The Common Object Request Broker:
Architecture and Specification

May 2002

Revision2.6.1-updatesto:
Chapter 21 - Portable Interceptors
Chapter 23 -Minimum CORBA
Chapter 24 -Real-Time CORBA

Copyright 1998, 1999, Alcatel

Copyright 1997, 1998, 1999 BEA Systems, Inc.

Copyright 1995, 1996 BNR Europe Ltd.

Copyright 1998, Borland International

Copyright 1998, Cooperative Research Centre for Distributed Systems Technology (DSTC Pty Ltd)
Copyright 2001, Concept Five Technologies

Copyright 1991, 1992, 1995, 1996, Digital Equipment Corporation
Copyright 2001, Eternal Systems, Inc.

Copyright 1995, 1996, 1998, Expersoft Corporation

Copyright 1996, 1997 FUJITSU LIMITED

Copyright 1996, Genesis Development Corporation

Copyright 1989- 2001, Hewlett-Packard Company

Copyright 2001, HighComm

Copyright 1998, 1999, Highlander Communications, L.C.
Copyright 1991, 1992, 1995, 1996 HyperDesk Corporation
Copyright 1998, 1999, Inprise Corporation

Copyright 1996 - 2001, International Business Machines Corporation
Copyright 1995, 1996 ICL, plc

Copyright 1998 - 2001, Inprise Corporation

Copyright 1998, International Computers, Ltd.

Copyright 1995 - 2001, IONA Technologies, Ltd.

Copyright 1998 - 2001, Lockheed Martin Federal Systems, Inc.
Copyright 1998, 1999, 2001, Lucent Technologies, Inc.
Copyright 1996, 1997 Micro Focus Limited

Copyright 1991, 1992, 1995, 1996 NCR Corporation

Copyright 1998, NEC Corporation

Copyright 1998, Netscape Communications Corporation
Copyright 1998, 1999, Nortel Networks

Copyright 1998, 1999, Northern Telecom Corporation
Copyright 1995, 1996, 1998, Novell USG

Copyright 1991, 1992, 1995, 1996 by Object Design, Inc.
Copyright 1991- 2001 Object Management Group, Inc.
Copyright 1998, 1999, 2001, Objective Interface Systems, Inc.
Copyright 1998, 1999, Object-Oriented Concepts, Inc.
Copyright 1998, 2001, Oracle Corporation

Copyright 1998, PeerLogic, Inc.

Copyright 1996, Siemens Nixdorf Informationssysteme AG
Copyright 1991 - 2001, Sun Microsystems, Inc.

Copyright 1995, 1996, SunSoft, Inc.

Copyright 1996, Sybase, Inc.

Copyright 1998, Telefénica Investigacion y Desarrollo S.A. Unipersonal
Copyright 1998, TIBCO, Inc.

Copyright 1998, 1999, Tri-Pacific Software, Inc.

Copyright 1996, Visual Edge Software, Ltd.

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free, paid u
worldwide license to copy and distribute this document and to modify this document and distribute copies of the modified
version. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed the copyric
in the included material of any such copyright holder by reason of having used the specification set forth herein or having
conformed any computer software to the specification.

PATENT

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may require use
of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a license may be
required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of those patents that are
brought to its attention. OMG specifications are prospective and advisory only. Prospective users are responsible for
protecting themselves against liability for infringement of patents.

NOTICE

The information contained in this document is subject to change without notice. The material in this document details an
Object Management Group specification in accordance with the license and notices set forth on this page. This document do
not represent a commitment to implement any portion of this specification in any company's products.

WHILE THE INFORMATION IN THIS PUBLICATION IS BELIEVED TO BE ACCURATE, THE OBJECT

MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE MAKE NO WARRANTY OF ANY KIND,

EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL INCLUDING, BUT NOT LIMITED TO ANY

WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF MERCHANTABILITY OR WARRANTY OF

FITNESS FOR PARTICULAR PURPOSE OR USE. In no event shall The Object Management Group or any of the
companies listed above be liable for errors contained herein or for indirect, incidental, special, consequential, reliance or cove
damages, including loss of profits, revenue, data or use, incurred by any user or any third party. The copyright holders liste:
above acknowledge that the Object Management Group (acting itself or through its designees) is and shall at all times be tl
sole entity that may authorize developers, suppliers and sellers of computer software to use certification marks, trademarks
other special designations to indicate compliance with these materials. This document contains information which is protecte
by copyright. All Rights Reserved. No part of this work covered by copyright herein may be reproduced or used in any form or
by any means--graphic, electronic, or mechanical, including photocopying, recording, taping, or information storage and
retrieval systems--without permission of the copyright owner.

RESTRICTED RIGHTS LEGEND. Use, duplication, or disclosure by government is subject to restrictions as set forth in
subdivision (c) (1) (ii) of the Right in Technical Data and Computer Software Clause at DFARS 252.227.7013. The OMG
Object Management Group Logo®, CORBA®, CORBA Academy®, The Information Brokerage®, XMI® and IIOP® are
registered trademarks of the Object Management Group. OMG™, Object Management Group™, CORBA logos™, OMG
Interface Definition Language (IDL)™, The Architecture of Choice for a Changing World™, CORBAservices™,
CORBAfacilities™, CORBAmed™, CORBAnet™, Integrate 2002™, Middleware That's Everywhere™, UML™, Unified
Modeling Language™, The UML Cube logo™, MOF™, CWM™, The CWM Logo™, Model Driven Architecture™,

Model Driven Architecture Logos™, MDA™, OMG Model Driven Architecture™, OMG MDA™ and the XMI Logo™ are
trademarks of the Object Management Group. All other products or company names mentioned are used for identification
purposes only, and may be trademarks of their respective owners.

ISSUE REPORTING

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage readers tc
report any ambiguities, inconsistencies, or inaccuracies they may find by completing the Issue Reporting Form listed on the
main web pagéttp://www.omg.orgunder Documents & Specifications, Report a Bug/Issue.

May 2002

Contents

Preface.
1. TheObjectModel.......
1.1 OVeIVIEW . .
1.2 ObjectSemantics
121 Objectso
1.2.2 Requests
1.2.3 Object Creation and Destruction
1.2.4 TYPES. o o
124.1BasiCtypes,
1.2.4.2 Constructed types
1.25 Interfaces
126 Value Types. ...
1.2.7 AbstractInterfaces
1.28 Operationsciiiiii i
l.28.1Parameters
1.282ReturmnResult
1.2.83Exceptions,
1.284Contexts
1.2.8.5 Execution Semantics
1.2.9 Attributes
1.3 Object Implementation.
1.3.1 The Execution Model: Performing Services
1.3.2 The Construction Model
2. CORBA OVEIVIEBW. . ..o e e e e
2.1 Structure of an Object Request Broker.
2.1.1 Object Request Broker
2.1.2 Clients. e
2.1.3 Object Implementations
214 ObjectReferences

Common Object Request Broker Architecture (CORBA), v2.6.1

XXXVii
1-1
1-1
1-2
1-2
1-3
1-4
1-4
1-4
1-5
1-6
1-6
1-7
1-7
1-8

Contents

vi

2.1.5 OMG Interface Definition Language 2-8
2.1.6 Mapping of OMG IDL to Programming Languages 2-8
217 ClientStubs 2-9
2.1.8 Dynamic Invocation Interface. 2-9
2.1.9 Implementation Skeleton 2-9
2.1.10 Dynamic Skeleton Interface 2-10
2.1.11 ObjectAdapters. 2-10
2112 ORBlinterface 2-10
2.1.13 Interface Repository 2-11
2.1.14 Implementation Repository. 2-11
22 Example ORBs...... 2-11
2.2.1 Client- and Implementation-resident ORB 2-11
22.2 ServerbasedORB......................... 2-12
223 System-basedORB 2-12
2.2.4 Library-based ORB. 2-12
2.3 StructureofaClient......... i 2-12
2.4 Structure of an Object Implementation. 2-13
2.5 Structure of an Object Adapter. 2-15
2.6 CORBA Required Object Adapter. 2-17
2.6.1 Portable Object Adapter. 2-17
2.7 The Integration of Foreign Object Systems 2-17
3. OMG IDL Syntax and Semanticscovouu... 3-1
3.1 OVEeIVIEW . .t 3-2
3.2 Lexical Conventions. i 3-3
321 TOKENS. . . 3-5
3.2.2 Comments. 3-6
3.2.3 Identifiers. 3-6
3.2.3.1 Escaped Identifiers 3-6
3.24 Keywords 3-7
3.25 Literals 3-8
3.25.1 Integer Literals 3-8
3.2.5.2 Character Literals 3-9
3.2.5.3 Floating-point Literals 3-10
3.254 String Literals 3-10
3.2.5.5 Fixed-Point Literals 3-11
3.3 PreproCesSingiii it 3-11
34 OMGIDLGrammar.ttt 3-12
3.5 OMGIDL Specification.co.... 3-16
3.6 ModuleDeclaration 3-17
3.7 Interface Declaration 3-17
3.7.1 Interface Header 3-17
3.7.2 Interface Inheritance Specification 3-18
3.7.3 InterfaceBody 3-18

Common Object Request Broker Architecture (CORBA), v2.6.1 May 2002

Contents

May 2002

3.7.4 Forward Declaration. 3-19
3.75 Interface Inheritance. 3-19
3.8 Value Declaration 3-24
3.8.1 RegularValueType........ ... 3-24
3.8.1.1ValueHeader...................... 3-24
3.8.1.2ValueElement 3-25
3.8.1.3 Value Inheritance Specification 3-25
3.8.14StateMembers 3-25
3.8.1.5Initializers 3-26
3.8.1.6 Value Type Example 3-26
3.8.2 BoxedValueType.......... 3-26
3.8.3 AbstractValueType 3-27
3.8.4 Value Forward Declaration. 3-28
3.8.5 Valuetype Inheritance 3-28
3.9 ConstantDeclaration 3-29
391 Syntax.......... 3-29
3.9.2 Semantics 3-30
3.10 TypeDeclaration i, 3-33
3.10.1 BasiCTYPeS. . o oot 3-34
3.10.1.1 Integer Typest 3-35
3.10.1.2 Floating-Point Types 3-36
3.10.1.3CharTypec ... 3-36
3.10.1.4Wide CharType 3-36
3.10.1.5Boolean Type 3-36
3.10.1.60ctet Type i, 3-36
3101 7ANy Type . oot 3-37
3.10.2 Constructed TypeS. oot 3-37
3.10.2.1Structures 3-37
3.10.2.2 Discriminated Unions 3-37
3.10.2.3 Constructed Recursive Types and
IForward Declarations 3-39
3.10.2.4 Enumerations 3-41
3.10.3 Template Types, 3-41
3.10.3.1Sequences ... 3-41
3.10.3.2StriNgSs 3-42
3.10.3.3Wstringso 3-42
3.10.34FixedType oo 3-43
3.10.4 Complex Declarator. 3-43
3 10.4.1AMays ..o 3-43
3.105 Native Types. 3-43
3.11 ExceptionDeclaration 3-47
3.12 Operation Declaration 3-47
3.12.1 Operation Attribute. 3-48
3.12.2 Parameter Declarations. 3-48
3.12.3 Raises EXpressions. 3-49
3.12.4 ContextExpressions 3-49
3.13 Attribute Declaration 3-50
3.14 CORBAModule. 3-51
Common Object Request Broker Architecture (CORBA), v2.6.1 vii

Contents

viii

3.15 Namesand Scoping 3-52
3.15.1 Qualified Names. 3-52
3.15.2 Scoping Rules and Name Resolution 3-54
3.15.3 Special Scoping Rules for Type Names. 3-57
ORB Interface 4-1
4.1 OVEIVIEW . .ottt e 4-1
42 The ORBOperationso ... 4-2
421 ORBldentity 4-7
422.10d .. 4-7
4.2.2 Converting Object References to Strings. 4-8
4.2.2.10bject to_string 4-8
4.2.2.2string_to_object 4-8
4.2.3 Getting Service Information. 4-8
4.2.3.1 get_service_information 4-8
4.2.4 Thread-Related Operations. 4-9
4241work_pending 4-9
4.2.42perform_work 4-9
42431UN .o 4-10
4244shutdown 4-10
4245destroy 4-11
4.3 Object Reference Operations 4-12
4.3.1 Determining the Object Interface. 4-13
4.3.1.1get interface 4-13
4.3.2 Duplicating and Releasing Copies of
Object References 4-14
4.3.21duplicate 4-14
4322release 4-14
4.3.3 NilObject References 4-14
433.1is Nl ... 4-14
4.3.4 Equivalence Checking Operation. 4-15
434108 8. . . 4-15
4.3.5 Probing for Object Non-Existence 4-15
4351non existent....................... 4-15
4.3.6 Object Reference ldentity. 4-16
4.3.6.1 Hashing Object Identifiers 4-16
4.3.6.2 Equivalence Testing 4-16
4.3.7 Type Coercion Considerations 4-17
4.3.8 Getting Policy Associated with the Object. 4-17
43.8.1¢get policy 4-17
4.3.8.2 get_client_policy 4-18
4.3.8.3 get_policy overrides 4-19
4.3.9 Overriding Associated Policies on an
ObjectReference 4-19
4.3.9.1 set_policy overrides 4-19
4.3.10 \Validating Connection...................... 4-20
4.3.10.1 validate_connection 4-20
4.3.11 Getting the Domain Managers Associated with
theObject. i 4-20
4.3.11.1 get_domain_managers 4-20
4.4 ValueBase Operations. 4-21

Common Object Request Broker Architecture (CORBA), v2.6.1 May 2002

Contents

45 ORB and OA Initialization and Initial References 4-21
451 ORBInitialization 4-22
4,5.2 Obtaining Initial Object References. 4-23
4.5.3 Configuring Initial Service References. 4-26
4.5.3.1 ORB-specific Configuration 4-26
453.20RBInitRef 4-26
4.5.3.3 ORBDefaultlnitRef 4-27
4.5.3.4 Configuration Effect on
resolve_initial references 4-27
4.5.3.5 Configuration Effect on list_initial_services 4-28
46 ContextObjeCt. i 4-28
4.6.1 Introduction............ 4-28
4.6.2 Context Object Operations. 4-29
4.6.2.1 get_default_context 4-30
46.22set one value 4-30
46.23set values 4-30
46.24Q9et values 4-31
4.6.25delete values 4-31
4.6.26¢create_child 4-32
46.27delete 4-32
47 CurrentObject e 4-32
4.8 PolicyObject e 4-33
4.8.1 Definition of Policy Object 4-33
48.1.1C0PY vt 4-34
4.8.1.2Destroy 4-34
4.8.1.3Policy type 4-34
4.8.2 Creation of Policy Objects. 4-34
4.8.2.1 PolicyErrorCode 4-35
4.8.2.2 PolicyError, 4-35
4.8.2.3Create_policy, 4-35
4.8.3 Usages of Policy Objects 4-36
4.8.4 Policy Associated with the Execution Environment 4-37
4.8.5 Specification of New Policy Objects 4-37
4.8.6 Standard Policies. 4-39
4.9 Managementof Policies. 4-43
4.9.1 Client Side Policy Management 4-43
4.9.2 Server Side Policy Management. 4-43
4.9.3 Policy Management Interfaces 4-44
4.9.3.1 interface PolicyManager 4-44
4.9.3.2 interface PolicyCurrent 4-46
4.10 Management of Policy Domains 4-46
4,10.1 BasicConcepts......... ..o .. 4-46
4.10.1.1PolicyDomain 4-46
4.10.1.2 Policy Domain Manager 4-47
4.10.1.3 Policy Objects 4-47

4.10.1.4 Object Membership of Policy Domains 4-47
4.10.1.5 Domains Association at Object

Reference Creation 4-48
4.10.1.6 Implementor’'s View of Object Creation 4-48
4,10.2 Domain Management Operations. 4-49

Common Object Request Broker Architecture (CORBA), v2.6.1 iX

Contents

4.10.2.7 Domain Manager 4-50
4.10.2.8 Construction Policy 4-51
411 TypeCodest 4-51
4,11.1 The TypeCodelnterface 4-52
4.11.2 TypeCode Constants 4-56
4.11.3 Creating TypeCodes 4-57
412 EXCEPLiONS . ..ottt 4-61
4.12.1 Definitionof Terms 4-61
4,12.2 SystemExceptions. 4-62
4.12.3 Standard System Exception Definitions 4-63
4.12.3.1UNKNOWN 4-65
4.12.3.2BAD_PARAM 4-65
4.12.3.3NO_MEMORY 4-65
41234 IMP_LIMIT ... 4-66
41235 COMM_FAILURE 4-66
412.36INV_OBJREF 4-66
4.12.3.7NO_PERMISSION 4-66
412.38INTERNAL, 4-66
41239MARSHAL 4-66
412,310 INITIALIZE 4-67
4.12.3.11 NO_IMPLEMENT 4-67
4.12.3.12BAD_TYPECODE 4-67
4.12.3.13BAD_OPERATION 4-67
4.12.3.14NO_RESOURCES 4-67
4.12.3.15NO_RESPONSE 4-67
4.12.3.16 PERSIST STORE 4-67
4.12.3.17BAD_INV_ORDER. 4-67
412318 TRANSIENT 4-68
412.319FREE MEM 4-68
412320 INV_IDENTcc..... 4-68
412.321INV_FLAG i 4-68
4.12.322INTF_REPOS 4-68
4.12.3.23BAD_CONTEXT 4-68
4.12.3.24 OBJ_ADAPTER 4-68
4.12.3.25 DATA_CONVERSION 4-68
4.12.3.26 OBJECT_NOT _EXIST 4-69
4.12.3.27 TRANSACTION_REQUIRED. 4-69
4.12.3.28 TRANSACTION_ROLLEDBACK .. 4-69
4.12.3.29 INVALID_TRANSACTION 4-69
412.3.30INV_POLICY 4-69
4.12.3.31 CODESET_INCOMPATIBLE 4-69
412.3.32REBIND 4-69
412333TIMEOUT 4-70
4.12.3.34 TRANSACTION_UNAVAILABLE . 4-70
4.12.3.35 TRANSACTION_MODE 4-70
412336BAD QOS......... ... 4-70
4.12.4 Standard Minor Exception Codes 4-70
5. Value Type SemantiCs. i 5-1
5.1 OVEIVIEW . . oo 5-1
5.2 Architecture 5-2
5.2.1 AbstractValues 5-3

Common Object Request Broker Architecture (CORBA), v2.6.1

May 2002

Contents

May 2002

5,22 Operations i 5-3
5.2.3 Value Type vs. Interfaces. 5-4
5,24 ParameterPassing..................c.v.... 5-4
5.2.4.1 Value vs. Reference Semantics 5-4
5.2.4.2 Sharing Semantics 5-4
5.2.4.3 Identity Semantics 5-4
5.2.4.4 Any parametertype 5-5
5.2.5 Substitutability Issues L. 5-5
5.2.5.1 Value instance -> Interface type 5-5
5.2.5.2 Value Instance -> Abstract interface type 5-5
5.2.5.3 Value instance -> Value type 5-5
5.2.6 Widening/Narrowing....................... 5-6
5,27 ValueBaseType..........couiiiiiineennn. 5-6
5.2.8 LifeCycleissues. 5-7
5.2.8.1 Creation and Factories 5-7
5.2.9 Security Considerations 5-7
5.29.1ValueasValue..................... 5-8
5.2.9.2 Value as Object Reference 5-8
5.3 Standard Value Box Definitions 5-9
5.4 Language Mappings.uuiiin 5-9
5.4.1 General Requirements. 5-9
5.4.2 Language Specific Marshaling 5-9
5.4.3 Language Specific Value Factory Requirements. 5-9
5.4.4 Value Method Implementation............... 5-10
5,5 CustomMarshaling 5-10
5.5.1 Implementation of Custom Marshaling........ 5-11
5.,5.2 Marshaling Streams. 5-11
5.6 Access to the Sending Context Run Time 5-18
6. Abstract Interface Semantics. L 6-1
6.1 OVEIVIEW . ..t 6-1
6.2 Semantics of Abstract Interfaces 6-1
6.3 UsageGuidelines............ 6-3
6.4 EXample. 6-3
6.5 Security Considerations 6-4
6.5.1 Passing Values to Trusted Domains 6-4
7. Dynamic Invocation Interface 7-1
7.1 OVEIVIEW . . oot e 7-1
7.1.1 Common Data Structures 7-2
7.1.2 MemoryuUsage.y 7-4
7.1.3 Return Status and Exceptions. 7-4
7.2 RequestOperationsiiiiinnrn.. 7-4
7.2.1 create_request 7-5
722 add_arg.......... 7-7
723 invoke 7-8

Common Object Request Broker Architecture (CORBA), v2.6.1 Xi

Contents

724 delete...... 7-8
725 send......... .. 7-8
7.26 poll_response 7-9
7.2.7 gel_reSpONSe. . .ottt 7-9
7.28 sendp........ . 7-10
7.2.9 prepare 7-10
7210 sendC....... ... 7-10
7.3 ORBOperations. ... 7-11
7.3.1 send_multiple_requests., 7-11
7.3.2 get_next_response and poll_next_response 7-11
7.4 Polling ... 7-12
7.4.1 Abstract Valuetyp®ollable. 7-14
74110s ready 7-14
7.4.1.2 create_pollable_set 7-14
7.4.2 Abstract Valuetype DlIPollable 7-14
7.4.3 interfacePollableSet 7-14
7.4.3.1create_dii_pollable 7-15
7.43.2add pollable 7-15
7.4.3.3get ready pollable 7-15
TA3416MOVE ... 7-16
7.43.5number left 7-16
7.5 ListOperations. i 7-16
751 create list.........c.. 7-17
752 add_item. 7-17
753 free ... 7-17
754 free_memory 7-18
755 getcount 7-18
7.5.6 create_operation_list....................... 7-18
8. Dynamic Skeleton Interface 8-1
8.1 Introduction 8-1
8.2 OVEIVIEW . . .ot 8-2
8.3 ServerRequestPseudo-Object. 8-3
8.3.1 ExplicitRequest State:
ServerRequestPseudo-Object. 8-3
8.4 DSl:LanguageMappingc. ... 8-4

8.4.1 ServerRequest's Handling of Operation Parameters 8-4
8.4.2 Registering Dynamic Implementation Routines . 8-5

9. Dynamic Managementof Any Values. 9-1
9.1 OVEIVIEW . . oot 9-1
9.2 DynAny APIL. 9-3
9.2.1 Locality and Usage Constraints 9-9
9.2.2 Creatinga DynAny Object.................. 9-9
9.2.3 TheDynAnylinterface...................... 9-11

9.2.3.1 Obtaining the TypeCode associated

Xii Common Object Request Broker Architecture (CORBA), v2.6.1 May 2002

Contents

May 2002

with a DynAny object 9-11
9.2.3.2 Initializing a DynAny object from another
DynAnyobject 9-12
9.2.3.3 Initializing a DynAny object from an any
value ... 9-12
9.2.3.4 Generating an any value from a DynAny
object 9-12
9.2.3.5 Comparing DynAny values 9-12
9.2.3.6 Destroying a DynAny object 9-13
9.2.3.7 Creating a copy of a DynAny object 9-13
9.2.3.8 Accessing a value of some basic type in
aDynAnyobject 9-13
9.2.3.9 Iterating through components of a DynAny 9-15
9.2.4 The DynFixed Interface 9-16
9.25 TheDynEnuminterface 9-16
9.2.6 The DynStructiInterface.................... 9-17
9.2.7 The DynUnioninterface 9-19
9.2.8 The DynSequence Interface 9-21
9.2.9 The DynArray Interface 9-22
9.2.10 The DynValueCommon Interface............. 9-23
9.2.11 The DynValue Interface 9-24
9.2.12 The DynValueBox Interface 9-24
9.3 UsageinC++Language.............oiiiiiniennnn. 9-25
9.3.1 Dynamic creation of CORBA::Any values. 9-25
9.3.1.1 Creating an any that contains a struct ... 9-25
9.3.2 Dynamic interpretation of CORBA::Any values. 9-26
9.3.2.1Filteringofevents 9-26
10. The Interface Repository. i 10-1
10.1 OVEIVIEW . .ot e e 10-1
10.2 Scope of an Interface Repository 10-2
10.3 Implementation Dependencies. 10-4
10.3.1 Managing Interface Repositories 10-4
10.4 BaSiCS. .. ittt 10-5
10.4.1 Names and ldentifiers 10-6
10.4.2 Typesand TypeCodes 10-6
10.4.3 Interface Repository Objects 10-6
10.4.4 Structure and Navigation of the Interface
Repository 10-7
10.5 Interface Repository Interfaces. 10-9
10.5.1 Supporting Type Definitions. 10-10
10.5.2 IRObjeCt. 10-11
105.2.1Read Interface 10-11
10.5.2.2Write Interface 10-11
1053 Contained.iiiiiiinn. 10-11
10.5.3.1Read Interface 10-12
10.5.3.2Write Interface 10-13
10.5.4 Container 10-14
10.5.4.1Read Interface 10-17

Common Object Request Broker Architecture (CORBA), v2.6.1 Xiii

Contents

Xiv

10.5.5
10.5.6

10.5.7
10.5.8

10.5.9
10.5.10

10.5.11

10.5.12

10.5.13

10.5.14
10.5.15
10.5.16
10.5.17
10.5.18

10.5.19

10.5.20

10.5.21

10.5.22

10.5.23

10.5.24

10.5.25

10.5.26

10.5.4.2Write Interface 10-18
IDLTYpe . ..o 10-19
Repositoryo 10-20

10.5.6.1Read Interface 10-21

10.5.6.2Write Interface 10-21
ModuleDef 10-22
ConstantDef 10-22

10.5.8.1Read Interface 10-22

10.5.8.2Write Interface 10-23
TypedefDef. 10-23
StructDef 10-23

10.5.10.1 Read Interface 10-24

10.5.10.2 Write Interface 10-24
UnionDef. 10-24

10.5.11.1 Read Interface 10-24

10.5.11.2Write Interface 10-25
EnumDef. 10-25

10.5.12.1 Read Interface 10-25

10.5.12.2 Write Interface 10-25
AliasDef 10-25

10.5.13.1 Read Interface 10-26

10.5.13.2Write Interface 10-26
PrimitiveDef. 10-26
StringDef 10-26
WstringDef. 10-27
FixedDef. 10-27
SequenceDef......... 10-27

10.5.18.1 Read Interface 10-28

10.5.18.2Write Interface 10-28
ArrayDef. 10-28

10.5.19.1 Read Interface 10-28

10.5.19.2 Write Interface 10-28
ExceptionDef L 10-29

10.5.20.1 Read Interface 10-29

10.5.20.2 Write Interface 10-29
AttributeDef. 10-29

10.5.21.1 Read Interface 10-30

10.5.21.2Write Interface 10-30
OperationDef 10-30

10.5.22.1 Read Interface 10-31

10.5.22.2 Write Interface 10-32
InterfaceDef. 10-32

10.5.23.1Read Interface 10-33

10.5.23.2Write Interface 10-34
AbstractinterfaceDef. 10-34

10.5.24.1 Read Interface 10-34

10.5.24.2 Write Interface 10-35
LocalinterfaceDef 10-35

10.5.25.1 Read Interface 10-36

10.5.25.2 Write Interface 10-36
ValueMemberDef. 10-37

10.5.26.1 Read Interface 10-37

10.5.26.2 Write Interface 10-38

Common Object Request Broker Architecture (CORBA), v2.6.1 May 2002

Contents

May 2002

10.5.27 ValueDef. 10-38
10.5.27.1 Read Interface 10-40
10.5.27.2 Write Interface 10-40
10.5.28 ValueBoxDef........... 10-41
10.5.28.1 Read Interface 10-41
10.5.28.2 Write Interface 10-41
10.5.29 NativeDef 10-41
10.6 Repositorylds. i e 10-42
10.6.1 OMGIDLFormat.......... 10-42
10.6.2 RMIHashed Format....................... 10-43
10.6.3 DCEUUIDFormatccoviuuuunnnnnn 10-44
10.6.4 LOCALFormat........................... 10-45
10.6.5 Pragma Directives for Repositoryld. 10-45
10.6.5.1ThelDPragma 10-45
10.6.5.2 The Prefix Pragma 10-45
10.6.5.3 The VersionPragma 10-48
10.6.5.4 Generation of OMG IDL - Format IDs . 10-49
10.6.6 For More Information. 10-50
10.6.7 RepositorylDs for OMG-Specified Types. 10-50
10.7 OMG IDL for Interface Repository 10-51
The Portable Object Adapter 11-1
111 OVEIVIEW . oottt e e e e e e 11-1
11.2 Abstract Model Description. 11-2
11.2.1 ModelComponentsu... 11-2
11.2.2 Model Architecture 11-4
11.2.3 POACreation.o 11-6
11.2.4 Reference Creation 11-7
11.2.5 Object Activation States 11-8
11.2.6 RequestProcessingc.uuuuuun... 11-9
11.2.7 Implicit Activation. 11-10
11.2.8 Multi-threading 11-11
11.2.8.1 POA Threading Models 11-11
11.2.8.2 Using the Single Thread Model 11-11
11.2.8.3 Using the ORB Controlled Model 11-12
11.2.8.4 Using the Main Thread Model 11-12
11.2.8.5 Limitations When Using Multiple
Threads 11-12
11.2.9 Dynamic Skeleton Interface 11-12
11.2.10 Location Transparency 11-14
11.3 Interfaces 11-14
11.3.1 TheServantIDLType..........cooii... 11-15
11.3.2 POAManager Interface.o... 11-15
11.3.2.1 Processing States 11-16
11.322activateo 11-18
11.3.2.3hold_requests L 11-18
11.3.2.4discard_requests 11-19
11.3.25deactivate 11-19
11.3.26¢get state 11-20

Common Object Request Broker Architecture (CORBA), v2.6.1 XV

Contents

XVi

11.3.3 AdapterActivator Interface. 11-20
11.3.3.2 unknown_adapter 11-20
11.3.4 ServantManager Interface 11-22
11.3.4.1 Common Information for
Servant Manager Types 11-22
11.3.5 ServantActivator Interface 11-23
11.351incarmate, 11-23
11.3.5.2 etherealize 11-24
11.3.6 ServantLocator Interface 11-25
11.3.6.1preinvoke, 11-26
11.3.6.2postinvoke 11-27
11.3.6.3 ServantLocator and Location
Determination 11-27
11.3.7 POAPolicyObjects 11-28
11.3.7.1 Thread Policy 11-28
11.3.7.2 Lifespan Policy 11-29
11.3.7.3 Object Id Uniqueness Policy 11-29
11.3.7.41d Assignment Policy 11-30
11.3.7.5 Servant Retention Policy 11-30
11.3.7.6 Request Processing Policy 11-31
11.3.7.7 Implicit Activation Policy 11-32
11.3.8 POAlInterface 11-33
11.3.8.1create POA 11-33
11.3.82find_POA 11-34
11.3.8.3destroy 11-34
11.3.8.4 Policy Creation Operations 11-35
11.3.85the_name 11-36
11.3.8.6the_parent 11-36
11.3.8.7the children 11-36
11.3.8.8the_POAManager 11-36
11.3.8.9the_activator 11-36
11.3.8.10 get_servant_manager 11-37
11.3.8.11 set_servant_manager 11-37
11.3.8.12¢get_servant. 11-37
11.3.8.13set_ servant 11-37
11.3.8.14 activate_object 11-38
11.3.8.15 activate_object_with id............ 11-38
11.3.8.16 deactivate_object 11-38
11.3.8.17 create_reference 11-39
11.3.8.18 create_reference_with_id 11-39
11.3.8.19servant to id 11-40
11.3.8.20 servant_to_reference 11-41
11.3.8.21 reference_to _servant 11-41
11.3.8.22reference to id 11-42
11.3.8.23id_to_servant 11-42
11.3.8.24id_to_reference 11-42
11.3.8.250d ... 11-42
11.3.9 CurrentOperations, 11-43
11.39.1get POA 11-43
11.3.9.2get object id 11-43
11.3.9.3get reference 11-43
11.394 et servant....................... 11-44
IDL for PortableServer Module 11-44
11.5 UML Description of PortableServer. 11-50

Common Object Request Broker Architecture (CORBA), v2.6.1 May 2002

Contents

May 2002

11.6 Usage SCenarios.cov ittt 11-52
11.6.1 Gettingthe RootPOA 11-52
11.6.2 CreatingaPOA i 11-53

11.6.3 Explicit Activation with POA-assigned Object 1ds11-53
11.6.4 Explicit Activation with User-assigned Object Ids 11-54

11.6.5 Creating References before Activation. 11-55
11.6.6 Servant Manager Definition and Creation. 11-55
11.6.7 Object ActivationonDemand. 11-57
11.6.8 Persistent Objects with POA-assigned Ids. 11-59
11.6.9 Multiple Object Ids Mapping to a Single Servant 11-59
11.6.10 One Servant for AllObjects 11-59
11.6.11 Single Servant, Many Objects and Types,
UsingDSI 11-62
12. Interoperability Overview 12-1
12.1 Elements of Interoperability. 12-1
12.1.1 ORSB Interoperability Architecture 12-2
12.1.2 Inter-ORB Bridge Support.................. 12-2
12.1.3 General Inter-ORB Protocol (GIOP).......... 12-3
12.1.4 Internet Inter-ORB Protocol (IIOP). 12-3
12.1.5 Environment-Specific Inter-ORB Protocols
(ESIOPS). . . oo 12-4
12.2 Relationship to Previous Versions of CORBA 12-4
12.3 Examples of Interoperability Solutions 12-5
1231 Example 1. 12-5
1232 Example 2. 12-5
1233 Example 3. 12-5
12.3.4 Interoperability Compliance. 12-5
12.4 Motivating Factors i 12-8
12.4.1 ORB Implementation Diversity 12-8
12.42 ORBBoundaries 12-8
12.4.3 ORBs Vary in Scope, Distance, and Lifetime. ... 12-9
12.5 Interoperability Design Goals. 12-9
1251 Non-Goals. i 12-10
13. ORB Interoperability Architecture 13-1
131 OVEIVIEW . oot e 13-1
13.1.1 DOMAINS . ..ot 13-2
13.1.2 BridgingbDomains 13-2
13.2 ORBsandORB Serviceso 13-3
13.2.1 The Nature of ORB Services................. 13-3
13.2.2 ORB Services and Object Requests 13-3
13.2.3 Selection of ORB Services. 13-4
13.3 DoOmains.t 13-5
13.3.1 DefinitionofaDomain. 13-5

Common Object Request Broker Architecture (CORBA), v2.6.1 XVii

Contents

13.4

13.5

13.6

13.7

13.8

XVili

Common Object Request Broker Architecture (CORBA), v2.6.1

13.3.2 Mapping Between Domains: Bridging 13-6
Interoperability Between ORBs 13-7
13.41 ORB ServicesandDomains 13-7
13.42 ORBsandDomains........................ 13-7
13.4.3 Interoperability Approaches. 13-8

13.4.3.1 Mediated Bridging 13-8
13.4.3.2 Immediate Bridging 13-9
13.4.3.3 Location of Inter-Domain Functionality = 13-9
13.4.3.4 Bridging Level 13-10
13.4.4 Policy-Mediated Bridging 13-10
13.4.5 Configurations of Bridges in Networks 13-11

Object Addressingt 13-11

13.5.1 Domain-relative Object Referencing 13-12
13.5.2 Handling of Referencing Between Domains 13-12
An Information Model for Object References 13-14
13.6.1 What Information Do Bridges Need?.......... 13-14
13.6.2 Interoperable Object References: IORs. 13-14
13.6.3 IORProfiles.......... 13-15
13.6.4 Standard IOR Profiles...................... 13-17
13.6.4.1 The TAG_INTERNET_IOP Profile ... 13-17
13.6.4.2 The TAG_MULTIPLE_COMPONENTS
Profile L 13-18
13.6.4.3 The TAG_SCCP_IOP Profile 13-18
13.6.5 IORComponents.c.uiin. 13-18
13.6.6 Standard IOR Components 13-19
13.6.6.1 TAG_ORB_TYPE Component 13-20
13.6.6.2 TAG_ALTERNATE_IIOP_ADDRESS
Component 13-20
13.6.6.3 Other Components 13-20
13.6.7 Profile and Component Composition in IORs. .. 13-21
13.6.8 IORCreationandScope.................... 13-22
13.6.9 Stringified Object References. 13-22
13.6.10 ObjectURLs............. 13-23
13.6.10.1 corbaloc URL 13-24
13.6.10.2 corbaloc:rir URL 13-25
13.6.10.3 corbaloc:iiop URL 13-26
13.6.10.4 corbaloc Server Implementation 13-27
13.6.10.5corbaname URL 13-27
13.6.10.6 Future corbaloc URL Protocols 13-27
13.6.10.7 Future URL Schemes 13-27

Service Context ot 13-28
13.7.1 Standard Service Contexts
13.7.2 Service Context Processing Rules.

Coder/Decoder Interfaces. 13-31

13.8.1 Codeclinterface, 13-31
13.8.1.1Exceptions, 13-32
13.8.1.20perationsc.cviiin... 13-32

13.8.2 CodecFactoryccouiiiiiinnanan. 13-33
13.8.2.1 Encoding Structure 13-34

May 2002

Contents

May 2002

13.8.2.2 CodecFactory Interface 13-34
13.9 Feature Support and GIOP Versions. 13-35
13.10 Code Set Conversionuuiiinennennn. 13-36
13.10.1 Character Processing Terminology 13-36
13.10.1.1 CharacterSet 13-36
13.10.1.2 Coded Character Set, or Code Set 13-36
13.10.1.3 Code Set Classifications 13-37
13.10.1.4 Narrow and Wide Characters 13-37
13.10.1.5 Char Data and Wchar Data 13-38
13.10.1.6 Byte-Oriented Code Set 13-38
13.10.1.7 Multi-Byte Character Strings 13-38
13.10.1.8 Non-Byte-Oriented Code Set 13-38
13.10.1.9 Char and Wchar Transmission Code
Set(TCS-Cand TCS-W)........... 13-38
13.10.1.10 Process Code Set and File Code Set . 13-38
13.10.1.11 Native Code Set 13-39
13.10.1.12 Transmission Code Set 13-39
13.10.1.13 Conversion Code Set (CCS) 13-39
13.10.2 Code Set Conversion Framework. 13-39
13.10.2.1 Requirements 13-39
13.10.2.2 Overview of the Conversion
Framework 13-40
13.10.2.3 ORB Databases and Code Set
Converters 13-41
13.10.2.4 CodeSet Component of IOR
Multi-Component Profile 13-42
13.10.2.5 GIOP Code Set Service Context 13-43
13.10.2.6 Code Set Negotiation 13-44
13.10.3 Mapping to Generic Character Environments .. 13-47
13.10.3.1 Describing Generic Interfaces 13-48
13.10.3.2 Interoperation 13-48
13.10.4 Example of Generic Environment Mapping 13-48
13.10.4.1 Generic Mappings 13-49
13.10.4.2 Interoperation and Generic Mappings . 13-49
13.10.5 Relevant OSFM Registry Interfaces. 13-49
13.10.5.1 Character and Code Set Registry 13-49
13.10.5.2 Access Routines 13-50
14. Building Inter-ORBBridges. 14-1
14.1 IntroducCtion 14-1
14.2 In-Line and Request-Level Bridging 14-2
14.2.1 In-lineBridging 14-3
14.2.2 Request-level Bridging 14-3
14.2.3 CollocatedORBS, 14-4
14.3 Proxy Creation and Management.................... 14-5
14.4 Interface-specific Bridges and Generic Bridges 14-6
14.5 Building Generic Request-Level Bridges. 14-6
14.6 Bridging Non-Referencing Domains 14-7
14.7 Bootstrapping Bridges 14-7
Common Object Request Broker Architecture (CORBA), v2.6.1 XiX

Contents

15. General Inter-ORB Protocol 15-1
15.1 Goals of the General Inter-ORB Protocol. 15-2
152 GIOP OVEIVIEWt 15-2

15.2.1 Common Data Representation (CDR) 15-3
15.2.2 GIOP Message Overview 15-3
15.2.3 GIOP Message Transfer 15-4
15.3 CDRTransferSyntax............. ..., 15-4
15.3.1 Primitive TYpeSo 15-5
153.1.1 Alignment 15-5
15.3.1.2 Integer Data Types 15-6
15.3.1.3 Floating Point Data Types 15-7
15.3.140ctet ... 15-10
15.3.1.5Boolean 15-10
15.3.1.6 Character Types 15-10
15.3.2 OMG IDL Constructed Types. 15-11
15.3.2.1 Alignment, 15-11
15.3.22Struct ... 15-12
15.3.23Union 15-12
15.3.24AMAY . oot 15-12
15.3.25Sequence 15-12
15326 Enum 15-12
15.3.2.7 Strings and Wide Strings 15-12
15.3.2.8 Fixed-Point Decimal Type 15-13
15.3.3 Encapsulation. 15-14
1534 Value Types ... i 15-15
15.3.4.1 Partial Type Information and Versioning 15-16
15342Example o 15-17
15.3.4.3 Scope of the Indirections 15-19
15.3.44NullValues 15-19
15.3.4.5 Other Encoding Information 15-19
15.3.4.6 Fragmentation 15-19
15.3.4.7 Notation 15-22
15.3.48TheFormat 15-22
15.3.5 Pseudo-ObjectTypes....................... 15-23
15.35.1TypeCode 15-23
1535.2AN0y ... 15-29
15.353Principal L 15-29
15354 Context 15-29
15.3.55Exception i 15-29
15.3.6 ObjectReferences 15-30
15.3.7 Abstract Interfaces 15-30
154 GIOP MessageFormats 15-30
1541 GIOP Message Header 15-31
154.2 RequestMessagecuuiiiunnen.. 15-33
15.4.2.1 RequestHeader 15-33
15422 RequestBody 15-36
1543 ReplyMessagecuuiiiiiinnnnnnns 15-37
1543.1ReplyHeader 15-37
1543.2ReplyBody 15-38
15.4.4 CancelRequestMessage 15-40
15.4.4.1 Cancel Request Header 15-40

XX Common Object Request Broker Architecture (CORBA), v2.6.1 May 2002

Contents

May 2002

15.45 LocateRequestMessage. 15-41
15.4.5.1 LocateRequest Header 15-41
15.4.6 LocateReplyMessage 15-42
15.4.6.1 Locate Reply Header 15-42
15.4.6.2 LocateReplyBody 15-43
15.4.6.3 Handling ForwardRequest Exception
from ServantLocator 15-44
15.4.7 CloseConnection Message. 15-44
15.4.8 MessageErrorMessage 15-44
1549 FragmentMessage.cooviiinnnn... 15-44
15.5 GIOP Message Transport.c.vvvnn... 15-46
15.5.1 Connection Management. 15-46
15.5.1.1 ConnectionClosure 15-47
15.5.1.2 Multiplexing Connections 15-48
15,52 MessageOrdering, 15-48
15.6 ObjectLocation 15-48
15.7 Internet Inter-ORB Protocol (IIOP) 15-50
15.7.1 TCP/IP ConnectionUsage. 15-51
15.7.2 1IOPIORProfiles 15-51
15.7.3 1IOP IOR Profile Components 15-54
15.8 Bi-Directional GIOP 15-55
15.8.1 Bi-Directional IOP 15-57
15.8.1.1 IIOP/SSL considerations 15-58
15.9 Bi-directional GIOP policy. 15-58
15,20 OMG IDL. . .ot e e 15-59
15.10.1 GIOP Module. i 15-59
15.10.2 lIOP Module 15-63
15.10.3 BiDirPolicy Module. 15-64
16. The DCEESIOP e 16-1
16.1 Goals of the DCE Common Inter-ORB Protocol 16-1
16.2 DCE Common Inter-ORB Protocol Overview 16-2
16.2.1 DCE-CIOPRPC i 16-2
16.2.2 DCE-CIOP Data Representation 16-3
16.2.3 DCE-CIOP Messages., 16-4
16.2.4 Interoperable Object Reference (IOR) 16-5
16.3 DCE-CIOP Message Transport 16-5
16.3.1 Pipe-based Interface 16-6
16.3.1.1Invoke 16-8
16.3.1.2Locate 16-8
16.3.2 Array-based Interface...................... 16-8
16.3.2.11Invoke 16-10
l16.3.22Locate 16-11
16.4 DCE-CIOP Message Formats. 16-11
16.4.1 DCE_CIOP Invoke Request Message. 16-11
16.4.1.1 Invoke request header 16-11
16.4.1.2 Invoke requestbody 16-12

Common Object Request Broker Architecture (CORBA), v2.6.1 XXi

Contents

17.

16.4.2 DCE-CIOP Invoke Response Message. 16-12
16.4.2.1 Invoke response header 16-13
16.4.2.2 Invoke Response Body 16-13
16.4.3 DCE-CIOP Locate Request Message 16-14
16.4.3.1 Locate Request Header 16-14
16.4.4 DCE-CIOP Locate Response Message......... 16-15
16.4.4.1 Locate Response Header 16-15
16.4.4.2 Locate Response Body 16-16
16.5 DCE-CIOP Object References. 16-16
16.5.1 DCE-CIOP String Binding Component. 16-17
16.5.2 DCE-CIOP Binding Name Component 16-18
16.5.2.1 BindingNameComponent 16-18
16.5.3 DCE-CIOP No Pipes Component. 16-19
16.5.4 Complete Object Key Component 16-19
16.5.5 Endpoint ID Position Component. 16-20
16.5.6 Location Policy Component 16-20
16.6 DCE-CIOP Object Location. 16-21
16.6.1 Location Mechanism Overview 16-22
16.6.2 Activation. 16-23
16.6.3 Basic Location Algorithm 16-23
16.6.4 Use of the Location Policy and the Endpoint ID. 16-24
16.6.4.1 Current location policy 16-24
16.6.4.2 Original location policy 16-24
16.6.4.3 Original EndpointID 16-24
16.7 OMG IDL for the DCE CIOP Module 16-25
16.8 ReferencesforthisChapter 16-26
Interworking Architecture 17-1
17.1 Purpose of the Interworking Architecture 17-2
17.1.1 Comparing COM Objects to CORBA Objects .. 17-2
17.2 Interworking Object Model 17-3
17.2.1 Relationship to CORBA Object Model 17-3
17.2.2 Relationship to the OLE/COM Model 17-4
17.2.3 Basic Description of the Interworking Model ... 17-4
17.3 Interworking Mapping Issues. 17-8
17.4 Interface Mapping 17-8
1741 CORBA/COM e 17-9
17.4.2 CORBA/Automation 17-9
1743 COM/CORBA e 17-10
17.4.4 Automation/CORBA 17-10
17.5 Interface Composition Mappings. 17-11
17.5.1 CORBA/COM 17-11
17.5.1.1COM/CORBA 17-12
17.5.1.2 CORBA/Automation 17-12
17.5.1.3 Automation/CORBA 17-13
17.5.2 Detailed MappingRules 17-13

17.5.2.1 Ordering Rules for the CORBA->MIDL

XXii Common Object Request Broker Architecture (CORBA), v2.6.1 May 2002

Contents

May 2002

Transformation 17-13
17.5.2.2 Ordering Rules for the

CORBA->Automation Transformation . 17-13

17.5.3 Example of Applying Ordering Rules 17-14
17.5.4 Mapping Interface Identity. 17-16
17.5.4.1 Mapping Interface Repository IDs to
COMIIDSo 17-17
17.5.4.2 Mapping COM IIDs to CORBA
Interface IDs 17-18
17.6 Object Identity, Binding, and Life Cycle 17-18
17.6.1 ObjectldentityIssues 17-19
17.6.1.1 CORBA Object Identity and Reference
Properties 17-19
17.6.1.2 COM Object Identity and Reference
Properties 17-19
17.6.2 BindingandLifeCycle 17-20
17.6.2.1 Lifetime Comparison 17-20
17.6.2.2 Binding Existing CORBA Objects to
COMViews, 17-21
17.6.2.3 Binding COM Objects to CORBA Views 17-22
17.6.2.4 COM View of CORBA Life Cycle 17-22
17.6.2.5 CORBA View of COM/Automation
LifeCycle 17-23
17.7 Interworking Interfaces, 17-23
17.7.1 SimpleFactory Interface 17-23
17.7.2 IMonikerProvider Interface and Moniker Use .. 17-23
17.7.3 ICORBAFactory Interface 17-24
17.7.4 IForeignObject Interface. 17-26
17.7.5 ICORBAObjectInterface 17-27
17.7.6 ICORBAODbject2 17-28
17.7.7 10RBObjectInterface...................... 17-28
17.7.8 Naming Conventions for View Components 17-30
17.7.8.1 Naming the COM View Interface 17-30
17.7.8.2 Tag for the Automation Interface Id ... 17-30
17.7.8.3 Naming the Automation View Dispatch
Interface L. 17-30
17.7.8.4 Naming the Automation View Dual
Interface 17-31
17.7.8.5 Naming the Program Id for the COM
Classo 17-31
17.7.8.6 Naming the Class Id for the COM
Class i 17-32
17.8 Distribution 17-32
17.8.1 Bridgelocality. 17-32
17.8.2 Distribution Architecture 17-33
17.9 Interworking Targets 17-34
17.10 Compliance to COM/CORBA Interworking. 17-34
17.10.1 Products Subject to Compliance. 17-34
17.10.1.1 Interworking solutions 17-34
17.10.1.2 Mapping solutions 17-35

Common Object Request Broker Architecture (CORBA), v2.6.1 xxiii

Contents

17.10.1.3 Mapped components 17-35
17.10.2 Compliance Points. 17-36
18. Mapping: COMand CORBA 18-1
18.1 DataType Mapping 18-1
18.2 CORBAto COM Data Type Mapping 18-2
18.2.1 Mapping for Basic Data Types 18-2
18.2.2 MappingforConstants 18-2
18.2.3 Mapping for Enumerators 18-3
18.2.4 Mapping for String Types. 18-4
18.2.4.1 Mapping for Unbounded String Types . 18-4
18.2.4.2 Mapping for Bounded String Types ... 18-5
18.2.5 Mapping for Struct Types. 18-5
18.2.6 Mapping forUnion Types 18-6
18.2.7 Mapping for Sequence Types 18-8

18.2.7.1 Mapping for Unbounded Sequence Types 18-8
18.2.7.2 Mapping for Bounded Sequence Types 18-8

18.2.8 Mapping for Array Typeso ... 18-9
18.2.9 Mapping fortheany Type................... 18-9
18.2.10 Interface Mapping. 18-11
18.2.10.1 Mapping for interface identifiers 18-11
18.2.10.2 Mapping for exception types 18-11
18.2.10.3 Mapping for Nested Types 18-21
18.2.10.4 Mapping for Operations 18-22
18.2.10.5 Mapping for Oneway Operations 18-24
18.2.10.6 Mapping for Attributes 18-24
18.2.10.7 Indirection Levels for Operation
Parameters 18-26
18.2.11 Inheritance Mapping.c.vvvuun... 18-26
18.2.12 Mapping for Pseudo-Objects 18-29

18.2.12.1 Mapping for TypeCode pseudo-object 18-29
18.2.12.2 Mapping for context pseudo-object . . . 18-31
18.2.12.3 Mapping for principal pseudo-object . 18-32

18.2.13 Interface Repository Mapping 18-32
18.3 COM to CORBA Data Type Mapping 18-33
18.3.1 Mapping for Basic Data Types 18-33
18.3.2 MappingforConstants 18-34
18.3.3 Mapping for Enumerators 18-34
18.3.4 Mapping for String Types. 18-35
18.3.4.1 Mapping for unbounded string types . .. 18-35
18.3.4.2 Mapping for bounded string types 18-36
18.3.4.3 Mapping for Unicode Unbounded
String Types 18-36
18.3.4.4 Mapping for unicode bound string types 18-37
18.3.5 Mapping for Structure Types 18-37
18.3.6 Mapping forUnion Types 18-38
18.3.6.1 Mapping for Encapsulated Unions 18-38
18.3.6.2 Mapping for nonencapsulated unions .. 18-39
18.3.7 Mapping for Array Types 18-40
18.3.7.1 Mapping for nonfixed arrays 18-40

XXIV Common Object Request Broker Architecture (CORBA), v2.6.1 May 2002

Contents

May 2002

18.3.7.2 Mapping for SAFEARRAY 18-40
18.3.8 Mapping for VARIANT. L. 18-41
18.3.9 Mapping for Pointers. 18-43
18.3.10 Interface Mapping.c ... 18-44
18.3.10.1 Mapping for Interface Identifiers 18-44
18.3.10.2 Mapping for COM Errors 18-44
18.3.10.3 Mapping of Nested Data Types 18-47
18.3.10.4 Mapping of Names 18-47
18.3.10.5 Mapping for Operations 18-47
18.3.10.6 Mapping for Properties 18-48
18.3.11 Mapping for Read-Only Attributes 18-49
18.3.12 Mapping for Read-Write Attributes 18-49
18.3.12.1 Inheritance Mapping 18-50
18.3.12.2 Type Library Mapping 18-52
19. Mapping: Automationand CORBA 19-1
19.1 Mapping CORBA Objects to Automation 19-2
19.1.1 Architectural Overview. 19-2
19.1.2 Main Features of the Mapping 19-3
19.2 Mapping forinterfaces. 19-3
19.2.1 Mapping for Attributes and Operations 19-4
19.2.2 Mapping for OMG IDL Single Inheritance. 19-5
19.2.3 Mapping of OMG IDL Multiple Inheritance. ... 19-6
19.3 Mapping for Basic Data Types. 19-9
19.3.1 Basic Automation Types 19-9
19.3.2 Special Cases of Basic Data Type Mapping. 19-10
19.3.2.1 Converting Automation long to
CORBA unsignedlong 19-10
19.3.2.2 Demoting CORBA unsigned long to
Automationlong 19-11
19.3.2.3 Demoting Automation long to CORBA
unsignedshort 19-11

19.3.2.4 Converting Automation boolean to CORBA
boolean and CORBA boolean to Automation

boolean 19-11
19.3.3 Mapping for Strings L 19-11
19.4 IDLto ODL Mapping.o 19-12
19.4.1 A Complete IDL to ODL Mapping for the Basic
Data Types e 19-12
19.5 Mapping for Object References 19-15
1951 TypeMappingcoiiiin... 19-15
19.5.2 Object Reference Parameters and
IForeignObject. 19-16
19.6 Mapping for Enumerated Types. 19-17
19.7 Mapping for Arrays and Sequences 19-18
19.8 Mapping for CORBA Complex Types 19-19
19.8.1 Mapping for Structure Types 19-20
19.8.2 Mapping forUnion Types 19-21
Common Object Request Broker Architecture (CORBA), v2.6.1 XXV

Contents

19.8.3 Mapping for TypeCodes 19-22
19.84 Mappingforanys.ooiii.. 19-24
19.8.5 Mapping for Typedefs, 19-25
19.8.6 MappingforConstants 19-25
19.8.7 Getting Initial CORBA Object References 19-26
19.8.8 Creating Initial in Parameters for Complex Types19-27
19.8.8.1 ITypeFactory Interface 19-29
19.8.8.2 DIObjectiInfo Interface 19-29
19.8.9 Mapping CORBA Exceptions to Automation
Exceptions 19-30
19.8.9.1 Overview of Automation Exception
Handling 19-30
19.8.9.2 CORBA Exceptions 19-30
19.8.9.3 CORBA User Exceptions 19-31
19.8.9.4 Operations that Raise User Exceptions . 19-32
19.8.9.5 CORBA System Exceptions 19-33

19.8.9.6 Operations that raise system exceptions 19-34
19.8.10 Conventions for Naming Components of the

Automation View 19-36
19.8.11 Naming Conventions for Pseudo-Structs, Pseudo-
Unions, and Pseudo-Exceptions 19-36
19.8.12 Automation View Interface as a Dispatch
Interface (Nondual) 19-36
19.8.13 Aggregation of Automation Views 19-38
19.8.14 DHandDSIo 19-38
19.9 Mapping Automation Objects as CORBA Objects. 19-38
19.9.1 Architectural Overview. 19-38
19.9.2 Main Features of the Mapping 19-39
19.9.3 Getting Initial Object References. 19-40
19.9.4 Mapping for Interfaces 19-40
19.9.5 Mapping for Inheritance. 19-40
19.9.6 Mapping for ODL Properties and Methods. 19-41
19.9.7 Mapping for Automation Basic Data Types. 19-42
19.9.7.1 Basic automation types 19-42
19.9.8 ConversionErors. ... 19-43
19.9.9 Special Cases of Data Type Conversion. 19-43
19.9.9.1 Translating COM::Currency to
Automation CURRENCY 19-43
19.9.9.2 Translating CORBA double to
Automation DATE 19-43

19.9.9.3 Translating CORBA boolean to
Automation boolean and Automation

boolean to CORBA boolean 19-43
19.9.10 A Complete OMG IDL to ODL Mapping for the Basic
Data Typeso 19-44
19.9.11 Mapping for Object References 19-46
19.9.12 Mapping for Enumerated Types. 19-47
19.9.13 Mapping for SafeArrays 19-48
19.9.13.1 Multidimensional SafeArrays 19-48
19.9.14 Mapping for Typedefs 19-48

XXVi Common Object Request Broker Architecture (CORBA), v2.6.1 May 2002

Contents

May 2002

19.9.15 Mapping for VARIANTS oot 19-48
19.9.16 Mapping Automation Exceptions to CORBA ... 19-49
19.10 Older Automation Controllers 19-49
19.10.1 Mapping for OMG IDL Arrays and Sequences
toCollections 19-49
19.11 Example Mappings. i 19-51
19.11.1 Mapping the OMG Naming Service to
Automation. 19-51
19.11.2 Mapping a COM ServicetoOMG IDL 19-51
19.11.3 Mapping an OMG Object Service to Automation 19-55
20. Interoperability with non-CORBA Systems 20-1
20.1 Introduction 20-1
20.1.1 COM/CORBAPartA 20-2
20.2 Conformance lIssues.iiiiinnn... 20-2
20.2.1 Performancelssues 20-3
20.2.2 Scalabilitylssues 20-3
20.2.3 CORBA Clients for DCOM Servers. 20-3
20.3 LocalityoftheBridge 20-4
20.4 Extent Definition 20-5
20.4.1 Marshaling Constraints. 20-6
20.4.2 MarshalingKey 20-6
2043 ExtentFormat 20-7
20431DVO_EXTENT 20-8
20432DVO_IFACEt 20-8
20.4.3.3DVO_IMPLDATA 20-8
20434DVO_BLOB 20-8
20.5 Request/Reply Extent Semantics 20-8
20.6 CONSIStENCYottt 20-9
20.6.1 IValueObject 20-10
20.6.2 ISynchronize and DISynchronize. 20-11
20.6.2.1 Mode Property 20-11
20.6.2.2 SyncNow Method 20-11
20.6.2.3 ReCopy Method 20-11
20.7 DCOMValue Objects. 20-11
20.7.1 Passing Automation Compound Types as DCOM
Value Objects. 20-11
20.7.2 Passing CORBA-Defined Pseudo-Objects as
DCOM Value Objectscoviiiiiii i 20-12
20.7.3 IForeignObject. 20-12
20.7.4 DIForeignComplexType 20-12
20.7.5 DlIForeignException. 20-12
20.7.6 DISystemException 20-12
20.7.7 DICORBAUserException 20-13
20.7.8 DICORBAStructco i 20-13
20.7.9 DICORBAUNION 20-13

Common Object Request Broker Architecture (CORBA), v2.6.1 XXVii

Contents

20.7.10 DICORBATypeCode and ICORBATypeCode ... 20-13
20.7.11 DICORBAANY . . .ottt 20-14
20.7.12 ICORBAANY . . . e 20-15
20.7.13 User ExceptionsINCOM 20-15
20.8 ChainAvoidance 20-16
20.8.1 CORBA Chain Avoidance................... 20-16
20.8.2 COM Chain Avoidance 20-17
209 Chain Bypasst 20-19
20.9.1 CORBAChainBypass...................... 20-19
20.9.2 COMChainBypass..........c.coiiiiiinnn.. 20-20
20.10 Thread Identification 20-21
21. Portable Interceptors 21-1
21.1 IntroduCtion« . 21-1
21.1.1 ObjectCreation. 21-2
21.1.2 ClientSendsRequest.cuuuu.. 21-3
21.1.3 Server ReceivesRequest 21-4
21.1.4 ServerSendsReply 21-4
21.1.5 ClientReceivesReply 21-5
21.2 Interceptor Interface. 21-5
21.3 RequestiInterceptors. i 21-6
21.3.1 DesignPrinciples.......... 21-6
21.3.2 GeneralFlowRules........................ 21-7
21.3.3 The Flow Stack Visual Model 21-8
21.3.4 The Request Interceptor Points 21-8
21.3.5 Client-Side Interceptorc.o.... 21-9
21.3.6 Client-Side Interception Points. 21-9
21.36.1send_request 21-9
21.36.2send_poll 21-9
21.3.6.3receive_reply 21-10
21.3.6.4 receive_exception 21-10
21.3.6.5receive_other 21-11
21.3.7 Client-Side Interception Point Flow. 21-11
21.3.7.1 Client-side FlowRules 21-11
21.3.7.2 Additional Client-side Details 21-12
21.3.7.3 Client-side Flow Examples 21-12
21.3.8 Server-Side Interceptor. 21-14
21.3.9 Server-Side Interception Points 21-14
21.3.9.1 receive_request_service_contexts 21-14
21.3.9.2receive_request 21-15
21.393send_reply L 21-15
21.3.9.4send_exception 21-16
21.39.5send other 21-16
21.3.10 Server-Side Interception Point Flow 21-17
21.3.10.1 Server-side Flow Rules 21-17
21.3.10.2 Additional Server-side Details 21-17
21.3.10.3 Server-side Flow Examples 21-18
21.3.11 Request Information 21-20
XXViil Common Object Request Broker Architecture (CORBA), v2.6.1 May 2002

Contents

21.3.12 Requestinfo Interface 21-21
21312 1request id 21-21
21.3.12.20perationc. .. 21-21
21.3.12.3arguments 21-21
21.3.12.4exceptions 21-22
21.3.125contexts 21-22
21.3.12.6 operation_context 21-22
21.3.12.7result 21-22
21.3.12.8 response_expected 21-23
21.3.12.9SYNC_SCOPE . .« v vt e 21-23
21.3.12.10reply status 21-23
21.3.12.11 forward_reference 21-24
21.3.12.12get slot 21-24
21.3.12.13 get_request_service_context 21-25
21.3.12.14 get_reply_service_context 21-25

21.3.13 ClientRequestinfo Interface 21-25
21313 1target 1-27
21.3.13.2 effective_target 21-27
21.3.13.3 effective_profile 21-27
21.3.13.4 received_exception 21-27
21.3.13.5 received_exception_id 21-27
21.3.13.6 get_effective_component 21-27
21.3.13.7 get_effective_components 21-28
21.3.13.8 get_request_policy 21-28
21.3.13.9 add_request_service_context........ 21-28

21.3.14 ServerRequestinfo Interface. 21-29
21.3.14.1 sending_exception 21-30
21.3.14.20bject_id i, 21-30
21.3.14.3adapter id 21-31
21.3.14.4 target_most_derived_interface 21-31
21.3.14.5get_server policy 21-31
213146set slot........ 21-31
21314 7target_is_a ... 21-31
21.3.14.8 add_reply_service_context 21-32

21.3.15 ForwardRequest Exception. 21-32

21.4 Portable Interceptor Current. 21-33

2141 OVEIVIEW. . . oottt e et e e 21-33

21.4.2 Obtaining the Portable Interceptor Current. ... 21-33

21.4.3 Portable Interceptor Current Interface. 21-33
2l431getslot.......... 21-34
21432set slot....... L 21-34

21.4.4 Use of Portable Interceptor Current 21-34
21.4.4.1 Client-side use of PICurrent 21-34
21.4.4.2 Example of PICurrent to Handle

Client-side Recursion 21-35
21.4.4.3 Server-side use of PICurrent 21-36
21.4.4.4 Request Scope vs Thread Scope 21-37
21.4.4.5 Flow of PICurrent between Scopes 21-37
21.4.4.6 Notes on PICurrent and Scopes 21-39
21.5 IORInterceptor 21-39
2151 OVEIVIEW. . .ottt 21-39
21.5.2 IORInterceptor Interface 21-39
21.5.2.1 establish_components 21-40

May 2002 Common Object Request Broker Architecture (CORBA), v2.6.1 XXiX

Contents

XXX

21.5.3 IORInfolnterface 21-40
21.5.3.1 get_effective_policy 21-40
21.5.3.2add _ior component 21-41
21.5.3.3 add_ior_component_to_profile 21-41
21.6 PolicyFactory. e 21-42
21.6.1 PolicyFactory Interface. 21-42
21.6.1.1create policy 21-42
21.7 Regqistering Interceptors. i 21-42
21.7.1 ORSBilnitializer Interface 21-43
2171 pre_init. 21-43
21.71.2postinit 21-43
21.7.2 ORBlInitinfo Interface. 21-43
21.7.2.1 DuplicateName Exception 21-44
21.7.2.2 InvalidName Exception 21-44
21.7.2.3arguments 21-45
21.7240rb id 21-45
21.7.2.5codec_factory, 21-45
21.7.2.6 register_initial_reference 21-45
21.7.2.7 resolve_initial_references 21-45
21.7.2.8 add_client_request_interceptor 21-45
21.7.2.9 add_server_request_interceptor 21-46
21.7.2.10 add_ior_interceptor 21-46
21.7.2.11 allocate_slot_id 21-46
21.7.2.12 register_policy factory 21-46
21.7.3 register_orb_initializer Operation............ 21-47
21.7.3.1 Mappings of register_orb_initializer ... 21-47
21.7.4 Notes about Registering Interceptors. 21-49
21.8 Dynamic Initial References 21-49
21.8.1 register_initial_reference 21-49
21.9 Module DynamicC 21-50
21.9.1 NVList PIDL Represented by
ParameterList IDL 21-50
21.9.2 ContextList PIDL Represented by
ContextList IDL. oo 21-50
21.9.3 ExceptionList PIDL Represented by
ExceptionList IDL, 21-51
21.9.4 Context PIDL Represented by
RequestContextIDL 21-51
21.10 Portable Interceptor IDL 21-51
22. CORBAMESSAQINGottt et et et et e e e 22-1
22.1 Section |- Introduction 22-2
22.2 Messaging Quality of Service 22-2
22.2.1 Rebind Support 22-5
22.2.1.1 typedef short RebindMode 22-5
22.2.1.2 interface RebindPolicy 22-5
22.2.2 Synchronization Scope 22-6
22.2.2.1 typedef short SyncScope 22-6
22.2.2.2 interface SyncScopePolicy 22-7

Common Object Request Broker Architecture (CORBA), v2.6.1 May 2002

Contents

May 2002

22.2.3 Request and Reply Priority. 22-7
22.2.3.1 struct PriorityRange 22-7
22.2.3.2 interface RequestPriorityPolicy 22-7
22.2.3.3 interface ReplyPriorityPolicy 22-8

22.2.4 Requestand Reply Timeout 22-8
22.2.4.1 interface RequestStartTimePolicy 22-8
22.2.4.2 interface RequestEndTimePolicy 22-9
22.2.4.3 interface ReplyStartTimePolicy 22-9
22.2.4.4 interface ReplyEndTimePolicy 22-9

22.2.4.5 interface RelativeRequestTimeoutPolicy 22-9
22.2.4.6 interface RelativeRoundtripTimeout

Policy 22-10
2225 RoOULING.o 22-10
22.2.5.1 typedef short RoutingType 22-10
22.2.5.2 struct RoutingTypeRange 22-10
22.2.5.3 interface RoutingPolicy 22-11
22.2.5.4 interface MaxHopsPolicy 22-11
2226 Queue Ordering. 22-11
22.2.6.1 typedef short Ordering 22-11
22.2.6.2 interface QueueOrderPolicy 22-12
22.3 Propagation of Messaging QoS 22-12
22.3.1 StruCtures. 22-12
22.3.2 Messaging QoS Profile Component 22-13
22.3.3 Messaging QoS Service Context.............. 22-13
22.4 Section Il - Introduction., 22-13
225 RunningExample.......... i, 22-15
22.6 Async OperationMapping, .. 22-16
22.6.1 Callback Model Signatures (sendc) 22-16
22.6.1.1 Implied-IDL for Operations 22-16
22.6.1.2 Implied-IDL for Attributes 22-17
226.1.3Example 22-17
22.6.2 Polling Model Signatures (sendp)............. 22-18
22.6.2.1 Implied-IDL for Operations 22-18
22.6.2.2 Implied-IDL for Attributes 22-19
226.23Example 22-19
22.7 Exception Delivery in the Callback Model. 22-20
22.7.1 Generic ExceptionHolder Value 22-20
22.7.2 Type-Specific ExceptionHolder Mapping 22-21
22.7.3 Example e 22-21
22.8 Type-Specific ReplyHandler Mapping................ 22-22
22.8.1 ReplyHandler Operations for
NO_EXCEPTION Replies 22-23
22.8.2 ReplyHandler Operations for Exceptional
Replies 22-24
22.8.3 Example 22-24
22.9 GenericPollerValue. 22-25
22.9.1 operation_target. 22-26
22.9.2 operation_name............. ... 22-26
22.9.3 associated_handler., 22-26
Common Object Request Broker Architecture (CORBA), v2.6.1 XXXi

Contents

XXXii

2294 is_from_poller 22-26
22.10 Type-Specific Poller Mapping 22-26
22.10.1 Basic Type-Specific Poller................... 22-27
22.10.1.1 Poller operations for Interface
operations i, 22-27
22.10.1.2 Poller operations for Interface
attributes 22-28
22.10.2 Persistent Type-Specific Poller 22-29
22.10.3 Example 22-29
22.11 Example ProgrammerUsagec..o... 22-30
22.11.1 Example Programmer Usage (Examples
Mapped to C++). . ..o 22-30
22.11.2 Client-Side C++ Example for the Asynchronous
Method Signatures. 22-31

22.11.3 Client-Side C++ Example of the Callback Model 22-32
22.11.3.1 C++ Example of Generated

ExceptionHolder 22-32
22.11.3.2 C++ Example of Generated
ReplyHandler 22-32
22.11.3.3 C++ Example of User-Implemented
ReplyHandler 22-34
22.11.3.4 C++ Example of Callback Client
Program 22-38
22.11.4 Client-Side C++ Example of the Polling Model. . 22-39
22.11.4.1 C++ Example of Generated Poller ... 22-39
22.11.4.2 C++ Example of Polling Client
Program 22-40
22.11.4.3 C++ Example of Using PollableSet
inaClient Program 22-42
22.11.5 ServerSide. ... 22-44
22.12 Section lll - Introduction 22-45
22.13 Routing Object References. 22-46
22.14 Message Routingttt 22-47
22.14.1 StrUCIUIES. . . . ot e 22-49
22.14.1.1 MessageBody 22-49
22.14.1.2 RequestMessage 22-49
22.14.1.3 ReplyDestination 22-50
22.14.1.4Requestinfo L 22-50
22.14.2 Interfaces 22-51
22.142.1ReplyHandler 22-51
22.1422R0Uter 22-51
22.14.2.3send_request 22-51
22.14.2.4 send_multiple_requests 22-51
22.14.2.5 UntypedReplyHandler 22-51
22.14.26reply . .o 22-51
22.14.2.7 PersistentRequest 22-52
22.14.2.8 readonly attribute reply_available 22-52
22.14.29q¢get reply 22-52
22.14.2.10 attribute associated_handler 22-52
22.14.2.11 PersistentRequestRouter 22-53
22.14.2.12 create_persistent_request.......... 22-53

Common Object Request Broker Architecture (CORBA), v2.6.1 May 2002

Contents

May 2002

22.14.3 Routing Protocol, 22-53
22.14.3.1 InvokingClient 22-54
22.14.3.2 Initial Request Router 22-55
22.14.3.3 Request Routing Algorithm 22-55
22.14.3.4 Intermediate Request Router 22-56
221435 TargetRouter 22-56
22.14.3.6 Replying to a Type-specific
ReplyHandler 22-58
22.14.3.7 Replying to an UntypedReplyHandler 22-58
22.14.3.8 Handling of Service Contexts 22-58
22.14.3.9 Handling LOCATION_FORWARD
Replies 22-59
22.14.3.10 Routing of Replies 22-59
22.14.3.11 UntypedReplyHandler 22-59
22.15 Router Administration 22-60
22151 Constants 22-63
22.15.1.1 typedef short RegistrationState 22-63
22.15.2 EXCeptions 22-64
22.15.2.1 exception InvalidState 22-64
22.15.3 Valuetypes ... 22-64
22.15.3.1RetryPolicy 22-64
22.15.3.2 ImmediateSuspend 22-64
22.15.3.3 UnlimitedPing 22-64
22.15.3.4 LimitedPing 22-64
22.15.35DecayPolicy 22-65
22.15.3.6 ResumePolicy 22-65
22.15.4 Interfaces 22-65
22.15.4.1 RouterAdmin 22-65
22.15.4.2 register_destination 22-65
22.15.4.3 suspend_destination 22-65
22.15.4.4 resume_destination 22-65
22.15.4.5 unregister_destination 22-66
23. MinNimum CORBA 23-1
23.1 Introduction 23-2
23.2 DL, . 23-2
23.3 CORBAOmitted Features 23-2
23.4 ORB Interface Omissions., 23-3
2341 ORB ... 23-3
2342 ODbjeCt. 23-4
23.4.3 ConstructionPolicy 23-4
23.5 Dynamic Invocation Interface 23-5
23.6 Dynamic Skeleton Interface........................ 23-5
23.7 DynamiC ANy 23-5
23.8 Interface Repository. 23-5
23.8.1 TypeCode 23-5
23.9 Portable Object Adapter. 23-6
23.9.1 Interfaces 23-6
23.9.11POA ... 23-6

Common Object Request Broker Architecture (CORBA), v2.6.1 XXXiii

Contents

XXXIV

23.9.12Current 23-6
23.9.1.3 Policy interfaces 23-7
23.9.14POAManagercovviiinn 23-7
23.9.1.5 AdapterActivator 23-7
23.9.1.6 ServantManagers 23-7
23.9.2 Policies ... e 23-7
23.9.21 ThreadPolicy 23-7
23.9.2.2 LifespanPolicy 23-8
23.9.2.3 ObjectldUniquenessPolicy 23-8
23.9.2.4 |dAssignmentPolicy 23-8
23.9.2.5 ServantRetentionPolicy 23-8
23.9.2.6 RequestProcessingPolicy 23-8
23.9.2.7 ImplicitActivationPolicy 23-9
23.10 Interoperability. 23-9
23.10.1 DCE Interoperability. 23-9
23.11 COM/CORBA Interworking. 23-10
23.12 INterceptors. . . .o vt 23-10
23.13 Language Mappings.ot 23-10
23.13.1 C++ Mapping Specificlssues 23-10
23.13.2 Java Mapping Specificlssues 23-10
23.14 minimumCORBAOMG IDL............ 23-11
23.14.1 ORBlnterface 23-11
23.14.2 Dynamic Invocation Interface. 23-14
23.14.3 Dynamic Skeleton Interface 23-14
23.14.4 Dynamic Management of Any Values 23-14
23.14.5 Interface Repository 23-14
23.14.6 Portable Object Adapter. 23-22
23.14.7 Interceptors 23-29
24. Real-Time CORBA e 24-1
24.1 Goals of the Specification. 24-2
24.2 Extending CORBA. i, 24-3
24.3 Approach to Real-Time CORBA 24-3
24.3.1 The Nature of Real-Time. 24-3
24.3.2 Meeting Real-Time Requirements 24-4
24.3.3 activities 24-4
24.3.4 End-to-End Predictability. 24-5
24.3.5 Management of Resources 24-6
24.4 Compatibility 24-6
24.4.1 Interoperability L. 24-6
24.4.2 Portability. 24-7
24.4.3 CORBA - Real-Time CORBA Interworking 24-7
24.5 Real-Time CORBA Architectural Overview 24-7
2451 Real-Time CORBA Modules. 24-8
2452 Real-TimeORB 24-8
24.5.3 Thread Scheduling. 24-9

Common Object Request Broker Architecture (CORBA), v2.6.1 May 2002

Contents

May 2002

24.6

24.7
24.8
24.9
24.10

24.11
24.12

24.13

24.14
24.15

24.5.4 Real-Time CORBA Priority 24-9
24.5.5 Native Priority and PriorityMappings. 24-9
2456 Real-Time CORBACurrent................. 24-9
24.5.7 PriorityModels 24-10
24.5.8 Real-Time CORBA Mutexes and Priority Inheritance
24-10
2459 Threadpools...... 24-10
24.5.10 Priority Banded Connections 24-11
24.5.11 Non-Multiplexed Connections 24-11
24.5.12 Invocation Timeouts 24-11
24.5.13 Client and Server Protocol Configuration. 24-11
24.5.14 Real-Time CORBA Configuration 24-11
24.5.15 Scheduling Service. 24-12
Real-Time ORB 24-12
24.6.1 Real-Time ORB Initialization. 24-13
24.6.2 Real-Time CORBA System Exceptions 24-13
Real-Time POA e 24-14
Native Thread Priorities 24-15
CORBAPIiOrity. . . oo 24-16
CORBA Priority Mappings, 24-16
24.10.1 C Language binding for PriorityMapping. 24-17
24.10.2 C++ Language binding for PriorityMapping ... 24-17
24.10.3 Ada Language binding for PriorityMapping. . .. 24-18
24.10.4 Java Language binding for PriorityMapping ... 24-18
24.10.5 SemantiCs 24-18
Real-Time Current 24-19
Real-Time CORBA Priority Models. 24-20
24.12.1 PriorityModelPolicy 24-20
24.12.2 Scope of PriorityModelPolicy 24-21
24.12.3 Client Propagated Priority Model 24-22
24.12.4 Server Declared Priority Model 24-23
24.12.5 Setting Server Priority on a per-Object
Reference Basis, 24-23
Priority Transforms 24-25
24.13.1 C Language Binding for PriorityTransform 24-26
24.13.2 C++ Language Binding for PriorityTransform .. 24-26
24.13.3 Ada Language binding for PriorityTransform .. 24-27
24.13.4 Java Language binding for PriorityTransform . . 24-27
24135 SemantiCst 24-27
Mutex Interface 24-28
Threadpools 24-29
24.15.1 Creation of Threadpool without Lanes 24-31
24.15.2 Creation of Threadpool with Lanes 24-32
24.15.3 RequestBuffering 24-32

Common Object Request Broker Architecture (CORBA), v2.6.1 XXXV

Contents

XXXVi

24.15.4 Scope of ThreadpoolPolicy 24-33
24.16 Implicit and Explicit Binding. 24-33
24.17 Priority Banded Connections 24-34
24.17.1 Scope of PriorityBandedConnectionPolicy 24-35
24.17.2 Binding of Priority Banded Connection. 24-36
24.18 PrivateConnectionPolicy 24-37
24.19 Invocation Timeout. i, 24-38
24.20 Protocol Configuration. 24-38
24.20.1 ServerProtocolPolicy 24-39
24.20.2 Scope of ServerProtocolPolicy 24-41
24.20.3 ClientProtocolPolicy 24-41
24.20.4 Scope of ClientProtocolPolicy. 24-42
24.20.5 Protocol Configuration Semantics 24-42
24.21 Consolidated IDL. 24-43
24.22 IntroducCtion 24-48
2423 IDL. . .. 24-49
2424 SemantiCS.o 24-50
2425 Example 24-51
24.25.1 Server C++ ExampleCode 24-51
24.25.2 Client C++ Example Code. 24-52
24.25.3 Explanation of Example 24-53
25. Fault Tolerant CORBA. i 25-1
25.1 Fault Tolerant CORBA. 25-1
25.1.1 Fault Tolerance for Diverse Applications. 25-1
25.1.2 Objectives. 25-2
25.1.3 BasicConcepts..........coiiiiiinn.. 25-3
25.1.3.1 Replication and Object Groups 25-3
25.1.3.2 Fault Tolerance Domains 25-3
25.1.3.3 Fault Tolerance Properties 25-3
25.1.3.4 Strong Replica Consistency 25-4
25.1.4 Architectural Overview. 25-4
25.1.4.1 Fault Tolerance Property Management . 25-6
25.1.4.2 Replication Management 25-6
25.1.4.3 Fault Detection and Notification 25-7
25.1.4.4 Logging and Recovery 25-7
25.1.5 Requirements............... 25-8
25.1.6 Limitations.............. 25-11
25.2 Basic Fault Tolerance Mechanisms 25-12
2521 OVEIVIEW. . . ottt it e 25-12
25.2.2 Interoperable Object Group References 25-13
25.2.2.1 TAG_FT_GROUP Component 25-14
25.2.2.2 TAG_FT_PRIMARY Component 25-16
25.2.3 Interoperable Object Group Reference
Operations 25-16

Common Object Request Broker Architecture (CORBA), v2.6.1 May 2002

Contents

25.2.4

25.2.5

25.2.6
25.2.7

25.2.8

25.2.9

25.3 Replication Management

25.3.1
25.3.2

25.3.3
25.3.4
25.3.5

25.3.6

25.3.7

May 2002

Common Object Request Broker Architecture (CORBA), v2.6.1

25.23.1get interface 25-17
2523208 @ . it 25-17
25233is_nil ... 25-17
25.2.3.4non existent. 25-17
25.2.35is_equivalent, 25-17
25.236hash 25-18
25.2.3.7create_request. 25-18
25.2.3.8¢get policy 25-18
25.2.3.9 get domain_managers 25-18
25.2.3.10 set_policy overrides 25-18
Modes of Profile Addressing. 25-18
25.2.4.1 Profiles That Address Object Group
Members 25-18
25.2.4.2 Profiles That Address Gateways 25-19
25.2.4.3 Choice of Profile Addressing Mode ... 25-19
Accessing Server Object Groups 25-19
25.2.5.1 Access via IIOP Directly to the
Primary Member 25-20
25.2.5.2 Access via lIOP and a Gateway 25-20
25.2.5.3 Access via a Multicast Group
Communication Protocol 25-20
Extensions to CORBA Failover Semantics 25-21
Most Recent Object Group Reference 25-22

25.2.7.1 FT_GROUP_VERSION Service Context 25-22

Transparent Reinvocation. 25-23
25.2.8.1 FT_REQUEST Service Context 25-24
25.2.8.2 Request Duration Policy 25-26
25.2.8.3 Fault Handling for GIOP Messages ... 25-26

Transport Heartbeats 25-27
25.2.9.1 TAG_FT_HEARTBEAT_ENABLED

Component 25-28
25.2.9.2 Heartbeat Policy 25-28
25.2.9.3 Heartbeat Enabled Policy 25-30

.......................... 25-31

OVEIVIEW. . . o e 25-31

Fault Tolerance Properties 25-32
25.3.2.1 ReplicationStyle 25-32
25.3.2.2 MembershipStyle 25-33
25.3.2.3ConsistencyStyle 25-34
25.3.2.4 FaultMonitoringStyle 25-35
25.3.2.5 FaultMonitoringGranularity 25-35
25326 Factories i 25-36
25.3.2.7 InitialNumberReplicas 25-36
25.3.2.8 MinimumNumberReplicas. 25-36

FaultMonitoringIntervalAndTimeout 25-37

Checkpointinterval 25-37

Common TYpPesS.o 25-38
25.35.1Identifiers. 25-40
25.3.5.2Exceptions 25-42

Replication Manager. 25-44
25.3.6.10perationsciiin. 25-44

PropertyManager 25-45
25.3.7.10perationsciiin. 25-46

XXXVil

Contents

XXXViii

25.3.7.2 get_properties 25-49
25.3.8 ObjectGroupManager. 25-49
25.3.8.10perationsc .. 25-50
25.3.9 GenericFactory, 25-56
25.39.11dentifiers 25-59
25.3.9.20perationscii. 25-59
25.3.10 Obtaining the Reference for the
Replication Manager. 25-61
25311 Use Casesttt 25-61
25.3.11.1 Infrastructure-Controlled Membership
Style 25-61
25.3.11.2 Application-Controlled Membership
Style. ... 25-63
25.3.11.3 Unreplicated Object Creation and
Deletion 25-65
25.4 FaultManagement 25-66
25.4.1 OVeIVIEW. . . ottt e 25-66
25.4.2 Architecture 25-67
25.4.2.1 Fault Detection 25-68
25.4.2.2 Fault Notification 25-68
25423 Fault Analysis 25-68
25.4.2.4 Scalability 25-68
25.4.2.5 Deployment of Fault Detectors 25-69
25.4.3 Connecting Fault Detectors to Applications 25-70
25.4.4 Pull-Based Monitoring 25-71
25.4.4.1 PULL Fault Monitoring Style 25-71
25.4.4.2 PullMonitorable Interface 25-71
25.45 FaultEventTypescoivvuvnn.. 25-72
25.4.5.1 ObjectCrashFault 25-72
25.4.6 FaultNotifier 25-73
25.4.6.1 Identifiers L 25-75
25.4.6.20perations i 25-75
25.46.3Filtering 25-77
25.4.6.4 Mapping of the Fault Notifier to
the CosNotification Service 25-78
2547 USECASESttt 25-79
25.4.7.1 The Fault Detector as a Fault
Notification Supplier 25-79
25.4.7.2 The Replication Manager as a Fault
Notification Consumer 25-80
25.5 Logging & Recovery Management. 25-81
2551 OVEIVIEW. . .\ 25-81
25.5.2 Logging Mechanism. 25-81
25.5.3 Recovery Mechanism. 25-82
25.5.4 Checkpointable and Updateable Interfaces. 25-84
25541 |dentifiers 25-85
2554.2Exceptions 25-85
25.5.4.30perationsciii. 25-86
2554 4set_ update 25-87

2555 Use CasSeo 25-87

25.5.5.1 Infrastructure-Controlled
Consistency Style

Common Object Request Broker Architecture (CORBA), v2.6.1 May 2002

Contents

May 2002

26. Secure Interoperability. 26-1
26.1 OVEIVIEW . . ittt e e e e 26-2
26.1.1 ASSUMPLIONS. . .\t 26-3
26.2 Protocol Message Definitions. 26-4
26.2.1 The Security Attribute Service Context Element 26-4
26.2.2 SAS context_data Message Body Types........ 26-5
26.2.2.1 EstablishContext Message Format 26-5
26.2.2.2 ContextError Message Format 26-7
26.2.2.3 CompleteEstablishContext Message
Format 26-7
26.2.2.4 MessagelnContext Message Format ... 26-9
26.2.3 Authorization Token Format 26-10
26.2.3.1 Extensions of the IETF AC Profile for
CSIV2 . . 26-11
26.2.4 Client Authentication Token Format 26-11
26.2.4.1 Username Password GSS Mechanism
(GSSUP) ... 26-12
26.2.5 Identity Token Format. 26-14
26.2.6 Principal Names and Distinguished Names.. 26-15
26.3 Security Attribute Service Protocol 26-16
26.3.1 Compound Mechanisms 26-16
26.3.1.1 Context Validation 26-17
26.3.1.2 Legend for Request Principal
Interpretations 26-18
26.3.1.3 Anonymous ldentity Assertion 26-19
26.3.1.4Presumed Trust 26-19
26.3.1.5 Failed Trust Evaluations 26-19
26.3.1.6 Request Principal Interpretations 26-20
26.3.2 SessionSemantics 26-21
26.3.2.1 Negotiation of Statefulness 26-21
26.3.2.2 Stateful/Reusable Contexts 26-22
26.3.3 TSS State Machine. 26-23
26.3.3.1 TSS State Machine Actions 26-25
26.3.4 CSSStateMachine 26-27
26.3.4.1 CSS State Machine Actions 26-30
26.3.5 ContextError Values and Exceptions. 26-30
26.4 Transport Security Mechanisms. 26-31
26.4.1 Transport Layer Interoperability. 26-31
26.4.2 Transport Mechanism Configuration. 26-31
26.4.2.1 Recommended SSL/TLS Ciphersuites . 26-31
26.5 Interoperable Object References 26-32
26.5.1 Target Security Configuration 26-32
26.5.1.1 AssociationOptions Type 26-33
26.5.1.2 Transport Address 26-35
26.5.1.3TAG_TLS_SEC_TRANS 26-35
26.5.1.4 TAG_SECIOP_SEC TRANS........ 26-37
26.5.1.5 TAG_CSI_SEC_MECH_LIST 26-38
26.5.1.6 TAG_NULL TAG 26-43
26.5.2 Client-side Mechanism Selection 26-43

26.5.3 Client-Side Requirements and Location Binding 26-44

Common Object Request Broker Architecture (CORBA), v2.6.1 XXXIiX

Contents

xl

26.5.3.1 Comments on Establishing Trust in Client 26-45

26.6 Conformance Levels. 26-45
26.6.1 ConformancelevelO....................... 26-45
26.6.1.1 Transport-Layer Requirements 26-45

26.6.1.2 Service Context Protocol Requirements 26-46
26.6.1.3 Interoperable Object References (IORs) 26-47

26.6.2 Conformancelevel 1....................... 26-47
26.6.2.1 Authorization Tokens 26-47
26.6.3 Conformance lLevel 2....................... 26-47
26.6.3.1 Authorization-Token-Based Delegation 26-47
26.6.4 Stateful Conformance 26-48
26.7 Sample Message Flows and Scenarios. 26-48
26.7.1 Confidentiality, Trust in Server, and Trust in Client
Established in the Connection 26-49
26.7.1.1 Sample IOR Configuration 26-50

26.7.2 Confidentiality and Trust in Server Established in the
Connection - Stateless Trust in Client Established in
ServiceContext 26-51

26.7.2.1 Sample IOR Configuration 26-52

26.7.3 Confidentiality, Trust in Server, and Trust in Client

Established in the Connection - Stateless Trust

Association Established in Service Context. 26-53
26.7.3.1 Sample IOR Configuration 26-54
26.7.3.2 Validating the Trusted Server 26-54
26.7.3.3 Presuming the Security of the

Connection 26-55

26.7.4 Confidentiality, Trust in Server, and Trust in Client
Established in the Connection - Stateless Forward Trust

Association Established in Service Context. 26-56
26.7.4.1 Sample IOR Configuration. 26-57
26.8 ReferencesforthisChapter 26-57
26.9 IDL. ... 26-58
26.9.1 ModulelOP 26-58
26.9.1.1 New Types Defined for CSIv2 26-58
26.9.2 Module GSSUP - Username/Password GSSAPI
Token Formats. 26-58

26.9.3 Module CSI - Common Secure Interoperability . 26-59
26.9.4 Module CSIIOP - CSIv2 IOR Component

Tag Definitions 26-63
Appendix A-OMG IDLTags ov v oo i e A-1
Glossary. ... e 1
INdEX . .o e 1
Common Object Request Broker Architecture (CORBA), v2.6.1 May 2002

Preface

About This Document

Under the terms of the collaboration between OMG and X/Open Co Ltd., this
document is a candidate for endorsement by X/Open, initially as a Preliminary
Specification and later as a full CAE Specification. The collaboration between OMG
and X/Open Co Ltd. ensures joint review and cohesive support for emerging object-
based specifications.

X/Open Preliminary Specifications undergo close scrutiny through a review process at
X/Open before publication and are inherently stable specifications. Upgrade to full
CAE Specification, after a reasonable interval, takes place following further review by
X/Open. This further review considers the implementation experience of members and
the full implications of conformance and branding.

Object Management Group

The Object Management Group, Inc. (OMG) is an international organization supported
by over 600 members, including information system vendors, software developers and
users. Founded in 1989, the OMG promotes the theory and practice of object-oriented
technology in software development. The organization's charter includes the
establishment of industry guidelines and object management specifications to provide a
common framework for application development. Primary goals are the reusability,
portability, and interoperability of object-based software in distributed, heterogeneous
environments. Conformance to these specifications will make it possible to develop a
heterogeneous applications environment across all major hardware platforms and
operating systems.

OMG's objectives are to foster the growth of object technology and influence its
direction by establishing the Object Management Architecture (OMA). The OMA
provides the conceptual infrastructure upon which all OMG specifications are based.

May 2002 Common Object Request Broker Architecture (CORBA), v2.6.1 XXXVil

X/Open

X/Open is an independent, worldwide, open systems organization supported by most of
the world's largest information system suppliers, user organizations and software
companies. Its mission is to bring to users greater value from computing, through the
practical implementation of open systems. X/Open’s strategy for achieving its mission
is to combine existing and emerging standards into a comprehensive, integrated
systems environment called the Common Applications Environment (CAE).

The components of the CAE are defined in X/Open CAE specifications. These contain,
among other things, an evolving portfolio of practical application programming
interfaces (APIs), which significantly enhance portability of application programs at
the source code level. The APls also enhance the interoperability of applications by
providing definitions of, and references to, protocols and protocol profiles.

The X/Open specifications are also supported by an extensive set of conformance tests
and by the X/Open trademark (XPG brand), which is licensed by X/Open and is
carried only on products that comply with the CAE specifications.

Intended Audience

The architecture and specifications described in this manual are aimed at software
designers and developers who want to produce applications that comply with OMG
standards for the Object Request Broker (ORB). The benefit of compliance is, in
general, to be able to produce interoperable applications that are based on distributed,
interoperating objects. As defined by the Object Management Group (OMG) in the
Object Management Architecture Guidae ORB provides the mechanisms by which
objects transparently make requests and receive responses. Hence, the ORB provides
interoperability between applications on different machines in heterogeneous
distributed environments and seamlessly interconnects multiple object systems.

Context of CORBA

The key to understanding the structure of the CORBA architecture is the Reference
Model, which consists of the following components:

» Object Request Broker, which enables objects to transparently make and receive
requests and responses in a distributed environment. It is the foundation for
building applications from distributed objects and for interoperability between
applications in hetero- and homogeneous environments. The architecture and
specifications of the Object Request Broker are described in this manual

» Object Services a collection of services (interfaces and objects) that support
basic functions for using and implementing objects. Services are necessary to
construct any distributed application and are always independent of application
domains. For example, the Life Cycle Service defines conventions for creating,
deleting, copying, and moving objects; it does not dictate how the objects are
implemented in an application. Specifications for Object Services are contained in
CORBAservices: Common Object Services Specification.

XXXVili Common Object Request Broker Architecture (CORBA), v2.6.1 May 2002

« Common Facilities, a collection of services that many applications may share,
but which are not as fundamental as the Object Services. For instance, a system
management or electronic mail facility could be classified as a common facility.
Information about Common Facilities will be containedG®RBAfacilities:

Common Facilities Architecture

» Application Objects, which are products of a single vendor on in-house
development group that controls their interfaces. Application Objects correspond
to the traditional notion of applications, so they are not standardized by OMG.
Instead, Application Objects constitute the uppermost layer of the Reference
Model.

The Object Request Broker, then, is the core of the Reference Model. It is like a
telephone exchange, providing the basic mechanism for making and receiving calls.
Combined with the Object Services, it ensures meaningful communication between
CORBA-compliant applications.

Associated Documents

May 2002

The CORBA documentation set includes the following books:

« Object Management Architecture Guidefines the OMG's technical objectives
and terminology and describes the conceptual models upon which OMG
standards are based. It also provides information about the policies and
procedures of OMG, such as how standards are proposed, evaluated, and
accepted.

* CORBA: Common Object Request Broker Architecture and Specificetiatains
the architecture and specifications for the Object Request Broker.

+ CORBAservices: Common Obiject Services Specificatimbains specifications
for the Object Services.

« CORBAfacilities: Common Facilities Architectucentains the architecture for
Common Facilities.

OMG collects information for each book in the documentation set by issuing Requests
for Information, Requests for Proposals, and Requests for Comment and, with its
membership, evaluating the responses. Specifications are adopted as standards only
when representatives of the OMG membership accept them as such by vote.

To obtain books in the documentation set, or other OMG publications, refer to the
enclosed subscription card or contact the Object Management Group, Inc. at:

OMG Headquarters
250 First Avenue, Suite 201
Needham, MA 02494
USA
Tel: +1-781-444-0404
Fax: +1-781-444-0320
pubs@omg.org
http://www.omg.org

CORBA, v2.6.1: Associated Documents XXXIX

Definition of CORBA Compliance

The minimum required for a CORBA-compliant system is adherence to the
specifications in CORBA Core and one mapping. Each additional language mapping is
a separate, optional compliance point. Optional means users aren't required to
implement these points if they are unnecessary at their site, but if implemented, they
must adhere to thEORBAspecifications to be called CORBA-compliant. For instance,

if a vendor supports C++, their ORB must comply with the OMG IDL to C++ binding
specified in theC++ Language Mapping Specification

Interoperability and Interworking are separate compliance points. For detailed
information about Interworking compliance, refer to “Compliance to COM/CORBA
Interworking” on page 17-34.

As described in th©MA Guide the OMG’s Core Object Model consists of a core and
components. Likewise, the body GIORBAspecifications is divided into core and
component-like specifications. The structure of this manual reflects that division.

The CORBAcore specifications are categorized as follows:
CORBA Core, as specified in Chapters 1-11

CORBA Interoperability , as specified in Chapters 12-16
CORBA Interworking , as specified in Chapters 17-21
CORBA Quiality of Service, as specified in Chapters 22-26

Note —The CORBA Language Mappings have been separated from the CORBA Core
and each language mapping is its own separate book. Refer to CORBA Language
Mappings at the OMG Formal Document web area for this information.

Structure of This Manual

xl

This manual is divided into the categories of Core, Interoperability, and Interworking.
These divisions reflect the compliance points of CORBA. In addition to this preface,
CORBA: Common Object Request Broker Architecture and Specification contains the
following chapters:

Core

Chapter 1 - The Object Model describes the computation model that underlies the
CORBA architecture.

Chapter 2 - CORBA Overview contains the overall structure of the ORB architecture
and includes information about CORBA interfaces and implementations.

Common Object Request Broker Architecture (CORBA), v2.6.1 May 2002

May 2002

Chapter 3 - OMG IDL Syntax and Semantics details the OMG interface definition
language (OMG IDL), which is the language used to describe the interfaces that client
objects call and object implementations provide.

Chapter 4 - ORB Interface defines the interface to the ORB functions that do not
depend on object adapters: these operations are the same for all ORBs and object
implementations.

Chapter 5 - Value Type Semanticdescribes the semantics of passing an object by
value, which is similar to that of standard programming languages.

Chapter 6 - Abstract Interface Semanticsexplains an IDL abstract interface, which
provides the capability to defer the determination of whether an object is passed by
reference or by value until runtime.

Chapter 7 - The Dynamic Invocation Interface details the DII, the client’s side of
the interface that allows dynamic creation and invocation of request to objects.

Chapter 8 -- The Dynamic Skeleton Interfacedescribegshe DSI, the server's-side
interface that can deliver requests from an ORB to an object implementation that does
not have compile-time knowledge of the type of the object it is implementing. DSI is
the server's analogue of the client's Dynamic Invocation Interface (DlII).

Chapter 9 - Dynamic Management of Any Valuesdetails the interface for the

Dynamic Any type. This interface allows statically-typed programming languages such
as C and Java to create or receive values of type Any without compile-time knowledge
that the typer contained in the Any.

Chapter 10 - Interface Repositoryexplains the component of the ORB that manages
and provides access to a collection of object definitions.

Chapter 11 - Portable Object Adapter defines a group of IDL interfaces than an
implementation uses to access ORB functions.

Interoperability

Chapter 12 - Interoperability Overview describes the interoperability architecture
and introduces the subjects pertaining to interoperability: inter-ORB bridges; general
and Internet inter-ORB protocols (GIOP and 11OP); and environment-specific, inter-
ORB protocols (ESIOPSs).

Chapter 13 - ORB Interoperability Architecture introduces the framework of ORB
interoperability, including information about domains; approaches to inter-ORB
bridges; what it means to be compliant with ORB interoperability; and ORB Services
and Requests.

Chapter 14 - Building Inter-ORB Bridges explains how to build bridges for an
implementation of interoperating ORBs.

Chapter 15 - General Inter-ORB Protocol describes the general inter-ORB protocol
(GIOP) and includes information about the GIOP’s goals, syntax, format, transport,
and object location. This chapter also includes information about the Internet inter-
ORB protocol (IIOP).

CORBA, v2.6.1: Structure of This Manual xli

xlii

Chapter 16 - DCE ESIOP - Environment-Specific Inter-ORB Protocol (ESIOP)
details a protocol for the OSF DCE environment. The protocol is called the DCE
Environment Inter-ORB Protocol (DCE ESIOP).

Interworking

Chapter 17 - Interworking Architecture describes the architecture for
communication between two object management systems: Microsoft's COM (including
OLE) and the OMG’s CORBA.

Chapter 18 - Mapping: COM and CORBA explains the data type and interface
mapping between COM and CORBA. The mappings are described in the context of
both Win16 and Win32 COM.

Chapter 19 - Mapping: OLE Automation and CORBA details the two-way mapping
between OLE Automation (in ODL) and CORBA (in OMG IDL).

Note: Chapter 19 also includes an appendix describing solutions that vendors might
implement to support existing and older OLE Automation controllers and an appendix
that provides an example of how the Naming Service could be mapped to an OLE
Automation interface according to the Interworking specification.

Chapter 20 - Interoperability with non-CORBA Systems describes the effective
access to CORBA servers through DCOM and the reverse.

Chapter 21 - Portable Interceptorsdefines ORB operations that allow services such
as security to be inserted in the invocation path.

Quality of Service (QoS)

Chapter 22 - CORBA Messagingincludes three general topics: Quality of Service,
Asynchronous Method Invocations (to include Time-Independent or “Persistent”
Requests), and the specification of interoperable Routing interfaces to support the
transport of requests asynchronously from the handling of their replies.

Chapter 23 - Minimum CORBA describes minimumCORBA, a subset of CORBA
designed for systems with limited resources.

Chapter 24 - Real-Time CORBA defines an optional set of extensions to CORBA
tailored to equip ORBs to be used as a component of a Real-Time system.

Chapter 25 - Fault Tolerant CORBA describes Fault Tolerant systems, basic fault
tolerance mechanisms, replication management, and logging and recovery
management.

Chapter 26 - Common Secure Interoperabilitydefines the CORBA Security

Attribute Service (SAS) protocol and its use within the CSIv2 architecture to address
the requirements of CORBA security for interoperable authentication, delegation, and
privileges.

Common Object Request Broker Architecture (CORBA), v2.6.1 May 2002

Typographical Conventions

Acknowledgements

May 2002

The type styles shown below are used in this document to distinguish programming
statements from ordinary English. However, these conventions are not used in tables or
section headings where no distinction is necessary.

Helvetica bold - OMG Interface Definition Language (OMG IDL) and syntax
elements.

Courier bold - Programming language elements.
Helvetica - Exceptions

Terms that appear iitalics are defined in the glossary. Italic text also represents the
name of a document, specification, or other publication.

The following companies submitted and/or supported parts of the specifications that
were approved by the Object Management Group to becO@BRBA:

e Adiron, LLC

* Alcatel

¢ BEA Systems, Inc.

* BNR Europe Ltd.

» Borland International, Inc.

e Compag Computer Corporation

e Concept Five Technologies

< Cooperative Research Centre for Distributed Systems Technology (DSTC)
« Defense Information Systems Agency
« Digital Equipment Corporation
 Ericsson

« Eternal Systems, Inc.

« Expersoft Corporation

» France Telecom

e FUJITSU LIMITED

« Genesis Development Corporation

« Gensym Corporation

« Hewlett-Packard Company

« HighComm

« Highlander Communications, L.C.

« Humboldt-University

« HyperDesk Corporation

* ICL, Plc.

« Inprise Corporation

« International Business Machines Corporation
« International Computers, Inc.

CORBA, v2.6.1: Typographical Conventions xliii

* IONA Technologies, Plc.

» Lockheed Martin Federal Systems, Inc.
» Lucent Technologies, Inc.

* Micro Focus Limited

* MITRE Corporation

* Motorola, Inc.

* NCR Corporation

* NEC Corporation

* Netscape Communications Corporation
* Nortel Networks

* Northern Telecom Corporation

* Novell, Inc.

» Object Design, Inc.

» Objective Interface Systems, Inc.

» Object-Oriented Concepts, Inc.

* OC Systems, Inc.

* Open Group - Open Software Foundation
» Oracle Corporation

» PeerlLogic, Inc.

» Persistence Software, Inc.

* Promia, Inc.

» Siemens Nixdorf Informationssysteme AG
* SPAWAR Systems Center

* Sun Microsystems, Inc.

* SunSoft, Inc.

» Sybase, Inc.

« Telefénica Investigacion y Desarrollo S.A. Unipersonal
* TIBCO, Inc.

« Tivoli Systems, Inc.

* Tri-Pacific Software, Inc.

 University of California, Santa Barbara
 University of Rhode Island

 Visual Edge Software, Ltd.

* Washington University

In addition to the preceding contributors, the OMG would like to acknowledge Mark
Linton at Silicon Graphics and Doug Lea at the State University of New York at
Oswego for their work on the C++ mapping.

References
IDL Type Extensions RFP, March 1995. OMG TC Document 95-1-35.

xliv Common Object Request Broker Architecture (CORBA), v2.6.1 May 2002

May 2002

The Common Object Request Broker: Architecture and Specification, Revision 2.2,
February 1998.

CORBAservices: Common Object Services Specification, Revised Edition, OMG TC
Document 95-3-31.

COBOL Language Mapping RFP, December 1995. OMG TC document 95-12-10.
COBOL 85 ANSI X3.23-1985 / ISO 1989-1985.
IEEE Standard for Binary Floating-Point Arithmetic, ANIS/IEEE Std 754-1985.

XDR: External Data Representation Standard, RFC1832, R. Srinivasan, Sun Micro-
systems, August 1995.

OSF Character and Code Set Registry, OSF DCE SIG RFC 40.1 (Public Version), S.
(Martin) O’'Donnell, June 1994.

RPC Runtime Support For 18N Characters — Functional Specification, OSF DCE
SIG RFC 41.2, M. Romagna, R. Mackey, November 1994.

X/Open System Interface Definitions, Issue 4 Version 2, 1995.

CORBA, v2.6.1: References xlv

xlvi Common Object Request Broker Architecture (CORBA), v2.6.1 May 2002

1.1 Overview

May 2002

The Object Model 1

This chapter describes the concrete object model that underlies the CORBA
architecture. The model is derived from the abstract Core Object Model defined by the
Object Management Group in tl@@bject Management Architecture Guide

(Information about th®©MA Guideand other books in the CORBA documentation set

is provided in this document’s preface.)

Contents

This chapter contains the following sections.

Section Title Page
“Overview” 1-1
“Object Semantics” 1-2
“Object Implementation” 1-9

The object model provides an organized presentation of object concepts and
terminology. It defines a partial model for computation that embodies the key
characteristics of objects as realized by the submitted technologies. The OMG object
model isabstractin that it is not directly realized by any particular technology. The
model described here is@ncreteobject model. A concrete object model may differ
from the abstract object model in several ways:

® |t may elaboratethe abstract object model by making it more specific, for example,
by defining the form of request parameters or the language used to specify types.

® |t may populatethe model by introducing specific instances of entities defined by
the model, for example, specific objects, specific operations, or specific types.

Common Object Request Broker Architecture (CORBA), v2.6.1 1-1

® [t mayrestrictthe model by eliminating entities or placing additional restrictions on
their use.

An object system is a collection of objects that isolates the requestors of services
(clients) from the providers of services by a well-defined encapsulating interface. In
particular, clients are isolated from the implementations of services as data
representations and executable code.

The object model first describes concepts that are meaningful to clients, including such
concepts as object creation and identity, requests and operations, types and signatures.
It then describes concepts related to object implementations, including such concepts
as methods, execution engines, and activation.

The object model is most specific and prescriptive in defining concepts meaningful to
clients. The discussion of object implementation is more suggestive, with the intent of
allowing maximal freedom for different object technologies to provide different ways
of implementing objects.

There are some other characteristics of object systems that are outside the scope of the
object model. Some of these concepts are aspects of application architecture, some are
associated with specific domains to which object technology is applied. Such concepts
are more properly dealt with in an architectural reference model. Examples of excluded
concepts are compound objects, links, copying of objects, change management, and
transactions. Also outside the scope of the object model are the details of control
structure: the object model does not say whether clients and/or servers are single-
threaded or multi-threaded, and does not specify how event loops are programmed nor
how threads are created, destroyed, or synchronized.

This object model is an example ofctassical object modelwhere a client sends a
message to an object. Conceptually, the object interprets the message to decide what
service to perform. In the classical model, a message identifies an object and zero or
more actual parameters. As in most classical object models, a distinguished first
parameter is required, which identifies the operation to be performed; the interpretation
of the message by the object involves selecting a method based on the specified
operation. Operationally, of course, method selection could be performed either by the
object or the ORB.

1.2 Object Semantics

An object system provides services to clientsclient of a service is any entity
capable of requesting the service.

This section defines the concepts associated with object semantics, that is, the concepts
relevant to clients.

1.2.1 Objects

An object system includes entities known as objects.ofjectis an identifiable,
encapsulated entity that provides one or more services that can be requested by a
client.

Common Object Request Broker Architecture (CORBA), v2.6.1 May 2002

May 2002

1.2.2 Requests

Clients request services by issuing requests.

The termrequestis broadly used to refer to the entire sequence of causally related
events that transpires between a client initiating it and the last event causally associated
with that initiation. For example:

« the client receives the final response associated withrédtatestfrom the server,
« the server carries out the associated operation in case of a oneway request, or

« the sequence of events associated withréigiestterminates in a failure of some
sort. The initiation of a Request is an event.

The information associated with a request consists of an operation, a target object, zero
or more (actual) parameters, and an optional request context.

A request formis a description or pattern that can be evaluated or performed multiple
times to cause the issuing of requests. As described in the OMG IDL Syntax and
Semantics chapter, request forms are defined by particular language bindings. An
alternative request form consists of calls to the dynamic invocation interface to create
an invocation structure, add arguments to the invocation structure, and to issue the
invocation (refer to th®ynamic Invocation Interfacehapter for descriptions of these
request forms).

A valueis anything that may be a legitimate (actual) parameter in a request. More
particularly, a value is an instance of an OMG IDL data type. There are non-object
values, as well as values that reference objects.

An object referencés a value that reliably denotes a particular object. Specifically, an
object reference will identify the same object each time the reference is used in a
request (subject to certain pragmatic limits of space and time). An object may be
denoted by multiple, distinct object references.

A request may have parameters that are used to pass data to the target object; it may
also have a request context that provides additional information about the request. A
request context is a mapping from strings to strings.

A request causes a service to be performed on behalf of the client. One possible
outcome of performing a service is returning to the client the results, if any, defined for
the request.

If an abnormal condition occurs during the performance of a request, an exception is
returned. The exception may carry additional return parameters particular to that
exception.

The request parameters are identified by position. A parameter may be an input
parameter, an output parameter, or an input-output parameter. A request may also
return a singleeturn result valueas well as the results stored into the output and
input-output parameters.

The following semantics hold for all requests:

® Any aliasing of parameter values is neither guaranteed removed nor guaranteed to
be preserved.

CORBA, v2.6: Object Semantics 1-3

® The order in which aliased output parameters are written is not guaranteed.

® The return result and the values stored into the output and input-output parameters
are undefined if an exception is returned.

For descriptions of the values and exceptions that are permitted, see Section 1.2.4,
“Types,” on page 1-4 and Section 1.2.8.3, “Exceptions,” on page 1-8.

1.2.3 Object Creation and Destruction

Objects can be created and destroyed. From a client’s point of view, there is no special
mechanism for creating or destroying an object. Objects are created and destroyed as
an outcome of issuing requests. The outcome of object creation is revealed to the client
in the form of an object reference that denotes the new object.

1.2.4 Types

A typeis an identifiable entity with an associated predicate (a single-argument
mathematical function with a boolean result) defined over entities. An esdtigfiesa
type if the predicate is true for that entity. An entity that satisfies a type is called a
member of the type

Types are used in signatures to restrict a possible parameter or to characterize a
possible result.

The extension of a types the set of entities that satisfy the type at any particular time.

An object typeis a type whose members are object references. In other words, an
object type is satisfied only by object references.

Constraints on the data types in this model are shown in this section.

1.2.4.1 Basictypes
® 16-bit, 32-bit, and 64-bit signed and unsigned 2’s complement integers.

® Single-precision (32-bit), double-precision (64-bit), and double-extended (a
mantissa of at least 64 bits, a sign bit and an exponent of at least 15 bits) IEEE
floating point numbers.

® Fixed-point decimal numbers of up to 31 significant digits.

® Characters, as defined in ISO Latin-1 (8859.1) and other single- or multi-byte
character sets.

®* A boolean type taking the values TRUE and FALSE.

® An 8-bit opaque detectable, guaranteech¢d undergo any conversion during
transfer between systems.

®* Enumerated types consisting of ordered sequences of identifiers.

Common Object Request Broker Architecture (CORBA), v2.6.1 May 2002

1

May 2002

1.2.4.2

® A string type, which consists of a variable-length array of characters; the length of
the string is a non-negative integer, and is available at run-time. The length may
have a maximum bound defined.

* A wide character string type, which consist of a variable-length array of (fixed
width) wide characters; the length of the wide string is a non-negative integer, and
is available at run-time. The length may have a maximum bound defined.

® A container type “any,” which can represent any possible basic or constructed type.
® Wide characters that may represent characters from any wide character set.

® Wide character strings, which consist of a length, available at runtime, and a
variable-length array of (fixed width) wide characters.

Constructed types
* Arecord type (called struct), which consists of an ordered set of (name,value) pairs.

® A discriminated union type, which consists of a discriminator (whose exact value is
always available) followed by an instance of a type appropriate to the discriminator
value.

®* A sequence type, which consists of a variable-length array of a single type; the
length of the sequence is available at run-time.

® An array type, which consists of a fixed-shape multidimensional array of a single
type.

®* An interface type, which specifies the set of operations that an instance of that type
must support.

® A value type, which specifies state as well as a set of operations that an instance of
that type must support.

Entities in a request are restricted to values that satisfy these type constraints. The legal
entities are shown in . No particular representation for entities is defined.

CORBA, v2.6: Object Semantics 1-5

Short
Obiject Reference Long
LongLong
UShort
Ulong
UlongLong
—— Abstract Interface Float
Double
LongDouble
Fixed

Char
Wchar
String
Wstring
Boolean
Octet
Enum

Any

— Value Type

Entity Basic Value

Struct
Sequence
Union
Array

Constructed Values

Figure 1-1 Legal Values

1.2.5 Interfaces

An interfaceis a description of a set of possible operations that a client may request of
an object, through that interface. It provides a syntactic description of how a service
provided by an object supporting this interface, is accessed via this set of operations.
An objectsatisfiesan interface if it provides its service through the operations of the
interface according to the specification of the operations (see Section 1.2.8,
“Operations,” on page 1-7).

Theinterface typefor a given interface is an object type, such that an object reference
will satisfy the type, if and only if the referent object also satisfies the interface.

Interfaces are specified in OMG IDL. Interface inheritance provides the composition
mechanism for permitting an object to support multiple interfaces.prireipal
interfaceis simply the most-specific interface that the object supports, and consists of
all operations in the transitive closure of the interface inheritance graph.

Interfaces satisfy the Liskov substitution principle. If interface A is derived from
interface B, then a reference to an object that supports interface A can be used where
the formal type of a parameter is declared to be B.

1.2.6 Value Types

A value typeis an entity, which shares many of the characteristics of interfaces and
structs. It is a description of both a set of operations that a client may request and of
state that is accessible to a client. Instances of a value type are always local concrete
implementations in some programming language.

Common Object Request Broker Architecture (CORBA), v2.6.1 May 2002

1

A value type, in addition to the operations and state defined for itself, may also inherit
from other value types, and through multiple inheritance support other interfaces.

Value types are specified in OMG IDL.

An abstract value typedescribes a value type that is a “pure” bundle of operations
with no state.

1.2.7 Abstract Interfaces

An abstract interfacds an entity, which may at runtime represent either a regular
interface (see Section 1.2.5, “Interfaces,” on page 1-6) or a value type (see

Section 1.2.6, “Value Types,” on page 1-6). Like an abstract value type, it is a pure
bundle of operations with no state. Unlike an abstract value type, it does not imply
pass-by-value semantics, and unlike a regular interface type, it does not imply pass-by-
reference semantics. Instead, the entity's runtime type determines which of these
semantics are used.

1.2.8 Operations

An operationis an identifiable entity that denotes the indivisible primitive of service
provision that can be requested. The act of requesting an operation is referred to as
invoking the operationAn operation is identified by anperation identifier

An operation has gignaturethat describes the legitimate values of request parameters
and returned results. In particularsenatureconsists of:

* A specification of the parameters required in requests for that operation.
® A specification of the result of the operation.

® An identification of the user exceptions that may be raised by an invocation of the
operation.

® A specification of additional contextual information that may affect the invocation.

® An indication of the execution semantics the client should expect from an
invocation of the operation.

Operations are (potentiallygeneric meaning that a single operation can be uniformly
invoked on objects with different implementations, possibly resulting in observably
different behavior. Genericity is achieved in this model via interface inheritance in IDL
and the total decoupling of implementation from interface specification.

The general form for an operation signature is:

[oneway] <op_type_spec> <identifier> (parami, ..., paramL)
[raises(exceptl,...,exceptN)] [context(namel, ..., nameM)]

where:

®* The optionaloneway keyword indicates that best-effort semantics are expected of
requests for this operation; the default semantics are exactly-once if the operation
successfully returns results or at-most-once if an exception is returned.

May 2002 CORBA, v2.6: Object Semantics 1-7

®* The<op_type_spec> is the type of the return result.
®* The<identifier> provides a name for the operation in the interface.

®* The operation parameters needed for the operation; they are flagged with the
modifiersin, out, orinout to indicate the direction in which the information flows
(with respect to the object performing the request).

®* The optionalraises expression indicates which user-defined exceptions can be
signaled to terminate an invocation of this operation; if such an expression is not
provided, no user-defined exceptions will be signaled.

® The optionalcontext expression indicates which request context information will
be available to the object implementation; no other contextual information is
required to be transported with the request.

1.2.8.1 Parameters

A parameter is characterized by its mode and its type.bdeindicates whether the
value should be passed from client to serua)),(from server to clientdut), or both
(inout). The parameter’s type constrains the possible value, which may be passed in
the directions dictated by the mode.

1.2.8.2 Return Result

The return result is a distinguishedit parameter.

1.2.8.3 Exceptions

An exceptioris an indication that an operation request was not performed successfully.
An exception may be accompanied by additional, exception-specific information.

The additional, exception-specific information is a specialized form of record. As a
record, it may consist of any of the types described in Section 1.2.4, “Types,” on
page 1-4.

All signatures implicitly include the system exceptions; the standard system exceptions
are described in Section 4.12.2, “System Exceptions,” on page 4-62.

1.2.8.4 Contexts
A request contexprovides additional, operation-specific information that may affect
the performance of a request.

1.2.8.5 Execution Semantics

Two styles of execution semantics are defined by the object model:

® At-most-once: if an operation request returns successfully, it was performed exactly
once; if it returns an exception indication, it was performed at-most-once.

1-8 Common Object Request Broker Architecture (CORBA), v2.6.1 May 2002

1

® Best-effort: a best-effort operation is a request-only operation (i.e., it cannot return
any results and the requester never synchronizes with the completion, if any, of the
request).

The execution semantics to be expected is associated with an operation. This prevents
a client and object implementation from assuming different execution semantics.

Note that a client is able to invoke an at-most-once operation in a synchronous or
deferred-synchronous manner.

1.2.9 Attributes

An interface may have attributes. An attribute is logically equivalent to declaring a pair
of accessor functions: one to retrieve the value of the attribute and one to set the value
of the attribute.

An attribute may be read-only, in which case only the retrieval accessor function is
defined.

1.3 Object Implementation

May 2002

This section defines the concepts associated with object implementation (i.e., the
concepts relevant to realizing the behavior of objects in a computational system).

The implementation of an object system carries out the computational activities needed
to effect the behavior of requested services. These activities may include computing
the results of the request and updating the system state. In the process, additional
requests may be issued.

The implementation model consists of two parts: the execution model and the
construction model. The execution model describes how services are performed. The
construction model describes how services are defined.

1.3.1 The Execution Model: Performing Services

A requested service is performed in a computational system by executing code that
operates upon some data. The data represents a component of the state of the
computational system. The code performs the requested service, which may change the
state of the system.

Code that is executed to perform a service is calledezhod A method is an

immutable description of a computation that can be interpreted by an execution engine.
A method has an immutable attribute callechathod formathat defines the set of
execution engines that can interpret the method eR@cution enginés an abstract
machine (not a program) that can interpret methods of certain formats, causing the
described computations to be performed. An execution engine defines a dynamic
context for the execution of a method. The execution of a method is calteettaod
activation

CORBA, v2.6: Object Implementation 1-9

1-10

When a client issues a request, a method of the target object is called. The input
parameters passed by the requestor are passed to the method and the output and inpu
output parameters and return result value (or exception and its parameters) are passed
back to the requestor.

Performing a requested service causes a method to execute that may operate upon an
object’s persistent state. If the persistent form of the method or state is not accessible
to the execution engine, it may be necessary to first copy the method or state into an
execution context. This process is callectivation the reverse process is called
deactivation

1.3.2 The Construction Model

A computational object system must provide mechanisms for realizing behavior of
requests. These mechanisms include definitions of object state, definitions of methods,
and definitions of how the object infrastructure is to select the methods to execute and
to select the relevant portions of object state to be made accessible to the methods.
Mechanisms must also be provided to describe the concrete actions associated with
object creation, such as association of the new object with appropriate methods.

An object implementation-or implementationfor short—is a definition that provides

the information needed to create an object and to allow the object to participate in
providing an appropriate set of services. An implementation typically includes, among
other things, definitions of the methods that operate upon the state of an object. It also
typically includes information about the intended types of the object.

Common Object Request Broker Architecture (CORBA), v2.6.1 May 2002

CORBAOverview

The Common Object Request Broker Architecture (CORBA) is structured to allow
integration of a wide variety of object systems. The motivation for some of the features
may not be apparent at first, but as we discuss the range of implementations, policies,
optimizations, and usages we expect to encompass, the value of the flexibility becomes

more clear.

Contents

This chapter contains the following sections.

Section Title Page
“Structure of an Object Request Broker” 2-1
“Example ORBSs” 2-11
“Structure of a Client” 2-12
“Structure of an Object Implementation” 2-13
“Structure of an Object Adapter” 2-15
“CORBA Required Object Adapter” 2-17
“The Integration of Foreign Object Systems” 2-17

2.1 Structure of an Object Request Broker

Figure 2-1 shows a request being sent by a client to an object implementation. The
Client is the entity that wishes to perform an operation on the object and the Object
Implementation is the code and data that actually implements the object.

Common Object Request Broker Architecture (CORBA), v2.6.1

2-2

Client

) G)bject Implementation

equest

ORB

Figure 2-1 A Request Being Sent Through the Object Request Broker

The ORB is responsible for all of the mechanisms required to find the object
implementation for the request, to prepare the object implementation to receive the
request, and to communicate the data making up the request. The interface the client
sees is completely independent of where the object is located, what programming
language it is implemented in, or any other aspect that is not reflected in the object’s
interface.

Figure 2-2 on page 2-3 shows the structure of an individual Object Request Broker
(ORB). The interfaces to the ORB are shown by striped boxes, and the arrows indicate
whether the ORB is called or performs an up-call across the interface.

Common Object Request Broker Architecture (CORBA), v2.6.1 May 2002

Client Object Implementation

Dynamic IDL ORB Static IDL | | Dynamic Object
Invocation Stubs Interface Skeleton Skeleton Adapter
ORB Core

WNNNN\N\N\N] Interface identical for all ORB implementations
There may be multiple object adapters
I There are stubs and a skeleton for each object type * Normal call interface
[1 ORB-dependent interface

f Up-call interface

Figure 2-2 The Structure of Object Request Interfaces

To make a request, the Client can use the Dynamic Invocation interface (the same
interface independent of the target object’s interface) or an OMG IDL stub (the specific
stub depending on the interface of the target object). The Client can also directly
interact with the ORB for some functions.

The Object Implementation receives a request as an up-call either through the OMG
IDL generated skeleton or through a dynamic skeleton. The Object Implementation
may call the Object Adapter and the ORB while processing a request or at other times.

Definitions of the interfaces to objects can be defined in two ways. Interfaces can be
defined statically in an interface definition language, called the OMG Interface
Definition Language (OMG IDL). This language defines the types of objects according
to the operations that may be performed on them and the parameters to those
operations. Alternatively, or in addition, interfaces can be added to an Interface
Repository service; this service represents the components of an interface as objects,
permitting run-time access to these components. In any ORB implementation, the
Interface Definition Language (which may be extended beyond its definition in this
document) and the Interface Repository have equivalent expressive power.

May 2002 CORBA, v2.6.1: Structure of an Object Request Broker 2-3

2-4

The client performs a request by having access to an Object Reference for an object
and knowing the type of the object and the desired operation to be performed. The
client initiates the request by calling stub routines that are specific to the object or by
constructing the request dynamically (see Figure 2-3).

Client

Invocation

DNNNNNNNY - Interface identical for all ORB implementations

B There are stubs and a skeleton for each object type
[1 ORB-dependent interface

Figure 2-3 A Client Using the Stub or Dynamic Invocation Interface

The dynamic and stub interface for invoking a request satisfy the same request
semantics, and the receiver of the message cannot tell how the request was invoked.

The ORB locates the appropriate implementation code, transmits parameters, and
transfers control to the Object Implementation through an IDL skeleton or a dynamic
skeleton (see Figure 2-4 on page 2-5). Skeletons are specific to the interface and the
object adapter. In performing the request, the object implementation may obtain some
services from the ORB through the Object Adapter. When the request is complete,
control and output values are returned to the client.

Common Object Request Broker Architecture (CORBA), v2.6.1 May 2002

Object Implementation

NN ___ 1NN

ORB Static IDL | | Dynamic
Interface Skeleton Skeleton

Object
Adapter

ORB Core

N\N\NN\NN\N\NY Interface identical for all ORB implementations
There may be multiple object adapters
I There are stubs and a skeleton for each object type * Normal call interface
[1 ORB-dependent interface

f Up-call interface

Figure 2-4 An Object Implementation Receiving a Request

The Object Implementation may choose which Object Adapter to use. This decision is
based on what kind of services the Object Implementation requires.

Figure 2-5 on page 2-6 shows how interface and implementation information is made
available to clients and object implementations. The interface is defined in OMG IDL
and/or in the Interface Repository; the definition is used to generate the client Stubs
and the object implementation Skeletons.

May 2002 CORBA, v2.6.1: Structure of an Object Request Broker 2-5

2-6

IDL

Definitions Installation

Implementation

Implementation
Interface Stubs Skeletons RepOSIt_Ory
Repository — ||
Client Object Implementation

Figure 2-5 Interface and Implementation Repositories

The object implementation information is provided at installation time and is stored in
the Implementation Repository for use during request delivery.

2.1.1 Object Request Broker

In the architecture, the ORB is not required to be implemented as a single component,
but rather it is defined by its interfaces. Any ORB implementation that provides the
appropriate interface is acceptable. The interface is organized into three categories:

1. Operations that are the same for all ORB implementations
2. Operations that are specific to particular types of objects
3. Operations that are specific to particular styles of object implementations

Different ORBs may make quite different implementation choices, and, together with
the IDL compilers, repositories, and various Object Adapters, provide a set of services
to clients and implementations of objects that have different properties and qualities.

There may be multiple ORB implementations (also described as multiple ORBS),
which have different representations for object references and different means of
performing invocations. It may be possible for a client to simultaneously have access to

Common Object Request Broker Architecture (CORBA), v2.6.1 May 2002

2

May 2002

two object references managed by different ORB implementations. When two ORBs
are intended to work together, those ORBs must be able to distinguish their object
references. It is not the responsibility of the client to do so.

The ORB Core is that part of the ORB that provides the basic representation of objects
and communication of requests. CORBA is designed to support different object
mechanisms, and it does so by structuring the ORB with components above the ORB
Core, which provide interfaces that can mask the differences between ORB Cores.

2.1.2 Clients

A client of an object has access to an object reference for the object, and invokes
operations on the object. A client knows only the logical structure of the object
according to its interface and experiences the behavior of the object through
invocations. Although we will generally consider a client to be a program or process
initiating requests on an object, it is important to recognize that something is a client
relative to a particular object. For example, the implementation of one object may be a
client of other objects.

Clients generally see objects and ORB interfaces through the perspective of a language
mapping, bringing the ORB right up to the programmer’s level. Clients are maximally
portable and should be able to work without source changes on any ORB that supports
the desired language mapping with any object instance that implements the desired
interface. Clients have no knowledge of the implementation of the object, which object
adapter is used by the implementation, or which ORB is used to access it.

2.1.3 Object Implementations

An object implementation provides the semantics of the object, usually by defining
data for the object instance and code for the object’'s methods. Often the
implementation will use other objects or additional software to implement the behavior
of the object. In some cases, the primary function of the object is to have side-effects
on other things that are not objects.

A variety of object implementations can be supported, including separate servers,
libraries, a program per method, an encapsulated application, an object-oriented
database, etc. Through the use of additional object adapters, it is possible to support
virtually any style of object implementation.

Generally, object implementations do not depend on the ORB or how the client invokes
the object. Object implementations may select interfaces to ORB-dependent services
by the choice of Object Adapter.

CORBA, v2.6.1: Structure of an Object Request Broker 2-7

2.1.4 Object References

An Object Reference is the information needed to specify an object within an ORB.
Both clients and object implementations have an opaque notion of object references
according to the language mapping, and thus are insulated from the actual
representation of them. Two ORB implementations may differ in their choice of Object
Reference representations.

The representation of an object reference handed to a client is only valid for the
lifetime of that client.

All ORBs must provide the same language mapping to an object reference (usually
referred to as an Object) for a particular programming language. This permits a
program written in a particular language to access object references independent of the
particular ORB. The language mapping may also provide additional ways to access
object references in a typed way for the convenience of the programmer.

There is a distinguished object reference, guaranteed to be different from all object
references, that denotes no object.

2.1.5 OMG Interface Definition Language

The OMG Interface Definition Language (OMG IDL) defines the types of objects by
specifying their interfaces. An interface consists of a set of named operations and the
parameters to those operations. Note that although IDL provides the conceptual
framework for describing the objects manipulated by the ORB, it is not necessary for
there to be IDL source code available for the ORB to work. As long as the equivalent
information is available in the form of stub routines or a run-time interface repository,
a particular ORB may be able to function correctly.

IDL is the means by which a particular object implementation tells its potential clients
what operations are available and how they should be invoked. From the IDL
definitions, it is possible to map CORBA objects into particular programming
languages or object systems.

2.1.6 Mapping of OMG IDL to Programming Languages

Different object-oriented or non-object-oriented programming languages may prefer to
access CORBA objects in different ways. For object-oriented languages, it may be
desirable to see CORBA objects as programming language objects. Even for non-
object-oriented languages, it is a good idea to hide the exact ORB representation of the
object reference, method names, etc. A particular mapping of OMG IDL to a
programming language should be the same for all ORB implementations. Language
mapping includes definition of the language-specific data types and procedure
interfaces to access objects through the ORB. It includes the structure of the client stub
interface (not required for object-oriented languages), the dynamic invocation
interface, the implementation skeleton, the object adapters, and the direct ORB
interface.

Common Object Request Broker Architecture (CORBA), v2.6.1 May 2002

2

A language mapping also defines the interaction between object invocations and the
threads of control in the client or implementation. The most common mappings
provide synchronous calls, in that the routine returns when the object operation
completes. Additional mappings may be provided to allow a call to be initiated and
control returned to the program. In such cases, additional language-specific routines

must be provided to synchronize the program’s threads of control with the object
invocation.

2.1.7 Client Stubs

Generally, the client stubs will present access to the OMG IDL-defined operations on
an object in a way that is easy for programmers to predict once they are familiar with
OMG IDL and the language mapping for the particular programming language. The
stubs make calls on the rest of the ORB using interfaces that are private to, and
presumably optimized for, the particular ORB Core. If more than one ORB is

available, there may be different stubs corresponding to the different ORBs. In this
case, it is necessary for the ORB and language mapping to cooperate to associate the
correct stubs with the particular object reference.

2.1.8 Dynamic Invocation Interface

An interface is also available that allows the dynamic construction of object
invocations, that is, rather than calling a stub routine that is specific to a particular
operation on a particular object, a client may specify the object to be invoked, the
operation to be performed, and the set of parameters for the operation through a call or
sequence of calls. The client code must supply information about the operation to be
performed and the types of the parameters being passed (perhaps obtaining it from an
Interface Repository or other run-time source). The nature of the dynamic invocation
interface may vary substantially from one programming language mapping to another.

2.1.9 Implementation Skeleton

For a particular language mapping, and possibly depending on the object adapter, there
will be an interface to the methods that implement each type of object. The interface
will generally be an up-call interface, in that the object implementation writes routines
that conform to the interface and the ORB calls them through the skeleton.

The existence of a skeleton does not imply the existence of a corresponding client stub
(clients can also make requests via the dynamic invocation interface).

It is possible to write an object adapter that does not use skeletons to invoke
implementation methods. For example, it may be possible to create implementations
dynamically for languages such as Smalltalk.

May 2002 CORBA, v2.6.1: Structure of an Object Request Broker 2-9

2-10

2.1.10 Dynamic Skeleton Interface

An interface is available, which allows dynamic handling of object invocations. That is,
rather than being accessed through a skeleton that is specific to a particular operation,
an object’s implementation is reached through an interface that provides access to the
operation name and parameters in a manner analogous to the client side’s Dynamic
Invocation Interface. Purely static knowledge of those parameters may be used, or
dynamic knowledge (perhaps determined through an Interface Repository) may be also
used, to determine the parameters.

The implementation code must provide descriptions of all the operation parameters to
the ORB, and the ORB provides the values of any input parameters for use in
performing the operation. The implementation code provides the values of any output
parameters, or an exception, to the ORB after performing the operation. The nature of
the dynamic skeleton interface may vary substantially from one programming language
mapping or object adapter to another, but will typically be an up-call interface.

Dynamic skeletons may be invoked both through client stubs and through the dynamic
invocation interface; either style of client request construction interface provides
identical results.

2.1.11 Object Adapters

An object adapter is the primary way that an object implementation accesses services
provided by the ORB. There are expected to be a few object adapters that will be
widely available, with interfaces that are appropriate for specific kinds of objects.
Services provided by the ORB through an Object Adapter often include: generation
and interpretation of object references, method invocation, security of interactions,
object and implementation activation and deactivation, mapping object references to
implementations, and registration of implementations.

The wide range of object granularities, lifetimes, policies, implementation styles, and
other properties make it difficult for the ORB Core to provide a single interface that is
convenient and efficient for all objects. Thus, through Object Adapters, it is possible
for the ORB to target particular groups of object implementations that have similar
requirements with interfaces tailored to them.

2.1.12 ORB Interface

The ORB Interface is the interface that goes directly to the ORB, which is the same for
all ORBs and does not depend on the object’s interface or object adapter. Because most
of the functionality of the ORB is provided through the object adapter, stubs, skeleton,
or dynamic invocation, there are only a few operations that are common across all
objects. These operations are useful to both clients and implementations of objects.

Common Object Request Broker Architecture (CORBA), v2.6.1 May 2002

2.1.13 Interface Repository

The Interface Repository is a service that provides persistent objects that represent the
IDL information in a form available at run-time. The Interface Repository information
may be used by the ORB to perform requests. Moreover, using the information in the
Interface Repository, it is possible for a program to encounter an object whose
interface was not known when the program was compiled, yet, be able to determine
what operations are valid on the object and make an invocation on it.

In addition to its role in the functioning of the ORB, the Interface Repository is a
common place to store additional information associated with interfaces to ORB
objects. For example, debugging information, libraries of stubs or skeletons, routines
that can format or browse particular kinds of objects might be associated with the
Interface Repository.

2.1.14 Implementation Repository

The Implementation Repository contains information that allows the ORB to locate
and activate implementations of objects. Although most of the information in the
Implementation Repository is specific to an ORB or operating environment, the
Implementation Repository is the conventional place for recording such information.
Ordinarily, installation of implementations and control of policies related to the
activation and execution of object implementations is done through operations on the
Implementation Repository.

In addition to its role in the functioning of the ORB, the Implementation Repository is
a common place to store additional information associated with implementations of

ORB objects. For example, debugging information, administrative control, resource

allocation, security, etc., might be associated with the Implementation Repository.

2.2 Example ORBs

May 2002

There are a wide variety of ORB implementations possible within the Common ORB
Architecture. This section will illustrate some of the different options. Note that a
particular ORB might support multiple options and protocols for communication.

2.2.1 Client- and Implementation-resident ORB

If there is a suitable communication mechanism present, an ORB can be implemented
in routines resident in the clients and implementations. The stubs in the client either
use a location-transparent IPC mechanism or directly access a location service to
establish communication with the implementations. Code linked with the
implementation is responsible for setting up appropriate databases for use by clients.

CORBA, v2.6.1: Example ORBs 2-11

2.2.2 Server-based ORB

To centralize the management of the ORB, all clients and implementations can
communicate with one or more servers whose job it is to route requests from clients to
implementations. The ORB could be a normal program as far as the underlying
operating system is concerned, and normal IPC could be used to communicate with the
ORB.

2.2.3 System-based ORB

To enhance security, robustness, and performance, the ORB could be provided as a
basic service of the underlying operating system. Object references could be made
unforgeable, reducing the expense of authentication on each request. Because the
operating system could know the location and structure of clients and implementations,
it would be possible for a variety of optimizations to be implemented, for example,
avoiding marshalling when both are on the same machine.

2.2.4 Library-based ORB

For objects that are light-weight and whose implementations can be shared, the
implementation might actually be in a library. In this case, the stubs could be the actual
methods. This assumes that it is possible for a client program to get access to the data
for the objects and that the implementation trusts the client not to damage the data.

2.3 Structure of a Client

A client of an object has an object reference that refers to that object. An object
reference is a token that may be invoked or passed as a parameter to an invocation on
a different object. Invocation of an object involves specifying the object to be invoked,
the operation to be performed, and parameters to be given to the operation or returned
from it.

The ORB manages the control transfer and data transfer to the object implementation
and back to the client. In the event that the ORB cannot complete the invocation, an
exception response is provided. Ordinarily, a client calls a routine in its program that
performs the invocation and returns when the operation is complete.

Clients access object-type-specific stubs as library routines in their program (see
Figure 2-6 on page 2-13). The client program thus sees routines callable in the normal
way in its programming language. All implementations will provide a language-
specific data type to use to refer to objects, often an opaque pointer. The client then
passes that object reference to the stub routines to initiate an invocation. The stubs

2-12 Common Object Request Broker Architecture (CORBA), v2.6.1 May 2002

2

have access to the object reference representation and interact with the ORB to perform
the invocation. (See the C Language Mapping specification for additional, general
information on language mapping of object references.)

Client Program)

Language-dependent object references

ORB object references

Dynamic Invocation Stubs for Stubs for
Interface Interface A Interface B

_

J

Figure 2-6 The Structure of a Typical Client

An alternative set of library code is available to perform invocations on objects, for
example when the object was not defined at compile time. In that case, the client
program provides additional information to name the type of the object and the method
being invoked, and performs a sequence of calls to specify the parameters and initiate
the invocation.

Clients most commonly obtain object references by receiving them as output
parameters from invocations on other objects for which they have references. When a
client is also an implementation, it receives object references as input parameters on
invocations to objects it implements. An object reference can also be converted to a
string that can be stored in files or preserved or communicated by different means and
subsequently turned back into an object reference by the ORB that produced the string.

2.4 Structure of an Object Implementation

May 2002

An object implementation provides the actual state and behavior of an object. The
object implementation can be structured in a variety of ways. Besides defining the
methods for the operations themselves, an implementation will usually define

CORBA, v2.6.1: Structure of an Object Implementation 2-13

2-14

procedures for activating and deactivating objects and will use other objects or non-
object facilities to make the object state persistent, to control access to the object, as
well as to implement the methods.

The object implementation (see Figure 2-7) interacts with the ORB in a variety of ways
to establish its identity, to create new objects, and to obtain ORB-dependent services. It
primarily does this via access to an Object Adapter, which provides an interface to
ORB services that is convenient for a particular style of object implementation.

Object Implementation

Methods for
Interface A

~

o Object data

Skeleton for
Interface A

Dynamic Object adapter
Skeleton routines

,

Figure 2-7 The Structure of a Typical Object Implementation

Because of the range of possible object implementations, it is difficult to be definitive
about how an object implementation is structured. See the chapters on the Portable
Object Adapter.

When an invocation occurs, the ORB Core, object adapter, and skeleton arrange that a
call is made to the appropriate method of the implementation. A parameter to that
method specifies the object being invoked, which the method can use to locate the data
for the object. Additional parameters are supplied according to the skeleton definition.
When the method is complete, it returns, causing output parameters or exception
results to be transmitted back to the client.

Common Object Request Broker Architecture (CORBA), v2.6.1 May 2002

2

When a new object is created, the ORB may be notified so that it knows where to find
the implementation for that object. Usually, the implementation also registers itself as
implementing objects of a particular interface, and specifies how to start up the
implementation if it is not already running.

Most object implementations provide their behavior using facilities in addition to the
ORB and object adapter. For example, although the Portable Object Adapter provides
some persistent data associated with an object (its OID or Object ID), that relatively
small amount of data is typically used as an identifier for the actual object data stored
in a storage service of the object implementation’s choosing. With this structure, it is
not only possible for different object implementations to use the same storage service,
it is also possible for objects to choose the service that is most appropriate for them.

2.5 Structure of an Object Adapter

May 2002

An object adapter (see Figure 2-8 on page 2-16) is the primary means for an object
implementation to access ORB services such as object reference generation. An object
adapter exports a public interface to the object implementation, and a private interface
to the skeleton. It is built on a private ORB-dependent interface.

Object adapters are responsible for the following functions:

« Generation and interpretation of object references

* Method invocation

» Security of interactions

» Object and implementation activation and deactivation

» Mapping object references to the corresponding object implementations

» Registration of implementations
These functions are performed using the ORB Core and any additional components
necessary. Often, an object adapter will maintain its own state to accomplish its tasks.

It may be possible for a particular object adapter to delegate one or more of its
responsibilities to the Core upon which it is constructed.

CORBA, v2.6.1: Structure of an Object Adapter 2-15

2-16

o

Object Implementation

Interface A Interface B

Methods Methods

Dynamic Interface A Interface B Obiect
Skeleton Skeleton jec
Skeleton Adapter
Interface
ORB Core

Figure 2-8 The Structure of a Typical Object Adapter

As shown in Figure 2-8, the Object Adapter is implicitly involved in invocation of the
methods, although the direct interface is through the skeletons. For example, the Object
Adapter may be involved in activating the implementation or authenticating the
request.

The Object Adapter defines most of the services from the ORB that the Object
Implementation can depend on. Different ORBs will provide different levels of service
and different operating environments may provide some properties implicitly and
require others to be added by the Object Adapter. For example, it is common for
Object Implementations to want to store certain values in the object reference for easy
identification of the object on an invocation. If the Object Adapter allows the
implementation to specify such values when a new object is created, it may be able to
store them in the object reference for those ORBs that permit it. If the ORB Core does
not provide this feature, the Object Adapter would record the value in its own storage
and provide it to the implementation on an invocation. With Object Adapters, it is
possible for an Object Implementation to have access to a service whether or not it is
implemented in the ORB Core—if the ORB Core provides it, the adapter simply
provides an interface to it; if not, the adapter must implement it on top of the ORB
Core. Every instance of a particular adapter must provide the same interface and
service for all the ORBs it is implemented on.

It is also not necessary for all Object Adapters to provide the same interface or
functionality. Some Object Implementations have special requirements. For example,
an object-oriented database system may wish to implicitly register its many thousands
of objects without doing individual calls to the Object Adapter. In such a case, it would

Common Object Request Broker Architecture (CORBA), v2.6.1 May 2002

2

be impractical and unnecessary for the object adapter to maintain any per-object state.
By using an object adapter interface that is tuned towards such object implementations,
it is possible to take advantage of particular ORB Core details to provide the most
effective access to the ORB.

2.6 CORBA Required Object Adapter

There are a variety of possible object adapters; however, since the object adapter
interface is something that object implementations depend on, it is desirable that there
be as few as practical. Most object adapters are designed to cover a range of object
implementations, so only when an implementation requires radically different services
or interfaces should a new object adapter be considered. In this section, we briefly
describe the object adapter defined in this specification.

2.6.1 Portable Object Adapter

This specification defines a Portable Object Adapter that can be used for most ORB
objects with conventional implementations. (See the Portable Object Adapter chapter
for more information.) The intent of the POA, as its name suggests, is to provide an
Object Adapter that can be used with multiple ORBs with a minimum of rewriting
needed to deal with different vendors’ implementations.

This specification allows several ways of using servers but it does not deal with the
administrative issues of starting server programs. Once started, however, there can be a
servant started and ended for a single method call, a separate servant for each object, or
a shared servant for all instances of the object type. It allows for groups of objects to be
associated by means of being registered with different instances of the POA object and
allows implementations to specify their own activation techniques. If the
implementation is not active when an invocation is performed, the POA will start one.
The POA is specified in IDL, so its mapping to languages is largely automatic,

following the language mapping rules. (The primary task left for a language mapping

is the definition of the Servant type.)

2.7 The Integration of Foreign Object Systems

May 2002

The Common ORB Architecture is designed to allow interoperation with a wide range
of object systems (see Figure 2-9 on page 2-18). Because there are many existing
object systems, a common desire will be to allow the objects in those systems to be
accessible via the ORB. For those object systems that are ORBs themselves, they may
be connected to other ORBs through the mechanisms described throughout this
manual.

CORBA, v2.6.1: CORBA Required Object Adapter 2-17

2-18

Object system as
a POA object
implementation

Object system as
an implementation
with a special-purpose
object adapter

Portable Object
Adapter

Special-purpose
Adapter

ORB Core another ORB

Object system as

interoperating via a

atewa
Gateway g 4

Figure 2-9 Different Ways to Integrate Foreign Object Systems

For object systems that simply want to map their objects into ORB objects and receive
invocations through the ORB, one approach is to have those object systems appear to
be implementations of the corresponding ORB objects. The object system would
register its objects with the ORB and handle incoming requests, and could act like a
client and perform outgoing requests.

In some cases, it will be impractical for another object system to act like a POA object
implementation. An object adapter could be designed for objects that are created in
conjunction with the ORB and that are primarily invoked through the ORB. Another
object system may wish to create objects without consulting the ORB, and might
expect most invocations to occur within itself rather than through the ORB. In such a
case, a more appropriate object adapter might allow objects to be implicitly registered
when they are passed through the ORB.

Common Object Request Broker Architecture (CORBA), v2.6.1 May 2002

OMG IDL Syntax and Semantics 3

This chapter describes OMG Interface Definition Language (IDL) semantics and gives
the syntax for OMG IDL grammatical constructs.

Contents

This chapter contains the following sections.

Section Title Page
“Overview” 3-2
“Lexical Conventions” 3-3
“Preprocessing” 3-11
“OMG IDL Grammar” 3-12
“OMG IDL Specification” 3-16
“Module Declaration” 3-17
“Interface Declaration” 3-17
“Value Declaration” 3-24
“Constant Declaration” 3-29
“Type Declaration” 3-33
“Exception Declaration” 3-47
“Operation Declaration” 3-47
“Attribute Declaration” 3-50
“CORBA Module” 3-51
“Names and Scoping” 3-52

May 2002 Common Object Request Broker Architecture (CORBA), v2.6.1 3-1

3.1 Overview

3-2

The OMG Interface Definition Language (IDL) is the language used to describe the
interfaces that client objects call and object implementations provide. An interface
definition written in OMG IDL completely defines the interface and fully specifies
each operation’s parameters. An OMG IDL interface provides the information needed
to develop clients that use the interface’s operations.

Clients are not written in OMG IDL, which is purely a descriptive language, but in
languages for which mappings from OMG IDL concepts have been defined. The
mapping of an OMG IDL concept to a client language construct will depend on the
facilities available in the client language. For example, an OMG IDL exception might
be mapped to a structure in a language that has no notion of exception, or to an
exception in a language that does. The binding of OMG IDL concepts to several
programming languages is described in this manual.

The description of OMG IDL's lexical conventions is presented in Section 3.2,

“Lexical Conventions,” on page 3-3. A description of OMG IDL preprocessing is
presented in Section 3.3, “Preprocessing,” on page 3-11. The scope rules for identifiers
in an OMG IDL specification are described in Section 3.15, “Names and Scoping,” on
page 3-52.

OMG IDL is a declarative language. The grammar is presented in Section 3.4, “OMG
IDL Grammar,” on page 3-12 and associated semantics is described in the rest of this
chapter either in place or through references to other sections of this standard.

OMG IDL-specific pragmas (those not defined for C++) may appear anywhere in a
specification; the textual location of these pragmas may be semantically constrained by
a particular implementation.

A source file containing interface specifications written in OMG IDL must have an
“.idl” extension.

The description of OMG IDL grammar uses a syntax notation that is similar to
Extended Backus-Naur Format (EBNF). Table 3-1 lists the symbols used in this format
and their meaning.

Table 3-1 IDL EBNF

Symbol Meaning

= Is defined to be

| Alternatively

<text> Nonterminal

“text” Literal

* The preceding syntactic unit can be repeated zero or more times

+ The preceding syntactic unit can be repeated one or more times

{3 The enclosed syntactic units are grouped as a single syntactic unit
1] The enclosed syntactic unit is optional—may occur zero or one time

Common Object Request Broker Architecture (CORBA), v2.6.1 May 2002

3.2 Lexical Conventions

This sectiofh presents the lexical conventions of OMG IDL. It defines tokens in an
OMG IDL specification and describes comments, identifiers, keywords, and
literals—integer, character, and floating point constants and string literals.

An OMG IDL specification logically consists of one or more files. A file is
conceptually translated in several phases.

The first phase is preprocessing, which performs file inclusion and macro substitution.
Preprocessing is controlled by directives introduced by lines having # as the first
character other than white space. The result of preprocessing is a sequence of tokens.
Such a sequence of tokens, that is, a file after preprocessing, is called a translation unit.

OMG IDL uses the ASCII character set, except for string literals and character literals,
which use the ISO Latin-1 (8859.1) character set. The ISO Latin-1 character set is
divided into alphabetic characters (letters) digits, graphic characters, the space (blank)
character, and formatting characters. Table 3-2 shows the ISO Latin-1 alphabetic
characters; upper and lower case equivalences are paired. The ASCII alphabetic
characters are shown in the left-hand column of Table 3-2.

Table 3-2 The 114 Alphabetic Characters (Letters)

Char. | Description Char. | Description

Aa Upper/Lower-case A Aa Upper/Lower-case A with grave accent

Bb Upper/Lower-case B Aa Upper/Lower-case A with acute accent

Cc Upper/Lower-case C Aa Upper/Lower-case A with circumflex accent
Dd Upper/Lower-case D Aa Upper/Lower-case A with tilde

Ee Upper/Lower-case E Aa Upper/Lower-case A with diaeresis

Ff Upper/Lower-case F Aa Upper/Lower-case A with ring above

Gg Upper/Lower-case G fExe Upper/Lower-case dipthong A with E

Hh Upper/Lower-case H Cc Upper/Lower-case C with cedilla

li Upper/Lower-case | Ee Upper/Lower-case E with grave accent

Jj Upper/Lower-case J Eé Upper/Lower-case E with acute accent

Kk Upper/Lower-case K Eé Upper/Lower-case E with circumflex accent
LI Upper/Lower-case L Ee Upper/Lower-case E with diaeresis

Mm Upper/Lower-case M i Upper/Lower-case | with grave accent

Nn Upper/Lower-case N fi Upper/Lower-case | with acute accent

Oo Upper/Lower-case O T Upper/Lower-case | with circumflex accent
Pp Upper/Lower-case P i Upper/Lower-case | with diaeresis

Qq Upper/Lower-case Q \y Upper/Lower-case N with tilde

Rr Upper/Lower-case R 0o Upper/Lower-case O with grave accent

1. This section is an adaptationTdie Annotated C++ Reference Manu@hapter 2; it
differs in the list of legal keywords and punctuation.

May 2002 CORBA, v2.6.1: Lexical Conventions 3-3

Table 3-2 The 114 Alphabetic Characters (Lette(€ontinued)

Char. | Description Char. | Description
Ss Upper/Lower-case S 06 Upper/Lower-case O with acute accent
Tt Upper/Lower-case T 0o Upper/Lower-case O with circumflex accent
Uu Upper/Lower-case U (o)} Upper/Lower-case O with tilde
Vv Upper/Lower-case V (o)) Upper/Lower-case O with diaeresis
Ww Upper/Lower-case W (%]} Upper/Lower-case O with oblique stroke
XX Upper/Lower-case X U] Upper/Lower-case U with grave accent
Yy Upper/Lower-case Y Uu Upper/Lower-case U with acute accent
Zz Upper/Lower-case Z Oa Upper/Lower-case U with circumflex accent
Ou Upper/Lower-case U with diaeresis
3 Lower-case German sharp S
y Lower-case Y with diaeresis

Table 3-3 lists the decimal digit characters.

Table 3-3 Decimal Digits
0123456789

Table 3-4 shows the graphic characters.

Table 3-4 The 65 Graphic Characters

Char. | Description Char. | Description
! exclamation point i inverted exclamation mark
" double quote ¢ cent sign
number sign £ pound sign
$ dollar sign o currency sign
% percent sign ¥ yen sign
& ampersand broken bar
’ apostrophe § section/paragraph sign
(left parenthesis diaeresis
) right parenthesis © copyright sign
* asterisk a feminine ordinal indicator
+ plus sign « left angle quotation mark
, comma - not sign
- hyphen, minus sign soft hyphen
period, full stop ® registered trade mark sign
/ solidus B macron
colon ° ring above, degree sign
; semicolon + plus-minus sign
< less-than sign 2 superscript two
= equals sign 3 superscript three

Common Object Request Broker Architecture (CORBA), v2.6.1

May 2002

May 2002

Table 3-4 The 65 Graphic Characte(€ontinued)

Char. | Description Char. | Description
> greater-than sign . acute
? question mark] micro
@ commercial at 1 pilcrow
[left square bracket . middle dot
\ reverse solidus R cedilla
] right square bracket 1 superscript one
A circumflex ° masculine ordinal indicator
_ low line, underscore » right angle quotation mark
grave vulgar fraction 1/4
{ left curly bracket vulgar fraction 1/2
| vertical line vulgar fraction 3/4
} right curly bracket é inverted question mark
~ tilde X multiplication sign
+ division sign

The formatting characters are shown in Table 3-5.

Table 3-5 The Formatting Characters

Description | Abbreviation |1SO 646 Octal Value
alert BEL 007
backspace BS 010
horizontal tab HT 011
newline NL, LF 012
vertical tab VT 013
form feed FF 014
carriage return CR 015
3.2.1 Tokens

There are five kinds of tokens: identifiers, keywords, literals, operators, and other
separators. Blanks, horizontal and vertical tabs, newlines, formfeeds, and comments
(collective, “white space”), as described below, are ignored except as they serve to
separate tokens. Some white space is required to separate otherwise adjacent
identifiers, keywords, and constants.

If the input stream has been parsed into tokens up to a given character, the next token
is taken to be the longest string of characters that could possibly constitute a token.

CORBA, v2.6.1: Lexical Conventions 3-5

3.2.2 Comments

The characters /* start a comment, which terminates with the characters */. These
comments do not nest. The characters // start a comment, which terminates at the end
of the line on which they occur. The comment characters //, /*, and */ have no special
meaning within a // comment and are treated just like other characters. Similarly, the
comment characters // and /* have no special meaning within a /* comment. Comments
may contain alphabetic, digit, graphic, space, horizontal tab, vertical tab, form feed,
and newline characters.

3.2.3 ldentifiers

An identifier is an arbitrarily long sequence of ASCII alphabetic, digit, and underscore
(“_") characters. The first character must be an ASCII alphabetic character. All
characters are significant.

When comparing two identifiers to see if they collide:
« Upper- and lower-case letters are treated as the same letter. Table 3-2 on page 3-3
defines the equivalence mapping of upper- and lower-case letters.
« All characters are significant.

Identifiers that differ only in case collide, and will yield a compilation error under
certain circumstances. An identifier for a given definition must be spelled identically
(e.g., with respect to case) throughout a specification.

There is only one namespace for OMG IDL identifiers in each scope. Using the same
identifier for a constant and an interface, for example, produces a compilation error.

For example:

module M {
typedef long Foo;
const long thing = 1;

interface thing { /I error: reuse of identifier
void doit (
in Foo foo /I error: Foo and foo collide and refer to

different things
);

readonly attribute long Attribute; // error: Attribute collides with
keyword attribute

3.2.3.1 Escaped Identifiers

As IDL evolves, new keywords that are added to the IDL language may inadvertently
collide with identifiers used in existing IDL and programs that use that IDL. Fixing
these collisions will require not only the IDL to be modified, but programming

Common Object Request Broker Architecture (CORBA), v2.6.1 May 2002

3

May 2002

language code that depends upon that IDL will have to change as well. The language
mapping rules for the renamed IDL identifiers will cause the mapped identifier names
(e.g., method names) to be changed.

To minimize the amount of work, users may lexically “escape” identifiers by
prepending an underscore (_) to an identifier. This is a purely lexical convention that
ONLY turns off keyword checking. The resulting identifier follows all the other rules
for identifier processing. For example, the identifigknldentifier is treated as if it

were Anldentifier .

The following is a non-exclusive list of implications of these rules:
» The underscore does not appear in the Interface Repository.

» The underscore is not used in the DIl and DSI.

* The underscore is not transmitted over “the wire.”

» Case sensitivity rules are applied to the identifier after stripping off the leading
underscore.

For example:

module M {
interface thing {
attribute boolean abstract; /I error: abstract collides with
/I keyword abstract
attribute boolean _abstract; // ok: abstract is an identifier
h
h

To avoid unnecessary confusion for readers of IDL, it is recommended that interfaces
only use the escaped form of identifiers when the unescaped form clashes with a newly
introduced IDL keyword. It is also recommended that interface designers avoid
defining new identifiers that are known to require escaping. Escaped literals are only
recommended for IDL that expresses legacy interface, or for IDL that is mechanically
generated.

3.2.4 Keywords

The identifiers listed in Table 3-6 are reserved for use as keywords and may not be
used otherwise, unless escaped with a leading underscore

Table 3-6 Keywords

abstract double local raises typedef
any exception long readonly unsigned
attribute enum module sequence union
boolean factory native short ValueBase
case FALSE Object string valuetype
char fixed octet struct void
const float oneway supports wchar
CORBA, v2.6.1: Lexical Conventions 3-7

Table 3-6 Keywords

context in out switch wstring
custom inout private TRUE
default interface public truncatable

Keywords must be written exactly as shown in the above list. Identifiers that collide
with keywords (see Section 3.2.3, “Identifiers,” on page 3-6) are illegal. For example,
“boolean " is a valid keyword; ‘Boolean ” and “BOOLEAN"” are illegal identifiers.

For example:

module M {
typedef Long Foo; Il Error: keyword is long not Long
typedef boolean BOOLEAN; /I Error: BOOLEAN collides with
/l the keyword boolean;
h

OMG IDL specifications use the characters shown in Table 3-7 as punctuation.

Table 3-7 Punctuation Characters
{ } : . = + - () < > []
" \ | A & * / % ~

In addition, the tokens listed in Table 3-8 are used by the preprocessor.

Table 3-8 Preprocessor Tokens

| I &&
3.2.5 Literals
This section describes the following literals:
* Integer

e Character

* Floating-point
* String

* Fixed-point

3.2.5.1 Integer Literals

An integer literal consisting of a sequence of digits is taken to be decimal (base ten)
unless it begins with 0 (digit zero). A sequence of digits starting with O is taken to be
an octal integer (base eight). The digits 8 and 9 are not octal digits. A sequence of
digits preceded by 0x or 0X is taken to be a hexadecimal integer (base sixteen). The
hexadecimal digits include a or A through f or F with decimal values ten through
fifteen, respectively. For example, the number twelve can be written 12, 014, or 0XC.

Common Object Request Broker Architecture (CORBA), v2.6.1 May 2002

May 2002

3.2.5.2 Character Literals

A character literal is one or more characters enclosed in single quotes, as in 'x.’
Character literals have typshar.

A character is an 8-bit quantity with a numerical value between 0 and 255 (decimal).
The value of a space, alphabetic, digit, or graphic character literal is the numerical
value of the character as defined in the ISO Latin-1 (8859.1) character set standard
(See Table 3-2 on page 3-3, Table 3-3 on page 3-4, and Table 3-4 on page 3-4). The
value of a null is 0. The value of a formatting character literal is the numerical value of
the character as defined in the 1ISO 646 standard (see Table 3-5 on page 3-5). The
meaning of all other characters is implementation-dependent.

Nongraphic characters must be represented using escape sequences as defined below i
Table 3-9. Note that escape sequences must be used to represent single quote and
backslash characters in character literals.

Table 3-9 Escape Sequences

Description Escape Sequence
newline \n
horizontal tab \t
vertical tab \v
backspace \b
carriage return \r
form feed \f
alert \a
backslash \
guestion mark \?
single quote \'
double quote \"
octal number \ooo
hexadecimal number \xhh
unicode character \uhhhh

If the character following a backslash is not one of those specified, the behavior is
undefined. An escape sequence specifies a single character.

The escape \ooo consists of the backslash followed by one, two, or three octal digits
that are taken to specify the value of the desired character. The escape \xhh consists of
the backslash followed by x followed by one or two hexadecimal digits that are taken
to specify the value of the desired character.

The escape \uhhhh consists of a backslash followed by the character ‘u’, followed by
one, two, three or four hexadecimal digits. This represents a unicode character literal.
Thus the literal “\uOO2E” represents the unicode period ‘. character and the literal
“\u3BC" represents the unicode greek small letter ‘mu’. The \u escape is valid only
with wchar and wstring types. Because a wide string literal is defined as a sequence of

CORBA, v2.6.1: Lexical Conventions 3-9

3-10

3.2.5.3

3.2.5.4

wide character literals a sequence of \u literals can be used to define a wide string
literal. Attempts to set a char type to a \u defined literal or a string type to a sequence
of \u literals result in an error.

A sequence of octal or hexadecimal digits is terminated by the first character that is not
an octal digit or a hexadecimal digit, respectively. The value of a character constant is
implementation dependent if it exceeds that of the largest char.

Wide character literals have dnprefix, for example:

const wchar C1 = L'X";

Attempts to assign a wide character literal to a non-wide character constant or to
assign a non-wide character literal to a wide character constant result in a compile-time
diagnostic.

Both wide and non-wide character literals must be specified using characters from the
ISO 8859-1 character set.

Floating-point Literals

A floating-point literal consists of an integer part, a decimal point, a fraction part, an e
or E, and an optionally signed integer exponent. The integer and fraction parts both
consist of a sequence of decimal (base ten) digits. Either the integer part or the fraction
part (but not both) may be missing; either the decimal point or the letter e (or E) and
the exponent (but not both) may be missing.

String Literals

A string literal is a sequence of characters (as defined in Section 3.2.5.2, “Character
Literals,” on page 3-9), with the exception of the character with numeric value 0,
surrounded by double quotes, as in “...".

Adjacent string literals are concatenated. Characters in concatenated strings are kept
distinct. For example,

"\XA" "B"

contains the two characters "\xA' and 'B' after concatenation (and not the single
hexadecimal character "\xAB").

The size of a string literal is the number of character literals enclosed by the quotes,
after concatenation. Within a string, the double quote chardatenst be preceded by
a\

A string literal may not contain the character \0'.

Wide string literals have an L prefix, for example:

const wstring S1 = L"Hello";

Common Object Request Broker Architecture (CORBA), v2.6.1 May 2002

3

3.3 Preprocessing

May 2002

Attempts to assign a wide string literal to a non-wide string constant or to assign a
non-wide string literal to a wide string constant result in a compile-time diagnostic.

Both wide and non-wide string literals must be specified using characters from the 1SO
8859-1 character set.

A wide string literal shall not contain the wide character with value zero.

3.2.5.5 Fixed-Point Literals

A fixed-point decimal literal consists of an integer part, a decimal point, a fraction part
and a d or D. The integer and fraction parts both consist of a sequence of decimal (base
10) digits. Either the integer part or the fraction part (but not both) may be missing; the
decimal point (but not the letter d (or D)) may be missing.

OMG IDL is preprocessed according to the specification of the preprocessor in
“International Organization for Standardization. 1998. ISO/IEC 14882 Standard for the
C++ Programming Language. Geneva: International Organization for Standardization.”
The preprocessor may be implemented as a separate process or built into the IDL
compiler.

Lines beginning with # (also called “directives”) communicate with this preprocessor.
White space may appear before the #. These lines have syntax independent of the rest
of OMG IDL; they may appear anywhere and have effects that last (independent of the
OMG IDL scoping rules) until the end of the translation unit. The textual location of
OMG IDL-specific pragmas may be semantically constrained.

A preprocessing directive (or any line) may be continued on the next line in a source
file by placing a backslash character (“\"), immediately before the newline at the end
of the line to be continued. The preprocessor effects the continuation by deleting the
backslash and the newline before the input sequence is divided into tokens. A
backslash character may not be the last character in a source file.

A preprocessing token is an OMG IDL token (see Section 3.2.1, “Tokens,” on
page 3-5), a file name as in#include directive, or any single character other than
white space that does not match another preprocessing token.

The primary use of the preprocessing facilities is to include definitions from other
OMG IDL specifications. Text in files included with a #include directive is treated as if
it appeared in the including file, except thaépositoryld related pragmas are
handled in a special way. The special handling of these pragmas is described in
Section 10.6, “Repositorylds,” on page 10-42.

Note that whether a particular IDL compiler generates code for included files is an
implementation-specific issue. To support separate compilation, IDL compilers may
not generate code for included files, or do so only if explicitly instructed.

CORBA, v2.6.1: Preprocessing 3-11

3.4 OMG IDL Grammar

(1) <specification> ::= <definition> *
(2) <definition> := <type_dcl>*“"
| <const_dcl>*"
| <except_dcl>*"
| <interface>*;"
| <module>*“;"
| <value>*"
€)) <module> ::= “module” <identifier> “{* <definition> e
(4) <interface> := <interface_dcl>
| <forward_dcl>
(5) <interface_dcl> ::= <interface header> “{" <interface_body> “}’
(6) <forward_dcl> ::= [“abstract” | “local”’] “interface” <identifier>
(7) <interface_header> := [“abstract” | “local”] “interface” <identifier>
[<interface_inheritance_spec>]
(8) <interface_body> := <export> *
(9) <export> := <type dcl>*“"
| <const dcl>*”
| <except dcl>*"
| <attr_dcl>*"
| <op_dcl>*“"
(10)<interface_inheritance_spec>::="." <interface_name>
{“r <interface_name>} *
(11) <interface_name> := <scoped_name>
(12) <scoped_name> := <identifier>
| “:” <identifier>
| <scoped_name> “:” <identifier>
(13) <value> := (<value_dcl> | <value_abs_dcl> |
<value_box_dcl> | <value_forward_dcl>)
(14) <value_forward_dcl> := [“abstract”] “valuetype” <identifier>
(15) <value_box_dcl> ::= “valuetype” <identifier> <type_spec>
(16) <value_abs_dcl> := "abstract” “valuetype” <identifier>
[<value_inheritance_spec>]
“{* <export>* “}”
(17) <value_dcl> := <value_header>“{" <value_element>* "}’
(18) <value_header> := [‘custom”] “valuetype” <identifier>

(19)<value_inheritance_spec>

(20) <value_name>
(22) <value_element>
(22) <state_member>

3-12

Common Object Request Broker Architecture (CORBA), v2.6.1

[<value_inheritance_spec>]

u= [*7 ["truncatable” | <value_name>

{" <value_name>}* |
[“supports” <interface_name>
{"] <interface_name> }* |
== <scoped_name>
<export> | < state_member> | <init_dcl>
(“public” | “private”)
<type_spec> <declarators> *;"

May 2002

(23)

(24)
(25)

(26)
(27)

(28)

(29)
(30)

(31)
(32)

(33)

(34)

(35)

(36)

37)

(38)

(39)

May 2002

<init_dcl>

<init_param_decls>
<init_param_decl>

<init_param_attribute>
<const_dcl>

<const_type>

<const_exp>
<or_expr>

<xor_expr>
<and_expr>

<shift_expr>

<add_expr>

<mult_expr>

<unary_expr>

<unary_operator>

<primary_expr>

<literal>

CORBA, v2.6.1: OMG IDL Grammar

uin

“factory” <identifier>
“(* [<init_param_decls>])" "
<init_param_decl> {“" <init_param_decl> }*
<init_param_attribute> <param_type_spec>
<simple_declarator>

“const” <const_type>
<identifier> “=" <const_exp>
<integer_type>
<char_type>
<wide_char_type>
<boolean_type>
<floating_pt_type>
<string_type>
<wide_string_type>
<fixed_pt_const_type>
<scoped_name>
<octet_type>
<or_expr>
<xor_expr>
<or_expr>"“|" <xor_expr>
<and_expr>
<xor_expr>“" <and_expr>
<shift_expr>
<and_expr> “&” <shift_expr>
<add_expr>
<shift_expr> “>>" <add_expr>
<shift_expr> “<<" <add_expr>
<mult_expr>
<add_expr> “+" <mult_expr>
<add_expr> “-" <mult_expr>
<unary_expr>
<mult_expr> “*" <unary_expr>
<mult_expr>“/" <unary_expr>
<mult_expr> “%" <unary_expr>
<unary_operator> <primary_expr>
<primary_expr>
oy
<scoped_name>
<literal>
“(" <const_exp>*)"
<integer_literal>
<string_literal>
<wide_string_literal>
<character_literal>
<wide_character_literal>

3-13

<fixed_pt_literal>
<floating_pt_literal>
<boolean_literal>

|
|
|
(40) <boolean_literal> := “TRUE”
|

“FALSE”
(41) <positive_int_const> <const_exp>

(42) <type_dcl> := “typedef”’ <type_declarator>

| <struct_type>

| <union_type>

| <enum_type>

| “native” <simple_declarator>

| <constr_forward_decl>
(43) <type_declarator> := <type_ spec> <declarators>
(44) <type_spec> := <simple_type spec>
<constr_type_spec>
<base_type_spec>
<template_type_spec>
<scoped_name>
<floating_pt_type>
<integer_type>
<char_type>
<wide_char_type>
<boolean_type>
<octet_type>
<any_type>
<object_type>
<value_base_type>
<sequence_type>
<string_type>
<wide_string_type>
<fixed_pt_type>

(45) <simple_type_spec>

(46) <base_type_spec>

(47) <template_type spec>

(48) <constr_type_spec> <struct_type>
<union_type>
<enum_type>

(49) <declarators> = <declarator> { “” <declarator>} "

(50) <declarator> ::= <simple_declarator>

| <complex_declarator>

(52) <simple_declarator> ::= <identifier>

(52) <complex_declarator> ::= <array_declarator>

(53) <floating_pt_type> ::= “float”

| “double”

| “long” “double”
(54) <integer_type> := <signed_int>

| <unsigned_int>
(55) <signed_int> ::= <signed_short_int>

| <signed_long_int>

| <signed_longlong_int>
(56) <signed_short_int> ::= “short”

3-14 Common Object Request Broker Architecture (CORBA), v2.6.1 May 2002

(57) <signed_long_int> := “long”
(58) <signed_longlong_int> ::= “long” “long”
(59) <unsigned_int> <unsigned_short_int>

<unsigned_longlong_int>

| <unsigned_long_int>
|
= “unsigned” “short”

(60) <unsigned_short_int>

(61) <unsigned_long_int> ::= “unsigned” “long”
(62) <unsigned_longlong_int> ::= “unsigned” “long” “long”
(63) <char_type> := “char”
(64) <wide_char_type> := “wchar”
(65) <boolean_type> := “boolean”
(66) <octet_type> := “octet”
(67) <any_type> := “any”
(68) <object_type> := "“Object”
(69) <struct_type> ::= “struct” <identifier> “{"” <member_list> “}"
(70) <member_list> = <member> *
(72) <member> := <type_ spec> <declarators>*;”
(72) <union_type> := “union” <identifier> “switch”
“(" <switch_type_spec> *)"
‘" <switch_body> “}"
(73) <switch_type_spec> := <integer_type>
| <char_type>
| <boolean_type>
| <enum_type>
| <scoped_name>
(74) <switch_body> := <case> *
(75) <case> := <case_label> * <element_spec> ;"
(76) <case_label> ::= “case” <const_exp>“"
| “default” "
(77) <element_spec> := <type_spec> <declarator>
(78) <enum_type> = “enum” <identifier>
“(" <enumerator> { “ <enumerator>} %"
(79) <enumerator> := <identifier>
(80) <sequence_type> := “sequence” “<” <simple_type_spec>"“)
<positive_int_const> “>"
| “sequence” “<” <simple_type_spec> “>"
(81) <string_type> 1= “string” “<” <positive_int_const> “>"
| “string”
(82) <wide_string_type> ::= “wstring” “<” <positive_int_const> “>"
| “wstring”
(83) <array_declarator> := <identifier> <fixed_array_size> *
(84) <fixed_array_size> := “[" <positive_int_const> “]”
(85) <attr_dcl> ::= [*“readonly”] “attribute”
<param_type_spec> <simple_declarator>
{) <simple_declarator> }*
(86) <except_dcl> := “exception” <identifier> “{* <member>* *}"

May 2002 CORBA, v2.6.1: OMG IDL Grammar 3-15

(87)
(88)
(89)
(90)
(91)

(92)

(93)
(94)

(95)

(96)

(97)
(98)
(99)

<op_dcl> =

<op_attribute> =
<op_type_spec>

|
<parameter_dcls> =
I

<param_dcl> =

<param_attribute>

<raises_expr> =

<context_expr>

<param_type_spec>

<fixed_pt_type>

<fixed_pt_const_type> ::=
<value_base_type> :=
<constr_forward_decl> :=

3.5 OMG IDL Specification

An OMG IDL specification consists of one or more type definitions, constant
definitions, exception definitions, or module definitions. The syntax is:

3-16

1)
(2)

<specification> :=
<definition>

[<op_attribute>] <op_type_spec>
<identifier> <parameter_dcls>
[<raises_expr>] [<context_expr>]
“oneway”

= <param_type_spec>

“void”

“(" <param_dcl> { “” <param_dcl>} U
H(H “)H

<param_attribute> <param_type spec>
<simple_declarator>

Hinl!

“out”

“inout”

“raises” “(" <scoped_name>
{“ <scoped_name>} Uy
“context” “(” <string_literal>
{“” <string_literal>})"
<base_type_spec>
<string_type>
<wide_string_type>
<scoped_name>
“fixed” “<* <positive_int_const> “’
<positive_int_const> “>"

“fixed”

“ValueBase”

“struct” <identifier>

“union” <identifier>

<definition> *

<type_dcl>“;"
<const_dcl>*}"
<except_dcl>“;"
<interface> “;"
<module> *“;"
<value> *“;"

See Section 3.6, “Module Declaration,” on page 3-17, for the specification of

<module>.

See Section 3.7, “Interface Declaration,” on page 3-17, for the specification of

<interface>.

See Section 3.8, “Value Declaration,” on page 3-24, for the specification of <value>.

Common Object Request Broker Architecture (CORBA), v2.6.1

May 2002

See Section 3.9, “Constant Declaration,” on page 3-29, Section 3.10, “Type
Declaration,” on page 3-33, and Section 3.11, “Exception Declaration,” on page 3-47
respectively for specifications afconst_dcl> , <type_dcl> , and<except_dcl> .

3.6 Module Declaration

A module definition satisfies the following syntax:
3) <module> := “module” <identifier> “{* <definition> +up

The module construct is used to scope OMG IDL identifiers; see Section 3.14,
“CORBA Module,” on page 3-51 for details.

3.7 Interface Declaration

An interface definition satisfies the following syntax:

(4) <interface> := <interface_dcl>
| <forward_dcl>

(5) <interface_dcl> ::= <interface_header> “{" <interface_body> “}"
(6) <forward_dcl> := [*“abstract” | “local”’] “interface” <identifier>
(7 <interface_header> := [“abstract” | “local”] “interface” <identifier>
[<interface_inheritance_spec>]

(8) <interface_body> := <export> *
(9) <export> 1= <type dcl>""

| <const_dcl>*”

| <except_dcl>*;"

| <attr_dcl>*”

| <op_dcl>*”

3.7.1 Interface Header
The interface header consists of three elements:
1. An optional modifier specifying if the interface is an abstract interface.

2. The interface name. The name must be preceded by the keymierthce , and
consists of an identifier that names the interface.

3. An optional inheritance specification. The inheritance specification is described in
the next section.

The<identifier> that names an interface defines a legal type name. Such a type name
may be used anywhere aidentifier> is legal in the grammar, subject to semantic
constraints as described in the following sections. Since one can only hold references
to an object, the meaning of a parameter or structure member, which is an interface
type is as aeferenceto an object supporting that interface. Each language binding
describes how the programmer must represent such interface references.

May 2002 CORBA, v2.6.1: Module Declaration 3-17

3-18

Abstract interfaces have slightly different rules and semantics from “regular”
interfaces, as described in Section 6.2, “Semantics of Abstract Interfaces,” on page 6-1.
They also follow different language mapping rules.

3.7.2 Interface Inheritance Specification

The syntax for inheritance is as follows:

(10)<interface_inheritance_spec>::=";" <interface_name> .
{“] <interface_name>}
(12) <interface_name> := <scoped_name>
(12) <scoped_name> := <identifier>
| “:” <identifier>

| <scoped_name> “:” <identifier>

Each<scoped_name> in an<interface_inheritance_spec> must denote a
previously defined interface. See Section 3.7.5, “Interface Inheritance,” on page 3-19
for the description of inheritance.

3.7.3 Interface Body

The interface body contains the following kinds of declarations:

» Constant declarations, which specify the constants that the interface exports;
constant declaration syntax is described in Section 3.9, “Constant Declaration,” on
page 3-29.

» Type declarations, which specify the type definitions that the interface exports; type
declaration syntax is described in Section 3.10, “Type Declaration,” on page 3-33.

« Exception declarations, which specify the exception structures that the interface
exports; exception declaration syntax is described in Section 3.11, “Exception
Declaration,” on page 3-47.

« Attribute declarations, which specify the associated attributes exported by the
interface; attribute declaration syntax is described in Section 3.13, “Attribute
Declaration,” on page 3-50.

« Operation declarations, which specify the operations that the interface exports and
the format of each, including operation name, the type of data returned, the types of
all parameters of an operation, legal exceptions that may be returned as a result of
an invocation, and contextual information that may affect method dispatch;
operation declaration syntax is described in Section 3.12, “Operation Declaration,”
on page 3-47.

Empty interfaces are permitted (that is, those containing no declarations).

Some implementations may require interface-specific pragmas to precede the interface
body.

Common Object Request Broker Architecture (CORBA), v2.6.1 May 2002

May 2002

3.7.4 Forward Declaration

A forward declaration declares the name of an interface without defining it. This
permits the definition of interfaces that refer to each other. The syntax is: optionally
either the keywordibstract or the keywordocal , followed by the keyword

interface , followed by an <identifier> that names the interface.

Multiple forward declarations of the same interface name are legal.

It is illegal to inherit from a forward-declared interface whose definition has not yet
been seen:

module Example {
interface base; /I Forward declaration

...
interface derived : base {}; I/l Error

interface base {}; I/l Define base
interface derived : base {}; Il OK

3.7.5 Interface Inheritance

An interface can be derived from another interface, which is then calleaksa

interface of the derived interface. A derived interface, like all interfaces, may declare
new elements (constants, types, attributes, exceptions, and operations). In addition,
unless redefined in the derived interface, the elements of a base interface can be
referred to as if they were elements of the derived interface. The name resolution
operator (“::") may be used to refer to a base element explicitly; this permits reference
to a name that has been redefined in the derived interface.

A derived interface may redefine any of the type, constant, and exception names that
have been inherited; the scope rules for such names are described in Section 3.14,
“CORBA Module,” on page 3-51.

An interface is called a direct base if it is mentioned in the
<interface_inheritance_spec> and an indirect base if it is not a direct base but is a
base interface of one of the interfaces mentioned in the
<interface_inheritance_spec>

An interface may be derived from any number of base interfaces. Such use of more
than one direct base interface is often called multiple inheritance. The order of
derivation is not significant.

An abstract interface may only inherit from other abstract interfaces.

An interface may not be specified as a direct base interface of a derived interface more
than once; it may be an indirect base interface more than once. Consider the following
example:

CORBA, v2.6.1: Interface Declaration 3-19

3-20

/\
B\/C O Ny
D

interface A{... }

interface B: A{... }

interface C: A{... }

interface D: B, C{ ... }

interface E: A, B{ ... }; I OK

The relationships between these interfaces is shown in Figure 3-1. This “diamond”
shape is legal, as is the definition of E on the right.

AN
N

References to base interface elements must be unambiguous. A Reference to a base
interface element is ambiguous if the name is declared as a constant, type, or exception
in more than one base interface. Ambiguities can be resolved by qualifying a name
with its interface name (that is, usingacoped_name>). It is illegal to inherit from

two interfaces with the same operation or attribute name, or to redefine an operation or
attribute name in the derived interface.

Figure 3-1 Legal Multiple Inheritance Example

So for example in:

interface A {
typedef long L1,
short opA(in L1 1_1);
2

interface B {
typedef short L1,
L1 opB(in long I);

%
interface C: B, A {
typedef L1 L2; /l Error: L1 ambiguous
typedef A:lL1 L3; /I ALl is OK
B::L1 opC(in L3 1_3); // all OK no ambiguities
%

Common Object Request Broker Architecture (CORBA), v2.6.1 May 2002

3

May 2002

References to constants, types, and exceptions are bound to an interface when it is
defined (i.e., replaced with the equivalent glokatoped_name> s). This guarantees

that the syntax and semantics of an interface are not changed when the interface is a
base interface for a derived interface. Consider the following example:

constlong L = 3;

interface A {
typedef float coord[L]:
void f (in coord s); Il s has three floats

h

interface B {
constlong L = 4;

%
interface C: B, A{}; /l what is C::f()'s signature?

The early binding of constants, types, and exceptions at interface definition guarantees
that the signature of operatidnn interfaceC is

typedef float coord[3];
void f (in coord s);

which is identical to that in interfacA. This rule also prevents redefinition of a
constant, type, or exception in the derived interface from affecting the operations and
attributes inherited from a base interface.

Interface inheritance causes all identifiers defined in base interfaces, both direct and
indirect, to be visible in the current naming scope. A type name, constant name,
enumeration value name, or exception name from an enclosing scope can be redefined
in the current scope. An attempt to use an ambiguous name without qualification
produces a compilation error. Thus in

interface A {
typedef string<128> string_t;
2

interface B {
typedef string<256> string_t;

2
interface C: A, B{
attribute string_t Title; Il Error: string_t ambiguous
attribute A::string_t Name; /I OK
attribute B::string_t City; Il OK
2
CORBA, v2.6.1: Interface Declaration 3-21

Operation and attribute names are used at run-time by both the stub and dynamic
interfaces. As a result, all operations attributes that might apply to a particular object
must have unigue names. This requirement prohibits redefining an operation or
attribute name in a derived interface, as well as inheriting two operations or attributes
with the same name.

interface A {
void make_it_so();

3

interface B: A {
short make_it_so(in long times); // Error: redefinition of make_it_so

3

For a complete summary of allowable inheritance and supporting relationships among
interfaces and valuetypes see Table 3-10 on page 3-29.

3.7.6 Local Interface

3.7.6.1 Semantics

The semantics associated with local types are as follows:

» An interface declaration containing the keywdodal declares docal interface
An interface declaration not containing the keywdwodal is referred to as an
unconstrained interfaceéAn object implementing a local interfaces is referred to as
alocal object

* Alocal interface may inherit from other local or unconstrained interfaces.

» An unconstrained interface may not inherit from a local interface. An interface
derived from a local interface must be explicitly declatedal .

* A valuetype may support a local interface.

« Any IDL type, including an unconstrained interface, may appear as a parameter,
attribute, return type, or exception declaration of a local interface.

* A local interface is docal type as is any non-interface type declaration
constructed using a local interface or other local type. For examptrpet ,
union , or exception with a member that is a local interface is also itself a local
type.

» Alocal type may be used as a parameter, attribute, return type, or exception
declaration of a local interface or ofwvaluetype .

* Alocal type may not appear as a parameter, attribute, return type, or exception
declaration of an unconstrained interface or as a state membevadfietype .

3-22 Common Object Request Broker Architecture (CORBA), v2.6.1 May 2002

3

May 2002

3.7.6.2

* Local types cannot be marshaled and references to local objects cannot be converted
to strings. Any attempt to marshal a local object, such as via an unconstrained base
interface, as a®bject, or as the contents of amny, or to pass a local object to
ORB::object_to_string , shall result in dIJARSHAL system exception with
OMG minor code 4.

» The usage of client side language mappings for local types shall be identical to
those of equivalent unconstrained types.

» The DIl is not supported on local objects, nor are asynchronous invocation
interfaces.

» Thenon_existent , is_equivalent andhash CORBA::Object pseudo-operations
shall be supported by references to local objects.

» Theis_a, get_interface , get_domain_managers , get_policy ,
get_client_policy , set_policy_overrides , get_policy_overrides , and
validate_connection pseudo-operations, and any DIl support pseudo-operations,
may result in aNO_IMPLEMENT system exception with minor code 3 when
invoked on a reference to a local object.

» Language mappings shall specify server side mechanisms, including base classes
and/or skeletons if necessary, for implementing local objects, so that invocation
overhead is minimized.

» Invocations on local objects are not ORB mediated. Specifically, parameter copy
semantics are not honored, interceptors are not invoked, and the execution context
of a local object does not have ORB serviCarrent object contexts that are
distinct from those of the caller. Implementations of local interfaces are responsible
for providing the parameter copy semantics expected by clients.

» Local objects have no inherent identities beyond their implementations’ identities as
programming objects. The lifecycle of the implementation is the same as the
lifecycle of the reference.

» Instances of local objects defined as part of OMG specifications to be supplied by
ORB products or object service products shall be exposed through the
ORB::resolve_initial_references operation or through some other local object
obtained fromresolve_initial_references

LocalObject

Local interfaces are implemented by usi@@RBA::LocalObject to provide
implementations oDbject pseudo operations and any other ORB specific support
mechanisms that are appropriate for such objects. Object implementation techniques
are inherently language mapping specific. Therefore LiealObject type is not

defined in IDL, but is specified by each language mapping.

The LocalObject type provides implementations of the followif@pject pseudo-
operations that raise ttdO_IMPLEMENT system exception:

e is a

» get_interface

CORBA, v2.6.1: Interface Declaration 3-23

* get_domain_managers
e get policy

» get_client_policy

» set_policy_overrides

» get_policy_overrides

» validate_connection

Additionally, it provides implementations of the following pseudo-operations:
* non_existent - always returns false.
* hash - returns a hash value that is consistent for the lifetime of the object.

» is_equivalent - returns true if the references refer to the sdmealObject
implementation.

Attempting to use docalObject to create a DIl request results in a
NO_IMPLEMENT system exception with standard minor code 4. Attempting to
marshal or stringify d.ocalObject results in aMARSHAL system exception with
standard minor code 4. Narrowing and widening of referencéotalObjects must
work as for regular object references.

For a complete summary of allowable inheritance and supporting relationships among
interfaces and valuetypes see Table 3-10 on page 3-29.

3.8 Value Declaration

3-24

(13)

There are several kinds of value type declarations: “regular” value types, boxed value
types, abstract value types, and forward declarations.

A value declaration satisfies the following syntax:

<value> := (<value_dcl> | <value_abs_dcl> |
<value_box_dcl> | <value_forward_dcl>)

3.8.1 Regular Value Type

(17)
(18)

(21)

A regular value type satisfies the following syntax:
<value_dcl> := <value_header> “{" <value_element>*“}"

<value_header> := [‘custom”] “valuetype” <identifier>
[<value_inheritance_spec>]
<value_element> := <export>
| < state_member> |
| <init_dcl>

3.8.1.1 Value Header

The value header consists of two elements:

Common Object Request Broker Architecture (CORBA), v2.6.1 May 2002

3

1. The value type’s name and optional modifier specifying whether the value type uses
custom marshaling.

2. An optional value inheritance specification. The value inheritance specification is
described in the next section.

3.8.1.2 Value Element

A value can contain all the elements that an interface can as well as the definition of
state members, and initializers for that state.

3.8.1.3 Value Inheritance Specification

(19)<value_inheritance_spec> := [“”[“truncatable”] <value_name>
{" <value_name>}* |
[“supports” <interface_name>
{"] <interface_name> }* |

(20) <value_name> := <scoped_name>

Each<value_name> and <interface_name> in a <value_inheritance_spec>
must denote previously defined value type or interface. See Section 3.8.5, “Valuetype
Inheritance,” on page 3-28 for the description of value type inheritance.

Thetruncatable modifier may not be used if the value type being defined is a custom
value.

A valuetype that supports a local interface does not itself bedoo# (i.e.
unmarshalable) as a result of that support.

3.8.1.4 State Members

(22) <state_member> ::= (“public” | “private”)
<type_spec> <declarators> ;"

Each<state_member> defines an element of the state, which is marshaled and sent

to the receiver when the value type is passed as a parameter. A state member is either
public or private. The annotation directs the language mapping to hide or expose the
different parts of the state to the clients of the value type. The private part of the state
is only accessible to the implementation code and the marshaling routines.

A valuetype that has a state member thdbizal (i.e. non-marshalable like a local
interface), is itself rendereldcal. That is, such valuetypes behave similar to local
interfaces when an attempt is made to marshal them.

Note that certain programming languages may not have the built in facilities needed to
distinguish between the public and private members. In these cases, the language
mapping specifies the rules that programmers are responsible for following.

May 2002 CORBA, v2.6.1: Value Declaration 3-25

3-26

3.8.1.5
(23)

(24)
(25)

(26)

3.8.1.6

Initializers
<init_dcl> ::= “factory” <identifier>
“(“ [<init_param_decls>] “)" "
<init_param_decls> := <init_param_decl> { " <init_param_decl> }*

<init_param_decl> <init_param_attribute> <param_type_spec>

<simple_declarator>
<init_param_attribute> ::= “in”

In order to ensure portability of value implementations, designers may also define the
signatures of initializers (or constructors) for non abstract value types. Syntactically
these look like local operation signatures except that they are prefixed with the
keywordfactory , have no return type, and must use only in parameters. There may be
any number of factory declarations. The names of the initializers are part of the name
scope of the value type. Initializers defined in a valuetype are not inherited by derived
valuetypes, and hence the names of the initializers are free to be reused in a derived
valuetype.

If no initializers are specified in IDL, the value type does not provide a portable way of
creating a runtime instance of its type. There is no default initializer. This allows the
definition of IDL value types, which are not intended to be directly instantiated by
client code.

Value Type Example

interface Tree {
void print()
3

valuetype WeightedBinaryTree {
/I state definition
private unsigned long weight;
private WeightedBinaryTree left;
private WeightedBinaryTree right;
[l initializer
factory init(in unsigned long w);
/l'local operations
WeightSeq pre_order();
WeightSeq post_order();
3
valuetype WTree: WeightedBinaryTree supports Tree {};

3.8.2 Boxed Value Type

(15)

<value_box_dcl> ::= “valuetype” <identifier> <type_ spec>

It is often convenient to define a value type with no inheritance or operations and with
a single state member. A shorthand IDL notation is used to simplify the use of value
types for this kind of simple containment, referred to as a “value box.”

Common Object Request Broker Architecture (CORBA), v2.6.1 May 2002

3

Value box is particularly useful for strings and sequences. Basically one does not have
to create what is in effect an additional namespace that will contain only one name.

An example is the following IDL:

module Example {
interface Foo {
... I* anything */
3
valuetype FooSeq sequence<Foo>;
interface Bar {
void dolt (in FooSeq seql);
3
3

The above IDL provides similar functionality to writing the following IDL. However
the type identities (repository ID’s) would be different.

module Example {
interface Foo {
... [*anything */
h
valuetype FooSeq {
public sequence<Foo> data;
h
interface Bar {
void dolt (in FooSeq seq);
h
h

The former is easier to manipulate after it is mapped to a concrete programming
language.

Any IDL type may be used to declare a value box except for a valuetype.

The declaration of a boxed value type does not open a new scope.Thus a construction
such as:

valuetype FooSeq sequence <FooSeq>;

is not legal IDL. The identifier being declared as a boxed value type cannot be used
subsequent to its initial use and prior to the completion of the boxed value declaration.

3.8.3 Abstract Value Type

(15) <value_abs_dcl> := "abstract” “valuetype” <identifier>
[<value_inheritance_spec>]
H{“ <export>* ll}"

May 2002 CORBA, v2.6.1: Value Declaration 3-27

3-28

Value types may also be abstract. They are called abstract because an abstract value
type may not be instantiated. No <state_member> or <initializers> may be specified.
However, local operations may be specified. Essentially they are a bundle of operation
signatures with a purely local implementation.

Note that a concrete value type with an empty state is not an abstract value type.

3.8.4 Value Forward Declaration

(14)

<value_forward _dcl> ::= [“abstract”] “valuetype” <identifier>

A forward declaration declares the name of a value type without defining it. This
permits the definition of value types that refer to each other. The syntax consists
simply of the keywordvaluetype followed by an<identifier> that names the value

type.
Multiple forward declarations of the same value type name are legal.

Boxed value types cannot be forward declared; such a forward declaration would refer
to a normal value type.

It is illegal to inherit from a forward-declared value type whose definition has not yet
been seen.

3.8.5 Valuetype Inheritance

The terminology that is used to describe value type inheritance is directly analogous to
that used to describe interface inheritance (see Section 3.7.5, “Interface Inheritance,”
on page 3-19).

The name scoping and name collision rules for valuetypes are identical to those for
interfaces. In addition, no valuetype may be specified as a direct abstract base of a
derived valuetype more than once; it may be an indirect abstract base more than once.
See Section 3.7.5, “Interface Inheritance,” on page 3-19 for a detailed description of
the analogous properties for interfaces.

Values may be derived from other values and can support an interface and any number
of abstract interfaces.

Once implementation (state) is specified at a particular point in the inheritance
hierarchy, all derived value types (which must of course implement the state) may only
derive from a single (concrete) value type. They can however derive from other
additional abstract values and support an additional interface.

The single immediate base concrete value type, if present, must be the first element
specified in the inheritance list of the value declaration’s IDL. It may be followed by
other abstract values from which it inherits. The interface and abstract interfaces that it
supports are listed following theupports keyword.

A stateful value that derives from another stateful value may specify that it is
truncatable. This means that it is to “truncate” (see Section 5.2.5.3, “Value instance ->
Value type,” on page 5-5) an instance to be an instance of any of its truncatable parent

Common Object Request Broker Architecture (CORBA), v2.6.1 May 2002

3

(stateful) value types under certain conditions. Note that all the intervening types in the
inheritance hierarchy must be truncatable in order for truncation to a particular type to
be allowed.

Because custom values require an exact type match between the sending and receiving
context,truncatable may not be specified for a custom value type.

Non-custom value types may not (transitively) inherit from custom value types.
Boxed value types may not be derived from, nor may they derive from anything else.
These rules are summarized in the following table:

Table 3-10 Allowable Inheritance Relationships

May inherit from: | Interface Abstract Abstract Stateful Value Boxed value
Interface Value
Interface multiple multiple no no no
Abstract Interface | no multiple no no no
supports single| supports multiple no no
Abstract Value multiple
supports single| supports multiple single (may be | no
Stateful Value multiple truncatable)
Boxed Value no no no no no
3.9 Constant Declaration
This section describes the syntax for constant declarations.
3.9.1 Syntax
The syntax for a constant declaration is:
(27) <const_dcl> ::= “const” <const_type>
<identifier> “=" <const_exp>
(28) <const_type> := <integer_type>
| <char_type>
| <wide_char_type>
| <boolean_type>
| <floating_pt_type>
| <string_type>
| <wide_string_type>
| <fixed_pt_const_type>
| <scoped_name>
| <octet_type>
(29) <const_exp> = <or_expr>
(30) <or_expr> = <xor_expr>
| <or_expr>"“|" <xor_expr>
(32) <xor_expr> 1= <and_expr>
| <xor_expr>“"" <and_expr>
May 2002 CORBA, v2.6.1: Constant Declaration 3-29

(32) <and_expr> = <shift_expr>
| <and_expr>“&” <shift_expr>
(33) <shift_expr> := <add_expr>

| <shift_expr> “>>" <add_expr>

| <shift_expr> “<<” <add_expr>
(34) <add_expr> = <mult_expr>

| <add_expr>“+" <mult_expr>

| <add_expr>“-" <mult_expr>
(35) <mult_expr> := <unary_expr>

| <mult_expr> “*" <unary_expr>

| <mult_expr>“/" <unary_expr>

| <mult_expr> “%" <unary_expr>
(36) <unary_expr> := <unary_operator> <primary_expr>
<primary_expr>

“won

(37) <unary_operator>
wyn
<scoped_name>
<literal>
“(" <const_exp>*)"
<integer_literal>
<string_literal>
<wide_string_literal>
<character_literal>
<wide_character_literal>
<fixed_pt_literal>
<floating_pt_literal>
<boolean_literal>
“TRUE”
“FALSE”

<const_exp>

(38) <primary_expr>

(39) <literal>

(40) <boolean_literal>

(42) <positive_int_const>

3.9.2 Semantics

The<scoped_name> in the<const_type> production must be a previously defined
name of arxinteger_type> , <char_type> , <wide_char_type> , <boolean_type> ,
<floating_pt_type> , <string_type>, <wide_string_type> , <octet_type> , or
<enum_type> constant.

Integer literals have positive integer values. Only integer values can be assigned to
integer type ghort , long, long long) constants. Only positive integer values can be
assigned to unsigned integer type constants. If the value of the right hand side of an
integer constant declaration is too large to fit in the actual type of the constant on the
left hand side, e.g.,

const short s = 655592;

or is inappropriate for the actual type of the left hand side, e.g.,

3-30 Common Object Request Broker Architecture (CORBA), v2.6.1 May 2002

const octet 0 = -54;
it shall be flagged as a compile time error.

Floating point literals have floating point values. Only floating point values can be
assigned to floating point typdidat , double , long double) constants. If the value of
the right hand side is too large to fit in the actual type of the constant to which it is
being assigned it shall be flagged as a compile time error.

Fixed point literals have fixed point values. Only fixed point values can be assigned to
fixed point type constants. If the fixed point value in the expression on the right hand
side is too large to fit in the actual fixed point type of the constant on the left hand side,
then it shall be flagged as a compile time error.

An infix operator can combine two integers, floats or fixeds, but not mixtures of these.
Infix operators are applicable only to integer, float and fixed types.

If the type of an integer constantlieng or unsigned long , then each subexpression
of the associated constant expression is treated asisigned long by default, or a
signedlong for negated literals or negative integer constants. It is an error if any
subexpression values exceed the precision of the assignedioyyge ¢r unsigned
long), or if a final expression value (of typensigned long) exceeds the precision of
the target typeléng).

If the type of an integer constantlieng long or unsigned long long , then each
subexpression of the associated constant expression is treatediasigmed long
long by default, or a signetbng long for negated literals or negative integer
constants. It is an error if any subexpression values exceed the precision of the
assigned typeldng long or unsigned long long), or if a final expression value (of
type unsigned long long) exceeds the precision of the target typen{ long).

If the type of a floating-point constant @ouble , then each subexpression of the
associated constant expression is treated daubdle. It is an error if any
subexpression value exceeds the precisiodafble .

If the type of a floating-point constant isng double , then each subexpression of the
associated constant expression is treatedlaag@double . It is an error if any
subexpression value exceeds the precisioloing double .

Fixed-point decimal constant expressions are evaluated as follows. A fixed-point literal
has the apparent number of total and fractional digits. For exarGpR3.450d is
considered to béixed<7,3> and3000.00d is fixed<6,2> . Prefix operators do not

affect the precision; a prefix is optional, and does not change the result. The upper
bounds on the number of digits and scale of the result of an infix expression,
fixed<d1,s1> op fixed<d2,s2> , are shown in the following table:

Op Result: fixed<d,s>
+ fixed<max(d1l-s1,d2-s2) + max(sl,s2) + 1, max(sl,s2)>
- fixed<max(d1l-s1,d2-s2) + max(sl,s2) + 1, max(sl,s2)>

May 2002 CORBA, v2.6.1: Constant Declaration 3-31

Op Result: fixed<d,s>
* fixed<d1+d2, s1+s2>
/ fixed<(d1-s1+S2) + S inf, Sini>

A guotient may have an arbitrary number of decimal places, denoted by a segjg of
The computation proceeds pairwise, with the usual rules for left-to-right association,
operator precedence, and parentheses. All intermediate computations shall be
performed using double precision (i.e., 62 digit) arithmetic. If an individual
computation between a pair of fixed-point literals actually generates more than 31
significant digits, then a 31-digit result is retained as follows:

fixed<d,s> => fixed<31, 31-d+s>

Leading and trailing zeros are not considered significant. The omitted digits are
discarded; rounding is not performed. The result of the individual computation then
proceeds as one literal operand of the next pair of fixed-point literals to be computed.

Unary (+ -) and binary t / + -) operators are applicable in floating-point and fixed-
point expressions. Unary+(- ~) and binary ¥/ % + - << >> & | M) operators are
applicable in integer expressions.

The “~" unary operator indicates that the bit-complement of the expression to which it
is applied should be generated. For the purposes of such expressions, the values are 2's
complement numbers. As such, the complement can be generated as follows:

Integer Constant Expression Type | Generated 2's Complement Numbers
long long -(value+1)

unsigned long unsigned long (2**32-1) - value

long long long long -(value+1)

unsigned long long unsigned long (2**64-1) - value

The “%” binary operator yields the remainder from the division of the first expression
by the second. If the second operand of “%” is 0, the result is undefined; otherwise

(a/b)*b + a%b

is equal to a. If both operands are nonnegative, then the remainder is nonnegative; if
not, the sign of the remainder is implementation dependent.

The “<<"binary operator indicates that the value of the left operand should be shifted
left the number of bits specified by the right operand, with 0 fill for the vacated bits.
The right operand must be in the range 0 <= right operand < 64.

The “>>" binary operator indicates that the value of the left operand should be shifted
right the number of bits specified by the right operand, with O fill for the vacated bits.
The right operand must be in the range 0 <= right operand < 64.

3-32 Common Object Request Broker Architecture (CORBA), v2.6.1 May 2002

3

The “&” binary operator indicates that the logical, bitwise AND of the left and right
operands should be generated.

The “|” binary operator indicates that the logical, bitwise OR of the left and right
operands should be generated.

The “M" binary operator indicates that the logical, bitwise EXCLUSIVE-OR of the left
and right operands should be generated.

<positive_int_const> must evaluate to a positive integer constant.

An octet constant can be defined using an integer literal or an integer constant
expression, for example:

const octet O1 = 0x1;
constlong L = 3;
constoctet 02 =5+ L;

Values for an octet constant outside the range 0 - 255 shall cause a compile-time error.

An enum constant can only be defined using a scoped name for the enumerator. The
scoped name is resolved using the normal scope resolution rules Section 3.15, “Names
and Scoping,” on page 3-52. For example:

enum Color { red, green, blue };
const Color FAVORITE_COLOR =red,;

module M {

enum Size { small, medium, large };
%
const M::Size MYSIZE = M::medium;

The constant name for the RHS of an enumerated constant definition must denote one
of the enumerators defined for the enumerated type of the constant. For example:

const Color col =red; //is OK but
const Color another = M::medium; // is an error

3.10 Type Declaration

May 2002

(42)

OMG IDL provides constructs for naming data types; that is, it provides C language-
like declarations that associate an identifier with a type. OMG IDL uses$ythexlef
keyword to associate a name with a data type; a name is also associated with a data
type via thestruct , union , enum, andnative declarations; the syntax is:

<type_dcl> := “typedef” <type declarator>
<struct_type>

<union_type>

<enum_type>

“native” <simple_declarator>
<constr_forward_decl>

CORBA, v2.6.1: Type Declaration 3-33

(43) <type_declarator> := <type_spec> <declarators>

For type declarations, OMG IDL defines a set of type specifiers to represent typed
values. The syntax is as follows:

(44) <type_spec> := <simple_type_spec>
<constr_type_spec>
<base_type_spec>
<template_type_spec>
<scoped_name>
<floating_pt_type>
<integer_type>
<char_type>
<wide_char_type>
<boolean_type>
<octet_type>
<any_type>
<object_type>
<value_base_type>
<sequence_type>
<string_type>
<wide_string_type>
<fixed_pt_type>

(45) <simple_type_spec>

(46) <base_type_spec>

(47) <template_type spec>

(48) <constr_type_spec> <struct_type>

<union_type>

<enum_type>
(49) <declarators> = <declarator> { “” <declarator>} "
(50) <declarator> ::= <simple_declarator>

| <complex_declarator>

(52) <simple_declarator> ::= <identifier>
(52) <complex_declarator> ::= <array_declarator>

The <scoped_name> in <simple_type_spec> must be a previously defined type

introduced by an interface declarationir{terface_dcl> - see Section 3.7, “Interface

Declaration), a value declaratiorvalue_dcl> , <value_box_dcl> or

<abstract _value_dcl> - see Section 3.8, “Value Declaration) or a type declaration
(<type_dcl> - see Section 3.10, “Type Declaration). Note that exceptions are not

considered types in this context.

As seen above, OMG IDL type specifiers consist of scalar data types and type
constructors. OMG IDL type specifiers can be used in operation declarations to assign
data types to operation parameters. The next sections describe basic and constructed
type specifiers.

3.10.1 Basic Types

The syntax for the supported basic types is as follows:

(53) <floating_pt_type> ::= “float”
| “double”

3-34 Common Object Request Broker Architecture (CORBA), v2.6.1 May 2002

May 2002

(54)

(55)

(56)
(57)
(58)
(59)

(60)
(61)

<integer_type>

<signed_int>

<signed_short_int>
<signed_long_int>
<signed_longlong_int>

<unsigned_int>

<unsigned_short_int>
<unsigned_long_int>

(62) <unsigned_longlong_int>

(63)
(64)
(65)
(66)
(67)

<char_type>
<wide_char_type>
<boolean_type>
<octet_type>
<any_type>

| “long” “double”
= <signed_int>
| <unsigned_int>
'= <signed_short_int>
| <signed_long_int>
| <signed_longlong_int>
= “short”
= “long”
= “long” “long”
= <unsigned_short_int>
| <unsigned_long_int>
| <unsigned_longlong_int>
= “unsigned” “short”
= “unsigned” “long”

::= “unsigned” “long” “long”

“char”

= “wchar”
“boolean”
“octet”

= “any”

Each OMG IDL data type is mapped to a native data type via the appropriate language
mapping. Conversion errors between OMG IDL data types and the native types to
which they are mapped can occur during the performance of an operation invocation.
The invocation mechanism (client stub, dynamic invocation engine, and skeletons) may
signal an exception condition to the client if an attempt is made to convert an illegal
value. The standard system exceptions that are to be raised in such situations are
defined in Section 4.12, “Exceptions,” on page 4-61.

3.10.1.1 Integer Types

OMG IDL integer types arshort , unsigned short , long, unsigned long , long
long andunsigned long long , representing integer values in the range indicated

below in Table 3-11.

Table 3-11 Range of integer types

short 215 2151
long 281 231
long long 268 2631
unsigned short 0.21%.1
unsigned long 0.2%2.1
unsigned long long 0.264.1
CORBA, v2.6.1: Type Declaration 3-35

3.10.1.2 Floating-Point Types

OMG IDL floating-point types ardloat , double andlong double . Thefloat type
represents IEEE single-precision floating point numbersdihigble type represents

IEEE double-precision floating point numbers.Tlbag double data type represents

an IEEE double-extended floating-point number, which has an exponent of at least 15
bits in length and a signed fraction of at least 64 bits. l#eE Standard for Binary
Floating-Point Arithmetic ANSI/IEEE Standard 754-1985, for a detailed specification.

3.10.1.3 Char Type

OMG IDL defines achar data type that is an 8-bit quantity that (1) encodes a single-
byte character from any byte-oriented code set, or (2) when used in an array, encodes a
multi-byte character from a multi-byte code set. In other words, an implementation is
free to use any code set internally for encoding character data, though conversion to
another form may be required for transmission.

The ISO 8859-1 (Latinl) character set standard defines the meaning and representation
of all possible graphic characters used in OMG IDL (i.e., the space, alphabetic, digit
and graphic characters defined in Table 3-2 on page 3-3, Table 3-3 on page 3-4, and
Table 3-4 on page 3-4). The meaning and representation of the null and formatting
characters (see Table 3-5 on page 3-5) is the numerical value of the character as
defined in the ASCII (ISO 646) standard. The meaning of all other characters is
implementation-dependent.

During transmission, characters may be converted to other appropriate forms as
required by a particular language binding. Such conversions may change the
representation of a character but maintain the character’s meaning. For example, a
character may be converted to and from the appropriate representation in international
character sets.

3.10.1.4 Wide Char Type

OMG IDL defines awchar data type that encodes wide characters from any character
set. As with character data, an implementation is free to use any code set internally for
encoding wide characters, though, again, conversion to another form may be required
for transmission. The size efchar is implementation-dependent.

3.10.1.5 Boolean Type

Theboolean data type is used to denote a data item that can only take one of the
values TRUE and FALSE.

3.10.1.6 Octet Type

The octet type is an 8-bit quantity that is guaranteed not to undergo any conversion
when transmitted by the communication system.

3-36 Common Object Request Broker Architecture (CORBA), v2.6.1 May 2002

3.10.1.7 Any Type

Theany type permits the specification of values that can express any OMG IDL type.

An any logically contains a TypeCode (see Section 4.11, “TypeCodes,” on page 4-51)
and a value that is described by the TypeCode. Each IDL language mapping provides

operations that allow programers to insert and access the TypeCode and value
contained in an any.

3.10.2 Constructed Types

Structs , unions andenums are the constructed types. Their syntax is presented in
this section:

(42) <type_dcl> := “typedef” <type_ declarator>
| <struct_type>
| <union_type>
| <enum_type>
| “native” <simple_declarator>
| <constr_forward_decl>

(48) <constr_type _spec> := <struct type>

| <union_type>

| <enum_type>

= “struct” <identifier>

| “union” <identifier>

(99) <constr_forward_decl>

3.10.2.1 Structures

The syntax forstruct type is

(69) <struct_type> ::= “struct” <identifier> “{” <member_list> “}"
(70) <member _list> = <member> *
(71) <member> = <type_spec> <declarators> “;”

The<identifier> in <struct_type> defines a new legal type. Structure types may also
be named using typedef declaration.

Name scoping rules require that the member declarators in a particular structure be
unigue. The value of atruct is the value of all of its members.

3.10.2.2 Discriminated Unions

The discriminatedinion syntax is:

(72) <union_type> := “union” <identifier> “switch”
“(" <switch_type_spec> “)"
‘" <switch_body> *}"

= <integer_type>

| <char_type>

| <boolean_type>

| <enum_type>

(73) <switch_type_spec>

May 2002 CORBA, v2.6.1: Type Declaration 3-37

3-38

(74)
(75)
(76)

(77)

| <scoped_name>

<switch_body> := <case> *
<case> := <case_label> * <element_spec> “;”
<case_label> := “case” <const_exp> “"
| “default” "
<element_spec> := <type_spec> <declarator>

OMG IDL unions are a cross between theu@ion andswitch statements. IDL
unions must be discriminated; that is, the union header must specify a typed tag field
that determines which union member to use for the current instance of a call. The
<identifier> following theunion keyword defines a new legal type. Union types may
also be named usingtspedef declaration. Theconst_exp> in a<case_label>

must be consistent with theswitch_type_spec> . A default case can appear at most
once. The<scoped_name> in the <switch_type_spec> production must be a
previously definednteger, char, boolean or enum type.

Case labels must match or be automatically castable to the defined type of the
discriminator. Name scoping rules require that the element declarators in a particular
union be unique. If thesswitch_type spec> is an<enum_type> , the identifier for

the enumeration is in the scope of the union; as a result, it must be distinct from the
element declarators.

It is not required that all possible values of the union discriminator be listed in the
<switch_body> . The value of a union is the value of the discriminator together with
one of the following:

 If the discriminator value was explicitly listed inaase statement, the value of the
element associated with thease statement;

» If a defaultcase label was specified, the value of the element associated with the
defaultcase label;

* No additional value.

The values of the constant expressions for the case labels of a single union definition
must be distinct. A union type can contain a default label only where the values given
in the non-default labels do not cover the entire range of the union's discriminant type.

Access to the discriminator and the related element is language-mapping dependent.

Note — While any ISO Latin-1 (8859.1) IDL character literal may be used in a
<case_label> in a union definition whose discriminator typedbkar, not all of these
characters are present in all transmission code sets that may be negotiated by GIOP or
in all native code sets that may be used by implementation language compilers and
runtimes. When an attempt is made to marshal to CDRian whose discriminator
value ofchar type is not available in the negotiated transmission code set, or to
demarshal from CDR anion whose discriminator value athar type is not available

in the native code set,RATA_CONVERSION system exception is raised. Therefore,
to ensure portability and interoperability, care must be exercised when assigning the
<case_label> for aunion member whose discriminator typedbkar. Due to these
issues, use ofhar types as the discriminator type fanion s is not recommended.

Common Object Request Broker Architecture (CORBA), v2.6.1 May 2002

May 2002

3.10.2.3 Constructed Recursive Types and IForward Declarations

The IDL syntax allows the generation of recursive structures and unions via members
that have a sequence type. The element type of a recursive sequence struct or union
member must identify a struct, union, or valuetype. (A valuetype is allowed to have a
member of its own type either directly or indirectly through a member of a constructed
type—see Section 3.8.1.6, “Value Type Example,” on page 3-26.) For example, the
following is legal:

struct Foo {
long value;
sequence<Foo> chain; // Deprecated (see Section 3.10.6)

}

See “Sequences” on page 3-41 for details ofghguence template type.

IDL supports recursive types via a forward declaration for structures and unions (as
well as for valuetypes—see Section 3.8.1.6, “Value Type Example,” on page 3-26).
Because anonymous types are deprecated (see Section 3.10.6, “Deprecated Anonymous
Types,” on page 3-44), the previous example is better written as:

struct Foo; /l Forward declaration
typedef sequence<Foo> FooSeq;
struct Foo {

long value;

FooSeq chain;

h

The forward declaration for the structure enables the definition of the sequence type
FooSeq, which is used as the type of the recursive member.

Forward declarations are legal for structures and unions.A structure or union type is
termedincompleteuntil its full definition is provided; that is, until the scope of the
structure or union definition is closed by a terminating "}". For example:

struct Foo; /I Introduces Foo type name,
/I Foo is incomplete now
...
struct Foo {
...
h /l Foo is complete at this point

If a structure or union is forward declared, a definition of that structure or union must
follow the forward declaration in the same source file. Compilers shall issue a
diagnostic if this rule is violated. Multiple forward declarations of the same structure
or union are legal.

If a recursive structure or union member is used, sequence members that are recursive
must refer to an incomplete type currently under definition. For example

struct Foo; /I Forward declaration
typedef sequence<Foo> FooSeq;

CORBA, v2.6.1: Type Declaration 3-39

struct Bar {
long value;
FooSeq chain; /NMlegal, Foo is not an enclosing struct or union

%
Compilers shall issue a diagnostic if this rule is violated.

Recursive definitions can span multiple levels. For example:

union Bar; // Forward declaration
typedef sequence<Bar> BarSeq;
union Bar switch(long) { // Define incomplete union
case 0O:
long I_mem;
case 1:
struct Foo {
double d_mem,;
BarSeq nested; // OK, recurse on enclosing
/I incomplete type
}s_mem;

h

An incomplete type can only appear as the element type of a sequence definition. A
sequence with incomplete element type is termedhanmplete sequence type

struct Foo; /I Forward declaration
typedef sequence<Foo> FooSeq; /I incomplete

An incomplete sequence type can appear only as the element type of another sequence,
or as the member type of a structure or union definition. For example:

struct Foo; /I Forward declaration
typedef sequence<Foo> FooSeq; Il OK
typedef sequence<FooSeq> FooTree; // OK

interface | {
FooSeq opl(); /I lllegal, FooSeq is incomplete
void op2(/I lllegal, FooTree is incomplete
in FooTree t
);
2
struct Foo { // Provide definition of Foo
long I_mem;
FooSeq chain; Il OK
FooTree tree; /l OK
2

interface J {
FooSeq opl(); /I OK, FooSeq is complete
void op2(
in FooTreet // OK, FooTree is complete

3-40 Common Object Request Broker Architecture (CORBA), v2.6.1 May 2002

May 2002

);
3

Compilers shall issue a diagnostic if this rule is violated.

3.10.2.4 Enumerations

(78)

(79)

Enumerated types consist of ordered lists of identifiers. The syntax is:

<enum_type> := “enum” <identifier>
“{" <enumerator> { “” <enumerator>} "¢
<enumerator> ::= <identifier>

A maximum of 22 identifiers may be specified in an enumeration; as such, the
enumerated names must be mapped to a native data type capable of representing a
maximally-sized enumeration. The order in which the identifiers are named in the
specification of an enumeration defines the relative order of the identifiers. Any
language mapping that permits two enumerators to be compared or defines
successor/predecessor functions on enumerators must conform to this ordering relation.
The <identifier> following theenum keyword defines a new legal type. Enumerated
types may also be named usingypedef declaration.

3.10.3 Template Types

(47)

The template types are:
<template_type_spec> <sequence_type>
<string_type>
<wide_string_type>

|
|
| <fixed_pt_type>

3.10.3.1 Sequences

(80)

OMG IDL defines the sequence typequence . A sequence is a one-dimensional
array with two characteristics: a maximum size (which is fixed at compile time) and a
length (which is determined at run time).

The syntax is:
<sequence_type> := “sequence” “<” <simple_type_spec> ")
<positive_int_const> “>"
| “sequence” “<” <simple_type_spec> “>"

The second parameter in a sequence declaration indicates the maximum size of the
sequence. If a positive integer constant is specified for the maximum size, the sequence
is termed a bounded sequence. If no maximum size is specified, size of the sequence is
unspecified (unbounded).

CORBA, v2.6.1: Type Declaration 3-41

Prior to passing a bounded or unbounded sequence as a function argument (or as a
field in a structure or union), the length of the sequence must be set in a language-
mapping dependent manner. After receiving a sequence result from an operation
invocation, the length of the returned sequence will have been set; this value may be
obtained in a language-mapping dependent manner.

A sequence type may be used as the type parameter for another sequence type. For
example, the following:

typedef sequence< sequence<long> > Fred,;

declares Fred to be of type “unbounded sequence of unbounded sequence of long”.
Note that for nested sequence declarations, white space must be used to separate the
two “>" tokens ending the declaration so they are not parsed as a single “>>" token.

3.10.3.2 Strings

OMG IDL defines the string typstring consisting of all possible 8-bit quantities
except null. A string is similar to a sequence of char. As with sequences of any type,
prior to passing a string as a function argument (or as a field in a structure or union),
the length of the string must be set in a language-mapping dependent manner. The
syntax is:
(81) <string_type> ::= “string” “
| “string”

<" <positive_int_const> “>"

The argument to the string declaration is the maximum size of the string. If a positive
integer maximum size is specified, the string is termed a bounded string; if no
maximum size is specified, the string is termed an unbounded string.

Strings are singled out as a separate type because many languages have special built-ir
functions or standard library functions for string manipulation. A separate string type
may permit substantial optimization in the handling of strings compared to what can be
done with sequences of general types.

3.10.3.3 Wstrings

Thewstring data type represents a sequence of wchar, except the wide character null.
The type wstring is similar to that of type string, except that its element type is wchar
instead of char. The actual length of a wstring is set at run-time and, if the bounded
form is used, must be less than or equal to the bound.

The syntax for defining a wstring is:

(82) <wide_string_type> ::= “wstring” “<” <positive_int_const> “>"
| “wstring”

3-42 Common Object Request Broker Architecture (CORBA), v2.6.1 May 2002

3.10.3.4 Fixed Type

Thefixed data type represents a fixed-point decimal number of up to 31 significant
digits. The scale factor is a non-negative integer less than or equal to the total number
of digits (note that constants with effectively negative scale, such as 10000, are always
permitted).

Thefixed data type will be mapped to the native fixed point capability of a
programming language, if available. If there is not a native fixed point type, then the
IDL mapping for that language will provide a fixed point data type. Applications that
use the IDL fixed point type across multiple programming languages must take into
account differences between the languages in handling rounding, overflow, and
arithmetic precision.

The syntax of fixed type is:

(97) <fixed_pt_type> ::= “fixed” “<" <positive_int_const> *’
<positive_int_const> “>"
(98) <fixed_pt const_type> ::= “fixed”

3.10.4 Complex Declarator

3.10.4.1 Arrays

OMG IDL defines multidimensional, fixed-size arrays. An array includes explicit sizes
for each dimension.

The syntax for arrays is:

+

(83) <array_declarator> <identifier> <fixed_array_size>
(84) <fixed_array_size> := “[” <positive_int_const> “]”

The array size (in each dimension) is fixed at compile time. When an array is passed as
a parameter in an operation invocation, all elements of the array are transmitted.

The implementation of array indices is language mapping specific; passing an array
index as a parameter may yield incorrect results.

3.10.5 Native Types

OMG IDL provides a declaration for use by object adapters to define an opaque type
whose representation is specified by the language mapping for that object adapter.

The syntax is:

(42) <type_dcl> := “native” <simple_declarator>
(51) <simple_declarator> ::= <identifier>

May 2002 CORBA, v2.6.1: Type Declaration 3-43

3-44

This declaration defines a new type with the specified name. A native type is similar to
an IDL basic type. The possible values of a native type are language-mapping
dependent, as are the means for constructing them and manipulating them. Any
interface that defines a native type requires each language mapping to define how the
native type is mapped into that programming language.

A native type may be used only to define operation parameters and results. Native type
parameters are permitted only in operationdoafil interface s orvaluetype s. Any
attempt to transmit a value of a native type in a remote invocation may raise the
MARSHAL standard system exception.

It is recommended that native types be mapped to equivalent type names in each
programming language, subject to the normal mapping rules for type names in that
language. For example, in a hypothetical Object Adapter IDL module

module HypotheticalObjectAdapter {
native Servant;
interface HOA {
Object activate_object(in Servant x);
3
3

the IDL type Servant would map tdypotheticalObjectAdapter::Servant in C++
and theactivate_object operation would map to the following C++ member function
signature:

CORBA::Object_ptr activate_object(
HypotheticalObjectAdapter::Servant x);

The definition of the C++ typélypotheticalObjectAdapter::Servant
would be provided as part of the C++ mapping for the HypotheticalObjectAdapter
module.

Note —The native type declaration is provided specifically for use in object adapter
interfaces, which require parameters whose values are concrete representations of
object implementation instances. It is strongly recommended that it not be used in
service or application interfaces. The native type declaration allows object adapters to
define new primitive types without requiring changes to the OMG IDL language or to
OMG IDL compiler.

3.10.6 Deprecated Anonymous Types

IDL currently permits the use of anonymous types in a number of places. For example:
struct Foo {

long value;
sequence<Foo> chain; // Legal (but deprecated)

Common Object Request Broker Architecture (CORBA), v2.6.1 May 2002

3

May 2002

Anonymous types cause a humber of problems for language mappings and are
therefore deprecated by this specification. Anonymous types will be removed in a
future version, so new IDL should avoid use of anonymous types and typedef to

name such types instead. Compilers need not issue a warning if a deprecated construct
is encountered.

The following (non-exhaustive) examples illustrate deprecated uses of anonymous
types.

Anonymous bounded string and bounded wide string types are deprecated. This rule
affects constant definitions, attribute declarations, return value and parameter type
declarations, sequence and array element declarations, and structure, union, exception,
and valuetype member declarations. For example

const string<5> GREETING = “Hello”; // Deprecated
interface Foo {

readonly attribute wstring<5> name; /I Deprecated

wstring<5> op(in wstring<5> param); /l Deprecated
2
typedef sequence<wstring<5> > WS5Seq; I/l Deprecated
typedef wstring<5> NameVector [10]; /I Deprecated
struct A {

wstring<5> mem; /I Deprecated
2

/I Anonymous member type in unions, exceptions,
/I and valuetypes are deprecated as well.

This is better written as:

typedef string<5> GreetingType;
const GreetingType GREETING = “Hello”;

typedef wstring<5> ShortWName;
interface Foo {
readonly attribute ShortWName name;
ShortWName op(in ShortWName param);
h
typedef sequence<ShortWName> NameSeq;
typedef ShortWName NameVector[10];
struct A {
GreetingType mem;

3

Anonymous fixed-point types are deprecated. This rule affects attribute declarations,
return value and parameter type declarations, sequence and array element declarations.
and structure, union, exception, and valuetype member declarations.

struct Foo {

fixed<10,5> member; /I Deprecated

3

CORBA, v2.6.1: Type Declaration 3-45

This is better written as:

typedef fixed<10,5> MyType;
struct Foo {
MyType member;

h

Anonymous member types in structures, unions, exceptions, and valuetypes are
deprecated:

union U switch(long) {

case 1:

long array_mem][10]; /I Deprecated
case 2:

sequence<long> seq_mem; /I Deprecated
case 3:

string<5> bstring_mem;

3

This is better written as:

typedef long LongArray[10];
typedef sequence<long> LongSeq;
typedef string<5> ShortName;
union U switch (long) {
case 1:
LongArray array_mem;
case 2:
LongSeq seq_mem;
case 3:
ShortName bstring_mem;

3

Anonymous array and sequence elements are deprecated:

typedef sequence<sequence<long> > NumberTree; // Deprecated
typedef fixed<10,2> FixedArray[10];

This is better written as:

typedef sequence<long> ListOfNumbers;
typedef sequence<ListOfNumbers> NumberTree;
typedef fixed<10,2> Fixed_10_2;

typedef Fixed_10_2 FixedArray[10];

The preceding examples are not exhaustive. They simply illustrate the rule that, for a
type to be used in the definition of another type, constant, attribute, return value,
parameter, or member, that type must have a name. Note that the following example is
not deprecated (even though stylistically poor):

struct Foo {
struct Bar {

3-46 Common Object Request Broker Architecture (CORBA), v2.6.1 May 2002

long I_mem;

double d_mem;
} bar_mem_1; /I OK, not anonymous
Bar bar_mem_2; /I OK, not anonymous

3

typedef sequence<Foo::Bar> FooBarSeq; /l Scoped names are OK

3.11 Exception Declaration

Exception declarations permit the declaration of struct-like data structures, which may
be returned to indicate that an exceptional condition has occurred during the
performance of a request. The syntax is as follows:

(86) <except_dcl> 1= “exception” <identifier> “{* <member>* “}”

Each exception is characterized by its OMG IDL identifier, an exception type
identifier, and the type of the associated return value (as specified bynteenber>

in its declaration). If an exception is returned as the outcome to a request, then the
value of the exception identifier is accessible to the programmer for determining which
particular exception was raised.

If an exception is declared with members, a programmer will be able to access the
values of those members when an exception is raised. If no members are specified, no
additional information is accessible when an exception is raised.

An identifier declared to be an exception identifier may thereafter appear only in a
raises clause of an operation declaration, and nowhere else.

A set of standard system exceptions is defined corresponding to standard run-time
errors, which may occur during the execution of a request. These standard system
exceptions are documented in Section 4.12, “Exceptions,” on page 4-61.

3.12 Operation Declaration

Operation declarations in OMG IDL are similar to C function declarations. The syntax

is:
(87) <op_dcl> := [<op_attribute>] <op_type_spec>
<identifier> <parameter_dcls>
[<raises_expr>] [<context_expr>]
(89) <op_type _spec> := <param_type_spec>

| uvoidn
An operation declaration consists of:

» An optional operation attribute that specifies which invocation semantics the
communication system should provide when the operation is invoked. Operation
attributes are described in Section 3.12.1, “Operation Attribute,” on page 3-48.

» The type of the operation’s return result; the type may be any type that can be
defined in OMG IDL. Operations that do not return a result must specifydie

type.

May 2002 CORBA, v2.6.1: Exception Declaration 3-47

3-48

» An identifier that names the operation in the scope of the interface in which it is
defined.

» A parameter list that specifies zero or more parameter declarations for the
operation. Parameter declaration is described in Section 3.12.2, “Parameter
Declarations,” on page 3-48.

* An optional raises expression that indicates which exceptions may be raised as a
result of an invocation of this operation. Raises expressions are described in
Section 3.12.3, “Raises Expressions,” on page 3-49.

* An optional context expression that indicates which elements of the request context
may be consulted by the method that implements the operation. Context expressions
are described in Section 3.12.4, “Context Expressions,” on page 3-49.

Some implementations and/or language mappings may require operation-specific
pragmas to immediately precede the affected operation declaration.

3.12.1 Operation Attribute

The operation attribute specifies which invocation semantics the communication
service must provide for invocations of a particular operation. An operation attribute is
optional. The syntax for its specification is as follows:

(88) <op_attribute> ::= “oneway”

When a client invokes an operation with theeway attribute, the invocation
semantics are best-effort, which does not guarantee delivery of the call; best-effort
implies that the operation will be invoked at most once. An operation with the
oneway attribute must not contain any output parameters and must spegdida
return type. An operation defined with tlimeway attribute may not include a raises
expression; invocation of such an operation, however, may raise a standard system
exception.

If an <op_attribute> is not specified, the invocation semantics is at-most-once if an
exception is raised; the semantics are exactly-once if the operation invocation returns
successfully.

3.12.2 Parameter Declarations

Parameter declarations in OMG IDL operation declarations have the following syntax:

(90) <parameter_dcls> := “(" <param_dcl> { " <param_dcl>} Dy
|

(91) <param_dcl> := <param_attribute> <param_type_spec>

<simple_declarator>

(92) <param_attribute> ::= “in”
| “out”
| “inout”

(95) <param_type_spec> := <base_type_spec>

Common Object Request Broker Architecture (CORBA), v2.6.1 May 2002

| <string_type>
| <wide_string_type>
| <scoped_name>

A parameter declaration must have a directional attribute that informs the
communication service in both the client and the server of the direction in which the
parameter is to be passed. The directional attributes are:

* in - the parameter is passed from client to server.
» out - the parameter is passed from server to client.

* inout - the parameter is passed in both directions.

It is expected that an implementation wilbt attempt to modify ann parameter. The
ability to even attempt to do so is language-mapping specific; the effect of such an
action is undefined.

If an exception is raised as a result of an invocation, the values of the return result and
anyout andinout parameters are undefined.

3.12.3 Raises Expressions

A raises expression specifies which exceptions may be raised as a result of an
invocation of the operation. The syntax for its specification is as follows:

(93) <raises_expr> = “raises” “(" <scoped_name>
{u,n <SCOped_name>} Du)n

The <scoped_name> s in theraises expression must be previously defined
exceptions.

In addition to any operation-specific exceptions specified inrthges expression,

there are a standard set of system exceptions that may be signalled by the ORB. These
standard system exceptions are described in Section 4.12.3, “Standard System
Exception Definitions,” on page 4-63. However, standard system exceptionaohbg

listed in araises expression.

The absence of eaises expression on an operation implies that there are no
operation-specific exceptions. Invocations of such an operation are still liable to
receive one of the standard system exceptions.

3.12.4 Context Expressions

A context expression specifies which elements of the client's context may affect the
performance of a request by the object. The syntax for its specification is as follows:

(94) <context_expr> := “context” “(” <string_literal>
{“r <string_literal>})"

May 2002 CORBA, v2.6.1: Operation Declaration 3-49

The run-time system guarantees to make the value (if any) associated with each
<string_literal> in the client’s context available to the object implementation when
the request is delivered. The ORB and/or object is free to use information in this
request contexduring request resolution and performance.

The absence of a context expression indicates that there is no request context
associated with requests for this operation.

Eachstring_literal is an arbitrarily long sequence of alphabetic, digit, period (“."),
underscore (“_"), and asterisk (“*") characters. The first character of the string must be
an alphabetic character. An asterisk may only be used as the last character of the
string. Some implementations may use the period character to partition the name
space.

The mechanism by which a client associates values with the context identifiers is
described in Section 4.6, “Context Object,” on page 4-28.

3.13 Attribute Declaration

An interface can have attributes as well as operations; as such, attributes are defined as
part of an interface. An attribute definition is logically equivalent to declaring a pair of
accessor functions; one to retrieve the value of the attribute and one to set the value of
the attribute.

The syntax forattribute declaration is:

(85) <attr_dcl> ::= [*“readonly”] “attribute”
<param_type_spec> <simple_declarator>
{ “ <simple_declarator> }*

The optionakeadonly keyword indicates that there is only a single accessor
function—the retrieve value function. Consider the following example:

interface foo {
enum material_t {rubber, glass};
struct position_t {
float x, v;

3

attribute float radius;
attribute material_t material,
readonly attribute position_t position;

3

The attribute declarations are equivalent to the following pseudo-specification
fragment, assuming that one of the leading ‘_'s is removed by application of the
Escaped ldentifier rule described in Section 3.2.3.1, “Escaped Identifiers,” on page 3-6:

3-50 Common Object Request Broker Architecture (CORBA), v2.6.1 May 2002

float __get_radius ();

void __set_radius (in float r);
material_t __ get _material ();

void __set_material (in material_t m);

position_t __ get_position ();

The actual accessor function names are language-mapping specific. The attribute name
is subject to OMG IDL's name scoping rules; the accessor function names are
guaranteedhot to collide with any legal operation names specifiable in OMG IDL.

Attribute operations return errors by means of system exceptions.

Attributes are inherited. An attribute namannotbe redefined to be a different type.
See Section 3.14, “CORBA Module,” on page 3-51 for more information on
redefinition constraints and the handling of ambiguity.

3.14 CORBA Module

Names defined by the CORBA specification are in a module named CORBA. In an
OMG IDL specification, however, OMG IDL keywords such @bject must not be
preceded by aCORBA:: " prefix. Other interface names such &gpeCode are not
OMG IDL keywords, so they must be referred to by their fully scoped names (e.g.,
CORBA::TypeCode) within an OMG IDL specification.

For example in:

#include <orb.idl>

module M {
typedef CORBA::Object myObjRef; /I Error: keyword Object scoped
typedef TypeCode myTypeCode; /I Error: TypeCode undefined

typedef CORBA::TypeCode TypeCode;// OK
3

The file orb.idl contains the IDL definitions for th€ORBA module. Except for
CORBA::TypeCode , the file orb.idl must be included in IDL files that use names
defined in theCORBA module. IDL files that us€ ORBA::TypeCode may obtain its
definition by including either the fil®orb.idl or the file TypeCode.idl .

The exact contents dffypeCode.idl are implementation dependent. One possible
implementation offypeCode.idl may be:

// PIDL
#ifndef _TYPECODE_IDL_
#define _TYPECODE_IDL_
#pragma prefix "omg.org"
module CORBA {

interface TypeCode;
¥
#endif // _TYPECODE_IDL _

May 2002 CORBA, v2.6.1: CORBA Module 3-51

For IDL compilers that implicitly defineCORBA::TypeCode , TypeCode.idl could
consist entirely of a comment as shown below:

/I PIDL
/I CORBA::TypeCode implicitly built into the IDL compiler
/l Hence there are no declarations in this file

Because the compiler implicitly contains the required declaration, this file meets the
requirement for compliance.

The version ofCORBA specified in this release of the specification is versiony>,
and this is reflected in the IDL for th€ ORBA module by including the following
pragma version (see Section 10.6.5.3, “The Version Pragma,” on page 10-48):

#pragma version CORBA <x.y>

as the first line immediately following the very fir@ORBA module introduction line,

which in effect associates that version number with@@RBA entry in thelR. The

version number in that version pragma line must be changed whenever any changes are
made to any remotely accessible parts of @@RBA module in an officially released

OMG standard.

3.15 Names and Scoping

3-52

OMG IDL identifiers are case insensitive; that is, two identifiers that differ only in the
case of their characters are considered redefinitions of one another. However, all
references to a definition must use the same case as the defining occurrence. This
allows natural mappings to case-sensitive languages. So for example:

module M {
typedef long Long; /I Error: Long clashes with keyword long
typedef long TheThing;
interface I {
typedef long MyLong;
myLong op1([/l Error: inconsistent capitalization
in TheThing thething; // Error: TheThing clashes with thething

3.15.1 Qualified Names

A qualified name (one of the form <scoped-name>::<identifier>) is resolved by first
resolving the qualifier <scoped-name> to a scope S, and then locating the definition of
<identifier> within S. The identifier must be directly defined in S or (if S is an
interface) inherited into S. The <identifier> is not searched for in enclosing scopes.

When a qualified name begins with “::”, the resolution process starts with the file
scope and locates subsequent identifiers in the qualified name by the rule described in
the previous paragraph.

Common Object Request Broker Architecture (CORBA), v2.6.1 May 2002

3

Every OMG IDL definition in a file has a global name within that file. The global
name for a definition is constructed as follows.

Prior to starting to scan a file containing an OMG IDL specification, the name of the
current root is initially empty (“") and the name of the current scope is initially empty
(*"). Whenever amodule keyword is encountered, the string “::” and the associated
identifier are appended to the name of the current root; upon detection of the
termination of themodule , the trailing “::” and identifier are deleted from the name of
the current root. Whenever anterface , struct , union , or exception keyword is
encountered, the string “::” and the associated identifier are appended to the name of
the current scope; upon detection of the termination ofitkerface , struct , union ,

or exception , the trailing “::" and identifier are deleted from the name of the current
scope. Additionally, a new, unnamed, scope is entered when the parameters of an
operation declaration are processed; this allows the parameter names to duplicate other
identifiers; when parameter processing has completed, the unnamed scope is exited.

The global name of an OMG IDL definition is the concatenation of the current root,
the current scope, a “::", and the <identifier>, which is the local name for that
definition.

Note that the global name in an OMG IDL files corresponds to an absolute
ScopedName in the Interface Repository. (See Section 10.5.1, “Supporting Type
Definitions,” on page 10-10).

Inheritance causes all identifiers defined in base interfaces, both direct and indirect, to
be visible in derived interfaces. Such identifiers are considered to be semantically the
same as the original definition. Multiple paths to the same original identifier (as results
from the diamond shape in Figure 3-1 on page 3-20) do not conflict with each other.

Inheritance introduces multiple global OMG IDL names for the inherited identifiers.
Consider the following example:

interface A {
exception E {
long L;
h
void f() raises(E);
h

interface B: A {
void g() raises(E);
h

In this example, the exception is known by the global nam&sE and::B:E .

Ambiguity can arise in specifications due to the nested naming scopes. For example:
interface A {

typedef string<128> string_t;
2

May 2002 CORBA, v2.6.1: Names and Scoping 3-53

3-54

interface B {
typedef string<256> string_t;

h

interface C: A, B {
attribute string_t Title; Il Error: Ambiguous
attribute A::string_t Name; /I OK
attribute B::string_t City; I OK

h

The declaration of attribut@itle in interfaceC is ambiguous, since the compiler does
not know whichstring_t is desired. Ambiguous declarations yield compilation errors.

3.15.2 Scoping Rules and Name Resolution

Contents of an entire OMG IDL file, together with the contents of any files referenced
by #include statements, forms a haming scope. Definitions that do not appear inside a
scope are part of the global scope. There is only a single global scope, irrespective of
the number of source files that form a specification.

The following kinds of definitions form scopes:
* module

» interface

e valuetype

» struct

* union

e operation

* exception

The scope for module, interface, valuetype, struct and exception begins immediately
following its opening ‘{* and ends immediately preceding its closing ‘}. The scope of
an operation begins immediately following its ‘(" and ends immediately preceding its
closing *)’. The scope of an union begins immediately following the ‘(* following the
keywordswitch , and ends immediately preceding its closing ‘}. The appearance of
the declaration of any of these kinds in any scope, subject to semantic validity of such
declaration, opens a nested scope associated with that declaration.

An identifier can only be defined once in a scope. However, identifiers can be redefined
in nested scopes. An identifier declaring a module is considered to be defined by its
first occurrence in a scope. Subsequent occurrences of a module declaration with the
same identifier within the same scope reopens the module and hence its scope,
allowing additional definitions to be added to it.

The name of an interface, value type, struct, union, exception or a module may not be
redefined within the immediate scope of the interface, value type, struct, union,
exception, or the module. For example:

Common Object Request Broker Architecture (CORBA), v2.6.1 May 2002

May 2002

module M {
typedef short M; /I Error: M is the name of the module
I in the scope of which the typedef is.
interface I {

void i (in short j); // Error: i clashes with the interface name |
I3
I3

An identifier from a surrounding scope is introduced into a scope if it is used in that
scope. An identifier is not introduced into a scope by merely being visible in that
scope. The use of a scoped name introduces the identifier of the outermost scope of the
scoped name. For example in:

module M {
module Innerl {
typedef string S1;
2

module Inner2 {
typedef string innerl; /I OK
2
}

The declaration ofnner2::innerl is OK because the identifidnnerl, while visible
in modulelnner2, has not been introduced into moduitmer2 by actual use of it. On
the other hand, if modulthner2 were:

module Inner2{
typedef Innerl::S1 S2; /[Innerl introduced
typedef string innerl; /I Error
typedef string S1; /I OK

3

The definition ofinnerl is now an error because the identiflanerl referring to the
module Innerl has been introduced in the scope of modualeer2 in the first line of
the module declaration. Also, the declarationSdf in the last line is OK since the
identifier S1 was not introduced into the scope by the usénofer1::S1 in the first
line.

Only the first identifier in a qualified name is introduced into the current scope. This is
illustrated bylnner1::S1 in the example above, which introducdsrierl” into the
scope of Thner2” but does not introduceS1.” A qualified name of the form

“:X::Y::Z " does not causeX” to be introduced, but a qualified name of the form
“X:Y::Z” does.

Enumeration value names are introduced into the enclosing scope and then are treated
like any other declaration in that scope. For example:

interface A {
enum E{E1, E2, E3}; /l'line 1

enum BadE { E3, E4, E5 }; // Error: E3 is already introduced

CORBA, v2.6.1: Names and Scoping 3-55

3-56

/l into the A scope in line 1 above

h

interface C {
enum AnotherE { E1, E2, E3 };

h

interface D : C, A {
union U switch (E) {
case A::E1 : boolean b;// OK.
case E2 : long [; /I Error: E2 is ambiguous (notwithstanding
I the switch type specification!!)
h
h

Type names defined in a scope are available for immediate use within that scope. In
particular, see Section 3.10.2, “Constructed Types,” on page 3-37 on cycles in type
definitions.

A name can be used in an unqualified form within a particular scope; it will be
resolved by successively searching farther out in enclosing scopes, while taking into
consideration inheritance relationships among interfaces. For example:

module M {
typedef long ArgType;
typedef ArgType AType; /l'line 11
interface B {
typedef string ArgType; // line I3
ArgType opb(in AType i); //line 12

3
3
module N {
typedef char ArgType; /l'line 14
interface Y : M::B {
void opy(in ArgType i); /l'line 15
3
3

The following scopes are searched for the declaratioArgffype used online 15 :
1. Scope oiN::Y before the use oArgType .

2. Scope ofN::Y’s base interfac&::B. (inherited scope)

3. Scope ofmodule N before the definition oN::Y.

4. Global scope before the definition

M::B::ArgType is found instep 2 in line I3, and that is the definition that is used in
line I5, henceArgType in line I5 is string . It should be noted thakrgType is not
char in line I5. Now if line I3 were removed from the definition of interfadé:B
thenArgType online I5 would bechar from line 14, which is found instep 3.

Common Object Request Broker Architecture (CORBA), v2.6.1 May 2002

3

May 2002

Following analogous search steps for the types used in the opehdtiBriopb on
line 12, the type ofAType used orline 12 islong from thetypedef in line I1 and the
return typeArgType is string from line 13.

3.15.3 Special Scoping Rules for Type Names

Once a type has been defined anywhere within the scope of a module, interface or
valuetype, it may not be redefined except within the scope of a nested module,
interface or valuetype, or within the scope of a derived interface or valuetype. For
example:

typedef short TempType; /I Scope of TempType begins here
module M {
typedef string ArgType; // Scope of ArgType begins here
struct S {

:M:ArgType al; // Nothing introduced here

M::ArgType a2; /I M introduced here

:TempType temp; // Nothing introduced here
b /I Scope of (introduced) M ends here

b /I Scope of ArgType ends here

/I Scope of global TempType ends here (at end of file)

The scope of an introduced type name is from the point of introduction to the end of its
enclosing scope.

However, if atypename isintroducedinto a scope that is nested in a non-module

scope definition, itgpotentialscope extends over all its enclosing scopes out to the
enclosing non-module scope. (For types that are defined outside an inon-module scope,
the scope and the potential scope are identical.) For example:

module M {
typedef long ArgType;
const long | = 10;

typedef short Y;
interface A {
struct S {
struct T {
ArgType X[I]; /I ArgType and | introduced
long y; /l a newy is defined, the existing Y
/I is not used
}m;
h
typedef string ArgType; // Error: ArgType redefined
enum {11, 12 }; /I Error: | redefined
typedef short Y; I/l OK

}; // Potential scope of ArgType and | ends here

CORBA, v2.6.1: Names and Scoping 3-57

3-58

interface B : A {
typedef long ArgType // OK, redefined in derived interface
struct S { /I OK, redefined in derived interface
ArgType X; /I x is a long
A:ArgTypey; /l'y is a string
h
h
h

A type may not be redefined within its scope or potential scope, as shown in the
preceding example. This rule prevents type names from changing their meaning
throughout a non-module scope definition, and ensures that reordering of definitions in
the presence of introduced types does not affect the semantics of a specification.

Note that, in the following, the definition dfl::A::U::l is legal because it is outside
the potential scope of the | introduced in the definitionMifA::S::T::ArgType
However, the definition oM::A::l is still illegal because it is within the potential scope
of the I introduced in the definition dfl::A::S::T::ArgType

module M {
typedef long ArgType;
const long | = 10;

interface A {

struct S {
struct T {
ArgType x[l]; // ArgType and | introduced
}m;
I3
struct U {
long I; /I OK, I is not a type name
I3

enum I {I11,12}; // Error: | redefined
}; // Potential scope of ArgType and | ends here

h

Note that redefinition of a type after use in a module is OK as in the example:

typedef long ArgType;

module M {
struct S {
ArgType X; /I x is a long
h
typedef string ArgType; // OK!
struct T {
ArgType y; /I Ugly but OK, y is a string
h

Common Object Request Broker Architecture (CORBA), v2.6.1 May 2002

ORB Interface 4

Contents

This chapter contains the following sections.

Section Title Page
“Overview” 4-1
“The ORB Operations” 4-2
“Object Reference Operations” 4-12
“ValueBase Operations” 4-21
“ORB and OA Initialization and Initial References” 4-21
“Context Object” 4-28
“Current Object” 4-32
“Policy Object” 4-33
“Management of Policies” 4-43
“Management of Policy Domains” 4-46
“TypeCodes” 4-51
“Exceptions” 4-61

4.1 Overview

This chapter introduces the operations that are implemented by the ORB core, and
describes some basic ones, while providing reference to the description of the
remaining operations that are described elsewhere. The ORB interface is the interface
to those ORB functions that do not depend on which object adapter is used. These

May 2002 Common Object Request Broker Architecture (CORBA), v2.6.1 4-1

operations are the same for all ORBs and all object implementations, and can be
performed either by clients of the objects or implementations. The Obiject interface
contains operations that are implemented by the ORB, and are accessed as implicit
operations of the Object Reference. The ValueBase interface contains operations that
are implemented by the ORB, and are accessed as implicit operations of the ValueBase
Reference.

Because the operations in this section are implemented by the ORB itself, they are not
in fact operations on objects, although they are described that way for the Object or
ValueBase interface operations and the language binding will, for consistency, make
them appear that way.

4.2 The ORB Operations

The ORB interface contains the operations that are available to both clients and
servers. These operations do not depend on any specific object adapter or any specific
object reference.

module CORBA {

interface NVList; /I forward declaration
interface OperationDef; // forward declaration
interface TypeCode; /I forward declaration

typedef short PolicyErrorCode;
/I for the definition of consts see “PolicyErrorCode” on page 4-35
typedef unsigned long PolicyType;

interface Request; /I forward declaration
typedef sequence <Request> RequestSeq;

native AbstractBase;
exception PolicyError {PolicyErrorCode reason;};

typedef string Repositoryld;
typedef string Identifier;

/I StructMemberSeq defined in Chapter 10
/' UnionMemberSeq defined in Chapter 10
/I EnumMemberSeq defined in Chapter 10
typedef unsigned short ServiceType;
typedef unsigned long ServiceOption;
typedef unsigned long ServiceDetailType;
const ServiceType Security = 1;

struct ServiceDetail {
ServiceDetailType service_detail_type;

Common Object Request Broker Architecture (CORBA), v2.6.1 May 2002

May 2002

sequence <octet> service_detalil;

3

struct Servicelnformation {
sequence <ServiceOption> service_options;
sequence <ServiceDetail> service_details;

I3

native ValueFactory;
typedef string ORBId;
interface ORB {

typedef string Objectld;
typedef sequence <Objectld> ObjectldList;

exception InvalidName {};
ORBId id();

string object_to_string (
in Object obj
);

Object string_to_object (
in string str

);
/I Dynamic Invocation related operations

void create_list (
in long count,
out NVList new_list

);

void create_operation_list (
in OperationDef oper,
out NVList new_list

);

void get_default_context (
out Context ctx

);

void send_multiple_requests_oneway(
in RequestSeq req
);

void send_multiple_requests_deferred(
in RequestSeq req

CORBA, v2.6.1: The ORB Operations 4-3

);
boolean poll_next_response();

void get_next_response(
out Request req

);
/I Service information operations

boolean get_service_information (
in ServiceType service_type,
out Servicelnformation service_information

);
ObjectldList list_initial_services ();
/I Initial reference operation

Object resolve_initial_references (
in Objectld identifier
) raises (InvalidName);

/I Type code creation operations

TypeCode create_struct_tc (
in Repositoryld id,
in Identifier name,
in StructMemberSeq members

);

TypeCode create_union_tc (
in Repositoryld id,
in Identifier name,
in TypeCode discriminator_type,
in UnionMemberSeq members

);

TypeCode create_enum_tc (
in Repositoryld id,
in Identifier name,
in EnumMemberSeq members

);

TypeCode create_alias_tc (

in Repositoryld id,

in Identifier name,

in TypeCode original_type
);

TypeCode create_exception_tc (

Common Object Request Broker Architecture (CORBA), v2.6.1

May 2002

in Repositoryld id,
in Identifier name,
in StructMemberSeq members

);

TypeCode create_interface_tc (
in Repositoryld id,
in Identifier name

);

TypeCode create_string_tc (
in unsigned long bound

);

TypeCode create_wstring_tc (
in unsigned long bound

);

TypeCode create_fixed_tc (
in unsigned short digits,
in short scale

);

TypeCode create_sequence_tc (
in unsigned long bound,
in TypeCode element type

);

TypeCode create_recursive_sequence_tc (// deprecated
in unsigned long bound,
in unsigned long offset

);

TypeCode create_array_tc (
in unsigned long length,
in TypeCode element_type

);

TypeCode create_value_tc (

in Repositoryld id,

in Identifier name,

in ValueModifier type_maodifier,
in TypeCode concrete_base,

in ValueMembersSeq members

);

TypeCode create_value_box_tc (

in Repositoryld id,
in Identifier name,
in TypeCode boxed_type

);

May 2002 CORBA, v2.6.1: The ORB Operations 4-5

TypeCode create_native_tc (

in Repositoryld id,
in Identifier name
);
TypeCode create_recursive_tc(
in Repositoryld id
);
TypeCode create_abstract_interface_tc(
in Repositoryld id,
in Identifier name
);
TypeCode create_local_interface_tc(
in Repositoryld id,
in Identifier name

);

/I Thread related operations
boolean work_pending();
void perform_work();

void run();

void shutdown(
in boolean wait_for_completion

);
void destroy();
/I Policy related operations

Policy create_policy(
in PolicyType type,
in any val
) raises (PolicyError);

/I Dynamic Any related operations deprecated and removed
/l from primary list of ORB operations

/I Value factory operations
ValueFactory register_value_factory(
in Repositoryld id,
in ValueFactory factory

);

void unregister_value_factory(in Repositoryld id);

Common Object Request Broker Architecture (CORBA), v2.6.1 May 2002

ValueFactory lookup_value_factory(in Repositoryld id);

void register_initial_reference(
in Objectld id,
in Object obj
) raises (InvalidName);
I3
I3

All types defined in this chapter are part of the CORBA module. When referenced in
OMG IDL, the type names must be prefixed bB§ORBA:: "

The operation®bject_to_string andstring_to_object are described in
“Converting Object References to Strings” on page 4-8.

For a description of thereate_list andcreate_operation_list operations, see

Section 7.4, “Polling” on page 7-12. Thyet _default_context operation is described

in the section Section 4.6.2.1, “get_default_context” on page 4-30. The
send_multiple_requests_oneway andsend_multiple_requests_deferred

operations are described in the section Section 7.3.1, “send_multiple_requests” on
page 7-11. Theoll_next_response andget_next_response operations are

described in the section Section 7.3.2, “get_next_response and poll_next_response” on
page 7-11.

Thelist_intial_services andresolve _initial_references operations are described
in Section 4.5.2, “Obtaining Initial Object References” on page 4-23.

The Type code creation operations with names of the fommate <type>_tc are
described in Section 4.11.3, “Creating TypeCodes” on page 4-57.

Thework_pending , perform_work , shutdown , destroy andrun operations are
described in Section 4.2.4, “Thread-Related Operations” on page 4-9.

The create_policy operations is described in Section 4.8.2.3, “Create_policy” on
page 4-35.

Theregister_value_factory , unregister_value_factory and
lookup_value_factory operations are described in Section 5.4.3, “Language Specific
Value Factory Requirements” on page 5-9.

The register_initial_reference operation is described in Section 21.8.1,
“register_initial_reference” on page 21-49

4.2.1 ORB ldentity

42.1.1 id

ORBiId id();

May 2002 CORBA, v2.6.1: The ORB Operations 4-7

Theid operation returns the identity of the ORB. The retur@®Bid is the string

that was passed ©ORB _init (see Section 4.5.1, “ORB Initialization” on page 4-22) as
theorb_identifier parameter when the ORB was created. If that was the empty string,
the returned string is the value associated with-thBBid tag in thearg_list

parameter . Callingd on the default ORB returns the empty string.

4.2.2 Converting Object References to Strings

4.2.2.1 object_to_string

string object_to_string (
in Object obj
);

4.2.2.2 string_to_object

Object string_to_object (
in string str

);

Because an object reference is opaque and may differ from ORB to ORB, the object
reference itself is not a convenient value for storing references to objects in persistent
storage or communicating references by means other than invocation. Two problems
must be solved: allowing an object reference to be turned into a value that a client can
store in some other medium, and ensuring that the value can subsequently be turned
into the appropriate object reference.

An object reference may be translated into a string by the operation
object_to_string . The value may be stored or communicated in whatever ways
strings may be manipulated. Subsequently,stieng_to_object operation will
accept a string produced lmpject to_string and return the corresponding object
reference.

To guarantee that an ORB will understand the string form of an object reference, that
ORB’s object_to_string operation must be used to produce the string. For all
conforming ORBS, ifobj is a valid reference to an object, then
string_to_object(object_to_string(obj)) will return a valid reference to the same
object, if the two operations are performed on the same ORB. For all conforming
ORB's supporting IOP, this remains true even if the two operations are performed on
different ORBs.

4.2.3 Getting Service Information

4.2.3.1 get_service_information

boolean get_service_information (
in ServiceType service_type;

Common Object Request Broker Architecture (CORBA), v2.6.1 May 2002

May 2002

out Servicelnformation service_information;

Theget_service_information operation is used to obtain information about CORBA
facilities and services that are supported by this ORB. The service type for which
information is being requested is passed in as the in pararseteice_type , the

values defined by constants in the CORBA module. If service information is available
for that type, that is returned in the out parametervice_information , and the
operation returns the value TRUE. If no information for the requested services type is
available, the operation returns FALSE (i.e., the service is not supported by this ORB).

4.2.4 Thread-Related Operations

4241

4.2.4.2

To support single-threaded ORBs, as well as multi-threaded ORBs that run multi-
thread-unaware code, several operations are included in the ORB interface. These
operations can be used by single-threaded and multi-threaded applications. An
application that is a pure ORB client would not need to use these operations. Both the
ORB::run andORB::shutdown are useful in fully multi-threaded programs.

These operations are defined on the ORB rather than on an object adapter to allow the
main thread to be used for all kinds of asynchronous processing by the ORB. Defining
these operations on the ORB also allows the ORB to support multiple object adapters,
without requiring the application main to know about all the object adapters. The
interface between the ORB and an object adapter is not standardized.

work_pending

boolean work_pending();

This operation returns an indication of whether the ORB needs the main thread to
perform some work.

A result of TRUE indicates that the ORB needs the main thread to perform some work
and a result of FALSE indicates that the ORB does not need the main thread.

perform_work

void perform_work();

If called by the main thread, this operation performs an implementation-defined unit of
work; otherwise, it does nothing.

It is platform-specific how the application and ORB arrange to use compatible
threading primitives.

Thework_pending() andperform_work() operations can be used to write a simple
polling loop that multiplexes the main thread among the ORB and other activities.
Such a loop would most likely be needed in a single-threaded server. A multi-threaded
server would need a polling loop only if there were both ORB and other code that
required use of the main thread.

CORBA, v2.6.1: The ORB Operations 4-9

4-10

Here is an example of such a polling loop:

/I C++
for ;) {
if (orb->work_pending()) {
orb->perform_work();
h
/I do other things
I sleep?

h

Once the ORB has shutdowwprk_pending andperform_work will raise the
BAD_INV_ORDER exception with minor code 4. An application can detect this
exception to determine when to terminate a polling loop.

4.2.4.3 run

void run();

This operation provides execution resources to the ORB so that it can perform its
internal functions. Single threaded ORB implementations, and some multi-threaded
ORB implementations, need the use of the main thread in order to function properly.
For maximum portability, an application should call eitmen or perform_work on

its main threadrun may be called by multiple threads simultaneously.

This operation will block until the ORB has completed the shutdown process, initiated
when some thread calghutdown .

4.2.4.4 shutdown

void shutdown(
in boolean wait_for_completion

);

This operation instructs the ORB to shut down, that is, to stop processing in
preparation for destruction.

Shutting down the ORB causes all object adapters to be destroyed, since they cannot
exist in the absence of an ORB.

In the case of th&OA, all POAManager s are deactivated prior to destruction of all
POAs. The deactivation that the ORB performs should be the equivalent of calling
deactivate with the valuERUE for etherealize_objects and with the
wait_for_completion parameter same as whgtiutdown was called with.

Shut down is complete when all ORB processing (including request processing and
object deactivation or other operations associated with object adapters) has completed
and the object adapters have been destroyed. In the case BOgethis means that

all object etherealizations have finished and rB@&A has been destroyed (implying

that all descender®ROAs have also been destroyed).

Common Object Request Broker Architecture (CORBA), v2.6.1 May 2002

4

May 2002

If the wait_for_completion parameter iSTRUE, this operation blocks until the shut
down is complete. If an application does this in a thread that is currently servicing an
invocation, theBAD_INV_ORDER system exception will be raised with the OMG
minor code 3, since blocking would result in a deadlock.

If the wait_for_completion parameter i=ALSE, thenshutdown may not have
completed upon return. An ORB implementation may require the application to call (or
have a pending call taun or perform_work after shutdown has been called with

its parameter set tBALSE, in order to complete the shutdown process.

Additionally in systems that have Portable Object Adapters (see Chapter 11)
shutdown behaves as iIPOA::destroy is called on the RooPOA with its first
parameter set to TRUE and the second parameter set to the value of the
wait_for_completion parameter thashutdown is invoked with.

While the ORB is in the process of shutting down, the ORB operates as normal,
servicing incoming and outgoing requests until all requests have been completed. An
implementation may impose a time limit for requests to complete whikudown

is pending.

Once an ORB has shutdown, only object reference management opecjaitste ,
release andis_nil) may be invoked on the ORB or any object reference obtained
from it. An application may also invoke the destroy operation on the ORB itself.
Invoking any other operation will raise tH2AD _INV_ORDER system exception
with the OMG minor code 4.

4.2.4.5 destroy

void destroy();

This operation destroys the ORB so that its resources can be reclaimed by the
application. Any operation invoked on a destroyed ORB reference will raise the
OBJECT_NOT_EXIST exception. Once an ORB has been destroyed, another call
to ORB_init with the sameORBId will return a reference to a newly constructed
ORB.

If destroy is called on an ORB that has not been shut down, it will start the shut down
process and block until the ORB has shut down before it destroys the ORB. The
behavior is similar to that achieved by callisputdown with the

wait_for_completion parameter set tdRUE. If an application callglestroy in a
thread that is currently servicing an invocation, AD_INV_ORDER system
exception will be raised with the OMG minor code 3, since blocking would result in a
deadlock.

For maximum portability and to avoid resource leaks, an application should always call
shutdown anddestroy on all ORB instances before exiting.

CORBA, v2.6.1: The ORB Operations 4-11

4

4.3 Object Reference Operations

There are some operations that can be done on any object. These are not operations in
the normal sense, in that they are implemented directly by the ORB, not passed on to
the object implementation. We will describe these as being operations on the object
reference, although the interfaces actually depend on the language binding. As above,
where we used interfad®bject to represent the object reference, we define an

interface forObject :

module CORBA {

interface DomainManager; /I forward declaration
typedef sequence <DomainManager> DomainManagersList;

interface Policy; /I forward declaration

typedef sequence <Policy> PolicyList;

typedef sequence<PolicyType> PolicyTypeSeq;

exception InvalidPolicies { sequence <unsigned short> indices; };
interface Context; /I forward declaration

typedef string Identifier;

interface Request; /I forward declaration
interface NVList; /I forward declaration
struct NamedValue{}; /I an implicitly well known type

typedef unsigned long Flags;
interface InterfaceDef;

enum SetOverrideType {SET_OVERRIDE, ADD_OVERRIDE};
interface Object { / PIDL

InterfaceDef get_interface ();

boolean is_nil();

Object duplicate ();

void release ();

boolean is_a (

in Repositoryld logical_type_id
);
boolean non_existent();

boolean is_equivalent (
in Object other_object

);

4-12 Common Object Request Broker Architecture (CORBA), v2.6.1 May 2002

unsigned long hash(

in unsigned long maximum
);
void create_request (
in Context ctx
in Identifier operation,
in NVList arg_list,
inout NamedValue result,
out Request request,
in Flags req_flag

);

Policy get_policy (
in PolicyType policy_type
);

DomainManagersList get_domain_managers ();

Object set_policy_overrides(
in PolicyList policies,
in SetOverrideType set_add
) raises (InvalidPolicies);

Policy get_client_policy(
in PolicyType type
);

PolicyList get_policy_overrides(
in PolicyTypeSeq types
);

boolean validate_connection(
out PolicyList inconsistent_policies
);
2
2

The create_request operation is part of the Object interface because it creates a
pseudo-object (a Request) for an object. It is described with the other Request
operations in the section Section 7.2, “Request Operations” on page 7-4.

Unless otherwise stated below, the operations in the IDL above do not require access to
remote information.

4.3.1 Determining the Object Interface

4.3.1.1 get_interface

InterfaceDef get_interface();

May 2002 CORBA, v2.6.1: Object Reference Operations 4-13

4-14

get_interface , returns an object in the Interface Repository that describes the most
derived type of the object addressed by the reference. See the Interface Repository
chapter for a definition of operations on the Interface Repository. The implementation
of this operation may involve contacting the ORB that implements the target object.

If the interface repository is not availablget_interface raisesINTF_REPOS with
standard minor code 1. If the interface repository does not contain an entry for the
object's (most derived) interfacget_interface raisesINTF_REPOS with standard
minor code 2.

4.3.2 Duplicating and Releasing Copies of Object References

4.3.2.1 duplicate

Object duplicate();

4.3.2.2 release

void release();

Because object references are opaque and ORB-dependent, it is not possible for clients
or implementations to allocate storage for them. Therefore, there are operations defined
to copy or release an object reference.

If more than one copy of an object reference is needed, the client may create a
duplicate. Note that the object implementation is not involved in creating the duplicate,
and that the implementation cannot distinguish whether the original or a duplicate was
used in a particular request.

When an object reference is no longer needed by a program, its storage may be
reclaimed by use of theelease operation. Note that the object implementation is not
involved, and that neither the object itself nor any other references to it are affected by
therelease operation.

4.3.3 Nil Object References

4.3.3.1 is_nil

boolean is_nil();

An object reference whose value@BJECT_NIL denotes no object. An object
reference can be tested for this value by idenil operation. The object
implementation is not involved in the nil test.

Common Object Request Broker Architecture (CORBA), v2.6.1 May 2002

May 2002

4.3.4 Equivalence Checking Operation

4341

is_a

boolean is_a(
in Repositoryld logical_type_id
);

An operation is defined to facilitate maintaining type-safety for object references over
the scope of an ORB.

Thelogical_type_id is a string denoting a shared type identifiepositoryld).
The operation returns true if the object is really an instance of that type, including if
that type is an ancestor of the “most derived” type of that object.

Determining whether an object's type is compatible withltggcal type id may
require contacting a remote ORB or interface repository. Such an attempt may fail at
either the local or the remote end.i$f a cannot make a reliable determination of type
compatibility due to failure, it raises an exception in the calling application code. This
enables the application to distinguish among TRUE, FALSE, and indeterminate
cases.

This operation exposes to application programmers functionality that must already
exist in ORBs which support “type safe narrow” and allows programmers working in
environments that do not have compile time type checking to explicitly maintain type
safety.

This operation always returfiRUE for the logical_type_id
IDL:omg.org/CORBA/Object:1.0

4.3.5 Probing for Object Non-Existence

4.3.5.1 non_existent

boolean non_existent ();

The non_existent operation may be used to test whether an object (e.g., a proxy
object) has been destroyed. It does this without invoking any application level
operation on the object, and so will never affect the object itself. It returns true (rather
than raisingCORBA::OBJECT_NOT_EXIST) if the ORB knows authoritatively

that the object does not exist; otherwise, it returns false.

Services that maintain state that includes object references, such as bridges, event
channels, and base relationship services, might use this operation in their “idle time” to
sift through object tables for objects that no longer exist, deleting them as they go, as a
form of garbage collection. In the case of proxies, this kind of activity can cascade,
such that cleaning up one table allows others then to be cleaned up.

CORBA, v2.6.1: Object Reference Operations 4-15

4-16

Probing for object non-existence may require contacting the ORB that implements the
target object. Such an attempt may fail at either the local or the remote end. If non-
existent cannot make a reliable determination of object existence due to failure, it
raises an exception in the calling application code. This enables the application to
distinguish among the true, false, and indeterminate cases.

4.3.6 Object Reference Identity

43.6.1

4.3.6.2

In order to efficiently manage state that include large numbers of object references,
services need to support a notion of object reference identity. Such services include not
just bridges, but relationship services and other layered facilities.

Two identity-related operations are provided. One maps object references into disjoint
groups of potentially equivalent references, and the other supports more expensive
pairwise equivalence testing. Together, these operations support efficient maintenance
and search of tables keyed by object references.

Hashing Object Identifiers

hash

unsigned long hash(
in unsigned long maximum

);

Object references are associated with ORB-internal identifiers which may indirectly be
accessed by applications using thessh operation. The value of this identifier does

not change during the lifetime of the object reference, and so neither will any hash
function of that identifier.

The value of this operation is not guaranteed to be unique; that is, another object
reference may return the same hash value. However, if two object references hash
differently, applications can determine that the two object referencesaidentical.

Themaximum parameter to thbash operation specifies an upper bound on the hash
value returned by the ORB. The lower bound of that value is zero. Since a typical use
of this feature is to construct and access a collision chained hash table of object
references, the more randomly distributed the values are within that range, and the
cheaper those values are to compute, the better.

For bridge construction, note that proxy objects are themselves objects, so there could
be many proxy objects representing a given “real” object. Those proxies would not
necessarily hash to the same value.

Equivalence Testing

is_equivalent

boolean is_equivalent(

Common Object Request Broker Architecture (CORBA), v2.6.1 May 2002

May 2002

in Object other_object
);

Theis_equivalent operation is used to determine if two object references are
equivalent, so far as the ORB can easily determine. It returns TRUE if the target object
reference is known to be equivalent to the other object reference passed as its
parameter, and FALSE otherwise.

If two object references are identical, they are equivalent. Two different object
references which in fact refer to the same object are also equivalent.

ORBs are allowed, but not required, to attempt determination of whether two distinct
object references refer to the same object. In general, the existence of reference
translation and encapsulation, in the absence of an omniscient topology service, can
make such determination impractically expensive. This means that a FALSE return
from is_equivalent should be viewed as only indicating that the object references are
distinct, and not necessarily an indication that the references indicate distinct objects.
Setting of local policies on the object reference is not taken into consideration for the
purposes of determining object reference equivalence.

A typical application use of this operation is to match object references in a hash table.
Bridges could use it to shorten the lengths of chains of proxy object references.
Externalization services could use it to “flatten” graphs that represent cyclical
relationships between objects. Some might do this as they construct the table, others
during idle time.

4.3.7 Type Coercion Considerations

Many programming languages m@&bject to programming constructs that support
inheritance. Mappings to languages (such as C++ and Java) typically provide a
mechanism for narrowing (down-casting) an object reference from a base interface to a
more derived interface. To do such down-casting in a type safe way, knowledge of the
full inheritance hierarchy of the target interface may be required. The implementation
of down-cast must either contact an interface repository or the target itself, to
determine whether or not it is safe to down-cast the clientis object reference. This
requirement is not acceptable when a client is expecting only asynchronous
communication with the target. Therefore, for the appropriate languages an unchecked
down-cast operation (also referred to as unchecked narrow operation) shall be provided
in the mapping of Object. This unchecked narrow always returns a stub of the
requested type without checking that the target really implements that interface.

4.3.8 Getting Policy Associated with the Object

4.3.8.1 get_policy

Theget_policy operation returns the policy object of the specified type (see “Policy
Object” on page 4-33), which applies to this object. It returnsetffectivePolicy for

the object reference. The effectiolicy is the one that would be used if a request
were made.

CORBA, v2.6.1: Object Reference Operations 4-17

4-18

This Policy is determined first by obtaining the effective override for BadicyType

as returned bget client_policy . The effective override is then compared with the
Policy as specified in théOR. The effectivePolicy is determined by reconciling the
effective override and thEDR-specifiedPolicy (see Section 4.9.2, “Server Side Policy
Management” on page 4-43). If the two policies cannot be reconciled, the standard
system exceptiofNV_POLICY is raised with standard minor code 1. The absence of
a Policy value in thelOR implies that any legal value may be used.

Invoking non_existent on an object reference prior get_policy ensures the
accuracy of the returned effecti®olicy . If get_policy is invoked prior to the object
reference being bound, the returned effeciadicy is implementation dependent. In
that situation, a compliant implementation may do any of the following: raise the
standard system excepti@d@AD_INV_ORDER, return some value for that

PolicyType which may be subject to change once a binding is performed, or attempt
a binding and then return the effectiflicy . Note that if the effectivédolicy may
change from invocation to invocation due to transparent rebinding.

Policy get_policy (
in PolicyType policy type
);

Parameter(s)
policy type - The type of policy to be obtained.

Return Value
A Policy object of the type specified by theolicy_type parameter.

Exception(s)

CORBA::INV_POLICY - raised when the value of policy type is not valid either
because the specified type is not supported by this ORB or because a policy object of
that type is not associated with this Object.

The implementation of this operation may involve remote invocation of an operation
(e.g.,DomainManager::get_domain_policy for some security policies) for some

policy types.

4.3.8.2 get_client_policy

Policy get_client_policy(
in PolicyType type
);

Returns theeffective overridingolicy for the object reference. The effective override

is obtained by first checking for an override of the giveolicyType at theObject

scope, then at th€urrent scope, and finally at the ORB scope. If no override is
present for the requestdtblicyType , the system-dependent default value for that
PolicyType is used. Portable applications are expected to set the desired “defaults” at
the ORB scope since defalblicy values are not specified.

Common Object Request Broker Architecture (CORBA), v2.6.1 May 2002

May 2002

4.3.8.3 get_policy_overrides

PolicyList get_policy overrides(
in PolicyTypeSeq types
);

Returns the list oPolicy overrides (of the specified policy types) set at kject
scope. If the specified sequence is emptyPallicy overrides at this scope will be
returned. If none of the request@adlicyTypes are overridden at th®bject scope,
an empty sequence is returned.

4.3.9 Overriding Associated Policies on an Object Reference

4.3.9.1 set_policy_overrides

The set_policy_overrides operation returns a new object reference with the new
policies associated with it. It takes two input parameters. The first parapelieres

is a sequence of referencesRolicy objects. The second parameset_add of type
SetOverrideType indicates whether these policies should be added onto any other
overrides that already exishDD_OVERRIDE) in the object reference, or they should
be added to a clean override free object refereist€T(OVERRIDE). This operation
associates the policies passed in the first parameter with a newly created object
reference that it returns. Only certain policies that pertain to the invocation of an
operation at the client end can be overridden using this operation. Attempts to override
any other policy will result in the raising of tleORBA::NO_PERMISSION
exception.

enum SetOverrideType {SET_OVERRIDE, ADD_OVERRIDE};

Object set_policy overrides(
in PolicyList policies,
in SetOverrideType set_add
) raises (InvalidPolicies);

Parameter(s)

policies - a sequence dPolicy objects that are to be associated with the new copy of
the object reference returned by this operation. If the sequence contains two or more
Policy objects with the samPolicyType value, the operation raises the standard
sytem exceptioBAD _PARAM with minor code 30.

set_add - whether the association is in addition D _OVERRIDE) or as a
replacement of $ET_OVERRIDE) any existing overrides already associated with the
object reference. If the value of this parameteSIEET _OVERRIDE, the supplied
policies completely replace all existing overrides associated with the object reference.
If the value of this parameter BDD_OVERRIDE, the suppliegolicies are added to

the existing overrides associated with the object reference, except that if a supplied
Policy object has the samRolicyType value as an existing override, the supplied
Policy object replaces the existing override.

CORBA, v2.6.1: Object Reference Operations 4-19

4-20

Return Value

A copy of the object reference with the overrides frpolicies associated with it in
accordance with the value sft_add.

Exception(s)

InvalidPolicies - raised when an attempt is made to override any policy that cannot
be overridden.

4.3.10 Validating Connection

4.3.10.1 validate_connection

boolean validate_connection(
out PolicyList inconsistent_policies

);

Returns the value TRUE if the current effective policies for @igect will allow an
invocation to be made. If the object reference is not yet bound, a binding will occur as
part of this operation. If the object reference is already bound, but current policy
overrides have changed or for any other reason the binding is no longer valid, a rebind
will be attempted regardless of the setting of &wgbindPolicy override. The
validate_connection operation is the only way to force such a rebind when implicit
rebinds are disallowed by the current effectRebindPolicy . The attempt to bind or
rebind may involve processing GIOP LocateRequests by the ORB. Returns the value
FALSE if the current effective policies would cause an invocation to raise the standard
system exceptiofNV_POLICY. If the current effective policies are incompatible, the
out parameteinconsistent_policies contains those policies causing the
incompatibility. This returned list of policies is not guaranteed to be exhaustive. If the
binding fails due to some reason unrelated to policy overrides, the appropriate standard
system exception is raised.

4.3.11 Getting the Domain Managers Associated with the Object

4.3.11.1 get_domain_managers

The get_domain_managers operation allows administration services (and
applications) to retrieve the domain managers (see Section 4.9, “Management of
Policies” on page 4-43), and hence the security and other policies applicable to
individual objects that are members of the domain.

typedef sequence <DomainManager> DomainManagersList;

DomainManagersList get_domain_managers ();

Common Object Request Broker Architecture (CORBA), v2.6.1 May 2002

Return Value

The list of immediately enclosing domain managers of this object. At least one domain
manager is always returned in the list since by default each object is associated with at
least one domain manager at creation.

The implementation of this operation may involve contacting the ORB that implements
the target object.

4.4 ValueBase Operations

ValueBase serves a similar role for value types ti@bject serves for interfaces. Its
mapping is language-specific and must be explicitly specified for each language.

Typically it is mapped to a concrete language type which serves as a base for all value
types. Any operations that are required to be supported for all values are conceptually
defined onValueBase , although in reality their actual mapping depends upon the
specifics of any particular language mapping.

Analogous to the definition of th®bject interface for implicit operations of object
references, the implicit operations YalueBase are defined on a pseud@luetype
as follows:

module CORBA {
valuetype ValueBase{ PIDL
ValueDef get_value_def();
2
2

Theget_value_def() operation returns a description of the value’s definition as
described in the interface repository (Section 10.5.27, “ValueDef” on page 10-38).

4.5 ORB and OA Initialization and Initial References

Before an application can enter the CORBA environment, it must first:
» Be initialized into the ORB and possibly the object adapter (POA) environments.

» Get references to ORB pseudo-object (for use in future ORB operations) and
perhaps other objects (including the root POA or some Object Adapter objects).

The following operations are provided to initialize applications and obtain the
appropriate object references:

» Operations providing access to the ORB. These operations reside in the CORBA
module, but not in the ORB interface and are described in Section 4.5.1, “ORB
Initialization” on page 4-22.

» Operations providing access to Object Adapters, Interface Repository, Naming
Service, and other Object Services. These operations reside in the ORB interface
and are described in Section 4.5.2, “Obtaining Initial Object References” on page
4-23.

May 2002 CORBA, v2.6.1: ValueBase Operations 4-21

4-22

4.5.1 ORSB Initialization

When an application requires a CORBA environment it needs a mechanism to get the
ORB pseudo-object reference and possibly an OA object reference (such as the root
POA). This serves two purposes. First, it initializes an application into the ORB and
OA environments. Second, it returns the ORB pseudo-object reference and the OA
object reference to the application for use in future ORB and OA operations.

The ORB and OA initialization operations must be ordered with ORB occurring before
OA: an application cannot call OA initialization routines until ORB initialization
routines have been called for the given ORB. The operation to initialize an application
in the ORB and get its pseudo-object reference is not performed on an object. This is
because applications do not initially have an object on which to invoke operations. The
ORSB initialization operation is an application’s bootstrap call into the CORBA world.
The ORB _init call is part of the CORBA module but not part of the ORB interface.

Applications can be initialized in one or more ORBs. When an ORB initialization is
complete, its pseudo reference is returned and can be used to obtain other references
for that ORB.

In order to obtain an ORB pseudo-object reference, applications cal® init
operation. The parameters to the call comprise an identifier for the ORB for which the
pseudo-object reference is required, anchem list , which is used to allow
environment-specific data to be passed into the call. PIDL for the ORB initialization is
as follows:

/I PIDL
module CORBA {

typedef sequence <string> arg_list;

ORB ORB._init (inout arg_list argv, in ORBId orb_identifier);
h

The identifier for the ORB will be a name of tyf@ORBA::ORBid . All ORBiId

strings other than the empty string are allocated by ORB administrators and are not
managed by the OMG. ORB administration is the responsibility of each ORB supplier.
ORB suppliers may optionally delegate this responsibil@RBid strings other than

the empty string are intended to be used to uniquely identify each ORB used within the
same address space in a multi-ORB application. These sg@RiBId strings are

specific to each ORB implementation and the ORB administrator is responsible for
ensuring that the names are unambiguous.

If an emptyORBId string is passed t®ORB_init , then thearg_list arguments shall be
examined to determine if they indicate an ORB reference that should be returned. This
is achieved by searching tlaeg_list parameters for one preceded BORBid” for
example, “ORBid example_orb " (the white space after theORBIid" tag is

ignored) or “ORBidMyFavoriteORB ” (with no white space following the-ORBId "

tag). Alternatively, two sequential parameters with the first being the str@@RBid”
indicates that the second is to be treated a®RBid parameter. If an empty string is
passed and narg_list parameters indicate the ORB reference to be returned, the
default ORB for the environment will be returned.

Common Object Request Broker Architecture (CORBA), v2.6.1 May 2002

May 2002

Other parameters of significance to the ORB can also be identifi@gginlist , for

example, Hostname ,” “ SpawnedServer ,” and so forth. To allow for other

parameters to be specified without causing applications to be re-written, it is necessary
to specify the parameter format that ORB parameters may take. In general, parameters
shall be formatted as either one singlg_list parameter:

—ORB<suffix><optional white space> <value>

or as two sequentiarg_list parameters:
-ORB<suffix>

<value>

Regardless of whether an empty or non-emP®Bid string is passed tORB _init ,
thearg_list arguments are examined to determine if any ORB parameters are given. If
a non-emptyORBId string is passed tORB_init , all ORBid parameters in the

arg_list are ignored. All otherORB<suffix> parameters in tharg_list may be of
significance during the ORB initialization process.

Before ORB _init returns, it will remove from therg_list parameter all strings that
match the-ORB<suffix> pattern described above and that are recognized by that
ORB implementation, along with any associated sequential parameter strings. If any
strings inarg_list that match this pattern are not recognized by the ORB
implementationORB_init will raise theBAD_PARAM system exception instead.

The ORB_init operation may be called any number of times and shall return the same
ORB reference when the sar@RBid string is passed, either explicitly as an argument
to ORB_init or through thearg_list . All other -ORB<suffix> parameters in the

arg_list may be considered on subsequent call©R®B_init .

4.5.2 Obtaining Initial Object References

Applications require a portable means by which to obtain their initial object references.
References are required for the root POA, POA Current, Interface Repository and
various Object Services instances. (The POA is described in the Portable Object
Adapter chapter; the Interface Repository is described in the Interface Repository
chapter; Object Services are described in the individual service specifications.) The
functionality required by the application is similar to that provided by the Naming
Service. However, the OMG does not want to mandate that the Naming Service be
made available to all applications in order that they may be portably initialized.
Consequently, the operations shown in this section provide a simplified, local version
of the Naming Service that applications can use to obtain a small, defined set of object
references which are essential to its operation. Because only a small well-defined set of
objects are expected with this mechanism, the naming context can be flattened to be a
single-level name space. This simplification results in only two operations being
defined to achieve the functionality required.

Initial references are not obtained via a new interface; instead two operations are
provided in the ORB pseudo-object interface, providing facilities to list and resolve
initial object references.

CORBA, v2.6.1: ORB and OA Initialization and Initial References 4-23

list_initial_services

typedef string Objectld;
typedef sequence <Objectld> ObjectldList;
ObjectldList list_initial_services ();

resolve_initial_references

exception InvalidName {};

Object resolve _initial_references (
in Objectld identifier
) raises (InvalidName);

Theresolve_initial_references oOperation is an operation on the ORB rather than

the Naming Service'®NamingContext . The interface differs from the Naming

Service’s resolve in thabbjectld (a string) replaces the more complex Naming

Service construct (a sequence of structures containing string pairs for the components
of the name). This simplification reduces the name space to one context.

Objectlds are strings that identify the object whose reference is required. To maintain
the simplicity of the interface for obtaining initial references, only a limited set of
objects are expected to have their references found via this route. Unlike the ORB
identifiers, theObjectld name space requires careful management. To achieve this, the
OMG may, in the future, define which services are required by applications through
this interface and specify names for those services.

Currently, reserve®bjectlds are RootPOA , POACurrent , InterfaceRepository,
NameService , TradingService , SecurityCurrent , TransactionCurrent,
DynAnyFactory, ORBPolicyManager, PolicyCurrent , NotificationService,
TypedNotificationService, CodecFactory and PICurrent

Table 4-1 Obijectlds for resolve_initial_references

Objectld Type of Object Reference Reference

RootPOA PortableServer::POA Section 11.3.8, “POA Interface” o
page 11-33

POACurrent PortableServer::Current Section 11.3.8, “POA Interface” o
page 11-33

InterfaceRepository CORBA::Repository Section 10.5.6, “Repository” on
page 10-20

NameService CosNaming:: Naming Service specification

NamingContext (formal/00-06-19), the CosNaming
Module section.
4-24 Common Object Request Broker Architecture (CORBA), v2.6.1 May 2002

Table 4-1 Obijectlds for resolve_initial_references

Objectld

Type of Object Reference Reference

TradingService

CosTrading::Lookup Trading Object Service
specification (formal/00-06-27), the

Functional Interfaces section.

D

SecurityCurrent

SecurityLevell::Current or
SecurityLevel2::Current

Security Service specification
(formal/00-06-25), the Security
Operations on Current section.

TransactionCurrent

CosTransaction::Current Transaction Service specification
(formal/00-06-28), the Transaction

Service Interfaces section.

DynAnyFactory

DynamicAny::
DynAnyFactory

Section 9.2.2, “Creating a DynAny
Object” on page 9-9

ORBPolicyManager

CORBA::PolicyManager Section 4.9.3, “Policy Management

Interfaces” on page 4-44

PolicyCurrent

CORBA::PolicyCurrent Section 4.9.3, “Policy Management

Interfaces” on page 4-44

NotificationService CosNotifyChannelAdmin:: Notification Service specification
EventChannelFactory (formal/00-06-20)
TypedNotificationService CosTypedNotifyChannelAdmin:: Typed Notification Service specification
EventChannelFactory (formal/00-06-20)
CodecFactory IOP::CodecFactory Section 13.8.2, “Codec Factory” on
page 13-33
PICurrent Portablelnterceptors::Current Section 21.4.3, “Portable

Interceptor Current Interface” on
page 21-33

May 2002

To allow an application to determine which objects have references available via the
initial references mechanism, thist_initial_services operation (also a call on the
ORB) is provided. It returns a®bjectldList , which is a sequence @bjectlds .
Objectlds are typed as strings. Each object, which may need to be made available at
initialization time, is allocated a string value to represent it. In addition to defining the
id, the type of object being returned must be defined; thatlidetfaceRepository ”
returns an object of typRepository , and ‘NameService " returns a
CosNaming::NamingContext object.

The application is responsible for narrowing the object reference returned from
resolve_initial_references to the type which was requested in the Objectld. For
example, for InterfaceRepository the object returned would be narrowed to
Repository type.

CORBA, v2.6.1: ORB and OA Initialization and Initial References 4-25

Specifications for Object Services (see individual service specifications) state whether
it is expected that a service’s initial reference be made available via the
resolve_initial_references operation or not; that is, whether the service is necessary
or desirable for bootstrap purposes.

4.5.3 Configuring Initial Service References

4.5.3.1 ORB-specific Configuration

It is required that an ORB can be administratively configured to return an arbitrary
object reference fro)€ORBA::ORB::resolve_initial_references for non-locality-
constrained objects.

In addition to this required implementation-specific configuration, two
CORBA::ORB_init arguments are provided to override the ORB initial reference
configuration.

4.5.3.2 ORSBInitRef

The ORB initial reference argumen@RBInitRef , allows specification of an arbitrary
object reference for an initial service. The format is:

-ORBInitRef <ObjectID>=<ObjectURL>

Examples of use are:
-ORBInitRef NameService=IOR:00230021AB ...
-ORBInitRef NotificationService=corbaloc::5550bjs.com/NotificationService

-ORBInitRef TradingService=corbaname::5550bjs.com#Dev/Trade r

<ObjectID> represents the well-know@bjectID for a service defined in the CORBA
specification, such aslameService . This mechanism allows an ORB to be
configured with new initial service Object IDs that were not defined when the ORB
was installed.

<ObjectURL> can be any of the URL schemes supported by
CORBA::ORB::string_to_object (Section 13.6.10, “Object URLs” on page 13-23),
with the exception of the corbaloc URL scheme with the rir protocol (i.e.,
corbaloc:rir...). If a URL is syntactically malformed or can be determined to be invalid
in an implementation defined mann@RB _init raises aBBAD_PARAM exception.

4-26 Common Object Request Broker Architecture (CORBA), v2.6.1 May 2002

May 2002

4.5.3.3

45.3.4

ORBDefaultInitRef

The ORB default initial reference argumer@RBDefaultInitRef , assists in

resolution of initial references not explicitly specified wtBRBInitRef
-ORBDefaultInitRef requires a URL that, after appending a slash ‘/' character and a
stringified object key, forms a new URL to identify an initial object reference. For
example:

-ORBDefaultInitRef corbaloc::5550bjs.com

A call to resolve_initial_references (see the “NotificationService”) with this
argument results in a new URL:

corbaloc::5550bjs.com/NotificationService

That URL is passed t€ORBA::ORB::string_to_object to obtain the initial
reference for the service.

Another example is:

-ORBDefaultInitRef \
corbaname::555ResolveRefs.com,:555Backup.com#Prod/Local

After calling resolve_initial_references(“NameService”) , one of the
corbaname URLs

corbaname::555ResolveRefs.com#Prod/Local/NameService

or

corbaname::555Backup411.com#Prod/Local/NameService

is used to obtain an object reference fretring_to_object . (In this example,
Prod/Local/NameService represents a stringifie@osNaming::Name).

Section 13.6.7, “Profile and Component Composition in IORs” on page 13-21 provides
details of thecorbaloc andcorbaname URL schemes. TheORBDefaultInitRef
argument naturally extends to URL schemes that may be defined in the future,
provided the final part of the URL is an object key.

Configuration Effect onasolve _initial_references

Default Resolution Order

The default order for processing a call to
CORBA::ORB::resolve_initial_references for a given<ObjectID> is:

1. Resolve withregister_initial_reference entry if possible.
1. Resolve withrORBInitRef for this <ObjectID> if possible

2. Resolve with pre-configured ORB settings if possible.

CORBA, v2.6.1: ORB and OA Initialization and Initial References 4-27

4.6 Context Object

4-28

4.5.3.5

3. Resolve with anORBDefaultinitRef entry if possible.

ORB Configured Resolution Order

There are cases where the default resolution order may not be appropriate for all
services and use eORBDefaultinitRef may have unintended resolution side effects.
For example, an ORB may use a proprietary service, such as
ImplementationRepository , for internal purposes and may want to prevent a client
from unknowingly diverting the ORB'’s reference to an implementation repository from
another vendor. To prevent this, an ORB is allowed to ignore@BDefaultInitRef
argument for any or akObjectID> s for those services that are not OMG-specified
services with a well-known service name as acceptekbyglve_initial_references

An ORB can only ignore theORBDefaultInitRef argument but must always honor
the -ORBInitRef argument.

Configuration Effect on list_initial _services

The <ObjectID> s of all -ORBInitRef argument s to ORB_init appear in the list of
tokens returned bijst_initial_services as well as all ORB-configuredObjectID> s.
Any other tokens that may appear are implementation-dependent.

The list of <ObjectID> s returned bylist_initial_services can be a subset of the
<ObjectID> s recognized as valid byesolve_initial_references

4.6.1 Introduction

A context object contains a list of properties, each consisting of a name and a string
value associated with that name. By convention, context properties represent
information about the client, environment, or circumstances of a request that are
inconvenient to pass as parameters.

Context properties can represent a portion of a client’s or application’s environment
that is meant to be propagated to (and made implicitly part of) a server’s environment
(for example, a window identifier, or user preference information). Once a server has
been invoked; that is, after the properties are propagated, the server may query its
context object for these properties.

In addition, the context associated with a particular operation is passed as a
distinguished parameter, allowing particular ORBs to take advantage of context
properties, for example, using the values of certain properties to influence method
binding behavior, server location, or activation policy.

An operation definition may contain a clause specifying those context properties that
may be of interest to a particular operation. These context properties comprise the
minimum set of properties that will be propagated to the server’s environment
(although a specified property may have no value associated with it). The ORB may
choose to pass more properties than those specified in the operation declaration.

Common Object Request Broker Architecture (CORBA), v2.6.1 May 2002

4

When a context clause is present on an operation declaration, an additional argument is
added to the stub and skeleton interfaces. When an operation invocation occurs via
either the stub or Dynamic Invocation interface, the ORB causes the properties which
were named in the operation definition in OMG IDL and which are present in the
client’s context object, to be provided in the context object parameter to the invoked
method.

Context property names (which are strings) typically have the form of an OMG IDL
identifier, or a series of OMG IDL identifiers separated by periods. A context property
name pattern is either a property nhame, or a property name followed by a single “*.”
Property name patterns are used in¢batext clause of an operation definition and in
the get_values operation (described below).

A property name pattern without a trailing “*” is said to match only itself. A property
name pattern of the form “<name>*" matches any property name that starts with
<name> and continues with zero or more additional characters.

Context objects may be created and deleted, and individual context properties may be
set and retrieved. There will often be context objects associated with particular
processes, users, or other things depending on the operating system, and there may be
conventions for having them supplied to calls by default.

It may be possible to keep context information in persistent implementations of context
objects, while other implementations may be transient. The creation and modification
of persistent context objects, however, is not addressed in this specification. Context
objects may be “chained” together to achieve a particular defaulting behavior.

Properties defined in a particular context object effectively override those properties in
the next higher level. This searching behavior may be restricted by specifying the
appropriate scope and the “restrict scope” option on the Cogetxtvalues call.

Context objects may be named for purposes of specifying a starting search scope.

4.6.2 Context Object Operations

When performing operations on a context object, properties are represented as hamed
value lists. Each property value corresponds to a named value item in the list.

A property name is represented by a string of characters (see Section 3.2.3,
“Identifiers” on page 3-6 for the valid set of characters that are allowed) Cidmgext
interface is shown below.

module CORBA {

interface Context { /l PIDL
void set_one_value (
in Identifier prop_name,// property name to add
in string value Il property value to add

);
void set_values (
in NVList values /I property values to be changed

);

May 2002 CORBA, v2.6.1: Context Object 4-29

void get_values (

in Identifier start_scope,// search scope

in Flags op_flags, /I operation flags

in Identifier prop_name,// name of property(s) to retrieve
out NVList values Il requested property(s)

);
void delete_values (

in Identifier prop_name// name of property(s) to delete
);

void create_child (

in Identifier ctx_name, // name of context object

out Context child_ctx // newly created context object
);
void delete (

in Flags del_flags /I flags controlling deletion

);

4.6.2.1 get_default_context

This operation, which creates@ontext pseudo-object, is defined in tl@RB
interface (see Section 4.2.2, “Converting Object References to Strings” on page 4-8 for
the complete ORB definition).

void get_default_context (/ PIDL
out Context ctx Il context object

);

This operation returns a reference to the default process context object. The default
context object may be chained into other context objects. For example, an ORB
implementation may chain the default context object into its User, Group, and System
context objects.

4.6.2.2 set_one_value

void set_one_value (/I PIDL
in Identifier prop_name, // property name to add
in string value I/ property value to add

);
This operation sets a single context object property.
4.6.2.3 set values
void set_values (/ PIDL

in NVList values /I property values to be changed

);

4-30 Common Object Request Broker Architecture (CORBA), v2.6.1 May 2002

4

This operation sets one or more property values in the context object. M\thist ,
theflags field must be set to zero, and tAgpeCode field associated with an
attribute value must b&C_string .

4.6.2.4 get_values

void get_values (/I PIDL
in Identifier start_scope, // search scope
in Flags op_flags, Il operation flags
in Identifier prop_name, // name of property(s) to retrieve
out NVList values Il requested property(s)

);

This operation retrieves the specified context property value(grolf_name has a
trailing wildcard character (“*), then all matching properties and their values are
returned. The values returned may be freed by a call to thérdist operation.

If prop_name is an empty string then thBAD_PARAM standard system exception
is raised. If a property named tprop_name is not found then the

BAD_CONTEXT standard system exception is raised and no property list is
returned. ThReONO_MEMORY exception is raised if dynamic memory allocation fails.

Scope indicates the context object level at which to initiate the search for the specified
properties (e.g., “USER”, “ _SYSTEM?"). If the property is not found at the indicated
level, the search continues up the context object tree until a match is found or all
context objects in the chain have been exhausted.

If scope name is omitted, the search begins with the specified context object. If the
specified scope name is not found, an exception is returned.

The following operation flag may be specified:

e CORBA::CTX_RESTRICT_SCOPE - Searching is limited to the specified search
scope or context object. The value of this flag is 15.

4.6.2.5 delete values

void delete_values (/ PIDL
in ldentifier prop_name // name of property(s) to delete

);

This operation deletes the specified property value(s) from the context object. If
prop_name has a trailing wildcard character (“*"), then all property names that
match will be deleted.

Search scope is always limited to the specified context object.

If prop_name is an empty string th8 AD_PARAM standard system exception is
raised. If no matching property is found, tBAD _CONTEXT standard system
exception is raised.

May 2002 CORBA, v2.6.1: Context Object 4-31

4.6.2.6 create_child

void create_child (/I PIDL

in Identifier ctx_hame, / name of context object

out Context child_ctx /I newly created context object
);

This operation creates a child context object.

The returned context object is chained into its parent context. That is, searches on the
child context object will look in the parent context (and so on, up the context tree), if
necessary, for matching property names.

Context object names follow the rules for OMG IDL identifiers (see Section 3.2.3,
“Identifiers” on page 3-6).

4.6.2.7 delete
void delete (/l PIDL
in Flags del_flags /I flags controlling deletion
);

This operation deletes the indicated context object.
The following option flags may be specified:

CORBA::CTX_DELETE_DESCENDENTS deletes the indicated context object
and all of its descendent context objects, as well.

The standard system exceptiBAD PARAM is raised if there are one or more
child context objects and theTX_DELETE_DESCENDENTS flag was not set.

4.7 Current Object

4-32

ORB and CORBA services may wish to provide access to information (context)
associated with the thread of execution in which they are running. This information is
accessed in a structured manner using interfaces derived fro@uttient interface
defined in the CORBA module.

Each ORB or CORBA service that needs its own context derives an interface from the
CORBA module'SCurrent . Users of the service can obtain an instance of the
appropriateCurrent interface by invokingORB::resolve_initial_references . For
example the Security service obtains tBerrent relevant to it by invoking

ORB::resolve_initial_references(“SecurityCurrent”)

A CORBA service does not have to use this method of keeping context but may choose
to do so.

module CORBA {
/I interface for the Current object

Common Object Request Broker Architecture (CORBA), v2.6.1 May 2002

interface Current {
2
2

Operations on interfaces derived frdDurrent access state associated with the thread

in which they are invoked, not state associated with the thread from whidbutrent

was obtained. This prevents one thread from manipulating another thread's state, and
avoids the need to obtain and narrow a néwrrent in each method's thread context.

Current objects must not be exported to other processes, or externalized with
ORB::object_to_string . If any attempt is made to do so, the offending operation will
raise aMARSHAL system exceptiorCurrent s are per-process singleton objects, so
no destroy operation is needed.

4.8 Policy Object

4.8.1 Definition of Policy Object

An ORB or CORBA service may choose to allow access to certain choices that affect
its operation. This information is accessed in a structured manner using interfaces
derived from thePolicy interface defined in the CORBA module. A CORBA service
does not have to use this method of accessing operating options, but may choose to do
so. TheSecurity Servicin particular uses this technique for associat8egurity Policy

with objects in the system.

module CORBA {
typedef unsigned long PolicyType;

// Basic IDL definition

interface Policy {
readonly attribute PolicyType policy_type;
Policy copy();
void destroy();

h

typedef sequence <Policy> PolicyList;
typedef sequence <PolicyType> PolicyTypeSeq;
¥

PolicyType defines the type oPolicy object. In general the constant values that are
allocated are defined in conjunction with the definition of the corresponBuoigy
object. The values dPolicyTypes for policies that are standardized by OMG are
allocated by OMG. Additionally, vendors may reserve blocks of 4096 PolicyType
values identified by a 20 bitendor PolicyType Valueset I(W¥PVID) for their own use.

PolicyType which is an unsigned long consists of the 20MRVID in the high order
20 bits, and the vendor assigned policy value in the low order 12 bitsVAEDs 0
through \xfare reserved for OMG. All values for the stand&alicyTypes are
allocated within this range by OMG. Additionally, th&PVIDs \xfffff is reserved for
experimental use an@MGVMCID (Section 4.12.3, “Standard System Exception

May 2002 CORBA, v2.6.1: Policy Object 4-33

4-34

48.1.1

4.8.1.2

4.8.1.3

Definitions” on page 4-63) is reserved for OMG use. These will not be allocated to
anybody. Vendors can request allocationv#VID by sending mail to tag-
request@omg.org

When aVMCID (Section 4.12, “Exceptions” on page 4-61) is allocated to a vendor
automatically the same value ¥PVID is reserved for the vendor and vice versa. So
once a vendor gets eithendICID or a VPVID registered they can use that value for
both their minor codes and their policy types.

Copy
Policy copy();

Return Value

This operation copies the policy object. The copy does not retain any relationships that
the policy had with any domain, or object.

Destroy

void destroy();

This operation destroys the policy object. It is the responsibility of the policy object to
determine whether it can be destroyed.

Exception(s)

CORBA::NO_PERMISSION - raised when the policy object determines that it
cannot be destroyed.

Policy_type
readonly attribute policy_type

Return Value

This readonly attribute returns the constant value of typkcyType that corresponds
to the type of thePolicy obiject.

4.8.2 Creation of Policy Objects

A generic ORB operation for creating new instances of Policy objects is provided as

described in this section.
module CORBA {
typedef short PolicyErrorCode;

const PolicyErrorCode BAD_POLICY = 0;
const PolicyErrorCode UNSUPPORTED_POLICY = 1;

Common Object Request Broker Architecture (CORBA), v2.6.1 May 2002

May 2002

const PolicyErrorCode BAD_POLICY_TYPE = 2;
const PolicyErrorCode BAD_POLICY_VALUE = 3;
const PolicyErrorCode UNSUPPORTED_POLICY_VALUE = 4;

exception PolicyError {PolicyErrorCode reason;};

interface ORB {

Policy create_policy(
in PolicyType type,
in any val

) raises(PolicyError);

2
2

4.8.2.1 PolicyErrorCode

A request to create BRolicy may be invalid for the following reasons:
BAD_POLICY - the requestefPolicy is not understood by the ORB.

UNSUPPORTED_POLICY - the requeste@olicy is understood to be valid by the
ORB, but is not currently supported.

BAD_POLICY_TYPE - The type of the value requested for tRelicy is not valid
for that PolicyType .

BAD_POLICY_VALUE - The value requested for tiolicy is of a valid type but
is not within the valid range for that type.

UNSUPPORTED_POLICY_VALUE - The value requested for ttpolicy is of a
valid type and within the valid range for that type, but this valid value is not currently
supported.

4.8.2.2 PolicyError

exception PolicyError {PolicyErrorCode reason;};

PolicyError exception is raised to indicate problems with parameter values passed to
the ORB::create_policy operation. Possible reasons are described above.

4.8.2.3 Create_policy

The ORB operatiorcreate_policy can be invoked to create new instances of policy
objects of a specific type with specified initial statecteate policy fails to
instantiate a newPolicy object due to its inability to interpret the requested type and
content of the policy, it raises tHeolicyError exception with the appropriate reason
as described in “PolicyErrorCode” on page 4-35.

CORBA, v2.6.1: Policy Object 4-35

4-36

Policy create_policy(
in PolicyType type,
in any val

) raises(PolicyError);

Parameter(s)
type - thePolicyType of the policy object to be created.

val - the value that will be used to set the initial state oPthlcy object that is created.

ReturnValue

Reference to a newly creat&licy object of type specified by thiype parameter
and initialized to a state specified by thal parameter.

Exception(s)

PolicyError - raised when the requested policy is not supported or a requested initial
state for the policy is not supported.

When new policy types are added to CORBA or CORBA Services specification, it is
expected that the IDL type and the valid values that can be passaddte_policy
also be specified.

4.8.3 Usages of Policy Objects

Policy Objects are used in general to encapsulate information about a specific policy,
with an interface derived from the policy interface. The type of the Policy object
determines how the policy information contained within it is used. Usually a Policy
object is associated with another object to associate the contained policy with that
object.

Objects with which policy objects are typically associated are Domain Managers,

POA, the execution environment, both the process/capsule/ORB instance and thread of
execution (Current object) and object references. Only certain types of policy object
can be meaningfully associated with each of these types of objects.

These relationships are documented in sections that pertain to these individual objects
and their usages in various core facilities and object services. The use of Policy
Objects with the POA are discussed in fPartable Object Adaptechapter. The use of
Policy objects in the context of the Security services, involving their association with
Domain Managers as well as with the Execution Environment are discussed in the
Security Servicapecification.

In the following section the association of Policy objects with the Execution
Environment is discussed. In Section 4.9, “Management of Policies” on page 4-43 the
use of Policy objects in association with Domain Managers is discussed.

Common Object Request Broker Architecture (CORBA), v2.6.1 May 2002

May 2002

4.8.4 Policy Associated with the Execution Environment

Certain policies that pertain to services like security (e.g., QOP, Mechanism,
invocation credentials, etc.) are associated by default with the process/capsule(RM-
ODP)/ORB instance (hereinafter referred to as “capsule”) when the application is
instantiated together with the capsule. By default these policies are applicable
whenever an invocation of an operation is attempted by any code executing in the said
capsule. The Security service provides operations for modulating these policies on a
per-execution thread basis using operations inGheent interface. Certain of these
policies (e.g., invocation credentials, gop, mechanism, etc.) which pertain to the
invocation of an operation through a specific object reference can be further modulated
at the client end, using theet_policy_overrides operation of theDbject reference.

For a description of this operation see Section 4.3.9, “Overriding Associated Policies
on an Object Reference” on page 4-19. It associates a specified set of policies with a
newly created object reference that it returns.

The association of these overridden policies with the object reference is a purely local
phenomenon. These associations are never passed on in any IOR or any other
marshaled form of the object reference. the associations last until the object reference
in the capsule is destroyed or the capsule in which it exists is destroyed.

The policies thus overridden in this new object reference and all subsequent duplicates
of this new object reference apply to all invocations that are done through these object
references. The overridden policies apply even when the default policy associated with
Current is changed. It is always possible that the effective policy on an object
reference at any given time will fail to be successfully applied, in which case the
invocation attempt using that object reference will fail and return a
CORBA::NO_PERMISSION exception. Only certain policies that pertain to the
invocation of an operation at the client end can be overridden using this operation.
These are listed in the Security specification. Attempts to override any other policy

will result in the raising of theCORBA::NO_PERMISSION exception.

In general the policy of a specific type that will be used in an invocation through a
specific object reference using a specific thread of execution is determined first by
determining if that policy type has been overridden in that object reference. if so then
the overridden policy is used. if not then if the policy has been set in the thread of
execution then that policy is used. If not then the policy associated with the capsule is
used. For policies that matter, the ORB ensures that there is a default policy object of
each type that matters associated with each capsule (ORB instance). Hence, in a
correctly implemented ORB there is no case when a required type policy is not
available to use with an operation invocation.

4.8.5 Specification of New Policy Objects

When newPolicyType s are added to CORBA specifications, the following details
must be defined. It must be clearly stated which particular uses of a new policy are
legal and which are not:

» Specify the assigne@BORBA::PolicyType and the policy's interface definition.

CORBA, v2.6.1: Policy Object 4-37

» If the Policy can be created througpORBA::ORB::create_policy , specify the
allowable values for the any argument 'val' and how they correspond to the initial
state/behavior of thaRolicy (such as initial values of attributes). For example, if a
Policy has multiple attributes and operations, it is most likely that create_policy will
receive some complex data for the implementation to initialize the state of the
specific policy:

/DL

struct MyPolicyRange {
long low;
long high;

¥

const CORBA::PolicyType MY_POLICY_TYPE = 666;
interface MyPolicy : Policy {

readonly attribute long low;

readonly attribute long high;
¥

If this sampleMyPolicy can be constructed via create_policy, the specification of
MyPolicy will have a statement such as: “When instanceBlgPolicy are created,

a value of typeMyPolicyRang e is passed t€ORBA::ORB::create_policy and
the resulting MyPolicy’s attribute ‘low’ has the same value asMy®olicyRange
member ‘low’ and attribute ‘high’ has the same value ashh#olicyRange
member ‘high.

» If the Policy can be passed as an argumenPf{A:.create_ POA , specify the
effects of the new policy on th&®OA. Specifically define incompatibilities (or
inter-dependencies) with othBOA policies, effects on the behavior of invocations
on objects activated with thROA, and whether or not presence of the POA policy
implies somdOR profile/component contents for object references created with
that POA. If the POA policy implies some addition/modification to the object
reference it is marked as “client-exposed” and the exact details are specified
including which profiles are affected and how the effects are represented.

« If the component that is used to carry this information can be set within a client to
tune the client’s behavior, specify the policy’s effects on the client specifically with
respect to (a) establishment of connections and reconnections for an object
reference; (b) effects on marshaling of requests; (c) effects on insertion of service
contexts into requests; (d) effects upon receipt of service contexts in replies. In
addition, incompatibilities (or inter-dependencies) with other client-side policies are
stated. For policies that cause service contexts to be added to requests, the exact
details of this addition are given.

» If the Policy can be used witlPOA creation to tundOR contents and can also be
specified (overridden) in the client, specify how to reconcile the policy’s presence
from both the client and server. It is strongly recommended to avoid this case! As
an exercise in completeness, mB€A policies can probably be extended to have
some meaning in the client and vice versa, but this does not help make usable

4-38 Common Object Request Broker Architecture (CORBA), v2.6.1 May 2002

4

systems, it just makes them more complicated without adding really useful features.
There are very few cases where a policy is really appropriate to specify in both
places, and for these policies the interaction between the two must be described.

Pure client-side policies are assumed to be immutable. This allows efficient
processing by the runtime that can avoid re-evaluating the policy upon every
invocation and instead can perform updates only when new overrides are set (or
policies change due to rebind). If the newly specified policy is mutable, it must be
clearly stated what happens if non-readonly attributes are set or operations are
invoked that have side-effects.

For certain policy types, override operations may be disallowed. If this is the case,
the policy specification must clearly state what happens if such overrides are
attempted.

4.8.6 Standard Policies

Table 4-2 below lists the standard policy types that are defined by various parts of
CORBA and CORBA Services in this version of CORBA.

Table 4-2 Standard Policy Types

Policy Type Policy Interface Tag | Defined in Uses
Sect./Page create_
policy
SecClientinvocationAccess SecurityAdmin:: 1 Security Service | No
AccessPolicy specification
SecTargetlnvocationAccess SecurityAdmin:: 2 (formal/00-06-25) No
AccessPolicy
SecApplicationAccess $ecurityAdmin:: 3 No
AccessPolicy
SecClientlnvocationAudit SecurityAdmin::AuditPolicy 4 No
SecTargetlnvocationAudit S$ecurityAdmin::AuditPolicy 5 No
SecApplicationAudit SecurityAdmin::AuditPolicy 6 No
SecDelegation SecurityAdmin::Delegation 7 No
Policy
SecClientSecurelnvocation $SecurityAdmin:: 8 No
SecurelnvocationPolicy
SecTargetSecurelnvocation $SecurityAdmin:: 9 No
SecurelnvocationPolicy
SecNonRepudiation NRService::NRPolicy 10 No
SecConstruction CORBA::SecConstruction 11 CORBA Core - No
ORB Interface
(chapter 4)
May 2002 CORBA, v2.6.1: Policy Object 4-39

Table 4-2 Standard Policy Types

Policy Type Policy Interface Tag | Defined in Uses
Sect./Page create_
policy

SecMechanismPolicy SecurityLevel2:: 12 Security Service | Yes

MechanismPolicy specification
- . . . f 1/00-06-2

SeclnvocationCredentialsPolicy SecurityLevel2:: 13 (formal/00-06-25) Yes
InvocationCredentialsPolicy

SecFeaturesPolicy SecurityLevel2:: 14 Yes
FeaturesPolicy

SecQOPPolicy SecurityLevel2::QOPPolicy 15 Yes

THREAD_POLICY_ID PortableServer:: 16 CORBA Core - Yes
ThreadPolicy Portable Object

LIFESPAN_POLICY_ID PortableServer:: 17 Adapter Yes

- - . . (chapter 11)

LifespanPolicy

ID_UNIQUENESS POLICY_ID PortableServer:: 18 Yes
IdUniguenessPolicy

ID_ASSIGNMENT_PO