inactive states, be
delivered to a thread-unaware object implementation, or be delivered to a different object
if the target object's servant manager raises the ForwardRequest exception. The Object
Id and POA of the target object will aso be available to the server via the Current
object, regardless of whether the client islocal or remote.

Note — The implication of these requirements on the ORB implementation is to require
the ORB to mediate all requests to POA-based objects, evenif the client is co-resident in
the same process. This specification is not intended to change CORBA Services
specifications that allow for behaviors that are not location transparent. This specification
does not prohibit (nonstandard) POA extensions to support object behavior that is not
location-transparent.

11.3 Interfaces

The POA-related interfaces are defined in a module separate from the CORBA module,
the PortableServer module. It consists of these interfaces:

« POA

« POAManager

e ServantManager

» ServantActivator

e ServantLocator

* AdapterActivator

e ThreadPolicy
 LifespanPolicy

e ldUniquenessPolicy

* ldAssignmentPolicy

e ImplicitActivationPolicy
e ServantRetentionPolicy
* RequestProcessingPolicy
* Current

In addition, the POA defines the Servant native type.

11-14 Common Object Request Broker Architecture (CORBA), v2.5 September 2001

11

September 2001

11.3.1 The Servant IDL Type

This specification defines a native type PortableServer::Servant. Values of the type
Servant are programming-language-specific implementations of CORBA interfaces.
Each language mapping must specify how Servant is mapped to the programming
language data type that corresponds to an object implementation. The Servant type
has the following characteristics and constraints.

® Values of type Servant are opague from the perspective of CORBA application
programmers. There are no operations that can be performed directly on them by
user programs. They can be passed as parameters to certain POA operations. Some
language mappings may alow Servant values to be implicitly converted to object
references under appropriate conditions.

® Valuesof type Servant support a language-specific programming interface that can
be used by the ORB to obtain a default POA for that servant. This interface is used
only to support implicit activation. A language mapping may provide a default
implementation of this interface that returns the root POA of a default ORB.

® Values of type Servant provide default implementations of the standard object
reference operations get_interface, is_a, and non_existent. These operations can
be overridden by the programmer to provide additional behavior needed by the object
implementation. The default implementations of get_interface and is_a operations
use the most derived interface of a static servant or the most derived interface
retrieved from a dynamic servant to perform the operation. The default
implementation of thenon_existent operation returns FALSE. These operations are
invoked by the POA just like any other operation invocation, so the
PortableServer::Current interface and any language-mapping-provided method of
accessing the invocation context are available.

® Values of type Servant must be testable for identity.

® Values of type Servant have no meaning outside of the process context or address
space in which they are generated.

11.3.2 POAManager Interface

Each POA object has an associated POAManager object. A POA manager may be
associated with one or more POA objects. A POA manager encapsulates the processing
state of the POAs it is associated with. Using operations on the POA manager, an
application can cause requests for those POASs to be queued or discarded, and can
cause the POAs to be deactivated.

POA managers are created and destroyed implicitly. Unless an explicit POA manager
object is provided at POA creation time, a POA manager is created when a POA is
created and is automatically associated with that POA. A POA manager object is
implicitly destroyed when all of its associated POAs have been destroyed.

CORBA, v2.5: Interfaces 11-15

11

11-16

deactivale

11.3.2.1 Processing Sates

A POA manager has four possible processing states; active, inactive, holding, and
discarding. The processing state determines the capabilities of the associated POAS
and the disposition of reguests received by those POAs. Figure 11-3 on page 11-16
illustrates the processing states and the transitions between them. For simplicity of
presentation, this specification sometimes describes these states as POA states,
referring to the POA or POASs that have been associated with a particular POA
manager. A POA manager is created in the holding state. The root POA is therefore
initially in the holding state.

For simplicity in the figure and the explanation, operations that would not cause a state
change are not shown. For example, if a POA isin “active” state, it does not change state
due to an activate operation. Such operations complete successfully with no specia
notice.

The only exception is the inactive state: a“deactivate” operation raises an exception just
the same as every other attempted state change operation.

?

ey
HapcieE
dixcard_requesi=
= diacardrg
.
ariivata
hol_requaets

hold_requeeta

dixc=rd_requesdx

oeoe POS

Figure 11-3 Processing States

Active State

When a POA manager is in the active state, the associated POAs will receive and start
processing requests (assuming that appropriate thread resources are available). Note
that even in the active state, a POA may need to queue requests depending upon the
ORB implementation and resource limits. The number of requests that can be received

Common Object Request Broker Architecture (CORBA), v2.5 September 2001

11

September 2001

and/or queued is an implementation limit. If this limit is reached, the POA should
return a TRANSIENT system exception, with standard minor code 1, to indicate that
the client should re-issue the request.

A user program can legally transition a POA manager from the active state to either the
discarding, holding, or inactive state by calling the discard_requests,
hold_requests, or deactivate operations, respectively. The POA enters the active
state through the use of the activate operation when in the discarding or holding state.

Discarding State

When a POA manager is in the discarding state, the associated POAs will discard all

incoming reguests (whose processing has not yet begun). When a request is discarded,
the TRANSIENT system exception, with standard minor code 1, must be returned to
the client-side to indicate that the request should be re-issued. (Of course, an ORB may
always reject arequest for other reasons and raise some other system exception.)

In addition, when a POA manager isin the discarding state, the adapter activators
registered with the associated POAs will not get called. Instead, requests that require the
invocation of an adapter activator will be discarded, as described in the previous

paragraph.

The primary purpose of the discarding state is to provide an application with flow-
control capabilities when it determines that an object's implementation or POA is being
flooded with reguests. It is expected that the application will restore the POA manager
to the active state after correcting the problem that caused flow-control to be needed.

A POA manager can legally transition from the discarding state to either the active,
holding, or inactive state by calling the activate, hold_requests, or deactivate
operations, respectively. The POA enters the discarding state through the use of the
discard_requests operation when in the active or holding state.

Holding State

When a POA manager is in the holding state, the associated POAs will queue incoming
reguests. The number of requests that can be queued is an implementation limit. If this
limit is reached, the POAs may discard requests and return the TRANSIENT system
exception, with standard minor code 1, to the client to indicate that the client should
reissue the request. (Of course, an ORB may aways reject a request for other reasons
and raise some other system exception.)

In addition, when a POA manager isin the holding state, the adapter activators registered
with the associated POAswill not get called. Instead, requests that require the invocation
of an adapter activator will be queued, as described in the previous paragraph.

A POA manager can legally transition from the holding state to either the active,
discarding, or inactive state by calling the activate, discard_requests, or
deactivate operations, respectively. The POA enters the holding state through the use
of the hold_requests operation when in the active or discarding state. A POA
manager is created in the holding state.

CORBA, v2.5: Interfaces 11-17

11

11-18

11.3.2.2

11.3.2.3

11.3.2.4

| nactive State

The inactive state is entered when the associated POAs are to be shut down. Unlike the
discarding state, the inactive state is not atemporary state. When a POA manager isin
the inactive state, the associated POAs will reject new requests. The rejection
mechanism used is specific to the vendor. The GIOP location forwarding mechanism
and CloseConnection message are examples of mechanisms that could be used to
indicate the rejection. If the client is co-resident in the same process, the ORB could
raise the OBJ_ADAPTER system exception, with standard minor code 1, to indicate
that the object implementation is unavailable.

In addition, when a POA manager isin theinactive state, the adapter activators registered
with the associated POAs will not get called. Instead, requests that require the invocation
of an adapter activator will be rejected, as described in the previous paragraph.

The inactive state is entered using the deactivate operation. It islega to enter the
inactive state from either the active, holding, or discarding states.

If the transition into the inactive state is aresult of calling deactivate with an
etherealize_objects parameter of

® TRUE - the associated POAs will call etherealize for each active object associated
with the POA once all currently executing requests have completed processing (if
the POAs have the RETAIN and USE_SERVANT_MANAGER policies). If a
servant manager has been registered for the POA, the POA will get rid of the object.
If there are any queued requests that have not yet started executing, they will be
treated as if they were new requests and rejected.

® FALSE - No deactivations or etherealizations will be attempted.

Locality Constraints

A POAManager object must not be exported to other processes, or externaized with
ORB::object_to_string. If any attempt is made to do so, the offending operation will
raise a MARSHAL system exception. An attempt to use a POAManager object with
the DIl may raise the NO_IMPLEMENT exception.

activate

void activate()
raises (Adapterlnactive);

This operation changes the state of the POA manager to active. If issued while the
POA manager is in the inactive state, the Adapterinactive exception is raised.
Entering the active state enables the associated POAS to process requests.

hold_requests

void hold_requests(in boolean wait_for_completion)
raises(Adapterinactive);

Common Object Request Broker Architecture (CORBA), v2.5 September 2001

11

This operation changes the state of the POA manager to holding. If issued while the
POA manager is in the inactive state, the Adapterinactive exception is raised.
Entering the holding state causes the associated POAS to queue incoming requests.
Any requests that have been queued but have not started executing will continue to be
queued while in the holding state.

If the wait_for_completion parameter is FALSE, this operation returns immediately
after changing the state. If the parameter is TRUE and the current thread is not in an
invocation context dispatched by some POA belonging to the same ORB as this POA,
this operation does not return until either there are no actively executing regquests in any
of the POAs associated with this POA manager (that is, all requests that were started
prior to the state change have completed) or the state of the POA manager is changed to
a state other than holding. If the parameter is TRUE and the current thread isin an
invocation context dispatched by some POA belonging to the same ORB as this POA the
BAD_INV_ORDER system exception with standard minor code 3 israised and the state
is not changed.

11.3.2.5 discard requests

void discard_requests(in boolean wait_for_completion)
raises (Adapterlnactive);

This operation changes the state of the POA manager to discarding. If issued while the
POA manager is in the inactive state, the Adapterinactive exception is raised.
Entering the discarding state causes the associated POAS to discard incoming requests.
In addition, any reguests that have been queued but have not started executing are
discarded. When a request is discarded, a TRANSIENT system exception with
standard minor code 1 is returned to the client.

If the wait_for_completion parameter is FALSE, this operation returns immediately
after changing the state. If the parameter is TRUE and the current thread is not in an
invocation context dispatched by some POA belonging to the same ORB as this POA,
this operation does not return until either there are no actively executing requests in any
of the POAs associated with this POA manager (that is, all requests that were started
prior to the state change have completed) or the state of the POA manager is changed to
a state other than discarding. If the parameter is TRUE and the current thread is in an
invocation context dispatched by some POA belonging to the same ORB as this POA the
BAD_INV_ORDER system exception with standard minor code 3 israised and the state
is not changed.

11.3.2.6 deactivate

void deactivate(in boolean etherealize_objects,
in boolean wait_for_completion);
raises (Adapterlnactive);

September 2001 CORBA, v2.5: Interfaces 11-19

11

11-20

11.3.2.7

This operation changes the state of the POA manager to inactive. This operation has no
affect on the POA manager's state if it is dready in the inactive state, but may still
block if wait_for_completion is TRUE and another call to deactivate on the same
POA manager is pending. Entering the inactive state causes the associated POAS to
reject requests that have not begun to be executed as well as any new requests.

After changing the state, if the etherealize_objects parameter is

® TRUE - the POA manager will cause all associated POAs that have the RETAIN and
USE_SERVANT_MANAGER policiesto perform theetherealize operation on the
associated servant manager for all active objects.

® FALSE - the etherealize operation is not called. The purpose is to provide
developers with a means to shut down POAs in acrisis (for example, unrecoverable
error) situation.

If the wait_for_completion parameter is FALSE, this operation will return
immediately after changing the state. If the parameter is TRUE and the current thread is
not in an invocation context dispatched by some POA belonging to the same ORB as this
POA, this operation does not return until there are no actively executing requests in any
of the POAs associated with this POA manager (that is, all requests that were started
prior to the state change have completed) and, in the case of a TRUE
etherealize_objects, all invocations of etherealize have completed for POAs having
the RETAIN and USE_SERVANT_MANAGER policies. If the parameter is TRUE
and the current thread is in an invocation context dispatched by some POA belonging to
the same ORB as this POA the BAD_INV_ORDER system exception with standard
minor code 6 is raised and the state is not changed.

If the ORB::shutdown operation is called, it makesacall on deactivate with a TRUE
etherealize_objects parameter for each POA manager known in the process; the
wait_for_completion parameter to deactivate will be the same as the similarly
named parameter of ORB::shutdown.

If deactivate is called multiple times before destruction is complete (because there are
active requests), the etherealize_objects parameter applies only to the first call of
deactivate; subseguent calls with conflicting etherealize_objects settings will use
the value of the etherealize_objects from the first call. The wait_for_completion
parameter will be handled as defined above for each individual call (some callers may
choose to block, while others may not).

get_state

enum State {HOLDING, ACTIVE, DISCARDING, INACTIVE};
State get_state();

This operation returns the state of the POA manager.

Common Object Request Broker Architecture (CORBA), v2.5 September 2001

11

September 2001

11.3.3 AdapterActivator Interface

11.3.3.1

11.3.3.2

Adapter activators are associated with POAs. An adapter activator supplies a POA with
the ability to create child POAs on demand, as a side-effect of receiving a reguest that
names the child POA (or one of its children), or when find_POA is called with an
activate parameter value of TRUE. An application server that creates al its needed POAs
at the beginning of execution does not need to use or provide an adapter activator; it is
necessary only for the case in which POAS need to be created during request processing.

While a request from the POA to an adapter activator is in progress, all requests to
objects managed by the new POA (or any descendant POAS) will be queued. This
serialization allows the adapter activator to complete any initialization of the new POA
before requests are delivered to that POA.

Locality Constraints

An AdapterActivator object must be local to the process containing the POA objects
it is registered with.

unknown_adapter

boolean unknown_adapter(in POA parent, in string name);

This operation is invoked when the ORB receives a request for an object reference that
identifies a target POA that does not exist. The ORB invokes this operation once for
each POA that must be created in order for the target POA to exist (starting with the
ancestor POA closest to the root POA). The operation is invoked on the adapter
activator associated with the POA that is the parent of the POA that needs to be
created. That parent POA is passed as the parent parameter. The name of the POA to
be created (relative to the parent) is passed as the name parameter.

The implementation of this operation should either create the specified POA and return
TRUE, or it should return FALSE. If the operation returns TRUE, the ORB will
proceed with processing the request. If the operation returns FALSE, the ORB will
return OBJECT_NOT_EXIST with standard minor code 2 to the client. If multiple
POA's need to be created, the ORB will invoke unknown_adapter once for each POA
that needs to be created. If the parent of a nonexistent POA does not have an associated
adapter activator, the ORB will return the OBJECT_NOT_EXIST system exception
with standard minor code 2.

If unknown_adapter raises a system exception, the ORB will report an
OBJ_ADAPTER system exception with standard minor code 1.

Note — It is possible for another thread to create the same POA the AdapterActivator
is being asked to create if AdapterActivators are used in conjunction with other
threads calling create_POA with the same POA name. Applications should be prepared
to ded with failures from either the manual or automatic (AdapterActivator) POA
creation request. There can be no guarantee of the order of such calls.

CORBA, v2.5: Interfaces 11-21

11

11-22

For example, if the target object reference was created by a POA whose full name is
“A “B,” “C.” “D” and only POAs “A” and “B” currently exist, the
unknown_adapter operation will be invoked on the adapter activator associated with
POA “B” passing POA “B” as the parent parameter and “C” as the name of the
missing POA. Assuming that the adapter activator creates POA “C” and returns TRUE,
the ORB will then invoke unknown_adapter on the adapter activator associated with
POA “C,” passing POA “C” as the parent parameter and “D” as the name.

The unknown_adapter operation is also invoked when find_POA is caled on the
POA with which the AdapterActivator is associated, the specified child doesnot exist,
and the activate_it parameter to find_POA isTRUE. If unknown_adapter creates
the specified POA and returns TRUE, that POA is returned from find_POA. If
unknown_adapter returns FALSE then find_POA raises AdapterNonExistent. If
unknow_adapter raises any system exception then find_POA passes through the
system exception it gets back from unknown_adapter.

Note — This allows the same code, the unknown_adapter implementation, to be used
toinitialize a POA whether that POA is created explicitly by the application or as a side-
effect of processing a request. Furthermore, it makes this initialization atomic with
respect to delivery of requests to the POA.

11.3.4 ServantManager Interface

11.34.1

Servant managers are associated with POAs. A servant manager supplies a POA with
the ability to activate objects on demand when the POA receives a request targeted at
an inactive object. A servant manager is registered with a POA as a callback object, to
be invoked by the POA when necessary. An application server that activates all its
needed objects at the beginning of execution does not need to use a servant manager; it
is used only for the case in which an object must be activated during request processing.

The ServantManager interface is itself empty. It is inherited by two other interfaces,
ServantActivator and ServantLocator.

The two types of servant managers correspond to the POA’s RETAIN policy
(ServantActivator) and to the NON_RETAIN policy (ServantLocator). The
meaning of the palicies and the operations that are available for POAs using each policy
are listed under the two types of derived interfaces.

Each servant manager type contains two operations, the first called to find and return a
servant and the second to deactivate a servant. The operations differ according to the
amount of information usable for their situation.

Common Information for Servant Manager Types

The two types of servant managers have certain semantics that are identical.

The incarnate and preinvoke operation may raise any system exception deemed
appropriate (for example, OBJECT_NOT_EXIST if the object corresponding to the
Object Id value has been destroyed).

Common Object Request Broker Architecture (CORBA), v2.5 September 2001

11

September 2001

11.3.4.2

Note — If a user-written routine (servant manager or method code) raises the
OBJECT_NOT_EXIST exception, the POA does nothing but pass on that exception.
It is the user’s responsibility to deactivate the object if it had been previously activated.

The incarnate and preinvoke operation may aso raise a ForwardRequest
exception. If this occurs, the ORB is responsible for delivering the current request and
subsequent requests to the object denoted in the forward_reference member of the
exception. The behavior of this mechanism must be the functional eguivalent of the
GIOP location forwarding mechanism. If the current request was delivered via an
implementation of the GIOP protocol (such as [1OP), the reference in the exception
should be returned to the client in a reply message with LOCATION_FORWARD
reply status. If some other protocol or delivery mechanism was used, the ORB is
responsible for providing equivalent behavior, from the perspectives of the client and
the object denoted by the new reference.

If aServantManager returns anull Servant (or the equivalent in a language mapping)
as theresult of an incarnate() or preinvoke() operation, the POA will return the
OBJ_ADAPTER system exception with standard minor code 3 as the result of the
request. If the ServantManager returns the wrong type of Servant, it is indeterminate
when that error is detected. It islikely to result in a BAD_OPERATION with standard
minor code 5 or MARSHAL exception at the time of method invocation.

Locality Constraints

A ServantManager object must be local to the process containing the POA objects it
is registered with.

11.3.5 ServantActivator Interface

When the POA has the RETAIN palicy it uses servant managers that are
ServantActivators. When using such servant managers, the following statements
apply for a given Objectld used in the incarnate and etherealize operations:

® Servants incarnated by the servant manager will be placed in the Active Object Map
with objects they have activated.

® |nvocations of incarnate on the servant manager are serialized.
® Invocations of etherealize on the servant manager are serialized.

® Invocations of incarnate and etherealize on the servant manager are mutually
exclusive.

® |ncarnations of a particular object may not overlap; that is, incarnate shall not be
invoked with a particular Objectld while, within the same POA, that Objectld isin
use as the Objectld of an activated object or as the argument of a call to incarnate
or etherealize that has not completed.

It should be noted that there may be a period of time between an object's deactivation
and the etherealization (during which outstanding requests are being processed) in
which arriving requests on that object should not be passed to its servant. During this

CORBA, v2.5: Interfaces 11-23

11

11-24

11.35.1

period, requests targeted for such an object act as if the POA were in holding state until
etherealize completes. If etherealize is called as a consequence of a deactivate cal
with an etherealize_objects parameter of TRUE, incoming requests are rejected.

It should also be noted that a similar situation occurs with incarnate. There may be a
period of time after the POA invokes incarnate and before that method returns in
which arriving requests bound for that object should not be passed to the servant.

A single servant manager object may be concurrently registered with multiple POAs.
Invocations of incarnate and etherealize on a servant manager in the context of
different POASs are not necessarily serialized or mutually exclusive. There are no
assumptions made about the thread in which etherealize is invoked.

incarnate

Servant incarnate (
in Objectld oid,
in POA adapter)
raises (ForwardRequest);

This operation is invoked by the POA whenever the POA receives a request for an
object that is not currently active, assuming the POA has the
USE_SERVANT_MANAGER and RETAIN policies.

The oid parameter contains the Objectld value associated with the incoming request.
The adapter is an object reference for the POA in which the object is being activated.

The user-supplied servant manager implementation is responsible for locating or
creating an appropriate servant that corresponds to the Objectld value if possible.
incarnate returns a value of type Servant, which is the servant that will be used to
process the incoming request (and potentially subsequent requests, since the POA has
the RETAIN policy).

The POA enters the returned Servant value into the Active Object Map so that
subsequent requests with the same Objectld value will be delivered directly to that
servant without invoking the servant manager.

If the incarnate operation returns a servant that is aready active for a different Object
Id and if the POA aso hasthe UNIQUE_ID policy, the incarnate has violated the POA
policy and is considered to be in error. The POA will raise an OBJ_ADAPTER system
exception for the request. In this case, ethereaize is not called by the POA because the
servant was never added to the Active Object Map.

Note — If the same servant is used in two different POASs, it is legal for the POAsto use
that servant even if the POAs have different Object Id uniqueness policies. The POAs do
not interact with each other in this regard.

Common Object Request Broker Architecture (CORBA), v2.5 September 2001

11

September 2001

11.3.5.2 etherealize

void etherealize (

in Objectld oid,

in POA adapter,

in Servant sery,

in boolean cleanup_in_progress,
in boolean remaining_activations);

This operation is invoked whenever a servant for an object is deactivated, assuming the
POA hasthe USE_SERVANT_MANAGER and RETAIN policies. Note that an active
servant may be deactivated by the servant manager via etherealize even if it was not
incarnated by the servant manager.

The oid parameter contains the Object Id value of the object being deactivated. The
adapter parameter is an object reference for the POA in whose scope the object was
active. The serv parameter contains a reference to the servant that is associated with
the object being deactivated. If the servant denoted by the serv parameter is associated
with other objectsin the POA denoted by the adapter parameter (that is, in the POA's
Active Object Map) at the time that etherealize is called, the
remaining_activations parameter has the value TRUE. Otherwise, it has the value
FALSE.

If the cleanup_in_progress parameter is TRUE, the reason for the etherealize
operation is that either the deactivate or destroy operation was called with an
etherealize_objects parameter of TRUE. If the parameter is FALSE, the
etherealize operation is called for other reasons.

Deactivation occurs in the following circumstances:

®* When an object is deactivated explicitly by an invocation of
POA::deactivate_object.

®* When the ORB or POA determines internally that an object must be deactivated.
For example, an ORB implementation may provide policies that allow objects to be
deactivated after some period of quiescence, or when the number of active objects
reaches some limit.

* |f POAManager::deactivate isinvoked on a POA manager associated with a
POA that has currently active objects.

Destroying a servant that is in the Active Object Map or is otherwise known to the
POA can lead to undefined results.

In a multi-threaded environment, the POA makes certain guarantees that allow servant
managers to safely destroy servants. Specifically, the servant’s entry in the Active
Object Map corresponding to the target object isremoved before etherealize is called.
Because callsto incarnate and etherealize are serialized, this prevents new requests
for the target object from being invoked on the servant during etherealization. After
removing the entry from the Active Object Map, if the POA determines before
invoking etherealize that other requests for the same target object are already in
progress on the servant, it delays the call to etherealize until all active methods for

CORBA, v2.5: Interfaces 11-25

11

11-26

the target object have completed. Therefore, when etherealize is called, the servant
manager can safely destroy the servant if it wants to, unless the
remaining_activations argument is TRUE.

If the etherealize operation returns a system exception, the POA ignores the
exception.

11.3.6 ServantLocator Interface

When the POA has the NON_RETAIN policy it uses servant managers that are
ServantLocators. Because the POA knows that the servant returned by this servant
manager will be used only for a single request, it can supply extra information to the
servant manager’s operations and the servant manager’s pair of operations may be able
to cooperate to do something different than a ServantActivator.

When the POA uses the ServantLocator interface, immediately after performing the
operation invocation on the servant returned by preinvoke, the POA will invoke
postinvoke on the servant manager, passing the Objectld value and the Servant
value as parameters (among others). The next request with this Objectld value will
then cause preinvoke to be invoked again. This feature may be used to force every
request for objects associated with a POA to be mediated by the servant manager.

When using such a ServantLocator, the following statements apply for a given
Objectld used in the preinvoke and postinvoke operations:

® The servant returned by preinvoke is used only to process the single request that
caused preinvoke to be invoked.

® No servant incarnated by the servant manager will be placed in the Active Object
Map.

® When the invocation of the request on the servant is complete, postinvoke will be
invoked for the object.

® No serialization of invocations of preinvoke or postinvoke may be assumed;
there may be multiple concurrent invocations of preinvoke for the same Objectld.
(However, if the SINGLE_THREAD_MODEL policy is being used, that policy will
serialize these calls.)

® The same thread will be used to preinvoke the object, process the request, and
postinvoke the object.

® The preinvoke and postinvoke operations are always called in pairs in response
to any ORB activity. In particular, for a response to a GIOP Locate message a
GIOP-conforming ORB may (or may not) call preinvoke to determine whether the
object could be served at this location. If the ORB makes such acall, whatever the
result, the ORB does not invoke a method, but does call postinvoke before
responding to the Locate message.

Note — The ServantActivator interface does not behave similarly with respect to a
GIOP Locate message since the etherealize operation is not associated with request
processing.

Common Object Request Broker Architecture (CORBA), v2.5 September 2001

11

September 2001

11.3.6.1

11.3.6.2

preinvoke
Servant preinvoke(
in Objectld oid,
in POA adapter,
in CORBA::Identifier operation,
out Cookie the_cookie)

raises (ForwardRequest);

This operation is invoked by the POA whenever the POA receives a request for an
object that is not currently active, assuming the POA has the
USE_SERVANT_MANAGER and NON_RETAIN policies.

The oid parameter contains the Objectld value associated with the incoming request.
The adapter is an object reference for the POA in which the object is being activated.

The user-supplied servant manager implementation is responsible for locating or
creating an appropriate servant that corresponds to the Objectld value if possible.
preinvoke returns a vaue of type Servant, which is the servant that will be used to
process the incoming request.

The Cookie is atype opaque to the POA that can be set by the servant manager for
use later by postinvoke. The operation isthe name of the operation that will be called
by the POA when the servant is returned.

postinvoke
void postinvoke(
in Objectld oid,
in POA adapter,
in CORBA::Identifier operation,
in Cookie the_cookie,
in Servant the_servant);

This operation is invoked whenever a servant completes a request, assuming the POA
has the USE_SERVANT_MANAGER and NON_RETAIN policies.

The postinvoke operation is considered to be part of a request on an object.That is,
the request is not complete until postinvoke finishes. If the method finishes normally
but postinvoke raises a system exception, the method's normal return is overridden; the
request completes with the exception.

The oid parameter contains the Object 1d value of the object on which the request was
made. The adapter parameter is an object reference for the POA in whose scope the
object was active. The the_servant parameter contains a reference to the servant that
is associated with the object.

The Cookie is atype opaque to the POA; it contains any value that was set by the
preinvoke operation. The operation isthe name of the operation that was called by the
POA for the request.

Destroying a servant that is known to the POA can lead to undefined results.

CORBA, v2.5: Interfaces 11-27

11

11-28

11.3.6.3

ServantLocator and Location Determination

Under certain circumstances, an ORB may need to determine the actual location of an
object'simplementation. For objects that are managed by a POA that is configured with
a ServantLocator, it may invoke preinvoke and postinvoke or it may determine
the object’s location by some other means. If it invokes preinvoke and postinvoke
under these circumstances it shall use the argument “_locate.”

11.3.7 POA Policy Objects

11.3.7.1

Interfaces derived from CORBA::Policy are used with the POA::create_ POA
operation to specify policies that apply to a POA. Policy objects are created using
factory operations on any pre-existing POA, such as the root POA, or by a call to
ORB::create_policy. Policy objects are specified when a POA is created. Policies
may not be changed on an existing POA. Policies are not inherited from the parent
POA.

The POA shall preserve Policies whose types have been registered via
Portablelnterceptor::ORBInitinfo::register_policy_factory, even if the POA
itself does not know about those policies.

Thread Policy

Objects with the ThreadPolicy interface are obtained using the
POA::create_thread_policy operation and passed to the POA::create_ POA
operation to specify the threading model used with the created POA. The value
attribute of ThreadPolicy contains the value supplied to the
POA::create_thread_policy operation from which it was obtained. The following
values can be supplied.

® ORB_CTRL_MODEL - The ORB isresponsible for assigning requests for an ORB-
controlled POA to threads. In a multi-threaded environment, concurrent requests
may be delivered using multiple threads.

¢ SINGLE_THREAD_MODEL - Requests for a single-threaded POA are processed
sequentialy. In a multi-threaded environment, all upcalls made by this POA to
implementation code (servants and servant managers) are made in a manner that is
safe for code that is multi-thread-unaware. The POA will still alow reentrant calls
from an object implementation to itself, or to another object implementation
managed by the same POA.

®* MAIN_THREAD_MODEL - Requests for all main-thread POAs are processed
sequentialy. In a multi-threaded environment, all upcalls made by all POAs with
this policy to servants are made in a manner that is safe for code that is multi-
thread-unaware. If the environment has special requirements that some code must
run on adistinguished “main” thread, servant upcalls will be processed on that
thread. (See Section 4.2.4, “ Thread-Related Operations,” on page 4-9.)

If no ThreadPolicy object is passed to create_POA, the thread policy defaults to
ORB_CTRL_MODEL.

Common Object Request Broker Architecture (CORBA), v2.5 September 2001

11

September 2001

11.3.7.2

11.3.7.3

Note — In some environments, calling multi-thread-unaware code safely (that is, using
the MAIN_THREAD_MODEL) may mean that the POA will use only the main thread,
in which case the application programmer is responsible to ensure that the main thread
is given to the ORB, using ORB::perform_work or ORB::run.

POAs using the SINGLE_THREAD_MODEL may need to cooperate to ensure that
calls are safe even when implementation code (such as a servant manager) is shared by
multiple single-threaded POASs.

These models presume that the ORB and the application are using compatible
threading primitives in a multi-threaded environment.

Lifespan Policy

Objects with the LifespanPolicy interface are obtained using the
POA::create_lifespan_policy operation and passed to the POA::create_POA
operation to specify the lifespan of the objects implemented in the created POA. The
following values can be supplied.

® TRANSIENT - The objects implemented in the POA cannot outlive the POA
instance in which they are first created. Once the POA is deactivated, use of any
object references generated from it will result in anOBJECT_NOT_EXIST system
exception with standard minor code 2.

® PERSISTENT - The objects implemented in the POA can outlive the process in
which they are first created.

 Persistent objects have a POA associated with them (the POA that created them).
When the ORB receives a request on a persistent object, it first searches for the
matching POA, based on the names of the POA and all of its ancestors.

< Administrative action beyond the scope of this specification may be necessary to
inform the ORB's location service of the creation and eventual termination of
existence of this POA, and optionally to arrange for on-demand activation of a
process implementing this POA.

* POA names must be unique within their enclosing scope (the parent POA). A
portable program can assume that POA names used in other processes will not
conflict with its own POA names. A conforming CORBA implementation will
provide a method for ensuring this property.

If no LifespanPolicy object is passed to create_POA, the lifespan policy defaults to
TRANSIENT.

Object Id Uniqueness Policy

Objects with the IdUniquenessPolicy interface are obtained using the
POA::create_id_uniqueness_policy operation and passed to the
POA::create_POA operation to specify whether the servants activated in the created
POA must have unique object identities. The following values can be supplied.

CORBA, v2.5: Interfaces 11-29

11

® UNIQUE_ID - Servants activated with that POA support exactly one Object |d.

® MULTIPLE_ID - aservant activated with that POA may support one or more Object
Ids.

If no IdUniquenessPolicy is specified at POA creation, the default is UNIQUE_ID.

Note — Use of UNIQUE_ID policy is meaningless in conjunction with NON_RETAIN
policy. A conforming application should not use this policy combination. A
conforming orb may, but need not, report an error during create_POA if this
combination is used. If an orb permits this combination of policies to be used, the
resulting POA shall not treat the use of the same servant for concurrent requests on
different object ids as an error.

11.3.7.4 1d Assignment Policy

Objects with the IdAssignmentPolicy interface are obtained using the
POA::create_id_assignment_policy operation and passed to the
POA::create_POA operation to specify whether Object Ids in the created POA are
generated by the application or by the ORB. The following values can be supplied.

® USER_ID - Objects created with that POA are assigned Object 1ds only by the
application.

® SYSTEM_ID - Objects created with that POA are assigned Object Ids only by the
POA. If the POA also has the PERSISTENT policy, assigned Object 1ds must be
unique across al instantiations of the same POA.

If no IdAssignmentPolicy is specified at POA creation, the default is SYSTEM_ID.

11.3.7.5 Servant Retention Policy

Objects with the ServantRetentionPolicy interface are obtained using the
POA::create_servant_retention_policy operation and passed to the
POA::create_POA operation to specify whether the created POA retains active
servants in an Active Object Map. The following values can be supplied.

® RETAIN - The POA will retain active servants in its Active Object Map.
®* NON_RETAIN - Servants are not retained by the POA.

If no ServantRetentionPolicy is specified at POA creation, the default is RETAIN.

Note — The NON_RETAIN policy requires either the USE_DEFAULT_SERVANT or
USE_SERVANT_MANAGER policies.

11-30 Common Object Request Broker Architecture (CORBA), v2.5 September 2001

11

September 2001

11.3.7.6 Request Processing Policy

Objects with the RequestProcessingPolicy interface are obtained using the
POA::create_request_processing_policy operation and passed to the
POA::create_POA operation to specify how requests are processed by the created
POA. The following values can be supplied.

® USE_ACTIVE_OBJECT_MAP_ONLY - If the Object Id is not found in the
Active Object Map, an OBJECT_NOT_EXIST system exception with standard
minor code 2 is returned to the client. The RETAIN policy is aso required.

® USE_DEFAULT_SERVANT - If the Object Id is not found in the Active Object
Map or the NON_RETAIN policy is present, and a default servant has been
registered with the POA using the set_servant operation, the request is dispatched
to the default servant. If no default servant has been registered, an OBJ_ADAPTER
system exception with standard minor code 3 is returned to the client. The
MULTIPLE_ID policy is aso required.

® USE_SERVANT_MANAGER - If the Object Id is not found in the Active Object
Map or the NON_RETAIN policy is present, and a servant manager has been
registered with the POA using the set_servant_manager operation, the servant
manager is given the opportunity to locate a servant or raise an exception. If no
servant manager has been registered, an OBJ_ADAPTER system exception with
standard minor code 4 is returned to the client.

If no RequestProcessingPolicy is specified at POA creation, the default is
USE_ACTIVE_OBJECT_MAP_ONLY.

By means of combining the USE_ACTIVE_OBJECT_MAP_ONLY /
USE_DEFAULT_SERVANT / USE_SERVANT_MANAGER policies and the
RETAIN / NON_RETAIN policies, the programmer is able to define a rich number of
possible behaviors.

RETAIN and USE_ACTIVE_OBJECT_MAP_ONLY

This combination represents the situation where the POA does no automatic object
activation (that is, the POA searches only the Active Object Map).

RETAIN and USE_SERVANT_MANAGER

This combination represents a very common situation, where there is an Active Object
Map and a ServantManager.

Because RETAIN is in effect, the application can call activate_object or
activate_object_with_id to establish known servants in the Active Object Map for
usein later requests.

If the POA doesn't find a servant in the Active Object Map for a given object, it tries
to determine the servant by means of invoking incarnate in the ServantManager
(specifically a ServantActivator) registered with the POA. If no ServantManager
is available, the POA raises the OBJ_ADAPTER system exception with standard
minor code 4.

CORBA, v2.5: Interfaces 11-31

11

11-32

11.3.7.7

RETAIN and USE_DEFAULT_SERVANT

This combination represents the situation where there is a default servant defined for
all reguests involving unknown objects.

Because RETAIN is in effect, the application can call activate_object or
activate_object_with_id to establish known servants in the Active Object Map for
usein later requests.

The POA first tries to find a servant in the Active Object Map for a given object. If it
does not find such a servant, it uses the default servant. If no default servant is
available, the POA raises the OBJ_ADAPTER system exception with standard minor
code 3.

NON-RETAIN and USE_SERVANT_MANAGER
This combination represents the situation where one servant is used per method call.

The POA doesn't try to find a servant in the Active Object Map because the
ActiveObjectMap does not exist. In every request, it will call preinvoke on the
ServantManager (specifically a ServantLocator) registered with the POA. If no
ServantManager is available, the POA will raise the OBJ_ADAPTER system
exception.

NON-RETAIN and USE_DEFAULT_SERVANT

This combination represents the situation where there is one single servant defined for
all CORBA objects.

The POA does not try to find a servant in the Active Object Map because the
ActiveObjectMap doesn't exist. In every request, the POA will invoke the
appropriate operation on the default servant registered with the POA. If no default
servant is available, the POA will raise the OBJ_ADAPTER system exception.

Implicit Activation Policy

Objects with the ImplicitActivationPolicy interface are obtained using the
POA::create_implicit_activation_policy operation and passed to the
POA::create_POA operation to specify whether implicit activation of servantsis
supported in the created POA. The following values can be supplied.

® IMPLICIT_ACTIVATION - the POA will support implicit activation of servants.
IMPLICIT_ACTIVATION also requires the SYSTEM_ID and RETAIN policies.

® NO_IMPLICIT_ACTIVATION - the POA will not support implicit activation of
servants.

If no ImplicitActivationPolicy is specified at POA creation, the default is
NO_IMPLICIT_ACTIVATION.

Common Object Request Broker Architecture (CORBA), v2.5 September 2001

11

September 2001

11.3.8 POA Interface

11.3.8.1

11.3.8.2

A POA object manages the implementation of a collection of objects. The POA
supports a name space for the objects, which are identified by Object Ids.

A POA also provides a name space for POAs. A POA is created as a child of an
existing POA, which forms a hierarchy starting with the root POA.

Locality Constraints

A POA object must not be exported to other processes, or externalized with
ORB::object_to_string. If any attempt is made to do so, the offending operation will
raise a MARSHAL system exception. An attempt to use a POA object with the DIl may
raise the NO_IMPLEMENT exception.

create POA

POA create_POA(
in string adapter_name,
in POAManager a_POAManager,

in CORBA::PolicyList policies)
raises (AdapterAlreadyExists, InvalidPolicy);

This operation creates a new POA as a child of the target POA. The specified name
identifies the new POA with respect to other POAs with the same parent POA. If the
target POA already has a child POA with the specified name, the
AdapterAlreadyExists exception is raised.

If the a_ POAManager parameter is null, a new POAManager object is created and
associated with the new POA. Otherwise, the specified POAManager object is
associated with the new POA. The POAManager object can be obtained using the
attribute name the_POAManager.

The specified policy objects are associated with the POA and used to control its
behavior. The policy objects are effectively copied before this operation returns, so the
application is free to destroy them while the POA is in use. Policies are not inherited
from the parent POA.

The POA shall preserve Policies whose types have been registered via
Portablelnterceptor::ORBInitinfo::register_policy_factory, even if the POA
itself does not know about those policies.

If any of the policy objects specified are not valid for the ORB implementation, if
conflicting policy objects are specified, or if any of the specified policy objects require
prior administrative action that has not been performed, an InvalidPolicy exception is
raised containing the index in the policies parameter value of the first offending policy
object.

CORBA, v2.5: Interfaces 11-33

11

11-34

11.3.8.3

11.3.8.4

Note — Creating a POA using a POA manager that is in the active state can lead to race
conditions if the POA supports preexisting objects, because the new POA may receive
a request before its adapter activator, servant manager, or default servant have been
initialized. These problems do not occur if the POA is created by an adapter activator
registered with a parent of the new POA, because requests are queued until the adapter
activator returns. To avoid these problems when a POA must be explicitly initialized,
the application can initialize the POA by invoking find_POA with a TRUE activate
parameter.

find_POA

POA find_POA(
in string adapter_name,
in boolean activate_it)

raises (AdapterNonExistent);

If the target POA is the parent of achild POA with the specified name (relative to the
target POA), that child POA isreturned. If achild POA with the specified nhame does
not exist and the value of the activate_it parameter is TRUE, the target POA's
AdapterActivator, if one exists, is invoked, and, if it successfully activates the child
POA, that child POA is returned. Otherwise, the AdapterNonEXxistent exception is
raised.

If find_POA receives a system exception in response to acall to unknown_adapter
on a POA, find_POA raises OBJ_ADAPTER system exception with standard minor
code 1.

destroy

void destroy(
in boolean etherealize_objects,
in boolean wait_for_completion);

This operation destroys the POA and all descendant POAs. All descendant POAs are
destroyed (recursively) before the destruction of the containing POA. The POA so
destroyed (that is, the POA with its name) may be re-created later in the same process.
(This differs from the POAManager::deactivate operation that does not allow a re-
creation of its associated POA in the same process. After a deactivate, re-creation is
allowed only if the POA is later destroyed.)

When destroy is called the POA behaves as follows:

® The POA assumes the discarding state except when its POAManager isin the
inactive state in which case the POA assumes the inactive state. Any further
changes to the POAManager's state do not affect this POA.

® The POA disables the create_ POA operation. Subsequent calls to create_ POA
will result ina BAD_INV_ORDER system exception with standard minor code 17.

® The POA calls destroy on all of its immediate descendants.

Common Object Request Broker Architecture (CORBA), v2.5 September 2001

11

September 2001

11.3.85

After all descendant POAs have been destroyed and their servants etherealized, the
POA continues to process requests until there are no requests executing in the POA.
At this point, apparent destruction of the POA has occurred.

After destruction has become apparent, the POA may be re-created via either an
AdapterActivator or acall to create_POA.

If the etherealize_objects parameter is TRUE, the POA has the RETAIN policy,
and a servant manager is registered with the POA, the etherealize operation on the
servant manager is called for each active object in the Active Object Map. The
apparent destruction of the POA occurs before any calls to etherealize are made.
Thus, for example, an etherealize method that attempts to invoke operations on the
POA receives the OBJECT_NOT_EXIST exception.

If the POA has an AdapterActivator installed, any requests that would have
caused unknown_adapter to be called cause a TRANSIENT exception with
standard minor code 4 to be raised instead.

The wait_for_completion parameter is handled as follows:

If wait_for_completion is TRUE and the current thread is not in an invocation
context dispatched from some POA belonging to the same ORB as this POA, the
destroy operation returns only after all active requests have completed and all
invocations of etherealize have completed.

If wait_for_completion is TRUE and the current thread is in an invocation
context dispatched from some POA belonging to the same ORB as this POA, the
BAD_INV_ORDER system exception with standard minor code 3 is raised and
POA destruction does not occur.

If wait_for_completion is FALSE, the destroy operation destroys the POA and
its children but waits neither for active requests to complete nor for etherealization
to occur. If destroy iscalled multiple times before destruction is complete (because
there are active requests), the etherealize_objects parameter applies only to the
first call of destroy. Subsequent calls with conflicting etherealize_objects
settings use the value of etherealize_objects from the first call. The
wait_for_completion parameter is handled as defined above for each individual
call (some callers may choose to block, while others may not).

Policy Creation Operations

ThreadPolicy create_thread_policy(

in ThreadPolicyValue value);

LifespanPolicy create_lifespan_policy(

in LifespanPolicyValue value);

IdUniquenessPolicy create_id_uniqueness_policy(

in IdUniquenessPolicyValue value);

IdAssignmentPolicy create_id_assignment_policy(

in IdAssignmentPolicyValue value);

ImplicitActivationPolicy create_implicit_activation_policy(

in ImplicitActivationPolicyValue value);

ServantRetentionPolicy create_servant_retention_policy(

CORBA, v2.5: Interfaces 11-35

11

11-36

11.3.8.6

11.3.8.7

11.3.8.8

11.3.8.9

11.3.8.10

11.3.8.11

in ServantRetentionPolicyValue value);
RequestProcessingPolicy create_request_processing_policy(
in RequestProcessingPolicyValue value);

These operations each return areference to a policy object with the specified value. The
application is responsible for calling the inherited destroy operation on the returned
reference when it is no longer needed.

the _name

readonly attribute string the_name;

This attribute identifies the POA relative to its parent. This name is assigned when the
POA is created. The name of the root POA is system-dependent and should not be
relied upon by the application.

the parent

readonly attribute POA the_parent;

This attribute identifies the parent of the POA. The parent of the root POA is null.

the children

readonly attribute POAList the_children;

This attribute identifies the current set of all child POAs of the POA. The set of child
POAs includes only the POA's immediate children, and not their descendants.

the POAManager

readonly attribute POAManager the_ POAManager;
This attribute identifies the POA manager associated with the POA.

the_activator

attribute AdapterActivator the_activator;

This attribute identifies the adapter activator associated with the POA. A newly created
POA has no adapter activator (the attribute is null). It is system-dependent whether the
root POA initially has an adapter activator; the application is free to assign its own
adapter activator to the root POA.

get_servant_manager

ServantManager get_servant_manager()
raises(WrongPolicy);

Common Object Request Broker Architecture (CORBA), v2.5 September 2001

11

September 2001

11.3.8.12

11.3.8.13

11.3.8.14

This operation requires the USE_SERVANT_MANAGER policy; if not present, the
WrongPolicy exception is raised.

This operation returns the servant manager associated with the POA. If no servant
manager has been associated with the POA, it returns a null reference.

set_servant_manager

void set_servant_manager(in ServantManager imgr)
raises(WrongPolicy);

This operation requires the USE_SERVANT_MANAGER policy; if not present, the
WrongPolicy exception is raised.

If the ServantRetentionPolicy of the POA is RETAIN, then the ServantManager
argument (imgr) shall support the ServantActivator interface (e.g., in C++ i ngr is
narrowable to ServantActivator). If the ServantRetentionPolicy of the POA is
NON_RETAIN, then the ServantManager argument shall support the
ServantLocator interface. If the argument is nil, or does not support the required
interface, then the OBJ_ADAPTER system exception with standard minor code 4 is
raised.

This operation sets the default servant manager associated with the POA. This
operation may only be invoked once after a POA has been created. Attempting to set
the servant manager after one has already been set will result in the
BAD_INV_ORDER system exception with standard minor code 6 being raised.

get_servant

Servant get_servant()
raises(NoServant, WrongPolicy);

This operation requires the USE_DEFAULT_SERVANT policy; if not present, the
WrongPolicy exception is raised.

This operation returns the default servant associated with the POA. If no servant has
been associated with the POA, the NoServant exception is raised.

set_servant

void set_servant(in Servant p_servant)
raises(WrongPolicy);

This operation requires the USE_DEFAULT_SERVANT policy; if not present, the
WrongPolicy exception is raised.

This operation registers the specified servant with the POA as the default servant. This
servant will be used for all reguests for which no servant is found in the Active Object

Map.

CORBA, v2.5: Interfaces 11-37

11

11-38

11.3.8.15

11.3.8.16

11.3.8.17

activate object

Objectld activate_object(in Servant p_servant)
raises (ServantAlreadyActive, WrongPolicy);

This operation requires the SYSTEM_ID and RETAIN policy; if not present, the
WrongPolicy exception is raised.

If the POA has the UNIQUE_ID policy and the specified servant is already in the
Active Object Map, the ServantAlreadyActive exception is raised. Otherwise, the
activate_object operation generates an Object Id and enters the Object Id and the
specified servant in the Active Object Map. The Object Id is returned.

activate_object_with_id

void activate_object_with_id(
in Objectld oid,
in Servant p_servant)
raises (ObjectAlreadyActive, ServantAlreadyActive, WrongPolicy);

This operation requires the RETAIN policy; if not present, the WrongPolicy exception
is raised.

If the CORBA object denoted by the Object Id value is already active in this POA
(there is a servant bound to it in the Active Object Map), the ObjectAlreadyActive
exception is raised. If the POA has the UNIQUE_ID policy and the servant is already
in the Active Object Map, the ServantAlreadyActive exception is raised. Otherwise,
the activate_object_with_id operation enters an association between the specified
Object 1d and the specified servant in the Active Object Map.

If the POA hasthe SYSTEM_ID policy and it detects that the Object I1d value was not
generated by the system or for this POA, the activate_object_with_id operation
may raise the BAD_PARAM system exception. An ORB is not required to detect all
such invalid Object Id values, but a portable application must not invoke
activate_object_with_id on a POA that has the SYSTEM_ID policy with an Object
Id value that was not previously generated by the system for that POA, or, if the POA
also has the PERSISTENT policy, for a previous instantiation of the same POA.

deactivate object

void deactivate_object(
in Objectld oid)
raises (ObjectNotActive, WrongPolicy);

This operation requires the RETAIN policy; if not present, the WrongPolicy exception
is raised.

This operation causes the Objectld specified in the oid parameter to be deactivated.
An Objectld that has been deactivated continues to process requests until there are no
active requests for that Objectld. Active requests are those requests that arrived before
deactivate_object was called. A deactivated Objectld is removed from the Active

Common Object Request Broker Architecture (CORBA), v2.5 September 2001

11

September 2001

11.3.8.18

11.3.8.19

Object Map when all requests executing for that Objectld have completed. If a servant
manager is associated with the POA, ServantActivator::etherealize isinvoked with
the oid and the associated servant after the Objectld has been removed from the
Active Object Map. Reactivation for the Objectld blocks until etherealization (if
necessary) is complete. This includes implicit activation (as described in etherealize)
and explicit activation via POA::activate_object_with_id. Once an Objectld has
been removed from the Active Object Map and etherealized (if necessary) it may then
be reactivated through the usual mechanisms.

The operation does not wait for requests or etherealization to complete and always
returns immediately after deactivating the Objectld.

Note — If the servant associated with the oid is serving multiple Object Ids,
ServantActivator::etherealize may be invoked multiple times with the same servant
when the other objects are deactivated. It is the responsibility of the object
implementation to refrain from destroying the servant while it is active with any Id.

create reference

Object create_reference (
in CORBA::Repositoryld intf)
raises (WrongPolicy);

This operation requires the SYSTEM_ID policy; if not present, the WrongPolicy
exception is raised.

This operation creates an object reference that encapsulates a POA-generated Object 1d
value and the specified interface repository id. The specified repository id, which may
be a null string, will become the type_id of the generated object reference. A
repository id that does not identify the most derived interface of the object or one of its
base interfaces will result in undefined behavior.

This operation does not cause an activation to take place. The resulting reference may
be passed to clients, so that subsequent requests on those references will cause the
appropriate servant manager to be invoked, if one is available. The generated Object 1d
value may be obtained by invoking POA::reference_to_id with the created reference.

create reference with_id

Object create_reference_with_id (
in Objectld oid,
in CORBA::Repositoryld intf);

This operation creates an object reference that encapsulates the specified Object Id and
interface repository Id values. The specified repository id, which may be a null string,
will become the type_id of the generated object reference. A repository id that does
not identify the most derived interface of the object or one of its base interfaces will
result in undefined behavior.

CORBA, v2.5: Interfaces 11-39

11

This operation does not cause an activation to take place. The resulting reference may
be passed to clients, so that subsequent requests on those references will cause the
object to be activated if necessary, or the default servant used, depending on the
applicable policies.

If the POA hasthe SYSTEM_ID policy and it detects that the Object I1d value was not
generated by the system or for this POA, the create_reference_with_id operation
may raise the BAD_PARAM system exception with standard minor code 14. An ORB
is not required to detect all such invalid Object Id values, but a portable application
must not invoke this operation on a POA that has the SYSTEM_ID policy with an
Object Id value that was not previously generated by the system for that POA, or, if the
POA also hasthe PERSISTENT policy, for a previous instantiation of the same POA.

11.3.8.20 servant to id

Objectld servant_to_id(
in Servant p_servant)
raises (ServantNotActive, WrongPolicy);

This operation requires the USE_ DEFAULT_SERVANT policy or a combination of
the RETAIN policy and either the UNIQUE_ID or IMPLICIT_ACTIVATION policiesif
invoked outside the context of an operation dispatched by this POA.. If this operation is
not invoked in the context of executing arequest on the specified servant and the policies
specified previously are not present, the WrongPolicy exception is raised.

This operation has four possible behaviors.

1. If the POA has both the RETAIN and the UNIQUE_ID policy and the specified
servant is active, the Object 1d associated with that servant is returned.

2. If the POA has both the RETAIN and the IMPLICIT_ACTIVATION policy and
either the POA has the MULTIPLE_ID policy or the specified servant is not active,
the servant is activated using a POA-generated Object 1d and the Interface Id
associated with the servant, and that Object Id is returned.

3. If the POA hasthe USE_DEFAULT_SERVANT policy, the servant specified is the
default servant, and the operation is being invoked in the context of executing a
request on the default servant, then the Objectld associated with the current
invocation is returned.

4. Otherwise, the ServantNotActive exception is raised.
11.3.8.21 servant_to reference

Object servant_to_reference (
in Servant p_servant)
raises (ServantNotActive, WrongPolicy);

11-40 Common Object Request Broker Architecture (CORBA), v2.5 September 2001

11

September 2001

11.3.8.22

11.3.8.23

This operation requires the RETAIN policy and either the UNIQUE_ID or
IMPLICIT_ACTIVATION policies if invoked outside the context of an operation
dispatched by this POA. If this operation is not invoked in the context of executing a
reguest on the specified servant and the policies specified previously are not present
the WrongPolicy exception is raised.

This operation has four possible behaviors.

1. If the POA has both the RETAIN and the UNIQUE_ID policy and the specified
servant is active, an object reference encapsulating the information used to activate
the servant is returned.

2. If the POA has both the RETAIN and the IMPLICIT_ACTIVATION policy and
either the POA has the MULTIPLE_ID policy or the specified servant is not active,
the servant is activated using a POA-generated Object 1d and the Interface Id
associated with the servant, and a corresponding object reference is returned.

3. If the operation was invoked in the context of executing a request on the specified
servant, the reference associated with the current invocation is returned.

4. Otherwise, the ServantNotActive exception is raised.

Note — The allocation of an Object 1d value and installation in the Active Object Map
caused by implicit activation may actually be deferred until an attempt is made to
externalize the reference. The real requirement hereis that areference is produced that
will behave appropriately (that is, yield a consistent Object Id value when asked
politely).

reference_to_servant

Servant reference_to_servant (
in Object reference)
raises (ObjectNotActive, WrongAdapter, WrongPolicy);

This operation requires the RETAIN policy or the USE_DEFAULT_SERVANT policy.
If neither policy is present, the WrongPolicy exception is raised.

If the POA has the RETAIN policy and the specified object is present in the Active
Object Map, this operation returns the servant associated with that object in the Active
Object Map. Otherwise, if the POA hasthe USE_DEFAULT_SERVANT policy and a
default servant has been registered with the POA, this operation returns the default
servant. Otherwise, the ObjectNotActive exception is raised.

If the object reference was not created by this POA, the WrongAdapter exception is
raised.

reference to id

Objectld reference_to_id(
in Object reference)

CORBA, v2.5: Interfaces 11-41

11

11-42

11.3.8.24

11.3.8.25

11.3.8.26

raises (WrongAdapter, WrongPolicy);
The WrongPolicy exception is declared to allow future extensions.

This operation returns the Object 1d value encapsulated by the specified reference.
This operation is valid only if the reference was created by the POA on which the
operation is being performed. If the reference was not created by that POA, a
WrongAdapter exception is raised. The object denoted by the reference does not have
to be active for this operation to succeed.

id_to_servant

Servant id_to_servant(
in Objectld oid)
raises (ObjectNotActive, WrongPolicy);

This operation requires the RETAIN policy or the USE_DEFAULT_SERVANT policy.
If neither policy is present, the WrongPolicy exception is raised.

If the POA has the RETAIN policy and the specified Objectld is in the Active Object
Map, this operation returns the servant associated with that object in the Active Object
Map. Otherwise, if the POA hasthe USE_DEFAULT_SERVANT policy and a default
servant has been registered with the POA, this operation returns the default servant.
Otherwise the ObjectNotActive exception is raised.

id_to_reference

Object id_to_reference(
in Objectld oid)
raises (ObjectNotActive, WrongPolicy);

This operation requires the RETAIN policy; if not present, the WrongPolicy exception
is raised.

If an object with the specified Object Id value is currently active, a reference
encapsulating the information used to activate the object is returned. If the Object Id
value is not active in the POA, an ObjectNotActive exception is raised.

id
readonly attribute CORBA::OctetSeq id;

This returns the unique id of the POA in the process in which it is created. It isfor use
by portable interceptors.

Thisid is guaranteed unique for the life span of the POA in the process. For persistent
POAs, this means that if a POA is created in the same path with the same name as
another POA, these POAs are identical and, therefore, have the same id. For transient
POASs, each POA is unique.

Common Object Request Broker Architecture (CORBA), v2.5 September 2001

11

September 2001

11.3.9 Current Operations

11.39.1

11.39.2

11.3.9.3

The PortableServer::Current interface, derived from CORBA::Current, provides
method implementations with access to the identity of the object on which the method
was invoked. The Current interface is provided to support servants that implement
multiple objects, but can be used within the context of POA-dispatched method
invocations on any servant. To provide location transparency, ORBs are required to
support use of Current in the context of both locally and remotely invoked operations.

An instance of Current can be obtained by the application by issuing the
CORBA::ORB::resolve_initial_references("POACurrent") operation.
Thereafter, it can be used within the context of a method dispatched by the POA to
obtain the POA and Objectld that identify the object on which that operation was
invoked.

get POA

POA get_POA()
raises (NoContext);

This operation returns a reference to the POA implementing the object in whose context
it is called. If called outside the context of a POA-dispatched operation, a NoContext
exception is raised.

get_object id

Objectld get_object_id()
raises (NoContext);

This operation returns the Objectld identifying the object in whose context it is called.
If called outside the context of a POA-dispatched operation, a NoContext exception is
raised.

get_reference

Object get_reference()
raises(NoContext);

This operation returns a locally manufactured reference to the object in the context of
which it is called. If called outside the context of a POA dispatched operation, a
NoContext exception is raised.

Note — This reference is not guaranteed to be identical to the original reference the
client used to make the invocation, and calling the Object::is_equivalent operation
to compare the two references may not necessarily return true.

CORBA, v2.5: Interfaces 11-43

11

11.3.9.4 get_servant

Servant get_servant()
raises(NoContext);

This operation returns a reference to the servant that hosts the object in whose context
it iscalled. If called outside the context of a POA dispatched operation, a NoContext
exception is raised.

11.4 |IDL for PortableServer Module

#pragma prefix "omg.org"

module PortableServer {
interface POA,; /l forward declaration
typedef sequence<POA> POAList;

native Servant;
typedef sequence<octet> Objectid;

exception ForwardRequest {
Object forward_reference;

¥
/I Policy interfaces

const CORBA::PolicyType THREAD_POLICY_ID = 16;

const CORBA::PolicyType LIFESPAN_POLICY_ID = 17;

const CORBA::PolicyType ID_UNIQUENESS_POLICY_ID = 18;

const CORBA::PolicyType ID_ASSIGNMENT_POLICY_ID = 19;

const CORBA::PolicyType IMPLICIT_ACTIVATION_POLICY_ID = 20;
const CORBA::PolicyType SERVANT_RETENTION_POLICY_ID = 21;
const CORBA::PolicyType REQUEST_PROCESSING_POLICY_ID = 22;

enum ThreadPolicyValue {
ORB_CTRL_MODEL,
SINGLE_THREAD_MODEL,
MAIN_THREAD_MODEL

b

interface ThreadPolicy : CORBA::Policy {
readonly attribute ThreadPolicyValue value;

¥

enum LifespanPolicyValue {
TRANSIENT,
PERSISTENT

b

interface LifespanPolicy : CORBA::Policy {

11-44 Common Object Request Broker Architecture (CORBA), v2.5 September 2001

11

September 2001

readonly attribute LifespanPolicyValue value;

¥

enum ldUniquenessPolicyValue {
UNIQUE_ID,
MULTIPLE_ID

b

interface IdUniquenessPolicy : CORBA::Policy {
readonly attribute IdUniquenessPolicyValue value;

3

enum IdAssignmentPolicyValue {
USER_ID,
SYSTEM_ID

b

interface IdAssignmentPolicy : CORBA::Policy {
readonly attribute IdAssignmentPolicyValue value;

b

enum ImplicitActivationPolicyValue {
IMPLICIT_ACTIVATION,
NO_IMPLICIT_ACTIVATION

b

interface ImplicitActivationPolicy : CORBA::Policy {
readonly attribute ImplicitActivationPolicyValue value;

¥

enum ServantRetentionPolicyValue {
RETAIN,
NON_RETAIN

b

interface ServantRetentionPolicy : CORBA::Policy {
readonly attribute ServantRetentionPolicyValue value;

b

enum RequestProcessingPolicyValue {
USE_ACTIVE_OBJECT_MAP_ONLY,
USE_DEFAULT_SERVANT,
USE_SERVANT_MANAGER

b

interface RequestProcessingPolicy : CORBA::Policy {

readonly attribute RequestProcessingPolicyValue value;

b

/I POAManager interface

CORBA, v2.5: IDL for PortableServer Module

11-45

11

interface POAManager {
pragma version POAManager 2.3
exception Adapterinactive{};

enum State {HOLDING, ACTIVE, DISCARDING, INACTIVE};

void activate()
raises(Adapterinactive);

void hold_requests(
in boolean wait_for_completion)
raises(Adapterinactive);

void discard_requests(
in boolean wait_for_completion)
raises(Adapterinactive);

void deactivate(
in boolean etherealize_objects,
in boolean wait_for_completion)
raises(Adapterinactive);

State get_state();

b
/I AdapterActivator interface

interface AdapterActivator {
boolean unknown_adapter(
in POA parent,
in string name);
¥
/I ServantManager interface
interface ServantManager{ };
interface ServantActivator : ServantManager {
Servant incarnate (
in Objectld oid,
in POA adapter)
raises (ForwardRequest);

void etherealize (

in Objectld oid,

in POA adapter,

in Servant sery,

in boolean cleanup_in_progress,
in boolean remaining_activations);

b

interface ServantLocator : ServantManager {
native Cookie;
Servant preinvoke(
in Objectld oid,

11-46 Common Object Request Broker Architecture (CORBA), v2.5 September 2001

11

in POA adapter,
in CORBA::Identifier operation,
out Cookie the_cookie)

raises (ForwardRequest);

void postinvoke(

in Objectld oid,

in POA adapter,

in CORBA::Identifier operation,
in Cookie the_cookie,
in Servant the_servant

b
/I POA interface

interface POA {
exception AdapterAlreadyExists {};
exception AdapterNonExistent {};
exception InvalidPolicy {unsigned short index;};
exception NoServant {};
exception ObjectAlreadyActive {};
exception ObjectNotActive {};
exception ServantAlreadyActive {};
exception ServantNotActive {};
exception WrongAdapter {};
exception WrongPolicy {};

/I POA creation and destruction

POA create_POA(
in string adapter_name,
in POAManager a_POAManager,
in CORBA::PolicyList policies)
raises (AdapterAlreadyExists, InvalidPolicy);

POA find_POA(
in string adapter_name,
in boolean activate_it)
raises (AdapterNonExistent);

void destroy(
in boolean etherealize_objects,
in boolean wait_for_completion);

/I Factories for Policy objects
ThreadPolicy create_thread_policy(
in ThreadPolicyValue value);

LifespanPolicy create_lifespan_policy(
in LifespanPolicyValue value);

September 2001 CORBA, v2.5: IDL for PortableServer Module 11-47

11

11-48

IdUniquenessPolicy create_id_uniqueness_policy(

in IdUniquenessPolicyValue value);
IdAssignmentPolicy create_id_assignment_policy(

in IdAssignmentPolicyValue value);
ImplicitActivationPolicy create_implicit_activation_policy(

in ImplicitActivationPolicyValue value);
ServantRetentionPolicy create_servant_retention_policy(

in ServantRetentionPolicyValue value);
RequestProcessingPolicy create_request_processing_policy(

in RequestProcessingPolicyValue value);

/I POA attributes

readonly attribute string the_name;

readonly attribute POA the_parent;

readonly attribute POAList the_children;

readonly attribute POAManager the_ POAManager;
attribute AdapterActivator the_activator;

/I Servant Manager registration:

ServantManager get_servant_manager()
raises (WrongPolicy);

void set_servant_manager(
in ServantManager imgr)
raises (WrongPolicy);

/I operations for the USE_DEFAULT_SERVANT policy

Servant get_servant()
raises (NoServant, WrongPolicy);

void set_servant(in Servant p_servant)
raises (WrongPolicy);

/I object activation and deactivation

Objectld activate_object(
in Servant p_servant)
raises (ServantAlreadyActive, WrongPolicy);

void activate_object_with_id(
in Objectld id,
in Servant p_servant)
raises (ServantAlreadyActive, ObjectAlreadyActive, WrongPolicy);

void deactivate_object(
in Objectld oid)
raises (ObjectNotActive, WrongPolicy);

Common Object Request Broker Architecture (CORBA), v2.5 September 2001

11

Il reference creation operations

Object create_reference (
in CORBA::Repositoryld intf)
raises (WrongPolicy);

Object create_reference_with_id (
in Objectld oid,
in CORBA::Repositoryld intf
);

/I ldentity mapping operations:

Objectld servant_to_id(
in Servant p_servant)
raises (ServantNotActive, WrongPolicy);

Object servant_to_reference(
in Servant p_servant)
raises (ServantNotActive, WrongPolicy);

Servant reference_to_servant(
in Object reference)
raises(ObjectNotActive, WrongAdapter, WrongPolicy);

Objectld reference_to_id(
in Object reference)
raises (WrongAdapter, WrongPolicy);
Servant id_to_servant(
in Objectld oid)
raises (ObjectNotActive, WrongPolicy);

Object id_to_reference(in Objectld oid)
raises (ObjectNotActive, WrongPolicy);

readonly attribute CORBA::OctetSeq id;
¥

/I Current interface

interface Current : CORBA::Current {
exception NoContext { };

POA get_POA()
raises (NoContext);

Objectld get_object_id()
raises (NoContext);

Object get_reference()

September 2001 CORBA, v2.5: IDL for PortableServer Module 11-49

11

b

raises(NoContext);

Servant get_servant()
raises(NoContext);

11.5 UML Description of PortableServer

The following diagrams were generated by an automated tool and then annotated with
the cardinalities of the associations. They are intended to be an aid in comprehension
to those who enjoy such representations. They are not normative.

11-50

PortableServer::AdapterActivator

(from Portable Server)

PortableServer::POAManager
(from Portable Server)

unknown_adapter()

activate()
hold_requests()

discard_requests()
deactivate()
get_state()

PortableServer::ServantManager
(from Portable Server)

PortableServer::ServantLocator
(from Portable Server)

T

the ager

(from Portable Server)

PortableServer::ServantActivator 0.n

preinvoke()
postinvoke()

incarnate()
etherealize()

y

PortableServer::Cookie
(from Portable Server)

PortableServer::Servant
(from Portable Server)

CORBA::Current

PortableServer::Current
(from Portable Server)

(from CORBA Core)

get_POA()
get_object_id()

_

CORBA::Policy
(from CORBA Core)

enforces

policy_type : CORBA::Policy Type

copy()
destroy()

the_parent

0..n 1

PortableServer::POA
(from Portable Server)

the_name : string

the_parent : PortableServer::POA

the_children : PortableServer::POAList

the_manager : PortableServer::POAManager
the_activator : PortableServer::AdapterActivator
the_servant_manager : PortableServer::ServantManage!
id : CORBA::OctetSeq

create_POA ()

find_POA()

destroy()

create_thread_policy()
create_lifespan_policy()
create_id_uniqueness_policy()
create_id_assignment_policy()
create_implicit_activation_policy()
create_servant_retention_policy()
create_request_processing_policy()
get_servant_manager()
set_servant_manager()
get_servant()

set_servant()

activate_object()
activate_object_with_id()
deactivate_object()
create_reference()
create_reference_with_id()
servant_to_id()
servant_to_reference()
reference_to_servant()
reference_to_id()

id_to_servant()

id_to_reference()

PortableServer::Objectld
(from Portable Server)

Figure 11-4 UML for main part of PortableServer

Common Object Request Broker Architecture (CORBA), v2.5

September 2001

11

IdAssignmentPolicy

value:ldAssignmentPolicyValue
= {USER_ID, SYSTEM_ID}

IdUniquessPolicy

ImplicitActivationPolicy

value:ldUniquenessPolicyValue
= {UNIQUE_ID, MULTIPLE_ID}

value:ImpliciActivationPolicyValue
={IMPLICIT_ACTIVATION,
NO_IMPLICIT_ACTIVATION}

CORBA::Policy
(from CORBA core)

policy_type : CORBA::PolicyType

copy()
destroy()

ServantRetentionPolicy

value:ServantRetentionPolicyValue
={RETAIN, NON_RETAIN}

LifespanPolicy

RegquestProcessingPolicy ThreadPolicy

value:LifespanPolicyValue

= {TRANSIENT,
PERSISTENT}

value:ThreadPolicyValue

={ORB_CTRL_MODEL,
SINGLE_THREAD_MODEL,
MAIN_THREAD_MODEL}

value:RequestProcessingPolicyValue
={USE_ACTIVE_OBJECT_MAP_ONLY,
USE_DEFAULT_SERVANT,
USE_SERVANT_MANAGER}

Figure11-5 UML for PortableServer Policies

11.6 Usage Scenarios

September 2001

This section illustrates how different capabilities of the POA may be used in
applications.

Note — In some of the following C++ examples, PortableServer names are not explicitly
scoped. It is assumed that all the examples have the C++ statement
usi ng nanespace Portabl eServer;

11.6.1 Getting the Root POA

All server applications must obtain a reference to the root POA, either to use it directly
to manage objects, or to create new POA objects. The following example demonstrates
how the application server can obtain areference to the root POA.

/] C++

CORBA: : ORB ptr orb = CORBA:: ORB_init(argc,
CORBA: : Obj ect _ptr pfobj =
orb->resolve_initial _references(“Root POA");

argv);

CORBA, v2.5: Usage Scenarios 11-51

11

Port abl eServer:: POA ptr root POA;
root POA = Port abl eServer:: POA: : narrow pfobj);

11.6.2 Creating a POA

For a variety of reasons, a server application might want to create a new POA. The
POA is created as a child of an existing POA. In this example, it is created as a child
of the root POA.

/] C++

CORBA: : Pol i cyLi st policies(2);
policies.length(2);

policies[0] = rootPOA->create_thread_policy(
Por t abl eServer:: ThreadPol i cy: : ORB_CTRL_MODEL) ;
policies[1] = rootPOA->create_lifespan_policy(
Por t abl eServer:: LifespanPolicy:: TRANSI ENT) ;
Port abl eServer:: POA ptr poa =

root POA- >create POA(“ny_little_poa”,

Port abl eServer:: POAManager:: _nil (), policies);

11.6.3 Explicit Activation with POA-assigned Object Ids

By specifying the SYSTEM_ID policy on a POA, objects may be explicitly activated
through the POA without providing a user-specified identity value. Using this
approach, objects are activated by performing the activate_object operation on the
POA with the object in question. For this operation, the POA allocates, assigns, and
returns a unique identity value for the object.

Generally this capability is most useful for transient objects, where the Object |d needs
to be valid only as long as the servant is active in the server. The Object Ids can remain
completely hidden and no servant manager need be provided. When this isthe case, the
identity and lifetime of the servant and the abstract object are essentially equivalent.
When POA-assigned Object Ids are used with persistent objects or objects that are
activated on demand, the application must be able to associate the generated Object Id
value with its corresponding object state.

This example illustrates a simple implementation of transient objects using POA -
assigned Object Ids. It presumes a POA that has the SYSTEM_ID,
USE_SERVANT_MANAGER, and RETAIN policies.

Assume this interface:

/l IDL
interface Foo {
long doit();

¥

This might result in the generation of the following skeleton:

11-52 Common Object Request Broker Architecture (CORBA), v2.5 September 2001

11

cl ass POA Foo : public ServantBase

{
public:

virtual CORBA::Long doit() = O;
}

Derive your implementation:

cl ass MyFooServant : public POA Foo

{
public:
MyFooSer vant (POA_ptr poa, Long val ue)
ny_poa(POA: : _duplicate(poa)), my_value(value) {}
~MyFooServant () {CORBA: :rel ease(my_poa);}
virtual POA ptr _default_ PQOA()
{return POA:: duplicate(ny_poa);}
virtual Long doit() {return my_val ue;}
prot ect ed:
POA ptr my_poa;
Long ny_val ue;
b

Now, somewhere in the program during initialization, probably in mai n() :

MyFooServant* af oo = new MyFooSer vant (poa, 27);
Port abl eServer:: Objectld_var oid =
poa- >act i vat e_obj ect (af 0o) ;
Foo_var foo = afoo->_this();
poa- >t he_ POAManager () - >acti vate();
orb->run();

This object is activated with a generated Object Id.

11.6.4 Explicit Activation with User-assigned Object Ids

An object may be explicitly activated by a server using a user-assigned identity. This
may be done for several reasons. For example, a programmer may know that certain
objects are commonly used, or act as initial points of contact through which clients
access other objects (for example, factories). The server could be implemented to
create and explicitly activate these objects during initialization, avoiding the need for a
servant manager.

If an implementation has a reasonably small number of servants, the server may be
designed to keep them all active continuously (as long as the server is executing). If
this is the case, the implementation need not provide a servant manager. When the
server initializes, it could create all available servants, loading their state and identities
from some persistent store. The POA supports an explicit activation operation,
activate_object_with_id, that associates a servant with an Object Id. This operation
would be used to activate all of the existing objects managed by the server during
server initialization. Assuming the POA has the USE_SERVANT_MANAGER policy

September 2001 CORBA, v2.5: Usage Scenarios 11-53

11

11-54

and no servant manager is associated with a POA, any request received by the POA for
an Object 1d value not present in the Active Object Map will result in an
OBJ_ADAPTER exception.

In simple cases of well-known, long-lived objects, it may be sufficient to activate them
with well-known Object Id values during server initialization, before activating the
POA. This approach ensures that the objects are always available when the POA is
active, and doesn’t require writing a servant manager. It has severe practical limitations
for alarge number of objects, though.

This example illustrates the explicit activation of an object using a user-chosen Object
Id. This example presumes a POA that has the USER_ID,
USE_SERVANT_MANAGER, and RETAIN policies.

The code is like the previous example, but replace the last portion of the example
shown above with the following code:

/] C++
MyFooServant* af oo = new MyFooServant (poa, 27);
Port abl eServer:: Objectld_var oid =
Portabl eServer::string to_Cbjectld(“nmyLittl eFoo”);
poa- >activate_object_with_ id(oid.in(), afoo);
Foo_var foo = afoo->_this();

11.6.5 Creating References before Activation

It is sometimes useful to create references for objects before activating them. This
example extends the previous example to illustrate this option:

[l C++

Port abl eServer:: Objectld _var oid =

Portabl eServer::string to_Cbjectld(“nmyLittl eFoo”);

CORBA: : Obj ect _var obj = poa->create_reference_w th_id(
oid.in(), “IDL:Foo:1.0");

Foo_var foo = Foo::_narrowobj);

[l ...later...
MyFooServant* af oo = new MyFooServant (poa, 27);
poa->activate_object_with_id(oid.in(), afoo);

11.6.6 Servant Manager Definition and Creation

Servant managers are object implementations, and are required to satisfy all of the
requirements of object implementations necessary for their intended function. Because
servant managers are local objects, and their use is limited to a single narrow role,
some simplifications in their implementation are possible. Note that these
simplifications are suggestions, not normative requirements. They are intended as
examples of ways to reduce the programming effort required to define servant
managers.

Common Object Request Broker Architecture (CORBA), v2.5 September 2001

11

September 2001

A servant manager implementation must provide the following things:

® implementation code for either
e incarnate() and etherealize(), or
» preinvoke() and postinvoke()

® implementation code for the servant operations, as for al servants

The first two are obvious; their content is dictated by the requirements of the
implementation that the servant manager is managing. For the third point, the default
servant manager on the root POA already supplies this implementation code. User-
written servant managers will have to provide this themselves.

Since servant managers are objects, they themselves must be activated. It is expected that
most servant managers can be activated on the root POA with its default set of policies
(see Section 11.2.3, “POA Creation,” on page 11-6). It is for this reason that the root
POA has the IMPLICIT_ACTIVATION policy so that a servant manager can easily be
activated. Users may choose to activate a servant manager on other POASs.

The following is an example servant manager to activate objects on demand. This
example presumes a POA that hasthe USER_ID, USE_SERVANT_MANAGER, and
RETAIN policies.

Since RETAIN isin effect, the type of servant manager used is a
Servant Act i vat or . The ORB supplies a servant activator skeleton classin a
library:

/] C++
namespace POA Port abl eServer
{
class Servant Activator : public virtual ServantManager
{
public:
virtual ~ServantActivator();
virtual Servant incarnate(
const Cbjectld& POA ptr poa) = O;
virtual void etherealize(
const Objectld& POA ptr poa,
Servant, Bool ean renmi ning_activations) = O;
b
b

A Servant Act i vat or servant manager might then look like:

[l C++

cl ass MyFooServant Activator : public
POA Port abl eServer:: Servant Acti vat or

{

public:
/1
Servant i ncarnate(
const Objectld& oid, POA ptr poa)

CORBA, v2.5: Usage Scenarios 11-55

11

11-56

{
String_var s = PortbhleServer:: Objectld to_string
(oid);
if (strcenp(s, “nyLittleFoo”) == 0) {
return new MyFooServant (poa, 27);
el se {
t hr ow CORBA: : OBJECT_NOT_EXI ST() ;
}
}

void etherealize(
const Cbjectld& oid,
POA ptr poa,
Servant servant,
Bool ean renai ni ng_acti vati ons)

{
if (remaining_activations == 0)
del et e servant;
}
/1

b

11.6.7 Object Activation on Demand

The precondition for this scenario is the existence of a client with a reference for an
object with which no servant is associated at the time the client makes a request on the
reference. It is the responsibility of the ORB, in collaboration with the POA and the
server application to find or create an appropriate servant and perform the requested
operation on it. Such an object is said to be incarnated (or incarnation) when it has an
active servant. Note that the client had to obtain the reference in question previously
from some source. From the client’s perspective, the abstract object exists aslong as it
holds a reference, until it receives an OBJECT_NOT_EXIST system exception in a
reply from an attempted request on the object. Incarnation state does not imply
existence or non-existence of the abstract object.

Note — This specification does not address the issues of communication or server
process activation, as they are immaterial to the POA interface and operation. It is
assumed that the ORB activates the server if necessary, and can deliver the request to
the appropriate POA.

To support object activation on demand, the server application must register a servant
manager with the appropriate POA. Upon receiving the request, if the POA consults
the Active Object Map and discovers that there is no active servant associated with the
target Object 1d, the POA invokes the incarnate operation on the servant manager.

Common Object Request Broker Architecture (CORBA), v2.5 September 2001

11

September 2001

Note — An implication that this model has for GIOP is that the object key in the
request message must encapsulate the Object Id value. In addition, it may encapsulate
other values as necessitated by the ORB implementation. For example, the server must
be able to determine to which POA the request should be directed. It could assign a
different communication endpoint to each POA so that the POA identity is implicit in
the request, or it could use asingle endpoint for the entire server and encapsulate POA
identities in object key values. Note that this is not a concrete requirement; the object
key may not actually contain any of those values. Whatever the concrete information
is, the ORB and POA must be able to use it to find the servant manager, invoke activate
if necessary (that requires the actual Object Id value), and/or find the active servant in
some map.

The incarnate invocation passes the Object Id value to the servant manager. At this
point, the servant manager may take any action necessary to produce a servant that it
considers to be avalid incarnation of the object in question. The operation returns the
servant to the POA, which invokes the operation on it. The incarnate operation may
alternatively raise an OBJECT_NOT_EXIST system exception that will be returned to
the invoking client. In this way, the user-supplied implementation is responsible for
determining object existence and non-existence.

After activation, the POA maintains the association of the servant and the Object Id in
the Active Object Map. (This example presumes the RETAIN and
USE_SERVANT_MANAGER policies.)

As an obvious example of transparent activation, the Object Id value could contain a
key for arecord in a database that contains the object’s state. The servant manager
would retrieve the state from the database, construct a servant of the appropriate
implementation class (assuming an object-oriented programming language), initialize it
with the state from the database, and return it to the POA.

The example servant manager in the last section (Section11.6.6, “ Servant Manager
Definition and Creation,” on page 11-54) could be used for this scenario. Recall that the
POA would have the USER_ID, USE_SERVANT_MANAGER, and RETAIN
palicies.

Given such aSer vant Act i vat or, al that remains s initialization code such as the
following.

Port abl eServer:: Objectld _var oid =
Portabl eServer::string to_Cbjectld(“nmyLittl eFoo”);
CORBA: : Obj ect _var obj = poa->create_reference_wth_id(
oid, “IDL:foo0:1.0");
MyFooServant Acti vator* fool M = new MyFooServant Acti vat or;
Servant Activator_var I Mef = fool M>_this();
poa- >set _servant _manager (| Mef);
poa- >t he_POAmanager () - >acti vate();
orb->run();

CORBA, v2.5: Usage Scenarios 11-57

11

11-58

11.6.8 Persistent Objects with POA-assigned Ids

It is possible to access the Object Id value assigned to an object by the POA, with the
POA::reference_to_id operation. If the reference is for an object managed by the
POA that is the operation’s target, the operation will return the Object I1d value,
whether it was assigned by the POA or the user. By doing this, an implementation may
provide a servant manager that associates the POA-allocated Object Id values with
persistently stored state. It may also pass the POA-alocated Object 1d values to POA
operations such as activate_object_with_id and create_reference_with_id.

A POA with the PERSISTENT policy may be destroyed and later reinstantiated in the
same or a different process. A POA with both the SYSTEM_ID and PERSISTENT
policies generates Object Id values that are unique across al instantiations of the same
POA.

11.6.9 Multiple Object Ids Mapping to a Sngle Servant

Each POA is created with a policy that indicates whether or not servants are allowed to
support multiple object identities simultaneously. If a POA allows multiple identities
per servant, the POA's treatment of the servants is affected in the following ways:

® Servants of the type may be explicitly activated multiple times with different
identity values without raising an exception.

® A servant cannot be mapped onto or converted to an individual object reference
using that POA, since the identity is potentially ambiguous.

11.6.10 One Servant for All Objects

By using the USE_DEFAULT_SERVANT policy, the developer can create a POA
that will use a single servant to implement all of its objects. This approach is useful
when there is very little data associated with each object, so little that the data can be
encoded in the Object Id.

The following example illustrates this approach by using a single servant to incarnate
all CORBA objects that export a given interface in the context of a server. This
example presumes a POA that has the USER_ID, NON_RETAIN, and
USE_DEFAULT_SERVANT poalicies.

Two interfaces are defined in IDL. The FileDescriptor interface is supported by
objects that will encapsulate access to operations in afile associated with afile system.
Global operationsin afile system, such as the ones necessary to create
FileDescriptor objects, are supported by objects that export the FileSystem
interface.

/l IDL
interface FileDescriptor {
typedef sequence<octet> DataBuffer;

long write (in DataBuffer buffer);
DataBuffer read (

Common Object Request Broker Architecture (CORBA), v2.5 September 2001

11

September 2001

in long num_bytes);
void destroy ();
b

interface FileSystem {

FileDescriptor open (
in string file_name,
in long flags);

b

Implementation of these two IDL interfaces may inherit from static skeleton classes
generated by an IDL to C++ compiler as follows:

/] C++
class Fil eDescriptorlnmpl : public POA Fil eDescriptor
{
public:
Fi | eDescriptorl npl (POA ptr poa);
~Fi | eDescriptorlnpl ();
POA ptr _default POA();
CORBA: : Long write(
const Fil eDescriptor::DataBuffer& buffer);
Fi | eDescri ptor:: DataBuffer* read(
CORBA: : Long num bytes);
void destroy();
private:
POA ptr my_poa;

b
class FileSystem npl : public POA FileSystem
{
public:
Fil eSystem npl (POA ptr poa);
~Fi l eSystem npl () ;
POA ptr _default POA();
Fi | eDescriptor_ptr open(
const char* file_nane, CORBA::Long flags);
private:
POA ptr my_poa;
Fil eDescriptorlnpl* fd_servant;
b

A single servant may be used to serve all requests issued to all FileDescriptor objects
created by a FileSystem object. The following fragment of code illustrates the steps
to perform when a FileSystem servant is created.

Il C++

Fil eSystem npl:: Fil eSystemn npl (POA ptr poa)
ny_poa(POA: : _duplicate(poa))

CORBA, v2.5: Usage Scenarios 11-59

11

11-60

fd_servant = new Fil eDescriptorlnpl (poa);
poa- >set _servant (fd_servant);

b

The following fragment of code illustrates how FileDescriptor objects are created as
a result of invoking an operation (open) exported by a FileSystem object. First, a
local file descriptor is created using the appropriate operating system call. Then a
CORBA object reference is created and returned to the client. The value of the local
file descriptor will be used to distinguish the new FileDescriptor object from other
FileDescriptor objects. Note that FileDescriptor objects in the example are
transient, since they use the value of their file descriptors for their Objectlds, and of
course the file descriptors are only valid for the life of a process.

[l C++
Fi |l eDescriptor_ptr
Fi |l eSystem npl : : open(
const char* file_nane, CORBA::Long flags)

{
int fd = ::open(file_nanme, flags);
ostrstream ostr;
ostr << fd;
Port abl eServer:: Objectld _var oid =
Port abl eServer::string to Objectld(ostr.str());
bj ect _var obj = ny_poa->create_reference_w th_id(
oid.in(),"IDL:FileDescriptor:1.0");
return FileDescriptor::_narrowobj);
s

Any request issued to a FileDescriptor object is handled by the same servant. In the
context of a method invocation, the servant determines which particular object is being
incarnated by invoking an operation that returns a reference to the target object and,
after that, invoking POA::reference_to_id. In C++, the operation used to obtain a
reference to the target object is_t hi s() . Typically, the Objectld value associated
with the reference will be used to retrieve the state of the target object. However, in
this example, such a step is not required since the only thing that is needed is the value
for thelocal file descriptor and that value coincides with the Objectld val ue associated
with the reference.

Implementation of the read operation is rather simple. The servant determines which
object it is incarnating, obtains the local file descriptor matching its identity, performs
the appropriate operating system call, and returns the result in a DataBuffer sequence.

[l C++
Fi | eDescri ptor:: DataBuffer*
Fi | eDescriptorlnpl::read(CORBA:: Long num byt es)
{
Fil eDescriptor_var me = _this();
Port abl eServer:: Objectld_var oid =
ny_poa->reference_to_id(nme.in());
CORBA: : String_var s =

Common Object Request Broker Architecture (CORBA), v2.5 September 2001

11

Port abl eServer:: Objectld_to_string(oid.in());
istrstreamis(s);

int fd;

is >> fd;

CORBA: : Cctet* buffer = DataBuffer::alloc_buf(numbytes);
int len = ::read(fd, buffer, numbytes);

Dat aBuf fer* result = new DataBuffer(len, len, buffer, 1);
return result;

H
Using a single servant per interface is useful in at least two situations.

® |none case, it may be appropriate for encapsulating access to legacy APIs that are
not object-oriented (system calls in the Unix environment, as we have shown in the
example).

® |n another case, thistechnique is useful in handling scalability issues related to the
number of CORBA objects that can be associated with a server. In the example
above, there may be a million FileDescriptor objects in the same server and this
would only require one entry in the ORB. Although there are operating system
limitations in this respect (a Unix server is not able to open so many local file
descriptors) the important point to take into account is that usage of CORBA doesn't
introduce scalability problems but provides mechanisms to handle them.

11.6.11 Single Servant, Many Objects and Types, Using DS

The ability to associate a single DSI servant with many CORBA objects is rather
powerful in some scenarios. It can be the basis for development of gateways to legacy
systems or software that mediates with external hardware, for example.

Usage of the DSI isillustrated in the following example. This example presumes a POA
that supports the USER_ID, USE_DEFAULT_SERVANT, and RETAIN policies.

A single servant will be used to incarnate a huge number of CORBA objects, each of
them representing a separate entry in a Database. There may be severa types of entries
in the Database, representing different entity types in the Database model. Each type of
entry in the Database is associated with a separate interface that comprises operations
supported by the Database on entries of that type. All these interfaces inherit from the
DatabaseEntry interface. Finally, an object supporting the DatabaseAgent interface
supports basic operations in the database such as creating a new entry, destroying an
existing entry, etc.

/l IDL
interface DatabaseEntry {
readonly attribute string name;

b

interface Employee : DatabaseEntry {
attribute long id;
attribute long salary;

September 2001 CORBA, v2.5: Usage Scenarios 11-61

11

interface DatabaseAgent {
DatabaseEntry create_entry (
in string key,
in CORBA::Identifier entry_type,
in NVPairSequence initial_attribute_values

);

void destroy_entry (
in string key);

b

Implementation of the DatabaseEntry interface may inherit from the standard dynamic
skeleton class as follows:

/] C++
cl ass Dat abaseEntryl npl
public Portabl eServer::Dynam cl npl ementation

{
public:
Dat abaseEntryl npl (Dat abaseAccessPoi nt db);
virtual void invoke (ServerRequest _ptr request);
~Dat abaseEntryl npl ();
virtual POA ptr _default_ POA()
{
return poa;
}
b

On the other hand, implementation of the DatabaseAgent interface may inherit from a
static skeleton class generated by an IDL to C++ compiler as follows:

/[l C++
cl ass Dat abaseAgent | npl

publ i c Dat abaseAgent | npl Base
{

pr ot ect ed:
Dat abaseAccessPoi nt nydb;
Dat abaseEntryl npl * conmmon_servant;
public:
Dat abaseAgent | npl () ;
virtual DatabaseEntry ptr create_entry (
const char * key,
const char * entry_type,
const NVPai r Sequence& initial _attribute_val ues
)

virtual void destroy _entry (const char * key);

11-62 Common Object Request Broker Architecture (CORBA), v2.5 September 2001

11

~Dat abaseAgent I npl () ;
}s

A single servant may be used to serveall requestsissued to al DatabaseEntry objects
created by a DatabaseAgent object. The following fragment of code illustrates the
steps to perform when a DatabaseAgent servant is created. First, access to the
database is initialized. As aresult, some kind of descriptor (a DatabaseAccessPoint
local object) used to operate on the database is obtained. Finaly, a servant will be
created and associated with the POA.

Il C++

voi d Dat abaseAgent | npl : : Dat abaseAgent | npl ()

{
nydb = ...;
conmon_servant = new Dat abaseEnt ryl npl (nydb) ;
poa- >set _servant (common_servant);

b

The code used to create DatabaseEntry objects representing entries in the database is
similar to the one used for creating FileDescriptor objects in the example of the
previous section. In this case, a new entry is created in the database and the key
associated with that entry will be used to represent the identity for the corresponding
DatabaseEntry object. All requestsissued to a DatabaseEntry object are handled by
the same servant because references to this type of object are associated with a common
POA created with the USE_DEFAULT_SERVANT policy.

/] C++

Dat abaseEntry_ptr DatabaseAgentlnpl::create_entry (
const char * key,
const char * entry_type,
const NVPai r Sequence& initial _attribute_val ues)

/] creates a new entry in the database:
nydb- >new entry (key, ...);

/1 creates a reference to the CORBA object used to

/1l encapsul ate access to the new entry in the database.

/1 There is an interface for each entry type:

CORBA: : Obj ect _ptr obj = poa->create_reference_w th_id(
string_to_Objectld (key),
identifierToRepositoryld (entry_type),

);

Dat abaseEntry _ptr entry = DatabaseEntry:: narrow (obj);

CORBA: : rel ease (obj);
return entry;

September 2001 CORBA, v2.5: Usage Scenarios 11-63

11

11-64

Any request issued to a DatabaseEntry object is handled by the same servant. In the
context of a method invocation, the servant determines which particular object it is
incarnating, obtains the database key matching its identity, invokes the appropriate
operation in the database and returns the result as an output parameter in the
ServerRequest object.

Sometimes, a program may need to determine the type of an entry in the database in
order to invoke operations on the entry. If that is the case, the servant may obtain the
type of an entry based on the interface supported by the DatabaseEntry object
encapsulating access to that entry. This interface may be obtained by means of invoking
the get_interface operation exported by the reference to the DatabaseEntry object.

Il C++
voi d Dat abaseEntrylnpl::invoke (ServerRequest_ptr request)

{
CORBA: : Obj ect _ptr current_obj = _this ();

/1 The servant determines the key associated with

/1 the database entry represented by current_obj:

Port abl eServer:: Objectld oid =
poa->reference_to_id (current_obj);

char * key = bjectld to_string (o0id);

/1 The servant handl es the inconi ng CORBA request. This
/1 typically involves the follow ng steps:
/1 1. mapping the CORBA request into a database request

/1 usi ng the key obtained previously
/1 2. constructing output paraneters to the CORBA request
/1 fromthe response to the database request

b

Note that in this example, we may have abillion DatabaseEntry objectsin a server
requiring only a single entry in map tables supported by the POA (that is, the ORB at the
server). No permanent storage is required for references to DatabaseEntry objects at
the server. Actudly, references to DatabaseEntry objects will only occupy space:

® at clients, as long as those references are used; or

® &t the server, only while arequest is being served.

Scalability problems can be handled using this technique. There are many scenarios
where this scalability causesno penalty in termsof performance (basically, when thereis
no need to restore the state of an object, each time a request to it is being served).

Common Object Request Broker Architecture (CORBA), v2.5 September 2001

| nteroperability Overview 12

Contents

This chapter contains the following sections.

Section Title Page
“Elements of Interoperability” 12-1
“Relationship to Previous Versions of CORBA” 12-4
“Examples of Interoperability Solutions” 12-5
“Motivating Factors” 12-8
“Interoperability Design Goals’ 12-9

ORB interoperability specifies a comprehensive, flexible approach to supporting
networks of objectsthat are distributed across and managed by multiple, heterogeneous
CORBA-compliant ORBs. The approach to “interORBability” is universal, because its
elements can be combined in many ways to satisfy a very broad range of needs.

12.1 Elementsof Interoperability

September 2001

The elements of interoperability are as follows:

® ORB interoperability architecture

® Inter-ORB bridge support

® General and Internet inter-ORB Protocols (GIOPs and 110Ps)

In addition, the architecture accommodates environment-specific inter-ORB protocols
(ESIOPs) that are optimized for particular environments such as DCE.

Common Object Request Broker Architecture (CORBA), v2.5 12-1

12

12-2

12.1.1 ORB Interoperability Architecture

The ORB Interoperability Architecture provides a conceptual framework for defining
the elements of interoperability and for identifying its compliance points. It also
characterizes new mechanisms and specifies conventions necessary to achieve
interoperability between independently produced ORBs.

Specifically, the architecture introduces the concepts of immediate and mediated
bridging of ORB domains. The Internet Inter-ORB Protocol (110P) forms the common
basis for broad-scope mediated bridging. The inter-ORB bridge support can be used to
implement both immediate bridges and to build “half-bridges” to mediated bridge
domains.

By use of bridging techniques, ORBs can interoperate without knowing any details of
that ORB’s implementation, such as what particular |PC or protocols (such as ESIOPs)
are used to implement the CORBA specification.

The 11OP may be used in bridging two or more ORBs by implementing “half bridges”
that communicate using the I1OP. This approach works for both stand-alone ORBs, and
networked ones that use an ESIOP.

The 11OP may also be used to implement an ORB’s internal messaging, if desired.
Since ORBs are not required to use the [1OP internally, the goal of not requiring prior
knowledge of each others' implementation is fully satisfied.

12.1.2 Inter-ORB Bridge Support

The interoperability architecture clearly identifies the role of different kinds of
domains for ORB-specific information. Such domains can include object reference
domains, type domains, security domains (e.g., the scope of a Principal identifier), a
transaction domain, and more.

Where two ORBs are in the same domain, they can communicate directly. In many
cases, this is the preferable approach. This is not always true, however, since
organizations often need to establish local control domains.

When information in an invocation must leave its domain, the invocation must traverse
abridge. The role of abridge isto ensure that content and semantics are mapped from
the form appropriate to one ORB to that of another, so that users of any given ORB
only see their appropriate content and semantics.

The inter-ORB bridge support element specifies ORB APIs and conventions to enable
the easy construction of interoperability bridges between ORB domains. Such bridge
products could be developed by ORB vendors, Sieves, system integrators, or other
third-parties.

Because the extensions required to support Inter-ORB Bridges are largely general in
nature, do not impact other ORB operation, and can be used for many other purposes
besides building bridges, they are appropriate for all ORBs to support. Other
applications include debugging, interposing of objects, implementing objects with
interpreters and scripting languages, and dynamically generating implementations.

Common Object Request Broker Architecture (CORBA), v2.5 September 2001

12

The inter-ORB bridge support can also be used to provide interoperability with non-
CORBA systems, such as Microsoft’s Component Object Model (COM). The ease of
doing this will depend on the extent to which those systems conform to the CORBA
Object Model.

12.1.3 General Inter-ORB Protocol (GIOP)

The General Inter-ORB Protocol (GIOP) element specifies a standard transfer syntax
(low-level data representation) and a set of message formats for communications
between ORBs. The GIOP is specifically built for ORB to ORB interactions and is
designed to work directly over any connection-oriented transport protocol that meets a
minimal set of assumptions. It does not require or rely on the use of higher level RPC
mechanisms. The protocol is simple, scalable and relatively easy to implement. It is
designed to allow portable implementations with small memory footprints and
reasonabl e performance, with minimal dependencies on supporting software other than
the underlying transport layer.

While versions of the GIOP running on different transports would not be directly
interoperable, their commonality would allow easy and efficient bridging between such
networking domains.

12.1.4 Internet Inter-ORB Protocol (I10P)

The Internet Inter-ORB Protocol (110P) element specifies how GIOP messages are
exchanged using TCP/IP connections. The |1OP specifies a standardized
interoperability protocol for the Internet, providing “out of the box” interoperation
with other compatible ORBs based on the most popular product- and vendor-neutral
transport layer. It can also be used as the protocol between half-bridges (see below).

The protocol is designed to be suitable and appropriate for use by any ORB to
interoperate in Internet Protocol domains unless an alternative protocol is necessitated
by the specific design center or intended operating environment of the ORB. In that
sense it represents the basic inter-ORB protocol for TCP/IP environments, a most
pervasive transport layer.

The 11OP's relationship to the GIOP is similar to that of a specific language mapping
to OMG IDL; the GIOP may be mapped onto a number of different transports, and
specifies the protocol el ements that are common to all such mappings. The GIOP by
itself, however, does not provide complete interoperability, just as IDL cannot be used
to build complete programs. The 110OP and other similar mappings to different
transports, are concrete realizations of the abstract GIOP definitions, as shown in
Figure 12-1 on page 12-4.

September 2001 CORBA, v2.5: Elementsof Interoperability 12-3

12

Mandatory for CORBA

CORBA/IDL

—

other GIOP
mappings...

Figure12-1 Inter-ORB Protocol Relationships.

12.1.5 Environment-Specific Inter-ORB Protocols (ES OPs)

This specification also makes provision for an open-ended set of Environment-Specific
Inter-ORB Protocols (ESIOPs). Such protocols would be used for “out of the box”
interoperation at user sites where a particular networking or distributing computing
infrastructure is aready in general use.

Because of the opportunity to leverage and build on facilities provided by the specific
environment, ESIOPs might support specialized capabilities such as those relating to
security and administration.

While ESIOPs may be optimized for particular environments, all ESIOP specifications
will be expected to conform to the general ORB interoperability architecture
conventions to enable easy bridging. The inter-ORB bridge support enables bridges to
be built between ORB domains that use the IlOP and ORB domains that use a
particular ESIOP.

12.2 Relationship to Previous \ersions of CORBA

12-4

The ORB Interoperability Architecture builds on Common Object Request Broker
Architecture by adding the notion of ORB Services and their domains. (ORB Services
are described in Section 13.2, “ORBs and ORB Services,” on page 13-3). The
architecture defines the problem of ORB interoperability in terms of bridging between
those domains, and defines several ways in which those bridges can be constructed.
The bridges can be internal (in-line) and external (request-level) to ORBs.

APIs included in the interoperability specifications include compatible extensions to
previous versions of CORBA to support request-level bridging:

® A Dynamic Skeleton Interface (DSI) is the basic support needed for building
reguest-level bridges. It is the server-side analogue of the Dynamic Invocation
Interface and in the same way it has general applicability beyond bridging. For
information about the Dynamic Skeleton Interface, refer to the Dynamic Skeleton
Interface chapter.

Common Object Request Broker Architecture (CORBA), v2.5 September 2001

12

® APIsfor managing object references have been defined, building on the support
identified for the Relationship Service. The APIs are defined in Object Reference
Operations in the ORB Interface chapter of this book. The Relationship Service is
described in the Relationship Service specification; refer to the CosObjectldentity
Module section of that specification.

12.3 Examplesof Interoperability Solutions

The elements of interoperability (Inter-ORB Bridges, General and Internet Inter-ORB
Protocols, Environment-Specific Inter-ORB Protocols) can be combined in a variety of
ways to satisfy particular product and customer needs. This section provides some
examples.

12.3.1 Example 1

ORB product A is designed to support objects distributed across a network and provide
“out of the box” interoperability with compatible ORBs from other vendors. In
addition it allows bridges to be built between it and other ORBs that use environment-
specific or proprietary protocols. To accomplish this, ORB A uses the 11OP and
provides inter-ORB bridge support.

12.3.2 Example 2

ORB product B is designed to provide highly optimized, very high-speed support for
objects located on a single machine. For example, to support thousands of Fresco GUI
objects operated on at near function-call speeds. In addition, some of the objects will
need to be accessible from other machines and objects on other machines will need to
be infrequently accessed. To accomplish this, ORB A provides a half-bridge to support
the Internet |OP for communication with other “distributed” ORBs.

12.3.3 Example 3

ORB product C is optimized to work in a particular operating environment. It uses a
particular environment-specific protocol based on distributed computing services that
are commonly available at the target customer sites. In addition, ORB C is expected to
interoperate with other arbitrary ORBs from other vendors. To accomplish this, ORB C
provides inter-ORB bridge support and a companion haf-bridge product (supplied by
the ORB vendor or some third-party) provides the connection to other ORBs. The half-
bridge uses the 110OP to enable interoperability with other compatible ORBs.

12.3.4 Interoperability Compliance

An ORB is considered to be interoperability-compliant when it meets the following
requirements:

September 2001 CORBA, v2.5: Examples of Interoperability Solutions 12-5

12

12-6

® Inthe CORBA Core part of this specification, standard APIs are provided by an
ORB to enable the construction of request-level inter-ORB bridges. APIs are
defined by the Dynamic Invocation Interface, the Dynamic Skeleton Interface, and
by the object identity operations described in the Interface Repository chapter of
this book.

® An Internet Inter-ORB Protocol (110P) (explained in the Building Inter-ORB
Brdiges chapter) defines a transfer syntax and message formats (described
independently as the General Inter-ORB Protocol), and defines how to transfer
messages via TCP/IP connections. The I1OP can be supported natively or viaa half-
bridge.

Support for additional ESIOPs and other proprietary protocols is optional in an
interoperability-compliant system. However, any implementation that chooses to use
the other protocols defined by the CORBA interoperability specifications must adhere
to those specifications to be compliant with CORBA interoperability.

Figure 12-2 on page 12-7 shows examples of interoperable ORB domains that are
CORBA-compliant.

These compliance points support a range of interoperability solutions. For example, the
standard APIs may be used to construct “half bridges’ to the 11OP, relying on another
“half bridge” to connect to another ORB. The standard APIs also support construction
of “full bridges,” without using the Internet 10P to mediate between separated bridge
components. ORBs may also use the Internet IOP internally. In addition, ORBs may
use GIOP messages to communicate over other network protocol families (such as
Novell or OSl), and provide transport-level bridges to the I1OP.

The GIOP is described separately from the 11OP to allow future specifications to treat
it as an independent compliance point.

Common Object Request Broker Architecture (CORBA), v2.5 September 2001

12

ORB Domains

HOP

CORBA V2.0 Interoperable

IOP

Figure 12-2 Examples of CORBA Interoperability Compliance

ORB Domains

Half
Bridge

CORBA V2.0 Interoperable

Half
Bridge

CORBA V2.0 Interoperable

September 2001 CORBA, v2.5: Examples of Interoperability Solutions

Other
Protocol*

*e.g. Proprietary protocol or
GIOP OSI mapping

12-7

12

12.4 Motivating Factors

This section explains the factors that motivated the creation of interoperability
specifications.

12.4.1 ORB Implementation Diversity

Today, there are many different ORB products that address a variety of user needs. A
large diversity of implementation techniques is evident. For example, the time for a
reguest ranges over at least 5 orders of magnitude, from a few microseconds to several
seconds. The scope ranges from a single application to enterprise networks. Some
ORBs have high levels of security, others are more open. Some ORBs are layered on a
particular widely used protocol, others use highly optimized, proprietary protocols.

The market for object systems and applications that use them will grow as object
systems are able to be applied to more kinds of computing. From application
integration to process control, from loosely coupled operating systems to the
information superhighway, CORBA -based object systems can be the common
infrastructure.

12.4.2 ORB Boundaries

Even when it is not required by implementation differences, there are other reasons to
partition an environment into different ORBs.

For security reasons, it may be important to know that it is not generally possible to
access objects in one domain from another. For example, an “internet ORB” may make
public information widely available, but a “company ORB” will want to restrict what
information can get out. Even if they used the same ORB implementation, these two
ORBs would be separate, so that the company could allow access to public objects
from inside the company without allowing access to private objects from outside. Even
though individual objects should protect themselves, prudent system administrators
will want to avoid exposing sensitive objects to attacks from outside the company.

Supporting multiple ORBs also helps handle the difficult problem of testing and
upgrading the object system. It would be unwise to test new infrastructure without
limiting the set of objects that might be damaged by bugs, and it may be impractical to
replace “the ORB” everywhere simultaneously. A new ORB might be tested and
deployed in the same environment, interoperating with the existing ORB until either a
complete switch is made or it incrementally displaces the existing one.

Management issues may also motivate partitioning an ORB. Just as networks are
subdivided into domains to allow decentralized control of databases, configurations,
resources, management of the state in an ORB (object reference location and
translation information, interface repositories, per-object data) might also be done by
creating sub-ORBs.

12-8 Common Object Request Broker Architecture (CORBA), v2.5 September 2001

12

12.4.3 ORBs Vary in Scope, Distance, and Lifetime

Even in a single computing environment produced by a single vendor, there are reasons
why some of the objects an application might use would be in one ORB, and othersin
another ORB. Some objects and services are accessed over long distances, with more
global visibility, longer delays, and less reliable communication. Other objects are
nearby, are not accessed from elsewhere, and provide higher quality service. By
deciding which ORB to use, an implementer sets expectations for the clients of the
objects.

One ORB might be used to retain links to information that is expected to accumulate
over decades, such as library archives. Another ORB might be used to manage a
distributed chess program in which the objects should all be destroyed when the game
is over. Although whileit is running, it makes sense for “chess ORB” objects to access
the “archives ORB,” we would not expect the archivesto try to keep areference to the
current board position.

12.5 Interoperability Design Goals

Because of the diversity in ORB implementations, multiple approaches to
interoperability are required. Options identified in previous versions of CORBA
include:

® Protocol Trandation, where a gateway residing somewhere in the system maps
reguests from the format used by one ORB to that used by another.

* Reference Embedding, where invocation using a native object reference delegates to
a special object whose job is to forward that invocation to another ORB.

® Alternative ORBs, where ORB implementations agree to coexist in the same address
space so easily that a client or implementation can transparently use any of them,
and pass object references created by one ORB to another ORB without losing
functionality.

In general, there is no single protocol that can meet everyone's needs, and there is no
single means to interoperate between two different protocols. There are many
environments in which multiple protocols exist, and there are ways to bridge between
environments that share no protocols.

This specification adopts a flexible architecture that allows a wide variety of ORB
implementations to interoperate and that includes both bridging and common protocol
elements.

The following goals guided the creation of interoperability specifications:

® The architecture and specifications should alow high-performance, small footprint,
lightweight interoperability solutions.

® The design should scale, should not be unduly difficult to implement, and should
not unnecessarily restrict implementation choices.

September 2001 CORBA, v2.5: Interoperability Design Goals 12-9

12

® |nteroperability solutions should be able to work with any vendors' existing ORB
implementations with respect to their CORBA-compliant core feature set; those
implementations are diverse.

® All operations implied by the CORBA object model (i.e., the stringify and
destringify operations defined on the CORBA:ORB pseudo-object and all the
operations on CORBA:Object) as well as type management (for example,
narrowing, as needed by the C++ mapping) should be supported.

12.5.1 Non-Goals

The following were taken into account, but were not goals:
® Support for security

® Support for future ORB Services

12-10 Common Object Request Broker Architecture (CORBA), v2.5 September 2001

13.1 Overview

September 2001

ORB Interoperability Architecture

Contents

This chapter contains the following sections.

Section Title Page
“Overview” 13-1
“ORBs and ORB Services’ 13-3
“Domains” 13-5
“Interoperability Between ORBS” 13-7
“Object Addressing” 13-11
“An Information Model for Object References” 13-14
“Service Context” 13-28
“Coder/Decoder Interfaces’ 13-31
“Feature Support and GIOP Versions” 13-35
“Code Set Conversion” 13-36

The original Interoperability RFP defines interoperability as the ability for a client on
ORB A to invoke an OMG IDL-defined operation on an object on ORB B, where ORB
A and ORB B are independently developed. It further identifies genera requirements

including in particular:

® Ability for two vendors’ ORBs to interoperate without prior knowledge of each

other’s implementation.

Common Object Request Broker Architecture (CORBA), v2.5

13

13-2

® Support of al ORB functionality.

® Preservation of content and semantics of ORB-specific information across ORB
boundaries (for example, security).

In effect, the requirement is for invocations between client and server objects to be
independent of whether they are on the same or different ORBs, and not to mandate
fundamental modifications to existing ORB products.

13.1.1 Domains

The CORBA Object Model identifies various distribution transparencies that must be
supported within a single ORB environment, such as location transparency. Elements
of ORB functionality often correspond directly to such transparencies. Interoperability
can be viewed as extending transparencies to span multiple ORBs.

In this architecture a domain is a distinct scope, within which certain common
characteristics are exhibited and common rules are observed over which a distribution
transparency is preserved. Thus, interoperability is fundamentally involved with
transparently crossing such domain boundaries.

Domains tend to be either administrative or technological in nature, and need not
correspond to the boundaries of an ORB installation. Administrative domains include
naming domains, trust groups, resource management domains and other “run-time”
characteristics of a system. Technology domains identify common protocols, syntaxes
and similar “build-time” characteristics. In many cases, the need for technology
domains derives from basic requirements of administrative domains.

Within a single ORB, most domains are likely to have similar scope to that of the ORB
itself: common object references, network addresses, security mechanisms, and more.
However, it is possible for there to be multiple domains of the same type supported by
a given ORB: internal representation on different machine types, or security domains.
Conversely, adomain may span several ORBs: similar network addresses may be used
by different ORBs, type identifiers may be shared.

13.1.2 Bridging Domains

The abstract architecture describes ORB interoperability in terms of the translation
required when an object request traverses domain boundaries. Conceptually, a mapping
or bridging mechanism resides at the boundary between the domains, transforming
reguests expressed in terms of one domain’s model into the model of the destination
domain.

The concrete architecture identifies two approaches to inter-ORB bridging:
® At application level, allowing flexibility and portability.
® At ORB level, built into the ORB itself.

Common Object Request Broker Architecture (CORBA), v2.5 September 2001

13

13.2 ORBsand ORB Services

September 2001

The ORB Core is that part of the ORB which provides the basic representation of
objects and the communication of requests. The ORB Core therefore supports the
minimum functionality to enable a client to invoke an operation on a server object,
with (some of) the distribution transparencies required by CORBA.

An object request may have implicit attributes which affect the way in which it is
communicated - though not the way in which a client makes the request. These
attributes include security, transactional capabilities, recovery, and replication. These
features are provided by “ORB Services,” which will in some ORBs be layered as
internal services over the core, or in other cases be incorporated directly into anORB’s
core. It isan aim of this specification to allow for new ORB Services to be defined in
the future, without the need to modify or enhance this architecture.

Within a single ORB, ORB services required to communicate a request will be
implemented and (implicitly) invoked in a private manner. For interoperability between
ORBs, the ORB services used in the ORBs, and the correspondence between them,
must be identified.

13.2.1 The Nature of ORB Services

ORB Services are invoked implicitly in the course of application-level interactions.
ORB Services range from fundamental mechanisms such as reference resolution and
message encoding to advanced features such as support for security, transactions, or
replication.

An ORB Service is often related to a particular transparency. For example, message
encoding — the marshaling and unmarshaling of the components of a request into and
out of message buffers — provides transparency of the representation of the request.
Similarly, reference resolution supports location transparency. Some transparencies,
such as security, are supported by a combination of ORB Servicesand Object Services
while others, such as replication, may involve interactions between ORB Services
themselves.

ORB Services differ from Object Services in that they are positioned below the
application and are invoked transparently to the application code. However, many ORB
Services include components which correspond to conventional Object Services in that
they are invoked explicitly by the application.

Security is an example of service with both ORB Service and normal Object Service
components, the ORB components being those associated with transparently
authenticating messages and controlling access to objects while the necessary
administration and management functions resemble conventional Object Services.

13.2.2 ORB Services and Object Requests

Interoperability between ORBs extends the scope of distribution transparencies and
other request attributes to span multiple ORBs. This requires the establishment of
relationships between supporting ORB Services in the different ORBs.

CORBA, v2.5: ORBsand ORB Services 13-3

13

13-4

In order to discuss how the relationships between ORB Services are established, it is
necessary to describe an abstract view of how an operation invocation is communicated
from client to server object.

1. The client generates an operation request, using a reference to the server object,
explicit parameters, and an implicit invocation context. Thisis processed by certain
ORB Services on the client path.

2. On the server side, corresponding ORB Services process the incoming request,
transforming it into a form directly suitable for invoking the operation on the server
object.

3. The server object performs the requested operation.
4. Any result of the operation is returned to the client in a similar manner.

The correspondence between client-side and server-side ORB Services need not be
one-to-one and in some circumstances may be far more complex. For example, if a
client application requests an operation on a replicated server, there may be multiple
server-side ORB service instances, possibly interacting with each other.

In other cases, such as security, client-side or server-side ORB Services may interact
with Object Services such as authentication servers.

13.2.3 Sdection of ORB Services

The ORB Services used are determined by:

® Static properties of both client and server objects; for example, whether a server is
replicated.

® Dynamic attributes determined by a particular invocation context; for example,
whether a request is transactional .

® Administrative policies (e.g., security).

Within a single ORB, private mechanisms (and optimizations) can be used to establish
which ORB Services are required and how they are provided. Service selection might
in general require negotiation to select protocols or protocol options. The same is true
between different ORBs: it is necessary to agree which ORB Services are used, and
how each transforms the request. Ultimately, these choices become manifest as one or
more protocols between the ORBs or as transformations of requests.

In principle, agreement on the use of each ORB Service can be independent of the
others and, in appropriately constructed ORBs, services could be layered in any order
or in any grouping. This potentially allows applications to specify selective
transparencies according to their requirements, although at this time CORBA provides
no way to penetrate its transparencies.

A client ORB must be able to determine which ORB Services must be used in order to
invoke operations on a server object. Correspondingly, where a client requires dynamic
attributes to be associated with specific invocations, or administrative policies dictate,
it must be possible to cause the appropriate ORB Services to be used on client and

Common Object Request Broker Architecture (CORBA), v2.5 September 2001

13

13.3 Domains

server sides of the invocation path. Where this is not possible - because, for example,
one ORB does not support the full set of services required - either the interaction
cannot proceed or it can only do so with reduced facilities or transparencies.

From a computational viewpoint, the OMG Object Model identifies various
distribution transparencies which ensure that client and server objects are presented
with a uniform view of a heterogeneous distributed system. From an engineering
viewpoint, however, the system is not wholly uniform. There may be distinctions of
location and possibly many others such as processor architecture, networking
mechanisms and data representations. Even when a single ORB implementation is used
throughout the system, local instances may represent distinct, possibly optimized
scopes for some aspects of ORB functionality.

Representation Representation

Reference

Networking

Security

Figure 13-1 Different Kinds of Domains can Coexist.

Interoperability, by definition, introduces further distinctions, notably between the
scopes associated with each ORB. To describe both the requirements for
interoperability and some of the solutions, this architecture introduces the concept of
domains to describe the scopes and their implications.

Informally, a domain is a set of objects sharing a common characteristic or abiding by
common rules. It is a powerful modelling concept which can simplify the analysis and
description of complex systems. There may be many types of domains (for example,

management domains, naming domains, language domains, and technology domains).

13.3.1 Definition of a Domain

September 2001

Domains allow partitioning of systems into collections of components which have
some characteristic in common. In this architecture a domain is a scope in which a
collection of objects, said to be members of the domain, is associated with some
common characteristic; any object for which the association does not exist, or is
undefined, is not a member of the domain. A domain can be modeled as an object and
may be itself a member of other domains.

It is the scopes themselves and the object associations or bindings defined within them
which characterize a domain. This information is disjoint between domains. However,
an object may be a member of several domains, of similar kinds aswell as of different
kinds, and so the sets of members of domains may overlap.

CORBA, v2.5: Domains 13-5

13

13-6

The concept of a domain boundary is defined as the limit of the scope in which a
particular characteristic is valid or meaningful. When a characteristic in one domain is
translated to an equivalent in another domain, it is convenient to consider it as
traversing the boundary between the two domains.

Domains are generally either administrative or technological in nature. Examples of
domains related to ORB interoperability issues are:

® Referencing domain — the scope of an object reference

® Representation domain — the scope of a message transfer syntax and protocol
® Network addressing domain — the scope of a network address

® Network connectivity domain — the potentia scope of a network message

® Security domain — the extent of a particular security policy

® Type domain — the scope of a particular type identifier

® Transaction domain — the scope of a given transaction service

Domains can be related in two ways: containment, where adomain is contained within
another domain, and federation, where two domains are joined in a manner agreed to
and set up by their administrators.

13.3.2 Mapping Between Domains: Bridging

Interoperability between domains is only possible if there is a well-defined mapping
between the behaviors of the domains being joined. Conceptually, a mapping
mechanism or bridge resides at the boundary between the domains, transforming
reguests expressed in terms of one domain’s model into the model of the destination
domain. Note that the use of the term “bridge” in this context is conceptual and refers
only to the functionality which performs the required mappings between distinct
domains. There are several implementation options for such bridges and these are
discussed elsewhere.

For full interoperability, it is essential that all the concepts used in one domain are
transformable into concepts in other domains with which interoperability is required,
or that if the bridge mechanism filters such a concept out, nothing is lost as far as the
supported objects are concerned. In other words, one domain may support a superior
service to others, but such a superior functionality will not be available to an
application system spanning those domains.

A special case of this requirement is that the object models of the two domains need to
be compatible. This specification assumes that both domains are strictly compliant
with the CORBA Object Model and the CORBA specifications. Thisincludes the use of
OMG IDL when defining interfaces, the use of the CORBA Core I nterface Repository,
and other modifications that were made to CORBA. Variances from this model could
easily compromise some aspects of interoperability.

Common Object Request Broker Architecture (CORBA), v2.5 September 2001

13

13.4 Interoperability Between ORBs

September 2001

An ORB “provides the mechanisms by which objects transparently make and receive
reguests and responses. In so doing, the ORB provides interoperability between
applications on different machines in heterogeneous distributed environments...” ORB
interoperability extends this definition to cases in which client and server objects on
different ORBs “transparently make and receive requests.”

Note that a direct consequence of this transparency requirement is that bridging must
be bidirectional: that is, it must work as effectively for object references passed as
parameters as for the target of an object invocation. Were bridging unidirectional (e.g.,
if one ORB could only be a client to another) then transparency would not have been
provided, because object references passed as parameters would not work correctly:
ones passed as “callback objects,” for example, could not be used.

Without loss of generality, most of this specification focuses on bridging in only one
direction. Thisis purely to simplify discussions, and does not imply that unidirectional
connectivity satisfies basic interoperability requirements.

13.4.1 ORB Services and Domains

In this architecture, different aspects of ORB functionality - ORB Services - can be
considered independently and associated with different domain types. The architecture
does not, however, prescribe any particular decomposition of ORB functionality and
interoperability into ORB Services and corresponding domain types. There is a range
of possibilities for such a decomposition:

1. The simplest model, for interoperability, isto treat all objects supported by one
ORB (or, alternatively, all ORBs of a given type) as comprising one domain.
Interoperability between any pair of different domains (or domain types) is then
achieved by a specific all-encompassing bridge between the domains. (Thisis all
CORBA implies.)

2. More detailed decompositions would identify particular domain types - such as
referencing, representation, security, and networking. A core set of domain types
would be pre-determined and allowance made for additional domain types to be
defined as future requirements dictate (e.g., for new ORB Services).

13.4.2 ORBs and Domains

In many respects, issues of interoperability between ORBs are similar to those which
can arise with a single type of ORB (e.g., a product). For example:

® Two installations of the ORB may be installed in different security domains, with
different Principal identifiers. Requests crossing those security domain boundaries
will need to establish locally meaningful Principals for the caller identity, and for
any Principals passed as parameters.

* Different installations might assign different type identifiers for equivalent types,
and so requests crossing type domain boundaries would need to establish locally
meaningful type identifiers (and perhaps more).

CORBA, v2.5: Interoperability Between ORBs 13-7

13

13-8

Conversely, not all of these problems need to appear when connecting two ORBs of a
different type (for example, two different products). Examples include:

® They could be administered to share user visible naming domains, so that naming
domains do not need bridging.

® They might reuse the same networking infrastructure, so that messages could be
sent without needing to bridge different connectivity domains.

Additional problems can arise with ORBs of different types. In particular, they may
support different concepts or models, between which there are no direct or natural
mappings. CORBA only specifies the application level view of object interactions, and
requires that distribution transparencies conceal a whole range of lower level issues. It
follows that within any particular ORB, the mechanisms for supporting transparencies
are not visible at the application-level and are entirely a matter of implementation
choice. So there is no guarantee that any two ORBSs support similar internal models or
that there is necessarily a straightforward mapping between those models.

These observations suggest that the concept of an ORB (instance) is too coarse or
superficial to allow detailed analysis of interoperability issues between ORBs. Indeed,
it becomes clear that an ORB instance is an elusive notion: it can perhaps best be
characterized as the intersection or coincidence of ORB Service domains.

13.4.3 Interoperability Approaches

134.3.1

When an interaction takes place across a domain boundary, a mapping mechanism, or
bridge, is required to transform relevant elements of the interaction as they traverse the
boundary. There are essentially two approaches to achieving this: mediated bridging

and immediate bridging. These approaches are described in the following subsections.

Domain Domain Domain Domain
‘.
Mediated Bridging Immediate Bridging

Figure 13-2 Two bridging techniques, different uses of an intermediate form agreed on between
the two domains.

Mediated Bridging

With mediated bridging, elements of the interaction relevant to the domain are
transformed, at the boundary of each domain, between the internal form of that domain
and an agreed, common form.

Observations on mediated bridging are as follows:

® The scope of agreement of a common form can range from a private agreement
between two particular ORB/domain implementations to a universal standard.

Common Object Request Broker Architecture (CORBA), v2.5 September 2001

13

September 2001

13.4.3.2

13.4.3.3

® There can be more than one common form, each oriented or optimized for a
different purpose.

® |f there is more than one possible common form, then which is used can be static
(for example, administrative policy agreed between ORB vendors, or between
system administrators) or dynamic (for example, established separately for each
object, or on each invocation).

® Engineering of this approach can range from in-line specifically compiled (compare
to stubs) or generic library code (such as encryption routines), to intermediate
bridges to the common form.

Immediate Bridging

With immediate bridging, elements of the interaction relevant to the domain are
transformed, at the boundary of each domain, directly between the internal form of one
domain and the internal form of the other.

Observations on immediate bridging are as follows:

® This approach hasthe potential to be optimal (in that the interaction is not mediated
via a third party, and can be specifically engineered for each pair of domains) but
sacrifices flexibility and generality of interoperability to achieve this.

® This approach is often applicable when crossing domain boundaries which are
purely administrative; that is, there is no change of technology. For example, when
crossing security administration domains between similar ORBS, it is not necessary
to use a common intermediate standard.

As a general observation, the two approaches can become almost indistinguishable
when private mechanisms are used between ORB/domain implementations.

Location of Inter-Domain Functionality

Logically, an inter-domain bridge has components in both domains, whether the
mediated or immediate bridging approach is used. However, domains can span ORB
boundaries and ORBs can span machine and system boundaries; conversely, a machine
may support, or a process may have access to more than one ORB (or domain of a
given type). From an engineering viewpoint, this means that the components of an
inter-domain bridge may be dispersed or co-located, with respect to ORBs or systems.
It also means that the distinction between an ORB and a bridge can be a matter of
perspective: there is a duality between viewing inter-system messaging as belonging to
ORBs, or to bridges.

For example, if asingle ORB encompasses two security domains, the inter-domain
bridge could be implemented wholly within the ORB and thus be invisible as far as
ORB interoperability is concerned. A similar situation arises when a bridge between
two ORBs or domains is implemented wholly within a process or system which has
access to both. In such cases, the engineering issues of inter-domain bridging are

CORBA, v2.5: Interoperability Between ORBs 13-9

13

13-10

13.4.3.4

confined, possibly to a single system or process. If it were practical to implement all
bridging in this way, then interactions between systems or processes would be solely
within a single domain or ORB.

Bridging Level

As noted at the start of this section, bridges may be implemented both internally to an
ORB and as layers above it. These are called respectively “in-line” and “request-level”
bridges.

Request-level bridges use the CORBA APIs, including the Dynamic Skeleton Interface,
to receive and issue requests. However, there is an emerging class of “implicit context”
which may be associated with some invocations, holding ORB Service information
such as transaction and security context information, which is not at this time exposed
through general purpose public APIs. (Those APIs expose only OMG IDL-defined
operation parameters, not implicit ones.) Rather, the precedent set with the Transaction
Service is that specia purpose APIs are defined to allow bridging of each kind of
context. This means that request-level bridges must be built to specifically understand
the implications of bridging such ORB Service domains, and to make the appropriate
API calls.

13.4.4 Policy-Mediated Bridging

An assumption made through most of this specification is that the existence of domain
boundaries should be transparent to requests: that the goal of interoperability isto hide
such boundaries. However, if this were always the goal, then there would be no real
need for those boundaries in the first place.

Realistically, administrative domain boundaries exist because they reflect ongoing
differences in organizational policies or goals. Bridging the domains will in such cases
require policy mediation. That is, inter-domain traffic will need to be constrained,
controlled, or monitored; fully transparent bridging may be highly undesirable.
Resource management policies may even need to be applied, restricting some kinds of
traffic during certain periods.

Security policies are a particularly rich source of examples: a domain may need to
audit external access, or to provide domain-based access control. Only a very few
objects, types of objects, or classifications of data might be externally accessible
through a “firewall.”

Such policy-mediated bridging requires a bridge that knows something about the traffic
being bridged. It could in general be an application-specific policy, and many policy-

mediated bridges could be parts of applications. Those might be organization-specific,
off-the-shelf, or anywhere in between.

Request-level bridges, which use only public ORB APIs, easily support the addition of
policy mediation components, without loss of accessto any other system infrastructure
that may be needed to identify or enforce the appropriate policies.

Common Object Request Broker Architecture (CORBA), v2.5 September 2001

13

13.4.5 Configurations of Bridges in Networks

In the case of network-aware ORBs, we anticipate that some ORB protocols will be
more frequently bridged to than others, and so will begin to serve the role of
“backbone ORBs.” (Thisisarole that the IIOP is specificaly expected to serve.) This
use of “backbone topology” is true both on alarge scale and a small scale. While a
large scale public data network provider could define its own backbone ORB, on a
smaller scale, any given institution will probably designate one commercially available
ORB as its backbone.

Backbone ORB

Figure 13-3 An ORB chosen as a backbone will connect other ORBs through bridges, both full-
bridges and half-bridges.

Adopting a backbone style architecture is a standard administrative technique for
managing networks. It has the consequence of minimizing the number of bridges
needed, while at the same time making the ORB topology match typical network
organizations. (That is, it allows the number of bridges to be proportional to the
number of protocols, rather than combinatorial.)

In large configurations, it will be common to notice that adding ORB bridges doesn’t
even add any new “hops” to network routes, because the bridges naturally fit in
locations where connectivity was already indirect, and augment or supplant the existing
network firewalls.

13.5 Object Addressing

September 2001

The Object Model (see Chapter 1, Requests) defines an object reference as an object

name that reliably denotes a particular object. An object reference identifies the same
object each time the reference is used in a request, and an object may be denoted by

multiple, distinct references.

CORBA, v2.5: Object Addressing 13-11

13

13-12

The fundamental ORB interoperability requirement is to allow clients to use such
object names to invoke operations on objects in other ORBs. Clients do not need to
distinguish between references to objectsin alocal ORB or in aremote one. Providing
this transparency can be quite involved, and naming models are fundamental to it.

This section of this specification discusses models for naming entities in multiple
domains, and transformations of such names as they cross the domain boundaries. That
is, it presents transformations of object reference information as it passes through
networks of inter-ORB bridges. It uses the word “ORB” as synonymous with
referencing domain; thisis purely to simplify the discussion. In other contexts, “ORB”
can usefully denote other kinds of domain.

13.5.1 Domain-relative Object Referencing

Since CORBA does not require ORBs to understand object references from other
ORBs, when discussing object references from multiple ORBs one must always
associate the object reference’s domain (ORB) with the object reference. We use the
notation DO.RO to denote an object reference RO from domain DO; this isitself an
object reference. Thisis called “domain-relative” referencing (or addressing) and need
not reflect the implementation of object references within any ORB.

At an implementation level, associating an object reference with an ORB is only
important at an inter-ORB boundary; that is, inside a bridge. This is simple, since the
bridge knows from which ORB each request (or response) came, including any object
references embedded in it.

13.5.2 Handling of Referencing Between Domains

When a bridge hands an object reference to an ORB, it must do so in a form
understood by that ORB: the object reference must be in the recipient ORB’s native
format. Also, in cases where that object originated from some other ORB, the bridge
must associate each newly created “proxy” object reference with (what it sees as) the
original object reference.

Several basic schemes to solve these two problems exist. These all have advantages in
some circumstances; all can be used, and in arbitrary combination with each other,
since CORBA object references are opague to applications. The ramifications of each
scheme merits attention, with respect to scaling and administration. The schemes
include:

1. Object Reference Translation Reference Embedding: The bridge can store the
original object reference itself, and pass an entirely different proxy reference into
the new domain. The bridge must then manage state on behalf of each bridged
object reference, map these references from one ORB’s format to the other’s, and
vice versa.

Common Object Request Broker Architecture (CORBA), v2.5 September 2001

13

2. Reference Encapsulation: The bridge can avoid holding any state at all by
conceptually concatenating a domain identifier to the object name. Thusif a
reference DO.R, originating in domain DO, traversed domains D1... D4 it could be
identified in D4 as proxy reference d3.d2.d1.d0.R, where dn is the address of Dn
relative to Dn+1.

Figure 13-4 Reference encapsulation adds domain information during bridging.

3. Domain Reference Translation: Like object reference translation, this scheme holds
some state in the bridge. However, it supports sharing that state between multiple
object references by adding a domain-based route identifier to the proxy (which still
holds the original reference, as in the reference encapsulation scheme). It achieves
this by providing encoded domain route information each time a domain boundary
is traversed; thus if a reference DO.R, originating in domain DO, traversed domains
D1...D4 it would be identified in D4 as (d3, x3).R, and in D2 as (d1,x1).R, and so
on, where dn is the address of Dn relative to Dn+1, and xn identifies the pair (dn-1,
xn-1).

Figure 13-5 Domain Reference Translation substitutes domain references during bridging.

4. Reference Canonicalization: This scheme is like domain reference translation,
except that the proxy uses a “well-known” (e.g., global) domain identifier rather
than an encoded path. Thus a reference R, originating in domain DO would be
identified in other domains as DO.R.

Observations about these approaches to inter-domain reference handling are as follows:

® Naive application of reference encapsulation could lead to arbitrarily large
references. A “topology service” could optimize cycles within any given
encapsulated reference and eliminate the appearance of references to local objects
as alien references.

® A topology service could also optimize the chains of routes used in the domain
reference translation scheme. Since the links in such chains are re-used by any path
traversing the same segquence of domains, such optimization has particularly high
leverage.

September 2001 CORBA, v2.5: Object Addressing 13-13

13

® With the general purpose APIs defined in CORBA, object reference translation can

be supported even by ORBs not specifically intended to support efficient bridging,
but this approach involves the most state in intermediate bridges. As with reference
encapsulation, atopology service could optimize individual object references. (APIs
are defined by the Dynamic Skeleton Interface and Dynamic Invocation Interface)

The chain of addressing links established with both object and domain reference
translation schemes must be represented as state within the network of bridges.
There are issues associated with managing this state.

Reference canonicalization can also be performed with managed hierarchical name
spaces such as those now in use on the Internet and X.500 naming.

13.6 AnInformation Model for Object References

This section provides a simple, powerful information model for the information found
in an object reference. That model is intended to be used directly by developers of
bridging technology, and is used in that role by the IIOP, described in the General
Inter-ORB Protocol chapter, Object References section.

13-14

13.6.1 What Information Do Bridges Need?

The following potential information about object references has been identified as
critical for use in bridging technologies:

Isit null? Nulls only need to be transmitted and never support operation invocation.

What type is it? Many ORBs require knowledge of an object’s type in order to
efficiently preserve the integrity of their type systems.

What protocols are supported? Some ORBSs support objrefs that in effect live in
multiple referencing domains, to allow clients the choice of the most efficient
communications facilities available.

What ORB Services are available? As noted in Section 13.2.3, “ Selection of ORB
Services,” on page 13-4, several different ORB Services might be involved in an
invocation. Providing information about those services in a standardized way could
in many cases reduce or eliminate negotiation overhead in selecting them.

13.6.2 Interoperable Object References. IORs

To provide the information above, an “Interoperable Object Reference,” (IOR) data
structure has been provided. This data structure need not be used internally to any
given ORB, and is not intended to be visible to application-level ORB programmers. It
should be used only when crossing object reference domain boundaries, within bridges.

This data structure is designed to be efficient in typical single-protocol configurations,
while not penalizing multiprotocol ones.

Common Object Request Broker Architecture (CORBA), v2.5 September 2001

13

September 2001

module IOP { // IDL

/I Standard Protocol Profile tag values

typedef unsigned long Profileld;
struct TaggedProfile {
Profileld tag;
sequence <octet> profile_data;

b

/I an Interoperable Object Reference is a sequence of
/I object-specific protocol profiles, plus a type ID.

struct IOR {
string type_id;
sequence <TaggedProfile> profiles;

b

/I Standard way of representing multicomponent profiles.
/I This would be encapsulated ina TaggedProfile.

typedef unsigned long Componentld;
struct TaggedComponent {
Componentld tag;
sequence <octet> component_data;
¥
typedef sequence<TaggedComponent> TaggedComponentSeq;

b

13.6.3 IOR Profiles

Object references have at least one tagged profile. Each profile supports one or more
protocols and encapsulates all the basic information the protocols it supports need to
identify an object. Any single profile holds enough information to drive a complete
invocation using any of the protocols it supports; the content and structure of those
profile entries are wholly specified by these protocols.

When a specific protocol is used to convey an object reference passed as a parameter
in an IDL operation invocation (or reply), an IOR which reflects, in its contained
profiles, the full protocol understanding of the operation client (or server in case of
reply) may be sent. A receiving ORB which operates (based on topology and policy
information available to it) on profiles rather than the received |OR as a whole, to
create a derived reference for use in its own domain of reference, is placing itself asa
bridge between reference domains. Interoperability inhibiting situations can arise
when an orb sends an |OR with multiple profiles (using one of its supported protocols)
to areceiving orb, and that receiving orb later returns a derived reference to that object,
which has had profiles or profile component data removed or transformed from the
origina IOR contents.

CORBA, v2.5: An Information Model for Object References 13-15

13

13-16

To assist in classifying behavior of ORBS in such bridging roles, two classes of IOR
conformance may be associated with the conformance requirements for a given ORB
interoperability protocol:

® Full IOR conformance requires that an orb which receives an IOR for an object
passed to it through that ORB interoperability protocol, shall recover the original
IOR, in its entirety, for passing as a reference to that object from that orb through
that same protocol

® Limited-Profile IOR conformance requires that an orb which receives an IOR
passed to it through a given ORB interoperability protocol, shall recover all of the
standard information contained in the IOR profile for that protocol, whenever
passing a reference to that object, using that same protocol, to another ORB.

Note — Conformance to 11OP versions 1.0, 1.1 and 1.2 only requires support of limited-
Profile IOR conformance, specifically for the IIOP IOR profile. However, due to
interoperability problems induced by Limited-Profile IOR conformance, it is how
deprecated by the CORBA 2.4 specification for an orb to not support Full IOR
conformance. Some future 11OP versions could require Full IOR conformance.

An ORB may be unable to use any of the profiles provided in an IOR for various
reasons which may be broadly categorized as transient ones like temporary network
outage, and non-transient ones like unavailability of appropriate protocol software in
the ORB. The decision about the category of outage that causes an ORB to be unable
to use any profile from an 10OR is left up to the ORB. At an appropriate point, when an
ORB discovers that it is unable to use any profile in an IOR, depending on whether it
considers the reason transient or non-transient, it should raise the standard system
exception TRANSIENT with standard minor code 2, or IMP_LIMIT with the standard
minor code 1.

Each profile has a unique numeric tag, assigned by the OMG. The ones defined here
are for the I1OP (see Section 15.7.3, “110OP IOR Profile Components,” on page 15-54)
and for use in “multiple component profiles.” Profile tags in the range 0x80000000
through Oxffffffff are reserved for future use, and are not currently available for
assignment.

Null object references are indicated by an empty set of profiles, and by a “Null” type
ID (astring which contains only a single terminating character). Type IDs may only be
“Null” in any message, requiring the client to use existing knowledge or to consult the
object, to determine interface types supported. The type ID is a Repository 1D
identifying the interface type, and is provided to allow ORBSs to preserve strong typing.
This identifier is agreed on within the bridge and, for reasons outside the scope of this
interoperability specification, needs to have a much broader scope to address various
problems in system evolution and maintenance. Type | Ds support detection of type
equivalence, and in conjunction with an Interface Repository, allow processes to reason
about the relationship of the type of the object referred to and any other type.

The type ID, if provided by the server, indicates the most derived type that the server
wishes to publish, at the time the reference is generated. The object’s actual most
derived type may later change to a more derived type. Therefore, the type ID in the
IOR can only be interpreted by the client as a hint that the object supports at least the

Common Object Request Broker Architecture (CORBA), v2.5 September 2001

13

September 2001

indicated interface. The client can succeed in narrowing the reference to the indicated
interface, or to one of its base interfaces, based solely on the type ID in the IOR, but
must not fail to narrow the reference without consulting the object viathe “_is a” or
“_get_interface” pseudo-operations.

ORBs claiming to support the Full-IOR conformance are required to preserve all the
semantic content of any 10R (including the ordering of each profile and its
components), and may only apply transformations which preserve semantics (e.g.,
changing Byte order for encapsulation).

For example, consider an echo operation for object references:
interface Echoer { Object echo(in Object 0);};

Assume that the method body implementing this “echo” operation simply returns its
argument. When a client application invokes the echo operation and passes an
arbitrary object reference, if both the client and server ORBs claim support to Full IOR
conformance, the reference returned by the operation is guaranteed to have not been
semantically altered by either client or server ORB. That is, al its profiles will remain
intact and in the same order as they were present when the reference was sent. This
requirement for ORBs which claim support for Full-IOR conformance, ensures that,
for example, a client can safely store an object reference in a naming service and get
that reference back again later without losing information inside the reference.

13.6.4 Sandard IOR Profiles

13.6.4.1

module IOP {
const Profileld TAG_INTERNET_IOP = 0;
const Profileld TAG_MULTIPLE_COMPONENTS = 1;
const Profileld TAG_SCCP_IOP = 2;

typedef sequence <TaggedComponent> MultipleComponentProfile;

b

The TAG_INTERNET_IOP Profile

The TAG_INTERNET_IOP tag identifies profiles that support the Internet Inter-ORB
Protocol. The ProfileBody of this profile, described in detail in Section 15.7.2, “110P
IOR Profiles,” on page 15-51, contains a CDR encapsulation of a structure containing
addressing and object identification information used by 110P. Version 1.1 of the
TAG_INTERNET _IOP profile also includes asequence<TaggedComponent> that
can contain additional information supporting optional 110P features, ORB services
such as security, and future protocol extensions.

Protocols other than 11OP (such as ESIOPs and other GIOPS) can share profile
information (such as object identity or security information) with [1OP by encoding
their additional profile information as components in the TAG_INTERNET_IOP
profile. All TAG_INTERNET_IOP profiles support 110OP, regardless of whether they
also support additional protocols. Interoperable ORBs are not required to create or

CORBA, v2.5: An Information Model for Object References 13-17

13

13-18

13.6.4.2

13.6.4.3

understand any other profile, nor are they required to create or understand any of the
components defined for other protocols that might share the TAG_INTERNET _IOP
profile with 110OP.

The profile_data for the TAG_INTERNET_IOP profile is a CDR encapsulation of
the I1OP::ProfileBody_1 1 type, described in Section 15.7.2, “I11OP IOR Profiles,”
on page 15-51.

The TAG_MULTIPLE_COMPONENTSProfile

The TAG_MULTIPLE_COMPONENTS tag indicates that the value encapsulated is of
type MultipleComponentProfile. In this case, the profile consists of alist of
protocol components, the use of which must be specified by the protocol using this
profile. This profile may be used to carry 10R components, as specified in

Section 13.6.5, “IOR Components,” on page 13-18.

The profile_data for the TAG_MULTIPLE_COMPONENTS profileis a CDR
encapsulation of the MultipleComponentProfile type shown above.

The TAG_SCCP_IOP Profile

See the CORBA/IN Interworking specification (dtc/2000-02-02).

13.6.5 10R Components

TaggedComponents contained in TAG_INTERNET_IOP and
TAG_MULTIPLE_COMPONENTS profiles are identified by unique numeric tags
using a namespace distinct form that is used for profile tags. Component tags are
assigned by the OMG.

Specifications of components must include the following information:
® Component ID: The compound tag that is obtained from OMG.

¢ Structure and encoding: The syntax of the component data and the encoding rules.
If the component value is encoded as a CDR encapsulation, the IDL type that is
encapsulated and the GIOP version which is used for encoding the value, if different
than GIOP 1.0, must be specified as part of the component definition.

® Semantics: How the component data is intended to be used.

® Protocols: The protocol for which the component is defined, and whether it is
intended that the component be usable by other protocols.

® At most once: whether more than one instance of this component can be included in
a profile.

Specifications of protocols must describe how the components affect the protocol. In
addition, a protocol definition must specify, for each TaggedComponent, whether
inclusion of the component in profiles supporting the protocol is required

Common Object Request Broker Architecture (CORBA), v2.5 September 2001

13

September 2001

(MANDATORY PRESENCE) or not required (OPTIONAL PRESENCE). An ORB
claiming to support Full-IOR conformance shall not drop optional components, once
they have been added to a profile.

13.6.6 Standard IOR Components

The following are standard IOR components that can be included in
TAG_INTERNET_IOP and TAG_MULTIPLE_COMPONENTS profiles, and may
apply to 11OP, other GIOPs, ESIOPs, or other protocols. An ORB must not drop these
components from an existing |OR.

module IOP {

b

const Componentid
const Componentid
const Componentld
const Componentid

const Componentid
const Componentid
const Componentid
const Componentid
const Componentid
const Componentid
const Componentid
const Componentlid
const Componentid
const Componentid
const Componentid
const Componentid
const Componentid
const Componentlid
const Componentid
const Componentlid
const Componentid
const Componentlid

TAG_ORB_TYPE = 0;
TAG_CODE_SETS = 1;

TAG_POLICIES = 2;
TAG_ALTERNATE_IIOP_ADDRESS = 3;

TAG_ASSOCIATION_OPTIONS = 13;
TAG_SEC_NAME = 14;
TAG_SPKM_ 1 SEC MECH = 15;
TAG_SPKM 2 SEC MECH = 16;
TAG_KerberosV5 SEC MECH =17;
TAG_CSI_ECMA_Secret SEC_MECH = 18;
TAG_CSI_ECMA_Hybrid_SEC_MECH = 19;
TAG_SSL_SEC TRANS = 20;
TAG_CSI_ECMA_Public_ SEC_MECH = 21,
TAG_ GENERIC_SEC MECH = 22;
TAG_FIREWALL_TRANS = 23;
TAG_SCCP_CONTACT_INFO = 24;
TAG_JAVA CODEBASE = 25;
TAG_TRANSACTION_POLICY = 26;
TAG_MESSAGE_ROUTERS = 30;
TAG_OTS POLICY = 31;
TAG_INV_POLICY = 32;
TAG_INET_SEC_TRANS = 123;

The following additional components that can be used by other protocols are specified
in the DCE ESIOP chapter of this document and Security Service, in the Security
Service for DCE ESIOP section:

CORBA, v2.5: An Information Model for Object References

const Componentld
const Componentid
const Componentid
const Componentlid
const Componentlid
const Componentid
const Componentlid

TAG_COMPLETE_OBJECT_KEY =5;
TAG_ENDPOINT_ID_POSITION = 6;
TAG_LOCATION_POLICY =12;
TAG_DCE_STRING_BINDING = 100;
TAG_DCE_BINDING_NAME = 101;
TAG_DCE_NO_PIPES = 102;
TAG_DCE_SEC_MECH = 103; // Security Service

13-19

13

13-20

13.6.6.1

13.6.6.2

13.6.6.3

TAG_ORB_TYPE Component

It is often useful in the real world to be able to identify the particular kind of ORB an
object reference is coming from, to work around problems with that particular ORB, or
exploit shared efficiencies.

The TAG_ORB_TYPE component has an associated value of type unsigned long,
encoded as a CDR encapsulation, designating an ORB type ID allocated by the OMG
for the ORB type of the originating ORB. Anyone may register any ORB types by
submitting a short (one-paragraph) description of the ORB type to the OMG, and will
receive a new ORB type ID in return. A list of ORB type descriptions and values will
be made available on the OMG web server.

The TAG_ORB_TYPE component can appear at most once in any |OR profile. For
profiles supporting IIOP 1.1 or greater, it is optionally present.

TAG_ALTERNATE_I1OP_ADDRESS Component

In cases where the same object key is used for more than one internet location, the
following standard IOR Component is defined for support in I1OP version 1.2.

The TAG_ALTERNATE_IIOP_ADDRESS component has an associated value of type

struct {
string HostID,
unsigned short Port

¥
encoded as a CDR encapsulation.
Zero or more instances of the TAG_ALTERNATE_IIOP_ADDRESS component type
may be included in aversion 1.2 TAG_INTERNET _IOP Profile. Each of these
alternative addresses may be used by the client orb, in addition to the host and port
address expressed in the body of the Profile. In cases where one or more

TAG_ALTERNATE_IIOP_ADDRESS components are present in a
TAG_INTERNET_IOP Profile, no order of useis prescribed by Version 1.2 of [1OP.

Other Components

The following standard components are specified in various OMG specifications:

® TAG_CODE_SETS - See Section 13.10.2.4, “CodeSet Component of IOR Multi-
Component Profile,” on page 13-42.

® TAG_POLICIES - See CORBA Messaging - chapter 22.

® TAG_SEC_NAME - See the Security Service specification, Mechanism Tags
section.

® TAG_ASSOCIATION_OPTIONS - See the Security Service specification, Tag
Association Options section.

Common Object Request Broker Architecture (CORBA), v2.5 September 2001

13

September 2001

TAG_SSL_SEC_TRANS - See the Security Service specification, Mechanism
Tags section.

TAG_GENERIC_SEC_MECH and all other tags with names in the form
TAG_* SEC_MECH - See the Security Service specification, Mechanism Tags
section.

TAG_FIREWALL_SEC - See the Firewall specification (orbos/98-05-04).

TAG_SCCP_CONTACT_INFO - See the CORBA/IN Interworking specification
(telecom/98-10-03).

TAG_JAVA_CODEBASE - Seethe Javato IDL Language Mapping specification
(formal/99-07-59), Codebase Transmission section.

TAG_TRANSACTION_POLICY - See the Object Transaction Service specification
(formal/00-06-28).

TAG_MESSAGE_ROUTERS - See CORBA Messaging (chapter 22).

TAG_OTS_POLICY - See the Object Transaction Service specification
(formal/00-06-28).

TAG_INV_POLICY - See the Object Transaction Service specification
(formal/00-06-28).

TAG_INET_SEC_TRANS - See the Security Service specification
(formal/00-06-25).

TAG_COMPLETE_OBJECT_KEY (See Section 16.5.4, “Complete Object Key
Component,” on page 16-19).

TAG_ENDPOINT_ID_POSITION (See Section 16.5.5, “Endpoint ID Position
Component,” on page 16-20).

TAG_LOCATION_POLICY (See Section 16.5.6, “Location Policy Component,” on
page 16-20).

TAG_DCE_STRING_BINDING (See Section 16.5.1, “DCE-CIOP String Binding
Component,” on page 16-17).

TAG_DCE_BINDING_NAME (See Section 16.5.2, “DCE-CIOP Binding Name
Component,” on page 16-18).

TAG_DCE_NO_PIPES (See Section 16.5.3, “DCE-CIOP No Pipes Component,” on
page 16-19).

13.6.7 Profile and Component Composition in IORs
The following rules augment the preceding discussion:

1. Profiles must be independent, complete, and self-contained. Their use shall not

depend on information contained in another profile.

2. Any invocation uses information from exactly one profile.

CORBA, v2.5: An Information Model for Object References 13-21

13

13-22

3. Information used to drive multiple inter-ORB protocols may coexist within asingle
profile, possibly with some information (e.g., components) shared between the
protocols, as specified by the specific protocols.

4. Unless otherwise specified in the definition of a particular profile, multiple profiles
with the same profile tag may be included in an IOR.

5. Unless otherwise specified in the definition of a particular component, multiple
components with the same component tag may be part of a given profile within an
IOR.

6. A TAG_MULTIPLE_COMPONENTS profile may hold components shared
between multiple protocols. Multiple such profiles may exist in an I0R.

7. The definition of each protocol using a TAG_MULTIPLE_COMPONENTS profile
must specify which components it uses, and how it uses them.

8. Profile and component definitions can be either public or private. Public definitions
are those whose tag and data format is specified in OMG documents. For private
definitions, only the tag is registered with OMG.

9. Public component definitions shall state whether or not they are intended for use by
protocols other than the one(s) for which they were originally defined, and
dependencies on other components.

The OMG is responsible for allocating and registering protocol and component tags.
Neither allocation nor registration indicates any “standard” status, only that the tag will
not be confused with other tags. Requests to allocate tags should be sent to
tag_request@omg.org.

13.6.8 IOR Creation and Scope

IORs are created from object references when required to cross some kind of
referencing domain boundary. ORBs will implement object references in whatever
form they find appropriate, including possibly using the IOR structure. Bridges will
normally use |ORs to mediate transfers where that standard is appropriate.

13.6.9 Stringified Object References

Object references can be “stringified” (turned into an external string form) by the
ORB::object_to_string operation, and then “destringified” (turned back into a
programming environment’s object reference representation) using the
ORB::string_to_object operation.

There can be a variety of reasons why being able to parse this string form might not
help make an invocation on the original object reference:

® |dentifiers embedded in the string form can belong to a different domain than the
ORB attempting to destringify the object reference.

® The ORBs in question might not share a network protocol, or be connected.

® Security constraints may be placed on object reference destringification.

Common Object Request Broker Architecture (CORBA), v2.5 September 2001

13

@)
)
©)
(4)
®)
(6)

()
©)
)
(10)
(11)
(12)
(13)
(14)
(15)

Nonetheless, there is utility in having a defined way for ORBs to generate and parse
stringified IORs, so that in some cases an object reference stringified by one ORB
could be destringified by another.

To alow a stringified object reference to be internalized by what may be a different
ORB, a stringified |OR representation is specified. This representation instead
establishes that ORBs could parse stringified object references using that format. This
hel ps address the problem of bootstrapping, allowing programs to obtain and use object
references, even from different ORBs.

The following is the representation of the stringified (externalized) IOR:

<oref> ::= <prefix><hex_Octets>
<prefix> 1= <i><o><r>":"
<hex_Octets> ::= <hex_Octet> {<hex_Octet>}*
<hex_Octet> ::= <hexDigit> <hexDigit>
<hexDigit> ::= <digit>| <a>||<c> | <d>| <e> | <f>
<digit> = “0" |“1" |“2" |“3" | “4" |“5" |
| “6"|“7" [“8"|"9”
<a> = “a” |“A”
 ::= “b" |“B”
<c> u= “¢" |"C”
<d> ::=*“d"|“D”
<e> = "e" |“E"
<f> u=“f|“F
<i> =t e
<o> 1 =%0"|"0O"
<r> =t | *R”

Note — The case for characters in a stringified IOR is not significant.

The hexadecimal strings are generated by first turning an object reference into an I0OR,
and then encapsul ating the IOR using the encoding rules of CDR, as specified in GIOP
1.0. (See Section 15.3, “CDR Transfer Syntax,” on page 15-4 for more information.)
The content of the encapsulated IOR is then turned into hexadecimal digit pairs,
starting with the first octet in the encapsulation and going until the end. The high four
bits of each octet are encoded as a hexadecimal digit, then the low four bits.

13.6.10 Object URLS

September 2001

To address the problem of bootstrapping and allow for more convenient exchange of
human-readable object references, ORB::string_to_object allows URLs in the
corbaloc and corbaname formats to be converted into object references.

If conversion fails, string_to_object raises a BAD_PARAM exception with one of
following standard minor codes, as appropriate:

® 7 - string_to_object conversion failed due to bad scheme name

CORBA, v2.5: An Information Model for Object References 13-23

13

13-24

® 8- string_to_object conversion failed due to bad address
® 9 - dtring_to_object conversion failed due to bad bad schema specific part
® 10 - string_to_object conversion failed due to non specific reason

13.6.10.1 corbaloc URL

The cor bal oc URL scheme provides stringified object references that are more
easily manipulated by users than | OR URLs. Currently, cor bal oc URLSs denote
objects that can be contacted by 11OP or resolve_initial_references. Other transport
protocols can be explicitly specified when they become available. Examples of [10P
and resolve_initial_references (rir:) based corbaloc URLsare:

corbaloc::555xyz.com/Prod/TradingService
corbaloc:iiop:1.1@555xyz.com/Prod/TradingService
corbaloc::555xyz.com,:556xyz.com:80/Dev/NameService
corbaloc:rir:/TradingService

corbaloc:rir:/NameService

A corbaloc URL contains one or more:
® protocol identifiers

® protocol specific components such as address and protocol version information
When the rir protocol is used, no other protocols are alowed.
After the addressing information, a cor bal oc URL ends with a single object key.

The full syntax is:

<corbaloc> =“corbaloc:”"<obj_addr_list>["“/"<key_string>]
<obj_addr_list> = [<obj_addr>“,"]* <obj_addr>
<obj_addr> = <prot_addr> | <future_prot_addr>

<prot_addr> <rir_prot_addr> | <iiop_prot_addr>

<rir_prot_addr> <rir_prot_token>":"

<rir_prot_token> ="“rir”

<iiop_prot_addr> = <iiop_id><iiop_addr>

<iiop_id> =" | <iiop_prot_token>":"
<iiop_prot_token> ="iiop”

<iiop_addr> = [<version> <host> [“:" <port>]]
<host> = DNS_style_Host_Name | ip_address
<version> =<major>"“." <minor>"“@" | empty_string
<port> = number

<major> = number

<minor> = number

<future_prot_addr> = <future_prot_id><future_prot_addr>

<future_prot_id> <future_prot_token>":"
<future_prot_token> possible examples: “atm” | “dce”
<future_prot_addr> = protocol specific address

Common Object Request Broker Architecture (CORBA), v2.5 September 2001

13

September 2001

13.6.10.2

<key_string> = <string> | empty_string
Where:

obj_addr_list: comma-separated list of protocol id, version, and address information.
This list is used in an implementation-defined manner to address the object An object
may be contacted by any of the addresses and protocols.

Note — If theri r protocol is used, no other protocols are allowed.

obj_addr: A protocol identifier, version tag, and a protocol specific address. The
comma’, and ‘/" characters are specifically prohibited in this component of the URL.

rir_prot_addr: resolve_initial_references protocol identifier. This protocol does
not have a version tag or address. See Section 13.6.10.2, “cor bal oc: rir URL.

iiop_prot_addr: iiop protocol identifier, version tag, and address containing a DNS-
style host name or IP address. See Section 13.6.10.3, “cor bal oc:ii op URL” for
the iiop specific definitions.

future_prot_addr: a placeholder for future corbaloc protocols.
future prot_id: token representing a protocol terminated with a “:”.

future_prot_token: token representing a protocol. Currently only “iiop” and “rir” are
defined.

future_prot_addr: a protocol specific address and possibly protocol version
information. An example of thisfor iiop is“1.1@555xyz.com”.

key_string: a stringified object key.

The key_string corresponds to the octet sequence in the object_key member of a
GIOP Request or LocateRequest header as defined in section 15.4 of CORBA 2.3.
The key_string uses the escape conventions described in RFC 2396 to map away
from octet values that cannot directly be part of a URL. US-ASCII alphanumeric
characters are not escaped. Characters outside this range are escaped, except for the
following:

L L @ e | |
R I B Bt Bl B B G
The key_string is not NUL-terminated.

corbaloc:rir URL

The corbaloc:rir URL is defined to allow access to the ORB'’s configured initial
references through a URL.

The protocol address syntax is:

<rir_prot_addr> = <rir_prot_token>":"
<rir_prot_token> ="“rir”
CORBA, v2.5: An Information Model for Object References 13-25

13

13-26

13.6.10.3

Where:

rir_prot_addr: resolve_initial_references protocol identifier. There is no version
or address information when rir is used.

rir_prot_token: The token “rir” identifies this protocol..

For a corbaloc:rir URL, the <key_ string> is used as the argument to
resolve_initial_references. An empty <key_string> is interpreted as the default
“NameService”.

Theri r protocol cannot be used with any other protocol in a URL.

corbaloc:iiop URL

The cor bal oc:ii op URL is defined for usein TCP/IP- and DNS-centric
environments The full protocol address syntax is:

<iiop_prot_addr> <iiop_id><iiop_addr>

<iiop_id> <iiop_default> | <iiop_prot_token>":"
<iiop_default> =

“iiop”

<iiop_prot_token> =
<iiop_addr> = [<version> <host> [*:" <port>]]
<host> = DNS_style_Host _Name | ip_address
<version> =<major>"“." <minor>"“@" | empty_string
<port> = number
<major> = number
<minor> = number
Where:

ilop_prot_addr: iiop protocol identifier, version tag, and address containing a DNS-
style host name or IP address.

iiop_id: tokens recognized to indicate an iiop protocol corbaloc.

iiop_default: default token indicating iiop protocol, “:”.

iiop_prot_token: iiop protocol token, “iiop”

iiop_address: asingle address

host: DNS-style host name or IP address. If not present, the local host is assumed.

version: amaor and minor version number, separated by ‘. and followed by ‘@'. If
the version is absent, 1.0 is assumed.

ip_address: numeric IP address (dotted decimal notation)

port: port number the agent is listening on (see below). Default is 2809.

Common Object Request Broker Architecture (CORBA), v2.5 September 2001

13

September 2001

13.6.10.4

13.6.10.5

13.6.10.6

13.6.10.7

corbaloc Server Implementation

The only requirements on an object advertised by a cor bal oc URL are that there
must be a software agent listening on the host and port specified by the URL. This
agent must be capable of handling GIOP Request and LocateRequest messages
targeted at the object key specified in the URL.

A normal CORBA server meets these criteria. It is also possible to implement
lightweight object location forwarding agents that respond to GIOP Request
messages with Repl y messages with a LOCATION_FORWARD status, and respond
to GIOP LocateRequest