Common Object Request Broker
Architecture: Core Specification

<e»CORBA

This is the common core of the CORBA specification. Optional parts of CORBA, such as
mappings to particular programming languages, Real-time CORBA extensions, and the
minimum CORBA profile for embedded systems are documented in the other specifications
that together comprise the complete CORBA specification. Please visit the CORBA download
page at http://www.omg.org/technol ogy/documents/corba_spec catalog.htm to find the
complete CORBA specification set.

March 2004
Version 3.0.3 - Editorial changes
formal/04-03-12

QIRIG]

QBFJECT MANAGEMENT GROUF

An Adopted Specification of theObj ect M anagement Group, I nc.

Copyright © 1998, 1999, Alcatel

Copyright © 1997, 1998, 1999 BEA Systems, Inc.

Copyright © 1995, 1996 BNR Europe Ltd.

Copyright © 1998, Borland International

Copyright © 1998, Cooperative Research Centre for Distributed Systems Technology (DSTC Pty Ltd)
Copyright © 2001, Concept Five Technologies

Copyright © 1991, 1992, 1995, 1996, Digital Equipment Corporation
Copyright © 2001, Eternal Systems, Inc.

Copyright © 1995, 1996, 1998, Expersoft Corporation

Copyright © 1996, 1997 FUJTSU LIMITED

Copyright © 1996, Genesis Development Corporation

Copyright © 1989- 2001, Hewlett-Packard Company

Copyright © 2001, HighComm

Copyright © 1998, 1999, Highlander Communications, L.C.
Copyright © 1991, 1992, 1995, 1996 HyperDesk Corporation
Copyright © 1998, 1999, Inprise Corporation

Copyright © 1996 - 2001, International Business Machines Corporation
Copyright © 1995, 1996 ICL, plc

Copyright © 1998 - 2001, Inprise Corporation

Copyright © 1998, International Computers, Ltd.

Copyright © 1995 - 2001, IONA Technologies, Ltd.

Copyright © 1998 - 2001, L ockheed Martin Federal Systems, Inc.
Copyright © 1998, 1999, 2001, Lucent Technologies, Inc.
Copyright © 1996, 1997 Micro Focus Limited

Copyright © 1991, 1992, 1995, 1996 NCR Corporation
Copyright © 1998, NEC Corporation

Copyright © 1998, Netscape Communications Corporation
Copyright © 1998, 1999, Nortel Networks

Copyright © 1998, 1999, Northern Telecom Corporation
Copyright © 1995, 1996, 1998, Novell USG

Copyright © 1991, 1992, 1995, 1996 by Object Design, Inc.
Copyright © 1991- 2001 Object Management Group, Inc.
Copyright © 1998, 1999, 2001, Objective Interface Systems, Inc.
Copyright © 1998, 1999, Object-Oriented Concepts, Inc.
Copyright © 1998, 2001, Oracle Corporation

Copyright © 1998, PeerLogic, Inc.

Copyright © 1996, Siemens Nixdorf Informationssysteme AG
Copyright © 1991 - 2001, Sun Microsystems, Inc.

Copyright © 1995, 1996, SunSoft, Inc.

Copyright © 1996, Sybase, Inc.

Copyright © 1998, Telefénica Investigacion y Desarrollo S.A. Unipersonal
Copyright © 1998, TIBCO, Inc.

Copyright © 1998, 1999, Tri-Pacific Software, Inc.

Copyright © 1996, Visual Edge Software, Ltd.

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms, conditions and
notices set forth below. This document does not represent a commitment to implement any portion of this specification in any
company's products. The information contained in this document is subject to change without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) anonexclusive, royalty-free, paid up,
worldwide license to copy and distribute this document and to modify this document and distribute copies of the modified
version. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed the copyright
in the included material of any such copyright holder by reason of having used the specification set forth herein or having
conformed any computer software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant you afully-paid
up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use this specification to
create and distribute software and special purpose specifications that are based upon this specification, and to use, copy, and
distribute this specification as provided under the Copyright Act; provided that: (1) both the copyright notice identified above
and this permission notice appear on any copies of this specification; (2) the use of the specificationsis for informational
purposes and will not be copied or posted on any network computer or broadcast in any mediaand will not be otherwise resold
or transferred for commercial purposes; and (3) ho modifications are made to this specification. Thislimited permission
automatically terminates without notice if you breach any of these terms or conditions. Upon termination, you will destroy
immediately any copies of the specificationsin your possession or control.

PATENTS

The attention of adoptersisdirected to the possibility that compliance with or adoption of OM G specifications may require use
of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which alicense may be
required by any OM G specification, or for conducting legal inquiries into the legal validity or scope of those patents that are
brought to its attention. OM G specifications are prospective and advisory only. Prospective users are responsible for protecting
themselves against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communi cations regul ations and
statutes. This document contains information which is protected by copyright. All Rights Reserved. No part of thiswork
covered by copyright herein may be reproduced or used in any form or by any means--graphic, electronic, or mechanical,
including photocopying, recording, taping, or information storage and retrieval systems--without permission of the copyright
owner.

DISCLAIMER OF WARRANTY

WHILE THISPUBLICATION ISBELIEVED TO BE ACCURATE, IT ISPROVIDED "ASIS" AND MAY CONTAIN
ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE MAKE
NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS PUBLICATION, INCLUDING
BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF
MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE.

IN NO EVENT SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE COMPANIES LISTED ABOVE BE
LIABLE FOR ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS, REVENUE, DATA OR
USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE FURNISHING,
PERFORMANCE, OR USE OF THISMATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

The entirerisk as to the quality and performance of software developed using this specification is borne by you. This
disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1) (ii) of The
Rightsin Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph (c)(1) and (2) of the
Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified in 48 C.F.R. 227-7202-2 of
the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of the Federal Acquisition Regulations and
its successors, as applicable. The specification copyright owners are as indicated above and may be contacted through the
Object Management Group, 250 First Avenue, Needham, MA 02494, U.SA.

TRADEMARKS

The OMG Object Management Group Logo®, CORBA®, CORBA Academy®, The Information Brokerage®, XMI® and
[1OP® are registered trademarks of the Object Management Group. OMG™, Object Management Group™, CORBA logos™,
OMG Interface Definition Language (IDL)™, The Architecture of Choice for a Changing World™, CORBAservices™,
CORBAfacilities™, CORBAmMed™, CORBAnet™, Integrate 2002™, Middleware That's Everywhere™, UML ™, Unified
Modeling Language™, The UML Cube logo™, MOF™, CWM ™, The CWM Logo™, Model Driven Architecture™, Model
Driven Architecture Logos™, MDA™, OMG Model Driven Architecture™, OMG MDA ™ and the XMI Logo™ are
trademarks of the Object Management Group. All other products or company names mentioned are used for identification
purposes only, and may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its designees) is
and shall at all times be the sole entity that may authorize devel opers, suppliers and sellers of computer software to use
certification marks, trademarks or other special designations to indicate compliance with these materials.

Software devel oped under the terms of this license may claim compliance or conformance with this specification if and only if
the software compliance is of a nature fully matching the applicable compliance points as stated in the specification. Software
developed only partially matching the applicable compliance points may claim only that the software was based on this
specification, but may not claim compliance or conformance with this specification. In the event that testing suites are
implemented or approved by Object Management Group, Inc., software developed using this specification may claim
compliance or conformance with the specification only if the software satisfactorily completes the testing suites.

ISSUE REPORTING
All OMG specifications are subject to continuous review and improvement. As part of this process we encourage readers to

report any ambiguities, inconsistencies, or inaccuracies they may find by completing the I ssue Reporting Form listed on the
main web page http://www.omg.org, under Documents & Specifications, Report a Bug/lssue.

Contents

1. TheObjectModel......... ... i 1-1
11 OVEIVIEBW .o 1-1
12 ObjectSemantics.cciiiiiiiii i, 1-2

121 Objects. ... 1-2
122 ReqUESES 1-3
1.2.3 Object Creation and Destruction 1-4
124 TYPES. .o e 1-4
125 Interfaces......... ... i 1-6
126 VaUETYPES. ..ottt 1-6
127 AbstractInterfaces. 1-7
128 Operaions.ot 1-7
129 Attributes. 1-9
1.3 Object Implementation., 1-9
1.3.1 The Execution Model: Performing Services 1-9
1.3.2 TheConstructionModel 1-10

2. CORBA OVEIVIBW. . ..ot e e e 2-1

2.1 Structure of an Object Request Broker................ 2-1
21.1 Object Request Broker....................... 2-6
212 Clients. ... 2-7
213 Object Implementations. 2-7
214 ObjectReferences........... ..., 2-8
215 OMG Interface Definition Language. 2-8
2.1.6 Mapping of OMG IDL to Programming Languages 2-8
217 ClientStubs. 2-9
2.1.8 Dynamic Invocation Interface. 2-9
219 Implementation Skeleton. 2-9
2.1.10 Dynamic Skeleton Interface 2-10
2111 ObjectAdapters. ... 2-10

March 2004 Common Object Request Broker Architecture (CORBA), v3.0.3 Y

Contents

Vi

2112 ORBlinterface............. 2-10

2.1.13 Interface Repository ... 2-11

2.1.14 Implementation Repository 2-11

22 ExampleORBS. 2-11
221 Client- and Implementation-resident ORB 2-11

222 Server-basedORB............. ... 2-12

2.2.3 System-basedORB 2-12

224 Library-basedORBot 2-12

23 StructureofaClient............... 2-12
24 Structure of an Object Implementation 2-13
25 Structureof an Object Adapter. 2-15
2.6 CORBA Required Object Adapter. 2-17
2.6.1 PortableObject Adapter 2-17

2.7 Thelntegration of Foreign Object Systems............ 2-17
3. OMGIDL Syntaxand Semantics 31
3l OVEIVIEW . ot e 3-2
3.2 Lexica Conventions.c.iviiueinnnnnnn. 3-3
321 TOKENS.''ii 3-6

322 COMMENS.c.iiiiit e 3-6

3.23 Identifiers 3-6

324 Keywordsot 3-8

3.25 Literals ... 3-8

3.3 Preprocessing. 311
34 OMGIDL Grammar.viiii e 3-12
35 OMGIDL Specification. 3-18
3.6 ImportDeclaration...............cco i, 3-19
3.7 ModuleDeclaration...............ciiiiiii.. 3-20
3.8 InterffaceDeclaration 3-21
381 InterffaceHeader 3-21

3.8.2 Interface Inheritance Specification 3-21

383 IntefaceBody.............. . i 3-22

3.84 ForwardDeclaration 3-22

3.85 Interface Inheritance 3-23

3.86 AbstractInterface 3-26

387 Locd Interface. i 3-26

3.9 ValueDeclaration, 3-27
39.1 RegularVaueType.........cvviiiinnnnn.. 3-27

39.2 BoxedVaueType..........coviiiiinnnnnnn. 3-29

3.9.3 AbstractVaueType ..., 3-30

3.94 VaueForward Declaration 3-30

3.95 Vauetypelnheritance 3-30

Common Object Request Broker Architecture (CORBA), v3.0.3

March 2004

3.10 Constant Declaration i, 3-32
3101 SYNtaX ..o 3-32

3102 SemantiCsiiiii 3-33

311 TypeDeclaration 3-36
3111 BaSiCTYPES . .ottt i 3-37

3112 Constructed Types. ove i 3-39

3113 Template TYpeS oo ve it 3-44

3.11.4 Complex Declarator.ccouvun.. 3-46

3115 NativeTyPeS . .o v i e 3-46

3.11.6 Deprecated AnonymousTypes 3-47

3.12 Exception Declaration 3-49
3.13 OperationDeclaration, 3-50
3.13.1 Operation Attribute.. 3-51

3.13.2 Parameter Declarations 3-51

3.13.3 RaisesEXpressionsoiiiiiia... 3-52

3134 Context Expressions, 3-53

3.14 AttributeDeclaration i 3-53
3.15 Repository Identity Related Declarations. 3-55
3.15.1 Repository Identity Declaration. 3-55

3.15.2 Repository Identifier Prefix Declaration 3-56

316 EventDeclaration...............couiiiiiininen.. 3-57
316.1 RegularEventType........... ..., 3-57

3.16.2 AbstractEventType ..., 3-57

3.16.3 Event Forward Declaration 3-57

3.16.4 Eventtypelnheritance....................... 3-58

3.17 Component Declaration. 3-58
3171 Component 3-58

3.17.2 ComponentHeader 3-59

3.17.3 ComponentBody. 3-60

3.17.4 Event Sources - publishersand emitters 3-62

3175 EventSInKS 3-63

3.17.6 Basic and Extended Components 3-63

3.18 HomeDeclaration 3-64
3181 HOMe. 3-64

3182 HomeHeader................. ... 3-64

3183 Homebody 3-65

319 CORBAModule. 3-66
320 Namesand SCopingvieiieeiennnannnns 3-67
3.20.1 QuaifiedNames.................coii. 3-68

3.20.2 Scoping Rules and Name Resolution. 3-69

3.20.3 Specia Scoping Rules for Type Names. 3-72

4. ORBInterface 4-1
41 OVEIVIBW .ottt 4-1

March 2004 Common Object Request Broker Architecture (CORBA), v3.0.3 Vii

Contents

viii

4.2

4.3

4.4
4.5

4.6
4.7
4.8

4.9

4.10

4.11

Common Object Request Broker Architecture (CORBA), v3.0.3

TheORB Operations, 4-2
421 ORBldentity.........ccoviiiiiin... 4-8
42,2 Converting Object Referencesto Strings. 4-8
423 Getting Service Information 4-9
424 Thread-Related Operations 4-10

Object Reference Operations. 4-12
431 Determining the Object Interface 4-14
4.3.2 Duplicating and Releasing Copies of Object

References. i 4-15
433 Nil Object References.t 4-15
4.3.4 Equivalence Checking Operation 4-16
435 Probing for Object Non-Existence. 4-16
436 Object Referenceldentity 4-17
4.3.7 Type Coercion Considerations. 4-18
4.3.8 Getting Policy Associated with the Object 4-19
439 Overriding Associated Policies on an Object

Reference. i 4-20
4310 VdidatingConnection....................... 4-21
4.3.11 Getting the Domain Managers Associated with

theObject 4-22
4312 Getting Component Associated with the Object ... 4-22
4313 GettingtheORB, 4-22
4.3.14 LocaObject Operations.cccvuniue... 4-23

ValueBase Operations, 4-24

ORB and OA Initialization and Initial References. 4-25
451 ORBInitidization. 4-25
452 Obtaining Initial Object References 4-28

ContextObject 4-33

Current Objectot 4-37

Policy Object e 4-38
481 Definition of Policy Object 4-38
482 Creationof Policy Objects. 4-39
483 Usagesof Policy Objects. 4-41
4.8.4 Policy Associated with the Execution Environment 4-41
485 Specification of New Policy Objects. 4-42
486 Standard Policies. i, 4-44

Management of Policies. 4-44
49.1 Client Side Policy Management 4-44
49.2 Server Side Policy Management 4-45
493 Policy Management Interfaces 4-45

Management of Policy Domains 4-47
4101 BasicConceptsciiiiiii . 4-47
4.10.2 Domain Management Operations 4-50

TYPeCOdeSo 4-53

March 2004

March 2004

4.11.1 TheTypeCodelnterface 4-53

4.11.2 TypeCodeConstantsc.ccvvvvvnnn... 4-58

4.11.3 CreatingTypeCodesccovvnan... 4-59

5. ValueTypeSemantiCs., 5-1
51 OVEIVIBW . oottt et e e 5-1
52 Architecture. 5-2
521 AbstractValues............. oL 5-3

522 Operations. 5-3

523 VaueTypevs. Interfaces. 5-4

524 Parameter Passingovvevuinnnanann. 5-4

525 Substitutability Issues 5-5

52.6 Widening/Narrowing.............cccovuvnn... 5-6

527 VaueBaseTypec.coiviiiiiiiiiinnan.. 5-6

528 LifeCycleissues.......... ..., 5-7

5.2.9 Security Considerations. 57

53 Standard Value Box Definitions. 5-9
54 LanguageMappings.uiiiiiiiinn.. 5-9
54.1 General Requirements. 5-9

5.4.2 Language Specific Marshaling 5-9

5.4.3 Language Specific Value Factory Requirements... 5-9

54.4 VaueMethod Implementation. 5-10

55 CustomMarshaling 5-10
5.5.1 Implementation of Custom Marshaling.......... 5-11

552 MarshalingStreams. 5-11

5.6 Accesstothe Sending Context RunTime 5-18
6. Abstract InterfaceSemantics............ i, 6-1
6.1 OVEIVIEW . .ottt e 6-1
6.2 Semanticsof Abstract Interfaces 6-1
6.3 UsageGuidelines.coiiiiiiiiiiinnn. 6-3
6.4 Example........ ... 6-3
6.5 Security Considerations. 6-4
6.5.1 Passing Valuesto Trusted Domains. 6-4

7. Dynamiclnvocation Interface............. 7-1
71 OVEIVIEW ..o 7-1
711 Common Data Structures. 7-2

712 MemoryUsageoov v 7-4

7.1.3 Return Statusand Exceptions 7-4

7.2 RequestOperationscoviiiieininnnan.. 7-4
721 create request 7-5

722 add arg..........ii 7-7

723 0nvoKe 7-8

Common Object Request Broker Architecture (CORBA), v3.0.3 iX

Contents

724 delete. ... 7-8

725 send. ... 7-8

726 poll response.coiiiiii i 7-9

727 Qe reSPONSE . .ot i e it e 7-9

728 sendp. ... 7-10

T.2.9 PrEpare. . ..ot 7-10

7220 SendC. ..ot 7-10

7.3 ORBOPErations.o 7-11
7.3.1 send multiple requests. 7-11

7.3.2 get_next_response and poll_next_response. 7-11

74 Polling 7-12
75 ListOperations. 7-16
751 create list 7-17

752 additem............ ... 7-17

753 free ... o 7-17

754 free memory.........couiiiiiii, 7-18

755 getcount......... 7-18

7.5.6 create operation list........., 7-18

8. Dynamic SkeletonInterface L. 8-1
81 Introduction............... 8-1
8.2 OVEIVIBW . .ottt 8-2
8.3 ServerRequestPseudo-Object....................... 8-3
8.3.1 ExplicitRequest State: ServerRequestPseudo-Object 8-3

84 DSl:LanguageMappingc.ooiiiiiiinan.. 8-4

8.4.1 ServerRequest's Handling of Operation Parameters 8-4
8.4.2 Registering Dynamic Implementation Routines ... 85

9. Dynamic Management of Any Values....................... 9-1
9.1 OVEIVIBW ..ot 9-1

9.2 DynAny APl ... e 9-3

93 UsageinC++Llanguage.............covvrvuuunnn.. 9-25

10. Thelnterface Repository. 10-1
101 OVEIVIEW . .ot 10-1

10.2 Scopeof an Interface Repository 10-2

10.3 Implementation Dependencies. 104
10.3.1 Managing Interface Repositories. 10-4

104 BaSICS. . ottt 10-5
10.4.1 Namesand ldentifiers....................... 10-6

1042 Typesand TypeCodeS, 10-6

10.4.3 Interface Repository Objects. 10-6

10.4.4 Structure and Navigation of the Interface Repository 10-8
10.5 |Interface Repository Interfaces 10-11

X Common Object Request Broker Architecture (CORBA), v3.0.3 March 2004

10.5.1 Supporting Type Definitions. 10-12

1052 IRObJECt . ..o 10-13

1053 Containedc it 10-14

1054 Container.ot 10-16

1055 IDLTYPE. .o v i et 10-22

1056 RepoSitoryo 10-22

10.5.7 ModuleDef 10-24

10.5.8 ConstantDef........... i, 10-25

1059 TypedefDef i 10-25

10510 StructDef 10-26

10511 UnionDef.o 10-27

10512 EnumDef 10-27

10.5.13 AliasDefo 10-28

10.5.14 PrimitiveDef 10-28

10.5.15 StringDef. ...t 10-29

10.5.16 WstringDef 10-29

10517 FixedDef 10-30

10.5.18 SequenceDef 10-30

10.5.19 ArrayDef 10-31

10.5.20 ExceptionDef.......... ..., 10-31

10.5.21 AttributeDef 10-32

10.5.22 OperationDef..........cccviiiiiiiiian.. 10-34

10.5.23 InterfaceDef. i 10-35

10.5.24 AbstractinterfaceDef, 10-39

10.5.25 LocalnterfaceDef 10-41

10.5.26 VaueMemberDef, 10-43

105.27 VaueDef 10-44

10.5.28 VaueBoxDef.......... ... 10-49

10.5.29 NativeDef 10-49

10.6 Repositorylds. ... 10-64
1061 OMGIDLFormat.........ccvvvviinnannnn. 10-65

106.2 RMIHashedFormat 10-65

10.6.3 DCEUUIDFormatcovvivnn... 10-67

1064 LOCALFOrmMat........covuiiiiiennnnnnnn. 10-67

10.6.5 PragmaDirectivesfor Repositoryld 10-67

10.6.6 For Morelnformation 10-73

10.6.7 RepositorylDs for OMG-Specified Types........ 10-73

10.7 OMG IDL for Interface Repository 10-75
11. ThePortable Object Adapter 11-1
111 OVEIVIBW . oottt e 11-1
11.2 Abstract Model Description. 11-2
1121 Model Components.o .. 11-2

11.2.2 Model Architectureo i 11-4

1123 POACreation ..., 11-6

11.2.4 ReferenceCreationcovviin.... 11-7

March 2004 Common Object Request Broker Architecture (CORBA), v3.0.3 Xi

Contents

11.2.5 Object ActivationStates 11-8
1126 RequestProcessingccovivieunnn.. 11-9
11.2.7 Implicit Activation 11-10
11.2.8 Dynamic Skeleton Interface 11-13
113 Interfaces. 11-14
1131 TheServantIDL Type., 11-15
11.3.2 POAManager Interface 11-15
11.3.3 AdapterActivator Interface 11-22
11.3.4 ServantManager Interface. 11-24
11.3.5 ServantActivator Interface. 11-25
11.3.6 ServantLocator Interface..................... 11-27
11.3.7 POA Policy Objects.o, 11-30
1138 POAlInterface......... ..o, 11-34
11.4 IDL for PortableServer Module. 11-46
11.5 UML Description of PortableServer 11-52
11,6 UsageScenarios. . ..ot iiii it i iie e 11-54
11.6.1 GettingtheRoot POA 11-54
11.6.2 CreatingaPOA i 11-55
11.6.3 Explicit Activation with POA-assigned Object Ids. 11-55
11.6.4 Explicit Activation with User-assigned Object Ids . 11-56
11.6.5 Creating References before Activation 11-57
11.6.6 Servant Manager Definition and Creation........ 11-57
11.6.7 Object ActivationonDemand. 11-59
11.6.8 Persistent Objects with POA-assigned Ids. 11-61
11.6.9 Multiple Object Ids Mapping to a Single Servant .. 11-61
11.6.10 One Servant for All Objects 11-61
12. Interoperability Overview 12-1
12.1 Elementsof Interoperability........................ 12-1
12.1.1 ORB Interoperability Architecture 12-2
12.1.2 Inter-ORB Bridge Support. 12-2
12.1.3 Genera Inter-ORB Protocol (GIOP) 12-3
12.1.4 Internet Inter-ORB Protocol (IIOP)® 12-3
12.1.5 Environment-Specific Inter-ORB Protocols
(ESIOPS) . .o 12-4
12.2 Relationship to Previous Versionsof CORBA 12-4
12.3 Examples of Interoperability Solutions 12-5
1231 Examplelcc i 12-5
1232 Example2 12-5
1233 Example3 12-5
12.3.4 Interoperability Compliance 12-5
124 Motivating Factors.c i 12-8
12.4.1 ORB Implementation Diversity................ 12-8
1242 ORBBoundaries...............c.coueunnnn. 12-8
12.4.3 ORBsVary in Scope, Distance, and Lifetime 12-9

Xii Common Object Request Broker Architecture (CORBA), v3.0.3 March 2004

March 2004

125 Interoperability DesignGoals 12-9
1251 Non-Goals........coviiiiiii i 12-10

13. ORB Interoperability Architecture........................ 13-1
131 OVEIVIBW . oottt 13-1
1311 DOMaiNS ..ottt 13-2

13.1.2 BridgingDomains.ciiiiaaa.. 13-2

132 ORBsandORB Services.............ccuovuiuiunn... 13-3
13.2.1 TheNatureof ORB Services. 13-3

13.2.2 ORB Servicesand Object Requests. 13-3

13.2.3 Selectionof ORB Servicesc..... 13-4

133 DOMains. 135
13.3.1 Definitionof aDomain...................... 13-5

13.3.2 Mapping Between Domains: Bridging 13-6

13.4 Interoperability Between ORBS. 13-7
134.1 ORB ServicesandDomains 13-7

1342 ORBsandDomains......................... 13-7

13.4.3 Interoperability Approaches 13-8

13.4.4 Policy-Mediated Bridging. 13-10

13.45 Configurations of Bridgesin Networks. 13-11

135 ObjectAddressingcciiiiiiiii... 13-11
13.5.1 Domain-relative Object Referencing............ 13-12

13.5.2 Handling of Referencing Between Domains.. 13-12

13.6 AnlInformation Model for Object References 13-14
13.6.1 What Information Do BridgesNeed? 13-14

13.6.2 Interoperable Object References: IORs. 13-14

13.6.3 IORProfiles.........ccoviiiiiii i 13-15

13.6.4 Standard IORProfiles....................... 13-17

1365 IORComponents.cc.viiieannann... 13-18

13.6.6 Standard IOR Components 13-19

13.6.7 Profile and Component CompositioninIORs. 13-22

13.6.8 IORCreationandScopecvvvvnvnnn.. 13-22

13.6.9 Stringified Object References 13-22

13.7 ServiceContext 13-28
13.7.1 Standard ServiceContexts. 13-30

13.7.2 Service Context ProcessingRules. 13-31

13.8 Coder/Decoder Interfaces.t 13-32
13.8.1 Codecinterface........ ..., 13-32

1382 CodecFactorycouiiiiiinnennnnn. 13-34

13.9 Feature Support and GIOPVersions. 13-35
13.10 Code Set Conversionvvvee e 13-37
13.10.1 Character Processing Terminology 13-37

13.10.2 Code Set Conversion Framework 13-40

13.10.3 Mapping to Generic Character Environments. 13-48

Common Object Request Broker Architecture (CORBA), v3.0.3 Xiii

Contents

13.10.4 Example of Generic Environment Mapping 13-49

13.10.5 Relevant OSFM Registry Interfaces 13-50

14. BuildingInter-ORBBridges., 14-1
141 Introduction i 14-1
14.2 In-Line and Request-Level Bridging 14-2
14.2.1 In-lineBridging. 14-3

14.2.2 Request-level Bridging 14-3

1423 Collocated ORBS.ciiiiiii e 14-4

14.3 Proxy Creationand Management. 14-5
14.4 Interface-specific Bridges and Generic Bridges. 14-6
14.5 Building Generic Request-Level Bridges. 14-6
14.6 Bridging Non-Referencing Domains 14-7
14.7 BootstrappingBridges. oo 14-7
15. General Inter-ORB Protocol 151
15.1 Goadls of the General Inter-ORB Protocol 15-2
152 GIOPOVEIVIBW . . oo 15-2
15.2.1 Common Data Representation (CDR) 15-3

15.2.2 GIOPMessage Overviewcovvenvn... 15-3

1523 GIOPMessageTransfercccovuvnn.. 154

153 CDRTransfer Syntax.............cccviiiiennn.... 15-4
15.3.1 Primitive TYpeSo e 155

15.3.2 OMGIDL Constructed TypeSovvvvn. .. 15-11

15.3.3 Encapsulation 15-14

1534 VaAUETYPES. ..o ot 15-15

15.3.5 Pseudo-Object Types., 15-23

15.3.6 ObjectReferences.ccovvin.. 15-30

15.3.7 Abstract Interfaces. 15-30

154 GIOPMessageFormats., 15-30
154.1 GIOPMessageHeader 15-31

1542 RequestMessage.ovviviinennann.n. 15-34

1543 ReplyMessage, 15-37

15.4.4 CancelRequestMessage, 15-41

1545 LocateRequestMessaget 1541

15.4.6 LocateReplyMessage..........covvvivnnn... 15-43

15.4.7 CloseConnectionMessage.coovvvunn.. 15-45

1548 MessageErrorMessage 15-45

1549 FragmentMessage., 15-45

155 GIOPMessageTransport., 15-46
15.5.1 Connection Management. 15-47

1552 MessageOrdering 15-49

15.6 ObjectLocation............ ..., 15-49

Xiv Common Object Request Broker Architecture (CORBA), v3.0.3 March 2004

March 2004

15.7 Internet Inter-ORB Protocol (IIOP) 15-51
15.7.1 TCP/IPConnectionUsage. 15-52

1572 IIOPIORProfiles.......... ..ot 15-52

15.7.3 1IOPIOR Profile Components. 15-55

15.8 Bi-Directiond GIOP 15-56
15.8.1 Bi-Directional IIOP......................... 15-58

15.9 Bi-directional GIOPpolicy 15-60
1510 OMGIDL. . .. 15-60
15.10.1 GIOPModule 15-60

15.10.2 IHOPModule 15-64

15.10.3 BiDirPolicy Module 15-65

16. TheDCEESIOP e 16-1
16.1 Goals of the DCE Common Inter-ORB Protocol 16-1
16.2 DCE Common Inter-ORB Protocol Overview 16-2
16.21 DCE-CIOPRPC 16-2

16.2.2 DCE-CIOP Data Representation............... 16-3

16.2.3 DCE-CIOPMESSageso v vvviiei e 16-4

16.2.4 Interoperable Object Reference (IOR). 16-5

16.3 DCE-CIOPMessage Transport 16-5
16.3.1 Pipe-basedInterface 16-6

16.3.2 Array-based Interface 16-8

16.4 DCE-CIOPMessageFormats.ovun.. 16-11
16.4.1 DCE_CIOP Invoke Request Message 16-11

16.4.2 DCE-CIOP Invoke Response Message 16-12

16.4.3 DCE-CIOP Locate Request Message 16-14

16.4.4 DCE-CIOP Locate Response Message 16-15

16.5 DCE-CIOPObject References.oovievin .. 16-16
16.5.1 DCE-CIOP String Binding Component. 16-17

16.5.2 DCE-CIOP Binding Name Component.......... 16-18

16.5.3 DCE-CIOP No PipesComponent 16-19

16.5.4 Complete Object Key Component. 16-19

16.5.5 Endpoint ID Position Component 16-20

16.5.6 Location Policy Component 16-20

16.6 DCE-CIOPObject Location.ccouu.... 16-21
16.6.1 Location Mechanism Overview. 16-22

16.6.2 Activation 16-23

16.6.3 Basic Location Algorithm.................... 16-23

16.6.4 Use of the Location Policy and the Endpoint ID ... 16-24

16.7 OMG IDL forthe DCECIOPModule................ 16-25
16.8 ReferencesforthisChapter 16-26
17. Interworking Architecture 0oL 17-1
17.1 Purpose of the Interworking Architecture 17-2

Common Object Request Broker Architecture (CORBA), v3.0.3 XV

Contents

17.1.1 Comparing COM Objectsto CORBA Objects 17-2

17.2 Interworking ObjectModel 17-3
17.2.1 Relationship to CORBA Object Model 17-3

17.2.2 Relationship to the OLE/COM Model........... 17-4

17.2.3 Basic Description of the Interworking Model 17-4

17.3 Interworking Mapping Issues. 17-8
17.4 InterffaceMapping ... 17-8
1741 CORBA/COM.t 17-9

17.4.2 CORBA/Automation.covu.... 17-9

1743 COM/CORBA 17-10

17.44 Automation/CORBA, 17-10

17.5 Interface Composition Mappings. 17-11
1751 CORBA/COMiiiiiiiiiiiinaan 17-11

17.5.2 Detailed MappingRules 17-13

17.5.3 Example of Applying OrderingRules. 17-14

17.5.4 Mapping Interfaceldentity 17-16

17.6 Object Identity, Binding, and LifeCycle.............. 17-18
17.6.1 Object IdentityIssues 17-19

17.6.2 BindingandLifeCycle...................... 17-20

17.7 InterworkingInterfaces 17-23
17.7.1 SimpleFactory Interface 17-23

17.7.2 IMonikerProvider Interface and Moniker Use. 17-23

17.7.3 ICORBAFactory Interface. 17-24

17.7.4 |ForeignObject Interface 17-26

1775 ICORBAODbject Interface 17-27

17.7.6 ICORBAODJECt2.t 17-28

17.7.7 10ORBObjectiInterface....................... 17-28

17.7.8 Naming Conventions for View Components. 17-30

17.8 Distribution 17-32
17.8.1 BridgelLocality 17-32

17.8.2 Distribution Architecture. 17-33

179 InterworkingTargetso i, 17-34
17.10 Compliance to COM/CORBA Interworking 17-34
17.10.1 Products Subject to Compliance 17-34

17.10.2 CompliancePaoints., 17-36

18. Mapping: COM and CORBA i .. 18-1
18.1 DataTypeMappingccoiiiiiiiinn.. 18-1
18.2 CORBA to COM DataTypeMapping................ 18-2
18.2.1 Mapping for BasicDataTypes 18-2

18.2.2 MappingforConstants 18-2

18.2.3 Mapping for Enumerators. 18-3

18.2.4 Mappingfor String Typescovvn... 18-4

18.2.5 Mappingfor Struct Typesccovn... 18-5

XVi Common Object Request Broker Architecture (CORBA), v3.0.3 March 2004

18.2.6 MappingforUnionTypes.................... 18-6

18.2.7 Mapping for Sequence Types 18-8

18.2.8 Mappingfor Array Typescccvvnvn... 18-9

18.2.9 Mappingfortheany Type.................... 18-9

18.2.10 InterfaceMapping.cuuiiiinenn.. 18-11

18.2.11 InheritanceMapping, 18-26

18.2.12 Mapping for Pseudo-Objects. 18-29

18.2.13 Interface Repository Mapping. 18-32

18.3 COM to CORBA DataTypeMapping 18-33

18.3.1 Mapping for BasicDataTypes 18-33

18.3.2 MappingforConstants 18-34

18.3.3 Mapping for Enumerators. 18-34

18.3.4 Mappingfor String Typest 18-35

18.3.5 Mapping for Structure Types. 18-37

18.3.6 MappingforUnionTypes.................... 18-38

18.3.7 Mappingfor Array Typescovvvnvn... 18-40

18.3.8 Mappingfor VARIANT. 18-41

18.3.9 MappingforPointers. 18-43

18.3.10 InterfaceMapping.cooiiiieieann.. 18-44

18.3.11 Mapping for Read-Only Attributes 18-49

18.3.12 Mapping for Read-Write Attributes. 18-49

19. Mapping: Automationand CORBA 19-1

19.1 Mapping CORBA Objectsto Automation 19-2

19.1.1 Architectural Overview 19-2

19.1.2 Main Features of the Mapping. 19-3

19.2 Mappingforinterfaces. 19-3

19.2.1 Mapping for Attributes and Operations. 19-4

19.2.2 Mapping for OMG IDL Single Inheritance. 19-5

19.2.3 Mapping of OMG IDL Multiple Inheritance. 19-6

19.3 Mapping for BasicDataTypes.c.cvvnn.. 19-9

19.3.1 BasicAutomation TypesSc...... 19-9

19.3.2 Specia Cases of Basic Data Type Mapping 19-10

19.3.3 MappingforStrings. 19-11

194 IDLtoODLMappingcouvuiiieiiennnnn.. 19-12
19.4.1 A Complete IDL to ODL Mapping for the Basic

DataTypes. .. oo 19-12

19.5 Mapping for Object References. 19-15

1951 TypeMappingvvvevneiiiiininnnnn 19-15

19.5.2 Object Reference Parameters and | ForeignObject. . 19-16

19.6 Mapping for Enumerated Types. 19-17

19.7 Mapping for Arraysand Sequences. 19-18

19.8 Mapping for CORBA Complex Types. 19-19

19.8.1 Mapping for Structure Types. 19-20

19.8.2 MappingforUnionTypes.................... 19-21

March 2004 Common Object Request Broker Architecture (CORBA), v3.0.3 XVii

Contents

19.8.3 Mapping for TypeCodes 19-22
19.8.4 Mappingforanys, 19-24
19.85 Mappingfor Typedefs....................... 19-25
19.8.6 MappingforConstants 19-25
19.8.7 Getting Initial CORBA Object References 19-26

19.8.8 Creating Initial in Parameters for Complex Types. . 19-27
19.8.9 Mapping CORBA Exceptions to Automation

EXceptions. 19-30
19.8.10 Conventions for Naming Components of the
AutomationViewo, 19-36
19.8.11 Naming Conventions for Pseudo-Structs,
Pseudo-Unions, and Pseudo-Exceptions 19-36
19.8.12 Automation View Interface as a Dispatch Interface
(Nondual) i 19-36
19.8.13 Aggregation of Automation Views 19-38
19814 DllandDSl ...t 19-38
19.9 Mapping Automation Objects as CORBA Objects. 19-38
19.9.1 Architectural Overview 19-38
19.9.2 Main Features of the Mapping. 19-39
19.9.3 Getting Initial Object References 19-40
19.9.4 Mappingforinterfaces 19-40
19.9.5 Mappingforinheritance 19-40
19.9.6 Mapping for ODL Propertiesand Methods. 19-41
19.9.7 Mapping for Automation Basic Data Types. 19-42
19.9.8 ConversionErrors. ..., 19-43
19.9.9 Specia Cases of Data Type Conversion 19-43
19.9.10 A Complete OMG IDL to ODL Mapping for the
BasicDataTypesS.o vvii i 19-44
19.9.11 Mapping for Enumerated Types 19-47
19.9.12 Mapping for SafeArrays 19-48
19.9.13 Mapping for Typedefs. 19-48
19.9.14 Mapping for VARIANTS 19-48
19.9.15 Mapping Automation Exceptionsto CORBA 19-49
19.10 Older Automation Controllers...................... 19-49
19.10.1 Mapping for OMG IDL Arrays and Sequences to
ColleCtions. 19-49
19.11 Example Mappings. oo 19-51
19.11.1 Mapping the OMG Naming Service to Automation 19-51
19.11.2 Mapping a COM ServicetoOMGIDL 19-51
19.11.3 Mapping an OMG Object Service to Automation .. 19-55
20. Interoperability with non-CORBA Systems. 20-1
20.1 INtroduCtionot 20-1
20.1.1 COM/CORBA PartA 20-2
20.2 ConformancelsSsues.oviiiiiinnnennn.. 20-2
20.2.1 Perfformancelssues.............c.coiiiinnn. 20-3

XViii Common Object Request Broker Architecture (CORBA), v3.0.3 March 2004

20.2.2 Scalabilitylssues., 20-3
20.2.3 CORBA Clientsfor DCOM Servers 20-3
20.3 LocalityoftheBridge 20-4
204 ExtentDefinition i 20-5
20.4.1 MarshalingConstraints. 20-6
20.4.2 MarshalingKey........... i 20-6
2043 ExtentFormat 20-7
20.5 Request/Reply Extent Semantics. 20-8
206 CONSIStENCY .. ittt it e e e 20-9
20.6.1 IValueObject 20-10
20.6.2 ISynchronize and DISynchronize 20-11
20.7 DCOM VaueObhjects.ot i i 20-11
20.7.1 Passing Automation Compound Types as DCOM
VaueObjects. 20-11
20.7.2 Passing CORBA-Defined Pseudo-Objects as
DCOM ValueObjectso, 20-12
20.7.3 IForeignObject. 20-12
20.7.4 DlForeignComplexTypeccouueno... 20-12
20.7.5 DlForeignException 20-12
20.7.6 DISystemException.oiiiian.. 20-12
20.7.7 DICORBAUserException.................... 20-13
20.78 DICORBASHIUCt vt i i 20-13
20.79 DICORBAUNION.t 20-13
20.7.10 DICORBATypeCode and ICORBATypeCode. 20-13
20.7.11 DICORBAANY ...ttt 20-14
20.7.12 ICORBAANY . . .o\t 20-15
20.7.13 User ExceptionsINnCOM 20-15
20.8 ChanAvoidancecoiiiiiiinn... 20-16
20.8.1 CORBA ChainAvoidance.................... 20-16
20.8.2 COM ChainAvoidance...................... 20-17
209 ChanBypass.........oviiiiiii i 20-19
209.1 CORBA ChainBypasscoovvunnn. 20-19
20.9.2 COMChainBypass..........ccvviiininnn.. 20-20
20.10 Thread Identification i, 20-21
21. PortablelInterceptors. i 21-1
211 Introductionot 21-1
21.1.1 ObjectCreationcouvuiiieianenn... 21-2
21.1.2 ClientSendsRequest..................oov... 21-3
21.1.3 Server ReceivesRequest..................... 21-4
2114 ServerSendsReply 21-4
21.1.5 ClientReceivesReplyccoiii... 21-5
21.2 Interceptorinterface........... i, 21-5
21.3 RequestInterceptors.t 21-6
March 2004 Common Object Request Broker Architecture (CORBA), v3.0.3 XiX

Contents

XX

21.4

215

21.6

21.7

21.8

21.9

21.10

Common Object Request Broker Architecture (CORBA), v3.0.3

21.3.1 DesignPrinciples. 21-6
2132 General FlowRules. 21-7
21.3.3 TheFlow Stack Visual Model 21-8
21.3.4 The Request Interceptor Points 21-8
21.3.5 Client-SideInterceptor 21-9
21.3.6 Client-Side Interception Points 21-9
21.3.7 Client-Side Interception Point Flow 21-11
21.3.8 Server-Sidelnterceptor 21-14
21.3.9 Server-SideInterception Points. 21-14
21.3.10 Server-Side Interception Point Flow 21-17
21.3.11 Request Information 21-20
21.3.12 Requestinfolnterface 21-21
21.3.13 ClientRequestinfo Interface. 21-25
21.3.14 ServerRequestinfointerface 21-29
21.3.15 ForwardRequest Exception 21-33
Portable Interceptor Current. 21-33
2141 OVEIVIBW. ..ottt 21-33
21.4.2 Obtaining the Portable Interceptor Current 21-34
21.4.3 Portable Interceptor Current Interface. 21-34
21.4.4 Useof Portable Interceptor Current. 21-35
IOR INterceptor e 21-40
2151 OVEIVIBW . .ot 21-40
21.5.2 IORInterceptor Interface. 21-45
2153 IORInfolnterface, 21-46
PolicyFactory 21-49
21.6.1 PolicyFactory Interface...................... 21-49
Registering Interceptors. 21-50
21.7.1 ORBlnitializer Interface 21-50
21.7.2 ORBlnitinfolInterface....................... 21-51
21.7.3 register_orb initializer Operation.............. 21-54
21.7.4 Notes about Registering Interceptors. 21-57
Dynamic Initial References 21-57
21.8.1 register_initial_reference. 21-57
ModuleDynamic, 21-58

21.9.1 NVList PIDL Represented by ParameterList IDL .. 21-58
21.9.2 ContextList PIDL Represented by ContextList IDL 21-58
21.9.3 ExceptionList PIDL Represented by

ExceptionList IDL 21-58

21.9.4 Context PIDL Represented by RequestContext IDL 21-58
Consolidated IDLt 21-59
21.10.1 DYNaMIC . oottt e 21-59
21.10.2 Portions of IOP Relevant to Portable Interceptor .. 21-59
21.10.3 Portablelnterceptor 21-60

March 2004

22. CORBA MESSAgiNG. .« v vttt i it it it et e eaens 22-1
22.1 Sectionl - Introduction 22-2
22.2 Messaging Quality of Service 22-2

2221 RebindSupport............. ... 22-5
22.2.2 SynchronizationScopecccvviin... 22-6
22.2.3 Request and Reply Priority 22-7
22.2.4 Request and Reply Timeout. 22-8
2225 ROULING . ..ot 22-10
2226 QueueOrdering.couiuiiiiiinanan.. 22-11
22.3 Propagation of MessagingQoS 22-12
2231 SHUCIUIES. . ..ottt e e 22-12
22.3.2 Messaging QoS Profile Component. 22-13
22.3.3 Messaging QoS ServiceContext. 22-13
224 Sectionll - Introduction. 22-13
225 RunningExample......... i i 22-15
22.6 AsyncOperationMapping.ccovivien... 22-16
22.6.1 Calback Model Signatures(sendc)............. 22-16
22.6.2 Polling Model Signatures(sendp) 22-18
22.7 Exception Delivery in the Callback Model 22-20
22.7.1 Messaging::ExceptionHolder valuetype. 22-20
22.8 Type-Specific ReplyHandler Mapping. 22-21
22.8.1 ReplyHandler Operations for NO_EXCEPTION
Replies. 22-22
22.8.2 ReplyHandler Operations for Exceptional Replies . 22-23
2283 Example........... 22-23
229 GenericPollerVaue 22-24
22.9.1 operation target........... .. 22-25
22.9.2 operation Name., 22-25
229.3 associated handler. 22-25
2294 isfrompoller........ i 22-25
22.10 Type-Specific Poller Mapping 22-26
22.10.1 Basic Type-SpecificPoller 22-26
22.10.2 Persistent Type-SpecificPoller 22-28
22103 Example. 22-29
2211 ExampleProgrammerUsage 22-30
22.11.1 Example Programmer Usage (Examples Mapped
IO CHH) 22-30
22.11.2 Client-Side C++ Example for the Asynchronous
Method Signatures. it 22-30

22.11.3 Client-Side C++ Example of the Callback Model . . 22-31
22.11.4 Client-Side C++ Example of the Polling Model ... 22-38
22115 ServerSide ... 22-43

22.12 Sectionlll -Introductioncoiiiv.... 22-44

March 2004 Common Object Request Broker Architecture (CORBA), v3.0.3 XXi

Contents

XXii

22.13 Routing Object References.t 22-45
2214 MessageRouting 22-45
22.14.1 SHUCKUMES. . . .ottt et e e 22-47

22142 Interfaces. 22-49

22.14.3 RoutingProtocol oL 22-51

22.15 Router Administration 22-58
22151 Constants.o 22-61

22.15.2 EXCEPLiONS. ..o v i e 22-62

22.15.3 Valuetypes.o 22-62

22154 Interfaces.o 22-63

22.16 CORBA MessagingIDL 22-64
22.16.1 MessagingModule 22-64

22.16.2 MessageRouting Module. 22-67
Appendix A Overal Design Rationale. 22-71
Appendix B Conformance and Compatibility Issues 22-83
23. Fault Tolerant CORBA e 23-1
231 Fault Tolerant CORBA. 23-1
23.1.1 Fault Tolerance for Diverse Applications 231

2312 ObjeCtiVeSt 23-2

23.1.3 BasicConceptscvviiiiiii 23-3

23.1.4 Architectural Overview 234

2315 Requirements.ciiiiiiiiia... 23-8

2316 Limitations i 23-11

23.2 Basic Fault Tolerance Mechanisms 23-12
2321 OVEIVIBW . .ot 23-12

23.2.2 Interoperable Object Group References. 23-13

23.2.3 Interoperable Object Group Reference Operations . 23-16

23.2.4 Modesof Profile Addressing. 23-18

23.2.5 Accessing Server Object Groups. 23-19

23.2.6 Extensionsto CORBA Failover Semantics. 23-21

23.2.7 Most Recent Object Group Reference. 23-22

23.2.8 Transparent Reinvocation 23-23

23.2.9 Transport Heartbeats 23-28

23.3 ReplicationManagement 23-31
2331 OVEIVIBW . .ottt 23-31

23.3.2 Fault Tolerance Properties. 23-32

23.3.3 FaultMonitoringlntervalAndTimeout 23-37

23.3.4 Checkpointinterval 23-37

2335 CommoOnTypesS....... ... 23-38

23.3.6 ReplicationManagercovu... 23-44

23.3.7 PropertyManager.............iiiiiiii. 23-45

23.3.8 ObjectGroupManagerc.ovuuuenenn. 23-49

23.39 GenericFactory i 23-56

Common Object Request Broker Architecture (CORBA), v3.0.3 March 2004

Contents

23.3.10 Ohbtaining the Reference for the Replication

234 FaultManagementc.cciitiieiinannn.

234.1
234.2
23.4.3
23.4.4
23.4.5
2346
234.7

OVEIVIBW . . oot
Architecture.
Connecting Fault Detectors to Applications
Pull-Based Monitoring
Fault Event Typeso
Fault Notifier. oo,

235 Logging & Recovery Management

2351
235.2
23.5.3
2354
2355

OVEIVIBW . . oot
LoggingMechanism
Recovery Mechanism
Checkpointable and Updateable Interfaces

23.6 Consolidated IDL.t

23.6.1
Appendix C

OMGIDL ...

Glossary

24. Securelnteroperability.

241 Overview

2411

ASSUMPLIONSo

24.2 Protocol Message Definitions

2421
2422
2423
24.2.4
24.2.5
24.2.6

The Security Attribute Service Context Element. . .
SAS context_data Message Body Types.........
Authorization TokenFormat
Client Authentication Token Format
Identity Token Format
Principal Names and Distinguished Names.

24.3 Security Attribute Service Protocol

2431
243.2
2433
2434
24.3.5

Compound Mechanisms
Session Semantics.o
TSSStateMachine
CSSStateMachine
ContextError Values and Exceptions.

24.4 Transport Security Mechanisms.

2441
2442

Transport Layer Interoperability
Transport Mechanism Configuration.

245 Interoperable Object References

2451
2452
2453

Target Security Configuration.
Client-side Mechanism Selection
Client-Side Requirements and Location Binding . .

March 2004 Common Object Request Broker Architecture (CORBA), v3.0.3

XXiii

Contents

24.6 ConformancelLevels 24-45

246.1 ConformancelLevel O 24-45

246.2 ConformancelLevel 1 24-47

24.6.3 Conformancelevel 2 24-47

24.6.4 Stateful Conformance 24-48

24.7 Sample Message Flows and Scenarios. 24-48
24.7.1 Confidentiality, Trust in Server, and Trust in Client

Established inthe Connection. 24-49

24.7.2 Confidentiality and Trust in Server Established in the
Connection - Stateless Trust in Client Established in
ServiceContext.ttt 24-51

24.7.3 Confidentiality, Trust in Server, and Trust in Client
Established in the Connection - Stateless Trust
Association Established in Service Context 24-53

24.7.4 Confidentiality, Trust in Server, and Trust in Client
Established in the Connection - Stateless Forward
Trust Association Established in Service Context .. 24-56

248 ReferencesforthisChapter 24-57
249 IDL. ... 24-58
24.9.1 Module GSSUP - Username/Password GSSAPI

Token Formats.o i 24-58

24.9.2 Module CSI - Common Secure Interoperability ... 24-59
24.9.3 Module CSIIOP - CSIv2 IOR Component Tag

Definitions. 24-63

A. OMG IDL Tagsand Exceptions. A-1
GloSSarY . . oo Glossary-1
INAEX .o Index-1

XXiv Common Object Request Broker Architecture (CORBA), v3.0.3 March 2004

About This Document

Preface

Under the terms of the collaboration between OMG and The Open Group, this
document is a candidate for adoption by The Open Group, as an Open Group Technical
Standard. The collaboration between OMG and The Open Group ensures joint review
and cohesive support for emerging object-based specifications.

Object Management Group

The Object Management Group, Inc. (OMG) is an international organization supported
by over 600 members, including information system vendors, software developers and
users. Founded in 1989, the OMG promotes the theory and practice of object-oriented
technology in software development. The organization's charter includes the
establishment of industry guidelines and object management specifications to provide a
common framework for application development. Primary goals are the reusability,
portability, and interoperability of object-based software in distributed, heterogeneous
environments. Conformance to these specifications will make it possible to develop a
heterogeneous applications environment across all major hardware platforms and
operating systems.

OMG's objectives are to foster the growth of object technology and influence its
direction by establishing the Object Management Architecture (OMA). The OMA
provides the conceptual infrastructure upon which all OMG specifications are based.
More information is available at http://www.omg.org/.

The Open Group

July 2002

The Open Group, a vendor and technology-neutral consortium, is committed to
delivering greater business efficiency by bringing together buyers and suppliers of
information technology to lower the time, cost, and risks associated with integrating
new technology across the enterprise.

Common Object Request Broker Architecture (CORBA), v3.0 i

I ntended Audience

Context of CORBA

The mission of The Open Group is to drive the creation of boundaryless information
flow achieved by:

® Working with customers to capture, understand and address current and emerging
requirements, establish policies, and share best practices;

® Working with suppliers, consortia and standards bodies to develop consensus and
facilitate interoperability, to evolve and integrate specifications and open source
technologies;

® Offering a comprehensive set of services to enhance the operational efficiency of
consortia; and

® Developing and operating the industry’s premier certification service and
encouraging procurement of certified products.

The Open Group has over 15 years experience in devel oping and operating certification
programs and has extensive experience developing and facilitating industry adoption of
test suites used to validate conformance to an open standard or specification. The Open
Group portfolio of test suites includes tests for CORBA, the Single UNIX
Specification, CDE, Motif, Linux, LDAP, POSIX.1, POSIX.2, POSIX Realtime,
Sockets, UNIX, XPG4, XNFS, XTI, and X11. The Open Group test tools are essential
for proper development and maintenance of standards-based products, ensuring
conformance of products to industry-standard APIs, applications portability, and
interoperability. In-depth testing identifies defects at the earliest possible point in the
development cycle, saving costs in development and quality assurance.

More information is available at http://www.opengroup.org/ .

The architecture and specifications described in this manual are aimed at software
designers and developers who want to produce applications that comply with OMG
standards for the Object Request Broker (ORB). The benefit of compliance is, in
general, to be able to produce interoperable applications that are based on distributed,
interoperating objects. As defined by the Object Management Group (OMG) in the
Object Management Architecture Guide, the ORB provides the mechanisms by which
objects transparently make requests and receive responses. Hence, the ORB provides
interoperability between applications on different machines in heterogeneous
distributed environments and seamlessly interconnects multiple object systems.

The key to understanding the structure of the CORBA architecture is the Reference
Model, which consists of the following components:

» Object Request Broker - enables objects to transparently make and receive
requests and responses in a distributed environment. It is the foundation for
building applications from distributed objects and for interoperability between
applications in hetero- and homogeneous environments. The architecture and
specifications of the Object Request Broker are described in this manual.

Common Object Request Broker Architecture (CORBA), v3.0 July 2002

Associated Documents

July 2002

» Object Services - a collection of services (interfaces and objects) that support
basic functions for using and implementing objects. Services are necessary to
construct any distributed application and are always independent of application
domains. For example, the Life Cycle Service defines conventions for creating,
deleting, copying, and moving objects; it does not dictate how the objects are
implemented in an application. Specifications for Object Services are contained in
CORBAservices: Common Object Services Specification.

« Common Facilities - a collection of services that many applications may share,
but which are not as fundamental as the Object Services. For instance, a system
management or electronic mail facility could be classified as a common facility.
Information about Common Facilities will be contained in CORBAfacilities:
Common Facilities Architecture.

» Application Objects - products of a single vendor on in-house devel opment
group that controls their interfaces. Application Objects correspond to the
traditional notion of applications, so they are not standardized by OMG. Instead,
Application Objects constitute the uppermost layer of the Reference Model.

The Object Request Broker, then, is the core of the Reference Model. It is like a
telephone exchange, providing the basic mechanism for making and receiving calls.
Combined with the Object Services, it ensures meaningful communication between
CORBA-compliant applications.

The CORBA documentation set includes the following books:

» Object Management Architecture Guide defines the OMG's technical objectives
and terminology and describes the conceptual models upon which OMG standards
are based. It also provides information about the policies and procedures of OMG,
such as how standards are proposed, evaluated, and accepted.

» CORBA: Common Object Request Broker Architecture and Specification contains
the architecture and specifications for the Object Request Broker.

» CORBAservices. Common Object Services Specification contains specifications
for the Object Services.

» CORBAfacilities: Common Facilities Architecture contains the architecture for
Common Facilities.

OMG caollects information for each book in the documentation set by issuing Requests
for Information, Requests for Proposals, and Requests for Comment and, with its
membership, evaluating the responses. Specifications are adopted as standards only
when representatives of the OMG membership accept them as such by vote.

You can download the OMG formal documents free-of-charge from our web site in
PostScript and PDF format. Please note the OMG address and telephone numbers
below:

CORBA, v3.0: Associated Documents i

OMG Headquarters
250 First Avenue
Needham, MA 02494
USA
Tel: +1-781-444-0404
Fax: +1-781-444-0320
pubs@omg.org
http://www.omg.org

Definition of CORBA Compliance

The minimum required for a CORBA-compliant system is adherence to the
specifications in CORBA Core and one mapping. Each additional language mapping is
a separate, optional compliance point. Optional means users aren’t required to
implement these points if they are unnecessary at their site, but if implemented, they
must adhere to the CORBA specifications to be called CORBA-compliant. For instance,
if avendor supports C++, their ORB must comply with the OMG IDL to C++ binding
specified in the C++ Language Mapping Specification.

Interoperability and Interworking are separate compliance points. For detailed
information about Interworking compliance, refer to “Compliance to COM/CORBA
Interworking” on page 17-34.

As described in the OMA Guide, the OMG'’s Core Object Model consists of a core and
components. Likewise, the body of CORBA specifications is divided into core and
component-like specifications. The structure of this manual reflects that division.

The CORBA core specifications are categorized as follows:
CORBA Core, as specified in Chapters 1-11

CORBA Interoperability, as specified in Chapters 12-16
CORBA Interworking, as specified in Chapters 17-21
CORBA Quality of Service, as specified in Chapters 22-24

Note — The CORBA Language Mappings have been separated from the CORBA Core
and each language mapping is its own separate book. Refer to the Specifications
Catalog for this information.

Sructure of ThisManual

This manual is divided into the categories of Core, Interoperability, and Interworking.
These divisions reflect the compliance points of CORBA. In addition to this preface,
CORBA: Common Object Request Broker Architecture and Specification contains the
following chapters:

Common Object Request Broker Architecture (CORBA), v3.0 July 2002

July 2002

Core

Chapter 1 - The Object Model describes the computation model that underlies the
CORBA architecture.

Chapter 2 - CORBA Overview contains the overall structure of the ORB architecture
and includes information about CORBA interfaces and implementations.

Chapter 3- OMG IDL Syntax and Semantics details the OMG interface definition
language (OMG IDL), which is the language used to describe the interfaces that client
objects call and object implementations provide.

Chapter 4 - ORB Interface defines the interface to the ORB functions that do not
depend on object adapters: these operations are the same for all ORBs and object
implementations.

Chapter 5 - Value Type Semantics describes the semantics of passing an object by
value, which is similar to that of standard programming languages.

Chapter 6 - Abstract I nterface Semantics explains an IDL abstract interface, which
provides the capability to defer the determination of whether an object is passed by
reference or by value until runtime.

Chapter 7 - The Dynamic Invocation Interface details the DII, the client’s side of
the interface that allows dynamic creation and invocation of request to objects.

Chapter 8 -- The Dynamic Skeleton Interface describes the DSI, the server’'s-side
interface that can deliver requests from an ORB to an object implementation that does
not have compile-time knowledge of the type of the object it is implementing. DSI is
the server’s analogue of the client’s Dynamic Invocation Interface (DII).

Chapter 9 - Dynamic Management of Any Values details the interface for the
Dynamic Any type. Thisinterface allows statically-typed programming languages such
as C and Java to create or receive values of type Any without compile-time knowledge
that the typer contained in the Any.

Chapter 10 - Interface Repository explains the component of the ORB that manages
and provides access to a collection of object definitions.

Chapter 11 - Portable Object Adapter defines a group of IDL interfaces than an
implementation uses to access ORB functions.

I nter oper ability

Chapter 12 - Interoperability Overview describes the interoperability architecture
and introduces the subjects pertaining to interoperability: inter-ORB bridges; general
and Internet inter-ORB protocols (GIOP and I10OP); and environment-specific, inter-
ORB protocols (ESIOPs).

Chapter 13 - ORB Interoperability Architecture introduces the framework of ORB
interoperability, including information about domains; approaches to inter-ORB
bridges; what it means to be compliant with ORB interoperability; and ORB Services
and Requests.

CORBA, v3.0: Sructure of ThisManual Y,

Vi

Chapter 14 - Building Inter-ORB Bridges explains how to build bridges for an
implementation of interoperating ORBSs.

Chapter 15 - General Inter-ORB Protocol describes the general inter-ORB protocol
(GIOP) and includes information about the GIOP's goals, syntax, format, transport,
and object location. This chapter also includes information about the Internet inter-
ORB protocol (I110P).

Chapter 16 - DCE ESIOP - Environment-Specific Inter-ORB Protocol (ESIOP)
details a protocol for the OSF DCE environment. The protocol is called the DCE
Environment Inter-ORB Protocol (DCE ESIOP).

Interwor king

Chapter 17 - Interworking Architecture describes the architecture for
communication between two object management systems: Microsoft's COM (including
OLE) and the OMG’s CORBA.

Chapter 18 - Mapping: COM and CORBA explains the data type and interface
mapping between COM and CORBA. The mappings are described in the context of
both Win16 and Win32 COM.

Chapter 19 - Mapping: OLE Automation and CORBA details the two-way mapping
between OLE Automation (in ODL) and CORBA (in OMG IDL).

Note: Chapter 19 also includes an appendix describing solutions that vendors might
implement to support existing and older OLE Automation controllers and an appendix
that provides an example of how the Naming Service could be mapped to an OLE
Automation interface according to the Interworking specification.

Chapter 20 - Interoperability with non-CORBA Systems describes the effective
access to CORBA servers through DCOM and the reverse.

Chapter 21 - Portable Interceptors defines ORB operations that allow services such
as security to be inserted in the invocation path.

Quality of Service (QoS)

Chapter 22 - CORBA M essaging includes three general topics: Quality of Service,
Asynchronous Method Invocations (to include Time-Independent or “Persistent”
Requests), and the specification of interoperable Routing interfaces to support the
transport of requests asynchronously from the handling of their replies.

Chapter 23 - Fault Tolerant CORBA describes Fault Tolerant systems, basic fault
tolerance mechanisms, replication management, and logging and recovery
management.

Chapter 24 - Common Secure Interoperability defines the CORBA Security
Attribute Service (SAS) protocol and its use within the CSIv2 architecture to address
the requirements of CORBA security for interoperable authentication, delegation, and
privileges.

Common Object Request Broker Architecture (CORBA), v3.0 July 2002

Typographical Conventions

Acknowledgements

July 2002

The type styles shown below are used in this document to distinguish programming
statements from ordinary English. However, these conventions are not used in tables or
section headings where no distinction is necessary.

Helvetica bold - OMG Interface Definition Language (OMG IDL) and syntax
elements.

Couri er bol d - Programming language elements.
Helvetica - Exceptions

Terms that appear in italics are defined in the glossary. Italic text also represents the
name of a document, specification, or other publication.

The following companies submitted and/or supported parts of the specifications that
were approved by the Object Management Group to become CORBA:

e Adiron, LLC

* Alcatel

* BEA Systems, Inc.

* BNR Europe Ltd.

 Borland International, Inc.

» Compag Computer Corporation
 Concept Five Technologies
 Cooperative Research Centre for Distributed Systems Technology (DSTC)
» Defense Information Systems Agency
« Digital Equipment Corporation

* Ericsson

 Eternal Systems, Inc.

 Expersoft Corporation

 France Telecom

e FUJTSU LIMITED

» Genesis Development Corporation

» Gensym Corporation

» Hewlett-Packard Company

* HighComm

« Highlander Communications, L.C.

e Humboldt-University

» HyperDesk Corporation

* ICL, Plc.

* Inprise Corporation

« International Business Machines Corporation
* International Computers, Inc.

CORBA, v3.0: Typographical Conventions Vii

References

viii

IONA Technologies, Pic.

Lockheed Martin Federal Systems, Inc.
Lucent Technologies, Inc.

Micro Focus Limited

MITRE Corporation

Motorola, Inc.

NCR Corporation

NEC Corporation

Netscape Communications Corporation
Nortel Networks

Northern Telecom Corporation

Novell, Inc.

Object Design, Inc.

Objective Interface Systems, Inc.
Object-Oriented Concepts, Inc.

OC Systems, Inc.

Open Group - Open Software Foundation
Oracle Corporation

PeerLogic, Inc.

Persistence Software, Inc.

Promia, Inc.

Siemens Nixdorf Informationssysteme AG
SPAWAR Systems Center

Sun Microsystems, Inc.

SunSoft, Inc.

Sybase, Inc.

Telefonica Investigacion y Desarrollo S.A. Unipersonal
TIBCO, Inc.

Tivoli Systems, Inc.

Tri-Pacific Software, Inc.

University of California, Santa Barbara
University of Rhode Island

Visual Edge Software, Ltd.
Washington University

In addition to the preceding contributors, the OMG would like to acknowledge Mark
Linton at Silicon Graphics and Doug L ea at the State University of New York at
Oswego for their work on the C++ mapping.

IDL Type Extensions RFP, March 1995. OMG TC Document 95-1-35.

Common Object Request Broker Architecture (CORBA), v3.0

July 2002

July 2002

The Common Object Request Broker: Architecture and Specification, Revision 2.2,
February 1998.

CORBAservices: Common Object Services Specification, Revised Edition, OMG TC
Document 95-3-31.

COBOL Language Mapping RFP, December 1995. OMG TC document 95-12-10.
COBOL 85 ANSI X3.23-1985 / SO 1989-1985.
|IEEE Standard for Binary Floating-Point Arithmetic, ANIS/IEEE Std 754-1985.

XDR: External Data Representation Standard, RFC1832, R. Srinivasan, Sun Micro-
systems, August 1995.

OSF Character and Code Set Registry, OSF DCE SIG RFC 40.1 (Public Version), S.
(Martin) O’ Donnell, June 1994.

RPC Runtime Support For 118N Characters — Functional Specification, OSF DCE
SIG RFC 41.2, M. Romagna, R. Mackey, November 1994.

X/Open System Interface Definitions, Issue 4 Version 2, 1995.

CORBA, v3.0: References ix

Common Object Request Broker Architecture (CORBA), v3.0 July 2002

1.1 Overview

July 2002

TheObject Model 1

This chapter describes the concrete object model that underlies the CORBA
architecture. The model is derived from the abstract Core Object Model defined by the
Object Management Group in the Object Management Architecture Guide.
(Information about the OMA Guide and other books in the CORBA documentation set
is provided in this document’s preface.)

Contents

This chapter contains the following sections.

Section Title Page
“Overview” 1-1
“Object Semantics’ 1-2
“Object Implementation” 1-9

The object model provides an organized presentation of object concepts and
terminology. It defines a partial model for computation that embodies the key
characteristics of objects as realized by the submitted technologies. The OMG object
model is abstract in that it is not directly realized by any particular technology. The
model described here is a concrete object model. A concrete object model may differ
from the abstract object model in several ways:

« It may elaborate the abstract object model by making it more specific, for example,
by defining the form of request parameters or the language used to specify types.

e It may populate the model by introducing specific instances of entities defined by
the model, for example, specific objects, specific operations, or specific types.

Common Object Request Broker Architecture (CORBA), v3.0 1-1

« It may restrict the model by eliminating entities or placing additional restrictions on
their use.

An object system is a collection of objects that isolates the requestors of services
(clients) from the providers of services by a well-defined encapsulating interface. In
particular, clients are isolated from the implementations of services as data
representations and executable code.

The object model first describes concepts that are meaningful to clients, including such
concepts as object creation and identity, requests and operations, types and signatures.
It then describes concepts related to object implementations, including such concepts
as methods, execution engines, and activation.

The object model is most specific and prescriptive in defining concepts meaningful to
clients. The discussion of object implementation is more suggestive, with the intent of
allowing maximal freedom for different object technologies to provide different ways
of implementing objects.

There are some other characteristics of object systems that are outside the scope of the
object model. Some of these concepts are aspects of application architecture, some are
associated with specific domains to which object technology is applied. Such concepts
are more properly dealt with in an architectural reference model. Examples of excluded
concepts are compound objects, links, copying of objects, change management, and
transactions. Also outside the scope of the object model are the details of control
structure: the object model does not say whether clients and/or servers are single-
threaded or multi-threaded, and does not specify how event loops are programmed nor
how threads are created, destroyed, or synchronized.

This object model is an example of a classical object model, where a client sends a
message to an object. Conceptually, the object interprets the message to decide what
service to perform. In the classical model, a message identifies an object and zero or
more actual parameters. Asin most classical object models, a distinguished first
parameter is required, which identifies the operation to be performed; the interpretation
of the message by the object involves selecting a method based on the specified
operation. Operationally, of course, method selection could be performed either by the
object or the ORB.

1.2 Object Semantics

An object system provides services to clients. A client of a service is any entity
capable of requesting the service.

This section defines the concepts associated with object semantics, that is, the concepts
relevant to clients.

1.2.1 Objects

An object system includes entities known as objects. An object is an identifiable,
encapsulated entity that provides one or more services that can be requested by a
client.

Common Object Request Broker Architecture (CORBA), v3.0 July 2002

July 2002

1.2.2 Requests

Clients request services by issuing requests.

The term request is broadly used to refer to the entire sequence of causally related
events that transpires between a client initiating it and the last event causally associated
with that initiation. For example:

« the client receives the final response associated with that request from the server,
« the server carries out the associated operation in case of a oneway request, or

« the sequence of events associated with the request terminates in a failure of some
sort. The initiation of a Request is an event.

The information associated with arequest consists of an operation, atarget object, zero
or more (actual) parameters, and an optional request context.

A reguest form is a description or pattern that can be evaluated or performed multiple
times to cause the issuing of requests. As described in the OMG IDL Syntax and
Semantics chapter, request forms are defined by particular language bindings. An
alternative request form consists of calls to the dynamic invocation interface to create
an invocation structure, add arguments to the invocation structure, and to issue the
invocation (refer to the Dynamic Invocation Interface chapter for descriptions of these
request forms).

A value is anything that may be a legitimate (actual) parameter in a request. More
particularly, a value is an instance of an OMG IDL data type. There are non-object
values, as well as values that reference objects.

An object reference is a value that reliably denotes a particular object. Specificaly, an
object reference will identify the same object each time the reference is used in a
request (subject to certain pragmatic limits of space and time). An object may be
denoted by multiple, distinct object references.

A request may have parameters that are used to pass data to the target object; it may
also have a request context that provides additional information about the request. A
request context is a mapping from strings to strings.

A request causes a service to be performed on behalf of the client. One possible
outcome of performing a service isreturning to the client the results, if any, defined for
the request.

If an abnormal condition occurs during the performance of a request, an exception is
returned. The exception may carry additional return parameters particular to that
exception.

The request parameters are identified by position. A parameter may be an input
parameter, an output parameter, or an input-output parameter. A request may also
return a single return result value, as well as the results stored into the output and
input-output parameters.

The following semantics hold for all requests:

¢ Any aliasing of parameter values is neither guaranteed removed nor guaranteed to
be preserved.

CORBA, v3.0: Object Semantics 1-3

1-4

e The order in which aliased output parameters are written is not guaranteed.

e The return result and the values stored into the output and input-output parameters
are undefined if an exception is returned.

For descriptions of the values and exceptions that are permitted, see Section 1.2.4,
“Types,” on page 1-4 and Section 1.2.8.3, “Exceptions,” on page 1-8.

1.2.3 Object Creation and Destruction

1.2.4 Types

1241

Objects can be created and destroyed. From a client’s point of view, there is no special
mechanism for creating or destroying an object. Objects are created and destroyed as
an outcome of issuing requests. The outcome of object creation is revealed to the client
in the form of an object reference that denotes the new object.

A type is an identifiable entity with an associated predicate (a single-argument
mathematical function with a boolean result) defined over entities. An entity satisfies a
type if the predicate is true for that entity. An entity that satisfies atypeis called a
member of the type.

Types are used in signatures to restrict a possible parameter or to characterize a
possible result.

The extension of a type is the set of entities that satisfy the type at any particular time.

An object type is a type whose members are abject references. In other words, an
object type is satisfied only by object references.

Constraints on the data types in this model are shown in this section.

Basic types
e 16-hit, 32-bit, and 64-bit signed and unsigned 2's complement integers.

e Single-precision (32-bit), double-precision (64-bit), and double-extended (a
mantissa of at least 64 bits, a sign bit and an exponent of at least 15 bits) |IEEE
floating point numbers.

¢ Fixed-point decimal numbers of up to 31 significant digits.

e Characters, as defined in SO Latin-1 (8859.1) and other single- or multi-byte
character sets.

« A boolean type taking the values TRUE and FALSE.

¢ An 8-hit opaque detectable, guaranteed to not undergo any conversion during
transfer between systems.

« Enumerated types consisting of ordered sequences of identifiers.

Common Object Request Broker Architecture (CORBA), v3.0 July 2002

1

July 2002

1242

A string type, which consists of a variable-length array of characters; the length of
the string is a non-negative integer, and is available at run-time. The length may
have a maximum bound defined.

A wide character string type, which consist of a variable-length array of (fixed
width) wide characters; the length of the wide string is a non-negative integer, and
is available at run-time. The length may have a maximum bound defined.

A container type “any,” which can represent any possible basic or constructed type.
Wide characters that may represent characters from any wide character set.

Wide character strings, which consist of a length, available at runtime, and a
variable-length array of (fixed width) wide characters.

Constructed types

A record type (called struct), which consists of an ordered set of (name,value) pairs.

A discriminated union type, which consists of a discriminator (whose exact value is
always available) followed by an instance of atype appropriate to the discriminator
value,

A sequence type, which consists of a variable-length array of a single type; the
length of the sequence is available at run-time.

An array type, which consists of a fixed-shape multidimensional array of a single
type.

An interface type, which specifies the set of operations that an instance of that type
must support.

A value type, which specifies state as well as a set of operations that an instance of
that type must support.

Entitiesin arequest are restricted to values that satisfy these type constraints. The legal
entities are shown in . No particular representation for entities is defined.

CORBA, v3.0: Object Semantics 1-5

Short
Object Reference Long
LongLong
UShort
Ulong
UlongLong
Float
Double
LongDouble
Fixed

Char
Wchar
String
Wstring
Boolean
Octet
Enum

Any

— Value Type

—— Abstract Interface

Entity Basic Value

Struct
Sequence
Union
Array

Constructed Value

Figure1-1 Legal Values

1.2.5 Interfaces

An interface is a description of a set of possible operations that a client may request of
an object, through that interface. It provides a syntactic description of how a service
provided by an object supporting this interface, is accessed via this set of operations.
An object satisfies an interface if it provides its service through the operations of the
interface according to the specification of the operations (see Section 1.2.8,
“Operations,” on page 1-7).

The interface type for a given interface is an object type, such that an object reference
will satisfy the type, if and only if the referent object also satisfies the interface.

Interfaces are specified in OMG IDL. Interface inheritance provides the composition
mechanism for permitting an object to support multiple interfaces. The principal
interface is simply the most-specific interface that the object supports, and consists of
all operations in the transitive closure of the interface inheritance graph.

Interfaces satisfy the Liskov substitution principle. If interface A is derived from
interface B, then a reference to an object that supports interface A can be used where
the formal type of a parameter is declared to be B.

1.2.6 Value Types

A value type is an entity, which shares many of the characteristics of interfaces and
structs. It is a description of both a set of operations that a client may request and of
state that is accessible to a client. Instances of a value type are always local concrete
implementations in some programming language.

Common Object Request Broker Architecture (CORBA), v3.0 July 2002

1

July 2002

A value type, in addition to the operations and state defined for itself, may also inherit
from other value types, and through multiple inheritance support other interfaces.

Value types are specified in OMG IDL.

An abstract value types describes a value type that is a “pure” bundle of operations
with no state.

1.2.7 Abstract Interfaces

An abstract interface is an entity, which may at runtime represent either a regular
interface (see Section 1.2.5, “Interfaces,” on page 1-6) or a value type (see

Section 1.2.6, “Value Types,” on page 1-6). Like an abstract value type, it is a pure
bundle of operations with no state. Unlike an abstract value type, it does not imply
pass-by-value semantics, and unlike a regular interface type, it does not imply pass-by-
reference semantics. Instead, the entity's runtime type determines which of these
semantics are used.

1.2.8 Operations

An operation is an identifiable entity that denotes the indivisible primitive of service
provision that can be requested. The act of requesting an operation is referred to as
invoking the operation. An operation is identified by an operation identifier.

An operation has a signature that describes the |legitimate values of request parameters
and returned results. In particular, a signature consists of:

« A specification of the parameters required in requests for that operation.
« A specification of the result of the operation.

« An identification of the user exceptions that may be raised by an invocation of the
operation.

« A specification of additional contextual information that may affect the invocation.

* Anindication of the execution semantics the client should expect from an
invocation of the operation.

Operations are (potentially) generic, meaning that a single operation can be uniformly
invoked on objects with different implementations, possibly resulting in observably
different behavior. Genericity is achieved in thismodel via interface inheritancein IDL
and the total decoupling of implementation from interface specification.

The general form for an operation signature is:

[oneway] <op_type_spec> <identifier> (paraml, ..., paramL)
[raises(exceptl,...,.exceptN)] [context(namel, ..., nameM)]

where:

e The optional oneway keyword indicates that best-effort semantics are expected of
requests for this operation; the default semantics are exactly-once if the operation
successfully returns results or at-most-once if an exception is returned.

CORBA, v3.0: Object Semantics 1-7

1-8

1281

1.2.8.2

1.2.8.3

1.2.84

1.2.85

e The <op_type_spec> isthe type of the return result.
« The <identifier> provides a name for the operation in the interface.

e The operation parameters needed for the operation; they are flagged with the
modifiersin, out, or inout to indicate the direction in which the information flows
(with respect to the object performing the request).

e The optional raises expression indicates which user-defined exceptions can be
signaled to terminate an invocation of this operation; if such an expression is not
provided, no user-defined exceptions will be signaled.

e The optional context expression indicates which request context information will
be available to the object implementation; no other contextual information is
required to be transported with the request.

Parameters

A parameter is characterized by its mode and its type. The mode indicates whether the
value should be passed from client to server (in), from server to client (out), or both
(inout). The parameter’s type constrains the possible value, which may be passed in
the directions dictated by the mode.

Return Result

The return result is a distinguished out parameter.

Exceptions

An exception is an indication that an operation request was not performed successfully.
An exception may be accompanied by additional, exception-specific information.

The additional, exception-specific information is a specialized form of record. As a
record, it may consist of any of the types described in Section 1.2.4, “Types,” on

page 1-4.

All signatures implicitly include the system exceptions; the standard system exceptions
are described in Section 4.12.2, “ System Exceptions,” on page 4-64.

Contexts

A request context provides additional, operation-specific information that may affect
the performance of a request.

Execution Semantics

Two styles of execution semantics are defined by the object model:

¢ At-most-once: if an operation request returns successfully, it was performed exactly
once; if it returns an exception indication, it was performed at-most-once.

Common Object Request Broker Architecture (CORBA), v3.0 July 2002

1

« Best-effort: a best-effort operation is a request-only operation (i.e., it cannot return
any results and the requester never synchronizes with the completion, if any, of the
request).

The execution semantics to be expected is associated with an operation. This prevents
a client and object implementation from assuming different execution semantics.

Note that a client is able to invoke an at-most-once operation in a synchronous or
deferred-synchronous manner.

1.2.9 Attributes

Aninterface may have attributes. An attribute islogically equivalent to declaring a pair
of accessor functions: one to retrieve the value of the attribute and one to set the value
of the attribute.

An attribute may be read-only, in which case only the retrieval accessor function is
defined.

1.3 Object Implementation

July 2002

This section defines the concepts associated with object implementation (i.e., the
concepts relevant to realizing the behavior of objects in a computational system).

The implementation of an object system carries out the computational activities needed
to effect the behavior of requested services. These activities may include computing
the results of the request and updating the system state. In the process, additional
reguests may be issued.

The implementation model consists of two parts: the execution model and the
construction model. The execution model describes how services are performed. The
construction model describes how services are defined.

1.3.1 The Execution Model: Performing Services

A requested service is performed in a computational system by executing code that
operates upon some data. The data represents a component of the state of the
computational system. The code performs the requested service, which may change the
state of the system.

Code that is executed to perform a service is called a method. A method is an
immutable description of a computation that can be interpreted by an execution engine.
A method has an immutable attribute called a method format that defines the set of
execution engines that can interpret the method. An execution engine is an abstract
machine (not a program) that can interpret methods of certain formats, causing the
described computations to be performed. An execution engine defines a dynamic
context for the execution of a method. The execution of a method is called a method
activation.

CORBA, v3.0: Object Implementation 1-9

1-10

When a client issues a request, a method of the target object is called. The input
parameters passed by the requestor are passed to the method and the output and input-

output parameters and return result value (or exception and its parameters) are passed
back to the requestor.

Performing a regquested service causes a method to execute that may operate upon an
object’s persistent state. If the persistent form of the method or state is not accessible
to the execution engine, it may be necessary to first copy the method or state into an
execution context. This process is called activation; the reverse process is called
deactivation.

1.3.2 The Construction Model

A computational object system must provide mechanisms for realizing behavior of
reguests. These mechanisms include definitions of object state, definitions of methods,
and definitions of how the object infrastructure is to select the methods to execute and
to select the relevant portions of object state to be made accessible to the methods.
Mechanisms must also be provided to describe the concrete actions associated with
object creation, such as association of the new object with appropriate methods.

An object implementation—or implementation, for short—is a definition that provides
the information needed to create an object and to allow the object to participate in
providing an appropriate set of services. An implementation typically includes, among
other things, definitions of the methods that operate upon the state of an object. It also
typically includes information about the intended types of the object.

Common Object Request Broker Architecture (CORBA), v3.0 July 2002

CORBAOQverview 2

The Common Object Request Broker Architecture (CORBA) is structured to allow
integration of awide variety of object systems. The motivation for some of the features
may not be apparent at first, but as we discuss the range of implementations, policies,
optimizations, and usages we expect to encompass, the value of the flexibility becomes
more clear.

Contents

This chapter contains the following sections.

Section Title Page
“Structure of an Object Request Broker” 2-1
“Example ORBS’ 2-11
“Structure of a Client” 2-12
“Structure of an Object Implementation” 2-13
“Structure of an Object Adapter” 2-15
“CORBA Required Object Adapter” 2-17
“The Integration of Foreign Object Systems’ 2-17

2.1 Sructureof an Object Request Broker

July 2002

Figure 2-1 shows a request being sent by a client to an object implementation. The
Client is the entity that wishes to perform an operation on the object and the Object
Implementation is the code and data that actually implements the object.

Common Object Request Broker Architecture (CORBA), v3.0 2-1

2-2

) CObject Implementation

equest‘

ORB

Figure2-1 A Request Being Sent Through the Object Request Broker

The ORB is responsible for al of the mechanisms required to find the object
implementation for the request, to prepare the object implementation to receive the
request, and to communicate the data making up the request. The interface the client
sees is completely independent of where the object is located, what programming
language it is implemented in, or any other aspect that is not reflected in the object’s
interface.

Figure 2-2 on page 2-3 shows the structure of an individual Object Request Broker
(ORB). The interfaces to the ORB are shown by striped boxes, and the arrows indicate
whether the ORB is called or performs an up-call across the interface.

Common Object Request Broker Architecture (CORBA), v3.0 July 2002

July 2002

Client Object Implementation

-l

Dynamic ORB Static IDL| | Dynamic Object
Invocation Stubs Interface Skeleton | | Skeleton Adapter
ORB Core

AMMMINNY
Vi
I

H

Interface identical for all ORB implementations

f Up-call interface

There may be multiple object adapters
There are stubs and a skeleton for each object type * Normal call interface
ORB-dependent interface

Figure2-2 The Structure of Object Request Interfaces

To make a request, the Client can use the Dynamic Invocation interface (the same
interface independent of the target object’s interface) or an OMG IDL stub (the specific
stub depending on the interface of the target object). The Client can also directly
interact with the ORB for some functions.

The Object Implementation receives a request as an up-call either through the OMG
IDL generated skeleton or through a dynamic skeleton. The Object |mplementation
may call the Object Adapter and the ORB while processing a request or at other times.

Definitions of the interfaces to objects can be defined in two ways. Interfaces can be
defined statically in an interface definition language, called the OMG Interface
Definition Language (OMG IDL). This language defines the types of objects according
to the operations that may be performed on them and the parameters to those
operations. Alternatively, or in addition, interfaces can be added to an Interface
Repository service; this service represents the components of an interface as objects,
permitting run-time access to these components. In any ORB implementation, the
Interface Definition Language (which may be extended beyond its definition in this
document) and the Interface Repository have equivalent expressive power.

CORBA, v3.0: Sructure of an Object Request Broker 2-3

2-4

The client performs a request by having access to an Object Reference for an object
and knowing the type of the object and the desired operation to be performed. The
client initiates the request by calling stub routines that are specific to the object or by
constructing the request dynamically (see Figure 2-3).

Dynami?
Invocatio

ORB Core

NYY Interface identical for all ORB implementations

I There are stubs and a skeleton for each object type
[] ORB-dependent interface

Figure2-3 A Client Using the Stub or Dynamic Invocation Interface

The dynamic and stub interface for invoking a request satisfy the same request
semantics, and the receiver of the message cannot tell how the request was invoked.

The ORB |ocates the appropriate implementation code, transmits parameters, and
transfers control to the Object Implementation through an IDL skeleton or a dynamic
skeleton (see Figure 2-4 on page 2-5). Skeletons are specific to the interface and the
object adapter. In performing the request, the object implementation may obtain some
services from the ORB through the Object Adapter. When the request is complete,
control and output values are returned to the client.

Common Object Request Broker Architecture (CORBA), v3.0 July 2002

Object Implementation

Dynamic Object
Skeleto Adapter

ORB Static IDL
Interface Skeleton

ORB Core

Interface identical for all ORB implementations f Up-call interface
There may be multiple object adapters

I There are stubs and a skeleton for each object type ‘ Normal call interface
[1 ORB-dependent interface

Figure2-4 An Object Implementation Receiving a Request

The Object Implementation may choose which Object Adapter to use. This decision is
based on what kind of services the Object Implementation requires.

Figure 2-5 on page 2-6 shows how interface and implementation information is made
available to clients and object implementations. The interface is defined in OMG IDL
and/or in the Interface Repository; the definition is used to generate the client Stubs
and the object implementation Skeletons.

July 2002 CORBA, v3.0: Sructure of an Object Request Broker 2-5

2-6

IDL

Definitions Installation

Implementation

Interface
Repository

Cmplementatio?
Repository
Stubs Skeletons :

Client) (Object Implementation

Figure 2-5 Interface and Implementation Repositories

The object implementation information is provided at installation time and is stored in
the Implementation Repository for use during request delivery.

2.1.1 Object Request Broker

In the architecture, the ORB is not required to be implemented as a single component,
but rather it is defined by its interfaces. Any ORB implementation that provides the
appropriate interface is acceptable. The interface is organized into three categories:

1. Operations that are the same for all ORB implementations.
2. Operations that are specific to particular types of objects.
3. Operations that are specific to particular styles of object implementations.

Different ORBs may make quite different implementation choices, and, together with
the IDL compilers, repositories, and various Object Adapters, provide a set of services
to clients and implementations of objects that have different properties and qualities.

There may be multiple ORB implementations (also described as multiple ORBS),
which have different representations for object references and different means of
performing invocations. It may be possible for a client to simultaneously have accessto

Common Object Request Broker Architecture (CORBA), v3.0 July 2002

2

two object references managed by different ORB implementations. When two ORBs
are intended to work together, those ORBs must be able to distinguish their object
references. It is not the responsibility of the client to do so.

The ORB Coreisthat part of the ORB that provides the basic representation of objects
and communication of requests. CORBA is designed to support different object
mechanisms, and it does so by structuring the ORB with components above the ORB
Core, which provide interfaces that can mask the differences between ORB Cores.

2.1.2 Clients

A client of an object has access to an object reference for the object, and invokes
operations on the object. A client knows only the logical structure of the object
according to its interface and experiences the behavior of the object through
invocations. Although we will generally consider a client to be a program or process
initiating requests on an object, it is important to recognize that something is a client
relative to a particular object. For example, the implementation of one object may be a
client of other objects.

Clients generally see objects and ORB interfaces through the perspective of alanguage
mapping, bringing the ORB right up to the programmer’s level. Clients are maximally
portable and should be able to work without source changes on any ORB that supports
the desired language mapping with any object instance that implements the desired
interface. Clients have no knowledge of the implementation of the object, which object
adapter is used by the implementation, or which ORB is used to access it.

2.1.3 Object Implementations

An object implementation provides the semantics of the object, usually by defining
data for the object instance and code for the object’s methods. Often the
implementation will use other objects or additional software to implement the behavior
of the object. In some cases, the primary function of the object is to have side-effects
on other things that are not objects.

A variety of object implementations can be supported, including separate servers,
libraries, a program per method, an encapsulated application, an object-oriented
database, etc. Through the use of additional object adapters, it is possible to support
virtually any style of object implementation.

Generally, object implementations do not depend on the ORB or how the client invokes
the object. Object implementations may select interfaces to ORB-dependent services
by the choice of Object Adapter.

July 2002 CORBA, v3.0: Sructure of an Object Request Broker 2-7

2.1.4 Object References

An Object Reference is the information needed to specify an object within an ORB.
Both clients and object implementations have an opaque notion of object references
according to the language mapping, and thus are insulated from the actual
representation of them. Two ORB implementations may differ in their choice of Object
Reference representations.

The representation of an object reference handed to a client is only valid for the
lifetime of that client.

All ORBs must provide the same language mapping to an object reference (usually
referred to as an Object) for a particular programming language. This permits a
program written in a particular language to access object references independent of the
particular ORB. The language mapping may also provide additional ways to access
object references in a typed way for the convenience of the programmer.

There is a distinguished object reference, guaranteed to be different from all object
references, that denotes no aobject.

2.1.5 OMG Interface Definition Language

The OMG Interface Definition Language (OMG IDL) defines the types of objects by
specifying their interfaces. An interface consists of a set of named operations and the
parameters to those operations. Note that although IDL provides the conceptual
framework for describing the objects manipulated by the ORB, it is not necessary for
there to be IDL source code available for the ORB to work. As long as the equivalent
information is available in the form of stub routines or a run-time interface repository,
a particular ORB may be able to function correctly.

IDL is the means by which a particular object implementation tells its potential clients
what operations are available and how they should be invoked. From the IDL
definitions, it is possible to map CORBA objects into particular programming
languages or object systems.

2.1.6 Mapping of OMG IDL to Programming Languages

Different object-oriented or non-object-oriented programming languages may prefer to
access CORBA objects in different ways. For object-oriented languages, it may be
desirable to see CORBA objects as programming language objects. Even for non-
object-oriented languages, it is a good idea to hide the exact ORB representation of the
object reference, method names, etc. A particular mapping of OMG IDL to a
programming language should be the same for all ORB implementations. Language
mapping includes definition of the language-specific data types and procedure
interfaces to access objects through the ORB. It includes the structure of the client stub
interface (not required for object-oriented languages), the dynamic invocation
interface, the implementation skeleton, the object adapters, and the direct ORB
interface.

Common Object Request Broker Architecture (CORBA), v3.0 July 2002

2

A language mapping also defines the interaction between object invocations and the
threads of control in the client or implementation. The most common mappings
provide synchronous calls, in that the routine returns when the object operation
completes. Additional mappings may be provided to allow a call to be initiated and
control returned to the program. In such cases, additional language-specific routines

must be provided to synchronize the program’s threads of control with the object
invocation.

2.1.7 Client Subs

Generally, the client stubs will present access to the OMG IDL-defined operations on
an object in away that is easy for programmers to predict once they are familiar with
OMG IDL and the language mapping for the particular programming language. The
stubs make calls on the rest of the ORB using interfaces that are private to, and
presumably optimized for, the particular ORB Core. If more than one ORB is
available, there may be different stubs corresponding to the different ORBSs. In this
case, it is necessary for the ORB and language mapping to cooperate to associate the
correct stubs with the particular object reference.

2.1.8 Dynamic Invocation Interface

An interface is also available that allows the dynamic construction of object
invocations, that is, rather than calling a stub routine that is specific to a particular
operation on a particular object, a client may specify the object to be invoked, the
operation to be performed, and the set of parameters for the operation through a call or
sequence of calls. The client code must supply information about the operation to be
performed and the types of the parameters being passed (perhaps obtaining it from an
Interface Repository or other run-time source). The nature of the dynamic invocation
interface may vary substantially from one programming language mapping to another.

2.1.9 Implementation Skeleton

For a particular language mapping, and possibly depending on the object adapter, there
will be an interface to the methods that implement each type of object. The interface
will generally be an up-call interface, in that the object implementation writes routines
that conform to the interface and the ORB calls them through the skeleton.

The existence of a skeleton does not imply the existence of a corresponding client stub
(clients can also make requests via the dynamic invocation interface).

It is possible to write an object adapter that does not use skeletons to invoke
implementation methods. For example, it may be possible to create implementations
dynamically for languages such as Smalltalk.

July 2002 CORBA, v3.0: Sructure of an Object Request Broker 2-9

2.1.10 Dynamic Skeleton Interface

Aninterface is available, which allows dynamic handling of object invocations. That is,
rather than being accessed through a skeleton that is specific to a particular operation,
an object’s implementation is reached through an interface that provides access to the
operation name and parameters in a manner analogous to the client side’s Dynamic
Invocation Interface. Purely static knowledge of those parameters may be used, or
dynamic knowledge (perhaps determined through an Interface Repository) may be also
used, to determine the parameters.

The implementation code must provide descriptions of all the operation parameters to
the ORB, and the ORB provides the values of any input parameters for use in
performing the operation. The implementation code provides the values of any output
parameters, or an exception, to the ORB after performing the operation. The nature of
the dynamic skeleton interface may vary substantially from one programming language
mapping or object adapter to another, but will typically be an up-call interface.

Dynamic skeletons may be invoked both through client stubs and through the dynamic
invocation interface; either style of client request construction interface provides
identical results.

2.1.11 Object Adapters

An object adapter is the primary way that an object implementation accesses services
provided by the ORB. There are expected to be a few object adapters that will be
widely available, with interfaces that are appropriate for specific kinds of objects.
Services provided by the ORB through an Object Adapter often include: generation
and interpretation of object references, method invocation, security of interactions,
object and implementation activation and deactivation, mapping object references to
implementations, and registration of implementations.

The wide range of object granularities, lifetimes, policies, implementation styles, and
other properties make it difficult for the ORB Core to provide a single interface that is
convenient and efficient for all objects. Thus, through Object Adapters, it is possible
for the ORB to target particular groups of object implementations that have similar
reguirements with interfaces tailored to them.

2.1.12 ORB Interface

The ORB Interface is the interface that goes directly to the ORB, which is the same for
all ORBs and does not depend on the object’s interface or object adapter. Because most
of the functionality of the ORB is provided through the object adapter, stubs, skeleton,
or dynamic invocation, there are only a few operations that are common across all
objects. These operations are useful to both clients and implementations of objects.

2-10 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

2.1.13 Interface Repository

The Interface Repository is a service that provides persistent objects that represent the
IDL information in aform available at run-time. The Interface Repository information
may be used by the ORB to perform requests. Moreover, using the information in the
Interface Repository, it is possible for a program to encounter an object whose
interface was not known when the program was compiled, yet, be able to determine
what operations are valid on the object and make an invocation on it.

In addition to its role in the functioning of the ORB, the Interface Repository is a
common place to store additional information associated with interfaces to ORB
objects. For example, debugging information, libraries of stubs or skeletons, routines
that can format or browse particular kinds of objects might be associated with the
Interface Repository.

2.1.14 Implementation Repository

The Implementation Repository contains information that allows the ORB to locate
and activate implementations of objects. Although most of the information in the
Implementation Repository is specific to an ORB or operating environment, the
Implementation Repository is the conventional place for recording such information.
Ordinarily, installation of implementations and control of policies related to the
activation and execution of object implementations is done through operations on the
Implementation Repository.

In addition to its role in the functioning of the ORB, the Implementation Repository is
a common place to store additional information associated with implementations of
ORB objects. For example, debugging information, administrative control, resource
allocation, security, etc., might be associated with the Implementation Repository.

2.2 Example ORBs

There are a wide variety of ORB implementations possible within the Common ORB
Architecture. This section will illustrate some of the different options. Note that a
particular ORB might support multiple options and protocols for communication.

2.2.1 Client- and Implementation-resident ORB

If there is a suitable communication mechanism present, an ORB can be implemented
in routines resident in the clients and implementations. The stubs in the client either
use a location-transparent |PC mechanism or directly access a location service to
establish communication with the implementations. Code linked with the
implementation is responsible for setting up appropriate databases for use by clients.

July 2002 CORBA, v3.0: Example ORBs 2-11

2.2.2 Server-based ORB

To centralize the management of the ORB, all clients and implementations can
communicate with one or more servers whose job it is to route requests from clients to
implementations. The ORB could be a normal program as far as the underlying
operating system is concerned, and normal IPC could be used to communicate with the
ORB.

2.2.3 Systembased ORB

To enhance security, robustness, and performance, the ORB could be provided as a
basic service of the underlying operating system. Object references could be made
unforgeable, reducing the expense of authentication on each request. Because the
operating system could know the location and structure of clients and implementations,
it would be possible for a variety of optimizations to be implemented, for example,
avoiding marshalling when both are on the same machine.

2.2.4 Library-based ORB

For objects that are light-weight and whose implementations can be shared, the
implementation might actually be in alibrary. In this case, the stubs could be the actual
methods. This assumes that it is possible for a client program to get access to the data
for the objects and that the implementation trusts the client not to damage the data.

2.3 Sructureof aClient

2-12

A client of an object has an object reference that refers to that object. An object
reference is a token that may be invoked or passed as a parameter to an invocation on
adifferent object. Invocation of an object involves specifying the object to be invoked,
the operation to be performed, and parameters to be given to the operation or returned
from it.

The ORB manages the control transfer and data transfer to the object implementation
and back to the client. In the event that the ORB cannot complete the invocation, an
exception response is provided. Ordinarily, a client calls a routine in its program that
performs the invocation and returns when the operation is complete.

Clients access object-type-specific stubs as library routines in their program (see
Figure 2-6 on page 2-13). The client program thus sees routines callable in the normal
way in its programming language. All implementations will provide a language-
specific data type to use to refer to objects, often an opaque pointer. The client then
passes that object reference to the stub routines to initiate an invocation. The stubs

Common Object Request Broker Architecture (CORBA), v3.0 July 2002

2

have access to the object reference representation and interact with the ORB to perform
the invocation. (See the C Language Mapping specification for additional, general
information on language mapping of object references.)

Client Program)

Language-dependent object references

ORB object references

Dynamic Invocation Stubs for Stubs for
Interface Interface A Interface B

\

Y,

Figure2-6 The Structure of a Typical Client

An alternative set of library code is available to perform invocations on objects, for
example when the object was not defined at compile time. In that case, the client
program provides additional information to name the type of the object and the method
being invoked, and performs a sequence of calls to specify the parameters and initiate
the invocation.

Clients most commonly obtain object references by receiving them as output
parameters from invocations on other objects for which they have references. When a
client is also an implementation, it receives object references as input parameters on
invocations to objects it implements. An object reference can also be converted to a
string that can be stored in files or preserved or communicated by different means and
subsequently turned back into an object reference by the ORB that produced the string.

2.4 Sructure of an Object Implementation

July 2002

An object implementation provides the actual state and behavior of an object. The
object implementation can be structured in a variety of ways. Besides defining the
methods for the operations themselves, an implementation will usually define

CORBA, v3.0: Sructure of an Object Implementation 2-13

2-14

procedures for activating and deactivating objects and will use other objects or non-
object facilities to make the object state persistent, to control access to the object, as
well as to implement the methods.

The object implementation (see Figure 2-7) interacts with the ORB in a variety of
ways to establish its identity, to create new objects, and to obtain ORB-dependent
services. It primarily does this via access to an Object Adapter, which provides an
interface to ORB services that is convenient for a particular style of object
implementation.

Object Implementation

Methods for
Interface A

© Object data

ORB object references

ary Routines

Skeleton for
Interface A

Dynamic Object adapter
Skeleton routines

J

Figure 2-7 The Structure of a Typical Object Implementation

Because of the range of possible object implementations, it is difficult to be definitive
about how an object implementation is structured. See the chapters on the Portable
Object Adapter.

When an invocation occurs, the ORB Core, object adapter, and skeleton arrange that a
call is made to the appropriate method of the implementation. A parameter to that
method specifies the object being invoked, which the method can use to locate the data
for the object. Additional parameters are supplied according to the skeleton definition.
When the method is complete, it returns, causing output parameters or exception
results to be transmitted back to the client.

Common Object Request Broker Architecture (CORBA), v3.0 July 2002

2

When a new object is created, the ORB may be notified so that it knows where to find
the implementation for that object. Usually, the implementation also registers itself as
implementing objects of a particular interface, and specifies how to start up the
implementation if it is not already running.

Most object implementations provide their behavior using facilities in addition to the
ORB and object adapter. For example, although the Portable Object Adapter provides
some persistent data associated with an object (its OID or Object I1D), that relatively

small amount of datais typically used as an identifier for the actual object data stored
in a storage service of the object implementation’s choosing. With this structure, it is
not only possible for different object implementations to use the same storage service,
it is also possible for objects to choose the service that is most appropriate for them.

2.5 Sructureof an Object Adapter

An object adapter (see Figure 2-8 on page 2-16) is the primary means for an object
implementation to access ORB services such as object reference generation. An object
adapter exports a public interface to the object implementation, and a private interface
to the skeleton. It is built on a private ORB-dependent interface.

Object adapters are responsible for the following functions:

« Generation and interpretation of object references

* Method invocation

e Security of interactions

¢ Object and implementation activation and deactivation

« Mapping object references to the corresponding object implementations

¢ Registration of implementations

These functions are performed using the ORB Core and any additional components
necessary. Often, an object adapter will maintain its own state to accomplish its tasks.
It may be possible for a particular object adapter to delegate one or more of its
responsibilities to the Core upon which it is constructed.

July 2002 CORBA, v3.0: Sructure of an Object Adapter 2-15

2-16

-

\

Object Implementation

Interface A Interface B
Methods Methods

J

Dynamic Interface A Interface B Obiect
Skeleton Skeleton Jec
Skeleton Adapter
Interface
ORB Core

Figure2-8 The Structure of a Typical Object Adapter

As shown in Figure 2-8, the Object Adapter isimplicitly involved in invocation of the
methods, athough the direct interface is through the skeletons. For example, the
Object Adapter may be involved in activating the implementation or authenticating the
request.

The Object Adapter defines most of the services from the ORB that the Object
Implementation can depend on. Different ORBs will provide different levels of service
and different operating environments may provide some properties implicitly and
reguire others to be added by the Object Adapter. For example, it is common for
Object Implementations to want to store certain values in the object reference for easy
identification of the object on an invocation. If the Object Adapter allows the
implementation to specify such values when a new object is created, it may be able to
store them in the object reference for those ORBs that permit it. If the ORB Core does
not provide this feature, the Object Adapter would record the value in its own storage
and provide it to the implementation on an invocation. With Object Adapters, it is
possible for an Object Implementation to have access to a service whether or not it is
implemented in the ORB Core—if the ORB Core provides it, the adapter simply
provides an interface to it; if not, the adapter must implement it on top of the ORB
Core. Every instance of a particular adapter must provide the same interface and
service for all the ORBs it is implemented on.

It is also not necessary for all Object Adapters to provide the same interface or
functionality. Some Object Implementations have special requirements. For example,
an object-oriented database system may wish to implicitly register its many thousands
of objects without doing individual callsto the Object Adapter. In such a case, it would

Common Object Request Broker Architecture (CORBA), v3.0 July 2002

2

be impractical and unnecessary for the object adapter to maintain any per-object state.
By using an object adapter interface that is tuned towards such object implementations,
it is possible to take advantage of particular ORB Core details to provide the most
effective access to the ORB.

2.6 CORBA Required Object Adapter

There are a variety of possible object adapters; however, since the object adapter
interface is something that object implementations depend on, it is desirable that there
be as few as practical. Most object adapters are designed to cover a range of object
implementations, so only when an implementation requires radically different services
or interfaces should a new object adapter be considered. In this section, we briefly
describe the object adapter defined in this specification.

2.6.1 Portable Object Adapter

This specification defines a Portable Object Adapter that can be used for most ORB
objects with conventional implementations. (See the Portable Object Adapter chapter
for more information.) The intent of the POA, as its name suggests, is to provide an
Object Adapter that can be used with multiple ORBs with a minimum of rewriting
needed to deal with different vendors' implementations.

This specification allows several ways of using servers but it does not deal with the
administrative issues of starting server programs. Once started, however, there can be a
servant started and ended for a single method call, a separate servant for each object, or
ashared servant for all instances of the object type. It allows for groups of objects to be
associated by means of being registered with different instances of the POA object and
allows implementations to specify their own activation techniques. If the
implementation is not active when an invocation is performed, the POA will start one.
The POA is specified in IDL, so its mapping to languages is largely automatic,
following the language mapping rules. (The primary task left for a language mapping
is the definition of the Servant type.)

2.7 Thelntegration of Foreign Object Systems

The Common ORB Architecture is designed to allow interoperation with a wide range
of object systems (see Figure 2-9 on page 2-18). Because there are many existing
object systems, a common desire will be to allow the abjects in those systems to be
accessible via the ORB. For those object systems that are ORBs themselves, they may
be connected to other ORBs through the mechanisms described throughout this
manual .

July 2002 CORBA, v3.0: CORBA Required Object Adapter 2-17

2-18

Object system as Object system as
~aPOA object an implementation
implementation |yith a special-purpose

object adapter

Portable Object
Adapter

Special-purpose
Adapter

ORB Core another ORB

Object system as

interoperating via a

atewal
Gateway g Y

Figure2-9 Different Ways to Integrate Foreign Object Systems

For object systems that simply want to map their objects into ORB objects and receive
invocations through the ORB, one approach is to have those object systems appear to
be implementations of the corresponding ORB objects. The object system would
register its objects with the ORB and handle incoming requests, and could act like a
client and perform outgoing requests.

In some cases, it will be impractical for another object system to act like a POA object
implementation. An object adapter could be designed for objects that are created in
conjunction with the ORB and that are primarily invoked through the ORB. Another
object system may wish to create objects without consulting the ORB, and might
expect most invocations to occur within itself rather than through the ORB. In such a
case, a more appropriate object adapter might allow objects to be implicitly registered
when they are passed through the ORB.

Common Object Request Broker Architecture (CORBA), v3.0 July 2002

OMG DL Syntaxand Semantics 3

This chapter describes OMG Interface Definition Language (IDL) semantics and gives
the syntax for OMG IDL grammatical constructs.

Contents

This chapter contains the following sections.

Section Title Page
“Overview” 3-2
“Lexical Conventions’ 3-3
“Preprocessing” 311
“OMG IDL Grammar” 312
“OMG IDL Specification” 3-18
“Import Declaration” 3-19
“Module Declaration” 3-20
“Interface Declaration” 3-21
“Value Declaration” 3-27
“Constant Declaration” 3-32
“Type Declaration” 3-36
“Exception Declaration” 3-49
“Operation Declaration” 3-50
“Attribute Declaration” 3-53
“Repository Identity Related Declarations’ 3-55

July 2002 Common Object Request Broker Architecture (CORBA), v3.0 31

3.1 Overview

Section Title Page
“Event Declaration” 3-57
“Component Declaration” 3-58
“Home Declaration” 3-64
“CORBA Module” 3-66
“Names and Scoping” 3-67

The OMG Interface Definition Language (IDL) is the language used to describe the
interfaces that client objects call and object implementations provide. An interface
definition written in OMG IDL completely defines the interface and fully specifies
each operation’s parameters. An OMG IDL interface provides the information needed
to develop clients that use the interface's operations.

Clients are not written in OMG IDL, which is purely a descriptive language, but in
languages for which mappings from OMG IDL concepts have been defined. The
mapping of an OMG IDL concept to a client language construct will depend on the
facilities available in the client language. For example, an OMG IDL exception might
be mapped to a structure in a language that has no notion of exception, or to an
exception in alanguage that does. The binding of OMG IDL concepts to several
programming languages is described in this manual.

The description of OMG IDL's lexical conventions is presented in Section 3.2,
“Lexical Conventions,” on page 3-3. A description of OMG IDL preprocessing is
presented in Section 3.3, “Preprocessing,” on page 3-11. The scope rules for identifiers
in an OMG IDL specification are described in Section 3.20, “Names and Scoping,” on
page 3-67.

OMG IDL is a declarative language. The grammar is presented in Section 3.4, “OMG
IDL Grammar,” on page 3-12 and associated semantics is described in the rest of this
chapter either in place or through references to other sections of this standard.

OMG IDL-specific pragmas (those not defined for C++) may appear anywhere in a
specification; the textual location of these pragmas may be semantically constrained by
a particular implementation.

A source file containing interface specifications written in OMG IDL must have an
“.idl” extension.

Common Object Request Broker Architecture (CORBA), v3.0 July 2002

The description of OMG IDL grammar uses a syntax notation that is similar to
Extended Backus-Naur Format (EBNF). Table 3-1 lists the symbols used in this format
and their meaning.

Table3-1 IDL EBNF

Symbol M eaning

u= Is defined to be

| Alternatively

<text> Nonterminal

“text” Literal

* The preceding syntactic unit can be repeated zero or more times

+ The preceding syntactic unit can be repeated one or more times

{ The enclosed syntactic units are grouped as a single syntactic unit
1 The enclosed syntactic unit is optional—may occur zero or one time

3.2 Lexical Conventions

This section® presents the lexical conventions of OMG IDL. It defines tokens in an
OMG IDL specification and describes comments, identifiers, keywords, and
literals—integer, character, and floating point constants and string literals.

An OMG IDL specification logically consists of one or more files. A fileis
conceptually translated in several phases.

The first phase is preprocessing, which performs file inclusion and macro substitution.
Preprocessing is controlled by directives introduced by lines having # as the first
character other than white space. The result of preprocessing is a sequence of tokens.
Such a sequence of tokens, that is, afile after preprocessing, is called a translation unit.

OMG IDL uses the ASCII character set, except for string literals and character literals,
which use the 1SO Latin-1 (8859.1) character set. The I1SO Latin-1 character set is
divided into alphabetic characters (letters) digits, graphic characters, the space (blank)
character, and formatting characters. Table 3-2 shows the 1SO Latin-1 alphabetic
characters; upper and lower case equivalences are paired. The ASCII alphabetic
characters are shown in the left-hand column of Table 3-2.

Table3-2 The 114 Alphabetic Characters (L etters)

Char. | Description Char. | Description

Aa Upper/Lower-case A Aa Upper/Lower-case A with grave accent

Bb Upper/Lower-case B Aa Upper/Lower-case A with acute accent

Cc Upper/Lower-case C Aa Upper/Lower-case A with circumflex accent
Dd Upper/Lower-case D A Upper/Lower-case A with tilde

July 2002

1. Thissection is an adaptation of The Annotated C++ Reference Manual, Chapter 2; it

differsinthelist of legal keywords and punctuation.

CORBA, v3.0: Lexical Conventions

3-3

Table3-2 The 114 Alphabetic Characters (Letters) (Continued)

Char. | Description Char. | Description
Ee Upper/Lower-case E Aa Upper/Lower-case A with diaeresis
Ff Upper/Lower-case F Aa Upper/Lower-case A with ring above
Gg Upper/Lower-case G fExe Upper/Lower-case dipthong A with E
Hh Upper/Lower-case H Cc Upper/Lower-case C with cedilla
li Upper/Lower-case | Eé Upper/Lower-case E with grave accent
Jj Upper/Lower-case J Eé Upper/Lower-case E with acute accent
Kk Upper/Lower-case K Eé Upper/Lower-case E with circumflex accent
LI Upper/Lower-case L Eé Upper/Lower-case E with diaeresis
Mm Upper/Lower-case M [} Upper/Lower-case | with grave accent
Nn Upper/Lower-case N fi Upper/Lower-case | with acute accent
Oo Upper/Lower-case O T Upper/Lower-case | with circumflex accent
Pp Upper/Lower-case P li Upper/Lower-case | with diaeresis
Qq Upper/Lower-case Q N Upper/Lower-case N with tilde
Rr Upper/Lower-case R 0o Upper/Lower-case O with grave accent
Ss Upper/Lower-case S 06 Upper/Lower-case O with acute accent
Tt Upper/Lower-case T 0b Upper/Lower-case O with circumflex accent
Uu Upper/Lower-case U o)) Upper/Lower-case O with tilde
Vv Upper/Lower-case V 06 Upper/Lower-case O with diaeresis
Ww Upper/Lower-case W %]} Upper/Lower-case O with oblique stroke
XX Upper/Lower-case X U] Upper/Lower-case U with grave accent
Yy Upper/Lower-case Y Uu Upper/Lower-case U with acute accent
Zz Upper/Lower-case Z Oa Upper/Lower-case U with circumflex accent
Ou Upper/Lower-case U with diaeresis
3 Lower-case German sharp S
y Lower-case Y with diaeresis

Table 3-3 lists the decimal digit characters.

Table 3-3 Decimal Digits

0123456789

Table 3-4 shows the graphic characters.

Table3-4 The 65 Graphic Characters

Char. | Description Char. | Description

! exclamation point i inverted exclamation mark
" double quote ¢ cent sign

number sign £ pound sign

$ dollar sign a currency sign

% percent sign ¥ yen sign

Common Object Request Broker Architecture (CORBA), v3.0

Table3-4 The 65 Graphic Characters (Continued)

Char. | Description Char. | Description
& ampersand broken bar
’ apostrophe § section/paragraph sign
(left parenthesis diaeresis
) right parenthesis © copyright sign
* asterisk a feminine ordinal indicator
+ plus sign « left angle quotation mark
, comma - not sign
- hyphen, minus sign soft hyphen
period, full stop ® registered trade mark sign
/ solidus B macron
colon ° ring above, degree sign
; semicolon + plus-minus sign
< less-than sign 2 superscript two
= equals sign 3 superscript three
greater-than sign acute
? guestion mark m micro
@ commercial at T pilcrow
[left square bracket . middle dot
\ reverse solidus R cedilla
] right square bracket L superscript one
A circumflex 0 masculine ordinal indicator
_ low line, underscore » right angle quotation mark
‘ grave vulgar fraction 1/4
{ left curly bracket vulgar fraction 1/2
| vertical line vulgar fraction 3/4
} right curly bracket é inverted question mark
~ tilde ¥ multiplication sign
3 division sign

The formatting characters are shown in Table 3-5.

Table3-5 The Formatting Characters

Description | Abbreviation | 1SO 646 Octal Value
alert BEL 007
backspace BS 010
horizontal tab HT 011
newline NL, LF 012
vertical tab VT 013

July 2002 CORBA, v3.0: Lexical Conventions

Table3-5 The Formatting Characters
Description | Abbreviation | SO 646 Octal Value

form feed FF 014

carriage return CR 015

3.2.1 Tokens

There are five kinds of tokens: identifiers, keywords, literals, operators, and other
separators. Blanks, horizontal and vertical tabs, newlines, formfeeds, and comments
(collective, “white space”), as described below, are ignored except as they serve to
separate tokens. Some white space is required to separate otherwise adjacent
identifiers, keywords, and constants.

If the input stream has been parsed into tokens up to a given character, the next token
is taken to be the longest string of characters that could possibly constitute a token.

3.2.2 Comments

The characters /* start a comment, which terminates with the characters */. These
comments do not nest. The characters // start a comment, which terminates at the end
of the line on which they occur. The comment characters //, /*, and */ have no special
meaning within a// comment and are treated just like other characters. Similarly, the
comment characters// and /* have no special meaning within a/* comment. Comments
may contain alphabetic, digit, graphic, space, horizontal tab, vertical tab, form feed,
and newline characters.

3.2.3 Identifiers

Anidentifier is an arbitrarily long sequence of ASCII alphabetic, digit, and underscore
(“_") characters. The first character must be an ASCII alphabetic character. All
characters are significant.

When comparing two identifiers to see if they collide:

» Upper- and lower-case letters are treated as the same letter. Table 3-2 on page 3-3
defines the equivalence mapping of upper- and lower-case letters.

 All characters are significant.

Identifiers that differ only in case collide, and will yield a compilation error under
certain circumstances. An identifier for a given definition must be spelled identically
(e.g., with respect to case) throughout a specification.

There is only one namespace for OMG IDL identifiers in each scope. Using the same
identifier for a constant and an interface, for example, produces a compilation error.

For example:
module M {

typedef long Foo;
const long thing = 1;

Common Object Request Broker Architecture (CORBA), v3.0 July 2002

July 2002

3231

interface thing { /I error: reuse of identifier
void doit (
in Foo foo /I error: Foo and foo collide and refer to

different things
);

readonly attribute long Attribute; // error: Attribute collides with
keyword attribute

h

Escaped Identifiers

As IDL evolves, new keywords that are added to the IDL language may inadvertently
collide with identifiers used in existing IDL and programs that use that IDL. Fixing
these collisions will require not only the IDL to be modified, but programming
language code that depends upon that IDL will have to change as well. The language
mapping rules for the renamed IDL identifiers will cause the mapped identifier names
(e.g., method names) to be changed.

To minimize the amount of work, users may lexically “escape” identifiers by
prepending an underscore (_) to an identifier. Thisis a purely lexical convention that
ONLY turns off keyword checking. The resulting identifier follows al the other rules
for identifier processing. For example, the identifier _Anldentifier is treated as if it
were Anldentifier.

The following is a non-exclusive list of implications of these rules:
e The underscore does not appear in the Interface Repository.

e The underscore is not used in the DIl and DSI.

e The underscore is not transmitted over “the wire.”

« Case sensitivity rules are applied to the identifier after stripping off the leading
underscore.

For example:

module M {
interface thing {
attribute boolean abstract; /I error: abstract collides with
/I keyword abstract
attribute boolean _abstract; // ok: abstract is an identifier
3
3

To avoid unnecessary confusion for readers of IDL, it is recommended that interfaces
only use the escaped form of identifiers when the unescaped form clashes with a newly
introduced IDL keyword. It is also recommended that interface designers avoid
defining new identifiers that are known to require escaping. Escaped literals are only
recommended for IDL that expresses legacy interface, or for IDL that is mechanically
generated.

CORBA, v3.0: Lexical Conventions 3-7

3.2.4 Keywords

The identifiers listed in Table 3-6 are reserved for use as keywords and may not be

used otherwise, unless escaped with a leading underscore.

Table3-6 Keywords

abstract exception inout provides truncatable
any emits interface public typedef
attribute enum local publishes typeid
boolean eventtype long raises typeprefix
case factory module readonly unsigned
char FALSE multiple setraises union
component | finder native sequence uses

const fixed Object short ValueBase
consumes float octet string valuetype
context getraises oneway struct void
custom home out supports wchar
default import primarykey switch wstring
double in private TRUE

Keywords must be written exactly as shown in the above list. Identifiers that collide
with keywords (see Section 3.2.3, “Identifiers,” on page 3-6) are illegal. For example,
“boolean” isavalid keyword; “Boolean” and “BOOLEAN" are illegal identifiers.

For example:

module M {
typedef Long Foo;
typedef boolean BOOLEAN;

/I Error: keyword is long not Long
/l Error: BOOLEAN collides with
/I the keyword boolean;

b

OMG IDL specifications use the characters shown in Table 3-7 as punctuation.

Table 3-7 Punctuation Characters
{ } : ; = + - () < > []
" \ [N & * / % ~

In addition, the tokens listed in Table 3-8 are used by the preprocessor.

Table 3-8 Preprocessor Tokens
#o| I &&

3.25 Literals

This section describes the following literals:

3-8 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

* Integer

* Character

« Floating-point
* String

* Fixed-point

3.2.5.1 Integer Literals

An integer literal consisting of a sequence of digits is taken to be decimal (base ten)
unless it begins with 0 (digit zero). A sequence of digits starting with O is taken to be
an octal integer (base eight). The digits 8 and 9 are not octal digits. A sequence of
digits preceded by Ox or OX is taken to be a hexadecimal integer (base sixteen). The
hexadecimal digits include a or A through f or F with decimal values ten through
fifteen, respectively. For example, the number twelve can be written 12, 014, or 0XC.

3.2.5.2 Character Literals

A character literal is one or more characters enclosed in single quotes, asin’x.’
Character literals have type char.

A character is an 8-hit quantity with a numerical value between 0 and 255 (decimal).
The value of a space, alphabetic, digit, or graphic character literal is the numerical
value of the character as defined in the ISO Latin-1 (8859.1) character set standard
(See Table 3-2 on page 3-3, Table 3-3 on page 3-4, and Table 3-4 on page 3-4). The
value of anull is 0. The value of aformatting character literal is the numerical value of
the character as defined in the 1SO 646 standard (see Table 3-5 on page 3-5). The
meaning of all other characters is implementation-dependent.

Nongraphic characters must be represented using escape sequences as defined below in
Table 3-9. Note that escape sequences must be used to represent single quote and
backslash characters in character literals.

Table 3-9 Escape Sequences

Description Escape Sequence
newline \n
horizontal tab \t
vertical tab \v
backspace \b
carriage return \r
form feed \f
alert \a
backslash \\
question mark \?
single quote \'
double quote \"
octal number \ooo

CORBA, v3.0: Lexical Conventions

3-9

3-10

3.253

3.254

Table 3-9 Escape Sequences (Continued)

Description Escape Sequence
hexadecimal number \xhh
unicode character \uhhhh

If the character following a backslash is not one of those specified, the behavior is
undefined. An escape sequence specifies a single character.

The escape \ooo consists of the backslash followed by one, two, or three octal digits
that are taken to specify the value of the desired character. The escape \xhh consists of
the backslash followed by x followed by one or two hexadecimal digits that are taken
to specify the value of the desired character.

The escape \uhhhh consists of a backslash followed by the character ‘u’, followed by
one, two, three or four hexadecimal digits. This represents a unicode character literal.
Thus the literal “\UOO2E” represents the unicode period ‘.’ character and the literal
“\u3BC” represents the unicode greek small letter ‘mu’. The \u escape is valid only
with wchar and wstring types. Because a wide string literal is defined as a sequence of
wide character literals a sequence of \u literals can be used to define a wide string
literal. Attempts to set a char type to a\u defined literal or a string type to a sequence
of \u literals result in an error.

A sequence of octal or hexadecimal digitsis terminated by the first character that is not
an octal digit or a hexadecimal digit, respectively. The value of a character constant is
implementation dependent if it exceeds that of the largest char.

Wide character literals have an L prefix, for example:

const wchar C1 = L'X";

Attempts to assign a wide character literal to a non-wide character constant or to assign
a non-wide character literal to a wide character constant result in a compile-time
diagnostic.

Both wide and non-wide character literals must be specified using characters from the
ISO 8859-1 character set.

Floating-point Literals

A floating-point literal consists of an integer part, a decimal point, a fraction part, an e
or E, and an optionally signed integer exponent. The integer and fraction parts both
consist of a sequence of decimal (base ten) digits. Either the integer part or the fraction
part (but not both) may be missing; either the decimal point or the letter e (or E) and
the exponent (but not both) may be missing.

Sring Literals

A string literal is a sequence of characters (as defined in Section 3.2.5.2, “ Character
Literals,” on page 3-9), with the exception of the character with numeric value 0,
surrounded by double quotes, asin “...".

Common Object Request Broker Architecture (CORBA), v3.0 July 2002

3

3.255

3.3 Preprocessing

July 2002

Adjacent string literals are concatenated. Characters in concatenated strings are kept
distinct. For example,

"\XA" "B"

contains the two characters \xA' and 'B' after concatenation (and not the single
hexadecimal character \xAB").

The size of a string literal is the number of character literals enclosed by the quotes,
after concatenation. Within a string, the double quote character " must be preceded by
a\.

A string literal may not contain the character ‘\0'.

Wide string literals have an L prefix, for example:

const wstring S1 = L"Hello";

Attempts to assign a wide string literal to a non-wide string constant or to assign a
non-wide string literal to a wide string constant result in a compile-time diagnostic.

Both wide and non-wide string literals must be specified using characters from the SO
8859-1 character set.

A wide string literal shall not contain the wide character with value zero.

Fixed-Point Literals

A fixed-point decimal literal consists of an integer part, a decimal point, a fraction part
and ad or D. The integer and fraction parts both consist of a sequence of decimal (base
10) digits. Either the integer part or the fraction part (but not both) may be missing; the
decimal point (but not the letter d (or D)) may be missing.

OMG IDL is preprocessed according to the specification of the preprocessor in
“International Organization for Standardization. 1998. |SO/IEC 14882 Standard for the
C++ Programming Language. Geneva: International Organization for Standardization.”
The preprocessor may be implemented as a separate process or built into the IDL
compiler.

Lines beginning with # (also called “directives’) communicate with this preprocessor.
White space may appear before the #. These lines have syntax independent of the rest
of OMG IDL; they may appear anywhere and have effects that last (independent of the
OMG IDL scoping rules) until the end of the translation unit. The textual location of
OMG IDL-specific pragmas may be semantically constrained.

A preprocessing directive (or any line) may be continued on the next line in a source
file by placing a backslash character (“\"), immediately before the newline at the end
of the line to be continued. The preprocessor effects the continuation by deleting the
backslash and the newline before the input sequence is divided into tokens. A
backslash character may not be the last character in a source file.

CORBA, v3.0: Preprocessing 311

A preprocessing token is an OMG IDL token (see Section 3.2.1, “Tokens,” on
page 3-6), a file name as in a #include directive, or any single character other than
white space that does not match another preprocessing token.

The primary use of the preprocessing facilities is to include definitions from other
OMG IDL specifications. Text in files included with a#include directiveis treated as if
it appeared in the including file, except that Repositoryld related pragmas are
handled in a special way. The special handling of these pragmas is described in
Section 10.7, “Repositorylds,” on page 10-64.

Note that whether a particular IDL compiler generates code for included files is an
implementation-specific issue. To support separate compilation, IDL compilers may
not generate code for included files, or do so only if explicitly instructed.

3.4 OMGIDL Grammar

312

@)
@)

®)
(4)

©®)
(6)
)

®)
9)

<import>* <definition>*
<type dcl>";"
<const_dcl>*;"
<except_dcl>"“;”
<interface>";”
<module>*“;"
<value>"*“;"
<type_id_dcl>";"
<type_prefix_dcl>";"
<event>“;”
<component>*“;”
<home_dcl>"“;"
<module> ::= “module” <identifier> “{"* <definition>**“}"
<interface> ::= <interface_dcl>
| <forward_dcl>
<interface_dcl> ::= <interface_header>“{" <interface_body>“}"
<forward_dcl> ::= [“abstract” | “local”] “interface” <identifier>
<interface_header> ::= [“abstract” | “local”] “interface” <identifier>
[<interface_inheritance_spec>]
<interface_body> ::= <export>"
<export> ::= <type_dcl>";"
| <const_dcl>*;”
| <except_dcl>*;”
| <attr_dcl>*;"
I
I
I

<specification>
<definition>

<op_dcl>*;"
<type_id_dcl>";"
<type_prefix_dcl>";"

(10)<interface_inheritance_spec>::=":" <interface_name>

11)
12)

{",” <interface_name> }*
<interface_name> ::= <scoped_name>
<scoped_name> <identifier>
| “:u:" <identifier>
| <scoped_name>“::" <identifier>

Common Object Request Broker Architecture (CORBA), v3.0 July 2002

July 2002

(13)

(14)
(15)
(16)

7
(18)

<value>

<value_forward_dcl>
<value_box_dcl>
<value_abs_dcl>

<value_dcl>
<value_header>

(19)<value_inheritance_spec>

(20)
(21)
(22)
(23)
(24)
(25)

(26)
(27)

(28)

(29)
(30)

(31)
(32)

(33)

<value_name>
<value_element>
<state_member>

<init_dcl>
<init_param_decls>
<init_param_decl>

<init_param_attribute>
<const_dcl>

<const_type>

<const_exp>
<or_expr>

<Xor_expr>
<and_expr>

<shift_expr>

CORBA, v3.0: OMG IDL Grammar

(<value_dcl>| <value_abs_dcl> |
<value_box_dcl> | <value_forward_dcl>)

[“abstract”] “valuetype” <identifier>

= “valuetype” <identifier> <type_spec>

“abstract” “valuetype” <identifier>

[<value_inheritance_spec>]

“{" <export>**}"

<value_header>"“{" <value_element>*“}"

[“custom”] “valuetype” <identifier>

[<value_inheritance_spec>]

[“:" [“truncatable”] <value_name>
{“,” <value_name>}*]

[“supports” <interface_name>

{“,” <interface_name> }*]
<scoped_name>

<export> | < state_member> | <init_dcl>
(“public” | “private”)

<type_spec> <declarators>“;”
“factory” <identifier>

“(* [<init_param_decls>] “)”

[<raises_expr>1"“;"

<init_param_decl> { “,” <init_param_decl> }*

<init_param_attribute> <param_type_spec>
<simple_declarator>

in
“const” <const_type>
<identifier> “=" <const_exp>

<integer_type>

<char_type>
<wide_char_type>
<boolean_type>
<floating_pt_type>
<string_type>
<wide_string_type>
<fixed_pt_const_type>
<scoped_name>
<octet_type>

<or_expr>

<xor_expr>

<or_expr>"“|" <xor_expr>
<and_expr>

<xor_expr>"“"" <and_expr>
<shift_expr>

<and_expr>*“&”" <shift_expr>
<add_expr>
<shift_expr>“>>" <add_expr>
<shift_expr>“<<” <add_expr>

3-13

(34)

(39)

(36)

(37)

(38)

(39)

(40)

(41)
(42)

(43)
(44)

(49)

(46)

(47)

3-14

<add_expr>

<mult_expr>

<unary_expr>

<unary_operator>

<primary_expr>

<literal>

<boolean_literal>

<positive_int_const>
<type_dcl>

<type_declarator>
<type_spec>

<simple_type_spec>

<base_type_spec>

<template_type_spec>

<mult_expr>

<add_expr>“+" <mult_expr>
<add_expr>*“-" <mult_expr>
<unary_expr>
<mult_expr>“*" <unary_expr>
<mult_expr>"“/" <unary_expr>

<mult_expr>“%" <unary_expr>
<unary_operator> <primary_expr>

<primary_expr>

“ o

<scoped_name>
<literal>

“(" <const_exp>")"
<integer_literal>
<string_literal>
<wide_string_literal>
<character_literal>
<wide_character_literal>
<fixed_pt_literal>
<floating_pt_literal>
<boolean_literal>
“TRUE”"

“FALSE”

= <const_exp>
= “typedef” <type_declarator>

<struct_type>

<union_type>

<enum_type>

“native” <simple_declarator>
<constr_forward_decl>

= <type_spec> <declarators>
= <simple_type_spec>

<constr_type_spec>
<base_type_spec>
<template_type_spec>
<scoped_name>
<floating_pt_type>
<integer_type>
<char_type>
<wide_char_type>
<boolean_type>
<octet_type>
<any_type>
<object_type>
<value_base_type>

;= <sequence_type>

Common Object Request Broker Architecture (CORBA), v3.0

July 2002

July 2002

(48)

(49)
(50)

(51)
(52)
(53)

(54)

(59)

(56)
(57)
(58)
(59)

(60)
(61)
(62)
(63)
(64)
(65)
(66)
(67)
(68)
(69)
(70)
(71)
(72)

(73)

(74)

<constr_type_spec>

<declarators>
<declarator>

<simple_declarator>
<complex_declarator>
<floating_pt_type>

<integer_type>

<signed_int>

<signed_short_int>
<signed_long_int>
<signed_longlong_int>
<unsigned_int>

<unsigned_short_int>
<unsigned_long_int>
<unsigned_longlong_int>
<char_type>
<wide_char_type>
<boolean_type>
<octet_type>
<any_type>
<object_type>
<struct_type>
<member_list>
<member>
<union_type>

<switch_type_spec>

<switch_body>

CORBA, v3.0: OMG IDL Grammar

= “unsigned
= “unsigned” “long”
= “unsigned
= “char”

= “wchar”

= “boolean”
= “octet”

<string_type>
<wide_string_type>
<fixed_pt_type>
<struct_type>
<union_type>
<enum_type>

= <declarator>{ “,” <declarator> }"

<simple_declarator>
<complex_declarator>

= <identifier>
= <array_declarator>
o “float”

“double”

“long” “double”
<signed_int>
<unsigned_int>
<signhed_short_int>
<signhed_long_int>
<signed_longlong_int>

= “short”

= “long”

= “long” “long”

= <unsigned_short_int>

<unsigned_long_int>
<unsigned_longlong_int>
” Hshortn

long” “long”

any

= “Object”
= “struct” <identifier>*“{" <member_list>"}"

<member>*

= <type_spec> <declarators>";"

“union” <identifier> “switch”
“(" <switch_type_spec>")”
“{" <switch_body>*“}"
<integer_type>

<char_type>
<boolean_type>
<enum_type>
<scoped_name>

<case>"

3-15

(75) <case> ::= <case_label>" <element_spec>*“;"
(76) <case_label> ::= “case” <const_exp>"“:"

| “default” “:”
77) <element_spec> ::= <type_spec> <declarator>
(78) <enum_type> ::= “enum” <identifier>

“{" <enumerator>{ “,” <enumerator> }"*}”

(79) <enumerator> ::= <identifier>
(80) <sequence_type> ::= “sequence” “<” <simple_type_spec>""

<positive_int_const> “>"
| “sequence” “<” <simple_type_spec>“>"

(81) <string_type> ::= “string” “<” <positive_int_const>“>"
| “string”
(82) <wide_string_type> ::= “wstring” “<” <positive_int_const>“>"
| “wstring”
(83) <array_declarator> ::= <identifier> <fixed_array_size>"
(84) <fixed_array_size> ::= “[" <positive_int_const>*“]"
(85) <attr_dcl> ::= <readonly_attr_spec>
| <attr_spec>
(86) <except_dcl> ::= “exception” <identifier>“{* <member>*“}"
(87) <op_dcl> ::= [<op_attribute>] <op_type_spec>

<identifier> <parameter_dcls>
[<raises_expr>][<context_expr>]

(88) <op_attribute> ::= “oneway”
(89) <op_type_spec> ::= <param_type_spec>
| “void”
(90) <parameter_dcls> ::= “(" <param_dcl>{“,” <param_dcl>}"*)"
[)
(91) <param_dcl> ::= <param_attribute> <param_type_spec>
<simple_declarator>
(92) <param_attribute> ::= “in”
| “out”
| “inout”
(93) <raises_expr> ::= “raises” “(" <scoped_name>

{“" <scoped_name>}7*)
(94) <context_expr> ::= “context” “(" <string_literal>
{“ <string_literal>}7“)"
(95) <param_type_spec> := <base_type_spec>
| <string_type>
| <wide_string_type>
| <scoped_name>

(96) <fixed_pt_type> ::= “fixed” “<" <positive_int_const>""
<positive_int_const> “>"

(97) <fixed_pt_const_type> ::= “fixed”

(98) <value_base_type> ::= “ValueBase”

(99) <constr_forward_decl> ::= “struct” <identifier>

| “union” <identifier>

3-16 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

July 2002

(100) <import> ::= “import” <imported_scope>"“;”

(101) <imported_scope> ::= <scoped_name> | <string_literal>

(102) <type_id_dcl> ::= “typeid” <scoped_name> <string_literal>

(103) <type_prefix_dcl> ::= “typeprefix” <scoped_name>
<string_literal>

(104) <readonly_attr_spec> ::= “readonly” “attribute” <param_type_spec>

<readonly_attr_declarator>
(105)<readonly_attr_declarator >::= <simple_declarator> <raises_expr>
| <simple_declarator>
{",” <simple_declarator> }*

(106) <attr_spec> ::=‘“attribute” <param_type_spec>
<attr_declarator>
(107) <attr_declarator> ::= <simple_declarator> <attr_raises_expr>

| <simple_declarator>
{“” <simple_declarator> }*

(108) <attr_raises_expr> ::= <get_excep_expr>[<set_excep_expr>]
| <set_excep_expr>

(109) <get_excep_expr> ::= “getraises” <exception_list>

(110) <set_excep_expr> ::= “setraises” <exception_list>

(112) <exception_list> ::= “(” <scoped_name>

{", <scoped_name>}+")"

Note — Grammar rules 1 through 111 with the exception of the last three lines of rule
2 constitutes the portion of IDL that is not related to components.

(112) <component> ::= <component_dcl>
| <component_forward_dcl>
(113)<component_forward_dcl>::= “component” <identifier>

(114) <component_dcl> ::= <component_header>
“{" <component_body>“}"
(115) <component_header> ::="“component” <identifier>

[<component_inheritance_spec>]
[<supported_interface_spec>]

(116)<supported_interface_spec>::= “supports” <scoped_name>
{",” <scoped_name> }*

(117)<component_inheritance_spec>::="“:" <scoped_name>
(118) <component_body> ::= <component_export>*
(119) <component_export> ::= <provides_dcl>";"

| <uses_dcl>*“;”
| <emits_dcl>"*;"
| <publishes_dcl>*“;”
| <consumes_dcl>*;"
|

<attr_dcl>"“;”
(120) <provides_dcl> ::="“provides” <interface_type> <identifier>
(121) <interface_type> ::= <scoped_name>
| “Object”
CORBA, v3.0: OMG IDL Grammar 3-17

(122) <uses_dcl> ::= “uses” [“multiple”]

<interface_type> <identifier>
(123) <emits_dcl> ::= “emits” <scoped_name> <identifier>
(124) <publishes_dcl> ::= “publishes” <scoped_name> <identifier>
(125) <consumes_dcl> ::= “consumes” <scoped_name> <identifier>
(126) <home_dcl> ::= <home_header> <home_body>
(227) <home_header> ::= “home” <identifier>

[<home_inheritance_spec>]

[<supported_interface_spec>]
“manages” <scoped_name>

[<primary_key_spec>]

(128)<home_inheritance_spec>::= “:” <scoped_name>

(129) <primary_key spec> ::= “primarykey” <scoped _name>
(130) <home_body> ::= “{" <home_export>**“}"

(131) <home_export ::=<export>

| <factory_dcl>*“;”
| <finder_dcl>*“;”

(132) <factory_dcl> ::= “factory” <identifier>
“(“ [<init_param_decls>]")"
[<raises_expr>]

(133) <finder_dcl> ::= “finder” <identifier>
“(“ [<init_param_decls>]")"
[<raises_expr>]

(134) <event> ::= (<event_dcl>|<event_abs_dcl> |
<event_forward_dcl>)

(135) <event_forward_dcl> ::= [“abstract”] “eventtype” <identifier>

(136) <event_abs_dcl> ::= “abstract” “eventtype” <identifier>

[<value_inheritance_spec>]
“ {11 <eXpOrt>* “ }”
(137) <event_dcl> ::= <event_header>“{" <value_element> *“}”

(138) <event_header> ::= [“custom”] “eventtype”
<identifier> [<value_inheritance_spec>]

3.5 OMG IDL Specification

An OMG IDL specification consists of one or more type definitions, constant
definitions, exception definitions, or module definitions. The syntax is:

(1) <Sp€Cificati0n> = <import>* <definition>*
@ <definition> ::= <type_dcl>":"
<const_dcl>*;"

<except_dcl>"“;”
<interface>“;”
<module>"“;"
<value>"*“;”
<type_id_dcl>";"
<type_prefix_dcl>";"
<event>"“;”

3-18 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

| <component>*“;
| <home_dcl>*“;”

See Section 3.6, “Import Declaration,” on page 3-19, for the specification of
<import>.

See Section 3.7, “Module Declaration,” on page 3-20, for the specification of
<module>.

See Section 3.8, “Interface Declaration,” on page 3-21, for the specification of
<interface>.

See Section 3.9, “Value Declaration,” on page 3-27, for the specification of <value>.

See Section 3.10, “Constant Declaration,” on page 3-32, Section 3.11, “Type
Declaration,” on page 3-36, and Section 3.12, “Exception Declaration,” on page 3-49
respectively for specifications of <const_dcl>, <type_dcl>, and <except_dcl>.

See Section 3.15, “Repository Identity Related Declarations,” on page 3-55, for
specification of Repository Identity declarations which include <type_id_dcl> and
<type_prefix_dcl>.

See Section 3.16, “Event Declaration,” on page 3-57, for specification of <event>.

See Section 3.17, “Component Declaration,” on page 3-58, for specification of
<component>.

See Section 3.18, “Home Declaration,” on page 3-64, for specification of
<home_dcl>.

3.6 Import Declaration

July 2002

The grammar for the import statement is described by the following BNF:

<import> ::= “import” <imported_scope> “;
<imported_scope> ::= <scoped_name> | <string_literal>

The <imported_scope> non-terminal may be either a fully-qualified scoped name
denoting an IDL name scope, or a string containing the interface repository ID of an
IDL name scope, i.e., a definition object in the repository whose interface derives from
CORBA::Container.

The definition of import obviates the need to define the meaning of IDL constructs in
terms of “file scopes’. This specification defines the concepts of a specification as a

unit of IDL expression. In the abstract, a specification consists of a finite sequence of
ISO Latin-1 characters that form alegal IDL sentence. The physical representation of
the specification is of no consequence to the definition of IDL, though it is generally

associated with afile in practice.

Any scoped name that begins with the scope token (“::”) is resolved relative to the
global scope of the specification in which it is defined. In isolation, the scope token
represents the scope of the specification in which it occurs.

CORBA, v3.0: Import Declaration 3-19

A specification that imports name scopes must be interpreted in the context of a well-
defined set of IDL specifications whose union constitutes the space from within which
name scopes are imported. By “awell-defined set of IDL specifications,” we mean any
identifiable representation of IDL specifications, such as an interface repository. The
specific representation from which name scopes are imported is not specified, nor is
the means by which importing is implemented, nor is the means by which a particular
set of IDL specifications (such as an interface repository) is associated with the context
in which the importing specification is to be interpreted.

The effects of an import statement are as follows:

The contents of the specified name scope are visible in the context of the importing
specification. Names that occur in IDL declarations within the importing
specification may be resolved to definitions in imported scopes.

Imported IDL name scopes exist in the same space as names defined in subsequent
declarations in the importing specification.

IDL module definitions may re-open modules defined in imported name scopes.

Importing an inner name scope (i.e., a name scope nested within one or more
enclosing name scopes) does not implicitly import the contents of any of the
enclosing name scopes.

When a name scope is imported, the names of the enclosing scopes in the fully-
qualified pathname of the enclosing scope are exposed within the context of the
importing specification, but their contents are not imported. An importing
specification may not re-define or re-open a name scope which has been exposed
(but not imported) by an import statement.

Importing a name scope recursively imports al name scopes nested within it.

For the purposes of this specification, name scopes that can be imported (i.e.,
specified in an import statement) include the following: modules, interfaces,
valuetypes, and eventtypes.

Redundant imports (e.g., importing an inner scope and one of its enclosing scopes
in the same specification) are disregarded. The union of all imported scopes is
visible to the importing program.

This specification does not define a particular form for generated stubs and
skeletons in any given programming language. In particular, it does not imply any
normative relationship between units specification and units of generation and/or
compilation for any language mapping.

3.7 ModuleDeclaration

A module definition satisfies the following syntax:

®)

<module> ::= “module” <identifier>“{"* <definition>**“}"

The module construct is used to scope OMG IDL identifiers; see Section 3.19,
“CORBA Module,” on page 3-66 for details.

3-20 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

3.8 InterfaceDeclaration

(4)

®)
(6)
(@)

©)
©)

An interface definition satisfies the following syntax:

<interface> ::= <interface_dcl>

| <forward_dcl>
<interface_dcl> ::= <interface_header>"“{" <interface_body>“}"
<forward_dcl> ::= [“abstract” | “local”] “interface” <identifier>
<interface_header> ::= [“abstract” | “local”] “interface” <identifier>

[<interface_inheritance_spec>]
<interface_body> ::= <export>"
<export> ::= <type_dcl>";"

<const_dcl>*“;”
<except_dcl>*“;”
<attr_dcl>*";"
<op_dcl>*;”
<type_id_decl>";"
<type_prefix_decl>*;”

3.8.1 Interface Header

The interface header consists of three elements:
1. An optional modifier specifying if the interface is an abstract interface.

2. The interface name. The name must be preceded by the keyword interface, and
consists of an identifier that names the interface.

3. An optional inheritance specification. The inheritance specification is described in
the next section.

The <identifier> that names an interface defines alegal type name. Such a type name
may be used anywhere an <identifier> is legal in the grammar, subject to semantic
constraints as described in the following sections. Since one can only hold references
to an object, the meaning of a parameter or structure member, which is an interface
type is as a reference to an object supporting that interface. Each language binding
describes how the programmer must represent such interface references.

Abstract interfaces have dlightly different rules and semantics from “regular”
interfaces, as described in Section 3.8.6, “ Abstract Interface,” on page 3-26. They also
follow different language mapping rules.

Local interfaces have dlightly different rules and semantics from “regular” interfaces,
as described in Section 3.8.7, “Loca Interface,” on page 3-26. They also follow
different language mapping rules.

3.8.2 Interface Inheritance Specification

July 2002

The syntax for inheritance is as follows:

CORBA, v3.0: Interface Declaration 3-21

3-22

(10)<interface_inheritance_spec>::=":" <interface_name>
{",” <interface_name> }*
(11) <interface_name> ::= <scoped_name>
(12) <scoped_name> ::= <identifier>
| “:x" <identifier>
| <scoped_name>“::" <identifier>

Each <scoped_name> in an <interface_inheritance_spec> must denote a
previously defined interface. See Section 3.8.5, “Interface Inheritance,” on page 3-23
for the description of inheritance.

3.8.3 Interface Body

The interface body contains the following kinds of declarations:

« Constant declarations, which specify the constants that the interface exports;
constant declaration syntax is described in Section 3.10, “Constant Declaration,” on
page 3-32.

« Type declarations, which specify the type definitions that the interface exports; type
declaration syntax is described in Section 3.11, “Type Declaration,” on page 3-36.

« Exception declarations, which specify the exception structures that the interface
exports; exception declaration syntax is described in Section 3.12, “Exception
Declaration,” on page 3-49.

e Attribute declarations, which specify the associated attributes exported by the
interface; attribute declaration syntax is described in Section 3.14, “Attribute
Declaration,” on page 3-53.

¢ Operation declarations, which specify the operations that the interface exports and
the format of each, including operation name, the type of data returned, the types of
all parameters of an operation, legal exceptions that may be returned as a result of
an invocation, and contextual information that may affect method dispatch;
operation declaration syntax is described in Section 3.13, “Operation Declaration,”
on page 3-50.

Empty interfaces are permitted (that is, those containing no declarations).

Some implementations may require interface-specific pragmas to precede the interface
body.

3.8.4 Forward Declaration

A forward declaration declares the name of an interface without defining it. This
permits the definition of interfaces that refer to each other. The syntax is: optionally
either the keyword abstract or the keyword local, followed by the keyword
interface, followed by an <identifier> that names the interface.

Multiple forward declarations of the same interface name are legal.

Common Object Request Broker Architecture (CORBA), v3.0 July 2002

3

July 2002

Itisillegal to inherit from a forward-declared interface whose definition has not yet
been seen:

module Example {
interface base; /I Forward declaration

...

interface derived : base {}; // Error
interface base {}; /I Define base
interface derived : base {}; // OK

h

3.8.5 Interface Inheritance

An interface can be derived from another interface, which is then called a base
interface of the derived interface. A derived interface, like all interfaces, may declare
new elements (constants, types, attributes, exceptions, and operations). In addition,
unless redefined in the derived interface, the elements of a base interface can be
referred to as if they were elements of the derived interface. The name resolution
operator (“::") may be used to refer to a base element explicitly; this permits reference
to a name that has been redefined in the derived interface.

A derived interface may redefine any of the type, constant, and exception names that
have been inherited; the scope rules for such names are described in Section 3.20,
“Names and Scoping,” on page 3-67.

Aninterface is called a direct base if it is mentioned in the
<interface_inheritance_spec> and an indirect base if it is not a direct base but isa
base interface of one of the interfaces mentioned in the
<interface_inheritance_spec>.

An interface may be derived from any number of base interfaces. Such use of more
than one direct base interface is often called multiple inheritance. The order of
derivation is not significant.

An abstract interface may only inherit from other abstract interfaces.

An interface may not be specified as a direct base interface of a derived interface more
than once; it may be an indirect base interface more than once. Consider the following
example:

interface A{ ...}

interface B: A{ ... }

interface C: A{ ... }

interface D: B, C{ ... }

interface E: A,B{ ... }; Il OK

CORBA, v3.0: Interface Declaration 3-23

3-24

The relationships between these interfaces is shown in Figure 3-1. This “diamond”
shape is legal, as is the definition of E on the right.

AN /]

B<+—E C

Figure 3-1 Legal Multiple Inheritance Example

References to base interface elements must be unambiguous. A Reference to a base
interface element is ambiguous if the name is declared as a constant, type, or exception
in more than one base interface. Ambiguities can be resolved by qualifying a name
with its interface name (that is, using a<scoped_name>). It isillegal to inherit from
two interfaces with the same operation or attribute name, or to redefine an operation or
attribute name in the derived interface.

So for example in:

interface A {
typedef long L1;
short opA(in L11_1);
b

interface B {
typedef short L1;
L1 opB(in long I);

3
interface C: B, A {
typedef L1 L2; /[Error: L1 ambiguous
typedef A::L1L3; /I A::L1is OK
B::L1 opC(in L31_3); //all OK no ambiguities
h

References to constants, types, and exceptions are bound to an interface when it is
defined (i.e., replaced with the equivalent global <scoped_name>s). This guarantees
that the syntax and semantics of an interface are not changed when the interface is a
base interface for a derived interface. Consider the following example:

const long L = 3;

interface A {

Common Object Request Broker Architecture (CORBA), v3.0 July 2002

July 2002

typedef float coord[L]:
void f (in coord s); /I s has three floats

h

interface B {
const long L = 4;

h
interface C: B, A{}; /I what is C::f()’s signature?

The early binding of constants, types, and exceptions at interface definition guarantees
that the signature of operation f in interface C is

typedef float coord[3];
void f (in coord s);

which isidentical to that in interface A. This rule also prevents redefinition of a
constant, type, or exception in the derived interface from affecting the operations and
attributes inherited from a base interface.

Interface inheritance causes all identifiers defined in base interfaces, both direct and
indirect, to be visible in the current naming scope. A type name, constant name,
enumeration value name, or exception name from an enclosing scope can be redefined
in the current scope. An attempt to use an ambiguous name without qualification
produces a compilation error. Thusin

interface A {
typedef string<128> string_t;

b

interface B {
typedef string<256> string_t;

h

interface C: A, B {
attribute string_t Title; /[Error: string_t ambiguous
attribute A::string_t Name; /I OK
attribute B::string_t City; /I OK

h

Operation and attribute names are used at run-time by both the stub and dynamic
interfaces. As aresult, all operations attributes that might apply to a particular object
must have unique names. This requirement prohibits redefining an operation or
attribute name in a derived interface, as well as inheriting two operations or attributes
with the same name.

interface A {
void make_it_so();

h

interface B: A {

CORBA, v3.0: Interface Declaration 3-25

3-26

short make_it_so(in long times); // Error: redefinition of make_it_so
3

For a complete summary of allowable inheritance and supporting relationships among
interfaces and valuetypes see Table 3-10 on page 3-32.

3.8.6 Abstract Interface

An interface declaration containing the keyword abstract in its header, declares an
abstract interface. The following special rules apply to abstract interfaces:

e Abstract interfaces may only inherit from other abstract interfaces.

« Vaue types may support any number of abstract interfaces.

See Section 6.2, “Semantics of Abstract Interfaces,” on page 6-1 for CORBA
implementation semantics associated with abstract interfaces.

For a complete summary of allowable inheritance and supporting relationships among
interfaces and valuetypes see Table 3-10 on page 3-32.

3.8.7 Local Interface

An interface declaration containing the keyword local in its header, declares a local
interface. An interface declaration not containing the keyword local isreferred to as an
unconstrained interface. An object implementing a local interfaces is referred to as a
local object. The following special rules apply to local interfaces:

e A local interface may inherit from other local or unconstrained interfaces.

¢ An unconstrained interface may not inherit from alocal interface. An interface
derived from alocal interface must be explicitly declared local.

« A valuetype may support a local interface.

* Any IDL type, including an unconstrained interface, may appear as a parameter,
attribute, return type, or exception declaration of alocal interface.

e Aloca interfaceis alocal type, asis any non-interface type declaration constructed
using alocal interface or other local type. For example, a struct, union, or exception
with a member that is alocal interface is also itself alocal type.

« A local type may be used as a parameter, attribute, return type, or exception
declaration of alocal interface or of a valuetype.

« A local type may not appear as a parameter, attribute, return type, or exception
declaration of an unconstrained interface or as a state member of a valuetype.

For a complete summary of allowable inheritance and supporting relationships among
interfaces and valuetypes see Table 3-10 on page 3-32.

See Section 4.3.14, “Local Object Operations,” on page 4-23 for CORBA
implementation semantics associated with local objects.

Common Object Request Broker Architecture (CORBA), v3.0 July 2002

3.9 ValueDeclaration

There are several kinds of value type declarations: “regular” value types, boxed value
types, abstract value types, and forward declarations.

A value declaration satisfies the following syntax:

(13) <value> ::= (<value_dcl>|<value_abs_dcl> |
<value_box_dcl> | <value_forward_dcl>)

3.9.1 Regular Value Type

A regular value type satisfies the following syntax:

a7 <value_dcl> ::= <value_header>“{" <value_element>**“}"
(18) <value_header> ::= [“custom”] “valuetype” <identifier>
[<value_inheritance_spec>]
(22) <value_element> := <export>
| < state_member> |
| <init_dcl>

3.9.1.1 ValueHeader

The value header consists of two elements:

1. The value type’'s name and optional modifier specifying whether the value type uses
custom marshaling.

2. An optional value inheritance specification. The value inheritance specification is
described in the next section.

3.9.1.2 ValueElement

A value can contain all the elements that an interface can as well as the definition of
state members, and initializers for that state.

3.9.1.3 Valuelnheritance Specification

(19)<value_inheritance_spec> ::= [“:" [“truncatable”] <value_name>
{"“,” <value_name>}*]
[“supports” <interface_name>
{",” <interface_name> }*]

(20) <value_name> := <scoped_name>

Each <value_name> and <interface_name> in a <value_inheritance_spec>
must denote previously defined value type or interface. See Section 3.9.5, “Vauetype
Inheritance,” on page 3-30 for the description of value type inheritance.

Thetruncatable modifier may not be used if the value type being defined is a custom
value.

July 2002 CORBA, v3.0: Value Declaration 3-27

3-28

3914
(22)

3.9.15
(23)

(24)
(25)

(26)

A valuetype that supports a local interface does not itself become local (i.e.
unmarshalable) as a result of that support.

Sate Members

<state_member> ::= (“public” | “private”)
<type_spec> <declarators>“;”

Each <state_member> defines an element of the state, which is marshaled and sent
to the receiver when the value type is passed as a parameter. A state member is either
public or private. The annotation directs the language mapping to hide or expose the
different parts of the state to the clients of the value type. The private part of the state
is only accessible to the implementation code and the marshaling routines.

A valuetype that has a state member that is local (i.e. non-marshalable like a local
interface), is itself rendered local. That is, such valuetypes behave similar to local
interfaces when an attempt is made to marshal them.

Note that certain programming languages may not have the built in facilities needed to
distinguish between the public and private members. In these cases, the language
mapping specifies the rules that programmers are responsible for following.

Initializers
<init_dcl> ::= “factory” <identifier>
“(* [<init_param_decls>] “)”
[<raises_expr>1"“;"
<init_param_decls> ::= <init_param_decl> {“,” <init_param_decl> }*
<init_param_decl> ::= <init_param_attribute> <param_type_spec>
<simple_declarator>
<init_param_attribute> ::= “in”

In order to ensure portability of value implementations, designers may also define the
signatures of initializers (or constructors) for non abstract value types. Syntactically
these look like local operation signatures except that they are prefixed with the
keyword factory, have no return type, and must use only in parameters. There may be
any number of factory declarations. The names of the initializers are part of the name
scope of the value type. Initializers defined in a valuetype are not inherited by derived
valuetypes, and hence the names of the initializers are free to be reused in a derived
valuetype.

If no initializers are specified in IDL, the value type does not provide a portable way of
creating a runtime instance of its type. There is no default initializer. This allows the
definition of IDL value types, which are not intended to be directly instantiated by
client code.

3.9.1.6 Value Type Example

interface Tree {
void print()

Common Object Request Broker Architecture (CORBA), v3.0 July 2002

h

valuetype WeightedBinaryTree {
/I state definition
private unsigned long weight;
private WeightedBinaryTree left;
private WeightedBinaryTree right;
[l initializer
factory init(in unsigned long w);
/l'local operations
WeightSeq pre_order();
WeightSeq post_order();
h
valuetype WTree: WeightedBinaryTree supports Tree {};

3.9.2 Boxed Value Type
(15) <value_box_dcl> ::= “valuetype” <identifier> <type_spec>

It is often convenient to define a value type with no inheritance or operations and with
a single state member. A shorthand IDL notation is used to simplify the use of value
types for this kind of simple containment, referred to as a “value box.”

Since a value box of a valuetype adds no additional properties to a valuetype, it is an
error to box valuetypes.

Value box is particularly useful for strings and sequences. Basically one does not have
to create what is in effect an additional namespace that will contain only one name.

An example is the following IDL:

module Example {
interface Foo {
... I*anything */
b
valuetype FooSeq sequence<Foo>;
interface Bar {
void dolt (in FooSeq seql);
b
b

The above IDL provides similar functionality to writing the following IDL. However
the type identities (repository 1D’s) would be different.

module Example {
interface Foo {
... I*anything */
h
valuetype FooSeq {
public sequence<Foo> data;
h

interface Bar {

July 2002 CORBA, v3.0: Value Declaration 3-29

3-30

void dolt (in FooSeq seq);

b

The former is easier to manipulate after it is mapped to a concrete programming
language.

Any IDL type may be used to declare a value box except for a valuetype.

The declaration of a boxed value type does not open a new scope.Thus a construction
such as:

valuetype FooSeq sequence <FooSeq>;

isnot legal IDL. The identifier being declared as a boxed value type cannot be used
subsequent to its initial use and prior to the completion of the boxed value declaration.

3.9.3 Abstract Value Type

(16)

<value_abs_dcl> ::= “abstract” “valuetype” <identifier>
[<value_inheritance_spec>]
" {“ <eXpOrt>* “ }H

Value types may also be abstract. They are called abstract because an abstract value
type may not be instantiated. No <state_member> or <initializers> may be specified.
However, local operations may be specified. Essentially they are a bundle of operation
signatures with a purely local implementation.

Note that a concrete value type with an empty state is not an abstract value type.

3.9.4 Value Forward Declaration

(14)

<value_forward_dcl> ::= [“abstract”] “valuetype” <identifier>

A forward declaration declares the name of a value type without defining it. This
permits the definition of value types that refer to each other. The syntax consists
simply of the keyword valuetype followed by an <identifier> that names the value
type.

Multiple forward declarations of the same value type name are legal.

Boxed value types cannot be forward declared; such a forward declaration would refer
to a normal value type.

Itisillegal to inherit from a forward-declared value type whose definition has not yet
been seen.

3.9.5 Valuetype Inheritance

The terminology that is used to describe value type inheritance is directly analogous to
that used to describe interface inheritance (see Section 3.8.5, “Interface Inheritance,”
on page 3-23).

Common Object Request Broker Architecture (CORBA), v3.0 July 2002

July 2002

The name scoping and name collision rules for valuetypes are identical to those for
interfaces. In addition, no valuetype may be specified as a direct abstract base of a
derived valuetype more than once; it may be an indirect abstract base more than once.
See Section 3.8.5, “Interface Inheritance,” on page 3-23 for a detailed description of
the analogous properties for interfaces.

Values may be derived from other values and can support an interface and any number
of abstract interfaces.

Once implementation (state) is specified at a particular point in the inheritance
hierarchy, all derived value types (which must of course implement the state) may only
derive from a single (concrete) value type. They can however derive from other
additional abstract values and support an additional interface.

The single immediate base concrete value type, if present, must be the first element
specified in the inheritance list of the value declaration’s IDL. It may be followed by
other abstract values from which it inherits. The interface and abstract interfaces that it
supports are listed following the supports keyword.

While a valuetype may only directly support one interface, it is possible for the
valuetype to support other interfaces as well through inheritance. In this case, the
supported interface must be derived, directly or indirectly, from each interface that the
valuetype supports through inheritance. This rule does not apply to abstract interfaces
that the valuetype supports. For example:

interface 11 { };
interface 12 { };
interface 13: 11, 12 { };

abstract valuetype V1 supports 11 { };
abstract valuetype V2 supports 12{ };
valuetype V3: V1, V2 supports I3 { }; // legal
valuetype V4: V1 supports 12 { }; // illegal

A stateful value that derives from another stateful value may specify that it is
truncatable. This means that it is to “truncate” (see Section 5.2.5.3, “Value instance -
> Value type,” on page 5-5) an instance to be an instance of any of its truncatable
parent (stateful) value types under certain conditions. Note that all the intervening
types in the inheritance hierarchy must be truncatable in order for truncation to a
particular type to be allowed.

Because custom values require an exact type match between the sending and receiving
context, truncatable may not be specified for a custom value type.

Non-custom value types may not (transitively) inherit from custom value types.

Boxed value types may not be derived from, nor may they derive from anything else.

CORBA, v3.0: Value Declaration 331

These rules are summarized in the following table:

Table 3-10 Allowable Inheritance Relationships

May inherit Interface Abstract Abstract Sateful Value | Boxed
from: Interface Value value
Interface multiple multiple no no no
Abstract no multiple no no no
Interface
supports supports multiple no no
Abstract Value single multiple
supports supports multiple single (may be | no
Sateful Value single multiple truncatabl)
Boxed Value no no no no no
3.10 Constant Declaration
This section describes the syntax for constant declarations.
3.10.1 Syntax
The syntax for a constant declaration is:
27) <const_dcl> ::= “const” <const_type>
<identifier>“=" <const_exp>
(28) <const_type> ::= <integer_type>
| <char_type>
| <wide_char_type>
| <boolean_type>
| <floating_pt_type>
| <string_type>
| <wide_string_type>
| <fixed_pt_const_type>
| <scoped_name>
| <octet_type>
(29) <const_exp> ::= <or_expr>
(30) <or_expr> .= <xor_expr>
| <or_expr>"“|" <xor_expr>
(31) <xor_expr> ::= <and_expr>
| <xor_expr>*“~" <and_expr>
(32) <and_expr> ::= <shift_expr>
| <and_expr>“&” <shift_expr>
(33) <shift_expr> ::= <add_expr>
| <shift_expr>*“>>" <add_expr>
| <shift_expr>*“<<" <add_expr>
(34) <add_expr> = <mult_expr>
| <add_expr>*“+" <mult_expr>
| <add_expr>“-" <mult_expr>
3-32 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

July 2002

(39)

(36)

(37)

(38)

(39)

(40)

(41)

<mult_expr> ::= <unary_expr>
| <mult_expr>“* <unary_expr>
| <mult_expr>"“/" <unary_expr>
| <mult_expr>“%" <unary_expr>
<unary_expr> ::= <unary_operator> <primary_expr>
| <primary_expr>
<unary_operator> = “-7

| 13 +H
<primary_expr> ::= <scoped_name>
| <literal>
| “ (H <CO|’]St_eXp> u)!l
<literal> ::= <integer_literal>

<string_literal>
<wide_string_literal>
<character_literal>
<wide_character_literal>
<fixed_pt_literal>
<floating_pt_literal>
<boolean_literal>

<boolean_literal> ::= “TRUE"
| “FALSE”
<positive_int_const> ::= <const_exp>

3.10.2 Semantics

The<scoped_name> inthe <const_type> production must be a previously defined
name of an <integer_type>, <char_type>, <wide_char_type>, <boolean_type>,
<floating_pt_type>, <string_type>, <wide_string_type>, <octet_type>, or
<enum_type> constant.

Integer literals have positive integer values. Only integer values can be assigned to
integer type (short, long, long long) constants. Only positive integer values can be
assigned to unsigned integer type constants. If the value of the right hand side of an
integer constant declaration is too large to fit in the actual type of the constant on the
left hand side, for example

const short s = 655592;

or is inappropriate for the actual type of the left hand side, for example

const octet o = -54;
it shall be flagged as a compile time error.

Floating point literals have floating point values. Only floating point values can be
assigned to floating point type (float, double, long double) constants. If the value of
the right hand side is too large to fit in the actual type of the constant to which it is
being assigned it shall be flagged as a compile time error.

CORBA, v3.0: Constant Declaration 3-33

3-34

Fixed point literals have fixed point values. Only fixed point values can be assigned to
fixed point type constants. If the fixed point value in the expression on the right hand
side is too large to fit in the actual fixed point type of the constant on the left hand
side, then it shall be flagged as a compile time error.

An infix operator can combine two integers, floats or fixeds, but not mixtures of these.
Infix operators are applicable only to integer, float and fixed types.

If the type of an integer constant islong or unsigned long, then each subexpression
of the associated constant expression is treated as an unsigned long by default, or a
signed long for negated literals or negative integer constants. It is an error if any
subexpression values exceed the precision of the assigned type (long or unsigned
long), or if afinal expression value (of type unsigned long) exceeds the precision of
the target type (long).

If the type of an integer constant islong long or unsigned long long, then each
subexpression of the associated constant expression is treated as an unsigned long
long by default, or a signed long long for negated literals or negative integer
constants. It is an error if any subexpression values exceed the precision of the
assigned type (long long or unsigned long long), or if afinal expression value (of
type unsigned long long) exceeds the precision of the target type (long long).

If the type of a floating-point constant is double, then each subexpression of the
associated constant expression is treated as a double. It isan error if any
subexpression value exceeds the precision of double.

If the type of afloating-point constant islong double, then each subexpression of the
associated constant expression is treated as along double. It is an error if any
subexpression value exceeds the precision of long double.

Fixed-point decimal constant expressions are evaluated as follows. A fixed-point literal
has the apparent number of total and fractional digits. For example, 0123.450d is
considered to be fixed<7,3> and 3000.00d is fixed<6,2>. Prefix operators do not
affect the precision; a prefix + is optional, and does not change the result. The upper
bounds on the number of digits and scale of the result of an infix expression,
fixed<d1,s1> op fixed<d2,s2>, are shown in the following table:

Op Result: fixed<d,s>

+ fixed<max(d1-s1,d2-s2) + max(sl,s2) + 1, max(sl,s2)>
- fixed<max(d1-s1,d2-s2) + max(sl,s2) + 1, max(sl,s2)>
* fixed<d1+d2, s1+s2>

/ fixed<(d1-s1+s2) + sinf, sinf>

A quotient may have an arbitrary number of decimal places, denoted by a scale of s
The computation proceeds pairwise, with the usual rules for left-to-right association,
operator precedence, and parentheses. All intermediate computations shall be
performed using double precision (i.e., 62 digit) arithmetic. If an individual
computation between a pair of fixed-point literals actually generates more than 31
significant digits, then a 31-digit result is retained as follows:

Common Object Request Broker Architecture (CORBA), v3.0 July 2002

July 2002

fixed<d,s> => fixed<31, 31-d+s>

Leading and trailing zeros are not considered significant. The omitted digits are
discarded; rounding is not performed. The result of the individual computation then
proceeds as one literal operand of the next pair of fixed-point literals to be computed.

Unary (+ -) and binary (* / + -) operators are applicable in floating-point and fixed-
point expressions. Unary (+ - ~) and binary (*/ % + - << >> & |) operators are
applicable in integer expressions.

The “~" unary operator indicates that the bit-complement of the expression to which it
is applied should be generated. For the purposes of such expressions, the values are 2's
complement numbers. As such, the complement can be generated as follows:

Integer Constant Expression Type Generated 2's Complement Numbers
long long -(value+l)

unsigned long unsigned long (2**32-1) - value

long long long long -(value+1)

unsigned long long unsigned long (2**64-1) - value

The “%" binary operator yields the remainder from the division of the first expression
by the second. If the second operand of “%” is 0, the result is undefined; otherwise

(a/b)*b + a%b

is equal to a. If both operands are nonnegative, then the remainder is nonnegative; if
not, the sign of the remainder is implementation dependent.

The “<<"binary operator indicates that the value of the left operand should be shifted
left the number of bits specified by the right operand, with 0O fill for the vacated bits.
The right operand must be in the range 0 <= right operand < 64.

The “>>" binary operator indicates that the value of the left operand should be shifted
right the number of bits specified by the right operand, with O fill for the vacated bits.
The right operand must be in the range 0 <= right operand < 64.

The “&” binary operator indicates that the logical, bitwise AND of the left and right
operands should be generated.

The “|" binary operator indicates that the logical, bitwise OR of the left and right
operands should be generated.

The “~" binary operator indicates that the logical, bitwise EXCLUSIVE-OR of the left
and right operands should be generated.

<positive_int_const> must evaluate to a positive integer constant.

An octet constant can be defined using an integer literal or an integer constant
expression, for example:

const octet O1 = Ox1;

CORBA, v3.0: Constant Declaration 3-35

const long L = 3;
const octet 02 =5+1L;

Values for an octet constant outside the range 0 - 255 shall cause a compile-time error.

An enum constant can only be defined using a scoped name for the enumerator. The
scoped name is resolved using the normal scope resolution rules Section 3.20, “Names
and Scoping,” on page 3-67. For example:

enum Color { red, green, blue };
const Color FAVORITE_COLOR =red;

module M {
enum Size { small, medium, large };
}.

const M::Size MYSIZE = M::medium;

The constant name for the RHS of an enumerated constant definition must denote one
of the enumerators defined for the enumerated type of the constant. For example:

const Color col =red; //is OK but
const Color another = M::medium; // is an error

3.11 TypeDeclaration

3-36

(42)

(43)

(44)

(45)

(46)

OMG IDL provides constructs for naming data types; that is, it provides C language-
like declarations that associate an identifier with atype. OMG IDL uses the typedef
keyword to associate a name with a data type; a name is also associated with a data

type via the struct, union, enum, and native declarations; the syntax is:

<type_dcl> ::= “typedef” <type_declarator>
| <struct_type>
| <union_type>
| <enum_type>
| “native” <simple_declarator>
| <constr_forward_decl>

<type_declarator> ::= <type_spec> <declarators>

For type declarations, OMG IDL defines a set of type specifiers to represent typed
values. The syntax is as follows:

<type_spec> ::= <simple_type_spec>
| <constr_type_spec>
<simple_type_spec> ::= <base_type_spec>

| <template_type_spec>

| <scoped _name>
<base_type spec> ::= <floating_pt_type>

| <integer_type>

| <char_type>

| <wide_char_type>

Common Object Request Broker Architecture (CORBA), v3.0 July 2002

July 2002

(47)

(48)
(49)
(50)

(51)
(52)

<boolean_type>
<octet_type>
<any_type>
<object_type>
<value_base_type>
<template_type_spec> ::= <sequence_type>

| <string_type>

| <wide_string_type>

| <fixed_pt_type>

<constr_type_spec> ::= <struct_type>
| <union_type>
| <enum_type>

<declarators> ::= <declarator>{*“,” <declarator> }"
<declarator> ::= <simple_declarator>
| <complex_declarator>
<simple_declarator> ::= <identifier>
<complex_declarator> ::= <array_declarator>

The <scoped_name> in <simple_type_spec> must be a previously defined type
introduced by an interface declaration (<interface_dcl> - see Section 3.8, “Interface
Declaration), a value declaration (<value_dcl>, <value_box_dcl> or
<abstract_value_dcl> - see Section 3.9, “Vaue Declaration) or a type declaration
(<type_dcl> - see Section 3.11, “Type Declaration). Note that exceptions are not
considered types in this context.

As seen above, OMG IDL type specifiers consist of scalar data types and type
constructors. OMG IDL type specifiers can be used in operation declarations to assign
data types to operation parameters. The next sections describe basic and constructed
type specifiers.

3.11.1 Basic Types

(53)

(54)
(55)
(56)
(67)

(58)
(59)

(60)

The syntax for the supported basic types is as follows:

<floating_pt_type> ::= “float”
| “double”
| “long” “double”
<integer_type> ::= <signed_int>
| <unsigned_int>
<signed_int> ::= <signed_short_int>

| <signed_long_int>
| <signed_longlong_int>

<signed_short_int> ::= “short”
<signed_long_int> ::= “long”
<signed_longlong_int> ::= “long” “long”
<unsigned_int> ::= <unsigned_short_int>

| <unsigned_long_int>
| <unsigned_longlong_int>
<unsigned_short_int> ::= “unsigned” “short”

CORBA, v3.0: TypeDeclaration 3-37

3-38

(61) <unsigned_long_int> ::= “unsigned” “long”
(62) <unsigned_longlong_int> ::= “unsigned” “long” “long”
(63) <char_type> ::= “char”
(64) <wide_char_type> ::= “wchar”
(65) <boolean_type> ::= “boolean”
(66) <octet_type> ::= “octet”
(67) <any_type> ::= “any”
Each OMG IDL datatype is mapped to a native data type via the appropriate language
mapping. Conversion errors between OMG IDL data types and the native types to
which they are mapped can occur during the performance of an operation invocation.
The invocation mechanism (client stub, dynamic invocation engine, and skeletons) may
signal an exception condition to the client if an attempt is made to convert an illegal
value. The standard system exceptions that are to be raised in such situations are
defined in Section 4.12, “Exceptions,” on page 4-63.
3.11.1.1 Integer Types
OMG IDL integer types are short, unsigned short, long, unsigned long, long
long and unsigned long long, representing integer values in the range indicated
below in Table 3-11.
Table 3-11 Range of integer types
short 215 2151
long 281 28ty
long long 263 283.1
unsigned short 0.216.1
unsigned long 0.2%2.1
unsigned long long 0.264.1
3.11.1.2 Floating-Point Types
OMG IDL floating-point types are float, double and long double. The float type
represents |EEE single-precision floating point numbers; the double type represents
|EEE double-precision floating point numbers.The long double data type represents
an |EEE double-extended floating-point number, which has an exponent of at least 15
bits in length and a signed fraction of at least 64 bits. See IEEE Sandard for Binary
Floating-Point Arithmetic, ANSI/IEEE Standard 754-1985, for a detailed specification.
3.11.1.3 Char Type

OMG IDL defines a char data type that is an 8-bit quantity that (1) encodes a single-
byte character from any byte-oriented code set, or (2) when used in an array, encodes a
multi-byte character from a multi-byte code set. In other words, an implementation is
free to use any code set internally for encoding character data, though conversion to
another form may be required for transmission.

Common Object Request Broker Architecture (CORBA), v3.0 July 2002

3

The 1SO 8859-1 (Latinl) character set standard defines the meaning and representation
of all possible graphic characters used in OMG IDL (i.e, the space, alphabetic, digit
and graphic characters defined in Table 3-2 on page 3-3, Table 3-3 on page 3-4, and
Table 3-4 on page 3-4). The meaning and representation of the null and formatting
characters (see Table 3-5 on page 3-5) is the numerical value of the character as
defined in the ASCII (ISO 646) standard. The meaning of all other charactersis
implementati on-dependent.

During transmission, characters may be converted to other appropriate forms as
required by a particular language binding. Such conversions may change the
representation of a character but maintain the character’s meaning. For example, a
character may be converted to and from the appropriate representation in international
character sets.

3.11.1.4 WdeChar Type

OMG IDL defines awchar data type that encodes wide characters from any character
set. As with character data, an implementation is free to use any code set internally for
encoding wide characters, though, again, conversion to another form may be required
for transmission. The size of wchar is implementation-dependent.

3.11.1.5 Boolean Type

The boolean data type is used to denote a data item that can only take one of the
values TRUE and FALSE.

3.11.1.6 Octet Type

The octet type is an 8-bit quantity that is guaranteed not to undergo any conversion
when transmitted by the communication system.

3.11.1.7 AnyType

The any type permits the specification of values that can express any OMG IDL type.

An any logically contains a TypeCode (see Section 4.11, “TypeCodes,” on

page 4-53) and a value that is described by the TypeCode. Each IDL language
mapping provides operations that allow programers to insert and access the TypeCode
and value contained in an any.

3.11.2 Constructed Types

Structs, unions and enums are the constructed types. Their syntax is presented in
this section:
(42) <type_dcl> ::= “typedef” <type_declarator>
| <struct_type>
| <union_type>
| <enum_type>

July 2002 CORBA, v3.0: Type Declaration 3-39

3-40

(48)

(99)

311.21

(69)
(70)
(71)

3.11.2.2

(72)

(73)

(74)
(75)
(76)

(77)

<constr_type_spec> ::=

<constr_forward_decl> ::=

Sructures

The syntax for struct typeis
<struct_type> ::=
<member_list> ::=
<member> ::=

“native” <simple_declarator>
<constr_forward_decl>

<struct_type>
<union_type>
<enum_type>
“struct” <identifier>
“union” <identifier>

“struct” <identifier> “{" <member_list>“}"
<member>*
<type_spec> <declarators> “;"

The<identifier>in <struct_type> defines anew legal type. Structure types may aso
be named using atypedef declaration.

Name scoping rules require that the member declarators in a particular structure be
unique. The value of a struct is the value of al of its members.

Discriminated Unions

The discriminated union syntax is:

<union_type>

<switch_type_spec> ::=

<switch_body> ::=
<case> .=
<case_label> ::=

<element_spec> ::=

“union” <identifier> “switch”
“(" <switch_type_spec>"*)”

“{" <switch_body> “}"
<integer_type>

<char_type>

<boolean_type>

<enum_type>

<scoped_name>

<case>"

<case_label>* <element_spec> “;”

“case” <const_exp>"“:"
“default” “:”

<type_spec> <declarator>

OMG IDL unions are a cross between the C uni on and swi t ch statements. IDL
unions must be discriminated; that is, the union header must specify a typed tag field
that determines which union member to use for the current instance of acall. The
<identifier> following the union keyword defines a new legal type. Union types may
also be named using atypedef declaration. The <const_exp> in a<case_label>
must be consistent with the <switch_type _spec>. A default case can appear at
most once. The <scoped_name> in the <switch_type_spec> production must be a
previously defined integer, char, boolean or enum type.

Common Object Request Broker Architecture (CORBA), v3.0 July 2002

July 2002

3.11.2.3

Case labels must match or be automatically castable to the defined type of the
discriminator. Name scoping rules require that the element declarators in a particular
union be unique. If the <switch_type_spec>isan <enum_type>, the identifier for
the enumeration is in the scope of the union; as aresult, it must be distinct from the
element declarators.

It is not required that all possible values of the union discriminator be listed in the
<switch_body>. The value of a union is the value of the discriminator together with
one of the following:

« If the discriminator value was explicitly listed in a case statement, the value of the
element associated with that case statement;

e If adefault case label was specified, the value of the element associated with the
default case label;

* No additional value.

The values of the constant expressions for the case labels of a single union definition
must be distinct. A union type can contain a default label only where the values given
in the non-default labels do not cover the entire range of the union's discriminant type.

Access to the discriminator and the related element is language-mapping dependent.

Note — While any ISO Latin-1 (8859.1) IDL character literal may be used in a
<case_label> in a union definition whose discriminator type is char, not all of these
characters are present in all transmission code sets that may be negotiated by GIOP or
in al native code sets that may be used by implementation language compilers and
runtimes. When an attempt is made to marshal to CDR a union whose discriminator
value of char type is not available in the negotiated transmission code set, or to
demarshal from CDR aunion whose discriminator value of char typeis not available
in the native code set, a DATA_CONVERSION system exception is raised. Therefore,
to ensure portability and interoperability, care must be exercised when assigning the
<case_label> for aunion member whose discriminator type is char. Due to these
issues, use of char types as the discriminator type for unionsis not recommended.

Constructed Recursive Typesand IForward Declarations

The IDL syntax allows the generation of recursive structures and unions via members
that have a sequence type. The element type of a recursive sequence struct or union
member must identify a struct, union, or valuetype. (A valuetype is allowed to have a
member of its own type either directly or indirectly through a member of a constructed
type—see Section 3.9.1.6, “Value Type Example,” on page 3-28.) For example, the
following is legal:

struct Foo {

long value;
sequence<Foo> chain; /I Deprecated (see Section 3.11.6)
}
CORBA, v3.0: TypeDeclaration 341

3-42

See Section 3.11.3.1, “ Sequences,” on page 3-44 for details of the sequence template
type.

IDL supports recursive types via a forward declaration for structures and unions (as
well as for valuetypes—see Section 3.9.1.6, “Value Type Example,” on page 3-28).
Because anonymous types are deprecated (see Section 3.11.6, “ Deprecated Anonymous
Types,” on page 3-47), the previous example is better written as:

struct Foo; /l Forward declaration
typedef sequence<Foo> FooSeq;
struct Foo {

long value;

FooSeq chain;

h

The forward declaration for the structure enables the definition of the sequence type
FooSeq, which is used as the type of the recursive member.

Forward declarations are legal for structures and unions.A structure or union type is
termed incomplete until its full definition is provided; that is, until the scope of the
structure or union definition is closed by a terminating "}". For example:

struct Foo; /[Introduces Foo type name,
/[Foo is incomplete now
...
struct Foo {
...
}; /I Foo is complete at this point

If a structure or union is forward declared, a definition of that structure or union must
follow the forward declaration in the same source file. Compilers shall issue a
diagnostic if this rule is violated. Multiple forward declarations of the same structure
or union are legal.

If arecursive structure or union member is used, sequence members that are recursive
must refer to an incomplete type currently under definition. For example

struct Foo; /l Forward declaration
typedef sequence<Foo> FooSeq;
struct Bar {
long value;
FooSeq chain; /llllegal, Foo is not an enclosing struct or union

3
Compilers shall issue a diagnostic if this rule is violated.

Recursive definitions can span multiple levels. For example:

union Bar; /I Forward declaration

typedef sequence<Bar> BarSeq;

union Bar switch(long) { // Define incomplete union
case 0:

Common Object Request Broker Architecture (CORBA), v3.0 July 2002

July 2002

311.24

(78)

(79)

long |_mem;
case 1:
struct Foo {
double d_mem;
BarSeq nested; // OK, recurse on enclosing
/[incomplete type
}s_mem;

h

An incomplete type can only appear as the element type of a sequence definition. A
sequence with incomplete element type is termed an incomplete sequence type:

struct Foo; /l Forward declaration
typedef sequence<Foo> FooSeq; /lincomplete

An incompl ete sequence type can appear only as the element type of another sequence,
or as the member type of a structure or union definition. For example:

struct Foo; /I Forward declaration
typedef sequence<Foo> FooSeq; Il OK
typedef sequence<FooSeq> FooTree; // OK

interface | {
FooSeq opl(); Il lllegal, FooSeq is incomplete
void op2(// lllegal, FooTree is incomplete

in FooTree t

);

h

struct Foo { /I Provide definition of Foo
long |_mem;
FooSeq chain; Il OK
FooTree tree; /l OK

b

interface J {
FooSeq opl(); /I OK, FooSeq is complete
void op2(
in FooTreet // OK, FooTree is complete
)i
h

Compilers shall issue a diagnostic if this rule is violated.

Enumerations

Enumerated types consist of ordered lists of identifiers. The syntax is:

<enum_type> ::= “enum” <identifier>
“{" <enumerator>{ “,” <enumerator> }"*}”
<enumerator> ::= <identifier>

CORBA, v3.0: TypeDeclaration 343

3-44

A maximum of 2% identifiers may be specified in an enumeration; as such, the
enumerated names must be mapped to a native data type capable of representing a
maximally-sized enumeration. The order in which the identifiers are named in the
specification of an enumeration defines the relative order of the identifiers. Any
language mapping that permits two enumerators to be compared or defines
successor/predecessor functions on enumerators must conform to this ordering relation.
The <identifier> following the enum keyword defines a new legal type. Enumerated
types may also be named using a typedef declaration.

3.11.3 Template Types

(47)

3.11.31

(80)

The template types are:
<template_type_spec> ::= <sequence_type>
| <string_type>
| <wide_string_type>
| <fixed_pt_type>
Sequences

OMG IDL defines the sequence type sequence. A sequence is a one-dimensional
array with two characteristics: a maximum size (which is fixed at compile time) and a
length (which is determined at run time).

The syntax is:
<sequence_type> := “sequence” “<” <simple_type_spec>"“
<positive_int_const>“>"
| “sequence” “<” <simple_type_spec>"“>"

The second parameter in a sequence declaration indicates the maximum size of the
sequence. If apositive integer constant is specified for the maximum size, the sequence
is termed a bounded sequence. If no maximum size is specified, size of the sequenceis
unspecified (unbounded).

Prior to passing a bounded or unbounded sequence as a function argument (or as a
field in a structure or union), the length of the sequence must be set in a language-
mapping dependent manner. After receiving a sequence result from an operation
invocation, the length of the returned sequence will have been set; this value may be
obtained in a language-mapping dependent manner.

A sequence type may be used as the type parameter for another sequence type. For
example, the following:

typedef sequence< sequence<long> > Fred;

declares Fred to be of type “unbounded sequence of unbounded sequence of long.”
Note that for nested sequence declarations, white space must be used to separate the
two “>" tokens ending the declaration so they are not parsed as a single “>>" token.

Common Object Request Broker Architecture (CORBA), v3.0 July 2002

July 2002

3.11.3.2

(81)

3.11.3.3

(82)

3.11.34

(96)

Srings

OMG IDL defines the string type string consisting of al possible 8-bit quantities
except null. A string is similar to a sequence of char. As with sequences of any type,
prior to passing a string as a function argument (or as a field in a structure or union),
the length of the string must be set in a language-mapping dependent manner. The
syntax is:

<string_type> ::= “string” “
| “string”

<" <positive_int_const>“>"

The argument to the string declaration is the maximum size of the string. If a positive
integer maximum size is specified, the string is termed a bounded string; if no
maximum size is specified, the string is termed an unbounded string.

Strings are singled out as a separate type because many languages have special built-in
functions or standard library functions for string manipulation. A separate string type
may permit substantial optimization in the handling of strings compared to what can be
done with sequences of general types.

Wstrings

The wstring data type represents a sequence of wchar, except the wide character null.
The type wstring is similar to that of type string, except that its element type is wchar
instead of char. The actual length of a wstring is set at run-time and, if the bounded
form is used, must be less than or equal to the bound.

The syntax for defining a wstring is:

<wide_string_type> ::= “wstring
| “wstring”

<” <positive_int_const>“>"

Fixed Type

The fixed data type represents a fixed-point decimal number of up to 31 significant
digits. The scale factor is a non-negative integer less than or equal to the total number
of digits (note that constants with effectively negative scale, such as 10000, are always
permitted).

The fixed data type will be mapped to the native fixed point capability of a
programming language, if available. If there is not a native fixed point type, then the
IDL mapping for that language will provide a fixed point data type. Applications that
use the IDL fixed point type across multiple programming languages must take into
account differences between the languages in handling rounding, overflow, and
arithmetic precision.

The syntax of fixed typeis:

<fixed_pt_type> ::= “fixed” “<“ <positive_int_const>*,
<positive_int_const> “>"

CORBA, v3.0: TypeDeclaration 345

3-46

(97)

<fixed_pt_const_type> ::= “fixed”

3.11.4 Complex Declarator

31141

(83)
(84)

Arrays

OMG IDL defines multidimensional, fixed-size arrays. An array includes explicit sizes
for each dimension.

The syntax for arraysis:

<array_declarator> ::= <identifier> <fixed_array_size>"
<fixed_array_size> “[" <positive_int_const> “]”

The array size (in each dimension) isfixed at compile time. When an array is passed as
a parameter in an operation invocation, all elements of the array are transmitted.

The implementation of array indices is language mapping specific; passing an array
index as a parameter may yield incorrect results.

3.11.5 Native Types

(42)
(51)

OMG IDL provides a declaration for use by object adapters to define an opaque type
whose representation is specified by the language mapping for that object adapter.

The syntax is:

<type_dcl> ::= “native” <simple_declarator>
<simple_declarator> ::= <identifier>

This declaration defines a new type with the specified name. A native typeis similar to
an IDL basic type. The possible values of a native type are language-mapping
dependent, as are the means for constructing them and manipulating them. Any
interface that defines a native type requires each language mapping to define how the
native type is mapped into that programming language.

A native type may be used only to define operation parameters, results and exceptions.
If anativetypeis used for an exception, it must be mapped to atype in a programming
language that can be used as an exception. Native type parameters are permitted only
in operations of local interfaces or valuetypes. Any attempt to transmit a value of a
native type in a remote invocation may raise the MARSHAL standard system
exception.

It is recommended that native types be mapped to equivalent type names in each
programming language, subject to the normal mapping rules for type names in that
language. For example, in a hypothetical Object Adapter IDL module

module HypotheticalObjectAdapter {

native Servant;
interface HOA {

Common Object Request Broker Architecture (CORBA), v3.0 July 2002

Object activate_object(in Servant x);
h
h

The IDL type Servant would map to HypotheticalObjectAdapter::Servant in C++
and the activate_object operation would map to the following C++ member function
signature:

CORBA: : Obj ect _ptr activate_object(
Hypot het i cal Cbj ect Adapt er: : Servant Xx);

The definition of the C++ type Hypot het i cal Obj ect Adapt er: : Ser vant
would be provided as part of the C++ mapping for the Hypothetical ObjectAdapter
module.

Note — The native type declaration is provided specifically for use in object adapter
interfaces, which require parameters whose values are concrete representations of
object implementation instances. It is strongly recommended that it not be used in
service or application interfaces. The native type declaration allows object adapters to
define new primitive types without requiring changes to the OMG IDL language or to
OMG IDL compiler.

3.11.6 Deprecated Anonymous Types

IDL currently permits the use of anonymous types in a number of places. For example:

struct Foo {
long value;
sequence<Foo> chain; /I Legal (but deprecated)

}

Anonymous types cause a humber of problems for language mappings and are
therefore deprecated by this specification. Anonymous types will be removed in a
future version, so new IDL should avoid use of anonymous types and use a typedef to
name such types instead. Compilers need not issue a warning if a deprecated construct
is encountered.

The following (non-exhaustive) examples illustrate deprecated uses of anonymous
types.

Anonymous bounded string and bounded wide string types are deprecated. This rule
affects constant definitions, attribute declarations, return value and parameter type
declarations, sequence and array element declarations, and structure, union, exception,
and valuetype member declarations. For example

const string<5> GREETING = “Hello"; /I Deprecated
interface Foo {
readonly attribute wstring<5> name; /l Deprecated
wstring<5> op(in wstring<5> param); I/l Deprecated

July 2002 CORBA, v3.0: TypeDeclaration 3-47

3-48

h
typedef sequence<wstring<5> > WS5Seq; /I Deprecated
typedef wstring<5> NameVector [10]; /I Deprecated
struct A {

wstring<5> mem; I/l Deprecated
I3

/I Anonymous member type in unions, exceptions,
/I and valuetypes are deprecated as well.

This is better written as:

typedef string<5> GreetingType;
const GreetingType GREETING = “Hello”;

typedef wstring<5> ShortWName;
interface Foo {
readonly attribute ShortWName name;
ShortWName op(in ShortWName param);
h
typedef sequence<ShortWName> NameSeq;
typedef ShortWName NameVector[10];
struct A {
GreetingType mem;

b

Anonymous fixed-point types are deprecated. This rule affects attribute declarations,
return value and parameter type declarations, sequence and array element declarations,
and structure, union, exception, and valuetype member declarations.

struct Foo {
fixed<10,5> member; /I Deprecated

h
This is better written as:
typedef fixed<10,5> My Type;

struct Foo {
MyType member;

h

Anonymous member types in structures, unions, exceptions, and valuetypes are
deprecated:

union U switch(long) {

case 1:

long array_mem[10]; I/l Deprecated
case 2:

sequence<long> seq_mem; // Deprecated
case 3:

string<5> bstring_mem;

Common Object Request Broker Architecture (CORBA), v3.0 July 2002

This is better written as:

typedef long LongArray[10];
typedef sequence<long> LongSeq;
typedef string<5> ShortName;
union U switch (long) {
case 1:
LongArray array_mem;
case 2:
LongSeq seq_mem;
case 3:
ShortName bstring_mem;

b

Anonymous array and sequence elements are deprecated:

typedef sequence<sequence<long> > NumberTree; // Deprecated
typedef fixed<10,2> FixedArray[10];

This is better written as:

typedef sequence<long> ListOfNumbers;
typedef sequence<ListOfNumbers> NumberTree;
typedef fixed<10,2> Fixed_10_2;

typedef Fixed_10_2 FixedArray[10];

The preceding examples are not exhaustive. They simply illustrate the rule that, for a
type to be used in the definition of another type, constant, attribute, return value,
parameter, or member, that type must have a name. Note that the following example is
not deprecated (even though stylistically poor):

struct Foo {
struct Bar {

long |_mem;
double d_mem;
} bar_mem_1; /I OK, not anonymous
Bar bar_mem_2; /l OK, not anonymous
3
typedef sequence<Foo::Bar> FooBarSeq; /l Scoped names are OK

3.12 Exception Declaration

Exception declarations permit the declaration of struct-like data structures, which may
be returned to indicate that an exceptional condition has occurred during the
performance of arequest. The syntax is as follows:

(86) <except_dcl> ::= “exception” <identifier>“{* <member>*“}"

July 2002 CORBA, v3.0: Exception Declaration 3-49

Each exception is characterized by its OMG IDL identifier, an exception type
identifier, and the type of the associated return value (as specified by the <member>
in its declaration). If an exception is returned as the outcome to a request, then the
value of the exception identifier is accessible to the programmer for determining which
particular exception was raised.

If an exception is declared with members, a programmer will be able to access the
values of those members when an exception is raised. If no members are specified, no
additional information is accessible when an exception is raised.

An identifier declared to be an exception identifier may thereafter appear only in a
raises clause of an operation declaration, and nowhere else.

A set of standard system exceptions is defined corresponding to standard run-time
errors, which may occur during the execution of a request. These standard system
exceptions are documented in Section 4.12, “Exceptions,” on page 4-63.

3.13 Operation Declaration

3-50

(87)

(88)
(89)

Operation declarations in OMG IDL are similar to C function declarations. The syntax
is:

[<op_attribute>] <op_type_spec>
<identifier> <parameter_dcls>

[<raises_expr>][<context_expr>]

<op_dcl>

<op_attribute> ::= “oneway”
<op_type_spec> := <param_type_spec>
| uvoidﬂ

An operation declaration consists of:

« An optional operation attribute that specifies which invocation semantics the
communication system should provide when the operation is invoked. Operation
attributes are described in Section 3.13.1, “Operation Attribute,” on page 3-51.

e The type of the operation’s return result; the type may be any type that can be
defined in OMG IDL. Operations that do not return a result must specify the void

type.

¢ Anidentifier that names the operation in the scope of the interface in which it is
defined.

e A parameter list that specifies zero or more parameter declarations for the
operation. Parameter declaration is described in Section 3.13.2, “Parameter
Declarations,” on page 3-51.

« An optional raises expression that indicates which exceptions may be raised as a
result of an invocation of this operation. Raises expressions are described in
Section 3.13.3, “Raises Expressions,” on page 3-52.

« Anoptiona context expression that indicates which elements of the request context
may be consulted by the method that implements the operation. Context expressions
are described in Section 3.13.4, “ Context Expressions,” on page 3-53.

Common Object Request Broker Architecture (CORBA), v3.0 July 2002

July 2002

Some implementations and/or language mappings may require operation-specific
pragmas to immediately precede the affected operation declaration.

3.13.1 Operation Attribute

(88)

The operation attribute specifies which invocation semantics the communication
service must provide for invocations of a particular operation. An operation attribute is
optional. The syntax for its specification is as follows:

<op_attribute> ::= “oneway”

When a client invokes an operation with the oneway attribute, the invocation
semantics are best-effort, which does not guarantee delivery of the call; best-effort
implies that the operation will be invoked at most once. An operation with the
oneway attribute must not contain any output parameters and must specify a void
return type. An operation defined with the oneway attribute may not include a raises
expression; invocation of such an operation, however, may raise a standard system
exception.

If an <op_attribute> is not specified, the invocation semantics is at-most-once if an
exception is raised; the semantics are exactly-once if the operation invocation returns
successfully.

3.13.2 Parameter Declarations

(90)
(91)

(92)

(95)

Parameter declarations in OMG IDL operation declarations have the following syntax:

<parameter_dcls> ::= “(" <param_dcl>{“,” <param_dcl>}"*)"

[)
<param_dcl> ::= <param_attribute> <param_type_spec>
<simple_declarator>

<param_attribute> ::= “in”
| “out”
| “inout”

<param_type_spec> ::= <base_type_spec>

| <string_type>
| <wide_string_type>
| <scoped_name>

A parameter declaration must have a directional attribute that informs the
communication service in both the client and the server of the direction in which the
parameter is to be passed. The directional attributes are:

e in - the parameter is passed from client to server.
e out - the parameter is passed from server to client.

e inout - the parameter is passed in both directions.

CORBA, v3.0: Operation Declaration 3-51

3-52

It is expected that an implementation will not attempt to modify an in parameter. The
ability to even attempt to do so is language-mapping specific; the effect of such an
action is undefined.

If an exception is raised as a result of an invocation, the values of the return result and
any out and inout parameters are undefined.

3.13.3 Raises Expressions

3.13.3.1

(93)

3.13.3.2

(108)

(109)
(110)
(111)

There are two kinds of raises expressions as described in this section.

Rai ses Expression

A raises expression specifies which exceptions may be raised as a result of an
invocation of the operation or accessing (invoking the _get operation of) a readonly
attribute. The syntax for its specification is as follows:

<raises_expr> ::= “raises” “(" <scoped_name>
{“" <scoped_name> }7«)

The <scoped_name>s in the raises expression must be previously defined
exceptions or native types. If anative type is used as an exception for an operation, the
operation must appear in either alocal interface or a valuetype.

In addition to any operation-specific exceptions specified in the raises expression,
there are a standard set of system exceptions that may be signalled by the ORB. These
standard system exceptions are described in Section 4.12.3, “Standard System
Exception Definitions,” on page 4-66. However, standard system exceptions may not
be listed in araises expression.

The absence of araises expression on an operation implies that there are no
operation-specific exceptions. Invocations of such an operation are still liable to
receive one of the standard system exceptions.

getraises and setraises Expressions

getraises and setraises expressions specify which exceptions may be raised as a
result of an invocation of the accessor (_get) and a mutator (_set) functions of an
attribute. The syntax for its specification is as follows:

<attr_raises_expr> ::= <get_excep_expr>[<set_excep_expr>]

| <set_excep_expr>

“getraises” <exception_list>
“setraises” <exception_list>
“(" <scoped_name>
{“, <scoped_name>}+")"

<get_excep_expr>
<set_excep_expr>
<exception_list

The <scoped_name>s in the getraises and setraises expressions must be
previously defined exceptions.

Common Object Request Broker Architecture (CORBA), v3.0 July 2002

In addition to any attribute-specific exceptions specified in the getraises and
setraises expressions, there are a standard set of exceptions that may be signalled by
the ORB. These standard exceptions are described in Section 4.12.3, “ Standard System
Exception Definitions,” on page 4-66. However, standard exceptions may not be listed
in agetraises or setraises expression.

The absence of agetraises or setraises expression on an attribute implies that there
are no accessor-specific or mutator-exceptions respectively. Invocations of such an
accessor or mutator are still liable to receive one of the standard exceptions.

Note — The exceptions associated with the accessor operation corresponding to a
readonly attribute is specified using a simple raises expression as specified in
Section 3.13.3.1, “Raises Expression,” on page 3-52 . The getraises and setraises
expressions are used only in attributes that are not readonly.

3.13.4 Context Expressions

(94)

A context expression specifies which elements of the client’s context may affect the
performance of a request by the object. The syntax for its specification is as follows:

<context_expr> ::= “context” “(" <string_literal>
{« <string_literal>}"«)"

The run-time system guarantees to make the value (if any) associated with each
<string_literal> in the client’s context available to the object implementation when
the request is delivered. The ORB and/or object is free to use information in this
request context during request resolution and performance.

The absence of a context expression indicates that there is no request context
associated with requests for this operation.

Each string_literal is a non-empty string. If the character ** appearsin
string_literal, it must appear only once, as the last character of string_literal, and
must be preceded by one or more characters other than *'.

The mechanism by which a client associates values with the context identifiersis
described in Section 4.6, “Context Object,” on page 4-33.

3.14 Attribute Declaration

July 2002

(85)

An interface can have attributes as well as operations; as such, attributes are defined as
part of an interface. An attribute definition islogically equivalent to declaring a pair of
accessor functions; one to retrieve the value of the attribute and one to set the value of
the attribute.

The syntax for attribute declaration is:

<attr_dcl> ::= <readonly_attr_spec>
| <attr_spec>

CORBA, v3.0: Attribute Declaration 3-53

3-54

<readonly_attr_spec> ::= “readonly” “attribute” <param_type_spec>
<readonly_attr_declarator>

(105)<readonly_attr_declarator >::= <simple_declarator> <raises_expr>

| <simple_declarator>
{“, <simple_declarator> }*

<attr_spec> ::="attribute” <param_type_spec>
<attr_declarator>
<attr_declarator> ::= <simple_declarator> <attr_raises_expr>

| <simple_declarator>
{“,)” <simple_declarator> }*

The optional readonly keyword indicates that there is only a single accessor
function—the retrieve value function. Consider the following example:

interface foo {
enum material_t {rubber, glass};
struct position_t {
float x, y;

b

attribute float radius;
attribute material_t material;
readonly attribute position_t position;

b

The attribute declarations are equivalent to the following pseudo-specification
fragment, assuming that one of the leading ‘' _’'s is removed by application of the
Escaped Identifier rule described in Section 3.2.3.1, “Escaped |dentifiers,” on

page 3-7:

float __get_radius ();

void __set_radius (in float r);
material_t __ get_material ();

void __set_material (in material_t m);

position_t __ get_position ();

The actual accessor function names are |language-mapping specific. The attribute name
is subject to OMG IDL’s name scoping rules; the accessor function names are
guaranteed not to collide with any legal operation names specifiable in OMG IDL.

Attributes are inherited. An attribute name cannot be redefined to be a different type.
See Section 3.19, “CORBA Module,” on page 3-66 for more information on
redefinition constraints and the handling of ambiguity.

Common Object Request Broker Architecture (CORBA), v3.0 July 2002

3.15 Repository Identity Related Declarations

Two constructs that are provided for specifying information related to Repository 1d
are described in this section.

3.15.1 Repository ldentity Declaration

The syntax of arepository identity declaration is as follows:
<type_id_dcl> ::= “typeid” <scoped_name> <string_literal>

(102)

A repository identifier declaration includes the following elements:

« the keyword typeid

e a<scoped name> that denotes the named IDL construct to which the repository
identifier is assigned

e astring literal that must contain a valid repository identifier value

The <scoped_name> is resolved according to normal IDL name resolution rules, based

on the scope in which the declaration occurs. It must denote a previously-declared

name of one of the following IDL constructs:

module
interface
component
home

facet
receptacle
event sink
event source
finder
factory
event type
value type
value type member
value box
constant
typedef
exception
attribute
operation
enum

local

July 2002 CORBA, v3.0: Repository Identity Related Declarations

3-55

3-56

The value of the string literal is assigned as the repository identity of the specified type
definition. This value will be returned as the Repositoryld by the interface repository
definition object corresponding to the specified type definition. Language mappings
constructs, such as Java helper classes, that return repository identifiers shall return the
values declared for their corresponding definitions.

At most one repository identity declaration may occur for any named type definition.
An attempt to redefine the repository identity for atype definition isillegal, regardiess
of the value of the redefinition.

If no explicit repository identity declaration exists for a type definition, the repository
identifier for the type definition shall be an IDL format repository identifier, as defined
in Section 10.7.1, “OMG IDL Format,” on page 10-65.

3.15.2 Repository Identifier Prefix Declaration

The syntax of arepository identifier prefix declaration is as follows:
<type_prefix_dcl> ::= “typeprefix” <scoped_name>
<string_literal>

A repository identifier declaration includes the following elements:
¢ the keyword typeprefix
e a<scoped name> that denotes an IDL name scope to which the prefix applies

e astring literal that must contain the string to be prefixed to repository identifiersin
the specified name scope

The <scoped_name> is resolved according to normal IDL name resolution rules, based
on the scope in which the declaration occurs. It must denote a previously-declared
name of one of the following IDL constructs:

* module

« interface (including abstract or local interface)

« value type (including abstract, custom, and box value types)

« event type (including abstract and custom value types)

« specification scope (::)

The specified string is prefixed to the body of all repository identifiers in the specified
name scope, whose values are assigned by default. To elaborate:

By “prefixed to the body of arepository identifier,” we mean that the specified string is
inserted into the default IDL format repository identifier immediately after the format
name and colon (“IDL:") at the beginning of the identifier. A forward slash

(‘") character is inserted between the end of the specified string and the remaining
body of the repository identifier.

The prefix is only applied to repository identifiers whose values are not explicitly
assigned by atypeid declaration. The prefix is applied to all such repository identifiers
in the specified name scope, including the identifier of the construct that constitutes the
name scope.

Common Object Request Broker Architecture (CORBA), v3.0 July 2002

3.16 Event Declaration

July 2002

Event type is a specialization of value type dedicated to asynchronous component
communication. There are several kinds of event type declarations: “regular” event
types, abstract event types, and forward declarations.

An event declaration satisfies the following syntax:

(134) <event> ::= (<event_dcl>|<event_abs_dcl> |
<event_forward_dcl>)

3.16.1 Regular Event Type

A regular event type satisfies the following syntax:
(137) <event_dcl> <event_header> “{" <value_element> *“}”

(138) <event_header> ::= [“custom”] “eventtype”
<identifier> [<value_inheritance_spec>]

3.16.1.1 Event Header

The event header consists of two elements:

» The event type's name and optional modifier specifying whether the event type
uses custom marshaling.

» An optional value inheritance specification described in Section 3.9.1.3, “Value
Inheritance Specification,” on page 3-27.

3.16.1.2 Event Element

An event can contain all the elements that a value can as described in Section 3.9.1.2,
“Value Element,” on page 3-27 (i.e., attributes, operations, initializers, state members).

3.16.2 Abstract Event Type

(136) <event_abs_dcl> ::= “abstract” “eventtype” <identifier>
[<value_inheritance_spec>]
u{n <eXpOI't>* u}n

Event types may also be abstract. They are called abstract because an abstract event
type may not be instantiated. No <state_member> or <initializers> may be specified.
However, local operations may be specified. Essentially they are a bundle of operation
signatures with a purely local implementation.

Note that a concrete event type with an empty state is not an abstract event type.

3.16.3 Event Forward Declaration

(135) <event_forward_dcl> ::= [“abstract”] “eventtype” <identifier>

CORBA, v3.0: Event Declaration 3-57

A forward declaration declares the name of an event type without defining it. This
permits the definition of event types that refer to each other. The syntax consists
simply of the keyword eventtype followed by an <identifier> that names the event
type.

Multiple forward declarations of the same event type name are legal.

It isillegal to inherit from a forward-declared event type whose definition has not yet
been seen.

3.16.4 Eventtype Inheritance

As event type is a specialization of value type then event type inheritance is directly
analogous to value inheritance (see Section 3.9.1.3, “Value Inheritance Specification,”
on page 3-27 for a detailed description of the analogous properties for valuetypes). In
addition, an event type could inherit from a single immediate base concrete event type,
which must be the first element specified in the inheritance list of the event
declaration’s IDL. It may be followed by other abstract values or events from which it
inherits.

3.17 Component Declaration

3-58

3.17.1 Component

A component declaration describes an interface for a component. The salient
characteristics of a component declaration are as follows:

e A component declaration specifies the name of the component.

* A component declaration may specify alist of interfaces that the component
supports.

e Component declarations support single inheritance from other component
definitions.

e Component declarations may include in its body any attribute declarations that are
legal in normal interface declarations, together with declarations of facets and

receptacles of the component, and the event sources and sinks that the component
defines.

3.17.1.1 Syntax

The syntax for declaring a component is as follows:
(112) <component> ::= <component_dcl>
| <component_forward_dcl>
(113)<component_forward_dcl>::= “component” <identifier>
(114) <component_dcl> ::= <component_header>
“{” <component_body>“}"

<component_forward_dcl> is described in Section 3.17.1.2, “Forward Declaration.

Common Object Request Broker Architecture (CORBA), v3.0 July 2002

July 2002

3.17.1.2

<component_header> is described in Section 3.17.2, “Component Header.

<component_body> is described in Section 3.17.3, “Component Body.

Forward Declaration

A forward declaration declares the name of a component without defining it. This
permits the definition of components that refer to each other. The syntax consists
simply of the keyword component followed by an <identifier> that names the
component. The actual definition must follow later in the specification.

Multiple forward declarations of the same component name are legal.

It isillegal to inherit from a forward-declared component whose definition has not yet
been seen.

3.17.2 Component Header

3.17.2.1

(115)

A <component_header> declares the primary characteristics of a component
interface.

Syntax
The syntax for declaring a component header is as follows:
<component_header> ::=“component” <identifier>

[<component_inheritance_spec>]
[<supported_interface_spec>]

(116)<supported_interface_spec>::= “supports” <scoped_name>

{"“,” <scoped_name> }*

(117)<component_inheritance_spec>::=“:" <scoped_name>

3.17.2.2

A component header comprises the following elements:
« the keyword component.
¢ an <identifier> that names the component type.

e anoptional <inheritance spec>, consisting of a colon and a single <scoped name>
that must denote a previously-defined component type.

e anoptional <supported interface spec> that must denote one or more previously-
defined IDL interfaces.

Supported interfaces

A component may optionally support one or more interfaces. When a component
definition header includes a supports clause as follows:

CORBA, v3.0: Component Declaration 3-59

3-60

3.17.2.3

component <component_name> supports <interface_name>{ ... };

For further detail see the CORBA Components specification, chapter 1, section 1.4.5
(Supported Interfaces).

Component Inheritance

A component may optionally inherit from a component that supports one or more
interfaces. This is specified by using the inheritance construct that looks like:

component <component_name> : <component_name>{ ... };

The following rules apply to component inheritance:
e A derived component type may not directly support an interface.

e Theinterface for a derived component type is derived from the interface of its base
component type.

» A component type may have at most one base component type.

e The features of a component that are inherited by the derived component are:
« the provides statements
* the uses statements
* the emits statements
« the publishes statements
 the consumes statements
* attributes

See Section 3.17.2.3, “Component Inheritance,” on page 3-60 for details of component
inheritance.

3.17.3 Component Body

(118)
(119)

<component_body>
<component_export>

<component_export>*
<provides_dcl>*“;”

| <uses_dcl>*“;”

| <emits_dcl>"*;"

| <publishes_dcl>*“;”

|

|

<consumes_dcl>";"
<attr_dcl>"“;”"

A component forms a naming scope, nested within the scope in which the component
is declared. A component body can contain the following kinds of declarations:

e Facet declarations (provides)

¢ Receptacle declarations (uses)

« Event source declarations (emits or publishes)
e Event sink declarations (consumes)

e Attribute declarations (attribute and readonly attribute)

Common Object Request Broker Architecture (CORBA), v3.0 July 2002

These declarations and their meanings are described in detail in the CORBA
Components specification, Component Model chapter, “Facets and Navigation”
through “Events’ sections.

3.17.3.1 Facetsand Navigation

A component type may provide severa independent interfaces to its clients in the form
of facets. Facets are intended to be the primary vehicle through which a component
exposes its functional application behavior to clients during normal execution. A
component may exhibit zero or more facets.

Syntax

A facet is declared with the following syntax:
(120) <provides_dcl> ::=“provides” <interface_type> <identifier>
(121) <interface_type> ::= <scoped_name>

| “Object”

The interface type shall be either the keyword Object, or a scoped name that denotes
a previously-declared interface type which is not a component interface, i.e., is not the
interface corresponding to a component definition. The identifier names the facet
within the scope of the component, allowing multiple facets of the same type to be
provided by the component.

See the CORBA Components specification, Component Model chapter, “Facets and
Navigation” for further details.

3.17.3.2 Receptacles

A component definition can describe the ability to accept object references upon which
the component may invoke operations. When a component accepts an object reference
in this manner, the relationship between the component and the referent object is called
a connection; they are said to be connected. The conceptual point of connection is
called areceptacle. A receptacle is an abstraction that is concretely manifested on a
component as a set of operations for establishing and managing connections. A
component may exhibit zero or more receptacles.

Syntax

The syntax for describing a receptacle is as follows:

(122) <uses_dcl> ::= “uses” [“multiple”]
< interface_type> <identifier>

A receptacle declaration comprises the following elements:
e The keyword uses.

e The optional keyword multiple. The presence of this keyword indicates that the
receptacle may accept multiple connections simultaneously, and results in different
operations on the component’s associated interface.

July 2002 CORBA, v3.0: Component Declaration 3-61

3-62

3.17.4 Event

3.174.1

(124)

3.17.4.2

(123)

¢ An <interface type>, which must be either the keyword Object or a scoped hame
that denotes the interface type that the receptacle will accept. The scoped name
must denote a previously-defined non-component interface type.

* An <identifier> that names the receptacle in the scope of the component.

See the CORBA Components specification, Component Model chapter, “Receptacles’
section for further details.

Sources—publishers and emitters

An event source embodies the potentia for the component to generate events of a
specified type, and provides mechanisms for associating consumers with sources.

There are two categories of event sources, publishers and emitters. Both are
implemented using event channels supplied by the container. An emitter can be
connected to at most one consumer. A publisher can be connected through the channel
to an arbitrary number of consumers, who are said to subscribe to the publisher event
source. A component may exhibit zero or more emitters and publishers.

Publishers

Syntax

The syntax for an event publisher is as follows:
<publishes_dcl> ::= “publishes” <scoped_name> <identifier>

A publisher declaration consists of the following elements:
* the keyword publishes
e a<scoped name> that denotes a previously-defined event type

e an<identifier> that names the publisher event source in the scope of the component

See the CORBA Components specification, Component Model chapter, “Publisher”
section for further details.

Emitters

Syntax

The syntax for an emitter declaration is as follows:
<emits_dcl> ::= “emits” <scoped_name> <identifier>

An emitter declaration consists of the following elements:
e the keyword emits
e a<scoped name> that denotes a previously-defined event type

e an <identifier> that names the event source in the scope of the component.

Common Object Request Broker Architecture (CORBA), v3.0 July 2002

See the CORBA Components specification, Component Model chapter, “Emitters”
section for further details.

3.17.5 Event Snks

An event sink embodies the potential for the component to receive events of a specified
type. An event sink is, in essence, a special-purpose facet whose type is an event
consumer. External entities, such as clients or configuration services, can obtain the
reference for the consumer interface associated with the sink.

A component may exhibit zero or more consumers.

See the CORBA Components specification, Component Model chapter, “Event Sinks”
section for further details.

3.17.5.1 Syntax
The syntax for an event sink declaration is as follows:
(125) <consumes_dcl> ::= “consumes” <scoped_name> <identifier>

An event sink declaration contains the following elements:
¢ the keyword consumes
e a<scoped name> that denotes a previously-defined event type

e an <identifier> that names the event sink in the component’s scope

See the CORBA Components specification, Component Model chapter, “Event Sinks”
section for further details.

3.17.6 Basic and Extended Components

A component that satisfies the following properties is known as a Basic Component:
¢ It does not inherit from another component.

« Its declaration does not contain any provides statements.

e Its declaration does not contain any uses statements.

¢ Its declaration does not contain any publishes, emits, or consumes statements.

In effect a declaration of a Basic Component fits the pattern:

“component” <identifier> [<supported_interface _spec>]
“{“ { <attr_dcl > " ;)1}* “ } ”

A component that is not a Basic Component is referred to as an Extended Component.

July 2002 CORBA, v3.0: Component Declaration 3-63

3

3.18 HomeDeclaration

A home declaration describes an interface for managing instances of a specified
component type.

3.18.1 Home

The salient characteristics of a home declaration are as follows:

¢ A home declaration must specify exactly one component type that it manages.
Multiple homes may manage the same component type.

« A home declaration may specify a primary key type. Primary keys are values
assigned by the application environment that uniquely identify component instances
managed by a particular home. Primary key types must be value types derived from
Components::PrimaryKeyBase. There are more specific constraints placed on
primary key types, which are specified in the CORBA Components specification,
Component Model chapter, “Primary key type constraints’ section.

« Home declarations may include any declarations that are legal in normal interface
declarations.

* Home declarations support single inheritance from other home definitions, subject
to a number of constraints that are described in the CORBA Components
specification, Component Model chapter, “Home inheritance” section.

* Home declarations may specify a list of interfaces that the home supports.

3.18.1.1 Syntax

The syntax for a home definition is as follows:
(126) <home_dcl> ::= <home_header> <home_body>

<home_header> is described in Section 3.18.2, “Home Header.
<home_body> is described in Section 3.18.3, “Home Body.

3.18.2 Home Header

A <home_header> describes fundamental characteristics of a home interface.

Syntax
The syntax for a home header declaration is as follows:
(227) <home_header> ::= “home” <identifier>
[<home_inheritance_spec>]
[<supported_interface_spec>]
“manages” <scoped_name>
[<primary_key_spec>]
(128)<home_inheritance_spec>::= “:” <scoped_name>
(129) <primary_key_spec> ::= “primarykey” <scoped_name>

3-64 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

A <home_header> consists of the following elements:

The keyword home.
An <identifier> that names the home in the enclosing name scope.

An optional <home_inheritance_spec>, consisting of a colon “:” and a single
<scoped_name> that denotes a previously defined home type.

An optional <supported_interface spec> that must denote one or more previously
defined IDL interfaces.

The keyword manages.
A <scoped name> that denotes a previously defined component type.

An optional primary key definition, consisting of the keyword primarykey
followed by a <scoped_name> that denotes a previously defined value type that is
derived from the abstract value type Components::PrimaryKeyBase. Additional
constraints on primary keys are described in the CORBA Components specification,
Component Model chapter, “Primary key type constraints’ section.

Details of semantics can be found in the CORBA Components specification,
Component Model chapter, “Homes” section.

3.18.3 Home Body

(130)
(131)

<home_body> ::= “{" <home_export>*“}"
<home_export ::=<export>

| <factory_dcl>"“;"

| <finder_dcl>*“;"

3.18.3.1 Operation Declarations

A home body may include zero or more operation declarations, where the operation
may be a factory operation, a finder operation, or a normal operation or attribute.

Factory operations

The syntax of a factory operation is as follows:

(132)

<factory_dcl> ::= “factory” <identifier>
“(“ [<init_param_decls>]")"
[<raises_expr>]

A factor operation declaration consists of the following elements:

the keyword factory
an <identifier> that names the operation in the scope of the home declaration

an optional list of initialization parameters (<init_param decls>) enclosed in
parentheses

an optional <raises_expr> declaring exceptions that may be raised by the operation

A factory declaration has an implicit return value of type reference to component.

July 2002 CORBA, v3.0: HomeDeclaration 3-65

See the CORBA Components specification, Component Model chapter, “Factory
operations’ section for further details.

Finder operations

The syntax of a finder operation is as follows:
(133) <finder_dcl> ::= “finder” <identifier>
“(“ [<init_param_decls>]")"
[<raises_expr>]

A finder operation declaration consists of the following elements:
e the keyword finder
« anidentifier that names the operation in the scope of the storage home declaration

e anoptional list of initialization parameters (<init_param decls>) enclosed in
parentheses

e anoptional <raises expr> declaring exceptions that may be raised by the operation
A finder declaration has an implicit return value of type reference to component.

See the CORBA Components specification, Component Model chapter, “Finder
operations”’ section for further details.

3.19 CORBAModule

Names defined by the CORBA specification are in a module named CORBA. In an
OMG IDL specification, however, OMG IDL keywords such as Object must not be
preceded by a“CORBA::" prefix. Other interface names such as TypeCode are not
OMG IDL keywords, so they must be referred to by their fully scoped names (e.g.,
CORBA::TypeCode) within an OMG IDL specification.

For example in:

#include <orb.idI>

module M {
typedef CORBA::Object myObjRef; // Error: keyword Object scoped
typedef TypeCode myTypeCode,; /[Error: TypeCode undefined

typedef CORBA::TypeCode TypeCode;// OK
h
The file orb.idl contains the IDL definitions for the CORBA module. Except for
CORBA::TypeCode, the file orb.idl must be included in IDL files that use names

defined in the CORBA module. IDL files that use CORBA:: TypeCode may obtain
its definition by including either the file orb.idl or the file TypeCode.idl.

The exact contents of TypeCode.idl are implementation dependent. One possible
implementation of TypeCode.idl may be:

// PIDL

#ifndef TYPECODE_IDL_
#define_TYPECODE_IDL_

3-66 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

#pragma prefix "omg.org"
module CORBA {
interface TypeCode;
b
#endif // _TYPECODE_IDL _

For IDL compilers that implicitly define CORBA::TypeCode, TypeCode.idl could
consist entirely of a comment as shown below:

/l PIDL
/I CORBA::TypeCode implicitly built into the IDL compiler
/I Hence there are no declarations in this file

Because the compiler implicitly contains the required declaration, this file meets the
reguirement for compliance.

The version of CORBA specified in this release of the specification is version <x.y>,
and this is reflected in the IDL for the CORBA module by including the following
pragma version (see Section 10.7.5.3, “The Version Pragma,” on page 10-71):

#pragma version CORBA <x.y>

asthefirst lineimmediately following the very first CORBA module introduction line,
which in effect associates that version number with the CORBA entry in the IR. The
version number in that version pragma line must be changed whenever any changes are
made to any remotely accessible parts of the CORBA module in an officially released
OMG standard.

3.20 Namesand Scoping

July 2002

OMG IDL identifiers are case insensitive; that is, two identifiers that differ only in the
case of their characters are considered redefinitions of one another. However, all
references to a definition must use the same case as the defining occurrence. This
allows natural mappings to case-sensitive languages. For example:

module M {
typedef long Long; /I Error: Long clashes with keyword long
typedef long TheThing;
interface | {
typedef long MyLong;
myLong op1(/l Error: inconsistent capitalization
in TheThing thething; // Error: TheThing clashes with thething

CORBA, v3.0: Namesand Scoping 3-67

3-68

3.20.1 Qualified Names

A qualified name (one of the form <scoped-name>::<identifier>) is resolved by first
resolving the qualifier <scoped-name> to a scope S, and then locating the definition of
<identifier> within S. The identifier must be directly defined in S or (if Sis an
interface) inherited into S. The <identifier> is not searched for in enclosing scopes.

When a qualified name begins with “::”, the resolution process starts with the file
scope and locates subsequent identifiers in the qualified name by the rule described in
the previous paragraph.

Every OMG IDL definition in afile has a global name within that file. The global
name for a definition is constructed as follows.

Prior to starting to scan a file containing an OMG IDL specification, the name of the
current root is initially empty (“") and the name of the current scope is initially empty
(*"). Whenever a module keyword is encountered, the string “::” and the associated
identifier are appended to the name of the current root; upon detection of the
termination of the module, thetrailing “::” and identifier are deleted from the name of
the current root. Whenever an interface, struct, union, or exception keyword is
encountered, the string “::” and the associated identifier are appended to the name of
the current scope; upon detection of the termination of the interface, struct, union,
or exception, the trailing “::” and identifier are deleted from the name of the current
scope. Additionally, a new, unnamed, scope is entered when the parameters of an
operation declaration are processed; this allows the parameter names to duplicate other
identifiers; when parameter processing has completed, the unnamed scope is exited.

The global name of an OMG IDL definition is the concatenation of the current root,
the current scope, a “::”, and the <identifier>, which is the local name for that
definition.

Note that the global name in an OMG IDL files corresponds to an absolute
ScopedName in the Interface Repository. (See Section 10.5.1, “ Supporting Type
Definitions,” on page 10-12).

Inheritance causes all identifiers defined in base interfaces, both direct and indirect, to
be visible in derived interfaces. Such identifiers are considered to be semantically the
same as the original definition. Multiple paths to the same original identifier (as results
from the diamond shape in Figure 3-1 on page 3-24) do not conflict with each other.

Inheritance introduces multiple global OMG IDL names for the inherited identifiers.
Consider the following example:

interface A {
exception E{
long L;
h
void f() raises(E);
b

Common Object Request Broker Architecture (CORBA), v3.0 July 2002

July 2002

interface B: A {
void g() raises(E);
h

In this example, the exception is known by the global names ::A::E and ::B::E.

Ambiguity can arise in specifications due to the nested naming scopes. For example:

interface A {
typedef string<128> string_t;

h

interface B {
typedef string<256> string_t;

b

interface C: A, B {
attribute string _t Title; /I Error: Ambiguous
attribute A::string_t Name; /I OK
attribute B::string_t City; /I OK

5

The declaration of attribute Title in interface C is ambiguous, since the compiler does
not know which string_t is desired. Ambiguous declarations yield compilation errors.

3.20.2 Scoping Rules and Name Resolution

Contents of an entire OMG IDL file, together with the contents of any files referenced
by #include statements, forms a naming scope. Definitions that do not appear inside a
scope are part of the global scope. There is only a single global scope, irrespective of
the number of source files that form a specification.

The following kinds of definitions form scopes:
e module

* interface

« valuetype

e struct

e union

e operation

e exception

e eventtype

* component

* home

CORBA, v3.0: Namesand Scoping 3-69

3-70

The scope for module, interface, valuetype, struct, exception, eventtype, component,
and home begins immediately following its opening ‘{' and ends immediately
preceding its closing ‘}’. The scope of an operation begins immediately following its
‘(* and ends immediately preceding its closing ‘)’. The scope of a union begins
immediately following the ‘(* following the keyword switch, and ends immediately
preceding its closing ‘}’. The appearance of the declaration of any of these kindsin
any scope, subject to semantic validity of such declaration, opens a nested scope
associated with that declaration.

An identifier can only be defined once in a scope. However, identifiers can be
redefined in nested scopes. An identifier declaring a module is considered to be
defined by its first occurrence in a scope. Subsequent occurrences of a module
declaration with the same identifier within the same scope reopens the module and
hence its scope, allowing additional definitions to be added to it.

The name of an interface, value type, struct, union, exception, or a module may not be
redefined within the immediate scope of the interface, value type, struct, union,
exception, or the module. For example:

module M {
typedef short M; /[Error: M is the name of the module
1 in the scope of which the typedef is.
interface | {

void i (in short j); // Error: i clashes with the interface name |
b
h

An identifier from a surrounding scope is introduced into a scope if it is used in that
scope. An identifier is not introduced into a scope by merely being visible in that
scope. The use of a scoped name introduces the identifier of the outermost scope of the
scoped name. For example in:

module M {
module Innerl{
typedef string S1;

h

module Inner2 {
typedef string innerl; /I OK
h
}

The declaration of Inner2::innerl is OK because the identifier Innerl, while visible
in module Inner2, has not been introduced into module Inner2 by actual use of it. On
the other hand, if module Inner2 were:

module Inner2{
typedef Innerl::S1 S2; /I Innerl introduced
typedef string innerl; /[Error
typedef string S1; /l OK

b

Common Object Request Broker Architecture (CORBA), v3.0 July 2002

3

July 2002

The definition of innerl is now an error because the identifier Inner1 referring to the
module Innerl has been introduced in the scope of module Inner2 in the first line of
the module declaration. Also, the declaration of S1 in the last lineis OK since the
identifier S1 was not introduced into the scope by the use of Inner1::S1 in the first
line.

Only the first identifier in a qualified name is introduced into the current scope. Thisis
illustrated by Innerl::S1 in the example above, which introduces “Innerl” into the
scope of “Inner2” but does not introduce “S1.” A qualified name of the form
“1:X:1Y::Z" does not cause “X” to be introduced, but a qualified name of the form
“X::Y::Z" does.

Enumeration value names are introduced into the enclosing scope and then are treated
like any other declaration in that scope. For example:

interface A {
enum E{ E1, E2, E3 }; /l'line 1

enum BadE { E3, E4, E5}; // Error: E3 is already introduced
/I into the A scopein line 1 above

b

interface C {
enum AnotherE { E1, E2, E3 };

b

interface D : C, A{
union U switch (E) {
case A::E1 : boolean b;// OK.
case E2: long I; /[Error: E2 is ambiguous (notwithstanding
/I the switch type specification!!)
I3
I3

Type names defined in a scope are available for immediate use within that scope. In
particular, see Section 3.11.2, “Constructed Types,” on page 3-39 on cycles in type
definitions.

A name can be used in an unqualified form within a particular scope; it will be
resolved by successively searching farther out in enclosing scopes, while taking into
consideration inheritance relationships among interfaces. For example:

module M {
typedef long ArgType;
typedef ArgType AType; /l'line |1
interface B {
typedef string ArgType; //line I3
ArgType opb(in AType i); //linel2
h
h

CORBA, v3.0: Namesand Scoping 371

372

module N {
typedef char ArgType; /l'line 14
interface Y : M::B {
void opy(in ArgType i); /lline |5
b
b

The following scopes are searched for the declaration of ArgType used on line I5:
1. Scope of N::Y before the use of ArgType.

2. Scope of N::Y’s base interface M::B. (inherited scope)

3. Scope of module N before the definition of N::Y.

4. Global scope before the definition of N.

M::B::ArgType isfound in step 2 inline 13, and that is the definition that is used in
line 15, hence ArgType in line 15 is string. It should be noted that ArgType is not
char inline 15. Now if line 13 were removed from the definition of interface M::B
then ArgType on line 15 would be char from line 14, which is found in step 3.

Following analogous search steps for the types used in the operation M::B::opb on
line 12, the type of AType used online 12 islong from thetypedef inline 11 and the
return type ArgType is string from line 13.

3.20.3 Special Scoping Rules for Type Names

Once a type has been defined anywhere within the scope of a module, interface or
valuetype, it may not be redefined except within the scope of a nested module,
interface or valuetype, or within the scope of a derived interface or valuetype. For
example:

typedef short TempType; /I Scope of TempType begins here

module M {
typedef string ArgType; // Scope of ArgType begins here
struct S {
::M::ArgType al; // Nothing introduced here
M::ArgType a2; /I M introduced here
::TempType temp; // Nothing introduced here
4 /I Scope of (introduced) M ends here

4 /I Scope of ArgType ends here

/I Scope of global TempType ends here (at end of file)

The scope of an introduced type name is from the point of introduction to the end of its
enclosing scope.

Common Object Request Broker Architecture (CORBA), v3.0 July 2002

However, if atype nameis introduced into a scope that is nested in a non-module
scope definition, its potential scope extends over al its enclosing scopes out to the
enclosing non-modul e scope. (For types that are defined outside an inon-modul e scope,
the scope and the potential scope are identical.) For example:

module M {
typedef long ArgType;
const long | = 10;
typedef short Y;

interface A {

struct S {
struct T {
ArgType X[I]; // ArgType and | introduced
longy; /lanewy is defined, the existing Y
/l'is not used
pm;
h
typedef string ArgType; // Error: ArgType redefined
enum | {11, 12}; /I Error: | redefined
typedef short Y; Il OK

}; /I Potential scope of ArgType and | ends here

interface B : A {
typedef long ArgType // OK, redefined in derived interface
struct S { /I OK, redefined in derived interface
ArgType X; /I x is along
A::ArgTypevy; /l'y is a string

b

A type may not be redefined within its scope or potential scope, as shown in the
preceding example. This rule prevents type names from changing their meaning
throughout a non-modul e scope definition, and ensures that reordering of definitionsin
the presence of introduced types does not affect the semantics of a specification.

Note that, in the following, the definition of M::A::U::l islegal because it is outside
the potential scope of the | introduced in the definition of M::A::S::T::ArgType.
However, the definition of M::A::lisstill illegal becauseit iswithin the potential scope
of the | introduced in the definition of M::A::S::T::ArgType.

module M {
typedef long ArgType;
const long | = 10;

interface A {
struct S {
struct T {
ArgType X[I]; // ArgType and | introduced
Pm;

July 2002 CORBA, v3.0: Namesand Scoping 373

h
struct U {

long I; /Il OK, | is not a type name
3

enum | {11,12}; // Error: | redefined
}; I/ Potential scope of ArgType and | ends here

3
Note that redefinition of a type after use in amodule is OK as in the example:

typedef long ArgType;

module M {
struct S {
ArgType X; /I x is along
b
typedef string ArgType; // OK!
struct T {
ArgTypey; /' Ugly but OK, y is a string
b

3-74 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

4.1 Overview

March 2004

ORB Interface

Contents

This chapter contains the following sections.

Section Title Page
“Overview” 4-1
“The ORB Operations’ 4-2
“Object Reference Operations’ 4-12
“ValueBase Operations’ 4-24
“ORB and OA Initialization and Initial References’ 4-25
“Context Object” 4-33
“Policy Object” 4-37
“Policy Object” 4-38
“Management of Policies’ 4-44
“Management of Policy Domains’ 4-47
“TypeCodes’ 4-53
“Exceptions’ 4-63

This chapter introduces the operations that are implemented by the ORB core, and
describes some basic ones, while providing reference to the description of the

remaining operations that are described elsewhere. The ORB interface is the interface

to those ORB functions that do not depend on which object adapter is used. These

Common Object Request Broker Architecture (CORBA), v3.0.3

41

operations are the same for all ORBs and all object implementations, and can be
performed either by clients of the objects or implementations. The Object interface
contains operations that are implemented by the ORB, and are accessed as implicit
operations of the Object Reference. The ValueBase interface contains operations that
are implemented by the ORB, and are accessed as implicit operations of the ValueBase
Reference.

Because the operations in this section are implemented by the ORB itself, they are not
in fact operations on objects, although they are described that way for the Object or
ValueBase interface operations and the language binding will, for consistency, make
them appear that way.

4.2 The ORB Operations

The ORB interface contains the operations that are available to both clients and
servers. These operations do not depend on any specific object adapter or any specific
object reference.

module CORBA {

interface NVList; /l forward declaration
interface OperationDef; // forward declaration
interface TypeCode; /l forward declaration

typedef short PolicyErrorCode;
/I for the definition of consts see “PolicyErrorCode” on page 4-40

typedef unsigned long PolicyType;

interface Request; /l forward declaration
typedef sequence <Request> RequestSeq;

native AbstractBase;
exception PolicyError {PolicyErrorCode reason;};

typedef string Repositoryld;
typedef string Identifier;

/I StructMemberSeq defined in Chapter 10
/I UnionMemberSeq defined in Chapter 10
/I EnumMemberSeq defined in Chapter 10

typedef unsigned short ServiceType;

typedef unsigned long ServiceOption;

typedef unsigned long ServiceDetail Type;

typedef CORBA::OctetSeq ServiceDetailData;

typedef sequence<ServiceOption> ServiceOptionSeq;

Common Object Request Broker Architecture (CORBA), v3.0.3 March 2004

const ServiceType Security = 1;

struct ServiceDetail {
ServiceDetailType service_detail_type;
sequence <octet> service_detail;
ServiceDetailData service_detail;

h
typedef sequence<ServiceDetail> ServiceDetailSeq;

struct Servicelnformation {
sequence <ServiceOption> service_options;
ServiceOptionSeq service_options;
sequence <ServiceDetail> service_details;
ServiceDetailSeq service_details;

h

native ValueFactory;
typedef string ORBId;
interface ORB {

typedef string Objectld;
typedef sequence <Objectld> ObjectldList;

exception InvalidName {};
ORBid id();

string object_to_string (
in Object obj
);

Object string_to_object (
in string str

)i
/l Dynamic Invocation related operations

void create_list (
in long count,
out NVList new_list

);

void create_operation_list (
in OperationDef oper,
out NVList new_list

);

void get_default_context (

March 2004 CORBA, v3.0.3: ORB Interface Chapter 4-3

out Context ctx

);

void send_multiple_requests_oneway(
in RequestSeq req

);

void send_multiple_requests_deferred(
in RequestSeq req

);
boolean poll_next_response();

void get_next_response(
out Request req
) raises (WrongTransaction);

/I Service information operations

boolean get_service_information (
in ServiceType service_type,
out Servicelnformation service_information

);
ObjectldList list_initial_services ();
/I Initial reference operation

Object resolve_initial_references (
in Objectld identifier
) raises (InvalidName);

/I Type code creation operations

TypeCode create_struct_tc (
in Repositoryld id,
in Identifier name,
in StructMemberSeq members

);

TypeCode create_union_tc (
in Repositoryld id,
in Identifier name,
in TypeCode discriminator_type,
in UnionMemberSeq members

);

TypeCode create_enum_tc (
in Repositoryld id,
in Identifier name,
in EnumMemberSeq members

Common Object Request Broker Architecture (CORBA), v3.0.3 March 2004

);

TypeCode create_alias_tc (

in Repositoryld id,

in Identifier name,

in TypeCode original_type
);

TypeCode create_exception_tc (
in Repositoryld id,
in Identifier name,
in StructMemberSeq members

);

TypeCode create_interface_tc (
in Repositoryld id,
in Identifier name

);

TypeCode create_string_tc (
in unsigned long bound

);

TypeCode create_wstring_tc (
in unsigned long bound

);

TypeCode create_fixed_tc (
in unsigned short digits,
in short scale

);

TypeCode create_sequence_tc (
in unsigned long bound,
in TypeCode element_type

);

TypeCode create_recursive_sequence_tc (// deprecated
in unsigned long bound,
in unsigned long offset

);

TypeCode create_array_tc (
in unsigned long length,
in TypeCode element_type

);
TypeCode create_value_tc (
in Repositoryld id,
in Identifier name,
in ValueModifier type_modifier,

March 2004 CORBA, v3.0.3: ORB Interface Chapter 4-5

in TypeCode concrete_base,
in ValueMemberSeq members

);

TypeCode create_value_box_tc (

in Repositoryld id,
in Identifier name,
in TypeCode boxed_type

);
TypeCode create_native_tc (
in Repositoryld id,
in Identifier name

);

TypeCode create_recursive_tc(
in Repositoryld id
);

TypeCode create_abstract_interface_tc(
in Repositoryld id,
in Identifier name

);

TypeCode create_local_interface_tc(
in Repositoryld id,
in Identifier name

);

TypeCode create_component_tc (
in Repositoryld id,
in Identifier name

);

TypeCode create_home_tc (
in Repositoryld id,
in Identifier name

);

TypeCode create_event_tc (

in Repositoryld id,

in Identifier name,

in ValueModifier type_modifier,
in TypeCode concrete_base,

in ValueMemberSeq members

);
/I Thread related operations

boolean work_pending();

Common Object Request Broker Architecture (CORBA), v3.0.3

March 2004

March 2004

void perform_work();
void run();

void shutdown(
in boolean wait_for_completion

);
void destroy();
/I Policy related operations

Policy create_policy(
in PolicyType type,
in any val

) raises (PolicyError);

/I Dynamic Any related operations deprecated and removed
/[from primary list of ORB operations

/I Value factory operations

ValueFactory register_value_factory(
in Repositoryld id,
in ValueFactory_factory

)i
void unregister_value_factory(in Repositoryld id);
ValueFactory lookup_value_factory(in Repositoryld id);

void register_initial_reference(
in Objectld id,
in Object obj
) raises (InvalidName);
h
h

All types defined in this chapter are part of the CORBA module. When referenced in
OMG IDL, the type names must be prefixed by “CORBA::".

The operations object_to_string and string_to_object are described in
“Converting Object References to Strings” on page 4-8.

For a description of the create_list and create_operation_list operations, see
Section 7.4, “Polling” on page 7-12. The get_default_context operation is described
in Section 4.2.4.1, “get_default_context” on page 4-9. The
send_multiple_requests_oneway and send_multiple_requests_deferred
operations are described in Section 7.3.1, “send_multiple requests’ on page 7-11. The
poll_next_response and get_next_response operations are described in Section
7.3.2, “get_next_response and poll_next_response” on page 7-11.

CORBA, v3.0.3: ORB Interface Chapter 4-7

4-8

Thelist_intial_services and resolve_initial_references operations are described
in Section 4.5.2, “Obtaining Initial Object References’ on page 4-28.

The Type code creation operations with names of the form create_<type>_tc are
described in Section 4.11.3, “Creating TypeCodes’ on page 4-59.

The work_pending, perform_work, shutdown, destroy and run operations are
described in Section 4.2.5, “ Thread-Related Operations’ on page 4-10.

The create_policy operations is described in Section 4.8.2.3, “Create_policy” on
page 4-40.

Theregister_value_factory, unregister_value_factory and
lookup_value_factory operations are described in Section 5.4.3, “Language Specific
Value Factory Requirements’ on page 5-9.

The register_initial_reference operation is described in Section 21.8.1,
“register_initial_reference” on page 21-57

4.2.1 ORB Identity

4211 id

ORBiId id();

The id operation returns the identity of the ORB. The returned ORBid is the string
that was passed to ORB_init (see Section 4.5.1, “ORB Initialization” on page 4-25) as
the orb_identifier parameter when the ORB was created. If that was the empty string,
the returned string is the value associated with the -ORBid tag in the arg_list
parameter. Calling id on the default ORB returns the empty string.

4.2.2 Converting Object References to Srings

4.2.2.1 object_to_string

string object_to_string (
in Object obj
);

4.2.2.2 string_to_object

Object string_to_object (
in string str

);

Because an object reference is opaque and may differ from ORB to ORB, the object
reference itself is not a convenient value for storing references to objects in persistent
storage or communicating references by means other than invocation. Two problems

Common Object Request Broker Architecture (CORBA), v3.0.3 March 2004

4

March 2004

must be solved: allowing an object reference to be turned into a value that a client can
store in some other medium, and ensuring that the value can subsequently be turned
into the appropriate object reference.

An object reference may be translated into a string by the operation
object_to_string. The value may be stored or communicated in whatever ways
strings may be manipulated. Subsequently, the string_to_object operation will
accept a string produced by object_to_string and return the corresponding object
reference.

To guarantee that an ORB will understand the string form of an object reference, that
ORB’s object_to_string operation must be used to produce the string. For all
conforming ORBs, if obj is avalid reference to an object, then
string_to_object(object_to_string(obj)) will return a valid reference to the same
object, if the two operations are performed on the same ORB. For all conforming
ORB's supporting IOP, this remains true even if the two operations are performed on
different ORBs.

4.2.3 Getting Service Information

4.2.3.1 get_service_information

boolean get_service_information (
in ServiceType service_type;
out Servicelnformation service_information;

);

Theget_service_information operation is used to obtain information about CORBA
facilities and services that are supported by this ORB. The service type for which
information is being requested is passed in as the in parameter service_type, the
values defined by constants in the CORBA module. If service information is available
for that type, that is returned in the out parameter service_information, and the
operation returns the value TRUE. If no information for the requested services type is
available, the operation returns FALSE (i.e., the service is not supported by this ORB).

4.2.4 Creating a New Context

4.2.4.1 get_default_context

void get_default_context(/ PIDL
out Context ctx /I context object

);

This operation creates a new empty Context object every timeiit is called. The
operation is defined in the ORB interface.

CORBA, v3.0.3: ORB Interface Chapter 4-9

4.2.5 Thread-Related Operations

To support single-threaded ORBs, as well as multi-threaded ORBs that run multi-
thread-unaware code, several operations are included in the ORB interface. These
operations can be used by single-threaded and multi-threaded applications. An
application that is a pure ORB client would not need to use these operations. Both the
ORB::run and ORB::shutdown are useful in fully multi-threaded programs.

These operations are defined on the ORB rather than on an object adapter to allow the
main thread to be used for all kinds of asynchronous processing by the ORB. Defining
these operations on the ORB also allows the ORB to support multiple object adapters,
without requiring the application main to know about all the object adapters. The
interface between the ORB and an object adapter is not standardized.

4.2.5.1 work pending

boolean work_pending();

This operation returns an indication of whether the ORB needs the main thread to
perform some work.

A result of TRUE indicates that the ORB needs the main thread to perform some work
and aresult of FALSE indicates that the ORB does not need the main thread.

4.2.5.2 perform work

void perform_work();

If called by the main thread, this operation performs an implementation-defined unit of
work; otherwise, it does nothing.

It is platform-specific how the application and ORB arrange to use compatible
threading primitives.

The work_pending() and perform_work() operations can be used to write a simple
polling loop that multiplexes the main thread among the ORB and other activities.
Such aloop would most likely be needed in a single-threaded server. A multi-threaded
server would need a polling loop only if there were both ORB and other code that
required use of the main thread.

Here is an example of such a polling loop:

/] C++
for (;:) {
if (orb->work_pending()) {
or b->perform work();
s
/1 do other things
sl eep?

4-10 Common Object Request Broker Architecture (CORBA), v3.0.3 March 2004

March 2004

4.2.5.3

4.2.5.4

Once the ORB has shutdown, work_pending and perform_work will raise the
BAD_INV_ORDER exception with minor code 4. An application can detect this
exception to determine when to terminate a polling loop.

run

void run();

This operation provides execution resources to the ORB so that it can perform its
internal functions. Single threaded ORB implementations, and some multi-threaded
ORB implementations, need the use of the main thread in order to function properly.
For maximum portability, an application should call either run or perform_work on
its main thread. run may be called by multiple threads simultaneously.

This operation will block until the ORB has completed the shutdown process, initiated
when some thread calls shutdown.

shutdown

void shutdown(
in boolean wait_for_completion

);

This operation instructs the ORB to shut down, that is, to stop processing in
preparation for destruction.

Shutting down the ORB causes all object adapters to be destroyed, since they cannot
exist in the absence of an ORB.

In the case of the POA, all POAManagers are deactivated prior to destruction of all
POAs. The deactivation that the ORB performs should be the equivalent of calling
deactivate with the value TRUE for etherealize_objects and with the
wait_for_completion parameter same as what shutdown was called with.

Shut down is complete when all ORB processing has completed and the object
adapters have been destroyed. ORB processing is defined as including request
processing and object deactivation or other operations associated with object adapters,
and the forwarding of the responses from deferred synchronous invocations to their
associated reply handlers. In the case of the POA, this means that all object
etherealizations have finished and root POA has been destroyed (implying that all
descendent POASs have also been destroyed)

If the wait_for_completion parameter is TRUE, this operation blocks until the shut
down is complete. If an application does this in a thread that is currently servicing an
invocation, the ORB will not shutdown, and the BAD_INV_ORDER system
exception will be raised with the OMG minor code 3, and completion status
COMPLETED_NO, since blocking would result in a deadlock.

CORBA, v3.0.3: ORB Interface Chapter 4-11

4.2.5.5

If the wait_for_completion parameter is FALSE, then shutdown may not have
completed upon return. An ORB implementation may require the application to call (or
have a pending call to) run or perform_work after shutdown has been called with
its parameter set to FALSE, in order to complete the shutdown process.

Additionally in systems that have Portable Object Adapters (see Chapter 11)
shutdown behaves as if POA::destroy is called on the Root POA with its first
parameter set to TRUE and the second parameter set to the value of the
wait_for_completion parameter that shutdown is invoked with.

While the ORB is in the process of shutting down, the ORB operates as normal,
servicing incoming and outgoing requests until all requests have been completed. An
implementation may impose a time limit for requests to complete while a shutdown
is pending.

Once an ORB has shutdown, only object reference management operations(duplicate,
release and is_nil) may be invoked on the ORB or any object reference obtained
from it. An application may also invoke the destroy operation on the ORB itself.
Invoking any other operation will raise the BAD _INV_ORDER system exception
with the OMG minor code 4.

destroy

void destroy();

This operation destroys the ORB so that its resources can be reclaimed by the
application. Any operation invoked on a destroyed ORB reference will raise the
OBJECT_NOT_EXIST exception. Once an ORB has been destroyed, another call
to ORB_init with the same ORBid will return a reference to a newly constructed
ORB.

If destroy is called on an ORB that has not been shut down, it will start the shut down
process and block until the ORB has shut down before it destroys the ORB. The
behavior is similar to that achieved by calling shutdown with the
wait_for_completion parameter set to TRUE. If an application calls destroy in a
thread that is currently servicing an invocation, the BAD _INV_ORDER system
exception will be raised with the OMG minor code 3, since blocking would result in a
deadl ock.

For maximum portability and to avoid resource leaks, an application should always
call shutdown and destroy on all ORB instances before exiting.

4.3 Object Reference Operations

4-12

There are some operations that can be done on any object. These are not operationsin
the normal sense, in that they are implemented directly by the ORB, not passed on to
the object implementation. We will describe these as being operations on the object
reference, although the interfaces actually depend on the language binding. As above,
where we used interface Object to represent the object reference, we define an
interface for Object:

Common Object Request Broker Architecture (CORBA), v3.0.3 March 2004

March 2004

module CORBA {

interface DomainManager; /l forward declaration
typedef sequence <DomainManager> DomainManagersList;

interface Policy; /l forward declaration

typedef sequence <Policy> PolicyList;

typedef sequence<PolicyType> Policy TypeSeq;

exception InvalidPolicies { sequence <unsigned short> indices; };
interface Context; /l forward declaration

typedef string Identifier;

interface Request; /l forward declaration
interface NVList; /l forward declaration
struct NamedValue{}; /I 'an implicitly well known type

typedef unsigned long Flags;
interface InterfaceDef;

enum SetOverrideType {SET_OVERRIDE, ADD_OVERRIDE};
interface ORB; /I PIDL forward declaration
interface Object { / PIDL

InterfaceDef get_interface ();

boolean is_nil();

Object duplicate ();

void release ();

boolean is_a (

in Repositoryld logical_type_id
)i
boolean non_existent();

boolean is_equivalent (

in Object other_object
);
unsigned long hash(
in unsigned long maximum
);
void create_request (
in Context ctx
in Identifier operation,
in NVList arg_list,

CORBA, v3.0.3: ORB Interface Chapter 4-13

inout NamedValue result,
out Request req,
in Flags req_flag

);

Policy get_policy (
in PolicyType policy_type
);

DomainManagersList get_domain_managers ();

Object set_policy_overrides(
in PolicyList policies,
in SetOverrideType set_add
) raises (InvalidPolicies);

Policy get_client_policy(
in PolicyType type
);

PolicyList get_policy_overrides(
in PolicyTypeSeq types
);

boolean validate_connection(
out PolicyList inconsistent_policies

);
Object get_component ();

string respository_id();
ORB get_orb();

b

The create_request operation is part of the Object interface because it creates a
pseudo-object (a Request) for an object. It is described with the other Request
operations in the section Section 7.2, “Request Operations’ on page 7-4.

Unless otherwise stated bel ow, the operationsin the IDL above do not require access to
remote information.

4.3.1 Determining the Object Interface

4.3.1.1 get_interface

InterfaceDef get_interface();

4-14 Common Object Request Broker Architecture (CORBA), v3.0.3 March 2004

4

get_interface, returns an object in the Interface Repository that describes the most
derived type of the object addressed by the reference. See the Interface Repository
chapter for a definition of operations on the Interface Repository. The implementation
of this operation may involve contacting the ORB that implements the target object.

If the interface repository is not available, get_interface raises INTF_REPOS with
standard minor code 1. If the interface repository does not contain an entry for the
object's (most derived) interface, get_interface raises INTF_REPOS with standard
minor code 2.

4.3.1.2 repository_id

repository_id returns the repository 1D of an object (see Section 10.6, “Component
Interface Repository Interfaces” on page 10-50 for details of repository IDs). The
implementation of this operation must contact the ORB that implements the target
object.

4.3.2 Duplicating and Releasing Copies of Object References

4.3.2.1 duplicate

Object duplicate();

4.3.2.2 release

void release();

Because object references are opaque and ORB-dependent, it is not possible for clients
or implementations to allocate storage for them. Therefore, there are operations
defined to copy or release an object reference.

If more than one copy of an object reference is needed, the client may create a
duplicate. Note that the object implementation is not involved in creating the duplicate,
and that the implementation cannot distinguish whether the original or a duplicate was
used in a particular request.

When an object reference is no longer needed by a program, its storage may be
reclaimed by use of the release operation. Note that the object implementation is not
involved, and that neither the object itself nor any other references to it are affected by
the release operation.

4.3.3 Nil Object References

4.3.3.1 is nil

boolean is_nil();

March 2004 CORBA, v3.0.3: ORB Interface Chapter 4-15

4-16

An object reference whose value is OBJECT_NIL denotes no object. An object
reference can be tested for this value by the is_nil operation. The object
implementation is not involved in the nil test.

4.3.4 Equivalence Checking Operation

is a

boolean is_a(
in Repositoryld logical_type_id
);

An operation is defined to facilitate maintaining type-safety for object references over
the scope of an ORB.

Thelogical_type_id is a string denoting a shared type identifier (Repositoryld).
The operation returns true if the object is really an instance of that type, including if
that type is an ancestor of the “most derived” type of that object.

Determining whether an object's type is compatible with the logical_type_id may
reguire contacting a remote ORB or interface repository. Such an attempt may fail at
either the local or the remote end. If is_a cannot make areliable determination of type
compatibility due to failure, it raises an exception in the calling application code. This
enabl es the application to distinguish among the TRUE, FALSE, and indeterminate
cases.

This operation exposes to application programmers functionality that must already
exist in ORBs that support “type safe narrow” and allows programmers working in
environments that do not have compile time type checking to explicitly maintain type
safety.

This operation always returns TRUE for the logical_type_id
IDL:omg.org/CORBA/Object:1.0

4.3.5 Probing for Object Non-Existence

4.3.5.1 non_existent

boolean non_existent ();

The non_existent operation may be used to test whether an object (e.g., a proxy
object) has been destroyed. It does this without invoking any application level
operation on the object, and so will never affect the object itself. It returns true (rather
than raising CORBA::OBJECT_NOT_EXIST) if the ORB knows authoritatively
that the object does not exist; otherwise, it returns false.

Common Object Request Broker Architecture (CORBA), v3.0.3 March 2004

March 2004

Services that maintain state that includes object references, such as bridges, event
channels, and base relationship services, might use this operation in their “idle time” to
sift through object tables for objects that no longer exist, deleting them as they go, as
aform of garbage collection. In the case of proxies, this kind of activity can cascade,
such that cleaning up one table allows others then to be cleaned up.

Probing for object non-existence may require contacting the ORB that implements the
target object. Such an attempt may fail at either the local or the remote end. If non-
existent cannot make a reliable determination of object existence due to failure, it
raises an exception in the calling application code. This enables the application to
distinguish among the true, false, and indeterminate cases.

4.3.6 Object Reference Identity

4.3.6.1

In order to efficiently manage state that include large numbers of object references,
services need to support a notion of object reference identity. Such services include not
just bridges, but relationship services and other layered facilities.

Two identity-related operations are provided. One maps object references into disjoint
groups of potentially equivalent references, and the other supports more expensive
pairwise equivalence testing. Together, these operations support efficient maintenance
and search of tables keyed by object references.

Hashing Object Identifiers

hash

unsigned long hash(
in unsigned long maximum

);

Object references are associated with ORB-internal identifiers that may indirectly be
accessed by applications using the hash operation. The value of this identifier does
not change during the lifetime of the object reference, and so neither will any hash
function of that identifier.

The value of this operation is not guaranteed to be unique; that is, another object
reference may return the same hash value. However, if two object references hash
differently, applications can determine that the two object references are not identical.

The maximum parameter to the hash operation specifies an upper bound on the hash
value returned by the ORB. The lower bound of that value is zero. Since a typical use
of this feature is to construct and access a collision chained hash table of object
references, the more randomly distributed the values are within that range, and the
cheaper those values are to compute, the better.

For bridge construction, note that proxy objects are themselves objects, so there could
be many proxy objects representing a given “real” object. Those proxies would not
necessarily hash to the same value.

CORBA, v3.0.3: ORB Interface Chapter 4-17

4-18

4.3.6.2 Equivalence Testing

is_equivalent

boolean is_equivalent(
in Object other_object

);

Theis_equivalent operation is used to determine if two object references are
equivalent, so far as the ORB can easily determine. It returns TRUE if the target object
reference is known to be equivalent to the other object reference passed as its
parameter, and FAL SE otherwise.

If two object references are identical, they are equivalent. Two different object
references that in fact refer to the same object are also equivalent.

ORBs are allowed, but not required, to attempt determination of whether two distinct
object references refer to the same object. In general, the existence of reference
translation and encapsulation, in the absence of an omniscient topology service, can
make such determination impractically expensive. This means that a FALSE return
fromis_equivalent should be viewed as only indicating that the object references are
distinct, and not necessarily an indication that the references indicate distinct objects.
Setting of local policies on the object reference is not taken into consideration for the
purposes of determining object reference equivalence.

A typical application use of this operation is to match object references in a hash table.
Bridges could use it to shorten the lengths of chains of proxy object references.
Externalization services could use it to “flatten” graphs that represent cyclical
relationships between objects. Some might do this as they construct the table, others
during idle time.

4.3.7 Type Coercion Considerations

Many programming languages map Object to programming constructs that support
inheritance. Mappings to languages (such as C++ and Java) typically provide a
mechanism for narrowing (down-casting) an object reference from a base interface to a
more derived interface. To do such down-casting in a type safe way, knowledge of the
full inheritance hierarchy of the target interface may be required. The implementation
of down-cast must either contact an interface repository or the target itself, to
determine whether or not it is safe to down-cast the clientis object reference. This
requirement is not acceptable when a client is expecting only asynchronous
communication with the target. Therefore, for the appropriate languages an unchecked
down-cast operation (also referred to as unchecked narrow operation) shall be provided
in the mapping of Object. This unchecked narrow always returns a stub of the
reguested type without checking that the target really implements that interface.

Common Object Request Broker Architecture (CORBA), v3.0.3 March 2004

March 2004

4.3.8 Getting Policy Associated with the Object

4.3.8.1 get_policy

The get_policy operation returns the policy object of the specified type (see Section
4.8, “Policy Object” on page 4-38), which applies to this object. It returns the effective
Policy for the object reference. The effective Policy is the one that would be used if
a request were made.

This Policy is determined first by obtaining the effective override for the Policy Type
as returned by get_client_policy. The effective override is then compared with the
Policy as specified in the IOR. The effective Policy is determined by reconciling the
effective override and the IOR-specified Policy (see Section 4.9.2, “Server Side
Policy Management” on page 4-45). If the two policies cannot be reconciled, the
standard system exception INV_POLICY is raised with standard minor code 1. The
absence of a Policy value in the IOR implies that any legal value may be used.

Invoking non_existent on an object reference prior to get_policy ensures the
accuracy of the returned effective Policy. If get_policy isinvoked prior to the object
reference being bound, a compliant implementation shall attempt a binding and then
return the effective Policy. If the binding attempt fails it shall pass through the system
exception returned from the binding attempt. Note that if the effective Policy may
change from invocation to invocation due to transparent rebinding.

Policy get_policy (
in PolicyType policy_type
);

Parameter(s)
policy_type - Thetype of policy to be obtained.

Return Value
A Policy object of the type specified by the policy_type parameter.

Exception(s)

CORBA::INV_POLICY - raised when the value of policy type is not valid either
because the specified type is not supported by this ORB or because a policy object of
that type is not associated with this Object.

The implementation of this operation may involve remote invocation of an operation
(e.g., DomainManager::get_domain_policy for some security policies) for some

policy types.

4.3.8.2 get_client_policy

Policy get_client_policy(
in PolicyType type

CORBA, v3.0.3: ORB Interface Chapter 4-19

4-20

4.3.8.3

4391

);

Returns the effective overriding Policy for the object reference. The effective override
is obtained by first checking for an override of the given PolicyType at the Object
scope, then at the Current scope, and finally at the ORB scope. If no override is
present for the requested PolicyType, a system-dependent default value for that
Policy Type may be returned. A nil Policy reference may also be returned to
indicate that there is no default for the policy. Portable applications are expected to set
the desired “defaults’ at the ORB scope since default Policy values are not specified.

get_policy_overrides

PolicyList get_policy_overrides(
in PolicyTypeSeq types
);

Returns the list of Policy overrides (of the specified policy types) set at the Object
scope. If the specified sequence is empty, all Policy overrides at this scope will be
returned. If none of the requested PolicyTypes are overridden at the Object scope,
an empty sequence is returned.

4.3.9 Overriding Associated Policies on an Object Reference

set_policy_overrides

The set_policy_overrides operation returns a new object reference with the new
policies associated with it. It takes two input parameters. The first parameter policies
is a sequence of references to Policy objects. The second parameter set_add of type
SetOverrideType indicates whether these policies should be added onto any other
overrides that already exist (ADD_OVERRIDE) in the object reference, or they should
be added to a clean override free object reference (SET_OVERRIDE). This operation
associates the policies passed in the first parameter with a newly created object
reference that it returns. Only certain policies that pertain to the invocation of an
operation at the client end can be overridden using this operation. Attempts to override
any other policy will result in the raising of the CORBA::NO_PERMISSION
exception.

enum SetOverrideType {SET_OVERRIDE, ADD_OVERRIDE};
Object set_policy_overrides(
in PolicyList policies,

in SetOverrideType set_add
) raises (InvalidPolicies);

Common Object Request Broker Architecture (CORBA), v3.0.3 March 2004

March 2004

Parameter(s)

policies - a sequence of Policy objects that are to be associated with the new copy of
the object reference returned by this operation. If the sequence contains two or more
Policy objects with the same PolicyType value, the operation raises the standard
system exception BAD _PARAM with minor code 30.

set_add - whether the association is in addition to (ADD_OVERRIDE) or as a
replacement of (SET_OVERRIDE) any existing overrides already associated with the
object reference. If the value of this parameter is SET_OVERRIDE, the supplied
policies completely replace all existing overrides associated with the object reference.
If the value of this parameter is ADD_OVERRIDE, the supplied policies are added to
the existing overrides associated with the object reference, except that if a supplied
Policy object has the same PolicyType value as an existing override, the supplied
Policy object replaces the existing override.

Return Value

A copy of the object reference with the overrides from policies associated with it in
accordance with the value of set_add.

Exception(s)

InvalidPolicies - raised when an attempt is made to override any policy that cannot
be overridden.

4.3.10 Validating Connection

4.3.10.1 validate connection

boolean validate_connection(
out PolicyList inconsistent_policies

);

Returns the value TRUE if the current effective policies for the Object will allow an
invocation to be made. If the object reference is not yet bound, a binding will occur as
part of this operation. If the object reference is already bound, but current policy
overrides have changed or for any other reason the binding is no longer valid, arebind
will be attempted regardless of the setting of any RebindPolicy override. The
validate_connection operation is the only way to force such arebind when implicit
rebinds are disallowed by the current effective RebindPolicy. The attempt to bind or
rebind may involve processing GIOP LocateRequests by the ORB.

If the RoutingPolicy ROUTE_FORWARD or ROUTE_STORE_AND_FORWARD
are in effect when validate_connection isinvoked then the client ORB shall attempt
to open a connection for the first hop to the first target Router (applies to both
Router and PersistentRequestRouter) as if it were the target Object and return
success or failure based on success or failure to establish this connection.

CORBA, v3.0.3: ORB Interface Chapter 4-21

Returns the value FAL SE if the current effective policies would cause an invocation to
raise the standard system exception INV_POLICY. If the current effective policies are
incompatible, the out parameter inconsistent_policies contains those policies
causing the incompatibility. This returned list of policies is not guaranteed to be
exhaustive. If the binding fails due to some reason unrelated to policy overrides, the
appropriate standard system exception is raised.

4.3.11 Getting the Domain Managers Associated with the Object

4.3.11.1 get_domain_managers

The get_domain_managers operation allows administration services (and
applications) to retrieve the domain managers (see Section 4.9, “Management of
Policies’ on page 4-44), and hence the security and other policies applicable to
individual objects that are members of the domain.

typedef sequence <DomainManager> DomainManagersList;

DomainManagersList get_domain_managers ();

Return Value

Thelist of immediately enclosing domain managers of this object. At least one domain
manager is always returned in the list since by default each object is associated with at
least one domain manager at creation.

The implementation of this operation may involve contacting the ORB that implements
the target object.

4.3.12 Getting Component Associated with the Object

4.3.12.1 get_component

Object get_component ();

If the target object reference is itself a component reference (i.e., it denotes the
component itself), the get_component operation returns the same reference (or
another equivalent reference). If the target object reference is a facet reference the
get_component operation returns an object reference for the component. If the target
reference is neither a component reference nor a provided reference, get_component
returns a nil reference.

4.3.13 Getting the ORB

4.3.13.1 get _orb

ORB get_orb();

4-22 Common Object Request Broker Architecture (CORBA), v3.0.3 March 2004

4

This operation returns the local ORB that is handling this particular Object Reference.

4.3.14 LocalObject Operations

Local interfaces are implemented by using CORBA::LocalObject, which derives
from CORBA::Object and provides implementations of Object pseudo operations and
any other ORB specific support mechanisms that are appropriate for such objects.
Object implementation techniques are inherently language mapping specific.
Therefore, the LocalObject type is not defined in IDL, but is specified by each
language mapping.

e The LocalObject type provides implementations of the following Object pseudo-
operations that raise the NO_IMPLEMENT system exception with standard minor
code 8:

e get_interface

e get_domain_managers
e get_policy

e get_client_policy

e set_policy_overrides

e get_policy_overrides

e validate_connection

e get_component

e respository_id

* The LocalObject type provides implementations of the following pseudo-
operations:

e non_existent - aways returns false.
« hash - returns a hash value that is consistent for the lifetime of the object.

* is_equivalent - returns true if the references refer to the same LocalObject
implementation.

e is_a - returns TRUE if the LocalObject derives from or is itself the type
specified by the logical_type_id argument.

e get_orb - The default behavior of this operation when invoked on a reference to
alocal object isto return the system exception NO_IMPLEMENT with standard
minor code 8. Certain local objects that have close association with an ORB,
like POAS, Current objects and certain portable interceptors related local objects
override the default behavior and return a reference to the ORB that they are
associated with. These are documented in the sections where these local objects
are specified

e Attempting to use a Local Object to create a DIl request shall result in a
NO_IMPLEMENT system exception with standard minor code 4. Attempting to
marshal or stringify a LocalObject shall result in a MARSHAL system exception
with standard minor code 4. Narrowing and widening of referencesto LocalObjects
must work as for regular object references.

March 2004 CORBA, v3.0.3: ORB Interface Chapter 4-23

« Local types cannot be marshaled and references to local objects cannot be converted
to strings. Any attempt to marshal alocal object, such as via an unconstrained base
interface, as an Object, or as the contents of an any, or to pass a local object to
ORB::object_to_string, shall result in a MARSHAL system exception with
OMG minor code 4.

e The DIl is not supported on local objects, nor are asynchronous invocation
interfaces.

« Language mappings shall specify server side mechanisms, including base classes
and/or skeletons if necessary, for implementing local objects, so that invocation
overhead is minimized.

» The usage of client side language mappings for local types shall be identical to those
of equivalent unconstrained types.

 Invocations on local objects are not ORB mediated. Specifically, parameter copy
semantics are not honored, interceptors are not invoked, and the execution context of
alocal object does not have ORB service Current object contexts that are distinct
from those of the caller. Implementations of local interfaces are responsible for
providing the parameter copy semantics expected by clients.

« Local objects have no inherent identities beyond their implementations’ identities as
programming objects. The lifecycle of the implementation is the same as the
lifecycle of the reference.

« Instances of local objects defined as part of OMG specifications to be supplied by
ORB products or object service products shall be exposed through the
ORB::resolve_initial_references operation or through some other local object
obtained from resolve_initial_references.

4.4 ValueBase Operations

4-24

ValueBase serves a similar role for value types that Object serves for interfaces. Its
mapping is language-specific and must be explicitly specified for each language.

Typically it is mapped to a concrete language type which serves as a base for all value
types. Any operations that are required to be supported for all values are conceptually
defined on ValueBase, although in reality their actual mapping depends upon the
specifics of any particular language mapping.

Analogous to the definition of the Object interface for implicit operations of object
references, the implicit operations of ValueBase are defined on a pseudo-valuetype
as follows:

module CORBA {
valuetype ValueBase{ PIDL
ValueDef get_value_def();
h
h

The get_value_def() operation returns a description of the value's definition as
described in the interface repository (Section 10.5.31, “ValueDef” on page 10-44).

Common Object Request Broker Architecture (CORBA), v3.0.3 March 2004

4.5 ORB and OA Initialization and Initial References

March 2004

Before an application can enter the CORBA environment, it must first:
« Beinitialized into the ORB and possibly the object adapter (POA) environments.

» Get references to ORB pseudo-object (for use in future ORB operations) and perhaps
other objects (including the root POA or some Object Adapter objects).

The following operations are provided to initialize applications and obtain the
appropriate object references:

» Operations providing access to the ORB. These operations reside in the CORBA
module, but not in the ORB interface and are described in Section 4.5.1, “ORB
Initialization” on page 4-25.

« Operations providing access to Object Adapters, Interface Repository, Naming
Service, and other Object Services. These operations reside in the ORB interface and
are described in Section 4.5.2, “Obtaining Initial Object References’ on page 4-28.

45.1 ORB Initialization

When an application requires a CORBA environment it needs a mechanism to get the
ORB pseudo-object reference and possibly an OA object reference (such as the root
POA). This serves two purposes. First, it initializes an application into the ORB and
OA environments. Second, it returns the ORB pseudo-object reference and the OA
object reference to the application for use in future ORB and OA operations.

The ORB and OA initialization operations must be ordered with ORB occurring before
OA: an application cannot call OA initialization routines until ORB initialization
routines have been called for the given ORB. The operation to initialize an application
in the ORB and get its pseudo-object reference is not performed on an object. Thisis
because applications do not initially have an object on which to invoke operations. The
ORSB initialization operation is an application’s bootstrap call into the CORBA world.
The ORB _init call is part of the CORBA module but not part of the ORB interface.

Applications can be initialized in one or more ORBs. When an ORB initialization is
complete, its pseudo reference is returned and can be used to obtain other references
for that ORB.

In order to obtain an ORB pseudo-object reference, applications call the ORB_init
operation. The parameters to the call comprise an identifier for the ORB for which the
pseudo-object reference is required, and an arg_list, which is used to allow
environment-specific datato be passed into the call. PIDL for the ORB initialization is
as follows:

// PIDL
module CORBA {

typedef sequence <string> arg_list;

ORB ORB _init (inout arg_list argv, in ORBid orb_identifier);
I3

CORBA, v3.0.3: ORB Interface Chapter 4-25

4-26

The identifier for the ORB will be a name of type CORBA::ORBid. All ORBid
strings other than the empty string are allocated by ORB administrators and are not
managed by the OMG. ORB administration is the responsibility of each ORB supplier.
ORB suppliers may optionally delegate this responsibility. ORBid strings other than
the empty string are intended to be used to uniquely identify each ORB used within the
same address space in a multi-ORB application. These special ORBid strings are
specific to each ORB implementation and the ORB administrator is responsible for
ensuring that the names are unambiguous.

If an empty ORBId string is passed to ORB_init, then the arg_list arguments shall be
examined to determine if they indicate an ORB reference that should be returned. This
is achieved by searching the arg_list parameters for one preceded by “-ORBid” for
example, “-ORBid example_orb” (the white space after the “-ORBid” tag is
ignored) or “-ORBidMyFavoriteORB” (with no white space following the “-ORBid”
tag). Alternatively, two sequential parameters with the first being the string “-ORBid”
indicates that the second is to be treated as an ORBIid parameter. If an empty string is
passed and no arg_list parameters indicate the ORB reference to be returned, the
default ORB for the environment will be returned.

Other parameters of significance to the ORB can also be identified in arg_list, for
example, “Hostname,” “SpawnedServer,” and so forth. To allow for other
parameters to be specified without causing applications to be re-written, it is necessary
to specify the parameter format that ORB parameters may take. In general, parameters
shall be formatted as either one single arg_list parameter:

—ORB<suffix><optional white space> <value>

or as two sequentia arg_list parameters:
-ORB<suffix>

<value>

Regardless of whether an empty or non-empty ORBId string is passed to ORB_init,
the arg_list arguments are examined to determine if any ORB parameters are given. If
a non-empty ORBIid string is passed to ORB_init, all ORBid parameters in the
arg_list are ignored. All other -ORB<suffix> parameters in the arg_list may be of
significance during the ORB initialization process.

Before ORB _init returns, it will remove from the arg_list parameter all strings that
match the -ORB<suffix> pattern described above and that are recognized by that
ORB implementation, along with any associated sequential parameter strings. If any
strings in arg_list that match this pattern are not recognized by the ORB
implementation, ORB_init will raise the BAD_PARAM system exception instead.

The ORB_init operation may be called any number of times and shall return the same
ORB reference when the same ORBId string is passed, either explicitly as an argument
to ORB_init or through the arg_list. All other -ORB<suffix> parameters in the
arg_list may be considered on subsequent cals to ORB_init.

Common Object Request Broker Architecture (CORBA), v3.0.3 March 2004

March 2004

4511

4512

45.1.3

Note — Whenever an ORB_init argument of the form -ORBxxx is specified, it is
understood that the argument may be represented in different ways in different
languages. For example, in Java -ORBxxx is equivalent to a property named
org.omg.CORBA.ORBxxx.

Server ID

A Server ID must uniquely identify a server to an IMR. This specification only
reguires unigque identification using a string of some kind. We do not intend to make
more specific requirements for the structure of a server ID.

The server ID may be specified by an ORB_init argument of the form
-ORBServerld

The value assigned to this property is astring. All templates created in this ORB will
return this server ID in the server_id attribute.

It is required that all ORBs in the same server share the same server I1D. Specific
environments may choose to implement -ORBServerld in ways that automatically
enforce this requirement.

For example, the org.omg.CORBA.Serverld system property may be set to the
server ID in Java when a Java server is activated. This system property is then picked
up as part of the ORB_i ni t call for every ORB created in the server.

Server Endpoint

The server endpoint information is passed into ORB_init by an argument of the form
-ORBListenEndpoints <endpoints>

The format of the <endpoints> argument is proprietary. All that is required by this

specification is that each time ORB _init is called with the same value for this

argument, the resulting ORB will listen for requests on the same set of endpoints, so
that persistent object references for the ORB will continue to function correctly.

Sarting Serverswith No Proprietary Server Activation Support

Any server started with the flag:
-ORBNoProprietaryActivation

shall avoid the use of any proprietary activation framework.

CORBA, v3.0.3: ORB Interface Chapter 4-27

4-28

4.5.2 Obtaining Initial Object References

Applications require a portable means by which to obtain their initial object references.
References are required for the root POA, POA Current, Interface Repository and
various Object Services instances. (The POA is described in the Portable Object
Adapter chapter; the Interface Repository is described in the Interface Repository
chapter; Object Services are described in the individual service specifications.) The
functionality required by the application is similar to that provided by the Naming
Service. However, the OMG does not want to mandate that the Naming Service be
made available to all applications in order that they may be portably initialized.
Consequently, the operations shown in this section provide a simplified, local version
of the Naming Service that applications can use to obtain a small, defined set of object
references that are essential to its operation. Because only a small well-defined set of
objects are expected with this mechanism, the naming context can be flattened to be a
single-level name space. This simplification results in only two operations being
defined to achieve the functionality required.

Initial references are not obtained via a new interface; instead two operations are
provided in the ORB pseudo-object interface, providing facilities to list and resolve
initial object references.

list_initial _services

typedef string Objectld;
typedef sequence <Objectld> ObjectldList;
ObjectldList list_initial_services ();

resolve_initial_references

exception InvalidName {};

Object resolve_initial_references (
in Objectld identifier
) raises (InvalidName);

Theresolve_initial_references operation is an operation on the ORB rather than
the Naming Service’s NamingContext. The interface differs from the Naming
Service's resolve in that Objectld (a string) replaces the more complex Naming
Service construct (a sequence of structures containing string pairs for the components
of the name). This simplification reduces the name space to one context.

Objectlds are strings that identify the object whose reference is required. To maintain
the simplicity of the interface for obtaining initial references, only a limited set of
objects are expected to have their references found via this route. Unlike the ORB
identifiers, the Objectld name space requires careful management. To achieve this, the
OMG may, in the future, define which services are required by applications through
this interface and specify names for those services.

resolve_initial_references never returns a nil reference. Instead, the non-
availability of a particular reference is indicated by throwing an InvalidName
exception (even if anil reference is explicitly configured for an Objectld).

Common Object Request Broker Architecture (CORBA), v3.0.3 March 2004

4

Currently, reserved Objectlds are RootPOA, POACurrent, InterfaceRepository,
NameService, TradingService, SecurityCurrent, TransactionCurrent,
DynAnyFactory, ORBPolicyManager, PolicyCurrent, NotificationService,
TypedNotificationService, CodecFactory, PICurrent,

ComponentHomeFinder and PSS.

Table4-1 Objectlds for resolve_initial_references

Objectld Type of Object Reference Reference

RootPOA PortableServer::POA Section 11.3.9, “POA Interface” on
page 11-34

POACurrent PortableServer::Current Section 11.3.9, “POA Interface” on

page 11-34

InterfaceRepository

CORBA::Repository
CORBA::Componentl R::Repository

Section 10.5.6, “Repository” on
page 10-22

Section 10.6.2,

“Componentl R::Repository” on
page 10-52

NameService

CosNaming::
NamingContext

Naming Service specification
(formal/00-06-19), the CosNaming
Module section.

TradingService

CosTrading::Lookup

Trading Object Service
specification (formal/00-06-27), the
Functional Interfaces section.

SecurityCurrent

SecurityLevell::Current or
SecurityLevel2::Current

Security Service specification
(formal/00-06-25), the Security
Operations on Current section.

TransactionCurrent

CosTransaction::Current

Transaction Service specification
(formal/00-06-28), the Transaction
Service Interfaces section.

DynAnyFactory

DynamicAny::
DynAnyFactory

Section 9.2.1, “Creating a DynAny
Object” on page 9-9

ORBPolicyManager

CORBA::PolicyManager

Section 4.9.3, “Policy Management
Interfaces” on page 4-45

PolicyCurrent

CORBA::PolicyCurrent

Section 4.9.3, “Policy Management
Interfaces” on page 4-45

NotificationService

CosNotifyChannelAdmin::
EventChannelFactory

Notification Service specification
(formal/00-06-20)

TypedNotificationService

CosTypedNotifyChannelAdmin::Typed
EventChannelFactory

Notification Service specification
(formal/00-06-20)

March 2004

CORBA, v3.0.3: ORB Interface Chapter

4-29

Table4-1 Objectlds for resolve _initia_references

Objectld Type of Object Reference Reference

CodecFactory IOP::CodecFactory Section 13.8.2, “ Codec Factory” on
page 13-34

PICurrent Portableinterceptors::Current Section 21.4.3, “Portable
Interceptor Current Interface” on
page 21-34

ComponentHomeFinder Components::HomeFinder CORBA Components specification.

PSS CosPersistentState:: Persistent Sate specification

ConnectorRegistry (ptc/01-12-02).

To allow an application to determine which objects have references available via the
initial references mechanism, the list_initial_services operation (also a call on the
ORB) is provided. It returns an ObjectldList, which is a sequence of Objectlds.
Objectlds are typed as strings. Each object, which may need to be made available at
initialization time, is allocated a string value to represent it. In addition to defining the
id, the type of object being returned must be defined; that is, “InterfaceRepository”
returns an object of type Repository, or ComponentIR::Repository, which is
derived from Repository, depending on whether the ORB supports components or
not, and “NameService” returns a CosNaming::NamingContext object.

The application is responsible for narrowing the object reference returned from
resolve_initial_references to the type that was requested in the Objectld. For
example, for InterfaceRepository the object returned would be narrowed to
Repository type or ComponentlIR::Repository type, depending on whether the
ORB supports components.

Specifications for Object Services (see individual service specifications) state whether
it is expected that a service's initial reference be made available via the
resolve_initial_references operation or not; that is, whether the service is necessary
or desirable for bootstrap purposes.

4.5.3 Configuring Initial Service References

4.5.3.1 ORB-specific Configuration

4-30

It is required that an ORB can be administratively configured to return an arbitrary
object reference from CORBA::ORB::resolve_initial_references for non-locality-
constrained objects.

In addition to this required implementation-specific configuration, two
CORBA::ORB_init arguments are provided to override the ORB initia reference
configuration.

Common Object Request Broker Architecture (CORBA), v3.0.3 March 2004

March 2004

4.5.3.2

4.5.3.3

ORBI nitRef

The ORB initial reference argument, -ORB InitRef, allows specification of an arbitrary
object reference for an initial service. The format is:

-ORBInitRef <ObjectID>=<ObjectURL>

Examples of use are:
-ORBInitRef NameService=IOR:00230021AB...
-ORBInitRef NotificationService=corbaloc::5550bjs.com/NotificationService

-ORBInitRef TradingService=corbaname::5550bjs.com#Dev/Trader

<ObjectID> represents the well-known ObjectID for a service defined in the CORBA
specification, such as NameService. This mechanism allows an ORB to be
configured with new initial service Object IDs that were not defined when the ORB
was installed.

<ObjectURL> can be any of the URL schemes supported by
CORBA::ORB::string_to_object (Section 13.6.10, “Object URLS’ on page 13-24),
with the exception of the corbaloc URL scheme with the rir protocol (i.e.,
corbaloc:rir...). If a URL is syntactically malformed or can be determined to be invalid
in an implementation defined manner, ORB_init raises a BAD_PARAM exception.

ORBDefaultl nitRef

The ORB default initial reference argument, -ORBDefaultInitRef, assistsin
resolution of initial references not explicitly specified with - ORBI ni t Ref .
-ORBDefaultInitRef requires a URL that, after appending a slash ‘/’ character and a
stringified object key, forms a new URL to identify an initial object reference. For
example:

-ORBDefaultInitRef corbaloc::5550bjs.com

A call to resolve_initial_references (see the “NatificationService") with this
argument results in anew URL:

corbaloc::5550bjs.com/NotificationService

That URL is passed to CORBA::ORB::string_to_object to obtain the initia
reference for the service.

Another exampleis:

-ORBDefaultInitRef \
corbaname::555ResolveRefs.com,:555Backup.com#Prod/Local

After calling resolve_initial_references(* NameService”), one of the
cor bananme URLs

CORBA, v3.0.3: ORB Interface Chapter 4-31

4-32

45.3.4

4.5.3.5

corbaname::555ResolveRefs.com#Prod/Local/NameService

or

corbaname::555Backup41l.com#Prod/Local/NameService

is used to obtain an object reference from string_to_object. (In this example,
Prod/Local/NameService represents a stringified CosNaming::Name).

Section 13.6.7, “Profile and Component Composition in IORS’ on page 13-22 provides
details of the corbaloc and corbaname URL schemes. The -ORBDefaultInitRef
argument naturally extends to URL schemes that may be defined in the future,
provided the final part of the URL is an object key.

Configuration Effect onresolve_initial_references

Default Resolution Order

The default order for processing a call to
CORBA::ORB::resolve_initial_references for a given <ObjectID> is:

1. Resolve with register_initial_reference entry if possible.
1. Resolve with -ORBInitRef for this <ObjectID> if possible
2. Resolve with pre-configured ORB settings if possible.

3. Resolve with an -ORBDefaultInitRef entry if possible.

ORB Configured Resolution Order

There are cases where the default resolution order may not be appropriate for all
services and use of -ORBDefaultinitRef may have unintended resolution side effects.
For example, an ORB may use a proprietary service, such as
ImplementationRepository, for internal purposes and may want to prevent a client
from unknowingly diverting the ORB’s reference to an implementation repository from
another vendor. To prevent this, an ORB is allowed to ignore the -ORBDefaultInitRef
argument for any or all <ObjectID>s for those services that are not OMG-specified
services with awell-known service name as accepted by resolve_initial_references.
An ORB can only ignore the -ORBDefaultInitRef argument but must always honor
the -ORBInitRef argument.

Configuration Effect onlist_initial _services

The <ObjectID>s of all -ORBInitRef argumentsto ORB_init appear in the list of
tokens returned by list_initial_services as well as all ORB-configured
<ObjectID>s. Any other tokens that may appear are implementation-dependent.

The list of <ObjectID>s returned by list_initial_services can be a subset of the
<ObjectID>s recognized as valid by resolve_initial_references.

Common Object Request Broker Architecture (CORBA), v3.0.3 March 2004

4.6 Context Object

4.6.1 Introduction

A context object contains a list of properties, each consisting of a name and a string
value associated with that name. By convention, context properties represent
information about the client, environment, or circumstances of a request that are
passed as a single parameter representing that collection of information.

Context properties represent a portion of a client's or application’'s environment that is
meant to be propagated to (and made available to) a server's environment (for example,
a window identifier, or user preference information). Once an operation has been
invoked in the server, the operation implementation may query its context object for
these properties.

An operation definition may contain a context clause that specifies the context
properties that may be of interest to a particular operation. These context properties (if
present for the actual call) are propagated to the server. A client-side ORB may choose
to pass more properties than are specified by an operation's context clause. An example
of an operation with a context clause is

interface Example {
void op() context("USER", " X*");

b

This context clause specifies that the "USER" property is to be made available to the
server, as well as all properties with names beginning with "X". Note that there is no
obligation on the client to actually pass values for these properties at run time; if the
client omits one or more properties, the call proceeds normally and the operation

implementation simply will not be able to retrieve the corresponding property values.

Property names are non-empty strings that cannot contain the character *'; there are no
other syntactic restrictions on property names. Property names that differ only in case
are distinct names, so the following is alegal context clause that transmits two distinct
properties:

interface Example2 {
void op() context("FOO", "foo");

I3
Context property values are strings. An empty string is a legal property value.

Property values are modified and accessed via the Context interface. A Context
object represents a collection of property values. Context objects may be connected
into hierarchies; properties defined in child Context objects lower in the hierarchy
override properties in parent Context objects higher in the hierarchy.

4.6.2 Context Object Operations

Properties are represented as named value lists.

March 2004 CORBA, v3.0.3: ORB Interface Chapter 4-33

4-34

4.6.2.1

4.6.2.2

module CORBA {
interface Context { /I PIDL
void set_one_value(
in Identifier prop_name, // property name to set

in string value /I property value to set
);
void set_values(

in NVList values /I property values to set
).

void get_values(
in Identifier start_scope, /I search scope

in Flags op_flags, /[operation flags
in Identifie prop_name, // name of property(s) to retrieve
out NVList values /I requested property(s)
);
void delete_values(
in Identifie prop_name // name of property(s) to delete
);
void create_child(
in Identifier ctx_name, /l name of context object
out Context child_ctx / newly created context object
);
void delete(
in Flags del_flags /l flags controlling deletion
);

b
b

set_one value

void set_one_value(
in Identifier prop_name, [/ property name to set
in string value /I property value to set

);

This operation sets a single context object property. If prop_name is the empty string
or contains the character *', the operation raises BAD_PARAM with minor code 35.

set_values

void set_values(
in NVLis values /I property values to set

);

This operation sets one or more property values in its context object. If a property
name appears more than once in the NVList, the value with higher index (later in the
list) overwrites the value with lower index.

The flags field of each passed NVList element must be zero. A non-zero flag in any
of the NVList elements raises INV_FLAGS.

Common Object Request Broker Architecture (CORBA), v3.0.3 March 2004

4

The property name of each NVList element must be a non-empty string not containing
the character *'; otherwise, the operation raises BAD_PARAM with minor code 35.

The value of each property of the passed NVList must be a (possibly empty)
unbounded string. Property values other than unbounded strings raise
BAD_TYPECODE with minor code 3.

4.6.2.3 get_values

void get_values(
in Identifier start_scope, //search scope

in Flags op_flags, /I operation flags
in Identifier prop_name, // name of property(s) to retrieve
out NVList values /I requested property(s)

);

This operation returns an NVList with those properties that match the prop_name
parameter. Legal values for prop_name are:

e anon-empty string that does not contain the character **'

In this case, the values parameter returns the property with the name specified by
prop_name.

« astring beginning with one or more characters other than "', followed by asingle "*'
at the end, such as "XYZzZ*"

In this case, the values parameter contains the properties that have names beginning
with "XYZ" (such as "XYZABC" or "XYZ").

If prop_name isthe empty string, the string "*", contains more than one "*' character,
or contains a'*' anywhere but at the end of the string, the operation raises
BAD_PARAM with minor code 36.

The start_scope parameter controls the context object level at which to initiate the
search for the specified properties as follows:

e The start_scope parameter specifies the name of the context object in which the
search for properties is to start.

« If the context object on which get_values isinvoked has a name equal to
start_scope, that context object becomes the starting context object for the
search.

« If start_scope is"", the context object on which get_values is invoked becomes
the starting context object for the search.

« If the context object on which get_values is invoked does not have a name
equal to start_scope (and start_scope isnot ""), the parent context object is
retrieved and its name compared to start_scope; this process repeats until
either a starting context object whose name equals start_scope is found, or
the search terminates because it runs out of parent objects.

March 2004 CORBA, v3.0.3: ORB Interface Chapter 4-35

4-36

4.6.2.4

4.6.2.5

The name of the root context object created by get_default_context is
"RootContext".

If no starting context object can be found, the operation raises
BAD_CONTEXT with minor code 1.

¢ Once a starting context object is found, get_values searches for propertiesin
the matching context aobject.

e If op_flagsisCORBA::CTX_RESTRICT_SCOPE, get_values searches only
the starting context object for properties that match prop_name. (The value
of CTX_RESTRICT_SCOPE is 15.)

« If op_flags is zero, get_values searches the starting context and its parent
contexts for properties that match prop_name. The property values that are
returned are taken from the first context object in which they are found, so
properties in child contexts override the values of properties in parent contexts.

In either case, if no property matches prop_name, the operation raises
BAD_CONTEXT with minor code 2.

delete values

void delete_values(
in ldentifie prop_name // name of property(s) to delete

);

This operation deletes the properties that match prop_name. prop_name may have
atrailing *' character, in which case all properties whose name matches the specified
prefix are deleted.

If prop_name isthe empty string, the string "*", contains more than one *' character,
or contains a*' anywhere but at the end of the string, the operation raises
BAD_PARAM with minor code 36. The operation only affects the context object on
which it isinvoked (that is, parent contexts are never affected by delete_values).

If no property name matches prop_name, the operation raises BAD_CONTEXT with
minor code 2.

create child
void create_child(
in Identifier ctx_name, /I name of context object
out Context child_ctx /I newly created context object

);

This operation creates an empty child context object. The child context has the name
ctx_name. ctx_name may not be the empty string or "RootContext"; otherwise, the
operation raises BAD_PARAM with minor code 37. Calling create_child more than
once with the same name on the same parent context islegal and results in the creation
of a new, empty child context for each call.

Common Object Request Broker Architecture (CORBA), v3.0.3 March 2004

4.6.2.6 delete

4.7 Current Object

March 2004

void delete(
in Flags del_flags I/l flags controlling deletion

);
This operation deletes the context abject on which it is invoked:

« If del_flags is zero, the context object is deleted only if it has no child contexts;
otherwise, if del_flags is zero and the context object has child contexts, the
operation raises BAD_PARAM with minor code 38.

e If del_flags is CORBA::CTX_DELETE_DESCENDANTS, the context object on
which delete is invoked is destroyed, together with (recursively) its child contexts.
The value of CTX_DELETE_DESCENDANTS is 1.

If del_flags has a value other than zero or CTX_DELETE_DESCENDANTS, the
operation raises INV_FLAGS.

ORB and CORBA services may wish to provide access to information (context)
associated with the thread of execution in which they are running. This information is
accessed in a structured manner using interfaces derived from the Current interface
defined in the CORBA module.

Each ORB or CORBA service that needs its own context derives an interface from the
CORBA module's Current. Users of the service can obtain an instance of the
appropriate Current interface by invoking ORB::resolve_initial_references. For
example the Security service obtains the Current relevant to it by invoking

ORB::resolve_initial_references(“ SecurityCurrent”)

A CORBA service does not have to use this method of keeping context but may
choose to do so.

module CORBA {

/l interface for the Current object
local interface Current {

I3
h

Operations on interfaces derived from Current access state associated with the thread
in which they are invoked, not state associated with the thread from which the
Current was obtained. This prevents one thread from manipulating another thread's
state, and avoids the need to obtain and narrow a new Current in each method's thread
context.

Current objects must not be exported to other processes, or externalized with
ORB::object_to_string. If any attempt is made to do so, the offending operation will
raise a MARSHAL system exception. Currents are per-process singleton objects, so
no destroy operation is needed.

CORBA, v3.0.3: ORB Interface Chapter 4-37

4

4.8 Policy Object

4-38

4.8.1 Definition of Policy Object

4.8.11

An ORB or CORBA service may choose to allow access to certain choices that affect
its operation. This information is accessed in a structured manner using interfaces
derived from the Policy interface defined in the CORBA module. A CORBA service
does not have to use this method of accessing operating options, but may choose to do
s0. The Security Service in particular uses this technique for associating Security
Policy with objects in the system.

module CORBA {
typedef unsigned long PolicyType;

/I Basic IDL definition

interface Policy {
readonly attribute PolicyType policy_type;
Policy copy();
void destroy();

b

typedef sequence <Policy> PolicyList;
typedef sequence <PolicyType> PolicyTypeSeq;
3

PolicyType defines the type of Policy object. In general the constant values that are
allocated are defined in conjunction with the definition of the corresponding Policy
object. The values of PolicyTypes for policies that are standardized by OMG are
allocated by OMG. Additionally, vendors may reserve blocks of 4096 PolicyType
values identified by a 20 bit Viendor PolicyType Valueset ID (VPVID) for their own use.

PolicyType which is an unsigned long consists of the 20-bit VPVID in the high order
20 hits, and the vendor assigned policy value in the low order 12 hits. The VPVIDs 0
through \xf are reserved for OMG. All values for the standard PolicyTypes are
allocated within this range by OMG. Additionally, the VPVIDs \xfffff is reserved for
experimental use and OMGVMCID (Section 4.12.3, “ Standard System Exception
Definitions” on page 4-66) is reserved for OMG use. These will not be allocated to
anybody. Vendors can request allocation of VPVID by sending mail to tag-
request@omg.org.

When a VMCID (Section 4.12, “Exceptions’ on page 4-63) is allocated to a vendor
automatically the same value of VPVID is reserved for the vendor and vice versa. So
once a vendor gets either a VMCID or a VPVID registered they can use that value for
both their minor codes and their policy types.

Copy

Policy copy();

Common Object Request Broker Architecture (CORBA), v3.0.3 March 2004

Return Value

This operation copies the policy object. The copy does not retain any relationships that
the policy had with any domain, or object.

4.8.1.2 Destroy

void destroy();
This operation destroys the policy object. It is the responsibility of the policy object to
determine whether it can be destroyed.

Exception(s)

CORBA::NO_PERMISSION - raised when the policy object determines that it
cannot be destroyed.

4.8.1.3 Policy type

readonly attribute policy_type

Return Value

This readonly attribute returns the constant value of type PolicyType that corresponds
to the type of the Policy object.

4.8.2 Creation of Policy Objects

A generic ORB operation for creating new instances of Policy objects is provided as
described in this section.

module CORBA {

typedef short PolicyErrorCode;

const PolicyErrorCode BAD_POLICY =0;

const PolicyErrorCode UNSUPPORTED_POLICY =1,

const PolicyErrorCode BAD_POLICY_TYPE = 2;

const PolicyErrorCode BAD_POLICY_VALUE = 3;

const PolicyErrorCode UNSUPPORTED_POLICY_VALUE = 4;

exception PolicyError {PolicyErrorCode reason;};
interface ORB {

Policy create_policy(
in PolicyType type,
in any val

) raises(PolicyError);

March 2004 CORBA, v3.0.3: ORB Interface Chapter 4-39

4-40

4.8.2.1

4.8.2.2

4.8.2.3

PolicyErrorCode
A request to create a Policy may be invalid for the following reasons:
BAD_POLICY - the requested Policy is not understood by the ORB.

UNSUPPORTED_POLICY - the requested Policy is understood to be valid by the
ORB, but is not currently supported.

BAD_POLICY_TYPE - The type of the value requested for the Policy is not valid
for that PolicyType.

BAD_POLICY_VALUE - The value requested for the Policy is of avalid type but
is not within the valid range for that type.

UNSUPPORTED_POLICY_VALUE - The value requested for the Policy is of a
valid type and within the valid range for that type, but this valid value is not currently
supported.

PolicyError

exception PolicyError {PolicyErrorCode reason;};

PolicyError exception is raised to indicate problems with parameter values passed to
the ORB::create_policy operation. Possible reasons are described above.

Create policy

The ORB operation create_policy can be invoked to create new instances of policy
objects of a specific type with specified initial state. If create_policy fails to
instantiate a new Policy object due to its inability to interpret the requested type and
content of the poalicy, it raises the PolicyError exception with the appropriate reason
as described in Section 4.8.2.1, “PolicyErrorCode” on page 4-40.

Policy create_policy(
in PolicyType type,
in any val

) raises(PolicyError);

Parameter(s)
type - the Policy Type of the policy object to be created.

val - the value that will be used to set the initial state of the Policy object that is created.
ReturnValue

Reference to a newly created Policy object of type specified by the type parameter
and initialized to a state specified by the val parameter.

Common Object Request Broker Architecture (CORBA), v3.0.3 March 2004

Exception(s)
PolicyError - raised when the requested policy is not supported or a requested initial
state for the policy is not supported.

When new policy types are added to CORBA or CORBA Services specification, it is
expected that the IDL type and the valid values that can be passed to create_policy
also be specified.

4.8.3 Usages of Policy Objects

Policy Objects are used in general to encapsulate information about a specific policy,
with an interface derived from the policy interface. The type of the Policy object
determines how the policy information contained within it is used. Usually a Policy
object is associated with another object to associate the contained policy with that
object.

Objects with which policy objects are typically associated are Domain Managers,
POA, the execution environment, both the process/capsule/ORB instance and thread of
execution (Current object) and object references. Only certain types of policy object
can be meaningfully associated with each of these types of objects.

These relationships are documented in sections that pertain to these individual objects
and their usages in various core facilities and object services. The use of Policy
Objects with the POA are discussed in the Portable Object Adapter chapter. The use of
Policy objects in the context of the Security services, involving their association with
Domain Managers as well as with the Execution Environment are discussed in the
Security Service specification.

In the following section the association of Policy objects with the Execution
Environment is discussed. In Section 4.9, “Management of Policies’ on page 4-44 the
use of Policy objects in association with Domain Managers is discussed.

4.8.4 Policy Associated with the Execution Environment

Certain policies that pertain to services like security (e.g., QOP, Mechanism,
invocation credentials, etc.) are associated by default with the process/capsule(RM-
ODP)/ORB instance (hereinafter referred to as “capsule”) when the application is
instantiated together with the capsule. By default these policies are applicable
whenever an invocation of an operation is attempted by any code executing in the said
capsule. The Security service provides operations for modulating these policies on a
per-execution thread basis using operations in the Current interface. Certain of these
policies (e.g., invocation credentials, qop, mechanism, etc.) which pertain to the
invocation of an operation through a specific object reference can be further modulated
at the client end, using the set_policy_overrides operation of the Object reference.
For a description of this operation see Section 4.3.9, “Overriding Associated Policies
on an Object Reference” on page 4-20. It associates a specified set of policies with a
newly created object reference that it returns.

March 2004 CORBA, v3.0.3: ORB Interface Chapter 4-41

4-42

The association of these overridden policies with the object reference is a purely local
phenomenon. These associations are never passed on in any |OR or any other
marshaled form of the object reference. the associations last until the object reference
in the capsule is destroyed or the capsule in which it exists is destroyed.

The policies thus overridden in this new object reference and all subsequent duplicates
of this new object reference apply to all invocations that are done through these object
references. The overridden policies apply even when the default policy associated with
Current is changed. It is always possible that the effective policy on an object
reference at any given time will fail to be successfully applied, in which case the
invocation attempt using that object reference will fail and return a
CORBA::NO_PERMISSION exception. Only certain policies that pertain to the
invocation of an operation at the client end can be overridden using this operation.
These are listed in the Security specification. Attempts to override any other policy
will result in the raising of the CORBA::NO_PERMISSION exception.

In general the policy of a specific type that will be used in an invocation through a
specific object reference using a specific thread of execution is determined first by
determining if that policy type has been overridden in that object reference. if so then
the overridden policy is used. if not then if the policy has been set in the thread of
execution then that policy is used. If not then the policy associated with the capsule is
used. For policies that matter, the ORB ensures that there is a default policy object of
each type that matters associated with each capsule (ORB instance). Hence, in a
correctly implemented ORB there is no case when a required type policy is not
available to use with an operation invocation.

4.8.5 Secification of New Policy Objects

When new PolicyTypes are added to CORBA specifications, the following details
must be defined. It must be clearly stated which particular uses of a new policy are
legal and which are not;

« Specify the assigned CORBA::PolicyType and the policy's interface definition.

« If the Policy can be created through CORBA::ORB::create_policy, specify the
allowable values for the any argument 'val' and how they correspond to the initial
state/behavior of that Policy (such asinitial values of attributes). For example, if a
Policy has multiple attributes and operations, it is most likely that create_policy will
receive some complex data for the implementation to initialize the state of the
specific policy:

/DL

struct MyPolicyRange {
long low;
long high;

h

const CORBA::PolicyType MY_POLICY_TYPE = 666;
interface MyPolicy : Policy {

readonly attribute long low;

readonly attribute long high;

Common Object Request Broker Architecture (CORBA), v3.0.3 March 2004

h

If this sample MyPolicy can be constructed via create_policy, the specification of
MyPolicy will have a statement such as: “When instances of MyPolicy are
created, a value of type MyPolicyRange is passed to
CORBA::ORB::create_policy and the resulting MyPolicy’s attribute ‘low’ has
the same value as the MyPolicyRange member ‘low’ and attribute ‘high’ has the
same value as the MyPolicyRange member ‘high.’

« If the Policy can be passed as an argument to POA::create_POA, specify the
effects of the new policy on that POA. Specifically define incompatibilities (or inter-
dependencies) with other POA policies, effects on the behavior of invocations on
objects activated with the POA, and whether or not presence of the POA policy
implies some IOR profile/component contents for object references created with that
POA. If the POA policy implies some addition/modification to the object reference
it is marked as “client-exposed” and the exact details are specified including which
profiles are affected and how the effects are represented.

« If the component that is used to carry this information can be set within a client to
tune the client’s behavior, specify the policy’s effects on the client specifically with
respect to (@) establishment of connections and reconnections for an object
reference; (b) effects on marshaling of requests; (c) effects on insertion of service
contexts into requests; (d) effects upon receipt of service contextsin replies. In
addition, incompatibilities (or inter-dependencies) with other client-side policies are
stated. For policies that cause service contexts to be added to requests, the exact
details of this addition are given.

« If the Policy can be used with POA creation to tune IOR contents and can also be
specified (overridden) in the client, specify how to reconcile the policy’s presence
from both the client and server. It is strongly recommended to avoid this case! Asan
exercise in completeness, most POA policies can probably be extended to have
some meaning in the client and vice versa, but this does not help make usable
systems, it just makes them more complicated without adding really useful features.
There are very few cases where a policy is really appropriate to specify in both
places, and for these policies the interaction between the two must be described.

« Pure client-side policies are assumed to be immutable. This allows efficient
processing by the runtime that can avoid re-evaluating the policy upon every
invocation and instead can perform updates only when new overrides are set (or
policies change due to rebind). If the newly specified policy is mutable, it must be
clearly stated what happens if non-readonly attributes are set or operations are
invoked that have side-effects.

« For certain policy types, override operations may be disallowed. If thisis the case,
the policy specification must clearly state what happens if such overrides are
attempted.

March 2004 CORBA, v3.0.3: ORB Interface Chapter 4-43

4.8.6 Sandard Policies

Note — See Appendix A for alist of the standard policy types that are defined by
various parts of CORBA and CORBAservices in this version of CORBA.

4.9 Management of Policies

4.9.1 Client Sde Policy Management

Client-side Policy management is performed through operations accessible in the
following contexts:

* ORB-level Palicies - A locality-constrained PolicyManager is accessible through
the ORB interface. This PolicyManager has operations through which a set of
Policies can be applied and the current overriding Policy settings can be obtained.
Policies applied at the ORB level override any system defaults. The ORB’s
PolicyManager is obtained through an invocation of
ORB::resolve_initial_references, specifying an identifier of
“ORBPolicyManager.”

» Thread-level Policies - A standard PolicyCurrent is defined with operations for the
querying and applying of quality of service values specific to a thread. Policies
applied at the thread level override any system defaults or values set at the ORB
level. The locality-constrained PolicyCurrent is obtained through an invocation of
ORB::resolve_initial_references, specifying an identifier of “PolicyCurrent.”
When accessed from a newly spawned thread, the PolicyCurrent initially has no
overridden policies. The PolicyCurrent also has no overridden values when a POA
with ThreadPolicy of ORB_CONTROL_MODEL dispatches an invocation to a
servant. Each time an invocation is dispatched through a
SINGLE_THREAD_MODEL POA, the thread-level overrides are reset to have no
overridden values.

« Object-level Policies - Operations are defined on the base Object interface through
which a set of Policies can be applied. Policies applied at the Object level override
any system defaults or values set at the ORB or Thread levels. In addition, accessors
are defined for querying the current overriding Policies set at the Object level, and
for obtaining the current effective client-side Policy of a given PolicyType. The
effective client-side Policy isthe value of aPolicyType that would be in effect if a
request were made. Thisis determined by checking for overrides at the Object level,
then at the Thread level, and finally at the ORB level. If no overriding policies are
set at any level, the system-dependent default value is returned. Portable applications
are expected to override the ORB-level policies since default values are not specified
in most cases.

4-44 Common Object Request Broker Architecture (CORBA), v3.0.3 March 2004

March 2004

4.9.2 Server Sde Policy Management

Server-side Policy management is handled by associating Policy objects with a POA.
Since all policy objects are derived from interface Policy, those that are applicable to
server-side behavior can be passed as arguments to POA::create_ POA. Any such
Policies that affect the behavior of requests (and therefore must be accessible to the
ORSB at the client side) are exported within the Object references that the POA creates.
It is clearly noted in a POA Policy definition when that Policy is of interest to the
Client. For those policies that can be exported within an Object reference, the absence
of avalue for that policy type implies that the target supports any legal value of that
PolicyType.

Most Policies are appropriate only for management at either the Server or Client, but
not both. For those Policies that can be established at the time of Object reference
creation (through POA Policies) and overridden by the client (through overrides set at
the ORB, thread, or Object reference scopes), reconciliation is done on a per-Policy
basis. Such Policies are clearly noted in their definitions and describe the mechanism
of reconciliation between the Policies that are set by the POA and overridden in the
client. Furthermore, obtaining the effective Policy of some PolicyTypes requires
evaluating the effective Policy of other types of Policies. Such hierarchical Policy
definitions are also noted clearly when used.

At the Thread and ORB scopes, the common operations for querying the current set of
policies and for overriding these settings are encapsulated in the PolicyManager
interface.

4.9.3 Policy Management Interfaces

module CORBA {
local interface PolicyManager {
PolicyList get_policy_overrides(in PolicyTypeSeq ts);

void set_policy_overrides(
in PolicyList policies,
in SetOverrideType set_add
) raises (InvalidPolicies);

h
local interface PolicyCurrent : PolicyManager, Current {

h
h

CORBA, v3.0.3: ORB Interface Chapter 4-45

4-46

4.9.3.1 interface PolicyManager

The PolicyManager operations are used for setting and accessing Policy overrides
at a particular scope. For example, an instance of the PolicyCurrent is used for
specifying Policy overrides that apply to invocations from that thread (unless they are
overridden at the Object scope as described in Section 4.9.1, “Client Side Policy
Management” on page 4-44).

get_policy_overrides
PolicyList get_policy_overrides(in PolicyTypeSeq ts);

Parameter

ts a sequence of overridden policy typesidentifying the policies that
areto beretrieved.

Return Value

policy list the list of overridden policies of the types specified by ts.

Exceptions

none

Returns a PolicyList containing the overridden Polices for the requested Policy Types.
If the specified sequence is empty, all Policy overrides at this scope will be returned.
If none of the requested PolicyTypes are overridden at the target PolicyManager, an
empty sequence is returned. This accessor returns only those Policy overrides that
have been set at the specific scope corresponding to the target PolicyManager (no
evaluation is done with respect to overrides at other scopes).

set_policy_overrides

void set_policy_overrides(
in PolicyList policies,
in SetOverrideType set_add
) raises (InvalidPolicies);

Parameter

policies a sequence of Policy objectsthat are to be associated with the
PolicyManager object. If the sequence contains two or more
Policy objects with the same Policy Type value, the operation
raises the standard system exception BAD _PARAM with
standard minor code 30.

set_add whether the associationisin addition to (ADD_OVERRIDE) or as
areplacement of (SET_OVERRIDE) any existing overrides
already associated with the PolicyManager object. If the value of
this parameter is SET_OVERRIDE, the supplied policies
completely replace al existing overrides associated with the

Common Object Request Broker Architecture (CORBA), v3.0.3 March 2004

4.9.3.2

PolicyManager object. If the value of this parameter is
ADD_OVERRIDE, the supplied policies are added to the
existing overrides associated with the PolicyManager object,
except that if asupplied Policy object has the same Policy Type
value as an existing override, the supplied Policy object replaces
the existing override.

Return Value
none.

Exceptions
InvalidPolicies alist of indicesidentifying the position in theinput policieslist that
are occupied by invalid policies.

Modifies the current set of overrides with the requested list of Policy overrides. The
first parameter policiesis a sequence of references to Policy objects. The second
parameter set_add of type SetOverrideType indicates whether these policies should
be added onto any other overrides that already exist (ADD_OVERRIDE) in the
PolicyManager, or they should be added to a clean PolicyManager free of any
other overrides (SET_OVERRIDE). Invoking set_policy _overrides with an empty
sequence of policies and a mode of SET_OVERRIDE removes all overrides from a
PolicyManager. Only certain policies that pertain to the invocation of an operation at
the client end can be overridden using this operation. Attempts to override any other
policy will result in the raising of the CORBA::NO_PERMISSION exception. If
the request would put the set of overriding policies for the target PolicyManager in
an inconsistent state, no policies are changed or added, and the exception
InvalidPolicies is raised. There is no evaluation of compatibility with policies set
within other PolicyManagers.

interface PolicyCurrent

This specific PolicyManager provides access to policies overridden at the Thread
scope. A reference to a thread's PolicyCurrent is obtained through an invocation of
CORBA::ORB::resolve_initial_references.

4.10 Management of Policy Domains

March 2004

4.10.1 Basic Concepts

This section describes how policies, such as security policies, are associated with
objects that are managed by an ORB. The interfaces and operations that facilitate this
aspect of management is described in this section together with the section describing
Policy objects.

CORBA, v3.0.3: ORB Interface Chapter 4-47

4-48

4.10.1.1

4.10.1.2

4.10.1.3

4.10.1.4

Policy Domain

A policy domain is a set of objects to which the policies associated with that domain
apply. These objects are the domain members. The policies represent the rules and
criteria that constrain activities of the objects which belong to the domain. On object
reference creation, the ORB implicitly associates the object reference with one or more
policy domains. Policy domains provide leverage for dealing with the problem of scale
in policy management by allowing application of policy at a domain granularity rather
than at an individual object instance granularity.

Policy Domain Manager

A policy domain includes a unique object, one per policy domain, called the domain
manager, which has associated with it the policy objects for that domain. The domain
manager also records the membership of the domain and provides the means to add
and remove members. The domain manager is itself a member of a domain, possibly
the domain it manages.

Policy Objects

A policy object encapsulates a policy of a specific type. The policy encapsulated in a
policy object is associated with the domain by associating the policy object with the
domain manager of the policy domain.

There may be several policies associated with a domain, with a policy object for each.
There is at most one policy of each type associated with a policy domain. The policy
objects are thus shared between objects in the domain, rather than being associated
with individual objects. Consequently, if an object needs to have an individual policy,
then it must be a singleton member of a domain.

Object Member ship of Policy Domains

Since the only way to access objects is through object references, associating object
references with policy domains, implicitly associates the domain policies with the
object associated with the object reference. Care should be taken by the application
that is creating object references using POA operations to ensure that object references
to the same object are not created by the server of that object with different domain
associations. Henceforth whenever the concept of “object membership” is used, it
actually means the membership of an object reference to the object in question.

An object can simultaneously be a member of more than one policy domain. In that
case the object is governed by all policies of its enclosing domains. The reference
model allows an object to be a member of multiple domains, which may overlap for
the same type of policy (for example, be subject to overlapping access policies). This
would require conflicts among policies defined by the multiple overlapping domains to
be resolved. The specification does not include explicit support for such overlapping
domains and, therefore, the use of policy composition rules required to resolve
conflicts at policy enforcement time.

Common Object Request Broker Architecture (CORBA), v3.0.3 March 2004

March 2004

4.10.1.5

Policy domain managers and policy objects have two types of interfaces:

* The operational interfaces used when enforcing the policies. These are the interfaces
used by the ORB during an object invocation. Some policy objects may also be used
by applications, which enforce their own policies.

The caller asks for the policy of a particular type (e.g., the delegation policy), and
then uses the policy object returned to enforce the policy. The caller finding a
policy and then enforcing it does not see the domain manager objects and the
domain structure.

« The administrative interfaces used to set policies (e.g., specifying which events to
audit or who can access objects of a specified type in this domain). The
administrator sees and navigates the domain structure, so he is aware of the scope of
what he is administering.

Note: This specification does not include any explicit interfaces for managing the
policy domains themselves: creating and deleting them; moving objects between them;
changing the domain structure and adding, changing, and removing policies applied to
the domains.

Domains Association at Object Reference Creation

When a new object reference is created, the ORB implicitly associates the object
reference (and hence the object that it is associated with) with the following elements
forming its environment:

* One or more Policy Domains, defining all the policies to which the object associated
with the object reference is subject.

¢ The Technology Domains, characterizing the particular variants of mechanisms
(including security) available in the ORB.

The ORB will establish these associations when one of the object reference creation
operations of the POA is called. Some or all of these associations may subsequently be
explicitly referenced and modified by administrative or application activity, which
might be specifically security-related but could also occur as a side-effect of some
other activity, such as moving an object to another host machine.

In some cases, when a new object reference is created, it needs to be associated with a
new domain. Within a given domain a construction policy can be associated with a
specific object type thus causing a new domain; that is, a domain manager object to be
created whenever an object reference of that type is created and the newly created
object reference associated with the new domain manager. This construction policy is
enforced at the same time as the domain membership; that is, by the POA when it
creates an object reference.

CORBA, v3.0.3: ORB Interface Chapter 4-49

4-50

4.10.1.6 Implementor’sView of Object Creation

For policy domains, the construction policy of the application or factory creating the
object proceeds as follows. The application (which may be a generic factory) calls one
of the object reference creation operations of the POA to create the new object
reference. The ORB obtains the construction policy associated with the creating object,
or the default domain absent a creating object.

By default, the new object reference that is created is made a member of the domain to
which the parent belongs. Non-object applications on the client side are associated
with a default, per-ORB instance policy domain by the ORB.

Each domain manager has a construction policy associated with it, which controls
whether, in addition to creating the specified new object reference, a new domain
manager is created with it. This object provides a single operation
make_domain_manager which can be invoked with the constr_policy parameter
set to TRUE to indicate to the ORB that new object references of the specified type are
to be associated their own separate domains. Once such a construction policy is set, it
can be reversed by invoking make_domain_manager again with the
constr_policy parameter set to FALSE.

When creating an object reference of the type specified in the
make_domain_manager call with constr_policy set to TRUE, the ORB must aso
create a new domain for the newly created object reference. If a new domain is needed,
the ORB creates both the requested object reference and a domain manager object. A
reference to this domain manager can be found by calling get_domain_managers
on the newly created object reference.

While the management interface to the construction policy object is standardized, the
interface from the ORB to the policy object is assumed to be a private one, which may
be optimized for different implementations.

If a new domain is created, the policies initialy applicable to it are the policies of the
enclosing domain. The ORB will always arrange to provide a default enclosing domain
with default ORB policies associated with it, in those cases where there would be no

such domain as in the case of a non-object client invoking object creation operations.

The calling application, or an administrative application later, can change the domains
to which this object belongs, using the domain management interfaces, which will be
defined in the future.

Since the ORB has control only over domain associations with object references, it is
the responsibility of the creator of new object to ensure that the object references that
are created to the new object are associated meaningfully with domains.

4.10.2 Domain Management Operations

This section defines the interfaces and operations needed to find domain managers and
find the policies associated with these. However, it does not include operations to
manage domain membership, structure of domains, or to manage which policies are
associated with domains.

Common Object Request Broker Architecture (CORBA), v3.0.3 March 2004

March 2004

4.10.2.1

This section also includes the interface to the construction policy object, as that is
relevant to domains. The basic definitions of the interfaces and operations related to
these are part of the CORBA module, since other definitions in the CORBA module
depend on these.

module CORBA {
interface DomainManager {
Policy get_domain_policy (
in PolicyType policy_type
);
h

const PolicyType SecConstruction = 11;

interface ConstructionPolicy: Policy{
void make_domain_manager(
in CORBA::InterfaceDef object_type,
in boolean constr_policy
);
h

typedef sequence <DomainManager> DomainManagersList;

b

Domain Manager

The domain manager provides mechanisms for:
 Establishing and navigating relationships to superior and subordinate domains.
« Creating and accessing policies.

There should be no unnecessary constraints on the ordering of these activities, for
example, it must be possible to add new policies to a domain with a pre-existing
membership. In this case, some means of determining the members that do not
conform to a policy that may be imposed is required. It should be noted that interfaces
for adding new policies to domains or for changing domain memberships have not
currently been standardized.

All domain managers provide the get_domain_policy operation. By virtue of being
an object, the Domain Managers also have the get_policy and
get_domain_managers operations, which is available on all objects (see Section
4.3.8, “Getting Policy Associated with the Object” on page 4-19 and Section 4.3.11,
“Getting the Domain Managers Associated with the Object” on page 4-22).

CORBA::DomainManager::get_domain_policy
This returns the policy of the specified type for objects in this domain.

Policy get_domain_policy (
in PolicyType policy_type

CORBA, v3.0.3: ORB Interface Chapter 4-51

Parameter(s)

policy _type - The type of policy for objects in the domain which the application
wants to administer. For security, the possible policy types are described in the
Security Service specification, Security Policies Introduction section.

Return Value
A reference to the policy object for the specified type of policy in this domain.

Exception(s)
CORBA::INV_POLICY - raised when the value of palicy typeis not vaid either

because the specified type is not supported by this ORB or because a policy object of
that type is not associated with this Object.

4.10.2.2 Construction Policy

The construction policy object allows calers to specify that when instances of a
particular object reference are created, they should be automatically assigned
membership in a newly created domain at creation time.

CORBA::ConstructionPolicy::make_domain_manager

This operation enables the invoker to set the construction policy that is to be in effect
in the domain with which this ConstructionPolicy object is associated. Construction
Policy can either be set so that when an object reference of the type specified by the
input parameter is created, a new domain manager will be created and the newly
created object reference will respond to get_domain_managers by returning a
reference to this domain manager. Alternatively the policy can be set to associate the
newly created object reference with the domain associated with the creator. This policy
is implemented by the ORB during execution of any one of the object reference
creation operations of the POA, and results in the construction of the application-
specified object reference and a Domain Manager object if so dictated by the policy in
effect at the time of the creation of the object reference.

void make_domain_manager (
in InterfaceDef object_type,
in boolean constr_policy

Parameter(s)

object_type - The type of the object references for which Domain Managers will be
created. If thisis nil, the policy applies to al object references in the domain.

4-52 Common Object Request Broker Architecture (CORBA), v3.0.3 March 2004

constr_policy - If TRUE the construction policy is set to create a new domain
manager associated with the newly created object reference of this type in this domain.
If FALSE construction policy is set to associate the newly created object references
with the domain of the creator or a default domain as described above.

4.11 TypeCodes

TypeCodes are values that represent invocation argument types and attribute types.
They can be obtained from the Interface Repository or from IDL compilers.

TypeCodes have a number of uses. They are used in the dynamic invocation interface
to indicate the types of the actual arguments. They are used by an Interface Repository
to represent the type specifications that are part of many OMG IDL declarations.
Finally, they are crucial to the semantics of the any type.

Abstractly, TypeCodes consist of a “kind” field, and a set of parameters appropriate
for that kind. For example, the TypeCode describing OMG IDL type long has kind
tk_long and no parameters. The TypeCode describing OMG IDL type
sequence<boolean,10> has kind tk_sequence and two parameters: 10 and
boolean.

4.11.1 The TypeCode Interface

The PIDL interface for TypeCodes is as follows:

module CORBA {
enum TCKind {

tk_null, tk_void,
tk_short, tk_long, tk_ushort, tk_ulong,
tk_float, tk_double, tk_boolean, tk_char,
tk_octet, tk_any, tk_TypeCode, tk_Principal, tk_objref,
tk_struct, tk_union, tk_enum, tk_string,
tk_sequence, tk_array, tk_alias, tk_except,
tk_longlong, tk_ulonglong, tk_longdouble,
tk_wchar, tk_wstring, tk_fixed,
tk_value, tk_value_box,
tk_native,
tk_abstract_interface,
tk_local_interface,
tk_component, tk_home,
tk_event

b

typedef short ValueModifier;
const ValueModifier VM_NONE = 0;
const ValueModifier VM_CUSTOM =1;
const ValueModifier VM_ABSTRACT = 2;
const ValueModifier VM_TRUNCATABLE = 3;

interface TypeCode {

March 2004 CORBA, v3.0.3: ORB Interface Chapter 4-53

4-54

exception Bounds {};
exception BadKind {};

[/l for all TypeCode kinds
boolean equal (in TypeCode tc);

boolean equivalent(in TypeCode tc);
TypeCode get_compact_typecode();

TCKind kind ();

I/l for tk_objref, tk_struct, tk_union, tk_enum, tk_alias,

/I tk_value, tk_value_box, tk_native, tk_abstract_interface
/I tk_local_interface, tk_except

/[tk_component, tk_home and tk_event

Repositoryld id () raises (BadKind);

I/l for tk_objref, tk_struct, tk_union, tk_enum, tk_alias,

/I tk_value, tk_value_box, tk_native, tk_abstract_interface
/I tk_local_interface, tk_except

/[tk_component, tk_home and tk_event

Identifier name () raises (BadKind);

/I for tk_struct, tk_union, tk_enum, tk_value,

Il tk_except and tk_event

unsigned long member_count () raises (BadKind);

Identifier member_name (in unsigned long index)
raises(BadKind, Bounds);

/I for tk_struct, tk_union, tk_value,

/l tk_except and tk_event

TypeCode member_type (in unsigned long index)
raises (BadKind, Bounds);

/I for tk_union

any member_label (in unsigned long index)
raises(BadKind, Bounds);

TypeCode discriminator_type () raises (BadKind);

long default_index () raises (BadKind);

/l for tk_string, tk_wstring, tk_sequence, and tk_array
unsigned long length () raises (BadKind);

I/l for tk_sequence, tk_array, tk_value_box and tk_alias
TypeCode content_type () raises (BadKind);

/I for tk_fixed
unsigned short fixed_digits() raises(BadKind);
short fixed_scale() raises(BadKind);

/l for tk_value and tk_event

Common Object Request Broker Architecture (CORBA), v3.0.3

March 2004

March 2004

Visibility member_visibility(in unsigned long index)
raises(BadKind, Bounds);
ValueModifier type_modifier() raises(BadKind);
TypeCode concrete_base_type() raises(BadKind);
h
b

With the above operations, any TypeCode can be decomposed into its constituent
parts. The BadKind exception is raised if an operation is not appropriate for the
TypeCode kind it invoked.

The equal operation can be invoked on any TypeCode. The equal operation returns
TRUE if and only if for the target TypeCode and the TypeCode passed through the
parameter tc, the set of legal operations is the same and invoking any operation from
that set on the two TypeCodes return identical results.

The equivalent operation is used by the ORB when determining type equivalence for
values stored in an IDL any. TypeCodes are considered equivalent based on the
following semantics:

« If the result of the kind operation on either TypeCode is tk_alias, recursively
replace the TypeCode with the result of calling content_type, until the kind is no
longer tk_alias.

« If results of the kind operation on each typecode differ, equivalent returns false.

« If the id operation is valid for the TypeCode kind, equivalent returns TRUE if
the results of id for both TypeCodes are non-empty strings and both strings are
equal. If both ids are non-empty but are not equal, then equivalent returns FALSE.
If either or both id is an empty string, or the TypeCode kind does not support the
id operation, equivalent will perform a structural comparison of the TypeCodes
by comparing the results of the other TypeCode operations in the following bullet
items (ignoring aliases as described in the first bullet.). The structural comparison
only calls operations that are valid for the given TypeCode kind. If any of these
operations do not return equal results, then equivalent returns FALSE. If all
comparisons are equal, equivalent returns true.

« The results of the name and member_name operations are ignored and not
compared.

¢ The results of the member_count, default_index, length, digits, scale, and
type_modifier operations are compared.

« The results of the member_label operation for each member index of a union
TypeCode are compared for equality. Note that this means that unions whose
members are not defined in the same order are not considered structurally
equivalent.

e The results of the discriminator_type, member_type, and
concrete_base_type operation and for each member index, and the result of the
content_type operation are compared by recursively calling equivalent.

e The results of the member_visibility operation are compared for each member
index.

CORBA, v3.0.3: ORB Interface Chapter 4-55

4-56

Applications that need to distinguish between a type and different aliases of that type
can supplement equivalent by directly invoking the id operation and comparing the
results.

The get_compact_typecode operation strips out all optional name and member
name fields, but it leaves all alias typecodes intact.

The kind operation can be invoked on any TypeCode. Its result determines what
other operations can be invoked on the TypeCode.

The id operation can be invoked on object reference, valuetype, boxed valuetype,
abstract interface, local interface, native, structure, union, enumeration, alias,
exception, component, home, and event TypeCodes. It returns the Repositoryld
globally identifying the type. Object reference, valuetype, boxed valuetype, native,
exception, component, home, and event TypeCodes always have a Repositoryld.
Structure, union, enumeration, and alias TypeCodes obtained from the Interface
Repository or the ORB::create_operation_list operation also always have a
Repositoryld. Otherwise, the id operation can return an empty string.

When the id operation is invoked on an object reference TypeCode that contains a
base Object, the returned value is IDL:omg.org/CORBA/Object:1.0.

When it is invoked on a valuetype TypeCode that contains a ValueBase, the
returned value is IDL:omg.org/CORBA/ValueBase:1.0.

When it is invoked on a component TypeCode that contains a
Components::CCMObiject, the returned value is
IDL:omg.org/Components/CCMObject:1.0.

When it isinvoked on ahome TypeCode that containsa Components::CCMHome,
the returned value is IDL:omg.org/Components/CCMHome:1.0.

When it is invoked on an eventtype TypeCode that contains a
Components::EventBase, the returned value is
IDL:omg.org/Components/EventBase:1.0.

The name operation can also be invoked on object reference, structure, union,
enumeration, alias, abstract interface, local interface, value type, boxed valuetype,
native, and exception TypeCodes. It returns the simple name identifying the type
within its enclosing scope. Since names are local to a Repository, the name returned
from a TypeCode may not match the name of the type in any particular Repository,
and may even be an empty string.

The order in which members are presented in the interface repository is the same as the
order in which they appeared in the IDL specification, and this ordering determines the
index value for each member. The first member has index value 0. For example for a
structure definition:

struct example {
short memberl,;
short member2;
long member3;

b

Common Object Request Broker Architecture (CORBA), v3.0.3 March 2004

4

March 2004

In this example memberl hasindex = 0, member2 hasindex = 1, and member3
has index = 2. The value of member_count in this case is 3.

The member_count and member_name operations can be invoked on structure,
union, non-boxed valuetype, non-boxed eventtype, exception, and enumeration
TypeCodes. Member_count returns the number of members constituting the type.
Member_name returns the simple name of the member identified by index. Since
names are local to a Repository, the name returned from a TypeCode may not match
the name of the member in any particular Repository, and may even be an empty
string.

The member_type operation can be invoked on structure, non-boxed valuetype, non-
boxed eventtype, exception and union TypeCodes. It returns the TypeCode
describing the type of the member identified by index.

The member_label, discriminator_type, and default_index operations can only
be invoked on union TypeCodes. Member_label returns the label of the union
member identified by index. For the default member, the label is the zero octet. The
discriminator_type operation returns the type of all non-default member labels. The
default_index operation returns the index of the default member, or -1 if thereis no
default member.

The member_visibility operation can only be invoked on non-boxed valuetype and
non-boxed eventtype, TypeCodes. It returns the Visibility of the valuetype/eventtype
member identified by index.

The member_name, member_type, member_label and member_visibility
operations raise Bounds if the index parameter is greater than or equal to the number
of members constituting the type.

The content_type operation can be invoked on sequence, array, boxed valuetype and
alias TypeCodes. For sequences and arrays, it returns the element type. For aliases, it
returns the original type. For boxed valuetype, it returns the boxed type.

An array TypeCode only describes a single dimension of an OMG IDL array. Multi-
dimensional arrays are represented by nesting TypeCodes, one per dimension. The
outermost tk_array Typecode describes the leftmost array index of the array as
defined in IDL. Its content_type describes the next index. The innermost nested
tk_array TypeCode describes the rightmost index and the array element type.

The type_modifier and concrete_base_type operations can be invoked on non-
boxed valuetype and non-boxed eventtypeTypeCodes. The type_modifier operation
returns the ValueModifier that applies to the valuetype/eventtype represented by the
target TypeCode. If the valuetype/eventtype represented by the target TypeCode has
a concrete base valuetype/eventtype, the concrete_base_type operation returns a
TypeCode for the concrete base, otherwise it returns a nil TypeCode reference.

The length operation can be invoked on string, wide string, sequence, and array
TypeCodes. For strings and sequences, it returns the bound, with zero indicating an
unbounded string or sequence. For arrays, it returns the number of elements in the
array. For wide strings, it returns the bound, or zero for unbounded wide strings.

CORBA, v3.0.3: ORB Interface Chapter 4-57

4-58

4.11.2 TypeCode Constants

For IDL type declarations, the IDL compiler produces (if asked) a declaration of a
TypeCode constant. See the language mapping rules for more information about the
names of the generated TypeCode constants. TypeCode constants include tk_alias
definitions wherever an IDL typedef is referenced. These constants can be used with
the dynamic invocation interface and other routines that require TypeCodes.

The predefined TypeCode constants, named according to the C language mapping,
are:

TC null

TC void

TC short

TC long

TC_longlong

TC ushort

TC ulong

TC_ulonglong

TC float

TC _double

TC_longdouble

TC boolean

TC _char

TC wchar

TC_octet

TC any

TC_TypeCode

TC_Object = tk_objref { Object}
TC_string= tk_string {0} // unbounded
TC_wstring = tk_wstring{ 0} /// unbounded
TC_ValueBase = tk_value { ValueBase}
TC_Component = tk_component { CCMObject}
TC_Home = tk_home { CCMHome}
TC_EventBase = tk_event { EventBase}

For the TC_Object TypeCode constant, calling id returns
"IDL:omg.org/CORBA/Object:1.0" and calling name returns "Object."

For the TC_ValueBase TypeCode constant, calling id returns
"IDL:omg.org/CORBA/ValueBase:1.0," calling name returns "ValueBase,"
calling member_count returns 0, calling type_modifier returns
CORBA::VM_NONE, and calling concrete_base_type returns a nil TypeCode.

For the TC_Component TypeCode constant, calling id returns
"IDL:omg.org/Components/CCMObject:1.0" and calling name returns
"CCMObject."

For the TC_Home TypeCode constant, calling id returns
"IDL:omg.org/Components/CCMHome:1.0" and calling name returns
"CCMHome."

Common Object Request Broker Architecture (CORBA), v3.0.3 March 2004

March 2004

For the TC_EventBase TypeCode constant, caling id returns
"IDL:omg.org/Components/EventBase:1.0," calling name returns
"EventBase," calling member_count returns O, calling type_modifier returns
CORBA::VM_NONE, and calling concrete_base_type returns anil TypeCode.

4.11.3 Creating TypeCodes

When creating type definition objects in an Interface Repository, types are specified in
terms of object references, and the TypeCodes describing them are generated
automatically.

In some situations, such as bridges between ORBs, TypeCodes need to be constructed
outside of any Interface Repository. This can be done using operations on the ORB
pseudo-object.

module CORBA {
interface ORB {
/I other operations ...

TypeCode create_struct_tc (
in Repositoryld id;
in Identifier name,
in StructMemberSeq members

);

TypeCode create_union_tc (

in Repositoryld id,
in Identifier name,
in TypeCode discriminator_type,

in UnionMemberSeq members

);

TypeCode create_enum_tc (

in Repositoryld id,

in Identifier name,

in EnumMemberSeq members
);
TypeCode create_alias_tc (

in Repositoryld id,

in Identifier name,

in TypeCode original_type
);
TypeCode create_exception_tc (

in Repositoryld id,

in Identifier name,

in StructMemberSeq members

);

CORBA, v3.0.3: ORB Interface Chapter 4-59

TypeCode create_interface_tc (
in Repositoryld id,
in Identifier name

);

TypeCode create_string_tc (
in unsigned long bound

);

TypeCode create_wstring_tc (
in unsigned long bound

);

TypeCode create_fixed_tc (
in unsigned short digits,
in unsigned short scale

);

TypeCode create_sequence_tc (
in unsigned long bound,
in TypeCode element_type

);

TypeCode create_recursive_sequence_tc (// deprecated
in unsigned long bound,
in unsigned long offset

);

TypeCode create_array_tc (
in unsigned long length,
in TypeCode element_type

);

TypeCode create_value_tc (

in Repositoryld id,

in Identifier name,

in ValueModifier type_modifier,
in TypeCode concrete_base,

in ValueMemberSeq members

);

TypeCode create_value_box_tc (

in Repositoryld id,
in Identifier name,
in TypeCode boxed_type

);
TypeCode create_native_tc (

in Repositoryld id,
in ldentifier name

4-60 Common Object Request Broker Architecture (CORBA), v3.0.3 March 2004

March 2004

TypeCode create_recursive_tc(
in Repositoryld id

);

TypeCode create_abstract_interface_tc(
in Repositoryld id,
in Identifier name

);

TypeCode create_local_interface_tc(
in Repositoryld id,
in Identifier name

);

TypeCode create_component_tc (
in Repositoryld id,
in Identifier name

);

TypeCode create_home_tc (

in Repositoryld id,
in Identifier name
)i
TypeCode create_event_tc (
in Repositoryld id,
in Identifier name,
in ValueModifier type_modifier,
in TypeCode concrete_base,

in ValueMemberSeq members

h
h

Most of these operations are similar to corresponding IR operations for creating type
definitions. TypeCodes are used here instead of IDLType object references to refer to
other types. In the StructMember, UnionMember and ValueMember structures,
only the type is used, and the type_def should be set to nil.

Typecode creation operations that take name as an argument shall check that the name
isavalid IDL name or is a empty string. If not, they shall raise the BAD_PARAM
exception with standard minor code 15. Operations that take a Repositoryld
argument shall check that the argument passed in is a string of the form
<format>:<string> and if not, then raise a BAD_PARAM exception with standard
minor code 16. Operations that take content or member types as arguments shall
check that they are legitimate (i.e., that they don’'t have kinds tk_null, tk_void or
tk_exception). If not, they shall raise the BAD_TYPECODE exception with
standard minor code 2. Operations that take members shall check that the member
names are valid IDL names and that they are unique within the member list, and if the
name is found to be incorrect, they shall raise a BAD_PARAM with standard minor
code 17.

CORBA, v3.0.3: ORB Interface Chapter 4-61

4-62

The create_union_tc operation shall check that there are no duplicate label values. It
shall also check that each label TypeCode compares equivalent to the discriminator
TypeCode. If aduplicate label is found, raise BAD_PARAM with standard minor
code 18. If the TypeCode of alabel is not equivalent to the TypeCode of the
discriminator (other than the octet TypeCode to indicate the default 1abel), the
operation shall raise BAD_PARAM with standard minor code 19. The
create_union_tc operation shall also check that the supplied discriminator type is
legitimate, and if the check fails, raise BAD_PARAM with standard minor code 20.

Note: The create_recursive_sequence_tc operation is deprecated. No new code
should make use of this operation. Its functionality is subsumed by the new operation
create_recursive_tc. The create_recursive_sequence_tc operation will be
removed from a future revision of the standard.

The create_recursive_sequence_tc operation is used to create TypeCodes
describing recursive sequences that are members of structs or unions. The result of this
operation should be used as the typecode in the StructMemberSeq or
UnionMemberSeq arguments of the create_struct_tc or create_union_tc
operations. The offset parameter specifies which enclosing struct or union is the target
of the recursion, with the value 1 indicating the most immediate enclosing struct or
union, and larger values indicating successive enclosing struct or unions. For example,
the offset would be 1 for the following IDL structure:

struct foo {
long value;
sequence <foo> chain;

b

Once the recursive sequence TypeCode has been properly embedded in its enclosing
TypeCodes, it will function as a normal sequence TypeCode. Invoking operations
on the recursive sequence TypeCode before it has been embedded in the required
number of enclosing TypeCodes will result in undefined behavior. Attempt to
marshal incomplete typecodes shall raise the BAD_TYPECODE exception with
standard minor code 1. Attempt to use an incomplete TypeCode as a parameter of any
operation when detected shall cause the BAD_PARAM exception to be raised with
standard minor code 13.

For create_value_tc operation, the concrete_base parameter is a TypeCode for
the immediate concrete valuetype base of the valuetype for which the TypeCode is
being created. If the valuetype does not have a concrete base, the concrete_base
parameter is a nil TypeCode reference.

The create_recursive_tc operation is used to create a recursive TypeCode, which
serves as a place holder for a concrete TypeCode during the process of creating
TypeCodes that contain recursion. The id parameter specifies the repository id of the
type for which the recursive TypeCode is serving as a place holder. Once the
recursive TypeCode has been properly embedded in the enclosing TypeCode, which
corresponds to the specified repository id, it will function as a norma TypeCode.

Common Object Request Broker Architecture (CORBA), v3.0.3 March 2004

4

Invoking operations on the recursive TypeCode before it has been embedded in the
enclosing TypeCode will result in undefined behavior. For example, the following
IDL type declarations contain recursion:

struct foo {
long value;
sequence<foo> chain;

h

valuetype V {
public V member;

h

To create a TypeCode for valuetype V, you would invoke the TypeCode creation
operations as shown below:

/] C++
TypeCode_var recursive_tc
= orb->create_recursive_tc(“IDL:V:1.0");

Val ueMenber Seq v_seq;

v_seq.length(1);

v_seq[0] . nane = string_dup(“menber”);

v_seq[0] .type = recursive_tc;

v_seq[0] . access = PUBLI C_MEMBER,

TypeCode_var v_val tc

= orb->create_value_tc(“IDL:V:1.0",

“\p
VM_NONE,
TypeCode: : _nil (),
vV_seq);

For create_event_tc operation, the concrete_base parameter is a TypeCode for
the immediate concrete base of the eventtype for which the TypeCode is being
created. If the eventtype does not have a concrete base, the concrete_base parameter
isanil TypeCode reference.

4.12 Exceptions

The terms “system” and “user” exception are defined in this section. Further the terms
“standard system exception” and “standard user exception” are defined, and then alist
of “standard system exceptions’ is provided.

4.12.1 Definition of Terms

In general the following terms should be used consistently in all OMG standards
documents to refer to exceptions:

Standard Exception: Any exception that is defined in an OMG Standard.

March 2004 CORBA, v3.0.3: ORB Interface Chapter 4-63

4-64

System Exception: Clients must be prepared to handle these exceptions even though
they are not declared in araises clause. These exceptions cannot appear in a raises
clause. These have the structure defined in section 3.17.2 “System Exception,” and
they are of type SYSTEM_EXCEPTION (see PIDL below).

Standard System Exception: A System Exception that is part of the CORBA
Standard as enumerated in section 3.17. (e.g., BAD_PARAM). These are enumerated
in Section 3.17.2 “ Standard System Exceptions.”

Non-Standard System Exceptions. System exceptions that are proprietary to a
particular vendor/implementation.

User Exception: Exceptions that can be raised only by those operations that explicitly
declare them in the raises clause of their signature. These exceptions are of type
USER_EXCEPTION (see IDL below).

Standard User Exception: Any User Exception that is defined in a published OMG
standard (e.g., WrongTransaction). These are documented in the documentation of
individual interfaces.

Non-standard User Exception: User exceptions that are not defined in any published
OMG specification.

4.12.2 System Exceptions

In order to bound the complexity in handling the standard exceptions, the set of
standard exceptions should be kept to a tractable size. This constraint forces the
definition of equivalence classes of exceptions rather than enumerating many similar
exceptions. For example, an operation invocation can fail at many different points due
to the inability to allocate dynamic memory. Rather than enumerate several different
exceptions corresponding to the different ways that memory allocation failure causes
the exception (during marshaling, unmarshaling, in the client, in the object
implementation, allocating network packets), a single exception corresponding to
dynamic memory allocation failure is defined.

Common Object Request Broker Architecture (CORBA), v3.0.3 March 2004

module CORBA {
const unsigned long OMGVMCID = 0x4f4d0000;

#define ex_body {unsigned long minor; completion_status completed;}

enum completion_status {
COMPLETED_YES,
COMPLETED_NO,
COMPLETED_MAYBE

h

enum exception_type {
NO_EXCEPTION,
USER_EXCEPTION,
SYSTEM_EXCEPTION
h
h

Each system exception includes a minor code to designate the subcategory of the
exception.

Minor exception codes are of type unsigned long and consist of a 20-bit “Vendor
Minor Codeset ID” (VMCID), which occupies the high order 20 bits, and the minor
code which occupies the low order 12 bits.

The standard minor codes for the standard system exceptions are prefaced by the
VMCID assigned to OMG, defined as the unsigned long constant
CORBA::OMGVMCID, which has the VMCID allocated to OMG occupying the high
order 20 bits. The minor exception codes associated with the standard exceptions that
arefound in Appendix A, Section A.5, “Exception Codes” are or-ed with OMGVMCID
to get the minor code value that is returned in the ex_body structure (see Section
4.12.3, “Standard System Exception Definitions” on page 4-66 and Section 4.12.4,
“Standard Minor Exception Codes’ on page 4-73).

Within a vendor assigned space, the assignment of values to minor codes is left to the
vendor. Vendors may request allocation of VMCIDs by sending email to tag-

request@omg.org.

The VMCID 0 and Oxfffff are reserved for experimental use. The VMCID OMGVMCID
(Section 4.12.3, “Standard System Exception Definitions” on page 4-66) and 1 through
Oxf are reserved for OMG use.

March 2004 CORBA, v3.0.3: ORB Interface Chapter 4-65

4-66

Each standard system exception also includes a completion_status code that takes
one of the values { COMPLETED_YES, COMPLETED_NO,
COMPLETED_MAYBE}. These have the following meanings:

COMPLETED_YES The object implementation has completed processing
prior to the exception being raised.
COMPLETED_NO The object implementation was never initiated prior

to the exception being raised.

COMPLETED_MAYBE | The status of implementation completion is
indeterminate.

Client applications must be prepared to handle system exceptions other than the
standard system exception defined below in Section 4.12.3, “ Standard System
Exception Definitions” on page 4-66, both because future versions of this specification
may define additional standard system exceptions, and because ORB implementations
may raise non-standard system exceptions.

Vendors may define non-standard system exceptions, but these exceptions are
discouraged because they are non-portable. A non-standard system exception, when
passed to an ORB that does not recognize it, shall be presented by that ORB as an
UNKNOWN standard system exception. The completion status shall be preserved in
the UNKNOWN exception, and the minor code shall be set to standard value 2 for
system exception and standard value 1 for user exception.

Non-standard system exceptions shall have the same structure as of standard standard
system exceptions as specified in section Section 4.12.3, “Standard System Exception
Definitions” on page 4-66 (i.e., they have the same ex_body). They also shall follow
the same language mappings as standard system exceptions. Although they are PIDL,
vendors should ensure that their names do not clash with any other names following
the normal naming and scoping rules as they apply to regular IDL exceptions.

4.12.3 Sandard System Exception Definitions

The standard system exceptions are defined in this section.
module CORBA { // PIDL

exception UNKNOWN ex_body;

/I the unknown exception
exception BAD_PARAM ex_body;

/[an invalid parameter was passed
exception NO_MEMORY ex_body;

/I dynamic memory allocation failure
exception IMP_LIMIT ex_body;

/I violated implementation limit
exception COMM_FAILURE ex_body;

/l communication failure
exception INV_OBJREF ex_body;

Common Object Request Broker Architecture (CORBA), v3.0.3 March 2004

/linvalid object reference
exception NO_PERMISSION ex_body;

/I no permission for attempted op.
exception INTERNAL ex_body;

/ ORB internal error
exception MARSHAL ex_body;

/[error marshaling param/result
exception INITIALIZE ex_body;

/ ORB initialization failure
exception NO_IMPLEMENT ex_body;

/I operation implementation unavailable
exception BAD_TYPECODE ex_body;

/I bad typecode
exception BAD_OPERATION ex_body;

/linvalid operation
exception NO_RESOURCES ex_body;

/I insufficient resources for req.
exception NO_RESPONSE ex_body;

/l response to req. not yet available
exception PERSIST_STORE ex_body;

I/l persistent storage failure
exception BAD_INV_ORDER ex_body;

/I routine invocations out of order
exception TRANSIENT ex_body;

[/l transient failure - reissue request
exception FREE_MEM ex_body;

/[cannot free memory
exception INV_IDENT ex_body;

/l'invalid identifier syntax
exception INV_FLAG ex_body;

/I invalid flag was specified
exception INTF_REPOS ex_body;

/[error accessing interface repository
exception BAD_CONTEXT ex_body;

/[error processing context object
exception OBJ_ADAPTER ex_body;

Il failure detected by object adapter
exception DATA_CONVERSION ex_body;

/l data conversion error
exception OBJECT_NOT_EXIST ex_body;

/I non-existent object, delete reference
exception TRANSACTION_REQUIRED ex_body;

/I transaction required
exception TRANSACTION_ROLLEDBACK x_body;

/l transaction rolled back
exception INVALID_TRANSACTION ex_body;

/I invalid transaction
exception INV_POLICY ex_body;

/I invalid policy
exception CODESET_INCOMPATIBLE ex_body;

/I incompatible code set

March 2004 CORBA, v3.0.3: ORB Interface Chapter 4-67

4-68

4.12.3.1

4.12.3.2

4.12.3.3

4.12.3.4

exception REBIND ex_body;

/l rebind needed
exception TIMEOUT ex_body;

/I operation timed out
exception TRANSACTION_UNAVAILABLE ex_body;

/I no transaction
exception TRANSACTION_MODE ex_body;

/l invalid transaction mode
exception BAD_QOS ex_body;

/I bad quality of service
exception INVALID_ACTIVITY ex_body;

/I bad quality of service
exception ACTIVITY_COMPLETED ex_body;

/I bad quality of service
exception ACTIVITY_REQUIRED ex_body;

/I bad quality of service

b
UNKNOWN

This exception is raised if an operation implementation throws a non-CORBA
exception (such as an exception specific to the implementation's programming
language), or if an operation raises a user exception that does not appear in the
operation's raises expression. UNKNOWN is also raised if the server returns a system
exception that is unknown to the client. (This can happen if the server uses a later
version of CORBA than the client and new system exceptions have been added to the
later version.)

BAD_PARAM

A parameter passed to a call is out of range or otherwise considered illegal. An ORB
may raise this exception if null values or null pointers are passed to an operation (for
language mappings where the concept of a null pointers or null values applies).
BAD_PARAM can also be raised as aresult of client generating requests with
incorrect parameters using the DII.

NO_MEMORY

The ORB run time has run out of memory.

IMP_LIMIT

This exception indicates that an implementation limit was exceeded in the ORB run
time. For example, an ORB may reach the maximum number of references it can hold
simultaneously in an address space, the size of a parameter may have exceeded the
allowed maximum, or an ORB may impose a maximum on the number of clients or
servers that can run simultaneously.

Common Object Request Broker Architecture (CORBA), v3.0.3 March 2004

4.12.3.5 COMM_FAILURE

This exception is raised if communication is lost while an operation is in progress,
after the request was sent by the client, but before the reply from the server has been
returned to the client.

4.12.3.6 INV_OBJREF

This exception indicates that an object reference is internally malformed. For example,
the repository ID may have incorrect syntax or the addressing information may be
invalid.

An ORB may choose to detect calls via nil references (but is not obliged to detect
them). INV_OBJREF is used to indicate this.

If the client invokes an operation that results in an attempt by the client ORB to
marshal wchar or wstring data for an in parameter (or to unmarshal wchar or wstring
data for an in/out parameter, out parameter or the return value), and the associated
object reference does not contain a codeset component, the INV_OBJREF standard
system exception is raised.

4.12.3.7 NO_PERMISSON

An invocation failed because the caller has insufficient privileges.

4.12.3.8 INTERNAL

This exception indicates an internal failure in an ORB, for example, if an ORB has
detected corruption of its internal data structures.

4.12.3.9 MARSHAL

A request or reply from the network is structurally invalid. This error typically
indicates a bug in either the client-side or server-side run time. For example, if areply
from the server indicates that the message contains 1000 bytes, but the actual message
is shorter or longer than 1000 bytes, the ORB raises this exception. MARSHAL can
also be caused by using the DIl or DSI incorrectly, for example, if the type of the
actual parameters sent does not agree with IDL signature of an operation.

4.12.3.10 INITIALIZE

An ORB has encountered a failure during its initialization, such as failure to acquire
networking resources or detecting a configuration error.

March 2004 CORBA, v3.0.3: ORB Interface Chapter 4-69

4-70

4.12.3.11

4.12.3.12

4.12.3.13

4.12.3.14

4.12.3.15

4.12.3.16

4.12.3.17

4.12.3.18

NO_IMPLEMENT

This exception indicates that even though the operation that was invoked exists (it has
an IDL definition), no implementation for that operation exists. NO_IMPLEMENT
can, for example, be raised by an ORB if a client asks for an object's type definition
from the interface repository, but no interface repository is provided by the ORB.

BAD_TYPECODE

The ORB has encountered a malformed type code (for example, a type code with an
invalid TCKind value).

BAD_OPERATION

This indicates that an object reference denotes an existing object, but that the object
does not support the operation that was invoked.

NO_RESOURCES

The ORB has encountered some general resource limitation. For example, the run time
may have reached the maximum permissible number of open connections.

NO_RESPONSE

This exception is raised if a client attempts to retrieve the result of a deferred
synchronous call, but the response for the request is not yet available.

PERSIST_STORE

This exception indicates a persistent storage failure, for example, failure to establish a
database connection or corruption of a database.

BAD_INV_ORDER

This exception indicates that the caller has invoked operations in the wrong order. For
example, it can be raised by an ORB if an application makes an ORB-related call
without having correctly initialized the ORB first.

TRANSENT

TRANSIENT indicates that the ORB attempted to reach an object and failed. It is not
an indication that an object does not exist. Instead, it simply means that no further
determination of an object's status was possible because it could not be reached. This
exception is raised if an attempt to establish a connection fails, for example, because
the server or the implementation repository is down.

Common Object Request Broker Architecture (CORBA), v3.0.3 March 2004

March 2004

4.12.3.19

4.12.3.20

4.12.3.21

4.12.3.22

4.12.3.23

4.12.3.24

4.12.3.25

4.12.3.26

FREE_MEM

The ORB failed in an attempt to free dynamic memory, for example because of heap
corruption or memory segments being locked.

INV_IDENT

This exception indicates that an IDL identifier is syntactically invalid. It may be raised
if, for example, an identifier passed to the interface repository does not conform to IDL
identifier syntax, or if an illegal operation name is used with the DII.

INV_FLAG

Aninvalid flag was passed to an operation (for example, when creating a DIl request).

INTF_REPOS

An ORB raises this exception if it cannot reach the interface repository, or some other
failure relating to the interface repository is detected.

BAD_CONTEXT

An operation may raise this exception if a client invokes the operation but the passed
context does not contain the context values required by the operation.

OBJ_ADAPTER

This exception typically indicates an administrative mismatch. For example, a server
may have made an attempt to register itself with an implementation repository under a
name that is already in use, or is unknown to the repository. OBJ_ADAPTER isaso
raised by the POA to indicate problems with application-supplied servant managers.

DATA_CONVERS ON

This exception is raised if an ORB cannot convert the representation of data as
marshaled into its native representation or vice-versa. For example,
DATA_CONVERSION can be raised if wide character codeset conversion fails, or
if an ORB cannot convert floating point values between different representations.

OBJECT_NOT_EXIST

The OBJECT_NOT_EXIST exception is raised whenever an invocation on a
deleted object was performed. It is an authoritative “hard” fault report. Anyone
receiving it is allowed (even expected) to delete all copies of this object reference and
to perform other appropriate “final recovery” style procedures.

CORBA, v3.0.3: ORB Interface Chapter 4-71

4-72

4.12.3.27

4.12.3.28

4.12.3.29

4.12.3.30

4.12.3.31

4.12.3.32

4.12.3.33

Bridges forward this exception to clients, aso destroying any records they may hold
(for example, proxy objects used in reference translation). The clients could in turn
purge any of their own data structures.

TRANSACTION_REQUIRED

The TRANSACTION_REQUIRED exception indicates that the request carried a
null transaction context, but an active transaction is required.

TRANSACTION_ROLLEDBACK

The TRANSACTION_ROLLEDBACK exception indicates that the transaction
associated with the request has already been rolled back or marked to roll back. Thus,
the requested operation either could not be performed or was not performed because
further computation on behalf of the transaction would be fruitless.

INVALID_TRANSACTION

The INVALID_TRANSACTION indicates that the request carried an invalid
transaction context. For example, this exception could be raised if an error occurred
when trying to register a resource.

INV_POLICY

INV_POLICY israised when an invocation cannot be made due to an incompatibility
between Policy overrides that apply to the particular invocation.

CODESET_INCOMPATIBLE

This exception is raised whenever meaningful communication is not possible between
client and server native code sets. See Section 13.7.2.6, “Code Set Negotiation,” on
page 13-34.

REBIND

REBIND is raised when there is a problem in carrying out a requested or implied
attempt to rebind an object reference (Section 22.2.1.2, “interface RebindPolicy” on
page 22-5).

TIMEOUT

TIMEQUT is raised when no delivery has been made and the specified time-to-live
period has been exceeded. It is a standard system exception because time-to-live QoS
can be applied to any invocation.

Common Object Request Broker Architecture (CORBA), v3.0.3 March 2004

4.12.3.34

4.12.3.35

4.12.3.36

4.12.3.37

4.12.3.38

4.12.3.39

TRANSACTION_UNAVAILABLE

TRANSACTION_UNAVAILABLE exception is raised by the ORB when it cannot
process a transaction service context because its connection to the Transaction Service
has been abnormally terminated.

TRANSACTION_MODE

TRANSACTION_MODE exception is raised by the ORB when it detects a
mismatch between the TransactionPolicy in the IOR and the current transaction
mode.

BAD_QOS

The BAD_QOS exception is raised whenever an object cannot support the quality of
service required by an invocation parameter that has a quality of service semantics
associated with it.

INVALID_ACTIVITY

The INVALID_ACTIVITY system exception may be raised on the Activity or
Transaction services' resume methods if a transaction or Activity is resumed in a
context different to that from which it was suspended. It is also raised when an
attempted invocation is made that is incompatible with the Activity’s current state.

ACTIVITY_COMPLETED

The ACTIVITY_COMPLETED system exception may be raised on any method for
which Activity context is accessed. It indicates that the Activity context in which the
method call was made has been completed due to a timeout of either the Activity itself
or atransaction that encompasses the Activity, or that the Activity completed in a
manner other than that originally requested.

ACTIVITY_REQUIRED

The ACTIVITY_REQUIRED system exception may be raised on any method for
which an Activity context is required. It indicates that an Activity context was
necessary to perform the invoked operation, but one was not found associated with the
calling thread.

4.12.4 Sandard Minor Exception Codes

March 2004

Please refer to Appendix A for atable that specifies standard minor exception codes
that have been assigned for the standard system exceptions.

CORBA, v3.0.3: ORB Interface Chapter 4-73

4-74 Common Object Request Broker Architecture (CORBA), v3.0.3 March 2004

5.1 Overview

July 2002

Value Type Semantics)

Contents

This chapter contains the following sections.

Section Title Page
“Overview” 5-1
“Architecture” 5-2
“Standard Value Box Definitions” 5-9
“Language Mappings’ 5-9
“Custom Marshaling” 5-10

Objects, more specifically, interface types that objects support, are defined by an IDL
interface, allowing arbitrary implementations. There is great value, which is described
in great detail elsewhere, in having a distributed object system that places almost no
constraints on implementations.

However there are many occasions in which it is desirable to be able to pass an object
by value, rather than by reference. This may be particularly useful when an object’s
primary “purpose’ is to encapsulate data, or an application explicitly wishes to make a
“copy” of an object.

The semantics of passing an object by value are similar to that of standard
programming languages. The receiving side of a parameter passed by value receives a
description of the “state” of the object. It then instantiates a new instance with that

Common Object Request Broker Architecture (CORBA), v3.0 51

5-2

5.2 Architecture

state but having a separate identity from that of the sending side. Once the parameter
passing operation is complete, no relationship is assumed to exist between the two
instances.

Because it is necessary for the receiving side to instantiate an instance, it must
necessarily know something about the object’s state and implementation.

Value types provide semantics that bridge between CORBA structs and CORBA
interfaces:

e They support description of complex state (i.e., arbitrary graphs, with recursion and
cycles)

e Their instances are always local to the context in which they are used (because they
are always copied when passed as a parameter to a remote call)

e They support both public and private (to the implementation) data members.

* They can be used to specify the state of an object implementation (i.e., they can
support an interface).

e They support single inheritance (of valuetype) and can support an interface.

e They may be also be abstract.

The basic notion is relatively simple. A value type is, in some sense, half way
between a “regular” IDL interface type and a struct. The use of avalue typeis asignal
from the designer that some additional properties (state) and implementation details be
specified beyond that of an interface type. Specification of this information puts some
additional constraints on the implementation choices beyond that of interface types.
This is reflected in both the semantics specified herein, and in the language mappings.

An essential property of value types is that their implementations are always local.
That is, the explicit use of value type in a concrete programming language is aways
guaranteed to use alocal implementation, and will not require aremote call. They have
no identity (their value is their identity) and they are not “registered” with the ORB.

There are two kinds of value types, concrete (or stateful) value types, and abstract
(stateless) ones. As explained below the essential characteristics of both are the same.
The differences between them result from the differences in the way they are mapped
in the language mappings. In this specification the semantics of value types apply to
both kinds, unless specifically stated otherwise.

Concrete (stateful) values add to the expressive power of (IDL) structs by supporting:
¢ single derivation (from other value types)
e supports a single non-abstract interface

e arbitrary recursive value type definitions, with sharing semantics providing the
ability to define lists, trees, lattices and more generally arbitrary graphs using value

types.

Common Object Request Broker Architecture (CORBA), v3.0 July 2002

July 2002

¢ null value semantics

When an instance of such atypeis passed as a parameter, the sending context marshals
the state (data) and passes it to the receiving context. The receiving context instantiates
a new instance using the information in the GIOP request and unmarshals the state. It
is assumed that the receiving context has available to it an implementation that is
consistent with the sender’s (i.e., only needs the state information), or that it can
somehow download a usable implementation. Provision is made in the on-the-wire
format to support the carrying of an optional call back object (CodeBase) to the
sending context, which enables such downloading when it is appropriate.

It should be noted that it is possible to define a concrete value type with an empty state
as a degenerate case.

5.2.1 Abstract Values

Value types may also be abstract. They are called abstract because an abstract value
type may not be instantiated. Only concrete types derived from them may be actually
instantiated and implemented. Their implementation, of course, is still local. However,
because no state information may be specified (only local operations are allowed),
abstract value types are not subject to the single inheritance restrictions placed upon
concrete value types. Essentially they are a bundle of operation signatures with a
purely local implementation. This distinction is made clear in the language mappings
for abstract values.

Note that a concrete value type with an empty state is not an abstract value type. They
are considered to be stateful, may be instantiated, marshaled and passed as actual
parameters. Consider them to be a degenerate case of stateful values.

5.2.2 Operations

Operations defined on a value type specify signatures whose implementation can only
be local. Because these operations are local, they must be directly implemented by a
body of code in the language mapping (no proxy or indirection is involved).

The language mappings of such operations require that instances of value types passed
into and returned by such local methods are passed by reference (programming
language reference semantics, not CORBA aobject reference semantics) and that a copy
is not made. Note, such a (local) invocation is not a CORBA invocation. Hence it is not
mediated by the ORB, although the API to be used is specified in the language

mapping.

The (copy) semantics for instances of value type are only guaranteed when instances of
these value types are passed as a parameter to an operation defined on a CORBA
interface, and hence mediated by the ORB. If an instance of avalue typeis passed as a
parameter to a method of another value type in an invocation, then this call isa
“normal” programming language call. In this case both of the instances are local
programming language constructs. No CORBA style copy semantics are used and
programming language reference semantics apply.

CORBA, v3.0: Architecture 5-3

5-4

Operations on the value type are supported in order to guarantee the portability of the
client code for these value types. They have no representation on the wire and hence no
impact on interoperability.

5.2.3 Value Type vs. Interfaces

By default value types are not CORBA Objects. In particular instances of value types
do not inherit from CORBA::Object and do not support normal object reference
semantics. However it is always possible to explicitly declare that a given value type
supports an interface type. In this case instances of the type may support CORBA
object reference semantics (if they are registered with the ORB using an abject
adapter).

5.2.4 Parameter Passing

5241

5.24.2

5243

This section describes semantics when a value instance is passed as parameter in a
CORBA invocation. It does not deal with the case of calling another non-CORBA (i.e.,
local) programming method, which happens to have a parameter of the same type.

Value vs. Reference Semantics

Determination of whether a parameter is to be passed by value or reference is made by
examining the parameter’s formal type (i.e., the signature of the operation it is being
passed to). If it is avalue type then it is passed by value. If it is an ordinary interface
then it is passed by reference (the case today for all CORBA objects). Thisruleis
simple and consistent with the handling of the same situation in recursive state
definitions or in structs.

In the case of abstract interfaces, the determination is made at runtime. See
Section 6.2, “Semantics of Abstract Interfaces,” on page 6-1 for a description of the
rules.

Sharing Semantics

In order to be expressive enough to describe arbitrary graphs, lattice, trees etc., value
types support sharing and null semantics. Instances of a value type can be shared by
others across or within other instances. They can also be null. Thisis unlike other IDL
data types such as structs, unions, and sequences that can never be shared. The sharing
of values within and between the parameters to an operation, is preserved across an
invocation; that is, the graph that is reconstructed in the receiving context is
structurally isomorphic to the sending context’s.

| dentity Semantics

When an instance of the value type is passed as a parameter to an operation of a non-
local interface, the effect in al cases shall be asif an independent copy of the instance
isinstantiated in the receiving context. While certain implementation optimizations are
possible the net effect shall be as if the copy is a separate independent entity and there

Common Object Request Broker Architecture (CORBA), v3.0 July 2002

5

July 2002

5244

is no explicit or implicit sharing of state. This appliesto all valuetypesinvolved in the
invocation, including those embedded in other IDL datatypes or in an any. This
notional copying occurs twice, once for in and inout parameters when the invocation is
initiated, and once again for inout, out and return parameters when the invocation
completes. Optimization techniques such as copy on write etc. must make sure that the
semantics of copying as described above is preserved.

Any parameter type

When an instance of a value type is passed to an any, as with all cases of passing
instances to an anyj, it is the responsibility of the implementor to insert and extract the
value according to the language mapping specification.

5.2.5 Substitutability Issues

5251

5.2.5.2

5253

The substitutability requirements for CORBA require the definition of what happens
when an instance of a derived value type is passed as a parameter that is declared to be
a base value type or an instance of a value type that supports an interface is passed as
a parameter that is declared as the interface type.

There are three cases to consider: the parameter type is a regular interface, the
parameter type is an abstract interface, and the parameter type is a value type.

Valueinstance-> Interfacetype

A value type that supports a regular interface is not a subtype of that interface, and
hence cannot be substituted for that interface in an invocation parameter. In this case an
object reference corresponding to the value type instance that has been registered with
the ORB must be obtained and this object reference must be used as the actual
parameter. Different language mappings provide different facilities to aid in such
parameter passing.

Value Instance-> Abstract interface type

A value type that supports an abstract interface is a subtype of that interface, and can
be substituted for that interface in an invocation parameter.

Valueinstance-> Valuetype

In this case the receiving context is expecting to receive a value type. If the receiving
context currently has the appropriate implementation class then there is no problem.

If the receiving context does not currently hold an implementation with which to
reconstruct the original type then the following algorithm is used to find such an
implementation:

CORBA, v3.0: Architecture 5-5

1. Load - Attempt to load (locally in C/C++, possibly remotely in Java and other
“portable” languages) the real type of the object (with its methods). If this succeeds,
OK.

2. Truncate - Truncate the type of the object to the base type (if specified as
truncatable in the IDL). Truncation can never lead to faulty programs because,
from a structural point view base types structurally subsume a derived type and an
object created in the receiving context bears no relationship with the original one.
However, it might be semantically puzzling, as the derived type may completely re-
interpret the meaning of the state of the base. For that reason a derived value needs
to indicate if it is safe to truncate to its immediate non-abstract parent.

3. Raise Exception - If none of these work or are possible, then raise the
NO_IMPLEMENT exception with standard minor code 1.

Truncatability is a transitive property.

Example

valuetype EmployeeRecord { // note this is not a CORBA::Object
/I state definition
private string name;
private string email;
private string SSN;
Il initializer
factory init(in string name, in string SSN);

b

valuetype ManagerRecord: truncatable EmployeeRecord {
/I state definition
private sequence<EmployeeRecord> direct_reports;

b

5.2.6 Widening/Narrowing

As has been described above, value type instances may be widened/narrowed to other
value types. Each language mapping is responsible for specifying how these operations
are made available to the programmer.

Narrowing from an interface type instance to a value type instance is not allowed. If
the interface designer wants to allow the receiving context to create a local
implementation of the value type (i.e., a value representing the interface) an operation
that returns the appropriate value type may be defined.

5.2.7 Value Base Type

All value types have a conventional base type called ValueBase. Thisis atype, which
fulfills arole that is similar to that played by Object. Conceptually it supports the
common operations available on all value types. See Section 4.4, “VaueBase

5-6 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

July 2002

Operations,” on page 4-24 for a description of those operations. In each language
mapping ValueBase will be mapped to an appropriate base type that supports the
marshaling/unmarshaling protocol as well as the model for custom marshaling.

The mapping for other operations, which all value types must support, such as getting
meta information about the type, may be found in the specifics for each language

mapping.

5.2.8 Life Cycle issues

5.2.8.1

Value type instances are always local to their creating context. For example, in agiven
language mapping an instance of a value type is always created as a local “language’
object with no POA semantics attached to it initially.

When passed using a CORBA invocation, a copy of the value is made in the receiving
context and that copy starts its life as a local programming language entity with no
POA semantics attached to it.

If avalue type supports an ordinary interface type, its instances may also be passed by
reference when the formal parameter type is an interface type (see Section 5.2.4,
“Parameter Passing,” on page 5-4). In this case they behave like ordinary object
implementations and must be associated with a POA policy and also be registered with
the ORB (e.g., POA::activate_object() before they can be passed by reference. Not
registering the value as a CORBA object and/or not associating an appropriate policy
with it results in an exception when trying to use it as a remote object, the “normal”
behavior. The exception raised shall be OBJECT_NOT_EXIST with standard
minor code 1.

Creation and Factories

When an instance of a value type is received by the ORB, it must be unmarshaled and
an appropriate factory for its actual type found in order for the new instance to be
created. The type is encoded by the RepositorylD, which is passed over the wire as
part of an invocation. The mapping between the type (as specified by the
RepositorylD) and the factory is language specific. In certain languages it may be
possible to specify default policies that are used to find the factory, without requiring
that specific routines be called. In others the runtime and/or generated code may have
to explicitly specify the mapping on a per type basis. In others a combination may be
used. In any event the ORB implementation is responsible for maintaining this
mapping See Section 5.4.3, “Language Specific Value Factory Requirements,” on
page 5-9 for more details on the requirements for each language mapping. Value box
types do not need or use factories.

5.2.9 Security Considerations

The addition of value types has few impacts on the CORBA security model. In
essence, the security implications in defining and using value types are similar to those
involved with the use of IDL structs. Instances of value types are mapped to local,
concrete programming language constructs. Except for providing the marshaling

CORBA, v3.0: Architecture 5-7

5-8

5291

5.2.9.2

mechanisms, the ORB is not directly involved with accessing value type
implementations. This specification is mostly about two things: how value types
manifest themselves as concrete programming language constructs and how they are
transmitted.

To see this consider how value types are actually used. The IDL definition of a value
type in conjunction with a programming language mapping is used to generate the
concrete programming language definitions for that type.

Let us consider its life cycle. In order to use it, the programmer uses the mechanisms
in the programming language to instantiate an instance. This is instance is a local
programming language construct. It is not “registered” with the ORB, object adapter,
etc. The programmer may manipulate this programming construct just like any other
programming language construct. So far there are no security implications. As long as
no ORB-mediated invocations are made, the programmer may manipulate the
construct. Note, this includes making “local,” non ORB-mediated calls to any locally
implemented operations. Any assignments to the construct are the responsibility of the
programmer and have no special security implications.

Things get interesting when the program attempts to pass one of these constructs
through an orb-mediated invocation (i.e., calls astub that usesit as a parameter type, or
uses the DII). There are two cases to consider: 1) Value as Value and 2) Value as
Object Reference.

Value as Value

The formal type of the parameter is a value. This case is no different from using any
other kind of a value (long, string, struct) in a CORBA invocation, with respect to
security. The value (data) is marshaled and delivered to the receiving context. On the
receiving context, the knowledge of the type is used (at least implicitly) to find the
factory to create the correct local programming language construct. The data is then
unmarshaled to fill in the newly created construct. Thisis similar to using other values
(longs, strings, structs) except that the knowledge of the factory is not “built-in” to the
ORB'’s skeleton/DSI engine.

Value as Object Reference

The formal type of the parameter is an interface type that is supported by a value. The
program must have “registered” the value with an object adapter and is really using the
returned object reference (see for the specific rules.) Thus this case “reduces’ to a
regular CORBA invocation, using a regular object reference. An IOR is passed to the
receiving context. All the “normal” security considerations apply. From the point of
view of the receiving context, the IOR is a“normal” object reference. No “special”
rules, with respect to security or otherwise, apply to it. The fact that it is ultimately a
reference to an implementation that was created from instantiating and registering an
value type implementation is not relevant.

In both of these cases, security considerations are involved with the decision to allow
the ORB-mediated invocation to proceed. The fact that a value type isinvolved is not
material.

Common Object Request Broker Architecture (CORBA), v3.0 July 2002

5.3 Sandard Value Box Definitions

For some CORBA-defined types for which preservation of sharing and transmission of
nulls are likely to be important, the following value box type definitions are added to
the CORBA module:

module CORBA {
valuetype StringValue string;
valuetype WStringValue wstring;

h

5.4 Language Mappings

July 2002

5.4.1 General Requirements

A concrete value is mapped to a concrete usable “class’ construct in each
programming language, plus possibly some helper classes where appropriate. In Java,
C++, and Smalltalk thisis areal concrete class. In C it is a struct.

An abstract value is mapped to some sort of an abstract construct--an interface in Java,
and an abstract class with pure virtual function members in C++.

Tools that implement the language mapping are free to “extend” the implementation
classes with “extra’ data members and methods. When an instance of such a classis
used as a parameter, only the portions that correspond directly to the IDL declaration,
are marshaled and delivered to the receiving context. This allows freedom of
implementations while preserving the notion of contract and type safety in IDL.

5.4.2 Language Specific Marshaling

Each language mapping defines an appropriate marshaling/unmarshaling APl and the
entry point for custom marshaling/unmarshaling.

5.4.3 Language Specific Value Factory Requirements

Each language mapping specifies the algorithm and means by which RepositorylDs are
used to find the appropriate factory for an instance of a value type so that it may be
created as it is unmarshaled “off the wire.”

It is desirable, where it makes sense, to specify a “default” policy for automatically
using Repositoryl Ds that are in common formats to find the appropriate factory. Such
a policy can be thought of as an implicit registration.

Each language mapping specifies how and when the registration occurs, both explicit
and implicit. The registration must occur before an attempt is made to unmarshal an
instance of a value type. If the ORB is unable to locate and use the appropriate factory,
then a MARSHAL exception with standard minor code 1 is raised.

CORBA, v3.0: Sandard Value Box Definitions 5-9

Because the type of the factory is programming language specific and each
programming language platform has different policies, the factory type is specified as
native. It is the responsibility of each language mapping to specify the actual
programming language type of the factory.

module CORBA {

/I IDL
native ValueFactory;

5.4.4 Value Method Implementation

The mapped class must support method bodies (i.e., code) that implement the required
IDL operations. The means by which this association is accomplished is a language
mapping “detail” in much the same way that an IDL compiler is.

5.5 CustomMarshaling

5-10

Value types can override the default marshaling/unmarshaling model and provide their
own way to encode/decode their state. Custom marshaling is intended to be used to
facilitate integration of existing “class libraries” and other legacy systems. It is
explicitly not intended to be a standard practice, nor used in other OMG specifications
to avoid “standard ORB” marshaling.

The fact that a value type has some custom marshaling code is declared explicitly in
the IDL. This explicit declaration has two goals:

« type safety - stub and skeleton can know statically that a given type is custom
marshaled and can then do sanity check on what is coming over the wire.

« efficiency - for value types that are not custom marshaled no run time test is
necessary in the marshaling code.

If a custom marshaled value type has a state definition, the state definition is treated
the same as that of a non custom value type for mapping purposes (i.e., the fields show
up in the same fashion in the concrete programming language). It is provided to help
with application portability.

A custom marshaled value type is always a stateful value type.
/[Example IDL

custom valuetype T{
/I optional state definition

h

Custom value types can never be safely truncated to base (i.e., they always require an
exact match for their Repositoryld in the receiving context).

Common Object Request Broker Architecture (CORBA), v3.0 July 2002

5

Once a value type has been marked as custom, it needs to provide an implementation
that marshals and unmarshals the valuetype. The marshaling code encapsulates the
application code that can marshal and unmarshal instances of the value type over a
stream using the CDR encoding. It is the responsibility of the implementation to
marshal the state of all of its base types.

The following sections define the operations and streams that are used for custom
marshaling.

5.5.1 Implementation of Custom Marshaling

Once a value type has been marked as custom, an implementation of the custom
marshaling code must be provided. This is specified by providing a concrete
implementation of an abstract value type, CustomMarshal, as part of the
implementation of the value type. CustomMarshal encapsulates the application code
that can marshal and unmarshal instances of the value type over a stream using the
CDR encoding.

The following IDL defines the interfaces that are used to support the definition and use
of custom marshaling.

module CORBA {
abstract valuetype CustomMarshal {
void marshal (in DataOutputStream 0s);
void unmarshal (in DatalnputStream is);
h
h

CustomMarshal is an abstract value type that is meant to be used by the ORB, not
the user. Semantically it is treated as a custom valuetype's implicit base class, although
the custom valuetype does not actually inherit it in IDL. The implementor of a custom
value type provides an implementation of the CustomMarshal operations. The
manner in which this is done is specified for each language mapping. Each custom
marshaled value type has its own implementation. The interface is exposed in the
CORBA module so that the implementor can use the skeletons generated by the IDL
compiler as the basis for the implementation. Hence there is no need for the
application to acquire a reference to a Stream.

Note that while nothing prevents a user from writing IDL that inherits from
CustomMarshal, doing so will not make the type custom, nor will it cause the ORB
to treat it as custom.

The implementation requirements of the streaming mechanism require that the
implementations must be local since local memory addresses (i.e., the marshal buffers)
have to be manipulated.

5.5.2 Marshaling Sreams

The streams used for marshaling are defined below. They are responsible for
marshaling and demarshaling the data that makes up a custom value in CDR format.

July 2002 CORBA, v3.0: Custom Marshaling 5-11

module CORBA {

typedef sequence<any> AnySeq;

typedef sequence<boolean> BooleanSeq;
typedef sequence<char> CharSeq;

typedef sequence<wchar> WCharSeq;

typedef sequence<octet> OctetSeq;

typedef sequence<short> ShortSeq;

typedef sequence<unsigned short> UShortSeq;
typedef sequence<long> LongSeq;

typedef sequence<unsigned long> ULongSeq;
typedef sequence<long long> LongLongSeq;
typedef sequence<unsigned long long> ULongLongSeq;
typedef sequence<float> FloatSeq;

typedef sequence<double> DoubleSeq;

typedef sequence<long double> LongDoubleSeq;

typedef sequence<string> StringSeq;
typedef sequence<wstring> WStringSeq;

exception BadFixedValue {
unsigned long offset;

b

abstract valuetype DataOutputStream {
void write_any(in any value);
void write_boolean(in boolean value);
void write_char(in char value);
void write_wchar(in wchar value);
void write_octet(in octet value);
void write_short(in short value);
void write_ushort(in unsigned short value);
void write_long(in long value);
void write_ulong(in unsigned long value);
void write_longlong(in long long value);
void write_ulonglong(in unsigned long long value);
void write_float(in float value);

void write_double(in double value);

void write_longdouble(in long double value);
void write_string(in string value);

void write_wstring(in wstring value);

void write_Object(in Object value);

void write_Abstract(in AbstractBase value);

void write_Value(in ValueBase value);
void write_TypeCode(in TypeCode value);

void write_any_array(
in AnySeq seq,
in unsigned long offset,
in unsigned long length

5-12 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

);
void write_boolean_array(
in BooleanSeq seq,
in unsigned long offset,
in unsigned long length
);
void write_char_array(
in CharSeq seq,
in unsigned long offset,
in unsigned long length
);
void write_wchar_array(
in WCharSeq seq,
in unsigned long offset,
in unsigned long length
);
void write_octet_array(
in OctetSeq seq,
in unsigned long offset,
in unsigned long length
)i
void write_short_array(
in ShortSeq seq,
in unsigned long offset,
in unsigned long length
)i
void write_ushort_array(
in UShortSeq seq,
in unsigned long offset,
in unsigned long length
)i
void write_long_array(
in LongSeq seq,
in unsigned long offset,
in unsigned long length
)i
void write_ulong_array(
in ULongSeq seq,
in unsigned long offset,
in unsigned long length
)i
void write_ulonglong_array(
in ULongLongSeq seq,
in unsigned long offset,
in unsigned long length
);
void write_longlong_array(
in LongLongSeq seq,
in unsigned long offset,
in unsigned long length

);

July 2002 CORBA, v3.0: Custom Marshaling 5-13

void write_float_array(
in FloatSeq seq,
in unsigned long offset,
in unsigned long length
);
void write_double_array(
in DoubleSeq seq,
in unsigned long offset,
in unsigned long length
);
void write_long_double_array(
in LongDoubleSeq seq,
in unsigned long offset,
in unsigned long length
);
void write_fixed(
in any fixed_value
) raises (BadFixedValue);
void write_fixed_array(
in AnySeq seq,
in unsigned long offset,
in unsigned long length
) raises (BadFixedValue);

b

abstract valuetype DatalnputStream {
any read_any();
boolean read_boolean();
char read_char();
wchar read_wchar();
octet read_octet();
short read_short();
unsigned short read_ushort();
long read_long();
unsigned long read_ulong();
long long read_longlong();
unsigned long long read_ulonglong();
float read_float();
double read_double();
long double read_longdouble();
string read_string();
wstring read_wstring();
Object read_Object();
AbstractBase read_Abstract();
ValueBase read_Value();
TypeCode read_TypeCode();

void read_any_array(
inout AnySeq seq,
in unsigned long offset,
in unsigned long length

5-14 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

);

void read_boolean_array(
inout BooleanSeq seq,
in unsigned long offset,
in unsigned long length

);

void read_char_array(
inout CharSeq seq,
in unsigned long offset,
in unsigned long length

);

void read_wchar_array(
inout WCharSeq seq,
in unsigned long offset,
in unsigned long length

);

void read_octet_array(
inout OctetSeq seq,
in unsigned long offset,
in unsigned long length

)i

void read_short_array(
inout ShortSeq seq,
in unsigned long offset,
in unsigned long length

)i

void read_ushort_array(
inout UShortSeq seq,
in unsigned long offset,
in unsigned long length

)i

void read_long_array(
inout LongSeq seq,
in unsigned long offset,
in unsigned long length

)i

void read_ulong_array(
inout ULongSeq seq,
in unsigned long offset,
in unsigned long length

)i

void read_ulonglong_array(
inout ULongLongSeq seq,
in unsigned long offset,
in unsigned long length

);

void read_longlong_array(
inout LongLongSeq seq,
in unsigned long offset,
in unsigned long length

);

July 2002 CORBA, v3.0: Custom Marshaling 5-15

5-16

void read_float_array(
inout FloatSeq seq,
in unsigned long offset,
in unsigned long length

);

void read_double_array(
inout DoubleSeq seq,
in unsigned long offset,
in unsigned long length

);

void read_long_double_array(
inout DoubleSeq seq,
in unsigned long offset,
in unsigned long length

);

any read_fixed(
in unsigned short digits,
in short scale

) raises (BadFixedValue);

void read_fixed_array(
inout AnySeq seq,
in unsigned long offset,
in unsigned long length,
in unsigned short digits,
in short scale

) raises (BadFixedValue);

h
b

Note that the Data streams are abstract value types. This ensures that their
implementation will be local, which is required in order for them to properly flatten
and encode nested value types.

The read_* operations that have an inout parameter named seq are expected to extend
the sequence to fit the read value.

The ORB (i.e., the CDR encoding engine) is responsible for actually constructing the
value's encoding. The application marshaling code merely calls the above operations.
The details of writing the value tag, header information, end tag(s) are specifically not
exposed to the application code. In particular the size of the custom data is not written
by the application. This guarantees that the custom marshaling (and unmarshaling
code) cannot corrupt the other parameters of the call.

If an inconsistency is detected, then the standard system exception MARSHAL is
raised.

A possible implementation might have the engine determine that a custom marshal
parameter is“next.” It would then write the value tag and other header information and
then return control back to the application defined marshaling policy, which would do
the marshaling by calling the DataOutputStream operations to write the data as
appropriate. (Note the stream takes care of breaking the data into chunks, if necessary.)

Common Object Request Broker Architecture (CORBA), v3.0 July 2002

5

July 2002

When control was returned back to the engine, it performs any other cleanup activities
to complete the value type, and then proceeds onto the next parameter. How thisis
actually accomplished is an implementation detail of the ORB.

The Data Streams shall test for possible shared or null values and place appropriate
indirections or null encodings (even when used from the custom streaming policy).

There are no explicit operations for creating the streams. It is assumed that the ORB
implicitly acts as a factory. In a sense they are always available.

For write_fixed, the fixed_value parameter must be an "any" containing a fixed
value. If the "any" passed in does not contain a fixed value, then a BadFixedValue
exception is raised with the offset field set to 0.

For write_fixed_array, the elements of the seq parameter that are specified by the
offset and length parameters must be a sequence of "any"s each of which contains a
fixed value. If any of these "any"s does not contain a fixed value, or if any of them
contains a fixed value whose digits and scale (as specified by the TypeCode in the
"any") differ from those of the first of these "any"s (as specified by its TypeCode),
then a BadFixedValue exception is raised with the offset field set to a zero-origin
ordinal number indicating the position of the first incorrect “any” within the
subsequence of fixed values written to the stream.

For both write_fixed and write_fixed_array, the TypeCode within each “any”
being written specifies the digits and scale to be used to write the fixed value
contained in the “any.” The TypeCode itself is not written to the
DataOutputStream.

The read_fixed operation returns an “any” containing the fixed value that was read
from the DatalnputStream. The digits and scale in the TypeCode of the returned
“any” are set to the digits and scale parameters passed to read_fixed. If the fixed
value read from the DatalnputStream is incompatible with the digits and scale
parameters passed to read_fixed, then a BadFixedValue exception is raised with
the offset field set to 0.

Theread_fixed_array operation sets the elements of the seq parameter that are
specified by the offset and length parameters. These elements are set to "any"s with
TypeCodes specifying a fixed value whose digits and scale are the same as the
digits and scale parameters, and fixed values that were read from the
DatalnputStream. The previous contents of these “any”s, including their
TypeCodes, are destroyed by the read_fixed_array operation. Other "any"s in the
seq parameter (if any) are left unchanged. No TypeCode information is read from the
DatalnputStream. If any of the fixed values read from the DatalnputStream is
incompatible with the digits and scale parameters, then a BadFixedValue
exception is raised with the offset field set to a zero-origin ordinal number indicating
the position of the first incorrect “any” within the subsequence of fixed values read
from the stream.

The stream representation of a fixed value is considered incompatible if its digit and
scale values do not match the digits and scale values being used to read it from the
stream.

CORBA, v3.0: CustomMarshaling 5-17

5.6 Accessto the Sending Context Run Time

5-18

There are two cases where a receiving context might want to access the run time
environment of the sending context:

e To attempt the downloading of some missing implementation for the value.

¢ To access some meta information about the version of the value just received.

In order to provide that kind of service a call back object interface is defined. It may

optionally be supported by the sending context (it can be seen as a service). If such a
callback object is supported its IOR may be added to an optional service context in the
GIOP header passed from the sending context to the receiving context.

A service context tagged with the ServicelD SendingContextRunTime (see
Section 13.7, “ Service Context,” on page 13-28) contains an encapsulation of the IOR
for a SendingContext::RunTime object. Because ORBs are always free to skip a
service context they don't understand, this addition does not impact |10P
interoperability.

module SendingContext {

interface RunTime {}; // so that we can provide more
/I sending context run time
/I services in the future

interface CodeBase: RunTime {
typedef string URL; // blank-separated list of one or more URLS
typedef sequence<URL> URLSeq;
typedef sequence
<CORBA::ValueDef::FullValueDescription> ValueDescSeq;

/I Operation to obtain the IR from the sending context
CORBA::Repository get_ir();

/I Operations to obtain a location of the implementation code
URL implementation(in CORBA::Repositoryld x);
URLSeq implementations(in CORBA::RepositoryldSeq x);

/I Operations to obtain complete meta information about a Value
/I This is just a performance optimization the IR can provide

/l the same information

CORBA::FullValueDescription meta(in CORBA::Repositoryld x);
ValueDescSeq metas(in CORBA::RepositoryldSeq x);

/I To obtain a type graph for a value type

/I same comment as before the IR can provide similar

/I information

CORBA::RepositoryldSeq bases(in CORBA::Repositoryld x);

Common Object Request Broker Architecture (CORBA), v3.0 July 2002

5

Supporting the CodeBase interface for a given ORB run timeis an issue of quality of
service. The point here is that if the sending context does not support a CodeBase,
then the receiving context will simply raise an exception with which the sending
context had to be prepared to deal. There will always be cases where a receiving
context will get a value type and won't be able to interpret it because:

e It can't get alegal implementation for it (even if it knows where it is, possibly due
to security and/or resource access issues).

e Itslocal version is so radically different that it cannot make sense out of the piece
of state being provided.

These two failure modes will be represented by the CORBA system exception
NO_IMPLEMENT with identified minor codes, for a missing local value
implementation and for incompatible versions (see Section 4.12.4, “ Standard Minor
Exception Codes,” on page 4-73).

Under certain conditions it is possible that when several values of the sasme CORBA
type (same repository id) are sent in either a request or reply, that the reality is that
they have distinct implementations. In this case, in addition to the codebase URL(S)
sent in the service context, each value that has a different codebase may have codebase
URL(s) associated with it. Thisis encoded by using a different tag to encode the value
on the wire.

The sending context does not need to resend the same value for this service context on
subsequent requests over the same underlying connection. Resending a different value
for this service context is only necessary if the callback object referencein useis
changed by the sending context within the lifetime of the underlying connection.

July 2002 CORBA, v3.0: Accessto the Sending Context Run Time 5-19

5-20 Common Object Request Broker Architecture (CORBA), v3.0 July 2002

Abstract I nterface Semantics 6

This chapter describes the semantics of abstract interfaces.

Contents

This chapter contains the following sections.

Section Title Page
“Overview” 6-1
“Semantics of Abstract Interfaces’ 6-1
“Usage Guidelines’ 6-3
“Example” 6-3
“Security Considerations” 6-4

6.1 Overview

In many cases it may be useful to defer the determination of whether an object is
passed by reference or by value until runtime. An IDL abstract interface provides this
capability. See Section 6.4, “Example,” on page 6-3 for an example of when this might
be useful.

6.2 Semanticsof Abstract Interfaces

Abstract interfaces differ from regular IDL interfaces in the following ways:

July 2002 Common Object Request Broker Architecture (CORBA), v3.0 6-1

6-2

1. When used in an operation signature, they do not determine whether actual
parameters are passed as an object reference or by value. Instead, the type of the
actual parameter (regular interface or value) is used to make this determination
using the following rules:

» The actual parameter is passed as an object reference if it is a regular interface
type (or a subtype of a regular interface type), and that regular interface typeisa
subtype of the signature abstract interface type, and the object is already
registered with the ORB/OA.

» The actual parameter is passed as a value if it cannot be passed as an object
reference but can be passed as a value. Otherwise, a BAD_PARAM exception is
raised.

2. Abstract interfaces do not implicitly inherit from CORBA::Object. Thisis because
they can represent either value types or CORBA object references, and value types
do not necessarily support the object reference operations (see Section 4.3, “ Object
Reference Operations,” on page 4-12). If an IDL abstract interface type can be
successfully narrowed to an object reference type (aregular IDL interface), then the
CORBA::Object operations can be invoked on the narrowed object reference.

3. Abstract interfaces implicitly inherit from CORBA::AbstractBase. Thistypeis
defined as native. It is the responsibility of each language mapping to specify the
actual programming language type that is used for this type.

module CORBA {
/I IDL
native AbstractBase;

h

4. Abstract interfaces do not imply copy semantics for value types passed as
arguments to their operations. This is because their operations may be either
CORBA invocations (for abstract interfaces that represent CORBA object
references) or local programming language calls (for abstract interfaces that
represent CORBA value types). See Section 5.2.2, “Operations,” on page 5-3 and
Section 5.2.4, “Parameter Passing,” on page 5-4 for details of these differences.

5. Special inheritance rules that apply to abstract interfaces are described in
Section 3.8.6, “Abstract Interface,” on page 3-26.

6. See Section 15.3.7, “Abstract Interfaces,” on page 15-30 for special consideration
when transmitting an abstract interface using GIOP.

In other respects, abstract interfaces are identical to regular IDL interfaces.

For example, consider the following operation m1() in abstract interface foo.

abstract interface foo {
void m1(in AninterfaceType X, in AnAbstractinterfaceTypey,
in AValueType 2);

b
x's are always passed by reference,

Common Object Request Broker Architecture (CORBA), v3.0 July 2002

Z's are:
« passed as copied values if foo refers to an ordinary interface.
« passed as non-copied values if foo refers to a value type

y's are:

« passed as reference if their concrete type is an ordinary interface subtype of
AnAbstractinterfaceType (registered with the ORB), no matter what foo’s
concrete type is.

« passed as copied values if their concrete type is value and foo’s concrete type is
ordinary interface.

« passed as non-copied values if their concrete type is value and foo’s concrete type
isvalue.

6.3 Usage Guidelines

6.4 Example

July 2002

Abstract interfaces are intended for situations where it cannot be known at compile
time whether an object reference or a value will be passed. In other cases,