

Date: August 2011

Common Object Request Broker Architecture (CORBA)
Specification, Version 3.1.1

Part 1: CORBA Interfaces

OMG Document Number: formal/2011-08-01
Standard document URL: http://www.omg.org/spec/CORBA/3.1.1/Interfaces/PDF

Copyright © 1997-2001 Electronic Data Systems Corporation
Copyright © 1997-2001 Hewlett-Packard Company
Copyright © 1997-2001 IBM Corporation
Copyright © 1997-2001 ICON Computing
Copyright © 1997-2001 i-Logix
Copyright © 1997-2001 IntelliCorp
Copyright © 1997-2001 Microsoft Corporation
Copyright © 2011 Object Management Group
Copyright © 1997-2001 ObjecTime Limited
Copyright © 1997-2001 Oracle Corporation
Copyright © 1997-2001 Platinum Technology, Inc.
Copyright © 1997-2001 Ptech Inc.
Copyright © 1997-2001 Rational Software Corporation
Copyright © 1997-2001 Reich Technologies
Copyright © 1997-2001 Softeam
Copyright © 1997-2001 Sterling Software
Copyright © 1997-2001 Taskon A/S
Copyright © 1997-2001 Unisys Corporation

Use of Specification - Terms, Conditions & Notices

The material in this document details an Object Management Group specification in accordance with the terms, conditions and
notices set forth below. This document does not represent a commitment to implement any portion of this International
Standard in any company’s products. The information contained in this document is subject to change without notice.

Licenses

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free, paid up,
worldwide license to copy and distribute this document and to modify this document and distribute copies of the modified
version. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed the copyright
in the included material of any such copyright holder by reason of having used the specification set forth herein or having
conformed any computer software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this International Standard hereby grant you a
fully-paid up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use this
International Standard to create and distribute software and special purpose specifications that are based upon this
International Standard, and to use, copy, and distribute this International Standard as provided under the Copyright Act;
provided that: (1) both the copyright notice identified above and this permission notice appear on any copies of this
International Standard; (2) the use of the specifications is for informational purposes and will not be copied or posted on any
network computer or broadcast in any media and will not be otherwise resold or transferred for commercial purposes; and (3)
no modifications are made to this International Standard. This limited permission automatically terminates without notice if
you breach any of these terms or conditions. Upon termination, you will destroy immediately any copies of the specifications
in your possession or control.

Patents

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may
require use of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a
license may be required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of
those patents that are brought to its attention. OMG specifications are prospective and advisory only. Prospective users are
responsible for protecting themselves against liability for infringement of patents.

General Use Restrictions

Any unauthorized use of this International Standard may violate copyright laws, trademark laws, and communications
regulations and statutes. This document contains information which is protected by copyright. All Rights Reserved. No
part of this work covered by copyright herein may be reproduced or used in any form or by any means--graphic,
electronic, or mechanical, including photocopying, recording, taping, or information storage and retrieval systems--
without permission of the copyright owner.

Disclaimer Of Warranty

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY CONTAIN
ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE
MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS PUBLICATION,
INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF
MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE.

IN NO EVENT SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE COMPANIES LISTED ABOVE
BE LIABLE FOR ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS, REVENUE, DATA OR
USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE FURNISHING,
PERFORMANCE, OR USE OF THIS MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

The entire risk as to the quality and performance of software developed using this International Standard is borne by you.
This disclaimer of warranty constitutes an essential part of the license granted to you to use this International Standard.

Restricted Rights Legend

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1) (ii)
of The Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph (c)(1) and
(2) of the Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified in 48 C.F.R.
227-7202-2 of the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of the Federal
Acquisition Regulations and its successors, as applicable. The specification copyright owners are as indicated above and
may be contacted through the Object Management Group, 140 Kendrick Street, Needham, MA 02494, U.S.A.

Trademarks

MDA®, Model Driven Architecture®, UML®, UML Cube logo®, OMG Logo®, CORBA® and XMI® are registered
trademarks of the Object Management Group, Inc., and Object Management Group™, OMG™ , Unified Modeling
Language™, Model Driven Architecture Logo™, Model Driven Architecture Diagram™, CORBA logos™, XMI Logo™,
CWM™, CWM Logo™, IIOP™ , MOF™ and OMG Interface Definition Language (IDL)™ , and Systems Modeling
Language (SysML™) are trademarks of the Object Management Group. All other products or company names mentioned
are used for identification purposes only, and may be trademarks of their respective owners.

Compliance

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its designees) is
and shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer software to use
certification marks, trademarks or other special designations to indicate compliance with these materials.

Software developed under the terms of this license may claim compliance or conformance with this International Standard if
and only if the software compliance is of a nature fully matching the applicable compliance points as stated in the
specification. Software developed only partially matching the applicable compliance points may claim only that the software
was based on this International Standard, but may not claim compliance or conformance with this International Standard. In
the event that testing suites are implemented or approved by Object Management Group, Inc., software developed using this
International Standard may claim compliance or conformance with the specification only if the software satisfactorily
completes the testing suites.

OMG’s Issue Reporting Procedure

All OMG specifications are subject to continuous review and improvement. As part of this pro-
cess we encourage readers to report any ambiguities, inconsistencies, or inaccuracies they may
find by completing the Issue Reporting Form listed on the main web page http://www.omg.org,
under Documents, Report a Bug/Issue (http://www.omg.org/technology/agreement.htm).

Table of Contents

Preface ...

1 Scope ... 1

2 Conformance and Compliance .. 1

3 Normative References ... 1

4 Additional Information .. 2
4.1 Outline of Contents... 2

4.2 Keywords for Requirement Statements .. 3

5 The Object Model ... 5
5.1 General ... 5

5.2 Overview... 5

5.3 Object Semantics ... 6
5.3.1 Objects ..6
5.3.2 Requests ...6
5.3.3 Object Creation and Destruction ...7
5.3.4 Types ..7
5.3.5 Interfaces ..8
5.3.6 Value Types ..9
5.3.7 Abstract Interfaces ..9
5.3.8 Operations ..9
5.3.9 Attributes ...11

5.4 Object Implementation.. 11
5.4.1 The Execution Model: Performing Services .. 11
5.4.2 The Construction Model ..12

6 CORBA Overview .. 13
6.1 General ... 13

6.2 Structure of an Object Request Broker... 13
Common Object Request Broker Architecture (CORBA), v3.1.1 iii

6.2.1 Object Request Broker ..17
6.2.2 Clients ...18
6.2.3 Object Implementations ..18
6.2.4 Object References ..18
6.2.5 OMG Interface Definition Language ...19
6.2.6 Mapping of IDL to Programming Languages ..19
6.2.7 Client Stubs ...19
6.2.8 Dynamic Invocation Interface ..19
6.2.9 Implementation Skeleton ..20
6.2.10Dynamic Skeleton Interface ..20
6.2.11Object Adapters ..20
6.2.12ORB Interface ...20
6.2.13Interface Repository ..21
6.2.14Implementation Repository ...21

6.3 Example ORBs ... 21
6.3.1 Client- and Implementation-resident ORB ..21
6.3.2 Server-based ORB ..21
6.3.3 System-based ORB ..22
6.3.4 Library-based ORB ...22

6.4 Structure of a Client .. 22

6.5 Structure of an Object Implementation ... 23

6.6 Structure of an Object Adapter ... 25

6.7 CORBA Required Object Adapter .. 26
6.7.1 Portable Object Adapter ..26

6.8 The Integration of Foreign Object Systems 26

7 IDL Syntax and Semantics ... 29
7.1 Overview... 29

7.2 Lexical Conventions.. 30
7.2.1 Tokens ..33
7.2.2 Comments ...33
7.2.3 Identifiers ..33
7.2.4 Keywords ..35
7.2.5 Literals ..36

7.3 Preprocessing... 38

7.4 IDL Grammar .. 38

7.5 IDL Specification... 45
iv Common Object Request Broker Architecture (CORBA), v3.1.1

7.6 Import Declaration .. 45

7.7 Module Declaration... 46

7.8 Interface Declaration .. 47
7.8.1 Interface Header ...47
7.8.2 Interface Inheritance Specification .. 47
7.8.3 Interface Body ...48
7.8.4 Forward Declaration ..48
7.8.5 Interface Inheritance ...49
7.8.6 Abstract Interface ..51
7.8.7 Local Interface ..51

7.9 Value Declaration .. 52
7.9.1 Regular Value Type ..52
7.9.2 Boxed Value Type ...54
7.9.3 Abstract Value Type ..55
7.9.4 Value Forward Declaration ...55
7.9.5 Valuetype Inheritance ...55

7.10 Constant Declaration .. 57
7.10.1Syntax ...57
7.10.2Semantics ... 58

7.11 Type Declaration .. 61
7.11.1Basic Types ..62
7.11.2Constructed Types ... 64
7.11.3Template Types .. 68
7.11.4Complex Declarator ..69
7.11.5Native Types ...69
7.11.6Deprecated Anonymous Types .. 70

7.12 Exception Declaration... 73

7.13 Operation Declaration... 73
7.13.1Operation Attribute ... 74
7.13.2Parameter Declarations ..74
7.13.3Raises Expressions ..74
7.13.4Context Expressions ...75

7.14 Attribute Declaration ... 76

7.15 Repository Identity Related Declarations 77
7.15.1Repository Identity Declaration ...77
7.15.2Repository Identifier Prefix Declaration ..78
7.15.3Repository Id Conflict ...79

7.16 Event Declaration ... 79
Common Object Request Broker Architecture (CORBA), v3.1.1 v

7.16.1Regular Event Type ..79
7.16.2Abstract Event Type ...80
7.16.3Event Forward Declaration ...80
7.16.4Eventtype Inheritance ...80

7.17 Component Declaration .. 80
7.17.1Component ...80
7.17.2Component Header ..81
7.17.3Component Body ..82
7.17.4Event Sources—publishers and emitters ..84
7.17.5Event Sinks ...84
7.17.6Basic and Extended Components ..85

7.18 Home Declaration ... 85
7.18.1Home ..85
7.18.2Home Header ...86
7.18.3Home Body ...87

7.19 CORBA Module .. 88

7.20 Names and Scoping ... 89
7.20.1Qualified Names ...89
7.20.2Scoping Rules and Name Resolution ...90
7.20.3Special Scoping Rules for Type Names ...93

8 ORB Interface .. 95
8.1 Overview... 95

8.2 The ORB Operations .. 95
8.2.1 ORB Identity ..101
8.2.2 Converting Object References to Strings ..101
8.2.3 Getting Service Information ..102
8.2.4 Creating a New Context ..102
8.2.5 Thread-Related Operations ..102

8.3 Object Reference Operations ... 105
8.3.1 Determining the Object Interface ..107
8.3.2 Duplicating and Releasing Copies of Object References107
8.3.3 Nil Object References ...107
8.3.4 Equivalence Checking Operation ..108
8.3.5 Probing for Object Non-Existence ...108
8.3.6 Object Reference Identity ...108
8.3.7 Type Coercion Considerations ..110
8.3.8 Getting Policy Associated with the Object ..110
8.3.9 Overriding Associated Policies on an Object Reference111
vi Common Object Request Broker Architecture (CORBA), v3.1.1

8.3.10Validating Connection ...112
8.3.11Getting the Domain Managers Associated with the Object 112
8.3.12Getting Component Associated with the Object113
8.3.13Getting the ORB ...113
8.3.14LocalObject Operations ..113

8.4 ValueBase Operations.. 114

8.5 ORB and OA Initialization and Initial References 115
8.5.1 ORB Initialization ..115
8.5.2 Obtaining Initial Object References ..117
8.5.3 Configuring Initial Service References .. 120

8.6 Context Object .. 122
8.6.1 Introduction ...122
8.6.2 Context Object Operations ..122

8.7 Current Object .. 125

8.8 Policy Object... 126
8.8.1 Definition of Policy Object ...126
8.8.2 Creation of Policy Objects ...127
8.8.3 Usages of Policy Objects .. 129
8.8.4 Policy Associated with the Execution Environment129
8.8.5 Specification of New Policy Objects ..130
8.8.6 Standard Policies ..131

8.9 Management of Policies ... 131
8.9.1 Client Side Policy Management .. 131
8.9.2 Server Side Policy Management ...132
8.9.3 Policy Management Interfaces ..132

8.10 Management of Policy Domains ... 134
8.10.1Basic Concepts ...134
8.10.2Domain Management Operations ...136

8.11 TypeCodes ... 138
8.11.1The TypeCode Interface ...138
8.11.2TypeCode Constants ..142
8.11.3Creating TypeCodes ...143

8.12 Exceptions .. 148
8.12.1Definition of Terms ... 148
8.12.2System Exceptions ... 148
8.12.3Standard System Exception Definitions ...150
8.12.4Standard Minor Exception Codes ...156
Common Object Request Broker Architecture (CORBA), v3.1.1 vii

9 Value Type Semantics ... 157
9.1 Overview... 157

9.2 Architecture... 157
9.2.1 Abstract Values ...158
9.2.2 Operations ..158
9.2.3 Value Type vs. Interfaces ...159
9.2.4 Parameter Passing ...159
9.2.5 Substitutability Issues ...160
9.2.6 Widening/Narrowing ..161
9.2.7 Value Base Type ...161
9.2.8 Life Cycle issues ...161
9.2.9 Security Considerations ..162

9.3 Standard Value Box Definitions .. 162

9.4 Language Mappings ... 163
9.4.1 General Requirements ..163
9.4.2 Language Specific Marshaling ..163
9.4.3 Language Specific Value Factory Requirements163
9.4.4 Value Method Implementation ..164

9.5 Custom Marshaling... 164
9.5.1 Implementation of Custom Marshaling ...164
9.5.2 Marshaling Streams ..165

9.6 Access to the Sending Context Run Time.................................... 171

10 Abstract Interface Semantics 173
10.1 Overview... 173

10.2 Semantics of Abstract Interfaces .. 173

10.3 Usage Guidelines ... 174

10.4 Example.. 174

10.5 Security Considerations.. 175
10.5.1Passing Values to Trusted Domains ...175

11 Dynamic Invocation Interface 177
11.1 Overview... 177

11.1.1Common Data Structures ...177
11.1.2Memory Usage ...179
11.1.3Return Status and Exceptions ..179
viii Common Object Request Broker Architecture (CORBA), v3.1.1

11.2 Request Operations.. 179
11.2.1create_request ..180
11.2.2add_arg ..182
11.2.3invoke ...182
11.2.4delete ..183
11.2.5send .. 183
11.2.6poll_response ...183
11.2.7get_response .. 183
11.2.8sendp ..184
11.2.9prepare ...184
11.2.10sendc .. 184

11.3 ORB Operations ... 185
11.3.1send_multiple_requests ..185
11.3.2get_next_response and poll_next_response ..185

11.4 Polling... 186
11.4.1Abstract Valuetype Pollable ..187
11.4.2Abstract Valuetype DIIPollable ...188
11.4.3interface PollableSet ...188

11.5 List Operations ... 189
11.5.1create_list ... 190
11.5.2add_item ...190
11.5.3free ...191
11.5.4free_memory .. 191
11.5.5get_count ..191
11.5.6create_operation_list ..191

12 Dynamic Skeleton Interface 193
12.1 Introduction... 193

12.2 Overview... 193

12.3 ServerRequestPseudo-Object .. 194
12.3.1ExplicitRequest State: ServerRequestPseudo-Object194

12.4 DSI: Language Mapping... 195
12.4.1ServerRequest’s Handling of Operation Parameters195
12.4.2Registering Dynamic Implementation Routines195

13 Dynamic Management of Any Values 197
13.1 General ... 197

13.2 Overview... 197
Common Object Request Broker Architecture (CORBA), v3.1.1 ix

13.3 DynAny API .. 198
13.3.1Creating a DynAny Object ..204
13.3.2The DynAny Interface ...206
13.3.3The DynFixed Interface ..210
13.3.4The DynEnum Interface ..210
13.3.5The DynStruct Interface ..211
13.3.6The DynUnion Interface ..212
13.3.7The DynSequence Interface ...214
13.3.8The DynArray Interface ...215
13.3.9The DynValueCommon Interface ...216
13.3.10The DynValue Interface ..216
13.3.11The DynValueBox Interface ..217

13.4 Usage in C++ Language... 218
13.4.1Dynamic Creation of CORBA::Any values ..218
13.4.2Dynamic Interpretation of CORBA::Any values219

14 The Interface Repository .. 221
14.1 Overview... 221

14.2 Scope of an Interface Repository ... 221

14.3 Implementation Dependencies ... 223
14.3.1Managing Interface Repositories ..223

14.4 Basics ... 224
14.4.1Names and Identifiers ...224
14.4.2Types and TypeCodes ..225
14.4.3Interface Repository Objects ..225
14.4.4Structure and Navigation of the Interface Repository226

14.5 Interface Repository Interfaces... 228
14.5.1Supporting Type Definitions ..229
14.5.2IRObject ..230
14.5.3Contained ...231
14.5.4Container ..233
14.5.5IDLType ..238
14.5.6Repository ...238
14.5.7ModuleDef ..240
14.5.8ConstantDef ..240
14.5.9TypedefDef ...241
14.5.10StructDef ...241
14.5.11UnionDef ...242
14.5.12EnumDef ...243
14.5.13AliasDef ..243
x Common Object Request Broker Architecture (CORBA), v3.1.1

14.5.14PrimitiveDef .. 244
14.5.15StringDef ... 244
14.5.16WstringDef ..244
14.5.17FixedDef ... 245
14.5.18SequenceDef ..245
14.5.19ArrayDef ... 245
14.5.20ExceptionDef ..246
14.5.21AttributeDef ...247
14.5.22ExtAttributeDef ...247
14.5.23OperationDef ..248
14.5.24InterfaceDef .. 250
14.5.25ExtInterfaceDef ...252
14.5.26AbstractInterfaceDef ...253
14.5.27ExtAbstractInterfaceDef .. 254
14.5.28LocalInterfaceDef ... 255
14.5.29ExtLocalInterfaceDef .. 256
14.5.30ValueMemberDef ..256
14.5.31ValueDef ... 257
14.5.32ExtValueDef .. 260
14.5.33ValueBoxDef ...262
14.5.34NativeDef ..262

14.6 Component Interface Repository Interfaces 262
14.6.1ComponentIR::Container .. 262
14.6.2ComponentIR::Repository ..264
14.6.3ComponentIR::ProvidesDef ..265
14.6.4ComponentIR::UsesDef ..265
14.6.5ComponentIR::EventDef ...266
14.6.6ComponentIR::EventPortDef ..266
14.6.7ComponentIR::EmitsDef ...267
14.6.8ComponentIR::PublishesDef ..268
14.6.9ComponentIR::ConsumesDef ...268
14.6.10ComponentIR::ComponentDef ...268
14.6.11ComponentIR::FactoryDef ..271
14.6.12ComponentIR::FinderDef ..272
14.6.13ComponentIR::HomeDef ..272

14.7 RepositoryIds.. 274
14.7.1IDL Format ..275
14.7.2RMI Hashed Format ...275
14.7.3DCE UUID Format ..277
14.7.4LOCAL Format ...277
14.7.5Pragma Directives for RepositoryId ..277
14.7.6For More Information ..282
Common Object Request Broker Architecture (CORBA), v3.1.1 xi

14.7.7RepositoryIDs for OMG-Specified Types ..282
14.7.8Uniqueness Constraints on Repository IDs ..283

14.8 IDL for Interface Repository.. 284

15 The Portable Object Adapter 303
15.1 Overview... 303

15.2 Abstract Model Description... 303
15.2.1Model Components ...303
15.2.2Model Architecture ..305
15.2.3POA Creation ..306
15.2.4Reference Creation ...307
15.2.5Object Activation States ..308
15.2.6Request Processing ..308
15.2.7Implicit Activation ..309
15.2.8Multi-threading ..310
15.2.9Dynamic Skeleton Interface ..311
15.2.10Location Transparency ...312

15.3 Interfaces .. 312
15.3.1The Servant IDL Type ...313
15.3.2POAManager Interface ...314
15.3.3POAManagerFactory Interface ...318
15.3.4AdapterActivator Interface ..319
15.3.5ServantManager Interface ..320
15.3.6ServantActivator Interface ..321
15.3.7ServantLocator Interface ..323
15.3.8POA Policy Objects ..325
15.3.9POA Interface ...328
15.3.10Current Operations ...337

15.4 IDL for PortableServer Module ... 338

15.5 UML Description of PortableServer .. 344

15.6 Usage Scenarios .. 346
15.6.1Getting the Root POA ...346
15.6.2Creating a POA ...347
15.6.3Explicit Activation with POA-assigned Object Ids347
15.6.4Explicit Activation with User-assigned Object Ids348
15.6.5Creating References before Activation ...349
15.6.6Servant Manager Definition and Creation ...349
15.6.7Object Activation on Demand ...351
15.6.8Persistent Objects with POA-assigned Ids ...352
xii Common Object Request Broker Architecture (CORBA), v3.1.1

15.6.9Multiple Object Ids Mapping to a Single Servant352
15.6.10One Servant for All Objects ..352
15.6.11Single Servant, Many Objects and Types, Using DSI355

16 Portable Interceptors 359
16.1 Introduction... 359

16.1.1Object Creation ...359
16.1.2Client Sends Request ...360
16.1.3Server Receives Request ...361
16.1.4Server Sends Reply ..361
16.1.5Client Receives Reply .. 362

16.2 General Behavior of Local Objects ... 362

16.3 Interceptor Interface ... 362

16.4 Request Interceptors .. 363
16.4.1Design Principles ..363
16.4.2General Flow Rules ..364
16.4.3The Flow Stack Visual Model ...364
16.4.4The Request Interceptor Points .. 365
16.4.5Client-Side Interceptor .. 365
16.4.6Client-Side Interception Points ...365
16.4.7Client-Side Interception Point Flow ..367
16.4.8Server-Side Interceptor ..370
16.4.9Server-Side Interception Points .. 370
16.4.10Server-Side Interception Point Flow ... 372
16.4.11Request Information ...375
16.4.12RequestInfo Interface ...375
16.4.13ClientRequestInfo Interface ..379
16.4.14ServerRequestInfo Interface ...382
16.4.15ForwardRequest Exception ..386

16.5 Portable Interceptor Current ... 386
16.5.1Overview ...386
16.5.2Obtaining the Portable Interceptor Current ...386
16.5.3Portable Interceptor Current Interface ..387
16.5.4Use of Portable Interceptor Current ..388

16.6 IOR Interceptor ... 392
16.6.1Overview ...392
16.6.2An Abstract Model for Object Adapters ..392
16.6.3Object Reference Template ..394
16.6.4IORInterceptor Interface ...396
16.6.5IORInfo Interface ..397
Common Object Request Broker Architecture (CORBA), v3.1.1 xiii

16.7 Interceptor Policy Objects... 400
16.7.1ProcessingMode Policy ..400

16.8 PolicyFactory .. 401
16.8.1PolicyFactory Interface ...401

16.9 Registering Interceptors.. 401
16.9.1ORBInitializer Interface ...401
16.9.2ORBInitInfo Interface ..402
16.9.3register_orb_initializer Operation ..406
16.9.4Notes about Registering Interceptors ...408

16.10 Dynamic Initial References ... 409
16.10.1register_initial_reference ..409

16.11 Module Dynamic ... 410
16.11.1NVList PIDL Represented by ParameterList IDL410
16.11.2ContextList PIDL Represented by ContextList IDL410
16.11.3ExceptionList PIDL Represented by ExceptionList IDL410
16.11.4Context PIDL Represented by RequestContext IDL410

16.12 Consolidated IDL .. 410
16.12.1Dynamic ..410
16.12.2Portions of IOP Relevant to Portable Interceptor411
16.12.3PortableInterceptor ...412

17 CORBA Messaging .. 417
17.1 General ... 417

17.2 Quality of Service.. 417

17.3 Messaging Quality of Service ... 417
17.3.1Rebind Support ...419
17.3.2Synchronization Scope ...420
17.3.3Request and Reply Priority ...421
17.3.4Request and Reply Timeout ...422
17.3.5Routing ...424
17.3.6Queue Ordering ..425

17.4 Propagation of Messaging QoS.. 426
17.4.1Structures ...426
17.4.2Messaging QoS Profile Component ...426
17.4.3Messaging QoS Service Context ..426

17.5 Messaging Programming Model ... 427

17.6 Running Example ... 428
xiv Common Object Request Broker Architecture (CORBA), v3.1.1

17.7 Async Operation Mapping .. 428
17.7.1Callback Model Signatures (sendc) ..429
17.7.2Polling Model Signatures (sendp) ...431

17.8 Exception Delivery in the Callback Model 433
17.8.1Messaging::ExceptionHolder valuetype ...433

17.9 Type-Specific ReplyHandler Mapping .. 433
17.9.1ReplyHandler Operations for NO_EXCEPTION Replies434
17.9.2ReplyHandler Operations for Exceptional Replies435
17.9.3Example ..435

17.10 Generic Poller Value... 436
17.10.1operation_target ...437
17.10.2operation_name ..437
17.10.3associated_handler ..437
17.10.4is_from_poller ...437

17.11 Type-Specific Poller Mapping... 437
17.11.1Basic Type-Specific Poller ..438
17.11.2Persistent Type-Specific Poller ...440
17.11.3Example ..440

17.12 Example Programmer Usage ... 441
17.12.1Example Programmer Usage (Examples Mapped to C++)441
17.12.2Client-Side C++ Example for the Asynchronous Method Signatures ...441
17.12.3Client-Side C++ Example of the Callback Model 442
17.12.4 Client-Side C++ Example of the Polling Model449
17.12.5 Server Side ...454

17.13 Message Routing Interoperability .. 455

17.14 Routing Object References .. 456

17.15 Message Routing.. 457
17.15.1Structures ...459
17.15.2Interfaces ..460
17.15.3Routing Protocol ...462

17.16 Router Administration ... 467
17.16.1Constants ...470
17.16.2Exceptions ..470
17.16.3Valuetypes ..471
17.16.4Interfaces ..471

17.17 CORBA Messaging IDL... 472
17.17.1 Messaging Module ...472
17.17.2MessageRouting Module ..475
Common Object Request Broker Architecture (CORBA), v3.1.1 xv

Chapter 17 Annexes
A.1 QoS Abstract Model Design ... 480

A.2 Model Components .. 480
A.2.1 Component Relationships ...481
A.2.2 Component Design ...481

A.3 AMI/TII Abstract Model Design... 482
A.3.1 Asynchronous Method Invocation Components482
A.3.2 Time-Independent Invocation Components ..483
A.3.3 Component Relationships ...483
A.3.4 Callback Model Detailed Design ...486
A.3.5 Poller/PersistentRequest Detailed Design ..487

A.4 Message Routing Abstract Model Design 488
A.4.1 Model Components ...489
A.4.2 Component Relationships ...489
A.4.3 Router Administration Design ...489

B.1 Conformance Issues .. 491

B.2 Compatibility Issues ... 491
B.2.1 Transaction Service ..491
B.2.2 Changes to Current OTS Behavior ...491
B.2.3 Security Service ..492

Annex A - IDL Tags and Exceptions ... 493
Annex B - Legal Information.. 507
xvi Common Object Request Broker Architecture (CORBA), v3.1.1

Preface

About the Object Management Group

OMG

Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer industry
standards consortium that produces and maintains computer industry specifications for interoperable, portable and
reusable enterprise applications in distributed, heterogeneous environments. Membership includes Information
Technology vendors, end users, government agencies and academia.

OMG member companies write, adopt, and maintain its specifications following a mature, open process. OMG's
specifications implement the Model Driven Architecture® (MDA®), maximizing ROI through a full-lifecycle approach to
enterprise integration that covers multiple operating systems, programming languages, middleware and networking
infrastructures, and software development environments. OMG’s specifications include: UML® (Unified Modeling
Language™); CORBA® (Common Object Request Broker Architecture); CWM™ (Common Warehouse Metamodel);
and industry-specific standards for dozens of vertical markets.

More information on the OMG is available at http://www.omg.org/.

OMG Specifications

As noted, OMG specifications address middleware, modeling and vertical domain frameworks. A catalog of all OMG
Specifications is available from the OMG website at:

http://www.omg.org/technology/documents/spec_catalog.htm

Specifications within the Catalog are organized by the following categories:

OMG Modeling Specifications

• UML

• MOF

• XMI

• CWM

• Profile specifications.

OMG Middleware Specifications

• CORBA/IIOP

• IDL/Language Mappings

• Specialized CORBA specifications

• CORBA Component Model (CCM).

Platform Specific Model and Interface Specifications

• CORBAservices
 Common Object Request Broker Architecture (CORBA), v3.1.1 xiii

• CORBAfacilities

• OMG Domain specifications

• OMG Embedded Intelligence specifications

• OMG Security specifications.

All of OMG’s formal specifications may be downloaded without charge from our website. (Products implementing OMG
specifications are available from individual suppliers.) Copies of specifications, available in PostScript and PDF format,
may be obtained from the Specifications Catalog cited above or by contacting the Object Management Group, Inc. at:

OMG Headquarters
140 Kendrick Street
Building A, Suite 300
Needham, MA 02494
USA
Tel: +1-781-444-0404
Fax: +1-781-444-0320
Email: pubs@omg.org

Certain OMG specifications are also available as ISO standards. Please consult http://www.iso.org

Typographical Conventions

The type styles shown below are used in this document to distinguish programming statements from ordinary English.
However, these conventions are not used in tables or section headings where no distinction is necessary.

Times/Times New Roman - 10 pt.: Standard body text

Helvetica/Arial - 10 pt. Bold: OMG Interface Definition Language (OMG IDL) and syntax elements.

Courier - 10 pt. Bold: Programming language elements.

Helvetica/Arial - 10 pt: Exceptions

Note – Terms that appear in italics are defined in the glossary. Italic text also represents the name of a document, specification,
or other publication.

Issues

The reader is encouraged to report any technical or editing issues/problems with this specification to http://www.omg.org/
technology/agreement.htm.
xiv Common Object Request Broker Architecture (CORBA), v3.1.1

1 Scope

This document specifies the CORBA Object Model and uses concepts from that model to define the operation of the
Object Request Broker (ORB). The ORB is the basic mechanism by which objects transparently make requests to, and
receive responses from, each other on the same machine or across a network. A client need not be aware of the
mechanisms used to communicate with or activate an object, how the object is implemented, or where the object is
located.

2 Conformance and Compliance

The minimum required for a CORBA-compliant system is adherence to the specifications in this specification and one
mapping. Each additional language mapping is a separate, optional compliance point. Optional means users aren’t
required to implement these points if they are unnecessary at their site, but if implemented, they must adhere to the
CORBA specifications to be called CORBA-compliant. For instance, if a vendor supports C++, their ORB must comply
with the OMG IDL to C++ binding specified in the C++ Language Mapping Specification.

The CORBA Language Mappings have been separated from this standard and each language mapping is its own separate
OMG specification.

3 Normative References

The following referenced documents are indispensable for the application of this document. For dated references, only the
edition cited applies. For undated references, the latest edition of the referenced document (including any amendments)
applies.

• ITU-T Recommendation X.902 (1995) | ISO/IEC 10746-2:1996, Information Technology - Open Distributed
Processing - Reference Model: Foundations

• ITU-T Recommendation X.903 (1995) | ISO/IEC 10746-3:1996, Information Technology - Open Distributed
Processing - Reference Model: Architecture

• ITU-T Recommendation X.920 (1997) | ISO/IEC 14750:1997, Information Technology - Open Distributed Processing
- Interface Definition Language

• ISO/IEC 14882:2003, Information Technology - Programming languages - C++

• ISO/IEC 9899:1999, Information Technology - Programming languages - C

• [OMA] Object Management Group, “Object Management Architecture Guide, revision 3.0,” available from http://
www.omg.org/oma/

• [ASMOTS] Object Management Group, “Additional Structuring Mechanisms for the OTS,” available from http://
www.omg.org/spec/OTS/

• [TRANS] Object Management Group, “Transaction Service,” available from http://www.omg.org/spec/TRANS/
Common Object Request Broker Architecture (CORBA), v3.1.1 1

• [FIREWALL] Object Management Group, “CORBA Firewall Traversal Specification,” available from http://
www.omg.org/members/cgi-bin/doc?ptc/04-04-05.pdf

• [SCCP] Object Management Group, “CORBA / TC Interworking and SCCP-Inter ORB Protocol (SCCP),” available
from http://www.omg.org/spec/SCCP

• [FTCORBA] Object Management Group, “Fault Tolerant Corba,” clause 23 of CORBA 3.0.3, available from http://
www.omg.org/cgi-bin/doc?formal/2004-03-01

• [RTCORBA] Object Management Group, “Real-Time CORBA, version 1.2,” available from http://www.omg.org/
spec/RT/

• [WATM] Object Management Group, “Wireless Access and Telecom Mobility in CORBA, Version 1.2,” available
from http://www.omg.org/spec/WATM/

• [DCOMI] Object Management Group, “Interoperability with non-CORBA Systems” clause 20 of CORBA 3.0.3,
available from http://www.omg.org/cgi-bin/doc?formal/2004-03-01

• [TSAS] Object Management Group “Telecommunications Service Access and Subscription Specification,” available
from http://www.omg.org/spec/TSAS/

• [SECDOM] Object Management Group “Security Domain Membership Management Service,” available from http://
www.omg.org/members/cgi-bin/doc?orbos/01-06-01.pdf

• [RFC2119] IETF RFC 2119, “Key words for use in RFCs to Indicate Requirement Levels,” S. Bradner, March 1997.
Available from http://ietf.org/rfc/rfc2119

4 Additional Information

4.1 Outline of Contents

This part consists of the following:

1. The syntax and semantics of the OMG interface definition language (OMG IDL), which is used to describe the
interfaces that client objects call and object implementations provide. Throughout this specification the abbreviation
IDL is used, for brevity, as shorthand for OMG IDL.

2. The interface to the ORB functions that do not depend on object adapters: these operations are the same for all ORBs
and object implementations.

3. The semantics of passing an object by value.

4. An IDL abstract interface, which provides the capability to defer the determination of whether an object is passed by
reference or by value until runtime.

5. The Dynamic Invocation Interface (DII), the client’s side of the interface that allows dynamic creation and invocation
of request to objects.

6. The Dynamic Skeleton Interface (DSI), the server’s-side interface that can deliver requests from an ORB to an object
implementation that does not have compile-time knowledge of the type of the object it is implementing.

7. The interface for the Dynamic Any type which allows statically-typed programming languages such as C and Java to
create or receive values of type Any without compile-time knowledge that the typer contained in the Any.
2 Common Object Request Broker Architecture (CORBA), v3.1.1

8. The Interface Repository that manages and provides access to a collection of object definitions.

9. The Portable Object Adapter which defines a group of IDL interfaces that an implementation uses to access ORB
functions.

10. ORB operations that allow services such as security to be inserted in the invocation path.

11. Messaging which covers: Quality of Service, Asynchronous Method Invocations (to include Time-Independent or
“Persistent” Requests), and the specification of interoperable Routing interfaces to support the transport of requests
asynchronously from the handling of their replies.

4.2 Keywords for Requirement Statements

The keywords “must,” “must not,” “shall,” “shall not,” “should,” “should not,” and “may” in this specification are to be
interpreted as described in [RFC 2119].
Common Object Request Broker Architecture (CORBA), v3.1.1 3

4 Common Object Request Broker Architecture (CORBA), v3.1.1

5 The Object Model

5.1 General

This clause describes the concrete object model that underlies the CORBA architecture. The model is derived from the
abstract Core Object Model defined by the Object Management Group in the Object Management Architecture Guide.

5.2 Overview

The object model provides an organized presentation of object concepts and terminology. It defines a partial model for
computation that embodies the key characteristics of objects as realized by the submitted technologies. The OMG object
model is abstract in that it is not directly realized by any particular technology. The model described here is a concrete
object model. A concrete object model may differ from the abstract object model in several ways:

• It may elaborate the abstract object model by making it more specific, for example, by defining the form of request
parameters or the language used to specify types.

• It may populate the model by introducing specific instances of entities defined by the model, for example, specific
objects, specific operations, or specific types.

• It may restrict the model by eliminating entities or placing additional restrictions on their use.

An object system is a collection of objects that isolates the requestors of services (clients) from the providers of services
by a well-defined encapsulating interface. In particular, clients are isolated from the implementations of services as data
representations and executable code.

The object model first describes concepts that are meaningful to clients, including such concepts as object creation and
identity, requests and operations, types and signatures. It then describes concepts related to object implementations,
including such concepts as methods, execution engines, and activation.

The object model is most specific and prescriptive in defining concepts meaningful to clients. The discussion of object
implementation is more suggestive, with the intent of allowing maximal freedom for different object technologies to
provide different ways of implementing objects.

There are some other characteristics of object systems that are outside the scope of the object model. Some of these
concepts are aspects of application architecture, some are associated with specific domains to which object technology is
applied. Such concepts are more properly dealt with in an architectural reference model. Examples of excluded concepts
are compound objects, links, copying of objects, change management, and transactions. Also outside the scope of the
object model are the details of control structure: the object model does not say whether clients and/or servers are single-
threaded or multi-threaded, and does not specify how event loops are programmed nor how threads are created, destroyed,
or synchronized.

This object model is an example of a classical object model, where a client sends a message to an object. Conceptually,
the object interprets the message to decide what service to perform. In the classical model, a message identifies an object
and zero or more actual parameters. As in most classical object models, a distinguished first parameter is required, which
identifies the operation to be performed; the interpretation of the message by the object involves selecting a method based
on the specified operation. Operationally, of course, method selection could be performed either by the object or the ORB.
Common Object Request Broker Architecture (CORBA), v3.1.1 5

5.3 Object Semantics

An object system provides services to clients. A client of a service is any entity capable of requesting the service. This
sub clause defines the concepts associated with object semantics, that is, the concepts relevant to clients.

5.3.1 Objects

An object system includes entities known as objects. An object is an identifiable, encapsulated entity that provides one or
more services that can be requested by a client.

5.3.2 Requests

Clients request services by issuing requests.

The term request is broadly used to refer to the entire sequence of causally related events that transpires between a client
initiating it and the last event causally associated with that initiation. For example:

• the client receives the final response associated with that request from the server,

• the server carries out the associated operation in case of a oneway request, or

• the sequence of events associated with the request terminates in a failure of some sort. The initiation of a Request is an
event.

The information associated with a request consists of an operation, a target object, zero or more (actual) parameters, and
an optional request context.

A request form is a description or pattern that can be evaluated or performed multiple times to cause the issuing of
requests. As described in the IDL Syntax and Semantics clause, request forms are defined by particular language
bindings. An alternative request form consists of calls to the dynamic invocation interface to create an invocation
structure, add arguments to the invocation structure, and to issue the invocation (refer to the Dynamic Invocation Interface
clause for descriptions of these request forms).

A value is anything that may be a legitimate (actual) parameter in a request. More particularly, a value is an instance of
an IDL data type. There are non-object values, as well as values that reference objects.

An object reference is a value that reliably denotes a particular object. Specifically, an object reference will identify the
same object each time the reference is used in a request (subject to certain pragmatic limits of space and time). An object
may be denoted by multiple, distinct object references.

A request may have parameters that are used to pass data to the target object; it may also have a request context that
provides additional information about the request. A request context is a mapping from strings to strings.

A request causes a service to be performed on behalf of the client. One possible outcome of performing a service is
returning to the client the results, if any, defined for the request.

If an abnormal condition occurs during the performance of a request, an exception is returned. The exception may carry
additional return parameters particular to that exception.

The request parameters are identified by position. A parameter may be an input parameter, an output parameter, or an
input-output parameter. A request may also return a single return result value, as well as the results stored into the output
and input-output parameters.
6 Common Object Request Broker Architecture (CORBA), v3.1.1

The following semantics hold for all requests:

• Any aliasing of parameter values is neither guaranteed removed nor guaranteed to be preserved.

• The order in which aliased output parameters are written is not guaranteed.

• The return result and the values stored into the output and input-output parameters are undefined if an exception is
returned.

For descriptions of the values and exceptions that are permitted, see Types on page 7 and Exceptions on page 10.

5.3.3 Object Creation and Destruction

Objects can be created and destroyed. From a client’s point of view, there is no special mechanism for creating or
destroying an object. Objects are created and destroyed as an outcome of issuing requests. The outcome of object creation
is revealed to the client in the form of an object reference that denotes the new object.

5.3.4 Types

A type is an identifiable entity with an associated predicate (a single-argument mathematical function with a boolean
result) defined over entities. An entity satisfies a type if the predicate is true for that entity. An entity that satisfies a type
is called a member of the type.

Types are used in signatures to restrict a possible parameter or to characterize a possible result.

The extension of a type is the set of entities that satisfy the type at any particular time.

An object type is a type whose members are object references. In other words, an object type is satisfied only by object
references.

Constraints on the data types in this model are shown in this sub clause.

5.3.4.1 Basic types

• 16-bit, 32-bit, and 64-bit signed and unsigned 2’s complement integers.

• Single-precision (32-bit), double-precision (64-bit), and double-extended (a mantissa of at least 64 bits, a sign bit and
an exponent of at least 15 bits) IEEE floating point numbers.

• Fixed-point decimal numbers of up to 31 significant digits.

• Characters, as defined in ISO Latin-1 (8859.1) and other single- or multi-byte character sets.

• A boolean type taking the values TRUE and FALSE.

• An 8-bit opaque detectable, guaranteed to not undergo any conversion during transfer between systems.

• Enumerated types consisting of ordered sequences of identifiers.

• A string type, which consists of a variable-length array of characters; the length of the string is a non-negative integer,
and is available at run-time. The length may have a maximum bound defined.

• A wide character string type, which consists of a variable-length array of (fixed width) wide characters; the length of
the wide string is a non-negative integer, and is available at run-time. The length may have a maximum bound defined.
Common Object Request Broker Architecture (CORBA), v3.1.1 7

• A container type “any,” which can represent any possible basic or constructed type.

• Wide characters that may represent characters from any wide character set.

• Wide character strings, which consist of a length, available at runtime, and a variable-length array of (fixed width)
wide characters.

5.3.4.2 Constructed types

• A record type (called struct), which consists of an ordered set of (name,value) pairs.

• A discriminated union type, which consists of a discriminator (whose exact value is always available) followed by an
instance of a type appropriate to the discriminator value.

• A sequence type, which consists of a variable-length array of a single type; the length of the sequence is available at
run-time.

• An array type, which consists of a fixed-shape multidimensional array of a single type.

• An interface type, which specifies the set of operations that an instance of that type must support.

• A value type, which specifies state as well as a set of operations that an instance of that type must support.

Entities in a request are restricted to values that satisfy these type constraints. The legal entities are shown in Figure 5.1.
No particular representation for entities is defined.

Figure 5.1 - Legal Values

5.3.5 Interfaces

An interface is a description of a set of possible operations that a client may request of an object, through that interface.
It provides a syntactic description of how a service provided by an object supporting this interface, is accessed via this set
of operations. An object satisfies an interface if it provides its service through the operations of the interface according to
the specification of the operations (see Operations on page 9).

Short
Long
LongLong
UShort
Ulong
UlongLong
Float
Double
LongDouble
Fixed
Char
Wchar
String
Wstring
Boolean
Octet
Enum
Any

Struct
Sequence
Union
Array

Basic ValueEntity

Constructed Values

Object Reference

Value Type

Abstract Interface
8 Common Object Request Broker Architecture (CORBA), v3.1.1

The interface type for a given interface is an object type, such that an object reference will satisfy the type, if and only if
the referent object also satisfies the interface.

Interfaces are specified in IDL. Interface inheritance provides the composition mechanism for permitting an object to
support multiple interfaces. The principal interface is simply the most-specific interface that the object supports, and
consists of all operations in the transitive closure of the interface inheritance graph.

Interfaces satisfy the Liskov substitution principle. If interface A is derived from interface B, then a reference to an object
that supports interface A can be used where the formal type of a parameter is declared to be B.

5.3.6 Value Types

A value type is an entity, which shares many of the characteristics of interfaces and structs. It is a description of both a set
of operations that a client may request and of state that is accessible to a client. Instances of a value type are always local
concrete implementations in some programming language.

A value type, in addition to the operations and state defined for itself, may also inherit from other value types, and
through multiple inheritance support other interfaces.

Value types are specified in IDL.

An abstract value type describes a value type that is a “pure” bundle of operations with no state.

5.3.7 Abstract Interfaces

An abstract interface is an entity, which may at runtime represent either a regular interface (see Interfaces on page 8) or
a value type (see Value Types on page 9). Like an abstract value type, it is a pure bundle of operations with no state.
Unlike an abstract value type, it does not imply pass-by-value semantics, and unlike a regular interface type, it does not
imply pass-by-reference semantics. Instead, the entity’s runtime type determines which of these semantics are used.

5.3.8 Operations

An operation is an identifiable entity that denotes the indivisible primitive of service provision that can be requested. The
act of requesting an operation is referred to as invoking the operation. An operation is identified by an operation
identifier.

An operation has a signature that describes the legitimate values of request parameters and returned results. In particular,
a signature consists of:

• A specification of the parameters required in requests for that operation.

• A specification of the result of the operation.

• An identification of the user exceptions that may be raised by an invocation of the operation.

• A specification of additional contextual information that may affect the invocation.

• An indication of the execution semantics the client should expect from an invocation of the operation.

Operations are (potentially) generic, meaning that a single operation can be uniformly invoked on objects with different
implementations, possibly resulting in observably different behavior. Genericity is achieved in this model via interface
inheritance in IDL and the total decoupling of implementation from interface specification.
Common Object Request Broker Architecture (CORBA), v3.1.1 9

The general form for an operation signature is:

[oneway] <op_type_spec> <identifier> (param1, ..., paramL)
 [raises(except1,...,exceptN)] [context(name1, ..., nameM)]

where:

• The optional oneway keyword indicates that best-effort semantics are expected of requests for this operation; the
default semantics are exactly-once if the operation successfully returns results or at-most-once if an exception is
returned.

• The <op_type_spec> is the type of the return result.

• The <identifier> provides a name for the operation in the interface.

• The operation parameters needed for the operation; they are flagged with the modifiers in, out, or inout to indicate
the direction in which the information flows (with respect to the object performing the request).

• The optional raises expression indicates which user-defined exceptions can be signaled to terminate an invocation of
this operation; if such an expression is not provided, no user-defined exceptions will be signaled.

• The optional context expression indicates which request context information will be available to the object
implementation; no other contextual information is required to be transported with the request.

Parameters

A parameter is characterized by its mode and its type. The mode indicates whether the value should be passed from client
to server (in), from server to client (out), or both (inout). The parameter’s type constrains the possible value, which may
be passed in the directions dictated by the mode.

Return Result

The return result is a distinguished out parameter.

Exceptions

An exception is an indication that an operation request was not performed successfully. An exception may be
accompanied by additional, exception-specific information.

The additional, exception-specific information is a specialized form of record. As a record, it may consist of any of the
types described in Types on page 7.

All signatures implicitly include the system exceptions; the standard system exceptions are described in System
Exceptions on page 148.

Contexts

A request context provides additional, operation-specific information that may affect the performance of a request.

Execution Semantics

Two styles of execution semantics are defined by the object model:

• At-most-once: if an operation request returns successfully, it was performed exactly once; if it returns an exception
indication, it was performed at-most-once.
10 Common Object Request Broker Architecture (CORBA), v3.1.1

• Best-effort: a best-effort operation is a request-only operation (i.e., it cannot return any results and the requester never
synchronizes with the completion, if any, of the request).

The execution semantics to be expected is associated with an operation. This prevents a client and object implementation
from assuming different execution semantics.

Note that a client is able to invoke an at-most-once operation in a synchronous or deferred-synchronous manner.

5.3.9 Attributes

An interface may have attributes. An attribute is logically equivalent to declaring a pair of accessor functions: one to
retrieve the value of the attribute and one to set the value of the attribute.

An attribute may be read-only, in which case only the retrieval accessor function is defined.

5.4 Object Implementation

This sub clause defines the concepts associated with object implementation (i.e., the concepts relevant to realizing the
behavior of objects in a computational system).

The implementation of an object system carries out the computational activities needed to effect the behavior of requested
services. These activities may include computing the results of the request and updating the system state. In the process,
additional requests may be issued.

The implementation model consists of two parts: the execution model and the construction model. The execution model
describes how services are performed. The construction model describes how services are defined.

5.4.1 The Execution Model: Performing Services

A requested service is performed in a computational system by executing code that operates upon some data. The data
represents a component of the state of the computational system. The code performs the requested service, which may
change the state of the system.

Code that is executed to perform a service is called a method. A method is an immutable description of a computation that
can be interpreted by an execution engine. A method has an immutable attribute called a method format that defines the
set of execution engines that can interpret the method. An execution engine is an abstract machine (not a program) that
can interpret methods of certain formats, causing the described computations to be performed. An execution engine
defines a dynamic context for the execution of a method. The execution of a method is called a method activation.

When a client issues a request, a method of the target object is called. The input parameters passed by the requestor are
passed to the method and the output and input-output parameters and return result value (or exception and its parameters)
are passed back to the requestor.

Performing a requested service causes a method to execute that may operate upon an object’s persistent state. If the
persistent form of the method or state is not accessible to the execution engine, it may be necessary to first copy the
method or state into an execution context. This process is called activation; the reverse process is called deactivation.
Common Object Request Broker Architecture (CORBA), v3.1.1 11

5.4.2 The Construction Model

A computational object system must provide mechanisms for realizing behavior of requests. These mechanisms include
definitions of object state, definitions of methods, and definitions of how the object infrastructure is to select the methods
to execute and to select the relevant portions of object state to be made accessible to the methods. Mechanisms must also
be provided to describe the concrete actions associated with object creation, such as association of the new object with
appropriate methods.

An object implementation—or implementation, for short—is a definition that provides the information needed to create an
object and to allow the object to participate in providing an appropriate set of services. An implementation typically
includes, among other things, definitions of the methods that operate upon the state of an object. It also typically includes
information about the intended types of the object.
12 Common Object Request Broker Architecture (CORBA), v3.1.1

6 CORBA Overview

6.1 General

The Common Object Request Broker Architecture (CORBA) is structured to allow integration of a wide variety of object
systems. The motivation for some of the features may not be apparent at first, but as we discuss the range of
implementations, policies, optimizations, and usages we expect to encompass, the value of the flexibility becomes clearer.

6.2 Structure of an Object Request Broker

Figure 6.1 shows a request being sent by a client to an object implementation. The Client is the entity that wishes to
perform an operation on the object and the Object Implementation is the code and data that actually implements the
object.

Figure 6.1 - A Request Being Sent Through the Object Request Broker

The ORB is responsible for all of the mechanisms required to find the object implementation for the request, to prepare
the object implementation to receive the request, and to communicate the data making up the request. The interface the
client sees is completely independent of where the object is located, what programming language it is implemented in, or
any other aspect that is not reflected in the object’s interface.

Figure 6.2 shows the structure of an individual Object Request Broker (ORB). The interfaces to the ORB are shown by
striped boxes, and the arrows indicate whether the ORB is called or performs an up-call across the interface.

Client Object Implementation

ORB

Request
Common Object Request Broker Architecture (CORBA), v3.1.1 13

Figure 6.2 - The Structure of Object Request Interfaces

To make a request, the Client can use the Dynamic Invocation interface (the same interface independent of the target
object’s interface) or an IDL stub (the specific stub depending on the interface of the target object). The Client can also
directly interact with the ORB for some functions.

The Object Implementation receives a request as an up-call either through the IDL generated skeleton or through a
dynamic skeleton. The Object Implementation may call the Object Adapter and the ORB while processing a request or at
other times.

Definitions of the interfaces to objects can be defined in two ways. 1) Interfaces can be defined statically in an interface
definition language, called the OMG Interface Definition Language (IDL). This language defines the types of objects
according to the operations that may be performed on them and the parameters to those operations. 2) Alternatively, or in
addition, interfaces can be added to an Interface Repository service. This service represents the components of an
interface as objects, permitting run-time access to these components. In any ORB implementation, the Interface Definition
Language (which may be extended beyond its definition in this document) and the Interface Repository have equivalent
expressive power.

The client performs a request by having access to an Object Reference for an object and knowing the type of the object
and the desired operation to be performed. The client initiates the request by calling stub routines that are specific to the
object or by constructing the request dynamically (see Figure 6.3).

Client Object Implementation

Dynamic

Invocation

IDL
Stubs

ORB
Interface

Dynamic
Skeleton

Object
Adapter

ORB Core

Interface identical for all ORB implementations

There may be multiple object adapters

There are stubs and a skeleton for each object type

ORB-dependent interface

Up-call interface

Normal call interface

Static IDL
Skeleton
14 Common Object Request Broker Architecture (CORBA), v3.1.1

Figure 6.3 - A Client Using the Stub or Dynamic Invocation Interface

The dynamic and stub interface for invoking a request satisfy the same request semantics, and the receiver of the message
cannot tell how the request was invoked.

The ORB locates the appropriate implementation code, transmits parameters, and transfers control to the Object
Implementation through an IDL skeleton or a dynamic skeleton (see Figure 6.4). Skeletons are specific to the interface
and the object adapter. In performing the request, the object implementation may obtain some services from the ORB
through the Object Adapter. When the request is complete, control and output values are returned to the client.

Client

Dynamic

Invocation

IDL
Stubs

ORB Core

Interface identical for all ORB implementations

There are stubs and a skeleton for each object type

ORB-dependent interface
R

eq
u

est

R
eq

u
est
Common Object Request Broker Architecture (CORBA), v3.1.1 15

Figure 6.4 - An Object Implementation Receiving a Request

The Object Implementation may choose which Object Adapter to use. This decision is based on what kind of services the
Object Implementation requires.

Figure 6.5 shows how interface and implementation information is made available to clients and object implementations.
The interface is defined in IDL and/or in the Interface Repository; the definition is used to generate the client Stubs and
the object implementation Skeletons.

Object Implementation

Interface identical for all ORB implementations

There may be multiple object adapters

There are stubs and a skeleton for each object type

ORB-dependent interface

Up-call interface

Normal call interface

ORB
Interface

Dynamic
Skeleton

Object
Adapter

ORB Core

Static IDL
Skeleton
16 Common Object Request Broker Architecture (CORBA), v3.1.1

Figure 6.5 - Interface and Implementation Repositories

The object implementation information is provided at installation time and is stored in the Implementation Repository for
use during request delivery.

6.2.1 Object Request Broker

In the architecture, the ORB is not required to be implemented as a single component, but rather it is defined by its
interfaces. Any ORB implementation that provides the appropriate interface is acceptable. The interface is organized into
three categories:

1. Operations that are the same for all ORB implementations.

2. Operations that are specific to particular types of objects.

3. Operations that are specific to particular styles of object implementations.

Different ORBs may make quite different implementation choices, and, together with the IDL compilers, repositories, and
various Object Adapters, provide a set of services to clients and implementations of objects that have different properties
and qualities.

There may be multiple ORB implementations (also described as multiple ORBs), which have different representations for
object references and different means of performing invocations. It may be possible for a client to simultaneously have
access to two object references managed by different ORB implementations. When two ORBs are intended to work
together, those ORBs must be able to distinguish their object references. It is not the responsibility of the client to do so.

Client Object Implementation

IDL
Definitions

Interface
Repository

Stubs Skeletons

Implementation
Installation

Implementation
Repository
Common Object Request Broker Architecture (CORBA), v3.1.1 17

The ORB Core is that part of the ORB that provides the basic representation of objects and communication of requests.
CORBA is designed to support different object mechanisms, and it does so by structuring the ORB with components
above the ORB Core, which provide interfaces that can mask the differences between ORB Cores.

6.2.2 Clients

A client of an object has access to an object reference for the object, and invokes operations on the object. A client knows
only the logical structure of the object according to its interface and experiences the behavior of the object through
invocations. Although we will generally consider a client to be a program or process initiating requests on an object, it is
important to recognize that something is a client relative to a particular object. For example, the implementation of one
object may be a client of other objects.

Clients generally see objects and ORB interfaces through the perspective of a language mapping, bringing the ORB right
up to the programmer’s level. Clients are maximally portable and should be able to work without source changes on any
ORB that supports the desired language mapping with any object instance that implements the desired interface. Clients
have no knowledge of the implementation of the object, which object adapter is used by the implementation, or which
ORB is used to access it.

6.2.3 Object Implementations

An object implementation provides the semantics of the object, usually by defining data for the object instance and code
for the object’s methods. Often the implementation will use other objects or additional software to implement the
behavior of the object. In some cases, the primary function of the object is to have side-effects on other things that are not
objects.

A variety of object implementations can be supported, including separate servers, libraries, a program per method, an
encapsulated application, an object-oriented database, etc. Through the use of additional object adapters, it is possible to
support virtually any style of object implementation.

Generally, object implementations do not depend on the ORB or how the client invokes the object. Object
implementations may select interfaces to ORB-dependent services by the choice of Object Adapter.

6.2.4 Object References

An Object Reference is the information needed to specify an object within an ORB. Both clients and object
implementations have an opaque notion of object references according to the language mapping, and thus are insulated
from the actual representation of them. Two ORB implementations may differ in their choice of Object Reference
representations.

The representation of an object reference handed to a client is only valid for the lifetime of that client.

All ORBs must provide the same language mapping to an object reference (usually referred to as an Object) for a
particular programming language. This permits a program written in a particular language to access object references
independent of the particular ORB. The language mapping may also provide additional ways to access object references
in a typed way for the convenience of the programmer.

There is a distinguished object reference, guaranteed to be different from all object references, that denotes no object.
18 Common Object Request Broker Architecture (CORBA), v3.1.1

6.2.5 OMG Interface Definition Language

The OMG Interface Definition Language (IDL) defines the types of objects by specifying their interfaces. An interface
consists of a set of named operations and the parameters to those operations. Note that although IDL provides the
conceptual framework for describing the objects manipulated by the ORB, it is not necessary for there to be IDL source
code available for the ORB to work. As long as the equivalent information is available in the form of stub routines or a
run-time interface repository, a particular ORB may be able to function correctly.

IDL is the means by which a particular object implementation tells its potential clients what operations are available and
how they should be invoked. From the IDL definitions, it is possible to map CORBA objects into particular programming
languages or object systems.

6.2.6 Mapping of IDL to Programming Languages

Different object-oriented or non-object-oriented programming languages may prefer to access CORBA objects in different
ways. For object-oriented languages, it may be desirable to see CORBA objects as programming language objects. Even
for non-object-oriented languages, it is a good idea to hide the exact ORB representation of the object reference, method
names, etc. A particular mapping of IDL to a programming language should be the same for all ORB implementations.
Language mapping includes definition of the language-specific data types and procedure interfaces to access objects
through the ORB. It includes the structure of the client stub interface (not required for object-oriented languages), the
dynamic invocation interface, the implementation skeleton, the object adapters, and the direct ORB interface.

A language mapping also defines the interaction between object invocations and the threads of control in the client or
implementation. The most common mappings provide synchronous calls, in that the routine returns when the object
operation completes. Additional mappings may be provided to allow a call to be initiated and control returned to the
program. In such cases, additional language-specific routines must be provided to synchronize the program’s threads of
control with the object invocation.

6.2.7 Client Stubs

Generally, the client stubs will present access to the IDL-defined operations on an object in a way that is easy for
programmers to predict once they are familiar with IDL and the language mapping for the particular programming
language. The stubs make calls on the rest of the ORB using interfaces that are private to, and presumably optimized for,
the particular ORB Core. If more than one ORB is available, there may be different stubs corresponding to the different
ORBs. In this case, it is necessary for the ORB and language mapping to cooperate to associate the correct stubs with the
particular object reference.

6.2.8 Dynamic Invocation Interface

An interface is also available that allows the dynamic construction of object invocations, that is, rather than calling a stub
routine that is specific to a particular operation on a particular object, a client may specify the object to be invoked, the
operation to be performed, and the set of parameters for the operation through a call or sequence of calls. The client code
must supply information about the operation to be performed and the types of the parameters being passed (perhaps
obtaining it from an Interface Repository or other run-time source). The nature of the dynamic invocation interface may
vary substantially from one programming language mapping to another.
Common Object Request Broker Architecture (CORBA), v3.1.1 19

6.2.9 Implementation Skeleton

For a particular language mapping, and possibly depending on the object adapter, there will be an interface to the methods
that implement each type of object. The interface will generally be an up-call interface, in that the object implementation
writes routines that conform to the interface and the ORB calls them through the skeleton.

The existence of a skeleton does not imply the existence of a corresponding client stub (clients can also make requests via
the dynamic invocation interface).

It is possible to write an object adapter that does not use skeletons to invoke implementation methods. For example, it
may be possible to create implementations dynamically for languages such as Smalltalk.

6.2.10 Dynamic Skeleton Interface

An interface is available, which allows dynamic handling of object invocations. That is, rather than being accessed
through a skeleton that is specific to a particular operation, an object’s implementation is reached through an interface that
provides access to the operation name and parameters in a manner analogous to the client side’s Dynamic Invocation
Interface. Purely static knowledge of those parameters may be used, or dynamic knowledge (perhaps determined through
an Interface Repository) may also be used, to determine the parameters.

The implementation code must provide descriptions of all the operation parameters to the ORB, and the ORB provides the
values of any input parameters for use in performing the operation. The implementation code provides the values of any
output parameters, or an exception, to the ORB after performing the operation. The nature of the dynamic skeleton
interface may vary substantially from one programming language mapping or object adapter to another, but will typically
be an up-call interface.

Dynamic skeletons may be invoked both through client stubs and through the dynamic invocation interface; either style of
client request construction interface provides identical results.

6.2.11 Object Adapters

An object adapter is the primary way that an object implementation accesses services provided by the ORB. There are
expected to be a few object adapters that will be widely available, with interfaces that are appropriate for specific kinds
of objects. Services provided by the ORB through an Object Adapter often include: generation and interpretation of object
references, method invocation, security of interactions, object and implementation activation and deactivation, mapping
object references to implementations, and registration of implementations.

The wide range of object granularities, lifetimes, policies, implementation styles, and other properties make it difficult for
the ORB Core to provide a single interface that is convenient and efficient for all objects. Thus, through Object Adapters,
it is possible for the ORB to target particular groups of object implementations that have similar requirements with
interfaces tailored to them.

6.2.12 ORB Interface

The ORB Interface is the interface that goes directly to the ORB, which is the same for all ORBs and does not depend on
the object’s interface or object adapter. Because most of the functionality of the ORB is provided through the object
adapter, stubs, skeleton, or dynamic invocation, there are only a few operations that are common across all objects. These
operations are useful to both clients and implementations of objects.
20 Common Object Request Broker Architecture (CORBA), v3.1.1

6.2.13 Interface Repository

The Interface Repository is a service that provides persistent objects that represent the IDL information in a form
available at run-time. The Interface Repository information may be used by the ORB to perform requests. Moreover,
using the information in the Interface Repository, it is possible for a program to encounter an object whose interface was
not known when the program was compiled, yet, be able to determine what operations are valid on the object and make
an invocation on it.

In addition to its role in the functioning of the ORB, the Interface Repository is a common place to store additional
information associated with interfaces to ORB objects. For example, debugging information, libraries of stubs or
skeletons, routines that can format or browse particular kinds of objects might be associated with the Interface Repository.

6.2.14 Implementation Repository

The Implementation Repository contains information that allows the ORB to locate and activate implementations of
objects. Although most of the information in the Implementation Repository is specific to an ORB or operating
environment, the Implementation Repository is the conventional place for recording such information. Ordinarily,
installation of implementations and control of policies related to the activation and execution of object implementations is
done through operations on the Implementation Repository.

In addition to its role in the functioning of the ORB, the Implementation Repository is a common place to store additional
information associated with implementations of ORB objects. For example, debugging information, administrative
control, resource allocation, security, etc., might be associated with the Implementation Repository.

6.3 Example ORBs

There are a wide variety of ORB implementations possible within the Common ORB Architecture. This sub clause will
illustrate some of the different options. Note that a particular ORB might support multiple options and protocols for
communication.

6.3.1 Client- and Implementation-resident ORB

If there is a suitable communication mechanism present, an ORB can be implemented in routines resident in the clients
and implementations. The stubs in the client either use a location-transparent IPC mechanism or directly access a location
service to establish communication with the implementations. Code linked with the implementation is responsible for
setting up appropriate databases for use by clients.

6.3.2 Server-based ORB

To centralize the management of the ORB, all clients and implementations can communicate with one or more servers
whose job it is to route requests from clients to implementations. The ORB could be a normal program as far as the
underlying operating system is concerned, and normal IPC could be used to communicate with the ORB.
Common Object Request Broker Architecture (CORBA), v3.1.1 21

6.3.3 System-based ORB

To enhance security, robustness, and performance, the ORB could be provided as a basic service of the underlying
operating system. Object references could be made unforgeable, reducing the expense of authentication on each request.
Because the operating system could know the location and structure of clients and implementations, it would be possible
for a variety of optimizations to be implemented, for example, avoiding marshalling when both are on the same machine.

6.3.4 Library-based ORB

For objects that are light-weight and whose implementations can be shared, the implementation might actually be in a
library. In this case, the stubs could be the actual methods. This assumes that it is possible for a client program to get
access to the data for the objects and that the implementation trusts the client not to damage the data.

6.4 Structure of a Client

A client of an object has an object reference that refers to that object. An object reference is a token that may be invoked
or passed as a parameter to an invocation on a different object. Invocation of an object involves specifying the object to
be invoked, the operation to be performed, and parameters to be given to the operation or returned from it.

The ORB manages the control transfer and data transfer to the object implementation and back to the client. In the event
that the ORB cannot complete the invocation, an exception response is provided. Ordinarily, a client calls a routine in its
program that performs the invocation and returns when the operation is complete.

Clients access object-type-specific stubs as library routines in their program (see Figure 6.6). The client program thus sees
routines callable in the normal way in its programming language. All implementations will provide a language-specific
data type to use to refer to objects, often an opaque pointer. The client then passes that object reference to the stub
routines to initiate an invocation. The stubs have access to the object reference representation and interact with the ORB
to perform the invocation. (See the C Language Mapping specification for additional, general information on language
mapping of object references.)
22 Common Object Request Broker Architecture (CORBA), v3.1.1

Figure 6.6 - The Structure of a Typical Client

An alternative set of library code is available to perform invocations on objects, for example when the object was not
defined at compile time. In that case, the client program provides additional information to name the type of the object
and the method being invoked, and performs a sequence of calls to specify the parameters and initiate the invocation.

Clients most commonly obtain object references by receiving them as output parameters from invocations on other
objects for which they have references. When a client is also an implementation, it receives object references as input
parameters on invocations to objects it implements. An object reference can also be converted to a string that can be
stored in files or preserved or communicated by different means and subsequently turned back into an object reference by
the ORB that produced the string.

6.5 Structure of an Object Implementation

An object implementation provides the actual state and behavior of an object. The object implementation can be
structured in a variety of ways. Besides defining the methods for the operations themselves, an implementation will
usually define procedures for activating and deactivating objects and will use other objects or non-object facilities to
make the object state persistent, to control access to the object, as well as to implement the methods.

The object implementation (see Figure 6.7) interacts with the ORB in a variety of ways to establish its identity, to create
new objects, and to obtain ORB-dependent services. It primarily does this via access to an Object Adapter, which
provides an interface to ORB services that is convenient for a particular style of object implementation.

Client Program
Language-dependent object references

ORB object references

Dynamic Invocation
Interface

Stubs for
Interface A

Stubs for
Interface B
Common Object Request Broker Architecture (CORBA), v3.1.1 23

Figure 6.7 - The Structure of a Typical Object Implementation

Because of the range of possible object implementations, it is difficult to be definitive about how an object
implementation is structured. See the Portable Object Adapter clauses.

When an invocation occurs, the ORB Core, object adapter, and skeleton arrange that a call is made to the appropriate
method of the implementation. A parameter to that method specifies the object being invoked, which the method can use
to locate the data for the object. Additional parameters are supplied according to the skeleton definition. When the method
is complete, it returns, causing output parameters or exception results to be transmitted back to the client.

When a new object is created, the ORB may be notified so that it knows where to find the implementation for that object.
Usually, the implementation also registers itself as implementing objects of a particular interface, and specifies how to
start up the implementation if it is not already running.

Most object implementations provide their behavior using facilities in addition to the ORB and object adapter. For
example, although the Portable Object Adapter provides some persistent data associated with an object (its OID or Object
ID), that relatively small amount of data is typically used as an identifier for the actual object data stored in a storage
service of the object implementation’s choosing. With this structure, it is not only possible for different object
implementations to use the same storage service, it is also possible for objects to choose the service that is most
appropriate for them.

Object Implementation

ORB object references

Methods for
Interface A

Library Routines

Object data

Skeleton for

Interface A
Object adapter

routines

U
p

-c
al

l t
o

M
et

ho
d

Dynamic

Skeleton

br
24 Common Object Request Broker Architecture (CORBA), v3.1.1

6.6 Structure of an Object Adapter

An object adapter (see Figure 6.8) is the primary means for an object implementation to access ORB services such as
object reference generation. An object adapter exports a public interface to the object implementation, and a private
interface to the skeleton. It is built on a private ORB-dependent interface.

Object adapters are responsible for the following functions:

• Generation and interpretation of object references

• Method invocation

• Security of interactions

• Object and implementation activation and deactivation

• Mapping object references to the corresponding object implementations

• Registration of implementations

These functions are performed using the ORB Core and any additional components necessary. Often, an object adapter
will maintain its own state to accomplish its tasks. It may be possible for a particular object adapter to delegate one or
more of its responsibilities to the Core upon which it is constructed.

Figure 6.8 - The Structure of a Typical Object Adapter

As shown in Figure 6.8, the Object Adapter is implicitly involved in invocation of the methods, although the direct
interface is through the skeletons. For example, the Object Adapter may be involved in activating the implementation or
authenticating the request.

Object Implementation

ORB Core

Interface A
Methods

Interface B
Methods

Object
Adapter
Interface

Dynamic
Skeleton

Interface A
Skeleton

Interface B
Skeleton
Common Object Request Broker Architecture (CORBA), v3.1.1 25

The Object Adapter defines most of the services from the ORB that the Object Implementation can depend on. Different
ORBs will provide different levels of service and different operating environments may provide some properties
implicitly and require others to be added by the Object Adapter. For example, it is common for Object Implementations
to want to store certain values in the object reference for easy identification of the object on an invocation. If the Object
Adapter allows the implementation to specify such values when a new object is created, it may be able to store them in
the object reference for those ORBs that permit it. If the ORB Core does not provide this feature, the Object Adapter
would record the value in its own storage and provide it to the implementation on an invocation. With Object Adapters, it
is possible for an Object Implementation to have access to a service whether or not it is implemented in the ORB Core —
if the ORB Core provides it, the adapter simply provides an interface to it; if not, the adapter must implement it on top of
the ORB Core. Every instance of a particular adapter must provide the same interface and service for all the ORBs it is
implemented on.

It is also not necessary for all Object Adapters to provide the same interface or functionality. Some Object
Implementations have special requirements. For example, an object-oriented database system may wish to implicitly
register its many thousands of objects without doing individual calls to the Object Adapter. In such a case, it would be
impractical and unnecessary for the object adapter to maintain any per-object state. By using an object adapter interface
that is tuned towards such object implementations, it is possible to take advantage of particular ORB Core details to
provide the most effective access to the ORB.

6.7 CORBA Required Object Adapter

There are a variety of possible object adapters; however, since the object adapter interface is something that object
implementations depend on, it is desirable that there be as few as practical. Most object adapters are designed to cover a
range of object implementations, so only when an implementation requires radically different services or interfaces should
a new object adapter be considered. In this sub clause, we briefly describe the object adapter defined in this International
Standard.

6.7.1 Portable Object Adapter

This International Standard defines a Portable Object Adapter that can be used for most ORB objects with conventional
implementations. (See the Portable Object Adapter clause for more information.) The intent of the POA, as its name
suggests, is to provide an Object Adapter that can be used with multiple ORBs with a minimum of rewriting needed to
deal with different vendors’ implementations.

This International Standard allows several ways of using servers but it does not deal with the administrative issues of starting
server programs. Once started, however, there can be a servant started and ended for a single method call, a separate servant
for each object, or a shared servant for all instances of the object type. It allows for groups of objects to be associated by
means of being registered with different instances of the POA object and allows implementations to specify their own
activation techniques. If the implementation is not active when an invocation is performed, the POA will start one. The
POA is specified in IDL, so its mapping to languages is largely automatic, following the language mapping rules. (The
primary task left for a language mapping is the definition of the Servant type.)

6.8 The Integration of Foreign Object Systems

The Common ORB Architecture is designed to allow interoperation with a wide range of object systems (see Figure 6.9).
Because there are many existing object systems, a common desire will be to allow the objects in those systems to be
accessible via the ORB. For those object systems that are ORBs themselves, they may be connected to other ORBs
through the mechanisms described throughout this manual.
26 Common Object Request Broker Architecture (CORBA), v3.1.1

Figure 6.9 - Different Ways to Integrate Foreign Object Systems

For object systems that simply want to map their objects into ORB objects and receive invocations through the ORB, one
approach is to have those object systems appear to be implementations of the corresponding ORB objects. The object
system would register its objects with the ORB and handle incoming requests, and could act like a client and perform
outgoing requests.

In some cases, it will be impractical for another object system to act like a POA object implementation. An object adapter
could be designed for objects that are created in conjunction with the ORB and that are primarily invoked through the
ORB. Another object system may wish to create objects without consulting the ORB, and might expect most invocations
to occur within itself rather than through the ORB. In such a case, a more appropriate object adapter might allow objects
to be implicitly registered when they are passed through the ORB.

ORB Core

Gateway

Object system as
another ORB

interoperating via a
gateway

Portable Object
Adapter

Special-purpose
Adapter

Object system as
a POA object

implementation

Object system as
an implementation

with a special-purpose
object adapter
Common Object Request Broker Architecture (CORBA), v3.1.1 27

28 Common Object Request Broker Architecture (CORBA), v3.1.1

7 IDL Syntax and Semantics

7.1 Overview

This clause describes OMG Interface Definition Language (IDL) semantics and gives the syntax for IDL grammatical
constructs.

The OMG Interface Definition Language (IDL) is the language used to describe the interfaces that client objects call and
object implementations provide. An interface definition written in IDL completely defines the interface and fully specifies
each operation’s parameters. An IDL interface provides the information needed to develop clients that use the interface’s
operations.

Clients are not written in IDL, which is purely a descriptive language, but in languages for which mappings from IDL
concepts have been defined. The mapping of an IDL concept to a client language construct will depend on the facilities
available in the client language. For example, an IDL exception might be mapped to a structure in a language that has no
notion of exception, or to an exception in a language that does. The binding of IDL concepts to several programming
languages is described in this International Standard.

The description of IDL’s lexical conventions is presented in 7.2, Lexical Conventions. A description of IDL preprocessing
is presented in 7.3, Preprocessing. The scope rules for identifiers in an IDL specification are described in 7.20, Names and
Scoping.

IDL is a declarative language. The grammar is presented in IDL Grammar on page 38 and associated semantics is
described in the rest of this clause either in place or through references to other sub clauses of this standard.

IDL-specific pragmas (those not defined for C++) may appear anywhere in a specification; the textual location of these
pragmas may be semantically constrained by a particular implementation.

A source file containing interface specifications written in IDL must have a “.idl” extension.

The description of IDL grammar uses a syntax notation that is similar to Extended Backus-Naur Format (EBNF). Table
7.1 lists the symbols used in this format and their meaning.

Table 7.1- IDL EBNF

Symbol Meaning

::= Is defined to be

| Alternatively

<text> Nonterminal

“text” Literal

* The preceding syntactic unit can be repeated zero or more times

+ The preceding syntactic unit can be repeated one or more times

{} The enclosed syntactic units are grouped as a single syntactic unit

[] The enclosed syntactic unit is optional—may occur zero or one time
Common Object Request Broker Architecture (CORBA), v3.1.1 29

7.2 Lexical Conventions

This sub clause1 presents the lexical conventions of IDL. It defines tokens in an IDL specification and describes
comments, identifiers, keywords, and literals—integer, character, and floating point constants and string literals.

An IDL specification logically consists of one or more files. A file is conceptually translated in several phases.

The first phase is preprocessing, which performs file inclusion and macro substitution. Preprocessing is controlled by
directives introduced by lines having # as the first character other than white space. The result of preprocessing is a
sequence of tokens. Such a sequence of tokens, that is, a file after preprocessing, is called a translation unit.

IDL uses the ASCII character set, except for string literals and character literals, which use the ISO Latin-1 (8859.1)
character set. The ISO Latin-1 character set is divided into alphabetic characters (letters) digits, graphic characters, the
space (blank) character, and formatting characters. Table 7.2 shows the ISO Latin-1 alphabetic characters; upper and
lower case equivalences are paired. The ASCII alphabetic characters are shown in the left-hand column of Table 7.3.

1. This sub clause is an adaptation of The Annotated C++ Reference Manual, Clause 2; it differs in the list of legal keywords and
punctuation.

Table 7.2- Characters

Char. Description Char. Description

Aa Upper/Lower-case A Àà Upper/Lower-case A with grave accent

Bb Upper/Lower-case B Áá Upper/Lower-case A with acute accent

Cc Upper/Lower-case C Ââ Upper/Lower-case A with circumflex accent

Dd Upper/Lower-case D Ãã Upper/Lower-case A with tilde

Ee Upper/Lower-case E Ää Upper/Lower-case A with diaeresis

Ff Upper/Lower-case F Åå Upper/Lower-case A with ring above

Gg Upper/Lower-case G Ææ Upper/Lower-case dipthong A with E

Hh Upper/Lower-case H Çç Upper/Lower-case C with cedilla

Ii Upper/Lower-case I Èè Upper/Lower-case E with grave accent

Jj Upper/Lower-case J Éé Upper/Lower-case E with acute accent

Kk Upper/Lower-case K Êê Upper/Lower-case E with circumflex accent

Ll Upper/Lower-case L Ëë Upper/Lower-case E with diaeresis

Mm Upper/Lower-case M Ìì Upper/Lower-case I with grave accent

Nn Upper/Lower-case N Íí Upper/Lower-case I with acute accent

Oo Upper/Lower-case O Îî Upper/Lower-case I with circumflex accent

Pp Upper/Lower-case P Ïï Upper/Lower-case I with diaeresis

Qq Upper/Lower-case Q Ññ Upper/Lower-case N with tilde
30 Common Object Request Broker Architecture (CORBA), v3.1.1

Table 7.3 lists the decimal digit characters.

Table 7.4 shows the graphic characters.

Rr Upper/Lower-case R Òò Upper/Lower-case O with grave accent

Ss Upper/Lower-case S Óó Upper/Lower-case O with acute accent

Tt Upper/Lower-case T Ôô Upper/Lower-case O with circumflex accent

Uu Upper/Lower-case U Õõ Upper/Lower-case O with tilde

Vv Upper/Lower-case V Öö Upper/Lower-case O with diaeresis

Ww Upper/Lower-case W Øø Upper/Lower-case O with oblique stroke

Xx Upper/Lower-case X Ùù Upper/Lower-case U with grave accent

Yy Upper/Lower-case Y Úú Upper/Lower-case U with acute accent

Zz Upper/Lower-case Z Ûû Upper/Lower-case U with circumflex accent

Üü Upper/Lower-case U with diaeresis

 ß Lower-case German sharp S

 ÿ Lower-case Y with diaeresis

Table 7.3- Decimal Digits

0 1 2 3 4 5 6 7 8 9

Table 7.4 - Graphic Characters

Character Description Character Description

! exclamation point ¡ inverted exclamation mark

" double quote ¢ cent sign

number sign £ pound sign

$ dollar sign ¤ currency sign

% percent sign ¥ yen sign

& ampersand broken bar

’ apostrophe § section/paragraph sign

(left parenthesis ¨ diaeresis

) right parenthesis © copyright sign

Table 7.2- Characters

Char. Description Char. Description
Common Object Request Broker Architecture (CORBA), v3.1.1 31

* asterisk ª feminine ordinal indicator

+ plus sign « left angle quotation mark

, comma ¬ not sign

- hyphen, minus sign soft hyphen

. period, full stop ® registered trade mark sign

/ solidus ¯ macron

: colon ° ring above, degree sign

; semicolon ± plus-minus sign

< less-than sign 2 superscript two

= equals sign 3 superscript three

> greater-than sign ´ acute

? question mark m micro

@ commercial at ¶ pilcrow

[left square bracket • middle dot

\ reverse solidus ¸ cedilla

] right square bracket 1 superscript one

^ circumflex º masculine ordinal indicator

_ low line, underscore » right angle quotation mark

‘ grave vulgar fraction 1/4

{ left curly bracket vulgar fraction 1/2

| vertical line vulgar fraction 3/4

} right curly bracket ¿ inverted question mark

~ tilde ¥ multiplication sign

³ division sign

Table 7.4 - Graphic Characters

Character Description Character Description
32 Common Object Request Broker Architecture (CORBA), v3.1.1

The formatting characters are shown in Table 7.5.

7.2.1 Tokens

There are five kinds of tokens: identifiers, keywords, literals, operators, and other separators. Blanks, horizontal and
vertical tabs, newlines, formfeeds, and comments (collective, “white space”) as described below are ignored except as
they serve to separate tokens. Some white space is required to separate otherwise adjacent identifiers, keywords, and
constants.

If the input stream has been parsed into tokens up to a given character, the next token is taken to be the longest string of
characters that could possibly constitute a token.

7.2.2 Comments

The characters /* start a comment, which terminates with the characters */. These comments do not nest. The characters /
/ start a comment, which terminates at the end of the line on which they occur. The comment characters //, /*, and */ have
no special meaning within a // comment and are treated just like other characters. Similarly, the comment characters // and
/* have no special meaning within a /* comment. Comments may contain alphabetic, digit, graphic, space, horizontal tab,
vertical tab, form feed, and newline characters.

7.2.3 Identifiers

An identifier is an arbitrarily long sequence of ASCII alphabetic, digit, and underscore (“_”) characters. The first
character must be an ASCII alphabetic character. All characters are significant.

When comparing two identifiers to see if they collide:

• Upper- and lower-case letters are treated as the same letter. Table 7.2 defines the equivalence mapping of upper- and
lower-case letters.

• All characters are significant.

Identifiers that differ only in case collide, and will yield a compilation error under certain circumstances. An identifier for
a given definition must be spelled identically (e.g., with respect to case) throughout a specification.

Table 7.5 Formatting Characters

Description Abbreviation ISO 646 Octal Value

alert BEL 007

backspace BS 010

horizontal tab HT 011

newline NL, LF 012

vertical tab VT 013

form feed FF 014

carriage return CR 015
Common Object Request Broker Architecture (CORBA), v3.1.1 33

There is only one namespace for IDL identifiers in each scope. Using the same identifier for a constant and an interface,
for example, produces a compilation error.

For example:

module M {
typedef long Foo;
const long thing = 1;
interface thing { // error: reuse of identifier

void doit (
in Foo foo // error: Foo and foo collide and refer to different things

);

readonly attribute long Attribute; // error: Attribute collides with keyword attribute
};

};

7.2.3.1 Escaped Identifiers

As IDL evolves, new keywords that are added to the IDL language may inadvertently collide with identifiers used in
existing IDL and programs that use that IDL. Fixing these collisions will require not only the IDL to be modified, but
programming language code that depends upon that IDL will have to change as well. The language mapping rules for the
renamed IDL identifiers will cause the mapped identifier names (e.g., method names) to be changed.

To minimize the amount of work, users may lexically “escape” identifiers by prepending an underscore (_) to an
identifier. This is a purely lexical convention that ONLY turns off keyword checking. The resulting identifier follows all
the other rules for identifier processing. For example, the identifier _AnIdentifier is treated as if it were AnIdentifier.

The following is a non-exclusive list of implications of these rules:

• The underscore does not appear in the Interface Repository.

• The underscore is not used in the DII and DSI.

• The underscore is not transmitted over “the wire.”

• Case sensitivity rules are applied to the identifier after stripping off the leading underscore.

For example:

module M {
interface thing {

attribute boolean abstract; // error: abstract collides with
// keyword abstract

attribute boolean _abstract; // ok: abstract is an identifier
};

};

To avoid unnecessary confusion for readers of IDL, it is recommended that interfaces only use the escaped form of
identifiers when the unescaped form clashes with a newly introduced IDL keyword. It is also recommended that interface
designers avoid defining new identifiers that are known to require escaping. Escaped literals are only recommended for
IDL that expresses legacy interface, or for IDL that is mechanically generated.
34 Common Object Request Broker Architecture (CORBA), v3.1.1

7.2.4 Keywords

The identifiers listed in Table 7.6 are reserved for use as keywords and may not be used otherwise, unless escaped with a
leading underscore.

Keywords must be written exactly as shown in the above list. Identifiers that collide with keywords (see 7.2.3, Identifiers)
are illegal. For example, “boolean” is a valid keyword; “Boolean” and “BOOLEAN” are illegal identifiers.

For example:

module M {
typedef Long Foo; // Error: keyword is long not Long
typedef boolean BOOLEAN; // Error: BOOLEAN collides with

// the keyword boolean;
};

IDL specifications use the characters shown in Table 7.7 as punctuation.

In addition, the tokens listed in Table 7.8 are used by the preprocessor.

Table 7.6 - Keywords

abstract exception inout provides truncatable

any emits interface public typedef

attribute enum local publishes typeid

boolean eventtype long raises typeprefix

case factory module readonly unsigned

char FALSE multiple setraises union

component finder native sequence uses

const fixed Object short ValueBase

consumes float octet string valuetype

context getraises oneway struct void

custom home out supports wchar

default import primarykey switch wstring

double in private TRUE

Table 7.7 - Punctuation

; { } : , = + - () < > []

' " \ | ^ & * / % ~

Table 7.8 - Tokens

! || &&
Common Object Request Broker Architecture (CORBA), v3.1.1 35

7.2.5 Literals

This sub clause describes the following literals:

• Integer

• Character

• Floating-point

• String

• Fixed-point

7.2.5.1 Integer Literals

An integer literal consisting of a sequence of digits is taken to be decimal (base ten) unless it begins with 0 (digit zero).
A sequence of digits starting with 0 is taken to be an octal integer (base eight). The digits 8 and 9 are not octal digits. A
sequence of digits preceded by 0x or 0X is taken to be a hexadecimal integer (base sixteen). The hexadecimal digits
include a or A through f or F with decimal values ten through fifteen, respectively. For example, the number twelve can
be written 12, 014, or 0XC.

7.2.5.2 Character Literals

A character literal is one or more characters enclosed in single quotes, as in ’x.’ Character literals have type char.

A character is an 8-bit quantity with a numerical value between 0 and 255 (decimal). The value of a space, alphabetic,
digit, or graphic character literal is the numerical value of the character as defined in the ISO Latin-1 (8859.1) character
set standard (See Table 7.2 on page 30, Table 7.3 on page 31, and Table 7.4 on page 31). The value of a null is 0. The
value of a formatting character literal is the numerical value of the character as defined in the ISO 646 standard (see Table
7.5 on page 33). The meaning of all other characters is implementation-dependent.

Nongraphic characters must be represented using escape sequences as defined below in Table 7.9. Note that escape
sequences must be used to represent single quote and backslash characters in character literals.

Table 7.9 - Escape Sequences

Description Escape Sequence

newline \n

horizontal tab \t

vertical tab \v

backspace \b

carriage return \r

form feed \f

alert \a

backslash \\

question mark \?

single quote \'
36 Common Object Request Broker Architecture (CORBA), v3.1.1

If the character following a backslash is not one of those specified, the behavior is undefined. An escape sequence
specifies a single character.

The escape \ooo consists of the backslash followed by one, two, or three octal digits that are taken to specify the value of
the desired character. The escape \xhh consists of the backslash followed by x followed by one or two hexadecimal digits
that are taken to specify the value of the desired character.

The escape \uhhhh consists of a backslash followed by the character ‘u,’ followed by one, two, three, or four hexadecimal
digits. This represents a unicode character literal. Thus the literal “\u002E” represents the unicode period ‘.’ character and
the literal “\u3BC” represents the unicode greek small letter ‘mu.’ The \u escape is valid only with wchar and wstring
types. Because a wide string literal is defined as a sequence of wide character literals a sequence of \u literals can be used
to define a wide string literal. Attempts to set a char type to a \u defined literal or a string type to a sequence of \u literals
result in an error.

A sequence of octal or hexadecimal digits is terminated by the first character that is not an octal digit or a hexadecimal
digit, respectively. The value of a character constant is implementation dependent if it exceeds that of the largest char.

Wide character literals have an L prefix, for example:

const wchar C1 = L'X';

Attempts to assign a wide character literal to a non-wide character constant or to assign a non-wide character literal to a
wide character constant result in a compile-time diagnostic.

Both wide and non-wide character literals must be specified using characters from the ISO 8859-1 character set.

7.2.5.3 Floating-point Literals

A floating-point literal consists of an integer part, a decimal point, a fraction part, an e or E, and an optionally signed
integer exponent. The integer and fraction parts both consist of a sequence of decimal (base ten) digits. Either the integer
part or the fraction part (but not both) may be missing; either the decimal point or the letter e (or E) and the exponent (but
not both) may be missing.

7.2.5.4 String Literals

A string literal is a sequence of characters (as defined in 7.2.5.2, Character Literals), with the exception of the character
with numeric value 0, surrounded by double quotes, as in “...”.

Adjacent string literals are concatenated. Characters in concatenated strings are kept distinct. For example,

 "\xA" "B"

contains the two characters ‘\xA’ and ‘B’ after concatenation (and not the single hexadecimal character ‘\xAB’).

double quote \"

octal number \ooo

hexadecimal number \xhh

unicode character \uhhhh

Table 7.9 - Escape Sequences

Description Escape Sequence
Common Object Request Broker Architecture (CORBA), v3.1.1 37

The size of a string literal is the number of character literals enclosed by the quotes, after concatenation. Within a string,
the double quote character " must be preceded by a \.

A string literal may not contain the character ‘\0’.

Wide string literals have an L prefix, for example:

const wstring S1 = L"Hello";

Attempts to assign a wide string literal to a non-wide string constant or to assign a non-wide string literal to a wide string
constant result in a compile-time diagnostic.

Both wide and non-wide string literals must be specified using characters from the ISO 8859-1 character set.

A wide string literal shall not contain the wide character with value zero.

7.2.5.5 Fixed-Point Literals

A fixed-point decimal literal consists of an integer part, a decimal point, a fraction part and a d or D. The integer and
fraction parts both consist of a sequence of decimal (base 10) digits. Either the integer part or the fraction part (but not
both) may be missing; the decimal point (but not the letter d (or D)) may be missing.

7.3 Preprocessing

IDL is preprocessed according to the specification of the preprocessor in ISO/IEC 14882:2003. The preprocessor may be
implemented as a separate process or built into the IDL compiler.

Lines beginning with # (also called “directives”) communicate with this preprocessor. White space may appear before the
#. These lines have syntax independent of the rest of IDL; they may appear anywhere and have effects that last
(independent of the IDL scoping rules) until the end of the translation unit. The textual location of IDL-specific pragmas
may be semantically constrained.

A preprocessing directive (or any line) may be continued on the next line in a source file by placing a backslash character
(“\”), immediately before the newline at the end of the line to be continued. The preprocessor effects the continuation by
deleting the backslash and the newline before the input sequence is divided into tokens. A backslash character may not be
the last character in a source file.

A preprocessing token is an IDL token (see 7.2.1, Tokens), a file name as in a #include directive, or any single character
other than white space that does not match another preprocessing token.

The primary use of the preprocessing facilities is to include definitions from other IDL specifications. Text in files
included with a #include directive is treated as if it appeared in the including file, except that RepositoryId related
pragmas are handled in a special way. The special handling of these pragmas is described in 14.7, RepositoryIds.

Note that whether a particular IDL compiler generates code for included files is an implementation-specific issue. To
support separate compilation, IDL compilers may not generate code for included files, or do so only if explicitly
instructed.

7.4 IDL Grammar

(1) <specification>::=<import>* <definition>+

(2) <definition>::=<type_dcl> “;”
38 Common Object Request Broker Architecture (CORBA), v3.1.1

| <const_dcl> “;”
| <except_dcl> “;”
| <interface> “;”
| <module> “;”
| <value> “;”
| <type_id_dcl> “;”
| <type_prefix_dcl> “;”
| <event> “;”
| <component> “;”
| <home_dcl> “;”

(3) <module>::=“module” <identifier> “{“ <definition>+ “}”
(4) <interface>::=<interface_dcl>

| <forward_dcl>
(5) <interface_dcl>::=<interface_header> “{” <interface_body> “}”
(6) <forward_dcl>::=[“abstract” | “local”] “interface” <identifier>
(7) <interface_header>::=[“abstract” | “local”] “interface” <identifier>

[<interface_inheritance_spec>]
(8) <interface_body>::=<export>*

(9) <export>::=<type_dcl> “;”
| <const_dcl> “;”
| <except_dcl> “;”
| <attr_dcl> “;”
| <op_dcl> “;”
| <type_id_dcl> “;”
| <type_prefix_dcl> “;”

(10) <interface_inheritance_spec>::=“:” <interface_name>
{ “,” <interface_name> }*

(11) <interface_name>::=<scoped_name>
(12) <scoped_name>::=<identifier>

| “::” <identifier>
| <scoped_name> “::” <identifier>

(13) <value> ::= (<value_dcl> | <value_abs_dcl> | <value_box_dcl> | <value_forward_dcl>)
(14) <value_forward_dcl> ::=[“abstract”] “valuetype” <identifier>
(15) <value_box_dcl> ::=“valuetype” <identifier> <type_spec>
(16) <value_abs_dcl> ::=“abstract” “valuetype” <identifier>

[<value_inheritance_spec>]
“{“ <export>* “}”

(17) <value_dcl> ::=<value_header> “{“ < value_element>* “}”
(18) <value_header> ::=[“custom”] “valuetype” <identifier>

[<value_inheritance_spec>]
(19) <value_inheritance_spec> ::=[“:” [“truncatable”] <value_name>

{ “,” <value_name> }*]
[“supports” <interface_name>
{ “,” <interface_name> }*]

(20) <value_name> ::=<scoped_name>
(21) <value_element> ::=<export> | < state_member> | <init_dcl>
Common Object Request Broker Architecture (CORBA), v3.1.1 39

(22) <state_member> ::=(“public” | “private”)
<type_spec> <declarators> “;”

(23) <init_dcl> ::=“factory” <identifier>
“(“ [<init_param_decls>] “)”
[<raises_expr>] “;”

(24) <init_param_decls> ::=<init_param_decl> { “,” <init_param_decl> }*
(25) <init_param_decl> ::=<init_param_attribute> <param_type_spec> <simple_declarator>
(26) <init_param_attribute> ::=“in”
(27) <const_dcl>::=“const” <const_type>

<identifier> “=” <const_exp>
(28) <const_type>::=<integer_type>

| <char_type>
| <wide_char_type>
| <boolean_type>
| <floating_pt_type>
| <string_type>
| <wide_string_type>
| <fixed_pt_const_type>
| <scoped_name>
| <octet_type>

(29) <const_exp>::=<or_expr>
(30) <or_expr>::=<xor_expr>

| <or_expr> “|” <xor_expr>
(31) <xor_expr>::=<and_expr>

| <xor_expr> “^” <and_expr>
(32) <and_expr>::=<shift_expr>

| <and_expr> “&” <shift_expr>
(33) <shift_expr>::=<add_expr>

| <shift_expr> “>>” <add_expr>
| <shift_expr> “<<” <add_expr>

(34) <add_expr>::=<mult_expr>
| <add_expr> “+” <mult_expr>
| <add_expr> “-” <mult_expr>

(35) <mult_expr>::=<unary_expr>
| <mult_expr> “*” <unary_expr>
| <mult_expr> “/” <unary_expr>
| <mult_expr> “%” <unary_expr>

(36) <unary_expr>::=<unary_operator> <primary_expr>
| <primary_expr>

(37) <unary_operator>::=“-”
| “+”
| “~”

(38) <primary_expr>::=<scoped_name>
| <literal>
| “(” <const_exp> “)”

(39) <literal>::=<integer_literal>
| <string_literal>
| <wide_string_literal>
40 Common Object Request Broker Architecture (CORBA), v3.1.1

| <character_literal>
| <wide_character_literal>
| <fixed_pt_literal>
| <floating_pt_literal>
| <boolean_literal>

(40) <boolean_literal>::=“TRUE”
| “FALSE”

(41) <positive_int_const>::=<const_exp>
(42) <type_dcl>::=“typedef” <type_declarator>

| <struct_type>
| <union_type>
| <enum_type>
| “native” <simple_declarator>
| <constr_forward_decl>

(43) <type_declarator>::=<type_spec> <declarators>
(44) <type_spec>::=<simple_type_spec>

| <constr_type_spec>
(45) <simple_type_spec>::=<base_type_spec>

| <template_type_spec>
| <scoped_name>

(46) <base_type_spec>::=<floating_pt_type>
| <integer_type>
| <char_type>
| <wide_char_type>
| <boolean_type>
| <octet_type>
| <any_type>
| <object_type>
| <value_base_type>

(47) <template_type_spec>::=<sequence_type>
| <string_type>
| <wide_string_type>
| <fixed_pt_type>

(48) <constr_type_spec>::=<struct_type>
| <union_type>
| <enum_type>

(49) <declarators>::=<declarator> { “,” <declarator> }∗

(50) <declarator>::=<simple_declarator>
| <complex_declarator>

(51) <simple_declarator>::=<identifier>
(52) <complex_declarator>::=<array_declarator>
(53) <floating_pt_type>::=“float”

| “double”
| “long” “double”

(54) <integer_type>::=<signed_int>
| <unsigned_int>

(55) <signed_int>::=<signed_short_int>
| <signed_long_int>
Common Object Request Broker Architecture (CORBA), v3.1.1 41

| <signed_longlong_int>
(56) <signed_short_int>::=“short”
(57) <signed_long_int>::=“long”
(58) <signed_longlong_int>::=“long” “long”
(59) <unsigned_int>::=<unsigned_short_int>

| <unsigned_long_int>
| <unsigned_longlong_int>

(60) <unsigned_short_int>::=“unsigned” “short”
(61) <unsigned_long_int>::=“unsigned” “long”
(62) <unsigned_longlong_int>::=“unsigned” “long” “long”
(63) <char_type>::=“char”
(64) <wide_char_type>::=“wchar”
(65) <boolean_type>::=“boolean”
(66) <octet_type>::=“octet”
(67) <any_type>::=“any”
(68) <object_type>::=“Object”
(69) <struct_type>::=“struct” <identifier> “{” <member_list> “}”
(70) <member_list>::=<member>+

(71) <member>::=<type_spec> <declarators> “;”
(72) <union_type>::=“union” <identifier> “switch”

“(” <switch_type_spec> “)”
“{” <switch_body> “}”

(73) <switch_type_spec>::=<integer_type>
| <char_type>
| <boolean_type>
| <enum_type>
| <scoped_name>

(74) <switch_body>::=<case>+

(75) <case>::=<case_label>+ <element_spec> “;”
(76) <case_label>::=“case” <const_exp> “:”

| “default” “:”
(77) <element_spec>::=<type_spec> <declarator>
(78) <enum_type>::=“enum” <identifier>

“{” <enumerator> { “,” <enumerator> }∗ “}”
(79) <enumerator>::=<identifier>
(80) <sequence_type>::=“sequence” “<” <simple_type_spec> “,” <positive_int_const> “>”

| “sequence” “<” <simple_type_spec> “>”
(81) <string_type>::=“string” “<” <positive_int_const> “>”

| “string”
(82) <wide_string_type>::=“wstring” “<” <positive_int_const> “>”

| “wstring”
(83) <array_declarator>::=<identifier> <fixed_array_size>+

(84) <fixed_array_size>::=“[” <positive_int_const> “]”
(85) <attr_dcl> ::= <readonly_attr_spec>

| <attr_spec>
(86) <except_dcl>::=“exception” <identifier> “{“ <member>* “}”
42 Common Object Request Broker Architecture (CORBA), v3.1.1

(87) <op_dcl>::=[<op_attribute>] <op_type_spec>
<identifier> <parameter_dcls>
[<raises_expr>] [<context_expr>]

(88) <op_attribute>::=“oneway”
(89) <op_type_spec>::=<param_type_spec>

| “void”
(90) <parameter_dcls>::=“(” <param_dcl> { “,” <param_dcl> }∗ “)”

| “(” “)”
(91) <param_dcl>::=<param_attribute> <param_type_spec> <simple_declarator>
(92) <param_attribute>::=“in”

| “out”
| “inout”

(93) <raises_expr>::=“raises” “(” <scoped_name>
{ “,” <scoped_name> }∗ “)”

(94) <context_expr>::=“context” “(” <string_literal>
{ “,” <string_literal> }∗ “)”

(95) <param_type_spec>::=<base_type_spec>
| <string_type>
| <wide_string_type>
| <scoped_name>

(96) <fixed_pt_type>::=“fixed” “<“ <positive_int_const> “,” <positive_int_const> “>”
(97) <fixed_pt_const_type>::=“fixed”
(98) <value_base_type>::= “ValueBase”
(99) <constr_forward_decl>::=“struct” <identifier>

| “union” <identifier>
(100) <import> ::= “import” <imported_scope> “;”
(101) <imported_scope> ::= <scoped_name> | <string_literal>
(102) <type_id_dcl> ::=“typeid” <scoped_name> <string_literal>
(103) <type_prefix_dcl>::=“typeprefix” <scoped_name> <string_literal>
(104) <readonly_attr_spec> ::= “readonly” “attribute” <param_type_spec>

 <readonly_attr_declarator>
(105) <readonly_attr_declarator>::= <simple_declarator> <raises_expr>

| <simple_declarator>
{ “,” <simple_declarator> }*

(106) <attr_spec> ::= “attribute” <param_type_spec>
<attr_declarator>

(107) <attr_declarator> ::=<simple_declarator> <attr_raises_expr>
| <simple_declarator>

 { “,” <simple_declarator> }*
(108) <attr_raises_expr> ::=<get_excep_expr> [<set_excep_expr>]

| <set_excep_expr>
(109) <get_excep_expr> ::= “getraises” <exception_list>
(110) <set_excep_expr> ::= “setraises” <exception_list>
(111) <exception_list>::= “(” <scoped_name>

 { “,” <scoped_name> } * “)”

NOTE: Grammar rules 1 through 111 with the exception of the last three lines of rule 2 constitutes the portion of IDL that
Common Object Request Broker Architecture (CORBA), v3.1.1 43

is not related to components.

(112) <component> ::=<component_dcl>
| <component_forward_dcl>

(113) <component_forward_dcl> ::= “component” <identifier>
(114) <component_dcl> ::= <component_header>

 “{” <component_body> “}”
(115) <component_header> ::= “component” <identifier>

[<component_inheritance_spec>]
[<supported_interface_spec>]

(116) <supported_interface_spec> ::= “supports” <scoped_name>
 { “,” <scoped_name> }*

(117) <component_inheritance_spec> ::= “:” <scoped_name>
(118) <component_body> ::=<component_export>*
(119) <component_export> ::=<provides_dcl> “;”

| <uses_dcl> “;”
| <emits_dcl> “;”
| <publishes_dcl> “;”
| <consumes_dcl> “;”
| <attr_dcl> “;”

(120) <provides_dcl> ::= “provides” <interface_type> <identifier>
(121) <interface_type> ::= <scoped_name>

| “Object”
(122) <uses_dcl> ::= “uses” [“multiple”]

< interface_type> <identifier>
(123) <emits_dcl> ::= “emits” <scoped_name> <identifier>
(124) <publishes_dcl> ::= “publishes” <scoped_name> <identifier>
(125) <consumes_dcl> ::= “consumes” <scoped_name> <identifier>
(126) <home_dcl> ::= <home_header> <home_body>
(127) <home_header> ::= “home” <identifier>

[<home_inheritance_spec>]
[<supported_interface_spec>]

“manages” <scoped_name>
[<primary_key_spec>]

(128) <home_inheritance_spec> ::= “:” <scoped_name>
(129) <primary_key_spec> ::= “primarykey” <scoped_name>
(130) <home_body> ::= “{” <home_export>* “}”
(131) <home_export ::= <export>

| <factory_dcl> “;”
| <finder_dcl> “;”

(132) <factory_dcl> ::= “factory” <identifier>
“(“ [<init_param_decls>] “)”
[<raises_expr>]

(133) <finder_dcl> ::= “finder” <identifier>
“(“ [<init_param_decls>] “)”
[<raises_expr>]

(134) <event> ::= (<event_dcl> | <event_abs_dcl> |
<event_forward_dcl>)
44 Common Object Request Broker Architecture (CORBA), v3.1.1

(135) <event_forward_dcl> ::=[“abstract”] “eventtype” <identifier>
(136) <event_abs_dcl> ::=“abstract” “eventtype” <identifie

[<value_inheritance_spec>]
“{” <export>* “}”

(137) <event_dcl>::=<event_header> “{” <value_element> * “}”
(138) <event_header>::=[“custom”] “eventtype”

<identifier> [<value_inheritance_spec>]

7.5 IDL Specification

An IDL specification consists of one or more type definitions, constant definitions, exception definitions, or module
definitions. The syntax is:

(1)<specification>::=<import>* <definition>+

(2) <definition>::=<type_dcl> “;”
| <const_dcl> “;”
| <except_dcl> “;”
| <interface> “;”
| <module> “;”
| <value> “;”
| <type_id_dcl> “;”
| <type_prefix_dcl> “;”
| <event> “;”
| <component> “;”
| <home_dcl> “;”

See Import Declaration on page 45, for the specification of <import>.

See Module Declaration on page 46, for the specification of <module>.

See Interface Declaration on page 47, for the specification of <interface>.

See Value Declaration on page 52, for the specification of <value>.

See Constant Declaration on page 57, Type Declaration on page 61, and Exception Declaration on page 73 respectively
for specifications of <const_dcl>, <type_dcl>, and <except_dcl>.

See Repository Identity Related Declarations on page 77, for specification of Repository Identity declarations which
include <type_id_dcl> and <type_prefix_dcl>.

See Event Declaration on page 79, for specification of <event>.

See Component Declaration on page 80, for specification of <component>.

See Section 7.18, <$paratext>, on page 85, for specification of <home_dcl>.

7.6 Import Declaration

The grammar for the import statement is described by the following Backus Naur Form (BNF):

(100)<import> ::= “import” <imported_scope> “;”
(101) <imported_scope> ::= <scoped_name> | <string_literal>
Common Object Request Broker Architecture (CORBA), v3.1.1 45

The <imported_scope> non-terminal may be either a fully-qualified scoped name denoting an IDL name scope, or a
string containing the interface repository ID of an IDL name scope, i.e., a definition object in the repository whose
interface derives from CORBA::Container.

The definition of import obviates the need to define the meaning of IDL constructs in terms of “file scopes.” This
International Standard defines the concepts of a specification as a unit of IDL expression. In the abstract, a specification
consists of a finite sequence of ISO Latin-1 characters that form a legal IDL sentence. The physical representation of the
specification is of no consequence to the definition of IDL, though it is generally associated with a file in practice.

Any scoped name that begins with the scope token (“::”) is resolved relative to the global scope of the specification in
which it is defined. In isolation, the scope token represents the scope of the specification in which it occurs.

A specification that imports name scopes must be interpreted in the context of a well-defined set of IDL specifications
whose union constitutes the space from within which name scopes are imported. By “a well-defined set of IDL
specifications,” we mean any identifiable representation of IDL specifications, such as an interface repository. The
specific representation from which name scopes are imported is not specified, nor is the means by which importing is
implemented, nor is the means by which a particular set of IDL specifications (such as an interface repository) is
associated with the context in which the importing specification is to be interpreted.

The effects of an import statement are as follows:

• The contents of the specified name scope are visible in the context of the importing specification. Names that occur in
IDL declarations within the importing specification may be resolved to definitions in imported scopes.

• Imported IDL name scopes exist in the same space as names defined in subsequent declarations in the importing
specification.

• IDL module definitions may re-open modules defined in imported name scopes.

• Importing an inner name scope (i.e., a name scope nested within one or more enclosing name scopes) does not
implicitly import the contents of any of the enclosing name scopes.

• When a name scope is imported, the names of the enclosing scopes in the fully-qualified pathname of the enclosing
scope are exposed within the context of the importing specification, but their contents are not imported. An importing
specification may not redefine or reopen a name scope that has been exposed (but not imported) by an import
statement.

• Importing a name scope recursively imports all name scopes nested within it.

• For the purposes of this International Standard, name scopes that can be imported (i.e., specified in an import
statement) include the following: modules, interfaces, valuetypes, and eventtypes.

• Redundant imports (e.g., importing an inner scope and one of its enclosing scopes in the same specification) are
disregarded. The union of all imported scopes is visible to the importing program.

• This International Standard does not define a particular form for generated stubs and skeletons in any given
programming language. In particular, it does not imply any normative relationship between units specification and
units of generation and/or compilation for any language mapping.

7.7 Module Declaration

A module definition satisfies the following syntax:

(3)<module>::=“module” <identifier> “{“ <definition>+ “}”
46 Common Object Request Broker Architecture (CORBA), v3.1.1

The module construct is used to scope IDL identifiers; see CORBA Module on page 88 for details.

7.8 Interface Declaration

An interface definition satisfies the following syntax:

(4) <interface>::=<interface_dcl>
| <forward_dcl>

(5) <interface_dcl>::=<interface_header> “{” <interface_body> “}”
(6) <forward_dcl>::=[“abstract” | “local”] “interface” <identifier>
(7) <interface_header>::=[“abstract” | “local”] “interface” <identifier>

[<interface_inheritance_spec>]
(8) <interface_body>::=<export>*

(9) <export>::=<type_dcl> “;”
| <const_dcl> “;”
| <except_dcl> “;”
| <attr_dcl> “;”
| <op_dcl> “;”
| <type_id_decl> “;”
| <type_prefix_decl> “;”

7.8.1 Interface Header

The interface header consists of three elements:

1. An optional modifier specifying if the interface is an abstract interface.

2. The interface name. The name must be preceded by the keyword interface, and consists of an identifier that names
the interface.

3. An optional inheritance specification. The inheritance specification is described in the next sub clause.

The <identifier> that names an interface defines a legal type name. Such a type name may be used anywhere an
<identifier> is legal in the grammar, subject to semantic constraints as described in the following sub clauses. Since one
can only hold references to an object, the meaning of a parameter or structure member, which is an interface type is as a
reference to an object supporting that interface. Each language binding describes how the programmer must represent
such interface references.

Abstract interfaces have slightly different rules and semantics from “regular” interfaces, as described in Abstract
Interface on page 51. They also follow different language mapping rules.

Local interfaces have slightly different rules and semantics from “regular” interfaces, as described in Local Interface on
page 51. They also follow different language mapping rules.

7.8.2 Interface Inheritance Specification

The syntax for inheritance is as follows:

(10) <interface_inheritance_spec>::=“:” <interface_name>
{ “,” <interface_name> }*
Common Object Request Broker Architecture (CORBA), v3.1.1 47

(11) <interface_name>::=<scoped_name>
(12) <scoped_name>::=<identifier>

| “::” <identifier>
| <scoped_name> “::” <identifier>

Each <scoped_name> in an <interface_inheritance_spec> must be the name of a previously defined interface or an
alias to a previously defined interface. See Interface Inheritance on page 49 for the description of inheritance.

7.8.3 Interface Body

The interface body contains the following kinds of declarations:

• Constant declarations, which specify the constants that the interface exports. Constant declaration syntax is described
in Constant Declaration on page 57.

• Type declarations, which specify the type definitions that the interface exports. Type declaration syntax is described in
Type Declaration on page 61.

• Exception declarations, which specify the exception structures that the interface exports. Exception declaration syntax
is described in Exception Declaration on page 73.

• Attribute declarations, which specify the associated attributes exported by the interface. Attribute declaration syntax is
described in Attribute Declaration on page 76.

• Operation declarations, which specify the operations that the interface exports and the format of each, including
operation name, the type of data returned, the types of all parameters of an operation, legal exceptions that may be
returned as a result of an invocation, and contextual information that may affect method dispatch. Operation
declaration syntax is described in Operation Declaration on page 73.

Empty interfaces are permitted (that is, those containing no declarations).

Some implementations may require interface-specific pragmas to precede the interface body.

7.8.4 Forward Declaration

A forward declaration declares the name of an interface without defining it. This permits the definition of interfaces that
refer to each other. The syntax is: optionally either the keyword abstract or the keyword local, followed by the keyword
interface, followed by an <identifier> that names the interface.

Multiple forward declarations of the same interface name are legal.

It is illegal to inherit from a forward-declared interface whose definition has not yet been seen:

module Example {
interface base; // Forward declaration

// ...

interface derived : base {}; // Error
interface base {}; // Define base
interface derived : base {}; // OK

};
48 Common Object Request Broker Architecture (CORBA), v3.1.1

7.8.5 Interface Inheritance

An interface can be derived from another interface, which is then called a base interface of the derived interface. A
derived interface, like all interfaces, may declare new elements (constants, types, attributes, exceptions, and operations).
In addition, unless redefined in the derived interface, the elements of a base interface can be referred to as if they were
elements of the derived interface. The name resolution operator (“::”) may be used to refer to a base element explicitly;
this permits reference to a name that has been redefined in the derived interface.

A derived interface may redefine any of the type, constant, and exception names that have been inherited; the scope rules
for such names are described in Names and Scoping on page 89.

An interface is called a direct base if it is mentioned in the <interface_inheritance_spec> and an indirect base if it is
not a direct base but is a base interface of one of the interfaces mentioned in the <interface_inheritance_spec>.

An interface may be derived from any number of base interfaces. Such use of more than one direct base interface is often
called multiple inheritance. The order of derivation is not significant.

An abstract interface may only inherit from other abstract interfaces.

An interface may not be specified as a direct base interface of a derived interface more than once; it may be an indirect
base interface more than once. Consider the following example:

interface A { ... }
interface B: A { ... }
interface C: A { ... }
interface D: B, C { ... }
interface E: A, B { ... }; // OK

The relationships between these interfaces is shown in Figure 7.1. This “diamond” shape is legal, as is the definition of E
on the right.

Figure 7.1 - Legal Multiple Inheritance Example

References to base interface elements must be unambiguous. A Reference to a base interface element is ambiguous if the
name is declared as a constant, type, or exception in more than one base interface. Ambiguities can be resolved by
qualifying a name with its interface name (that is, using a <scoped_name>). It is illegal to inherit from two interfaces
with the same operation or attribute name, or to redefine an operation or attribute name in the derived interface.

So for example in:

A

B C

D

A

B C

D

E

Common Object Request Broker Architecture (CORBA), v3.1.1 49

interface A {
typedef long L1;
short opA(in L1 l_1);

};

interface B {
typedef short L1;
L1 opB(in long l);

};

interface C: B, A {
typedef L1 L2; // Error: L1 ambiguous
typedef A::L1 L3; // A::L1 is OK
B::L1 opC(in L3 l_3); // all OK no ambiguities

};

References to constants, types, and exceptions are bound to an interface when it is defined (i.e., replaced with the
equivalent global <scoped_name>s). This guarantees that the syntax and semantics of an interface are not changed
when the interface is a base interface for a derived interface. Consider the following example:

const long L = 3;

interface A {
typedef float coord[L]:
void f (in coord s); // s has three floats

};

interface B {
const long L = 4;

};

interface C: B, A { }; // what is C::f()’s signature?

The early binding of constants, types, and exceptions at interface definition guarantees that the signature of operation f in
interface C is

typedef float coord[3];
void f (in coord s);

which is identical to that in interface A. This rule also prevents redefinition of a constant, type, or exception in the derived
interface from affecting the operations and attributes inherited from a base interface.

Interface inheritance causes all identifiers defined in base interfaces, both direct and indirect, to be visible in the current
naming scope. A type name, constant name, enumeration value name, or exception name from an enclosing scope can be
redefined in the current scope. An attempt to use an ambiguous name without qualification produces a compilation error.
Thus in:

interface A {
typedef string<128> string_t;

};

interface B {
50 Common Object Request Broker Architecture (CORBA), v3.1.1

typedef string<256> string_t;
};

interface C: A, B {
attribute string_t Title; // Error: string_t ambiguous
attribute A::string_t Name; // OK
attribute B::string_t City; // OK

};

operation and attribute names are used at run-time by both the stub and dynamic interfaces. As a result, all operations and
attributes that might apply to a particular object must have unique names. This requirement prohibits redefining an
operation or attribute name in a derived interface, as well as inheriting two operations or attributes with the same name.

interface A {
void make_it_so();

};

interface B: A {
short make_it_so(in long times); // Error: redefinition of make_it_so

};

For a complete summary of allowable inheritance and supporting relationships among interfaces and valuetypes see Table
7.10 on page 56.

7.8.6 Abstract Interface

An interface declaration containing the keyword abstract in its header, declares an abstract interface. The following
special rules apply to abstract interfaces:

• Abstract interfaces may only inherit from other abstract interfaces.

• Value types may support any number of abstract interfaces.

See Semantics of Abstract Interfaces on page 173 for CORBA implementation semantics associated with abstract
interfaces.

For a complete summary of allowable inheritance and supporting relationships among interfaces and valuetypes see Table
7.10 on page 56.

7.8.7 Local Interface

An interface declaration containing the keyword local in its header declares a local interface. An interface declaration not
containing the keyword local is referred to as an unconstrained interface. An object implementing a local interface is
referred to as a local object. The following special rules apply to local interfaces:

• A local interface may inherit from other local or unconstrained interfaces.

• An unconstrained interface may not inherit from a local interface. An interface derived from a local interface must be
explicitly declared local.

• A valuetype may support a local interface.
Common Object Request Broker Architecture (CORBA), v3.1.1 51

• Any IDL type, including an unconstrained interface, may appear as a parameter, attribute, return type, or exception
declaration of a local interface.

• A local interface is a local type, as is any non-interface type declaration constructed using a local interface or other
local type. For example, a struct, union, or exception with a member that is a local interface is also itself a local type.

• A local type may be used as a parameter, attribute, return type, or exception declaration of a local interface or of a
valuetype.

• A local type may not appear as a parameter, attribute, return type, or exception declaration of an unconstrained
interface.

For a complete summary of allowable inheritance and supporting relationships among interfaces and valuetypes see Table
7.10 on page 56.

See LocalObject Operations on page 113 for CORBA implementation semantics associated with local objects.

7.9 Value Declaration

There are several kinds of value type declarations: “regular” value types, boxed value types, abstract value types, and
forward declarations.

A value declaration satisfies the following syntax:

(13) <value> ::= (<value_dcl> | <value_abs_dcl> | <value_box_dcl> | <value_forward_dcl>)

7.9.1 Regular Value Type

A regular value type satisfies the following syntax:

(17)<value_dcl> ::=<value_header> “{“ < value_element>* “}”
(18) <value_header> ::=[“custom”] “valuetype” <identifier>

[<value_inheritance_spec>]
(21)<value_element> ::=<export>

| < state_member> |
| <init_dcl>

7.9.1.1 Value Header

The value header consists of two elements:

1. The value type’s name and optional modifier specifying whether the value type uses custom marshaling.

2. An optional value inheritance specification. The value inheritance specification is described below.

7.9.1.2 Value Element

A value can contain all the elements that an interface can as well as the definition of state members, and initializers for
that state.

7.9.1.3 Value Inheritance Specification
(19)<value_inheritance_spec> ::=[“:” [“truncatable”] <value_name>

{ “,” <value_name> }*]
52 Common Object Request Broker Architecture (CORBA), v3.1.1

[“supports” <interface_name>
{ “,” <interface_name> }*]

(20) <value_name> ::=<scoped_name>

Each <value_name> in a <value_inheritance_spec> must be the name of a previously defined value type or an alias to
a previously defined value type. Each <interface_name> in a <value_inheritance_spec> must be the name of a
previously defined interface or an alias to a previously defined interface. See “Valuetype Inheritance” for the description of
value type inheritance.

The truncatable modifier may not be used if the value type being defined is a custom value.

A valuetype that supports a local interface does not itself become local (i.e., unmarshalable) as a result of that support.

7.9.1.4 State Members
(22)<state_member> ::=(“public” | “private”)

<type_spec> <declarators> “;”

Each <state_member> defines an element of the state, which is marshaled and sent to the receiver when the value type
is passed as a parameter. A state member is either public or private. The annotation directs the language mapping to hide
or expose the different parts of the state to the clients of the value type. The private part of the state is only accessible to
the implementation code and the marshaling routines.

A valuetype that has a state member that is local (i.e., non-marshalable like a local interface), is itself rendered local. That
is, such valuetypes behave similar to local interfaces when an attempt is made to marshal them.

Note that certain programming languages may not have the built in facilities needed to distinguish between the public and
private members. In these cases, the language mapping specifies the rules that programmers are responsible for following.

7.9.1.5 Initializers
(23) <init_dcl> ::=“factory” <identifier>

“(“ [<init_param_decls>] “)”
[<raises_expr>] “;”

(24) <init_param_decls> ::=<init_param_decl> { “,” <init_param_decl> }*
(25) <init_param_decl> ::=<init_param_attribute> <param_type_spec> <simple_declarator>
(26) <init_param_attribute> ::=“in”

In order to ensure portability of value implementations, designers may also define the signatures of initializers (or
constructors) for non-abstract value types. Syntactically these look like local operation signatures except that they are
prefixed with the keyword factory, have no return type, and must use only in parameters. There may be any number of
factory declarations. The names of the initializers are part of the name scope of the value type. Initializers defined in a
valuetype are not inherited by derived valuetypes, and hence the names of the initializers are free to be reused in a derived
valuetype.

If no initializers are specified in IDL, the value type does not provide a portable way of creating a runtime instance of its
type. There is no default initializer. This allows the definition of IDL value types, which are not intended to be directly
instantiated by client code.
Common Object Request Broker Architecture (CORBA), v3.1.1 53

7.9.1.6 Value Type Example

interface Tree {
void print()

};

valuetype WeightedBinaryTree {
// state definition

private unsigned long weight;
private WeightedBinaryTree left;
private WeightedBinaryTree right;

// initializer
factory init(in unsigned long w);

// local operations
WeightSeq pre_order();
WeightSeq post_order();

};
valuetype WTree: WeightedBinaryTree supports Tree {};

7.9.2 Boxed Value Type

(15)<value_box_dcl> ::=“valuetype” <identifier> <type_spec>

It is often convenient to define a value type with no inheritance or operations and with a single state member. A shorthand
IDL notation is used to simplify the use of value types for this kind of simple containment, referred to as a “value box.”

Since a value box of a valuetype adds no additional properties to a valuetype, it is an error to box valuetypes.

Value box is particularly useful for strings and sequences. Basically one does not have to create what is in effect an
additional namespace that will contain only one name.

An example is the following IDL:

module Example {
interface Foo {

... /* anything */
};
valuetype FooSeq sequence<Foo>;
interface Bar {

void doIt (in FooSeq seq1);
};

};

The above IDL provides similar functionality to writing the following IDL. However the type identities (repository IDs)
would be different.

module Example {
interface Foo {

... /* anything */
};
valuetype FooSeq {

public sequence<Foo> data;
54 Common Object Request Broker Architecture (CORBA), v3.1.1

};
interface Bar {

void doIt (in FooSeq seq);
};

};

The former is easier to manipulate after it is mapped to a concrete programming language.

Any IDL type may be used to declare a value box except for a valuetype.

The declaration of a boxed value type does not open a new scope. Thus a construction such as

valuetype FooSeq sequence <FooSeq>;

is not legal IDL. The identifier being declared as a boxed value type cannot be used subsequent to its initial use and prior
to the completion of the boxed value declaration.

7.9.3 Abstract Value Type

(16) <value_abs_dcl> ::=“abstract” “valuetype” <identifier>
[<value_inheritance_spec>]
“{“ <export>* “}”

Value types may also be abstract. They are called abstract because an abstract value type may not be instantiated. No
<state_member> or <initializers> may be specified. However, local operations may be specified. Essentially they are
a bundle of operation signatures with a purely local implementation.

Note that a concrete value type with an empty state is not an abstract value type.

7.9.4 Value Forward Declaration

(14)<value_forward_dcl> ::=[“abstract”] “valuetype” <identifier>

A forward declaration declares the name of a value type without defining it. This permits the definition of value types that
refer to each other. The syntax consists simply of the keyword valuetype followed by an <identifier> that names the
value type.

Multiple forward declarations of the same value type name are legal.

Boxed value types cannot be forward declared; such a forward declaration would refer to a normal value type.

It is illegal to inherit from a forward-declared value type whose definition has not yet been seen.

It is illegal for a value type to support a forward-declared interface whose definition has not yet been seen.

7.9.5 Valuetype Inheritance

The terminology that is used to describe value type inheritance is directly analogous to that used to describe interface
inheritance (see Interface Inheritance on page 49).

The name scoping and name collision rules for valuetypes are identical to those for interfaces. In addition, no valuetype
may be specified as a direct abstract base of a derived valuetype more than once; it may be an indirect abstract base more
than once. See Interface Inheritance on page 49 for a detailed description of the analogous properties for interfaces.
Common Object Request Broker Architecture (CORBA), v3.1.1 55

Values may be derived from other values and can support an interface and any number of abstract interfaces.

Once implementation (state) is specified at a particular point in the inheritance hierarchy, all derived value types (which
must of course implement the state) may only derive from a single (concrete) value type. They can however derive from
other additional abstract values and support an additional interface.

The single immediate base concrete value type, if present, must be the first element specified in the inheritance list of the
value declaration’s IDL. It may be followed by other abstract values from which it inherits. The interface and abstract
interfaces that it supports are listed following the supports keyword.

While a valuetype may only directly support one interface, it is possible for the valuetype to support other interfaces as
well through inheritance. In this case, the supported interface must be derived, directly or indirectly, from each interface
that the valuetype supports through inheritance. This rule does not apply to abstract interfaces that the valuetype supports.
For example:

interface I1 { };
interface I2 { };
interface I3: I1, I2 { };

abstract valuetype V1 supports I1 { };
abstract valuetype V2 supports I2 { };
valuetype V3: V1, V2 supports I3 { }; // legal
valuetype V4: V1 supports I2 { }; // illegal

A stateful value that derives from another stateful value may specify that it is truncatable. This means that it is to
“truncate” (see Value instance -> Value type on page 160) an instance to be an instance of any of its truncatable parent
(stateful) value types under certain conditions. Note that all the intervening types in the inheritance hierarchy must be
truncatable in order for truncation to a particular type to be allowed.

Because custom values require an exact type match between the sending and receiving context, truncatable may not be
specified for a custom value type.

Non-custom value types may not (transitively) inherit from custom value types.

Boxed value types may not be derived from, nor may they derive from, anything else.

These rules are summarized in the following table.

Table 7.10

May inherit
from:

Interface Abstract
Interface

Abstract
Value

Stateful Value Boxed
value

Interface multiple multiple no no no

Abstract
Interface

no multiple no no no

Abstract Value supports single supports multiple multiple no no

Stateful Value supports single supports multiple multiple single (may be
truncatable)

no

Boxed Value no no no no no
56 Common Object Request Broker Architecture (CORBA), v3.1.1

7.10 Constant Declaration

This sub clause describes the syntax for constant declarations.

7.10.1 Syntax

The syntax for a constant declaration is:

(27)<const_dcl>::=“const” <const_type>
<identifier> “=” <const_exp>

(28) <const_type>::=<integer_type>
| <char_type>
| <wide_char_type>
| <boolean_type>
| <floating_pt_type>
| <string_type>
| <wide_string_type>
| <fixed_pt_const_type>
| <scoped_name>
| <octet_type>

(29) <const_exp>::=<or_expr>
(30) <or_expr>::=<xor_expr>

| <or_expr> “|” <xor_expr>
(31) <xor_expr>::=<and_expr>

| <xor_expr> “^” <and_expr>
(32) <and_expr>::=<shift_expr>

| <and_expr> “&” <shift_expr>
(33) <shift_expr>::=<add_expr>

| <shift_expr> “>>” <add_expr>
| <shift_expr> “<<” <add_expr>

(34) <add_expr>::=<mult_expr>
| <add_expr> “+” <mult_expr>
| <add_expr> “-” <mult_expr>

(35) <mult_expr>::=<unary_expr>
| <mult_expr> “*” <unary_expr>
| <mult_expr> “/” <unary_expr>
| <mult_expr> “%” <unary_expr>

(36) <unary_expr>::=<unary_operator> <primary_expr>
| <primary_expr>

(37) <unary_operator>::=“-”
| “+”
| “~”

(38) <primary_expr>::=<scoped_name>
| <literal>
| “(” <const_exp> “)”

(39) <literal>::=<integer_literal>
| <string_literal>
| <wide_string_literal>
Common Object Request Broker Architecture (CORBA), v3.1.1 57

| <character_literal>
| <wide_character_literal>
| <fixed_pt_literal>
| <floating_pt_literal>
| <boolean_literal>

(40) <boolean_literal>::=“TRUE”
| “FALSE”

(41) <positive_int_const>::=<const_exp>

7.10.2 Semantics

The <scoped_name> in the <const_type> production must be a previously defined name of an <integer_type>,
<char_type>, <wide_char_type>, <boolean_type>, <floating_pt_type>, <string_type>, <wide_string_type>,
<octet_type>, or <enum_type> constant.

Octet literals have integer value in the range 0..255. If the right hand side of an octet constant declaration is outside this
range it shall be flagged as a compile time error.

Integer literals have positive integer values. Constant integer literals are considered unsigned long unless the value is
too large, then they are considered unsigned long long. Unary minus is considered an operator, not a part of an integer
literal. Only integer values can be assigned to integer type (short, long, long long) constants, and octet constants.
Only positive integer values can be assigned to unsigned integer type constants. If the value of the right hand side of an
integer constant declaration is too large to fit in the actual type of the constant on the left hand side, for example

const short s = 655592;

or is inappropriate for the actual type of the left hand side, for example

 const octet o = -54;

it shall be flagged as a compile time error.

Floating point literals have floating point values. Only floating point values can be assigned to floating point type (float,
double, long double) constants. Constant floating point literals are considered double unless the value is too large,
then they are considered long double. If the value of the right hand side is too large to fit in the actual type of the
constant to which it is being assigned, it shall be flagged as a compile time error. Truncation on the right for floating point
types is OK.

Fixed point literals have fixed point values. Only fixed point values can be assigned to fixed point type constants. If the
fixed point value in the expression on the right hand side is too large to fit in the actual fixed point type of the constant
on the left hand side, then it shall be flagged as a compile time error. Truncation on the right for fixed point types is OK.

If the type of an integer constant is long or unsigned long, then each subexpression of the associated constant
expression is treated as an unsigned long by default, or a signed long for negated literals or negative integer constants.
It is an error if any subexpression values exceed the precision of the assigned type (long or unsigned long), or if a final
expression value (of type unsigned long) exceeds the precision of the target type (long).

If the type of an integer constant is long long or unsigned long long, then each subexpression of the associated
constant expression is treated as an unsigned long long by default, or a signed long long for negated literals or
negative integer constants. It is an error if any subexpression values exceed the precision of the assigned type (long long
or unsigned long long), or if a final expression value (of type unsigned long long) exceeds the precision of the
target type (long long).
58 Common Object Request Broker Architecture (CORBA), v3.1.1

If the type of a floating-point constant is double, then each subexpression of the associated constant expression is treated
as a double. It is an error if any subexpression value exceeds the precision of double.

If the type of a floating-point constant is long double, then each subexpression of the associated constant expression is
treated as a long double. It is an error if any subexpression value exceeds the precision of long double.

An infix operator can combine two integer types, floating point types or fixed point types, but not mixtures of these. Infix
operators are applicable only to integer, floating point, and fixed point types.

Integer expressions are evaluated using the imputed type of each argument of a binary operator in turn. If either argument
is unsigned long long, use unsigned long long. If either argument is long long, use long long. If either argument
is unsigned long., use unsigned long. Otherwise use long. The final result of an integer arithmetic expression must
fit in the range of the declared type of the constant, otherwise an error shall be flagged by the compiler. In addition to the
integer types, the final result of an integer arithmetic expression can be assigned to an octet constant, subject to it fitting
in the range for octet type.

Floating point expressions are evaluated using the imputed type of each argument of a binary operator in turn. If either
argument is long double, use long double. Otherwise use double. The final result of a floating point arithmetic
expression must fit in the range of the declared type of the constant, otherwise an error shall be flagged by the compiler.

Fixed-point decimal constant expressions are evaluated as follows. A fixed-point literal has the apparent number of total
and fractional digits. For example, 0123.450d is considered to be fixed<7,3> and 3000.00d is fixed<6,2>. Prefix
operators do not affect the precision; a prefix + is optional, and does not change the result. The upper bounds on the
number of digits and scale of the result of an infix expression, fixed<d1,s1> op fixed<d2,s2>, are shown in the
following table.

A quotient may have an arbitrary number of decimal places, denoted by a scale of sinf. The computation proceeds
pairwise, with the usual rules for left-to-right association, operator precedence, and parentheses. All intermediate
computations shall be performed using double precision (i.e., 62 digit) arithmetic. If an individual computation between a
pair of fixed-point literals actually generates more than 31 significant digits, then a 31-digit result is retained as follows:

fixed<d,s> => fixed<31, 31-d+s>

Leading and trailing zeros are not considered significant. The omitted digits are discarded; rounding is not performed. The
result of the individual computation then proceeds as one literal operand of the next pair of fixed-point literals to be
computed.

Unary (+ -) and binary (* / + -) operators are applicable in floating-point and fixed-point expressions. Unary (+ - ~) and
binary (* / % + - << >> & | ^) operators are applicable in integer expressions.

Op Result: fixed<d,s>

+ fixed<max(d1-s1,d2-s2) + max(s1,s2) + 1, max(s1,s2)>

- fixed<max(d1-s1,d2-s2) + max(s1,s2) + 1, max(s1,s2)>

* fixed<d1+d2, s1+s2>

/ fixed<(d1-s1+s2) + sinf , sinf>
Common Object Request Broker Architecture (CORBA), v3.1.1 59

The “~” unary operator indicates that the bit-complement of the expression to which it is applied should be generated. For
the purposes of such expressions, the values are 2’s complement numbers. As such, the complement can be generated as
follows:

The “%” binary operator yields the remainder from the division of the first expression by the second. If the second
operand of “%” is 0, the result is undefined; otherwise

 (a/b)*b + a%b

is equal to a. If both operands are non-negative, then the remainder is non-negative; if not, the sign of the remainder is
implementation dependent.

The “<<” binary operator indicates that the value of the left operand should be shifted left the number of bits specified by
the right operand, with 0 fill for the vacated bits. The right operand must be in the range 0 <= right operand < 64.

The “>>” binary operator indicates that the value of the left operand should be shifted right the number of bits specified
by the right operand, with 0 fill for the vacated bits. The right operand must be in the range 0 <= right operand < 64.

The “&” binary operator indicates that the logical, bitwise AND of the left and right operands should be generated.

The “|” binary operator indicates that the logical, bitwise OR of the left and right operands should be generated.

The “^” binary operator indicates that the logical, bitwise EXCLUSIVE-OR of the left and right operands should be
generated.

<positive_int_const> must evaluate to a positive integer constant.

An octet constant can be defined using an integer literal or an integer constant expression, for example:

Values for an octet constant outside the range 0 - 255 shall cause a compile-time error.

An enum constant can only be defined using a scoped name for the enumerator. The scoped name is resolved using the
normal scope resolution rules 7.20, Names and Scoping. For example:

enum Color { red, green, blue };
const Color FAVORITE_COLOR = red;

module M {
enum Size { small, medium, large };

};
const M::Size MYSIZE = M::medium;

The constant name for the RHS of an enumerated constant definition must denote one of the enumerators defined for the
enumerated type of the constant. For example:

Integer Constant Expression Type Generated 2’s Complement Numbers

long long -(value+1)

unsigned long unsigned long (2**32-1) - value

long long long long -(value+1)

unsigned long long unsigned long (2**64-1) - value
60 Common Object Request Broker Architecture (CORBA), v3.1.1

const Color col = red; // is OK but
const Color another = M::medium; // is an error

7.11 Type Declaration

IDL provides constructs for naming data types; that is, it provides C language-like declarations that associate an identifier
with a type. IDL uses the typedef keyword to associate a name with a data type. A name is also associated with a data
type via the struct, union, enum, and native declarations. The syntax is:

(42) <type_dcl>::=“typedef” <type_declarator>
| <struct_type>
| <union_type>
| <enum_type>
| “native” <simple_declarator>
| <constr_forward_decl>

(43) <type_declarator>::=<type_spec> <declarators>

For type declarations, IDL defines a set of type specifiers to represent typed values. The syntax is as follows:

(44) <type_spec>::=<simple_type_spec>
| <constr_type_spec>

(45) <simple_type_spec>::=<base_type_spec>
| <template_type_spec>
| <scoped_name>

(46) <base_type_spec>::=<floating_pt_type>
| <integer_type>
| <char_type>
| <wide_char_type>
| <boolean_type>
| <octet_type>
| <any_type>
| <object_type>
| <value_base_type>

(47) <template_type_spec>::=<sequence_type>
| <string_type>
| <wide_string_type>
| <fixed_pt_type>

(48) <constr_type_spec>::=<struct_type>
| <union_type>
| <enum_type>

(49) <declarators>::=<declarator> { “,” <declarator> }∗

(50) <declarator>::=<simple_declarator>
| <complex_declarator>

(51) <simple_declarator>::=<identifier>
(52) <complex_declarator>::=<array_declarator>
Common Object Request Broker Architecture (CORBA), v3.1.1 61

The <scoped_name> in <simple_type_spec> must be a previously defined type introduced by an interface
declaration (<interface_dcl> - see 7.8, Interface Declaration), a value declaration (<value_dcl>, <value_box_dcl> or
<abstract_value_dcl> - see 7.9, Value Declaration) or a type declaration (<type_dcl> - see 7.11, Type Declaration).
Note that exceptions are not considered types in this context.

As seen above, IDL type specifiers consist of scalar data types and type constructors. IDL type specifiers can be used in
operation declarations to assign data types to operation parameters. The next sub clauses describe basic and constructed
type specifiers.

7.11.1 Basic Types

The syntax for the supported basic types is as follows:

(53) <floating_pt_type>::=“float”
| “double”
| “long” “double”

(54) <integer_type>::=<signed_int>
| <unsigned_int>

(55) <signed_int>::=<signed_short_int>
| <signed_long_int>
| <signed_longlong_int>

(56) <signed_short_int>::=“short”
(57) <signed_long_int>::=“long”
(58) <signed_longlong_int>::=“long” “long”
(59) <unsigned_int>::=<unsigned_short_int>

| <unsigned_long_int>
| <unsigned_longlong_int>

(60) <unsigned_short_int>::=“unsigned” “short”
(61) <unsigned_long_int>::=“unsigned” “long”
(62) <unsigned_longlong_int>::=“unsigned” “long” “long”
(63) <char_type>::=“char”
(64) <wide_char_type>::=“wchar”
(65) <boolean_type>::=“boolean”
(66) <octet_type>::=“octet”
(67) <any_type>::=“any”

Each IDL data type is mapped to a native data type via the appropriate language mapping. Conversion errors between IDL
data types and the native types to which they are mapped can occur during the performance of an operation invocation.
The invocation mechanism (client stub, dynamic invocation engine, and skeletons) may signal an exception condition to
the client if an attempt is made to convert an illegal value. The standard system exceptions that are to be raised in such
situations are defined in 8.12, Exceptions.
62 Common Object Request Broker Architecture (CORBA), v3.1.1

7.11.1.1 Integer Types

IDL integer types are short, unsigned short, long, unsigned long, long long, and unsigned long long
representing integer values in the range indicated below in Table 7.11.

7.11.1.2 Floating-Point Types

IDL floating-point types are float, double, and long double. The float type represents IEEE single-precision floating
point numbers; the double type represents IEEE double-precision floating point numbers. The long double data type
represents an IEEE double-extended floating-point number, which has an exponent of at least 15 bits in length and a
signed fraction of at least 64 bits. See IEEE Standard for Binary Floating-Point Arithmetic, ANSI/IEEE Standard 754-
1985, for a detailed specification.

7.11.1.3 Char Type

IDL defines a char data type that is an 8-bit quantity that (1) encodes a single-byte character from any byte-oriented code
set, or (2) when used in an array, encodes a multi-byte character from a multi-byte code set. In other words, an
implementation is free to use any code set internally for encoding character data, though conversion to another form may
be required for transmission.

The ISO 8859-1 (Latin1) character set standard defines the meaning and representation of all possible graphic characters
used in IDL (i.e., the space, alphabetic, digit, and graphic characters defined in Table 7.2 on page 30, Table 7.3 on page
31, and Table 7.4 on page 31). The meaning and representation of the null and formatting characters (see Table 7.5 on
page 33) is the numerical value of the character as defined in the ASCII (ISO 646) standard. The meaning of all other
characters is implementation-dependent.

During transmission, characters may be converted to other appropriate forms as required by a particular language binding.
Such conversions may change the representation of a character but maintain the character’s meaning. For example, a
character may be converted to and from the appropriate representation in international character sets.

7.11.1.4 Wide Char Type

IDL defines a wchar data type that encodes wide characters from any character set. As with character data, an
implementation is free to use any code set internally for encoding wide characters, though, again, conversion to another
form may be required for transmission. The size of wchar is implementation-dependent.

7.11.1.5 Boolean Type

The boolean data type is used to denote a data item that can only take one of the values TRUE and FALSE.

Table 7.11

short -215 .. 215 - 1

long -231 .. 231 - 1

long long -263 .. 263 - 1

unsigned short 0 .. 216 - 1

unsigned long 0 .. 232 - 1

unsigned long long 0 .. 264 - 1
Common Object Request Broker Architecture (CORBA), v3.1.1 63

7.11.1.6 Octet Type

The octet type is an 8-bit quantity that is guaranteed not to undergo any conversion when transmitted by the
communication system.

7.11.1.7 Any Type

The any type permits the specification of values that can express any IDL type.

An any logically contains a TypeCode (see 8.11, TypeCodes) and a value that is described by the TypeCode. Each IDL
language mapping provides operations that allow programers to insert and access the TypeCode and value contained in
an any.

7.11.2 Constructed Types

Structs, unions, and enums are the constructed types. Their syntax is presented below:

(42)<type_dcl>::=“typedef” <type_declarator>
| <struct_type>
| <union_type>
| <enum_type>
| “native” <simple_declarator>
| <constr_forward_decl>

(48)<constr_type_spec>::=<struct_type>
| <union_type>
| <enum_type>

(99)<constr_forward_decl>::=“struct” <identifier>
| “union” <identifier>

7.11.2.1 Structures

The syntax for struct type is:

(69)<struct_type>::=“struct” <identifier> “{” <member_list> “}”
(70) <member_list>::=<member>+

(71) <member>::=<type_spec> <declarators> “;”

The <identifier> in <struct_type> defines a new legal type. Structure types may also be named using a typedef
declaration.

Name scoping rules require that the member declarators in a particular structure be unique. The value of a struct is the
value of all of its members.

7.11.2.2 Discriminated Unions

The discriminated union syntax is:

(72) <union_type>::=“union” <identifier> “switch”
“(” <switch_type_spec> “)”
“{” <switch_body> “}”

(73) <switch_type_spec>::=<integer_type>
| <char_type>
64 Common Object Request Broker Architecture (CORBA), v3.1.1

| <boolean_type>
| <enum_type>
| <scoped_name>

(74) <switch_body>::=<case>+

(75) <case>::=<case_label>+ <element_spec> “;”
(76) <case_label>::=“case” <const_exp> “:”

| “default” “:”
(77) <element_spec>::=<type_spec> <declarator>

IDL unions are a cross between the C union and switch statements. IDL unions must be discriminated; that is, the
union header must specify a typed tag field that determines which union member to use for the current instance of a call.
The <identifier> following the union keyword defines a new legal type. Union types may also be named using a
typedef declaration. The <const_exp> in a <case_label> must be consistent with the <switch_type_spec>. A
default case can appear at most once. The <scoped_name> in the <switch_type_spec> production must be a
previously defined integer, char, boolean, or enum type.

Case labels must match or be automatically castable to the defined type of the discriminator. Name scoping rules require
that the element declarators in a particular union be unique. If the <switch_type_spec> is an <enum_type>, the
identifier for the enumeration is in the scope of the union; as a result, it must be distinct from the element declarators.

It is not required that all possible values of the union discriminator be listed in the <switch_body>. The value of a union
is the value of the discriminator together with one of the following:

• If the discriminator value was explicitly listed in a case statement, the value of the element associated with that case
statement;

• If a default case label was specified, the value of the element associated with the default case label;

• No additional value.

The values of the constant expressions for the case labels of a single union definition must be distinct. A union type can
contain a default label only where the values given in the non-default labels do not cover the entire range of the union's
discriminant type.

Access to the discriminator and the related element is language-mapping dependent.

NOTE: While any ISO Latin-1 (8859.1) IDL character literal may be used in a <case_label> in a union definition whose
discriminator type is char, not all of these characters are present in all transmission code sets that may be negotiated by GIOP
or in all native code sets that may be used by implementation language compilers and runtimes. When an attempt is made to
marshal to CDR a union whose discriminator value of char type is not available in the negotiated transmission code set, or to
demarshal from CDR a union whose discriminator value of char type is not available in the native code set, a
DATA_CONVERSION system exception is raised. Therefore, to ensure portability and interoperability, care must be
exercised when assigning the <case_label> for a union member whose discriminator type is char. Due to these issues, use
of char types as the discriminator type for unions is not recommended.

7.11.2.3 Constructed Recursive Types and IForward Declarations

The IDL syntax allows the generation of recursive structures and unions via members that have a sequence type. The
element type of a recursive sequence struct or union member must identify a struct, union, or valuetype. (A valuetype is
allowed to have a member of its own type either directly or indirectly through a member of a constructed type—see
7.9.1.6, Value Type Example.) For example, the following is legal:
Common Object Request Broker Architecture (CORBA), v3.1.1 65

struct Foo {
long value;
sequence<Foo> chain; // Deprecated (see Section 7.11.6)

}

See Sequences on page 68 for details of the sequence template type.

IDL supports recursive types via a forward declaration for structures and unions (as well as for valuetypes—see 7.9.1.6,
Value Type Example). Because anonymous types are deprecated (see Deprecated Anonymous Types on page 70), the
previous example is better written as:

struct Foo; // Forward declaration
typedef sequence<Foo> FooSeq;
struct Foo {

long value;
FooSeq chain;

};

The forward declaration for the structure enables the definition of the sequence type FooSeq, which is used as the type
of the recursive member.

Forward declarations are legal for structures and unions. A structure or union type is termed incomplete until its full
definition is provided; that is, until the scope of the structure or union definition is closed by a terminating “}.” For
example:

struct Foo; // Introduces Foo type name,
// Foo is incomplete now
// ...

struct Foo {
// ...

}; // Foo is complete at this point

If a structure or union is forward declared, a definition of that structure or union must follow the forward declaration in
the same source file. Compilers shall issue a diagnostic if this rule is violated. Multiple forward declarations of the same
structure or union are legal.

If a sequence member of a structure or union refers to an incomplete type, the structure or union itself remains incomplete
until the member’s definition is completed. For example:

struct Foo;
typedef sequence<Foo> FooSeq;
struct Bar {

long value;
FooSeq chain; //Use of incomplete type

}; //Bar itself remains incomplete
struct Foo {

// ...
}; //Foo and Bar are complete

Compilers shall issue a diagnostic if this rule is violated.

Recursive definitions can span multiple levels. For example:
66 Common Object Request Broker Architecture (CORBA), v3.1.1

union Bar; // Forward declaration
typedef sequence<Bar> BarSeq;
union Bar switch(long) { // Define incomplete union

case 0:
long l_mem;

case 1:
struct Foo {

double d_mem;
BarSeq nested; // OK, recurse on enclosing

// incomplete type
} s_mem;

};

An incomplete type can only appear as the element type of a sequence definition. A sequence with incomplete element
type is termed an incomplete sequence type. For example:

struct Foo; // Forward declaration
typedef sequence<Foo> FooSeq; // incomplete

An incomplete sequence type can appear only as the element type of another sequence, or as the member type of a
structure or union definition. For example:

struct Foo; // Forward declaration
typedef sequence<Foo> FooSeq; // OK
typedef sequence<FooSeq> FooTree; // OK

interface I {
FooSeq op1(); // Illegal, FooSeq is incomplete
void op2(// Illegal, FooTree is incomplete

in FooTree t
);

};

struct Foo { // Provide definition of Foo
long l_mem;
FooSeq chain; // OK
FooTree tree; // OK

};

interface J {
FooSeq op1(); // OK, FooSeq is complete
void op2(

in FooTree t // OK, FooTree is complete
);

};

Compilers shall issue a diagnostic if this rule is violated.

7.11.2.4 Enumerations

Enumerated types consist of ordered lists of identifiers. The syntax is:
Common Object Request Broker Architecture (CORBA), v3.1.1 67

(78)<enum_type>::=“enum” <identifier>
“{” <enumerator> { “,” <enumerator> }∗ “}”

(79) <enumerator>::=<identifier>

A maximum of 232 identifiers may be specified in an enumeration; as such, the enumerated names must be mapped to a
native data type capable of representing a maximally-sized enumeration. The order in which the identifiers are named in
the specification of an enumeration defines the relative order of the identifiers. Any language mapping that permits two
enumerators to be compared or defines successor/predecessor functions on enumerators must conform to this ordering
relation. The <identifier> following the enum keyword defines a new legal type. Enumerated types may also be named
using a typedef declaration.

7.11.3 Template Types

The template types are:

(47)<template_type_spec>::=<sequence_type>
| <string_type>
| <wide_string_type>
| <fixed_pt_type>

7.11.3.1 Sequences

IDL defines the sequence type sequence. A sequence is a one-dimensional array with two characteristics: a maximum
size (which is fixed at compile time) and a length (which is determined at run time). The syntax is:

(80)<sequence_type>::=“sequence” “<” <simple_type_spec> “,” <positive_int_const> “>”
| “sequence” “<” <simple_type_spec> “>”

The second parameter in a sequence declaration indicates the maximum size of the sequence. If a positive integer constant
is specified for the maximum size, the sequence is termed a bounded sequence. If no maximum size is specified, size of
the sequence is unspecified (unbounded).

Prior to passing a bounded or unbounded sequence as a function argument (or as a field in a structure or union), the length
of the sequence must be set in a language-mapping dependent manner. After receiving a sequence result from an
operation invocation, the length of the returned sequence will have been set; this value may be obtained in a language-
mapping dependent manner.

A sequence type may be used as the type parameter for another sequence type. For example, the following:

typedef sequence< sequence<long> > Fred;

declares Fred to be of type “unbounded sequence of unbounded sequence of long.” Note that for nested sequence
declarations, white space must be used to separate the two “>” tokens ending the declaration so they are not parsed as a
single “>>” token.

7.11.3.2 Strings

IDL defines the string type string consisting of all possible 8-bit quantities except null. A string is similar to a sequence
of char. As with sequences of any type, prior to passing a string as a function argument (or as a field in a structure or
union), the length of the string must be set in a language-mapping dependent manner. The syntax is:

(81)<string_type>::=“string” “<” <positive_int_const> “>”
| “string”
68 Common Object Request Broker Architecture (CORBA), v3.1.1

The argument to the string declaration is the maximum size of the string. If a positive integer maximum size is specified,
the string is termed a bounded string. If no maximum size is specified, the string is termed an unbounded string.

Strings are singled out as a separate type because many languages have special built-in functions or standard library
functions for string manipulation. A separate string type may permit substantial optimization in the handling of strings
compared to what can be done with sequences of general types.

7.11.3.3 Wstrings

The wstring data type represents a sequence of wchar, except the wide character null. The type wstring is similar to that
of type string, except that its element type is wchar instead of char. The actual length of a wstring is set at run-time and,
if the bounded form is used, must be less than or equal to the bound. The syntax for defining a wstring is:

(82) <wide_string_type>::=“wstring” “<” <positive_int_const> “>”
| “wstring”

7.11.3.4 Fixed Type

The fixed data type represents a fixed-point decimal number of up to 31 significant digits. The scale factor is a non-
negative integer less than or equal to the total number of digits (note that constants with effectively negative scale, such
as 10000, are always permitted).

The fixed data type will be mapped to the native fixed point capability of a programming language, if available. If there
is not a native fixed point type, then the IDL mapping for that language will provide a fixed point data type. Applications
that use the IDL fixed point type across multiple programming languages must take into account differences between the
languages in handling rounding, overflow, and arithmetic precision. The syntax of fixed type is:

(96)<fixed_pt_type>::=“fixed” “<“ <positive_int_const> “,” <positive_int_const> “>”
(97) <fixed_pt_const_type>::=“fixed”

7.11.4 Complex Declarator

7.11.4.1 Arrays

IDL defines multidimensional, fixed-size arrays. An array includes explicit sizes for each dimension.

The syntax for arrays is:

(83)<array_declarator>::=<identifier> <fixed_array_size>+

(84) <fixed_array_size>::=“[” <positive_int_const> “]”

The array size (in each dimension) is fixed at compile time. When an array is passed as a parameter in an operation
invocation, all elements of the array are transmitted.

The implementation of array indices is language mapping specific; passing an array index as a parameter may yield
incorrect results.

7.11.5 Native Types

IDL provides a declaration for use by object adapters to define an opaque type whose representation is specified by the
language mapping for that object adapter. The syntax is:
Common Object Request Broker Architecture (CORBA), v3.1.1 69

(42)<type_dcl>::=“native” <simple_declarator>
(51)<simple_declarator>::=<identifier>

This declaration defines a new type with the specified name. A native type is similar to an IDL basic type. The possible
values of a native type are language-mapping dependent, as are the means for constructing them and manipulating them.
Any interface that defines a native type requires each language mapping to define how the native type is mapped into that
programming language.

A native type may be used only to define operation parameters, results, and exceptions. If a native type is used for an
exception, it must be mapped to a type in a programming language that can be used as an exception. Native type
parameters are permitted only in operations of local interfaces or valuetypes. Any attempt to transmit a value of a
native type in a remote invocation may raise the MARSHAL standard system exception.

It is recommended that native types be mapped to equivalent type names in each programming language, subject to the
normal mapping rules for type names in that language. For example, in a hypothetical Object Adapter IDL module

module HypotheticalObjectAdapter {
native Servant;
interface HOA {

Object activate_object(in Servant x);
};

};

The IDL type Servant would map to HypotheticalObjectAdapter::Servant in C++ and the activate_object
operation would map to the following C++ member function signature:

CORBA::Object_ptr activate_object(
HypotheticalObjectAdapter::Servant x);

The definition of the C++ type HypotheticalObjectAdapter::Servant would be provided as part of the C++
mapping for the HypotheticalObjectAdapter module.

NOTE: The native type declaration is provided specifically for use in object adapter interfaces, which require parameters whose
values are concrete representations of object implementation instances. It is strongly recommended that it not be used in service
or application interfaces. The native type declaration allows object adapters to define new primitive types without requiring
changes to the IDL language or to the IDL compiler.

7.11.6 Deprecated Anonymous Types

IDL currently permits the use of anonymous types in a number of places. For example:

struct Foo {
long value;
sequence<Foo> chain; // Legal (but deprecated)

}

Anonymous types cause a number of problems for language mappings and are therefore deprecated by this International
Standard. Anonymous types will be removed in a future version, so new IDL should avoid use of anonymous types and
use a typedef to name such types instead. Compilers need not issue a warning if a deprecated construct is encountered.

The following (non-exhaustive) examples illustrate deprecated uses of anonymous types.
70 Common Object Request Broker Architecture (CORBA), v3.1.1

Anonymous bounded string and bounded wide string types are deprecated. This rule affects constant definitions, attribute
declarations, return value and parameter type declarations, sequence and array element declarations, and structure, union,
exception, and valuetype member declarations. For example:

const string<5> GREETING = “Hello”; // Deprecated

interface Foo {
readonly attribute wstring<5> name; // Deprecated
wstring<5> op(in wstring<5> param); // Deprecated

};
typedef sequence<wstring<5> > WS5Seq; // Deprecated
typedef wstring<5> NameVector [10]; // Deprecated
struct A {

wstring<5> mem; // Deprecated
};
// Anonymous member type in unions, exceptions,
// and valuetypes are deprecated as well.

This is better written as:

typedef string<5> GreetingType;
const GreetingType GREETING = “Hello”;

typedef wstring<5> ShortWName;
interface Foo {

readonly attribute ShortWName name;
ShortWName op(in ShortWName param);

};
typedef sequence<ShortWName> NameSeq;
typedef ShortWName NameVector[10];
struct A {

GreetingType mem;
};

Anonymous fixed-point types are deprecated. This rule affects attribute declarations, return value and parameter type
declarations, sequence and array element declarations, and structure, union, exception, and valuetype member
declarations.

struct Foo {
fixed<10,5> member; // Deprecated

};

This is better written as:

typedef fixed<10,5> MyType;
struct Foo {

MyType member;
};

Anonymous member types in structures, unions, exceptions, and valuetypes are deprecated:
Common Object Request Broker Architecture (CORBA), v3.1.1 71

union U switch(long) {
case 1:

long array_mem[10]; // Deprecated
case 2:

sequence<long> seq_mem; // Deprecated
case 3:

string<5> bstring_mem;
};

This is better written as:

typedef long LongArray[10];
typedef sequence<long> LongSeq;
typedef string<5> ShortName;
union U switch (long) {

case 1:
LongArray array_mem;

case 2:
LongSeq seq_mem;

case 3:
ShortName bstring_mem;

};

Anonymous array and sequence elements are deprecated:

typedef sequence<sequence<long> > NumberTree; // Deprecated
typedef fixed<10,2> FixedArray[10];

This is better written as:

typedef sequence<long> ListOfNumbers;
typedef sequence<ListOfNumbers> NumberTree;
typedef fixed<10,2> Fixed_10_2;
typedef Fixed_10_2 FixedArray[10];

The preceding examples are not exhaustive. They simply illustrate the rule that, for a type to be used in the definition of
another type, constant, attribute, return value, parameter, or member, that type must have a name. Note that the following
example is not deprecated (even though stylistically poor):

struct Foo {
struct Bar {

long l_mem;
double d_mem;

} bar_mem_1; // OK, not anonymous
Bar bar_mem_2; // OK, not anonymous

};
typedef sequence<Foo::Bar> FooBarSeq; // Scoped names are OK
72 Common Object Request Broker Architecture (CORBA), v3.1.1

7.12 Exception Declaration

Exception declarations permit the declaration of struct-like data structures, which may be returned to indicate that an
exceptional condition has occurred during the performance of a request. The syntax is as follows:

(86)<except_dcl>::=“exception” <identifier> “{“ <member>* “}”

Each exception is characterized by its IDL identifier, an exception type identifier, and the type of the associated return
value (as specified by the <member> in its declaration). If an exception is returned as the outcome to a request, then the
value of the exception identifier is accessible to the programmer for determining which particular exception was raised.

If an exception is declared with members, a programmer will be able to access the values of those members when an
exception is raised. If no members are specified, no additional information is accessible when an exception is raised.

An identifier declared to be an exception identifier may thereafter appear only in a raises clause of an operation
declaration, and nowhere else.

A set of standard system exceptions is defined corresponding to standard run-time errors, which may occur during the
execution of a request. These standard system exceptions are documented in 8.12, Exceptions.

7.13 Operation Declaration

Operation declarations in IDL are similar to C function declarations. The syntax is:

(87) <op_dcl>::=[<op_attribute>] <op_type_spec>
<identifier> <parameter_dcls>
[<raises_expr>] [<context_expr>]

(88) <op_attribute>::=“oneway”
(89) <op_type_spec>::=<param_type_spec>

| “void”

An operation declaration consists of:

• An optional operation attribute that specifies which invocation semantics the communication system should provide
when the operation is invoked. Operation attributes are described in 7.13.1, Operation Attribute.

• The type of the operation’s return result; the type may be any type that can be defined in IDL. Operations that do not
return a result must specify the void type.

• An identifier that names the operation in the scope of the interface in which it is defined.

• A parameter list that specifies zero or more parameter declarations for the operation. Parameter declaration is
described in 7.13.2, Parameter Declarations.

• An optional raises expression that indicates which exceptions may be raised as a result of an invocation of this
operation. Raises expressions are described in 7.13.3, Raises Expressions.

• An optional context expression that indicates which elements of the request context may be consulted by the method
that implements the operation. Context expressions are described in 7.13.4, Context Expressions.

Some implementations and/or language mappings may require operation-specific pragmas to immediately precede the
affected operation declaration.
Common Object Request Broker Architecture (CORBA), v3.1.1 73

7.13.1 Operation Attribute

The operation attribute specifies which invocation semantics the communication service must provide for invocations of
a particular operation. An operation attribute is optional. The syntax for its specification is as follows:

(88)<op_attribute>::=“oneway”

When a client invokes an operation with the oneway attribute, the invocation semantics are best-effort, which does not
guarantee delivery of the call; best-effort implies that the operation will be invoked at most once. An operation with the
oneway attribute must not contain any output parameters and must specify a void return type. An operation defined with
the oneway attribute may not include a raises expression; invocation of such an operation, however, may raise a standard
system exception.

If an <op_attribute> is not specified, the invocation semantics is at-most-once if an exception is raised; the semantics
are exactly-once if the operation invocation returns successfully.

7.13.2 Parameter Declarations

Parameter declarations in IDL operation declarations have the following syntax:

(90)<parameter_dcls>::=“(” <param_dcl> { “,” <param_dcl> }∗ “)”
| “(” “)”

(91) <param_dcl>::=<param_attribute> <param_type_spec> <simple_declarator>
(92) <param_attribute>::=“in”

| “out”
| “inout”

(95)<param_type_spec>::=<base_type_spec>
| <string_type>
| <wide_string_type>
| <scoped_name>

A parameter declaration must have a directional attribute that informs the communication service in both the client and
the server of the direction in which the parameter is to be passed. The directional attributes are:

• in - the parameter is passed from client to server.

• out - the parameter is passed from server to client.

• inout - the parameter is passed in both directions.

It is expected that an implementation will not attempt to modify an in parameter. The ability to even attempt to do so is
language-mapping specific; the effect of such an action is undefined.

If an exception is raised as a result of an invocation, the values of the return result and any out and inout parameters are
undefined.

7.13.3 Raises Expressions

There are two kinds of raises expressions as described in this sub clause.
74 Common Object Request Broker Architecture (CORBA), v3.1.1

7.13.3.1 Raises Expression

A raises expression specifies which exceptions may be raised as a result of an invocation of the operation or accessing
(invoking the _get operation of) a readonly attribute. The syntax for its specification is as follows:

(93)<raises_expr>::=“raises” “(” <scoped_name>
{ “,” <scoped_name> }∗ “)”

The <scoped_name>s in the raises expression must be previously defined exceptions or native types. If a native type
is used as an exception for an operation, the operation must appear in either a local interface or a valuetype.

In addition to any operation-specific exceptions specified in the raises expression, there are a standard set of system
exceptions that may be signalled by the ORB. These standard system exceptions are described in 8.12.3, Standard System
Exception Definitions. However, standard system exceptions may not be listed in a raises expression.

The absence of a raises expression on an operation implies that there are no operation-specific exceptions. Invocations
of such an operation are still liable to receive one of the standard system exceptions.

7.13.3.2 getraises and setraises Expressions

getraises and setraises expressions specify which exceptions may be raised as a result of an invocation of the accessor
(_get) and a mutator (_set) functions of an attribute. The syntax for its specification is as follows:

(108)<attr_raises_expr> ::=<get_excep_expr> [<set_excep_expr>]
| <set_excep_expr>

(109) <get_excep_expr> ::= “getraises” <exception_list>
(110) <set_excep_expr> ::= “setraises” <exception_list>
(111) <exception_list::= “(” <scoped_name>

 { “,” <scoped_name> } * “)”

The <scoped_name>s in the getraises and setraises expressions must be previously defined exceptions.

In addition to any attribute-specific exceptions specified in the getraises and setraises expressions, there are a standard
set of exceptions that may be signalled by the ORB. These standard exceptions are described in 8.12.3, Standard System
Exception Definitions. However, standard exceptions may not be listed in a getraises or setraises expression.

The absence of a getraises or setraises expression on an attribute implies that there are no accessor-specific or
mutator-exceptions respectively. Invocations of such an accessor or mutator are still liable to receive one of the standard
exceptions.

NOTE: The exceptions associated with the accessor operation corresponding to a readonly attribute is specified using a
simple raises expression as specified in 7.13.3.1, Raises Expression. The getraises and setraises expressions are used
only in attributes that are not readonly.

7.13.4 Context Expressions

A context expression specifies which elements of the client’s context may affect the performance of a request by the
object. The syntax for its specification is as follows:

(94)<context_expr>::=“context” “(” <string_literal>
{ “,” <string_literal> }∗ “)”
Common Object Request Broker Architecture (CORBA), v3.1.1 75

The run-time system guarantees to make the value (if any) associated with each <string_literal> in the client’s context
available to the object implementation when the request is delivered. The ORB and/or object is free to use information in
this request context during request resolution and performance.

The absence of a context expression indicates that there is no request context associated with requests for this operation.

Each string_literal is a non-empty string. If the character '*' appears in string_literal, it must appear only once, as the
last character of string_literal, and must be preceded by one or more characters other than '*'.

The mechanism by which a client associates values with the context identifiers is described in 8.6, Context Object.

7.14 Attribute Declaration

An interface can have attributes as well as operations; as such, attributes are defined as part of an interface. An attribute
definition is logically equivalent to declaring a pair of accessor functions; one to retrieve the value of the attribute and one
to set the value of the attribute.

The syntax for attribute declaration is:

(85)<attr_dcl>::= <readonly_attr_spec>
| <attr_spec>

(104)<readonly_attr_spec> ::= “readonly” “attribute” <param_type_spec> <readonly_attr_declarator>
(105) <readonly_attr_declarator>::= <simple_declarator> <raises_expr>

| <simple_declarator>
{ “,” <simple_declarator> }*

(106) <attr_spec> ::= “attribute” <param_type_spec> <attr_declarator>
(107) <attr_declarator> ::=<simple_declarator> <attr_raises_expr>

| <simple_declarator>
 { “,” <simple_declarator> }*

The optional readonly keyword indicates that there is only a single accessor function—the retrieve value function.
Consider the following example:

interface foo {
enum material_t {rubber, glass};
struct position_t {

float x, y;
};

attribute float radius;
attribute material_t material;
readonly attribute position_t position;
• • •

};

The attribute declarations are equivalent to the following pseudo-specification fragment, assuming that one of the leading
‘_’s is removed by application of the Escaped Identifier rule described in Escaped Identifiers on page 34.

• • •
float __get_radius ();
void __set_radius (in float r);
76 Common Object Request Broker Architecture (CORBA), v3.1.1

material_t __get_material ();
void __set_material (in material_t m);
position_t __get_position ();
• • •

The actual accessor function names are language-mapping specific. The attribute name is subject to IDL’s name scoping
rules; the accessor function names are guaranteed not to collide with any legal operation names specifiable in IDL.

Attributes are inherited. An attribute name cannot be redefined to be a different type. See 7.19, CORBA Module for more
information on redefinition constraints and the handling of ambiguity.

7.15 Repository Identity Related Declarations

Two constructs that are provided for specifying information related to Repository Id are described in this sub clause.

7.15.1 Repository Identity Declaration

The syntax of a repository identity declaration is as follows:

(102)<type_id_dcl> ::=“typeid” <scoped_name> <string_literal>

A repository identifier declaration includes the following elements:

• the keyword typeid.

• a <scoped_name> that denotes the named IDL construct to which the repository identifier is assigned.

• a string literal that must contain a valid repository identifier value.

The <scoped_name> is resolved according to normal IDL name resolution rules, based on the scope in which the
declaration occurs. It must denote a previously-declared name of one of the following IDL constructs:

• module

• interface

• component

• home

• facet

• receptacle

• event sink

• event source

• finder

• factory

• event type

• value type

• value type member

• value box

• constant
Common Object Request Broker Architecture (CORBA), v3.1.1 77

• typedef

• exception

• attribute

• operation

• enum

• local

The value of the string literal is assigned as the repository identity of the specified type definition. This value will be
returned as the RepositoryId by the interface repository definition object corresponding to the specified type definition.
Language mappings constructs, such as Java helper classes, that return repository identifiers shall return the values
declared for their corresponding definitions.

At most one repository identity declaration may occur for any named type definition. An attempt to redefine the
repository identity for a type definition is illegal, regardless of the value of the redefinition.

If no explicit repository identity declaration exists for a type definition, the repository identifier for the type definition
shall be an IDL format repository identifier, as defined in 14.7.1, IDL Format.

7.15.2 Repository Identifier Prefix Declaration

The syntax of a repository identifier prefix declaration is as follows:

(103) <type_prefix_dcl>::=“typeprefix” <scoped_name> <string_literal>

A repository identifier declaration includes the following elements:

• The keyword typeprefix.

• A <scoped_name> that denotes an IDL name scope to which the prefix applies.

• A string literal that must contain the string to be prefixed to repository identifiers in the specified name scope.

The <scoped_name> is resolved according to normal IDL name resolution rules, based on the scope in which the
declaration occurs. It must denote a previously-declared name of one of the following IDL constructs:

• module

• interface (including abstract or local interface)

• value type (including abstract, custom, and box value types)

• event type (including abstract and custom value types)

• specification scope (::)

The specified string is prefixed to the body of all repository identifiers in the specified name scope, whose values are
assigned by default. The specified string shall be a list of one or more identifiers, separated by the “/” characters. These
identifiers are arbitrarily long sequences of alphabetic, digit, underscore (“_”), hyphen (“-”), and period (“.”) characters.
The string shall not contain a trailing slash (“/”), and it shall not begin with the characters underscore (“_”), hyphen
 (“-”) or period (“.”). To elaborate:
78 Common Object Request Broker Architecture (CORBA), v3.1.1

By “prefixed to the body of a repository identifier,” we mean that the specified string is inserted into the default IDL
format repository identifier immediately after the format name and colon (“IDL:”) at the beginning of the identifier. A
forward slash (‘/’) character is inserted between the end of the specified string and the remaining body of the repository
identifier.

The prefix is only applied to repository identifiers whose values are not explicitly assigned by a typeid declaration. The
prefix is applied to all such repository identifiers in the specified name scope, including the identifier of the construct that
constitutes the name scope.

7.15.3 Repository Id Conflict

In IDL that contains both pragma prefix/ID declarations (as defined in Pragma Directives for RepositoryId on page 277)
and typeprefix/typeid declarations (as defined in Repository Identity Declaration on page 77 and Repository Identifier
Prefix Declaration on page 78), if the repository id for an IDL element computed by using pragmas and typeid/typeprefix
are not identical it is an error. Note that this rule applies only when the repository id value computation uses explicitly
declared values from declarations of both kinds. If the repository id computed using explicitly declared values of one kind
conflicts with 9ne computed with implicit values of the other kind, the repository id based on explicitly declared values
shall prevail.

7.16 Event Declaration

Event type is a specialization of value type dedicated to asynchronous component communication. There are several kinds
of event type declarations: “regular” event types, abstract event types, and forward declarations.

An event declaration satisfies the following syntax:

(134)<event> ::= (<event_dcl> | <event_abs_dcl> | <event_forward_dcl>)

7.16.1 Regular Event Type

A regular event type satisfies the following syntax:

(137) <event_dcl>::=<event_header> “{” <value_element> * “}”
(138) <event_header>::=[“custom”] “eventtype”

<identifier> [<value_inheritance_spec>]

7.16.1.1 Event Header

The event header consists of two elements:

• The event type’s name and optional modifier specifying whether the event type uses custom marshaling.

• An optional value inheritance specification described in 7.9.1.3, Value Inheritance Specification.

7.16.1.2 Event Element

An event can contain all the elements that a value can as described in 7.9.1.2, Value Element (i.e., attributes, operations,
initializers, state members).
Common Object Request Broker Architecture (CORBA), v3.1.1 79

7.16.2 Abstract Event Type

(136)<event_abs_dcl> ::=“abstract” “eventtype” <identifier>
[<value_inheritance_spec>]
“{” <export>* “}”

Event types may also be abstract. They are called abstract because an abstract event type may not be instantiated. No
<state_member> or <initializers> may be specified. However, local operations may be specified. Essentially they are a
bundle of operation signatures with a purely local implementation.

Note that a concrete event type with an empty state is not an abstract event type.

7.16.3 Event Forward Declaration

(135)<event_forward_dcl> ::=[“abstract”] “eventtype” <identifier>

A forward declaration declares the name of an event type without defining it. This permits the definition of event types
that refer to each other. The syntax consists simply of the keyword eventtype followed by an <identifier> that names
the event type.

Multiple forward declarations of the same event type name are legal.

It is illegal to inherit from a forward-declared event type whose definition has not yet been seen.

7.16.4 Eventtype Inheritance

As event type is a specialization of value type then event type inheritance is directly analogous to value inheritance (see
7.9.1.3, Value Inheritance Specification for a detailed description of the analogous properties for valuetypes). In addition,
an event type could inherit from a single immediate base concrete event type, which must be the first element specified in
the inheritance list of the event declaration’s IDL. It may be followed by other abstract values or events from which it
inherits.

7.17 Component Declaration

7.17.1 Component

A component declaration describes an interface for a component. The salient characteristics of a component declaration
are as follows:

• A component declaration specifies the name of the component.

• A component declaration may specify a list of interfaces that the component supports.

• Component declarations support single inheritance from other component definitions.

• Component declarations may include in its body any attribute declarations that are legal in normal interface
declarations, together with declarations of facets and receptacles of the component, and the event sources and sinks
that the component defines.
80 Common Object Request Broker Architecture (CORBA), v3.1.1

7.17.1.1 Syntax

The syntax for declaring a component is as follows:

(112)<component> ::=<component_dcl>
| <component_forward_dcl>

(113) <component_forward_dcl> ::= “component” <identifier>
(114) <component_dcl> ::= <component_header>

 “{” <component_body> “}”

<component_forward_dcl> is described in 7.17.1.2, Forward Declaration.

<component_header> is described in 7.17.2, Component Header.

<component_body> is described in 7.17.3, Component Body.

7.17.1.2 Forward Declaration

A forward declaration declares the name of a component without defining it. This permits the definition of components
that refer to each other. The syntax consists simply of the keyword component followed by an <identifier> that names
the component. The actual definition must follow later in the specification.

Multiple forward declarations of the same component name are legal.

It is illegal to inherit from a forward-declared component whose definition has not yet been seen.

7.17.2 Component Header

A <component_header> declares the primary characteristics of a component interface.

7.17.2.1 Syntax

The syntax for declaring a component header is as follows:

(115) <component_header> ::= “component” <identifier>
[<component_inheritance_spec>]
[<supported_interface_spec>]

(116) <supported_interface_spec> ::= “supports” <scoped_name>
 { “,” <scoped_name> }*

(117) <component_inheritance_spec> ::= “:” <scoped_name>

A component header comprises the following elements:

• The keyword component.

• An <identifier> that names the component type.

• An optional <inheritance_spec>, consisting of a colon and a single <scoped_name> that must denote a previously-
defined component type.

• An optional <supported_interface_spec> that must denote one or more previously-defined IDL interfaces.
Common Object Request Broker Architecture (CORBA), v3.1.1 81

7.17.2.2 Supported interfaces

A component may optionally support one or more interfaces. When a component definition header includes a supports
clause as follows:

component <component_name> supports <interface_name> { … };

For further details see the CORBA Components specification, Clause 1, Supported Interfaces.

7.17.2.3 Component Inheritance

A component may optionally inherit from a component that supports one or more interfaces. This is specified by using the
inheritance construct that looks like:

component <component_name> : <component_name> { ... };

The following rules apply to component inheritance:

• A derived component type may not directly support an interface.

• The interface for a derived component type is derived from the interface of its base component type.

• A component type may have at most one base component type.

• The features of a component that are inherited by the derived component are:

• the provides statements

• the uses statements

• the emits statements

• the publishes statements

• the consumes statements

• attributes

See 7.17.2.3, Component Inheritance for details of component inheritance.

7.17.3 Component Body

(118) <component_body> ::=<component_export>*
(119) <component_export> ::=<provides_dcl> “;”

| <uses_dcl> “;”
| <emits_dcl> “;”
| <publishes_dcl> “;”
| <consumes_dcl> “;”
| <attr_dcl> “;”

A component forms a naming scope, nested within the scope in which the component is declared. A component body can
contain the following kinds of declarations:

• Facet declarations (provides)

• Receptacle declarations (uses)

• Event source declarations (emits or publishes)
82 Common Object Request Broker Architecture (CORBA), v3.1.1

• Event sink declarations (consumes)

• Attribute declarations (attribute and readonly attribute)

These declarations and their meanings are described in detail in the CORBA Components specification, Component Model
clause, “Facets and Navigation” through “Events” sub clauses.

7.17.3.1 Facets and Navigation

A component type may provide several independent interfaces to its clients in the form of facets. Facets are intended to
be the primary vehicle through which a component exposes its functional application behavior to clients during normal
execution. A component may exhibit zero or more facets.

Syntax

A facet is declared with the following syntax:

(120) <provides_dcl> ::= “provides” <interface_type> <identifier>
(121) <interface_type> ::= <scoped_name>

| “Object”

The interface type shall be either the keyword Object, or a scoped name that denotes a previously-declared interface type
that is not a component interface (i.e., is not the interface corresponding to a component definition). The identifier names
the facet within the scope of the component, allowing multiple facets of the same type to be provided by the component.

See the CORBA Components specification, Component Model clause, “Facets and Navigation” for further details.

7.17.3.2 Receptacles

A component definition can describe the ability to accept object references upon which the component may invoke
operations. When a component accepts an object reference in this manner, the relationship between the component and
the referent object is called a connection; they are said to be connected. The conceptual point of connection is called a
receptacle. A receptacle is an abstraction that is concretely manifested on a component as a set of operations for
establishing and managing connections. A component may exhibit zero or more receptacles.

Syntax

The syntax for describing a receptacle is as follows:

(122) <uses_dcl> ::= “uses” [“multiple”]
< interface_type> <identifier>

A receptacle declaration comprises the following elements:

• The keyword uses.

• The optional keyword multiple. The presence of this keyword indicates that the receptacle may accept multiple
connections simultaneously, and results in different operations on the component’s associated interface.

• An <interface_type>, which must be either the keyword Object or a scoped name that denotes the interface type that
the receptacle will accept. The scoped name must denote a previously-defined non-component interface type.

• An <identifier> that names the receptacle in the scope of the component.
Common Object Request Broker Architecture (CORBA), v3.1.1 83

See the CORBA Components specification (Part 3), Component Model clause, “Receptacles” sub clause for further
details.

7.17.4 Event Sources—publishers and emitters

An event source embodies the potential for the component to generate events of a specified type, and provides
mechanisms for associating consumers with sources.

There are two categories of event sources, publishers and emitters. Both are implemented using event channels supplied
by the container. An emitter can be connected to at most one consumer. A publisher can be connected through the channel
to an arbitrary number of consumers, who are said to subscribe to the publisher event source. A component may exhibit
zero or more emitters and publishers.

7.17.4.1 Publishers

Syntax

The syntax for an event publisher is as follows:

(124)<publishes_dcl> ::= “publishes” <scoped_name> <identifier>

A publisher declaration consists of the following elements:

• The keyword publishes.

• A <scoped_name> that denotes a previously-defined event type.

• An <identifier> that names the publisher event source in the scope of the component.

See the CORBA Components specification, Component Model clause, “Publisher” sub clause for further details.

7.17.4.2 Emitters

Syntax

The syntax for an emitter declaration is as follows:

(123)<emits_dcl> ::= “emits” <scoped_name> <identifier>

An emitter declaration consists of the following elements:

• The keyword emits.

• A <scoped_name> that denotes a previously-defined event type.

• An <identifier> that names the event source in the scope of the component.

See the CORBA Components specification, Component Model clause, “Emitters” sub clause for further details.

7.17.5 Event Sinks

An event sink embodies the potential for the component to receive events of a specified type. An event sink is, in essence,
a special-purpose facet whose type is an event consumer. External entities, such as clients or configuration services, can
obtain the reference for the consumer interface associated with the sink.
84 Common Object Request Broker Architecture (CORBA), v3.1.1

A component may exhibit zero or more consumers.

See the CORBA Components specification, Component Model clause, “Event Sinks” sub clause for further details.

Syntax

The syntax for an event sink declaration is as follows:

(125)<consumes_dcl> ::= “consumes” <scoped_name> <identifier>

An event sink declaration contains the following elements:

• The keyword consumes.

• A <scoped_name> that denotes a previously-defined event type.

• An <identifier> that names the event sink in the component’s scope.

See the CORBA Components specification, Component Model clause, “Event Sinks” sub clause for further details.

7.17.6 Basic and Extended Components

A component that satisfies the following properties is known as a Basic Component:

• It does not inherit from another component.

• Its declaration does not contain any provides statements.

• Its declaration does not contain any uses statements.

• Its declaration does not contain any publishes, emits, or consumes statements.

In effect a declaration of a Basic Component fits the pattern:

“component” <identifier> [<supported_interface_spec>]
“{“ {<attr_dcl> “;”}* “}”

A component that is not a Basic Component is referred to as an Extended Component.

7.18 Home Declaration

A home declaration describes an interface for managing instances of a specified component type.

7.18.1 Home

The salient characteristics of a home declaration are as follows:

• A home declaration must specify exactly one component type that it manages. Multiple homes may manage the same
component type.

• A home declaration may specify a primary key type. Primary keys are values assigned by the application environment
that uniquely identify component instances managed by a particular home. Primary key types must be value types

Common Object Request Broker Architecture (CORBA), v3.1.1 85

derived from Components::PrimaryKeyBase. There are more specific constraints placed on primary key types,
which are specified in the CORBA Components specification, Component Model clause, “Primary key type
constraints” sub clause.

• Home declarations may include any declarations that are legal in normal interface declarations.

• Home declarations support single inheritance from other home definitions, subject to a number of constraints that are
described in the CORBA Components specification, Component Model clause, “Home inheritance” sub clause.

• Home declarations may specify a list of interfaces that the home supports.

Syntax

The syntax for a home definition is as follows:

(126) <home_dcl> ::= <home_header> <home_body>

<home_header> is described in “Home Header.”

<home_body> is described in “Home Body.”

7.18.2 Home Header

A <home_header> describes fundamental characteristics of a home interface.

Syntax

The syntax for a home header declaration is as follows:

(127) <home_header> ::= “home” <identifier>
[<home_inheritance_spec>]
[<supported_interface_spec>]
“manages” <scoped_name>
[<primary_key_spec>]

(128) <home_inheritance_spec> ::= “:” <scoped_name>
(129) <primary_key_spec> ::= “primarykey” <scoped_name>

A <home_header> consists of the following elements:

• The keyword home.

• An <identifier> that names the home in the enclosing name scope.

• An optional <home_inheritance_spec>, consisting of a colon “:” and a single <scoped_name> that denotes a
previously defined home type.

• An optional <supported_interface_spec> that must denote one or more previously defined IDL interfaces.

• The keyword manages.

• A <scoped_name> that denotes a previously defined component type.

• An optional primary key definition, consisting of the keyword primarykey followed by a <scoped_name> that
denotes a previously defined value type that is derived from the abstract value type
Components::PrimaryKeyBase. Additional constraints on primary keys are described in the CORBA Components
specification, Component Model clause, “Primary key type constraints” sub clause.
86 Common Object Request Broker Architecture (CORBA), v3.1.1

Details of semantics can be found in the CORBA Components specification, Component Model clause, “Homes” sub
clause.

7.18.3 Home Body

(130) <home_body> ::= “{” <home_export>* “}”
(131) <home_export ::= <export>

| <factory_dcl> “;”
| <finder_dcl> “;”

7.18.3.1 Operation Declarations

A home body may include zero or more operation declarations, where the operation may be a factory operation, a finder
operation, or a normal operation or attribute.

Factory operations

The syntax of a factory operation is as follows:

(132) <factory_dcl> ::= “factory” <identifier>
“(“ [<init_param_decls>] “)”
[<raises_expr>]

A factor operation declaration consists of the following elements:

• The keyword factory.

• An <identifier> that names the operation in the scope of the home declaration.

• An optional list of initialization parameters (<init_param_decls>) enclosed in parentheses.

• An optional <raises_expr> declaring exceptions that may be raised by the operation.

A factory declaration has an implicit return value of type reference to component.

See the CORBA Components specification, Component Model clause, “Factory operations” sub clause for further details.

Finder operations

The syntax of a finder operation is as follows:

(133) <finder_dcl> ::= “finder” <identifier>
“(“ [<init_param_decls>] “)”
[<raises_expr>]

A finder operation declaration consists of the following elements:

• The keyword finder.

• An identifier that names the operation in the scope of the storage home declaration.

• An optional list of initialization parameters (<init_param_decls>) enclosed in parentheses.

• An optional <raises_expr> declaring exceptions that may be raised by the operation.

A finder declaration has an implicit return value of type reference to component.
Common Object Request Broker Architecture (CORBA), v3.1.1 87

See the CORBA Components specification, Component Model clause, “Finder operations” sub clause for further details.

7.19 CORBA Module

Names defined by the CORBA specification are in a module named CORBA. In an IDL specification, however, IDL
keywords such as Object must not be preceded by a “CORBA::” prefix. Other interface names such as TypeCode are
not IDL keywords, so they must be referred to by their fully scoped names (e.g., CORBA::TypeCode) within an IDL
specification.

For example in:

#include <orb.idl>
module M {

typedef CORBA::Object myObjRef; // Error: keyword Object scoped
typedef TypeCode myTypeCode; // Error: TypeCode undefined
typedef CORBA::TypeCode TypeCode;// OK

};

The file orb.idl contains the IDL definitions for the CORBA module. Except for CORBA::TypeCode, the file orb.idl
must be included in IDL files that use names defined in the CORBA module. IDL files that use CORBA::TypeCode
may obtain its definition by including either the file orb.idl or the file TypeCode.idl.

The exact contents of TypeCode.idl are implementation dependent. One possible implementation of TypeCode.idl may
be:

// PIDL
#ifndef _TYPECODE_IDL_
#define _TYPECODE_IDL_
#pragma prefix "omg.org"
module CORBA {

interface TypeCode;
};
#endif // _TYPECODE_IDL_

For IDL compilers that implicitly define CORBA::TypeCode, TypeCode.idl could consist entirely of a comment as
shown below:

// PIDL
// CORBA::TypeCode implicitly built into the IDL compiler
// Hence there are no declarations in this file

Because the compiler implicitly contains the required declaration, this file meets the requirement for compliance.

The version of CORBA specified in this release of the specification is version <x.y>, and this is reflected in the IDL for
the CORBA module by including the following pragma version (see 14.7.5.3, The Version Pragma):

#pragma version CORBA <x.y>

as the first line immediately following the very first CORBA module introduction line, which in effect associates that
version number with the CORBA entry in the IR. The version number in that version pragma line must be changed
whenever any changes are made to any remotely accessible parts of the CORBA module in an officially released OMG
standard.
88 Common Object Request Broker Architecture (CORBA), v3.1.1

7.20 Names and Scoping

IDL identifiers are case insensitive; that is, two identifiers that differ only in the case of their characters are considered
redefinitions of one another. However, all references to a definition must use the same case as the defining occurrence.
This allows natural mappings to case-sensitive languages. For example:

module M {
typedef long Long; // Error: Long clashes with keyword long
typedef long TheThing;
interface I {

typedef long MyLong;
myLong op1(// Error: inconsistent capitalization

in TheThing thething; // Error: TheThing clashes with thething
);

};
};

7.20.1 Qualified Names

A qualified name (one of the form <scoped-name>::<identifier>) is resolved by first resolving the qualifier <scoped-
name> to a scope S, and then locating the definition of <identifier> within S. The identifier must be directly defined in S
or (if S is an interface) inherited into S. The <identifier> is not searched for in enclosing scopes.

When a qualified name begins with “::”, the resolution process starts with the file scope and locates subsequent identifiers
in the qualified name by the rule described in the previous paragraph.

Every IDL definition in a file has a global name within that file. The global name for a definition is constructed as
follows.

Prior to starting to scan a file containing an IDL specification, the name of the current root is initially empty (“”) and the
name of the current scope is initially empty (“”). Whenever a module keyword is encountered, the string “::” and the
associated identifier are appended to the name of the current root; upon detection of the termination of the module, the
trailing “::” and identifier are deleted from the name of the current root. Whenever an interface, struct, union, or
exception keyword is encountered, the string “::” and the associated identifier are appended to the name of the current
scope; upon detection of the termination of the interface, struct, union, or exception, the trailing “::” and identifier
are deleted from the name of the current scope. Additionally, a new, unnamed, scope is entered when the parameters of an
operation declaration are processed; this allows the parameter names to duplicate other identifiers; when parameter
processing has completed, the unnamed scope is exited.

The global name of an IDL definition is the concatenation of the current root, the current scope, a “::”, and the
<identifier>, which is the local name for that definition.

Note that the global name in an IDL files correspond to an absolute ScopedName in the Interface Repository. (See
14.5.1, Supporting Type Definitions’).

Inheritance causes all identifiers defined in base interfaces, both direct and indirect, to be visible in derived interfaces.
Such identifiers are considered to be semantically the same as the original definition. Multiple paths to the same original
identifier (as results from the diamond shape in Figure 7.1 on page 49) do not conflict with each other.

Inheritance introduces multiple global IDL names for the inherited identifiers. Consider the following example:
Common Object Request Broker Architecture (CORBA), v3.1.1 89

interface A {
exception E {

long L;
};
void f() raises(E);

};

interface B: A {
void g() raises(E);

};

In this example, the exception is known by the global names ::A::E and ::B::E. Ambiguity can arise in specifications due
to the nested naming scopes. For example:

interface A {
typedef string<128> string_t;

};

interface B {
typedef string<256> string_t;

};

interface C: A, B {
attribute string_t Title; // Error: Ambiguous
attribute A::string_t Name; // OK
attribute B::string_t City; // OK

};

The declaration of attribute Title in interface C is ambiguous, since the compiler does not know which string_t is
desired. Ambiguous declarations yield compilation errors.

7.20.2 Scoping Rules and Name Resolution

Contents of an entire IDL file, together with the contents of any files referenced by #include statements, forms a naming
scope. Definitions that do not appear inside a scope are part of the global scope. There is only a single global scope,
irrespective of the number of source files that form a specification. The following kinds of definitions form scopes:

• module

• interface

• valuetype

• struct

• union

• operation

• exception

• eventtype

• component

• home
90 Common Object Request Broker Architecture (CORBA), v3.1.1

The scope for module, interface, valuetype, struct, exception, eventtype, component, and home begins immediately
following its opening ‘{‘ and ends immediately preceding its closing ‘}’. The scope of an operation begins immediately
following its ‘(‘ and ends immediately preceding its closing ‘)’. The scope of a union begins immediately following the
‘(‘ following the keyword switch, and ends immediately preceding its closing ‘}’. The appearance of the declaration of
any of these kinds in any scope, subject to semantic validity of such declaration, opens a nested scope associated with that
declaration.

An identifier can only be defined once in a scope. However, identifiers can be redefined in nested scopes. An identifier
declaring a module is considered to be defined by its first occurrence in a scope. Subsequent occurrences of a module
declaration with the same identifier within the same scope reopens the module and hence its scope, allowing additional
definitions to be added to it.

The name of an interface, value type, struct, union, exception, or a module may not be redefined within the immediate
scope of the interface, value type, struct, union, exception, or the module. For example:

module M {
typedef short M; // Error: M is the name of the module

 // in the scope of which the typedef is.
interface I {

void i (in short j); // Error: i clashes with the interface name I
};

};

An identifier from a surrounding scope is introduced into a scope if it is used in that scope. An identifier is not introduced
into a scope by merely being visible in that scope. The use of a scoped name introduces the identifier of the outermost
scope of the scoped name. For example in:

module M {
module Inner1 {

typedef string S1;
};

module Inner2 {
typedef string inner1; // OK

};
}

The declaration of Inner2::inner1 is OK because the identifier Inner1, while visible in module Inner2, has not been
introduced into module Inner2 by actual use of it. On the other hand, if module Inner2 were:

module Inner2{
typedef Inner1::S1 S2; // Inner1 introduced
typedef string inner1; // Error
typedef string S1; // OK

};

The definition of inner1 is now an error because the identifier Inner1 referring to the module Inner1 has been
introduced in the scope of module Inner2 in the first line of the module declaration. Also, the declaration of S1 in the
last line is OK since the identifier S1 was not introduced into the scope by the use of Inner1::S1 in the first line.
Common Object Request Broker Architecture (CORBA), v3.1.1 91

Only the first identifier in a qualified name is introduced into the current scope. This is illustrated by Inner1::S1 in the
example above, which introduces “Inner1” into the scope of “Inner2” but does not introduce “S1.” A qualified name of
the form “::X::Y::Z” does not cause “X” to be introduced, but a qualified name of the form “X::Y::Z” does.

Enumeration value names are introduced into the enclosing scope and then are treated like any other declaration in that
scope. For example:

interface A {
enum E { E1, E2, E3 }; // line 1

enum BadE { E3, E4, E5 }; // Error: E3 is already introduced
// into the A scope in line 1 above

};

interface C {
enum AnotherE { E1, E2, E3 };

};

interface D : C, A {
union U switch (E) {

case A::E1 : boolean b;// OK.
case E2 : long l; // Error: E2 is ambiguous (notwithstanding

// the switch type specification!!)
};

};

Type names defined in a scope are available for immediate use within that scope. In particular, see 7.11.2, Constructed
Types on cycles in type definitions.

A name can be used in an unqualified form within a particular scope; it will be resolved by successively searching farther
out in enclosing scopes, while taking into consideration inheritance relationships among interfaces. For example:

module M {
typedef long ArgType;
typedef ArgType AType; // line l1
interface B {

typedef string ArgType; // line l3
ArgType opb(in AType i); // line l2

};
};

module N {
typedef char ArgType; // line l4
interface Y : M::B {

void opy(in ArgType i); // line l5
};

};

The following scopes are searched for the declaration of ArgType used on line l5:

1. Scope of N::Y before the use of ArgType.
92 Common Object Request Broker Architecture (CORBA), v3.1.1

2. Scope of N::Y’s base interface M::B. (inherited scope).

3. Scope of module N before the definition of N::Y.

4. Global scope before the definition of N.

M::B::ArgType is found in step 2 in line l3, and that is the definition that is used in line l5, hence ArgType in line l5
is string. It should be noted that ArgType is not char in line l5. Now if line l3 were removed from the definition of
interface M::B, then ArgType on line l5 would be char from line l4, which is found in step 3.

Following analogous search steps for the types used in the operation M::B::opb on line l2, the type of AType used on
line l2 is long from the typedef in line l1 and the return type ArgType is string from line l3.

7.20.3 Special Scoping Rules for Type Names

Once a type has been defined anywhere within the scope of a module, interface or valuetype, it may not be redefined
except within the scope of a nested module, interface or valuetype, or within the scope of a derived interface or valuetype.
For example:

typedef short TempType; // Scope of TempType begins here

module M {
typedef string ArgType; // Scope of ArgType begins here
struct S {

::M::ArgType a1; // Nothing introduced here
M::ArgType a2; // M introduced here
::TempType temp; // Nothing introduced here

}; // Scope of (introduced) M ends here
// ...

}; // Scope of ArgType ends here

// Scope of global TempType ends here (at end of file)

The scope of an introduced type name is from the point of introduction to the end of its enclosing scope.

However, if a type name is introduced into a scope that is nested in a non-module scope definition, its potential scope
extends over all its enclosing scopes out to the enclosing non-module scope. (For types that are defined outside an inon-
module scope, the scope and the potential scope are identical.) For example:

module M {
typedef long ArgType;
const long I = 10;
typedef short Y;

interface A {
struct S {

struct T {
ArgType x[I]; // ArgType and I introduced
long y; // a new y is defined, the existing Y

// is not used
} m;

};
Common Object Request Broker Architecture (CORBA), v3.1.1 93

typedef string ArgType; // Error: ArgType redefined
enum I { I1, I2 }; // Error: I redefined
typedef short Y; // OK

}; // Potential scope of ArgType and I ends here

interface B : A {
typedef long ArgType // OK, redefined in derived interface
struct S { // OK, redefined in derived interface

ArgType x; // x is a long
A::ArgType y; // y is a string

};
};

};

A type may not be redefined within its scope or potential scope, as shown in the preceding example. This rule prevents
type names from changing their meaning throughout a non-module scope definition, and ensures that reordering of
definitions in the presence of introduced types does not affect the semantics of a specification.

Note that, in the following, the definition of M::A::U::I is legal because it is outside the potential scope of the I
introduced in the definition of M::A::S::T::ArgType. However, the definition of M::A::I is still illegal because it is
within the potential scope of the I introduced in the definition of M::A::S::T::ArgType.

module M {
typedef long ArgType;
const long I = 10;

interface A {
struct S {

struct T {
ArgType x[I]; // ArgType and I introduced

} m;
};
struct U {

long I; // OK, I is not a type name
};
enum I { I1, I2 }; // Error: I redefined

}; // Potential scope of ArgType and I ends here
};

Note that redefinition of a type after use in a module is OK as in the example:

typedef long ArgType;
module M {

struct S {
ArgType x; // x is a long

};

typedef string ArgType; // OK!
struct T {

ArgType y; // Ugly but OK, y is a string
};

}

94 Common Object Request Broker Architecture (CORBA), v3.1.1

8 ORB Interface

8.1 Overview

This clause introduces the operations that are implemented by the ORB core, and describes some basic ones, while
providing reference to the description of the remaining operations that are described elsewhere. The ORB interface is the
interface to those ORB functions that do not depend on which object adapter is used. These operations are the same for
all ORBs and all object implementations, and can be performed either by clients of the objects or implementations. The
Object interface contains operations that are implemented by the ORB, and are accessed as implicit operations of the
Object Reference. The ValueBase interface contains operations that are implemented by the ORB, and are accessed as
implicit operations of the ValueBase Reference.

Because the operations in this sub clause are implemented by the ORB itself, they are not in fact operations on objects,
although they are described that way for the Object or ValueBase interface operations and the language binding will,
for consistency, make them appear that way.

8.2 The ORB Operations

The ORB interface contains the operations that are available to both clients and servers. These operations do not depend
on any specific object adapter or any specific object reference.

module CORBA {

interface NVList; // forward declaration
interface OperationDef; // forward declaration
interface TypeCode; // forward declaration

typedef short PolicyErrorCode;

// for the definition of consts see PolicyErrorCode on page 128

typedef unsigned long PolicyType;

interface Request; // forward declaration
typedef sequence <Request> RequestSeq;

native AbstractBase;

exception PolicyError {PolicyErrorCode reason;};

typedef string RepositoryId;
typedef string Identifier;

// StructMemberSeq defined in Chapter 10
// UnionMemberSeq defined in Chapter 10
// EnumMemberSeq defined in Chapter 10

typedef unsigned short ServiceType;
Common Object Request Broker Architecture (CORBA), v3.1.1 95

typedef unsigned long ServiceOption;
typedef unsigned long ServiceDetailType;

typedef CORBA::OctetSeq ServiceDetailData;
typedef sequence<ServiceOption> ServiceOptionSeq;

const ServiceType Security = 1;

struct ServiceDetail {
ServiceDetailType service_detail_type;
ServiceDetailData service_detail;

};

typedef sequence<ServiceDetail> ServiceDetailSeq;

struct ServiceInformation {
ServiceOptionSeq service_options;
ServiceDetailSeq service_details;

};

native ValueFactory;

typedef string ORBid;

interface ORB {

typedef string ObjectId;
typedef sequence <ObjectId> ObjectIdList;

exception InvalidName {};

ORBid id();

string object_to_string (
in Object obj

);

Object string_to_object (
in string str

);

// Dynamic Invocation related operations

void create_list (
in long count,
out NVList new_list

);

void create_operation_list (
in OperationDef oper,
96 Common Object Request Broker Architecture (CORBA), v3.1.1

out NVList new_list
);

void get_default_context (
out Context ctx

);

void send_multiple_requests_oneway(
in RequestSeq req

);

void send_multiple_requests_deferred(
in RequestSeq req

);

boolean poll_next_response();

void get_next_response(
out Request req

) raises (WrongTransaction);

// Service information operations

boolean get_service_information (
in ServiceType service_type,
out ServiceInformation service_information

);

ObjectIdList list_initial_services ();

// Initial reference operation

Object resolve_initial_references (
in ObjectId identifier

) raises (InvalidName);

// Type code creation operations

TypeCode create_struct_tc (
in RepositoryId id,
in Identifier name,
in StructMemberSeq members

);

TypeCode create_union_tc (
in RepositoryId id,
in Identifier name,
in TypeCode discriminator_type,
in UnionMemberSeq members

);
Common Object Request Broker Architecture (CORBA), v3.1.1 97

TypeCode create_enum_tc (
in RepositoryId id,
in Identifier name,
in EnumMemberSeq members

);

TypeCode create_alias_tc (
in RepositoryId id,
in Identifier name,
in TypeCode original_type

);

TypeCode create_exception_tc (
in RepositoryId id,
in Identifier name,
in StructMemberSeq members

);

TypeCode create_interface_tc (
in RepositoryId id,
in Identifier name

);

TypeCode create_string_tc (
in unsigned long bound

);

TypeCode create_wstring_tc (
in unsigned long bound

);

TypeCode create_fixed_tc (
in unsigned short digits,
in short scale

);

TypeCode create_sequence_tc (
in unsigned long bound,
in TypeCode element type

);

TypeCode create_recursive_sequence_tc (// deprecated
in unsigned long bound,
in unsigned long offset

);

TypeCode create_array_tc (
in unsigned long length,
in TypeCode element_type

);
98 Common Object Request Broker Architecture (CORBA), v3.1.1

TypeCode create_value_tc (
in RepositoryId id,
in Identifier name,
in ValueModifier type_modifier,
in TypeCode concrete_base,
in ValueMembersSeq members

);

TypeCode create_value_box_tc (
in RepositoryId id,
in Identifier name,
in TypeCode boxed_type

);

TypeCode create_native_tc (
in RepositoryId id,
in Identifier name

);

TypeCode create_recursive_tc(
in RepositoryId id

);

TypeCode create_abstract_interface_tc(
in RepositoryId id,
in Identifier name

);

TypeCode create_local_interface_tc(
in RepositoryId id,
in Identifier name

);

TypeCode create_component_tc (
in RepositoryId id,
in Identifier name

);

TypeCode create_home_tc (
in RepositoryId id,
in Identifier name

);

TypeCode create_event_tc (
in RepositoryId id,
in Identifier name,
in ValueModifier type_modifier,
in TypeCode concrete_base,
in ValueMemberSeq members

);
Common Object Request Broker Architecture (CORBA), v3.1.1 99

// Thread related operations

boolean work_pending();

void perform_work();

void run();

void shutdown(
in boolean wait_for_completion

);

void destroy();

// Policy related operations

Policy create_policy(
in PolicyType type,
in any val

) raises (PolicyError);

// Dynamic Any related operations deprecated and removed
// from primary list of ORB operations

// Value factory operations

ValueFactory register_value_factory(
in RepositoryId id,
in ValueFactory_factory

);

void unregister_value_factory(in RepositoryId id);

ValueFactory lookup_value_factory(in RepositoryId id);

void register_initial_reference(
in ObjectId id,
in Object obj

) raises (InvalidName);
};

};

All types defined in this clause are part of the CORBA module. When referenced in IDL, the type names must be prefixed
by “CORBA::”.

The operations object_to_string and string_to_object are described in Converting Object References to Strings on
page 101.
100 Common Object Request Broker Architecture (CORBA), v3.1.1

For a description of the create_list and create_operation_list operations, see Polling on page 186. The
get_default_context operation is described in get_default_context on page 102. The
send_multiple_requests_oneway and send_multiple_requests_deferred operations are described in
send_multiple_requests on page 185. The poll_next_response and get_next_response operations are described in
get_next_response and poll_next_response on page 185.

The list_intial_services and resolve_initial_references operations are described in Obtaining Initial Object
References on page 117.

The Type code creation operations with names of the form create_<type>_tc are described in Creating TypeCodes on
page 143.

The work_pending, perform_work, shutdown, destroy and run operations are described in Thread-Related
Operations on page 102.

The create_policy operations is described in Create_policy on page 128.

The register_value_factory, unregister_value_factory and lookup_value_factory operations are described in
Language Specific Value Factory Requirements on page 163.

The register_initial_reference operation is described in register_initial_reference on page 409.

8.2.1 ORB Identity

8.2.1.1 id

ORBid id();

The id operation returns the identity of the ORB. The returned ORBid is the string that was passed to ORB_init (see
ORB Initialization on page 115) as the orb_identifier parameter when the ORB was created. If that was the empty string,
the returned string is the value associated with the -ORBid tag in the arg_list parameter. Calling id on the default ORB
returns the empty string.

8.2.2 Converting Object References to Strings

8.2.2.1 object_to_string

string object_to_string (
in Object obj

);

8.2.2.2 string_to_object

Object string_to_object (
in string str

);

Because an object reference is opaque and may differ from ORB to ORB, the object reference itself is not a convenient
value for storing references to objects in persistent storage or communicating references by means other than invocation.
Two problems must be solved: allowing an object reference to be turned into a value that a client can store in some other
medium, and ensuring that the value can subsequently be turned into the appropriate object reference.
Common Object Request Broker Architecture (CORBA), v3.1.1 101

An object reference may be translated into a string by the operation object_to_string. The value may be stored or
communicated in whatever ways strings may be manipulated. Subsequently, the string_to_object operation will accept
a string produced by object_to_string and return the corresponding object reference.

To guarantee that an ORB will understand the string form of an object reference, that ORB’s object_to_string operation
must be used to produce the string. For all conforming ORBs, if obj is a valid reference to an object, then
string_to_object(object_to_string(obj)) will return a valid reference to the same object, if the two operations are
performed on the same ORB. For all conforming ORB’s supporting IOP, this remains true even if the two operations are
performed on different ORBs.

8.2.3 Getting Service Information

8.2.3.1 get_service_information

boolean get_service_information (
in ServiceType service_type;
out ServiceInformation service_information;

);

The get_service_information operation is used to obtain information about CORBA facilities and services that are
supported by this ORB. The service type for which information is being requested is passed in as the in parameter
service_type, the values defined by constants in the CORBA module. If service information is available for that type,
that is returned in the out parameter service_information, and the operation returns the value TRUE. If no information
for the requested services type is available, the operation returns FALSE (i.e., the service is not supported by this ORB).

8.2.4 Creating a New Context

8.2.4.1 get_default_context

void get_default_context(// PIDL
out Context ctx // context object

);

This operation creates a new empty Context object every time it is called. The operation is defined in the ORB interface.

8.2.5 Thread-Related Operations

To support single-threaded ORBs, as well as multi-threaded ORBs that run multi-thread-unaware code, several operations
are included in the ORB interface. These operations can be used by single-threaded and multi-threaded applications. An
application that is a pure ORB client would not need to use these operations. Both the ORB::run and ORB::shutdown
are useful in fully multi-threaded programs.

These operations are defined on the ORB rather than on an object adapter to allow the main thread to be used for all kinds
of asynchronous processing by the ORB. Defining these operations on the ORB also allows the ORB to support multiple
object adapters, without requiring the application main to know about all the object adapters. The interface between the
ORB and an object adapter is not standardized.

8.2.5.1 work_pending

boolean work_pending();
102 Common Object Request Broker Architecture (CORBA), v3.1.1

This operation returns an indication of whether the ORB needs the main thread to perform some work.

A result of TRUE indicates that the ORB needs the main thread to perform some work and a result of FALSE indicates that
the ORB does not need the main thread.

8.2.5.2 perform_work

void perform_work();

If called by the main thread, this operation performs an implementation-defined unit of work; otherwise, it does nothing.

It is platform-specific how the application and ORB arrange to use compatible threading primitives.

The work_pending() and perform_work() operations can be used to write a simple polling loop that multiplexes the
main thread among the ORB and other activities. Such a loop would most likely be needed in a single-threaded server. A
multi-threaded server would need a polling loop only if there were both ORB and other code that required use of the main
thread.

Here is an example of such a polling loop:

// C++
for (;;) {

if (orb->work_pending()) {
orb->perform_work();

};
// do other things
// sleep?

};

Once the ORB has shutdown, work_pending and perform_work will raise the BAD_INV_ORDER exception with
minor code 4. An application can detect this exception to determine when to terminate a polling loop.

8.2.5.3 run

void run();

This operation provides execution resources to the ORB so that it can perform its internal functions. Single threaded ORB
implementations, and some multi-threaded ORB implementations, need the use of the main thread in order to function
properly. For maximum portability, an application should call either run or perform_work on its main thread. run may
be called by multiple threads simultaneously.

This operation will block until the ORB has completed the shutdown process, initiated when some thread calls
shutdown.

8.2.5.4 shutdown

void shutdown(
in boolean wait_for_completion

);

This operation instructs the ORB to shut down, that is, to stop processing in preparation for destruction. Shutting down
the ORB causes all object adapters to be destroyed, since they cannot exist in the absence of an ORB.
Common Object Request Broker Architecture (CORBA), v3.1.1 103

In the case of the POA, all POAManagers are deactivated prior to destruction of all POAs. The deactivation that the
ORB performs should be the equivalent of calling deactivate with the value TRUE for etherealize_objects and with the
wait_for_completion parameter same as what shutdown was called with.

Shut down is complete when all ORB processing (including request processing and object deactivation or other operations
associated with object adapters) has completed and the object adapters have been destroyed. In the case of the POA, this
means that all object etherealizations have finished and root POA has been destroyed (implying that all descendent POAs
have also been destroyed).

Shut down is complete when all ORB processing has completed and the object adapters have been destroyed. ORB
processing is defined as including request processing and object deactivation or other operations associated with object
adapters, and the forwarding of the responses from deferred synchronous invocations to their associated reply handlers. In
the case of the POA, this means that all object etherealizations have finished and root POA has been destroyed (implying
that all descendent POAs have also been destroyed)

If the wait_for_completion parameter is TRUE, this operation blocks until the shut down is complete. If an application
does this in a thread that is currently servicing an invocation, the ORB will not shutdown, and the BAD_INV_ORDER
system exception will be raised with the OMG minor code 3, and completion status COMPLETED_NO, since blocking
would result in a deadlock.

If the wait_for_completion parameter is FALSE, then shutdown may not have completed upon return. An ORB
implementation may require the application to call (or have a pending call to) run or perform_work after shutdown
has been called with its parameter set to FALSE, in order to complete the shutdown process.

Additionally in systems that have Portable Object Adapters (see Clause 14) shutdown behaves as if POA::destroy is
called on the Root POA with its first parameter set to TRUE and the second parameter set to the value of the
wait_for_completion parameter that shutdown is invoked with.

While the ORB is in the process of shutting down, the ORB operates as normal, servicing incoming and outgoing requests
until all requests have been completed. An implementation may impose a time limit for requests to complete while a
shutdown is pending.

Once an ORB has shutdown, only object reference management operations(duplicate, release and is_nil) may be
invoked on the ORB or any object reference obtained from it. An application may also invoke the destroy operation on
the ORB itself. Invoking any other operation will raise the BAD_INV_ORDER system exception with the OMG minor
code 4.

8.2.5.5 destroy

void destroy();

This operation destroys the ORB so that its resources can be reclaimed by the application. Any operation invoked on a
destroyed ORB reference will raise the OBJECT_NOT_EXIST exception. Once an ORB has been destroyed, another
call to ORB_init with the same ORBid will return a reference to a newly constructed ORB.

If destroy is called on an ORB that has not been shut down, it will start the shut down process and block until the ORB
has shut down before it destroys the ORB. The behavior is similar to that achieved by calling shutdown with the
wait_for_completion parameter set to TRUE. If an application calls destroy in a thread that is currently servicing an
invocation, the BAD_INV_ORDER system exception will be raised with the OMG minor code 3, since blocking would
result in a deadlock.

For maximum portability and to avoid resource leaks, an application should always call shutdown and destroy on all
ORB instances before exiting.
104 Common Object Request Broker Architecture (CORBA), v3.1.1

8.3 Object Reference Operations

There are some operations that can be done on any object. These are not operations in the normal sense, in that they are
implemented directly by the ORB, not passed on to the object implementation. We will describe these as being operations
on the object reference, although the interfaces actually depend on the language binding. As above, where we used
interface Object to represent the object reference, we define an interface for Object:

module CORBA {

interface DomainManager; // forward declaration
typedef sequence <DomainManager> DomainManagersList;

interface Policy; // forward declaration
typedef sequence <Policy> PolicyList;
typedef sequence<PolicyType> PolicyTypeSeq;
exception InvalidPolicies { sequence <unsigned short> indices; };

interface Context; // forward declaration

typedef string Identifier;
interface Request; // forward declaration
interface NVList; // forward declaration
struct NamedValue{}; // an implicitly well known type
typedef unsigned long Flags;
interface InterfaceDef;

enum SetOverrideType {SET_OVERRIDE, ADD_OVERRIDE};

interface ORB; // PIDL forward declaration

interface Object { // PIDL

InterfaceDef get_interface ();

boolean is_nil();

Object duplicate ();

void release ();

boolean is_a (
in RepositoryId logical_type_id

);

boolean non_existent();

boolean is_equivalent (
in Object other_object

);
Common Object Request Broker Architecture (CORBA), v3.1.1 105

unsigned long hash(
in unsigned long maximum

);

void create_request (
in Context ctx
in Identifier operation,
in NVList arg_list,
inout NamedValue result,
out Request req,
in Flags req_flag

);

Policy get_policy (
in PolicyType policy_type

);

DomainManagersList get_domain_managers ();

Object set_policy_overrides(
in PolicyList policies,
in SetOverrideType set_add

) raises (InvalidPolicies);

Policy get_client_policy(
in PolicyType type

);

PolicyList get_policy_overrides(
in PolicyTypeSeq types

);

boolean validate_connection(
out PolicyList inconsistent_policies

);

Object get_component ();

string respository_id();

ORB get_orb();
};

};

The create_request operation is part of the Object interface because it creates a pseudo-object (a Request) for an object.
It is described with the other Request operations in Request Operations on page 179.

Unless otherwise stated below, the operations in the IDL above do not require access to remote information.
106 Common Object Request Broker Architecture (CORBA), v3.1.1

8.3.1 Determining the Object Interface

8.3.1.1 get_interface

InterfaceDef get_interface();

get_interface, returns an object in the Interface Repository that describes the most derived type of the object addressed
by the reference. See the Interface Repository clause for a definition of operations on the Interface Repository. The
implementation of this operation may involve contacting the ORB that implements the target object.

If the interface repository is not available, get_interface raises INTF_REPOS with standard minor code 1. If the
interface repository does not contain an entry for the object's (most derived) interface, get_interface raises
INTF_REPOS with standard minor code 2.

8.3.1.2 repository_id

repository_id returns the repository ID of an object (see Component Interface Repository Interfaces on page 262 for details
of repository IDs). The implementation of this operation must contact the ORB that implements the target object.

8.3.2 Duplicating and Releasing Copies of Object References

8.3.2.1 duplicate

Object duplicate();

8.3.2.2 release

void release();

Because object references are opaque and ORB-dependent, it is not possible for clients or implementations to allocate
storage for them. Therefore, there are operations defined to copy or release an object reference.

If more than one copy of an object reference is needed, the client may create a duplicate. Note that the object
implementation is not involved in creating the duplicate, and that the implementation cannot distinguish whether the
original or a duplicate was used in a particular request.

When an object reference is no longer needed by a program, its storage may be reclaimed by use of the release
operation. Note that the object implementation is not involved, and that neither the object itself nor any other references
to it are affected by the release operation.

8.3.3 Nil Object References

8.3.3.1 is_nil

boolean is_nil();

An object reference whose value is OBJECT_NIL denotes no object. An object reference can be tested for this value by
the is_nil operation. The object implementation is not involved in the nil test.
Common Object Request Broker Architecture (CORBA), v3.1.1 107

8.3.4 Equivalence Checking Operation

8.3.4.1 is_a

boolean is_a(
in RepositoryId logical_type_id

);

An operation is defined to facilitate maintaining type-safety for object references over the scope of an ORB.

The logical_type_id is a string denoting a shared type identifier (RepositoryId). The operation returns true if the
object is really an instance of that type, including if that type is an ancestor of the “most derived” type of that object.

Determining whether an object’s type is compatible with the logical_type_id may require contacting a remote ORB or
interface repository. Such an attempt may fail at either the local or the remote end. If is_a cannot make a reliable
determination of type compatibility due to failure, it raises an exception in the calling application code. This enables the
application to distinguish among the TRUE, FALSE, and indeterminate cases.

This operation exposes to application programmers functionality that must already exist in ORBs that support “type safe
narrow” and allows programmers working in environments that do not have compile time type checking to explicitly
maintain type safety.

This operation always returns TRUE for the logical_type_id IDL:omg.org/CORBA/Object:1.0

8.3.5 Probing for Object Non-Existence

8.3.5.1 non_existent

boolean non_existent ();

The non_existent operation may be used to test whether an object (e.g., a proxy object) has been destroyed. It does this
without invoking any application level operation on the object, and so will never affect the object itself. It returns true
(rather than raising CORBA::OBJECT_NOT_EXIST) if the ORB knows authoritatively that the object does not exist;
otherwise, it returns false.

Services that maintain state that includes object references, such as bridges, event channels, and base relationship
services, might use this operation in their “idle time” to sift through object tables for objects that no longer exist, deleting
them as they go, as a form of garbage collection. In the case of proxies, this kind of activity can cascade, such that
cleaning up one table allows others then to be cleaned up.

Probing for object non-existence may require contacting the ORB that implements the target object. Such an attempt may
fail at either the local or the remote end. If non-existent cannot make a reliable determination of object existence due to
failure, it raises an exception in the calling application code. This enables the application to distinguish among the true,
false, and indeterminate cases.

8.3.6 Object Reference Identity

In order to efficiently manage state that include large numbers of object references, services need to support a notion of
object reference identity. Such services include not just bridges, but relationship services and other layered facilities.
108 Common Object Request Broker Architecture (CORBA), v3.1.1

Two identity-related operations are provided. One maps object references into disjoint groups of potentially equivalent
references, and the other supports more expensive pairwise equivalence testing. Together, these operations support
efficient maintenance and search of tables keyed by object references.

8.3.6.1 Hashing Object Identifiers

hash

unsigned long hash(
in unsigned long maximum

);

Object references are associated with ORB-internal identifiers that may indirectly be accessed by applications using the
hash operation. The value of this identifier does not change during the lifetime of the object reference, and so neither
will any hash function of that identifier.

The value of this operation is not guaranteed to be unique; that is, another object reference may return the same hash
value. However, if two object references hash differently, applications can determine that the two object references are not
identical.

The maximum parameter to the hash operation specifies an upper bound on the hash value returned by the ORB. The
lower bound of that value is zero. Since a typical use of this feature is to construct and access a collision chained hash
table of object references, the more randomly distributed the values are within that range, and the cheaper those values are
to compute, the better.

For bridge construction, note that proxy objects are themselves objects, so there could be many proxy objects representing
a given “real” object. Those proxies would not necessarily hash to the same value.

8.3.6.2 Equivalence Testing

is_equivalent

boolean is_equivalent(
in Object other_object

);

The is_equivalent operation is used to determine if two object references are equivalent, so far as the ORB can easily
determine. It returns TRUE if the target object reference is known to be equivalent to the other object reference passed as
its parameter, and FALSE otherwise.

If two object references are identical, they are equivalent. Two different object references that in fact refer to the same
object are also equivalent.

ORBs are allowed, but not required, to attempt determination of whether two distinct object references refer to the same
object. In general, the existence of reference translation and encapsulation, in the absence of an omniscient topology
service, can make such determination impractically expensive. This means that a FALSE return from is_equivalent
should be viewed as only indicating that the object references are distinct, and not necessarily an indication that the
references indicate distinct objects. Setting of local policies on the object reference is not taken into consideration for the
purposes of determining object reference equivalence.

A typical application use of this operation is to match object references in a hash table. Bridges could use it to shorten the
lengths of chains of proxy object references. Externalization services could use it to “flatten” graphs that represent
cyclical relationships between objects. Some might do this as they construct the table, others during idle time.
Common Object Request Broker Architecture (CORBA), v3.1.1 109

8.3.7 Type Coercion Considerations

Many programming languages map Object to programming constructs that support inheritance. Mappings to languages
(such as C++ and Java) typically provide a mechanism for narrowing (down-casting) an object reference from a base
interface to a more derived interface. To do such down-casting in a type safe way, knowledge of the full inheritance
hierarchy of the target interface may be required. The implementation of down-cast must either contact an interface
repository or the target itself, to determine whether or not it is safe to down-cast the client’s object reference. This
requirement is not acceptable when a client is expecting only asynchronous communication with the target. Therefore, for
the appropriate languages an unchecked down-cast operation (also referred to as unchecked narrow operation) shall be
provided in the mapping of Object. This unchecked narrow always returns a stub of the requested type without checking
that the target really implements that interface.

8.3.8 Getting Policy Associated with the Object

8.3.8.1 get_policy

The get_policy operation returns the policy object of the specified type (see Policy Object on page 126), which applies to
this object. It returns the effective Policy for the object reference. The effective Policy is the one that would be used if a
request were made.

This Policy is determined first by obtaining the effective override for the PolicyType as returned by
get_client_policy. The effective override is then compared with the Policy as specified in the IOR. The effective
Policy is determined by reconciling the effective override and the IOR-specified Policy (see Server Side Policy
Management on page 132). If the two policies cannot be reconciled, the standard system exception INV_POLICY is
raised with standard minor code 1. The absence of a Policy value in the IOR implies that any legal value may be used.

Invoking non_existent on an object reference prior to get_policy ensures the accuracy of the returned effective
Policy. If get_policy is invoked prior to the object reference being bound, a compliant implementation shall attempt a
binding and then return the effective Policy. If the binding attempt fails it shall pass through the system exception
returned from the binding attempt. Note that if the effective Policy may change from invocation to invocation due to
transparent rebinding.

Policy get_policy (
in PolicyType policy_type

);

Parameter(s)

• policy_type
The type of policy to be obtained.

Return Value

A Policy object of the type specified by the policy_type parameter.

Exception(s)

• CORBA::INV_POLICY
Raised when the value of policy type is not valid either because the specified type is not supported by this ORB
or because a policy object of that type is not associated with this Object.
110 Common Object Request Broker Architecture (CORBA), v3.1.1

The implementation of this operation may involve remote invocation of an operation (e.g.,
DomainManager::get_domain_policy for some security policies) for some policy types.

8.3.8.2 get_client_policy

Policy get_client_policy(
in PolicyType type

);

Returns the effective overriding Policy for the object reference. The effective override is obtained by first checking for an
override of the given PolicyType at the Object scope, then at the Current scope, and finally at the ORB scope. If no
override is present for the requested PolicyType, a system-dependent default value for that Policy Type may be returned.
A nil Policy reference may also be returned to indicate that there is no default for the policy. Portable applications are
expected to set the desired “defaults” at the ORB scope since default Policy values are not specified.

8.3.8.3 get_policy_overrides

PolicyList get_policy_overrides(
in PolicyTypeSeq types

);

Returns the list of Policy overrides (of the specified policy types) set at the Object scope. If the specified sequence is
empty, all Policy overrides at this scope will be returned. If none of the requested PolicyTypes are overridden at the
Object scope, an empty sequence is returned.

8.3.9 Overriding Associated Policies on an Object Reference

8.3.9.1 set_policy_overrides

The set_policy_overrides operation returns a new object reference with the new policies associated with it. It takes
two input parameters. The first parameter policies is a sequence of references to Policy objects. The second parameter
set_add of type SetOverrideType indicates whether these policies should be added onto any other overrides that
already exist (ADD_OVERRIDE) in the object reference, or they should be added to a clean override free object
reference (SET_OVERRIDE). This operation associates the policies passed in the first parameter with a newly created
object reference that it returns. Only certain policies that pertain to the invocation of an operation at the client end can be
overridden using this operation. Attempts to override any other policy will result in the raising of the
CORBA::NO_PERMISSION exception.

enum SetOverrideType {SET_OVERRIDE, ADD_OVERRIDE};

Object set_policy_overrides(
in PolicyList policies,
in SetOverrideType set_add

) raises (InvalidPolicies);

Parameter(s)

• policies
A sequence of Policy objects that are to be associated with the new copy of the object reference returned by this
operation. If the sequence contains two or more Policy objects with the same PolicyType value, the operation
raises the standard system exception BAD_PARAM with minor code 30.
Common Object Request Broker Architecture (CORBA), v3.1.1 111

• set_add
Whether the association is in addition to (ADD_OVERRIDE) or as a replacement of (SET_OVERRIDE) any
existing overrides already associated with the object reference. If the value of this parameter is SET_OVERRIDE,
the supplied policies completely replace all existing overrides associated with the object reference. If the value of
this parameter is ADD_OVERRIDE, the supplied policies are added to the existing overrides associated with the
object reference, except that if a supplied Policy object has the same PolicyType value as an existing override, the
supplied Policy object replaces the existing override.

Return Value

A copy of the object reference with the overrides from policies associated with it in accordance with the value of
set_add.

Exception(s)

• InvalidPolicies
Raised when an attempt is made to override any policy that cannot be overridden.

8.3.10 Validating Connection

8.3.10.1 validate_connection

boolean validate_connection(
out PolicyList inconsistent_policies

);

Returns the value TRUE if the current effective policies for the Object will allow an invocation to be made. If the object
reference is not yet bound, a binding will occur as part of this operation. If the object reference is already bound, but
current policy overrides have changed or for any other reason the binding is no longer valid, a rebind will be attempted
regardless of the setting of any RebindPolicy override. The validate_connection operation is the only way to force such
a rebind when implicit rebinds are disallowed by the current effective RebindPolicy. The attempt to bind or rebind may
involve processing GIOP LocateRequests by the ORB.

If the RoutingPolicy ROUTE_FORWARD or ROUTE_STORE_AND_FORWARD are in effect when
validate_connection is invoked then the client ORB shall attempt to open a connection for the first hop to the first
target Router (applies to both Router and PersistentRequestRouter) as if it were the target Object and return
success or failure based on success or failure to establish this connection.

Returns the value FALSE if the current effective policies would cause an invocation to raise the standard system
exception INV_POLICY. If the current effective policies are incompatible, the out parameter inconsistent_policies
contains those policies causing the incompatibility. This returned list of policies is not guaranteed to be exhaustive. If the
binding fails due to some reason unrelated to policy overrides, the appropriate standard system exception is raised.

8.3.11 Getting the Domain Managers Associated with the Object

8.3.11.1 get_domain_managers

The get_domain_managers operation allows administration services (and applications) to retrieve the domain
managers (see Management of Policies on page 131), and hence the security and other policies applicable to individual
objects that are members of the domain.
112 Common Object Request Broker Architecture (CORBA), v3.1.1

typedef sequence <DomainManager> DomainManagersList;

DomainManagersList get_domain_managers ();

Return Value

The list of immediately enclosing domain managers of this object. At least one domain manager is always returned in the
list since by default each object is associated with at least one domain manager at creation.

The implementation of this operation may involve contacting the ORB that implements the target object.

8.3.12 Getting Component Associated with the Object

8.3.12.1 get_component

Object get_component ();

If the target object reference is itself a component reference (i.e., it denotes the component itself), the get_component
operation returns the same reference (or another equivalent reference). If the target object reference is a facet reference
the get_component operation returns an object reference for the component. If the target reference is neither a
component reference nor a provided reference, get_component returns a nil reference.

8.3.13 Getting the ORB

8.3.13.1 get_orb

ORB get_orb();

This operation returns the local ORB that is handling this particular Object Reference.

8.3.14 LocalObject Operations

Local interfaces are implemented by using CORBA::LocalObject, which derives from CORBA::Object and provides
implementations of Object pseudo operations and any other ORB specific support mechanisms that are appropriate for
such objects. Object implementation techniques are inherently language mapping specific. Therefore, the LocalObject
type is not defined in IDL, but is specified by each language mapping.

• The LocalObject type provides implementations of the following Object pseudo-operations that raise the
NO_IMPLEMENT system exception with standard minor code 8:

• get_interface

• get_domain_managers

• get_policy

• get_client_policy

• set_policy_overrides

• get_policy_overrides

• validate_connection

• get_component

• respository_id
Common Object Request Broker Architecture (CORBA), v3.1.1 113

• The LocalObject type provides implementations of the following pseudo-operations:

• non_existent - always returns false.

• hash - returns a hash value that is consistent for the lifetime of the object.

• is_equivalent - returns true if the references refer to the same LocalObject implementation.

• is_a - returns TRUE if the LocalObject derives from or is itself the type specified by the logical_type_id
argument.

• get_orb - The default behavior of this operation when invoked on a reference to a local object is to return the
system exception NO_IMPLEMENT with standard minor code 8. Certain local objects that have close association
with an ORB, like POAs, Current objects and certain portable interceptors related local objects override the default
behavior and return a reference to the ORB that they are associated with. These are documented in the sub clauses
where these local objects are specified

• Attempting to use a LocalObject to create a DII request shall result in a NO_IMPLEMENT system exception with
standard minor code 4. Attempting to marshal or stringify a LocalObject shall result in a MARSHAL system exception
with standard minor code 4. Narrowing and widening of references to LocalObjects must work as for regular object
references.

• Local types cannot be marshaled and references to local objects cannot be converted to strings. Any attempt to marshal
a local object, such as via an unconstrained base interface, as an Object, or as the contents of an any, or to pass a local
object to ORB::object_to_string, shall result in a MARSHAL system exception with OMG minor code 4.

• The DII is not supported on local objects, nor are asynchronous invocation interfaces.

• Language mappings shall specify server side mechanisms, including base classes and/or skeletons if necessary, for
implementing local objects, so that invocation overhead is minimized.

• The usage of client side language mappings for local types shall be identical to those of equivalent unconstrained
types.

• Invocations on local objects are not ORB mediated. Specifically, parameter copy semantics are not honored,
interceptors are not invoked, and the execution context of a local object does not have ORB service Current object
contexts that are distinct from those of the caller. Implementations of local interfaces are responsible for providing the
parameter copy semantics expected by clients.

• Local objects have no inherent identities beyond their implementations’ identities as programming objects. The
lifecycle of the implementation is the same as the lifecycle of the reference.

• Instances of local objects defined as part of OMG specifications to be supplied by ORB products or object service
products shall be exposed through the ORB::resolve_initial_references operation or through some other local
object obtained from resolve_initial_references.

8.4 ValueBase Operations

ValueBase serves a similar role for value types that Object serves for interfaces. Its mapping is language-specific and
must be explicitly specified for each language.

Typically it is mapped to a concrete language type which serves as a base for all value types. Any operations that are
required to be supported for all values are conceptually defined on ValueBase, although in reality their actual mapping
depends upon the specifics of any particular language mapping.
114 Common Object Request Broker Architecture (CORBA), v3.1.1

Analogous to the definition of the Object interface for implicit operations of object references, the implicit operations of
ValueBase are defined on a pseudo-valuetype as follows:

module CORBA {
valuetype ValueBase{ PIDL

ValueDef get_value_def();
};

};

The get_value_def() operation returns a description of the value’s definition as described in the interface repository
(ValueDef on page 257).

8.5 ORB and OA Initialization and Initial References

Before an application can enter the CORBA environment, it must first:

• Be initialized into the ORB and possibly the object adapter (POA) environments.

• Get references to ORB pseudo-object (for use in future ORB operations) and perhaps other objects (including the root
POA or some Object Adapter objects).

The following operations are provided to initialize applications and obtain the appropriate object references:

• Operations providing access to the ORB. These operations reside in the CORBA module, but not in the ORB interface
and are described in ORB Initialization on page 115.

• Operations providing access to Object Adapters, Interface Repository, Naming Service, and other Object Services.
These operations reside in the ORB interface and are described in Obtaining Initial Object References on page 117.

8.5.1 ORB Initialization

When an application requires a CORBA environment it needs a mechanism to get the ORB pseudo-object reference and
possibly an OA object reference (such as the root POA). This serves two purposes. First, it initializes an application into
the ORB and OA environments. Second, it returns the ORB pseudo-object reference and the OA object reference to the
application for use in future ORB and OA operations.

The ORB and OA initialization operations must be ordered with ORB occurring before OA: an application cannot call
OA initialization routines until ORB initialization routines have been called for the given ORB. The operation to initialize
an application in the ORB and get its pseudo-object reference is not performed on an object. This is because applications
do not initially have an object on which to invoke operations. The ORB initialization operation is an application’s
bootstrap call into the CORBA world. The ORB_init call is part of the CORBA module but not part of the ORB
interface.

Applications can be initialized in one or more ORBs. When an ORB initialization is complete, its pseudo reference is
returned and can be used to obtain other references for that ORB.

In order to obtain an ORB pseudo-object reference, applications call the ORB_init operation. The parameters to the call
comprise an identifier for the ORB for which the pseudo-object reference is required, and an arg_list, which is used to
allow environment-specific data to be passed into the call. PIDL for the ORB initialization is as follows:
Common Object Request Broker Architecture (CORBA), v3.1.1 115

// PIDL
module CORBA {

typedef sequence <string> arg_list;
ORB ORB_init (inout arg_list argv, in ORBid orb_identifier);

};

The identifier for the ORB will be a name of type CORBA::ORBid. All ORBid strings other than the empty string are
allocated by ORB administrators and are not managed by the OMG. ORB administration is the responsibility of each ORB
supplier. ORB suppliers may optionally delegate this responsibility. ORBid strings other than the empty string are
intended to be used to uniquely identify each ORB used within the same address space in a multi-ORB application. These
special ORBid strings are specific to each ORB implementation and the ORB administrator is responsible for ensuring
that the names are unambiguous.

If an empty ORBid string is passed to ORB_init, then the arg_list arguments shall be examined to determine if they
indicate an ORB reference that should be returned. This is achieved by searching the arg_list parameters for one
preceded by “-ORBid” for example, “-ORBid example_orb” (the white space after the “-ORBid” tag is ignored) or “-
ORBidMyFavoriteORB” (with no white space following the “-ORBid” tag). Alternatively, two sequential parameters
with the first being the string “-ORBid” indicates that the second is to be treated as an ORBid parameter. If an empty
string is passed and no arg_list parameters indicate the ORB reference to be returned, the default ORB for the
environment will be returned.

Other parameters of significance to the ORB can also be identified in arg_list, for example, “Hostname,”
“SpawnedServer,” and so forth. To allow for other parameters to be specified without causing applications to be re-
written, it is necessary to specify the parameter format that ORB parameters may take. In general, parameters shall be
formatted as either one single arg_list parameter:

–ORB<suffix><optional white space> <value>

or as two sequential arg_list parameters:

-ORB<suffix>

<value>

Regardless of whether an empty or non-empty ORBid string is passed to ORB_init, the arg_list arguments are
examined to determine if any ORB parameters are given. If a non-empty ORBid string is passed to ORB_init, all ORBid
parameters in the arg_list are ignored. All other -ORB<suffix> parameters in the arg_list may be of significance
during the ORB initialization process.

Before ORB_init returns, it will remove from the arg_list parameter all strings that match the -ORB<suffix> pattern
described above and that are recognized by that ORB implementation, along with any associated sequential parameter
strings. If any strings in arg_list that match this pattern are not recognized by the ORB implementation, ORB_init will
raise the BAD_PARAM system exception instead.

The ORB_init operation may be called any number of times and shall return the same ORB reference when the same
ORBid string is passed, either explicitly as an argument to ORB_init or through the arg_list. All other -ORB<suffix>
parameters in the arg_list may be considered on subsequent calls to ORB_init.

NOTE: Whenever an ORB_init argument of the form -ORBxxx is specified, it is understood that the argument may be
represented in different ways in different languages. For example, in Java -ORBxxx is equivalent to a property named
org.omg.CORBA.ORBxxx.
116 Common Object Request Broker Architecture (CORBA), v3.1.1

8.5.1.1 Server ID

A Server ID must uniquely identify a server to an IMR. This specification only requires unique identification using a
string of some kind. We do not intend to make more specific requirements for the structure of a server ID.

The server ID may be specified by an ORB_init argument of the form

-ORBServerId

The value assigned to this property is a string. All templates created in this ORB will return this server ID in the
server_id attribute.

It is required that all ORBs in the same server share the same server ID. Specific environments may choose to implement
-ORBServerId in ways that automatically enforce this requirement.

For example, the org.omg.CORBA.ServerId system property may be set to the server ID in Java when a Java server is
activated. This system property is then picked up as part of the ORB_init call for every ORB created in the server.

8.5.1.2 Server Endpoint

The server endpoint information is passed into ORB_init by an argument of the form

-ORBListenEndpoints <endpoints>

The format of the <endpoints> argument is proprietary. All that is required by this specification is that each time
ORB_init is called with the same value for this argument, the resulting ORB will listen for requests on the same set of
endpoints, so that persistent object references for the ORB will continue to function correctly.

8.5.1.3 Starting Servers with No Proprietary Server Activation Support

Any server started with the flag:

-ORBNoProprietaryActivation

shall avoid the use of any proprietary activation framework.

8.5.2 Obtaining Initial Object References

Applications require a portable means by which to obtain their initial object references. References are required for the
root POA, POA Current, Interface Repository and various Object Services instances. (The POA is described in the
Portable Object Adapter clause; the Interface Repository is described in the Interface Repository clause; Object Services
are described in the individual service specifications.) The functionality required by the application is similar to that
provided by the Naming Service. However, the OMG does not want to mandate that the Naming Service be made
available to all applications in order that they may be portably initialized. Consequently, the operations shown in this sub
clause provide a simplified, local version of the Naming Service that applications can use to obtain a small, defined set of
object references that are essential to its operation. Because only a small well-defined set of objects are expected with this
mechanism, the naming context can be flattened to be a single-level name space. This simplification results in only two
operations being defined to achieve the functionality required.

Initial references are not obtained via a new interface; instead two operations are provided in the ORB pseudo-object
interface, providing facilities to list and resolve initial object references.
Common Object Request Broker Architecture (CORBA), v3.1.1 117

list_initial_services

typedef string ObjectId;
typedef sequence <ObjectId> ObjectIdList;
ObjectIdList list_initial_services ();

resolve_initial_references

exception InvalidName {};

Object resolve_initial_references (
in ObjectId identifier

) raises (InvalidName);

The resolve_initial_references operation is an operation on the ORB rather than the Naming Service’s
NamingContext. The interface differs from the Naming Service’s resolve in that ObjectId (a string) replaces the more
complex Naming Service construct (a sequence of structures containing string pairs for the components of the name). This
simplification reduces the name space to one context.

ObjectIds are strings that identify the object whose reference is required. To maintain the simplicity of the interface for
obtaining initial references, only a limited set of objects are expected to have their references found via this route. Unlike
the ORB identifiers, the ObjectId name space requires careful management. To achieve this, the OMG may, in the future,
define which services are required by applications through this interface and specify names for those services.

resolve_initial_references never returns a nil reference. Instead, the non-availability of a particular reference is
indicated by throwing an InvalidName exception (even if a nil reference is explicitly configured for an ObjectId).

Currently, reserved ObjectIds are RootPOA, POACurrent, InterfaceRepository, NameService, TradingService,
SecurityCurrent, TransactionCurrent, DynAnyFactory, ORBPolicyManager, PolicyCurrent,
NotificationService, TypedNotificationService, CodecFactory, PICurrent, ComponentHomeFinder and PSS.

Table 8.1- ObjectIds for resolve_initial_references

ObjectId Type of Object Reference Reference

RootPOA PortableServer::POA POA Interface on page 328.

POACurrent PortableServer::Current POA Interface on page 328.

InterfaceRepository CORBA::Repository
CORBA::ComponentIR::Repository

Repository on page 238 and
ComponentIR::Repository on
page 264.

NameService CosNaming::
NamingContext

Naming Service specification
(formal/00-06-19), the CosNaming
Module sub clause.

TradingService CosTrading::Lookup Trading Object Service specification
(formal/00-06-27), the Functional
Interfaces sub clause.

SecurityCurrent SecurityLevel1::Current or
SecurityLevel2::Current

Security Service specification
(formal/00-06-25), the Security
Operations on Current sub clause.
118 Common Object Request Broker Architecture (CORBA), v3.1.1

To allow an application to determine which objects have references available via the initial references mechanism, the
list_initial_services operation (also a call on the ORB) is provided. It returns an ObjectIdList, which is a sequence of
ObjectIds. ObjectIds are typed as strings. Each object, which may need to be made available at initialization time, is
allocated a string value to represent it.

In addition to defining the id, the type of object being returned must be defined; that is, “InterfaceRepository” returns
an object of type Repository, or ComponentIR::Repository, which is derived from Repository, depending on whether
the ORB supports components or not, and “NameService” returns a CosNaming::NamingContext object.

The application is responsible for narrowing the object reference returned from resolve_initial_references to the type
that was requested in the ObjectId. For example, for InterfaceRepository the object returned would be narrowed to
Repository type or ComponentIR::Repository type, depending on whether the ORB supports components.

Specifications for Object Services (see individual service specifications) state whether it is expected that a service’s initial
reference be made available via the resolve_initial_references operation or not; that is, whether the service is
necessary or desirable for bootstrap purposes.

TransactionCurrent CosTransaction::Current Transaction Service specification
(formal/00-06-28), the Transaction
Service Interfaces sub clause.

DynAnyFactory DynamicAny::
DynAnyFactory

Creating a DynAny Object on
page 204.

ORBPolicyManager CORBA::PolicyManager Policy Management Interfaces on
page 132.

PolicyCurrent CORBA::PolicyCurrent Policy Management Interfaces on
page 132.

NotificationService CosNotifyChannelAdmin::
EventChannelFactory

Notification Service specification
(formal/00-06-20)

TypedNotificationService CosTypedNotifyChannelAdmin::Typed
EventChannelFactory

Notification Service specification
(formal/00-06-20)

CodecFactory IOP::CodecFactory See Part 2 of this specification,
Architecture clause.

PICurrent PortableInterceptors::Current Portable Interceptor Current
Interface on page 387.

ComponentHomeFinder Components::HomeFinder Components specification
(formal/02-06-65).

PSS CosPersistentState::ConnectorRegistry Persistent State specification
(formal/02-09-06).

Table 8.1- ObjectIds for resolve_initial_references

ObjectId Type of Object Reference Reference
Common Object Request Broker Architecture (CORBA), v3.1.1 119

8.5.3 Configuring Initial Service References

8.5.3.1 ORB-specific Configuration

It is required that an ORB can be administratively configured to return an arbitrary object reference from
CORBA::ORB::resolve_initial_references for non-locality-constrained objects.

In addition to this required implementation-specific configuration, two CORBA::ORB_init arguments are provided to
override the ORB initial reference configuration.

8.5.3.2 ORBInitRef

The ORB initial reference argument, -ORBInitRef, allows specification of an arbitrary object reference for an initial
service. The format is:

-ORBInitRef <ObjectID>=<ObjectURL>

Examples of use are:

-ORBInitRef NameService=IOR:00230021AB...

-ORBInitRef NotificationService=corbaloc::555objs.com/NotificationService

-ORBInitRef TradingService=corbaname::555objs.com#Dev/Trader

<ObjectID> represents the well-known ObjectID for a service defined in the CORBA specification, such as
NameService. This mechanism allows an ORB to be configured with new initial service Object IDs that were not
defined when the ORB was installed.

<ObjectURL> can be any of the URL schemes supported by CORBA::ORB::string_to_object (ISO/IEC 19500-2 ,
Clause 7, ORB Interoperability Architecture - 7.6.1, Object URLs), with the exception of the corbaloc URL scheme with
the rir protocol (i.e., corbaloc:rir...). If a URL is syntactically malformed or can be determined to be invalid in an
implementation defined manner, ORB_init raises a BAD_PARAM exception.

8.5.3.3 ORBDefaultInitRef

The ORB default initial reference argument, -ORBDefaultInitRef, assists in resolution of initial references not explicitly
specified with -ORBInitRef. -ORBDefaultInitRef requires a URL that, after appending a slash ‘/’ character and a
stringified object key, forms a new URL to identify an initial object reference. For example:

-ORBDefaultInitRef corbaloc::555objs.com

A call to resolve_initial_references (see the “NotificationService”) with this argument results in a new URL:

corbaloc::555objs.com/NotificationService

That URL is passed to CORBA::ORB::string_to_object to obtain the initial reference for the service.

Another example is:

-ORBDefaultInitRef \
corbaname::555ResolveRefs.com,:555Backup.com#Prod/Local
120 Common Object Request Broker Architecture (CORBA), v3.1.1

After calling resolve_initial_references(“NameService”), one of the corbaname URLs

corbaname::555ResolveRefs.com#Prod/Local/NameService

or

corbaname::555Backup411.com#Prod/Local/NameService

is used to obtain an object reference from string_to_object. (In this example, Prod/Local/NameService represents a
stringified CosNaming::Name).

See Part 2 of this specification for details of the corbaloc and corbaname URL schemes. The -ORBDefaultInitRef
argument naturally extends to URL schemes that may be defined in the future, provided the final part of the URL is an
object key.

8.5.3.4 Configuration Effect on resolve_initial_references

Default Resolution Order

The default order for processing a call to CORBA::ORB::resolve_initial_references for a given <ObjectID> is:

1. Resolve with register_initial_reference entry if possible.

2. Resolve with -ORBInitRef for this <ObjectID> if possible

3. Resolve with pre-configured ORB settings if possible.

4. Resolve with an -ORBDefaultInitRef entry if possible.

ORB Configured Resolution Order

There are cases where the default resolution order may not be appropriate for all services and use of
-ORBDefaultInitRef may have unintended resolution side effects). For example, an ORB may use a proprietary service,
such as ImplementationRepository, for internal purposes and may want to prevent a client from unknowingly
diverting the ORB’s reference to an implementation repository from another vendor. To prevent this, an ORB is allowed
to ignore the -ORBDefaultInitRef argument for any or all <ObjectID>s for those services that are not OMG-specified
services with a well-known service name as accepted by resolve_initial_references. An ORB can only ignore the
-ORBDefaultInitRef argument but must always honor the -ORBInitRef argument.

8.5.3.5 Configuration Effect on list_initial_services

The <ObjectID>s of all -ORBInitRef arguments to ORB_init appear in the list of tokens returned by
list_initial_services as well as all ORB-configured <ObjectID>s. Any other tokens that may appear are
implementation-dependent.

The list of <ObjectID>s returned by list_initial_services can be a subset of the <ObjectID>s recognized as valid by
resolve_initial_references.
Common Object Request Broker Architecture (CORBA), v3.1.1 121

8.6 Context Object

8.6.1 Introduction

A context object contains a list of properties, each consisting of a name and a string value associated with that name. By
convention, context properties represent information about the client, environment, or circumstances of a request that are
passed as a single parameter representing that collection of information.

Context properties represent a portion of a client's or application’s environment that is meant to be propagated to (and
made available to) a server’s environment (for example, a window identifier, or user preference information). Once an
operation has been invoked in the server, the operation implementation may query its context object for these properties.

An operation definition may contain a context clause that specifies the context properties that may be of interest to a
particular operation. These context properties (if present for the actual call) are propagated to the server. A client-side
ORB may choose to pass more properties than are specified by an operation's context clause. An example of an operation
with a context clause is

interface Example {
void op() context("USER", "X*");

};

This context clause specifies that the “USER” property is to be made available to the server, as well as all properties with
names beginning with “X.” Note that there is no obligation on the client to actually pass values for these properties at run
time; if the client omits one or more properties, the call proceeds normally and the operation implementation simply will
not be able to retrieve the corresponding property values.

Property names are non-empty strings that cannot contain the character ‘*’ - there are no other syntactic restrictions on
property names. Property names that differ only in case are distinct names, so the following is a legal context clause that
transmits two distinct properties:

interface Example2 {
void op() context("FOO", "foo");

};

Context property values are strings. An empty string is a legal property value.

Property values are modified and accessed via the Context interface. A Context object represents a collection of
property values. Context objects may be connected into hierarchies; properties defined in child Context objects lower in
the hierarchy override properties in parent Context objects higher in the hierarchy.

8.6.2 Context Object Operations

Properties are represented as named value lists.

module CORBA {
 interface Context { // PIDL

void set_one_value(
 in Identifier prop_name, // property name to set
 in string value // property value to set

);
void set_values(
122 Common Object Request Broker Architecture (CORBA), v3.1.1

in NVList values // property values to set
);
 void get_values(

in Identifier start_scope, // search scope
in Flags op_flags, // operation flags
in Identifie prop_name, // name of property(s) to retrieve
out NVList values // requested property(s)

);
void delete_values(

in Identifie prop_name // name of property(s) to delete
);
 void create_child(

in Identifier ctx_name, // name of context object
out Context child_ctx // newly created context object

);
void delete(

 in Flags del_flags // flags controlling deletion
);

};
};

8.6.2.1 set_one_value

void set_one_value(
in Identifier prop_name, // property name to set
in string value // property value to set

);

This operation sets a single context object property. If prop_name is the empty string or contains the character ‘*,’ the
operation raises BAD_PARAM with minor code 35.

8.6.2.2 set_values

void set_values(
in NVLis values // property values to set

);

This operation sets one or more property values in its context object. If a property name appears more than once in the
NVList, the value with higher index (later in the list) overwrites the value with lower index.

The flags field of each passed NVList element must be zero. A non-zero flag in any of the NVList elements raises
INV_FLAGS.

The property name of each NVList element must be a non-empty string not containing the character ‘*’. Otherwise the
operation raises BAD_PARAM with minor code 35.

The value of each property of the passed NVList must be a (possibly empty) unbounded string. Property values other than
unbounded strings raise BAD_TYPECODE with minor code 3.
Common Object Request Broker Architecture (CORBA), v3.1.1 123

8.6.2.3 get_values

void get_values(
in Identifie start_scope, // search scope
in Flags op_flags, // operation flags
in Identifier prop_name, // name of property(s) to retrieve
out NVList values // requested property(s)

);

This operation returns an NVList with those properties that match the prop_name parameter. Legal values for
prop_name are:

• A non-empty string that does not contain the character ‘*.’

In this case, the values parameter returns the property with the name specified by prop_name.

• A string beginning with one or more characters other than ‘*,’ followed by a single ‘*’ at the end, such as “XYZ*.”

In this case, the values parameter contains the properties that have names beginning with “XYZ” (such as
“XYZABC” or “XYZ”).

If prop_name is the empty string, the string “*,” contains more than one ‘*’ character, or contains a ‘*’ anywhere but at
the end of the string, the operation raises BAD_PARAM with minor code 36.

The start_scope parameter controls the context object level at which to initiate the search for the specified properties
as follows:

• The start_scope parameter specifies the name of the context object in which the search for properties is to start.

• If the context object on which get_values is invoked has a name equal to start_scope, that context object becomes
the starting context object for the search.

• If start_scope is “” the context object on which get_values is invoked becomes the starting context object for the
search.

• If the context object on which get_values is invoked does not have a name equal to start_scope (and
start_scope is not “”), the parent context object is retrieved and its name compared to start_scope; this
process repeats until either a starting context object whose name equals start_scope is found, or the search
terminates because it runs out of parent objects.

The name of the root context object created by get_default_context is “RootContext.”

If no starting context object can be found, the operation raises BAD_CONTEXT with minor code 1.

• Once a starting context object is found, get_values searches for properties in the matching context object.

• If op_flags is CORBA::CTX_RESTRICT_SCOPE, get_values searches only the starting context object for
properties that match prop_name. (The value of CTX_RESTRICT_SCOPE is 15.)

• If op_flags is zero, get_values searches the starting context and its parent contexts for properties that match
prop_name. The property values that are returned are taken from the first context object in which they are found, so
properties in child contexts override the values of properties in parent contexts.

In either case, if no property matches prop_name, the operation raises BAD_CONTEXT with minor code 2.
124 Common Object Request Broker Architecture (CORBA), v3.1.1

8.6.2.4 delete_values

void delete_values(
 in Identifie prop_name // name of property(s) to delete

);

This operation deletes the properties that match prop_name. prop_name may have a trailing ‘*’ character, in which
case all properties whose name matches the specified prefix are deleted.

If prop_name is the empty string, the string "*", contains more than one ‘*’ character, or contains a ‘*’ anywhere but at
the end of the string, the operation raises BAD_PARAM with minor code 36. The operation only affects the context
object on which it is invoked (that is, parent contexts are never affected by delete_values).

If no property name matches prop_name, the operation raises BAD_CONTEXT with minor code 2.

8.6.2.5 create_child

void create_child(
 in Identifier ctx_name, // name of context object
out Context child_ctx // newly created context object

);

This operation creates an empty child context object. The child context has the name ctx_name. ctx_name may not be
the empty string or “RootContext;” otherwise, the operation raises BAD_PARAM with minor code 37. Calling
create_child more than once with the same name on the same parent context is legal and results in the creation of a
new, empty child context for each call.

8.6.2.6 delete

void delete(
in Flags del_flags // flags controlling deletion

);

This operation deletes the context object on which it is invoked:

• If del_flags is zero, the context object is deleted only if it has no child contexts; otherwise, if del_flags is zero and
the context object has child contexts, the operation raises BAD_PARAM with minor code 38.

• If del_flags is CORBA::CTX_DELETE_DESCENDANTS, the context object on which delete is invoked is destroyed,
together with (recursively) its child contexts. The value of CTX_DELETE_DESCENDANTS is 1.

If del_flags has a value other than zero or CTX_DELETE_DESCENDANTS, the operation raises INV_FLAGS.

8.7 Current Object

ORB and CORBA services may wish to provide access to information (context) associated with the thread of execution
in which they are running. This information is accessed in a structured manner using interfaces derived from the Current
interface defined in the CORBA module.

Each ORB or CORBA service that needs its own context derives an interface from the CORBA module's Current. Users
of the service can obtain an instance of the appropriate Current interface by invoking
ORB::resolve_initial_references. For example the Security service obtains the Current relevant to it by invoking.
Common Object Request Broker Architecture (CORBA), v3.1.1 125

ORB::resolve_initial_references(“SecurityCurrent”)

A CORBA service does not have to use this method of keeping context but may choose to do so.

module CORBA {
// interface for the Current object
 local interface Current {
};

};

Operations on interfaces derived from Current access state associated with the thread in which they are invoked, not
state associated with the thread from which the Current was obtained. This prevents one thread from manipulating
another thread’s state, and avoids the need to obtain and narrow a new Current in each method’s thread context.

Current objects must not be exported to other processes, or externalized with ORB::object_to_string. If any attempt
is made to do so, the offending operation will raise a MARSHAL system exception. Currents are per-process singleton
objects, so no destroy operation is needed.

8.8 Policy Object

8.8.1 Definition of Policy Object

An ORB or CORBA service may choose to allow access to certain choices that affect its operation. This information is
accessed in a structured manner using interfaces derived from the Policy interface defined in the CORBA module. A
CORBA service does not have to use this method of accessing operating options, but may choose to do so. The Security
Service in particular uses this technique for associating Security Policy with objects in the system.

module CORBA {
typedef unsigned long PolicyType;

// Basic IDL definition
interface Policy {

readonly attribute PolicyType policy_type;
Policy copy();
void destroy();

};

typedef sequence <Policy> PolicyList;
typedef sequence <PolicyType> PolicyTypeSeq;

};

PolicyType defines the type of Policy object. In general the constant values that are allocated are defined in conjunction
with the definition of the corresponding Policy object. The values of PolicyTypes for policies that are standardized by
OMG are allocated by OMG. Additionally, vendors may reserve blocks of 4096 PolicyType values identified by a 20 bit
Vendor PolicyType Valueset ID (VPVID) for their own use.
126 Common Object Request Broker Architecture (CORBA), v3.1.1

PolicyType which is an unsigned long consists of the 20-bit VPVID in the high order 20 bits, and the vendor assigned
policy value in the low order 12 bits. The VPVIDs 0 through \xf are reserved for OMG. All values for the standard
PolicyTypes are allocated within this range by OMG. Additionally, the VPVIDs \xfffff is reserved for experimental use
and OMGVMCID (8.12.3, Standard System Exception Definitions) is reserved for OMG use. These will not be allocated
to anybody. Vendors can request allocation of VPVID by sending mail to tag-request@omg.org.

When a VMCID (Exceptions on page 148) is allocated to a vendor automatically the same value of VPVID is reserved for
the vendor and vice versa. So once a vendor gets either a VMCID or a VPVID registered they can use that value for both
their minor codes and their policy types.

8.8.1.1 Copy

Policy copy();

Return Value

This operation copies the policy object. The copy does not retain any relationships that the policy had with any domain,
or object.

8.8.1.2 Destroy

void destroy();

This operation destroys the policy object. It is the responsibility of the policy object to determine whether it can be
destroyed.

Exception(s)

• CORBA::NO_PERMISSION
Raised when the policy object determines that it cannot be destroyed.

8.8.1.3 Policy_type

readonly attribute policy_type

Return Value

This readonly attribute returns the constant value of type PolicyType that corresponds to the type of the Policy object.

8.8.2 Creation of Policy Objects

A generic ORB operation for creating new instances of Policy objects is provided as described in this sub clause.

module CORBA {

typedef short PolicyErrorCode;
const PolicyErrorCode BAD_POLICY = 0;
const PolicyErrorCode UNSUPPORTED_POLICY = 1;
const PolicyErrorCode BAD_POLICY_TYPE = 2;
const PolicyErrorCode BAD_POLICY_VALUE = 3;
const PolicyErrorCode UNSUPPORTED_POLICY_VALUE = 4;
Common Object Request Broker Architecture (CORBA), v3.1.1 127

exception PolicyError {PolicyErrorCode reason;};

interface ORB {

.....

Policy create_policy(
in PolicyType type,
in any val

) raises(PolicyError);
};

};

8.8.2.1 PolicyErrorCode

A request to create a Policy may be invalid for the following reasons:

• BAD_POLICY - the requested Policy is not understood by the ORB.

• UNSUPPORTED_POLICY - the requested Policy is understood to be valid by the ORB, but is not currently
supported.

• BAD_POLICY_TYPE - The type of the value requested for the Policy is not valid for that PolicyType.

• BAD_POLICY_VALUE - The value requested for the Policy is of a valid type but is not within the valid range for
that type.

• UNSUPPORTED_POLICY_VALUE - The value requested for the Policy is of a valid type and within the valid
range for that type, but this valid value is not currently supported.

8.8.2.2 PolicyError

exception PolicyError {PolicyErrorCode reason;};

PolicyError exception is raised to indicate problems with parameter values passed to the ORB::create_policy
operation. Possible reasons are described above.

8.8.2.3 Create_policy

The ORB operation create_policy can be invoked to create new instances of policy objects of a specific type with
specified initial state. If create_policy fails to instantiate a new Policy object due to its inability to interpret the
requested type and content of the policy, it raises the PolicyError exception with the appropriate reason as described in
PolicyErrorCode on page 128.

Policy create_policy(
in PolicyType type,
in any val

) raises(PolicyError);

Parameters

• type
The PolicyType of the policy object to be created.
128 Common Object Request Broker Architecture (CORBA), v3.1.1

• val
The value that will be used to set the initial state of the Policy object that is created.

Return Value
Reference to a newly created Policy object of type specified by the type parameter and initialized to a state specified by the
val parameter.

Exception

• PolicyError
Raised when the requested policy is not supported or a requested initial state for the policy is not support.

When new policy types are added to CORBA or CORBA Services specification, it is expected that the IDL type and the
valid values that can be passed to create_policy also be specified.

8.8.3 Usages of Policy Objects

Policy Objects are used in general to encapsulate information about a specific policy, with an interface derived from the
policy interface. The type of the Policy object determines how the policy information contained within it is used. Usually
a Policy object is associated with another object to associate the contained policy with that object.

Objects with which policy objects are typically associated are Domain Managers, POA, the execution environment, both
the process/capsule/ORB instance and thread of execution (Current object) and object references. Only certain types of
policy object can be meaningfully associated with each of these types of objects.

These relationships are documented in sub clauses that pertain to these individual objects and their usages in various core
facilities and object services. The use of Policy Objects with the POA are discussed in the Portable Object Adapter
clause. The use of Policy objects in the context of the Security services, involving their association with Domain
Managers as well as with the Execution Environment are discussed in the Security Service specification.

In the following sub clause the association of Policy objects with the Execution Environment is discussed. In
Management of Policies on page 131 the use of Policy objects in association with Domain Managers is discussed.

8.8.4 Policy Associated with the Execution Environment

Certain policies that pertain to services like security (e.g., QOP, Mechanism, invocation credentials, etc.) are associated
by default with the process/capsule(RM-ODP)/ORB instance (hereinafter referred to as “capsule”) when the application is
instantiated together with the capsule. By default these policies are applicable whenever an invocation of an operation is
attempted by any code executing in the said capsule. The Security service provides operations for modulating these
policies on a per-execution thread basis using operations in the Current interface. Certain of these policies (e.g.,
invocation credentials, qop, mechanism, etc.) which pertain to the invocation of an operation through a specific object
reference can be further modulated at the client end, using the set_policy_overrides operation of the Object reference.
For a description of this operation see Overriding Associated Policies on an Object Reference on page 111. It associates a
specified set of policies with a newly created object reference that it returns.

The association of these overridden policies with the object reference is a purely local phenomenon. These associations
are never passed on in any IOR or any other marshaled form of the object reference. the associations last until the object
reference in the capsule is destroyed or the capsule in which it exists is destroyed.
Common Object Request Broker Architecture (CORBA), v3.1.1 129

The policies thus overridden in this new object reference and all subsequent duplicates of this new object reference apply
to all invocations that are done through these object references. The overridden policies apply even when the default
policy associated with Current is changed. It is always possible that the effective policy on an object reference at any
given time will fail to be successfully applied, in which case the invocation attempt using that object reference will fail
and return a CORBA::NO_PERMISSION exception. Only certain policies that pertain to the invocation of an operation
at the client end can be overridden using this operation. These are listed in the Security specification. Attempts to override
any other policy will result in the raising of the CORBA::NO_PERMISSION exception.

In general the policy of a specific type that will be used in an invocation through a specific object reference using a
specific thread of execution is determined first by determining if that policy type has been overridden in that object
reference. if so then the overridden policy is used. if not then if the policy has been set in the thread of execution then that
policy is used. If not, then the policy associated with the capsule is used. For policies that matter, the ORB ensures that
there is a default policy object of each type that matters associated with each capsule (ORB instance). Hence, in a
correctly implemented ORB there is no case when a required type policy is not available to use with an operation
invocation.

8.8.5 Specification of New Policy Objects

When new PolicyTypes are added to CORBA specifications, the following details must be defined. It must be clearly
stated which particular uses of a new policy are legal and which are not:

• Specify the assigned CORBA::PolicyType and the policy’s interface definition.

• If the Policy can be created through CORBA::ORB::create_policy, specify the allowable values for the any
argument ‘val’ and how they correspond to the initial state/behavior of that Policy (such as initial values of attributes).
For example, if a Policy has multiple attributes and operations, it is most likely that create_policy will receive some
complex data for the implementation to initialize the state of the specific policy:

//IDL
struct MyPolicyRange {

 long low;
 long high;

};

const CORBA::PolicyType MY_POLICY_TYPE = 666;
interface MyPolicy : Policy {

 readonly attribute long low;
 readonly attribute long high;

};

If this sample MyPolicy can be constructed via create_policy, the specification of MyPolicy will have a statement
such as: “When instances of MyPolicy are created, a value of type MyPolicyRange is passed to
CORBA::ORB::create_policy and the resulting MyPolicy’s attribute ‘low’ has the same value as the
MyPolicyRange member ‘low’ and attribute ‘high’ has the same value as the MyPolicyRange member ‘high.’

• If the Policy can be passed as an argument to POA::create_POA, specify the effects of the new policy on that POA.
Specifically define incompatibilities (or inter-dependencies) with other POA policies, effects on the behavior of
invocations on objects activated with the POA, and whether or not presence of the POA policy implies some IOR
profile/component contents for object references created with that POA. If the POA policy implies some addition/
modification to the object reference, it is marked as “client-exposed” and the exact details are specified including
which profiles are affected and how the effects are represented.
130 Common Object Request Broker Architecture (CORBA), v3.1.1

• If the component that is used to carry this information can be set within a client to tune the client’s behavior, specify
the policy’s effects on the client specifically with respect to (a) establishment of connections and reconnections for an
object reference; (b) effects on marshaling of requests; (c) effects on insertion of service contexts into requests; (d)
effects upon receipt of service contexts in replies. In addition, incompatibilities (or inter-dependencies) with other
client-side policies are stated. For policies that cause service contexts to be added to requests, the exact details of this
addition are given.

• If the Policy can be used with POA creation to tune IOR contents and can also be specified (overridden) in the client,
specify how to reconcile the policy’s presence from both the client and server. It is strongly recommended to avoid this
case! As an exercise in completeness, most POA policies can probably be extended to have some meaning in the client
and vice versa, but this does not help make usable systems, it just makes them more complicated without adding really
useful features. There are very few cases where a policy is really appropriate to specify in both places, and for these
policies the interaction between the two must be described.

• Pure client-side policies are assumed to be immutable. This allows efficient processing by the runtime that can avoid
re-evaluating the policy upon every invocation and instead can perform updates only when new overrides are set (or
policies change due to rebind). If the newly specified policy is mutable, it must be clearly stated what happens if non-
readonly attributes are set or operations are invoked that have side-effects.

• For certain policy types, override operations may be disallowed. If this is the case, the policy specification must clearly
state what happens if such overrides are attempted.

8.8.6 Standard Policies

NOTE: See Annex A for a list of the standard policy types that are defined by various parts of CORBA and CORBAservices
in this version of CORBA.

8.9 Management of Policies

8.9.1 Client Side Policy Management

Client-side Policy management is performed through operations accessible in the following contexts:

• ORB-level Policies - A locality-constrained PolicyManager is accessible through the ORB interface. This
PolicyManager has operations through which a set of Policies can be applied and the current overriding Policy
settings can be obtained. Policies applied at the ORB level override any system defaults. The ORB’s PolicyManager
is obtained through an invocation of ORB::resolve_initial_references, specifying an identifier of
“ORBPolicyManager.”

• Thread-level Policies - A standard PolicyCurrent is defined with operations for the querying and applying of quality
of service values specific to a thread. Policies applied at the thread level override any system defaults or values set at
the ORB level. The locality-constrained PolicyCurrent is obtained through an invocation of
ORB::resolve_initial_references, specifying an identifier of “PolicyCurrent.” When accessed from a newly
spawned thread, the PolicyCurrent initially has no overridden policies. The PolicyCurrent also has no overridden
values when a POA with ThreadPolicy of ORB_CONTROL_MODEL dispatches an invocation to a servant. Each
time an invocation is dispatched through a SINGLE_THREAD_MODEL POA, the thread-level overrides are reset to
have no overridden values.

• Object-level Policies - Operations are defined on the base Object interface through which a set of Policies can be
applied. Policies applied at the Object level override any system defaults or values set at the ORB or Thread levels. In
addition, accessors are defined for querying the current overriding Policies set at the Object level, and for obtaining the
Common Object Request Broker Architecture (CORBA), v3.1.1 131

current effective client-side Policy of a given PolicyType. The effective client-side Policy is the value of a PolicyType
that would be in effect if a request were made. This is determined by checking for overrides at the Object level, then at
the Thread level, and finally at the ORB level. If no overriding policies are set at any level, the system-dependent
default value is returned. Portable applications are expected to override the ORB-level policies since default values are
not specified in most cases.

8.9.2 Server Side Policy Management

Server-side Policy management is handled by associating Policy objects with a POA. Since all policy objects are derived
from interface Policy, those that are applicable to server-side behavior can be passed as arguments to POA::create_POA.
Any such Policies that affect the behavior of requests (and therefore must be accessible to the ORB at the client side) are
exported within the Object references that the POA creates. It is clearly noted in a POA Policy definition when that
Policy is of interest to the Client. For those policies that can be exported within an Object reference, the absence of a
value for that policy type implies that the target supports any legal value of that PolicyType.

Most Policies are appropriate only for management at either the Server or Client, but not both. For those Policies that can
be established at the time of Object reference creation (through POA Policies) and overridden by the client (through
overrides set at the ORB, thread, or Object reference scopes), reconciliation is done on a per-Policy basis. Such Policies
are clearly noted in their definitions and describe the mechanism of reconciliation between the Policies that are set by the
POA and overridden in the client. Furthermore, obtaining the effective Policy of some PolicyTypes requires evaluating
the effective Policy of other types of Policies. Such hierarchical Policy definitions are also noted clearly when used.

At the Thread and ORB scopes, the common operations for querying the current set of policies and for overriding these
settings are encapsulated in the PolicyManager interface.

8.9.3 Policy Management Interfaces

module CORBA {

local interface PolicyManager {

PolicyList get_policy_overrides(in PolicyTypeSeq ts);

void set_policy_overrides(
in PolicyList policies,
in SetOverrideType set_add

) raises (InvalidPolicies);
};

local interface PolicyCurrent : PolicyManager, Current {
};

};

8.9.3.1 interface PolicyManager

The PolicyManager operations are used for setting and accessing Policy overrides at a particular scope. For example, an
instance of the PolicyCurrent is used for specifying Policy overrides that apply to invocations from that thread (unless
they are overridden at the Object scope as described in Client Side Policy Management on page 131).
132 Common Object Request Broker Architecture (CORBA), v3.1.1

get_policy_overrides

PolicyList get_policy_overrides(in PolicyTypeSeq ts);

Parameter

ts
A sequence of overridden policy types identifying the policies that are to be retrieved.

Return Value

Reference to a newly created Policy object of type specified by the type parameter and initialized to a state specified by the
val parameter.

• policy list
The list of overridden policies of the types specified by ts.

Exception
None

Returns a PolicyList containing the overridden Polices for the requested PolicyTypes. If the specified sequence is empty,
all Policy overrides at this scope will be returned. If none of the requested PolicyTypes are overridden at the target
PolicyManager, an empty sequence is returned. This accessor returns only those Policy overrides that have been set at
the specific scope corresponding to the target PolicyManager (no evaluation is done with respect to overrides at other
scopes).

8.9.3.2 set_policy_overrides

void set_policy_overrides(
in PolicyList policies,
in SetOverrideType set_add

) raises (InvalidPolicies);

Parameters

• policies
A sequence of Policy objects that are to be associated with the PolicyManager object. If the sequence contains
two or more Policy objects with the same PolicyType value, the operation raises the standard system exception
BAD_PARAM with standard minor code 30.

• set_add
Whether the association is in addition to (ADD_OVERRIDE) or as a replacement of (SET_OVERRIDE) any
existing overrides already associated with the PolicyManager object. If the value of this parameter is
SET_OVERRIDE, the supplied policies completely replace all existing overrides associated with the
PolicyManager object. If the value of this parameter is ADD_OVERRIDE, the supplied policies are added to the
existing overrides associated with the PolicyManager object, except that if a supplied Policy object has the same
PolicyType value as an existing override, the supplied Policy object replaces the existing override.

Return Value
None
Common Object Request Broker Architecture (CORBA), v3.1.1 133

Exception

• InvalidPolicies
A list of indices identifying the position in the input policies list that are occupied by invalid policies.

Modifies the current set of overrides with the requested list of Policy overrides. The first parameter policies is a sequence
of references to Policy objects. The second parameter set_add of type SetOverrideType indicates whether these
policies should be added onto any other overrides that already exist (ADD_OVERRIDE) in the PolicyManager, or they
should be added to a clean PolicyManager free of any other overrides (SET_OVERRIDE). Invoking
set_policy_overrides with an empty sequence of policies and a mode of SET_OVERRIDE removes all overrides from
a PolicyManager. Only certain policies that pertain to the invocation of an operation at the client end can be overridden
using this operation. Attempts to override any other policy will result in the raising of the CORBA::NO_PERMISSION
exception. If the request would put the set of overriding policies for the target PolicyManager in an inconsistent state,
no policies are changed or added, and the exception.

8.9.3.3 interface PolicyCurrent

This specific PolicyManager provides access to policies overridden at the Thread scope. A reference to a thread’s
PolicyCurrent is obtained through an invocation of CORBA::ORB::resolve_initial_references.

8.10 Management of Policy Domains

8.10.1 Basic Concepts

This sub clause describes how policies, such as security policies, are associated with objects that are managed by an ORB.
The interfaces and operations that facilitate this aspect of management is described in this sub clause together with the
sub clause describing Policy objects.

8.10.1.1 Policy Domain

A policy domain is a set of objects to which the policies associated with that domain apply. These objects are the domain
members. The policies represent the rules and criteria that constrain activities of the objects that belong to the domain. On
object reference creation, the ORB implicitly associates the object reference with one or more policy domains. Policy
domains provide leverage for dealing with the problem of scale in policy management by allowing application of policy
at a domain granularity rather than at an individual object instance granularity.

8.10.1.2 Policy Domain Manager

A policy domain includes a unique object, one per policy domain, called the domain manager, which has associated with
it the policy objects for that domain. The domain manager also records the membership of the domain and provides the
means to add and remove members. The domain manager is itself a member of a domain, possibly the domain it manages.

8.10.1.3 Policy Objects

A policy object encapsulates a policy of a specific type. The policy encapsulated in a policy object is associated with the
domain by associating the policy object with the domain manager of the policy domain.

There may be several policies associated with a domain, with a policy object for each. There is at most one policy of each
type associated with a policy domain. The policy objects are thus shared between objects in the domain, rather than being
associated with individual objects. Consequently, if an object needs to have an individual policy, then it must be a
singleton member of a domain.
134 Common Object Request Broker Architecture (CORBA), v3.1.1

8.10.1.4 Object Membership of Policy Domains

Since the only way to access objects is through object references, associating object references with policy domains,
implicitly associates the domain policies with the object associated with the object reference. Care should be taken by the
application that is creating object references using POA operations to ensure that object references to the same object are
not created by the server of that object with different domain associations. Henceforth whenever the concept of “object
membership” is used, it actually means the membership of an object reference to the object in question.

An object can simultaneously be a member of more than one policy domain. In that case the object is governed by all
policies of its enclosing domains. The reference model allows an object to be a member of multiple domains, which may
overlap for the same type of policy (for example, be subject to overlapping access policies). This would require conflicts
among policies defined by the multiple overlapping domains to be resolved. The specification does not include explicit
support for such overlapping domains and, therefore, the use of policy composition rules required to resolve conflicts at
policy enforcement time.

Policy domain managers and policy objects have two types of interfaces:

• The operational interfaces used when enforcing the policies. These are the interfaces used by the ORB during an object
invocation. Some policy objects may also be used by applications, which enforce their own policies.

The caller asks for the policy of a particular type (e.g., the delegation policy), and then uses the policy object returned
to enforce the policy. The caller finding a policy and then enforcing it does not see the domain manager objects and the
domain structure.

• The administrative interfaces used to set policies (e.g., specifying which events to audit or who can access objects of a
specified type in this domain). The administrator sees and navigates the domain structure, so he is aware of the scope
of what he is administering.

NOTE: This specification does not include any explicit interfaces for managing the policy domains themselves: creating and
deleting them; moving objects between them; changing the domain structure and adding, changing, and removing policies
applied to the domains.

8.10.1.5 Domains Association at Object Reference Creation

When a new object reference is created, the ORB implicitly associates the object reference (and hence the object that it is
associated with) with the following elements forming its environment:

• One or more Policy Domains, defining all the policies to which the object associated with the object reference is
subject.

• The Technology Domains, characterizing the particular variants of mechanisms (including security) available in the
ORB.

The ORB will establish these associations when one of the object reference creation operations of the POA is called.
Some or all of these associations may subsequently be explicitly referenced and modified by administrative or application
activity, which might be specifically security-related but could also occur as a side-effect of some other activity, such as
moving an object to another host machine.

In some cases, when a new object reference is created, it needs to be associated with a new domain. Within a given
domain a construction policy can be associated with a specific object type thus causing a new domain; that is, a domain
manager object to be created whenever an object reference of that type is created and the newly created object reference
associated with the new domain manager. This construction policy is enforced at the same time as the domain
membership; that is, by the POA when it creates an object reference.
Common Object Request Broker Architecture (CORBA), v3.1.1 135

8.10.1.6 Implementor’s View of Object Creation

For policy domains, the construction policy of the application or factory creating the object proceeds as follows. The
application (which may be a generic factory) calls one of the object reference creation operations of the POA to create the
new object reference. The ORB obtains the construction policy associated with the creating object, or the default domain
absent a creating object.

By default, the new object reference that is created is made a member of the domain to which the parent belongs. Non-
object applications on the client side are associated with a default, per-ORB instance policy domain by the ORB.

Each domain manager has a construction policy associated with it, which controls whether, in addition to creating the
specified new object reference, a new domain manager is created with it. This object provides a single operation
make_domain_manager which can be invoked with the constr_policy parameter set to TRUE to indicate to the
ORB that new object references of the specified type are to be associated their own separate domains. Once such a
construction policy is set, it can be reversed by invoking make_domain_manager again with the constr_policy
parameter set to FALSE.

When creating an object reference of the type specified in the make_domain_manager call with constr_policy set to
TRUE, the ORB must also create a new domain for the newly created object reference. If a new domain is needed, the
ORB creates both the requested object reference and a domain manager object. A reference to this domain manager can
be found by calling get_domain_managers on the newly created object reference.

While the management interface to the construction policy object is standardized, the interface from the ORB to the
policy object is assumed to be a private one, which may be optimized for different implementations.

If a new domain is created, the policies initially applicable to it are the policies of the enclosing domain. The ORB will
always arrange to provide a default enclosing domain with default ORB policies associated with it, in those cases where
there would be no such domain as in the case of a non-object client invoking object creation operations.

The calling application, or an administrative application later, can change the domains to which this object belongs, using
the domain management interfaces, which will be defined in the future.

Since the ORB has control only over domain associations with object references, it is the responsibility of the creator of
new object to ensure that the object references that are created to the new object are associated meaningfully with
domains.

8.10.2 Domain Management Operations

This sub clause defines the interfaces and operations needed to find domain managers and find the policies associated
with these. However, it does not include operations to manage domain membership, structure of domains, or to manage
which policies are associated with domains.

This sub clause also includes the interface to the construction policy object, as that is relevant to domains. The basic
definitions of the interfaces and operations related to these are part of the CORBA module, since other definitions in the
CORBA module depend on these.

module CORBA {
interface DomainManager {

Policy get_domain_policy (
in PolicyType policy_type

);
};
136 Common Object Request Broker Architecture (CORBA), v3.1.1

const PolicyType SecConstruction = 11;

interface ConstructionPolicy: Policy{
void make_domain_manager(

in CORBA::InterfaceDef object_type,
in boolean constr_policy

);
};

typedef sequence <DomainManager> DomainManagersList;
};

8.10.2.1 Domain Manager

The domain manager provides mechanisms for:

• Establishing and navigating relationships to superior and subordinate domains.

• Creating and accessing policies.

There should be no unnecessary constraints on the ordering of these activities, for example, it must be possible to add new
policies to a domain with a pre-existing membership. In this case, some means of determining the members that do not
conform to a policy that may be imposed is required. It should be noted that interfaces for adding new policies to domains
or for changing domain memberships have not currently been standardized.

All domain managers provide the get_domain_policy operation. By virtue of being an object, the Domain Managers
also have the get_policy and get_domain_managers operations, which is available on all objects (see Getting Policy
Associated with the Object on page 110 and Getting the Domain Managers Associated with the Object on page 112).

CORBA::DomainManager::get_domain_policy

This returns the policy of the specified type for objects in this domain.

Policy get_domain_policy (
in PolicyType policy_type

);

Parameters

• policy_type
The type of policy for objects in the domain which the application wants to administer. For security, the possible
 policy types are described in the Security Service specification, Security Policies Introduction sub clause.

Return Value

A reference to the policy object for the specified type of policy in this domain.

Exception

• CORBA::INV_POLICY
Raised when the value of policy type is not valid either because the specified type is not supported by this
ORB or because a policy object of that type is not associated with this Object.
Common Object Request Broker Architecture (CORBA), v3.1.1 137

8.10.2.2 Construction Policy

The construction policy object allows callers to specify that when instances of a particular object reference are created,
they should be automatically assigned membership in a newly created domain at creation time.

CORBA::ConstructionPolicy::make_domain_manager

This operation enables the invoker to set the construction policy that is to be in effect in the domain with which this
ConstructionPolicy object is associated. Construction Policy can either be set so that when an object reference of the
type specified by the input parameter is created, a new domain manager will be created and the newly created object
reference will respond to get_domain_managers by returning a reference to this domain manager. Alternatively the
policy can be set to associate the newly created object reference with the domain associated with the creator. This policy
is implemented by the ORB during execution of any one of the object reference creation operations of the POA, and
results in the construction of the application-specified object reference and a Domain Manager object if so dictated by the
policy in effect at the time of the creation of the object reference.

void make_domain_manager (
in InterfaceDef object_type,
in boolean constr_policy

);

Parameter(s)

• object_type
The type of the object references for which Domain Managers will be created. If this is nil, the policy applies to
all object references in the domain.

• constr_policy
If TRUE the construction policy is set to create a new domain manager associated with the newly created object
reference of this type in this domain. If FALSE construction policy is set to associate the newly created object
references with the domain of the creator or a default domain as described above.

8.11 TypeCodes

TypeCodes are values that represent invocation argument types and attribute types. They can be obtained from the
Interface Repository or from IDL compilers.

TypeCodes have a number of uses. They are used in the dynamic invocation interface to indicate the types of the actual
arguments. They are used by an Interface Repository to represent the type specifications that are part of many IDL
declarations. Finally, they are crucial to the semantics of the any type.

Abstractly, TypeCodes consist of a “kind” field, and a set of parameters appropriate for that kind. For example, the
TypeCode describing IDL type long has kind tk_long and no parameters. The TypeCode describing IDL type
sequence<boolean,10> has kind tk_sequence and two parameters: 10 and boolean.

8.11.1 The TypeCode Interface

The PIDL interface for TypeCodes is as follows:

module CORBA {
enum TCKind {

tk_null, tk_void,
138 Common Object Request Broker Architecture (CORBA), v3.1.1

tk_short, tk_long, tk_ushort, tk_ulong,
tk_float, tk_double, tk_boolean, tk_char,
tk_octet, tk_any, tk_TypeCode, tk_Principal, tk_objref,
tk_struct, tk_union, tk_enum, tk_string,
tk_sequence, tk_array, tk_alias, tk_except,
tk_longlong, tk_ulonglong, tk_longdouble,
tk_wchar, tk_wstring, tk_fixed,
tk_value, tk_value_box,
tk_native,
tk_abstract_interface,
tk_local_interface
tk_component, tk_home,
tk_event

};

typedef short ValueModifier;
const ValueModifier VM_NONE = 0;
const ValueModifier VM_CUSTOM = 1;
const ValueModifier VM_ABSTRACT = 2;
const ValueModifier VM_TRUNCATABLE = 3;

interface TypeCode {
exception Bounds {};
exception BadKind {};

// for all TypeCode kinds
boolean equal (in TypeCode tc);

boolean equivalent(in TypeCode tc);
TypeCode get_compact_typecode();

TCKind kind ();

// for tk_objref, tk_struct, tk_union, tk_enum, tk_alias,
// tk_value, tk_value_box, tk_native, tk_abstract_interface
// tk_local_interface, tk_except
// tk_component, tk_home and tk_event
RepositoryId id () raises (BadKind);

// for tk_objref, tk_struct, tk_union, tk_enum, tk_alias,
// tk_value, tk_value_box, tk_native, tk_abstract_interface
// tk_local_interface, tk_except
// tk_component, tk_home and tk_event
Identifier name () raises (BadKind);

// for tk_struct, tk_union, tk_enum, tk_value,
// tk_except and tk_event
unsigned long member_count () raises (BadKind);
Identifier member_name (in unsigned long index)

raises(BadKind, Bounds);
Common Object Request Broker Architecture (CORBA), v3.1.1 139

// for tk_struct, tk_union, tk_value,
// tk_except and tk_event
TypeCode member_type (in unsigned long index)

raises (BadKind, Bounds);

// for tk_union
any member_label (in unsigned long index)

raises(BadKind, Bounds);
TypeCode discriminator_type () raises (BadKind);
long default_index () raises (BadKind);

// for tk_string, tk_wstring, tk_sequence, and tk_array
unsigned long length () raises (BadKind);

// for tk_sequence, tk_array, tk_value_box and tk_alias
TypeCode content_type () raises (BadKind);

// for tk_fixed
unsigned short fixed_digits() raises(BadKind);
short fixed_scale() raises(BadKind);

// for tk_value and tk_event
Visibility member_visibility(in unsigned long index)

raises(BadKind, Bounds);
ValueModifier type_modifier() raises(BadKind);
TypeCode concrete_base_type() raises(BadKind);

};
};

With the above operations, any TypeCode can be decomposed into its constituent parts. The BadKind exception is
raised if an operation is not appropriate for the TypeCode kind it invoked.

The equal operation can be invoked on any TypeCode. The equal operation returns TRUE if and only if for the target
TypeCode and the TypeCode passed through the parameter tc, the set of legal operations is the same and invoking any
operation from that set on the two TypeCodes return identical results.

The equivalent operation is used by the ORB when determining type equivalence for values stored in an IDL any.
TypeCodes are considered equivalent based on the following semantics:

• If the result of the kind operation on either TypeCode is tk_alias, recursively replace the TypeCode with the result
of calling content_type, until the kind is no longer tk_alias.

• If results of the kind operation on each typecode differ, equivalent returns false.

• If the id operation is valid for the TypeCode kind, equivalent returns TRUE if the results of id for both
TypeCodes are non-empty strings and both strings are equal. If both ids are non-empty but are not equal, then
equivalent returns FALSE. If either or both id is an empty string, or the TypeCode kind does not support the id
operation, equivalent will perform a structural comparison of the TypeCodes by comparing the results of the other
TypeCode operations in the following bullet items (ignoring aliases as described in the first bullet.). The structural
comparison only calls operations that are valid for the given TypeCode kind. If any of these operations do not return
equal results, then equivalent returns FALSE. If all comparisons are equal, equivalent returns true.

• The results of the name and member_name operations are ignored and not compared.
140 Common Object Request Broker Architecture (CORBA), v3.1.1

• The results of the member_count, default_index, length, digits, scale, and type_modifier operations are
compared.

• The results of the member_label operation for each member index of a union TypeCode are compared for
equality. Note that this means that unions whose members are not defined in the same order are not considered
structurally equivalent.

• The results of the discriminator_type, member_type, and concrete_base_type operation and for each
member index, and the result of the content_type operation are compared by recursively calling equivalent.

• The results of the member_visibility operation are compared for each member index.

Applications that need to distinguish between a type and different aliases of that type can supplement equivalent by
directly invoking the id operation and comparing the results.

The get_compact_typecode operation strips out all optional name and member name fields, but it leaves all alias
typecodes intact.

The kind operation can be invoked on any TypeCode. Its result determines what other operations can be invoked on the
TypeCode.

The id operation can be invoked on object reference, valuetype, boxed valuetype, abstract interface, local interface,
native, structure, union, enumeration, alias, exception, component, home, and event TypeCodes. It returns the
RepositoryId globally identifying the type. Object reference, valuetype, boxed valuetype, native, exception, component,
home, and event TypeCodes always have a RepositoryId. Structure, union, enumeration, and alias TypeCodes
obtained from the Interface Repository or the ORB::create_operation_list operation also always have a
RepositoryId. Otherwise, the id operation can return an empty string.

When the id operation is invoked on an object reference TypeCode that contains a base Object, the returned value is
IDL:omg.org/CORBA/Object:1.0.

When it is invoked on a valuetype TypeCode that contains a ValueBase, the returned value is IDL:omg.org/CORBA/
ValueBase:1.0.

When it is invoked on a component TypeCode that contains a Components::CCMObject, the returned value is
IDL:omg.org/Components/CCMObject:1.0.

When it is invoked on a home TypeCode that contains a Components::CCMHome, the returned value is
IDL:omg.org/Components/CCMHome:1.0.

When it is invoked on an eventtype TypeCode that contains a Components::EventBase, the returned value is
IDL:omg.org/Components/EventBase:1.0.

The name operation can also be invoked on object reference, structure, union, enumeration, alias, abstract interface, local
interface, value type, boxed valuetype, native, and exception TypeCodes. It returns the simple name identifying the type
within its enclosing scope. Since names are local to a Repository, the name returned from a TypeCode may not match
the name of the type in any particular Repository, and may even be an empty string.

The order in which members are presented in the interface repository is the same as the order in which they appeared in
the IDL specification, and this ordering determines the index value for each member. The first member has index value 0.
For example for a structure definition:

struct example {
short member1;
Common Object Request Broker Architecture (CORBA), v3.1.1 141

short member2;
long member3;

};

In this example member1 has index = 0, member2 has index = 1, and member3 has index = 2. The value of
member_count in this case is 3.

The member_count and member_name operations can be invoked on structure, union, non-boxed valuetype, non-
boxed eventtype, exception, and enumeration TypeCodes. Member_count returns the number of members constituting
the type. Member_name returns the simple name of the member identified by index. Since names are local to a
Repository, the name returned from a TypeCode may not match the name of the member in any particular
Repository, and may even be an empty string.

The member_type operation can be invoked on structure, non-boxed valuetype, non-boxed eventtype, exception and
union TypeCodes. It returns the TypeCode describing the type of the member identified by index.

The member_label, discriminator_type, and default_index operations can only be invoked on union TypeCodes.
Member_label returns the label of the union member identified by index. For the default member, the label is the zero
octet. The discriminator_type operation returns the type of all non-default member labels. The default_index
operation returns the index of the default member, or -1 if there is no default member.

The member_visibility operation can only be invoked on non-boxed valuetype and non-boxed eventtype, TypeCodes.
It returns the Visibility of the valuetype/eventtype member identified by index.

The member_name, member_type, member_label and member_visibility operations raise Bounds if the index
parameter is greater than or equal to the number of members constituting the type.

The content_type operation can be invoked on sequence, array, boxed valuetype and alias TypeCodes. For sequences
and arrays, it returns the element type. For aliases, it returns the original type. For boxed valuetype, it returns the boxed
type.

An array TypeCode only describes a single dimension of an IDL array. Multi-dimensional arrays are represented by
nesting TypeCodes, one per dimension. The outermost tk_array Typecode describes the leftmost array index of the
array as defined in IDL. Its content_type describes the next index. The innermost nested tk_array TypeCode
describes the rightmost index and the array element type.

The type_modifier and concrete_base_type operations can be invoked on non-boxed valuetype and non-boxed
eventtypeTypeCodes. The type_modifier operation returns the ValueModifier that applies to the valuetype/eventtype
represented by the target TypeCode. If the valuetype/eventtype represented by the target TypeCode has a concrete base
valuetype/eventtype, the concrete_base_type operation returns a TypeCode for the concrete base, otherwise it returns
a nil TypeCode reference.

The length operation can be invoked on string, wide string, sequence, and array TypeCodes. For strings and sequences,
it returns the bound, with zero indicating an unbounded string or sequence. For arrays, it returns the number of elements
in the array. For wide strings, it returns the bound, or zero for unbounded wide strings.

8.11.2 TypeCode Constants

For IDL type declarations, the IDL compiler produces (if asked) a declaration of a TypeCode constant. See the language
mapping rules for more information about the names of the generated TypeCode constants. TypeCode constants include
tk_alias definitions wherever an IDL typedef is referenced. These constants can be used with the dynamic invocation
interface and other routines that require TypeCodes.
142 Common Object Request Broker Architecture (CORBA), v3.1.1

The predefined TypeCode constants, named according to the C language mapping, are:

TC_null
TC_void
TC_short
TC_long
TC_longlong
TC_ushort
TC_ulong
TC_ulonglong
TC_float
TC_double
TC_longdouble
TC_boolean
TC_char
TC_wchar
TC_octet
TC_any
TC_TypeCode
TC_Object = tk_objref {Object}
TC_string= tk_string {0} // unbounded
TC_wstring = tk_wstring{0}/// unbounded
TC_ValueBase = tk_value {ValueBase}
TC_Component = tk_component {CCMObject}
TC_Home = tk_home {CCMHome}
TC_EventBase = tk_event {EventBase}

For the TC_Object TypeCode constant, calling id returns “IDL:omg.org/CORBA/Object:1.0” and calling name
returns “Object.”

For the TC_ValueBase TypeCode constant, calling id returns “IDL:omg.org/CORBA/ValueBase:1.0,” calling
name returns “ValueBase,” calling member_count returns 0, calling type_modifier returns CORBA::VM_NONE,
and calling concrete_base_type returns a nil TypeCode.

For the TC_Component TypeCode constant, calling id returns “IDL:omg.org/Components/CCMObject:1.0” and
calling name returns “CCMObject.”

For the TC_Home TypeCode constant, calling id returns “IDL:omg.org/Components/CCMHome:1.0” and calling
name returns “CCMHome.”

For the TC_EventBase TypeCode constant, calling id returns “IDL:omg.org/Components/EventBase:1.0,”
calling name returns “EventBase,” calling member_count returns 0, calling type_modifier returns
CORBA::VM_NONE, and calling concrete_base_type returns a nil TypeCode.

8.11.3 Creating TypeCodes

When creating type definition objects in an Interface Repository, types are specified in terms of object references, and the
TypeCodes describing them are generated automatically.

In some situations, such as bridges between ORBs, TypeCodes need to be constructed outside of any Interface
Repository. This can be done using operations on the ORB pseudo-object.
Common Object Request Broker Architecture (CORBA), v3.1.1 143

module CORBA {
interface ORB {

// other operations ...

TypeCode create_struct_tc (
in RepositoryId id;
in Identifier name,
in StructMemberSeq members

);

TypeCode create_union_tc (
in RepositoryId id,
in Identifier name,
in TypeCode discriminator_type,
in UnionMemberSeq members

);

TypeCode create_enum_tc (
in RepositoryId id,
in Identifier name,
in EnumMemberSeq members

);

TypeCode create_alias_tc (
in RepositoryId id,
in Identifier name,
in TypeCode original_type

);

TypeCode create_exception_tc (
in RepositoryId id,
in Identifier name,
in StructMemberSeq members

);

TypeCode create_interface_tc (
in RepositoryId id,
in Identifier name

);

TypeCode create_string_tc (
in unsigned long bound

);

TypeCode create_wstring_tc (
in unsigned long bound

);
144 Common Object Request Broker Architecture (CORBA), v3.1.1

TypeCode create_fixed_tc (
in unsigned short digits,
in unsigned short scale

);

TypeCode create_sequence_tc (
in unsigned long bound,
in TypeCode element_type

);

TypeCode create_recursive_sequence_tc (// deprecated
in unsigned long bound,
in unsigned long offset

);

TypeCode create_array_tc (
in unsigned long length,
in TypeCode element_type

);

TypeCode create_value_tc (
in RepositoryId id,
in Identifier name,
in ValueModifier type_modifier,
in TypeCode concrete_base,
in ValueMemberSeq members

);

TypeCode create_value_box_tc (
in RepositoryId id,
in Identifier name,
in TypeCode boxed_type

);

TypeCode create_native_tc (
in RepositoryId id,
in Identifier name

);

TypeCode create_recursive_tc(
in RepositoryId id

);

TypeCode create_abstract_interface_tc(
in RepositoryId id,
in Identifier name

);
Common Object Request Broker Architecture (CORBA), v3.1.1 145

TypeCode create_local_interface_tc(
in RepositoryId id,
in Identifier name

);

TypeCode create_component_tc (
in RepositoryId id,
in Identifier name

);

TypeCode create_home_tc (
in RepositoryId id,
in Identifier name

);

TypeCode create_event_tc (
in RepositoryId id,
in Identifier name,
in ValueModifier type_modifier,
in TypeCode concrete_base,
in ValueMemberSeq members

);
};

};

Most of these operations are similar to corresponding IR operations for creating type definitions. TypeCodes are used
here instead of IDLType object references to refer to other types. In the StructMember, UnionMember, and
ValueMember structures, only the type is used, and the type_def should be set to nil.

Typecode creation operations that take name as an argument shall check that the name is a valid IDL name or is an
empty string. If not, they shall raise the BAD_PARAM exception with standard minor code 15. Operations that take a
RepositoryId argument shall check that the argument passed in is a string of the form <format>:<string> and if not,
then raise a BAD_PARAM exception with standard minor code 16. Operations that take content or member types as
arguments shall check that they are legitimate (i.e., that they don’t have kinds tk_null, tk_void, or tk_exception). If
not, they shall raise the BAD_TYPECODE exception with standard minor code 2. Operations that take members shall
check that the member names are valid IDL names and that they are unique within the member list, and if the name is
found to be incorrect, they shall raise a BAD_PARAM with standard minor code 17.

The create_union_tc operation shall check that there are no duplicate label values. It shall also check that each label
TypeCode compares equivalent to the discriminator TypeCode. If a duplicate label is found, raise BAD_PARAM with
standard minor code 18. If the TypeCode of a label is not equivalent to the TypeCode of the discriminator (other than
the octet TypeCode to indicate the default label), the operation shall raise BAD_PARAM with standard minor code 19.
The create_union_tc operation shall also check that the supplied discriminator type is legitimate, and if the check fails,
raise BAD_PARAM with standard minor code 20.

NOTE: The create_recursive_sequence_tc operation is deprecated. No new code should make use of this operation. Its
functionality is subsumed by the new operation create_recursive_tc. The create_recursive_sequence_tc operation
will be removed from a future revision of the standard.
146 Common Object Request Broker Architecture (CORBA), v3.1.1

The create_recursive_sequence_tc operation is used to create TypeCodes describing recursive sequences that are
members of structs or unions. The result of this operation should be used as the typecode in the StructMemberSeq or
UnionMemberSeq arguments of the create_struct_tc or create_union_tc operations. The offset parameter
specifies which enclosing struct or union is the target of the recursion, with the value 1 indicating the most immediate
enclosing struct or union, and larger values indicating successive enclosing struct or unions. For example, the offset
would be 1 for the following IDL structure:

struct foo {
long value;
sequence <foo> chain;

};

Once the recursive sequence TypeCode has been properly embedded in its enclosing TypeCodes, it will function as a
normal sequence TypeCode. Invoking operations on the recursive sequence TypeCode before it has been embedded in
the required number of enclosing TypeCodes will result in undefined behavior. Attempt to marshal incomplete
typecodes shall raise the BAD_TYPECODE exception with standard minor code 1. Attempt to use an incomplete
TypeCode as a parameter of any operation when detected shall cause the BAD_PARAM exception to be raised with
standard minor code 13.

For create_value_tc operation, the concrete_base parameter is a TypeCode for the immediate concrete valuetype
base of the valuetype for which the TypeCode is being created. If the valuetype does not have a concrete base, the
concrete_base parameter is a nil TypeCode reference.

The create_recursive_tc operation is used to create a recursive TypeCode, which serves as a place holder for a
concrete TypeCode during the process of creating TypeCodes that contain recursion. The id parameter specifies the
repository id of the type for which the recursive TypeCode is serving as a place holder. Once the recursive TypeCode
has been properly embedded in the enclosing TypeCode, which corresponds to the specified repository id, it will
function as a normal TypeCode. Invoking operations on the recursive TypeCode before it has been embedded in the
enclosing TypeCode will result in undefined behavior. For example, the following IDL type declarations contain
recursion:

struct foo {
long value;
sequence<foo> chain;

};

valuetype V {
public V member;

};

To create a TypeCode for valuetype V, you would invoke the TypeCode creation operations as shown below:

// C++
TypeCode_var recursive_tc

= orb->create_recursive_tc(“IDL:V:1.0”);

ValueMemberSeq v_seq;
v_seq.length(1);
v_seq[0].name = string_dup(“member”);
v_seq[0].type = recursive_tc;
v_seq[0].access = PUBLIC_MEMBER;
Common Object Request Broker Architecture (CORBA), v3.1.1 147

TypeCode_var v_val_tc
= orb->create_value_tc(“IDL:V:1.0”,

“V”,
VM_NONE,
TypeCode::_nil(),

v_seq);

For create_event_tc operation, the concrete_base parameter is a TypeCode for the immediate concrete base of the
eventtype for which the TypeCode is being created. If the eventtype does not have a concrete base, the concrete_base
parameter is a nil TypeCode reference.

8.12 Exceptions

The terms “system” and “user” exception are defined in this sub clause. Further the terms “standard system exception”
and “standard user exception” are defined, and then a list of “standard system exceptions” is provided.

8.12.1 Definition of Terms

In general the following terms should be used consistently in all OMG standards documents to refer to exceptions:

Standard Exception: Any exception that is defined in an OMG Standard.

System Exception: Clients must be prepared to handle these exceptions even though they are not declared in a raises
clause. These exceptions cannot appear in a raises clause. These have the structure defined in Annex A and they are of
type SYSTEM_EXCEPTION (see PIDL below).

Standard System Exception: A System Exception that is part of the CORBA Standard (e.g., BAD_PARAM). See Annex
A for more details.

Non-Standard System Exceptions: System exceptions that are proprietary to a particular vendor/implementation.

User Exception: Exceptions that can be raised only by those operations that explicitly declare them in the raises clause
of their signature. These exceptions are of type USER_EXCEPTION (see IDL below).

Standard User Exception: Any User Exception that is defined in a published OMG standard (e.g., WrongTransaction).
These are documented in the documentation of individual interfaces.

Non-standard User Exception: User exceptions that are not defined in any published OMG specification.

8.12.2 System Exceptions

In order to bound the complexity in handling the standard exceptions, the set of standard exceptions should be kept to a
tractable size. This constraint forces the definition of equivalence classes of exceptions rather than enumerating many
similar exceptions. For example, an operation invocation can fail at many different points due to the inability to allocate
dynamic memory. Rather than enumerate several different exceptions corresponding to the different ways that memory
allocation failure causes the exception (during marshaling, unmarshaling, in the client, in the object implementation,
allocating network packets), a single exception corresponding to dynamic memory allocation failure is defined.

module CORBA {
 const unsigned long OMGVMCID = 0x4f4d0000;
148 Common Object Request Broker Architecture (CORBA), v3.1.1

#define ex_body {unsigned long minor; completion_status completed;}

enum completion_status {
COMPLETED_YES,
COMPLETED_NO,
COMPLETED_MAYBE

};

enum exception_type {
NO_EXCEPTION,
USER_EXCEPTION,

SYSTEM_EXCEPTION
};

};

Each system exception includes a minor code to designate the subcategory of the exception.

Minor exception codes are of type unsigned long and consist of a 20-bit “Vendor Minor Codeset ID”(VMCID), which
occupies the high order 20 bits, and the minor code that occupies the low order 12 bits.

The standard minor codes for the standard system exceptions are prefaced by the VMCID assigned to OMG, defined as the
unsigned long constant CORBA::OMGVMCID, which has the VMCID allocated to OMG occupying the high order 20
bits. The minor exception codes associated with the standard exceptions that are found in Annex A, “Exception Codes”
are or-ed with OMGVMCID to get the minor code value that is returned in the ex_body structure (see Standard System
Exception Definitions on page 150 and Standard Minor Exception Codes on page 156).

Within a vendor assigned space, the assignment of values to minor codes is left to the vendor. Vendors may request
allocation of VMCIDs by sending email to tag-request@omg.org.

The VMCID 0 and 0xfffff are reserved for experimental use. The VMCID OMGVMCID (8.12.3, Standard System
Exception Definitions) and 1 through 0xf are reserved for OMG use.

Each standard system exception also includes a completion_status code that takes one of the values
{COMPLETED_YES, COMPLETED_NO, COMPLETED_MAYBE}. These have the following meanings:

Client applications must be prepared to handle system exceptions other than the standard system exception defined below
in Standard System Exception Definitions on page 150, both because future versions of this specification may define
additional standard system exceptions, and because ORB implementations may raise non-standard system exceptions.

Vendors may define non-standard system exceptions, but these exceptions are discouraged because they are non-portable.
A non-standard system exception, when passed to an ORB that does not recognize it, shall be presented by that ORB as
an UNKNOWN standard system exception. The completion status shall be preserved in the UNKNOWN exception, and
the minor code shall be set to standard value 2 for system exception and standard value 1 for user exception.

COMPLETED_YES The object implementation has completed processing prior to the exception being
raised.

COMPLETED_NO The object implementation was never initiated prior to the exception being raised.

COMPLETED_MAYBE The status of implementation completion is indeterminate.
Common Object Request Broker Architecture (CORBA), v3.1.1 149

Non-standard system exceptions shall have the same structure as of standard standard system exceptions as specified in
Standard System Exception Definitions on page 150 (i.e., they have the same ex_body). They also shall follow the same
language mappings as standard system exceptions. Although they are PIDL, vendors should ensure that their names do
not clash with any other names following the normal naming and scoping rules as they apply to regular IDL exceptions.

8.12.3 Standard System Exception Definitions

The standard system exceptions are defined in this sub clause.

module CORBA { // PIDL

exception UNKNOWN ex_body;
// the unknown exception

exception BAD_PARAM ex_body;
// an invalid parameter was passed

exception NO_MEMORY ex_body;
// dynamic memory allocation failure

exception IMP_LIMIT ex_body;
// violated implementation limit

exception COMM_FAILURE ex_body;
// communication failure

exception INV_OBJREF ex_body;
// invalid object reference

exception NO_PERMISSION ex_body;
// no permission for attempted op.

exception INTERNAL ex_body;
// ORB internal error

exception MARSHAL ex_body;
// error marshaling param/result

exception INITIALIZE ex_body;
// ORB initialization failure

exception NO_IMPLEMENT ex_body;
// operation implementation unavailable

exception BAD_TYPECODE ex_body;
// bad typecode

exception BAD_OPERATION ex_body;
// invalid operation

exception NO_RESOURCES ex_body;
// insufficient resources for req.

exception NO_RESPONSE ex_body;
// response to req. not yet available

exception PERSIST_STORE ex_body;
// persistent storage failure

exception BAD_INV_ORDER ex_body;
// routine invocations out of order

exception TRANSIENT ex_body;
// transient failure - reissue request

exception FREE_MEM ex_body;
// cannot free memory

exception INV_IDENT ex_body;
150 Common Object Request Broker Architecture (CORBA), v3.1.1

// invalid identifier syntax
exception INV_FLAG ex_body;

// invalid flag was specified
exception INTF_REPOS ex_body;

// error accessing interface repository
exception BAD_CONTEXT ex_body;

// error processing context object
exception OBJ_ADAPTER ex_body;

// failure detected by object adapter
exception DATA_CONVERSION ex_body;

// data conversion error
exception OBJECT_NOT_EXIST ex_body;

// non-existent object, delete reference
exception TRANSACTION_REQUIRED ex_body;

// transaction required
exception TRANSACTION_ROLLEDBACK x_body;

// transaction rolled back
exception INVALID_TRANSACTION ex_body;

// invalid transaction
exception INV_POLICY ex_body;

// invalid policy
exception CODESET_INCOMPATIBLE ex_body

// incompatible code set
exception REBIND ex_body;

// rebind needed
exception TIMEOUT ex_body;

// operation timed out
exception TRANSACTION_UNAVAILABLE ex_body;

// no transaction
exception TRANSACTION_MODE ex_body;

// invalid transaction mode
exception BAD_QOS ex_body;

// bad quality of service
exception INVALID_ACTIVITY ex_body;

// bad quality of service
exception ACTIVITY_COMPLETED ex_body;

// bad quality of service
exception ACTIVITY_REQUIRED ex_body;

// bad quality of service
};

8.12.3.1 UNKNOWN

This exception is raised if an operation implementation throws a non-CORBA exception (such as an exception specific to
the implementation’s programming language), or if an operation raises a user exception that does not appear in the
operation’s raises expression. UNKNOWN is also raised if the server returns a system exception that is unknown to the
client. (This can happen if the server uses a later version of CORBA than the client and new system exceptions have been
added to the later version.)
Common Object Request Broker Architecture (CORBA), v3.1.1 151

8.12.3.2 BAD_PARAM

A parameter passed to a call is out of range or otherwise considered illegal. An ORB may raise this exception if null
values or null pointers are passed to an operation (for language mappings where the concept of a null pointers or null
values applies). BAD_PARAM can also be raised as a result of client generating requests with incorrect parameters using
the DII.

8.12.3.3 NO_MEMORY

The ORB run time has run out of memory.

8.12.3.4 IMP_LIMIT

This exception indicates that an implementation limit was exceeded in the ORB run time. For example, an ORB may
reach the maximum number of references it can hold simultaneously in an address space, the size of a parameter may
have exceeded the allowed maximum, or an ORB may impose a maximum on the number of clients or servers that can
run simultaneously.

8.12.3.5 COMM_FAILURE

This exception is raised if communication is lost while an operation is in progress, after the request was sent by the client,
but before the reply from the server has been returned to the client.

8.12.3.6 INV_OBJREF

This exception indicates that an object reference is internally malformed. For example, the repository ID may have
incorrect syntax or the addressing information may be invalid.

An ORB may choose to detect calls via nil references (but is not obliged to detect them). INV_OBJREF is used to
indicate this.

If the client invokes an operation that results in an attempt by the client ORB to marshal wchar or wstring data for an in
parameter (or to unmarshal wchar or wstring data for an in/out parameter, out parameter or the return value), and the
associated object reference does not contain a codeset component, the INV_OBJREF standard system exception is raised.

8.12.3.7 NO_PERMISSION

An invocation failed because the caller has insufficient privileges.

8.12.3.8 INTERNAL

This exception indicates an internal failure in an ORB, for example, if an ORB has detected corruption of its internal data
structures.

8.12.3.9 MARSHAL

A request or reply from the network is structurally invalid. This error typically indicates a bug in either the client-side or
server-side run time. For example, if a reply from the server indicates that the message contains 1000 bytes, but the actual
message is shorter or longer than 1000 bytes, the ORB raises this exception. MARSHAL can also be caused by using the
DII or DSI incorrectly, for example, if the type of the actual parameters sent does not agree with IDL signature of an
operation.
152 Common Object Request Broker Architecture (CORBA), v3.1.1

8.12.3.10 INITIALIZE

An ORB has encountered a failure during its initialization, such as failure to acquire networking resources or detecting a
configuration error.

8.12.3.11 NO_IMPLEMENT

This exception indicates that even though the operation that was invoked exists (it has an IDL definition), no
implementation for that operation exists. NO_IMPLEMENT can, for example, be raised by an ORB if a client asks for an
object’s type definition from the interface repository, but no interface repository is provided by the ORB.

8.12.3.12 BAD_TYPECODE

The ORB has encountered a malformed type code (for example, a type code with an invalid TCKind value).

8.12.3.13 BAD_OPERATION

This indicates that an object reference denotes an existing object, but that the object does not support the operation that
was invoked.

8.12.3.14 NO_RESOURCES

The ORB has encountered some general resource limitation. For example, the run time may have reached the maximum
permissible number of open connections.

8.12.3.15 NO_RESPONSE

This exception is raised if a client attempts to retrieve the result of a deferred synchronous call, but the response for the
request is not yet available.

8.12.3.16 PERSIST_STORE

This exception indicates a persistent storage failure, for example, failure to establish a database connection or corruption
of a database.

8.12.3.17 BAD_INV_ORDER

This exception indicates that the caller has invoked operations in the wrong order. For example, it can be raised by an
ORB if an application makes an ORB-related call without having correctly initialized the ORB first.

8.12.3.18 TRANSIENT

TRANSIENT indicates that the ORB attempted to reach an object and failed. It is not an indication that an object does
not exist. Instead, it simply means that no further determination of an object's status was possible because it could not be
reached. This exception is raised if an attempt to establish a connection fails, for example, because the server or the
implementation repository is down.

8.12.3.19 FREE_MEM

The ORB failed in an attempt to free dynamic memory, for example because of heap corruption or memory segments
being locked.
Common Object Request Broker Architecture (CORBA), v3.1.1 153

8.12.3.20 INV_IDENT

This exception indicates that an IDL identifier is syntactically invalid. It may be raised if, for example, an identifier
passed to the interface repository does not conform to IDL identifier syntax, or if an illegal operation name is used with
the DII.

8.12.3.21 INV_FLAG

An invalid flag was passed to an operation (for example, when creating a DII request).

8.12.3.22 INTF_REPOS

An ORB raises this exception if it cannot reach the interface repository, or some other failure relating to the interface
repository is detected.

8.12.3.23 BAD_CONTEXT

An operation may raise this exception if a client invokes the operation but the passed context does not contain the context
values required by the operation.

8.12.3.24 OBJ_ADAPTER

This exception typically indicates an administrative mismatch. For example, a server may have made an attempt to
register itself with an implementation repository under a name that is already in use, or is unknown to the repository.
OBJ_ADAPTER is also raised by the POA to indicate problems with application-supplied servant managers.

8.12.3.25 DATA_CONVERSION

This exception is raised if an ORB cannot convert the representation of data as marshaled into its native representation or
vice-versa. For example, DATA_CONVERSION can be raised if wide character codeset conversion fails, or if an ORB
cannot convert floating point values between different representations.

8.12.3.26 OBJECT_NOT_EXIST

The OBJECT_NOT_EXIST exception is raised whenever an invocation on a deleted object was performed. It is an
authoritative “hard” fault report. Anyone receiving it is allowed (even expected) to delete all copies of this object
reference and to perform other appropriate “final recovery” style procedures.

Bridges forward this exception to clients, also destroying any records they may hold (for example, proxy objects used in
reference translation). The clients could in turn purge any of their own data structures.

8.12.3.27 TRANSACTION_REQUIRED

The TRANSACTION_REQUIRED exception indicates that the request carried a null transaction context, but an active
transaction is required.

8.12.3.28 TRANSACTION_ROLLEDBACK

The TRANSACTION_ROLLEDBACK exception indicates that the transaction associated with the request has already
been rolled back or marked to roll back. Thus, the requested operation either could not be performed or was not
performed because further computation on behalf of the transaction would be fruitless.
154 Common Object Request Broker Architecture (CORBA), v3.1.1

8.12.3.29 INVALID_TRANSACTION

The INVALID_TRANSACTION indicates that the request carried an invalid transaction context. For example, this
exception could be raised if an error occurred when trying to register a resource.

8.12.3.30 INV_POLICY

INV_POLICY is raised when an invocation cannot be made due to an incompatibility between Policy overrides that apply
to the particular invocation.

8.12.3.31 CODESET_INCOMPATIBLE

This exception is raised whenever meaningful communication is not possible between client and server native code sets.
See CORBA, Part II - ORB Interoperability Architecture.

8.12.3.32 REBIND

REBIND is raised when the current effective RebindPolicy, as described in interface RebindPolicy on page 420, has a
value of NO_REBIND or NO_RECONNECT and an invocation on a bound object reference results in a LocateReply
message with status OBJECT_FORWARD or a Reply message with status LOCATION_FORWARD. This exception is
also raised if the current effective RebindPolicy has a value of NO_RECONNECT and a connection must be re-opened.
The invocation can be retried once the effective RebindPolicy is changed to TRANSPARENT or binding is re-
established through an invocation of CORBA::Object::validate_connection.

REBIND is raised when there is a problem in carrying out a requested or implied attempt to rebind an object reference
(interface RebindPolicy on page 420).

8.12.3.33 TIMEOUT

TIMEOUT is raised when no delivery has been made and the specified time-to-live period has been exceeded. It is a
standard system exception because time-to-live QoS can be applied to any invocation.

8.12.3.34 TRANSACTION_UNAVAILABLE

TRANSACTION_UNAVAILABLE exception is raised by the ORB when it cannot process a transaction service context
because its connection to the Transaction Service has been abnormally terminated.

8.12.3.35 TRANSACTION_MODE

TRANSACTION_MODE exception is raised by the ORB when it detects a mismatch between the TransactionPolicy
in the IOR and the current transaction mode.

8.12.3.36 BAD_QOS

The BAD_QOS exception is raised whenever an object cannot support the quality of service required by an invocation
parameter that has a quality of service semantics associated with it.

8.12.3.37 INVALID_ACTIVITY

The INVALID_ACTIVITY system exception may be raised on the Activity or Transaction services’ resume methods if a
transaction or Activity is resumed in a context different to that from which it was suspended. It is also raised when an
attempted invocation is made that is incompatible with the Activity’s current state.
Common Object Request Broker Architecture (CORBA), v3.1.1 155

8.12.3.38 ACTIVITY_COMPLETED

The ACTIVITY_COMPLETED system exception may be raised on any method for which Activity context is accessed. It
indicates that the Activity context in which the method call was made has been completed due to a timeout of either the
Activity itself or a transaction that encompasses the Activity, or that the Activity completed in a manner other than that
originally requested.

8.12.3.39 ACTIVITY_REQUIRED

The ACTIVITY_REQUIRED system exception may be raised on any method for which an Activity context is required.
It indicates that an Activity context was necessary to perform the invoked operation, but one was not found associated
with the calling thread.

8.12.4 Standard Minor Exception Codes

Please refer to Annex A for a table that specifies standard minor exception codes that have been assigned for the standard
system exceptions.
156 Common Object Request Broker Architecture (CORBA), v3.1.1

9 Value Type Semantics

9.1 Overview

Objects, more specifically, interface types that objects support, are defined by an IDL interface, allowing arbitrary
implementations. There is great value, which is described in great detail elsewhere, in having a distributed object system
that places almost no constraints on implementations.

However there are many occasions in which it is desirable to be able to pass an object by value, rather than by reference.
This may be particularly useful when an object’s primary “purpose” is to encapsulate data, or an application explicitly
wishes to make a “copy” of an object.

The semantics of passing an object by value are similar to that of standard programming languages. The receiving side of
a parameter passed by value receives a description of the “state” of the object. It then instantiates a new instance with that
state but having a separate identity from that of the sending side. Once the parameter passing operation is complete, no
relationship is assumed to exist between the two instances.

Because it is necessary for the receiving side to instantiate an instance, it must necessarily know something about the
object’s state and implementation.

Value types provide semantics that bridge between CORBA structs and CORBA interfaces:

• They support description of complex state (i.e., arbitrary graphs, with recursion and cycles).

• Their instances are always local to the context in which they are used (because they are always copied when passed
as a parameter to a remote call).

• They support both public and private (to the implementation) data members.

• They can be used to specify the state of an object implementation (i.e., they can support an interface).

• They support single inheritance (of valuetype) and can support an interface.

• They may be also be abstract.

9.2 Architecture

The basic notion is relatively simple. A value type is, in some sense, half way between a “regular” IDL interface type
and a struct. The use of a value type is a signal from the designer that some additional properties (state) and
implementation details be specified beyond that of an interface type. Specification of this information puts some
additional constraints on the implementation choices beyond that of interface types. This is reflected in both the semantics
specified herein, and in the language mappings.

An essential property of value types is that their implementations are always local. That is, the explicit use of value type
in a concrete programming language is always guaranteed to use a local implementation, and will not require a remote
call. They have no identity (their value is their identity) and they are not “registered” with the ORB.

There are two kinds of value types, concrete (or stateful) value types, and abstract (stateless) ones. As explained below
the essential characteristics of both are the same. The differences between them result from the differences in the way
they are mapped in the language mappings. In this specificaiton the semantics of value types apply to both kinds, unless
specifically stated otherwise.

Concrete (stateful) values add to the expressive power of (IDL) structs by supporting:
Common Object Request Broker Architecture (CORBA), v3.1.1 157

• Single derivation (from other value types).

• Supports a single non-abstract interface.

• Arbitrary recursive value type definitions, with sharing semantics providing the ability to define lists, trees,
lattices, and more generally arbitrary graphs using value types.

• Null value semantics.

When an instance of such a type is passed as a parameter, the sending context marshals the state (data) and passes it to
the receiving context. The receiving context instantiates a new instance using the information in the GIOP request and
unmarshals the state. It is assumed that the receiving context has available to it an implementation that is consistent with
the sender’s (i.e., only needs the state information), or that it can somehow download a usable implementation. Provision
is made in the on-the-wire format to support the carrying of an optional call back object (CodeBase) to the sending
context, which enables such downloading when it is appropriate.

It should be noted that it is possible to define a concrete value type with an empty state as a degenerate case.

9.2.1 Abstract Values

Value types may also be abstract. They are called abstract because an abstract value type may not be instantiated. Only
concrete types derived from them may be actually instantiated and implemented. Their implementation, of course, is still
local. However, because no state information may be specified (only local operations are allowed), abstract value types
are not subject to the single inheritance restrictions placed upon concrete value types. Essentially they are a bundle of
operation signatures with a purely local implementation. This distinction is made clear in the language mappings for
abstract values.

Note that a concrete value type with an empty state is not an abstract value type. They are considered to be stateful, may
be instantiated, marshaled, and passed as actual parameters. Consider them to be a degenerate case of stateful values.

9.2.2 Operations

Operations defined on a value type specify signatures whose implementation can only be local. Because these operations
are local, they must be directly implemented by a body of code in the language mapping (no proxy or indirection is
involved).

The language mappings of such operations require that instances of value types passed into and returned by such local
methods are passed by reference (programming language reference semantics, not CORBA object reference semantics)
and that a copy is not made. Note, such a (local) invocation is not a CORBA invocation. Hence it is not mediated by the
ORB, although the API to be used is specified in the language mapping.

The (copy) semantics for instances of value type are only guaranteed when instances of these value types are passed as a
parameter to an operation defined on a CORBA interface, and hence mediated by the ORB. If an instance of a value type
is passed as a parameter to a method of another value type in an invocation, then this call is a “normal” programming
language call. In this case both of the instances are local programming language constructs. No CORBA style copy
semantics are used and programming language reference semantics apply.

Operations on the value type are supported in order to guarantee the portability of the client code for these value types.
They have no representation on the wire and hence no impact on interoperability.
158 Common Object Request Broker Architecture (CORBA), v3.1.1

9.2.3 Value Type vs. Interfaces

By default value types are not CORBA Objects. In particular, instances of value types do not inherit from
CORBA::Object and do not support normal object reference semantics. However it is always possible to explicitly
declare that a given value type supports an interface type. In this case instances of the type may support CORBA object
reference semantics (if they are registered with the ORB using an object adapter).

9.2.4 Parameter Passing

This sub clause describes semantics when a value instance is passed as parameter in a CORBA invocation. It does not
deal with the case of calling another non-CORBA (i.e., local) programming method, which happens to have a parameter
of the same type.

9.2.4.1 Value vs. Reference Semantics

Determination of whether a parameter is to be passed by value or reference is made by examining the parameter’s formal
type (i.e., the signature of the operation it is being passed to). If it is a value type, then it is passed by value. If it is an
ordinary interface, then it is passed by reference (the case today for all CORBA objects). This rule is simple and
consistent with the handling of the same situation in recursive state definitions or in structs.

In the case of abstract interfaces, the determination is made at runtime. See Semantics of Abstract Interfaces on page 173
for a description of the rules.

9.2.4.2 Sharing Semantics

In order to be expressive enough to describe arbitrary graphs, lattice, trees, etc., value types support sharing and null
semantics. Instances of a value type can be shared by others across or within other instances. They can also be null. This
is unlike other IDL data types such as structs, unions, and sequences that can never be shared. The sharing of values
within and between the parameters to an operation is preserved across an invocation; that is, the graph that is
reconstructed in the receiving context is structurally isomorphic to the sending context’s.

9.2.4.3 Identity Semantics

When an instance of the value type is passed as a parameter to an operation of a non-local interface, the effect in all cases
shall be as if an independent copy of the instance is instantiated in the receiving context. While certain implementation
optimizations are possible the net effect shall be as if the copy is a separate independent entity and there is no explicit or
implicit sharing of state. This applies to all valuetypes involved in the invocation, including those embedded in other IDL
datatypes or in an any. This notional copying occurs twice, once for in and inout parameters when the invocation is
initiated, and once again for inout, out, and return parameters when the invocation completes. Optimization techniques
such as copy on write, etc. must make sure that the semantics of copying as described above is preserved.

9.2.4.4 Any parameter type

When an instance of a value type is passed to an any, as with all cases of passing instances to an any, it is the
responsibility of the implementor to insert and extract the value according to the language mapping specification.
Common Object Request Broker Architecture (CORBA), v3.1.1 159

9.2.5 Substitutability Issues

The substitutability requirements for CORBA require the definition of what happens when an instance of a derived value
type is passed as a parameter that is declared to be a base value type or an instance of a value type that supports an
interface is passed as a parameter that is declared as the interface type.

There are three cases to consider: the parameter type is a regular interface, the parameter type is an abstract interface, and
the parameter type is a value type.

9.2.5.1 Value instance -> Interface type

A value type that supports a regular interface is not a subtype of that interface, and hence cannot be substituted for that
interface in an invocation parameter. In this case an object reference corresponding to the value type instance that has
been registered with the ORB must be obtained and this object reference must be used as the actual parameter. Different
language mappings provide different facilities to aid in such parameter passing.

9.2.5.2 Value Instance -> Abstract interface type

A value type that supports an abstract interface is a subtype of that interface, and can be substituted for that interface in
an invocation parameter.

9.2.5.3 Value instance -> Value type

In this case the receiving context is expecting to receive a value type. If the receiving context currently has the
appropriate implementation class, then there is no problem.

If the receiving context does not currently hold an implementation with which to reconstruct the original type, then the
following algorithm is used to find such an implementation:

1. Load - Attempt to load (locally in C/C++, possibly remotely in Java and other “portable” languages) the real type of
the object (with its methods). If this succeeds, OK.

2. Truncate - Truncate the type of the object to the base type (if specified as truncatable in the IDL). Truncation can
never lead to faulty programs because, from a structural point view base types structurally subsume a derived type
and an object created in the receiving context bears no relationship with the original one. However, it might be
semantically puzzling, as the derived type may completely re-interpret the meaning of the state of the base. For that
reason a derived value needs to indicate if it is safe to truncate to its immediate non-abstract parent.

3. Raise Exception - If none of these work or are possible, then raise the NO_IMPLEMENT exception with standard
minor code 1.

Truncatability is a transitive property.

Example

valuetype EmployeeRecord { // note this is not a CORBA::Object
// state definition
private string name;
private string email;
private string SSN;
// initializer
factory init(in string name, in string SSN);

};
160 Common Object Request Broker Architecture (CORBA), v3.1.1

valuetype ManagerRecord: truncatable EmployeeRecord {
// state definition
private sequence<EmployeeRecord> direct_reports;

};

9.2.6 Widening/Narrowing

As has been described above, value type instances may be widened/narrowed to other value types. Each language
mapping is responsible for specifying how these operations are made available to the programmer.

Narrowing from an interface type instance to a value type instance is not allowed. If the interface designer wants to allow
the receiving context to create a local implementation of the value type (i.e., a value representing the interface), an
operation that returns the appropriate value type may be defined.

9.2.7 Value Base Type

All value types have a conventional base type called ValueBase. This is a type, which fulfills a role that is similar to that
played by Object. Conceptually it supports the common operations available on all value types. See ValueBase
Operations on page 114 for a description of those operations. In each language mapping ValueBase will be mapped to an
appropriate base type that supports the marshaling/unmarshaling protocol as well as the model for custom marshaling.

The mapping for other operations, which all value types must support, such as getting meta information about the type,
may be found in the specifics for each language mapping.

9.2.8 Life Cycle issues

Value type instances are always local to their creating context. For example, in a given language mapping an instance of
a value type is always created as a local “language” object with no POA semantics attached to it initially.

When passed using a CORBA invocation, a copy of the value is made in the receiving context and that copy starts its life
as a local programming language entity with no POA semantics attached to it.

If a value type supports an ordinary interface type, its instances may also be passed by reference when the formal
parameter type is an interface type (see Parameter Passing on page 159). In this case they behave like ordinary object
implementations and must be associated with a POA policy and also be registered with the ORB (e.g.,
POA::activate_object() before they can be passed by reference. Not registering the value as a CORBA object and/or
not associating an appropriate policy with it results in an exception when trying to use it as a remote object, the “normal”
behavior. The exception raised shall be OBJECT_NOT_EXIST with standard minor code 1.

9.2.8.1 Creation and Factories

When an instance of a value type is received by the ORB, it must be unmarshaled and an appropriate factory for its actual
type found in order for the new instance to be created. The type is encoded by the RepositoryID, which is passed over the
wire as part of an invocation. The mapping between the type (as specified by the RepositoryID) and the factory is
language specific. In certain languages it may be possible to specify default policies that are used to find the factory,
without requiring that specific routines be called. In others the runtime and/or generated code may have to explicitly
specify the mapping on a per type basis. In others a combination may be used. In any event the ORB implementation is
responsible for maintaining this mapping See Language Specific Value Factory Requirements on page 163 for more
details on the requirements for each language mapping. Value box types do not need or use factories.
Common Object Request Broker Architecture (CORBA), v3.1.1 161

9.2.9 Security Considerations

The addition of value types has few impacts on the CORBA security model. In essence, the security implications in
defining and using value types are similar to those involved with the use of IDL structs. Instances of value types are
mapped to local, concrete programming language constructs. Except for providing the marshaling mechanisms, the ORB
is not directly involved with accessing value type implementations. This specification is mostly about two things: how
value types manifest themselves as concrete programming language constructs and how they are transmitted.

To see this consider how value types are actually used. The IDL definition of a value type in conjunction with a
programming language mapping is used to generate the concrete programming language definitions for that type.

Let us consider its life cycle. In order to use it, the programmer uses the mechanisms in the programming language to
instantiate an instance. This is instance is a local programming language construct. It is not “registered” with the ORB,
object adapter, etc. The programmer may manipulate this programming construct just like any other programming
language construct. So far there are no security implications. As long as no ORB-mediated invocations are made, the
programmer may manipulate the construct. Note, this includes making “local,” non ORB-mediated calls to any locally
implemented operations. Any assignments to the construct are the responsibility of the programmer and have no special
security implications.

Things get interesting when the program attempts to pass one of these constructs through an orb-mediated invocation (i.e.,
calls a stub that uses it as a parameter type, or uses the DII). There are two cases to consider: 1) Value as Value and 2)
Value as Object Reference.

9.2.9.1 Value as Value

The formal type of the parameter is a value. This case is no different from using any other kind of a value (long, string,
struct) in a CORBA invocation, with respect to security. The value (data) is marshaled and delivered to the receiving
context. On the receiving context, the knowledge of the type is used (at least implicitly) to find the factory to create the
correct local programming language construct. The data is then unmarshaled to fill in the newly created construct. This is
similar to using other values (longs, strings, structs) except that the knowledge of the factory is not “built-in” to the
ORB’s skeleton/DSI engine.

9.2.9.2 Value as Object Reference

The formal type of the parameter is an interface type that is supported by a value. The program must have “registered” the
value with an object adapter and is really using the returned object reference (see for the specific rules.) Thus this case
“reduces” to a regular CORBA invocation, using a regular object reference. An IOR is passed to the receiving context.
All the “normal” security considerations apply. From the point of view of the receiving context, the IOR is a “normal”
object reference. No “special” rules, with respect to security or otherwise, apply to it. The fact that it is ultimately a
reference to an implementation that was created from instantiating and registering a value type implementation is not
relevant.

In both of these cases, security considerations are involved with the decision to allow the ORB-mediated invocation to
proceed. The fact that a value type is involved is not material.

9.3 Standard Value Box Definitions

For some CORBA-defined types for which preservation of sharing and transmission of nulls are likely to be important,
the following value box type definitions are added to the CORBA module.

162 Common Object Request Broker Architecture (CORBA), v3.1.1

module CORBA {
valuetype StringValue string;
valuetype WStringValue wstring;

};

9.4 Language Mappings

9.4.1 General Requirements

A concrete value is mapped to a concrete usable “class” construct in each programming language, plus possibly some
helper classes where appropriate. In Java, C++, and Smalltalk this is a real concrete class. In C it is a struct.

An abstract value is mapped to some sort of an abstract construct--an interface in Java, and an abstract class with pure
virtual function members in C++.

Tools that implement the language mapping are free to “extend” the implementation classes with “extra” data members
and methods. When an instance of such a class is used as a parameter, only the portions that correspond directly to the
IDL declaration, are marshaled and delivered to the receiving context. This allows freedom of implementations while
preserving the notion of contract and type safety in IDL.

9.4.2 Language Specific Marshaling

Each language mapping defines an appropriate marshaling/unmarshaling API and the entry point for custom marshaling/
unmarshaling.

9.4.3 Language Specific Value Factory Requirements

Each language mapping specifies the algorithm and means by which RepositoryIDs are used to find the appropriate
factory for an instance of a value type so that it may be created as it is unmarshaled “off the wire.”

It is desirable, where it makes sense, to specify a “default” policy for automatically using RepositoryIDs that are in
common formats to find the appropriate factory. Such a policy can be thought of as an implicit registration.

Each language mapping specifies how and when the registration occurs, both explicit and implicit. The registration must
occur before an attempt is made to unmarshal an instance of a value type. If the ORB is unable to locate and use the
appropriate factory, then a MARSHAL exception with standard minor code 1 is raised.

Because the type of the factory is programming language specific and each programming language platform has different
policies, the factory type is specified as native. It is the responsibility of each language mapping to specify the actual
programming language type of the factory.

module CORBA {

// IDL
native ValueFactory;

};
Common Object Request Broker Architecture (CORBA), v3.1.1 163

9.4.4 Value Method Implementation

The mapped class must support method bodies (i.e., code) that implement the required IDL operations. The means by
which this association is accomplished is a language mapping “detail” in much the same way that an IDL compiler is.

9.5 Custom Marshaling

Value types can override the default marshaling/unmarshaling model and provide their own way to encode/decode their
state. Custom marshaling is intended to be used to facilitate integration of existing “class libraries” and other legacy
systems. It is explicitly not intended to be a standard practice, nor used in other OMG specifications to avoid “standard
ORB” marshaling.

The fact that a value type has some custom marshaling code is declared explicitly in the IDL. This explicit declaration has
two goals:

• Type safety - stubs and skeleton can know statically that a given type is custom marshaled and can then do a sanity
check on what is coming over the wire.

• efficiency - for value types that are not custom marshaled no run time test is necessary in the marshaling code.

If a custom marshaled value type has a state definition, the state definition is treated the same as that of a non custom
value type for mapping purposes (i.e., the fields show up in the same fashion in the concrete programming language). It
is provided to help with application portability.

A custom marshaled value type is always a stateful value type.

// Example IDL

custom valuetype T {
// optional state definition

...
};

Custom value types can never be safely truncated to base (i.e., they always require an exact match for their RepositoryId
in the receiving context).

Once a value type has been marked as custom, it needs to provide an implementation that marshals and unmarshals the
valuetype. The marshaling code encapsulates the application code that can marshal and unmarshal instances of the value
type over a stream using the CDR encoding. It is the responsibility of the implementation to marshal the state of all of its
base types.

The following sub clauses define the operations and streams that are used for custom marshaling.

9.5.1 Implementation of Custom Marshaling

Once a value type has been marked as custom, an implementation of the custom marshaling code must be provided. This
is specified by providing a concrete implementation of an abstract value type, CustomMarshal, as part of the
implementation of the value type. CustomMarshal encapsulates the application code that can marshal and unmarshal
instances of the value type over a stream using the CDR encoding.

The following IDL defines the interfaces that are used to support the definition and use of custom marshaling.
164 Common Object Request Broker Architecture (CORBA), v3.1.1

module CORBA {
abstract valuetype CustomMarshal {

void marshal (in DataOutputStream os);
void unmarshal (in DataInputStream is);

};
};

CustomMarshal is an abstract value type that is meant to be used by the ORB, not the user. Semantically it is treated as
a custom valuetype’s implicit base class, although the custom valuetype does not actually inherit it in IDL. The
implementor of a custom value type provides an implementation of the CustomMarshal operations. The manner in
which this is done is specified for each language mapping. Each custom marshaled value type has its own
implementation. The interface is exposed in the CORBA module so that the implementor can use the skeletons generated
by the IDL compiler as the basis for the implementation. Hence there is no need for the application to acquire a reference
to a Stream.

Note that while nothing prevents a user from writing IDL that inherits from CustomMarshal, doing so will not make the
type custom, nor will it cause the ORB to treat it as custom.

The implementation requirements of the streaming mechanism require that the implementations must be local since local
memory addresses (i.e., the marshal buffers) have to be manipulated.

9.5.2 Marshaling Streams

The streams used for marshaling are defined below. They are responsible for marshaling and demarshaling the data that
makes up a custom value in CDR format.

module CORBA {

typedef sequence<any> AnySeq;
typedef sequence<boolean> BooleanSeq;
typedef sequence<char> CharSeq;
typedef sequence<wchar> WCharSeq;
typedef sequence<octet> OctetSeq;
typedef sequence<short> ShortSeq;
typedef sequence<unsigned short> UShortSeq;
typedef sequence<long> LongSeq;
typedef sequence<unsigned long> ULongSeq;
typedef sequence<long long> LongLongSeq;
typedef sequence<unsigned long long> ULongLongSeq;
typedef sequence<float> FloatSeq;
typedef sequence<double> DoubleSeq;
typedef sequence<long double> LongDoubleSeq;
typedef sequence<string> StringSeq;
typedef sequence<wstring> WStringSeq;

exception BadFixedValue {
unsigned long offset;

};

abstract valuetype DataOutputStream {
void write_any(in any value);
Common Object Request Broker Architecture (CORBA), v3.1.1 165

void write_boolean(in boolean value);
void write_char(in char value);
void write_wchar(in wchar value);
void write_octet(in octet value);
void write_short(in short value);
void write_ushort(in unsigned short value);
void write_long(in long value);
void write_ulong(in unsigned long value);
void write_longlong(in long long value);
void write_ulonglong(in unsigned long long value);
void write_float(in float value);
void write_double(in double value);
void write_longdouble(in long double value);
void write_string(in string value);
void write_wstring(in wstring value);
void write_Object(in Object value);
void write_Abstract(in AbstractBase value);
void write_Value(in ValueBase value);
void write_TypeCode(in TypeCode value);

void write_any_array(
in AnySeq seq,
in unsigned long offset,
in unsigned long length

);
void write_boolean_array(

in BooleanSeq seq,
in unsigned long offset,
in unsigned long length

);
void write_char_array(

in CharSeq seq,
in unsigned long offset,
in unsigned long length

);
void write_wchar_array(

in WCharSeq seq,
in unsigned long offset,
in unsigned long length

);
void write_octet_array(

in OctetSeq seq,
in unsigned long offset,
in unsigned long length

);
void write_short_array(

in ShortSeq seq,
in unsigned long offset,
in unsigned long length

);
void write_ushort_array(
166 Common Object Request Broker Architecture (CORBA), v3.1.1

in UShortSeq seq,
in unsigned long offset,
in unsigned long length

);
void write_long_array(

in LongSeq seq,
in unsigned long offset,
in unsigned long length

);
void write_ulong_array(

in ULongSeq seq,
in unsigned long offset,
in unsigned long length

);
void write_ulonglong_array(

in ULongLongSeq seq,
in unsigned long offset,
in unsigned long length

);
void write_longlong_array(

in LongLongSeq seq,
in unsigned long offset,
in unsigned long length

);
void write_float_array(

in FloatSeq seq,
in unsigned long offset,
in unsigned long length

);
void write_double_array(

in DoubleSeq seq,
in unsigned long offset,
in unsigned long length

);

void write_long_double_array(
in LongDoubleSeq seq,
in unsigned long offset,
in unsigned long length

);

void write_fixed(
in any fixed_value

) raises (BadFixedValue);
void write_fixed_array(

in AnySeq seq,
in unsigned long offset,
in unsigned long length

) raises (BadFixedValue);
};
Common Object Request Broker Architecture (CORBA), v3.1.1 167

abstract valuetype DataInputStream {
any read_any();
boolean read_boolean();
char read_char();
wchar read_wchar();
octet read_octet();
short read_short();
unsigned short read_ushort();
long read_long();
unsigned long read_ulong();
long long read_longlong();
unsigned long long read_ulonglong();
float read_float();
double read_double();
long double read_longdouble();
string read_string();
wstring read_wstring();
Object read_Object();
AbstractBase read_Abstract();
ValueBase read_Value();
TypeCode read_TypeCode();

void read_any_array(
inout AnySeq seq,
in unsigned long offset,
in unsigned long length

);
void read_boolean_array(

inout BooleanSeq seq,
in unsigned long offset,
in unsigned long length

);
void read_char_array(

inout CharSeq seq,
in unsigned long offset,
in unsigned long length

);
void read_wchar_array(

inout WCharSeq seq,
in unsigned long offset,
in unsigned long length

);
void read_octet_array(

inout OctetSeq seq,
in unsigned long offset,
in unsigned long length

);
void read_short_array(

inout ShortSeq seq,
in unsigned long offset,
in unsigned long length
168 Common Object Request Broker Architecture (CORBA), v3.1.1

);
void read_ushort_array(

inout UShortSeq seq,
in unsigned long offset,
in unsigned long length

);
void read_long_array(

inout LongSeq seq,
in unsigned long offset,
in unsigned long length

);
void read_ulong_array(

inout ULongSeq seq,
in unsigned long offset,
in unsigned long length

);
void read_ulonglong_array(

inout ULongLongSeq seq,
in unsigned long offset,
in unsigned long length

);
void read_longlong_array(

inout LongLongSeq seq,
in unsigned long offset,
in unsigned long length

);
void read_float_array(

inout FloatSeq seq,
in unsigned long offset,
in unsigned long length

);
void read_double_array(

inout DoubleSeq seq,
in unsigned long offset,
in unsigned long length

);

void read_long_double_array(
inout DoubleSeq seq,
in unsigned long offset,
in unsigned long length

);
any read_fixed(

in unsigned short digits,
in short scale

) raises (BadFixedValue);
void read_fixed_array(

inout AnySeq seq,
in unsigned long offset,
in unsigned long length,
in unsigned short digits,
Common Object Request Broker Architecture (CORBA), v3.1.1 169

in short scale
) raises (BadFixedValue);

};
};

Note that the Data streams are abstract value types. This ensures that their implementation will be local, which is required
in order for them to properly flatten and encode nested value types.

The read_ operations that have an inout parameter named seq are expected to extend the sequence to fit the read value.

The ORB (i.e., the CDR encoding engine) is responsible for actually constructing the value’s encoding. The application
marshaling code merely calls the above operations. The details of writing the value tag, header information, end tag(s) are
specifically not exposed to the application code. In particular the size of the custom data is not written by the application.
This guarantees that the custom marshaling (and unmarshaling code) cannot corrupt the other parameters of the call.

If an inconsistency is detected, then the standard system exception MARSHAL is raised.

A possible implementation might have the engine determine that a custom marshal parameter is “next.” It would then
write the value tag and other header information and then return control back to the application defined marshaling policy,
which would do the marshaling by calling the DataOutputStream operations to write the data as appropriate. (Note the
stream takes care of breaking the data into chunks, if necessary.) When control was returned back to the engine, it
performs any other cleanup activities to complete the value type, and then proceeds onto the next parameter. How this is
actually accomplished is an implementation detail of the ORB.

The Data Streams shall test for possible shared or null values and place appropriate indirections or null encodings (even
when used from the custom streaming policy).

There are no explicit operations for creating the streams. It is assumed that the ORB implicitly acts as a factory. In a sense
they are always available.

For write_fixed, the fixed_value parameter must be an “any” containing a fixed value. If the “any” passed in does not
contain a fixed value, then a BadFixedValue exception is raised with the offset field set to 0.

For write_fixed_array, the elements of the seq parameter that are specified by the offset and length parameters must be
a sequence of “any”s each of which contains a fixed value. If any of these “any”s do not contain a fixed value, or if any
of them contain a fixed value whose digits and scale (as specified by the TypeCode in the “any”) differ from those of
the first of these “any”s (as specified by its TypeCode), then a BadFixedValue exception is raised with the offset field
set to a zero-origin ordinal number indicating the position of the first incorrect “any” within the subsequence of fixed
values written to the stream.

For both write_fixed and write_fixed_array, the TypeCode within each “any” being written specifies the digits and
scale to be used to write the fixed value contained in the “any.” The TypeCode itself is not written to the
DataOutputStream.

The read_fixed operation returns an “any” containing the fixed value that was read from the DataInputStream. The
digits and scale in the TypeCode of the returned “any” are set to the digits and scale parameters passed to read_fixed.
If the fixed value read from the DataInputStream is incompatible with the digits and scale parameters passed to
read_fixed, then a BadFixedValue exception is raised with the offset field set to 0.

The read_fixed_array operation sets the elements of the seq parameter that are specified by the offset and length
parameters. These elements are set to “any”s with TypeCodes specifying a fixed value whose digits and scale are the
same as the digits and scale parameters, and fixed values that were read from the DataInputStream. The previous
contents of these “any”s, including their TypeCodes, are destroyed by the read_fixed_array operation. Other “any”s in
170 Common Object Request Broker Architecture (CORBA), v3.1.1

the seq parameter (if any) are left unchanged. No TypeCode information is read from the DataInputStream. If any of
the fixed values read from the DataInputStream are incompatible with the digits and scale parameters, then a
BadFixedValue exception is raised with the offset field set to a zero-origin ordinal number indicating the position of the
first incorrect “any” within the subsequence of fixed values read from the stream.

The stream representation of a fixed value is considered incompatible if its digit and scale values do not match the
digits and scale values being used to read it from the stream.

9.6 Access to the Sending Context Run Time

There are two cases where a receiving context might want to access the run time environment of the sending context:

• To attempt the downloading of some missing implementation for the value.

• To access some meta information about the version of the value just received.

In order to provide that kind of service a call back object interface is defined. It may optionally be supported by the
sending context (it can be seen as a service). If such a callback object is supported, its IOR may be added to an optional
service context in the GIOP header passed from the sending context to the receiving context.

A service context tagged with the ServiceID SendingContextRunTime (see Part 2 of this specification) contains an
encapsulation of the IOR for a SendingContext::RunTime object. Because ORBs are always free to skip a service
context they don’t understand, this addition does not impact IIOP interoperability.

module SendingContext {
interface RunTime {}; // so that we can provide more

// sending context run time
// services in the future

interface CodeBase: RunTime {
typedef string URL; // blank-separated list of one or more URLs
typedef sequence<URL> URLSeq;
typedef sequence

<CORBA::ValueDef::FullValueDescription> ValueDescSeq;

// Operation to obtain the IR from the sending context
CORBA::Repository get_ir();

// Operations to obtain a location of the implementation code
URL implementation(in CORBA::RepositoryId x);
URLSeq implementations(in CORBA::RepositoryIdSeq x);

// Operations to obtain complete meta information about a Value
// This is just a performance optimization the IR can provide
// the same information
CORBA::FullValueDescription meta(in CORBA::RepositoryId x);
ValueDescSeq metas(in CORBA::RepositoryIdSeq x);

// To obtain a type graph for a value type
// same comment as before the IR can provide similar
Common Object Request Broker Architecture (CORBA), v3.1.1 171

// information
CORBA::RepositoryIdSeq bases(in CORBA::RepositoryId x);

};
};

Supporting the CodeBase interface for a given ORB run time is an issue of quality of service. The point here is that if
the sending context does not support a CodeBase, then the receiving context will simply raise an exception with which
the sending context had to be prepared to deal. There will always be cases where a receiving context will get a value type
and won’t be able to interpret it because:

• It can’t get a legal implementation for it (even if it knows where it is, possibly due to security and/or resource
access issues).

• Its local version is so radically different that it cannot make sense out of the piece of state being provided.

These two failure modes will be represented by the CORBA system exception NO_IMPLEMENT with identified minor
codes, for a missing local value implementation and for incompatible versions (see Standard Minor Exception Codes on
page 156).

Under certain conditions it is possible that when several values of the same CORBA type (same repository id) are sent in
either a request or reply, that the reality is that they have distinct implementations. In this case, in addition to the codebase
URL(s) sent in the service context, each value that has a different codebase may have codebase URL(s) associated with
it. This is encoded by using a different tag to encode the value on the wire.

The sending context does not need to resend the same value for this service context on subsequent requests over the same
underlying connection. Resending a different value for this service context is only necessary if the callback object reference
in use is changed by the sending context within the lifetime of the underlying connection.
172 Common Object Request Broker Architecture (CORBA), v3.1.1

10 Abstract Interface Semantics

10.1 Overview

In many cases it may be useful to defer the determination of whether an object is passed by reference or by value until
runtime. An IDL abstract interface provides this capability. See Example on page 174 for an example of when this might
be useful.

10.2 Semantics of Abstract Interfaces

Abstract interfaces differ from regular IDL interfaces in the following ways:

1. When used in an operation signature, they do not determine whether actual parameters are passed as an object
reference or by value. Instead, the type of the actual parameter (regular interface or value) is used to make this
determination using the following rules:

• The actual parameter is passed as an object reference if it is a regular interface type (or a subtype of a regular
interface type), and that regular interface type is a subtype of the signature abstract interface type, and the object is
already registered with the ORB/OA.

• The actual parameter is passed as a value if it cannot be passed as an object reference but can be passed as a value.
Otherwise, a BAD_PARAM exception is raised.

2. Abstract interfaces do not implicitly inherit from CORBA::Object. This is because they can represent either value
types or CORBA object references, and value types do not necessarily support the object reference operations (see
Object Reference Operations on page 105). If an IDL abstract interface type can be successfully narrowed to an
object reference type (a regular IDL interface), then the CORBA::Object operations can be invoked on the
narrowed object reference.

3. Abstract interfaces implicitly inherit from CORBA::AbstractBase. This type is defined as native. It is the
responsibility of each language mapping to specify the actual programming language type that is used for this type.

module CORBA {
// IDL

native AbstractBase;
};

4. Abstract interfaces do not imply copy semantics for value types passed as arguments to their operations. This is
because their operations may be either CORBA invocations (for abstract interfaces that represent CORBA object
references) or local programming language calls (for abstract interfaces that represent CORBA value types). See
Operations on page 158 and Parameter Passing on page 159 for details of these differences.

5. Special inheritance rules that apply to abstract interfaces are described in Abstract Interface on page 51.

6. See the General Inter-orb Protocol clause in Part 2 of this specification - for special consideration when transmitting
an abstract interface using GIOP.

In other respects, abstract interfaces are identical to regular IDL interfaces. For example, consider the following operation
m1() in abstract interface foo.
Common Object Request Broker Architecture (CORBA), v3.1.1 173

abstract interface foo {
void m1(in AnInterfaceType x, in AnAbstractInterfaceType y,

in AValueType z);
};

x’s are always passed by reference.

z’s are passed as:

• copied values if foo refers to an ordinary interface.

• non-copied values if foo refers to a value type.

y’s are passed as:

• reference if their concrete type is an ordinary interface subtype of AnAbstractInterfaceType (registered with
the ORB), no matter what foo’s concrete type is.

• copied values if their concrete type is value and foo’s concrete type is ordinary interface.

• non-copied values if their concrete type is value and foo’s concrete type is value.

10.3 Usage Guidelines

Abstract interfaces are intended for situations where it cannot be known at compile time whether an object reference or a
value will be passed. In other cases, a regular interface or value type should be used. Abstract interfaces are not intended
to replace regular CORBA interfaces in situations where there is no clear need to provide runtime flexibility to pass either
an object reference or a value. If reference semantics are intended, regular interfaces should be used.

10.4 Example

For example, in a business application it is extremely common to need to display a list of objects of a given type, with
some identifying attribute like account number and a translated text description such as “Savings Account.” A developer
might define an interface such as Describable whose methods provide this information, and implement this interface on
a wide range of types. This allows the method that displays items to take an argument of type Describable and query it
for the necessary information. The Describable objects passed in to the display method may be either CORBA
interface types (passed in as object references) or CORBA value types (passed in by value).

In this example, Describable is used as a polymorphic abstract type. No instances of type Describable exist, but many
different instances have interfaces that support the Describable type abstraction. In C++, Describable would be an
abstract base class; in Java, an interface. In statically typed languages, the compiler can check that the actual parameter
type passed by callers of display is a valid subtype of Describable and therefore supports the methods defined by
Describable. The display method can simply invoke the methods of Describable on the objects that it receives,
without concern for any details of their implementation.

Describable could not be declared as a regular IDL interface. This is because arguments of declared interface type are
always passed as object references (see Parameter Passing on page 159) and we also want the display method to be able
to accept value type objects that can only be passed by value. Similarly we cannot define Describable as a value type
because then the display method would not be able to accept actual parameter objects that only support passing as an
object reference. Abstract interfaces are needed to cover such cases.

The Describable abstract interface could be defined and used by the following IDL:
174 Common Object Request Broker Architecture (CORBA), v3.1.1

abstract interface Describable {
string get_description();

};

interface Example {
void display (in Describable anObject);

};

interface Account : Describable {// passed by reference
 // add Account methods here
};

valuetype Currency supports Describable {// passed by value
 // add Currency methods here
};

If Describable was defined as a regular interface instead of an abstract interface, then it would not be possible to pass a
Currency value to the display method, even though the Currency IDL type supports the Describable interface.

10.5 Security Considerations

Security considerations for abstract interfaces are similar to those for regular interfaces and values (see Security
Considerations on page 162). This is because an abstract interface formal parameter type allows either a regular interface
(IOR) or a value to be passed. Likewise, an operation defined in an abstract interface can be implemented by either a
regular interface (with “normal” security considerations) or by a value type (in which case it is a local call, not mediated
by the ORB). The security implication of making the choice between these alternatives a runtime determination is that the
programmer must ensure that for both alternatives, no security violations can occur. For example, a technique similar to
that described in “Passing Values to Trusted Domains” could be used to avoid inadvertently passing values outside a
domain of trust.

10.5.1 Passing Values to Trusted Domains

When a server passes an object reference, it can be sure that access control policies will apply to any attempt to access
anything through that object reference. When the underlying object is passed as a value, the granularity and level/
semantics of access control are different. In the “by value” case, all the data for the object is passed, and method
invocations on the passed object are local calls that are not mediated by the ORB. Whether the server wants to use the
(potentially more permissive) pass by value access control or not could depend on the security domain, which is receiving
the said object or object reference.

Consider the case where the server S has an object O that it is willing to pass only in the form of an object reference Or'
to a domain Du that it does not trust, but is willing to pass the object by value Ow to another domain Ot that it trusts.

This flexibility is not possible without abstract interfaces. Signatures would have to be written to either always pass
references or always pass values, irrespective of the level of trust of the invocation target domain. However, abstract
interfaces provide the necessary flexibility. The formal parameter type MyType can be declared as an abstract interface
and the method invocation can be coded along the lines of
Common Object Request Broker Architecture (CORBA), v3.1.1 175

myExample->foo(security_check(myExample,mydata));

where the security_check function determines the level of trust of myExample’s domain and returns a regular
interface subtype of MyType for untrusted domains and a value subtype of MyType for trusted domains. The rules for
abstract interfaces will then pass the correct thing in both these cases.
176 Common Object Request Broker Architecture (CORBA), v3.1.1

11 Dynamic Invocation Interface

11.1 Overview

The Dynamic Invocation Interface (DII) describes the client’s side of the interface that allows dynamic creation and
invocation of request to objects. All types defined in this clause are part of the CORBA module.

The Dynamic Invocation Interface (DII) allows dynamic creation and invocation of requests to objects. A client using this
interface to send a request to an object obtains the same semantics as a client using the operation stub generated from the
type specification.

A request consists of an object reference, an operation, and a list of parameters. The ORB applies the implementation-
hiding (encapsulation) principle to requests.

In the Dynamic Invocation Interface, parameters in a request are supplied as elements of a list. Each element is an
instance of a NamedValue (see Common Data Structures on page 177). Each parameter is passed in its native data form.

Parameters supplied to a request may be subject to run-time type checking upon request invocation. Parameters must be
supplied in the same order as the parameters defined for the operation in the Interface Repository.

The standard user exception WrongTransaction is defined in the CORBA module, prior to the definitions of the ORB
and Request interfaces, as follows:

exception WrongTransaction {};

This exception can be raised only if the request is implicitly associated with a transaction (the current transaction at the
time that the request was issued).

11.1.1 Common Data Structures

The type NamedValue is a well known data type in IDL. It can be used either as a parameter type directly or as a
mechanism for describing arguments to a request. The types are described in IDL as:

module CORBA {

typedef unsigned long Flags;
struct NamedValue { PIDL

Identifier name; // argument name
any argument; // argument
long len; // length/count of argument value
Flags arg_modes;// argument mode flags

};
};

For out parameters, applications can set the argument member of the NamedValue structure to a value that includes
either a NULL or a non-NULL storage pointer. If a non-null storage pointer is provided for an out parameter, the ORB
will attempt to use the storage pointed to for holding the value of the out parameter. If the storage pointed to is not
sufficient to hold the value of the out parameter, the behavior is undefined.
Common Object Request Broker Architecture (CORBA), v3.1.1 177

A named value includes an argument name, argument value (as an any), length of the argument, and a set of argument
mode flags. When named value structures are used to describe arguments to a request, the names are the argument
identifiers specified in the IDL definition for a specific operation.

As described in CORBA (Mapping: COM and CORBA) an any consists of a TypeCode and a pointer to the data value.
The TypeCode is a well known opaque type that can encode a description of any type specifiable in IDL. See this sub
clause for a full description of TypeCodes.

For most data types, len is the actual number of bytes that the value occupies. For object references, len is 1. Table 11.1
shows the length of data values for the C language binding. The behavior of a NamedValue is undefined if the len value
is inconsistent with the TypeCode.

Table 11.1 - C Language Binding Data Values

Data type: X Length (X)

short sizeof (CORBA_short)

unsigned short sizeof (CORBA_unsigned_short)

long sizeof (CORBA_long)

unsigned long sizeof (CORBA_unsigned_long)

long long sizeof (CORBA_long_long)

unsigned long long sizeof (CORBA_unsigned_long_long)

float sizeof (CORBA_float)

double sizeof (CORBA_double)

long double sizeof (CORBA_long_double)

fixed<d,s> sizeof (CORBA_fixed_d_s)

char sizeof (CORBA_char)

wchar sizeof (CORBA_wchar)

boolean sizeof (char)

octet sizeof (CORBA_octet)

string strlen (string) /* does NOT include ‘\0’ byte! */

wstring number of wide characters in string, not including wide null terminator

enum E {}; sizeof (CORBA_enum)

union U { }; sizeof (U)

struct S { }; sizeof (S)

Object 1

array N of type T1 Length (T1) * N

sequence V of type T2 Length (T2) * V /* V is the actual, dynamic, number of elements */
178 Common Object Request Broker Architecture (CORBA), v3.1.1

The arg_mode field is of type Flags which is an unsigned long. This field is used as follows in this structure. It
should be noted that Flags type is used as parameter type in many operations and the meaning of the constants passed in
those cases are specific to those operations. Those values should not be confused with the specific use of this type in the
context of the NamedValue structure. These values are reserved, as are the high order 16 bits of the unsigned long.:

The specific usage of Flags in other contexts are described as part of the description of the operation that uses this type
of parameters.

11.1.2 Memory Usage

The values for output argument data types that are unbounded strings or unbounded sequences are returned as pointers to
dynamically allocated memory. In order to facilitate the freeing of all “out-arg memory,” the request routines provide a
mechanism for grouping, or keeping track of, this memory. If so specified, out-arg memory is associated with the
argument list passed to the create request routine. When the list is deleted, the associated out-arg memory will
automatically be freed.

If the programmer chooses not to associate out-arg memory with an argument list, the programmer is responsible for
freeing each out parameter using CORBA_free(), which is discussed in the C Language Mapping specification
(Mapping for Structure Types sub clause).

11.1.3 Return Status and Exceptions

In the Dynamic Invocation interface, routines typically indicate errors or exceptional conditions either via programming
language exception mechanisms, or via an Environment parameter for those languages that do not support exceptions.
Thus, the return type of these routines is void.

11.2 Request Operations

The request operations (except create_request) are defined in terms of the Request pseudo-object. The Request
routines use the NVList definition defined in the preceding sub clause.

module CORBA {

native OpaqueValue;

interface Request { // PIDL

void add_arg (
in Identifier name, // argument name
in TypeCode arg_type, // argument datatype
in OpaqueValue value, // argument value to be added
in long len, // length/count of argument value

CORBA::ARG_IN 1 The associated value is an input only argument.

CORBA::ARG_OUT 2 The associated value is an output only argument.

CORBA::ARG_INOUT 3 The associated value is an in/out argument.
Common Object Request Broker Architecture (CORBA), v3.1.1 179

in Flags arg_flags // argument flags
);

void invoke (
in Flags invoke_flags // invocation flags

);

void delete ();

void send (
in Flags invoke_flags // invocation flags

);

void get_response () raises (WrongTransaction);

boolean poll_response();

Object sendp();

void prepare(in Object p);

void sendc(in Object handler);
};

};

In IDL, The native type OpaqueValue is used to identify the type of the implementation language representation of the
value that is to be passed as a parameter. For example in the C language this is the C language type (void *). Each
language mapping specifies what OpaqueValue maps to in that specific language.

For each Request pseudo-object instance, only one call to either the invoke or the send operations is legal during the
lifetime of the Request object. In addition, once a Request object was passed to one of the
send_multiple_requests_* operations, neither invoke nor send can be called, nor can it be passed in another
invocation of send_multiple_request_* operation.Violations raise BAD_INV_ORDER with standard minor code 5
or 10.

11.2.1 create_request

Because it creates a pseudo-object, this operation is defined in the Object interface (see Object Reference Operations on
page 105 for the complete interface definition). The create_request operation is performed on the Object that is to be
invoked.

module CORBA{

interface Object{ // PIDL
.

void create_request (
in Context ctx, // context object for operation
in Identifier operation, // intended operation on object
in NVList arg_list, // args to operation
180 Common Object Request Broker Architecture (CORBA), v3.1.1

inout NamedValue result, // operation result
out Request request, // newly created request
in Flags req_flags // request flags

);
};

};

This operation creates an ORB request. The actual invocation occurs by calling invoke or by using the send /
get_response calls.

The operation name specified on create_request is the same operation identifier that is specified in the IDL definition
for this operation. In the case of attributes, it is the name as constructed following the rules specified in the
ServerRequest interface as described in the DSI in ServerRequestPseudo-Object on page 194.

The arg_list, if specified, contains a list of arguments (input, output, and/or input/output) that become associated with the
request. If arg_list is omitted (specified as NULL), the arguments (if any) must be specified using the add_arg call
below.

Arguments may be associated with a request by passing in an argument list or by using repetitive calls to add_arg. One
mechanism or the other may be used for supplying arguments to a given request; a mixture of the two approaches is not
supported.

If specified, the arg_list becomes associated with the request; until the invoke call has completed (or the request has
been deleted), the ORB assumes that arg_list (and any values it points to) remains unchanged.

When specifying an argument list, the value and len for each argument must be specified. An argument’s datatype,
name, and usage flags (i.e., in, out, inout) may also be specified; if so indicated, arguments are validated for data type,
order, name, and usage correctness against the set of arguments expected for the indicated operation.

An implementation of the request services may relax the order constraint (and allow arguments to be specified out of
order) by doing ordering based upon argument name.

The context properties associated with the operation are passed to the object implementation. The object implementation
may not modify the context information passed to it.

The operation result is placed in the result argument after the invocation completes.

The req_flags argument is defined as a bitmask (long) that may contain the following flag values:

CORBA::OUT_LIST_MEMORY indicates that any out-arg memory is associated with the argument list (NVList).

Setting the OUT_LIST_MEMORY flag controls the memory allocation mechanism for out-arg memory (output
arguments, for which memory is dynamically allocated). If OUT_LIST_MEMORY is specified, an argument list must
also have been specified on the create_request call. When output arguments of this type are allocated, they are
associated with the list structure. When the list structure is freed (see below), any associated out-arg memory is also freed.

If OUT_LIST_MEMORY is not specified, then each piece of out-arg memory remains available until the programmer
explicitly frees it with procedures provided by the language mappings (see the C Language Mapping specification,
Argument Passing Considerations sub clause; C++ Language Mapping specification, NVList sub clause; and the COBOL
Language Mapping specification, Argument Passing Considerations sub clause).

The implicit object reference operations non_existent, is_a, repository_id and get_interface may be invoked using
DII. No other implicit object reference operations may be invoked via DII.
Common Object Request Broker Architecture (CORBA), v3.1.1 181

To create a request for any one of these allowed implicit object reference operations, create_request must be passed the
name of the operation with a “_” prepended, in the parameter “operation.” For example to create a DII request for
“is_a”, the name passed to create_request must be “_is_a.” If the name of an implicit operation that is not invocable
through DII is passed to create_request with a “_” prepended, create_request shall raise a BAD_PARAM standard
system exception with the standard minor code 32. For example, if “_is_equivalent” is passed to create_request as
the “operation” parameter will cause create_request to raise the BAD_PARAM standard system exception with the
standard minor code 32.

11.2.2 add_arg

void add_arg (// PIDL
in Identifier name, // argument name
in TypeCode arg_type, // argument datatype
in OpaqueValue value, // argument value to be added
in long len, // length/count of argument value
in Flags arg_flags // argument flags

);

add_arg incrementally adds arguments to the request.

For each argument, minimally its value and len must be specified. len is the length in octets, of the thing that the value
parameter refers to. An argument’s data type, name, and usage flags (i.e., in, out, inout) may also be specified. If so
indicated, arguments are validated for data type, order, name, and usage correctness against the set of arguments expected
for the indicated operation.

An implementation of the request services may relax the order constraint (and allow arguments to be specified out of
order) by doing ordering based upon argument name.

The arguments added to the request become associated with the request and are assumed to be unchanged until the invoke
has completed (or the request has been deleted).

Arguments may be associated with a request by specifying them on the Object::create_request call or by adding them
via calls to add_arg. Using both methods for specifying arguments for the same request is not supported.

In addition to the argument modes defined in Common Data Structures on page 177, arg_flags may also take the flag
value IN_COPY_VALUE. The argument passing flags defined in “Common Data Structures” may be used here to
indicate the intended parameter passing mode of an argument.

If the IN_COPY_VALUE flag is set, a copy of the argument value is made and used instead. This flag is ignored for inout
and out arguments.

11.2.3 invoke

void invoke (// PIDL
in Flags invoke_flags // invocation flags

);

This operation calls the ORB, which performs method resolution and invokes an appropriate method. If the method
returns successfully, its result is placed in the result argument specified on create_request. Calling invoke on a
Request after invoke, send, or ORB::send_multiple_requests for that Request was called raises
BAD_INV_ORDER with standard minor code 5 or 10.
182 Common Object Request Broker Architecture (CORBA), v3.1.1

11.2.4 delete

void delete (); // PIDL

This operation deletes the request. Any memory associated with the request (i.e., by using the IN_COPY_VALUE flag) is
also freed.

11.2.5 send

void send (// PIDL
in Flags invoke_flags // invocation flags

);

Send initiates an operation according to the information in the Request. Unlike invoke, send returns control to the
caller without waiting for the operation to finish. To determine when the operation is done, the caller must use the
get_response or ORB::get_next_response operations described below. The out parameters and return value must
not be used until the operation is done.

Although it is possible for some standard system exceptions to be raised by the send operation, there is no guarantee that
all possible errors will be detected. For example, if the object reference is not valid, send might detect it and raise an
exception, or might return before the object reference is validated, in which case the exception will be raised when
get_response is called.

If the operation is defined to be oneway or if INV_NO_RESPONSE is specified, and the effective SyncScopePolicy
does not have a value of WITH_SERVER or WITH_TARGET, then get_response does not need to be called. In such
cases, some errors might go unreported, since if they are not detected before send returns there is no way to inform the
caller of the error.

The following invocation flags are currently defined for send:

CORBA::INV_NO_RESPONSE indicates that the invoker wishes the request to be subject to the effective
SyncScopePolicy. If the SyncScopePolicy has a value of NONE or WITH_TRANSPORT, the invoker will not
receive a response, nor does it expect any of the output arguments (in/out and out) to be updated. This option may be
specified even if the operation has not been defined to be oneway.

11.2.6 poll_response

// PIDL
boolean poll_response ();

poll_response determines whether the request has completed. A TRUE return indicates that it has; FALSE indicates it
has not.

Return is immediate, whether the response has completed or not. Values in the request are not changed.

11.2.7 get_response

//PIDL
void get_response () raises (WrongTransaction);
Common Object Request Broker Architecture (CORBA), v3.1.1 183

get_response returns the result of a request. If get_response is called before the request has completed, it blocks
until the request has completed. Upon return, the out parameters and return values defined in the Request are set
appropriately and they may be treated as if the Request invoke operation had been used to perform the request.

A request has an associated transaction context if the thread originating the request had a non-null transaction context and
the target object is a transactional object. The get_response operation may raise the WrongTransaction exception if
the request has an associated transaction context, and the thread invoking get_response either has a null transaction
context or a non-null transaction context that differs from that of the request. If a BAD_INV_ORDER exception with
standard minor code X3599 is received, it shall be trapped and a WrongTransaction shall be returned to the caller.

11.2.8 sendp

sendp initiates an operation according to the information in the Request and returns a reference to a
MessageRouting::PersistentRequest as a CORBA::Object. As with send, the results of invocations made with
sendp will be available once the caller uses get_response or get_next_response. The out parameters and return
value must not be used before the operation is done. A new CORBA::Request may be constructed (in this same or a
different process) and used to poll for the response to this request by calling create_request, properly associating the
out arguments and return value with that request and then passing the PersistentRequest reference to the new
Request’s prepare (described below). The caller can then invoke get_response or get_next_response to obtain the
operation results.

As with send, sendc may raise a standard system exception if a failure is detected before control is returned to the
client, but this is not guaranteed. All other exceptions will be raised when get_response is called.

11.2.9 prepare

prepare is called to associate an initialized CORBA::Request with a previous operation that was initiated via sendp.
The Request must be created and associated with the operation’s out arguments and return value prior to calling prepare.
Once prepare has been called, it is as if that prepared Request was the one that actually had sendp used. Each Request
is subject only to one of these operations, which puts it in a valid state for an invocation of get_response: send,
sendp, sendc, or prepare. Invoking prepare on a Request that had previously been used for a send (or one of its
variants) raises the standard system exception BAD_INV_ORDER. Invoking prepare with an object reference that was
not previously returned from an invocation of sendp raises the standard system exception BAD_PARAM.

11.2.10 sendc

sendc initiates an operation according to the information in the Request. Unlike send, the results of invocations made
with sendc will be available through the callback Messaging::ReplyHandler passed into sendc as a base
CORBA::Object. For an invocation of operation “foo,” the “foo” or “foo_excep” methods of the ReplyHandler is
invoked to receive the reply. See Type-Specific ReplyHandler Mapping on page 433 for details of how the names of the
operations to be invoked to return the reply are constructed, as well as the form of the argument lists for the reply
invocations. A truly dynamic client can implement this ReplyHandler using the DSI. Specifying a nil ReplyHandler is
equivalent to invoking send with a flag of CORBA::INV_NO_RESPONSE.

As with send, sendc may raise a standard system exception if a failure is detected before control is returned to the
client, but this is not guaranteed. All other exceptions will be passed to the ReplyHandler.
184 Common Object Request Broker Architecture (CORBA), v3.1.1

11.3 ORB Operations

11.3.1 send_multiple_requests

module CORBA {

interface Request; // forward declaration
typedef sequence <Request> RequestSeq;

interface ORB {
.

void send_multiple_requests_oneway(
in RequestSeq req

);

void send_multiple_requests_deferred(
in RequestSeq req

);
};

};

send_multiple_requests initiates more than one request in parallel. Like send, send_multiple_requests returns to
the caller without waiting for the operations to finish. To determine when each operation is done, the caller must use the
Request::get_response or get_next_response operations.

Calling send on a request after invoke, send, or send_multiple_requests for that request was called raises
BAD_INV_ORDER with standard minor code 10.

Calling send_multiple_requests for a request after invoke, send, or send_multiple_requests for that request was
called raises BAD_INV_ORDER with standard minor code 10. If send_multiple_requests raises
BAD_INV_ORDER, the actual number of requests that were sent is implementation dependent.

11.3.2 get_next_response and poll_next_response

module CORBA {

interface Request; // forward declaration
typedef sequence <Request> RequestSeq;

interface ORB {
.

boolean poll_next_response();

void get_next_response(
out Request req

) raises (WrongTransaction);
};

};
Common Object Request Broker Architecture (CORBA), v3.1.1 185

Poll_next_response determines whether any request has completed. A TRUE return indicates that at least one has;
FALSE indicates that none have completed. Return is immediate, whether any response has completed or not.

Get_next_response returns the next request that completes. Despite the name, there is no guaranteed ordering among
the completed requests, so the order in which they are returned from successive get_next_response calls is not
necessarily related to the order in which they finish.

A request has an associated transaction context if the thread originating the request had a non-null transaction context and
the target object is a transactional object. The get_next_response operation may raise the WrongTransaction
exception if the request has an associated transaction context, and the thread invoking get_next_response has a non-
null transaction context that differs from that of the request. If a BAD_INV_ORDER exception with standard minor code
X3599 is received, it shall be trapped and a WrongTransaction shall be returned to the caller.

Calling poll_response before send or send_multiple_requests for that request raises BAD_INV_ORDER with
standard minor code 11. Calling poll_response after calling invoke raises BAD_INV_ORDER with standard minor
code 13. Calling poll_response after calling get_response raises BAD_INV_ORDER with standard minor code 12.
Calling poll_response after that request was returned by get_next_response raises BAD_INV_ORDER with
standard minor code 12.

Calling get_next_response or poll_next_response at a time when no requests are outstanding raises
BAD_INV_ORDER with standard minor code 11. If concurrent calls to get_next_response or poll_next_response
are in progress, the exact outcome is implementation dependent; however, get_next_response is guaranteed not to
return the same completed request to more than one caller.

11.4 Polling

There are two types of Polling model invocations that allow a client to proceed before the request finishes: The DII’s
send (which supports deferred synchronous invocations) and the typed sendp variants of the interface stubs (which
support both deferred synchronous and asynchronous invocations). This sub clause describes a single mechanism that
allows a client to query or block on the completion of outstanding requests.

• For the typed polling model (sendp), a client invokes the request’s type-specific Poller to receive the response.
This poll can either block (wait for the completion) or return immediately if the request isn’t finished yet, depending
on the value of the first parameter. Alternately, a client can simply query whether the request has completed by
using the generic non-blocking CORBA::Pollable::is_ready() operation defined on the base interface that is
inherited by all type-specific pollers. For the sake of efficiency, it must be possible to query or block on multiple
async pollers in a single operation. To do this, it is necessary to identify precisely, which such pollers are to be
polled.

• A client might want to mix deferred typed and dynamic operations. Deferred DII (in some unholy combination of
language mappings) has operations somewhat similar to those of the typed Poller: ORB::poll_next_response
and ORB::get_next_response. It should be possible to mix the two kinds of polling: typed and dynamic.

• Other potential happenings might occur that are susceptible to polling in current or future CORBA. This mechanism
is designed for extensibility so that other ORB services can perform a poll as a part of the single poll operation
described here.

The mechanism for generalized polling on multiple types of occurrences uses the CORBA::PollableSet interface.
186 Common Object Request Broker Architecture (CORBA), v3.1.1

module CORBA {

local interface PollableSet;

abstract valuetype Pollable {
boolean is_ready(

in unsigned long timeout
);

PollableSet create_pollable_set();
};

abstract valuetype DIIPollable : Pollable { };

local interface PollableSet {

exception NoPossiblePollable { };
exception UnknownPollable { };

DIIPollable create_dii_pollable();

void add_pollable(
in Pollable potential

);

Pollable get_ready_pollable(
in unsigned long timeout

) raises(NoPossiblePollable);

void remove(
in Pollable potential

) raises(UnknownPollable);

unsigned short number_left();
};

};

11.4.1 Abstract Valuetype Pollable

A Pollable supports queries to see if it is ready to be used, and can be registered with a pollable set to allow a single
client thread to block on multiple potential happenings at the same time.

11.4.1.1 is_ready

boolean is_ready(
in unsigned long timeout

);
Common Object Request Broker Architecture (CORBA), v3.1.1 187

Returns the value TRUE if and only if the specific happening represented by the pollable is ready to be consumed.
Returns the value FALSE if the pollable is not yet ready to be consumed. If the timeout argument is the maximum value
for unsigned long, the operation will block until it can return the value TRUE indicating that its happening is ready to
be consumed. If the timeout argument is the value 0, the operation returns immediately.

11.4.1.2 create_pollable_set

PollableSet create_pollable_set();

Once there is a Pollable, it is possible to create a set of such pollables, which can be queried or upon which a client can
block. The create_pollable_set operation creates a PollableSet object reference for an object with an empty set of
pollable entities.

11.4.2 Abstract Valuetype DIIPollable

The specific Pollable that indicates interest in DII requests. A DIIPollable can be used in conjunction with a pollable
set to allow a client to block or poll for the completion of DII requests, similar to the use of
CORBA::ORB::get_next_response. When the DIIPollable is returned from PollableSet::poll, the reply to some
DII request must be ready for processing.

11.4.3 interface PollableSet

The pollable set contains potential happenings for which a poll can be performed. The client adds potential happenings to
the set and later queries the set to see if any have occurred. PollableSet is a locality constrained object.

NOTE: There is a factory for PollableSet on the generic Pollable interface. Some implementation of this interface, such as
a type-specific poller value, must first be accessible before a client can create a PollableSet.

11.4.3.1 create_dii_pollable

DIIPollable create_dii_pollable();

Returns an instance of DIIPollable that can subsequently be registered to indicate interest in replies to DII requests.

11.4.3.2 add_pollable

void add_pollable(
in Pollable potential

);

The add_pollable operation adds a potential happening to the PollableSet. The supplied Pollable parameter is some
implementation that can be polled for readiness. To register interest in DII requests, an instance of DIIPollable is added
to the pollable set.

If the supplied Pollable has already been added to another PollableSet, this operation raises the standard
BAD_PARAM system exception with minor code 43.

11.4.3.3 get_ready_pollable

Pollable get_ready_pollable(
in unsigned long timeout
188 Common Object Request Broker Architecture (CORBA), v3.1.1

) raises(NoPossiblePollable);

The get_ready_pollable operation asks the PollableSet if any of its potential happenings have occurred. The
timeout parameter indicates how many milliseconds this call should wait until the response becomes available. If this
timeout expires before a reply is available, the operation raises the standard system exception TIMEOUT. Any delegated
invocations used by the implementation of this polling operation are subject to the single timeout parameter, which
supersedes any ORB or thread-level timeout quality of service. Two specific values are of interest:

• 0 - the call is a non-blocking query that raises the standard system exception NO_RESPONSE if the reply is not
immediately available.

• 232-1 - the maximum value for unsigned long indicates no timeout should be used. The query will not return until
the reply is available.

If the PollableSet contains no potential happenings, the NoPossiblePollable exception is raised. If an actual happening
is returned, the PollableSet removes that happening from the set. For the typed Poller, removing the happening is
necessary since its usefulness ends once the Poller completes. In the case of a DII happening, there may still be deferred
requests outstanding; if this is the case, the client application must add the DIIPollable again to the PollableSet.

When the get_ready_pollable operation blocks, the ORB has control of the thread and can process any work it has
(such as receiving and dispatching requests through its Object Adapter). The get_ready_pollable operation can be used
in an “event-style main loop” using ORB::work_pending and ORB::perform_work.

If the ORB supports multiple threads, one thread may be blocking on a PollableSet while another is adding and
removing potential happenings from the set. It is valid for the PollableSet to change dynamically while a poll is in
progress. If another thread’s PollableSet::remove operation leaves the PollableSet empty, any blocked threads raise
the NoPossiblePollable exception.

11.4.3.4 remove

void remove(
in Pollable potential

) raises(UnknownPollable);

The remove operation deletes the potential happening identified by the potential parameter from the PollableSet. If it
was not a member of the set, the UnknownPollable exception is raised.

11.4.3.5 number_left

unsigned short number_left();

The number_left operation returns the number of potential happenings in the pollable set. A returned value of zero
means that there are no potential happenings in the set, in which case a query on the set would raise the
NoPossibleHappening exception. A return value of 65535 indicates that there are at least 65535 remaining number of
potential happenings.

11.5 List Operations

NVList is a pseudo-interface that facilitates manipulation of list of name value pairs. The operations that create NVList
objects are defined in the ORB interface Clause, but are described in this sub clause. The NVList pseudo-interface is
shown below.
Common Object Request Broker Architecture (CORBA), v3.1.1 189

interface NVList { // PIDL
void add_item (

in Identifier item_name, // name of item
in TypeCode item_type, // item datatype
in OpaqueValue value, // item value
in long value_len, // length of item value
in Flags item_flags // item flags

);
void free ();
void free_memory ();
void get_count (

out long count // number of entries in the list
);

};

Interface NVList is defined in the CORBA module.

11.5.1 create_list

This operation, which creates a pseudo-object, is defined in the ORB interface and excerpted below.

void create_list (//PIDL
in long count, // number of items to allocate for list
out NVList new_list // newly created list

);

This operation allocates a list and clears it for initial use. The specified count is a “hint” to help with the storage
allocation. List items may be added to the list using the add_item routine. Items are added starting with the “slot(),” in
the next available slot.

An NVList is a partially opaque structure. It may only be allocated via a call to create_list.

11.5.2 add_item

void add_item (// PIDL
in Identifier item_name, // name of item
in TypeCode item_type, // item datatype
in OpaqueValue value, // item value
in long value_len, // length of item value
in Flags item_flags // item flags

);

This operation adds a new item to the indicated list. The item is added after the previously added item.

In addition to the argument modes defined in Common Data Structures on page 177, item_flags may also take the
following flag values: IN_COPY_VALUE, DEPENDENT_LIST. The argument passing flags defined in Common Data
Structures on page 177 may be used here to indicate the intended parameter passing mode of an argument.

If the IN_COPY_VALUE flag is set, a copy of the argument value is made and used instead.

If a list structure is added as an item (e.g., a “sublist”), the DEPENDENT_LIST flag may be specified to indicate that the
sublist should be freed when the parent list is freed.
190 Common Object Request Broker Architecture (CORBA), v3.1.1

11.5.3 free

void free (); // PIDL

This operation frees the list structure and any associated memory (an implicit call to the list free_memory operation is
done).

11.5.4 free_memory

void free_memory (); // PIDL

This operation frees any dynamically allocated out-arg memory associated with the list. The list structure itself is not
freed.

11.5.5 get_count

void get_count (// PIDL
out long count // number of entries in the list

);

This operation returns the total number of items added to the list.

11.5.6 create_operation_list

This operation, which creates a pseudo-object, is defined in the ORB interface.

void create_operation_list (// PIDL
in OperationDef oper, // operation
out NVList new_list // argument definitions

);

This operation returns an NVList initialized with the argument descriptions for a given operation. The information is
returned in a form that may be used in Dynamic Invocation requests. The arguments are returned in the same order as they
were defined for the operation.

The list free operation is used to free the returned information.
Common Object Request Broker Architecture (CORBA), v3.1.1 191

192 Common Object Request Broker Architecture (CORBA), v3.1.1

12 Dynamic Skeleton Interface

12.1 Introduction

The Dynamic Skeleton Interface (DSI) allows dynamic handling of object invocations. That is, rather than being accessed
through a skeleton that is specific to a particular operation, an object’s implementation is reached through an interface that
provides access to the operation name and parameters in a manner analogous to the client side’s Dynamic Invocation
Interface. Purely static knowledge of those parameters may be used, or dynamic knowledge (perhaps determined through
an Interface Repository) may also be used, to determine the parameters.

The Dynamic Skeleton Interface is a way to deliver requests from an ORB to an object implementation that does not have
compile-time knowledge of the type of the object it is implementing. This contrasts with the type-specific, IDL-based
skeletons, but serves the same architectural role.

DSI is the server side’s analogue to the client side’s Dynamic Invocation Interface (DII). Just as the implementation of an
object cannot distinguish whether its client is using type-specific stubs or the DII, the client who invokes an object cannot
determine whether the implementation is using a type-specific skeleton or the DSI to connect the implementation to the
ORB.

.

Figure 12.1 - Requests are delivered through skeletons, including dynamic ones

DSI, like DII, has many applications beyond interoperability solutions. Uses include interactive software development
tools based on interpreters, debuggers, and monitors that want to dynamically interpose on objects, and support for
dynamically-typed languages such as LISP.

12.2 Overview

The basic idea of the DSI is to implement all requests on a particular object by having the ORB invoke the same upcall
routine, a Dynamic Implementation Routine (DIR). Since in any language binding all DIRs have the same signature, a
single DIR could be used as the implementation for many objects, with different interfaces.

Skeleton

ORB Core

Object Adapter

Dynamic Object Implementation

Dynamic Skeleton
Common Object Request Broker Architecture (CORBA), v3.1.1 193

The DIR is passed all the explicit operation parameters, and an indication of the object that was invoked and the operation
that was requested. The information is encoded in the request parameters. The DIR can use the invoked object, its object
adapter, and the Interface Repository to learn more about the particular object and invocation. It can access and operate
on individual parameters. It can make the same use of an object adapter as other object implementations.

This chapter describes the elements of the DSI that are common to all object adapters that provide a DSI. See Single
Servant, Many Objects and Types, Using DSI on page 355 for the specification of the DSI for the Portable Object
Adapter.

12.3 ServerRequestPseudo-Object

12.3.1 ExplicitRequest State: ServerRequestPseudo-Object

The ServerRequest pseudo-object captures the explicit state of a request for the DSI, analogous to the Request pseudo-
object in the DII. The object adapter dispatches an invocation to a DSI-based object implementation by passing an
instance of ServerRequest to the DIR associated with the object implementation. The following shows how it provides
access to the request information:

module CORBA {
...
interface ServerRequest { // PIDL

readonly attribute Identifier operation;
void arguments(inout NVList nv);
Context ctx();
void set_result(in Any val);
void set_exception(in Any val);

};
};

The identity and/or reference of the target object of the invocation is provided by the object adapter and its language
mapping. In the context of a bridge, the target object will typically be a proxy for an object in some other ORB.

The operation attribute provides the identifier naming the operation being invoked; according to IDL’s rules, these
names must be unique among all operations supported by the object’s “most-derived” interface. Note that the operation
names for getting and setting attributes are _get_<attribute_name> and _set_<attribute_name>, respectively. The
operation attribute can be accessed by the DIR at any time.

Operation parameter types will be specified, and “in” and “inout” argument values will be retrieved, with arguments.
Unless it calls set_exception, the DIR must call arguments exactly once, even if the operation signature contains no
parameters. Once arguments or set_exception has been called, calling arguments on the same ServerRequest will
result in a BAD_INV_ORDER system exception with standard minor code 7. The DIR must pass in to arguments an
NVList initialized with TypeCodes and Flags describing the parameter types for the operation, in the order in which they
appear in the IDL specification (left to right). A potentially-different NVList will be returned from arguments, with the
“in” and “inout” argument values supplied. If it does not call set_exception, the DIR must supply the returned NVList
with return values for any “out” arguments before returning, and may also change the return values for any “inout”
arguments.
194 Common Object Request Broker Architecture (CORBA), v3.1.1

When the operation is not an attribute access, and the operation’s IDL definition contains a context expression, ctx will
return the context information specified in IDL for the operation. Otherwise it will return a nil Context reference. Calling
ctx before arguments has been called or after ctx, set_result, or set_exception has been called will result in a
BAD_INV_ORDER system exception with standard minor code 8.

The set_result operation is used to specify any return value for the call. Unless set_exception is called, if the invoked
operation has a non-void result type, set_result must be called exactly once before the DIR returns. If the operation has a
void result type, set_result may optionally be called once with an Any whose type is tk_void. Calling set_result before
arguments has been called or after set_result or set_exception has been called will result in a BAD_INV_ORDER
system exception with standard minor code 8. Calling set_result without having previously called ctx when the operation
IDL contains a context expression will result in a MARSHAL system exception with standard minor code 2. If the NVList
passed to arguments did not describe all parameters passed by the client, it may result in a MARSHAL system exception
with standard minor code 3.

The DIR may call set_exception at any time to return an exception to the client. The Any passed to set_exception must
contain either a system exception or one of the user exceptions specified in the raises expression of the invoked operation’s
IDL definition. Passing in an Any that does not contain an exception will result in a BAD_PARAM system exception with
standard minor code 21. Passing in an unlisted user exception will result in either the DIR receiving a BAD_PARAM system
exception with standard minor code 22 or in the client receiving an UNKNOWN system exception with standard minor code
1.

See each language mapping for a description of the memory management aspects of the parameters to the
ServerRequest operations.

12.4 DSI: Language Mapping

Because DSI is defined in terms of a pseudo-object, special attention must be paid to it in the language mapping. This
section provides general information about mapping the Dynamic Skeleton Interface to programming languages. Each
language provides its own mapping for DSI.

12.4.1 ServerRequest’s Handling of Operation Parameters

There is no requirement that a ServerRequest pseudo-object be usable as a general argument in IDL operations, or
listed in “orb.idl.”

The client-side memory management rules normally applied to pseudo-objects do not strictly apply to a ServerRequest’s
handling of operation parameters. Instead, the memory associated with parameters follows the memory management rules
applied to data passed from skeletons into statically typed implementation routines, and vice versa.

12.4.2 Registering Dynamic Implementation Routines

In an ORB implementation, the Dynamic Skeleton Interface is supported entirely through the Object Adapter. An Object
Adapter does not have to support the Dynamic Skeleton Interface but, if it does, the Object Adapter is responsible for the
details.
Common Object Request Broker Architecture (CORBA), v3.1.1 195

196 Common Object Request Broker Architecture (CORBA), v3.1.1

13 Dynamic Management of Any Values

13.1 General

An any can be passed to a program that doesn’t have any static information for the type of the any (code generated for
the type by an IDL compiler has not been compiled with the object implementation). As a result, the object receiving the
any does not have a portable method of using it.

The facility presented here enables traversal of the data value associated with an any at runtime and extraction of the
primitive constituents of the data value. This is especially helpful for writing powerful generic servers (bridges, event
channels supporting filtering).

Similarly, this facility enables the construction of an any at runtime, without having static knowledge of its type. This is
especially helpful for writing generic clients (bridges, browsers, debuggers, user interface tools).

13.2 Overview

Unless explicitly stated otherwise, all IDL presented in Overview through Usage in C++ Language is part of the
DynamicAny module.

Any values can be dynamically interpreted (traversed) and constructed through DynAny objects. A DynAny object is
associated with a data value, which corresponds to a copy of the value inserted into an any.

A DynAny object may be viewed as an ordered collection of component DynAnys. For DynAnys representing a basic
type, such as long, or a type without components, such as an empty exception, the ordered collection of components is
empty. Each DynAny object maintains the notion of a current position into its collection of component DynAnys. The
current position is identified by an index value that runs from 0 to n−1, where n is the number of components. The special
index value −1 indicates a current position that points nowhere. For values that cannot have a current position (such as an
empty exception), the index value is fixed at −1. If a DynAny is initialized with a value that has components, the index
is initialized to 0. After creation of an uninitialized DynAny (that is, a DynAny that has no value but a TypeCode that
permits components), the current position depends on the type of value represented by the DynAny. (The current position
is set to 0 or −1, depending on whether the new DynAny gets default values for its components.)

The iteration operations rewind, seek, and next can be used to change the current position and the
current_component operation returns the component at the current position. The component_count operation
returns the number of components of a DynAny. Collectively, these operations enable iteration over the components of a
DynAny, for example, to (recursively) examine its contents.

A constructed DynAny object is a DynAny object associated with a constructed type. There is a different interface,
inheriting from the DynAny interface, associated with each kind of constructed type in IDL (fixed, enum, struct,
sequence, union, array, exception, and valuetype).

A constructed DynAny object exports operations that enable the creation of new DynAny objects, each of them
associated with a component of the constructed data value.

As an example, a DynStruct is associated with a struct value. This means that the DynStruct may be seen as owning an
ordered collection of components, one for each structure member. The DynStruct object exports operations that enable
the creation of new DynAny objects, each of them associated with a member of the struct.
Common Object Request Broker Architecture (CORBA), v3.1.1 197

If a DynAny object has been obtained from another (constructed) DynAny object, such as a DynAny representing a
structure member that was created from a DynStruct, the member DynAny is logically contained in the DynStruct.

Destroying a top-level DynAny object (one that was not obtained as a component of another DynAny) also destroys any
component DynAny objects obtained from it. Destroying a non-top level DynAny object does nothing. Invoking operations
on a destroyed top-level DynAny or any of its descendants raises OBJECT_NOT_EXIST. Note that simply releasing all
references to a DynAny object does not delete the DynAny or components; each DynAny created with one of the create
operations or with the copy operation must be explicitly destroyed to avoid memory leaks.

If the programmer wants to destroy a DynAny object but still wants to manipulate some component of the data value
associated with it, then he or she should first create a DynAny for the component and, after that, make a copy of the
created DynAny object.

The behavior of DynAny objects has been defined in order to enable efficient implementations in terms of allocated
memory space and speed of access. DynAny objects are intended to be used for traversing values extracted from anys or
constructing values of anys at runtime. Their use for other purposes is not recommended.

13.3 DynAny API

The DynAny API comprises the following IDL definitions, located in the DynamicAny module:

// IDL
// File: DynamicAny.idl
#ifndef _DYNAMIC_ANY_IDL_
#define _DYNAMIC_ANY_IDL_

import ::CORBA;

module DynamicAny {
typeprefix DynamicAny “omg.org”;

local interface DynAny {
exception InvalidValue {};
exception TypeMismatch {};

CORBA::TypeCode type();

void assign(in DynAny dyn_any) raises(TypeMismatch);
void from_any(in any value) raises(TypeMismatch, InvalidValue);
any to_any();

boolean equal(in DynAny dyn_any);

void destroy();
DynAny copy();

void insert_boolean(in boolean value)
raises(TypeMismatch, InvalidValue);

void insert_octet(in octet value)
raises(TypeMismatch, InvalidValue);

void insert_char(in char value)
198 Common Object Request Broker Architecture (CORBA), v3.1.1

raises(TypeMismatch, InvalidValue);
void insert_short(in short value)

raises(TypeMismatch, InvalidValue);
void insert_ushort(in unsigned short value)

raises(TypeMismatch, InvalidValue);
void insert_long(in long value)

raises(TypeMismatch, InvalidValue);
void insert_ulong(in unsigned long value)

raises(TypeMismatch, InvalidValue);
void insert_float(in float value)

raises(TypeMismatch, InvalidValue);
void insert_double(in double value)

raises(TypeMismatch, InvalidValue);
void insert_string(in string value)

raises(TypeMismatch, InvalidValue);
void insert_reference(in Object value)

raises(TypeMismatch, InvalidValue);
void insert_typecode(in CORBA::TypeCode value)

raises(TypeMismatch, InvalidValue);
void insert_longlong(in long long value)

raises(TypeMismatch, InvalidValue);
void insert_ulonglong(in unsigned long long value)

raises(TypeMismatch, InvalidValue);
void insert_longdouble(in long double value)

raises(TypeMismatch, InvalidValue);
void insert_wchar(in wchar value)

raises(TypeMismatch, InvalidValue);
void insert_wstring(in wstring value)

raises(TypeMismatch, InvalidValue);
void insert_any(in any value)

raises(TypeMismatch, InvalidValue);
void insert_dyn_any(in DynAny value)

raises(TypeMismatch, InvalidValue);
void insert_val(in ValueBase value)

raises(TypeMismatch, InvalidValue);

boolean get_boolean()
raises(TypeMismatch, InvalidValue);

octet get_octet()
raises(TypeMismatch, InvalidValue);

char get_char()
raises(TypeMismatch, InvalidValue);

short get_short()
raises(TypeMismatch, InvalidValue);

unsigned short get_ushort()
raises(TypeMismatch, InvalidValue);

long get_long()
raises(TypeMismatch, InvalidValue);

unsigned long get_ulong()
raises(TypeMismatch, InvalidValue);

float get_float()
Common Object Request Broker Architecture (CORBA), v3.1.1 199

raises(TypeMismatch, InvalidValue);
double get_double()

raises(TypeMismatch, InvalidValue);
string get_string()

raises(TypeMismatch, InvalidValue);
Object get_reference()

raises(TypeMismatch, InvalidValue);
CORBA::TypeCode get_typecode()

raises(TypeMismatch, InvalidValue);
long long get_longlong()

raises(TypeMismatch, InvalidValue);
unsigned long long get_ulonglong()

raises(TypeMismatch, InvalidValue);
long double get_longdouble()

raises(TypeMismatch, InvalidValue);
wchar get_wchar()

raises(TypeMismatch, InvalidValue);
wstring get_wstring()

raises(TypeMismatch, InvalidValue);
any get_any()

raises(TypeMismatch, InvalidValue);
DynAny get_dyn_any()

raises(TypeMismatch, InvalidValue);
ValueBase get_val()

raises(TypeMismatch, InvalidValue);

boolean seek(in long index);
void rewind();
boolean next();
unsigned long component_count();
DynAny current_component() raises(TypeMismatch);

void insert_abstract(in CORBA::AbstractBase value)
raises(TypeMismatch, InvalidValue);

CORBA::AbstractBase get_abstract()
raises(TypeMismatch, InvalidValue);

void insert_boolean_seq(in CORBA::BooleanSeq value)
raises(TypeMismatch, InvalidValue);

void insert_octet_seq(in CORBA::OctetSeq value)
raises(TypeMismatch, InvalidValue);

void insert_char_seq(in CORBA::CharSeq value)
raises(TypeMismatch, InvalidValue);

void insert_short_seq(in CORBA::ShortSeq value)
raises(TypeMismatch, InvalidValue);

void insert_ushort_seq(in CORBA::UShortSeq value)
raises(TypeMismatch, InvalidValue);

void insert_long_seq(in CORBA::LongSeq value)
raises(TypeMismatch, InvalidValue);

void insert_ulong_seq(in CORBA::ULongSeq value)
raises(TypeMismatch, InvalidValue);
200 Common Object Request Broker Architecture (CORBA), v3.1.1

void insert_float_seq(in CORBA::FloatSeq value)
raises(TypeMismatch, InvalidValue);

void insert_double_seq(in CORBA::DoubleSeq value)
raises(TypeMismatch, InvalidValue);

void insert_longlong_seq(in CORBA::LongLongSeq value)
raises(TypeMismatch, InvalidValue);

void insert_ulonglong_seq(in CORBA::ULongLongSeq value)
raises(TypeMismatch, InvalidValue);

void insert_longdouble_seq(in CORBA::LongDoubleSeq value)
raises(TypeMismatch, InvalidValue);

void insert_wchar_seq(in CORBA::WCharSeq value)
raises(TypeMismatch, InvalidValue);

CORBA::BooleanSeq get_boolean_seq()
raises(TypeMismatch, InvalidValue);

CORBA::OctetSeq get_octet_seq()
raises(TypeMismatch, InvalidValue);

CORBA::CharSeq get_char_seq()
raises(TypeMismatch, InvalidValue);

CORBA::ShortSeq get_short_seq()
raises(TypeMismatch, InvalidValue);

CORBA::UShortSeq get_ushort_seq()
raises(TypeMismatch, InvalidValue);

CORBA::LongSeq get_long_seq()
raises(TypeMismatch, InvalidValue);

CORBA::ULongSeq get_ulong_seq()
raises(TypeMismatch, InvalidValue);

CORBA::FloatSeq get_float_seq()
raises(TypeMismatch, InvalidValue);

CORBA::DoubleSeq get_double_seq()
raises(TypeMismatch, InvalidValue);

CORBA::LongLongSeq get_longlong_seq()
raises(TypeMismatch, InvalidValue);

CORBA::ULongLongSeq get_ulonglong_seq()
raises(TypeMismatch, InvalidValue);

CORBA::LongDoubleSeq get_longdouble_seq()
raises(TypeMismatch, InvalidValue);

CORBA::WCharSeq get_wchar_seq()
raises(TypeMismatch, InvalidValue);

};

local interface DynFixed : DynAny {
string get_value();
boolean set_value(in string val) raises(TypeMismatch, InvalidValue);

};

local interface DynEnum : DynAny {
string get_as_string();
void set_as_string(in string value) raises(InvalidValue);
unsigned long get_as_ulong();
void set_as_ulong(in unsigned long value) raises(InvalidValue);

};
Common Object Request Broker Architecture (CORBA), v3.1.1 201

typedef string FieldName;

struct NameValuePair {
FieldName id;
any value;

};

typedef sequence<NameValuePair> NameValuePairSeq;

struct NameDynAnyPair {
FieldName id;
DynAny value;

};

typedef sequence<NameDynAnyPair> NameDynAnyPairSeq;

local interface DynStruct : DynAny {
FieldName current_member_name()

raises(TypeMismatch, InvalidValue);
CORBA::TCKind current_member_kind()

raises(TypeMismatch, InvalidValue);
NameValuePairSeq get_members();
void set_members(in NameValuePairSeq value)

raises(TypeMismatch, InvalidValue);
NameDynAnyPairSeq get_members_as_dyn_any();
void set_members_as_dyn_any(in NameDynAnyPairSeq value)

raises(TypeMismatch, InvalidValue);
};

local interface DynUnion : DynAny {
DynAny get_discriminator();
void set_discriminator(in DynAny d) raises(TypeMismatch);
void set_to_default_member() raises(TypeMismatch);
void set_to_no_active_member() raises(TypeMismatch);
boolean has_no_active_member();
CORBA::TCKind discriminator_kind();
DynAny member() raises(InvalidValue);
FieldName member_name() raises(InvalidValue);
CORBA::TCKind member_kind() raises(InvalidValue);

};

typedef sequence<any> AnySeq;
typedef sequence<DynAny> DynAnySeq;

local interface DynSequence : DynAny {
unsigned long get_length();
void set_length(in unsigned long len) raises(InvalidValue);
AnySeq get_elements();
void set_elements(in AnySeq value)
202 Common Object Request Broker Architecture (CORBA), v3.1.1

raises(TypeMismatch, InvalidValue);
DynAnySeq get_elements_as_dyn_any();
void set_elements_as_dyn_any(in DynAnySeq value)

raises(TypeMismatch, InvalidValue);
};

local interface DynArray : DynAny {
AnySeq get_elements();
void set_elements(in AnySeq value)

raises(TypeMismatch, InvalidValue);
DynAnySeq get_elements_as_dyn_any();
void set_elements_as_dyn_any(in DynAnySeq value)

raises(TypeMismatch, InvalidValue);
};

local interface DynValueCommon : DynAny {
boolean is_null();
void set_to_null();
void set_to_value();

};

local interface DynValue : DynValueCommon {
FieldName current_member_name()

raises(TypeMismatch, InvalidValue);
CORBA::TCKind current_member_kind()

raises(TypeMismatch, InvalidValue);
NameValuePairSeq get_members()

raises(InvalidValue);
void set_members(in NameValuePairSeq value)

raises(TypeMismatch, InvalidValue);
NameDynAnyPairSeq get_members_as_dyn_any()

raises(InvalidValue);
void set_members_as_dyn_any(in NameDynAnyPairSeq value)
raises(TypeMismatch, InvalidValue);

};

local interface DynValueBox : DynValueCommon {
any get_boxed_value()

raises(InvalidValue);
void set_boxed_value(in any boxed)

raises(TypeMismatch, InvalidValue);
DynAny get_boxed_value_as_dyn_any()

raises(InvalidValue);
void set_boxed_value_as_dyn_any(in DynAny boxed)

raises(TypeMismatch);
};

exception MustTruncate { };

local interface DynAnyFactory {
exception InconsistentTypeCode {};
Common Object Request Broker Architecture (CORBA), v3.1.1 203

DynAny create_dyn_any(in any value)
raises(InconsistentTypeCode);

DynAny
create_dyn_any_from_type_code(in CORBA::TypeCode type)
raises(InconsistentTypeCode);

DynAny create_dyn_any_without_truncation(in any value)
 raises(InconsistentTypeCode, MustTruncate);

DynAnySeq create_multiple_dyn_anys(
in AnySeq values,
in boolean allow_truncate)
raises(InconsistentTypeCode, MustTruncate);

AnySeq create_multiple_anys(in DynAnySeq values);
};

}; // module DynamicAny
#endif // _DYNAMIC_ANY_IDL_

13.3.1 Creating a DynAny Object

A DynAny object can be created as a result of:

• invoking an operation on an existing DynAny object.

• invoking an operation on a DynAnyFactory object.

A constructed DynAny object supports operations that enable the creation of new DynAny objects encapsulating access
to the value of some constituent. DynAny objects also support the copy operation for creating new DynAny objects.

In addition, DynAny objects can be created by invoking operations on the DynAnyFactory object. A reference to the
DynAnyFactory object is obtained by calling CORBA::ORB::resolve_initial_references with the identifier
parameter set to “DynAnyFactory.”

local interface DynAnyFactory {
exception InconsistentTypeCode {};
DynAny create_dyn_any(in any value)

raises(InconsistentTypeCode);
DynAny create_dyn_any_from_type_code(in CORBA::TypeCode type)

raises(InconsistentTypeCode);
};

The create_dyn_any operation creates a new DynAny object from an any value. A copy of the TypeCode associated
with the any value is assigned to the resulting DynAny object. The value associated with the DynAny object is a copy
of the value in the original any. The create_dyn_any operation sets the current position of the created DynAny to zero
if the passed value has components; otherwise, the current position is set to −1. The operation raises
InconsistentTypeCode if value has a TypeCode with a TCKind of tk_Principal or tk_native.

The create_dyn_any_from_type_code operation creates a DynAny from a TypeCode. Depending on the
TypeCode, the created object may be of type DynAny, or one of its derived types, such as DynStruct. The returned
reference can be narrowed to the derived type.
204 Common Object Request Broker Architecture (CORBA), v3.1.1

For both create_dyn_any and create_dyn_any_from_type_code, the source type code is copied into the DynAny
object unchanged. This means that, after creation of a DynAny object, the source type code and the type code inside the
DynAny must compare equal as determined by TypeCode::equal. The same is true for type codes extracted from a
DynAny with the type operation and for type codes that are part of any values that are constructed from a DynAny: such
type codes compare equal to the type code that was originally used to create the DynAny. For a given parent DynAny
with its associated TypeCode, the TypeCode of a component DynAny also compares equal to the corresponding results
of the member_type or component_type operation on the parent TypeCode.

The create_dyn_any_without_truncation operation has the same semantics as create_dyn_any, but will raise the
MustTruncate exception if it cannot avoid truncating a valuetype.

The create_multiple_dyn_anys operation converts a sequence of anys into a sequence of DynAnys, ensuring that
each reference to a valuetype instance is converted consistently to the same DynValue or DynValueBox instance. If the
allow_truncate parameter is false, the operation will raise the MustTruncate exception if it cannot avoid truncating a
valuetype.

The create_multiple_anys operation converts a sequence of DynAnys into a sequence of anys, ensuring that each
DynValue or DynValueBox instance is consistently converted to the same valuetype instance.

Creation of DynAnys with TCKind tk_null and tk_void is legal and results in the creation of a DynAny without a
value and with zero components.

In all cases, a DynAny constructed from a TypeCode has an initial default value. The default values of basic types are:

• FALSE for Boolean

• zero for numeric types

• zero for types octet, char, and wchar

• the empty string for string and wstring

• nil for object references

• a type code with a TCKind value of tk_null for type codes

• for any values, an any containing a type code with a TCKind value of tk_null type and no value

For complex types, creation of the corresponding DynAny assigns a default value as follows:

• For DynSequence, the operation sets the current position to −1 and creates an empty sequence.

• For DynEnum, the operation sets the current position to −1 and sets the value of the enumerator to the first
enumerator value indicated by the TypeCode.

• For DynFixed, operations set the current position to −1 and sets the value zero.

• For DynStruct, the operation sets the current position to −1 for empty exceptions and to zero for all other
TypeCodes. The members (if any) are (recursively) initialized to their default values.

• For DynArray, the operation sets the current position to zero and (recursively) initializes elements to their default
value.

• For DynUnion, the operation sets the current position to zero. The discriminator value is set to a value consistent with
the first named member of the union. That member is activated and (recursively) initialized to its default value.

• DynValue and DynValueBox are initialized to a null value.
Common Object Request Broker Architecture (CORBA), v3.1.1 205

Dynamic interpretation of an any usually involves creating a DynAny object using DynAnyFactory::create_dyn_any
as the first step. Depending on the type of the any, the resulting DynAny object reference can be narrowed to a
DynFixed, DynStruct, DynSequence, DynArray, DynUnion, DynEnum, or DynValue object reference.

Dynamic creation of an any involves creating a DynAny object using
DynAnyFactory::create_dyn_any_from_type_code, passing the TypeCode associated with the value to be
created. The returned reference is narrowed to one of the complex types, such as DynStruct, if appropriate. Then, the
value can be initialized by means of invoking operations on the resulting object. Finally, the to_any operation can be
invoked to create an any value from the constructed DynAny.

13.3.2 The DynAny Interface

The following operations can be applied to a DynAny object:

• Obtaining the TypeCode associated with the DynAny object.

• Generating an any value from the DynAny object.

• Comparing two DynAny objects for equality.

• Destroying the DynAny object.

• Creating a DynAny object as a copy of the DynAny object.

• Inserting/getting a value of some basic type into/from the DynAny object.

• Iterating through the components of a DynAny.

• Initializing a DynAny object from another DynAny object.

• Initializing a DynAny object from an any value.

13.3.2.1 Obtaining the TypeCode associated with a DynAny object

CORBA::TypeCode type();

A DynAny object is created with a TypeCode value assigned to it. This TypeCode value determines the type of the
value handled through the DynAny object. The type operation returns the TypeCode associated with a DynAny object.

Note that the TypeCode associated with a DynAny object is initialized at the time the DynAny is created and cannot be
changed during the lifetime of the DynAny object.

13.3.2.2 Initializing a DynAny object from another DynAny object

void assign(in DynAny dyn_any) raises(TypeMismatch);

The assign operation initializes the value associated with a DynAny object with the value associated with another
DynAny object.

If the type of the passed DynAny is not equivalent to the type of target DynAny, the operation raises TypeMismatch.
The current position of the target DynAny is set to zero for values that have components and to −1 for values that do not
have components.
206 Common Object Request Broker Architecture (CORBA), v3.1.1

13.3.2.3 Initializing a DynAny object from an any value

void from_any(in any value) raises(TypeMismatch, InvalidValue);

The from_any operation initializes the value associated with a DynAny object with the value contained in an any.

If the type of the passed Any is not equivalent to the type of target DynAny, the operation raises TypeMismatch. If the
passed Any does not contain a legal value (such as a null string), the operation raises InvalidValue. The current position
of the target DynAny is set to zero for values that have components and to −1 for values that do not have components.

13.3.2.4 Generating an any value from a DynAny object

any to_any();

The to_any operation creates an any value from a DynAny object. A copy of the TypeCode associated with the
DynAny object is assigned to the resulting any. The value associated with the DynAny object is copied into the any.

13.3.2.5 Comparing DynAny values

boolean equal(in DynAny dyn_any);

The equal operation compares two DynAny references for equality and returns true if the DynAnys are equal, false
otherwise. For DynAny references that are not derived from DynValueCommon, they are equal if their TypeCodes are
equivalent and, recursively, all component DynAnys are equal. For DynAny references that are derived from
DynValueCommon, they are equal only if they are exactly the same reference. The current position of the two
DynAnys being compared has no effect on the result of equal. To determine equality of object references, the equal
operation uses Object::is_equivalent. To determine equality of type codes, the equal operation uses
TypeCode::equivalent.

NOTE: If two DynAnys happen to contain *values* of type TypeCode, these values are compared using TypeCode::equal.
The type codes that *describe* the values of DynAnys are always compared using TypeCode::equivalent, however. (In the
case of comparing two DynAnys containing type code values, the type codes describing these type code values are
tk_TypeCode in each DynAny, and will therefore always compare as equivalent.)

13.3.2.6 Destroying a DynAny object

void destroy();

The destroy operation destroys a DynAny object. This operation frees any resources used to represent the data value
associated with a DynAny object. destroy must be invoked on references obtained from one of the creation operations
on the DynAnyFactory interface or on a reference returned by DynAny::copy to avoid resource leaks. Invoking
destroy on component DynAny objects (for example, on objects returned by the current_component operation) does
nothing.

Destruction of a DynAny object implies destruction of all DynAny objects obtained from it. That is, references to
components of a destroyed DynAny become invalid; invocations on such references raise OBJECT_NOT_EXIST.

It is possible to manipulate a component of a DynAny beyond the life time of the DynAny from which the component
was obtained by making a copy of the component with the copy operation before destroying the DynAny from which the
component was obtained.
Common Object Request Broker Architecture (CORBA), v3.1.1 207

13.3.2.7 Creating a copy of a DynAny object

DynAny copy();

The copy operation creates a new DynAny object whose value is a deep copy of the DynAny on which it is invoked.
The operation is polymorphic, that is, invoking it on one of the types derived from DynAny, such as DynStruct, creates
the derived type but returns its reference as the DynAny base type.

13.3.2.8 Accessing a value of some basic type in a DynAny object

The insert and get operations enable insertion/extraction of basic data type values into/from a DynAny object.

Both bounded and unbounded strings are inserted using insert_string and insert_wstring. These operations raise the
InvalidValue exception if the string inserted is longer than the bound of a bounded string.

Calling an insert or get operation on a DynAny that has components but has a current position of −1 raises InvalidValue.

Get operations raise TypeMismatch if the accessed component in the DynAny is of a type that is not equivalent to the
requested type. (Note that get_string and get_wstring are used for both unbounded and bounded strings.)

A type is consistent for inserting or extracting a value if its TypeCode is equivalent to the TypeCode contained in the
DynAny or, if the DynAny has components, is equivalent to the TypeCode of the DynAny at the current position.

The get_dyn_any and insert_dyn_any operations are provided to deal with any values that contain another any. The
operations behave identically to get_any and insert_any, but use parameters of type DynAny (instead of any); they are
useful to avoid otherwise redundant conversions between any and DynAny.

Calling an insert or get operation leaves the current position unchanged.

These operations are necessary to handle basic DynAny objects but are also helpful to handle constructed DynAny
objects. Inserting a basic data type value into a constructed DynAny object implies initializing the current component of
the constructed data value associated with the DynAny object. For example, invoking insert_boolean on a DynStruct
implies inserting a boolean data value at the current position of the associated struct data value. If dyn_construct
points to a constructed DynAny object, then:

result = dyn_construct->get_boolean();

has the same effect as:

DynamicAny::DynAny_var temp =
dyn_construct->current_component();

result = temp->get_boolean();

Calling an insert or get operation on a DynAny whose current component itself has components raises TypeMismatch.

In addition, availability of these operations enable the traversal of anys associated with sequences of basic data types
without the need to generate a DynAny object for each element in the sequence.

In the same way that basic types are inserted/extracted from a DynAny object, arrays or sequences of basic types can be
inserted/extracted from a DynAny. For example, the get_boolean_seq operation extracts a sequence of booleans
from a DynAny that contains either a sequence or an array of booleans, and the insert_boolean_seq operation stores
the sequence back into the DynAny.
208 Common Object Request Broker Architecture (CORBA), v3.1.1

The TypeCode of the DynAny, or the TypeCode of the component at the current position of the DynAny, must be
equivalent to a sequence or array TypeCode with the basic type as its element, otherwise the operations raise
TypeMismatch. For the insert operations, if the length of the sequence is incompatible with a bounded sequence or array
represented by the DynAny, then the operations raise InvalidValue.

13.3.2.9 Iterating through components of a DynAny

The DynAny interface allows a client to iterate through the components of the values pointed to by DynStruct,
DynSequence, DynArray, DynUnion, DynAny, and DynValue objects.

As mentioned previously, a DynAny object may be seen as an ordered collection of components, together with a current
position.

boolean seek(in long index);

The seek operation sets the current position to index. The current position is indexed 0 to n−1, that is, index zero
corresponds to the first component. The operation returns true if the resulting current position indicates a component of
the DynAny and false if index indicates a position that does not correspond to a component.

Calling seek with a negative index is legal. It sets the current position to −1 to indicate no component and returns false.
Passing a non-negative index value for a DynAny that does not have a component at the corresponding position sets the
current position to −1 and returns false.

void rewind();

The rewind operation is equivalent to calling seek(0);

boolean next();

The next operation advances the current position to the next component. The operation returns true while the resulting
current position indicates a component, false otherwise. A false return value leaves the current position at −1. Invoking
next on a DynAny without components leaves the current position at −1 and returns false.

unsigned long component_count();

The component_count operation returns the number of components of a DynAny. For a DynAny without
components, it returns zero. The operation only counts the components at the top level. For example, if
component_count is invoked on a DynStruct with a single member, the return value is 1, irrespective of the type of
the member.

For sequences, the operation returns the current number of elements. For structures, exceptions, and valuetypes, the
operation returns the number of members. For arrays, the operation returns the number of elements. For unions, the
operation returns 2 if the discriminator indicates that a named member is active; otherwise, it returns 1. For DynFixed
and DynEnum, the operation returns zero.

DynAny current_component() raises(TypeMismatch);

The current_component operation returns the DynAny for the component at the current position. It does not advance
the current position, so repeated calls to current_component without an intervening call to rewind, next, or seek
return the same component.

The returned DynAny object reference can be used to get/set the value of the current component. If the current
component represents a complex type, the returned reference can be narrowed based on the TypeCode to get the
interface corresponding to the to the complex type.
Common Object Request Broker Architecture (CORBA), v3.1.1 209

Calling current_component on a DynAny that cannot have components, such as a DynEnum or an empty exception,
raises TypeMismatch. Calling current_component on a DynAny whose current position is −1 returns a nil reference.

The iteration operations, together with current_component, can be used to dynamically compose an any value. After
creating a dynamic any, such as a DynStruct, current_component and next can be used to initialize all the
components of the value. Once the dynamic value is completely initialized, to_any creates the corresponding any value.

13.3.3 The DynFixed Interface

DynFixed objects are associated with values of the IDL fixed type.

local interface DynFixed : DynAny {
string get_value();
boolean set_value(in string val)

raises (TypeMismatch, InvalidValue);
};

Because IDL does not have a generic type that can represent fixed types with arbitrary number of digits and arbitrary
scale, the operations use the IDL string type.

The get_value operation returns the value of a DynFixed.

The set_value operation sets the value of the DynFixed. The val string must contain a fixed string constant in the same
format as used for IDL fixed-point literals. However, the trailing d or D is optional. If val has more fractional digits than
specified by the scale of the DynFixed, the extra digits are truncated. If the truncated value has more digits than the
DynFixed, the operation raises InvalidValue. If the value is not too large, set_value returns TRUE if no truncation was
required, FALSE otherwise. The return value is TRUE if val can be represented as the DynFixed without loss of
precision. If val has more fractional digits than can be represented in the DynFixed, fractional digits are truncated and
the return value is FALSE. If val does not contain a valid fixed-point literal or contains extraneous characters other than
leading or trailing white space, the operation raises TypeMismatch.

13.3.4 The DynEnum Interface

DynEnum objects are associated with enumerated values.

local interface DynEnum : DynAny {
string get_as_string();
void set_as_string(in string value) raises(InvalidValue);
unsigned long get_as_ulong();
void set_as_ulong(in unsigned long value) raises(InvalidValue);

};

The get_as_string operation returns the value of the DynEnum as an IDL identifier.

The set_as_string operation sets the value of the DynEnum to the enumerated value whose IDL identifier is passed in
the value parameter. If value contains a string that is not a valid IDL identifier for the corresponding enumerated type,
the operation raises InvalidValue.

The get_as_ulong operation returns the value of the DynEnum as the enumerated value’s ordinal value. Enumerators
have ordinal values 0 to n−1, as they appear from left to right in the corresponding IDL definition.
210 Common Object Request Broker Architecture (CORBA), v3.1.1

The set_as_ulong operation sets the value of the DynEnum as the enumerated value’s ordinal value. If value contains
a value that is outside the range of ordinal values for the corresponding enumerated type, the operation raises
InvalidValue.

The current position of a DynEnum is always −1.

13.3.5 The DynStruct Interface

DynStruct objects are associated with struct values and exception values.

typedef string FieldName;

struct NameValuePair {
FieldName id;
any value;

};
typedef sequence<NameValuePair> NameValuePairSeq;

struct NameDynAnyPair {
FieldName id;
DynAny value;

};
typedef sequence<NameDynAnyPair> NameDynAnyPairSeq;

local interface DynStruct : DynAny {
FieldName current_member_name()

raises(TypeMismatch, InvalidValue);
CORBA::TCKind current_member_kind()

raises(TypeMismatch, InvalidValue);
NameValuePairSeq get_members();
void set_members(in NameValuePairSeq value)

raises(TypeMismatch, InvalidValue);
NameDynAnyPairSeq get_members_as_dyn_any();
void set_members_as_dyn_any(in NameDynAnyPairSeq value)

raises(TypeMismatch, InvalidValue);
};

FieldName current_member_name()
raises(TypeMismatch, InvalidValue);

The current_member_name operation returns the name of the member at the current position. If the DynStruct
represents an empty exception, the operation raises TypeMismatch. If the current position does not indicate a member,
the operation raises InvalidValue.

This operation may return an empty string since the TypeCode of the value being manipulated may not contain the
names of members.

CORBA::TCKind current_member_kind()
raises(TypeMismatch, InvalidValue);
Common Object Request Broker Architecture (CORBA), v3.1.1 211

current_member_kind returns the TCKind associated with the member at the current position. If the DynStruct
represents an empty exception, the operation raises TypeMismatch. If the current position does not indicate a member,
the operation raises InvalidValue.

NameValuePairSeq get_members();

The get_members operation returns a sequence of name/value pairs describing the name and the value of each member
in the struct associated with a DynStruct object. The sequence contains members in the same order as the declaration
order of members as indicated by the DynStruct’s TypeCode. The current position is not affected. The member names
in the returned sequence will be empty strings if the DynStruct’s TypeCode does not contain member names.

void set_members(in NameValuePairSeq value)
raises(TypeMismatch, InvalidValue);

The set_members operation initializes the struct data value associated with a DynStruct object from a sequence of
name value pairs. The operation sets the current position to zero if the passed sequences has non-zero length; otherwise,
if an empty sequence is passed, the current position is set to −1.

Members must appear in the NameValuePairSeq in the order in which they appear in the IDL specification of the
struct. If one or more sequence elements have a type that is not equivalent to the TypeCode of the corresponding
member, the operation raises TypeMismatch. If the passed sequence has a number of elements that disagrees with the
number of members as indicated by the DynStruct’s TypeCode, the operation raises InvalidValue.

If member names are supplied in the passed sequence, they must either match the corresponding member name in the
DynStruct’s TypeCode or must be empty strings, otherwise, the operation raises TypeMismatch. Members must be
supplied in the same order as indicated by the DynStruct’s TypeCode. (The operation makes no attempt to assign
member values based on member names.)

The get_members_as_dyn_any and set_members_as_dyn_any operations have the same semantics as their Any
counterparts, but accept and return values of type DynAny instead of Any.

DynStruct objects can also be used for handling exception values. In that case, members of the exceptions are handled
in the same way as members of a struct.

13.3.6 The DynUnion Interface

DynUnion objects are associated with unions.

local interface DynUnion : DynAny {
DynAny get_discriminator();
void set_discriminator(in DynAny d)

raises(TypeMismatch);
void set_to_default_member()

raises(TypeMismatch);
void set_to_no_active_member()

raises(TypeMismatch);
boolean has_no_active_member()

raises(InvalidValue);
CORBA::TCKind discriminator_kind();
DynAny member()

raises(InvalidValue);
212 Common Object Request Broker Architecture (CORBA), v3.1.1

FieldName member_name()
raises(InvalidValue);

CORBA::TCKind member_kind()
raises(InvalidValue);

boolean is_set_to_default_member();
};

The DynUnion interface allows for the insertion/extraction of an IDL union type into/from a DynUnion object.

A union can have only two valid current positions: zero, which denotes the discriminator, and one, which denotes the
active member. The component_count value for a union depends on the current discriminator: it is 2 for a union whose
discriminator indicates a named member, and 1 otherwise.

DynAny get_discriminator()

The get_discriminator operation returns the current discriminator value of the DynUnion.

void set_discriminator(in DynAny d)
raises(TypeMismatch);

The set_discriminator operation sets the discriminator of the DynUnion to the specified value. If the TypeCode of
the d parameter is not equivalent to the TypeCode of the union’s discriminator, the operation raises TypeMismatch.

Setting the discriminator to a value that is consistent with the currently active union member does not affect the currently
active member. Setting the discriminator to a value that is inconsistent with the currently active member deactivates the
member and activates the member that is consistent with the new discriminator value (if there is a member for that value)
by initializing the member to its default value.

Setting the discriminator of a union sets the current position to 0 if the discriminator value indicates a non-existent union
member (has_no_active_member returns true in this case). Otherwise, if the discriminator value indicates a named
union member, the current position is set to 1 (has_no_active_member returns false and component_count
returns 2 in this case).

void set_to_default_member()
raises(TypeMismatch);

The set_to_default_member operation sets the discriminator to a value that is consistent with the value of the default
case of a union; it sets the current position to zero and causes component_count to return 2. Calling
set_to_default_member on a union that does not have an explicit default case raises TypeMismatch.

void set_to_no_active_member()
raises(TypeMismatch);

The set_to_no_active_member operation sets the discriminator to a value that does not correspond to any of the
union’s case labels; it sets the current position to zero and causes component_count to return 1. Calling
set_to_no_active_member on a union that has an explicit default case or on a union that uses the entire range of
discriminator values for explicit case labels raises TypeMismatch.

boolean has_no_active_member();
Common Object Request Broker Architecture (CORBA), v3.1.1 213

The has_no_active_member operation returns true if the union has no active member (that is, the union’s value
consists solely of its discriminator because the discriminator has a value that is not listed as an explicit case label).
Calling this operation on a union that has a default case returns false. Calling this operation on a union that uses the
entire range of discriminator values for explicit case labels returns false.

CORBA::TCKind discriminator_kind();

The discriminator_kind operation returns the TCKind value of the discriminator’s TypeCode.

CORBA::TCKind member_kind()
raises(InvalidValue);

The member_kind operation returns the TCKind value of the currently active member’s TypeCode. Calling this
operation on a union that does not have a currently active member raises InvalidValue.

DynAny member()
raises(InvalidValue);

The member operation returns the currently active member. If the union has no active member, the operation raises
InvalidValue. Note that the returned reference remains valid only for as long as the currently active member does not
change. Using the returned reference beyond the life time of the currently active member raises OBJECT_NOT_EXIST.

FieldName member_name()
raises(InvalidValue);

The member_name operation returns the name of the currently active member. If the union’s TypeCode does not
contain a member name for the currently active member, the operation returns an empty string. Calling member_name
on a union without an active member raises InvalidValue.

boolean is_set_to_default_member();

The is_set_to_default_member operation returns TRUE if a union has an explicit default label and the discriminator
value does not match any of the union’s other case labels.

13.3.7 The DynSequence Interface

DynSequence objects are associated with sequences.

typedef sequence<any> AnySeq;
typedef sequence<DynAny> DynAnySeq;

local interface DynSequence : DynAny {
unsigned long get_length();
void set_length(in unsigned long len)

raises(InvalidValue);
AnySeq get_elements();
void set_elements(in AnySeq value)

raises(TypeMismatch, InvalidValue);
DynAnySeq get_elements_as_dyn_any();
void set_elements_as_dyn_any(in DynAnySeq value)

raises(TypeMismatch, InvalidValue);
};
214 Common Object Request Broker Architecture (CORBA), v3.1.1

unsigned long get_length();

The get_length operation returns the current length of the sequence.

void set_length(in unsigned long len)
raises(InvalidValue);

The set_length operation sets the length of the sequence. Increasing the length of a sequence adds new elements at the
tail without affecting the values of already existing elements. Newly added elements are default-initialized.

Increasing the length of a sequence sets the current position to the first newly-added element if the previous current
position was −1. Otherwise, if the previous current position was not −1, the current position is not affected.

Increasing the length of a bounded sequence to a value larger than the bound raises InvalidValue.

Decreasing the length of a sequence removes elements from the tail without affecting the value of those elements that
remain. The new current position after decreasing the length of a sequence is determined as follows:

• If the length of the sequence is set to zero, the current position is set to −1.

• If the current position is −1 before decreasing the length, it remains at −1.

• If the current position indicates a valid element and that element is not removed when the length is decreased, the
current position remains unaffected.

• If the current position indicates a valid element and that element is removed, the current position is set to −1.

DynAnySeq get_elements();

The get_elements operation returns the elements of the sequence.

void set_elements(in AnySeq value)
raises(TypeMismatch, InvalidValue);

The set_elements operation sets the elements of a sequence. The length of the DynSequence is set to the length of
value. The current position is set to zero if value has non-zero length and to −1 if value is a zero-length sequence.

If value contains one or more elements whose TypeCode is not equivalent to the element TypeCode of the
DynSequence, the operation raises TypeMismatch. If the length of value exceeds the bound of a bounded sequence,
the operation raises InvalidValue.

The get_elements_as_dyn_any and set_elements_as_dyn_any operations have the same semantics, but accept
and return values of type DynAny instead of Any.

13.3.8 The DynArray Interface

DynArray objects are associated with arrays.

local interface DynArray : DynAny {
AnySeq get_elements();
void set_elements(in AnySeq value)

raises(TypeMismatch, InvalidValue);
DynAnySeq get_elements_as_dyn_any();
void set_elements_as_dyn_any(in DynAnySeq value)
Common Object Request Broker Architecture (CORBA), v3.1.1 215

raises(TypeMismatch, InvalidValue);
};

DynAnySeq get_elements();

The get_elements operation returns the elements of the DynArray.

void set_elements(in DynAnySeq value)
raises(TypeMismatch, InvalidValue);

The set_elements operation sets the DynArray to contain the passed elements. If the sequence does not contain the
same number of elements as the array dimension, the operation raises InvalidValue. If one or more elements have a type
that is inconsistent with the DynArray’s TypeCode, the operation raises TypeMismatch.

The get_elements_as_dyn_any and set_elements_as_dyn_any operations have the same semantics as their Any
counterparts, but accept and return values of type DynAny instead of Any.

Note that the dimension of the array is contained in the TypeCode, which is accessible through the type attribute. It can
also be obtained by calling the component_count operation.

13.3.9 The DynValueCommon Interface

DynValueCommon provides operations supported by both the DynValue and DynValueBox interfaces.

local interface DynValueCommon : DynAny {
boolean is_null();
void set_to_null();
void set_to_value();

};

boolean is_null();

The is_null operation returns TRUE if the DynValueCommon represents a null valuetype.

void set_to_null();

The set_to_null operation changes the representation of a DynValueCommon to a null valuetype.

void set_to_value();

If the DynValueCommon represents a null valuetype, then set_to_value replaces it with a newly constructed value,
with its components initialized to default values as in DynAnyFactory::create_dyn_any_from_type_code. If the
DynValueCommon represents a non-null valuetype, then this operation has no effect.

A reference to a DynValueCommon interface (and interfaces derived from it) exhibit the same sharing semantics as the
underlying valuetype that it represents. This means that the relationships between valuetypes in a graph of valuetypes
will remain unchanged when converted into DynAny form and vice versa. This is necessary to ensure that applications
that use the DII and DSI can correctly view and preserve the semantics of the valuetype graph.

13.3.10 The DynValue Interface

DynValue objects are associated with non-boxed valuetypes.
216 Common Object Request Broker Architecture (CORBA), v3.1.1

local interface DynValue : DynValueCommon {
FieldName current_member_name()

raises(TypeMismatch, InvalidValue);
CORBA::TCKind current_member_kind()

raises(TypeMismatch, InvalidValue);
NameValuePairSeq get_members()

raises(InvalidValue);
void set_members(in NameValuePairSeq value)

raises(TypeMismatch, InvalidValue);
NameDynAnyPairSeq get_members_as_dyn_any()

raises(InvalidValue);
void set_members_as_dyn_any(in NameDynAnyPairSeq value)

raises(TypeMismatch, InvalidValue);
};

The DynValue interface can represent both null and non-null valuetypes. For a DynValue representing a non-null
valuetype, the DynValue’s components comprise the public and private members of the valuetype, including those
inherited from concrete base valuetypes, in the order of definition. A DynValue representing a null valuetype has no
components and a current position of -1.

The remaining operations on the DynValue interface generally have equivalent semantics to the same operations on
DynStruct. When invoked on a DynValue representing a null valuetype, get_members and
get_members_as_dyn_any raise InvalidValue. When invoked on a DynValue representing a null valuetype,
set_members and set_members_as_dyn_any convert the DynValue to a non-null valuetype.

WARNING: Indiscriminately changing the contents of private valuetype members can cause the valuetype
implementation to break by violating internal constraints. Access to private members is provided to support such activities
as ORB bridging and debugging and should not be used to arbitrarily violate the encapsulation of the valuetype.

13.3.11 The DynValueBox Interface

DynValueBox objects are associated with boxed valuetypes.

local interface DynValueBox : DynValueCommon {
any get_boxed_value()

 raises(InvalidValue);
void set_boxed_value(in any boxed)

raises(TypeMismatch, InvalidValue);
DynAny get_boxed_value_as_dyn_any()

raises(InvalidValue);
void set_boxed_value_as_dyn_any(in DynAny boxed)

raises(TypeMismatch);
};

The DynValueBox interface can represent both null and non-null valuetypes. For a DynValueBox representing a non-
null valuetype, the DynValueBox has a single component of the boxed type. A DynValueBox representing a null
valuetype has no components and a current position of -1.

any get_boxed_value()
 raises(InvalidValue);
Common Object Request Broker Architecture (CORBA), v3.1.1 217

The get_boxed_value operation returns the boxed value as an any. If the DynBoxedValue represents a null
valuetype, the operation raises InvalidValue.

void set_boxed_value(in any boxed)
raises(TypeMismatch, InvalidValue);

The set_boxed_value operation replaces the boxed value with the specified value. If the type of the passed Any is not
equivalent to the boxed type, the operation raises TypeMismatch. If the passed Any does not contain a legal value, the
operation raises InvalidValue. If the DynBoxedValue represents a null valuetype, it is converted to a non-null value.

The get_boxed_value_as_dyn_any and set_boxed_value_as_dyn_any have the same semantics as their any
counterparts, but accept and return values of type DynAny instead of any.

13.4 Usage in C++ Language

13.4.1 Dynamic Creation of CORBA::Any values

13.4.1.1 Creating an any that contains a struct

Consider the following IDL definition:

// IDL
struct MyStruct {

long member1;
boolean member2;

};

The following example illustrates how a CORBA::Any value may be constructed on the fly containing a value of type
MyStruct:

// C++
CORBA::ORB_var orb = ...;
DynamicAny::DynAnyFactory_var dafact

= orb->resolve_initial_references(“DynAnyFactory”);
CORBA::StructMemberSeq mems(2);
CORBA::Any_var result;
CORBA::Long value1 = 99;
CORBA::Boolean value2 = 1;
mems.length(2);
mems[0].name = CORBA::string_dup(“member1”);
mems[0].type = CORBA::TypeCode::_duplicate(CORBA::_tc_long);
mems[1].name = CORBA::string_dup(“member2”);
mems[1].type

= CORBA::TypeCode::_duplicate(CORBA::_tc_boolean);

CORBA::TypeCode_var new_tc = orb->create_struct_tc(
“IDL:MyStruct:1.0”,
“MyStruct”,
mems

);
218 Common Object Request Broker Architecture (CORBA), v3.1.1

// Construct the DynStruct object. Values for members are
// the value1 and value2 variables

DynamicAny::DynAny_ptr dyn_any
= dafact->create_dyn_any(new_tc);

DynamicAny::DynStruct_ptr dyn_struct
= DynamicAny::DynStruct::_narrow(dyn_any);

CORBA::release(dyn_any);
dyn_struct->insert_long(value1);
dyn_struct->next();
dyn_struct->insert_boolean(value2);
result = dyn_struct->to_any();
dyn_struct->destroy();
CORBA::release(dyn_struct);

13.4.2 Dynamic Interpretation of CORBA::Any values

13.4.2.1 Filtering of events

Suppose there is a CORBA object that receives events and prints all those events, which correspond to a data structure
containing a member called is_urgent whose value is true.

The following fragment of code corresponds to a method that determines if an event should be printed or not. Note that
the program allows several struct events to be filtered with respect to some common member.

// C++

 CORBA::Boolean Tester::eval_filter(
DynamicAny::DynAnyFactory_ptr dafact,
const CORBA::Any & event

)
{

CORBA::Boolean success = FALSE;
DynamicAny::DynAny_var;
try {

// First, convert the event to a DynAny.
// Then attempt to narrow it to a DynStruct.
// The _narrow only returns a reference
// if the event is a struct.
dyn_var = dafact->create_dyn_any(event);
DynamicAny::DynStruct_var dyn_struct

= DynamicAny::DynStruct::_narrow(dyn_any);
if (!CORBA::is_nil(dyn_struct)) {

CORBA::Boolean found = FALSE;
do {

CORBA::String_var member_name
= dyn_struct->current_member_name();

found = (strcmp(member_name, "is_urgent") == 0);
} while (!found && dyn_struct->next());
if (found) {

// We only create a DynAny object for the member
Common Object Request Broker Architecture (CORBA), v3.1.1 219

// we were looking for:
DynamicAny::DynAny_var dyn_member

= dyn_struct->current_component();
success = dyn_member->get_boolean();

}
}

}
catch(...) {};
if (!CORBA::is_nil(dyn_var))

dyn_var->destroy();
return success;

}

220 Common Object Request Broker Architecture (CORBA), v3.1.1

14 The Interface Repository

14.1 Overview

The Interface Repository is the component of the ORB that provides persistent storage of interface definitions—it
manages and provides access to a collection of object definitions specified in IDL.

An ORB provides distributed access to a collection of objects using the objects’ publicly defined interfaces specified in
IDL. The Interface Repository provides for the storage, distribution, and management of a collection of related objects’
interface definitions.

For an ORB to correctly process requests, it must have access to the definitions of the objects it is handling. Object
definitions can be made available to an ORB in one of two forms:

1. By incorporating the information procedurally into stub routines (e.g., as code that maps C language subroutines into
communication protocols).

2. As objects accessed through the dynamically accessible Interface Repository (i.e., as interface objects accessed
through IDL-specified interfaces).

In particular, the ORB can use object definitions maintained in the Interface Repository to interpret and handle the values
provided in a request to:

• Provide type-checking of request signatures (whether the request was issued through the DII or through a stub).

• Assist in checking the correctness of interface inheritance graphs.

• Assist in providing interoperability between different ORB implementations.

As the interface to the object definitions maintained in an Interface Repository is public, the information maintained in
the Repository can also be used by clients and services. For example, the Repository can be used to:

• Manage the installation and distribution of interface definitions.

• Provide components of a CASE environment (for example, an interface browser).

• Provide interface information to language bindings (such as a compiler).

• Provide components of end-user environments (for example, a menu bar constructor).

The complete IDL specification for the Interface Repository is in IDL for Interface Repository on page 284; however,
fragments of the specification are used throughout this clause as necessary.

14.2 Scope of an Interface Repository

Interface definitions are maintained in the Interface Repository as a set of objects that are accessible through a set of IDL-
specified interface definitions. An interface definition contains a description of the operations it supports, including the
types of the parameters, exceptions it may raise, and context information it may use.

In addition, the interface repository stores constant values, which might be used in other interface and value definitions or
might simply be defined for programmer convenience and it stores TypeCodes [TypeCodes on page 138], which are
values that describe a type in structural terms.
Common Object Request Broker Architecture (CORBA), v3.1.1 221

The Interface Repository uses modules as a way to group interfaces and to navigate through those groups by name.
Modules can contain constants, typedefs, exceptions, interface/ component/home definitions, and other modules. Modules
may, for example, correspond to the organization of IDL definitions. They may also be used to represent organizations
defined for administration or other purposes.

The Interface Repository consists of a set of interface repository objects that represent the information in it. There are
operations that operate on this apparent object structure. It is an implementation’s choice whether these objects exist
persistently or are created when referenced in an operation on the repository. There are also operations that extract
information in an efficient form, obtaining a block of information that describes a whole interface or a whole operation.

An ORB may have access to multiple Interface Repositories. This may occur because

• two ORBs have different requirements for the implementation of the Interface Repository,

• an object implementation (such as an OODB) prefers to provide its own type information, or

• it is desired to have different additional information stored in different repositories.

The use of TypeCodes (TypeCodes on page 138) and repository identifiers is intended to allow different repositories to
keep their information consistent.

As shown in Figure 14.1, the same interface Doc is installed in two different repositories, one at SoftCo, Inc., which sells
Doc objects, and one at Customer, Inc., which buys Doc objects from SoftCo. SoftCo sets the repository id for the Doc
interface when it defines it. Customer might first install the interface in its repository in a module where it could be tested
before exposing it for general use. Because it has the same repository id, even though the Doc interface is stored in a
different repository and is nested in a different module, it is known to be the same.

Meanwhile at SoftCo, someone working on a new Doc interface has given it a new repository id 456, which allows the
ORBs to distinguish it from the current product Doc interface.

Figure 14.1 - Using Repository IDs to establish correspondence between repositories

Not all interfaces will be visible in all repositories. For example, Customer employees cannot see the new release of the
Doc interface. However, widely used interfaces will generally be visible in most repositories.

SoftCo,
Inc.,
Reposi-
tory

module
softco {

interface Doc <id 123> {
void print();

};
};

module newrelease {
interface Doc <id 456> {

Customer, Inc., Repository

module testfirst {
module softco {

interface Doc <id 123> {
void print();

};
};

};
222 Common Object Request Broker Architecture (CORBA), v3.1.1

This Interface Repository specification defines operations for retrieving information from the repository as well as
creating definitions within it. There may be additional ways to insert information into the repository (for example,
compiling IDL definitions, copying objects from one repository to another).

A critical use of the interface repository information is for connecting ORBs together. When an object is passed in a
request from one ORB to another, it may be necessary to create a new object to represent the passed object in the
receiving ORB. This may require locating the interface information in an interface repository in the receiving ORB. By
getting the repository id from a repository in the sending ORB, it is possible to look up the interface in a repository in the
receiving ORB. To succeed, the interface for that object must be installed in both repositories with the same repository id.

14.3 Implementation Dependencies

An implementation of an Interface Repository requires some form of persistent object store. Normally the kind of
persistent object store used determines how interface definitions are distributed and/or replicated throughout a network
domain. For example, if an Interface Repository is implemented using a filing system to provide object storage, there may
be only a single copy of a set of interfaces maintained on a single machine. Alternatively, if an OODB is used to provide
object storage, multiple copies of interface definitions may be maintained each of which is distributed across several
machines to provide both high-availability and load-balancing.

The kind of object store used may determine the scope of interface definitions provided by an implementation of the
Interface Repository. For example, it may determine whether each user has a local copy of a set of interfaces or if there is
one copy per community of users. The object store may also determine whether or not all clients of an interface set see
exactly the same set at any given point in time or whether latency in distributing copies of the set gives different users
different views of the set at any point in time.

An implementation of the Interface Repository is also dependent on the security mechanism in use. The security
mechanism (usually operating in conjunction with the object store) determines the nature and granularity of access
controls available to constrain access to objects in the repository.

14.3.1 Managing Interface Repositories

Interface Repositories contain the information necessary to allow programs to determine and manipulate the type
information at run-time. Programs may attempt to access the interface repository at any time by using the get_interface
operation on the object reference. Once information has been installed in the repository, programs, stubs, and objects may
depend on it. Updates to the repository must be done with care to avoid disrupting the environment. A variety of
techniques are available to help do so.

A coherent repository is one whose contents can be expressed as a valid collection of IDL definitions. For example, all
inherited interfaces exist, there are no duplicate operation names or other name collisions, all parameters have known
types, and so forth. As information is added to the repository, it is possible that it may pass through incoherent states.
Media failures or communication errors might also cause it to appear incoherent. In general, such problems cannot be
completely eliminated.

Replication is one technique to increase the availability and performance of a shared database. It is likely that the same
interface information will be stored in multiple repositories in a computing environment. Using repository IDs, the
repositories can establish the identity of the interfaces and other information across the repositories.

Multiple repositories might also be used to insulate production environments from development activity. Developers
might be permitted to make arbitrary updates to their repositories, but administrators may control updates to widely used
repositories. Some repository implementations might permit sharing of information, for example, several developers’
Common Object Request Broker Architecture (CORBA), v3.1.1 223

repositories may refer to parts of a shared repository. Other repository implementations might instead copy the common
information. In any case, the result should be a repository facility that creates the impression of a single, coherent
repository.

The interface repository itself cannot make all repositories have coherent information, and it may be possible to enter
information that does not make sense. The repository will report errors that it detects (e.g., defining two attributes with
the same name) but might not report all errors, for example, adding an attribute to a base interface may or may not detect
a name conflict with a derived interface. Despite these limitations, the expectation is that a combination of conventions,
administrative controls, and tools that add information to the repository will work to create a coherent view of the
repository information.

Transactions and concurrency control mechanisms defined by the Object Services may be used by some repositories when
updating the repository. Those services are designed so that they can be used without changing the operations that update
the repository. For example, a repository that supports the Transaction Service would inherit the Repository interface,
which contains the update operations, as well as the Transaction interface, which contains the transaction management
operations. (For more information about Object Services, including the Transaction and Concurrency Control Services,
refer to the individual CORBA Services specifications.)

Often, rather than change the information, new versions will be created, allowing the old version to continue to be valid.
The new versions will have distinct repository IDs and be completely different types as far as the repository and the
ORBs are concerned. The IR provides storage for version identifiers for named types, but does not specify any additional
versioning mechanism or semantics.

14.4 Basics

This sub clause introduces some basic ideas that are important to understanding the Interface Repository. Topics
addressed in this sub clause are:

• Names and Identifiers

• Types and TypeCodes

• Interface Repository Objects

• Structure and Navigation of the Interface Repository

14.4.1 Names and Identifiers

Simple names are not necessarily unique within an Interface Repository; they are always relative to an explicit or implicit
module. In this context, interface, struct, union, exception, and value type definitions are considered implicit modules.

Scoped names uniquely identify modules, interfaces, components, homes, value and event types, value members, value
boxes, constant, typedefs, exceptions, attributes, and operations in an Interface Repository.

Repository identifiers globally identify modules, interfaces, components, homes, value and event types, value members,
value boxes, constants, typedefs, exceptions, attributes, and operations. They can be used to synchronize definitions
across multiple ORBs and Repositories.
224 Common Object Request Broker Architecture (CORBA), v3.1.1

14.4.2 Types and TypeCodes

The Interface Repository stores information about types that are not interfaces in a data value called a TypeCode. From
the TypeCode alone it is possible to determine the complete structure of a type. See TypeCodes on page 138 for more
information on the internal structure of TypeCodes.

14.4.3 Interface Repository Objects

Information about the entities that are managed in an Interface Repository is maintained as a collection of interface
repository objects of the following types:

• Repository: the top-level module for the repository name space; it contains constants, typedefs, exceptions, interface,
component, home, value or event type definitions, and modules.

• ModuleDef: a logical grouping of interfaces and value types; it contains constants, typedefs, exceptions, interface,
component, home, value or event type definitions, and other modules.

• InterfaceDef: an interface definition; it contains lists of constants, types, exceptions, operations, and attributes.

• ExtInterfaceDef: an extended version of InterfaceDef that is capable of accommodating attributes with
exceptions.

• AbstractInterfaceDef: an abstract interface definition; it contains lists of constants, types, exceptions, operations,
and attributes.

• ExtAbstractInterfaceDef: an extended version of AbstractInterfaceDef that is capable of accommodating
attributes with exceptions.

• LocalInterfaceDef: a local interface definition; it contains lists of constants, types, exceptions, operations, and
attributes.

• ExtLocalInterfaceDef: an extended version of LocalInterfaceDef that is capable of accommodating attributes
with exceptions.

• ValueDef: a value type definition that contains lists of constants, types, exceptions, operations, attributes, and
members

• ExtValueDef: an extended version of ValueDef that is capable of accommodating attributes and initializers with
exceptions.

• EventDef: an event type definition that contains lists of constants, types, exceptions, operations, attributes, and
members.

• ValueBoxDef: the definition of a boxed value type.

• ValueMemberDef: the definition of a member of the value type.

• AttributeDef: the definition of an attribute of the interface or value type.

• ExtAttributeDef: an extended version of AttributeDef that is capable of accommodating attributes with
exceptions.

• OperationDef: the definition of an operation of the interface, value or event type; it contains lists of parameters and
exceptions raised by this operation.
Common Object Request Broker Architecture (CORBA), v3.1.1 225

• TypedefDef: base interface for definitions of named types that are not interfaces components, homes, or value and
event types.

• ConstantDef: the definition of a named constant.

• ExceptionDef: the definition of an exception that can be raised by an operation.

• ComponentDef: a component definition; it contains lists of provides, uses, consumes, publishes, supports, emits,
and attributes.

• HomeDef: a home definition; it contains lists of constants, types, exceptions, operations, attributes, factories and
finders.

• FactoryDef: the definition of a factory; it is an operation that is specifically used for creating new instances of
components in a home.

• FinderDef: the definition of a finder; it is an operation that is specifically used to find components within a home.

• ProvidesDef: the definition of an interface that is provided by a component.

• UsesDef: the definition of an interface that is used by a component.

• EmitsDef: the definition of events that are emitted by a component.

• PublishesDef: the definition of events that are published by a component.

• ConsumesDef: the definition of events that are consumed by a component.

The interface specifications for each interface repository object lists the attributes maintained by that object (see Interface
Repository Interfaces on page 228). Many of these attributes correspond directly to IDL statements. An implementation
can choose to maintain additional attributes to facilitate managing the Repository or to record additional (proprietary)
information about an interface. Implementations that extend the IR interfaces shall do so by deriving new interfaces, not
by modifying the standard interfaces.

The CORBA specification defines a minimal set of operations for interface repository objects. Additional operations that
an implementation of the Interface Repository may provide could include operations that provide for the versioning of
entities and for the reverse compilation of specifications (i.e., the generation of a file containing an object’s IDL
specification).

14.4.4 Structure and Navigation of the Interface Repository

The definitions in the Interface Repository are structured as a set of interface repository objects. These objects are
structured the same way definitions are structured—some objects (definitions) “contain” other objects.
226 Common Object Request Broker Architecture (CORBA), v3.1.1

The containment relationships for the interface repository objects types in the Interface Repository are shown in Figure
14.2

Figure 14.2 - Interface Repository Object Containment

There are three ways to locate an interface in the Interface Repository, by:

1. Obtaining an InterfaceDef object directly from the ORB.

Repository or ComponentIR::Repository

ConstantDef
TypedefDef
ExceptionDef
[Ext]InterfaceDef

ConstantDef
TypedefDef
ExceptionDef
[Ext]AttributeDef
OperationDef

Each interface repository is represented
by a global root repository object.

The Repository IR object represents the constants,
typedefs, exceptions, interfaces, valuetypes,

the scope of a module.

The Module IR object represents the constants,
typedefs, exceptions, interfaces, valuetypes,

modules defined within the scope of the module.

An Interface IR object represents constants,
typedefs, exceptions, attributes, and operations
defined within or inherited by the interface.

Operation IR objects reference
exception objects.

[Ext]ValueDef

ValueBoxDef
ModuleDef

ConstantDef
TypedefDef
ExceptionDef

[Ext][Abstract | local]InterfaceDef

[Ext]ValueDef | EventDef - only in ComponentIR::Repository

ValueBoxDef
ModuleDef

value boxes and modules that are defined outside

value boxes, eventtypes, components, homes and other

ConstantDef
TypedefDef
ExceptionDef
[Ext]AttributeDef
OperationDef Operation IR objects reference

ExceptionDef exception objects.

A Valuetype IR object represents constants,
typedefs, exceptions, attributes, and operations
defined within or inherited by the interface.

ValueMemberDef

ComponentDef - only in ComponentIR::Repository

A ComponentDef IR object represents the provides, uses,
emits, publishes, consumes and attributes

AttributeDef IR objects reference exception objects [Ext]AttributeDef

EmitsDef
PublishesDef
ConsumesDef

contained in the component.

ProvidesDef
UsesDef

Emits, publishes and consumes refers to event objects.
 Provides and uses refers to interface objects.

HomeDef - only in ComponentIR::Repository

FactoryDef
FinderDef

A HomeDef IR object represents factory and finder
defined within or inherited by home.
Factory and finder refer to exception objects.

EventDef - only in ComponentIR::Repository

ComponentDef - only in ComponentIR::Repository
HomeDef - only in ComponentIR::Repository
Common Object Request Broker Architecture (CORBA), v3.1.1 227

2. Navigating through the module name space using a sequence of names.

3. Locating the InterfaceDef object that corresponds to a particular repository
identifier.

There are four ways to locate a component in the Interface Repository, by:

1. Obtaining an ComponentDef object directly from the ORB.

2. Navigating through the module name space using a sequence of names.

3. Locating the ComponentDef object that corresponds to a particular repository
identifier.

4. Obtaining the ComponentDef from the HomeDef object corresponding to its home.

There are three ways to locate a home in the Interface Repository, by:

1. Obtaining a HomeDef object directly from the ORB.

2. Navigating through the module name space using a sequence of names.

3. Locating the HomeDef object that corresponds to a particular repository
identifier.

NOTE: It should be noted that given a ComponentDef IR object, it is not possible to obtain the HomeDef IR object for the
home that manages this component, since there could be multiple such homes, and the actual relation of a specific component
to a specific home is available only at runtime. To get to the HomeDef object corresponding to the home of a given component,
one needs to do a CCMObject::get_home, and then do a CCMHome::get_home_def on the home thus obtained.

Obtaining an InterfaceDef object directly is useful when an object is encountered whose type was not known at compile
time. By using the get_interface operation on the object reference, it is possible to retrieve the Interface Repository
information about the object. That information could then be used to perform operations on the object. Similarly, by using
the CCMObject::get_component_def operation, it is possible to retrieve the Component Repository information about
a component.

Navigating the module name space is useful when information about a particular named interface is desired. Starting at
the root module of the repository, it is possible to obtain entries by name.

Locating the InterfaceDef object by ID is useful when looking for an entry in one repository that corresponds to another.
A repository identifier must be globally unique. By using the same identifier in two repositories, it is possible to obtain
the interface identifier for an interface in one repository, and then obtain information about that interface from another
repository that may be closer or contain additional information about the interface.

Analogous operations are provided for manipulating value and event types.

The ComponentIR module contains the IR Objects that were added to reflect new IDL constructs that were added to
support Components. These are built upon the IR interfaces defined in CORBA module including ExtInterfaceDef,
ExtValueDef, and ExtAttributeDef and thus are backward compatible extensions of the 2.5 and earlier versions of the
IR.

14.5 Interface Repository Interfaces

Several interfaces are used as base interfaces for objects in the IR. These base interfaces are not instantiable.
228 Common Object Request Broker Architecture (CORBA), v3.1.1

A common set of operations is used to locate objects within the Interface Repository. These operations are defined in the
interfaces IRObject, Container, and Contained described below. All IR objects inherit from the IRObject interface,
which provides an operation for identifying the actual type of the object. Objects that are containers inherit navigation
operations from the Container interface. Objects that are contained by other objects inherit navigation operations from
the Contained interface.

The IDLType interface is inherited by all IR objects that represent IDL types, including interfaces, typedefs, and
anonymous types. The TypedefDef interface is inherited by all named non-interface types.

The base interfaces IRObject, Contained, Container, IDLType, TypedefDef ComponentIR::Container and
ComponentIR::EventPortDef are not instantiable.

All string data in the Interface Repository are encoded as defined by the ISO 8859-1 coded character set.

Interface Repository operations indicate error conditions using the system exceptions BAD_PARAM and
BAD_INV_ORDER with specific minor codes. The specific operations that raise these exceptions are documented in the
description of the operations. For a description of how these minor codes are encoded in the ex_body of standard
exceptions see System Exceptions on page 148 and Standard Minor Exception Codes on page 156. The exceptions and
minor codes that are used by Interface Repository interfaces are as follows:

14.5.1 Supporting Type Definitions

Several types are used throughout the IR interface definitions.

module CORBA {
typedef string Identifier;
typedef string ScopedName;
typedef string RepositoryId;

enum DefinitionKind {
dk_none, dk_all,
dk_Attribute, dk_Constant, dk_Exception, dk_Interface,
dk_Module, dk_Operation, dk_Typedef,
dk_Alias, dk_Struct, dk_Union, dk_Enum,
dk_Primitive, dk_String, dk_Sequence, dk_Array,
dk_Repository,

Exception Minor Code Explanation

BAD_PARAM 2 RID is already defined in IFR

3 Name already used in the context in IFR

4 Target is not a valid container

5 Name clash in inherited context

31 Attempt to define a oneway operation with non-void result, out or inout
parameters or user exceptions.

BAD_INV_ORDER 1 Dependency exists in IFR preventing destruction of this object

2 Attempt to destroy indestructible objects in IFR
Common Object Request Broker Architecture (CORBA), v3.1.1 229

dk_Wstring, dk_Fixed,
dk_Value, dk_ValueBox, dk_ValueMember,
dk_Native,
dk_AbstractInterface,
dk_LocalInterface
dk_Component, dk_Home,
dk_Factory, dk_Finder,
dk_Emits, dk_Publishes, dk_Consumes,
dk_Provides, dk_Uses,
dk_Event

};
};

Identifiers are the simple names that identify modules, interfaces, components, homes, value and event types, value
members, value boxes, constants, typedefs, exceptions, attributes, operations, ports, and native types. They correspond
exactly to IDL identifiers. An Identifier is not necessarily unique within an entire Interface Repository; it is unique only
within a particular Repository, ModuleDef, InterfaceDef, ComponentDef, HomeDef, ValueDef , EventDef,
OperationDef, FactoryDef, or FinderDef.

A ScopedName is a name made up of one or more Identifiers separated by the characters “::”. They correspond to IDL
scoped names.

An absolute ScopedName is one that begins with “::” and unambiguously identifies a definition in a Repository. An
absolute ScopedName in a Repository corresponds to a global name in an IDL file. A relative ScopedName does
not begin with “::” and must be resolved relative to some context.

A RepositoryId is an identifier used to uniquely and globally identify a module, interface, component, home, value type,
event type, value member, value box, native type, constant, typedef, exception, attribute, or operation. As RepositoryIds
are defined as strings, they can be manipulated (e.g., copied and compared) using a language binding’s string
manipulation routines.

A DefinitionKind identifies the type of an IR object.

14.5.2 IRObject

The base interface IRObject represents the most generic interface from which all other Interface Repository interfaces
are derived, even the Repository itself.

module CORBA {
interface IRObject {

// read interface
readonly attribute DefinitionKind def_kind;
// write interface
void destroy ();

};
};

14.5.2.1 Read Interface

The def_kind type_name attribute identifies the type of the definition.
230 Common Object Request Broker Architecture (CORBA), v3.1.1

14.5.2.2 Write Interface

The destroy operation causes the object to cease to exist. If the object is a Container, destroy is applied to all its
contents. If the object contains an IDLType attribute for an anonymous type, that IDLType is destroyed. If the object is
currently contained in some other object, it is removed. If destroy is invoked on a Repository or on a PrimitiveDef,
then the BAD_INV_ORDER exception is raised with minor value 2. Implementations may vary in their handling of
references to an object that is being destroyed, but the Repository should not be left in an incoherent state. Attempt to
destroy an object that would leave the repository in an incoherent state shall cause BAD_INV_ORDER exception to be
raised with the minor code 1.

14.5.3 Contained

The base interface Contained is inherited by all Interface Repository interfaces that are contained by other IR objects.
All objects within the Interface Repository, except the root object (Repository) and definitions of anonymous
(ArrayDef, StringDef, WstringDef, FixedDef, and SequenceDef), and primitive types are contained by other
objects.

module CORBA {
typedef string VersionSpec;

interface Contained : IRObject {
// read/write interface

attribute RepositoryId id;
attribute Identifier name;
attribute VersionSpec version;

// read interface

readonly attribute Container defined_in;
readonly attribute ScopedName absolute_name;
readonly attribute Repository containing_repository;

struct Description {
DefinitionKind kind;
any value;

};

Description describe ();

// write interface

void move (
in Container new_container,
in Identifier new_name,
in VersionSpec new_version

);
};

};
Common Object Request Broker Architecture (CORBA), v3.1.1 231

14.5.3.1 Read Interface

An object that is contained by another object has an id attribute that identifies it globally, and a name attribute that
identifies it uniquely within the enclosing Container object. It also has a version attribute that distinguishes it from
other versioned objects with the same name. IRs are not required to support simultaneous containment of multiple
versions of the same named object. Supporting multiple versions will require mechanisms and policy not specified in this
document.

Contained objects also have a defined_in attribute that identifies the Container within which they are defined. Objects
can be contained either because they are defined within the containing object (for example, an interface is defined within
a module) or because they are inherited by the containing object (for example, an operation may be contained by an
interface because the interface inherits the operation from another interface). If an object is contained through inheritance,
the defined_in attribute identifies the InterfaceDef or ValueDef from which the object is inherited.

The absolute_name attribute is an absolute ScopedName that identifies a Contained object uniquely within its
enclosing Repository. If this object’s defined_in attribute references a Repository, the absolute_name is formed by
concatenating the string “::” and this object’s name attribute. Otherwise, the absolute_name is formed by
concatenating the absolute_name attribute of the object referenced by this object’s defined_in attribute, the string
“::”, and this object’s name attribute.

The containing_repository attribute identifies the Repository that is eventually reached by recursively following the
object’s defined_in attribute.

The within operation returns the list of objects that contain the object. If the object is an interface or module it can be
contained only by the object that defines it. Other objects can be contained by the objects that define them and by the
objects that inherit them.

The describe operation returns a structure containing information about the interface. The description structure
associated with each interface is provided below with the interface’s definition. The kind of definition described by name
of the structure returned is provided with the returned structure. The kind field of the returned Description struct shall
give the DefinitionKind for the most derived type of the object. For example, if the describe operation is invoked on
an attribute object, the kind field contains dk_Attribute name field contains “AttributeDescription” and the value field
contains an any, which contains the AttributeDescription structure. The kind field in this must contain dk_attribute
and not the kind of any IRObject from which the attribute object is derived. For example returning dk_all would be an
error.

14.5.3.2 Write Interface

Setting the id attribute changes the global identity of this definition. A BAD_PARAM exception is raised with minor code
2 if an object with the specified id attribute already exists within this object’s Repository.

Setting the name attribute changes the identity of this definition within its Container. A BAD_PARAM exception is
raised with minor code 1 if an object with the specified name attribute already exists within this object’s Container. The
absolute_name attribute is also updated, along with any other attributes that reflect the name of the object. If this object
is a Container, the absolute_name attribute of any objects it contains are also updated.

The move operation atomically removes this object from its current Container, and adds it to the Container specified
by new_container must satisfy the following conditions:

• It must be in the same Repository. If it is not, then BAD_PARAM exception is raised with minor code 4.

• It must be capable of containing this object’s type (see Structure and Navigation of the Interface Repository on
page 226). If it is not, then BAD_PARAM exception is raised with minor code 4.
232 Common Object Request Broker Architecture (CORBA), v3.1.1

• It must not already contain an object with this object’s name (unless multiple versions are supported by the IR). If this
condition is not satisfied, then BAD_PARAM exception is raised with minor code 3.

The name attribute is changed to new_name, and the version attribute is changed to new_version.

The defined_in and absolute_name attributes are updated to reflect the new container and name. If this object is also
a Container, the absolute_name attributes of any objects it contains are also updated.

14.5.4 Container

The base interface Container is used to form a containment hierarchy in the Interface Repository. A Container can
contain any number of objects derived from the Contained interface. All Containers, except for Repository, are also
derived from Contained.

module CORBA {
typedef sequence <Contained> ContainedSeq;

interface Container : IRObject {
// read interface

Contained lookup (in ScopedName search_name);

ContainedSeq contents (
in DefinitionKind limit_type,
in boolean exclude_inherited

);

ContainedSeq lookup_name (
in Identifier search_name,
in long levels_to_search,
in DefinitionKind limit_type,
in boolean exclude_inherited

);

struct Description {
Contained contained_object;
DefinitionKind kind;
any value;

};

typedef sequence<Description> DescriptionSeq;

DescriptionSeq describe_contents (
in DefinitionKind limit_type,
in boolean exclude_inherited,
in long max_returned_objs

);

// write interface
Common Object Request Broker Architecture (CORBA), v3.1.1 233

ModuleDef create_module (
in RepositoryId id,
in Identifier name,
in VersionSpec version

);

ConstantDef create_constant (
in RepositoryId id,
in Identifier name,
in VersionSpec version,
in IDLType type,
in any value

);

StructDef create_struct (
in RepositoryId id,
in Identifier name,
in VersionSpec version,
in StructMemberSeq members

);

UnionDef create_union (
in RepositoryId id,
in Identifier name,
in VersionSpec version,
in IDLType discriminator_type,
in UnionMemberSeq members

);

EnumDef create_enum (
in RepositoryId id,
in Identifier name,
in VersionSpec version,
in EnumMemberSeq members

);

AliasDef create_alias (
in RepositoryId id,
in Identifier name,
in VersionSpec version,
in IDLType original_type

);

InterfaceDef create_interface (
in RepositoryId id,
in Identifier name,
in VersionSpec version,
in InterfaceDefSeq base_interfaces,

);
234 Common Object Request Broker Architecture (CORBA), v3.1.1

ExceptionDef create_exception(
in RepositoryId id,
in Identifier name,
in VersionSpec version,
in StructMemberSeq members

);

ValueDef create_value(
in RepositoryId id,
in Identifier name,
in VersionSpec version,
in boolean is_custom,
in boolean is_abstract,
in ValueDef base_value,
in boolean is_truncatable,
in ValueDefSeq abstract_base_values,
in InterfaceDefSeq supported_interfaces,
in InitializerSeq initializers

);

ValueBoxDef create_value_box(
in RepositoryId id,
in Identifier name,
in VersionSpec version,
in IDLType original_type_def

);

NativeDef create_native(
in RepositoryId id,
in Identifier name,
in VersionSpec version

);

AbstractInterfaceDef create_abstract_interface(
in RepositoryId id,
in Identifier name,
in VersionSpec version,
in AbstractInterfaceDefSeq base_interfaces,

);

LocalInterfaceDef create_local_interface(
in RepositoryId id,
in Identifier name,
in VersionSpec version,
in InterfaceDefSeq base_interfaces

);

ExtValueDef create_ext_value (
in RepositoryId id,
in Identifier name,
in VersionSpec version,
Common Object Request Broker Architecture (CORBA), v3.1.1 235

in boolean is_custom,
in boolean is_abstract,
in ValueDef base_value,
in boolean is_truncatable,
in ValueDefSeq abstract_base_values,
in InterfaceDefSeq supported_interfaces,
in ExtInitializerSeq initializers

);
};

};

14.5.4.1 Read Interface

The lookup operation locates a definition relative to this container given a scoped name using IDL’s name scoping rules.
An absolute scoped name (beginning with “::”) locates the definition relative to the enclosing Repository. If no object is
found, a nil object reference is returned.

The contents operation returns the list of objects directly contained by or inherited into the object. The operation is used
to navigate through the hierarchy of objects. Starting with the Repository object, a client uses this operation to list all of
the objects contained by the Repository, all of the objects contained by the modules within the Repository, and then all of
the interfaces and value types within a specific module, and so on.

limit_type If limit_type is set to dk_all “all,” objects of all interface types are returned. For example, if
this is an InterfaceDef, the attribute, operation, and exception objects are all returned. If
limit_type is set to a specific interface, only objects of that interface type are returned. For
example, only attribute objects are returned if limit_type is set to dk_Attribute “AttributeDef.”

exclude_inherited If set to TRUE, inherited objects (if there are any) are not returned. If set to FALSE, all
contained objects—whether contained due to inheritance or because they were defined within
the object—are returned.

The lookup_name operation is used to locate an object by name within a particular object or within the objects contained by
that object. Use of values of levels_to_search of 0 or of negative numbers other than -1 is undefined.

search_name Specifies which name is to be searched for.

levels_to_search Controls whether the lookup is constrained to the object the operation is invoked on or whether
it should search through objects contained by the object as well.

Setting levels_to_search to -1 searches the current object and all contained objects. Setting levels_to_search to
1 searches only the current object. Use of values of levels_to_search of 0 or of negative numbers other than -
1 is undefined.

The describe_contents operation combines the contents operation and the describe operation. For each object
returned by the contents operation, the description of the object is returned (i.e., the object’s describe operation
is invoked and the results returned).

max_returned_objs Limits the number of objects that can be returned in an invocation of the call to the number
provided. Setting the parameter to -1 means return all contained objects.
236 Common Object Request Broker Architecture (CORBA), v3.1.1

contents and describe_contents return a list of elements in their original order (i.e., the order in which the elements
were created in or moved into the container). If exclude_inherited is false, the ordering of inherited elements is
undefined.

14.5.4.2 Write Interface

The Container interface provides operations to create ModuleDefs, ConstantDefs, StructDefs, UnionDefs,
EnumDefs, AliasDefs, InterfaceDefs, ValueDefs ValueBoxDefs, and NativeDefs as contained objects. The
defined_in attribute of a definition created with any of these operations is initialized to identify the Container on which
the operation is invoked, and the containing_repository attribute is initialized to its Repository.

The create_<type> operations all take id and name parameters that are used to initialize the identity of the created
definition. A BAD_PARAM exception is raised with minor code 2 if an object with the specified id already exists in the
Repository. A BAD_PARAM exception with minor code 3 is raised if the specified name already exists within this
Container and multiple versions are not supported. Certain interfaces derived from Container may restrict the types of
definitions that they may contain. Any create_<type> operation that would insert a definition that is not allowed by a
Container will raise the BAD_PARAM exception with minor code 4.

The create_module operation returns a new empty ModuleDef. Definitions can be added using
Container::create_<type> operations on the new module, or by using the Contained::move operation.

The create_constant operation returns a new ConstantDef with the specified type and value.

The create_struct operation returns a new StructDef with the specified members. The type member of the
StructMember structures is ignored, and should be set to TC_void. See StructDef on page 241 for more information.

The create_union operation returns a new UnionDef with the specified discriminator_type and members. The
type member of the UnionMember structures is ignored, and should be set to TC_void. See UnionDef on page 242 for
more information.

The create_enum operation returns a new EnumDef with the specified members. See EnumDef on page 243 for more
information.

The create_alias operation returns a new AliasDef with the specified original_type.

The create_interface operation returns a new empty ExtInterfaceDef with the specified base_interfaces. Type,
exception, and constant definitions can be added using Container::create_<type> operations on the new InterfaceDef.
OperationDefs can be added using InterfaceDef::create_operation and AttributeDefs can be added using
InterfaceDef::create_attribute. Definitions can also be added using the Contained::move operation.

The create_abstract_interface operation returns a new empty ExtAbstractInterfaceDef with the specified
base_interfaces. Type, exception, and constant definitions can be added using Container::create_<type> operations
on the new AbstractInterfaceDef. OperationDefs can be added using AbstractInterfaceDef::create_operation
and AttributeDefs can be added using AbstractInterfaceDef::create_attribute. Definitions can also be added using
the Contained::move operation.

The create_local_interface operation returns a new empty ExtLocalInterfaceDef with the specified
base_interfaces. Type, exception, and constant definitions can be added using Container::create_<type> operations
on the new LocalInterfaceDef. OperationDefs can be added using LocalInterfaceDef::create_operation and
AttributeDefs can be added using LocalInterfaceDef::create_attribute. Definitions can also be added using the
Contained::move operation.
Common Object Request Broker Architecture (CORBA), v3.1.1 237

The create_value operation returns a new empty ValueDef with the specified base interfaces and values (base_value,
supported_interfaces, and abstract_base_values) as well as the other information describing the new values
characteristics (is_custom, is_abstract, is_truncatable, and initializers). Type, exception, and constant definitions
can be added using Container::create_<type> operations on the new ValueDef. OperationDefs can be added using
ValueDef::create_operation and AttributeDefs can be added using ValueDef::create_attribute. Definitions can
also be added using the Contained::move operation.

The create_value_box operation returns a new ValueBoxDef with the specified original_type_def.

The create_exception operation returns a new ExceptionDef with the specified members. The type member of the
StructMember structures should be set to TC_void.

The create_native operation returns a new NativeDef with the specified name.

The create_ext_value operation returns a new empty ExtValueDef with the specified base interfaces and values
(base_value, supported_interfaces, and abstract_base_values) as well as the other information describing the
new values characteristics (is_custom, is_abstract, is_truncatable, and initializers). The initializers argument is of
type ExtInitializerSeq allowing one to specify user exceptions for initializers. Type, exception, and constant definitions
can be added using Container::create_<type> operations on the new ExtValueDef. OperationDefs can be added
using ExtValueDef::create_operation and ExtAttributeDefs can be added using
ExtValueDef::create_ext_attribute. Definitions can also be added using the Contained::move operation.

14.5.5 IDLType

The base interface IDLType is inherited by all IR objects that represent IDL types. It provides access to the TypeCode
describing the type, and is used in defining other interfaces wherever definitions of IDL types must be referenced.

module CORBA {
interface IDLType : IRObject {

readonly attribute TypeCode type;
};

};

The type attribute describes the type defined by an object derived from IDLType.

14.5.6 Repository

Repository is an interface that provides global access to the Interface Repository that does not support access to
information related to CORBA Components. The Repository object can contain constants, typedefs, exceptions,
interfaces, value types, value boxes, native types, and modules. As it inherits from Container, it can be used to look up
any definition (whether globally defined or defined within a module or interface) either by name or by id.

Since Repository derives only from Container and not from Contained, it does not have a RepositoryId associated
with it. By default it is deemed to have the RepositoryId "" (the empty string) for purposes of assigning a value to the
defined_in field of the description structure of ModuleDef, InterfaceDef, ValueDef, ValueBoxDef, TypedefDef,
ExceptionDef, and ConstantDef that are contained immediately in the Repository object.

There may be more than one Interface Repository in a particular ORB environment (although some ORBs might require
that definitions they use be registered with a particular repository). Each ORB environment will provide a means for
obtaining object references to the Repositories available within the environment.
238 Common Object Request Broker Architecture (CORBA), v3.1.1

module CORBA {
interface Repository : Container {

// read interface

Contained lookup_id (in RepositoryId search_id);

TypeCode get_canonical_typecode(in TypeCode tc);

PrimitiveDef get_primitive (in PrimitiveKind kind);

// write interface

StringDef create_string (in unsigned long bound);

WstringDef create_wstring(in unsigned long bound);

SequenceDef create_sequence (
in unsigned long bound,
in IDLType element_type

);

ArrayDef create_array (
in unsigned long length,
in IDLType element_type

);

FixedDef create_fixed(
in unsigned short digits,
in short scale

);
};

};

14.5.6.1 Read Interface

The lookup_id operation is used to lookup an object in a Repository given its RepositoryId. If the Repository does
not contain a definition for search_id, a nil object reference is returned. The lookup_id operations always return a nil
reference if the value of search_id is IDL:omg.org/CORBA/Object:1.0, or IDL:omg.org/CORBA/ValueBase:1.0,
signifying the fact that the implicit base types are not contained in the Interface Repository.

The get_canonical_typecode operation looks up the TypeCode in the Interface Repository and returns an equivalent
TypeCode that includes all repository ids, names, and member_names. If the top level TypeCode does not
contain a RepositoryId, such as array and sequence TypeCodes, or TypeCodes from older ORBs, or if it contains a
RepositoryId that is not found in the target Repository, then a new TypeCode is constructed by recursively calling
get_canonical_typecode on each member TypeCode of the original TypeCode.

The get_primitive operation returns a reference to a PrimitiveDef (see PrimitiveDef on page 244) with the specified
kind attribute. All PrimitiveDefs are immutable and are owned by the Repository.
Common Object Request Broker Architecture (CORBA), v3.1.1 239

14.5.6.2 Write Interface

The five create_<type> operations that create new IR objects defining anonymous types. As these interfaces are not
derived from Contained, it is the caller’s responsibility to invoke destroy on the returned object if it is not successfully
used in creating a definition that is derived from Contained. Each anonymous type definition must be used in defining
exactly one other object.

1. The create_string operation returns a new StringDef with the specified bound, which must be non-zero. The
get_primitive operation is used for unbounded strings.

2. The create_wstring operation returns a new WstringDef with the specified bound, which must be non-zero. The
get_primitive operation is used for unbounded strings.

3. The create_sequence operation returns a new SequenceDef with the specified bound and element_type.

4. The create_array operation returns a new ArrayDef with the specified length and element_type.

5. The create_fixed operation returns a new FixedDef with the specified number of digits and scale. The number of
digits must be from 1 to 31, inclusive.

14.5.7 ModuleDef

A ModuleDef can contain constants, typedefs, exceptions, interfaces, value types, value boxes, native types, and other
module objects.

module CORBA {
interface ModuleDef : Container, Contained {};

struct ModuleDescription {
Identifier name;
RepositoryId id;
RepositoryId defined_in;
VersionSpec version;

};
};

The inherited describe operation for a ModuleDef object returns a ModuleDescription.

14.5.8 ConstantDef

A ConstantDef object defines a named constant.

module CORBA {
interface ConstantDef : Contained {

readonly attribute TypeCode type;
attribute IDLType type_def;
attribute any value;

};

struct ConstantDescription {
Identifier name;
RepositoryId id;
240 Common Object Request Broker Architecture (CORBA), v3.1.1

RepositoryId defined_in;
VersionSpec version;
TypeCode type;
any value;

};
};

14.5.8.1 Read Interface

The type attribute specifies the TypeCode describing the type of the constant. The type of a constant must be one of the
primitive types allowed in constant declarations (see Constant Declaration on page 57). The type_def attribute identifies
the definition of the type of the constant.

The value attribute contains the value of the constant, not the computation of the value (e.g., the fact that it was defined
as “1+2”).

The describe operation for a ConstantDef object returns a ConstantDescription.

14.5.8.2 Write Interface

Setting the type_def attribute also updates the type attribute.

When setting the value attribute, the TypeCode of the supplied any must be equal to the type attribute of the
ConstantDef.

14.5.9 TypedefDef

The base interface TypedefDef is inherited by all named non-object.types (structures, unions, enumerations, and aliases).
The TypedefDef interface is not inherited by the definition objects for primitive or anonymous types.

module CORBA {
interface TypedefDef : Contained, IDLType {};

struct TypeDescription {
Identifier name;
RepositoryId id;
RepositoryId defined_in;
VersionSpec version;
TypeCode type;

};
};

The inherited describe operation for interfaces derived from TypedefDef returns a TypeDescription.

14.5.10 StructDef

A StructDef represents an IDL structure definition. It can contain structs, unions, and enums.

module CORBA {

struct StructMember {
Identifier name;
Common Object Request Broker Architecture (CORBA), v3.1.1 241

TypeCode type;
IDLType type_def;

};

typedef sequence <StructMember> StructMemberSeq;

interface StructDef : TypedefDef, Container {
attribute StructMemberSeq members;

};
};

14.5.10.1 Read Interface

The members attribute contains a description of each structure member. The inherited type attribute is a tk_struct
TypeCode describing the structure.

14.5.10.2 Write Interface

Setting the members attribute also updates the type attribute. When setting the members attribute, the type member
of the StructMember structure should be set to TC_void.

A StructDef used as a Container may only contain StructDef, UnionDef, or EnumDef definitions.

14.5.11 UnionDef

A UnionDef represents an IDL union definition.

module CORBA {
struct UnionMember {

Identifier name;
any label;
TypeCode type;
IDLType type_def;

};
typedef sequence <UnionMember> UnionMemberSeq;

interface UnionDef : TypedefDef, Container {
readonly attribute TypeCode discriminator_type;
attribute IDLType discriminator_type_def;
attribute UnionMemberSeq members;

};
};

14.5.11.1 Read Interface

The discriminator_type and discriminator_type_def attributes describe and identify the union’s discriminator type.

The members attribute contains a description of each union member. The label of each UnionMemberDescription is
a distinct value of the discriminator_type. Adjacent members can have the same name. Members with the same name
must also have the same type. A label with type octet and value 0 indicates the default union member.

The inherited type attribute is a tk_union TypeCode describing the union.
242 Common Object Request Broker Architecture (CORBA), v3.1.1

14.5.11.2 Write Interface

Setting the discriminator_type_def attribute also updates the discriminator_type attribute and setting the
discriminator_type_def or members attribute also updates the type attribute.

When setting the members attribute, the type member of the UnionMember structure should be set to TC_void.

A UnionDef used as a Container may only contain StructDef, UnionDef, or EnumDef definitions.

14.5.12 EnumDef

An EnumDef represents an IDL enumeration definition.

module CORBA {
typedef sequence <Identifier> EnumMemberSeq;

interface EnumDef : TypedefDef {
attribute EnumMemberSeq members;

};
};

14.5.12.1 Read Interface

The members attribute contains a distinct name for each possible value of the enumeration.

The inherited type attribute is a tk_enum TypeCode describing the enumeration.

14.5.12.2 Write Interface

Setting the members attribute also updates the type attribute.

14.5.13 AliasDef

An AliasDef represents an IDL typedef that aliases another definition.

module CORBA {
interface AliasDef : TypedefDef {

attribute IDLType original_type_def;
};

};

14.5.13.1 Read Interface

The original_type_def attribute identifies the type being aliased.

The inherited type attribute is a tk_alias TypeCode describing the alias.

14.5.13.2 Write Interface

Setting the original_type_def attribute also updates the type attribute.
Common Object Request Broker Architecture (CORBA), v3.1.1 243

14.5.14 PrimitiveDef

A PrimitiveDef represents one of the IDL primitive types. As primitive types are unnamed, this interface is not derived
from TypedefDef or Contained.

module CORBA {
enum PrimitiveKind {

pk_null, pk_void, pk_short, pk_long, pk_ushort, pk_ulong,
pk_float, pk_double, pk_boolean, pk_char, pk_octet,
pk_any, pk_TypeCode, pk_Principal, pk_string, pk_objref,
pk_longlong, pk_ulonglong, pk_longdouble, pk_wchar, pk_wstring,
pk_value_base

};

interface PrimitiveDef: IDLType {
readonly attribute PrimitiveKind kind;

};
};

The kind attribute indicates which primitive type the PrimitiveDef represents. There are no PrimitiveDefs with kind
pk_null. A PrimitiveDef with kind pk_string represents an unbounded string. A PrimitiveDef with kind pk_objref
represents the IDL type Object. A PrimitiveDef with kind pk_value_base represents the IDL type ValueBase.

The inherited type attribute describes the primitive type. All PrimitiveDefs are owned by the Repository. References to
them are obtained using Repository::get_primitive.

14.5.15 StringDef

A StringDef represents an IDL bounded string type. The unbounded string type is represented as a PrimitiveDef. As
string types are anonymous, this interface is not derived from TypedefDef or Contained.

module CORBA {
interface StringDef : IDLType {

attribute unsigned long bound;
};

};

The bound attribute specifies the maximum number of characters in the string and must not be zero. The inherited type
attribute is a tk_string TypeCode describing the string.

14.5.16 WstringDef

A WstringDef represents an IDL wide string. The unbounded wide string type is represented as a PrimitiveDef. As
wide string types are anonymous, this interface is not derived from TypedefDef or Contained.

module CORBA {
interface WstringDef : IDLType {

attribute unsigned long bound;
};

};
244 Common Object Request Broker Architecture (CORBA), v3.1.1

The bound attribute specifies the maximum number of wide characters in a wide string, and must not be zero. The
inherited type attribute is a tk_wstring TypeCode describing the wide string.

14.5.17 FixedDef

A FixedDef represents an IDL fixed point type.

module CORBA {
interface FixedDef : IDLType {

attribute unsigned short digits;
attribute short scale;

};
};

The digits attribute specifies the total number of decimal digits in the number, and must be from 1 to 31, inclusive. The
scale attribute specifies the position of the decimal point.

The inherited type attribute is a tk_fixed TypeCode, which describes a fixed-point decimal number.

14.5.18 SequenceDef

A SequenceDef represents an IDL sequence type. As sequence types are anonymous, this interface is not derived from
TypedefDef or Contained.

module CORBA {
interface SequenceDef : IDLType {

attribute unsigned long bound;
readonly attribute TypeCode element_type;
attribute IDLType element_type_def;

};
};

14.5.18.1 Read Interface

The bound attribute specifies the maximum number of elements in the sequence. A bound of zero indicates an
unbounded sequence.

The type of the elements is described by element_type and identified by element_type_def. The inherited type
attribute is a tk_sequence TypeCode describing the sequence.

14.5.18.2 Write Interface

Setting the element_type_def attribute also updates the element_type attribute. Setting the bound or
element_type_def attribute also updates the type attribute.

14.5.19 ArrayDef

An ArrayDef represents an IDL array type. As array types are anonymous, this interface is not derived from TypedefDef
or Contained.
Common Object Request Broker Architecture (CORBA), v3.1.1 245

module CORBA {
interface ArrayDef : IDLType {

attribute unsigned long length;
readonly attribute TypeCode element_type;
attribute IDLType element_type_def;

};
};

14.5.19.1 Read Interface

The length attribute specifies the number of elements in the array.

The type of the elements is described by element_type and identified by element_type_def. Since an ArrayDef only
represents a single dimension of an array, multi-dimensional IDL arrays are represented by multiple ArrayDef objects,
one per array dimension. The element_type_def attribute of the ArrayDef representing the leftmost index of the array,
as defined in IDL, will refer to the ArrayDef representing the next index to the right, and so on. The innermost ArrayDef
represents the rightmost index and the element type of the multi-dimensional IDL array.

The inherited type attribute is a tk_array TypeCode describing the array.

14.5.19.2 Write Interface

Setting the element_type_def attribute also updates the element_type attribute. Setting the bound or
element_type_def attribute also updates the type attribute.

14.5.20 ExceptionDef

An ExceptionDef represents an exception definition. It can contain structs, unions, and enums.

module CORBA {
interface ExceptionDef : Contained, Container {

readonly attribute TypeCode type;
attribute StructMemberSeq members;

};

struct ExceptionDescription {
Identifier name;
RepositoryId id;
RepositoryId defined_in;
VersionSpec version;
TypeCode type;

};
};

14.5.20.1 Read Interface

The type attribute is a tk_except TypeCode describing the exception. The members attribute describes any exception
members. The describe operation for an ExceptionDef object returns an ExceptionDescription.
246 Common Object Request Broker Architecture (CORBA), v3.1.1

14.5.20.2 Write Interface

Setting the members attribute also updates the type attribute. When setting the members attribute, the type member
of the StructMember structure is ignored and should be set to TC_void.

An ExceptionDef used as a Container may only contain StructDef, UnionDef, or EnumDef definitions.

14.5.21 AttributeDef

An AttributeDef represents the information that defines an attribute of an interface, component, home, valuetype, or
eventtype.

module CORBA {
enum AttributeMode {ATTR_NORMAL, ATTR_READONLY};

interface AttributeDef : Contained {
readonly attribute TypeCode type;
attribute IDLType type_def;
attribute AttributeMode mode;

};

struct AttributeDescription {
Identifier name;
RepositoryId id;
RepositoryId defined_in;
VersionSpec version;
TypeCode type;
AttributeMode mode;

};
};

14.5.21.1 Read Interface

The type attribute provides the TypeCode describing the type of this attribute. The type_def attribute identifies the
object defining the type of this attribute.

The mode attribute specifies read only or read/write access for this attribute.

The describe operation for an AttributeDef object returns an AttributeDescription.

14.5.21.2 Write Interface

Setting the type_def attribute also updates the type attribute.

14.5.22 ExtAttributeDef

An ExtAttributeDef represents the information that defines an attribute of an interface, component, home, valuetype, or
eventtype that can potentially have user exceptions associated with it.

module CORBA{
struct ExtAttributeDescription {

Identifier name;
Common Object Request Broker Architecture (CORBA), v3.1.1 247

RepositoryId id;
RepositoryId defined_in;
VersionSpec version;
TypeCode type;
AttributeMode mode;
ExcDescriptionSeq get_exceptions;
ExcDescriptionSeq put_exceptions;

};

interface ExtAttributeDef : AttributeDef {

// read/write interface
attribute ExcDescriptionSeq get_exceptions;
attribute ExcDescriptionSeq set_exceptions;

// read interface
ExtAttributeDescription describe_attribute();

};

14.5.22.1 Read Interface

The operations inherited from AttributeDef behave exactly the same as in AttributeDef. In particular, the def_kind
attribute that has the value dk_Attribute, exactly as in AttributeDef.

The get_exceptions and set_exceptions attributes specify the list of exception types that can be raised by the
attribute.

The describe_attribute operation for an ExtAttributeDef object returns an ExtAttributeDescription. that contains
information about user exceptions in addition to the information that is available through AttributeDescription.

14.5.22.2 Write Interface

Same as for AttributeDef.

14.5.23 OperationDef

An OperationDef represents the information needed to define an operation of an interface.

module CORBA {
enum OperationMode {OP_NORMAL, OP_ONEWAY};

enum ParameterMode {PARAM_IN, PARAM_OUT, PARAM_INOUT};

struct ParameterDescription {
Identifier name;
TypeCode type;
IDLType type_def;
ParameterMode mode;

};
typedef sequence <ParameterDescription> ParDescriptionSeq;

typedef Identifier ContextIdentifier;
248 Common Object Request Broker Architecture (CORBA), v3.1.1

typedef sequence <ContextIdentifier> ContextIdSeq;

typedef sequence <ExceptionDef> ExceptionDefSeq;
typedef sequence <ExceptionDescription> ExcDescriptionSeq;

interface OperationDef : Contained {
readonly attribute TypeCode result;
attribute IDLType result_def;
attribute ParDescriptionSeq params;
attribute OperationMode mode;
attribute ContextIdSeq contexts;
attribute ExceptionDefSeq exceptions;

};

struct OperationDescription {
Identifier name;
RepositoryId id;
RepositoryId defined_in;
VersionSpec version;
TypeCode result;
OperationMode mode;
ContextIdSeq contexts;
ParDescriptionSeq parameters;
ExcDescriptionSeq exceptions;

};
};

14.5.23.1 Read Interface

The result attribute is a TypeCode describing the type of the value returned by the operation. The result_def attribute
identifies the definition of the returned type.

The params attribute describes the parameters of the operation. It is a sequence of ParameterDescription structures.
The order of the ParameterDescriptions in the sequence is significant. The name member of each structure provides
the parameter name. The type member is a TypeCode describing the type of the parameter. The type_def member
identifies the definition of the type of the parameter. The mode member indicates whether the parameter is an in, out, or
inout parameter.

The operation’s mode is either oneway (i.e., no output is returned) or normal.

The contexts attribute specifies the list of context identifiers that apply to the operation.

The exceptions attribute specifies the list of exception types that can be raised by the operation.

The inherited describe operation for an OperationDef object returns an OperationDescription.

14.5.23.2 Write Interface

Setting the result_def attribute also updates the result attribute.

The mode attribute can be set to OP_ONEWAY only if the result is TC_void and all elements of params have a mode of
PARAM_IN, and the list of exceptions is empty. If the mode is set to OP_ONEWAY when these conditions do not hold,
a BAD_PARAM exception is raised with minor code 31.
Common Object Request Broker Architecture (CORBA), v3.1.1 249

14.5.24 InterfaceDef

An InterfaceDef object represents interface definition. It can contain constants, typedefs, exceptions, operations, and
attributes.

module CORBA {
interface InterfaceDef;
typedef sequence <InterfaceDef> InterfaceDefSeq;
typedef sequence <RepositoryId> RepositoryIdSeq;
typedef sequence <OperationDescription> OpDescriptionSeq;
typedef sequence <AttributeDescription> AttrDescriptionSeq;

interface InterfaceDef : Container, Contained, IDLType {
// read/write interface

attribute InterfaceDefSeq base_interfaces;

// read interface

boolean is_a (in RepositoryId interface_id);

struct FullInterfaceDescription {
Identifier name;
RepositoryId id;
RepositoryId defined_in;
VersionSpec version;
OpDescriptionSeq operations;
AttrDescriptionSeq attributes;
RepositoryIdSeq base_interfaces;
TypeCode type;

};

FullInterfaceDescription describe_interface();

// write interface

AttributeDef create_attribute (
in RepositoryId id,
in Identifier name,
in VersionSpec version,
in IDLType type,
in AttributeMode mode

);

OperationDef create_operation (
in RepositoryId id,
in Identifier name,
in VersionSpec version,
in IDLType result,
in OperationMode mode,
250 Common Object Request Broker Architecture (CORBA), v3.1.1

in ParDescriptionSeq params,
in ExceptionDefSeq exceptions,
in ContextIdSeq contexts

);
};

struct InterfaceDescription {
Identifier name;
RepositoryId id;
RepositoryId defined_in;
VersionSpec version;
RepositoryIdSeq base_interfaces;

};
};

14.5.24.1 Read Interface

The base_interfaces attribute lists all the interfaces from which this interface inherits.

The is_a operation returns TRUE if the interface on which it is invoked either is identical to or inherits, directly or
indirectly, from the interface identified by its interface_id parameter. Otherwise it returns FALSE. If the value of
interface_id is IDL:omg.org/CORBA/Object:1.0, is_a returns TRUE signifying the fact that all interfaces are
implicitly derived from the base type Object.

The describe_interface operation returns a FullInterfaceDescription describing the interface, including its
operations and attributes. The operations and attributes fields of the FullInterfaceDescription structure include
descriptions of all of the operations and attributes in the transitive closure of the inheritance graph of the interface being
described.

The inherited describe operation for an InterfaceDef returns an InterfaceDescription.

The inherited contents operation returns the list of constants, typedefs, and exceptions defined in this InterfaceDef and
the list of attributes and operations either defined or inherited in this InterfaceDef. If the exclude_inherited parameter
is set to TRUE, only attributes and operations defined within this interface are returned. If the exclude_inherited
parameter is set to FALSE, all attributes and operations are returned.

14.5.24.2 Write Interface

Setting the base_interfaces attribute causes a BAD_PARAM exception with minor code 5 to be raised if the name
attribute of any object contained by this InterfaceDef conflicts with the name attribute of any object contained by any
of the specified base InterfaceDefs.

The create_attribute operation returns a new AttributeDef contained in the InterfaceDef on which it is invoked. The
id, name, version, type_def, and mode attributes are set as specified. The type attribute is also set. The defined_in
attribute is initialized to identify the containing InterfaceDef. A BAD_PARAM exception with standard minor code 2 is
raised if an object with the specified id already exists in the Repository. BAD_PARAM exception with standard minor
code 3 is raised if an object with the same name already exists in this InterfaceDef.

The create_operation operation returns a new OperationDef contained in the InterfaceDef on which it is invoked.
The id, name, version, result_def, mode, params, exceptions, and contexts attributes are set as specified. The
result attribute is also set. The defined_in attribute is initialized to identify the containing InterfaceDef. A
Common Object Request Broker Architecture (CORBA), v3.1.1 251

BAD_PARAM exception with standard minor code 2 is raised if an object with the specified id already exists in the
Repository. BAD_PARAM exception with standard minor code 3 is raised if an object with the same name already
exists in this InterfaceDef.

An InterfaceDef used as a Container may only contain TypedefDef, (including definitions derived from
TypedefDef), ConstantDef, and ExceptionDef definitions.

14.5.25 ExtInterfaceDef

An ExtInterfaceDef object represents interface definition. It can contain constants, typedefs, exceptions, operations, and
attributes with exceptions.

module CORBA {

interface InterfaceAttrExtension {

// read interface

struct ExtFullInterfaceDescription {
Identifier name;
RepositoryId id;
RepositoryId defined_in;
VersionSpec version;
OpDescriptionSeq operations;
ExtAttrDescriptionSeq attributes;
RepositoryIdSeq base_interfaces;
TypeCode type;

};
ExtFullInterfaceDescription describe_ext_interface();

// write interface
ExtAttributeDef create_ext_attribute (

in RepositoryId id,
in Identifier name,
in VersionSpec version,
in IDLType type,
in AttributeMode mode,
in ExceptionDefSeq get_exceptions,
in ExceptionDefSeq set_exceptions

);
};

interface ExtInterfaceDef : InterfaceDef,
InterfaceAttrExtension {

};
};

14.5.25.1 Read Interface

All operations and attributes inherited from InterfaceDef behave the same as for InterfaceDef. In particular, the
def_kind attribute has the value dk_Interface, exactly as in InterfaceDef.
252 Common Object Request Broker Architecture (CORBA), v3.1.1

The inherited describe_ext_interfaces operation returns the ExtFullInterfaceDescription structure that contains
information about attributes with exceptions, in addition to the information found in FullInterfaceDescription.

14.5.25.2 Write Interface

All operations and attributes inherited from InterfaceDef behave the same as for InterfaceDef.

The inherited create_ext_attribute operation returns a new ExtAttributeDef contained in the ExtInterfaceDef on
which it is invoked. The id, name, version, type_def, mode, get_exceptions and set_exceptions attributes are set
as specified. The type attribute is also set. The defined_in attribute is initialized to identify the containing
ExtInterfaceDef. A BAD_PARAM exception with standard minor code 2 is raised if an object with the specified id
already exists in the Repository. BAD_PARAM exception with standard minor code 3 is raised if an object with the
same name already exists in this ExtInterfaceDef.

14.5.26 AbstractInterfaceDef

An AbstractInterfaceDef object represents a CORBA 2.3 abstract interface definition. It can contain constants,
typedefs, exceptions, operations, and attributes. Its base interfaces can only contain AbstractInterfaceDefs.

module CORBA {
interfaceAbstractInterfaceDef;
typedef sequence <AbstractInterfaceDef> AbstractInterfaceDefSeq;
interface AbstractInterfaceDef : InterfaceDef {
};

};

14.5.26.1 Read Interface

The inherited base_interfaces attribute returns a list of abstract interfaces from which this abstract interface inherits.

NOTE: base_interfaces is of type InterfaceDefSeq, but since AbstractInterfaceDef is derived from InterfaceDef, a
list of AbstractInterfaceDefs can legitimately be returned in an InterfaceDefSeq.

The inherited is_a operation returns TRUE if the interface on which it is invoked either is identical to or inherits, directly
or indirectly, from the abstract interface identified by its interface_id parameter, or if the value of interface_id is
IDL:omg.org/CORBA/AbstractBase:1.0. Otherwise it returns FALSE.

The inherited describe_interface operation returns a FullInterfaceDescription describing the abstract interface,
including its operations and attributes.

The inherited describe operation for an AbstractInterfaceDef returns an InterfaceDescription.

The inherited contents operation returns the list of constants, typedefs, and exceptions defined in this
AbstractInterfaceDef and the list of attributes and operations either defined or inherited in this AbstractInterfaceDef.
If the exclude_inherited parameter is set to TRUE, only attributes and operations defined within this abstract interface
are returned. If the exclude_inherited parameter is set to FALSE, all attributes and operations are returned.
Common Object Request Broker Architecture (CORBA), v3.1.1 253

14.5.26.2 Write Interface

Setting the inherited base_interfaces attribute causes a BAD_PARAM exception with standard minor code 5 to be
raised if the name attribute of any object contained by this AbstractInterfaceDef conflicts with the name attribute of
any object contained by any of the specified base AbstractInterfaceDefs. If any of the InterfaceDefs in
base_interface are not AbstractInterfaceDefs, then a BAD_PARAM exception with standard minor code 11 is raised.

The inherited create_attribute operation returns a new AttributeDef contained in the AbstractInterfaceDef on which
it is invoked. The id, name, version, type_def, and mode attributes are set as specified. The type attribute is also set.
The defined_in attribute is initialized to identify the containing AbstractInterfaceDef. A BAD_PARAM exception
with standard minor code 2 is raised if an object with the specified id already exists in the Repository. BAD_PARAM
exception with standard minor code 3 is raised if an object with the same name already exists in this
AbstractInterfaceDef.

The inherited create_operation operation returns a new OperationDef contained in the AbstractInterfaceDef on
which it is invoked. The id, name, version, result_def, mode, params, exceptions, and contexts attributes are set
as specified. The result attribute is also set. The defined_in attribute is initialized to identify the containing
AbstractInterfaceDef. A BAD_PARAM exception with standard minor code 2 is raised if an object with the specified
id already exists in the Repository. BAD_PARAM exception with standard minor code 3 is raised if an object with the
same name already exists in this AbstractInterfaceDef.

14.5.27 ExtAbstractInterfaceDef

An ExtAbstractInterfaceDef object represents an abstract interface definition. It can contain constants, typedefs,
exceptions, operations, and attributes with exceptions. Its base interfaces can only contain ExtAbstractInterfaceDefs.

module CORBA {

interface ExtAbstaractInterfaceDef : AbstractInterfaceDef,
InterfaceAttrExtension {

};
};

14.5.27.1 Read Interface

All operations and attributes inherited from AbstractInterfaceDef behave the same as for AbstaractInterfaceDef. In
particular, the def_kind attribute has the value dk_AbstractInterface, exactly as in AbstaractInterfaceDef.

The inherited describe_ext_interface operation returns the ExtFullInterfaceDescription structure that contains
information about attributes with exceptions, in addition to the information found in FullInterfaceDescription.

14.5.27.2 Write Interface

All operations and attributes inherited from AbstaractInterfaceDef behave the same as for AbstractInterfaceDef.

The inherited create_ext_attribute operation returns a new ExtAttributeDef contained in the
ExtAbstractInterfaceDef on which it is invoked. The id, name, version, type_def, mode, get_exceptions, and
set_exceptions attributes are set as specified. The type attribute is also set. The defined_in attribute is initialized to
identify the containing ExtAbstractInterfaceDef. A BAD_PARAM exception with standard minor code 2 is raised if an
object with the specified id already exists in the Repository. BAD_PARAM exception with standard minor code 3 is
raised if an object with the same name already exists in this ExtAbstractInterfaceDef.
254 Common Object Request Broker Architecture (CORBA), v3.1.1

14.5.28 LocalInterfaceDef

A LocalInterfaceDef object represents a local interface definition. It can contain constants, typedefs, exceptions,
operations, and attributes. Its base interfaces can only contain InterfaceDefs or LocalInterfaceDefs.

module CORBA {
interfaceLocalInterfaceDef;
typedef sequence <LocalInterfaceDef> LocalInterfaceDefSeq;

interface LocalInterfaceDef : InterfaceDef {
};

};

14.5.28.1 Read Interface

The inherited base_interfaces attribute returns a list of interfaces, local or otherwise, from which this local interface
inherits.

NOTE: base_interfaces is of type InterfaceDefSeq, but since LocalInterfaceDef is derived from InterfaceDef, a list
that consists of some regular InterfaceDefs and some LocalInterfaceDefs can legitimately be returned in an
InterfaceDefSeq.

The inherited is_a operation returns TRUE if the local interface on which it is invoked either is identical to or inherits,
directly or indirectly, from the local interface identified by its interface_id parameter, or if the value of interface_id is
IDL:omg.org/CORBA/LocalBase:1.0. Otherwise it returns FALSE.

The inherited describe_interface operation returns a FullInterfaceDescription describing the local interface,
including its operations and attributes.

The inherited describe operation for a LocalInterfaceDef returns an InterfaceDescription.

The inherited contents operation returns the list of constants, typedefs, and exceptions defined in this
LocalInterfaceDef and the list of attributes and operations either defined or inherited in this LocalInterfaceDef. If the
exclude_inherited parameter is set to TRUE, only attributes and operations defined within this local interface are
returned. If the exclude_inherited parameter is set to FALSE, all attributes and operations are returned.

14.5.28.2 Write Interface

Setting the inherited base_interfaces attribute causes a BAD_PARAM exception with standard minor code 5 to be
raised if the name attribute of any object contained by this LocalInterfaceDef conflicts with the name attribute of any
object contained by any of the specified base InterfaceDefs (local or otherwise).

The inherited create_attribute operation returns a new AttributeDef contained in the LocalInterfaceDef on which it
is invoked. The id, name, version, type_def, and mode attributes are set as specified. The type attribute is also set.
The defined_in attribute is initialized to identify the containing LocalInterfaceDef. A BAD_PARAM exception with
standard minor code 2 is raised if an object with the specified id already exists in the Repository. BAD_PARAM
exception with standard minor code 3 is raised if an object with the same name already exists in this
LocalInterfaceDef.

The inherited create_operation operation returns a new OperationDef contained in the LocalInterfaceDef on which
it is invoked. The id, name, version, result_def, mode, params, exceptions, and contexts attributes are set as
specified. The result attribute is also set. The defined_in attribute is initialized to identify the containing
Common Object Request Broker Architecture (CORBA), v3.1.1 255

LocalInterfaceDef. A BAD_PARAM exception with standard minor code 2 is raised if an object with the specified id
already exists in the Repository. BAD_PARAM exception with standard minor code 3 is raised if an object with the
same name already exists in this LocalInterfaceDef.

14.5.29 ExtLocalInterfaceDef

An ExtLocalInterfaceDef object represents a local interface definition. It can contain constants, typedefs, exceptions,
operations, and attributes with exceptions. Its base interfaces can only contain ExtInterfaceDefs or
ExtLocalInterfaceDefs.

module CORBA {

interface ExtLocalInterfaceDef : LocalInterfaceDef,
InterfaceAttrExtension {

};
};

14.5.29.1 Read Interface

All operations and attributes inherited from LocalInterfaceDef behave the same as for LocalInterfaceDef. In
particular, the def_kind attribute has the value dk_LocalInterface, exactly as in LocalInterfaceDef.

The inherited describe_ext_interface operation returns the ExtFullInterfaceDescription structure that contains
information about attributes with exceptions, in addition to the information found in FullInterfaceDescription.

14.5.29.2 Write Interface

All operations and attributes inherited from LocalInterfaceDef behave the same as for LocalInterfaceDef.

The inherited create_ext_attribute operation returns a new ExtAttributeDef contained in the ExtLocalInterfaceDef
on which it is invoked. The id, name, version, type_def, mode, get_exceptions, and set_exceptions attributes
are set as specified. The type attribute is also set. The defined_in attribute is initialized to identify the containing
ExtLocalInterfaceDef. A BAD_PARAM exception with standard minor code 2 is raised if an object with the specified
id already exists in the Repository. BAD_PARAM exception with standard minor code 3 is raised if an object with the
same name already exists in this ExtLocalInterfaceDef.

14.5.30 ValueMemberDef

A ValueMemberDef IR Object represents a value member.

module CORBA {
typedef short Visibility;

const Visibility PRIVATE_MEMBER = 0;
const Visibility PUBLIC_MEMBER = 1;

struct ValueMember {
Identifier name;
RepositoryId id;
RepositoryId defined_in;
VersionSpec version;
TypeCode type;
256 Common Object Request Broker Architecture (CORBA), v3.1.1

IDLType type_def;
Visibility access;

};

typedef sequence <ValueMember> ValueMemberSeq;

interface ValueMemberDef : Contained {
readonly attribute TypeCode type;
attribute IDLType type_def;
attribute Visibility access;

};
};

14.5.30.1 Read Interface

The type attribute provides the TypeCode describing the type of this value member. The type_def attribute identifies
the object defining the type of this value member. The access attribute specifies private or public access for this value
member. The describe operation for a ValueMemberDef object returns a ValueMember.

14.5.30.2 Write Interface

Setting the type_def attribute also updates the type attribute.

14.5.31 ValueDef

A ValueDef object represents a value definition. It can contain constants, typedefs, exceptions, operations, and attributes.

module CORBA {
interface ValueDef;
typedef sequence <ValueDef> ValueDefSeq;

struct Initializer {
StructMemberSeq members;
Identifier name;

};

typedef sequence<Initializer> InitializerSeq;

interface ValueDef : Container, Contained, IDLType {
// read/write interface

attribute InterfaceDefSeq supported_interfaces;
attribute InitializerSeq initializers;
attribute ValueDef base_value;
attribute ValueDefSeq abstract_base_values;
attribute boolean is_abstract;
attribute boolean is_custom;
attribute boolean is_truncatable;

// read interface
boolean is_a(
Common Object Request Broker Architecture (CORBA), v3.1.1 257

in RepositoryId id
);

struct FullValueDescription {
Identifier name;
RepositoryId id;
boolean is_abstract;
boolean is_custom;
RepositoryId defined_in;
VersionSpec version;
OpDescriptionSeq operations;
AttrDescriptionSeq attributes;
ValueMemberSeq members;
InitializerSeq initializers;
RepositoryIdSeq supported_interfaces;
RepositoryIdSeq abstract_base_values;
boolean is_truncatable;
RepositoryId base_value;
TypeCode type;

};

FullValueDescription describe_value();

// write interface

ValueMemberDef create_value_member(
in RepositoryId id,
in Identifier name,
in VersionSpec version,
in IDLType type,
in Visibility access

);

AttributeDef create_attribute(
in RepositoryId id,
in Identifier name,
in VersionSpec version,
in IDLType type,
in AttributeMode mode

);

OperationDef create_operation (
in RepositoryId id,
in Identifier name,
in VersionSpec version,
in IDLType result,
in OperationMode mode,
in ParDescriptionSeq params,
in ExceptionDefSeq exceptions,
258 Common Object Request Broker Architecture (CORBA), v3.1.1

in ContextIdSeq contexts
);

};

struct ValueDescription {
Identifier name;
RepositoryId id;
boolean is_abstract;
boolean is_custom;
RepositoryId defined_in;
VersionSpec version;
RepositoryIdSeq supported_interfaces;
RepositoryIdSeq abstract_base_values;
boolean is_truncatable;
RepositoryId base_value;

};
};

14.5.31.1 Read Interface

The supported_interfaces attribute lists the interfaces that this value type supports.

The initializers attribute lists the initializers this value type supports.

The base_value attribute describes the value type from which this value inherits.

The abstract_base_values attribute lists the abstract value types from which this value inherits.

The is_abstract attribute is TRUE if the value is an abstract value type.

The is_custom attribute is TRUE if the value uses custom marshaling.

The is_truncatable attribute is TRUE if the value inherits “safely” (i.e., supports truncation) from another value.

The is_a operation returns TRUE if the value on which it is invoked either is identical to or inherits, directly or
indirectly, from the interface or value identified by its id parameter or if the value of id is IDL:omg.org/CORBA/
ValueBase:1.0. Otherwise it returns FALSE.

The describe_value operation returns a FullValueDescription describing the value, including its operations and
attributes.

The inherited describe operation for a ValueDef returns a ValueDescription.

The inherited contents operation returns the list of constants, typedefs, and exceptions defined in this ValueDef and the
list of attributes, operations, and members either defined or inherited in this ValueDef. If the exclude_inherited
parameter is set to TRUE, only attributes, operations, and members defined within this value are returned. If the
exclude_inherited parameter is set to FALSE, all attributes, operations, and members are returned.
Common Object Request Broker Architecture (CORBA), v3.1.1 259

14.5.31.2 Write Interface

Setting the supported_interfaces, base_value, or abstract_base_values attribute causes a BAD_PARAM
exception with minor code 5 to be raised if the name attribute of any object contained by this ValueDef conflicts with
the name attribute of any object contained by any of the specified bases. If an attempt is made to set the
supported_interfaces attribute to an InterfaceDefSeq that contains more than one InterfaceDef that is not an
AbstractInterfaceDef, then the BAD_PARAM exception shall be raised with standard minor code 12.

The create_value_member operation returns a new ValueMemberDef contained in the ValueDef on which it is
invoked. The id, name, version, type_def, and access attributes are set as specified. The type attribute is also set.
The defined_in attribute is initialized to identify the containing ValueDef. A BAD_PARAM exception with minor code
2 is raised if an object with the specified id already exists in the Repository. A BAD_PARAM exception with minor
code 3 is raised if an object with the same name already exists in this ValueDef.

The create_attribute operation returns a new AttributeDef contained in the ValueDef on which it is invoked. The id,
name, version, type_def, and mode attributes are set as specified. The type attribute is also set. The defined_in
attribute is initialized to identify the containing ValueDef. A BAD_PARAM exception with minor code 2 is raised if an
object with the specified id already exists in the Repository. A BAD_PARAM exception with minor code 3 is raised if
an object with the same name already exists in this ValueDef.

The create_operation operation returns a new OperationDef contained in the ValueDef on which it is invoked. The
id, name, version, result_def, mode, params, exceptions, and contexts attributes are set as specified. The result
attribute is also set. The defined_in attribute is initialized to identify the containing ValueDef. A BAD_PARAM
exception with minor code 2 is raised if an object with the specified id already exists in the Repository. A
BAD_PARAM exception with minor code 3 is raised if an object with the same name already exists in this ValueDef.

A ValueDef used as a Container may only contain TypedefDef, (including definitions derived from TypedefDef),
ConstantDef, and ExceptionDef definitions.

14.5.32 ExtValueDef

An ExtValueDef object represents a value definition. It can contain constants, typedefs, exceptions, operations, and
attributes with exceptions. Value definitions that contain initializers with user exceptions can also be represented in
ExtValueDef objects.

module CORBA {

struct ExtInitializer {
StructMemberSeq members;
ExcDescriptionSeq exceptions;
Identifier name;

};
typedef sequence <ExtInitializer> ExtInitializerSeq;

interface ExtValueDef : ValueDef {

// read/write interface
attribute ExtInitializerSeq ext_initializers;

// read interface
260 Common Object Request Broker Architecture (CORBA), v3.1.1

struct ExtFullValueDescription {
Identifier name;
RepositoryId id;
boolean is_abstract;
boolean is_custom;
RepositoryId defined_in;
VersionSpec version;
OpDescriptionSeq operations;
ExtAttrDescriptionSeq attributes;
ValueMemberSeq members;
ExtInitializerSeq initializers;
RepositoryIdSeq supported_interfaces;
RepositoryIdSeq abstract_base_values;
boolean is_truncatable;
RepositoryId base_value;
TypeCode type;

};

ExtFullValueDescription describe_ext_value();

// write interface
ExtAttributeDef create_ext_attribute (

in RepositoryId id,
in Identifier name,
in VersionSpec version,
in IDLType type,
in AttributeMode mode,
in ExceptionDefSeq get_exceptions,
in ExceptionDefSeq set_exceptions

);
};

};

14.5.32.1 Read Interface

All operations and attributes inherited from ValueDef behave the same as for ValueDef. In particular, the def_kind
attribute has the value dk_Value, exactly as in ValueDef.

The ext_initializers attribute lists the initializers with exceptions that this value type supports.

The inherited initializers attribute lists the same initializers as in ext_initializers but does not have the exception
information.

The describe_ext_value operation returns the ExtFullValueDescription structure that contains information about
attributes with exceptions and initializers with exceptions, in addition to the information found in
FullValueDescription.

14.5.32.2 Write Interface

All operations and attributes inherited from ValueDef behave the same as for ValueDef.
Common Object Request Broker Architecture (CORBA), v3.1.1 261

The create_ext_attribute operation returns a new ExtAttributeDef contained in the ExtValueDef on which it is
invoked. The id, name, version, type_def, mode, get_exceptions, and set_exceptions attributes are set as
specified. The type attribute is also set. The defined_in attribute is initialized to identify the containing ExtValueDef.
A BAD_PARAM exception with standard minor code 2 is raised if an object with the specified id already exists in the
Repository. BAD_PARAM exception with standard minor code 3 is raised if an object with the same name already
exists in this ExtValueDef.

14.5.33 ValueBoxDef

A ValueBoxDef object represents a value box definition. It merely identifies the IDL type_def that is being “boxed.”

module CORBA {
interface ValueBoxDef : TypedefDef {

attribute IDLType original_type_def;
};

};

14.5.33.1 Read Interface

The original_type_def attribute identifies the type being boxed. The inherited type attribute is a tk_value_box
TypeCode describing the value box.

14.5.33.2 Write Interface

Setting the original_type_def attribute also updates the type attribute.

14.5.34 NativeDef

A NativeDef object represents a native definition.

module CORBA {
interface NativeDef : TypedefDef {};

};

The inherited type attribute is a tk_native TypeCode describing the native type.

14.6 Component Interface Repository Interfaces

The IRObjects that represent IDL concepts that are specific to the Components extension are described in this sub clause.
These IRObjects can be contained only in a ComponentIR::Repository described in this sub clause.

14.6.1 ComponentIR::Container

The base interface ComponentIR::Container is used to form a containment hierarchy in the Component Interface
Repository.

module CORBA {
module ComponentIR {
262 Common Object Request Broker Architecture (CORBA), v3.1.1

interface Container {
ComponentDef create_component (

in RepositoryId id,
in Identifier name,
in VersionSpec version,
in ComponentDef base_component,
in InterfaceDefSeq supports_interfaces

);

HomeDef create_home (
in RepositoryId id,
in Identifier name,
in VersionSpec version,
in HomeDef base_home,
in ComponentDef managed_component,
in InterfaceDefSeq supports_interfaces,
in ValueDef primary_key

);

EventDef create_event (
in RepositoryId id,
in Identifier name,
in VersionSpec version,
in boolean is_custom,
in boolean is_abstract,
in ValueDef base_value,
in boolean is_truncatable,
in ValueDefSeq abstract_base_values,
in InterfaceDefSeq supported_interfaces,
in ExtInitializerSeq initializers

);
};

};
};

14.6.1.1 Write Interface

The three create_<type> operations defined in the ComponentIR::Container interface create new empty IR objects
defining component, home, and event types. The defined_in attribute of a definition created with any of these operations
is initialized to identify the ComponentIR::Container on which the operation is invoked, and the
containing_repository attribute is initialized to its ComponentIR::Repository.

These create_<type> operations all take id and name parameters that are used to initialize the identity of the created
definition.

• A BAD_PARAM exception is raised with minor code 2 if an object with the specified id already exists in the
ComponentIR::Repository.

• A BAD_PARAM exception with minor code 3 is raised if the specified name already exists within this
ComponentIR::Container and multiple versions are not supported.
Common Object Request Broker Architecture (CORBA), v3.1.1 263

The create_component operation returns a new empty ComponentDef with the specified base_component, and
the specified supports_interfaces. AttributeDefs can be added using ComponentDef::create_attribute.
ComponentDef::create_provides, ComponentDef::create_uses, ComponentDef::create_emits,
ComponentDef::create_publishes, and ComponentDef::create_consumes can be used to add ProvidesDefs,
UsesDefs, EmitsDefs, PublishesDefs, and ConsumesDefs respectively. Definitions can also be added using the
Contained::move operation.

The create_home operation returns a new HomeDef with the specified base_home, managed_component,
supported_interfaces, and primary_key. Type, exception, and constant definitions can be added using
Container::create_<type> operations on the new HomeDefs. OperationDefs can be added using
HomeDef::create_operation and AttributeDefs can be added using HomeDef::create_attribute. FinderDefs and
FactoryDefs can be added using HomeDef::create_finder and HomeDef::create_factory respectively. Definitions
can also be added using the Contained::move operation.

The create_event operation returns a new empty EventDef with the specified base interfaces and events (base_value,
supported_interfaces, and abstract_base_values) as well as the other information describing the new events
characteristics (is_custom, is_abstract, is_truncatable, and initializers). The initializers argument is of type
ExtInitializerSeq allowing one to specify user exceptions for initializers. Type, exception, and constant definitions can
be added using Container::create_<type> operations on the new EventDef. OperationDefs can be added using
ExtValueDef::create_operation and ExtAttributeDefs can be added using ExtValueDef::create_ext_attribute.
Definitions can also be added using the Contained::move operation.

14.6.2 ComponentIR::Repository

ComponentIR::Repository is an interface that provides global access to the Interface Repository that supports access
to information related to CORBA Components. The ComponentIR::Repository object can contain components, home,
and event definitions in addition to everything else that a Repository type can contain. As it inherits from Container
and ComponentIR::Container, it can be used to look up any definition (whether globally defined or defined within a
module or interface) either by name or by id.

Since ComponentIR::Repository derives from CORBA::Repository and hence from Container and not from
Contained, it does not have a RepositoryId associated with it. By default it is deemed to have the RepositoryId ""
(the empty string) for purposes of assigning a value to the defined_in field of the description structure of ModuleDef,
InterfaceDef, ValueDef, ValueBoxDef, ComponentDef, HomeDef, EventDef, TypedefDef, ExceptionDef, and
ConstantDef that are contained immediately in the ComponentIR::Repository object. Since
ComponentIR::Repository derives from ComponentIR::Container, it can contain ComponentDefs, HomeDefs
as well as EventDefs.

module CORBA {
module ComponentIR {

interface Repository : CORBA::Repository, Container {};
};

};

14.6.2.1 Read Interface

ComponentIR::Repository has the same read operations as Repository.
264 Common Object Request Broker Architecture (CORBA), v3.1.1

14.6.2.2 Write Interface

Write operations inherited from ComponentIR::Container behave the same way as in ComponentIR::Container.

The rest of the write operations are inherited from CORBA::Repository and behave the same way as in
CORBA::Repository.

14.6.3 ComponentIR::ProvidesDef

A ComponentIR::ProvidesDef object represents an interface that is provided by a component.

module CORBA {
module ComponentIR {

interface ProvidesDef : Contained {
attribute InterfaceDef interface_type;

};

struct ProvidesDescription {
Identifier name;
RepositoryId id;
RepositoryId defined_in;
VersionSpec version;
RepositoryId interface_type;

};
};

};

14.6.3.1 Read Interface

The attribute interface_type returns the object identifying the interface that is provided by the component.

The inherited operation describe returns a ProvidesDescription.

14.6.3.2 Write Interface

Setting the attribute interface_type changes the object identifying the interface that is provided by the component.

The rest of the write operations are inherited from CORBA::Contained and behave the same way as in
CORBA::Contained.

14.6.4 ComponentIR::UsesDef

A ComponentIR::UsesDef object represents an interface that is used by a component.

module CORBA {
module ComponentIR {

interface UsesDef : Contained {
attribute InterfaceDef interface_type;
attribute boolean is_multiple;

};
Common Object Request Broker Architecture (CORBA), v3.1.1 265

struct UsesDescription {
Identifier name;
RepositoryId id;
RepositoryId defined_in;
VersionSpec version;
RepositoryId interface_type;
boolean is_multiple;

};
};

};

14.6.4.1 Read Interface

The attribute interface_type returns the object identifying the interface that is used by the component.

The attribute is_multiple is TRUE if the interface is used multiple times.

The inherited operation describe returns a UsesDescription.

14.6.4.2 Write Interface

Setting the attribute interface_type changes the object identifying the interface that is used by the component. Setting
the attribute is_multiple changes the multiplicity of the used interface.

The rest of the write operations are inherited from CORBA::Contained and behave the same way as in
CORBA::Contained.

14.6.5 ComponentIR::EventDef

A ComponentIR::EventDef object represents an eventtype definition. It can contain constants, typedefs, exceptions,
operations, and attributes with exceptions. Eventtype definitions that contain initializers with user exceptions can also be
represented in ComponentIR::EventDef objects.

module CORBA {
module ComponentIR {

interface EventDef : ExtValueDef {};
};

The read and write interfaces for ComponentIR::EventDef have the same semantics as the read and write interfaces for
ExtValueDef.

14.6.6 ComponentIR::EventPortDef

A ComponentIR::EventPortDef object represents an event port definition. It refers to an EventDef object that
contains the actual information about the event. This interface is never instantiated as itself. It is instantiated only as one
of its derived types (i.e., EmitsDef, PublishesDef, or ConsumesDef).

module CORBA {
module ComponentIR {
266 Common Object Request Broker Architecture (CORBA), v3.1.1

interface EventPortDef : Contained {
// read/write interface
attribute EventDef event;

// read interface
boolean is_a (in RepositoryId event_id);

};

struct EventPortDescription {
Identifier name;
RepositoryId id;
RepositoryId defined_in;
VersionSpec version;
RepositoryId event;

};
};

};

14.6.6.1 Read Interface

The event attribute returns the object containing the definition of the event for this event port.

The is_a operation returns TRUE if the event value associated with this EventPortDef is identical to or inherits from
the event value associated with the EventPortDef identified by the event_id.

The inherited describe operation returns an EventPortDescription.

14.6.6.2 Write Interface

Setting the attribute event changes the object containing the definition of the event for this event port.

The rest of the write operations are inherited from CORBA::Contained and behave the same way as in
CORBA::Contained.

14.6.7 ComponentIR::EmitsDef

A ComponentIR::EmitsDef object represents the port definition of an event that is emitted by a component.

module CORBA {
module ComponentIR {

interface EmitsDef : EventPortDef {};
};

};

14.6.7.1 Read Interface

The read interface for EmitsDef has the same semantics as the read interface for EventPortDef.

14.6.7.2 Write Interface

The write interface for EmitsDef has the same semantics as the write interface for EventPortDef.
Common Object Request Broker Architecture (CORBA), v3.1.1 267

14.6.8 ComponentIR::PublishesDef

A ComponentIR::PublishesDef object represents the port definition of an event that is published by a component.

module CORBA {
module ComponentIR {

interface PublishesDef : EventPortDef {};
};

};

14.6.8.1 Read Interface

The read interface for PublishesDef has the same semantics as the read interface for EventPortDef.

14.6.8.2 Write Interface

The write interface for PublishesDef has the same semantics as the write interface for EventPortDef.

14.6.9 ComponentIR::ConsumesDef

A ComponentIR::ConsumesDef object represents the port definition of an event that is consumed by a component.

module CORBA {
module ComponentIR {

interface ConsumesDef : EventPortDef {};
};

};

14.6.9.1 Read Interface

The read interface for ConsumesDef has the same semantics as the read interface for EventPortDef.

14.6.9.2 Write Interface

The write interface for ConsumesDef has the same semantics as the write interface for EventPortDef.

14.6.10 ComponentIR::ComponentDef

A ComponentIR::ComponentDef object represents the definition of a component. It contains provides, uses, emits,
publishes, consumes, and attributes.

module CORBA {
module ComponentIR {

interface ComponentDef : ExtInterfaceDef {
// read/write interface
attribute ComponentDef base_component;
attribute InterfaceDefSeq supported_interfaces;
268 Common Object Request Broker Architecture (CORBA), v3.1.1

// write interface
ProvidesDef create_provides (

in RepositoryId id,
in Identifier name,
in VersionSpec version,
in InterfaceDef interface_type

);

UsesDef create_uses (
in RepositoryId id,
in Identifier name,
in VersionSpec version,
in InterfaceDef interface_type,
in boolean is_multiple

);

EmitsDef create_emits (
in RepositoryId id,
in Identifier name,
in VersionSpec version,
in EventDef event

);

PublishesDef create_publishes (
in RepositoryId id,
in Identifier name,
in VersionSpec version,
in EventDef event

);

ConsumesDef create_consumes (
in RepositoryId id,
in Identifier name,
in VersionSpec version,
in EventDef event

);
};

typedef sequence<ProvidesDescription>
ProvidesDescriptionSeq;

typedef sequence<UsesDescription> UsesDescriptionSeq;
typedef sequence<EventPortDescription>

EventPortDescriptionSeq;

struct ComponentDescription {
Identifier name;
RepositoryId id;
RepositoryId defined_in;
VersionSpec version;
RepositoryId base_component;
RepositoryIdSeq supported_interfaces;
Common Object Request Broker Architecture (CORBA), v3.1.1 269

ProvidesDescriptionSeq provided_interfaces;
UsesDescriptionSeq used_interfaces;
EventPortDescriptionSeq emits_events;
EventPortDescriptionSeq publishes_events;
EventPortDescriptionSeq consumes_events;
ExtAttrDescriptionSeq attributes;
TypeCode type;

};
};

};

14.6.10.1 Read Interface

The base_component attribute returns the component that this component derives from.

The supported_interfaces attribute lists the interfaces that this component type supports.

The inherited is_a operation returns TRUE if the component on which it is invoked either is identical to or inherits from
the component identified by its id parameter. Otherwise it returns FALSE.

The inherited describe operation for a ComponentDef returns a ComponentDescription.

The inherited contents operation returns the list of attributes, provides, uses, emits, publishes, and consumes either
defined or inherited in this ComponentDef. If the exclude_inherited parameter is set to TRUE, only attributes,
provides, uses, emits, publishes, and consumes defined within this object are returned. If the exclude_inherited
parameter is set to FALSE, all attributes, provides, uses, emits, publishes, and consumes are returned.

14.6.10.2 Write Interface

Setting the base_component attribute causes a BAD_PARAM exception with minor code 5 to be raised if the name
attribute of any object contained by this ComponentDef conflicts with the name attribute of any object contained by
the specified base ComponentDef.

Setting the supported_interfaces attribute changes the interfaces that this component type supports.

The create_<type> operations defined in the ComponentIR::ComponentDef interface create new corresponding
empty IR objects. The defined_in attribute is initialized to identify the containing ComponentDef, and the
containing_repository attribute is initialized to its ComponentIR::Repository.

These create_<type> operations all take id and name parameters that are used to initialize the identity of the created
definition. A BAD_PARAM exception is raised with minor code 2 if an object with the specified id already exists in the
ComponentIR::Repository. A BAD_PARAM exception with minor code 3 is raised if the specified name already
exists within this ComponentDef and multiple versions are not supported.

The inherited create_ext_attribute operation returns a new ExtAttributeDef contained in the ComponentDef on
which it is invoked. The id, name, version, type_def, mode, get_exceptions, and set_exceptions attributes are
set as specified. The type attribute is also set.

The inherited create_operation, and all other create_* operations inherited from Container and Contained return
BAD_PARAM exception with minor code 4.

The create_provides operation returns a new ProvidesDef contained in the ComponentDef on which it is invoked.
The id, name, version, and interface_type attributes are set as specified.
270 Common Object Request Broker Architecture (CORBA), v3.1.1

The create_uses operation returns a new UsesDef contained in the ComponentDef on which it is invoked. The id,
name, version, interface_type, and is_multiple attributes are set as specified.

The create_emits, create_publishes, and create_consumes operations respectively return new EmitsDef,
PublishesDef, and ConsumesDef contained in the ComponentDef on which it is invoked. The id, name, version,
and event attributes are set as specified.

A ComponentDef used as a Container may not contain any TypedefDef (including definitions derived from
TypedefDef), ConstantDef, or ExceptionDef definitions.

A ComponentDef used as an InterfaceDef may only contain ExtAttributeDef definitions.

14.6.11 ComponentIR::FactoryDef

A ComponentIR::FactoryDef object represents the definition of a factory operation in a home.

module CORBA {
module ComponentIR {

interface FactoryDef : OperationDef { // only PARAM_IN parameters
};

};
};

14.6.11.1 Read Interface

The result attribute is a TypeCode describing the type of the value returned by the operation, which is always
tk_component for FactoryDef. The result_def attribute identifies the definition of the returned type, which is always
a ComponentDef in case of FactoryDef.

The params attribute describes the parameters of the operation. It is a sequence of ParameterDescription structures.
The order of the ParameterDescriptions in the sequence is significant. The name member of each structure provides
the parameter name. The type member is a TypeCode describing the type of the parameter. The type_def member
identifies the definition of the type of the parameter. The mode member indicates whether the parameter is an in, out, or
inout parameter. For FactoryDef the value of mode for all parameters is PARAM_IN.

The operation’s mode is always normal for FactoryDef.

The kind attribute is always OP_IDL for FactoryDef.

The contexts attribute specifies the list of context identifiers that apply to the operation, and is an empty list for
FactoryDef.

The exceptions attribute specifies the list of exception types that can be raised by the operation.

The inherited describe operation for a FactoryDef object returns an OperationDescription.

14.6.11.2 Write Interface

Setting the result_def attribute has no effect.

The mode and contexts attributes cannot be changed.
Common Object Request Broker Architecture (CORBA), v3.1.1 271

14.6.12 ComponentIR::FinderDef

A ComponentIR::FinderDef object represents the definition of a finder operation in a home.

module CORBA {
module ComponentIR {

interface FinderDef : OperationDef { // only PARAM_IN parameters
};

};
};

14.6.12.1 Read Interface

The result attribute is a TypeCode describing the type of the value returned by the operation, which is always
tk_component for FinderDef. The result_def attribute identifies the definition of the returned type, which is always a
ComponentDef in case of a FinderDef.

The params attribute describes the parameters of the operation. It is a sequence of ParameterDescription structures.
The order of the ParameterDescriptions in the sequence is significant. The name member of each structure provides
the parameter name. The type member is a TypeCode describing the type of the parameter. The type_def member
identifies the definition of the type of the parameter. The mode member indicates whether the parameter is an in, out, or
inout parameter. For FinderDef the value of mode for all parameters is PARAM_IN.

The operation’s mode is always normal for FinderDef.

The kind attribute is always OP_IDL for FinderDef.

The contexts attribute specifies the list of context identifiers that apply to the operation, and is an empty list for
FinderDef.

The exceptions attribute specifies the list of exception types that can be raised by the operation.

The inherited describe operation for a FinderDef object returns an OperationDescription.

14.6.12.2 Write Interface

Setting the result_def attribute has no effect.

The mode and contexts attributes cannot be changed.

14.6.13 ComponentIR::HomeDef

A ComponentIR::HomeDef object represents the definition of a home. It contains attributes, operations, factories, and
finders.

module CORBA {
module ComponentIR {

interface HomeDef : ExtInterfaceDef {
// read/write interface
attribute HomeDef base_home;
272 Common Object Request Broker Architecture (CORBA), v3.1.1

attribute InterfaceDefSeq supported_interfaces;
attribute ComponentDef managed_component;
attribute ValueDef primary_key;

// write interface
FactoryDef create_factory (

in RepositoryId id,
in Identifier name,
in VersionSpec version,
in ParDescriptionSeq params,
in ExceptionDefSeq exceptions

);

FinderDef create_finder (
in RepositoryId id,
in Identifier name,
in VersionSpec version,
in ParDescriptionSeq params,
in ExceptionDefSeq exceptions

);
};

struct HomeDescription {
Identifier name;
RepositoryId id;
RepositoryId defined_in;
VersionSpec version;
RepositoryId base_home;
RepositoryId managed_component;
ValueDescription primary_key;
OpDescriptionSeq factories;
OpDescriptionSeq finders;
OpDescriptionSeq operations;
ExtAttrDescriptionSeq attributes;
TypeCode type;

};
};

};

14.6.13.1 Read Interface

The base_home attribute returns the home that this home definition derives from.

The supported_interfaces attribute lists the interfaces that this home type supports.

The managed_component attribute returns the component that this home manages.

The primary_key attribute returns the primary key that is associated with this home.

The inherited is_a operation returns TRUE if the home on which it is invoked either is identical to or inherits from the
home identified by its id parameter. Otherwise it returns FALSE.
Common Object Request Broker Architecture (CORBA), v3.1.1 273

The inherited describe operation for a HomeDef returns a HomeDescription.

The inherited contents operation returns the list of constants, typedefs, exceptions, attributes, operations, finders, and
factories defined or inherited in this HomeDef. If the exclude_inherited parameter is set to TRUE, only objects
defined within this home are returned. If the exclude_inherited parameter is set to FALSE, all objects are returned.

14.6.13.2 Write Interface

Setting the base_home attribute causes a BAD_PARAM exception with minor code 5 to be raised if the name attribute
of any object contained by this HomeDef conflicts with the name attribute of any object contained by the specified base
HomeDef.

The create_<type> operations defined in the HomeDef interface create new corresponding empty IR objects. The
defined_in attribute is initialized to identify the containing HomeDef, and the containing_repository attribute is
initialized to its ComponentIR::Repository.

These create_<type> operations all take id and name parameters that are used to initialize the identity of the created
definition. A BAD_PARAM exception is raised with minor code 2 if an object with the specified id already exists in the
ComponentIR::Repository. A BAD_PARAM exception with minor code 3 is raised if the specified name already
exists within this HomeDef and multiple versions are not supported.

The inherited create_ext_attribute operation returns a new ExtAttributeDef contained in the HomeDef on which it is
invoked. The id, name, version, type_def, mode, get_exceptions, and set_exceptions attributes are set as
specified. The type attribute is also set.

The inherited create_operation operation returns a new OperationDef contained in the HomeDef on which it is
invoked. The id, name, version, result_def, mode, params, exceptions, and contexts attributes are set as
specified. The result attribute is also set.

The create_factory operation returns a new FactoryDef contained in the HomeDef on which it is invoked. The id,
name, version, params, and exceptions attributes are set as specified. The parameters in the params attribute must
all be of PARAM_IN type.

The create_finder operation returns a new FinderDef contained in the HomeDef on which it is invoked. The id,
name, versions, params, and exceptions attributes are set as specified. The parameters in the params attribute must
all be of PARAM_IN type.

A HomeDef used as a Container may only contain TypedefDef (including definitions derived from TypedefDef),
ConstantDef, and ExceptionDef definitions.

14.7 RepositoryIds

RepositoryIds are values that can be used to establish the identity of information in the repository. A RepositoryId is
represented as a string, allowing programs to store, copy, and compare them without regard to the structure of the value.
It does not matter what format is used for any particular RepositoryId. However, conventions are used to manage the
name space created by these IDs.

RepositoryIds may be associated with IDL definitions in a variety of ways. Installation tools might generate them, they
might be defined with pragmas in IDL source, or they might be supplied with the package to be installed. Ensuring
consistency of RepositoryIds with the IDL source or the IR contents is the responsibility of the programmer allocating
Repositoryids.
274 Common Object Request Broker Architecture (CORBA), v3.1.1

The format of the id is a short format name followed by a colon (“:”) followed by characters according to the format. This
specification defines four formats:

1. one derived from IDL names,

2. one that uses Java class names and Java serialization version UIDs,

3. one that uses DCE UUIDs, and

4. another intended for short-term use, such as in a development environment.

Since new repository ID formats may be added from time to time, compliant IDL compilers must accept any string value
of the form

“<format>:<string>”

provided as the argument to the id pragma and use it as the repository ID. The OMG maintains a registry of allocated
format identifiers. The <format> part of the ID may not contain a colon (:) character.

The version and prefix pragmas only affect default repository IDs that are generated by the IDL compiler using the IDL
format.

14.7.1 IDL Format

The IDL format for RepositoryIds primarily uses IDL scoped names to distinguish between definitions. It also includes
an optional unique prefix, and major and minor version numbers.

The RepositoryId consists of three components, separated by colons, (“:”)

1. The first component is the format name, “IDL.”

2. (".").The second component is a list of identifiers, separated by “/” characters. These identifiers are arbitrarily long
sequences of alphabetic, digit, underscore (“_”), hyphen (“-”), and period (“.”) characters. Typically, the first identi-
fier is a unique prefix, and the rest are the IDL Identifiers that make up the scoped name of the definition. The second
component shall not contain a trailing slash ("/") and it shall not begin with the characters underscore ("_"), hyphen
("-"), or period (".").

3. The third component is made up of major and minor version numbers, in decimal format, separated by a “.”. When
two interfaces have RepositoryIds differing only in minor version number it can be assumed that the definition with
the higher version number is upwardly compatible with (i.e., can be treated as derived from) the one with the lower
minor version number.

14.7.2 RMI Hashed Format

The IDL format defined above does not include any structural information. Identity of IDL types determined for this
format depends upon the names used in the RepositoryID being correct. For interfaces, if stubs and skeletons are not
actually in synch, even though the RepositoryIds report they are, the worst that can happen is that the result of an
invocation is a BAD_OPERATION exception. With value types, these kinds of errors are more problematic. An
inconsistency between the stub and skeleton marshaling/unmarshaling code can confuse the marshaling engine and may
even corrupt memory and/or cause a crash failure.

The RMI Hashed format is used for Java RMI values mapped to IDL using the Java to IDL Mapping (see the Java/IDL
Language Mapping document). It is computed based upon the structural information of the original Java definition.
Whenever the Java definition changes, the hash function will (statistically) produce a hash code, which is different from
Common Object Request Broker Architecture (CORBA), v3.1.1 275

the previous one. When an ORB run time receives a value with a different hash from what is expected, it is free to raise
a BAD_PARAM exception. It may also try to resolve the incompatibility by some means. If it is not successful, then it
shall raise the BAD_PARAM exception.

An RMI Hashed RepositoryId consists of either three or four components, separated by colons:

RMI: <class name> : <hash code> [: <serialization version UID>]

The class name is a Java class name as returned by the getName method of java.lang.Class. Any characters not in
ISO Latin 1 are replaced by “\U” followed by the 4 hexadecimal characters (in upper case) representing the Unicode
value.

For classes that do not implement java.io.Serializable, and for interfaces, the hash code is always zero, and the
RepositoryID does not contain a serial version UID.

For classes that implement java.io.Externalizable, the hash code is always the 64-bit value 1.

For classes that implement java.io.Serializable but not java.io.Externalizable, the hash code is a 64-
bit hash of a stream of bytes (transcribed as a 16-digit upper case hex string). An instance of
java.lang.DataOutputStream is used to convert primitive data types to a sequence of bytes. The sequence of
items in the stream is as follows:

1. The hash code of the superclass, written as a 64-bit long.

2. The value 1 if the class has no writeObject method, or the value 2 if the class has a writeObject method,
written as a 32-bit integer.

3. For each field of the class that is mapped to IDL, sorted lexicographically by Java field name, in increasing order:

a. Java field name, in UTF encoding

b. field descriptor, as defined by the Java Virtual Machine Specification, in UTF encoding.

The National Institute of Standards and Technology (NIST) Secure Hash Algorithm (SHA-1) is executed on the stream of
bytes produced by DataOutputStream, producing a 20 byte array of values, sha[0..19]. The hash code is assembled
from the first 8 bytes of this array as follows:

long hash = 0;
for (int i = 0; i < Math.min(8, sha.length); i++) {

hash += (long)(sha[i] & 255) << (i * 8);
}

For Serializable (including Externalizable) classes, the Java serialization version UID, transcribed as a 16 digit upper-case
hex string, shall be appended to the RepositoryId following the hash code and a colon. The Java serialization version
UID is defined in the Java Object Serialization Specification.

Examples for the valuetype ::foo::bar would be

RMI:foo/bar;:1234567812345678
RMI:foo/bar;:1234567812345678:ABCD123456781234

An example of a Java array of valuetype ::foo::bar would be
276 Common Object Request Broker Architecture (CORBA), v3.1.1

RMI:[Lfoo.bar;:1234567812345678:ABCD123456781234

For a Java class x\u03bCy that contains a Unicode character not in ISO Latin 1, an example RepositoryId is

RMI:foo.x\U03BCy:8765432187654321

A conforming implementation that uses this format shall implement the standard hash algorithm defined above.

14.7.3 DCE UUID Format

DCE UUID format RepositoryIds start with the characters “DCE:” and are followed by the printable form of the UUID,
a colon, and a decimal minor version number, for example: “DCE:700dc518-0110-11ce-ac8f-0800090b5d3e:1.”

14.7.4 LOCAL Format

Local format RepositoryIds start with the characters “LOCAL:” and are followed by an arbitrary string. Local format
IDs are not intended for use outside a particular repository, and thus do not need to conform to any particular convention.
Local IDs that are just consecutive integers might be used within a development environment to have a very cheap way
to manufacture the IDs while avoiding conflicts with well-known interfaces.

14.7.5 Pragma Directives for RepositoryId

Three pragma directives (id, prefix, and version), are specified to accommodate arbitrary RepositoryId formats and still
support the IDL RepositoryId format with minimal annotation. The prefix and version pragma directives apply only to
the IDL format. An IDL compiler must interpret these annotations as specified. Conforming IDL compilers may support
additional non-standard pragmas, but must not refuse to compile IDL source containing non-standard pragmas that are not
understood by the compiler.

14.7.5.1 The ID Pragma

An IDL pragma of the format

#pragma ID <name> “<id>”

associates an arbitrary RepositoryId string with a specific IDL name. The <name> can be a fully or partially scoped
name or a simple identifier, interpreted according to the usual IDL name lookup rules relative to the scope within which
the pragma is contained. The <id> must be a repository ID of the form described in RepositoryIds on page 274.

An attempt to assign a repository ID to the same IDL construct a second time shall be an error unless the repository ID
used in the attempt is identical to the previous one.

interface A {};
#pragma ID A “IDL:A:1.1”
#pragma ID A “IDL:X:1.1” // Compile-time error

interface B {};
#pragma ID B “IDL:BB:1.1”
#pragma ID B “IDL:BB:1.1” // OK, same ID

It is also an error to apply an ID to a forward-declared IDL construct (interface, valuetype, structure, and union) and then
later assign a different ID to that IDL construct.
Common Object Request Broker Architecture (CORBA), v3.1.1 277

14.7.5.2 The Prefix Pragma

An IDL pragma is of the form:

#pragma prefix “<string>”

This sets the current prefix used in generating IDL format RepositoryIds. For example, the RepositoryId for the initial
version of interface Printer defined on module Office by an organization known as “SoftCo” might be “IDL:SoftCo/
Office/Printer:1.0.”

Since the “prefix” pragma applies to Repository Ids of the IDL format, the <string> above shall be a list of one or more
identifiers, separated by the “/” characters. These identifiers are arbitrarily long sequences of alphabetic, digit, underscore
(“_”), hyphen (“-”), and period (“.”) characters. The string shall not contain a trailing slash ("/") and it shall not begin
with the characters underscore ("_"), hyphen ("-"), or period (".").

This format makes it convenient to generate and manage a set of IDs for a collection of IDL definitions. The person
creating the definitions sets a prefix (“SoftCo”), and the IDL compiler or other tool can synthesize all the needed IDs.

Because RepositoryIds may be used in many different computing environments and ORBs, as well as over a long period
of time, care must be taken in choosing them. Prefixes that are distinct, such as trademarked names, domain names,
UUIDs, and so forth, are preferable to generic names such as “document.”

The specified prefix applies to RepositoryIds generated after the pragma until the end of the current scope is reached or
another prefix pragma is encountered. An IDL file forms a scope for this purpose, so a prefix resets to the previous prefix
at the end of the scope of an included file:

// A.idl
#pragma prefix “A”
interface A {};

// B.idl
#pragma prefix “B”
#include “A.idl”
interface B {};

The repository IDs for interfaces A and B in this case are:

IDL:A/A:1.0
IDL:B/B:1.0

Similarly, a prefix in an including file does not affect the prefix of an included file:

// C.idl
interface C {};

// D.idl
#pragma prefix “D”
#include “C.idl”
interface D {};

The repository IDs for interface C and D in this case are:

IDL:C:1.0
278 Common Object Request Broker Architecture (CORBA), v3.1.1

IDL:D/D:1.0

If an included file does not contain a #pragma prefix, the current prefix implicitly resets to the empty prefix:

// E.idl
interface E {};

// F.idl
module M {

 #include <E.idl>
 };

The repository IDs for module M and interface E in this case are:

IDL:M:1.0
IDL:E:1.0

If a #include directive appears at non-global scope and the included file contains a prefix pragma, the included file’s
prefix takes precedence, for example:

// A.idl
#pragma prefix “A”
interface A {};

// B.idl
#pragma prefix “B”
module M {
#include “A.idl”
};

The repository ID for module M and interface A in this case are:

IDL:B/M:1.0
IDL:A/A:1.0

Forward-declared constructs (interfaces, value types, structures, and unions) must have the same prefix in effect wherever
they appear. Attempts to assign conflicting prefixes to a forward-declared construct result in a compile-time diagnostic.
For example:

#pragma prefix “A”
interface A; // Forward decl.

#pragma prefix “B”
interface A; // Compile-time error

#pragma prefix “C”
interface A { // Compile-time error

void op();
};
Common Object Request Broker Architecture (CORBA), v3.1.1 279

A prefix pragma of the form

#pragma prefix “”

resets the prefix to the empty string. For example:

#pragma prefix “X”
interface X {};
#pragma prefix “”
interface Y {};

The repository IDs for interface X and Y in this case are:

IDL:X/X:1.0
IDL:Y:1.0

If a specification contains both a prefix pragma and an ID or version pragma, the prefix pragma does not affect the
repository ID for an ID pragma, but does affect the repository ID for a version pragma:

#pragma prefix “A”
interface A {};
interface B {};
interface C {};
#pragma ID B “IDL:myB:1.0”
#pragma version C 9.9

The repository IDs for this specification are:

IDL:A/A:1.0
IDL:myB:1.0
IDL:A/C:9.9

A #pragma prefix must appear before the beginning of an IDL definition. Placing a #pragma prefix elsewhere has
undefined behavior, for example:

interface Bar
#pragma prefix “foo” // Undefined behavior
{
// ...

};

14.7.5.3 The Version Pragma

An IDL pragma of the format:

#pragma version <name> <major>.<minor>

provides the version specification used in generating an IDL format RepositoryId for a specific IDL name. The
<name> can be a fully or partially scoped name or a simple identifier, interpreted according to the usual IDL name
lookup rules relative to the scope within which the pragma is contained. The <major> and <minor> components are
decimal unsigned shorts.
280 Common Object Request Broker Architecture (CORBA), v3.1.1

If no version pragma is supplied for a definition, version 1.0 is assumed. If an attempt is made to change the version of a
repository ID that was specified with an ID pragma, a compliant compiler shall emit a diagnostic:

interface A {};
#pragma ID A “IDL:myA:1.1”
#pragma version A 9.9 // Compile-time error

An attempt to assign a version to the same IDL construct a second time shall be an error unless the version used in the
attempt is identical to the existing one.

interface A {};
#pragma version A 1.1
#pragma version A 1.1 // OK
#pragma version A 1.2 // Error

interface B {};
#pragma ID B “IDL:myB:1.2”
#pragma version B 1.2 // OK

14.7.5.4 Generation of IDL - Format IDs

A definition is globally identified by an IDL - format RepositoryId if no ID pragma is encountered for it.

The ID string shall be generated by starting with the string “IDL:”. Then, if the current prefix pragma is a non-empty
string, it is appended, followed by a “/” character. Next, the components of the scoped name of the definition, relative to
the scope in which any prefix that applies was encountered, are appended, separated by “/” characters. Finally, a “:” and
the version specification are appended.

For example, the following IDL:

module M1 {
typedef long T1;
typedef long T2;
#pragma ID T2 “DCE:d62207a2-011e-11ce-88b4-0800090b5d3e:3”

};

#pragma prefix “P1”

module M2 {
module M3 {

#pragma prefix “P2”
typedef long T3;

};
typedef long T4;
#pragma version T4 2.4

};

specifies types with the following scoped names and RepositoryIds:

::M1::T1 IDL:M1/T1:1.0

::M1::T2 DCE:d62207a2-011e-11ce-88b4-0800090b5d3e:3
Common Object Request Broker Architecture (CORBA), v3.1.1 281

::M2::M3::T3 IDL:P2/T3:1.0

::M2::T4 IDL:P1/M2/T4:2.4

For this scheme to provide reliable global identity, the prefixes used must be unique. Two non-colliding options are
suggested: Internet domain names and DCE UUIDs.

Furthermore, in a distributed world where different entities independently evolve types, a convention must be followed to
avoid the same RepositoryId being used for two different types. Only the entity that created the prefix has authority to
create new IDs by simply incrementing the version number. Other entities must use a new prefix, even if they are only
making a minor change to an existing type.

Prefix pragmas can be used to preserve the existing IDs when a module or other container is renamed or moved.

module M4 {
#pragma prefix “P1/M2”

module M3 {
#pragma prefix “P2”

typedef long T3;
};
typedef long T4;

#pragma version T4 2.4
};

This IDL declares types with the same global identities as those declared in module M2 above.

See The Prefix Pragma on page 278 for further details of the effects of various prefix pragma settings on the generated
RepositoryIds.

14.7.6 For More Information

IDL for Interface Repository on page 284 shows the IDL specification of the IR, including the #pragma directive.
Preprocessing on page 38 contains additional, general information on the pragma directive.

14.7.7 RepositoryIDs for OMG-Specified Types

Interoperability between implementations of official OMG specifications, including but not limited to CORBA, CORBA
Services, and CORBA Facilities, depends on unambiguous specification of RepositoryIds for all IDL-defined types in
such specifications.

All official IDL files shall contain the following pragma prefix directive:

#pragma prefix “omg.org”

unless said file already contains a pragma prefix identifying the original source of the file (e.g., “w3c.org”).

Revisions to existing OMG specifications must not change the definition of an existing type in any way. Two types with
different repository Ids are considered different types, regardless of which part of the repository Id differs.

If an implementation must extend an OMG-specified interface, interoperability requires it to derive a new interface from
the standard interface, rather than modify the standard definition.
282 Common Object Request Broker Architecture (CORBA), v3.1.1

14.7.8 Uniqueness Constraints on Repository IDs

Within an IDL definition, a module must have the same repository ID throughout. For example:

#pragma prefix "A"
module M {

// ...
};

#pragma prefix "B"
module M { // Error, inconsistent repository ID

 // ...
};

This definition attempts to use the same type name M with two different repository IDs in the same compilation unit.
Compilers shall issue a diagnostic for this error.

The same error can arise through inclusion of source files in the same compilation unit. For example:

// File1.idl
module M {

module N {
 // ...

};
#pragma ID N "abc"
};

// File2.idl
module M {

module N {
// ...

};
};

// File3.idl
#include "File1.idl
#include "File2.idl // Error, inconsistent repository ID

Similarly:

// File1.idl
 module M {

 // ...
 };

// File2.idl
#include File1.idl
#pragma prefix "X"
module M { // Error, inconsistent repository ID

 // ...
};
Common Object Request Broker Architecture (CORBA), v3.1.1 283

Such errors are detectable only if they occur in a single compilation unit (or in files included in a single compilation unit);
if, in different compilation units, different repository IDs are used for the same module, and these compilation units are
combined into a single executable, the behavior is undefined.

14.8 IDL for Interface Repository

This sub clause contains the complete IDL specification for the Interface Repository.

module CORBA {
 typeprefix CORBA “omg.org”;
 typedef string Identifier;
 typedef string ScopedName;
 typedef string RepositoryId;

enum DefinitionKind {
dk_none, dk_all,
dk_Attribute, dk_Constant, dk_Exception, dk_Interface,
dk_Module, dk_Operation, dk_Typedef,
dk_Alias, dk_Struct, dk_Union, dk_Enum,
dk_Primitive, dk_String, dk_Sequence, dk_Array,
dk_Repository,
dk_Wstring, dk_Fixed,
dk_Value, dk_ValueBox, dk_ValueMember,
dk_Native,
dk_AbstractInterface,
dk_LocalInterface
dk_Component, dk_Home,
dk_Factory, dk_Finder,
dk_Emits, dk_Publishes, dk_Consumes,
dk_Provides, dk_Uses,
dk_Event

};

interface IRObject {
// read interface
readonly attribute DefinitionKind def_kind;
// write interface
void destroy ();

};

typedef string VersionSpec;

interface Contained;
interface Repository;
interface Container;

interface Contained : IRObject {

// read/write interface
284 Common Object Request Broker Architecture (CORBA), v3.1.1

attribute RepositoryId id;
attribute Identifier name;
attribute VersionSpec version;

// read interface

readonly attribute Container defined_in;
readonly attribute ScopedName absolute_name;
readonly attribute Repository containing_repository;

struct Description {
DefinitionKind kind;
any value;

};

Description describe ();

// write interface

void move (
in Container new_container,
in Identifier new_name,
in VersionSpec new_version

);
};

interface ModuleDef;
interface ConstantDef;
interface IDLType;
interface StructDef;
interface UnionDef;
interface EnumDef;
interface AliasDef;
interface InterfaceDef;
interface ExceptionDef;
interface NativeDef;
typedef sequence <InterfaceDef> InterfaceDefSeq;
interface ValueDef;
typedef sequence <ValueDef> ValueDefSeq;
interface ValueBoxDef;
interface AbstractInterfaceDef;
typedef sequence <AbstractInterfaceDef> AbstractInterfaceDefSeq;
interface LocalInterfaceDef;
typedef sequence <LocalInterfaceDef> LocalInterfaceDefSeq;
interface ExtInterfaceDef;
typedef sequence <ExtInterfaceDef> ExtInterfaceDefSeq;
interface ExtValueDef;
typedef sequence <ExtValueDef> ExtValueDefSeq;
interface ExtAbstractInterfaceDef;
typedef sequence <ExtAbstractInterfaceDef>

ExtAbstractInterfaceDefSeq;
Common Object Request Broker Architecture (CORBA), v3.1.1 285

interface ExtLocalInterfaceDef;
typedef sequence <ExtLocalInterfaceDef>

ExtLocalInterfaceDefSeq;

typedef sequence <Contained> ContainedSeq;
struct StructMember {

Identifier name;
TypeCode type;
IDLType type_def;

};

typedef sequence <StructMember> StructMemberSeq;

struct Initializer {
StructMemberSeq members;
Identifier name;

};
typedef sequence <Initializer> InitializerSeq;

struct ExceptionDescription {
Identifier name;
RepositoryId id;
RepositoryId defined_in;
VersionSpec version;
TypeCode type;

};
typedef sequence <ExceptionDescription> ExcDescriptionSeq;

struct ExtInitializer {
StructMemberSeq members;
ExcDescriptionSeq exceptions;
Identifier name;

};
typedef sequence <ExtInitializer> ExtInitializerSeq;

 struct UnionMember {
Identifier name;
any label;
TypeCode type;
IDLType type_def;

};

typedef sequence <UnionMember> UnionMemberSeq;

typedef sequence <Identifier> EnumMemberSeq;

interface Container : IRObject {
// read interface

Contained lookup (
in ScopedName search_name);
286 Common Object Request Broker Architecture (CORBA), v3.1.1

ContainedSeq contents (
in DefinitionKind limit_type,
in boolean exclude_inherited

);

ContainedSeq lookup_name (
in Identifier search_name,
in long levels_to_search,
in DefinitionKind limit_type,
in boolean exclude_inherited

);

struct Description {
Contained contained_object;
DefinitionKind kind;
any value;

};

typedef sequence<Description> DescriptionSeq;

DescriptionSeq describe_contents (
in DefinitionKind limit_type,
in boolean exclude_inherited,
in long max_returned_objs

);

// write interface

ModuleDef create_module (
in RepositoryId id,
in Identifier name,
in VersionSpec version

);

ConstantDef create_constant (
in RepositoryId id,
in Identifier name,
in VersionSpec version,
in IDLType type,
in any value

);

StructDef create_struct (
in RepositoryId id,
in Identifier name,
in VersionSpec version,
in StructMemberSeq members

);

UnionDef create_union (
in RepositoryId id,
Common Object Request Broker Architecture (CORBA), v3.1.1 287

in Identifier name,
in VersionSpec version,
in IDLType discriminator_type,
in UnionMemberSeq members

);

EnumDef create_enum (
in RepositoryId id,
in Identifier name,
in VersionSpec version,
in EnumMemberSeq members

);

AliasDef create_alias (
in RepositoryId id,
in Identifier name,
in VersionSpec version,
in IDLType original_type

);

InterfaceDef create_interface (
in RepositoryId id,
in Identifier name,
in VersionSpec version,
in InterfaceDefSeq base_interfaces,

);

ValueDef create_value(
in RepositoryId id,
in Identifier name,
in VersionSpec version,
in boolean is_custom,
in boolean is_abstract,
in ValueDef base_value,
in boolean is_truncatable,
in ValueDefSeq abstract_base_values,
in InterfaceDefSeq supported_interfaces,
in InitializerSeq initializers

);

ValueBoxDef create_value_box(
in RepositoryId id,
in Identifier name,
in VersionSpec version,
in IDLType original_type_def

);

ExceptionDef create_exception(
in RepositoryId id,
in Identifier name,
in VersionSpec version,
288 Common Object Request Broker Architecture (CORBA), v3.1.1

in StructMemberSeq members
);

NativeDef create_native(
in RepositoryId id,
in Identifier name,
in VersionSpec version

);

AbstractInterfaceDef create_abstract_interface (
in RepositoryId id,
in Identifier name,
in VersionSpec version,
in AbstractInterfaceDefSeq base_interfaces,

);

LocalInterfaceDef create_local_interface (
in RepositoryId id,
in Identifier name,
in VersionSpec version,
in InterfaceDefSeq base_interfaces

);

ExtValueDef create_ext_value (
in RepositoryId id,
in Identifier name,
in VersionSpec version,
in boolean is_custom,
in boolean is_abstract,
in ValueDef base_value,
in boolean is_truncatable,
in ValueDefSeq abstract_base_values,
in InterfaceDefSeq supported_interfaces,
in ExtInitializerSeq initializers

);
};

interface IDLType : IRObject {
readonly attribute TypeCode type;

};

interface PrimitiveDef;
interface StringDef;
interface SequenceDef;
interface ArrayDef;
interface WstringDef;
interface FixedDef;

enum PrimitiveKind {
pk_null, pk_void, pk_short, pk_long, pk_ushort, pk_ulong,
pk_float, pk_double, pk_boolean, pk_char, pk_octet,
Common Object Request Broker Architecture (CORBA), v3.1.1 289

pk_any, pk_TypeCode, pk_Principal, pk_string, pk_objref,
pk_longlong, pk_ulonglong, pk_longdouble,
pk_wchar, pk_wstring, pk_value_base

};

interface Repository : Container {
// read interface

Contained lookup_id (in RepositoryId search_id);

TypeCode get_canonical_typecode(in TypeCode tc);

PrimitiveDef get_primitive (in PrimitiveKind kind);

// write interface

StringDef create_string (in unsigned long bound);

WstringDef create_wstring (in unsigned long bound);

SequenceDef create_sequence (
in unsigned long bound,

 in IDLType element_type
);

ArrayDef create_array (
in unsigned long length,
in IDLType element_type

);

FixedDef create_fixed (
in unsigned short digits,
in short scale

);
};

interface ModuleDef : Container, Contained {
};

struct ModuleDescription {
Identifier name;
RepositoryId id;
RepositoryId defined_in;
VersionSpec version;

};

interface ConstantDef : Contained {
readonly attribute TypeCode type;
attribute IDLType type_def;
attribute any value;

};
290 Common Object Request Broker Architecture (CORBA), v3.1.1

struct ConstantDescription {
Identifier name;
RepositoryId id;
RepositoryId defined_in;
VersionSpec version;
TypeCode type;
any value;

};
interface TypedefDef : Contained, IDLType {
};

struct TypeDescription {
Identifier name;
RepositoryId id;
RepositoryId defined_in;
VersionSpec version;
TypeCode type;

};

interface StructDef : TypedefDef, Container {
attribute StructMemberSeq members;

};

interface UnionDef : TypedefDef, Container {
readonly attribute TypeCode discriminator_type;
attribute IDLType discriminator_type_def;
attribute UnionMemberSeq members;

};

interface EnumDef : TypedefDef {
attribute EnumMemberSeq members;

};

interface AliasDef : TypedefDef {
attribute IDLType original_type_def;

};

interface NativeDef : TypedefDef {
};

interface PrimitiveDef: IDLType {
readonly attribute PrimitiveKind kind;

};

interface StringDef : IDLType {
attribute unsigned long bound;

};

interface WstringDef : IDLType {
Common Object Request Broker Architecture (CORBA), v3.1.1 291

attribute unsigned long bound;
};

interface FixedDef : IDLType {
attribute unsigned short digits;
attribute short scale;

};

interface SequenceDef : IDLType {
attribute unsigned long bound;
readonly attribute TypeCode element_type;
attribute IDLType element_type_def;

};

interface ArrayDef : IDLType {
attribute unsigned long length;
readonly attribute TypeCode element_type;
attribute IDLType element_type_def;

};

interface ExceptionDef : Contained, Container {
readonly attribute TypeCode type;
attribute StructMemberSeq members;

};

enum AttributeMode {ATTR_NORMAL, ATTR_READONLY};

interface AttributeDef : Contained {
readonly attribute TypeCode type;
attribute IDLType type_def;
attribute AttributeMode mode;

};

struct AttributeDescription {
Identifier name;
RepositoryId id;
RepositoryId defined_in;
VersionSpec version;
TypeCode type;
AttributeMode mode;

};

struct ExtAttributeDescription {
Identifier name;
RepositoryId id;
RepositoryId defined_in;
VersionSpec version;
TypeCode type;
AttributeMode mode;
ExcDescriptionSeq get_exceptions;
ExcDescriptionSeq put_exceptions;
292 Common Object Request Broker Architecture (CORBA), v3.1.1

};

interface ExtAttributeDef : AttributeDef {

// read/write interface
attribute ExcDescriptionSeq get_exceptions;
attribute ExcDescriptionSeq set_exceptions;

// read interface
ExtAttributeDescription describe_attribute ();

};

enum OperationMode {OP_NORMAL, OP_ONEWAY};
enum ParameterMode {PARAM_IN, PARAM_OUT, PARAM_INOUT};

struct ParameterDescription {
Identifier name;
TypeCode type;
IDLType type_def;
ParameterMode mode;

};

typedef sequence <ParameterDescription> ParDescriptionSeq;
typedef Identifier ContextIdentifier;
typedef sequence <ContextIdentifier> ContextIdSeq;
typedef sequence <ExceptionDef> ExceptionDefSeq;

interface OperationDef : Contained {
readonly attribute TypeCode result;
attribute IDLType result_def;
attribute ParDescriptionSeq params;
attribute OperationMode mode;
attribute ContextIdSeq contexts;
attribute ExceptionDefSeq exceptions;

};

struct OperationDescription {
Identifier name;
RepositoryId id;
RepositoryId defined_in;
VersionSpec version;
TypeCode result;
OperationMode mode;
ContextIdSeq contexts;
ParDescriptionSeq parameters;
ExcDescriptionSeq exceptions;

};

typedef sequence <RepositoryId> RepositoryIdSeq;
typedef sequence <OperationDescription> OpDescriptionSeq;
typedef sequence <AttributeDescription> AttrDescriptionSeq;
Common Object Request Broker Architecture (CORBA), v3.1.1 293

typedef sequence <ExtAttributeDescription> ExtAttrDescriptionSeq;

interface InterfaceDef : Container, Contained, IDLType {
// read/write interface

attribute InterfaceDefSeq base_interfaces;

// read interface

boolean is_a (
in RepositoryId interface_id

);

struct FullInterfaceDescription {
Identifier name;
RepositoryId id;
RepositoryId defined_in;
VersionSpec version;
OpDescriptionSeq operations;
AttrDescriptionSeq attributes;
RepositoryIdSeq base_interfaces;
TypeCode type;

};

FullInterfaceDescription describe_interface();

// write interface
AttributeDef create_attribute (

in RepositoryId id,
in Identifier name,
in VersionSpec version,
in IDLType type,
in AttributeMode mode

);

OperationDef create_operation (
in RepositoryId id,
in Identifier name,
in VersionSpec version,
in IDLType result,
in OperationMode mode,
in ParDescriptionSeq params,
in ExceptionDefSeq exceptions,
in ContextIdSeq contexts

);
};

struct InterfaceDescription {
Identifier name;
RepositoryId id;
RepositoryId defined_in;
294 Common Object Request Broker Architecture (CORBA), v3.1.1

VersionSpec version;
RepositoryIdSeq base_interfaces;

};

interface InterfaceAttrExtension {

// read interface

struct ExtFullInterfaceDescription {
Identifier name;
RepositoryId id;
RepositoryId defined_in;
VersionSpec version;
OpDescriptionSeq operations;
ExtAttrDescriptionSeq attributes;
RepositoryIdSeq base_interfaces;
TypeCode type;

};

ExtFullInterfaceDescription describe_ext_interface ();

// write interface
ExtAttributeDef create_ext_attribute (

in RepositoryId id,
in Identifier name,
in VersionSpec version,
in IDLType type,
in AttributeMode mode,
in ExceptionDefSeq get_exceptions,
in ExceptionDefSeq set_exceptions

);
};

interface ExtInterfaceDef : InterfaceDef,
InterfaceAttrExtension {

};

typedef short Visibility;
const Visibility PRIVATE_MEMBER = 0;
const Visibility PUBLIC_MEMBER = 1;

struct ValueMember {
Identifier name;
RepositoryId id;
RepositoryId defined_in;
VersionSpec version;
TypeCode type;
IDLType type_def;
Visibility access;

};
Common Object Request Broker Architecture (CORBA), v3.1.1 295

typedef sequence <ValueMember> ValueMemberSeq;

interface ValueMemberDef : Contained {
readonly attribute TypeCode type;
attribute IDLType type_def;
attribute Visibility access;

};

interface ValueDef : Container, Contained, IDLType {
// read/write interface

attribute InterfaceDefSeq supported_interfaces;
attribute InitializerSeq initializers;
attribute ValueDef base_value;
attribute ValueDefSeq abstract_base_values;
attribute boolean is_abstract;
attribute boolean is_custom;
attribute boolean is_truncatable;

// read interface
boolean is_a(

in RepositoryId id
);

struct FullValueDescription {
Identifier name;
RepositoryId id;
boolean is_abstract;
boolean is_custom;
RepositoryId defined_in;
VersionSpec version;
OpDescriptionSeq operations;
AttrDescriptionSeq attributes;
ValueMemberSeq members;
InitializerSeq initializers;
RepositoryIdSeq supported_interfaces;
RepositoryIdSeq abstract_base_values;
boolean is_truncatable;
RepositoryId base_value;
TypeCode type;

};

FullValueDescription describe_value();

// write interface

ValueMemberDef create_value_member(
in RepositoryId id,
in Identifier name,
in VersionSpec version,
in IDLType type,
296 Common Object Request Broker Architecture (CORBA), v3.1.1

in Visibility access
);

AttributeDef create_attribute(
in RepositoryId id,
in Identifier name,
in VersionSpec version,
in IDLType type,
in AttributeMode mode

);

OperationDef create_operation (
in RepositoryId id,
in Identifier name,
in VersionSpec version,
in IDLType result,
in OperationMode mode,
in ParDescriptionSeq params,
in ExceptionDefSeq exceptions,
in ContextIdSeq contexts

);
};

struct ValueDescription {
Identifier name;
RepositoryId id;
boolean is_abstract;
boolean is_custom;
RepositoryId defined_in;
VersionSpec version;
RepositoryIdSeq supported_interfaces;
RepositoryIdSeq abstract_base_values;
boolean is_truncatable;
RepositoryId base_value;

};

interface ExtValueDef : ValueDef {

// read/write interface
attribute ExtInitializerSeq ext_initializers;

// read interface

struct ExtFullValueDescription {
Identifier name;
RepositoryId id;
boolean is_abstract;
boolean is_custom;
RepositoryId defined_in;
VersionSpec version;
OpDescriptionSeq operations;
Common Object Request Broker Architecture (CORBA), v3.1.1 297

ExtAttrDescriptionSeq attributes;
ValueMemberSeq members;
ExtInitializerSeq initializers;
RepositoryIdSeq supported_interfaces;
RepositoryIdSeq abstract_base_values;
boolean is_truncatable;
RepositoryId base_value;
TypeCode type;

};

ExtFullValueDescription describe_ext_value ();

// write interface
ExtAttributeDef create_ext_attribute (

in RepositoryId id,
in Identifier name,
in VersionSpec version,
in IDLType type,
in AttributeMode mode,
in ExceptionDefSeq get_exceptions,
in ExceptionDefSeq set_exceptions

);
};

interface ValueBoxDef : TypedefDef {
attribute IDLType original_type_def;

};

interface AbstractInterfaceDef : InterfaceDef {
};

interface ExtAbstractInterfaceDef : AbstractInterfaceDef,
InterfaceAttrExtension {

};

interface LocalInterfaceDef : InterfaceDef {
};

interface ExtLocalInterfaceDef : LocalInterfaceDef,
InterfaceAttrExtension {

};

// __

module ComponentIR {
typeprefix ComponentIR “omg.org”;

interface ComponentDef;
interface HomeDef;

interface EventDef : ExtValueDef {};

interface Container{
298 Common Object Request Broker Architecture (CORBA), v3.1.1

ComponentDef create_component (
in RepositoryId id,
in Identifier name,
in VersionSpec version,
in ComponentDef base_component,
in InterfaceDefSeq supports_interfaces

);

HomeDef create_home (
in RepositoryId id,
in Identifier name,
in VersionSpec version,
in HomeDef base_home,
in ComponentDef managed_component,
in InterfaceDefSeq supports_interfaces,
in ValueDef primary_key

);

EventDef create_event (
in RepositoryId id,
in Identifier name,
in VersionSpec version,
in boolean is_custom,
in boolean is_abstract,
in ValueDef base_value,
in boolean is_truncatable,
in ValueDefSeq abstract_base_values,
in InterfaceDefSeq supported_interfaces,
in ExtInitializerSeq initializers

);
};

interface ModuleDef : CORBA::ModuleDef, Container{};

interface Repository : CORBA::Repository, Container{};

interface ProvidesDef : Contained {
attribute InterfaceDef interface_type;

};

struct ProvidesDescription {
Identifier name;
RepositoryId id;
RepositoryId defined_in;
VersionSpec version;
RepositoryId interface_type;

};

interface UsesDef : Contained {
attribute InterfaceDef interface_type;
attribute boolean is_multiple;

};
Common Object Request Broker Architecture (CORBA), v3.1.1 299

struct UsesDescription {
Identifier name;
RepositoryId id;
RepositoryId defined_in;
VersionSpec version;
RepositoryId interface_type;
boolean is_multiple;

};

interface EventPortDef : Contained {

// read/write interface
attribute EventDef event;

// read interface
boolean is_a (in RepositoryId event_id);

};

struct EventPortDescription {
Identifier name;
RepositoryId id;
RepositoryId defined_in;
VersionSpec version;
RepositoryId event;

};

interface EmitsDef : EventPortDef {};

interface PublishesDef : EventPortDef {};

interface ConsumesDef : EventPortDef {};

interface ComponentDef : ExtInterfaceDef {

// read/write interface
attribute ComponentDef base_component;
attribute InterfaceDefSeq supported_interfaces;

// write interface
ProvidesDef create_provides (

in RepositoryId id,
in Identifier name,
in VersionSpec version,
in InterfaceDef interface_type

);

UsesDef create_uses (
in RepositoryId id,
in Identifier name,
in VersionSpec version,
in InterfaceDef interface_type,
in boolean is_multiple

);

EmitsDef create_emits (
300 Common Object Request Broker Architecture (CORBA), v3.1.1

in RepositoryId id,
in Identifier name,
in VersionSpec version,
in EventDef event

);

PublishesDef create_publishes (
in RepositoryId id,
in Identifier name,
in VersionSpec version,
in EventDef event

);

ConsumesDef create_consumes (
in RepositoryId id,
in Identifier name,
in VersionSpec version,
in EventDef event

);
};

typedef sequence<ProvidesDescription>
ProvidesDescriptionSeq;

typedef sequence<UsesDescription> UsesDescriptionSeq;
typedef sequence<EventPortDescription>

EventPortDescriptionSeq;

struct ComponentDescription {
Identifier name;
RepositoryId id;
RepositoryId defined_in;
VersionSpec version;
RepositoryId base_component;
RepositoryIdSeq supported_interfaces;
ProvidesDescriptionSeq provided_interfaces;
UsesDescriptionSeq used_interfaces;
EventPortDescriptionSeq emits_events;
EventPortDescriptionSeq publishes_events;
EventPortDescriptionSeq consumes_events;
ExtAttrDescriptionSeq attributes;
TypeCode type;

};

interface FactoryDef : OperationDef {};

interface FinderDef : OperationDef {};

interface HomeDef : ExtInterfaceDef {

// read/write interface
attribute HomeDef base_home;
attribute InterfaceDefSeq supported_interfaces;
attribute ComponentDef managed_component;
Common Object Request Broker Architecture (CORBA), v3.1.1 301

attribute ValueDef primary_key;

// write interface
FactoryDef create_factory (

in RepositoryId id,
in Identifier name,
in VersionSpec version,
in ParDescriptionSeq params,
in ExceptionDefSeq exceptions

);

FinderDef create_finder (
in RepositoryId id,
in Identifier name,
in VersionSpec version,
in ParDescriptionSeq params,
in ExceptionDefSeq exceptions

);
};

struct HomeDescription {
Identifier name;
RepositoryId id;
RepositoryId defined_in;
VersionSpec version;
RepositoryId base_home;
RepositoryId managed_component;
ValueDescription primary_key;
OpDescriptionSeq factories;
OpDescriptionSeq finders;
OpDescriptionSeq operations;
ExtAttrDescriptionSeq attributes;
TypeCode type;

};
};

};
302 Common Object Request Broker Architecture (CORBA), v3.1.1

15 The Portable Object Adapter

15.1 Overview

This clause describes the Portable Object Adapter, or POA. It presents the design goals, a description of the abstract
model of the POA and its interfaces, followed by a detailed description of the interfaces themselves. The POA is
designed to meet the following goals:

• Allow programmers to construct object implementations that are portable between different ORB products.

• Provide support for objects with persistent identities. More precisely, the POA is designed to allow programmers to
build object implementations that can provide consistent service for objects whose lifetimes (from the perspective of a
client holding a reference for such an object) span multiple server lifetimes.

• Provide support for transparent activation of objects.

• Allow a single servant to support multiple object identities simultaneously.

• Allow multiple distinct instances of the POA to exist in a server.

• Provide support for transient objects with minimal programming effort and overhead.

• Provide support for implicit activation of servants with POA-allocated Object Ids.

• Allow object implementations to be maximally responsible for an object’s behavior. Specifically, an implementation
can control an object’s behavior by establishing the datum that defines an object’s identity, determining the
relationship between the object’s identity and the object’s state, managing the storage and retrieval of the object’s state,
providing the code that will be executed in response to requests, and determining whether or not the object exists at
any point in time.

• Avoid requiring the ORB to maintain persistent state describing individual objects, their identities, where their state is
stored, whether certain identity values have been previously used or not, whether an object has ceased to exist or not,
and so on.

• Provide an extensible mechanism for associating policy information with objects implemented in the POA.

• Allow programmers to construct object implementations that inherit from static skeleton classes, generated by IDL
compilers, or a DSI implementation.

15.2 Abstract Model Description

The POA interfaces described in this clause imply a particular abstract computational model. This sub clause presents that
model and defines terminology and basic concepts that will be used in subsequent sub clauses.

This sub clause provides the rationale for the POA design, describes some of its intended uses, and provides a background
for understanding the interface descriptions.

15.2.1 Model Components

The model supported by the POA is a specialization of the general object model described in the OMA guide. Most of the
elements of the CORBA object model are present in the model described here, but there are some new components, and
some of the names of existing components are defined more precisely than they are in the CORBA object model. The
abstract model supported by the POA has the following components:

• Client—A client is a computational context that makes requests on an object through one of its references.
Common Object Request Broker Architecture (CORBA), v3.1.1 303

• Server—A server is a computational context in which the implementation of an object exists. Generally, a server
corresponds to a process. Note that client and server are roles that programs play with respect to a given object. A
program that is a client for one object may be the server for another. The same process may be both client and server
for a single object.

• Object—In this discussion, we use object to indicate a CORBA object in the abstract sense, that is, a programming
entity with an identity, an interface, and an implementation. From a client’s perspective, the object’s identity is
encapsulated in the object’s reference. This specification defines the server’s view of object identity, which is
explicitly managed by object implementations through the POA interface.

• Servant—A servant is a programming language object or entity that implements requests on one or more objects.
Servants generally exist within the context of a server process. Requests made on an object’s references are mediated
by the ORB and transformed into invocations on a particular servant. In the course of an object’s lifetime it may be
associated with (that is, requests on its references will be targeted at) multiple servants.

• Object Id—An Object Id is a value that is used by the POA and by the user-supplied implementation to identify a
particular abstract CORBA object. Object Id values may be assigned and managed by the POA, or they may be
assigned and managed by the implementation. Object Id values are hidden from clients, encapsulated by references.
Object Ids have no standard form; they are managed by the POA as uninterpreted octet sequences.

Note that the Object Id defined in this specification is a mechanical device used by an object implementation to
correlate incoming requests with references it has previously created and exposed to clients. It does not constitute a
unique logical identity for an object in any larger sense. The assignment and interpretation of Object Id values is
primarily the responsibility of the application developer, although the SYSTEM_ID policy enables the POA to
generate Object Id values for the application.

• Object Reference—An object reference in this model is the same as in the CORBA object model. This model implies,
however, that a reference specifically encapsulates an Object Id and a POA identity.

Note that a concrete reference in a specific ORB implementation will contain more information, such as the location of
the server and POA in question. For example, it might contain the full name of the POA (the names of all POAs
starting from the root and ending with the specific POA). The reference might not, in fact, actually contain the Object
Id, but instead contain more compact values managed by the ORB that can be mapped to the Object Id. This is a
description of the abstract information model implied by the POA. Whatever encoding is used to represent the POA
name and the Object Id must not restrict the ability to use any legal character in a POA name or any legal octet in an
Object Id.

• POA—A POA is an identifiable entity within the context of a server. Each POA provides a namespace for Object Ids
and a namespace for other (nested or child) POAs. Policies associated with a POA describe characteristics of the
objects implemented in that POA. Nested POAs form a hierarchical name space for objects within a server.

• Policy—A Policy is an object associated with a POA by an application in order to specify a characteristic shared by the
objects implemented in that POA. This specification defines policies controlling the POA’s threading model as well as
a variety of other options related to the management of objects. Other specifications may define other policies that
affect how an ORB processes requests on objects implemented in the POA.

• POA Manager—A POA manager is an object that encapsulates the processing state of one or more POAs. Using
operations on a POA manager, the developer can cause requests for the associated POAs to be queued or discarded.
The developer can also use the POA manager to deactivate the POAs.

• POA Manger Factory -- A POA Manager Factory allows explicit creation of POA managers and lookup of existing
POA managers. With explicit creation, the developer can control the identity (the name) of a POA manager as well
as pass configuration policies to the factory operation.

• Servant Manager—A servant manager is an object that the application developer can associate with a POA. The ORB
will invoke operations on servant managers to activate servants on demand, and to deactivate servants. Servant
304 Common Object Request Broker Architecture (CORBA), v3.1.1

managers are responsible for managing the association of an object (as characterized by its Object Id value) with a
particular servant, and for determining whether an object exists or not. There are two kinds of servant managers, called
ServantActivator and ServantLocator; the type used in a particular situation depends on policies in the POA.

• Adapter Activator—An adapter activator is an object that the application developer can associate with a POA. The
ORB will invoke an operation on an adapter activator when a request is received for a child POA that does not
currently exist. The adapter activator can then create the required POA on demand.

15.2.2 Model Architecture

This section describes the architecture of the abstract model implied by the POA, and the interactions between various
components. The ORB is an abstraction visible to both the client and server. The POA is an object visible to the server.
User-supplied implementations are registered with the POA (this statement is a simplification; more detail is provided
below). Clients hold references upon which they can make requests. The ORB, POA, and implementation all cooperate to
determine which servant the operation should be invoked on, and to perform the invocation.

Figure 15.1 shows the detail of the relationship between the POA and the implementation. Ultimately, a POA deals with
an Object Id and an active servant. By active servant, we mean a programming object that exists in memory and has been
presented to the POA with one or more associated object identities. There are several ways for this association to be
made.

Figure 15.1 - Abstract POA Model

If the POA supports the RETAIN policy, it maintains a map, labeled Active Object Map, that associates Object Ids with
active servants, each association constituting an active object. If the POA has the USE_DEFAULT_SERVANT policy, a
default servant may be registered with the POA. Alternatively, if the POA has the USE_SERVANT_MANAGER policy, a
user-written servant manager may be registered with the POA. If the Active Object Map is not used, or a request arrives for
an object not present in the Active Object Map, the POA either uses the default servant to perform the request or it invokes
the servant manager to obtain a servant to perform the request. If the RETAIN policy is used, the servant returned by a
servant manager is retained in the Active Object Map. Otherwise, the servant is used only to process the one request.

Client Server

Object Reference

User-supplied
servants

POA

POA

?

ORB

Object Id
Common Object Request Broker Architecture (CORBA), v3.1.1 305

In this specification, the term active is applied equally to servants, Object Ids, and objects. An object is active in a POA
if the POA’s Active Object Map contains an entry that associates an Object Id with an existing servant. When this
specification refers to active Object Ids and active servants, it means that the Object Id value or servant in question is part
of an entry in the Active Object Map. An Object Id can appear in a POA’s Active Object Map only once.

Figure 15.1 - POA Architecture

15.2.3 POA Creation

To implement an object using the POA requires that the server application obtain a POA object. A distinguished POA
object, called the root POA, is managed by the ORB and provided to the application using the ORB initialization interface
under the initial object name “RootPOA.” The application developer can create objects using the root POA if those
default policies are suitable. The root POA has the following policies.

• Thread Policy: ORB_CTRL_MODEL

• Lifespan Policy: TRANSIENT

default servant

 servant mgr.

Object Id

Object Id
Object Id
Object Id

POA A

POA B

POA C

User-supplied
servant

User-supplied
ServantManager.

User-supplied
servant

User-supplied
servant

Object Id

Object Id
Object Id

Object Id

User-supplied
servant

User-supplied
servant

User-supplied
servant

User-supplied
servant

Active Object Map

A
d
a
p
t
e
r

A
c
t
i
v
a
t
o
r

root
POA

User-supplied
servant

Object Id

Object reference
Servant pointer

P
O
A
M
a
n
a
g
e
r

AdapterActivator.

POAManager
Factory
306 Common Object Request Broker Architecture (CORBA), v3.1.1

• Object Id Uniqueness Policy: UNIQUE_ID

• Id Assignment Policy: SYSTEM_ID

• Servant Retention Policy: RETAIN

• Request Processing Policy: USE_ACTIVE_OBJECT_MAP_ONLY

• Implicit Activation Policy: IMPLICIT_ACTIVATION

The developer can also create new POAs. Creating a new POA allows the application developer to declare specific policy
choices for the new POA and to provide a different adapter activator and servant manager (these are callback objects used
by the POA to activate objects and nested POAs on demand). Creating new POAs also allows the application developer
to partition the name space of objects, as Object Ids are interpreted relative to a POA. Finally, by creating new POAs, the
developer can independently control request processing for multiple sets of objects.

A POA is created as a child of an existing POA using the create_POA operation on the parent POA. When a POA is
created, the POA is given a name that must be unique with respect to all other POAs with the same parent.

POA objects are not persistent. No POA state can be assumed to be saved by the ORB. It is the responsibility of the
server application to create and initialize the appropriate POA objects during server initialization or to set an
AdapterActivator to create POA objects needed later.

Creating the appropriate POA objects is particularly important for persistent objects, objects whose existence can span
multiple server lifetimes. To support an object reference created in a previous server process, the application must recreate
the POA that created the object reference as well as all of its ancestor POAs. To ensure portability, each POA must be
created with the same name as the corresponding POA in the original server process and with the same policies. (It is the
user’s responsibility to create the POA with these conditions.)

A portable server application can presume that there is no conflict between its POA names and the POA names chosen by
other applications. It is the responsibility of the ORB implementation to provide a way to support this behavior.

Each distinct ORB created as the result of an ORB_init call in an application has its own separate root POA and POA
namespace.

15.2.4 Reference Creation

Object references are created in servers. Once they are created, they may be exported to clients.

From this model’s perspective, object references encapsulate object identity information and information required by the
ORB to identify and locate the server and POA with which the object is associated (that is, in whose scope the reference
was created.) References are created in the following ways:

• The server application may directly create a reference with the create_reference and create_reference_with_id
operations on a POA object. These operations collect the necessary information to constitute the reference, either from
information associated with the POA or as parameters to the operation. These operations only create a reference. In
doing so, they bring the abstract object into existence, but do not associate it with an active servant.

• The server application may explicitly activate a servant, associating it with an object identity using the
activate_object or activate_object_with_id operations. Once a servant is activated, the server application can
map the servant to its corresponding reference using the servant_to_reference or id_to_reference operations.

• The server application may cause a servant to implicitly activate itself. This behavior can only occur if the POA has
been created with the IMPLICIT_ACTIVATION policy. If an attempt is made to obtain an object reference
corresponding to an inactive servant, the POA may automatically assign a generated unique Object Id to the servant
and activate the resulting object. The reference may be obtained by invoking POA::servant_to_reference with an
Common Object Request Broker Architecture (CORBA), v3.1.1 307

inactive servant, or by performing an explicit or implicit type conversion from the servant to a reference type in
programming language mappings that permit this conversion.

Once a reference is created in the server, it can be made available to clients in a variety of ways. It can be advertised
through the OMG Naming and Trading Services. It can be converted to a string via ORB::object_to_string and
published in some way that allows the client to discover the string and convert it to a reference using
ORB::string_to_object. It can be returned as the result of an operation invocation.

Once a reference becomes available to a client, that reference constitutes the identity of the object from the client’s
perspective. As long as the client program holds and uses that reference, requests made on the reference should be sent to
the “same” object.

NOTE: The meaning of object identity and “sameness” is at present the subject of debate in the OMG. This specification does
not attempt to resolve that debate in any way, particularly by defining a concrete notion of identity that is exposed to clients,
beyond the existing notions of identity described in the CORBA specifications and the OMA guide.

The states of servers and implementation objects are opaque to clients. This specification deals primarily with the view of
the ORB from the server’s perspective.

15.2.5 Object Activation States

At any point in time, a CORBA object may or may not be associated with an active servant.

If the POA has the RETAIN policy, the servant and its associated Object Id are entered into the Active Object Map of the
appropriate POA. This type of activation can be accomplished in one of the following ways.

• The server application itself explicitly activates individual objects (via the activate_object or
activate_object_with_id operations).

• The server application instructs the POA to activate objects on demand by having the POA invoke a user-supplied
servant manager. The server application registers this servant manager with set_servant_manager.

• Under some circumstances (when the IMPLICIT_ACTIVATION policy is also in effect and the language binding
allows such an operation), the POA may implicitly activate an object when the server application attempts to obtain a
reference for a servant that is not already active (that is, not associated with an Object Id).

If the USE_DEFAULT_SERVANT policy is also in effect, the server application instructs the POA to activate unknown
objects by having the POA invoke a single servant no matter what the Object Id is. The server application registers this
servant with set_servant.

If the POA has the NON_RETAIN policy, for every request, the POA may use either a default servant or a servant
manager to locate an active servant. From the POA’s point of view, the servant is active only for the duration of that one
request. The POA does not enter the servant-object association into the Active Object Map.

15.2.6 Request Processing

A request must be capable of conveying the Object Id of the target object as well as the identification of the POA that
created the target object reference. When a client issues a request, the ORB first locates an appropriate server (perhaps
starting one if needed) and then it locates the appropriate POA within that server.
308 Common Object Request Broker Architecture (CORBA), v3.1.1

If the POA does not exist in the server process, the application has the opportunity to re-create the required POA by using
an adapter activator. An adapter activator is a user-implemented object that can be associated with a POA. It is invoked
by the ORB when a request is received for a non-existent child POA. The adapter activator has the opportunity to create
the required POA. If it does not, the client receives the OBJECT_NOT_EXIST exception with standard minor code 2.

Once the ORB has located the appropriate POA, it delivers the request to that POA. The further processing of that request
depends both upon the policies associated with that POA as well as the object's current state of activation.

If the POA has the RETAIN policy, the POA looks in the Active Object Map to find out if there is a servant associated
with the Object Id value from the request. If such a servant exists, the POA invokes the appropriate method on the
servant.

If the POA has the NON_RETAIN policy or has the RETAIN policy but didn't find a servant in the Active Object Map,
the POA takes the following actions:

• If the POA has the USE_DEFAULT_SERVANT policy, a default servant has been associated with the POA so the
POA will invoke the appropriate method on that servant. If no servant has been associated with the POA, the POA
raises the OBJ_ADAPTER system exception with standard minor code 3.

• If the POA has the USE_SERVANT_MANAGER policy, a servant manager has been associated with the POA so
the POA will invoke incarnate or preinvoke on it to find a servant that may handle the request. (The choice of
method depends on the NON_RETAIN or RETAIN policy of the POA.) If no servant manager has been associated
with the POA, the POA raises the OBJ_ADAPTER system exception with standard minor code 4.

• If the USE_OBJECT_MAP_ONLY policy is in effect, the POA raises the OBJECT_NOT_EXIST system
exception with standard minor code 2.

If a servant manager is located and invoked, but the servant manager is not directly capable of incarnating the object, it
(the servant manager) may deal with the circumstance in a variety of ways, all of which are the application’s
responsibility. Any system exception raised by the servant manager will be returned to the client in the reply. In addition
to standard system exceptions, a servant manager is capable of raising a ForwardRequest exception. This exception
includes an object reference. The ORB will process this exception as specified in Common Information for Servant
Manager Types on page 321.

15.2.7 Implicit Activation

A POA can be created with a policy that indicates that its objects may be implicitly activated. This policy,
IMPLICIT_ACTIVATION, also requires the SYSTEM_ID and RETAIN policies.

When a POA supports implicit activation, an inactive servant may be implicitly activated in that POA by certain
operations that logically require an Object Id to be assigned to that servant. (IMPLICIT_ACTIVATION does not disallow
explicit activation; instead, it enables both implicit and explicit activation.)

Implicit activation of an object involves allocating a system-generated Object Id and registering the servant with that
Object Id in the Active Object Map. The interface associated with the implicitly activated object is determined from the
servant (using static information from the skeleton, or, in the case of a dynamic servant, using the _primary_interface()
operation).

The operations that support implicit activation include:

• The POA::servant_to_reference operation, which takes a servant parameter and returns a reference.

• The POA::servant_to_id operation, which takes a servant parameter and returns an Object Id.
Common Object Request Broker Architecture (CORBA), v3.1.1 309

• Operations supported by a language mapping to obtain an object reference or an Object Id for a servant. For example,
the _this() servant member function in C++ returns an object reference for the servant.

• Implicit conversions supported by a language mapping that convert a servant to an object reference or an Object Id.

The last two categories of operations are language-mapping-dependent.

If the POA has the UNIQUE_ID policy, then implicit activation will occur when any of these operations are performed
on a servant that is not currently active (that is, it is associated with no Object Id in the POA's Active Object Map).

If the POA has the MULTIPLE_ID policy, the servant_to_reference and servant_to_id operations will always
perform implicit activation, even if the servant is already associated with an Object Id. The behavior of language mapping
operations in the MULTIPLE_ID case is specified by the language mapping. For example, in C++, the _this() servant
member function will not implicitly activate a MULTIPLE_ID servant if the invocation of _this() is immediately
within the dynamic context of a request invocation directed by the POA to that servant; instead, it returns the object
reference used to issue the request.

NOTE: The exact timing of implicit activation is ORB implementation-dependent. For example, instead of activating the object
immediately upon creation of a local object reference, the ORB could defer the activation until the Object Id is actually needed
(for example, when the object reference is exported outside the process).

15.2.8 Multi-threading

The POA does not require the use of threads and does not specify what support is needed from a threads package.
However, in order to allow the development of portable servers that utilize threads, the behavior of the POA and related
interfaces when used within a multiple-thread environment must be specified.

Specifying this behavior does not require that an ORB must support being used in a threaded environment, nor does it
require that an ORB must utilize threads in the processing of requests. The only requirement given here is that if an ORB
does provide support for multi-threading, these are the behaviors that will be supported by that ORB. This allows a
programmer to take advantage of multiple ORBs that support threads in a portable manner across those ORBs.

The POA’s processing is affected by the thread-related calls available in the ORB: work_pending, perform_work,
run, and shutdown.

15.2.8.1 POA Threading Models

The POA supports three models of threading when used in conjunction with multi-threaded ORB implementations; ORB
controlled, single thread and main-thread behavior. The three models can be used together or independently. All can be
used in environments where a single-threaded ORB is used.

The threading model associated with a POA is indicated when the POA is created by including a ThreadPolicy object in
the policies parameter of the POA’s create_POA operation. Once a POA is created with one model, it cannot be
changed to the other. All uses of the POA within the server must conform to that threading model associated with the
POA.

15.2.8.2 Using the Single Thread Model

Requests for each single-threaded POA are processed sequentially. In a multi-threaded environment, upcalls made by this
POA to servants shall not be made concurrently. This provides a degree of safety for code that is multi-thread-unaware.

NOTE: In a multi-threaded environment, requests to distinct single-threaded POAs may be processed concurrently.
310 Common Object Request Broker Architecture (CORBA), v3.1.1

The POA will still allow reentrant calls from an object implementation to itself, or to another object implementation
managed by the same POA.

15.2.8.3 Using the ORB Controlled Model

The ORB controlled model of threading is used in environments where the developer wants the ORB/POA to control the
use of threads in the manner provided by the ORB. This model can also be used in environments that do not support
threads.

In this model, the ORB is responsible for the creation, management, and destruction of threads used with one or more
POAs.

15.2.8.4 Using the Main Thread Model

Requests for all main-thread POAs are processed sequentially. In a multi-threaded environment, all upcalls made by all
POAs with this policy to servants are made in a manner that is safe for code that is multi-thread-unaware.

If the environment has special requirements that some code must run on a distinguished “main” thread, servant upcalls
will be processed on that thread.

NOTE: Not all environments have such a special requirement. If not, while requests will be processed sequentially they might
not all be processed by the same thread.

15.2.8.5 Limitations When Using Multiple Threads

There are no guarantees that the ORB and POA will do anything specific about dispatching requests across threads with
a single POA. Therefore, a server programmer who wants to use one or more POAs within multiple threads must take on
all of the serialization of access to objects within those threads.

There may be requests active for the same object being dispatched within multiple threads at the same time. The
programmer must be aware of this possibility and code with it in mind.

15.2.9 Dynamic Skeleton Interface

The POA is designed to enable programmers to connect servants to:

• type-specific skeletons, typically generated by IDL compilers, or

• dynamic skeletons.

Servants that are members of type-specific skeleton classes are referred to as type-specific servants. Servants connected to
dynamic skeletons are used to implement the Dynamic Skeleton Interface (DSI) and are referred to as DSI servants.

Whether a CORBA object is being incarnated by a DSI servant or a type-specific servant is transparent to its clients. Two
CORBA objects supporting the same interface may be incarnated, one by a DSI servant and the other with a type-specific
servant. Furthermore, a CORBA object may be incarnated by a DSI servant only during some period of time, while the
rest of the time is incarnated by a static servant.

The mapping for POA DSI servants is language-specific, with each language providing a set of interfaces to the POA.
These interfaces are used only by the POA. The interfaces required are the following.

• Take a CORBA::ServerRequest object from the POA and perform the processing necessary to execute the request.

• Return the Interface Repository Id identifying the most-derived interface supported by the target CORBA object in a
request.
Common Object Request Broker Architecture (CORBA), v3.1.1 311

The reason for the first interface is the entire reason for existence of the DSI: to be able to handle any request in the way
the programmer wishes to handle it. A single DSI servant may be used to incarnate several CORBA objects, potentially
supporting different interfaces.

The reason for the second interface can be understood by comparing DSI servants to type-specific servants.

A type-specific servant may incarnate several CORBA objects but all of them will support the same IDL interface as the
most-derived IDL interface. In C++, for example, an IDL interface Window in module GraphicalSystem will generate
a type-specific skeleton class called Window in namespace POA_GraphicalSystem. A type-specific servant that is
directly derived from the POA_GraphicalSystem::Window skeleton class may incarnate several CORBA objects at a
time, but all those CORBA objects will support the GraphicalSystem::Window interface as the most-derived interface.

A DSI servant may incarnate several CORBA objects, not necessarily supporting the same IDL interface as the most-
derived IDL interface.

In both cases (type-specific and DSI) the POA may need to determine, at runtime, the Interface Repository Id identifying
the most-derived interface supported by the target CORBA object in a request. The POA should be able to determine this
by asking the servant that is going to serve the CORBA object.

In the case of type-specific servants, the POA obtains that information from the type-specific skeleton class from which
the servant is directly derived. In the case of DSI servants, the POA obtains that information by using the second
language-specific interface above.

15.2.10 Location Transparency

The POA supports location transparency for objects implemented using the POA. Unless explicitly stated to the contrary, all
POA behavior described in this specification applies regardless of whether the client is local (same process) or remote. For
example, like a request from a remote client, a request from a local client may cause object activation if the object is not
active, block indefinitely if the target object's POA is in the holding state, be rejected if the target object’s POA is in the
discarding or inactive states, be delivered to a thread-unaware object implementation, or be delivered to a different object if
the target object's servant manager raises the ForwardRequest exception. The Object Id and POA of the target object will
also be available to the server via the Current object, regardless of whether the client is local or remote.

NOTE: The implication of these requirements on the ORB implementation is to require the ORB to mediate all requests to POA-
based objects, even if the client is co-resident in the same process. This specification is not intended to change CORBAServices
specifications that allow for behaviors that are not location transparent. This specification does not prohibit (nonstandard) POA
extensions to support object behavior that is not location-transparent.

15.3 Interfaces

The POA-related interfaces are defined in a module separate from the CORBA module, the PortableServer module. It
consists of these interfaces:

• POA

• POAManager

• POAManagerFactory

• ServantManager

• ServantActivator

• ServantLocator
312 Common Object Request Broker Architecture (CORBA), v3.1.1

• AdapterActivator

• ThreadPolicy

• LifespanPolicy

• IdUniquenessPolicy

• IdAssignmentPolicy

• ImplicitActivationPolicy

• ServantRetentionPolicy

• RequestProcessingPolicy

• Current

In addition, the POA defines the Servant native type.

All local objects specified in this clause except for AdapterActivator, ServantManager, ServantActivator and
ServantLocator override the default behavior of the Object::get_orb operation and return the ORB that is associated
with the root POA local object.

15.3.1 The Servant IDL Type

This specification defines a native type PortableServer::Servant. Values of the type Servant are programming-
language-specific implementations of CORBA interfaces. Each language mapping must specify how Servant is mapped
to the programming language data type that corresponds to an object implementation. The Servant type has the
following characteristics and constraints.

• Values of type Servant are opaque from the perspective of CORBA application programmers. There are no
operations that can be performed directly on them by user programs. They can be passed as parameters to certain POA
operations. Some language mappings may allow Servant values to be implicitly converted to object references under
appropriate conditions.

• Values of type Servant support a language-specific programming interface that can be used by the ORB to obtain a
default POA for that servant. This interface is used only to support implicit activation. A language mapping may
provide a default implementation of this interface that returns the root POA of a default ORB.

• Values of type Servant provide default implementations of the standard object reference operations get_interface,
is_a, repository_id, and non_existent. These operations can be overridden by the programmer to provide
additional behavior needed by the object implementation. The default implementations of get_interface,
repository_id, and is_a operations use the most derived interface of a static servant or the most derived interface
retrieved from a dynamic servant to perform the operation. The default implementation of the non_existent
operation returns FALSE. These operations are invoked by the POA just like any other operation invocation, so the
PortableServer::Current interface and any language-mapping-provided method of accessing the invocation
context are available.

• Values of type Servant must be testable for identity.

• Values of type Servant have no meaning outside of the process context or address space in which they are generated.
Common Object Request Broker Architecture (CORBA), v3.1.1 313

15.3.2 POAManager Interface

Each POA object has an associated POAManager object. A POA manager may be associated with one or more POA
objects. A POA manager encapsulates the processing state of the POAs it is associated with. Using operations on the POA
manager, an application can cause requests for those POAs to be queued or discarded, and can cause the POAs to be
deactivated.

Each POAManager has a unique string as its identity. The scope of the POAManager identity is the ORB, so no two
POAManagers within the same ORB can have the same identity (but POAManagers in different ORBs can). The
POAManager for the Root POA has the name “RootPOAManager.”

If a POAManager is created implicitly (as part of the creation of a new POA), it is assigned a unique identity by the
ORB run time. If a POAManager is created explicitly (using the POAManagerFactory), its identity is the string
passed to the factory operation. (An empty identity string is legal.) A POAManager is destroyed implicitly, when the last
of its POAs is destroyed.

POAManager is a local interface.

15.3.2.1 Processing States

A POA manager has four possible processing states; active, inactive, holding, and discarding. The processing state
determines the capabilities of the associated POAs and the disposition of requests received by those POAs. Figure 15.1
illustrates the processing states and the transitions between them. For simplicity of presentation, this specification
sometimes describes these states as POA states, referring to the POA or POAs that have been associated with a particular
POA manager. A POA manager is created in the holding state. The root POA is therefore initially in the holding state.

For simplicity in the figure and the explanation, operations that would not cause a state change are not shown. For
example, if a POA is in “active” state, it does not change state due to an activate operation. Such operations complete
successfully with no special notice.

The only exception is the inactive state: a deactivate operation invoked in the inactive state may block under certain
circumstances. See deactivate on page 317 for details.
314 Common Object Request Broker Architecture (CORBA), v3.1.1

Figure 15.1 Processing States

Active State

When a POA manager is in the active state, the associated POAs will receive and start processing requests (assuming that
appropriate thread resources are available). Note that even in the active state, a POA may need to queue requests
depending upon the ORB implementation and resource limits. The number of requests that can be received and/or queued
is an implementation limit. If this limit is reached, the POA should return a TRANSIENT system exception, with
standard minor code 1, to indicate that the client should re-issue the request.

A user program can legally transition a POA manager from the active state to either the discarding, holding, or inactive
state by calling the discard_requests, hold_requests, or deactivate operations, respectively. The POA enters the
active state through the use of the activate operation when in the discarding or holding state.

Discarding State

When a POA manager is in the discarding state, the associated POAs will discard all incoming requests (whose
processing has not yet begun). When a request is discarded, the TRANSIENT system exception, with standard minor
code 1, must be returned to the client-side to indicate that the request should be re-issued. (Of course, an ORB may always
reject a request for other reasons and raise some other system exception.)

In addition, when a POA manager is in the discarding state, the adapter activators registered with the associated POAs
will not get called. Instead, requests that require the invocation of an adapter activator will be discarded, as described in
the previous paragraph.

destroy

inactive

deactivate

active

holding

create_POA

discarding

activate

discard_requests

activate hold_requests

hold_requests

deactivate

deactivate

discard_requests
Common Object Request Broker Architecture (CORBA), v3.1.1 315

The primary purpose of the discarding state is to provide an application with flow-control capabilities when it determines
that an object’s implementation or POA is being flooded with requests. It is expected that the application will restore the
POA manager to the active state after correcting the problem that caused flow-control to be needed.

A POA manager can legally transition from the discarding state to either the active, holding, or inactive state by calling
the activate, hold_requests, or deactivate operations, respectively. The POA enters the discarding state through the
use of the discard_requests operation when in the active or holding state.

Holding State

When a POA manager is in the holding state, the associated POAs will queue incoming requests. The number of requests
that can be queued is an implementation limit. If this limit is reached, the POAs may discard requests and return the
TRANSIENT system exception, with standard minor code 1, to the client to indicate that the client should reissue the
request. (Of course, an ORB may always reject a request for other reasons and raise some other system exception.)

In addition, when a POA manager is in the holding state, the adapter activators registered with the associated POAs will
not get called. Instead, requests that require the invocation of an adapter activator will be queued, as described in the
previous paragraph.

A POA manager can legally transition from the holding state to either the active, discarding, or inactive state by calling
the activate, discard_requests, or deactivate operations, respectively. The POA enters the holding state through the
use of the hold_requests operation when in the active or discarding state. A POA manager is created in the holding
state.

Inactive State

The inactive state is entered when the associated POAs are to be shut down. Unlike the discarding state, the inactive state
is not a temporary state. When a POA manager is in the inactive state, the associated POAs will reject new requests. The
rejection mechanism used is specific to the vendor. The GIOP location forwarding mechanism and CloseConnection
message are examples of mechanisms that could be used to indicate the rejection. If the client is co-resident in the same
process, the ORB could raise the OBJ_ADAPTER system exception, with standard minor code 1, to indicate that the object
implementation is unavailable.

In addition, when a POA manager is in the inactive state, the adapter activators registered with the associated POAs will
not get called. Instead, requests that require the invocation of an adapter activator will be rejected, as described in the
previous paragraph.

The inactive state is entered using the deactivate operation. It is legal to enter the inactive state from either the active,
holding, or discarding states.

If the transition into the inactive state is a result of calling deactivate with an etherealize_objects parameter of

• TRUE - the associated POAs will call etherealize for each active object associated with the POA once all currently
executing requests have completed processing (if the POAs have the RETAIN and USE_SERVANT_MANAGER
policies). If a servant manager has been registered for the POA, the POA will get rid of the object. If there are any
queued requests that have not yet started executing, they will be treated as if they were new requests and rejected.

• FALSE - No deactivations or etherealizations will be attempted.

15.3.2.2 activate

void activate()
raises (AdapterInactive);
316 Common Object Request Broker Architecture (CORBA), v3.1.1

This operation changes the state of the POA manager to active. If issued while the POA manager is in the inactive state,
the AdapterInactive exception is raised. Entering the active state enables the associated POAs to process requests.

15.3.2.3 hold_requests

void hold_requests(in boolean wait_for_completion)
raises(AdapterInactive);

This operation changes the state of the POA manager to holding. If issued while the POA manager is in the inactive state,
the AdapterInactive exception is raised. Entering the holding state causes the associated POAs to queue incoming
requests. Any requests that have been queued but have not started executing will continue to be queued while in the
holding state.

If the wait_for_completion parameter is FALSE, this operation returns immediately after changing the state. If the
parameter is TRUE and the current thread is not in an invocation context dispatched by some POA belonging to the same
ORB as this POA, this operation does not return until either there are no actively executing requests in any of the POAs
associated with this POA manager (that is, all requests that were started prior to the state change have completed) or the state
of the POA manager is changed to a state other than holding. If the parameter is TRUE and the current thread is in an
invocation context dispatched by some POA belonging to the same ORB as this POA the BAD_INV_ORDER system
exception with standard minor code 3 is raised and the state is not changed.

15.3.2.4 discard_requests

void discard_requests(in boolean wait_for_completion)
raises (AdapterInactive);

This operation changes the state of the POA manager to discarding. If issued while the POA manager is in the inactive
state, the AdapterInactive exception is raised. Entering the discarding state causes the associated POAs to discard
incoming requests. In addition, any requests that have been queued but have not started executing are discarded. When a
request is discarded, a TRANSIENT system exception with standard minor code 1 is returned to the client.

If the wait_for_completion parameter is FALSE, this operation returns immediately after changing the state. If the
parameter is TRUE and the current thread is not in an invocation context dispatched by some POA belonging to the same
ORB as this POA, this operation does not return until either there are no actively executing requests in any of the POAs
associated with this POA manager (that is, all requests that were started prior to the state change have completed) or the state
of the POA manager is changed to a state other than discarding. If the parameter is TRUE and the current thread is in an
invocation context dispatched by some POA belonging to the same ORB as this POA the BAD_INV_ORDER system
exception with standard minor code 3 is raised and the state is not changed.

15.3.2.5 deactivate

void deactivate(in boolean etherealize_objects,
in boolean wait_for_completion);

This operation changes the state of the POA manager to inactive. This operation has no affect on the POA manager's state
if it is already in the inactive state, but may still block if wait_for_completion is TRUE and another call to deactivate
on the same POA manager is pending. Entering the inactive state causes the associated POAs to reject requests that have
not begun to be executed as well as any new requests.

After changing the state, if the etherealize_objects parameter is
Common Object Request Broker Architecture (CORBA), v3.1.1 317

• TRUE - the POA manager will cause all associated POAs that have the RETAIN and USE_SERVANT_MANAGER
policies to perform the etherealize operation on the associated servant manager for all active objects.

• FALSE - the etherealize operation is not called. The purpose is to provide developers with a means to shut down
POAs in a crisis (for example, unrecoverable error) situation.

If the wait_for_completion parameter is FALSE, this operation will return immediately after changing the state. If the
parameter is TRUE and the current thread is not in an invocation context dispatched by some POA belonging to the same
ORB as this POA, this operation does not return until there are no actively executing requests in any of the POAs associated
with this POA manager (that is, all requests that were started prior to the state change have completed) and, in the case of a
TRUE etherealize_objects, all invocations of etherealize have completed for POAs having the RETAIN and
USE_SERVANT_MANAGER policies. If the parameter is TRUE and the current thread is in an invocation context
dispatched by some POA belonging to the same ORB as this POA the BAD_INV_ORDER system exception with standard
minor code 3 is raised and the state is not changed.

If deactivate is called multiple times before destruction is complete (because there are active requests), the
etherealize_objects parameter applies only to the first call of deactivate; subsequent calls with conflicting
etherealize_objects settings will use the value of the etherealize_objects from the first call. The
wait_for_completion parameter will be handled as defined above for each individual call (some callers may choose to
block, while others may not).

15.3.2.6 get_state

enum State {HOLDING, ACTIVE, DISCARDING, INACTIVE};
State get_state();

This operation returns the state of the POA manager.

15.3.2.7 get_id

string get_id();

This operation returns the POAManager's unique identity. The id of the POAManager for the Root POA is
“RootPOAManager.”

15.3.3 POAManagerFactory Interface

POAManagers can be created implicitly, by passing a nil POAManager reference to the create_POA operation, or can be
created explicitly using a POAManagerFactory. Explicit creation of a POAManager permits application control of the
POAManager's identity, whereas implicit creation results in creation of a unique identity by the ORB run time. Explicit
creation of a POAManager also permits the application to assign policies to the new POAManager.

15.3.3.1 create_POAManager

exception ManagerAlreadyExists {};

POAManager create_POAManager(
in string id,
in CORBA::PolicyList policies
) raises(ManagerAlreadyExists, CORBA::PolicyError);
318 Common Object Request Broker Architecture (CORBA), v3.1.1

This operation creates a new POAManager with the given id. If a POAManager with the given id exists already within the
ORB, the operation raises ManagerAlreadyExists. (Note that placing a POAManager into the inactive state does not
necessarily result in destruction of the POAManager because destruction of a POAManager only occurs once the last of its
POAs has been destroyed. create_POAManager succeeds in creation of a new POAManager with the same identity as
a previous POAManager only once the previous POAManager’s POAs are destroyed.)

The policies parameter permits an arbitrary number of policies to be passed; these policies can be used by an ORB
implementation to influence the POAManager's behavior in some way; for example, an ORB may choose to use this
mechanism to pass configuration information to the factory. The policies passed to create_POAManager are deep-
copied during creation; modification of a policy sequence after creation has therefore no effect on already existing
POAManagers. If one or more of the policies are invalid, create_POAManager raises CORBA::PolicyError.

The newly created POAManager is in the Holding state.

15.3.3.2 list

typedef sequence<POAManager> POAManagerSeq;
POAManagerSeq list();

The list operation returns all POAManagers (whether created implicitly or explicitly) that currently exist within the ORB.

15.3.3.3 find

POAManager find(in string id);

The find operation return the POAManager with the specified id. If no such POAManager exists, find returns a nil
reference.

15.3.4 AdapterActivator Interface

Adapter activators are associated with POAs. An adapter activator supplies a POA with the ability to create child POAs on
demand, as a side-effect of receiving a request that names the child POA (or one of its children), or when find_POA is
called with an activate parameter value of TRUE. An application server that creates all its needed POAs at the beginning of
execution does not need to use or provide an adapter activator; it is necessary only for the case in which POAs need to be
created during request processing.

While a request from the POA to an adapter activator is in progress, all requests to objects managed by the new POA (or
any descendant POAs) will be queued. This serialization allows the adapter activator to complete any initialization of the
new POA before requests are delivered to that POA.

An AdapterActivator object must be local to the process containing the POA objects it is registered with.
AdapterActivator is a local interface.

15.3.4.1 unknown_adapter

boolean unknown_adapter(in POA parent, in string name);

This operation is invoked when the ORB receives a request for an object reference that identifies a target POA that does
not exist. The ORB invokes this operation once for each POA that must be created in order for the target POA to exist
(starting with the ancestor POA closest to the root POA). The operation is invoked on the adapter activator associated
with the POA that is the parent of the POA that needs to be created. That parent POA is passed as the parent parameter.
The name of the POA to be created (relative to the parent) is passed as the name parameter.
Common Object Request Broker Architecture (CORBA), v3.1.1 319

The implementation of this operation should either create the specified POA and return TRUE, or it should return FALSE.
If the operation returns TRUE, the ORB will proceed with processing the request. If the operation returns FALSE, the
ORB will return OBJECT_NOT_EXIST with standard minor code 2 to the client. If multiple POAs need to be created,
the ORB will invoke unknown_adapter once for each POA that needs to be created. If the parent of a nonexistent POA
does not have an associated adapter activator, the ORB will return the OBJECT_NOT_EXIST system exception with
standard minor code 2.

If unknown_adapter raises a system exception, the ORB will report an OBJ_ADAPTER system exception with
standard minor code 1.

NOTE: It is possible for another thread to create the same POA the AdapterActivator is being asked to create if
AdapterActivators are used in conjunction with other threads calling create_POA with the same POA name. Applications
should be prepared to deal with failures from either the manual or automatic (AdapterActivator) POA creation request. There
can be no guarantee of the order of such calls.

For example, if the target object reference was created by a POA whose full name is “A,” “B,” “C,” “D” and only POAs
“A” and “B” currently exist, the unknown_adapter operation will be invoked on the adapter activator associated with
POA “B” passing POA “B” as the parent parameter and “C” as the name of the missing POA. Assuming that the adapter
activator creates POA “C” and returns TRUE, the ORB will then invoke unknown_adapter on the adapter activator
associated with POA “C,” passing POA “C” as the parent parameter and “D” as the name.

The unknown_adapter operation is also invoked when find_POA is called on the POA with which the
AdapterActivator is associated, the specified child does not exist, and the activate_it parameter to find_POA is
TRUE. If unknown_adapter creates the specified POA and returns TRUE, that POA is returned from find_POA. If
unknown_adapter returns FALSE then find_POA raises AdapterNonExistent. If unknown_adapter raises any
system exception then find_POA passes through the system exception it gets back from unknown_adapter.

NOTE: This allows the same code, the unknown_adapter implementation, to be used to initialize a POA whether that POA
is created explicitly by the application or as a side-effect of processing a request. Furthermore, it makes this initialization atomic
with respect to delivery of requests to the POA.

15.3.5 ServantManager Interface

Servant managers are associated with POAs. A servant manager supplies a POA with the ability to activate objects on
demand when the POA receives a request targeted at an inactive object. A servant manager is registered with a POA as a
callback object, to be invoked by the POA when necessary. An application server that activates all its needed objects at the
beginning of execution does not need to use a servant manager; it is used only for the case in which an object must be
activated during request processing.

The ServantManager interface is itself empty. It is inherited by two other interfaces, ServantActivator and
ServantLocator.

The two types of servant managers correspond to the POA’s RETAIN policy (ServantActivator) and to the
NON_RETAIN policy (ServantLocator). The meaning of the policies and the operations that are available for POAs
using each policy are listed under the two types of derived interfaces.

Each servant manager type contains two operations, the first called to find and return a servant and the second to
deactivate a servant. The operations differ according to the amount of information usable for their situation.

ServantManager is a local interface. A ServantManager object must be local to the process containing the POA
objects it is registered with.
320 Common Object Request Broker Architecture (CORBA), v3.1.1

15.3.5.1 Common Information for Servant Manager Types

The two types of servant managers have certain semantics that are identical.

The incarnate and preinvoke operation may raise any system exception deemed appropriate (for example,
OBJECT_NOT_EXIST if the object corresponding to the Object Id value has been destroyed).

NOTE: If a user-written routine (servant manager or method code) raises the OBJECT_NOT_EXIST exception, the POA does
nothing but pass on that exception. It is the user’s responsibility to deactivate the object if it had been previously activated.

The incarnate and preinvoke operation may also raise a ForwardRequest exception. If this occurs, the ORB is
responsible for delivering the current request and subsequent requests to the object denoted in the forward_reference
member of the exception. The behavior of this mechanism must be the functional equivalent of the GIOP location
forwarding mechanism. If the current request was delivered via an implementation of the GIOP protocol (such as IIOP),
the reference in the exception should be returned to the client in a reply message with LOCATION_FORWARD reply
status. If some other protocol or delivery mechanism was used, the ORB is responsible for providing equivalent behavior,
from the perspectives of the client and the object denoted by the new reference.

If the ForwardRequest exception is raised anywhere else, it is passed through the ORB as a normal user exception.

If a ServantManager returns a null servant (or the equivalent in a language mapping) as the result of an incarnate or
preinvoke operation, the POA returns the OBJ_ADAPTER system exception with standard minor code 7 as the result of
the request. If the ServantManager returns the wrong type of servant, it is indeterminate when that error is detected. An ORB
that chooses to detect the error shall raise OBJ_ADAPTER with standard minor code 2; an ORB that does not explicitly
check for this error condition likely raises BAD_OPERATION with standard minor code 2 or a MARSHAL exception (with
unspecified minor code) at the time of method invocation.

15.3.6 ServantActivator Interface

When the POA has the RETAIN policy it uses servant managers that are ServantActivators. When using such servant
managers, the following statements apply for a given ObjectId used in the incarnate and etherealize operations:

• Servants incarnated by the servant manager will be placed in the Active Object Map with objects they have activated.

• Invocations of incarnate on the servant manager are serialized.

• Invocations of etherealize on the servant manager are serialized.

• Invocations of incarnate and etherealize on the servant manager are mutually exclusive.

• Incarnations of a particular object may not overlap; that is, incarnate shall not be invoked with a particular ObjectId
while, within the same POA, that ObjectId is in use as the ObjectId of an activated object or as the argument of a call
to incarnate or etherealize that has not completed.

It should be noted that there may be a period of time between an object's deactivation and the etherealization (during
which outstanding requests are being processed) in which arriving requests on that object should not be passed to its
servant. During this period, requests targeted for such an object act as if the POA were in holding state until etherealize
completes. If etherealize is called as a consequence of a deactivate call with an etherealize_objects parameter of
TRUE, incoming requests are rejected.

It should also be noted that a similar situation occurs with incarnate. There may be a period of time after the POA
invokes incarnate and before that method returns in which arriving requests bound for that object should not be passed
to the servant.
Common Object Request Broker Architecture (CORBA), v3.1.1 321

A single servant manager object may be concurrently registered with multiple POAs. Invocations of incarnate and
etherealize on a servant manager in the context of different POAs are not necessarily serialized or mutually exclusive.
There are no assumptions made about the thread in which etherealize is invoked.

15.3.6.1 incarnate

Servant incarnate (
in ObjectId oid,
in POA adapter)

raises (ForwardRequest);

This operation is invoked by the POA whenever the POA receives a request for an object that is not currently active,
assuming the POA has the USE_SERVANT_MANAGER and RETAIN policies.

The oid parameter contains the ObjectId value associated with the incoming request. The adapter is an object reference
for the POA in which the object is being activated.

The user-supplied servant manager implementation is responsible for locating or creating an appropriate servant that
corresponds to the ObjectId value if possible. incarnate returns a value of type Servant, which is the servant that will
be used to process the incoming request (and potentially subsequent requests, since the POA has the RETAIN policy).

The POA enters the returned Servant value into the Active Object Map so that subsequent requests with the same
ObjectId value will be delivered directly to that servant without invoking the servant manager.

If the incarnate operation returns a servant that is already active for a different Object Id and if the POA also has the
UNIQUE_ID policy, the incarnate has violated the POA policy and is considered to be in error. The POA will raise an
OBJ_ADAPTER system exception for the request. In this case, etherealize is not called by the POA because the servant
was never added to the Active Object Map.

NOTE: If the same servant is used in two different POAs, it is legal for the POAs to use that servant even if the POAs have
different Object Id uniqueness policies. The POAs do not interact with each other in this regard.

15.3.6.2 etherealize

void etherealize (
in ObjectId oid,
in POA adapter,
in Servant serv,
in boolean cleanup_in_progress,
in boolean remaining_activations);

This operation is invoked whenever a servant for an object is deactivated, assuming the POA has the
USE_SERVANT_MANAGER and RETAIN policies. Note that an active servant may be deactivated by the servant
manager via etherealize even if it was not incarnated by the servant manager.

The oid parameter contains the Object Id value of the object being deactivated. The adapter parameter is an object
reference for the POA in whose scope the object was active. The serv parameter contains a reference to the servant that
is associated with the object being deactivated. If the servant denoted by the serv parameter is associated with other
objects in the POA denoted by the adapter parameter (that is, in the POA’s Active Object Map) at the time that
etherealize is called, the remaining_activations parameter has the value TRUE. Otherwise, it has the value FALSE.
322 Common Object Request Broker Architecture (CORBA), v3.1.1

If the cleanup_in_progress parameter is TRUE, the reason for the etherealize operation is that either the deactivate
or destroy operation was called with an etherealize_objects parameter of TRUE. If the parameter is FALSE, the
etherealize operation is called for other reasons.

Deactivation occurs in the following circumstances:

• When an object is deactivated explicitly by an invocation of POA::deactivate_object.

• When the ORB or POA determines internally that an object must be deactivated. For example, an ORB
implementation may provide policies that allow objects to be deactivated after some period of quiescence, or when the
number of active objects reaches some limit.

• If POAManager::deactivate is invoked on a POA manager associated with a POA that has currently active objects.

Destroying a servant that is in the Active Object Map or is otherwise known to the POA can lead to undefined results.

In a multi-threaded environment, the POA makes certain guarantees that allow servant managers to safely destroy
servants. Specifically, the servant’s entry in the Active Object Map corresponding to the target object is removed before
etherealize is called. Because calls to incarnate and etherealize are serialized, this prevents new requests for the
target object from being invoked on the servant during etherealization. After removing the entry from the Active Object
Map, if the POA determines before invoking etherealize that other requests for the same target object are already in
progress on the servant, it delays the call to etherealize until all active methods for the target object have completed.
Therefore, when etherealize is called, the servant manager can safely destroy the servant if it wants to, unless the
remaining_activations argument is TRUE.

If the etherealize operation returns a system exception, the POA ignores the exception.

15.3.7 ServantLocator Interface

When the POA has the NON_RETAIN policy it uses servant managers that are ServantLocators. Because the POA
knows that the servant returned by this servant manager will be used only for a single request, it can supply extra
information to the servant manager’s operations and the servant manager’s pair of operations may be able to cooperate to
do something different than a ServantActivator.

ServantLocator is a local interface. A ServantLocator object must be local to the process containing the POA objects
it is registered with.

When the POA uses the ServantLocator interface, immediately after performing the operation invocation on the servant
returned by preinvoke, the POA will invoke postinvoke on the servant manager, passing the ObjectId value and the
Servant value as parameters (among others). The next request with this ObjectId value will then cause preinvoke to be
invoked again. This feature may be used to force every request for objects associated with a POA to be mediated by the
servant manager.

When using such a ServantLocator, the following statements apply for a given ObjectId used in the preinvoke and
postinvoke operations:

• The servant returned by preinvoke is used only to process the single request that caused preinvoke to be invoked.

• No servant incarnated by the servant manager will be placed in the Active Object Map.

• When the invocation of the request on the servant is complete, postinvoke will be invoked for the object.

• No serialization of invocations of preinvoke or postinvoke may be assumed; there may be multiple concurrent
invocations of preinvoke for the same ObjectId. (However, if the SINGLE_THREAD_MODEL policy is being
used, that policy will serialize these calls.)
Common Object Request Broker Architecture (CORBA), v3.1.1 323

• The same thread will be used to preinvoke the object, process the request, and postinvoke the object.

• If preinvoke raises an exception, postinvoke is not called. Otherwise the preinvoke and postinvoke operations
are always called in pairs in response to any ORB activity. In particular, for a response to a GIOP Locate message a
GIOP-conforming ORB may (or may not) call preinvoke to determine whether the object could be served at this
location. If the ORB makes such a call, whatever the result, the ORB does not invoke a method, but does call
postinvoke before responding to the Locate message.

NOTE: The ServantActivator interface does not behave similarly with respect to a GIOP Locate message since the
etherealize operation is not associated with request processing.

15.3.7.1 preinvoke

Servant preinvoke(
in ObjectId oid,
in POA adapter,
in CORBA::Identifier operation,
out Cookie the_cookie)
raises (ForwardRequest

);

This operation is invoked by the POA whenever the POA receives a request for an object that is not currently active,
assuming the POA has the USE_SERVANT_MANAGER and NON_RETAIN policies.

The oid parameter contains the ObjectId value associated with the incoming request. The adapter is an object reference
for the POA in which the object is being activated.

The user-supplied servant manager implementation is responsible for locating or creating an appropriate servant that
corresponds to the ObjectId value if possible. preinvoke returns a value of type Servant, which is the servant that will
be used to process the incoming request.

The Cookie is a type opaque to the POA that can be set by the servant manager for use later by postinvoke. The
operation is the name of the operation that will be called by the POA when the servant is returned.

15.3.7.2 postinvoke

void postinvoke(
in ObjectId oid,
in POA adapter,
in CORBA::Identifier operation,
in Cookie the_cookie,
in Servant the_servant

);

This operation is invoked whenever a servant completes a request, assuming the POA has the
USE_SERVANT_MANAGER and NON_RETAIN policies.

The postinvoke operation is considered to be part of a request on an object.That is, the request is not complete until
postinvoke finishes. If the method finishes normally but postinvoke raises a system exception, the method’s normal return
is overridden; the request completes with the exception.
324 Common Object Request Broker Architecture (CORBA), v3.1.1

The oid parameter contains the Object Id value of the object on which the request was made. The adapter parameter is
an object reference for the POA in whose scope the object was active. The the_servant parameter contains a reference
to the servant that is associated with the object.

The Cookie is a type opaque to the POA; it contains any value that was set by the preinvoke operation. The operation
is the name of the operation that was called by the POA for the request.

Destroying a servant that is known to the POA can lead to undefined results.

15.3.7.3 ServantLocator and Location Determination

Under certain circumstances, an ORB may need to determine the actual location of an object’s implementation. For
objects that are managed by a POA that is configured with a ServantLocator, it may invoke preinvoke and
postinvoke or it may determine the object’s location by some other means. If it invokes preinvoke and postinvoke
under these circumstances it shall use the argument “_locate.”

15.3.8 POA Policy Objects

Interfaces derived from CORBA::Policy are used with the POA::create_POA operation to specify policies that apply
to a POA. Policy objects are created using factory operations on any pre-existing POA, such as the root POA, or by a call
to ORB::create_policy. Policy objects are specified when a POA is created. Policies may not be changed on an existing
POA. Policies are not inherited from the parent POA. All Policy interfaces defined in this sub clause are local interfaces.

The POA shall preserve Policies whose types have been registered via
PortableInterceptor::ORBInitInfo::register_policy_factory, even if the POA itself does not know about those
policies.

15.3.8.1 Thread Policy

Objects with the ThreadPolicy interface are obtained using the POA::create_thread_policy operation and passed to
the POA::create_POA operation to specify the threading model used with the created POA. The value attribute of
ThreadPolicy contains the value supplied to the POA::create_thread_policy operation from which it was obtained.
The following values can be supplied.

• ORB_CTRL_MODEL - The ORB is responsible for assigning requests for an ORB- controlled POA to threads. In a
multi-threaded environment, concurrent requests may be delivered using multiple threads.

• SINGLE_THREAD_MODEL - Requests for a single-threaded POA are processed sequentially. In a multi-threaded
environment, all upcalls made by this POA to implementation code (servants and servant managers) are made in a
manner that is safe for code that is multi-thread-unaware. The POA will still allow reentrant calls from an object
implementation to itself, or to another object implementation managed by the same POA.

• MAIN_THREAD_MODEL - Requests for all main-thread POAs are processed sequentially. In a multi-threaded
environment, all upcalls made by all POAs with this policy to servants are made in a manner that is safe for code that
is multi-thread-unaware. If the environment has special requirements that some code must run on a distinguished
“main” thread, servant upcalls will be processed on that thread.

If no ThreadPolicy object is passed to create_POA, the thread policy defaults to ORB_CTRL_MODEL.

NOTE: In some environments, calling multi-thread-unaware code safely (that is, using the MAIN_THREAD_MODEL) may
mean that the POA will use only the main thread, in which case the application programmer is responsible to ensure that the
main thread is given to the ORB, using ORB::perform_work or ORB::run.

Common Object Request Broker Architecture (CORBA), v3.1.1 325

POAs using the SINGLE_THREAD_MODEL may need to cooperate to ensure that calls are safe even when implementation
code (such as a servant manager) is shared by multiple single-threaded POAs.

These models presume that the ORB and the application are using compatible threading primitives in a multi-threaded
environment.

15.3.8.2 Lifespan Policy

Objects with the LifespanPolicy interface are obtained using the POA::create_lifespan_policy operation and passed
to the POA::create_POA operation to specify the lifespan of the objects implemented in the created POA. The following
values can be supplied.

• TRANSIENT - The objects implemented in the POA cannot outlive the POA instance in which they are first created.
Once the POA’s POAManager enters the deactivated state, any requests received by this POA will cause the POA
to raise an OBJECT_NOT_EXIST system exception with standard minor code 4.

• PERSISTENT - The objects implemented in the POA can outlive the process in which they are first created.

• Persistent objects have a POA associated with them (the POA that created them). When the ORB receives a
request on a persistent object, it first searches for the matching POA, based on the names of the POA and all of its
ancestors.

• Administrative action beyond the scope of this specification may be necessary to inform the ORB’s location
service of the creation and eventual termination of existence of this POA, and optionally to arrange for on-demand
activation of a process implementing this POA.

• POA names must be unique within their enclosing scope (the parent POA). A portable program can assume that
POA names used in other processes will not conflict with its own POA names. A conforming CORBA
implementation will provide a method for ensuring this property.

If no LifespanPolicy object is passed to create_POA, the lifespan policy defaults to TRANSIENT.

15.3.8.3 Object Id Uniqueness Policy

Objects with the IdUniquenessPolicy interface are obtained using the POA::create_id_uniqueness_policy
operation and passed to the POA::create_POA operation to specify whether the servants activated in the created POA
must have unique object identities. The following values can be supplied.

• UNIQUE_ID - Servants activated with that POA support exactly one Object Id.

• MULTIPLE_ID - a servant activated with that POA may support one or more Object Ids.

If no IdUniquenessPolicy is specified at POA creation, the default is UNIQUE_ID.

NOTE: Use of UNIQUE_ID policy is meaningless in conjunction with NON_RETAIN policy. A conforming application
should not use this policy combination. A conforming orb may, but need not, report an error during create_POA if this
combination is used. If an orb permits this combination of policies to be used, the resulting POA shall not treat the use of the
same servant for concurrent requests on different object ids as an error.

15.3.8.4 Id Assignment Policy

Objects with the IdAssignmentPolicy interface are obtained using the POA::create_id_assignment_policy
operation and passed to the POA::create_POA operation to specify whether Object Ids in the created POA are
generated by the application or by the ORB. The following values can be supplied.
326 Common Object Request Broker Architecture (CORBA), v3.1.1

• USER_ID - Objects created with that POA are assigned Object Ids only by the application.

• SYSTEM_ID - Objects created with that POA are assigned Object Ids only by the POA. If the POA also has the
PERSISTENT policy, assigned Object Ids must be unique across all instantiations of the same POA.

If no IdAssignmentPolicy is specified at POA creation, the default is SYSTEM_ID.

15.3.8.5 Servant Retention Policy

Objects with the ServantRetentionPolicy interface are obtained using the POA::create_servant_retention_policy
operation and passed to the POA::create_POA operation to specify whether the created POA retains active servants in
an Active Object Map. The following values can be supplied.

• RETAIN - The POA will retain active servants in its Active Object Map.

• NON_RETAIN - Servants are not retained by the POA.

If no ServantRetentionPolicy is specified at POA creation, the default is RETAIN.

NOTE: The NON_RETAIN policy requires either the USE_DEFAULT_SERVANT or USE_SERVANT_MANAGER
policies.

15.3.8.6 Request Processing Policy

Objects with the RequestProcessingPolicy interface are obtained using the
POA::create_request_processing_policy operation and passed to the POA::create_POA operation to specify how
requests are processed by the created POA. The following values can be supplied.

• USE_ACTIVE_OBJECT_MAP_ONLY - If the Object Id is not found in the Active Object Map, an
OBJECT_NOT_EXIST system exception with standard minor code 2 is returned to the client. The RETAIN policy is
also required.

• USE_DEFAULT_SERVANT - If the Object Id is not found in the Active Object Map or the NON_RETAIN policy is
present, and a default servant has been registered with the POA using the set_servant operation, the request is
dispatched to the default servant. If no default servant has been registered, an OBJ_ADAPTER system exception with
standard minor code 3 is returned to the client. The MULTIPLE_ID policy is also required.

• USE_SERVANT_MANAGER - If the Object Id is not found in the Active Object Map or the NON_RETAIN policy
is present, and a servant manager has been registered with the POA using the set_servant_manager operation, the
servant manager is given the opportunity to locate a servant or raise an exception. If no servant manager has been
registered, an OBJ_ADAPTER system exception with standard minor code 4 is returned to the client.

If no RequestProcessingPolicy is specified at POA creation, the default is USE_ACTIVE_OBJECT_MAP_ONLY.

By means of combining the USE_ACTIVE_OBJECT_MAP_ONLY / USE_DEFAULT_SERVANT /
USE_SERVANT_MANAGER policies and the RETAIN / NON_RETAIN policies, the programmer is able to define a
rich number of possible behaviors.

RETAIN and USE_ACTIVE_OBJECT_MAP_ONLY

This combination represents the situation where the POA does no automatic object activation (that is, the POA searches
only the Active Object Map).

RETAIN and USE_SERVANT_MANAGER

This combination represents a very common situation, where there is an Active Object Map and a ServantManager.
Common Object Request Broker Architecture (CORBA), v3.1.1 327

Because RETAIN is in effect, the application can call activate_object or activate_object_with_id to establish known
servants in the Active Object Map for use in later requests.

If the POA doesn't find a servant in the Active Object Map for a given object, it tries to determine the servant by means
of invoking incarnate in the ServantManager (specifically a ServantActivator) registered with the POA. If no
ServantManager is available, the POA raises the OBJ_ADAPTER system exception with standard minor code 4.

RETAIN and USE_DEFAULT_SERVANT

This combination represents the situation where there is a default servant defined for all requests involving unknown
objects.

Because RETAIN is in effect, the application can call activate_object or activate_object_with_id to establish known
servants in the Active Object Map for use in later requests.

The POA first tries to find a servant in the Active Object Map for a given object. If it does not find such a servant, it uses
the default servant. If no default servant is available, the POA raises the OBJ_ADAPTER system exception with
standard minor code 3.

NON-RETAIN and USE_SERVANT_MANAGER

This combination represents the situation where one servant is used per method call.

The POA doesn't try to find a servant in the Active Object Map because the ActiveObjectMap does not exist. In every
request, it will call preinvoke on the ServantManager (specifically a ServantLocator) registered with the POA. If no
ServantManager is available, the POA will raise the OBJ_ADAPTER system exception.

NON-RETAIN and USE_DEFAULT_SERVANT

This combination represents the situation where there is one single servant defined for all CORBA objects.

The POA does not try to find a servant in the Active Object Map because the ActiveObjectMap doesn't exist. In every
request, the POA will invoke the appropriate operation on the default servant registered with the POA. If no default
servant is available, the POA will raise the OBJ_ADAPTER system exception.

15.3.8.7 Implicit Activation Policy

Objects with the ImplicitActivationPolicy interface are obtained using the POA::create_implicit_activation_policy
operation and passed to the POA::create_POA operation to specify whether implicit activation of servants is supported
in the created POA. The following values can be supplied.

• IMPLICIT_ACTIVATION - the POA will support implicit activation of servants. IMPLICIT_ACTIVATION also
requires the SYSTEM_ID and RETAIN policies.

• NO_IMPLICIT_ACTIVATION - the POA will not support implicit activation of servants.

If no ImplicitActivationPolicy is specified at POA creation, the default is NO_IMPLICIT_ACTIVATION.

15.3.9 POA Interface

A POA object manages the implementation of a collection of objects. The POA supports a name space for the objects,
which are identified by Object Ids.
328 Common Object Request Broker Architecture (CORBA), v3.1.1

A POA also provides a name space for POAs. A POA is created as a child of an existing POA, which forms a hierarchy
starting with the root POA.

The POA interface is a local interface.

15.3.9.1 create_POA

POA create_POA(
in string adapter_name,
in POAManager a_POAManager,
in CORBA::PolicyList policies)
raises (AdapterAlreadyExists, InvalidPolicy

);

This operation creates a new POA as a child of the target POA. The specified name identifies the new POA with respect
to other POAs with the same parent POA. If the target POA already has a child POA with the specified name, the
AdapterAlreadyExists exception is raised.

If the a_POAManager parameter is null, a new POAManager object is created and associated with the new POA.
Otherwise, the specified POAManager object is associated with the new POA. The POAManager object can be
obtained using the attribute name the_POAManager.

The specified policy objects are associated with the POA and used to control its behavior. The policy objects are
effectively copied before this operation returns, so the application is free to destroy them while the POA is in use. Policies
are not inherited from the parent POA.

The POA shall preserve Policies whose types have been registered via
PortableInterceptor::ORBInitInfo::register_policy_factory, even if the POA itself does not know about those
policies.

If any of the policy objects specified are not valid for the ORB implementation, if conflicting policy objects are specified,
or if any of the specified policy objects require prior administrative action that has not been performed, an InvalidPolicy
exception is raised containing the index in the policies parameter value of the first offending policy object.

NOTE: Creating a POA using a POA manager that is in the active state can lead to race conditions if the POA supports
preexisting objects, because the new POA may receive a request before its adapter activator, servant manager, or default servant
have been initialized. These problems do not occur if the POA is created by an adapter activator registered with a parent of the
new POA, because requests are queued until the adapter activator returns. To avoid these problems when a POA must be
explicitly initialized, the application can initialize the POA by invoking find_POA with a TRUE activate parameter.

15.3.9.2 find_POA

POA find_POA(
in string adapter_name,
in boolean activate_it)
raises (AdapterNonExistent

);

If the target POA is the parent of a child POA with the specified name (relative to the target POA), that child POA is
returned. If a child POA with the specified name does not exist and the value of the activate_it parameter is TRUE, the
target POA’s AdapterActivator, if one exists, is invoked, and, if it successfully activates the child POA, that child POA
is returned. Otherwise, the AdapterNonExistent exception is raised.
Common Object Request Broker Architecture (CORBA), v3.1.1 329

If find_POA receives a system exception in response to a call to unknown_adapter on a POA, then find_POA passes
through the system exception it received from unknown_adapter.

15.3.9.3 destroy

void destroy(
in boolean etherealize_objects,
in boolean wait_for_completion

);

This operation destroys the POA and all descendant POAs. All descendant POAs are destroyed (recursively) before the
destruction of the containing POA. The POA so destroyed (that is, the POA with its name) may be re-created later in the
same process. (This differs from the POAManager::deactivate operation that does not allow a re-creation of its
associated POA in the same process. After a deactivate, re-creation is allowed only if the POA is later destroyed.)

When destroy is called the POA behaves as follows:

• The POA assumes the discarding state except when its POAManager is in the inactive state in which case the POA
assumes the inactive state. Any further changes to the POAManager’s state do not affect this POA.

• The POA disables the create_POA operation. Subsequent calls to create_POA will result in a
BAD_INV_ORDER system exception with standard minor code 17.

• The POA calls destroy on all of its immediate descendants.

• After all descendant POAs have been destroyed and their servants etherealized, the POA continues to process requests
until there are no requests executing in the POA. At this point, apparent destruction of the POA has occurred.

• After destruction has become apparent, the POA may be re-created via either an AdapterActivator or a call to
create_POA.

• If the etherealize_objects parameter is TRUE, the POA has the RETAIN policy, and a servant manager is
registered with the POA, the etherealize operation on the servant manager is called for each active object in the
Active Object Map. The apparent destruction of the POA occurs before any calls to etherealize are made. Thus, for
example, an etherealize method that attempts to invoke operations on the POA receives the
OBJECT_NOT_EXIST exception.

• If the POA has an AdapterActivator installed, any requests that would have caused unknown_adapter to be
called cause a TRANSIENT exception with standard minor code 4 to be raised instead.

The wait_for_completion parameter is handled as follows:

• If wait_for_completion is TRUE and the current thread is not in an invocation context dispatched from some POA
belonging to the same ORB as this POA, the destroy operation returns only after all active requests have completed
and all invocations of etherealize have completed.

• If wait_for_completion is TRUE and the current thread is in an invocation context dispatched from some POA
belonging to the same ORB as this POA, the BAD_INV_ORDER system exception with standard minor code 3 is
raised and POA destruction does not occur.

• If wait_for_completion is FALSE, the destroy operation destroys the POA and its children but waits neither for
active requests to complete nor for etherealization to occur. If destroy is called multiple times before destruction is
complete (because there are active requests), the etherealize_objects parameter applies only to the first call of
destroy. Subsequent calls with conflicting etherealize_objects settings use the value of etherealize_objects
from the first call. The wait_for_completion parameter is handled as defined above for each individual call (some
callers may choose to block, while others may not).
330 Common Object Request Broker Architecture (CORBA), v3.1.1

15.3.9.4 Policy Creation Operations

ThreadPolicy create_thread_policy(
in ThreadPolicyValue value);

LifespanPolicy create_lifespan_policy(
in LifespanPolicyValue value);

IdUniquenessPolicy create_id_uniqueness_policy(
in IdUniquenessPolicyValue value);

IdAssignmentPolicy create_id_assignment_policy(
in IdAssignmentPolicyValue value);

ImplicitActivationPolicy create_implicit_activation_policy(
in ImplicitActivationPolicyValue value);

ServantRetentionPolicy create_servant_retention_policy(
in ServantRetentionPolicyValue value);

RequestProcessingPolicy create_request_processing_policy(
in RequestProcessingPolicyValue value);

These operations each return a reference to a policy object with the specified value. The application is responsible for
calling the inherited destroy operation on the returned reference when it is no longer needed.

15.3.9.5 the_name

readonly attribute string the_name;

This attribute identifies the POA relative to its parent. This name is assigned when the POA is created. The name of the
root POA is system-dependent and should not be relied upon by the application. In order to work properly with Portable
Interceptors (see Adapter Names on page 392) the name of the root POA must be the sequence containing only the string
“RootPOA.”

15.3.9.6 the_parent

readonly attribute POA the_parent;

This attribute identifies the parent of the POA. The parent of the root POA is null.

15.3.9.7 the_children

readonly attribute POAList the_children;

This attribute identifies the current set of all child POAs of the POA. The set of child POAs includes only the POA’s
immediate children, and not their descendants.

15.3.9.8 the_POAManager

readonly attribute POAManager the_POAManager;

This attribute identifies the POA manager associated with the POA.

15.3.9.9 the_activator

attribute AdapterActivator the_activator;
Common Object Request Broker Architecture (CORBA), v3.1.1 331

This attribute identifies the adapter activator associated with the POA. A newly created POA has no adapter activator (the
attribute is null). It is system-dependent whether the root POA initially has an adapter activator; the application is free to
assign its own adapter activator to the root POA.

15.3.9.10 the_POAManagerFactory

 readonly attribute POAManagerFactory the_POAManagerFactory;

This attribute returns the POAManagerFactory that created the POA.

15.3.9.11 get_servant_manager

ServantManager get_servant_manager()
raises(WrongPolicy);

This operation requires the USE_SERVANT_MANAGER policy; if not present, the WrongPolicy exception is raised.

This operation returns the servant manager associated with the POA. If no servant manager has been associated with the
POA, it returns a null reference.

15.3.9.12 set_servant_manager

void set_servant_manager(
in ServantManager imgr

) raises(WrongPolicy);

This operation requires the USE_SERVANT_MANAGER policy; if not present, the WrongPolicy exception is raised.

If the ServantRetentionPolicy of the POA is RETAIN, then the ServantManager argument (imgr) shall support the
ServantActivator interface (e.g., in C++ imgr is narrowable to ServantActivator). If the ServantRetentionPolicy
of the POA is NON_RETAIN, then the ServantManager argument shall support the ServantLocator interface. If the
argument is nil, or does not support the required interface, then the OBJ_ADAPTER system exception with standard
minor code 4 is raised.

This operation sets the default servant manager associated with the POA. This operation may only be invoked once after
a POA has been created. Attempting to set the servant manager after one has already been set will result in the
BAD_INV_ORDER system exception with standard minor code 6 being raised.

15.3.9.13 get_servant

Servant get_servant()
raises(NoServant, WrongPolicy);

This operation requires the USE_DEFAULT_SERVANT policy; if not present, the WrongPolicy exception is raised.

This operation returns the default servant associated with the POA. If no servant has been associated with the POA, the
NoServant exception is raised.

15.3.9.14 set_servant

void set_servant(
in Servant p_servan

) raises(WrongPolicy);
332 Common Object Request Broker Architecture (CORBA), v3.1.1

This operation requires the USE_DEFAULT_SERVANT policy; if not present, the WrongPolicy exception is raised.

This operation registers the specified servant with the POA as the default servant. This servant will be used for all
requests for which no servant is found in the Active Object Map.

15.3.9.15 activate_object

ObjectId activate_object(
in Servant p_servant

) raises (ServantAlreadyActive, WrongPolicy);

This operation requires the SYSTEM_ID and RETAIN policy; if not present, the WrongPolicy exception is raised.

If the POA has the UNIQUE_ID policy and the specified servant is already in the Active Object Map, the
ServantAlreadyActive exception is raised. Otherwise, the activate_object operation generates an Object Id and enters
the Object Id and the specified servant in the Active Object Map. The Object Id is returned.

15.3.9.16 activate_object_with_id

void activate_object_with_id(
in ObjectId oid,
in Servant p_servant

) raises (ObjectAlreadyActive, ServantAlreadyActive, WrongPolicy);

This operation requires the RETAIN policy; if not present, the WrongPolicy exception is raised.

If the CORBA object denoted by the Object Id value is already active in this POA (there is a servant bound to it in the
Active Object Map), the ObjectAlreadyActive exception is raised. If the POA has the UNIQUE_ID policy and the
servant is already in the Active Object Map, the ServantAlreadyActive exception is raised. Otherwise, the
activate_object_with_id operation enters an association between the specified Object Id and the specified servant in the
Active Object Map.

If the POA has the SYSTEM_ID policy and it detects that the Object Id value was not generated by the system or for this
POA, the activate_object_with_id operation may raise the BAD_PARAM system exception. An ORB is not required
to detect all such invalid Object Id values, but a portable application must not invoke activate_object_with_id on a
POA that has the SYSTEM_ID policy with an Object Id value that was not previously generated by the system for that
POA, or, if the POA also has the PERSISTENT policy, for a previous instantiation of the same POA. A POA is not
required to raise the BAD_PARAM exception in this case because, in the general case, accurate rejection of an invalid
Object Id requires unbounded persistent memory of all previously generated Id values.

15.3.9.17 deactivate_object

void deactivate_object(
in ObjectId oid

) raises (ObjectNotActive, WrongPolicy);

This operation requires the RETAIN policy; if not present, the WrongPolicy exception is raised.

This operation causes the ObjectId specified in the oid parameter to be deactivated. An ObjectId that has been
deactivated continues to process requests until there are no active requests for that ObjectId. Active requests are those
requests that arrived before deactivate_object was called. A deactivated ObjectId is removed from the Active Object
Map when all requests executing for that ObjectId have completed. If a servant manager is associated with the POA,
ServantActivator::etherealize is invoked with the oid and the associated servant after the ObjectId has been removed
Common Object Request Broker Architecture (CORBA), v3.1.1 333

from the Active Object Map. Reactivation for the ObjectId blocks until etherealization (if necessary) is complete. This
includes implicit activation (as described in etherealize) and explicit activation via POA::activate_object_with_id.
Once an ObjectId has been removed from the Active Object Map and etherealized (if necessary) it may then be
reactivated through the usual mechanisms. The operation does not wait for requests or etherealization to complete and
always returns immediately after deactivating the ObjectId.

If the servant associated with the oid is serving multiple Object Ids, ServantActivator::etherealize may be invoked
multiple times with the same servant when the other objects are deactivated. It is the responsibility of the object
implementation to refrain from destroying the servant while it is active with any Id.

15.3.9.18 create_reference

Object create_reference (
in CORBA::RepositoryId intf

) raises (WrongPolicy);

This operation requires the SYSTEM_ID policy; if not present, the WrongPolicy exception is raised.

This operation creates an object reference that encapsulates a POA-generated Object Id value and the specified interface
repository id. The specified repository id, which may be a null string, will become the type_id of the generated object
reference. A repository id that does not identify the most derived interface of the object or one of its base interfaces will
result in undefined behavior.

This operation does not cause an activation to take place. The resulting reference may be passed to clients, so that
subsequent requests on those references will cause the appropriate servant manager to be invoked, if one is available. The
generated Object Id value may be obtained by invoking POA::reference_to_id with the created reference.

15.3.9.19 create_reference_with_id

Object create_reference_with_id (
in ObjectId oid,
in CORBA::RepositoryId intf

);

This operation creates an object reference that encapsulates the specified Object Id and interface repository Id values. The
specified repository id, which may be a null string, will become the type_id of the generated object reference. A
repository id that does not identify the most derived interface of the object or one of its base interfaces will result in
undefined behavior.

This operation does not cause an activation to take place. The resulting reference may be passed to clients, so that
subsequent requests on those references will cause the object to be activated if necessary, or the default servant used,
depending on the applicable policies.

If the POA has the SYSTEM_ID policy and it detects that the Object Id value was not generated by the system or for this
POA, the create_reference_with_id operation may raise the BAD_PARAM system exception with standard minor
code 14. An ORB is not required to detect all such invalid Object Id values, but a portable application must not invoke
this operation on a POA that has the SYSTEM_ID policy with an Object Id value that was not previously generated by
the system for that POA, or, if the POA also has the PERSISTENT policy, for a previous instantiation of the same POA.
334 Common Object Request Broker Architecture (CORBA), v3.1.1

15.3.9.20 servant_to_id

ObjectId servant_to_id(
in Servant p_servant

) raises (ServantNotActive, WrongPolicy);

This operation requires the USE_DEFAULT_SERVANT policy or a combination of the RETAIN policy and either the
UNIQUE_ID or IMPLICIT_ACTIVATION policies if invoked outside the context of an operation dispatched by this
POA. If this operation is not invoked in the context of executing a request on the specified servant and the policies
specified previously are not present, the WrongPolicy exception is raised.

This operation has four possible behaviors.

1. If the POA has both the RETAIN and the UNIQUE_ID policy and the specified servant is active, the Object Id
associated with that servant is returned.

2. If the POA has both the RETAIN and the IMPLICIT_ACTIVATION policy and either the POA has the
MULTIPLE_ID policy or the specified servant is not active, the servant is activated using a POA-generated Object Id
and the Interface Id associated with the servant, and that Object Id is returned.

3. If the POA has the USE_DEFAULT_SERVANT policy, the servant specified is the default servant, and the
operation is being invoked in the context of executing a request on the default servant, then the ObjectId associated
with the current invocation is returned.

4. Otherwise, the ServantNotActive exception is raised.

15.3.9.21 servant_to_reference

Object servant_to_reference (
in Servant p_servant

) raises (ServantNotActive, WrongPolicy);

This operation requires the RETAIN policy and either the UNIQUE_ID or IMPLICIT_ACTIVATION policies if invoked
outside the context of an operation dispatched by this POA. If this operation is not invoked in the context of executing a
request on the specified servant and the policies specified previously are not present the WrongPolicy exception is raised.

This operation has four possible behaviors.

1. If the POA has both the RETAIN and the UNIQUE_ID policy and the specified servant is active, an object reference
encapsulating the information used to activate the servant is returned.

2. If the POA has both the RETAIN and the IMPLICIT_ACTIVATION policy and either the POA has the
MULTIPLE_ID policy or the specified servant is not active, the servant is activated using a POA-generated Object Id
and the Interface Id associated with the servant, and a corresponding object reference is returned.

3. If the operation was invoked in the context of executing a request on the specified servant, the reference associated
with the current invocation is returned.

4. Otherwise, the ServantNotActive exception is raised.

NOTE: The allocation of an Object Id value and installation in the Active Object Map caused by implicit activation may actually
be deferred until an attempt is made to externalize the reference. The real requirement here is that a reference is produced that
will behave appropriately (that is, yield a consistent Object Id value when asked politely).
Common Object Request Broker Architecture (CORBA), v3.1.1 335

15.3.9.22 reference_to_servant

Servant reference_to_servant (
in Object reference

) raises (ObjectNotActive, WrongAdapter, WrongPolicy);

The table below summarizes the behavior of this operation based on the RETAIN policy, the USE_DEFAULT_POLICY
and the Object in question:

If the object reference was not created by this POA, the WrongAdapter exception is raised.

15.3.9.23 reference_to_id

ObjectId reference_to_id(
in Object reference

) raises (WrongAdapter, WrongPolicy);

The WrongPolicy exception is declared to allow future extensions.

This operation returns the Object Id value encapsulated by the specified reference. This operation is valid only if the
reference was created by the POA on which the operation is being performed. If the reference was not created by that
POA, a WrongAdapter exception is raised. The object denoted by the reference does not have to be active for this
operation to succeed.

15.3.9.24 id_to_servant

Servant id_to_servant(
in ObjectId oid

) raises (ObjectNotActive, WrongPolicy);

This operation requires the RETAIN policy or the USE_DEFAULT_SERVANT policy. If neither policy is present, the
WrongPolicy exception is raised.

If the POA has the RETAIN policy and the specified ObjectId is in the Active Object Map, this operation returns the
servant associated with that object in the Active Object Map. Otherwise, if the POA has the USE_DEFAULT_SERVANT
policy and a default servant has been registered with the POA, this operation returns the default servant. Otherwise the
ObjectNotActive exception is raised.

RETAIN USE_DEFAULT_SERVANT Object Action

Present Present In AOM Return Servant from AOM

Present Absent In AOM Return Servant from AOM

Present Present Not in AOM Return Default Servant

Present Absent Not in AOM Raise ObjectNotActive

Absent Present Return Default Servant

Absent Absent Raise Wrong Policy
336 Common Object Request Broker Architecture (CORBA), v3.1.1

15.3.9.25 id_to_reference

Object id_to_reference(
in ObjectId oid

) raises (ObjectNotActive, WrongPolicy);

This operation requires the RETAIN policy; if not present, the WrongPolicy exception is raised. If an object with the
specified Object Id value is currently active, a reference encapsulating the information used to activate the object is
returned. If the Object Id value is not active in the POA, an ObjectNotActive exception is raised.

15.3.9.26 id

readonly attribute CORBA::OctetSeq id;

This returns the unique id of the POA in the process in which it is created. It is for use by portable interceptors. This id
is guaranteed unique for the life span of the POA in the process. For persistent POAs, this means that if a POA is created
in the same path with the same name as another POA, these POAs are identical and, therefore, have the same id. For
transient POAs, each POA is unique.

15.3.10 Current Operations

The PortableServer::Current interface, derived from CORBA::Current, provides method implementations with
access to the identity of the object on which the method was invoked. The Current interface is provided to support
servants that implement multiple objects, but can be used within the context of POA-dispatched method invocations on
any servant. To provide location transparency, ORBs are required to support use of Current in the context of both locally
and remotely invoked operations.

An instance of Current can be obtained by the application by issuing the
CORBA::ORB::resolve_initial_references("POACurrent") operation. Thereafter, it can be used within the context
of a method dispatched by the POA to obtain the POA and ObjectId that identify the object on which that operation was
invoked.

PortableServer::Current is a local interface.

15.3.10.1 get_POA

POA get_POA()
raises (NoContext);

This operation returns a reference to the POA implementing the object in whose context it is called. If called outside the
context of a POA-dispatched operation, a NoContext exception is raised.

15.3.10.2 get_object_id

ObjectId get_object_id()
raises (NoContext);

This operation returns the ObjectId identifying the object in whose context it is called. If called outside the context of a
POA-dispatched operation, a NoContext exception is raised.
Common Object Request Broker Architecture (CORBA), v3.1.1 337

15.3.10.3 get_reference

Object get_reference()
raises(NoContext);

This operation returns a locally manufactured reference to the object in the context of which it is called. If called outside
the context of a POA dispatched operation, a NoContext exception is raised.

NOTE: This reference is not guaranteed to be identical to the original reference the client used to make the invocation, and
calling the Object::is_equivalent operation to compare the two references may not necessarily return true.

15.3.10.4 get_servant

Servant get_servant()
raises(NoContext);

This operation returns a reference to the servant that hosts the object in whose context it is called. If called outside the
context of a POA dispatched operation, a NoContext exception is raised.

15.4 IDL for PortableServer Module

// IDL
// File: PortableServer.idl
#ifndef _PORTABLE_SERVER_IDL_
#define _PORTABLE_SERVER_IDL_

import ::CORBA;
module PortableServer {

typeprefix PortableServer “org.omg”;
local interface POA; // forward declaration
typedef sequence<POA> POAList;

native Servant;

typedef CORBA::OctetSeq ObjectId;

exception ForwardRequest {
Object forward_reference;

};

// Policy interfaces

const CORBA::PolicyType THREAD_POLICY_ID = 16;
const CORBA::PolicyType LIFESPAN_POLICY_ID = 17;
const CORBA::PolicyType ID_UNIQUENESS_POLICY_ID = 18;
const CORBA::PolicyType ID_ASSIGNMENT_POLICY_ID = 19;
const CORBA::PolicyType IMPLICIT_ACTIVATION_POLICY_ID = 20;
const CORBA::PolicyType SERVANT_RETENTION_POLICY_ID = 21;
const CORBA::PolicyType REQUEST_PROCESSING_POLICY_ID = 22;

enum ThreadPolicyValue {
338 Common Object Request Broker Architecture (CORBA), v3.1.1

ORB_CTRL_MODEL,
SINGLE_THREAD_MODEL,
MAIN_THREAD_MODEL

};

 local interface ThreadPolicy : CORBA::Policy {
readonly attribute ThreadPolicyValue value;

};

enum LifespanPolicyValue {
TRANSIENT,
PERSISTENT

};

local interface LifespanPolicy : CORBA::Policy {
readonly attribute LifespanPolicyValue value;

};

enum IdUniquenessPolicyValue {
UNIQUE_ID,
MULTIPLE_ID

};

local interface IdUniquenessPolicy : CORBA::Policy {
readonly attribute IdUniquenessPolicyValue value;

};

enum IdAssignmentPolicyValue {
USER_ID,
SYSTEM_ID

};

local interface IdAssignmentPolicy : CORBA::Policy {
readonly attribute IdAssignmentPolicyValue value;

};

enum ImplicitActivationPolicyValue {
IMPLICIT_ACTIVATION,
NO_IMPLICIT_ACTIVATION

};

local interface ImplicitActivationPolicy : CORBA::Policy {
readonly attribute ImplicitActivationPolicyValue value;

};

enum ServantRetentionPolicyValue {
RETAIN,
NON_RETAIN

};

local interface ServantRetentionPolicy : CORBA::Policy {
Common Object Request Broker Architecture (CORBA), v3.1.1 339

readonly attribute ServantRetentionPolicyValue value;
};

enum RequestProcessingPolicyValue {
USE_ACTIVE_OBJECT_MAP_ONLY,
USE_DEFAULT_SERVANT,
USE_SERVANT_MANAGER

};

local interface RequestProcessingPolicy : CORBA::Policy {
readonly attribute RequestProcessingPolicyValue value;

};

// POAManager interface

local interface POAManager {
exception AdapterInactive{};

enum State {HOLDING, ACTIVE, DISCARDING, INACTIVE};

void activate()
raises(AdapterInactive);

void hold_requests(
in boolean wait_for_completion)
raises(AdapterInactive);

void discard_requests(
in boolean wait_for_completion)
raises(AdapterInactive);

void deactivate(
in boolean etherealize_objects,
in boolean wait_for_completion);

State get_state();
string get_id();

};

// PoaManagerFactory

local interface POAManagerFactory {
 typedef sequence<POAManager> POAManagerSeq;

exception ManagerAlreadyExists {};

POAManager create_POAManager(
in string id,
 in CORBA::PolicyList policies

) raises(ManagerAlreadyExists, CORBA::PolicyError);

POAManagerSeq list();
POAManager find(in string id);

};
340 Common Object Request Broker Architecture (CORBA), v3.1.1

// AdapterActivator interface

local interface AdapterActivator {
boolean unknown_adapter(

in POA parent,
in string name);

};

// ServantManager interface

local interface ServantManager{ };

local interface ServantActivator : ServantManager {
Servant incarnate (

in ObjectId oid,
in POA adapter)

raises (ForwardRequest);

void etherealize (
in ObjectId oid,
in POA adapter,
in Servant serv,
in boolean cleanup_in_progress,
in boolean remaining_activations);

};

local interface ServantLocator : ServantManager {
native Cookie;
Servant preinvoke(

in ObjectId oid,
in POA adapter,
in CORBA::Identifier operation,
out Cookie the_cookie)

raises (ForwardRequest);

void postinvoke(
in ObjectId oid,
in POA adapter,
in CORBA::Identifier operation,
in Cookie the_cookie,
in Servant the_servant

);
};

// POA interface

local interface POA {
exception AdapterAlreadyExists {};
exception AdapterNonExistent {};
exception InvalidPolicy {unsigned short index;};
exception NoServant {};
Common Object Request Broker Architecture (CORBA), v3.1.1 341

exception ObjectAlreadyActive {};
exception ObjectNotActive {};
exception ServantAlreadyActive {};
exception ServantNotActive {};
exception WrongAdapter {};
exception WrongPolicy {};

// POA creation and destruction

POA create_POA(
in string adapter_name,
in POAManager a_POAManager,
in CORBA::PolicyList policies)

raises (AdapterAlreadyExists, InvalidPolicy);

POA find_POA(
in string adapter_name,
in boolean activate_it)

raises (AdapterNonExistent);

void destroy(
in boolean etherealize_objects,
in boolean wait_for_completion);

// Factories for Policy objects

ThreadPolicy create_thread_policy(
in ThreadPolicyValue value);

LifespanPolicy create_lifespan_policy(
in LifespanPolicyValue value);

IdUniquenessPolicy create_id_uniqueness_policy(
in IdUniquenessPolicyValue value);

IdAssignmentPolicy create_id_assignment_policy(
in IdAssignmentPolicyValue value);

ImplicitActivationPolicy create_implicit_activation_policy(
in ImplicitActivationPolicyValue value);

ServantRetentionPolicy create_servant_retention_policy(
in ServantRetentionPolicyValue value);

RequestProcessingPolicy create_request_processing_policy(
in RequestProcessingPolicyValue value);

// POA attributes

readonly attribute string the_name;
readonly attribute POA the_parent;
readonly attribute POAList the_children;
readonly attribute POAManager the_POAManager;
attribute AdapterActivator the_activator;

// Servant Manager registration:
342 Common Object Request Broker Architecture (CORBA), v3.1.1

ServantManager get_servant_manager()
raises (WrongPolicy);

void set_servant_manager(
in ServantManager imgr)

raises (WrongPolicy);

// operations for the USE_DEFAULT_SERVANT policy

Servant get_servant()
raises (NoServant, WrongPolicy);

void set_servant(in Servant p_servant)
raises (WrongPolicy);

// object activation and deactivation

ObjectId activate_object(
in Servant p_servant)

raises (ServantAlreadyActive, WrongPolicy);

void activate_object_with_id(
in ObjectId id,
in Servant p_servant)

raises (ServantAlreadyActive, ObjectAlreadyActive, WrongPolicy);

void deactivate_object(
in ObjectId oid)

raises (ObjectNotActive, WrongPolicy);

// reference creation operations

Object create_reference (
in CORBA::RepositoryId intf)

raises (WrongPolicy);

Object create_reference_with_id (
in ObjectId oid,
in CORBA::RepositoryId intf

);

// Identity mapping operations:

ObjectId servant_to_id(
in Servant p_servant)

raises (ServantNotActive, WrongPolicy);

Object servant_to_reference(
in Servant p_servant)

raises (ServantNotActive, WrongPolicy);
Common Object Request Broker Architecture (CORBA), v3.1.1 343

Servant reference_to_servant(
in Object reference)

raises(ObjectNotActive, WrongAdapter, WrongPolicy);

ObjectId reference_to_id(
in Object reference)

raises (WrongAdapter, WrongPolicy);

Servant id_to_servant(
in ObjectId oid)

raises (ObjectNotActive, WrongPolicy);

Object id_to_reference(in ObjectId oid)
raises (ObjectNotActive, WrongPolicy);

readonly attribute CORBA::OctetSeq id;
readonly attribute POAManagerFactory the_POAManagerFactory;

};

// Current interface

local interface Current : CORBA::Current {
exception NoContext { };

POA get_POA()
raises (NoContext);

ObjectId get_object_id()
raises (NoContext);

Object get_reference()
raises(NoContext);

Servant get_servant()
raises(NoContext);

};
};

15.5 UML Description of PortableServer

The following diagrams were generated by an automated tool and then annotated with the cardinalities of the associations.
They are intended to be an aid in comprehension to those who enjoy such representations. They are not normative.
344 Common Object Request Broker Architecture (CORBA), v3.1.1

Figure 15.1 - UML for main part of PortableServer

PortableServer::AdapterActivator
(from Portable Server)

unknown_adapter()

PortableServer::POAManager
(from Portable Server)

activate()
hold_requests()
discard_requests()
deactivate()

PortableServer::ServantManager
(from Portable Server)

PortableServer::ServantLocator
(from Portable Server)

preinvoke()
postinvoke()

PortableServer::ServantActivator
(from Portable Server)

incarnate()
etherealize()

PortableServer::Cookie
(from Portable Server)

PortableServer::Servant
(from Portable Server)

PortableServer::Current
(from Portable Server)

PortableServer::ObjectId
(from Portable Server)

CORBA::Policy
(from CORBA Core)

PortableServer::POA
(from Portable Server)

CORBA::Current
(from CORBA Core)

get_POA()
get_object_id()

policy_type : CORBA::PolicyType

copy()

destroy()

the_name : string
the_parent : PortableServer::POA

the_POAmanager : PortableServer::POAManager
the_activator : PortableServer::AdapterActivator

create_POA ()
find_POA()
destroy()
create_thread_policy()
create_lifespan_policy()
create_id_uniqueness_policy()
create_id_assignment_policy()
create_implicit_activation_policy()
create_servant_retention_policy()
create_request_processing_policy()
get_servant_manager()
set_servant_manager()
get_servant()
set_servant()
activate_object()
activate_object_with_id()
deactivate_object()
create_reference()
create_reference_with_id()
servant_to_id()
servant_to_reference()
reference_to_servant()
reference_to_id()
id_to_servant()
id_to_reference()

0..n 1

the_parent

1..1
the_POAmanager

1..n

0..n

0..n

0..1

0..1
get_state()

 the_children : PortableServer::POAList

7
enforces

*

id : CORBA::OctetSeq
 the_POAManagerFactory :

PortableServer::POAManagerFactory

1..n

the_POAmanagerFactory

1..1

PortableServer::POAManagerFactory
(from Portable Server)

create_POAManager()
list()
find()
Common Object Request Broker Architecture (CORBA), v3.1.1 345

Figure 15.2 - UML for PortableServer Policies

15.6 Usage Scenarios

This sub clause illustrates how different capabilities of the POA may be used in applications.

NOTE: In some of the following C++ examples, PortableServer names are not explicitly scoped. It is assumed that all the
examples have the C++ statement: using namespace PortableServer;

15.6.1 Getting the Root POA

All server applications must obtain a reference to the root POA, either to use it directly to manage objects, or to create
new POA objects. The following example demonstrates how the application server can obtain a reference to the root
POA.

// C++
CORBA::ORB_ptr orb = CORBA::ORB_init(argc, argv);
CORBA::Object_ptr pfobj =
orb->resolve_initial_references(“RootPOA”);
PortableServer::POA_ptr rootPOA;
rootPOA = PortableServer::POA::narrow(pfobj);

= {USE_ACTIVE_OBJECT_MAP_ONLY,
USE_DEFAULT_SERVANT,
USE_SERVANT_MANAGER}

IdAssignmentPolicy

value:IdAssignmentPolicyValue
IdUniquessPolicy

value:IdUniquenessPolicyValue

ImplicitActivationPolicy

value:ImpliciActivationPolicyValue

LifespanPolicy

value:LifespanPolicyValue
RequestProcessingPolicy

value:RequestProcessingPolicyValue

ThreadPolicy

value:ThreadPolicyValue

ServantRetentionPolicy

value:ServantRetentionPolicyValue

CORBA::Policy
(from CORBA core)

policy_type : CORBA::PolicyType

copy()
destroy()

= {RETAIN, NON_RETAIN}

= {ORB_CTRL_MODEL,
SINGLE_THREAD_MODEL,

= {IMPLICIT_ACTIVATION,
NO_IMPLICIT_ACTIVATION}= {UNIQUE_ID, MULTIPLE_ID}= {USER_ID, SYSTEM_ID}

= {TRANSIENT,
PERSISTENT}

MAIN_THREAD_MODEL}
346 Common Object Request Broker Architecture (CORBA), v3.1.1

15.6.2 Creating a POA

For a variety of reasons, a server application might want to create a new POA. The POA is created as a child of an
existing POA. In this example, it is created as a child of the root POA.

// C++
CORBA::PolicyList policies(2);
policies.length(2);
policies[0] = rootPOA->create_thread_policy(
PortableServer::ThreadPolicy::ORB_CTRL_MODEL);
policies[1] = rootPOA->create_lifespan_policy(
PortableServer::LifespanPolicy::TRANSIENT);
PortableServer::POA_ptr poa =
rootPOA->create_POA(“my_little_poa”,
PortableServer::POAManager::_nil(), policies);

15.6.3 Explicit Activation with POA-assigned Object Ids

By specifying the SYSTEM_ID policy on a POA, objects may be explicitly activated through the POA without providing
a user-specified identity value. Using this approach, objects are activated by performing the activate_object operation
on the POA with the object in question. For this operation, the POA allocates, assigns, and returns a unique identity value
for the object.

Generally this capability is most useful for transient objects, where the Object Id needs to be valid only as long as the
servant is active in the server. The Object Ids can remain completely hidden and no servant manager need be provided.
When this is the case, the identity and lifetime of the servant and the abstract object are essentially equivalent. When
POA-assigned Object Ids are used with persistent objects or objects that are activated on demand, the application must be
able to associate the generated Object Id value with its corresponding object state.

This example illustrates a simple implementation of transient objects using POA-assigned Object Ids. It presumes a POA
that has the SYSTEM_ID, USE_SERVANT_MANAGER, and RETAIN policies.

Assume this interface:

// IDL
interface Foo {

long doit();
};

This might result in the generation of the following skeleton:

class POA_Foo : public ServantBase
{

public:
...

virtual CORBA::Long doit() = 0;
}

Derive your implementation:
Common Object Request Broker Architecture (CORBA), v3.1.1 347

class MyFooServant : public POA_Foo
{

public:
MyFooServant(POA_ptr poa, Long value)
: my_poa(POA::_duplicate(poa)), my_value(value) {}
~MyFooServant() {CORBA::release(my_poa);}
virtual POA_ptr _default_POA()

{return POA::_duplicate(my_poa);}
virtual Long doit() {return my_value;}

protected:
POA_ptr my_poa;
Long my_value;

};

Now, somewhere in the program during initialization, probably in main():

MyFooServant* afoo = new MyFooServant(poa,27);
PortableServer::ObjectId_var oid =

poa->activate_object(afoo);
Foo_var foo = afoo->_this();
poa->the_POAManager()->activate();
orb->run();

This object is activated with a generated Object Id.

15.6.4 Explicit Activation with User-assigned Object Ids

An object may be explicitly activated by a server using a user-assigned identity. This may be done for several reasons. For
example, a programmer may know that certain objects are commonly used, or act as initial points of contact through
which clients access other objects (for example, factories). The server could be implemented to create and explicitly
activate these objects during initialization, avoiding the need for a servant manager.

If an implementation has a reasonably small number of servants, the server may be designed to keep them all active
continuously (as long as the server is executing). If this is the case, the implementation need not provide a servant
manager. When the server initializes, it could create all available servants, loading their state and identities from some
persistent store. The POA supports an explicit activation operation, activate_object_with_id, that associates a servant
with an Object Id. This operation would be used to activate all of the existing objects managed by the server during server
initialization. Assuming the POA has the USE_SERVANT_MANAGER policy and no servant manager is associated
with a POA, any request received by the POA for an Object Id value not present in the Active Object Map will result in
an OBJ_ADAPTER exception.

In simple cases of well-known, long-lived objects, it may be sufficient to activate them with well-known Object Id values
during server initialization, before activating the POA. This approach ensures that the objects are always available when
the POA is active, and doesn’t require writing a servant manager. It has severe practical limitations for a large number of
objects, though.

This example illustrates the explicit activation of an object using a user-chosen Object Id. This example presumes a POA
that has the USER_ID, USE_SERVANT_MANAGER, and RETAIN policies.

The code is like the previous example, but replace the last portion of the example shown above with the following code:
348 Common Object Request Broker Architecture (CORBA), v3.1.1

// C++
MyFooServant* afoo = new MyFooServant(poa, 27);
PortableServer::ObjectId_var oid =

PortableServer::string_to_ObjectId(“myLittleFoo”);
poa->activate_object_with_id(oid.in(), afoo);
Foo_var foo = afoo->_this();

15.6.5 Creating References before Activation

It is sometimes useful to create references for objects before activating them. This example extends the previous example
to illustrate this option:

// C++
PortableServer::ObjectId_var oid =
PortableServer::string_to_ObjectId(“myLittleFoo”);
CORBA::Object_var obj = poa->create_reference_with_id(

oid.in(), “IDL:Foo:1.0”);
Foo_var foo = Foo::_narrow(obj);

// ...later...
MyFooServant* afoo = new MyFooServant(poa, 27);
poa->activate_object_with_id(oid.in(), afoo);

15.6.6 Servant Manager Definition and Creation

Servant managers are object implementations, and are required to satisfy all of the requirements of object
implementations necessary for their intended function. Because servant managers are local objects, and their use is
limited to a single narrow role, some simplifications in their implementation are possible. Note that these simplifications
are suggestions, not normative requirements. They are intended as examples of ways to reduce the programming effort
required to define servant managers.

A servant manager implementation must provide the following things:

• implementation code for either

• incarnate() and etherealize(), or

• preinvoke() and postinvoke()

• implementation code for the servant operations, as for all servants

The first two are obvious; their content is dictated by the requirements of the implementation that the servant manager is
managing. For the third point, the default servant manager on the root POA already supplies this implementation code. User-
written servant managers will have to provide this themselves.

Since servant managers are objects, they themselves must be activated. It is expected that most servant managers can be
activated on the root POA with its default set of policies (see POA Creation on page 306). It is for this reason that the root
POA has the IMPLICIT_ACTIVATION policy so that a servant manager can easily be activated. Users may choose to
activate a servant manager on other POAs.

The following is an example servant manager to activate objects on demand. This example presumes a POA that has the
USER_ID, USE_SERVANT_MANAGER, and RETAIN policies.
Common Object Request Broker Architecture (CORBA), v3.1.1 349

Since RETAIN is in effect, the type of servant manager used is a ServantActivator. The ORB supplies a servant
activator skeleton class in a library:

// C++
namespace POA_PortableServer
{

class ServantActivator : public virtual ServantManager
{

public:
virtual ~ServantActivator();
virtual Servant incarnate(

const ObjectId& POA_ptr poa) = 0;
virtual void etherealize(

const ObjectId&, POA_ptr poa,
Servant, Boolean remaining_activations) = 0;

};
};

A ServantActivator servant manager might then look like:

// C++
class MyFooServantActivator : public

POA_PortableServer::ServantActivator
{

public:
// ...
Servant incarnate(

const ObjectId& oid, POA_ptr poa)
{

String_var s = PortbleServer::ObjectId_to_string
(oid);

if (strcmp(s, “myLittleFoo”) == 0) {
return new MyFooServant(poa, 27);

else {
throw CORBA::OBJECT_NOT_EXIST();

}
}

void etherealize(
const ObjectId& oid,
POA_ptr poa,
Servant servant,
Boolean remaining_activations)

{
if (remaining_activations == 0)

delete servant;
}
// ...

};
350 Common Object Request Broker Architecture (CORBA), v3.1.1

15.6.7 Object Activation on Demand

The precondition for this scenario is the existence of a client with a reference for an object with which no servant is
associated at the time the client makes a request on the reference. It is the responsibility of the ORB, in collaboration with
the POA and the server application to find or create an appropriate servant and perform the requested operation on it.
Such an object is said to be incarnated (or incarnation) when it has an active servant. Note that the client had to obtain
the reference in question previously from some source. From the client’s perspective, the abstract object exists as long as
it holds a reference, until it receives an OBJECT_NOT_EXIST system exception in a reply from an attempted request on
the object. Incarnation state does not imply existence or non-existence of the abstract object.

NOTE: This specification does not address the issues of communication or server process activation, as they are immaterial to
the POA interface and operation. It is assumed that the ORB activates the server if necessary, and can deliver the request to the
appropriate POA.

To support object activation on demand, the server application must register a servant manager with the appropriate POA.
Upon receiving the request, if the POA consults the Active Object Map and discovers that there is no active servant
associated with the target Object Id, the POA invokes the incarnate operation on the servant manager.

NOTE: An implication that this model has for GIOP is that the object key in the request message must encapsulate the Object
Id value. In addition, it may encapsulate other values as necessitated by the ORB implementation. For example, the server must
be able to determine to which POA the request should be directed. It could assign a different communication endpoint to each
POA so that the POA identity is implicit in the request, or it could use a single endpoint for the entire server and encapsulate
POA identities in object key values. Note that this is not a concrete requirement; the object key may not actually contain any
of those values. Whatever the concrete information is, the ORB and POA must be able to use it to find the servant manager,
invoke activate if necessary (that requires the actual Object Id value), and/or find the active servant in some map.

The incarnate invocation passes the Object Id value to the servant manager. At this point, the servant manager may take
any action necessary to produce a servant that it considers to be a valid incarnation of the object in question. The
operation returns the servant to the POA, which invokes the operation on it. The incarnate operation may alternatively
raise an OBJECT_NOT_EXIST system exception that will be returned to the invoking client. In this way, the user-
supplied implementation is responsible for determining object existence and non-existence.

After activation, the POA maintains the association of the servant and the Object Id in the Active Object Map. (This
example presumes the RETAIN and USE_SERVANT_MANAGER policies.)

As an obvious example of transparent activation, the Object Id value could contain a key for a record in a database that
contains the object’s state. The servant manager would retrieve the state from the database, construct a servant of the
appropriate implementation class (assuming an object-oriented programming language), initialize it with the state from
the database, and return it to the POA.

The example servant manager in the last sub clause (Servant Manager Definition and Creation on page 349) could be used
for this scenario. Recall that the POA would have the USER_ID, USE_SERVANT_MANAGER, and RETAIN policies.

Given such a ServantActivator, all that remains is initialization code such as the following.

PortableServer::ObjectId_var oid =
PortableServer::string_to_ObjectId(“myLittleFoo”);

CORBA::Object_var obj = poa->create_reference_with_id(
oid, “IDL:foo:1.0”);

MyFooServantActivator* fooIM = new MyFooServantActivator;
ServantActivator_var IMref = fooIM->_this();
Common Object Request Broker Architecture (CORBA), v3.1.1 351

poa->set_servant_manager(IMref);
poa->the_POAmanager()->activate();
orb->run();

15.6.8 Persistent Objects with POA-assigned Ids

It is possible to access the Object Id value assigned to an object by the POA, with the POA::reference_to_id operation.
If the reference is for an object managed by the POA that is the operation’s target, the operation will return the Object Id
value, whether it was assigned by the POA or the user. By doing this, an implementation may provide a servant manager
that associates the POA-allocated Object Id values with persistently stored state. It may also pass the POA-allocated
Object Id values to POA operations such as activate_object_with_id and create_reference_with_id.

A POA with the PERSISTENT policy may be destroyed and later reinstantiated in the same or a different process. A
POA with both the SYSTEM_ID and PERSISTENT policies generates Object Id values that are unique across all
instantiations of the same POA.

15.6.9 Multiple Object Ids Mapping to a Single Servant

Each POA is created with a policy that indicates whether or not servants are allowed to support multiple object identities
simultaneously. If a POA allows multiple identities per servant, the POA’s treatment of the servants is affected in the
following ways:

• Servants of the type may be explicitly activated multiple times with different identity values without raising an
exception.

• A servant cannot be mapped onto or converted to an individual object reference using that POA, since the identity is
potentially ambiguous.

15.6.10 One Servant for All Objects

By using the USE_DEFAULT_SERVANT policy, the developer can create a POA that will use a single servant to
implement all of its objects. This approach is useful when there is very little data associated with each object, so little that
the data can be encoded in the Object Id.

The following example illustrates this approach by using a single servant to incarnate all CORBA objects that export a
given interface in the context of a server. This example presumes a POA that has the USER_ID, NON_RETAIN, and
USE_DEFAULT_SERVANT policies.

Two interfaces are defined in IDL. The FileDescriptor interface is supported by objects that will encapsulate access to
operations in a file associated with a file system. Global operations in a file system, such as the ones necessary to create
FileDescriptor objects, are supported by objects that export the FileSystem interface.

// IDL
interface FileDescriptor {

typedef sequence<octet> DataBuffer;

long write (in DataBuffer buffer);
DataBuffer read (

in long num_bytes);
void destroy ();

};
352 Common Object Request Broker Architecture (CORBA), v3.1.1

interface FileSystem {
...
FileDescriptor open (

in string file_name,
in long flags);

...
};

Implementation of these two IDL interfaces may inherit from static skeleton classes generated by an IDL to C++ compiler
as follows:

// C++
class FileDescriptorImpl : public POA_FileDescriptor
{

public:
FileDescriptorImpl(POA_ptr poa);
~FileDescriptorImpl();
POA_ptr _default_POA();
CORBA::Long write(

const FileDescriptor::DataBuffer& buffer);
FileDescriptor::DataBuffer* read(

CORBA::Long num_bytes);
void destroy();

private:
POA_ptr my_poa;

};

class FileSystemImpl : public POA_FileSystem
{

public:
FileSystemImpl(POA_ptr poa);
~FileSystemImpl();
POA_ptr _default_POA();
FileDescriptor_ptr open(

const char* file_name, CORBA::Long flags);
private:

POA_ptr my_poa;
FileDescriptorImpl* fd_servant;

};

A single servant may be used to serve all requests issued to all FileDescriptor objects created by a FileSystem object.
The following fragment of code illustrates the steps to perform when a FileSystem servant is created.

// C++
FileSystemImpl::FileSystemImpl(POA_ptr poa)

: my_poa(POA::_duplicate(poa))
{

fd_servant = new FileDescriptorImpl(poa);
poa->set_servant(fd_servant);

};
Common Object Request Broker Architecture (CORBA), v3.1.1 353

The following fragment of code illustrates how FileDescriptor objects are created as a result of invoking an operation
(open) exported by a FileSystem object. First, a local file descriptor is created using the appropriate operating system
call. Then a CORBA object reference is created and returned to the client. The value of the local file descriptor will be
used to distinguish the new FileDescriptor object from other FileDescriptor objects. Note that FileDescriptor objects
in the example are transient, since they use the value of their file descriptors for their ObjectIds, and of course the file
descriptors are only valid for the life of a process.

// C++
FileDescriptor_ptr
FileSystemImpl::open(

const char* file_name, CORBA::Long flags)
{

int fd = ::open(file_name, flags);
ostrstream ostr;
ostr << fd;
PortableServer::ObjectId_var oid =
PortableServer::string_to_ObjectId(ostr.str());
Object_var obj = my_poa->create_reference_with_id(

 oid.in(),"IDL:FileDescriptor:1.0");
return FileDescriptor::_narrow(obj);

};

Any request issued to a FileDescriptor object is handled by the same servant. In the context of a method invocation, the
servant determines which particular object is being incarnated by invoking an operation that returns a reference to the
target object and, after that, invoking POA::reference_to_id. In C++, the operation used to obtain a reference to the
target object is _this(). Typically, the ObjectId value associated with the reference will be used to retrieve the state of
the target object. However, in this example, such a step is not required since the only thing that is needed is the value for
the local file descriptor and that value coincides with the ObjectId value associated with the reference.

Implementation of the read operation is rather simple. The servant determines which object it is incarnating, obtains the
local file descriptor matching its identity, performs the appropriate operating system call, and returns the result in a
DataBuffer sequence.

// C++
FileDescriptor::DataBuffer*
FileDescriptorImpl::read(CORBA::Long num_bytes)
{

FileDescriptor_var me = _this();
PortableServer::ObjectId_var oid =

my_poa->reference_to_id(me.in());
CORBA::String_var s =

PortableServer::ObjectId_to_string(oid.in());
istrstream is(s);
int fd;
is >> fd;
CORBA::Octet* buffer = DataBuffer::alloc_buf(num_bytes);
int len = ::read(fd, buffer, num_bytes);
DataBuffer* result = new DataBuffer(len, len, buffer, 1);
return result;

};
354 Common Object Request Broker Architecture (CORBA), v3.1.1

Using a single servant per interface is useful in at least two situations.

• In one case, it may be appropriate for encapsulating access to legacy APIs that are not object-oriented (system calls in
the Unix environment, as we have shown in the example).

• In another case, this technique is useful in handling scalability issues related to the number of CORBA objects that can
be associated with a server. In the example above, there may be a million FileDescriptor objects in the same server
and this would only require one entry in the ORB. Although there are operating system limitations in this respect (a
Unix server is not able to open so many local file descriptors) the important point to take into account is that usage of
CORBA doesn't introduce scalability problems but provides mechanisms to handle them.

15.6.11 Single Servant, Many Objects and Types, Using DSI

The ability to associate a single DSI servant with many CORBA objects is rather powerful in some scenarios. It can be the
basis for development of gateways to legacy systems or software that mediates with external hardware, for example.

Usage of the DSI is illustrated in the following example. This example presumes a POA that supports the USER_ID,
USE_DEFAULT_SERVANT, and RETAIN policies.

A single servant will be used to incarnate a huge number of CORBA objects, each of them representing a separate entry
in a Database. There may be several types of entries in the Database, representing different entity types in the Database
model. Each type of entry in the Database is associated with a separate interface that comprises operations supported by
the Database on entries of that type. All these interfaces inherit from the DatabaseEntry interface. Finally, an object
supporting the DatabaseAgent interface supports basic operations in the database such as creating a new entry,
destroying an existing entry, etc.

// IDL
interface DatabaseEntry {

readonly attribute string name;
};

interface Employee : DatabaseEntry {
attribute long id;
attribute long salary;

};
...

interface DatabaseAgent {
DatabaseEntry create_entry (

in string key,
in CORBA::Identifier entry_type,
in NVPairSequence initial_attribute_values

);

void destroy_entry (
in string key);
...

};

Implementation of the DatabaseEntry interface may inherit from the standard dynamic skeleton class as follows:
Common Object Request Broker Architecture (CORBA), v3.1.1 355

// C++
class DatabaseEntryImpl :

public PortableServer::DynamicImplementation
{

public:
DatabaseEntryImpl (DatabaseAccessPoint db);
virtual void invoke (ServerRequest_ptr request);
~DatabaseEntryImpl ();

virtual POA_ptr _default_POA()
{

return poa;
}

};

On the other hand, implementation of the DatabaseAgent interface may inherit from a static skeleton class generated by
an IDL to C++ compiler as follows:

// C++
class DatabaseAgentImpl :

public DatabaseAgentImplBase
{

protected:
DatabaseAccessPoint mydb;
DatabaseEntryImpl * common_servant;

public:
DatabaseAgentImpl ();
virtual DatabaseEntry_ptr create_entry (

const char * key,
const char * entry_type,
const NVPairSequence& initial_attribute_values

);
virtual void destroy_entry (const char * key);
~DatabaseAgentImpl ();

};

A single servant may be used to serve all requests issued to all DatabaseEntry objects created by a DatabaseAgent
object. The following fragment of code illustrates the steps to perform when a DatabaseAgent servant is created. First,
access to the database is initialized. As a result, some kind of descriptor (a DatabaseAccessPoint local object) used to
operate on the database is obtained. Finally, a servant will be created and associated with the POA.

// C++
void DatabaseAgentImpl::DatabaseAgentImpl ()
{

mydb = ...;
common_servant = new DatabaseEntryImpl(mydb);
poa->set_servant(common_servant);

};
356 Common Object Request Broker Architecture (CORBA), v3.1.1

The code used to create DatabaseEntry objects representing entries in the database is similar to the one used for
creating FileDescriptor objects in the example of the previous sub clause. In this case, a new entry is created in the
database and the key associated with that entry will be used to represent the identity for the corresponding
DatabaseEntry object. All requests issued to a DatabaseEntry object are handled by the same servant because
references to this type of object are associated with a common POA created with the USE_DEFAULT_SERVANT
policy.

// C++
DatabaseEntry_ptr DatabaseAgentImpl::create_entry (

const char * key,
const char * entry_type,
const NVPairSequence& initial_attribute_values)

// creates a new entry in the database:
mydb->new_entry (key, ...);

// creates a reference to the CORBA object used to
// encapsulate access to the new entry in the database.
// There is an interface for each entry type:
CORBA::Object_ptr obj = poa->create_reference_with_id(

string_to_ObjectId (key),
identifierToRepositoryId (entry_type),

);

DatabaseEntry_ptr entry = DatabaseEntry::_narrow (obj);
CORBA::release (obj);

return entry;
};

Any request issued to a DatabaseEntry object is handled by the same servant. In the context of a method invocation,
the servant determines which particular object it is incarnating, obtains the database key matching its identity, invokes the
appropriate operation in the database, and returns the result as an output parameter in the ServerRequest object.

Sometimes, a program may need to determine the type of an entry in the database in order to invoke operations on the
entry. If that is the case, the servant may obtain the type of an entry based on the interface supported by the
DatabaseEntry object encapsulating access to that entry. This interface may be obtained by means of invoking the
get_interface operation exported by the reference to the DatabaseEntry object.

// C++
void DatabaseEntryImpl::invoke (ServerRequest_ptr request)
{

CORBA::Object_ptr current_obj = _this ();

// The servant determines the key associated with
// the database entry represented by current_obj:
PortableServer::ObjectId oid =

poa->reference_to_id (current_obj);
char * key = ObjectId_to_string (oid);

// The servant handles the incoming CORBA request. This
// typically involves the following steps:
Common Object Request Broker Architecture (CORBA), v3.1.1 357

// 1. mapping the CORBA request into a database request
// using the key obtained previously
// 2. constructing output parameters to the CORBA request
// from the response to the database request

...
};

Note that in this example, we may have a billion DatabaseEntry objects in a server requiring only a single entry in map
tables supported by the POA (that is, the ORB at the server). No permanent storage is required for references to
DatabaseEntry objects at the server. Actually, references to DatabaseEntry objects will only occupy space:

• at clients, as long as those references are used; or

• at the server, only while a request is being served.

Scalability problems can be handled using this technique. There are many scenarios where this scalability causes no
penalty in terms of performance (basically, when there is no need to restore the state of an object, each time a request to
it is being served).
358 Common Object Request Broker Architecture (CORBA), v3.1.1

16 Portable Interceptors

16.1 Introduction

Portable Interceptors are hooks into the ORB through which ORB services can intercept the normal flow of execution of
the ORB. The following figures describe the programming model for which portable Interceptors were designed.

16.1.1 Object Creation

Figure 16.1 - Object Creation

Figure 16.1 shows the parts involved in the creation of an object. An object is represented by an IOR created by the POA.
A set of policies is used to create a POA which influences the set of tagged components contained within the profiles of
any IOR created by that POA. ORB services may have tagged components specific to their service, therefore they require
a means to add tagged components to an IOR. ORB services may also introduce new policies; therefore, they require a
means to create these new policies.

Requirement: Add tagged components

Satisfied by: IORInterceptor (see IOR Interceptor on page 392).

Requirement: Create policies

Satisfied by: PolicyFactory (see PolicyFactory on page 401).

Policies POA

Tagged Components IOR

create_POA

Influences
Creates

Contains

Examines
Common Object Request Broker Architecture (CORBA), v3.1.1 359

16.1.2 Client Sends Request

Figure 16.2 - Transfer Client’s Context to Request’s Service Context

Figure 16.2 shows what is needed to transfer a client’s context to the service context. Service contexts are populated from
information in a service’s Current object, from the effective policies, and from information in the tagged components on
an IOR’s profile.

The processing of a request is an integral part of the ORB. Since each ORB service potentially creates its own service
context, there must be a means by which each service can get the necessary information during request processing. Since
service contexts are defined as a unique identifier and an octet sequence containing a CDR encapsulation there must be a
portable method to create such an octet sequence.

Requirement: Intercept request processing and access necessary data.

Satisfied by: Request Interceptors (see Request Interceptors on page 363) and the PortableInterceptor::Current
(see Portable Interceptor Current on page 386).

Requirement: Convert types to octet sequences

Satisfied by: Codec (see Part 2 of this specification Codec clause, Coder/Decoder Interfaces sub clause).

Request
Tagged Components
Effective Policies
Service Current

Service Contexts

Examines

Populates
360 Common Object Request Broker Architecture (CORBA), v3.1.1

16.1.3 Server Receives Request

Figure 16.3 - Transfer Request’s Service Context to Server’s Context

On the client, the client’s context is transferred to the request’s service context. On the server, the opposite must occur:
the information in the service context is transferred to the server’s context which is then available to the server
application. Figure 16.3 shows what is necessary to accomplish this.

The requirements that exist in Client Sends Request on page 360 also exist here.

16.1.4 Server Sends Reply

Figure 16.4 - Transfer Server’s Context to Reply’s Service Context

Figure 16.4 shows what is needed to transfer a server’s context to a reply’s service context. Service contexts are populated
from information in a service’s Current object.

The requirements which exist in Client Sends Request on page 360 also exist here.

Request

Policies Service Currents

Service Contexts
Examines

Examines Updates

Service Currents

Service Contexts

Examines

Reply
Populates
Common Object Request Broker Architecture (CORBA), v3.1.1 361

16.1.5 Client Receives Reply

Figure 16.5 - View the Service Context on the Client Reply

When processing the client reply, although the client’s context cannot be updated by the reply’s service context, the
service may still wish to query the service context information.

The client’s context cannot be updated because such updates would be invalid on asynchronous calls. The client thread
may be continually changing its context and if a reply also changed the context at any time, the state of the context at any
given time would be indeterminate.

The requirements that exist in Client Sends Request on page 360 also exist here.

16.2 General Behavior of Local Objects

All local objects specified in this clause except for Interceptor and local interfaces derived from it, PolicyFactory and
ORBInitializer override the default behavior of the Object::get_orb operation and return the ORB that the portable
interceptor facility is associated with.

16.3 Interceptor Interface

Portable Interceptor interfaces and related type definitions reside in the module PortableInterceptor. All portable
Interceptors inherit from the local interface Interceptor:

module PortableInterceptor {

local interface Interceptor {
 readonly attribute string name;

void destroy();
};

};

Each Interceptor may have a name that may be used administratively to order the lists of Interceptors. Only one
Interceptor of a given name can be registered with the ORB for each Interceptor type. An Interceptor may be anonymous;
that is, have an empty string as the name attribute. Any number of anonymous Interceptors may be registered with the
ORB.

Interceptor::destroy is called during ORB::destroy. When an application calls ORB::destroy, the ORB:

1. Waits for all requests in progress to complete.

Service ContextsReply
Examines
362 Common Object Request Broker Architecture (CORBA), v3.1.1

2. Calls the Interceptor::destroy operation for each interceptor.

3. Completes destruction of the ORB.

Method invocations from within Interceptor::destroy on object references for objects implemented on the ORB being
destroyed result in undefined behavior. However, method invocations on objects implemented on an ORB other than the
one being destroyed are permitted. (This means that the ORB being destroyed is still capable of acting as a client, but not
as a server.)

16.4 Request Interceptors

A request Interceptor is designed to intercept the flow of a request/reply sequence through the ORB at specific points so
that services can query the request information and manipulate the service contexts that are propagated between clients
and servers.

The primary use of request Interceptors is to enable ORB services to transfer context information between clients and
servers.

There are two types of request Interceptors: client-side (see Client-Side Interceptor on page 365) and server-side (see
Server-Side Interceptor on page 370).

16.4.1 Design Principles

The following points are the principles followed in the design of the portable Interceptor architecture.

1. Interceptors are called on all ORB mediated invocations. The following implicit object operations may or may not be
ORB mediated: get_interface, is_a, non_existent, get_domain_managers, repository_id, and
get_component. When these are ORB mediated, Interceptors are called; when they are not ORB mediated,
Interceptors are not called.

2. A request Interceptor can affect the outcome of a request by raising a system exception at any of the interception
points. It can stop the request from even reaching the target by raising a system exception in the outbound path. It can
alter an outcome specified by the target (exception or non-exception) by raising a system exception in the inbound
path.

3. A request Interceptor can affect the outcome of a request by directing a request to a different location at any
interception point other than a successful reply. That different location might include a location not otherwise
reachable through the original request; that is, a location that might not be discovered by the ORB in the course of a
locate request.

4. A request Interceptor cannot affect a request by changing a parameter specified by the client. That is, the Interceptor
cannot modify “in” arguments.

5. A request Interceptor cannot affect a non-exception outcome by supplying the response itself. That is, the Interceptor
cannot modify “out” arguments or the return value.

6. Request Interceptors are independent of other request Interceptors. That is, a request Interceptor won’t need to know,
and won’t even be told, if there are request Interceptors executed before or after it. If a request Interceptor down the
line (executed closer to the target than this one) affects the outcome of request, this request Interceptor will not be
aware of that fact.
Common Object Request Broker Architecture (CORBA), v3.1.1 363

7. Corollary: request Interceptors can communicate between themselves to bypass this principle, but that’s outside of
the concerns of the model.

8. A request Interceptor may make object invocations itself before allowing the current request to execute.

9. There is no provision for making client implementations aware that any request Interceptor has been or will be called.
Corollary: A client and a request Interceptor can communicate between themselves to bypass this principle, but that
is outside of the concerns of the model.

10. There is no provision for making object implementations aware that any request Interceptor has been or will be called
Corollary: An object implementation and a request Interceptor can communicate between themselves to bypass this
principle, but that is outside of the concerns of the model.

11. To ensure the integrity of the effect of each request Interceptor, a set of general flow rules are specified that govern
the flow of processing through a list of interceptors. See below.

16.4.2 General Flow Rules

Both client and server request Interceptors are registered with an ORB (see Registering Interceptors on page 401). The
ORB logically maintains an ordered list of these Interceptors.

To accommodate both the client and server request Interceptors, and any future additions to the interception points list,
the following general rules apply to the flow of execution of request interception points:

• There is a set of starting interception points. One and only one of these is called on any given request/reply sequence.

• There is a set of ending interception points. One and only one of these is called on any given request/reply sequence.

• There may be any number of intermediate interception points between the start and end interception points which run
in sequence.

• On an exception, intermediate interception points may not be called.

• If and only if a starting interception point runs to completion is an ending interception point called.

See Client-Side Interception Point Flow on page 367 and Server-Side Interception Point Flow on page 372 for details of
how these general flow rules apply specifically to the client-side and server-side Interceptors.

16.4.3 The Flow Stack Visual Model

To visualize the general flow rules, think of each Interceptor as being put on a Flow Stack when a starting interception
point completes successfully. (An ORB need not implement the Flow Stack. It is presented simply as a visual cue.) An
ending interception point is called for each Interceptor in the stack. If a starting interception point is called for all
Interceptors, then all Interceptors will have an ending interception point called. If one of the Interceptors raises an
exception during the invocation of its starting interception point, only those Interceptors on the stack at that point will be
popped and have an ending interception point called.
364 Common Object Request Broker Architecture (CORBA), v3.1.1

16.4.4 The Request Interceptor Points

Each request Interceptor is called at a number of interception points. Figure 16.6 shows the flow of control for a request/
reply cycle that is subject to at least one request Interceptor. See Client-Side Interceptor on page 365 and Server-Side
Interceptor on page 370 for descriptions of each of these interception points.

Figure 16.6 - Request Interception Points

16.4.5 Client-Side Interceptor

To write a client-side Interceptor, the ClientRequestInterceptor local interface shall be implemented.

local interface ClientRequestInterceptor : Interceptor {
void send_request (in ClientRequestInfo ri)

raises (ForwardRequest);
void send_poll (in ClientRequestInfo ri);
void receive_reply (in ClientRequestInfo ri);
void receive_exception (in ClientRequestInfo ri)

raises (ForwardRequest);
void receive_other (in ClientRequestInfo ri)

raises (ForwardRequest);
};

16.4.6 Client-Side Interception Points

16.4.6.1 send_request

This interception point allows an Interceptor to query request information and modify the service context before the
request is sent to the server.

Client Servant

send_request

send_poll

receive_request_service_contexts

receive_request

send_reply

send_exception

send_other

receive_reply

receive_exception

receive_other
Common Object Request Broker Architecture (CORBA), v3.1.1 365

This interception point may raise a system exception. If it does, no other Interceptors’ send_request operations are
called. Those Interceptors on the Flow Stack are popped and their receive_exception interception points are called.

This interception point may also raise a ForwardRequest exception (see ForwardRequest Exception on page 386 for
details of this exception). If an Interceptor raises this exception, no other Interceptors’ send_request operations are
called. Those Interceptors on the Flow Stack are popped and their receive_other interception points are called.

Compliant Interceptors shall properly follow completion_status semantics if they raise a system exception from this
interception point. The completion_status shall be COMPLETED_NO.

16.4.6.2 send_poll

This interception point allows an Interceptor to query information during a Time-Independent Invocation (TII) polling get
reply sequence.

With TII, an application may poll for a response to a request sent previously by the polling client or some other client.
This poll is reported to Interceptors through the send_poll interception point and the response is returned through the
receive_reply or receive_exception interception points. If the response is not available before the poll time-out
expires, the system exception TIMEOUT is raised and receive_exception is called with this exception.

This interception point may raise a system exception. If it does, no other Interceptors’ send_poll operations are called.
Those Interceptors on the Flow Stack are popped and their receive_exception interception points are called.

Compliant Interceptors shall properly follow completion_status semantics if they raise a system exception from this
interception point. The completion_status shall be COMPLETED_NO.

16.4.6.3 receive_reply

This interception point allows an Interceptor to query the information on a reply after it is returned from the server and
before control is returned to the client.

This interception point may raise a system exception. If it does, no other Interceptors’ receive_reply operations are
called. The remaining Interceptors in the Flow Stack shall have their receive_exception interception point called.

Compliant Interceptors shall properly follow completion_status semantics if they raise a system exception from this
interception point. The completion_status shall be COMPLETED_YES.

16.4.6.4 receive_exception

When an exception occurs, this interception point is called. It allows an Interceptor to query the exception’s information
before it is raised to the client.

This interception point may raise a system exception. This has the effect of changing the exception, which successive
Interceptors popped from the Flow Stack receive on their calls to receive_exception. The exception raised to the client
will be the last exception raised by an Interceptor, or the original exception if no Interceptor changes the exception.

This interception point may also raise a ForwardRequest exception (see Section 16.4.15, “ForwardRequest Exception,”
on page 386 for details on this exception). If an Interceptor raises this exception, no other Interceptors’
receive_exception operations are called. The remaining Interceptors in the Flow Stack are popped and have their
receive_other interception point called.

If the completion_status of the exception is not COMPLETED_NO, then it is inappropriate for this interception point
to raise a ForwardRequest exception. The request’s at-most-once semantics would be lost.
366 Common Object Request Broker Architecture (CORBA), v3.1.1

Compliant Interceptors shall properly follow completion_status semantics if they raise a system exception from this
interception point. If the original exception is a system exception, the completion_status of the new exception shall be
the same as on the original. If the original exception is a user exception, then the completion_status of the new
exception shall be COMPLETED_YES.

Under some conditions, depending on what policies are in effect, an exception (such as COMM_FAILURE) may result in
a retry of the request. While this retry is a new request with respect to Interceptors, there is one point of correlation
between the original request and the retry: because control has not returned to the client, the
PortableInterceptor::Current for both the original request and the retrying request is the same (see Portable
Interceptor Current on page 386).

16.4.6.5 receive_other

This interception point allows an Interceptor to query the information available when a request results in something other
than a normal reply or an exception. For example, a request could result in a retry (for example, a GIOP Reply with a
LOCATION_FORWARD status was received); or on asynchronous calls, the reply does not immediately follow the
request, but control shall return to the client and an ending interception point shall be called.

For retries, depending on the policies in effect, a new request may or may not follow when a retry has been indicated. If
a new request does follow, while this request is a new request with respect to Interceptors, there is one point of correlation
between the original request and the retry. Because control has not returned to the client, the request scoped
PortableInterceptor::Current for both the original request and the retrying request is the same (see Portable
Interceptor Current on page 386).

This interception point may raise a system exception. If it does, no other Interceptors’ receive_other operations are
called. The remaining Interceptors in the Flow Stack are popped and have their receive_exception interception point
called.

This interception point may also raise a ForwardRequest exception (see ForwardRequest Exception on page 386 for
details on this exception). If an Interceptor raises this exception, successive Interceptors’ receive_other operations are
called with the new information provided by the ForwardRequest exception.

Compliant Interceptors shall properly follow completion_status semantics if they raise a system exception from this
interception point. The completion_status shall be COMPLETED_NO. If the target invocation had completed, this
interception point would not be called.

16.4.7 Client-Side Interception Point Flow

A ClientRequestInterceptor instance is registered with the ORB. The ORB logically maintains an ordered list of
client-side Interceptors. The Interceptor list is traversed in order on the sending interception points and in reverse order on
the receiving interception points.

16.4.7.1 Client-side Flow Rules

The client-side flow rules are derived from the general flow rules (see General Flow Rules on page 364):

• The set of starting interception points is: send_request and send_poll. One and only one of these is called on any
given request/reply sequence.

• The set of ending interception points is: receive_reply, receive_exception, receive_other. One and only one of
these is called on any given request/reply sequence.
Common Object Request Broker Architecture (CORBA), v3.1.1 367

• There are no intermediate exception points.

• If and only if send_request or send_poll runs to completion is an ending interception point called.

16.4.7.2 Additional Client-side Details

If, during request processing, a request is canceled because of an ORB shutdown, receive_exception is called with the
system exception BAD_INV_ORDER with a minor code of 4 (ORB has shutdown).

If a request is canceled for any other reason (for example, a GIOP cancel message is sent by the ORB),
receive_exception is called with the system exception TRANSIENT with a standard minor code of 2.

On oneway requests, returning control to the client may occur immediately or it may return after the target has performed
the operation, or somewhere in-between depending on the SyncScope (see sync_scope on page 377). Regardless of the
SyncScope, if there is no exception, receive_other is called before control is returned to the client.

Asynchronous requests are simply two separate requests. The first request receives no reply. The second receives a
normal reply. So the normal (no exceptions) flow is: first request - send_request followed by receive_other; second
request - send_request followed by receive_reply.

If during receive_reply the transaction contexts in the TSC and RSC do not match, then raise the system exception
BAD_INV_ORDER with standard minor code 21.

16.4.7.3 Client-side Flow Examples

Given the client-side flow rules, here are some concrete examples:

• For successful invocations: send_request is followed by receive_reply - a start point is followed by an end point.

• For retries: send_request is followed by receive_other - a start point is followed by an end point.

• For a DII deferred synchronous invocation or AMI invocation using the polling model, send_request is followed by
receive_other (when the invocation is successfully initiated) or receive_exception (if the invocation could not be
initiated).

• For successful DII polls (using Request::get_response or ORB::get_next_response) or AMI polls (using valuetypes
derived from Messaging::Poller), send_poll is followed by receive_reply - a start point is followed by an end
point.

• For DII polls (using Request::get_response or ORB::get_next_response) or AMI polls (using valuetypes derived from
Messaging::Poller), whose response is unavailable, send_poll is followed by receive_exception - a start point is
followed by an end point.

• for AMI invocations using the callback model, send_request is followed by receive_other (when the invocation
is succesfully initiated) or receive_exception (if the invocation could not be initiated). Any reply is treated as a
separate invocation on the callback handler object.

For the following exception scenarios, assume we have Interceptors A, B, and C. On the send interception points they are
called in the order A, B, C; on the receive interception points they are called in the order C, B, A.

Scenario

An exception arrives from the server:

• A.send_request is called;

• B.send_request is called;

• C.send_request is called;
368 Common Object Request Broker Architecture (CORBA), v3.1.1

• C.receive_exception is called;

• B.receive_exception is called;

• A.receive_exception is called.

In this scenario you can see that the flow for each Interceptor follows the rules. They are all: send_request followed
by receive_exception - a start point is followed by an end point.

Scenario

B.send_request raises an exception:

• A.send_request is called;

• B.send_request is called and raises an exception

• A.receive_exception is called.

In this scenario you can see that the flow for each Interceptor follows the rules:

• The flow for A is send_request followed by receive_exception - a start point is followed by an end point.

• The flow for B is send_request - a start point did not complete, so no end point was called; B raised the exception,
so there is no need to tell it that the exception occurred.

• The flow for C is non-existent since the exception occurred before any of C’s interception points was invoked - a start
point was not called, so no end point is called.

Scenario

A reply returns successfully from the server, but B.receive_reply raises an exception:

• A.send_request is called;

• B.send_request is called;

• C.send_request is called;

• C.receive_reply is called;

• B.receive_reply is called and raises an exception;

• A.receive_exception is called.

In this scenario you can see that the flow for each Interceptor follows the rules:

• The flow for A is send_request followed by receive_exception - a start point is followed by an end point.

• The flow for B is send_request followed by receive_reply - a start point is followed by an end point.

• The flow for C is send_request followed by receive_reply - a start point is followed by an end point.

The scenario for B raising an exception at receive_other is similar to the scenario where B raises an exception at
receive_reply.

Scenario

An exception X is returned by the server, but B.receive_exception changes the exception to Y:

• A.send_request is called;

• B.send_request is called;

• C.send_request is called;
Common Object Request Broker Architecture (CORBA), v3.1.1 369

• C.receive_exception is called with X;

• B.receive_exception is called with X, raises Y;

• A.receive_exception is called with Y.

In this scenario, the flow for all Interceptors is send_request followed by receive_exception - a start point followed
by an end point - Interceptor A is handed exception Y while the B and C are handed exception X.

16.4.8 Server-Side Interceptor

To write a server-side Interceptor, the ServerRequestInterceptor local interface shall be implemented.

local interface ServerRequestInterceptor : Interceptor {
void receive_request_service_contexts (in ServerRequestInfo ri)

 raises (ForwardRequest);
void receive_request (in ServerRequestInfo ri)

raises (ForwardRequest);
void send_reply (in ServerRequestInfo ri);
void send_exception (in ServerRequestInfo ri)

raises (ForwardRequest);
void send_other (in ServerRequestInfo ri) raises (ForwardRequest);

};

16.4.9 Server-Side Interception Points

16.4.9.1 receive_request_service_contexts

At this interception point, Interceptors must get their service context information from the incoming request transfer it to
PortableInterceptor::Current’s slots (see Portable Interceptor Current on page 386 for details on the relationship
between receive_request_service_contexts and PortableInterceptor::Current).

This interception point is called before the servant manager is called. Operation parameters are not yet available at this
point. This interception point may or may not execute in the same thread as the target invocation.

This interception point may raise a system exception. If it does, no other Interceptors’
receive_request_service_contexts operations are called. Those Interceptors on the Flow Stack are popped and their
send_exception interception points are called.

This interception point may also raise a ForwardRequest exception (see ForwardRequest Exception on page 386 for
details on this exception). If an Interceptor raises this exception, no other Interceptors’
receive_request_service_contexts operations are called. Those Interceptors on the Flow Stack are popped and their
send_other interception points are called.

Compliant Interceptors shall properly follow completion_status semantics if they raise a system exception from this
interception point. The completion_status shall be COMPLETED_NO.

16.4.9.2 receive_request

This interception point allows an Interceptor to query request information after all the information, including operation
parameters, are available. This interception point shall execute in the same thread as the target invocation.
370 Common Object Request Broker Architecture (CORBA), v3.1.1

In the DSI model, since the parameters are first available when the user code calls arguments, receive_request is
called from within arguments. It is possible that arguments is not called in the DSI model. The target may call
set_exception before calling arguments. The ORB shall guarantee that receive_request is called once, either
through arguments or through set_exception. If it is called through set_exception, requesting the arguments will
result in NO_RESOURCES being raised with a standard minor code of 1.

This interception point may raise a system exception. If it does, no other Interceptors’ receive_request operations are
called. Those Interceptors on the Flow Stack are popped and their send_exception interception points are called.

This interception point may also raise a ForwardRequest exception (see ForwardRequest Exception on page 386 for
details on this exception). If an Interceptor raises this exception, no other Interceptors’ receive_request operations are
called. Those Interceptors on the Flow Stack are popped and their send_other interception points are called.

Compliant Interceptors shall properly follow completion_status semantics if they raise a system exception from this
interception point. The completion_status shall be COMPLETED_NO.

16.4.9.3 send_reply

This interception point allows an Interceptor to query reply information and modify the reply service context after the
target operation has been invoked and before the reply is returned to the client. This interception point shall execute in the
same thread as the target invocation.

This interception point may raise a system exception. If it does, no other Interceptors’ send_reply operations are called.
The remaining Interceptors in the Flow Stack shall have their send_exception interception point called.

Compliant Interceptors shall properly follow completion_status semantics if they raise a system exception from this
interception point. The completion_status shall be COMPLETED_YES.

16.4.9.4 send_exception

When an exception occurs, this interception point is called. It allows an Interceptor to query the exception information
and modify the reply service context before the exception is raised to the client. This interception point shall execute in
the same thread as the target invocation.

This interception point may raise a system exception. This has the effect of changing the exception that successive
Interceptors popped from the Flow Stack receive on their calls to send_exception. The exception raised to the client
will be the last exception raised by an Interceptor, or the original exception if no Interceptor changes the exception.

This interception point may also raise a ForwardRequest exception (see ForwardRequest Exception on page 386 for
details on this exception). If an Interceptor raises this exception, no other Interceptors’ send_exception operations are
called. The remaining Interceptors in the Flow Stack shall have their send_other interception points called.

If the completion_status of the exception is not COMPLETED_NO, then it is inappropriate for this interception point
to raise a ForwardRequest exception. The request’s at-most-once semantics would be lost.

Compliant Interceptors shall properly follow completion_status semantics if they raise a system exception from this
interception point. If the original exception is a system exception, the completion_status of the new exception shall be
the same as on the original. If the original exception is a user exception, then the completion_status of the new
exception shall be COMPLETED_YES.
Common Object Request Broker Architecture (CORBA), v3.1.1 371

16.4.9.5 send_other

This interception point allows an Interceptor to query the information available when a request results in something other
than a normal reply or an exception. A request could result in a retry (for example, a GIOP Reply with a
LOCATION_FORWARD status was received). This interception point shall execute in the same thread as the target
invocation.

This interception point may raise a system exception. If it does, no other Interceptors’ send_other operations are called.
The remaining Interceptors in the Flow Stack shall have their send_exception interception points called.

This interception point may also raise a ForwardRequest exception (see ForwardRequest Exception on page 386 for
details on this exception). If an Interceptor raises this exception, successive Interceptors’ send_other operations are
called with the new information provided by the ForwardRequest exception.

Compliant Interceptors shall properly follow completion_status semantics if they raise a system exception from this
interception point. The completion_status shall be COMPLETED_NO.

16.4.10 Server-Side Interception Point Flow

A ServerRequestInterceptor instance is registered with the ORB (see Registering Interceptors on page 401). The ORB
logically maintains an ordered list of server-side Interceptors. The Interceptor list is traversed in order on the receiving
interception points and in reverse order on the sending interception points.

16.4.10.1 Server-side Flow Rules

The server-side flow rules are derived from the general flow rules (see General Flow Rules on page 364).

• The starting interception point is receive_request_service_contexts; this interception point is called on any
given request/reply sequence.

• The set of ending interception points is send_reply, send_exception, send_other. One and only one of these is
called on any given request/reply sequence.

• The intermediate interception point is receive_request, which is called after
receive_request_service_contexts and before an ending interception point.

• On an exception, receive_request may not be called.

• If and only if receive_request_service_contexts runs to completion is an ending interception point called.

16.4.10.2 Additional Server-side Details

If, during request processing, a request is canceled because of an ORB shutdown, send_exception is called with the
system exception BAD_INV_ORDER with a minor code of 4 (ORB has shutdown).

If a request is canceled for any other reason (for example, a GIOP cancel message has been received), send_exception
is called with the system exception TRANSIENT with a standard minor code of 3.

The following statement is made about the GIOP close connection message (CORBA v2.3 15-45):
“If the ORB sending the CloseConnection is a server, or bidirectional GIOP is in use, the sending ORB must not
currently be processing any Requests from the other side.”

With respect to portable Interceptors, “...processing any Requests...” means that receive_request_service_contexts
has been called on any Interceptor and no ending interception point has yet been invoked.
372 Common Object Request Broker Architecture (CORBA), v3.1.1

On oneway requests, there is no reply sent to the client; however, the target is called and the server can construct an
empty reply. Since closure is necessary, this reply is tracked and send_reply is called (unless an exception occurs, in
which case send_exception is called).

Asynchronous requests, from the server’s point of view, are just normal synchronous requests. Normal interception point
flows are followed.

If a POA and a servant locator are present, the order of their operations and interception points is:

1. ServerRequestInterceptor.receive_request_service_contexts;

2. ServantLocator.preinvoke;

3. ServerRequestInterceptor.receive_request

4. the operation

5. ServantLocator.postinvoke;

6. ServerRequestInterceptor send_reply, send_exception, or send_other.

preinvoke, the operation, and postinvoke are required to execute in the same thread (see ServantLocator Interface on
page 323). Since receive_request occurs within this chain, receive_request shall also execute in the same thread.

postinvoke executes in the same thread as preinvoke in order for postinvoke to perform any necessary closure
processing. Likewise, the sending interception points (send_reply, send_exception, or send_other) shall also
execute in the same thread.

16.4.10.3 Server-side Flow Examples

Given the server-side flow rules, here are some concrete examples.

For successful invocations, the chain of interception points, in order, is: receive_request_service_contexts,
receive_request, send_reply - a start point is followed by an intermediate point, which is followed by an end point.

For the following exception scenarios, assume we have Interceptors A, B, and C. On the receive interception points they
are called in the order A, B, C; on the send interception points they are called in the order C, B, A.

Scenario

An exception is raised by the target:

• A.receive_request_service_contexts is called;

• B.receive_request_service_contexts is called;

• C.receive_request_service_contexts is called;

• A.receive_request is called;

• B.receive_request is called;

• C.receive_request is called;

• C.send_exception is called;

• B.send_exception is called;

• A.send_exception is called.
Common Object Request Broker Architecture (CORBA), v3.1.1 373

In this scenario you can see that the flow for each Interceptor follows the rules. The chain for all is:
receive_request_service_contexts, receive_request, send_exception - a start point is followed by an
intermediate point that is followed by an end point.

Scenario

B.receive_request_service_contexts raises an exception:

• A.receive_request_service_contexts is called;

• B.receive_request_service_contexts is called and raises an exception;

• A.send_exception is called.;

In this scenario you can see that the flow for each Interceptor follows the rules:

• The flow for A is receive_request_service_contexts followed by send_exception - a start point followed by
an end point, no intermediate points are called.

• The flow for B is receive_request_service_contexts - a start point did not complete, so no end point was called;
B raised the exception, so there is no need to tell it that the exception occurred.

• The flow for C is non-existent since the exception occurred before any of C’s interception points were invoked.

Scenario

B.receive_request raises an exception:

• A.receive_request_service_contexts is called;

• B.receive_request_service_contexts is called;

• C.receive_request_service_contexts is called;

• A.receive_request is called;

• B.receive_request is called and raises an exception;

• C.send_exception is called;

• B.send_exception is called;

• A.send_exception is called.

In this scenario you can see that the flow for each Interceptor follows the rules:

• Since the receive_request_service_contexts starting point ran to completion then, no matter what happens in
intermediate points, a “terminating” interception point must be called for all interceptors.

16.4.10.4 Scenario

The target invocation returns successfully, but B.send_reply raises an exception:

• A.receive_request_service_contexts is called;

• B.receive_request_service_contexts is called;

• C.receive_request_service_contexts is called;

• A.receive_request is called;

• B.receive_request is called;

• C.receive_request is called;
374 Common Object Request Broker Architecture (CORBA), v3.1.1

• C.send_reply is called;

• B.send_reply is called and raises an exception;

• A.send_exception is called.

In this scenario you can see that the flow for each Interceptor follows the rules:

• The flow for A is: receive_request_service_contexts, receive_request, send_exception - a start point is
followed by an intermediate point that is followed by an end point.

• The flow for B is receive_request_service_contexts, receive_request, send_reply - a start point is followed
by intermediate point, which is followed by an end point.

• The flow for C is: receive_request_service_contexts, receive_request, send_reply - a start point is
followed by an intermediate point which is followed by an end point.

The scenario for B raising an exception at send_other is similar to the scenario where B raises an exception at
send_reply.

Scenario

An exception X is raised by the target, but B.send_exception changes the exception to Y:

• A.receive_request_service_contexts is called;

• B.receive_request_service_contexts is called;

• C.receive_request_service_contexts is called;

• A.receive_request is called;

• B.receive_request is called;

• C.receive_request is called;

• C.send_exception is called with X;

• B.send_exception is called with X, raises Y;

• A.send_exception is called with Y.

In this scenario, the flow for all Interceptors is receive_request_service_contexts, receive_request,
send_exception - a start point is followed by an intermediate point, which is followed by an end point; Interceptor A is
handed exception Y while the B and C are handed exception X.

16.4.11 Request Information

Each interception point is given an object through which the Interceptor can access request information. Client-side and
server-side interception points are concerned with different information, so there are two information objects:
ClientRequestInfo is passed to the client-side interception points and ServerRequestInfo is passed to the server-side
interception points. But there is information that is common to both, so they both inherit from a common interface:
RequestInfo.

16.4.12 RequestInfo Interface

local interface RequestInfo {
readonly attribute unsigned long request_id;
readonly attribute string operation;
Common Object Request Broker Architecture (CORBA), v3.1.1 375

readonly attribute Dynamic::ParameterList arguments;
readonly attribute Dynamic::ExceptionList exceptions;
readonly attribute Dynamic::ContextList contexts;
readonly attribute Dynamic::RequestContext operation_context;
readonly attribute any result;
readonly attribute boolean response_expected;
readonly attribute Messaging::SyncScope sync_scope;
readonly attribute ReplyStatus reply_status;
readonly attribute Object forward_reference;
any get_slot (in SlotId id) raises (InvalidSlot);
IOP::ServiceContext get_request_service_context (

in IOP::ServiceId id);
IOP::ServiceContext get_reply_service_context (

in IOP::ServiceId id);
};

The details of the attributes and operations on RequestInfo follow. Some of these are not valid at all interception points.
See Table 16.1 on page 380 and Table 16.2 on page 383.

16.4.12.1 request_id

This ID uniquely identifies an active request/reply sequence. Once a request/reply sequence is concluded this ID may be
reused.

Note that this id is not the same as the GIOP request_id. If GIOP is the transport mechanism used, then these IDs may
very well be the same, but this is not guaranteed nor required.

16.4.12.2 operation

This attribute is the name of the operation being invoked.

16.4.12.3 arguments

This attribute is a Dynamic::ParameterList containing the arguments on the operation being invoked (see NVList
PIDL Represented by ParameterList IDL on page 410). If there are no arguments, this attribute will be a zero length
sequence.

Not all environments provide access to the arguments. With the Java portable bindings, for example, the arguments are
not available. In these environments, when this attribute is accessed, NO_RESOURCES will be raised with a standard
minor code of 1.

16.4.12.4 exceptions

This attribute is a Dynamic::ExceptionList describing the TypeCodes of the user exceptions that this operation
invocation may raise (see ExceptionList PIDL Represented by ExceptionList IDL on page 410). If there are no user
exceptions, this attribute will be a zero length sequence.

Not all environments provide access to the exception list. With the Java portable bindings, for example, the exception list
is not available. In these environments, when this attribute is accessed, NO_RESOURCES will be raised with a standard
minor code of 1.
376 Common Object Request Broker Architecture (CORBA), v3.1.1

16.4.12.5 contexts

This attribute is a Dynamic::ContextList describing the contexts that may be passed on this operation invocation (see
ContextList PIDL Represented by ContextList IDL on page 410). If there are no contexts, this attribute will be a zero
length sequence.

Not all environments provide access to the context list. With the Java portable bindings, for example, the context list is
not available. In these environments, when this attribute is accessed, NO_RESOURCES will be raised with a standard
minor code of 1.

16.4.12.6 operation_context

This attribute is a Dynamic::RequestContext containing the contexts being sent on the request (see Context PIDL
Represented by RequestContext IDL on page 410).

Not all environments provide access to the context. With the Java portable bindings, for example, the context is not
available. In these environments, when this attribute is accessed, NO_RESOURCES will be raised with standard minor
code of 1.

16.4.12.7 result

This attribute is an any containing the result of the operation invocation.

If the operation return type is void, this attribute will be an any containing a type code with a TCKind value of tk_void
and no value.

Not all environments provide access to the result. With the Java portable bindings, for example, the result is not available.
In these environments, when this attribute is accessed, NO_RESOURCES will be raised with a standard minor code of
1.

16.4.12.8 response_expected

This boolean attribute indicates whether a response is expected.

On the client, a reply is not returned when response_expected is false, so receive_reply cannot be called.
receive_other is called unless an exception occurs, in which case receive_exception is called.

On the client, within send_poll, this attribute is true.

16.4.12.9 sync_scope

This attribute, defined in the Messaging specification, is pertinent only when response_expected is false. If
response_expected is true, the value of sync_scope is undefined. It defines how far the request shall progress
before control is returned to the client. This attribute may have one of the following values:

Messaging::SYNC_NONE
Messaging::SYNC_WITH_TRANSPORT
Messaging::SYNC_WITH_SERVER
Messaging::SYNC_WITH_TARGET

On the server, for all scopes, a reply will be created from the return of the target operation call, but the reply will not
return to the client. Although it does not return to the client, it does occur, so the normal server-side interception points
are followed; that is, receive_request_service_contexts, receive_request, send_reply, or send_exception.
Common Object Request Broker Architecture (CORBA), v3.1.1 377

For SYNC_WITH_SERVER the server does send an empty reply back to the client before the target is invoked. This
reply is not intercepted by server-side Interceptors.

16.4.12.10 reply_status

This attribute describes the state of the result of the operation invocation. Its value can be one of the following:

PortableInterceptor::SUCCESSFUL
PortableInterceptor::SYSTEM_EXCEPTION
PortableInterceptor::USER_EXCEPTION
PortableInterceptor::LOCATION_FORWARD
PortableInterceptor::TRANSPORT_RETRY
PortableInterceptor::UNKNOWN

On the client:

• Within the receive_reply interception point, this attribute will only be SUCCESSFUL.

• Within the receive_exception interception point, this attribute will be either SYSTEM_EXCEPTION or
USER_EXCEPTION.

• Within the receive_other interception point, this attribute will be any of: SUCCESSFUL,
LOCATION_FORWARD, TRANSPORT_RETRY, or UNKNOWN. SUCCESSFUL means an asychronous
request has been successfully initiated. LOCATION_FORWARD means that a reply came back with
LOCATION_FORWARD as its status. TRANSPORT_RETRY means that the transport mechanism indicated a
retry - a GIOP reply with a status of NEEDS_ADDRESSING_MODE, for instance. UNKNOWN means that the
ORB was unable to determine the correct status. This can occur for example in the Java language mapping when the
optimized path for a collocated call is used.

On the server:

• Within the send_reply interception point, this attribute will only be SUCCESSFUL.

• Within the send_exception interception point, this attribute will be either SYSTEM_EXCEPTION or
USER_EXCEPTION.

• Within the send_other interception point, this attribute will be any of: SUCCESSFUL, LOCATION_FORWARD,
or UNKNOWN. SUCCESSFUL means an asynchronous request returned successfully. LOCATION_FORWARD
means that a reply came back with LOCATION_FORWARD as its status. UNKNOWN means that the ORB was
unable to determine the correct status. This can occur for example in the Java language mapping when the
optimized path for a collocated call is used.

16.4.12.11 forward_reference

If the reply_status attribute is LOCATION_FORWARD, then this attribute will contain the object to which the request
will be forwarded. It is indeterminate whether a forwarded request will actually occur.

16.4.12.12 get_slot

This operation returns the data from the given slot of the PortableInterceptor::Current that is in the scope of the
request.

If the given slot has not been set, then an any containing a type code with a TCKind value of tk_null is returned.

If the ID does not define an allocated slot, InvalidSlot is raised.
378 Common Object Request Broker Architecture (CORBA), v3.1.1

See Portable Interceptor Current on page 386 for an explanation of slots and the PortableInterceptor::Current.

Parameter(s)

• id
The SlotId of the slot that is to be returned.

Return Value

The slot data, in the form of an any, obtained with the given identifier.

16.4.12.13 get_request_service_context

This operation returns a copy of the service context with the given ID that is associated with the request.

If the request’s service context does not contain an entry for that ID, BAD_PARAM with a standard minor code of 26 is
raised.

Parameter(s)

• id
The IOP::ServiceId of the service context that is to be returned.

Return Value

The IOP::ServiceContext obtained with the given identifier.

16.4.12.14 get_reply_service_context

This operation returns a copy of the service context with the given ID that is associated with the reply.

If the request’s service context does not contain an entry for that ID, BAD_PARAM with a standard minor code of 26 is
raised.

Parameter(s)

• id
The IOP::ServiceId of the service context that is to be returned.

Return Value

The IOP::ServiceContext obtained with the given identifier.

16.4.13 ClientRequestInfo Interface

local interface ClientRequestInfo : RequestInfo {
readonly attribute Object target;
readonly attribute Object effective_target;
readonly attribute IOP::TaggedProfile effective_profile;
readonly attribute any received_exception;
readonly attribute CORBA::RepositoryId received_exception_id;
IOR::TaggedComponent get_effective_component (

in IOP::ComponentId id);
IOP::TaggedComponentSeq get_effective_components (

in IOP::ComponentId id);
Common Object Request Broker Architecture (CORBA), v3.1.1 379

CORBA::Policy get_request_policy (in CORBA::PolicyType type);
void add_request_service_context (

in IOP::ServiceContext service_context,
in boolean replace);

};

Some attributes and operations on ClientRequestInfo are not valid at all interception points. Table 16.1 shows the
validity of each attribute or operation. If it is not valid, attempting to access it will result in a BAD_INV_ORDER being
raised with a standard minor code of 14.

Table 16.1

send_
request

send_poll receive_
reply

receive_
exception

receive_
other

request_id yes yes yes yes yes

operation yes yes yes yes yes

arguments yes1 no yes no no

exceptions yes no yes yes yes

contexts yes no yes yes yes

operation_context yes no yes yes yes

result no no yes no no

response_expected yes yes yes yes yes

sync_scope yes no yes yes yes

reply_status no no yes yes yes

forward_reference no no no no yes2

get_slot yes yes yes yes yes

get_request_service_context yes no yes yes yes

get_reply_service_context no no yes yes yes

target yes yes yes yes yes

effective_target yes yes yes yes yes

effective_profile yes yes yes yes yes

received_exception no no no yes no

received_exception_id no no no yes no

get_effective_component yes no yes yes yes

get_effective_components yes no yes yes yes

get_request_policy yes no yes yes yes

add_request_service_context yes no no no no
380 Common Object Request Broker Architecture (CORBA), v3.1.1

1 When ClientRequestInfo is passed to send_request, there is an entry in the list for every argument,
whether in, inout, or out. But only the in and inout arguments will be available.

2 If the reply_status attribute is not LOCATION_FORWARD, accessing this attribute will raise
BAD_INV_ORDER with a standard minor code of 14.

16.4.13.1 target

This attribute is the object that the client called to perform the operation. See effective_target on page 381.

16.4.13.2 effective_target

This attribute is the actual object on which the operation will be invoked. If the reply_status is
LOCATION_FORWARD, then on subsequent requests, effective_target will contain the forwarded IOR while target
will remain unchanged.

16.4.13.3 effective_profile

This attribute is the profile that will be used to send the request. If a location forward has occurred for this operation’s
object and that object’s profile changed accordingly, then this profile will be that located profile.

16.4.13.4 received_exception

This attribute is an any that contains the exception to be returned to the client.

If the exception is a user exception that cannot be inserted into an any (for example, it is unknown or the bindings don’t
provide the TypeCode), then this attribute will be an any containing the system exception UNKNOWN with a standard
minor code of 1. However, the RepositoryId of the exception is available in the received_exception_id attribute.

16.4.13.5 received_exception_id

This attribute is the CORBA::RepositoryId of the exception to be returned to the client.

16.4.13.6 get_effective_component

This operation returns the IOP::TaggedComponent with the given ID from the profile selected for this request.

If there is more than one component for a given component ID, it is undefined which component this operation returns. If
there is more than one component for a given component ID, get_effective_components should be called instead.

If no component exists for the given component ID, this operation will raise BAD_PARAM with a standard minor code
of 28.

Parameter(s)

• id
The IOP:: ComponentId of the component that is to be returned.

Return Value

The IOP::TaggedComponent obtained with the given identifier.

16.4.13.7 get_effective_components

This operation returns all the tagged components with the given ID from the profile selected for this request. This
sequence is in the form of an IOP::TaggedComponentSeq.
Common Object Request Broker Architecture (CORBA), v3.1.1 381

If no component exists for the given component ID, this operation will raise BAD_PARAM with a standard minor code
of 28.

Parameter(s)

• id
The IOP:: ComponentId of the components that are to be returned.

Return Value

The IOP::TaggedComponentSeq, each component of which contains the given identifier.

16.4.13.8 get_request_policy

This operation returns the given policy in effect for this operation.

If the policy type is not valid either because the specified type is not supported by this ORB or because a policy object of
that type is not associated with this Object, INV_POLICY with a standard minor code of 2 is raised.

Parameter(s)

• id
The CORBA::PolicyType that specifies the policy to be returned.

Return Value

The CORBA::Policy obtained with the given type.

16.4.13.9 add_request_service_context

This operation allows Interceptors to add service contexts to the request. There is no declaration of the order of the
service contexts. They may or may not appear in the order that they are added.

Parameter(s)

• service_context
The IOP::ServiceContext to be added to the request.

• replace
Indicates the behavior of this operation when a service context already exists with the given ID. If false, then
BAD_INV_ORDER with a standard minor code of 15 is raised. If true, then the existing service context is replaced
by the new one.

16.4.14 ServerRequestInfo Interface

local interface ServerRequestInfo : RequestInfo {
readonly attribute any sending_exception;
readonly attribute CORBA::OctetSeq object_id;
readonly attribute CORBA::OctetSeq adapter_id;
readonly attribute ServerId server_id ;
readonly attribute ORBId orb_id ;
readonly attribute AdapterName adapter_name;
readonly attribute CORBA::RepositoryId

target_most_derived_interface;
CORBA::Policy get_server_policy (in CORBA::PolicyType type);
382 Common Object Request Broker Architecture (CORBA), v3.1.1

void set_slot (in SlotId id, in any data) raises (InvalidSlot);
boolean target_is_a (in CORBA::RepositoryId id);
void add_reply_service_context (

in IOP::ServiceContext service_context,
in boolean replace);

};

Some attributes and operations on ServerRequestInfo are not valid at all interception points. Table 16.2 shows the
validity of each attribute or operation. If it is not valid, attempting to access it will result in a BAD_INV_ORDER being
raised with a standard minor code of 14.

Table 16.2

receive_request_
service_contexts

receive_
request

send_reply send_
exception

send_
other

request_id yes yes yes yes yes

operation yes yes yes yes yes

arguments no yes1 yes no2 no2

exceptions no yes yes yes yes

contexts no yes yes yes yes

operation_context no yes yes no no

result no no yes no no

response_expected yes yes yes yes yes

sync_scope yes yes yes yes yes

reply_status no no yes yes yes

forward_reference no no no no yes2

get_slot yes yes yes yes yes

get_request_service_context yes yes yes yes yes

get_reply_service_context no no yes yes yes

sending_exception no no no yes no

object_id no yes yes yes3 yes3

adapter_id no yes yes yes3 yes3

server_id no yes yes yes yes

orb_id no yes yes yes yes

adapter_name no yes yes yes yes

target_most_derived_interface no yes no4 no4 no4

get_server_policy yes yes yes yes yes
Common Object Request Broker Architecture (CORBA), v3.1.1 383

1 When ServerRequestInfo is passed to receive_request, there is an entry in the list for every argument, whether in, inout, or
 out. But only the in and inout arguments will be available.

2 If the reply_status attribute is not LOCATION_FORWARD, accessing this attribute will raise BAD_INV_ORDER with a
standard minor code of 14.

3 If the servant locator caused a location forward, or raised an exception, this attribute/operation may not be available in this
interception point. NO_RESOURCES with a standard minor code of 1 will be raised if it is not available.

4 The operation is not available in this interception point because the necessary information requires access to the target object's
servant, which may no longer be available to the ORB. For example, if the object's adapter is a POA that uses a ServantLocator,
then the ORB invokes the interception point after it calls ServantLocator::postinvoke().

16.4.14.1 sending_exception

This attribute is an any that contains the exception to be returned to the client.

If the exception is a user exception that cannot be inserted into an any (for example, it is unknown or the bindings don’t
provide the TypeCode), then this attribute will be an any containing the system exception UNKNOWN with a standard
minor code of 1.

16.4.14.2 object_id

This attribute is the opaque object_id describing the target of the operation invocation.

16.4.14.3 adapter_id

This attribute is the opaque identifier for the object adapter.

16.4.14.4 server_id

The value of the server_id attribute is the value that was passed into the ORB::init call (see Server ID on page 117)
using the -ORBServerId argument when the ORB was created.

16.4.14.5 orb_id

The value of the orb_id attribute is the value that was passed into the ORB::init call.

In Java, this is accomplished using the -ORBid argument in the ORB.init call that created the ORB containing the
object adapter that created this template. What happens if the same ORBid is used on multiple ORB::init calls in the
same server is currently undefined.

set_slot yes yes yes yes yes

target_is_a no yes no4 no4 no4

add_reply_service_context yes yes yes yes yes

Table 16.2

receive_request_
service_contexts

receive_
request

send_reply send_
exception

send_
other
384 Common Object Request Broker Architecture (CORBA), v3.1.1

16.4.14.6 adapter_name

The adapter_name attribute defines a name for the object adapter that services requests for the invoked object. In the
case of the POA, the adapter_name is the sequence of names from the root POA to the POA that services the request. The
name of the root POA is the sequence containing only the string “RootPOA.”

16.4.14.7 target_most_derived_interface

This attribute is the RepositoryID for the most derived interface of the servant.

16.4.14.8 get_server_policy

This operation returns the policy in effect for this operation for the given policy type. The returned CORBA::Policy
object shall only be a policy whose type was registered via register_policy_factory (see register_policy_factory on
page 406).

If a policy for the given type was not registered via register_policy_factory, this operation will raise INV_POLICY
with a standard minor code of 3.

Parameter(s)

• type
The CORBA::PolicyType that specifies the policy to be returned.

Return Value

The CORBA::Policy obtained with the given policy type.

16.4.14.9 set_slot

This operation allows an Interceptor to set a slot in the PortableInterceptor::Current that is in the scope of the request.
If data already exists in that slot, it will be overwritten.

If the ID does not define an allocated slot, InvalidSlot is raised.

See Portable Interceptor Current on page 386 for an explanation of slots and PortableInterceptor::Current.

Parameter(s)

• id
The SlotId of the slot.

• data
the data, in the form of an any, to store in that slot.

16.4.14.10 target_is_a

This operation returns true if the servant is the given RepositoryId, false if it is not.

Parameter(s)

• id
The caller wants to know if the servant is this CORBA::RepositoryId.

Return Value

Is the servant the given RepositoryId?
Common Object Request Broker Architecture (CORBA), v3.1.1 385

16.4.14.11 add_reply_service_context

This operation allows Interceptors to add service contexts to the request. There is no declaration of the order of the
service contexts. They may or may not appear in the order that they are added.

Parameter(s)

• service_context
The IOP::ServiceContext to add to the reply.

• replace
Indicates the behavior of this operation when a service context already exists with the given ID. If false, then
BAD_INV_ORDER with a standard minor code of 11 is raised. If true, then the existing service context is replaced
by the new one

16.4.15 ForwardRequest Exception

exception ForwardRequest {
Object forward;

};

The ForwardRequest exception is the means by which an Interceptor can indicate to the ORB that a retry of the request
should occur with the new object given in the exception. This behavior of causing a retry only occurs if the ORB receives
a ForwardRequest from an interceptor. If ForwardRequest is raised anywhere else, it is passed through the ORB as is
normal for a user exception.

If an Interceptor raises a ForwardRequest exception in response to a call of an interceptor, no other Interceptors are
called for that interception point. The remaining Interceptors in the Flow Stack shall have their appropriate ending
interception point called: receive_other on the client, or send_other on the server. The reply_status in the
receive_other or send_other shall be LOCATION_FORWARD.

16.5 Portable Interceptor Current

16.5.1 Overview

The PortableInterceptor::Current object (hereafter referred to as PICurrent) is a Current object that is used
specifically by portable Interceptors to transfer thread context information to a request context. Portable Interceptors are
not required to use PICurrent. But if information from a client’s thread context is required at an Interceptor’s
interception points, then PICurrent can be used to propagate that information. PICurrent allows portable service code to
be written regardless of an ORB’s threading model.

On the client side, this information includes, but is not limited to, thread context information that shall be propagated to
the server via a service context.

On the server side, this information includes, but is not limited to, service context information received from the client
which is propagated to the target’s thread context.

16.5.2 Obtaining the Portable Interceptor Current

Before an invocation is made, PICurrent is obtained via a call to ORB::resolve_initial_references (“PICurrent”).
386 Common Object Request Broker Architecture (CORBA), v3.1.1

From within the interception points, the data on PICurrent that has moved from the thread scope to the request scope is
available via the get_slot operation on the RequestInfo object. A PICurrent can still be obtained via
resolve_initial_references, but that is the Interceptor’s thread scope PICurrent. See Request Scope vs Thread
Scope on page 390 for a detailed discussion of the scope of PICurrent.

16.5.3 Portable Interceptor Current Interface

module PortableInterceptor {

typedef unsigned long SlotId;

exception InvalidSlot {};

local interface Current : CORBA::Current {

any get_slot (in SlotId id) raises (InvalidSlot);
void set_slot (in SlotId id, in any data) raises (InvalidSlot);

};
};

PICurrent is merely a slot table, the slots of which are used by each service to transfer their context data between their
context and the request’s or reply’s service context. Each service that wishes to use PICurrent reserves a slot or slots at
initialization time (see allocate_slot_id on page 406) and uses those slots during the processing of requests and replies.

16.5.3.1 get_slot

A service can get the slot data it set in PICurrent via get_slot. The data is in the form of an any.

• If the given slot has not been set, an any containing a type code with a TCKind value of tk_null and no value is
returned.

• If get_slot is called on a slot that has not been allocated, InvalidSlot is raised.

• If get_slot is called from within an ORB initializer (see Registering Interceptors on page 401), BAD_INV_ORDER
with a minor code of 10 shall be raised

Parameter(s)

• id
The SlotId of the slot from which the data will be returned

Return Value

The data, in the form of an any, of the given slot identifier.

16.5.3.2 set_slot

A service sets data in a slot with set_slot. The data shall be in the form of an any.

• If data already exists in that slot, it is overridden.

• If set_slot is called on a slot that has not been allocated, InvalidSlot is raised

• If set_slot is called from within an ORB initializer (see Registering Interceptors on page 401), BAD_INV_ORDER
with a minor code of 10 shall be raised.
Common Object Request Broker Architecture (CORBA), v3.1.1 387

Parameter(s)

• id
The SlotId of the slot to which the data will be set.

• data
The data, in the form of an any, which will be set to the identified slot.

16.5.4 Use of Portable Interceptor Current

16.5.4.1 Client-side use of PICurrent

PICurrent is merely a slot table. Before a request, a service’s Current can store its context specific data into a slot in
PICurrent. When a request begins, PICurrent’s context transitions from a thread context to a request context. (That is,
the ORB logically makes a copy of the current PICurrent and places that copy on the request. Note that this could be a
lazy copy. A copy would only be necessary if PICurrent were modified. Since a copy may never actually be made, the
term “logical copy” is used in this sub clause.) Each service’s Interceptor now has access to the data that its Current put
into PICurrent’s slot table. In other words, each service’s Interceptor now has access to the data within the calling
client’s thread context even though the request processing may be in a different thread.

For example, see the following pseudo-code. Within its ORBInitializer (see ORBInitializer Interface on page 401), the
transaction service allocates a slot:

PortableInterceptor::SlotId mySlotId =
orb_init_info.allocate_slot_id ();

When a transaction begins, the Transaction’s Current is called, which can place its context information in a slot on
PICurrent:

any myData = ...; // get data from Transaction’s Current
PortableInterceptor::Current pic =

orb.resolve_initial_references (“PICurrent”);
pic.set_slot (mySlotId, myData);

When an operation invocation begins, the ORB logically copies PICurrent from the thread context to the request context
and the slots are available to Interceptors via the ClientRequestInfo object. So the transaction service’s Interceptor
could look like:

any myData = info.get_slot (mySlotId);
IOP::ServiceContext sc = ...;// convert myData to a SC
info.add_request_service_context (sc);

The request scope PICurrent slots are read-only on the client. There is no set_slot on the ClientRequestInfo object.

16.5.4.2 Example of PICurrent to Handle Client-side Recursion

If an Interceptor itself makes an operation invocation, it shall have some means of breaking infinite recursion. For
example: the client calls operation X; send_request is called, which calls operation Y; send_request is called, which
again calls operation Y; and so on unless the implementation of send_request breaks the recursion.

Recursion can be broken using PICurrent. If an Interceptor knows it will recurse, it allocates a slot in PICurrent in its
ORBInitializer (see ORBInitializer Interface on page 401) that it will use for recursion:
388 Common Object Request Broker Architecture (CORBA), v3.1.1

PortableInterceptor::SlotId recurseId =
orb_init_info.allocate_slot_id ();

At the point at which it recurses, say in send_request, it does so in a manner similar to the following:

any recurse = info.get_slot (recurseId);

// if we haven’t yet recursed, then the slot will be empty.
if (recurse.type () == tk_null)
{

// Fill in the recurse slot before making
// the recursive call.
any recurseFlag = new any;
recurseFlag.insert_boolean (true);
PortableInterceptor::Current pic =

orb.resolve_initial_references (“PICurrent”);
pic.set_slot (recurseId, recurseFlag);
// Now make the recursive call.
someObject.someOperation ();

}

When a client calls operation X, send_request is invoked for operation X. The recurse slot is empty, so the if block is
executed: the recurse slot is set to true for this thread’s PICurrent and the recursive call to someOperation is made.
send_request is again invoked, this time for someOperation. This time the recurse slot is not empty, so the if block
is not executed and the recursive call is not made, thus breaking the recursion.

16.5.4.3 Server-side use of PICurrent

The service contexts associated with the request may be propagated, using PICurrent, to the context of the thread that
will execute the operation. The request’s PICurrent is read and written via the get_slot and set_slot operations on
ServerRequestInfo.

receive_request_service_contexts shall populate the slots of the request scope PICurrent. The ORB logically
copies this PICurrent to the thread scope after processing the receive_request_service_contexts list.

When the operation invocation completes, the send interception points still have read/write access to the request scope
PICurrent.

For example, within its ORBInitializer (see ORBInitializer Interface on page 401), the transaction service allocates a
slot:

PortableInterceptor::SlotId mySlotId =
orb_init_info.allocate_slot_id ();

The Transaction Interceptor can move the transaction information from the service context list to PICurrent:

IOP::ServiceContext sc =
info.get_request_service_context (transactionId);

any myData = // convert SC to an any
info.set_slot (mySlotId, myData);

Within a server thread, the Transaction service can transfer its information from PICurrent to the TransactionCurrent:
Common Object Request Broker Architecture (CORBA), v3.1.1 389

PortableInterceptor::Current pic =
orb.resolve_initial_references (“PICurrent”);

any myData = pic.get_slot (mySlotId);
// Copy myData into the current context.

16.5.4.4 Request Scope vs Thread Scope

The thread scope PICurrent is the PICurrent that exists within a thread’s context. A request scope PICurrent is the
PICurrent associated with the request. On the client-side, the thread scope PICurrent is logically copied to the request
scope PICurrent from the thread’s context when a request begins and is attached to the ClientRequestInfo object. On
the server-side, the request scope PICurrent is attached to the ServerRequestInfo and follows the request processing.
It is logically copied to the thread scope PICurrent after the list of receive_request_service_contexts interception
points are processed.

16.5.4.5 Flow of PICurrent between Scopes

For the following, TSC means Thread Scope PICurrent; and RSC means Request Scope PICurrent. Refer to Figure 16.1
on page 391 for a graphical representation of the following discussion. The numbered points below correspond to the
numbers in Figure 16.1.

Before operation invocation, the client thread may read and write the TSC. On a synchronous operation invocation, the
flow proceeds as follows:

1. The invocation proceeds to the ORB.

2. Before the sending interception points are called, a TSC is logically copied to the request scope.

3. The sending interception points are called. They have read-only access to this RSC. They may add entries to the
service context list based on the slot data in the RSC.

4. On the server, an empty RSC is created. Interceptors shall populate this RSC from the service context list in
receive_request_service_contexts.

5. The ORB logically copies the RSC to the server-side TSC after the receive_request_service_contexts points
are processed and before the servant manager is called. This TSC is within the context for the receive_request
points, the invocation of the servant manager, and the invocation of the target operation. The receive_request
points may modify the RSC, but this no longer affects the TSC. The receive_request points are called. These
points have access to the RSC - though modifying the RSC at this point has no affect on the TSC. Since these points
execute in the same thread as the target operation invocation, these points may modify the server-side TSC.

6. After the receive_request points are called, control transfers to the server threads that may also read and write this
server-side TSC.

7. The target operation invocation completes and control returns to the ORB.

8. The TSC from the thread on which the ORB invoked the target operation is copied back to the RSC, overwriting the
slots in the RSC.

9. The send interception points have access to this RSC from which they may populate the reply service context list.
After the invocation result is sent back to the client, the server-side RSC is logically destroyed.

10. The client receives the reply. The Interceptors may read the service contexts associated with the reply. They also
have readonly access to the RSC was seen by the send interception points.
390 Common Object Request Broker Architecture (CORBA), v3.1.1

11. The invocation returns to the client. When the request completes, the client-side RSC is logically destroyed.

Figure 16.1 - Thread Scope vs Request Scope

Figure 16.1 Legend

Dotted Line Flow of control (between the thread scopes and the request scopes, the dotted arrows
indicate a logical copy).

Solid Line Access; single arrow is readonly, double arrow is read/write.

Thick Dotted Line Boundary between client and server.

16.5.4.6 Notes on PICurrent and Scopes

Since an Interceptor is running in a thread, it is running with a thread context and there is a PICurrent on that context. If
the Interceptor calls ORB::resolve_initial_references (“PICurrent”), it gets the PICurrent within its thread scope.
This PICurrent is different than the request scope PICurrent that the Interceptor obtains via calls to the Client- or
Server- RequestInfo object. So if an Interceptor makes an operation call, it is the Interceptor’s thread scope PICurrent
that will be logically copied to the request scope of that operation, not the PICurrent from the original operation
invocation.

Even if a client-side Interceptor happens to be running in the same thread from which the invocation was made (this is
vendor dependent), the request scope PICurrent and the thread scope PICurrent are still different. The request scope
PICurrent is a copy of the thread scope PICurrent at the point when the invocation began. So even if an Interceptor
changed the data in its thread scope PICurrent, that does not change the request scope PICurrent.

PICurrent

slots

Thread Scope

Request
 Scope

Client

send

receive

PICurrent

slots

Thread Scope

 Request
 Scope

Server

receive

send

Service
Context

Service
Context

Send
Interception
Points

Receive
Interception
Points

Send
Interception
Points

Application
Threads

Threadsreceive_
request_
service_
context

receive_
request

slots

PICurrent

1

2

3

4
5

7

8

9

6
6

1011
Common Object Request Broker Architecture (CORBA), v3.1.1 391

Interceptors shall assume that each client-side interception point logically runs in its own TSC thread, with no context
relationship between it and any other thread. Each point's logical TSC thread is shared by all registered
ClientRequestInterceptors executing in that point. While an ORB implementation may not actually behave in this
manner, it is up to the ORB implementation to treat PICurrent as if it did.

Interceptors shall assume that all server-side interception points except receive_request_service_contexts run in the
same thread as the target operation invocation, thereby sharing thread context information.
receive_request_service_contexts, like all client-side interception points, logically runs in its own TSC thread, with
no context relationship between it and any other thread. The receive_request_service_contexts interception point
logical TSC thread is shared by all registered ServerRequestInterceptors executing in that point. While an ORB
implementation may not actually behave in this manner, it is up to the ORB implementation to treat PICurrent as if it
did.

16.6 IOR Interceptor

16.6.1 Overview

In some cases, a portable ORB service implementation may need to add information describing the server’s or object’s
ORB service related capabilities to object references in order to enable the ORB service implementation in the client to
function properly.

This is supported through the IORInterceptor and IORInfo interfaces.

The IOR Interceptor is used to establish tagged components in the profiles within an IOR.

16.6.2 An Abstract Model for Object Adapters

Using the IORInterceptor to support the object reference template imposes certain requirements on Object Adapters.
While the POA is the only (current) standard object adapter, it is deemed inappropriate to impose the POA architecture
on all possible proprietary object adapters. Consequently only the abstract properties that are required, and how these map
to the particular case of the POA, are presented here.

Object Adapters have the following requirements:

• They have a unique name so that different instances of a particular object adapter may be identified.

• Object adapters typically have some kind of request processing state to indicate whether the adapter is currently
accepting, rejecting, or performing some other kind of action on incoming requests. There is some representation of
adapter instance state so that a server activation framework built on the object reference template can correctly process
requests as the adapter instances states change.

• If an object adapter supports large numbers of adapter instances, reporting state changes that affect a number of adapter
instances simultaneously could be expensive in the amount of data required. The POA has the concept of an adapter
manager (the POAManager) that controls the state of a number of POA instances. They must have an abstract
adapter manager that can be used for reporting relevant state changes.

16.6.2.1 Adapter Names

If an Object Adapter supports multiple adapter instances, there is a need for some kind of adapter name to distinguish the
instances. For this purpose, an adapter name is defined as a sequence of strings. Several interpretations of an adapter
name are possible:
392 Common Object Request Broker Architecture (CORBA), v3.1.1

• If the Object Adapter supports only a single instance, a fixed name can be used.

• If the namespace for an Object Adapter is flat, sequences of length 1 can be used.

• If the namespace is hierarchical (e.g., the POA), a more complex name sequence can be used.

In the case of the POA, the adapter name shall be the sequence of names starting with the root POA that is required to
reach the POA using the find_POA call. The name of the root POA is the sequence containing only the string
“RootPOA.”

16.6.2.2 Adapter States

Object adapters may be in one of several states that describe how the adapter behaves when a new request is dispatched
to the adapter:

In the case of the POA, HOLDING, ACTIVE, DISCARDING, and INACTIVE map to the same named states of the
POAManager. NON_EXISTENT does not map directly to a particular POAManager state, but is used to indicate that a
POA has been destroyed. A POA whose state is INACTIVE will transition to state NON_EXISTENT after the
destruction process has completed.

• While non-POA adapters may have different detailed states than the POA, it should be possible to map other adapter’s
states onto a subset of the above states.

16.6.2.3 Adapter Managers

Some object adapters have a concept of a group of adapters that undergo state transitions together. In such cases it is
useful to capture the grouping abstractly. We define the adapter manager to represent this grouping. The only standard
attribute of the adapter manager is the adapter manager id, which is an opaque id. This ID serves to distinguish different
adapter manager instances, and to associate an adapter manager instance with its adapter instances. The adapter manager
id is only locally significant within the ORB instance that defines the adapter manager. The id is transient, and can be
compared for equality within the defining ORB instance. All adapter instances that share the same adapter manager must
have the same adapter manager id.

HOLDING The request is held off temporarily in response to a transient resource limit or a application program
request. An IMR could either choose to forward the request to the server and let the server hold it
off, or else to hold off the request at the IMR until the state changes.

ACTIVE The request is dispatched to the servant and processed. An IMR should forward the request to the
server in this case.

DISCARDING The request is discarded. This is indicated to the client with some kind of error. An IMR could either
forward the request to the server, or else reject the request directly. The POA specification requires
that a TRANSIENT/1 system exception be returned to the client in this case.

INACTIVE The request is discarded. The adapter is in the process of shutting down, and will eventually end up
in the NON_EXISTENT state. An IMR could reject the request directly, typically with an
OBJ_ADAPTER/1 error.

NON_EXISTENT The adapter has been destroyed. The IMR should attempt to reactivate the server and adapter as
necessary to satisfy the request. The IMR should hold off the request until the adapter becomes
active again.
Common Object Request Broker Architecture (CORBA), v3.1.1 393

Use of an adapter manager allows state transitions for all adapters managed by the same adapter manager to be efficiently
reported. The only assumption made about the semantics of an adapter manager is that a state change reported for an
adapter manager is reflected in all adapter instances managed by the adapter manager.

In the case of the POA, the POAManager is an adapter manager.

16.6.2.4 Adapter State Changes

Some adapters may support mechanisms independent of the adapter manager for changing states. In such cases, a means
needs to be provided for reporting the state changes.

In the case of the POA, a subtree of POAs may all transition to the NON_EXISTENT state as a result of the
POA::destroy call.

16.6.3 Object Reference Template

16.6.3.1 Definition

The Object Reference Template is defined in IDL as an abstract valuetype.

An object reference template is associated with an object adapter. Typically the template is created when the object
adapter is created, used within the adapter to create object references, and destroyed when the adapter is destroyed.
Different adapters may support very different styles of object creation.

The object reference template is defined as follows:

module PortableInterceptor {
typedef string ServerId ;
typedef string ORBId ;
typedef CORBA::StringSeq AdapterName ;
typedef CORBA::OctetSeq ObjectId ;

abstract valuetype ObjectReferenceFactory {
boolean equals(in ObjectReferenceFactory other) ;
Object make_object(in string repositoryId, in ObjectId id) ;
IOP::TaggedProfileSeq make_profiles(

in string repository_id,
in ObjectId id) ;

};

abstract valuetype ObjectReferenceTemplate :
ObjectReferenceFactory {
readonly attribute ServerId server_id ;
readonly attribute ORBId orb_id ;
readonly attribute AdapterName adapter_name;

};

typedef sequence<ObjectReferenceTemplate>
ObjectReferenceTemplateSeq;

};
394 Common Object Request Broker Architecture (CORBA), v3.1.1

The ObjectReferenceFactory valuetype provides the capability to create new object references, while the
ObjectReferenceTemplate valuetype extends the factory capability with the identity of the template. This division is
convenient because the current_factory attribute in IORInfo (see IORInfo Interface on page 397) only requires the
capability to create an object reference, while the adapter_template attribute (also in IORInfo Interface on page 397)
also requires identity information.

Concrete definitions and implementations of ObjectReferenceTemplate and ObjectReferenceFactory are ORB
implementation specific and are not defined as they are not expected to be exchanged between ORB implementations.

16.6.3.2 The ObjectReferenceFactory abstract valuetype

The ObjectReferenceFactory provides only the capability to create an object reference. Note that a factory is
immutable: after it has been created, it cannot be modified.

Also, note that it is possible to create a concrete valuetype (unknown to the ORB implementation) that subclasses the
ObjectReferenceFactory valuetype, and to use this factory in the IOR interceptor as current_factory (see
current_factory on page 399). In such cases, the implementation must either be immutable after it is created, or the
implementation must not change the behavior of make_object. Failure to observe this requirement may result in
undefined behavior.

16.6.3.3 make_object

make_object creates an Object Reference from this factory using the given repository ID and object ID.

16.6.3.4 make_profiles

make_profiles returns the sequence of tagged profiles for the IOR that corresponds to the object reference that would be
created by a call to make_object with the same arguments.

16.6.3.5 equals

equals satisfies the usual reflexive, symmetric, and transitive properties that equality normally respects. That is, for any
ObjectReferenceFactories X, Y, and Z:

1. X.equals(X) = TRUE

2. X.equals(Y) = Y.equals(X)

3. if X.equals(Y) = TRUE and Y.equals(Z) = TRUE, then X.equals(Z) = TRUE

If X and Y are different object adapters, and Xinfo and Yinfo are the IORInfo objects passed to the IORInterceptor,
then Xinfo.adapter_template().equals(Yinfo.adapter_template()) = FALSE.

An equals method on a user defined ObjectReferenceFactory must return FALSE when passed the value of an
IORInfo.adapter_template attribute, unless the user defined make_profiles method returns the same ProfileSeq as
the adapter_template make_profiles method when invoked with the same arguments, in which case the user defined
ObjectReferenceFactory equals method may return TRUE.

16.6.3.6 The ObjectReferenceTemplate abstract valuetype

The ObjectReferenceTemplate extends the ObjectReferenceFactory with the identity of the object adapter. Note
that the template, like the factory, is immutable: after it has been created, it cannot be modified.
Common Object Request Broker Architecture (CORBA), v3.1.1 395

16.6.3.7 server_id

The value of the server_id attribute is the value that was passed into the ORB::init call (see Server ID on page 117)
using the -ORBServerId argument when the ORB was created.

16.6.3.8 orb_id

The value of the orb_id attribute is the value that was passed into the ORB::init call.

In Java, this is accomplished using the -ORBid argument in the ORB.init call that created the ORB containing the
object adapter that created this template. What happens if the same ORBid is used on multiple ORB::init calls in the
same server is currently undefined.

16.6.3.9 adapter_name

The adapter_name attribute defines a name for the object adapter that services requests for the invoked object.

16.6.4 IORInterceptor Interface

local interface IORInterceptor : Interceptor {
void establish_components (in IORInfo info);

};

local interface IORInterceptor_3_0 : IORInterceptor {
void components_established(in IORInfo info) ;

void adapter_manager_state_changed(in AdapterManagerId id,
in AdapterState state);

void adapter_state_changed(in ObjectReferenceTemplateSeq
templates, in AdapterState state) ;

};

16.6.4.1 establish_components

A server side ORB calls the establish_components operation on all registered IORInterceptor instances when it is
assembling the list of components that will be included in the profile or profiles of an object reference. This operation is
not necessarily called for each individual object reference. In the case of the POA, these calls are made each time
POA::create_POA is called. In other adapters, these calls would typically be made when the adapter is initialized. The
adapter template is not available at this stage since information (the components) needed in the adapter template is being
constructed.

An implementation of establish_components must not throw exceptions. If it does, the ORB shall ignore the
exception and proceed to call the next IOR Interceptor’s establish_components operation.

Parameter(s)

• info
The IORInfo instance used by the ORB service to query applicable policies and add components to be included
in the generated IORs.
396 Common Object Request Broker Architecture (CORBA), v3.1.1

16.6.4.2 components_established

After all of the establish_components methods have been called, the components_established methods are called
on all registered IORInterceptor_3_0 instances. The adapter template is available at this stage. The current_factory
attribute may be get or set at this stage.

Any exception that occurs in components_established is returned to the caller of components_established. In the
case of the POA, this causes the create_POA call to fail, and an OBJ_ADAPTER exception with a standard minor code
of 6 is returned to the invoker of create_POA.

16.6.4.3 adapter_manager_state_changed

Any time the state of an adapter manager changes, the adapter_manager_state_changed method is invoked on all
registered IORInterceptor_3_0 instances.

If a state change is reported through adapter_manager_state_changed, it is not reported through
adapter_state_changed.

16.6.4.4 adapter_state_changed

Adapter state changes unrelated to adapter manager state changes are reported by invoking the adapter_state_changed
method on all registered IORInterceptor_3_0 instances. The templates argument identifies the object adapters that have
changed state by the template ID information. The sequence contains the adapter templates for all object adapters that
have made the state transition being reported.

16.6.5 IORInfo Interface

The IORInfo interface provides the server-side ORB service with access to the applicable policies during IOR
construction and the ability to add components. The ORB passes an instance of its implementation of this interface as a
parameter to IORInterceptor::establish_components.

typedef string AdapterManagerId;

typedef short AdapterState ;
const AdapterState HOLDING = 0 ;
const AdapterState ACTIVE = 1 ;
const AdapterState DISCARDING = 2 ;
const AdapterState INACTIVE = 3 ;
const AdapterState NON_EXISTENT = 4 ;

local interface IORInfo {
CORBA::Policy get_effective_policy (in CORBA::PolicyType type);
void add_ior_component

(in IOP::TaggedComponent a_component);
void add_ior_component_to_profile (

in IOP::TaggedComponent a_component,
in IOP::ProfileId profile_id);

readonly attribute AdapterManagerId manager_id;
readonly attribute AdapterState state;
readonly attribute ObjectReferenceTemplate adapter_template ;
attribute ObjectReferenceFactory current_factory ;

};
Common Object Request Broker Architecture (CORBA), v3.1.1 397

All object adapter implementations provide some mechanism for creating object references. The construction of the object
reference is influenced by all of the applicable server-side policies, which are used while assembling the tagged
components required for the object reference. The IOR interceptors also influence the tagged components through the
IORInfo::add_component and IORInfo:add_component_to_profile methods. After all of this construction has
completed, the adapter conceptually has a template that can be used to create object references. We will refer to this
template as the adapter template.

For example, in the POA, after POA::create_POA method has completed, there is a complete template in the POA that
will be used to create individual object references when create_reference or any other method is called that needs to
create an object reference.

16.6.5.1 get_effective_policy

An ORB service implementation may determine what server side policy of a particular type is in effect for an IOR being
constructed by calling the get_effective_policy operation. When the IOR being constructed is for an object
implemented using a POA, all Policy objects passed to the PortableServer::POA::create_POA call that created that
POA are accessible via get_effective_policy.

If a policy for the given type is not known to the ORB, then this operation will raise INV_POLICY with a standard minor
code of 3.

Parameter(s)

• type
The CORBA::PolicyType specifying the type of policy to return.

Return Value
The effective CORBA::Policy object of the requested type. If the given policy type is known, but no policy of that type is in
effect, then this operation will return a nil object reference.

16.6.5.2 add_ior_component

A portable ORB service implementation calls add_ior_component from its implementation of
establish_components to add a tagged component to the set that will be included when constructing IORs. The
components in this set will be included in all profiles.

Any number of components may exist with the same component ID.

Parameter(s)

• a_component
The IOP::TaggedComponent to add.

16.6.5.3 add_ior_component_to_profile

A portable ORB service implementation calls add_ior_component_to_profile from its implementation of
establish_components to add a tagged component to the set that will be included when constructing IORs. The
components in this set will be included in the specified profile.

Any number of components may exist with the same component ID.

If the given profile ID does not define a known profile or it is impossible to add components to that profile,
BAD_PARAM is raised with a standard minor code of 29.
398 Common Object Request Broker Architecture (CORBA), v3.1.1

Parameter(s)

• a_component
The IOP::TaggedComponent to add.

• profile_id
The IOP::ProfileId of the profile to which this component will be added.

16.6.5.4 manager_id

The manager_id attribute provides an opaque handle to the manager of the adapter. This is used for reporting state
changes in adapters managed by the same adapter manager.

16.6.5.5 state

The state attribute returns the current state of the adapter. This must be one of HOLDING, ACTIVE, DISCARDING,
INACTIVE, NON_EXISTENT.

16.6.5.6 adapter_template

The adapter_template attribute provides a means to obtain an object reference template whenever an ior interceptor is
invoked. There is no standard way to directly create an object reference template. The value of adapter_template is the
template created for the adapter policies and IOR interceptor calls to add_component and
add_component_to_profile. The value of the adapter_template attribute is never changed for the lifetime of the
object adapter.

16.6.5.7 current_factory

The current_factory attribute provides access to the factory that will be used by the adapter to create object references.
current_factory initially has the same value as the adapter_template attribute, but this can be changed by setting
current_factory to another factory. All object references created by the object adapter must be created by calling the
make_object method on current_factory.

The value of the current_factory attribute that is used by the adapter can only be set during the call to the
components_established method.

16.6.5.8 Method Validity

The following table defines the validity of each attribute or operation in IORInfo in the methods defined in the
IORInterceptor.

establish_components components_established

get_effective_policy yes yes

add_component yes no

add_component_to_profile yes no

read manager_id yes yes

read state yes yes

read adapter_template no yes
Common Object Request Broker Architecture (CORBA), v3.1.1 399

If an illegal call is made to an attribute or operation in IORInfo, the BAD_INV_ORDER system exception is raised with
a standard minor code value of 14.

16.7 Interceptor Policy Objects

An Interceptor’s behavior may itself be modified by one or more Interceptor Policies. These Policy objects are created
using a call to ORB::create_policy and are associated with an Interceptor during registration. (All Policy interfaces
defined in this sub clause are local.) The ORB can be accessed via the implicit get_orb operation of ORBInitInfo.

16.7.1 ProcessingMode Policy

Request interceptor performance may be improved by applying a ProcessingMode policy to limit the conditions under
which the interceptor shall be invoked.

The following values can be supplied.

• LOCAL_AND_REMOTE - Request interceptors with this policy are invoked whether the method is executed locally
or remotely. This is the default behavior if no ProcessingMode Policy is associated with a request Interceptor.

• REMOTE_ONLY - Request interceptors with this policy are not invoked when the method is executed
using the optimized collocated path.

• LOCAL_ONLY - Request interceptors with this policy are only invoked when the method is executed
using the optimized collocated path.

module PortableInterceptor {

typedef short ProcessingMode;
const ProcessingMode LOCAL_AND_REMOTE = 0;
const ProcessingMode REMOTE_ONLY = 1;
const ProcessingMode LOCAL_ONLY = 2;
// ProcessingMode Policy (default = LOCAL_AND_REMOTE)

const CORBA::PolicyType
PROCESSING_MODE_POLICY_TYPE = 63;

local interface ProcessingModePolicy : CORBA::Policy {
readonly attribute ProcessingMode processing_mode;

};
};

read current_factory no yes

write current_factory no yes
400 Common Object Request Broker Architecture (CORBA), v3.1.1

16.8 PolicyFactory

16.8.1 PolicyFactory Interface

A portable ORB service implementation registers an instance of the PolicyFactory interface during ORB initialization
(see register_policy_factory on page 406) in order to enable its policy types to be constructed using
CORBA::ORB::create_policy. The POA is required to preserve any policy that is registered with ORBInitInfo in this
manner.

module PortableInterceptor
{

local interface PolicyFactory {
CORBA::Policy create_policy (

in CORBA::PolicyType type,
in any value)
raises (CORBA::PolicyError);

};
};

16.8.1.1 create_policy

The ORB calls create_policy on a registered PolicyFactory instance when CORBA::ORB::create_policy is called
for the PolicyType under which the PolicyFactory has been registered. The create_policy operation then returns an
instance of the appropriate interface derived from CORBA::Policy whose value corresponds to the specified any. If it
cannot, it shall raise an exception as described for CORBA::ORB::create_policy.

Parameter(s)

• type
A CORBA::PolicyType specifying the type of policy being created.

• value
An any containing data with which to construct the CORBA::Policy.

Return Value

A CORBA::Policy object of the specified type and value.

16.9 Registering Interceptors

Interceptors are intended to be a means by which ORB services gain access to ORB processing, effectively becoming part
of the ORB. Since Interceptors are part of the ORB, when ORB_init returns an ORB, the Interceptors shall have been
registered. Interceptors cannot be registered on an ORB after it has been returned by a call to ORB_init.

16.9.1 ORBInitializer Interface

An Interceptor is registered by registering an associated ORBInitializer object that implements the ORBInitializer
interface. When an ORB is initializing, it shall call each registered ORBInitializer, passing it an ORBInitInfo object,
which is used to register its Interceptor. Any exceptional return from the invocation of any operation of the
Common Object Request Broker Architecture (CORBA), v3.1.1 401

ORBInitializer interface other than those resulting from the failure to instantiate a portable interceptor object shall result
in the abandonment of the ORB initialization and destruction of the ORB. Any ORBInitializer implementation that needs
the ORB to ignore any thrown exceptions can simply catch and discard them itself.

module PortableInterceptor {
local interface ORBInitializer {

void pre_init (in ORBInitInfo info);
void post_init (in ORBInitInfo info);

};
};

16.9.1.1 pre_init

This operation is called during ORB initialization. If it is expected that initial services registered by an interceptor will be
used by other interceptors, then those initial services shall be registered at this point via calls to
ORBInitInfo::register_initial_reference.

Parameter(s)

• info
See below. This object provides initialization attributes and operations by which Interceptors can be registered.

16.9.1.2 post_init

This operation is called during ORB initialization. If a service must resolve initial references as part of its initialization, it
can assume that all initial references will be available at this point.

Calling the post_init operations is not the final task of ORB initialization. The final task, following the post_init calls,
is attaching the lists of registered interceptors to the ORB. Therefore, the ORB does not contain the interceptors during
calls to post_init. If an ORB-mediated call is made from within post_init, no request interceptors will be invoked on
that call. Likewise, if an operation is performed that causes an IOR to be created, no IOR interceptors will be invoked.

Parameter(s)

• info
See below. This object provides initialization attributes and operations by which Interceptors can be registered.

During a call to post_init, invoking the ORBInitInfo methods: add_client_request_interceptor,
add_server_request_interceptor, allocate_slot_id, or add_ior_interceptor will raise the BAD_INV_ORDER
system exception with standard minor code 26.

16.9.2 ORBInitInfo Interface

module PortableInterceptor {
local interface ORBInitInfo {

typedef string ObjectId;
exception DuplicateName {

string name;
};
exception InvalidName {};

readonly attribute CORBA::StringSeq arguments;
readonly attribute string orb_id;
402 Common Object Request Broker Architecture (CORBA), v3.1.1

readonly attribute IOP::CodecFactory codec_factory;

void register_initial_reference (in ObjectId id, in Object obj)
raises (InvalidName);

Object resolve_initial_references (
in ObjectId id) raises (InvalidName);

void add_client_request_interceptor (
in ClientRequestInterceptor interceptor)
raises (DuplicateName);

void add_server_request_interceptor (
in ServerRequestInterceptor interceptor)
raises (DuplicateName);

void add_ior_interceptor (in IORInterceptor interceptor)
raises (DuplicateName);

SlotId allocate_slot_id ();
void register_policy_factory (

in CORBA::PolicyType type,
in PolicyFactory policy_factory);

};

local interface ORBInitInfo_3_1 : ORBInitInfo {
void add_client_request_interceptor_with_policy(

in ClientRequestInterceptor interceptor,
in CORBA::PolicyList policies)
raises (DuplicateName, CORBA::PolicyError);

void add_server_request_interceptor_with_policy(
in ServerRequestInterceptor interceptor,
in CORBA::PolicyList policies)
raises (DuplicateName, CORBA::PolicyError);

void add_ior_interceptor_with_policy(
in IORInterceptor interceptor,
in CORBA::PolicyList policies)
raises (DuplicateName, CORBA::PolicyError);

};
};

16.9.2.1 DuplicateName Exception

Only one Interceptor of a given name can be registered with the ORB for each Interceptor type. If an attempt is made to
register a second Interceptor with the same name, DuplicateName is raised.

An Interceptor may be anonymous; that is, have an empty string as the name attribute. Any number of anonymous
Interceptors may be registered with the ORB so, if the Interceptor being registered is anonymous, the registration
operation will not raise DuplicateName.

16.9.2.2 InvalidName Exception

This exception is raised by register_initial_reference and resolve_initial_references.

register_initial_reference raises InvalidName if:

• this operation is called with an empty string id; or
Common Object Request Broker Architecture (CORBA), v3.1.1 403

• this operation is called with an id that is already registered, including the default names defined by OMG.

resolve_initial_references raises InvalidName if the name to be resolved is invalid.

16.9.2.3 arguments

This attribute returns the original argv parameters as they were passed to ORB_init.

16.9.2.4 orb_id

This attribute is the ID of the ORB being initialized.

16.9.2.5 codec_factory

This attribute is the IOP::CodecFactory. The CodecFactory is normally obtained via a call to
ORB::resolve_initial_references (“CodecFactory”), but since the ORB is not yet available and Interceptors,
particularly when processing service contexts, will require a Codec, a means of obtaining a Codec is necessary during
ORB initialization.

16.9.2.6 register_initial_reference

This operation is identical to ORB::register_initial_reference described there. This same functionality exists here
because the ORB, not yet fully initialized, is not yet available but initial references may need to be registered as part of
Interceptor registration. The only difference is that the version of this operation on the ORB uses PIDL
(CORBA::ORB::ObjectId and CORBA::ORB::InvalidName)whereas the version in this interface uses IDL defined
in this interface; the semantics are identical.

16.9.2.7 resolve_initial_references

See Registering Interceptors on page 401. This operation is only valid during post_init. It is identical to
ORB::resolve_initial_references. This same functionality exists here because the ORB, not yet fully initialized, is
not yet available but initial references may be required from the ORB as part of Interceptor registration. The only
difference is that the version of this operation on the ORB uses PIDL (CORBA::ORB::ObjectId and
CORBA::ORB::InvalidName) whereas the version in this interface uses IDL defined in this interface; the semantics are
identical.

16.9.2.8 add_client_request_interceptor

This operation is used to add a client-side request Interceptor to the list of client-side request Interceptors. If a client-side
request Interceptor has already been registered with this Interceptor’s name, DuplicateName is raised.

Parameter(s)

• interceptor
The ClientRequestInterceptor to be added.

16.9.2.9 add_server_request_interceptor

This operation is used to add a server-side request Interceptor to the list of server-side request Interceptors. If a server-
side request Interceptor has already been registered with this Interceptor’s name, DuplicateName is raised.
404 Common Object Request Broker Architecture (CORBA), v3.1.1

Parameter(s)

• interceptor
The ServerRequestInterceptor to be added.

16.9.2.10 add_ior_interceptor

This operation is used to add an IOR Interceptor to the list of IOR Interceptors. If an IOR Interceptor has already been
registered with this Interceptor’s name, DuplicateName is raise

Parameter(s)

• interceptor
The IORInterceptor to be added.

16.9.2.11 add_client_request_interceptor_with_policy

This form of registration allows interceptor behavior to be modified by one or more Policies. The policy objects are
effectively copied before the operation returns, so the caller is free to destroy them while the Interceptor is in use.

CORBA::PolicyError is raised if one or more of the policies is invalid. If a server-side request Interceptor has already
been registered with this Interceptor’s name, DuplicateName is raised.

Parameter(s)

• interceptor
The client request interceptor to be added.

• policies
A sequence of interceptor policies to be used to control the behavior of the interceptor being
registered.

16.9.2.12 add_server_request_interceptor_with_policy

This form of registration allows interceptor behavior to be modified by one or more Policies. The policy objects are
effectively copied before the operation returns, so the caller is free to destroy them while the Interceptor is in use.
CORBA::PolicyError is raised if one or more of the policies is invalid. If a server-side request Interceptor has already
been registered with this Interceptor’s name, DuplicateName is raised.

Parameter(s)

• interceptor
The server request interceptor to be added.

• policies
A sequence of interceptor policies to be used to control the behavior of the interceptor being registered.

16.9.2.13 add_ior_interceptor_with_policy

This form of registration allows interceptor behavior to be modified by one or more Policies. The policy objects are
effectively copied before the operation returns, so the caller is free to destroy them while the Interceptor is in use.
CORBA::PolicyError is raised if one or more of the policies is invalid. If a server-side request Interceptor has already
been registered with this Interceptor’s name, DuplicateName is raised.
Common Object Request Broker Architecture (CORBA), v3.1.1 405

Parameter(s)

• interceptor
The ior request interceptor to be added.

• policies
A sequence of interceptor policies to be used to control the behavior of the interceptor being registered

16.9.2.14 allocate_slot_id

A service calls allocate_slot_id to allocate a slot on PortableInterceptor::Current.

Note that while slot ids can be allocated within an ORB initializer, the slots themselves cannot be initialized. Calling
set_slot or get_slot on the PICurrent (see Portable Interceptor Current on page 386) within an ORB initializer shall
raise a BAD_INV_ORDER with a minor code of 14.

Return Value

The index to the slot that has been allocated.

16.9.2.15 register_policy_factory

Register a PolicyFactory for the given PolicyType.

If a PolicyFactory already exists for the given PolicyType, BAD_INV_ORDER is raised with a standard minor code
of 16.

Parameter(s)

• type
The CORBA::PolicyType that the given PolicyFactory serves.

• policy_factory
The factory for the given CORBA::PolicyType.

16.9.3 register_orb_initializer Operation

To register an ORBInitializer, a new operation is provided: register_orb_initializer. This operation, like ORB_init, is
PIDL and is not part of any interface. It resides in the PortableInterceptor module.

void register_orb_initializer (in ORBInitializer init);

Each service that implements Interceptors will provide an instance of ORBInitializer. To use a service, an application
would first call register_orb_initializer, passing in the service’s ORBInitializer. After this is complete, the application
would make an instantiating ORB_init call. (An instantiating ORB_init call is one that produces a new ORB. In other
words, one that is not passed the ID of an existing ORB.) This instantiating ORB_init call calls each registered
ORBInitializer. The returned ORB will contain any Interceptors that the given service requires.

register_orb_initializer is a global operation. An ORBInitializer registered at a given point in time will be called by
all instantiating ORB_init calls that occur after that point in time. No ORB instantiated before that point in time will be
affected by that ORBInitializer. Moreover, if register_orb_initializer is called from within an initializer, the initializer
registered by that call will not be called for the ORB currently being initialized. That initializer will only be invoked on
an ORB instantiated at a later time.
406 Common Object Request Broker Architecture (CORBA), v3.1.1

16.9.3.1 Mappings of register_orb_initializer

C++

The register_orb_initializer method is defined in the PortableInterceptor name space as:

namespace PortableInterceptor {
static void register_orb_initializer (

PortableInterceptor::ORBInitializer_ptr init);
};

Java

The register_orb_initializer operation, since it is global, would break applet security with respect to the ORB. So, in
Java, instead of registering ORBInitializers via register_orb_initializer, ORBInitializers are registered via Java ORB
properties.

New Property Set

The new property names are of the form:

org.omg.PortableInterceptor.ORBInitializerClass.<Service>

where <Service> is the string name of a class, which implements

org.omg.PortableInterceptor.ORBInitializer.

To avoid name collisions, the reverse DNS name convention should be used. For example, if company X has three
initializers, it could define the following properties:

org.omg.PortableInterceptor.ORBInitializerClass.com.x.Init1
org.omg.PortableInterceptor.ORBInitializerClass.com.x.Init2
org.omg.PortableInterceptor.ORBInitializerClass.com.x.Init3

During ORB.init, these ORB properties that begin with
org.omg.PortableInterceptor.ORBInitializerClass shall be collected, the <Service> portion of each
property shall be extracted, an object shall be instantiated with the <Service> string as its class name, and the
pre_init and post_init methods shall be called on that object. If the attempt to instantiate an interceptor object
fails the ORB shall ignore the failure and continue execution. For any other exceptions returned by pre_init or post_init,
the ORB shall discontinue initialization and destroy itself, and the original exception returned by the ORBInitializer
shall be returned by ORB_init.

Example

A client-side logging service written by company X, for example, may have the following ORBInitializer
implementation:

package com.x.logging;

import org.omg.PortableInterceptor.Interceptor;
import org.omg.PortableInterceptor.ORBInitializer;
import org.omg.PortableInterceptor.ORBInitInfo;
Common Object Request Broker Architecture (CORBA), v3.1.1 407

public class LoggingService implements ORBInitializer
{

void pre_init (ORBInitInfo info)
{

// Instantiate the Logging Service’s Interceptor.
Interceptor interceptor = new LoggingInterceptor ();

// Register the Logging Service’s Interceptor.
info.add_client_request_interceptor (interceptor);

}

void post_init (ORBInitInfo info)
{

// This service does not need two init points.
}

}

To run a program called MyApp using this logging service, the user could type:

java
-Dorg.omg.PortableInterceptor.ORBInitializerClass.com.x.
Logging.LoggingService MyApp

Ada

For the Ada mapping, a new child library procedure is defined to register ORBInitializers:

procedure PortableInterceptor.ORBinitializer.Register
(Init: in PortableInterceptor.ORBinitializer.Local_Ref);

16.9.4 Notes about Registering Interceptors

Request Interceptors are registered on a per-ORB basis.

To achieve virtual per-object Interceptors, query the policies on the target from within the interception points to determine
whether they should do any work.

To achieve virtual per-POA Interceptors, instantiate each POA with a different ORB.

While Interceptors may be ordered administratively, there is no concept of order with respect to the registration of
Interceptors. Request Interceptors are concerned with service contexts. Service contexts have no order, so there is no
purpose for request Interceptors to have an order. IOR Interceptors are concerned with tagged components. Tagged
components also have no order, so there is no purpose for IOR Interceptors to have an order.

Registration code should avoid using the ORB; that is, calling ORB_init with the provided orb_id. Since registration
occurs during ORB initialization, results of invocations on this ORB while it is in this state are undefined.

The ORBInitInfo object is only valid during ORB_init. If a service keeps a reference to its ORBInitInfo object and tries
to use it after ORB_init returns, the object no longer exists and an OBJECT_NOT_EXIST exception shall be raised.
408 Common Object Request Broker Architecture (CORBA), v3.1.1

16.10 Dynamic Initial References

There are a set number of objects that a call to ORB::resolve_initial_references is able to return. However, vendors
and applications may wish to add additional initial references. The lifecycle of these additional references coincides with
the lifecycle of the ORB.

16.10.1 register_initial_reference

An operation is available in the ORB interface:

void register_initial_reference (in ObjectId id, in Object obj)
raises (InvalidName);

If this operation is called with an id, “Y”, and an object, YY, then a subsequent call to
ORB::resolve_initial_references (“Y”) will return object YY.

This operation can be used to replace the object reference corresponding to any of the OMG specified Ids. For example:

register_initial_reference ("NameService", Z)

will cause Z to be substituted as the object reference that will be used to get to the Name Service instead of the ORB
vendor supplied built in Name Service. This facility should be used with care since subsitution of certain OMG specified
ids is unlikely to work at all.

Implementations are allowed to restrict substitutability of references corresponding to the following ObjectIds:

RootPOA, POACurrent, DynAnyFactory, ORBPolicyManager, PolicyCurrent, CodecFactory, and PICurrent

When substitutability is restricted it shall be clearly documented. InvalidName exception is raised when any of these
restricted ObjectIds are passed in as a parameter to resolve_initial_reference.

InvalidName is raised if this operation is called with an empty string id.

• this operation is called with an empty string id; or

• this operation is called with an id that is already registered, including the default names defined by OMG.

If the Object parameter is null, BAD_PARAM will be raised with a standard minor code of 27.

Parameter(s)

• id
The ID by which the initial reference will be known.

• obj
The initial reference itself.

See also register_initial_reference on page 404.
Common Object Request Broker Architecture (CORBA), v3.1.1 409

16.11 Module Dynamic

In order to keep the portable Interceptor IDL from becoming PIDL, we provide IDL types that correspond to PIDL types
for that subset of PIDL that the portable Interceptors use. We have chosen to place these new types in a module called
Dynamic since it is the dynamic interface sub clauses that define the PIDL that the portable Interceptors use.

16.11.1 NVList PIDL Represented by ParameterList IDL

struct Parameter {
any argument;
CORBA::ParameterMode mode;

};
typedef sequence<Parameter> ParameterList;

16.11.2 ContextList PIDL Represented by ContextList IDL

typedef CORBA::StringSeq ContextList;

16.11.3 ExceptionList PIDL Represented by ExceptionList IDL

typedef sequence<CORBA::TypeCode> ExceptionList;

16.11.4 Context PIDL Represented by RequestContext IDL

Context objects are encoded as sequence<string>. The strings occur in pairs. The first string in each pair is the context
property name and the second string in each pair is the associated value.

typedef CORBA::StringSeq RequestContext;

16.12 Consolidated IDL

16.12.1 Dynamic

// IDL
// File: Dynamic.idl
#ifndef _DYNAMIC_IDL_
#define _DYNAMIC_IDL_

import ::CORBA;
module Dynamic {

typeprefix Dynamic “omg.org”;

struct Parameter {
any argument;
CORBA::ParameterMode mode;

};
410 Common Object Request Broker Architecture (CORBA), v3.1.1

typedef sequence<Parameter> ParameterList;

typedef CORBA::StringSeq ContextList;

typedef sequence<CORBA::TypeCode> ExceptionList;

typedef CORBA::StringSeq RequestContext;
};
#endif _DYNAMIC_IDL_

16.12.2 Portions of IOP Relevant to Portable Interceptor

import ::CORBA;

module IOP{
typeprefix IOP “omg.org”;
typedef sequence<IOP::TaggedComponent> TaggedComponentSeq;

local interface Codec {
exception InvalidTypeForEncoding {};
exception FormatMismatch {};
exception TypeMismatch {};

CORBA::OctetSeq encode (in any data)
raises (InvalidTypeForEncoding);

any decode (in CORBA::OctetSeq data)
raises (FormatMismatch);

CORBA::OctetSeq encode_value (in any data)
raises (InvalidTypeForEncoding);

any decode_value (
in CORBA::OctetSeq data,
in CORBA::TypeCode tc)
raises (FormatMismatch, TypeMismatch);

};

typedef short EncodingFormat;
const EncodingFormat ENCODING_CDR_ENCAPS = 0;

struct Encoding {
EncodingFormat format;
octet major_version;
octet minor_version;

};

local interface CodecFactory {
exception UnknownEncoding {};

Codec create_codec (in Encoding enc) raises (UnknownEncoding);
};

};
Common Object Request Broker Architecture (CORBA), v3.1.1 411

16.12.3 PortableInterceptor

// IDL
// File: PortableInterceptor.idl
#ifndef _PORTABLE_INTERCEPTOR_IDL_
#define _PORTABLE_INTERCEPTOR_IDL_

import ::CORBA;
import ::IOP;
import ::Messaging;
import ::Dynamic;

module PortableInterceptor {
typeprefix PortableInterceptor “omg.org”;
local interface Interceptor {

 readonly attribute string name;
void destroy();

};

exception ForwardRequest {
Object forward;

};

typedef short ReplyStatus;

// Valid reply_status values:
const ReplyStatus SUCCESSFUL = 0;
const ReplyStatus SYSTEM_EXCEPTION = 1;
const ReplyStatus USER_EXCEPTION = 2;
const ReplyStatus LOCATION_FORWARD = 3;
const ReplyStatus TRANSPORT_RETRY = 4;
const ReplyStatus UNKNOWN = 5;

typedef unsigned long SlotId;

exception InvalidSlot {};

typedef short ProcessingMode;
const ProcessingMode LOCAL_AND_REMOTE = 0;
const ProcessingMode REMOTE_ONLY = 1;
const ProcessingMode LOCAL_ONLY = 2;

// ProcessingMode Policy (default = LOCAL_AND_REMOTE)

const CORBA::PolicyType
PROCESSING_MODE_POLICY_TYPE = 63;

local interface ProcessingModePolicy : CORBA::Policy {
readonly attribute ProcessingMode processing_mode;

};
412 Common Object Request Broker Architecture (CORBA), v3.1.1

local interface Current : CORBA::Current {
any get_slot (in SlotId id) raises (InvalidSlot);
void set_slot (in SlotId id, in any data) raises (InvalidSlot);

};

local interface RequestInfo {
readonly attribute unsigned long request_id;
readonly attribute string operation;
readonly attribute Dynamic::ParameterList arguments;
readonly attribute Dynamic::ExceptionList exceptions;
readonly attribute Dynamic::ContextList contexts;
readonly attribute Dynamic::RequestContext operation_context;
readonly attribute any result;
readonly attribute boolean response_expected;
readonly attribute Messaging::SyncScope sync_scope;
readonly attribute ReplyStatus reply_status;
readonly attribute Object forward_reference;
any get_slot (in SlotId id) raises (InvalidSlot);
IOP::ServiceContext get_request_service_context (

in IOP::ServiceId id);
IOP::ServiceContext get_reply_service_context (

in IOP::ServiceId id);
};

local interface ClientRequestInfo : RequestInfo {
readonly attribute Object target;
readonly attribute Object effective_target;
readonly attribute IOP::TaggedProfile effective_profile;
readonly attribute any received_exception;
readonly attribute CORBA::RepositoryId received_exception_id;
IOP::TaggedComponent get_effective_component (

in IOP::ComponentId id);
IOP::TaggedComponentSeq get_effective_components (

in IOP::ComponentId id);
CORBA::Policy get_request_policy (in CORBA::PolicyType type);
void add_request_service_context (

in IOP::ServiceContext service_context,
in boolean replace);

};

typedef string ServerId ;
typedef string ORBId ;
typedef CORBA::StringSeq AdapterName ;
typedef CORBA::OctetSeq ObjectId;

local interface ServerRequestInfo : RequestInfo {
readonly attribute any sending_exception;

readonly attribute ServerId server_id ;
readonly attribute ORBId orb_id ;
readonly attribute AdapterName adapter_name ;

readonly attribute ObjectId object_id;
Common Object Request Broker Architecture (CORBA), v3.1.1 413

readonly attribute CORBA::OctetSeq adapter_id;
readonly attribute CORBA::RepositoryId

target_most_derived_interface;
CORBA::Policy get_server_policy (in CORBA::PolicyType type);
void set_slot (in SlotId id, in any data) raises (InvalidSlot);
boolean target_is_a (in CORBA::RepositoryId id);
void add_reply_service_context (

in IOP::ServiceContext service_context,
in boolean replace);

};

local interface ClientRequestInterceptor : Interceptor {
void send_request (in ClientRequestInfo ri)

raises (ForwardRequest);
void send_poll (in ClientRequestInfo ri);
void receive_reply (in ClientRequestInfo ri);
void receive_exception (in ClientRequestInfo ri)

raises (ForwardRequest);
void receive_other (in ClientRequestInfo ri)

raises (ForwardRequest);
};

local interface ServerRequestInterceptor : Interceptor {
void receive_request_service_contexts (in ServerRequestInfo ri)

raises (ForwardRequest);
void receive_request (in ServerRequestInfo ri)

 raises (ForwardRequest);
void send_reply (in ServerRequestInfo ri);
void send_exception (in ServerRequestInfo ri)

raises (ForwardRequest);
void send_other (in ServerRequestInfo ri)

raises (ForwardRequest);
};

abstract valuetype ObjectReferenceFactory {
boolean equals(in ObjectReferenceFactory other) ;
Object make_object(in string repositoryId, in ObjectId id) ;
IOP::TaggedProfileSeq make_profiles(

in string repository_id,
in ObjectId id) ;

};

abstract valuetype ObjectReferenceTemplate :
ObjectReferenceFactory {
readonly attribute ServerId server_id ;
readonly attribute ORBId orb_id ;
readonly attribute AdapterName adapter_name ;

} ;

typedef sequence<ObjectReferenceTemplate>
ObjectReferenceTemplateSeq;
414 Common Object Request Broker Architecture (CORBA), v3.1.1

typedef string AdapterManagerId;

typedef short AdapterState ;

const AdapterState HOLDING = 0 ;
const AdapterState ACTIVE = 1 ;
const AdapterState DISCARDING = 2 ;
const AdapterState INACTIVE = 3 ;
const AdapterState NON_EXISTENT = 4 ;

local interface IORInfo {
CORBA::Policy get_effective_policy (in CORBA::PolicyType type);
void add_ior_component (

in IOP::TaggedComponent a_component);
void add_ior_component_to_profile (

in IOP::TaggedComponent a_component,
in IOP::ProfileId profile_id);

};

local interface IORInterceptor : Interceptor {
void establish_components (in IORInfo info);

};

local interface IORInterceptor_3_0 : IORInterceptor {
void components_established(in IORInfo info) ;
void adapter_manager_state_changed(

in AdapterManagerId id, in AdapterState state) ;
void adapter_state_changed(

in ObjectReferenceTemplateSeq templates,
in AdapterState state) ;

};

local interface PolicyFactory {
CORBA::Policy create_policy (

in CORBA::PolicyType type,
in any value)
raises (CORBA::PolicyError);

};

local interface ORBInitInfo {
typedef string ObjectId;
exception DuplicateName {

string name;
};
exception InvalidName {};

readonly attribute CORBA::StringSeq arguments;
readonly attribute string orb_id;
readonly attribute IOP::CodecFactory codec_factory;

void register_initial_reference (in ObjectId id, in Object obj)
Common Object Request Broker Architecture (CORBA), v3.1.1 415

raises (InvalidName);
Object resolve_initial_references (

in ObjectId id) raises (InvalidName);
void add_client_request_interceptor (

in ClientRequestInterceptor interceptor)
raises (DuplicateName);

void add_server_request_interceptor (
in ServerRequestInterceptor interceptor)
raises (DuplicateName);

void add_ior_interceptor (in IORInterceptor interceptor)
raises (DuplicateName);

SlotId allocate_slot_id ();
void register_policy_factory (

in CORBA::PolicyType type,
in PolicyFactory policy_factory);

};

local interface ORBInitInfo_3_1 : ORBInitInfo {
void add_client_request_interceptor_with_policy(

in ClientRequestInterceptor interceptor,
in CORBA::PolicyList policies)
raises (DuplicateName, CORBA::PolicyError);

void add_server_request_interceptor_with_policy(
in ServerRequestInterceptor interceptor,
in CORBA::PolicyList policies)
raises (DuplicateName, CORBA::PolicyError);

void add_ior_interceptor_with_policy(
in IORInterceptor interceptor,
in CORBA::PolicyList policies)
raises (DuplicateName, CORBA::PolicyError);

};

local interface ORBInitializer {
void pre_init (in ORBInitInfo info);
void post_init (in ORBInitInfo info);

};
};
#endif _PORTABLE_INTERCEPTOR_IDL_
416 Common Object Request Broker Architecture (CORBA), v3.1.1

17 CORBA Messaging

17.1 General

This clause covers three general topics: Quality of Service, Asynchronous Method Invocations (including Time-
Independent or “Persistent” Requests), and the specification of interoperable Routing interfaces to support the transport of
requests asynchronously from the handling of their replies.

Messaging requires clients and servers to have the ability to set the required and supported qualities of service with
respect to requests. This specification provides generalized APIs through which such qualities are set in clients and
servers. In addition, the set of Messaging-related qualities and the rules for reconciling and using these qualities are
defined. Finally, the Messaging-specific IOR Profile Component and Service Context are defined for propagation of QoS
information.

17.2 Quality of Service

This sub clause describes a standard Quality of Service (QoS) framework within which CORBA Services specifications
should define their service-specific qualities. In this framework, all QoS settings are interfaces derived from
CORBA::Policy.

The details of the Policy Management Framework are to be found in the ORB Interface clause.

17.3 Messaging Quality of Service

The Messaging module contains the IDL that the programmer uses to define Qualities of Service specific to CORBA
messaging.

NOTE: Except where defaults are noted, this specification does not state required default values for the following Qualities of
Service. Application code must explicitly set its ORB-level Quality of Service to ensure portability across ORB products.

module Messaging {

typedef short RebindMode;
const RebindMode TRANSPARENT = 0;
const RebindMode NO_REBIND = 1;
const RebindMode NO_RECONNECT = 2;

typedef short SyncScope;
const SyncScope SYNC_NONE = 0;
const SyncScope SYNC_WITH_TRANSPORT = 1;
const SyncScope SYNC_WITH_SERVER = 2;
const SyncScope SYNC_WITH_TARGET = 3;

typedef short RoutingType;
const RoutingType ROUTE_NONE = 0;
const RoutingType ROUTE_FORWARD = 1;
const RoutingType ROUTE_STORE_AND_FORWARD =2;
Common Object Request Broker Architecture (CORBA), v3.1.1 417

typedef short Priority;

typedef unsigned short Ordering;
const Ordering ORDER_ANY = 0x01;
const Ordering ORDER_TEMPORAL = 0x02;
const Ordering ORDER_PRIORITY = 0x04;
const Ordering ORDER_DEADLINE = 0x08;

// Rebind Policy (default = TRANSPARENT)
const CORBA::PolicyType REBIND_POLICY_TYPE = 23;
local interface RebindPolicy : CORBA::Policy {

readonly attribute RebindMode rebind_mode;
};

// Synchronization Policy (default = SYNC_WITH_TRANSPORT)
const CORBA::PolicyType SYNC_SCOPE_POLICY_TYPE = 24;

local interface SyncScopePolicy : CORBA::Policy {
readonly attribute SyncScope synchronization;

};

// Priority Policies
const CORBA::PolicyType REQUEST_PRIORITY_POLICY_TYPE = 25;
struct PriorityRange {

Priority min;
Priority max;

};

local interface RequestPriorityPolicy : CORBA::Policy {
readonly attribute PriorityRange priority_range;

};

const CORBA::PolicyType REPLY_PRIORITY_POLICY_TYPE = 26;
local interface ReplyPriorityPolicy : CORBA::Policy {

readonly attribute PriorityRange priority_range;
};

// Timeout Policies
const CORBA::PolicyType REQUEST_START_TIME_POLICY_TYPE = 27;
local interface RequestStartTimePolicy : CORBA::Policy {

readonly attribute TimeBase::UtcT start_time;
};
const CORBA::PolicyType REQUEST_END_TIME_POLICY_TYPE = 28;
local interface RequestEndTimePolicy : CORBA::Policy {

readonly attribute TimeBase::UtcT end_time;
};

const CORBA::PolicyType REPLY_START_TIME_POLICY_TYPE = 29;
local interface ReplyStartTimePolicy : CORBA::Policy {

readonly attribute TimeBase::UtcT start_time;
};
418 Common Object Request Broker Architecture (CORBA), v3.1.1

const CORBA::PolicyType REPLY_END_TIME_POLICY_TYPE = 30;
local interface ReplyEndTimePolicy : CORBA::Policy {

readonly attribute TimeBase::UtcT end_time;
};

const CORBA::PolicyType
RELATIVE_REQ_TIMEOUT_POLICY_TYPE = 31;

local interface RelativeRequestTimeoutPolicy : CORBA::Policy {
readonly attribute TimeBase::TimeT relative_expiry;

};

const CORBA::PolicyType
RELATIVE_RT_TIMEOUT_POLICY_TYPE = 32;

local interface RelativeRoundtripTimeoutPolicy : CORBA::Policy {
readonly attribute TimeBase::TimeT relative_expiry;

};

const CORBA::PolicyType ROUTING_POLICY_TYPE = 33;
struct RoutingTypeRange {

RoutingType min;
RoutingType max;

};
local interface RoutingPolicy : CORBA::Policy {

readonly attribute RoutingTypeRange routing_range;
};

const CORBA::PolicyType MAX_HOPS_POLICY_TYPE = 34;
local interface MaxHopsPolicy : CORBA::Policy {

readonly attribute unsigned short max_hops;
};

// Router Delivery-ordering Policy (default = ORDER_TEMPORAL)
const CORBA::PolicyType QUEUE_ORDER_POLICY_TYPE = 35;
local interface QueueOrderPolicy : CORBA::Policy {

readonly attribute Ordering allowed_orders;
};

};

17.3.1 Rebind Support

Rebind support discussed in this sub clause refers to the act of rebinding an object reference that has already been bound
once. The policies discussed here do not affect the initial binding of an object reference.

17.3.1.1 typedef short RebindMode

Describes the level of transparent rebinding that may occur during the course of an invocation on an Object. Values of
type RebindMode are used in conjunction with a RebindPolicy, as described in interface RebindPolicy on page 420.
All non-negative values are reserved for use in OMG specifications. Any negative value of RebindMode is considered
a vendor extension.
Common Object Request Broker Architecture (CORBA), v3.1.1 419

• TRANSPARENT - allows the ORB to silently handle object-forwarding and necessary reconnection during the
course of making a remote request. This is equivalent to the only defined CORBA ORB behavior.

• NO_REBIND - allows the ORB to silently handle reopening of closed connections while making a remote request,
but prevents any transparent object-forwarding that would cause a change in client-visible effective QoS policies.
When this policy is in effect, only explicit rebinding (through CORBA::Object::validate_connection) is allowed.

• NO_RECONNECT - prevents the ORB from silently handling object-forwards or the reopening of closed
connections. When this policy is in effect, only explicit rebinding and reconnection (through
CORBA::Object::validate_connection) is allowed.

17.3.1.2 interface RebindPolicy

This interface is a local object derived from CORBA::Policy. It is used to indicate whether the ORB may transparently
rebind once successfully bound to a target. For GIOP-based protocols an object reference is considered bound once it is
in a state where a LocateRequest message would result in a LocateReply message with status OBJECT_HERE. If
the effective Policy of this type has a rebind_mode value of TRANSPARENT (always the default and the only valid
value in CORBA), the ORB will silently handle any subsequent LocateReply messages with OBJECT_FORWARD
status or Reply messages with LOCATION_FORWARD status. The effective policies of other types for this object
reference may change from invocation to invocation. If the effective Policy of this type has a rebind_mode value of
NO_REBIND, the ORB will raise a REBIND system exception if any rebind handling would cause a client-visible
change in policies. This could happen under the following circumstances:

• The client receives a LocateReply message with an OBJECT_FORWARD status and a new IOR that has policy
requirements incompatible with the effective policies currently in use.

• The client receives a Reply message with LOCATION_FORWARD status and a new IOR that has policy
requirements incompatible with the effective policies currently in use.

If the effective Policy of this type has a rebind_mode value of NO_RECONNECT, the ORB will raise a REBIND
system exception if any rebind handling would cause a client-visible change in policies, or if a new connection must be
opened. This includes the reopening of previously closed connections as well as the opening of new connections if the
target address changes (for example, due to a LOCATION_FORWARD reply). For connectionless protocols, the
meaning of this effective policy must be specified, or it must be defined that NO_RECONNECT is an equivalent to
NO_REBIND. Regardless of the effective RebindPolicy, rebind or reconnect can always be explicitly requested
through an invocation of CORBA::Object::validate_connection. When instances of RebindPolicy are created, a
value of type RebindMode is passed to CORBA::ORB::create_policy. This policy is only applicable as a client-side
override. When an instance of RebindPolicy is propagated within a PolicyValue in an INVOCATION_POLICIES
Service Context, the ptype has value REBIND_POLICY_TYPE and the pvalue is a CDR encapsulation containing a
RebindMode.

17.3.2 Synchronization Scope

17.3.2.1 typedef short SyncScope

Describes the level of synchronization for a request with respect to the target. Values of type SyncScope are used in
conjunction with a SyncScopePolicy, as described in interface SyncScopePolicy on page 421, to control the behavior
of oneway operations. All non-negative values are reserved for use in OMG specifications. Any negative value of
SyncScope is considered a vendor extension.

420 Common Object Request Broker Architecture (CORBA), v3.1.1

• SYNC_NONE - equivalent to one allowable interpretation of CORBA oneway operations. The ORB returns control to
the client (e.g., returns from the method invocation) before passing the request message to the transport protocol. The
client is guaranteed not to block. Since no reply is returned from the server, no location-forwarding can be done with
this level of synchronization.

• SYNC_WITH_TRANSPORT - equivalent to one allowable interpretation of CORBA oneway operations. The ORB
returns control to the client only after the transport has accepted the request message. This in itself gives no guarantee
that the request will be delivered, but in conjunction with knowledge of the characteristics of the transport may provide
the client with a useful degree of assurance. For example, for a direct message over TCP,
SYNC_WITH_TRANSPORT is not a stronger guarantee than SYNC_NONE. However, for a store-and-forward
transport, this QoS provides a high level of reliability. Since no reply is returned from the server, no location-
forwarding can be done with this level of synchronization.

• SYNC_WITH_SERVER - the server-side ORB sends a reply before invoking the target implementation. If a reply of
NO_EXCEPTION is sent, any necessary location-forwarding has already occurred. Upon receipt of this reply, the
client-side ORB returns control to the client application. This form of guarantee is useful where the reliability of the
network is substantially lower than that of the server. The client blocks until all location-forwarding has been
completed. For a server using a POA, the reply would be sent after invoking any ServantManager, but before
delivering the request to the target Servant.

• SYNC_WITH_TARGET - equivalent to a synchronous, non-oneway operation in CORBA. The server-side ORB shall
only send the reply message after the target has completed the invoked operation. Note that any
LOCATION_FORWARD reply will already have been sent prior to invoking the target and that a
SYSTEM_EXCEPTION reply may be sent at anytime (depending on the semantics of the exception). Even though it
was declared oneway, the operation actually has the behavior of a synchronous operation. This form of
synchronization guarantees that the client knows that the target has seen and acted upon a request. As with CORBA,
only with this highest level of synchronization can the OTS be used. Any operations invoked with lesser
synchronization precludes the target from participating in the client’s current transaction.

17.3.2.2 interface SyncScopePolicy

This interface is a local object derived from CORBA::Policy. It is applied to oneway operations to indicate the
synchronization scope with respect to the target of that operation request. It is ignored when any non-oneway operation is
invoked. This policy is also applied when the DII is used with a flag of INV_NO_RESPONSE since the implementation
of the DII is not required to consult an interface definition to determine if an operation is declared oneway. The default
value of this Policy is not defined. Applications must explicitly set an ORB-level SyncScopePolicy to ensure
portability across ORB implementations. When instances of SyncScopePolicy are created, a value of type
Messaging::SyncScope is passed to CORBA::ORB::create_policy. This policy is only applicable as a client-side
override. The client’s SyncScopePolicy is propagated within a request in the RequestHeader’s response_flags as
described in GIOP Request Header.

17.3.3 Request and Reply Priority

17.3.3.1 struct PriorityRange

This structure describes a range of priorities. A PriorityRange with minimum Priority greater than maximum Priority is
invalid.
Common Object Request Broker Architecture (CORBA), v3.1.1 421

17.3.3.2 interface RequestPriorityPolicy

This interface is a local object derived from CORBA::Policy. It is used to indicate the valid range of priorities, which
may be associated with an operation request. This value is used by Routers when the effective QueueOrderPolicy has
the value ORDER_PRIORITY. Higher Priority values indicate a higher priority. When instances of
RequestPriorityPolicy are created, a value of type Messaging::PriorityRange is passed to
CORBA::ORB::create_policy. An instance of RequestPriorityPolicy may be specified when creating a POA (and
therefore may be represented in Object references). In addition, an Object reference’s RequestPriorityPolicy may be
overridden by the client. If set on both the client and server, reconciliation is performed by intersecting the server-
specified RequestPriorityPolicy range with the range of the client’s effective override. When an instance of
RequestPriorityPolicy is propagated within a PolicyValue in a TAG_POLICIES Profile Component or
INVOCATION_POLICIES Service Context, the ptype has value REQUEST_PRIORITY_POLICY_TYPE and the
pvalue is a CDR encapsulation containing a Messaging::PriorityRange.

17.3.3.3 interface ReplyPriorityPolicy

This interface is a local object derived from CORBA::Policy. It is used to indicate the valid range of priorities, which
may be associated with the reply to an operation request. This value is used by Routers when the effective
QueueOrderPolicy has the value ORDER_PRIORITY. Higher Priority values indicate a higher priority. When
instances of ReplyPriorityPolicy are created, a value of type Messaging::PriorityRange is passed to
CORBA::ORB::create_policy. An instance of ReplyPriorityPolicy may be specified when creating a POA (and
therefore may be represented in Object references). In addition, an Object reference’s ReplyPriorityPolicy may be
overridden by the client. If set on both the client and server, reconciliation is performed by intersecting the server-
specified ReplyPriorityPolicy range with the range of the client’s effective override. When an instance of
ReplyPriorityPolicy is propagated within a PolicyValue in a TAG_POLICIES Profile Component or
INVOCATION_POLICIES Service Context, the ptype has value REPLY_PRIORITY_POLICY_TYPE and the
pvalue is a CDR encapsulation containing a Messaging::PriorityRange.

17.3.4 Request and Reply Timeout

This specification describes the lifetime of requests and replies in terms of the structured type from the CORBA Time
Service Specification. This describes time as a 64-bit value, which is the number of 100 nano-seconds from 15 October
1582 00:00, along with inaccuracy and time zone information.

17.3.4.1 interface RequestStartTimePolicy

This interface is a local object derived from CORBA::Policy. It is used to indicate the valid start time after which a
request may be delivered to its target, and is applied to both synchronous and asynchronous invocations. When instances
of RequestStartTimePolicy are created, a value of type TimeBase::UtcT containing an absolute time is passed to
CORBA::ORB::create_policy. This policy is only applicable as a client-side override. When an instance of
RequestStartTimePolicy is propagated within a PolicyValue in an INVOCATION_POLICIES Service Context, the
ptype has value REQUEST_START_TIME_POLICY_TYPE and the pvalue is a CDR encapsulation containing a
TimeBase::UtcT.

If the effective RoutingPolicy is NONE, the client ORB shall refrain from transmitting the request to the target until
after the specified start time. Otherwise, the client ORB and all but the last hop router are free to transmit the request
immediately, and the last hop router shall delay the request until the specified start time.
422 Common Object Request Broker Architecture (CORBA), v3.1.1

17.3.4.2 interface RequestEndTimePolicy

This interface is a local object derived from CORBA::Policy. It is used to indicate the time after which a request may
no longer be delivered to its target. This policy is applied to both synchronous and asynchronous invocations. When
instances of RequestEndTimePolicy are created, a value of type TimeBase::UtcT is containing an absolute time
passed to CORBA::ORB::create_policy. This policy is only applicable as a client-side override. When an instance of
RequestEndTimePolicy is propagated within a PolicyValue in an INVOCATION_POLICIES Service Context, the
ptype has value REQUEST_END_TIME_POLICY_TYPE and the pvalue is a CDR encapsulation containing a
TimeBase::UtcT.

The client ORB, all routers and the target ORB shall check to see if the end time specified in the
RequestEndTimePolicy associated with a request has expired and the request is yet to be delivered to the target. If so,
it shall discard the request and return the system exception TIMEOUT with standard minor code 2.

17.3.4.3 interface ReplyStartTimePolicy

This interface is a local object derived from CORBA::Policy. It is used to indicate the valid start time after which a
reply may be delivered to the client. This policy is applied to both synchronous and asynchronous invocations. When
instances of ReplyStartTimePolicy are created, a value of type TimeBase::UtcT containing an absolute time is
passed to CORBA::ORB::create_policy. This policy is only applicable as a client-side override. When an instance of
ReplyStartTimePolicy is propagated within a PolicyValue in an INVOCATION_POLICIES Service Context, the
ptype has value REPLY_START_TIME_POLICY_TYPE and the pvalue is a CDR encapsulation containing a
TimeBase::UtcT.

If the RoutePolicy is ROUTE_NONE, the client ORB shall delay delivering the reply until the start time has been
reached. Otherwise, the target ORB and all but the last hop router are free to transmit the reply immediately, and the last
hop router shall delay transmission of the reply to the client until the start time has been reached.

17.3.4.4 interface ReplyEndTimePolicy

This interface is a local object derived from CORBA::Policy. It is used to indicate the time after which a reply may no
longer be obtained or returned to the client. This policy is applied to both synchronous and asynchronous invocations.
When instances of ReplyEndTimePolicy are created, a value of type TimeBase::UtcT containing an absolute time is
passed to CORBA::ORB::create_policy. This policy is only applicable as a client-side override. When an instance of
ReplyEndTimePolicy is propagated within a PolicyValue in an INVOCATION_POLICIES Service Context, the
ptype has value REPLY_END_TIME_POLICY_TYPE and the pvalue is a CDR encapsulation containing a
TimeBase::UtcT.

The client ORB, all routers and the target ORB shall check to see if the end time specified in the ReplyEndTimePolicy
associated with a request has expired and a reply has not yet been delivered to the client. If so, it shall discard the reply
and return the system exception TIMEOUT with standard minor code 3.

17.3.4.5 interface RelativeRequestTimeoutPolicy

This interface is a local object derived from CORBA::Policy. It is used to indicate the relative amount of time for which
a Request may be delivered. After this amount of time the Request is cancelled. This policy is applied to both
synchronous and asynchronous invocations. If asynchronous invocation is used, this policy only limits the amount of time
during which the request may be processed. Assuming the request completes within the specified timeout, the reply will
never be discarded due to timeout. When instances of RelativeRequestTimeoutPolicy are created, a value of type
TimeBase::TimeT containing a relative time is passed to CORBA::ORB::create_policy. This policy is only
applicable as a client-side override. When an instance of RelativeRequestTimeoutPolicy is propagated within a
Common Object Request Broker Architecture (CORBA), v3.1.1 423

PolicyValue in an INVOCATION_POLICIES Service Context, the ptype has value
REQUEST_END_TIME_POLICY_TYPE and the pvalue is a CDR encapsulation containing the relative_expiry
converted into a TimeBase::UtcT end time (as in the case of RequestEndTimePolicy).

Since a RelativeRequestTimeoutPolicy is converted to a RequestEndTimePolicy before transmitting the request
to the target ORB, see interface RequestEndTimePolicy on page 423 for the required behavior of an ORB or router when
the timeout expires.

17.3.4.6 interface RelativeRoundtripTimeoutPolicy

This interface is a local object derived from CORBA::Policy. It is used to indicate the relative amount of time for which
a Request or its corresponding Reply may be delivered. After this amount of time, the Request is cancelled (if a response
has not yet been received from the target) or the Reply is discarded (if the Request had already been delivered and a
Reply returned from the target). This policy is applied to both synchronous and asynchronous invocations.

When instances of RelativeRoundtripTimeoutPolicy are created, a value of type TimeBase::TimeT containing a
relative time is passed to CORBA::ORB::create_policy. This policy is only applicable as a client-side override. When
an instance of RelativeRoundtripTimeoutPolicy is propagated within a PolicyValue in an
INVOCATION_POLICIES Service Context, the ptype has value REPLY_END_TIME_POLICY_TYPE and the
pvalue is a CDR encapsulation containing the relative_expiry converted into a TimeBase::UtcT end time (as in the
case of ReplyEndTimePolicy).

Since a RelativeRoundtripTimeoutPolicy is converted to a ReplyEndTimePolicy before transmitting the request to
the target ORB, see interface ReplyEndTimePolicy on page 423 for the required behavior of an ORB or router when the
timeout expires.

17.3.5 Routing

17.3.5.1 typedef short RoutingType

Describes the type of Routing to be used for invocations on an Object reference. Values of type RoutingType are used
in conjunction with a RoutingPolicy as described in interface RoutingPolicy on page 424. All non-negative values are
reserved for use in OMG specifications. Any negative value of RoutingType is considered a vendor extension.

• ROUTE_NONE - Synchronous or Deferred Synchronous delivery is used. No Routers will be used to aid in the
delivery of the request.

• ROUTE_FORWARD - Asynchronous delivery is used. The request is made through the use of a Router and not
delivered directly to the target by the client ORB.

• ROUTE_STORE_AND_FORWARD - Asynchronous TII is used. The request is made through the use of a Router
that persistently stores the request before attempting delivery.

17.3.5.2 struct RoutingTypeRange

This structure describes a range of routing types. A RoutingTypeRange with minimum RoutingType greater than
maximum RoutingType is invalid.

17.3.5.3 interface RoutingPolicy

This interface is a local object derived from CORBA::Policy. It is used to indicate whether or not the ORB must ensure
delivery of a request through the use of queueing. If the effective Policy of this type has a RoutingTypeRange with min
value of ROUTE_FORWARD or ROUTE_STORE_AND_FORWARD, the interoperable Routing protocol described in
424 Common Object Request Broker Architecture (CORBA), v3.1.1

III - Introduction on page 460 is used. This policy does not apply to synchronous invocations. If, for example, the min is
ROUTE_NONE and the max is ROUTE_FORWARD, the Routing protocol will normally be used but a direct
connection may be used if available. When instances of RoutingPolicy are created, a value of type
RoutingTypeRange is passed to CORBA::ORB::create_policy. An instance of RoutingPolicy may be specified
when creating a POA (and therefore may be represented in Object references). In addition, a POA’s RoutingPolicy is
visible to clients through the Object references it creates, and reconciled with the client’s override. If set on both the client
and server, reconciliation is performed by intersecting the server-specified RoutingPolicy range with the range of the
client’s effective override. When an instance of RoutingPolicy is propagated within a PolicyValue in a
TAG_POLICIES Profile Component or INVOCATION_POLICIES Service Context, the ptype has value
ROUTING_POLICY_TYPE and the pvalue is a CDR encapsulation containing a Messaging::RoutingTypeRange.

17.3.5.4 interface MaxHopsPolicy

This interface is a local object derived from CORBA::Policy. It is used to indicate the maximum number of routing hops
that can occur when routing a request from the client to the target. When instances of MaxHopsPolicy are created, a
value of type unsigned short is passed to CORBA::ORB::create_policy. This policy is only applicable as a client-side
override. When an instance of MaxHopsPolicy is propagated within a PolicyValue in an INVOCATION_POLICIES
Service Context, the ptype has value MAX_HOPS_POLICY_TYPE and the pvalue is a CDR encapsulation containing
an unsigned short.

17.3.6 Queue Ordering

17.3.6.1 typedef short Ordering

Describes the ordering policy for the consideration of routers that prioritize delivery of requests. Values of type Ordering
are used in conjunction with a QueueOrderPolicy as described in interface QueueOrderPolicy on page 425. This policy
is only used if the effective RoutingType is at least ROUTE_FORWARD (which implies the use of a Router). Support
for multiple ordering policies is indicated by “or”-ing together individual values in a combined Ordering.

• ORDER_ANY - the client doesn't care in what order its requests are processed.

• ORDER_TEMPORAL - the client wants to be sure that its requests are processed in the order in which they were
issued. ORDER_TEMPORAL is the default.

• ORDER_PRIORITY - the client wants its requests processed based on the priority assigned in the QoS structure
described below.

• ORDER_DEADLINE - the client wants its requests ordered so that those whose time_to_live is about to expire are
moved to the front of the queue.

17.3.6.2 interface QueueOrderPolicy

This interface is a local object derived from CORBA::Policy. It is used to indicate the basis upon which a Router orders
delivery of requests. When instances of QueueOrderPolicy are created, a value of type Messaging::Ordering is
passed to CORBA::ORB::create_policy. This specified Ordering value can be the result of “or”-ing together
individual orderings. An instance of QueueOrderPolicy may be specified when creating a POA (and therefore may be
represented in Object references). In addition, an Object reference’s QueueOrderPolicy may be overridden by the
client. If set on both the client and server, reconciliation is performed by intersecting the server-specified list of supported
Ordering values with the list of values in the client’s effective override. When an instance of QueueOrderPolicy is
propagated within a PolicyValue in a TAG_POLICIES Profile Component or INVOCATION_POLICIES Service
Context, the ptype has value QUEUE_ORDER_POLICY_TYPE and the pvalue is a CDR encapsulation containing a
Messaging::Ordering.
Common Object Request Broker Architecture (CORBA), v3.1.1 425

17.4 Propagation of Messaging QoS

This sub clause defines the profile Component through which QoS requirements are expressed in an object reference, and
the Service Context through which QoS requirements are expressed as part of a GIOP request.

module Messaging {
typedef CORBA::OctetSeq PolicyData;
struct PolicyValue {

CORBA::PolicyType ptype;
PolicyData pvalue;

};
typedef sequence<PolicyValue> PolicyValueSeq;

const IOP::ComponentId TAG_POLICIES = 2;
const IOP::ServiceId INVOCATION_POLICIES = 7;

};

17.4.1 Structures

PolicyValue

This structure contains the value corresponding to a Policy of the PolicyType indicated by its ptype. This representation
allows the compact transmission of QoS policies within IORs and Service Contexts. The format of pvalue for each type
is given in the specification of that Policy.

17.4.2 Messaging QoS Profile Component

A new IOP::TaggedComponent is defined for transmission of QoS policies within interoperable Object References.
The body of this Component is a CDR encapsulation containing a Messaging::PolicyValueSeq. When creating Object
references, Portable Object Adapters may encode the relevant policies with which it was created in this
TaggedComponent. POA Policies that are exported in this way are clearly noted as client-exposed in their definitions.
These policies are reconciled with the effective client-side override when clients invokes operations on that reference. For
example, if a POA is created with a RequestPriorityPolicy with minimum value 0 and maximum value 10, all Object
references created by that POA will have that default RequestPriorityPolicy encoded in their IOR. Furthermore, if a
client sets an overriding RequestPriorityPolicy with both minimum and maximum of 5 (the client requires its requests
to have a priority of value 5), the ORB will reconcile the effective Policy for any invocations on this Object reference to
have a priority of 5 (since this value is within the range of priorities allowed by the target). On the other hand, if the client
set an override with minimum value of 11, any invocation attempts would raise the system exception INV_POLICY.

17.4.3 Messaging QoS Service Context

A new IOP::ServiceContext is defined for transmission of QoS policies within GIOP requests and replies. The body of
this Context is a CDR encapsulation containing a Messaging::PolicyValueSeq.
426 Common Object Request Broker Architecture (CORBA), v3.1.1

17.5 Messaging Programming Model

Asynchronous Method Invocations allow clients to make non-blocking requests on a target. The AMI is treated as a
client-side language mapping issue only. In most cases, server-side implementations are not required to change as from
the server-side programmer’s point of view all invocations can be treated identically regardless of their synchronicity
characteristics. In certain situations, such as with transactional servers, the asynchrony of a client does matter and requires
server-side changes if expected to handle transactional asynchronous requests. This specific issue is addressed in Annex
B, Transaction Service on page 491.

Clients may, at any time, make either asynchronous or synchronous requests on the target. Two models of asynchronous
requests are supported: callback and polling. In the callback model, the client passes a reference to a reply handler (a
client-side CORBA object implementation that handles the reply for a client request), in addition to the normal
parameters needed by the request. The reply handler interface defines operations to receive the results of that request
(including inout and out values and possible exceptions). The ReplyHandler is a normal CORBA object that is
implemented by the programmer as with any object implementation. In the polling model, the client makes the request
passing in all the parameters needed for the invocation, and is returned a Poller object that can be queried to obtain the
results of the invocation. This Poller is an instance of a valuetype.

AMI may be used in single- and multi-threaded applications. AMI calls may have any legal return type, parameters, and
contexts. AMI operations do not raise user exceptions. Rather, user exceptions are passed to the implemented type-
specific ReplyHandler or returned from the type-specific Poller. If an AMI operation raises a system exception with a
completion status of COMPLETED_NO, the request has not been made. This clearly distinguishes exceptions raised by
the server (which are returned via the ReplyHandler or Poller) from local exceptions that caused the AMI to fail.

This sub clause focuses entirely on the static (typed) asynchronous invocations that are based on the interface that is the
target of the operation. This sub clause describes the mapping for the generated asynchronous method signatures. It also
describes the generated reply handlers that are passed to those async methods when the callback model is used, and the
generated poller values that are returned from those async methods when the polling model is used. The AMI mapping
contains an IDL to “implied-IDL” mapping, which defines the new operations and interfaces required to perform
asynchronous invocations and obtain the replies to these requests. The new interfaces and values defined in this implied-
IDL are considered to be real IDL since they can correspond to entries in the Interface Repository and have behavior
consistent with all other definitions in IDL. In several cases, this implied-IDL adds new operations to existing interfaces.
These new asynchronous stub interfaces are not considered to be real IDL in that they do not correspond to entries in the
Interface Repository. The distinction between these types of implied-IDL is made clear in the rest of this sub clause. In
general, the implied-IDL is used to avoid explicitly mapping the AMI API to each of the currently supported languages.

When a messaging-enabled IDL code generator is run on an interface, the following is performed in addition to the
processing specified in CORBA:

• A Servant mapping is generated for a type-specific ReplyHandler from which the client application derives its
ReplyHandler implementation. No type-specific ReplyHandler stubs need be generated, but their absence is not a
requirement. The Servant base is generated as if from an IDL interface with a definition as specified in Type-Specific
ReplyHandler Mapping on page 434.

• A type-specific Poller valuetype is generated. The implementation of this Poller is provided by the messaging-
aware ORB. The language-specific generated code corresponds to a valuetype as if it were defined in IDL as
specified in Type-Specific Poller Mapping on page 438.

• Asynchronous request operations are generated with signatures exactly as if the operations were declared on the
original interface. The implied-IDL signature of these operations is specified in Async Operation Mapping on
page 429. The implied-IDL is used entirely so that each individual supported language mapping need not be given for
the asynchronous request operations.
Common Object Request Broker Architecture (CORBA), v3.1.1 427

NOTE: These implied-IDL operations are not intended to be seen by the Object implementation and are not implemented by
the Servant. They are purely a client-side construct for describing the operation signatures for generated code.

• Furthermore, these operations are not part of the interfaces CORBA::InterfaceDef and do not correspond to
synchronous operations. The generated code for these operations interacts with a messaging-aware ORB in ways
outside of the scope of this sub clause. The mechanism of this interaction is specified for interoperability purposes in
Message Routing on page 457. An application programmer need not be aware of this mechanism.

17.6 Running Example

A running example is used throughout this sub clause to clarify the generation of the new typed asynchronous invocation
stubs, the new reply handling interfaces for receiving callback responses, and the new poller values for querying the status
of an outstanding request. The example features a simple stock portfolio manager interface. Most importantly, the
interface includes operations that cover all cases of operation signature:

• attributes

• in arguments

• inout arguments

• out arguments

• return values

• user exceptions

Operations declared oneway are not mapped to asynchronous invocation stubs because they are already asynchronous in
nature.

// Original IDL
exception InvalidStock { string sym; };

interface StockManager {
attribute string stock_exchange_name;

boolean add_stock(in string symbol, in double quote);
void edit_stock(in string symbol, in double new_quote)

raises(InvalidStock);
void remove_stock(in string symbol, out double quote)

raises(InvalidStock);

boolean find_closest_symbol(inout string symbol);
double get_quote(in string symbol) raises(InvalidStock);

};

17.7 Async Operation Mapping

For each operation in an interface, corresponding callback and polling asynchronous method signatures are generated.
Note that no callback and polling asynchronous method signatures are generated for any operations or attributes of
abstract interfaces.
428 Common Object Request Broker Architecture (CORBA), v3.1.1

Even though vanilla oneway operations have no associated reply, under certain circumstance, like for SyncScope value
of SYNC_TARGET or SYNC_SERVER, it may be useful and necessary to receive a reply (either normal or
exceptional). The sendc_ and sendp_ operations therefore need to be created for oneway operations too.

Note that for other SyncScopes (SYNC_NONE and SYNC_TRANSPORT), invocations of sendc_ oneway
operations should result in an immediate callback, and invocations of sendp_ oneway operations should result in a poll
becoming immediately ready.

Due to the way in which identifier names are generated in the implied IDL, in order to avoid name clashes, any IDL that
is meant to be used with Asynchronous Messaging must not contain any identifiers that have the string “AMI_” as a
prefix.

These signatures are described in implied-IDL, which is used to generate language-specific operation signatures. The
implementation of these methods must generate a method invocation as described in Message Routing on page 457. Note
that these generated operations are not included in the interface’s definition (CORBA::InterfaceDef). These operations
do not raise user exceptions. Just as with the currently specified CORBA::Request::send operation, they can (but are
not required to) raise system exceptions. For explanatory purposes, the sub clauses below show the Callback and Polling
implied-IDL in separate pieces. Logically, the IDL compiler deals with async as if the IDL included all three pieces: the
original IDL and the implied IDL for both async models.

17.7.1 Callback Model Signatures (sendc)

When the callback model is used, the client supplies a reply handler when making the asynchronous invocation. The
interface’s operations and attributes are mapped to implied-IDL operations with names prefixed by “sendc_”. If this
implied-IDL operation name conflicts with existing operations on the interface or any of the interface’s base interfaces,
“ami_” strings are inserted between “sendc_” and the original operation name until the implied-IDL operation name is
unique.

17.7.1.1 Implied-IDL for Operations

The signature of the implied-IDL for a given IDL operation is:

• void return type, followed by;

• sendc_<opName> where opName is the name of the operation.

The async callback version takes the following arguments in order:

• An object reference to a type-specific ReplyHandler as described in Type-Specific ReplyHandler Mapping on
page 434, with the parameter name ami_handler. If a nil ReplyHandler reference is specified when this operation
is invoked, no response will be returned for this invocation. A system exception may be raised by the ORB during
evaluation of the request, but once sendc returns, no further results of the operation will be made available. This is
equivalent to setting the CORBA::INV_NO_RESPONSE flag when making a DII deferred request.

• Each of the in and inout arguments in the order that they appeared in the operation's declaration in IDL, all with a
parameter attribute of in and with the type specifier and parameter name of the original argument.

• out arguments are ignored (i.e., are not part of the async signature).

The implied-IDL operation signature has a context expression identical to the one from the original operation (if any is
present).
Common Object Request Broker Architecture (CORBA), v3.1.1 429

17.7.1.2 Implied-IDL for Attributes

The signature of the implied-IDL for the callback model getter and setter operations corresponding to an interface’s
attribute is as follows.

• Setter operations are only generated for attributes that are not defined readonly

• void return type, followed by the operation name, which to distinguish between the getter and setter operations for the
attribute is given by either:

• sendc_get_<attributeName> for reading the attribute value, where attributeName is the name of the attribute,
or

• sendc_set_<attributeName> for setting the attribute value, where attributeName is the name of the attribute
that is not defined readonly.

The callback implied-IDL operations take the following arguments in order:

• An object reference of a type-specific ReplyHandler as described in Section 17.8, Type-Specific ReplyHandler
Mapping, on page 434, with the parameter name ami_handler.

• The additional arguments for asynchronous implied-IDL operations for attributes are as follows:

• For the attribute’s generated get operation, there are no additional arguments.

• For the attribute’s generated set operation, there is one additional argument, in <attrType>
attr_<attributeName>, where attrType is the type of the attribute, and attributeName is the name of that
attribute. The set operation is only generated for attributes that are not defined readonly.

17.7.1.3 Example

The following implied-IDL is generated from the interface definitions used in the running example:

// AMI implied-IDL including callback operations
// for original example IDL defined in Section 17.5

exception InvalidStock { string sym; };

interface AMI_StockManagerHandler;

interface StockManager {

// Original operation Declarations
attribute string stock_exchange_name;
boolean add_stock(in string symbol, in double quote);
void edit_stock(in string symbol, in double new_quote)

raises(InvalidStock);
void remove_stock(in string symbol, out double quote)

raises(InvalidStock);
boolean find_closest_symbol(inout string symbol);
double get_quote(in string symbol) raises(InvalidStock);

// Async Callback operation Declarations
void sendc_get_stock_exchange_name(

in AMI_StockManagerHandler ami_handler);
430 Common Object Request Broker Architecture (CORBA), v3.1.1

void sendc_set_stock_exchange_name(
in AMI_StockManagerHandler ami_handler,
in string attr_stock_exchange_name);

void sendc_add_stock(
in AMI_StockManagerHandler ami_handler, in string symbol,
in double quote);

void sendc_edit_stock(
in AMI_StockManagerHandler ami_handler,
in string symbol, in double new_quote);

void sendc_remove_stock(
in AMI_StockManagerHandler ami_handler,
in string symbol);

void sendc_find_closest_symbol(
in AMI_StockManagerHandler ami_handler,
in string symbol);

void sendc_get_quote(
in AMI_StockManagerHandler ami_handler,
in string symbol);

};

17.7.2 Polling Model Signatures (sendp)

When the polling model is used, the client is returned a queriable poller when making the asynchronous invocation. The
interface’s operations and attributes are mapped to implied-IDL operations with names prefixed by sendp_. If this
implied-IDL operation name conflicts with existing operations on the interface or any of the interface’s base interfaces,
ami_ strings are inserted between sendp_ and the original operation name until the implied-IDL operation name is
unique.

17.7.2.1 Implied-IDL for Operations

The signature of the implied-IDL for a given IDL operation is:

• A type-specific Poller return type as described in Type-Specific Poller Mapping on page 438, followed by
sendp_<opName> where opName is the name of the operation.

The async polling version takes the following parameters in order:

• Each of the in and inout arguments in the order that they appeared in the operation’s declaration in IDL, all with a
parameter attribute of in and with the type specifier and parameter name of the original argument.

• out arguments are ignored (i.e., are not part of the async signature).

The implied-IDL operation signature has a context expression identical to the one from the original operation (if any is
present).

17.7.2.2 Implied-IDL for Attributes

The signature of the implied-IDL for the polling model getter and setter operations corresponding to an interface’s
attribute is as follows:

• Setter operations are only generated for attributes that are not defined readonly.
Common Object Request Broker Architecture (CORBA), v3.1.1 431

• A type-specific Poller return type as described in Type-Specific Poller Mapping on page 438, followed by the
operation name, which to distinguish between the getter and setter operations for the attribute is given by either:

• sendp_get_<attributeName> for reading the attribute value, where attributeName is the name of the attribute,
or

• sendp_set_<attributeName> for setting the attribute value, where attributeName is the name of the attribute
that is not defined readonly.

• Asynchronous implied-IDL operations for attributes have argument lists as follows:

• For the attribute’s generated get operation, there are no arguments.

• For the attribute’s generated set operation, there is one argument, in <attrType> attr_<attributeName>, where
attrType is the type of the attribute, and attributeName is the name of that attribute. The set operation is only
generated for attributes that are not defined readonly.

17.7.2.3 Example

The following implied-IDL is generated from the interface definitions used in the running example:

// AMI implied-IDL including polling operations
// for original example IDL defined in Section 17.5
exception InvalidStock { string sym; };

valuetype AMI_StockManagerPoller;

interface StockManager {
// Original operation Declarations
attribute string stock_exchange_name;
boolean add_stock(in string symbol, in double quote);
void edit_stock(in string symbol, in double new_quote)

raises(InvalidStock);
void remove_stock(in string symbol, out double quote)

raises(InvalidStock);
boolean find_closest_symbol(inout string symbol);
double get_quote(in string symbol) raises(InvalidStock);

// Async Polling operation Declarations
AMI_StockManagerPoller sendp_get_stock_exchange_name();
AMI_StockManagerPoller sendp_set_stock_exchange_name(

in string attr_stock_exchange_name);
AMI_StockManagerPoller sendp_add_stock(

in string symbol,
in double quote);

AMI_StockManagerPoller sendp_edit_stock(
in string symbol, in double new_quote);

AMI_StockManagerPoller sendp_remove_stock(
in string symbol);

AMI_StockManagerPoller sendp_find_closest_symbol(
in string symbol);

AMI_StockManagerPoller sendp_get_quote(
in string symbol);

};
432 Common Object Request Broker Architecture (CORBA), v3.1.1

17.8 Exception Delivery in the Callback Model

The ReplyHandler interface is expressed in IDL and thus cannot have operations that take exceptions as arguments.
Furthermore, the most natural way for a ReplyHandler to deal with exceptions is by invoking some operation that raises
exceptions, not through inspecting operation parameters. Therefore, exception replies are propagated to the
ReplyHandler in the form of a type-specific Messaging::ExceptionHolder valuetype instance that contains the
marshaled exception as its state and has raise_exception and raise_exception_with_list operations for raising the
encapsulated exception.

17.8.1 Messaging::ExceptionHolder valuetype

The Messaging::ExceptionHolder valuetype encapsulates the exception data and enough information to turn that data
back into a raised exception.

// IDL
module Messaging {

// ... all the other stuff

typedef CORBA::OctetSeq MarshaledException;
native UserExceptionBase;
valuetype ExceptionHolder {

void raise_exception() raises (UserExceptionBase);
void raise_exception_with_list(

 in CORBA::ExceptionList exc_list
) raises (UserExceptionBase);
private boolean is_system_exception;
private boolean byte_order;
private MarshaledException marshaled_exception;

};
};

• raise_exception() - This method is used by applications to raise exception from the encapsulated
marshaled_exception member.

• raise_exception_with_list() - If is_system_exception is true, this function is same as raise_exception().
Otherwise, this method raises an exception from the marshaled_exception using an application provided user
exception list. It is useful and should only be used when the given exception holder is not from a skeleton reply
handler's xxx_excep() method. For instance, it is from a DSI reply handler servant or from another ORB runtime. In
these cases, the exception holder may not have an internal user exception list available.

• UserExceptionBase - Language mapping of this native type should allow any user exception to be raised from this
method. For instance, it is mapped to CORBA::UserException in C++ and to org.omg.CORBA.UserException in java.
As usual, system exceptions do not need to be in the raises clause for raising them from this method.

17.9 Type-Specific ReplyHandler Mapping

For each interface, a type-specific reply handler is generated by the IDL compiler. The client application implements and
registers a reply handler with each asynchronous request and receives a callback when the reply is returned for that
request. The interface name of the type-specific handler is AMI_<ifaceName>Handler, where ifaceName is the
Common Object Request Broker Architecture (CORBA), v3.1.1 433

original unqualified interface name. If the interface ifaceName derives from some other IDL interface baseName, then
the handler for ifaceName is derived from AMI_<baseName>, but if it does not, then it is derived from the generic
Messaging::ReplyHandler. If the interface name AMI_<ifaceName>Handler conflicts with an existing identifier,
uniqueness is obtained by inserting additional “AMI_” prefixes before the ifaceName until the generated identifier is
unique.

When invoking an async operation, the client first generates an object reference for its ReplyHandler and then associates
it with the request by passing the reference as an argument to the operation. The reply will be targeted to that
ReplyHandler. So that a single ReplyHandler servant instance can be supplied to multiple requests, the client can
assign unique ObjectIds for each request if the application code needs to distinguish between each of these requests at a
later time. Most commonly, the application needs to access information from the calling scope while in the scope of the
callback. That information can be associated with the ReplyHandler’s ObjectId by the client application at the time of
invocation. Obtaining the ReplyHandler’s ObjectId within the callback implementation allows that implementation to
obtain any information previously associated with the original request. Since the assignment and accessing of these
ObjectIds is fully supported within the Portable Object Adapter defined in CORBA, there is no need to specify the notion
of unique request ids in this document.

The ReplyHandler object reference will be serviced by a servant running under a POA with a particular set of POA
policies. These policies are not affected by the fact that it is a ReplyHandler, so these Policy values have the same
considerations as with any server. The POA LifeSpanPolicy will probably be affected depending on whether or not TII
is used:

• If TII is not used, the LifeSpanPolicy can be either PERSISTENT or TRANSIENT, depending on the
implementation. LifeSpanPolicy would likely be PERSISTENT if the same ReplyHandler implementation is
used for replies from multiple clients. It could be TRANSIENT if the programmer creates the ReplyHandler object
reference in the same process as that of the async invocation and wants the ReplyHandler object reference to become
invalid when the creating POA terminates. In this case, replies are discarded by the ORB once the client terminates.

• If TII is used, LifeSpanPolicy of PERSISTENT is almost required since TII means that the ReplyHandler can
validly be located in a process that can be different than the process of the original client. It is possible for
LifeSpanPolicy to be TRANSIENT, but this would be a rare usage in which the original client obtains the
ReplyHandler reference from a process other than itself. This usage would allow a ReplyHandler to be in effect
only for the life of that other process, supporting a rather limited form of TII.

17.9.1 ReplyHandler Operations for NO_EXCEPTION Replies

For each operation declared in the interface, an operation with the following signature is defined on the generated reply
handler:

• return type void, followed by

• the name of the operation, followed by

• arguments in order (all “in” parameters).

• If the original operation has a return value, the type returned by the operation declared in IDL with parameter
named ami_return_val.

• Each inout/out type name and argument name as they were declared in IDL.

These operations do not raise any exceptions because they are never invoked by a client and have no client to respond to
such an exception. Only a system exception could be raised by such operations, and only with the effect of causing a
transaction to roll back. See Annex B, Changes to Current OTS Behavior on page 491 for a discussion of the Unshared
Transaction model in which a ReplyHandler may be invoked as part of a transaction.
434 Common Object Request Broker Architecture (CORBA), v3.1.1

For an attribute with the name “attributeName,” the following operations are generated on the reply handler: return type
void, followed by get_<attributeName> for the getter (or set_<attributeName> for the setter operation if the
attribute is not defined to be readonly). For the “get” operation, there is one argument (the setter callback operation takes
no arguments): in <attrType> ami_return_val where the attribute of name ami_return_val is of type attrType.

There are two cases where the above mapping results in an operation with no parameters. The first is for an operation
with no return value and either with no parameters or with only in parameters. The second is the mapping of a setter on
an attribute. In these cases, it is worth noting that the only meaning that can be associated with the operation is that the
AMI operation completed successfully. This is significant information, essentially an acknowledgment of completion.

17.9.2 ReplyHandler Operations for Exceptional Replies

If the AMI didn’t succeed at the target, the exception is delivered via the generated _excep ReplyHandler operation
corresponding to the operation originally invoked. This sub clause describes the implied-IDL rules for generating these
operations on the ReplyHandler.

For each operation, operName, on the original interface named ifaceName, an operat ion with the following signature
is generated on the type-specific ReplyHandler:

void <operName>_excep(
in Messaging::ExceptionHolder excep_holder);

For each attribute, attrName, on the original interface named ifaceName, an operation with the following signature is
generated on the type-specific ReplyHandler:

void get_<attrName>_excep(
in Messaging::ExceptionHolder excep_holder);

For each non-readonly attribute, attrName, on the original interface named ifaceName, an operation with the
following signature is generated on the type-specific ReplyHandler:

void set_<attrName>_excep(
in Messaging::ExceptionHolder excep_holder);

If the name generated by the method described above clashes with a name that already exists in the interface, “_ami”
strings are inserted immediately preceding the “_excep” repeatedly, until generated IDL operation name is unique in the
interface.

17.9.3 Example

The example IDL causes the generation of the following additional IDL when asynchronous operations are to be used.
This IDL is “real” in that the interfaces described here are CORBA objects. However, the generation of stubs for these
interfaces is not required, as no client ever invokes these operations remotely in this model. The operations are invoked
directly by the messaging-aware ORB when a reply becomes available.

// AMI implied-IDL of ReplyHandler
// for original example IDL defined in Section 17.5
interface AMI_StockManagerHandler : Messaging::ReplyHandler {

void get_stock_exchange_name(
in string ami_return_val);
Common Object Request Broker Architecture (CORBA), v3.1.1 435

void get_stock_exchange_name_excep(
in Messaging::ExceptionHolder excep_holder);

void set_stock_exchange_name();
void set_stock_exchange_name_excep(

in Messaging::ExceptionHolder excep_holder);

void add_stock(
in boolean ami_return_val);

void add_stock_excep(
in Messaging::ExceptionHolder excep_holder);

void edit_stock();
void edit_stock_excep(

in Messaging::ExceptionHolder excep_holder);

void remove_stock(
in double quote);

void remove_stock_excep(
in Messaging::ExceptionHolder excep_holder);

void find_closest_symbol(
in boolean ami_return_val,
in string symbol);

void find_closest_symbol_excep(
in Messaging::ExceptionHolder excep_holder);

void get_quote(
in double ami_return_val);

void get_quote_excep(
in Messaging::ExceptionHolder excep_holder);

};

17.10 Generic Poller Value

The generic base Poller valuetype can be queried to obtain the status of a potentially outstanding request. So that it can
be registered in a CORBA::PollableSet, it derives from the abstract valuetype CORBA::Pollable. The inherited
Pollable is_ready returns the value TRUE if and only if a reply is currently available for the outstanding request. If it
returns the value FALSE, the reply has not yet been returned from the target. This operation raises the system exception
OBJECT_NOT_EXIST with standard minor code 5 if the reply has already been obtained by some client at the time of
the query.

The Poller has the following definition:

module Messaging {
abstract valuetype Poller : CORBA::Pollable {
typeid ::Messaging::Poller "IDL:omg.org/Messaging/Poller:3.1";

readonly attribute Object operation_target;
readonly attribute string operation_name;

attribute ReplyHandler associated_handler;
436 Common Object Request Broker Architecture (CORBA), v3.1.1

readonly attribute boolean is_from_poller;
};

};

17.10.1 operation_target

The target of the asynchronous invocation is accessible from any Poller.

17.10.2 operation_name

The name of the operation that was invoked asynchronously is accessible from any Poller. The returned string is identical
to the operation name from the target interface’s InterfaceDef.

17.10.3 associated_handler

If the associated_handler is set to nil, the polling model is used to obtain the reply to the request. If it is non-nil, the
associated ReplyHandler is invoked when a reply becomes available.

Switching between the callback and polling models is supported by this specification. The request must be made using the
polling model, and thus a Poller is obtained. Through the attribute associated_handler, a ReplyHandler may be
registered. When the reply is available, the associated ReplyHandler will be invoked just as if the callback model had
been used to make the original request. By setting the attribute to nil, the ReplyHandler can be disassociated at any time
to allow the client application to resume use of the Polling model. The Poller implementation is responsible for ensuring
that in multi-threaded applications, access to the associated_handler is multi-thread safe.

17.10.4 is_from_poller

As described below, the type-specific pollers are queried to obtain the reply from an asynchronously invoked operation. If
the reply is a system exception, it may be important for the client application to distinguish between an exception raised
by the poll itself and an exception that is actually the reply for the asynchronous invocation. The is_from_poller
attribute returns the value TRUE if and only if the poller itself has raised a system exception during the invocation of one
of the type specific poller operations. If the exception raised from one of the type specific poller operations is the reply
for the asynchronous operation, the value FALSE is returned. If the Poller has not yet returned a response to the client, the
BAD_INV_ORDER system exception with standard minor code 22 is raised.

17.11 Type-Specific Poller Mapping

The polling model requires usage of generated type-specific Poller valuetypes. A valuetype is used because all
operations are locally implemented. The basic generated Poller encapsulates the operations for obtaining replies to an
outstanding asynchronous request. A derived PersistentPoller valuetype also adds private state that allows the
response to be obtained from a client other than the client that made the request. This private state is used by the
PersistentPoller implementation in conjunction with the messaging-aware ORB.
Common Object Request Broker Architecture (CORBA), v3.1.1 437

17.11.1 Basic Type-Specific Poller

For each interface, the IDL compiler generates a type-specific Poller value. A Poller is created by the ORB for each
asynchronous invocation that uses the polling model operations. The name of the basic type-specific Poller is
AMI_<ifaceName>Poller, where ifaceName is the unqualified name of the interface for which the Poller is being
generated. If the interface ifaceName derives from one or more IDL interfaces, then the Poller is derived from the
corresponding Poller for each base interface, but if it does not, then it is derived from Messaging::Poller. Poller
valuetypes are declared abstract. If this name conflicts with definitions in the original IDL, additional AMI_ prefixes are
prepended before <ifaceName> until a unique valuetype name is generated (such as "AMI_AMI_FooPoller" for
interface Foo).

17.11.1.1 Poller operations for Interface operations

For each operation declared in the interface, a polling operation with the following signature is declared:

1. Return type void followed by

2. The name of the operation, followed by

3. A first parameter that is in unsigned long ami_timeout indicating for how many milliseconds this call should wait
until the response becomes available. If this timeout expires before a reply is available, the operation raises the sys-
tem exception CORBA:TIMEOUT with standard minor code 1. Any delegated invocations used by the implementa-
tion of this polling operation are subject to the single timeout parameter, which supersedes any ORB or thread-level
timeout quality of service. Two specific values are of interest:

• 0 - the call is a non-blocking poll, which raises the exception CORBA::NO_RESPONSE with the standard
minor code 1 if the reply is not immediately available.

• 232-1 - the maximum value for unsigned long indicates no timeout should be used. The poll will not return until
the reply is available.

The remaining arguments, if any, are in order (all “out” parameters):

1. If the original operation has a return value, the type returned by the operation declared in IDL with parameter named
ami_return_val.

2. Each inout/out type name and argument name as they were declared in IDL raises (<exceptionList>,
CORBA::WrongTransaction where exceptionList contains the original operation raises exceptions, each
exception from the original raises clause.

3. In addition, if the deferred synchronous model is being used:

• the poll raises the CORBA::WrongTransaction user exception (if the request has an associated transaction
context), and

• the polling thread either has a null transaction context or a non-null transaction context that differs from that of the
request.

When a polling call is made, the operation returns in one of the following ways:

1. With the out arguments set - the reply has been returned and future queries will raise the standard exception
OBJECT_NOT_EXIST with standard minor code 5.

2. By raising the reply’s exception - the reply has been returned and future queries will raise the standard exception
OBJECT_NOT_EXIST with standard minor code 5. The base Poller’s is_from_poller has a value of FALSE.
438 Common Object Request Broker Architecture (CORBA), v3.1.1

3. By raising a system exception or CORBA::WrongTransaction due to a failure in the polling operation. The base
Poller’s is_from_poller has a value of TRUE. Two specific exceptions are worth noting:

• TIMEOUT - If a non-zero timeout value is specified, this system exception is raised with standard minor code 1 to
indicate that the specified timeout has expired and the reply has not yet been returned.

• NO_RESPONSE - If a timeout with value 0 is specified, this system exception is raised with standard minor
code 1 to indicate that the reply is not available.

17.11.1.2 Poller operations for Interface attributes

For each attribute declared in the interface, a polling operation with the following signature is declared. Setter polling
operations are only generated for attributes that are not declared readonly: return type void followed by the name of the
generated operation, which to distinguish between the getter and setter operations for an attribute is given by
(respectively):

• get_<attributeName>, where attributeName is the name of the interface’s attribute, or

• set_<attributeName>, where attributeName is the name of the interface’s attribute that was not declared
readonly.

A first parameter that is in unsigned long ami_timeout indicating how many milliseconds this call should wait until the
response becomes available. If this timeout expires before a reply is available, the operation raises the system exception
CORBA::TIMEOUT with the standard minor code 1. Any delegated invocations used by the implementation of this
polling operation are subject to the single timeout parameter, which supersedes any ORB or thread-level timeout quality
of service. Two specific values are of interest:

• 0 - the call is a non-blocking poll, which raises the exception CORBA::NO_RESPONSE with the standard minor
code 1 if the reply is not immediately available.

• 232-1 - the maximum value for unsigned long indicates no timeout should be used. The poll will not return until the
reply is available.

For the getter operation only

An additional argument out <attrType> ami_return_val where attrType is the type of the attribute.

The set operation takes no additional arguments.

Raises (CORBA::WrongTransaction) - If the deferred synchronous model is being used, the poll raises the
CORBA::WrongTransaction user exception if the request has an associated transaction context, and the polling thread
either has a null transaction context or a non-null transaction context that differs from that of the request.

When a polling call is made, the operation returns in one of the following ways:

• With the out arguments set - the reply has been returned and future queries will raise the standard exception
OBJECT_NOT_EXIST with standard minor code 5.

• By raising the reply’s exception - the reply has been returned and future queries will raise the standard exception
OBJECT_NOT_EXIST with standard minor code 5. The base Poller’s is_from_poller has a value of FALSE.

• By raising a system exception or CORBA::WrongTransaction due to a failure in the polling operation. The base
Poller’s is_from_poller has a value of TRUE. Two specific exceptions are worth noting:

• TIMEOUT - If a non-zero timeout value is specified, this system exception is raised with standard minor code 1 to
indicate that the specified timeout has expired and the reply has not yet been returned.
Common Object Request Broker Architecture (CORBA), v3.1.1 439

• NO_RESPONSE - If a timeout with value 0 is specified, this system exception is raised with standard minor
code 1 to indicate that the reply is not available.

17.11.2 Persistent Type-Specific Poller

When Time-Independent Invocations are made, the reply may be obtained by a different client than the one that made the
original request. An instance of persistent poller is returned from such invocations. The PersistentPoller contains the
state necessary to allow polling to be performed in a client distinct from the one that made the request. This state is used
privately by the messaging-aware ORB and is not directly accessible to the application.

The generated PersistentPoller valuetype is derived from the basic one. It adds no methods, only one piece of private
state. For an interface with the unqualified name ifaceName the following PersistentPoller is generated:

valuetype AMI_<ifaceName>PersistentPoller : AMI_<ifaceName>Poller
private MessageRouting::PersistentRequest outstanding_request;
private Object target;
private string op_name;

};

Just as with any CORBA valuetype this PersistentPoller can be passed as an argument to IDL operations and a copy
of the Poller will be instantiated local to the callee.

17.11.3 Example

The example IDL causes the generation of the following additional IDL when asynchronous polling operations are to be
used. This IDL is “real” in that the valuetypes described here are normal CORBA valuetypes.

// AMI implied-IDL of type-specific Poller
// for original example IDL defined in Section 17.5
abstract valuetype AMI_StockManagerPoller : Messaging::Poller {

void get_stock_exchange_name(
in unsigned long ami_timeout,
out string ami_return_val)

raises (CORBA::WrongTransaction);
void set_stock_exchange_name(

in unsigned long ami_timeout)
raises (CORBA::WrongTransaction);

void add_stock(
in unsigned long ami_timeout,
out boolean ami_return_val)

raises (CORBA::WrongTransaction);
void edit_stock(

in unsigned long ami_timeout)
raises (InvalidStock, CORBA::WrongTransaction);

void remove_stock(
in unsigned long ami_timeout,
out double quote)

raises (InvalidStock, CORBA::WrongTransaction);
void find_closest_symbol(

in unsigned long ami_timeout,
440 Common Object Request Broker Architecture (CORBA), v3.1.1

 out boolean ami_return_val,
out string symbol)

raises (CORBA::WrongTransaction);
void get_quote(

in unsigned long ami_timeout,
out double ami_return_val)

raises (InvalidStock, CORBA::WrongTransaction);
};

valuetype AMI_StockManagerPersistentPoller : AMI_StockManagerPoller{
private MessageRouting::PersistentRequest request;
private Object target;
private string op_name;

};

17.12 Example Programmer Usage

17.12.1 Example Programmer Usage (Examples Mapped to C++)

The following is an illustrative example of how the ideas from “II - Introduction” on page 429 and other sub clauses come
together from the programmer’s point of view. It contains no new definitions; Example Programmer Usage on page 441 is
solely meant to demonstrate an application use of Messaging. Since the example is implemented in C++, the expected
C++ mapping of II - Introduction on page 429 implied-IDL is shown in Example Programmer Usage on page 441.

17.12.2 Client-Side C++ Example for the Asynchronous Method Signatures

This sub clause shows sample C++ that is generated from the implied-IDL of the previous sub clauses of II - Introduction
on page 429. The C++ mapping specifies a generated interface class (stub) on which method invocations are translated
into operation requests. It is this class on which the function signatures are generated from their operation declarations in
IDL. It is in this class that the async functions signatures are also declared (and implemented). Using the IDL from the
example in the previous sub clause the stub class StockManager is generated following the C++ mapping. The
following notes apply to this sample generated C++ code:

• Only the generated synchronous and asynchronous method signatures are shown. Vendor-specific constructors,
methods, and members are omitted.

• Although optional according to the IDL to C++ language mapping, method signatures are generated as virtual.

• Since optional according to the IDL to C++ language mapping, exception specifications are not included in generated
methods.

// Generated file: stockmgr_c.hh (Filename is non-normative)

// C++ - StockManager declaration
class StockManager : public virtual CORBA::Object
{
public:
// … all the other stuff.
// StockManager SYNCHRONOUS CALLS
virtual void stock_exchange_name(const char * attr);
Common Object Request Broker Architecture (CORBA), v3.1.1 441

virtual char * stock_exchange_name();
virtual CORBA::Boolean add_stock(const char* symbol,CORBA::Double q);
virtual void edit_stock(const char* symbol, CORBA::Double q);
virtual void remove_stock(const char* symbol, CORBA::Double_out q);
virtual CORBA::Boolean find_closest_symbol(CORBA::String_out symbol);
virtual CORBA::Double get_quote(const char * symbol);

// ASYNCHRONOUS CALLBACK-MODEL CALLS
virtual void sendc_get_stock_exchange_name(

AMI_StockManagerHandler_ptr ami_handler);
virtual void sendc_set_stock_exchange_name(

AMI_StockManagerHandler_ptr ami_handler,
const char* attr_stock_exchange_name);

virtual void sendc_addStock(
AMI_StockManagerHandler_ptr ami_handler,
const char* symbol, CORBA::Double q);

virtual void sendc_editStock(
AMI_StockManagerHandler_ptr ami_handler,
const char* symbol, CORBA::Double q);

virtual void sendc_removeStock(
AMI_StockManagerHandler_ptr ami_handler,
const char* symbol);

virtual void sendc_find_closest_symbol(
AMI_StockManagerHandler_ptr ami_handler,
const char * symbol);

virtual void sendc_get_quote(
AMI_StockManagerHandler_ptr ami_handler,
const char * symbol);

// ASYNCHRONOUS POLLING-MODEL CALLS
virtual AMI_StockManagerPoller* sendp_get_stock_exchange_name();
virtual AMI_StockManagerPoller* sendp_set_stock_exchange_name(

const char* attr_stock_exchange_name);
virtual AMI_StockManagerPoller* sendp_addStock(

const char* symbol, CORBA::Double q);
virtual AMI_StockManagerPoller* sendp_editStock(

const char* symbol, CORBA::Double q);
virtual AMI_StockManagerPoller* sendp_removeStock(

const char* symbol);
virtual AMI_StockManagerPoller* sendp_find_closest_symbol(

const char * symbol);
virtual AMI_StockManagerPoller* sendp_get_quote(

const char * symbol);
};

17.12.3 Client-Side C++ Example of the Callback Model

17.12.3.1 C++ Example of Generated ReplyHandler

The ReplyHandler Servant class generated for the StockManager interface is:
442 Common Object Request Broker Architecture (CORBA), v3.1.1

// Generated file: stockmgr_s.hh (Filename is non-normative)
// C++ - AMI_StockManagerHandler declaration
class POA_AMI_StockManagerHandler

: public POA_Messaging::ReplyHandler
{
public:
// Programmer must implement the following pure virtuals:

// Mappings for attribute handling functions
virtual void get_stock_exchange_name(

const char * ami_return_val) = 0;
virtual void get_stock_exchange_name_excep(

Messaging::ExceptionHolder_ptr excep_holder) = 0;

virtual void set_stock_exchange_name() = 0;
virtual void set_stock_exchange_name_excep(

Messaging::ExceptionHolder_ptr excep_holder) = 0;

// Mappings for the operation handling functions
virtual void add_stock(CORBA::Boolean ami_return_val) = 0;
virtual void add_stock_excep(

Messaging::ExceptionHolder_ptr excep_holder) = 0;

virtual void edit_stock() = 0;virtual void edit_stock_excep(
Messaging::ExceptionHolder_ptr excep_holder) = 0;

virtual void remove_stock(
CORBA::Double quote) = 0;

virtual void remove_stock_excep(
Messaging::ExceptionHolder_ptr excep_holder) = 0;

virtual void find_closest_symbol(
CORBA::Boolean ami_return_val,
const char * symbol) = 0;

virtual void find_closest_symbol_excep(
Messaging::ExceptionHolder_ptr excep_holder) = 0;

virtual void get_quote(
CORBA::Double d) = 0;

virtual void get_quote_excep(
Messaging::ExceptionHolder_ptr excep_holder) = 0;

};

The programmer must now derive from the generated handler and implement the pure virtual methods. The following
points should be considered when implementing these handler-derived reply handlers:

• System and User exceptions are “raised” through invocations of the generated “_excep” operations. If a regular type-
specific operation is invoked, the reply was not an exception.

• Any exception raised from a ReplyHandler method can only be visible to the messaging-aware ORB that is invoking
that ReplyHandler. In most cases, this means that exceptions should never be raised. In the case of an Unshared
Transaction, the ReplyHandler method may invoke CosTransactions::Current::rollback_only or
Common Object Request Broker Architecture (CORBA), v3.1.1 443

CosTransactions::coordinator::rollback_only and then raise the
CORBA::TRANSACTION_ROLLEDBACK system exception to roll back this attempted delivery of the reply.

• All heap-allocated storage associated with any of the arguments to the ReplyHandler methods may be owned by the
ORB. If so, any data passed into the handler must be copied if the data is to be kept. This corresponds to the usual
memory management rules for in arguments.

17.12.3.2 C++ Example of User -Implemented ReplyHandler

The following code is an example implementation of a user derived and implemented reply handler based on the
generated reply handler from C++ Example of Generated ReplyHandler on page 443. The inherited methods, which were
previously declared as pure virtual are declared here as virtual and are implemented as part of this class:

// File: AsyncStockHandler.h
// C++ - Declaration in my own header
#include "stockmgr_s.hh"// Include filename non-normative

class AsyncStockHandler : public POA_AMI_StockManagerHandler
{
public:
AsyncStockHandler() { }
virtual ~AsyncStockHandler() {}

// Mappings for attribute handling functions
virtual void get_stock_exchange_name(

const char * ami_return_val);
virtual void get_stock_exchange_name_excep(

Messaging::ExceptionHolder_ptr excep_holder);

virtual void set_stock_exchange_name();
virtual void set_stock_exchange_name_excep(

Messaging::ExceptionHolder_ptr excep_holder);

// Mappings for the operation handling functions
virtual void add_stock(CORBA::Boolean ami_return_val);
virtual void add_stock_excep(

Messaging::ExceptionHolder_ptr excep_holder);

virtual void edit_stock();
virtual void edit_stock_excep(

Messaging::ExceptionHolder_ptr excep_holder);

virtual void remove_stock(
CORBA::Double quote);

virtual void remove_stock_excep(
Messaging::ExceptionHolder_ptr excep_holder);

virtual void find_closest_symbol(
CORBA::Boolean ami_return_val,
const char * symbol);

virtual void find_closest_symbol_excep(
444 Common Object Request Broker Architecture (CORBA), v3.1.1

Messaging::ExceptionHolder_ptr excep_holder);

virtual void get_quote(
CORBA::Double d);

virtual void get_quote_excep(
Messaging::ExceptionHolder_ptr excep_holder);

};

Each of these callback operations have implementations as in the following. Please note that for the sake of brevity, each
pointer is not checked before it is used. This is intentional.

// AsyncStockHandler.cpp
#include <AsyncStockHandler.h>

void
AsyncStockHandler::get_stock_exchange_name(
const char * ami_return_val)
{
cout << "Exchange Name = " << ami_return_val << endl;
}
void
AsyncStockHandler::get_stock_exchange_name_excep(

Messaging::ExceptionHolder_ptr excep_holder);
{
try {

excep_holder->raise_exception();
}
catch (const CORBA::SystemException& e) {

cout << "Get stock_exchange_name exception [" << e << "]" << endl;
}
}

void
AsyncStockHandler::set_stock_exchange_name()
{
// No data returned since this was the "set" of the attribute.
cout << "Set stock_exchange_name succeeded!" << endl;
}
void
AsyncStockHandler::set_stock_exchange_name_excep(

Messaging::ExceptionHolder_ptr excep_holder)
{
try {

excep_holder->raise_exception();
}
catch (const CORBA::SystemException& e) {

cout << "Set stock_exchange_name exception [" << e << "]" << endl;
}
}

void
Common Object Request Broker Architecture (CORBA), v3.1.1 445

AsyncStockHandler::add_stock()
{
// No data returned but no exception either which is good news.
cout << "Stock was added!" << endl;
}
void
AsyncStockHandler::add_stock_excep(

Messaging::ExceptionHolder_ptr excep_holder)
{
try {

excep_holder->raise_exception();
}
catch (const CORBA::SystemException& e) {

cout << "add_stock exception [" << e << "]" << endl;
}
}

void
AsyncStockHandler::edit_stock()
{
// No return data but no exception either which is good.
cout << "Stock was edited!" << endl;
}
void
AsyncStockHandler::edit_stock_excep(

Messaging::ExceptionHolder_ptr excep_holder)
{
try {

excep_holder->raise_exception();
}
catch (const CORBA::SystemException& e) {

cout << "edit_stock System Exception exception [" << e << "]" <<
endl;

}
catch (const InvalidStock& e) {

cout << "edit_stock invalid symbol [" << e.sym << "]" << endl;
}
}

void
AsyncStockHandler::remove_stock(
CORBA::Double quote)
{
cout << "Stock Removed and quote = " << quote << endl;
}
void
AsyncStockHandler::remove_stock_excep(

Messaging::ExceptionHolder_ptr excep_holder)
{
try {

excep_holder->raise_exception();
446 Common Object Request Broker Architecture (CORBA), v3.1.1

}
catch (const CORBA::SystemException& e) {

cout << "remove_stock System Exception exception [" << e << "]" <<
 endl;

}
catch (const InvalidStock& e) {

cout << "remove_stock invalid symbol [" << e.sym << "]" << endl;
}
}

void
AsyncStockHandler::find_closest_symbol(
CORBA::Boolean ami_return_val,
const char* symbol)
{
if (ami_return_val)

cout << "Closest stock = " << symbol << endl;
else

cout << "No closest stock could be found!" << endl;
}
void
AsyncStockHandler::find_closest_symbol_excep(

Messaging::ExceptionHolder_ptr excep_holder)
{
try {

excep_holder->raise_exception();
}
catch (const CORBA::SystemException& e) {

cout << "find_closest_symbol exception [" << e << "]" << endl;
}
}

void
AsyncStockHandler::get_quote(CORBA::Double quote)
{
cout << "Quote = " << quote << endl;
}
void
AsyncStockHandler::get_quote_excep(

Messaging::ExceptionHolder_ptr excep_holder)
{
try {

excep_holder->raise_exception();
}
catch (const CORBA::SystemException& e) {

cout << "get_quote System Exception exception [" << e << "]" <<
 endl;

}
catch (const InvalidStock& e) {

cout << "get_quote invalid symbol [" << e.sym << "]" << endl;
}

Common Object Request Broker Architecture (CORBA), v3.1.1 447

}

17.12.3.3 C++ Example of Callback Client Program

The following code shows how to set QoS at the ORB and object reference scopes (the two most common levels) and
make asynchronous invocations using the user-implemented reply handler from the previous sub clause. Again, for the
sake of brevity, checking for valid pointers and placing all of the CORBA calls in try blocks has been omitted.

// callback_client_main.cpp
#include <AsyncStockHandler.h>
int main(int argc, char ** argv)
{
// Initialize the ORB
CORBA::ORB_var orb = CORBA::ORB_init(argc, argv);

// Initializing objRef for StockManager -- assumes IOR is passed
// on command-line
CORBA::Object_var obj = orb->string_to_object(argv[1]);
StockManager_var stockMgr = StockManager::_narrow(obj);

// Obtain the ORB’s PolicyManager
CORBA::Object_var orbQosObj =

orb->resolve_initial_references("ORBPolicyManager");
CORBA::PolicyManager_var orbQos =
CORBA::PolicyManager::_narrow(orbQosObj);

// Create and apply an ORB-wide Routed Delivery QoS
CORBA::Any routing_val;
Messaging::RoutingTypeRange routing;
routing.min = Messaging::FORWARD;
routing.max = Messaging::STORE_AND_FORWARD;
routing_val <<= routing;
CORBA::PolicyList orb_pols(1);
orb_pols.length(1);
orb_pols[(CORBA::ULong) 0] =
orb->create_policy(Messaging::ROUTING_POLICY_TYPE, routing_val);
orbQos->set_policy_overrides(orb_pols, CORBA::ADD_OVERRIDE);

// Create and apply an object-reference-specific Priority QoS
CORBA::Any priority_val;
Messaging::PriorityRange priority;
priority.min = 5;
priority.max = 15;
priority_val <<= priority;
CORBA::PolicyList obj_pols(1);
obj_pols.length(1);
obj_pols[(CORBA::ULong) 0] =
orb->create_policy(Messaging::REQUEST_PRIORITY_POLICY_TYPE,
priority_val);
stockMgr = stockMgr->set_policy_overrides(obj_pols);
448 Common Object Request Broker Architecture (CORBA), v3.1.1

// At this point QoS has been set and a protocol selected.

// Create an async handler for each async function.
// Note that the same handler instance could be used across the board
// if we wanted to only create a new Object Reference for each
// invocation and then correlate the timing data with each ObjectId
// ourselves.
//
// The following code assumes implicit activation of Servants with the
// RootPOA
AsyncStockHandler* handlerImpls[6];
for (int i = 0; i < 6; i++)

handlerImpls[i] = new AsyncStockHandler();

AMI_StockManagerHandler_var handlerRefs[6];
for (int i=0; i < 6; i++)

handlerRefs[i] = handlerImpls[i]._this();

// Async Attributes
stockMgr->sendc_set_stock_exchange_name(handlerRefs[0], "NSDQ");
stockMgr->sendc_get_stock_exchange_name(handlerRefs[1]);
// Async Operations
stockMgr->sendc_add_stock(handlerRefs[2], "ACME", 100.5);
stockMgr->sendc_edit_stock(handlerRefs[3], "ACME", 150.4);

// Notice no out param is passed.
stockMgr->sendc_remove_stock(handlerRefs[4], "ABC");

stockMgr->sendc_find_closest_symbol(handlerRefs[5], "ACMA");

// callbacks get invoked during other distributed requests and during
// eventloop processing.
// Assume that done is set by handler implementation when all replies
// have been received or request have timed out.while(!done)

orb->perform_work();
return 0;
}

17.12.4 Client-Side C++ Example of the Polling Model

17.12.4.1 C++ Example of Generated Poller

The typed Poller valuetype class implementation is provided by the messaging-aware ORB. The generated C++ class
has the following declaration:

// Generated file: stockmgr_c.hh (Filename is non-normative)
class AMI_StockManagerPoller : public Messaging::Poller
{
public:

virtual void get_stock_exchange_name(
CORBA::ULong ami_timeout,
Common Object Request Broker Architecture (CORBA), v3.1.1 449

CORBA::String_out ami_return_val);

virtual void set_stock_exchange_name(
CORBA::ULong ami_timeout),

virtual void add_stock(
CORBA::ULong ami_timeout,

CORBA::Boolean_out ami_return_val);

virtual void edit_stock(
CORBA::ULong ami_timeout),

virtual void remove_stock(
CORBA::ULong ami_timeout,

CORBA::Double_out quote);

virtual void find_closest_symbol(
CORBA::ULong ami_timeout,

CORBA::Boolean_out ami_return_val,
CORBA::String_out symbol);

virtual void get_quote(
CORBA::ULong ami_timeout,

CORBA::Double_out ami_return_val);
};

17.12.4.2 C++ Example of Polling Client Program

The following example client program demonstrates the use of the Polling model. The bulk of the program is exactly the
same as the program demonstrated in C++ Example of Callback Client Program on page 448. Each invocation uses the
polling “sendp_” in this program and the returned Pollers are then sequentially called to obtain the results. The following
notes apply to this sample program:

• All polling calls are fully blocking (no timeouts are used).

• Since transactions are not used in this example, the polling program does not catch CORBA::WrongTransaction
exceptions.

// polling_client_main.cpp
#include <stockmgr_c.hh> // include filename is non-normative

int main(int argc, char ** argv)
{

// Initialize the ORB
CORBA::ORB_var orb = CORBA::ORB_init(argc, argv);

// Initializing objRef for StockManager -- assumes IOR is passed
// on command-line

CORBA::Object_var obj = orb->string_to_object(argv[1]);
StockManager_var stockMgr = StockManager::_narrow(obj);
450 Common Object Request Broker Architecture (CORBA), v3.1.1

// Obtain the ORB's PolicyManager
CORBA::Object_var orbQosObj =

orb->resolve_initial_references("ORBPolicyManager");
CORBA::PolicyManager_var orbQos =
CORBA::PolicyManager::_narrow(orbQosObj);

// Create and apply an ORB-wide Routed Delivery QoS
CORBA::Any routing_val;
Messaging::RoutingTypeRange routing;
routing.min = Messaging::FORWARD;
routing.max = Messaging::STORE_AND_FORWARD;
routing_val <<= routing;
CORBA::PolicyList orb_pols(1);
orb_pols.length(1);
orb_pols[(CORBA::ULong) 0] =

orb->create_policy(Messaging::ROUTING_POLICY_TYPE, routing_val);
orbQos->set_policy_overrides(orb_pols, CORBA::ADD_OVERRIDE);

// Create and apply an object-reference-specific Priority QoS
CORBA::Any priority_val;
Messaging::PriorityRange priority;
priority.min = 5;
priority.max = 15;
priority_val <<= priority;
CORBA::PolicyList obj_pols(1);
obj_pols.length(1);
obj_pols[(CORBA::ULong) 0] =

orb->create_policy(Messaging::REQUEST_PRIORITY_POLICY_TYPE,
priority_val);

stockMgr = stockMgr->set_policy_overrides(obj_pols);

// At this point QoS has been set and a protocol selected.
// Make each invocation and store the returned Pollers
AMI_StockManagerPoller_var pollers[6];

// Async Attributes
pollers[0] = stockMgr->sendp_set_stock_exchange_name("NSDQ");
pollers[1] = stockMgr->sendp_get_stock_exchange_name();

// Async Operations
pollers[2] = stockMgr->sendp_add_stock("ACME", 100.5);
pollers[3] = stockMgr->sendp_edit_stock("ACME", 150.4);

// Notice no out param is passed.
pollers[4] = stockMgr->sendp_remove_stock("ABC");
pollers[5] = stockMgr->sendp_find_closest_symbol("ACMA");

// Now obtain each result
CORBA::ULong max_timeout = (CORBA::ULong) -1;
pollers[0]->set_stock_exchange_name(max_timeout);
cout << "Setting stock exchange name succeeded" << endl;
Common Object Request Broker Architecture (CORBA), v3.1.1 451

CORBA::String_var exchange_name;
pollers[1]->get_stock_exchange_name(max_timeout,
 exchange_name.out());
cout << "Obtained stock exchange name [" << exchange_name << "]" <<
 endl;

CORBA::Boolean stock_added;
pollers[2]->add_stock(max_timeout, stock_added);
if (stock_added)

cout << "Stock added successfully" << endl;
else

cout << "Stock not added" << endl;

try {
pollers[3]->edit_stock(max_timeout);
cout << "Edited stock successfully" << endl;

}
catch (const CORBA::Exception& e) {

cout << "Edit stock failure [" << e << "]" << endl;
}

try {
CORBA::Double quote;
pollers[4]->remove_stock(max_timeout, quote);
cout << "Removed stock successfully with quote [" << quote << "]"

 << endl;
}
catch (const CORBA::Exception& e) {

cout << "Remove stock failure [" << e << "]" << endl;
}

CORBA::Boolean closest_found;
CORBA::String_var symbol;
pollers[5]->find_closest_symbol(max_timeout, closest_found,

symbol.out());
if (closest_found)

cout << "Found closest symbol [" << symbol << "]" << endl;

cout << "Exiting Polling Client" << endl;
return 0;

}

17.12.4.3 C++ Example of Using PollableSet in a Client Program

The following example client program demonstrates the use of the PollableSet and wait for multiple requests to
finish. The program would be exactly the same as that of the previous sub clause, as far as the comment “// Now obtain
each result.”
452 Common Object Request Broker Architecture (CORBA), v3.1.1

In this example, after the PollableSet::get_ready_pollable indicates that a particular Poller has finished,
the code makes the call on the type-specific poller in a non-blocking manner and doesn’t bother checking for completion
in the return value. Checking isn’t necessary when only a single client is using the Poller, but it is the safe practice if
multiple clients are waiting.

// Obtain results in any order. First set up the PollableSet.

CORBA::PollableSet_var poll_set = pollers[0]->create_pollable_set();

for (int i=0; i<6, i++) {
poll_set->add_pollable(pollers[i]);

}

// repeat until all completions have been received
CORBA::ULong max_timeout = (CORBA::ULong) -1;
while (poll_set->number_left() > 0) {

// wait for a completion
CORBA::Pollable_var pollable = poll_set->get_ready_pollable(max_timeout);
// the returned Pollable is ready to return its reply
for (int j=0; j < 6; j++) {

if (pollers[j] == pollable.in())
 break;

}

switch(j) {
case 0:

pollers[0]->set_stock_exchange_name(0UL);
cout << "Setting stock exchange name succeeded"

<< endl;
break;

case 1:
CORBA::String_var exchange_name;
pollers[1]->get_stock_exchange_name(0UL, exchange_name.out());
cout << "Obtained stock exchange name ["

 << exchange_name << "]" << endl;
break;

case 2:
CORBA::Boolean stock_added;
pollers[2]->add_stock(0UL, stock_added);
if (stock_added)

cout << "Stock added successfully" << endl;
else

cout << "Stock not added" << endl;
break;

case 3:
try {

 pollers[3]->edit_stock(0UL);
cout << "Edited stock successfully" << endl;

}
catch (const CORBA::Exception& e) {

 cout << "Edit stock failure [" << e << "]"
Common Object Request Broker Architecture (CORBA), v3.1.1 453

<< endl;
}
break;

case 4:
try {

CORBA::Double quote;
pollers[4]->remove_stock(0UL, quote);
cout << "Removed stock successfully with quote ["

<< quote << "]" << endl;
}
catch (const CORBA::Exception& e) {

cout << "Remove stock failure [" << e << "]"
<< endl;

}
break;

case 5:
CORBA::Boolean closest_found;
CORBA::String_var symbol;
pollers[5]->find_closest_symbol(0UL, closest_found, symbol.out());
if (closest_found)

 cout << "Found closest symbol [" << symbol
 << "]" << endl;

break;
}

}

17.12.5 Server Side

The following example of the server-side main() assumes a C++ implementation of the StockManager
interface called StockManager_impl.

#include <StockManagerImpl.h> // Implementation header

int main(int argc, char ** argv)
{
// Initialize the ORB
CORBA::ORB_var orb = CORBA::ORB_init(argc, argv);
// Obtain the POA
PortableServer::POA_var poa =

orb->resolve_initial_references("RootPOA");

// Create a POA that supports Unshared transactions and processes
// queued requests in priority order
CORBA::Any policy_val;
CORBA::PolicyList pols(2);
pols.length(2);

policy_val <<= (Messaging::PRIORITY | Messaging::DEADLINE);
pols[(CORBA::ULong) 0] =

orb->create_policy(Messaging::QUEUE_ORDER_POLICY_TYPE,
454 Common Object Request Broker Architecture (CORBA), v3.1.1

policy_val);

policy_val <<= CosTransactions::Allows_either;
pols[(CORBA::ULong) 1] =

orb->create_policy(CosTransactions::TRANSACTION_POLICY_TYPE,
 policy_val);

poa = poa->create_POA(
"MessagingPOA",
PortableServer::POAManager::_nil(),
pols);

// Instantiate the servant.
StockManager_impl* stockMgr = new StockManager_impl("NYSE");
// register the servant for use.
PortableServer::ObjectId_var servantId =

poa->activate_object(stockMgr);
orb->run();
return 0;
}

17.13 Message Routing Interoperability

Asynchronous method invocation and time-independent delivery of requests and responses cannot be handled in a first-
class manner within the synchronous dialog of the GIOP 1.1. The basic requirement for Messaging is that individual
request and reply messages (and their components) can be discussed by routing agents. These agents, or Routers,
explicitly pass messages between them and interact with clients and targets of asynchronous operations. This sub clause
describes the interactions between a client and the first Router to handle its request, between successive Routers as the
request is passed along the path to the target, and between the target and the Router that actually makes the request on
behalf of the original client. This Router closest to the Target then turns the reply into a Request on a ReplyHandler,
allowing the Reply to be routed using the same mechanism as the original request. The reply is finally delivered to an
application’s ReplyHandler or through an application’s use of the Polling APIs.

NOTE: This Introduction specifies Routing interoperability for CORBA Messaging products. The information presented in this
sub clause is not required for building applications that make Asynchronous operation invocations.

Throughout this Introduction a configuration is assumed in which the Client is separated from the Target by the Internet.
Using this “most complex” scenario, all the details of the Routing procedure are exposed. To help understand this design,
consider Figure 17.1.
Common Object Request Broker Architecture (CORBA), v3.1.1 455

Figure 17.1 - Routing Interoperability Overview

17.14 Routing Object References

This specification is designed to support scenarios in which a target may be disconnected for a long period of time. It
would be inefficient for a client’s router to need to monitor the availability of all targets for which it holds outstanding
requests. To make this scenario scalable, it is possible for the target to specify a more highly available temporary
destination for its asynchronous requests. This destination is a Router, and the natural place for the target to specify this
Router’s location is within a component of the Target’s IOR. For extensibility, this specification defines a
TaggedComponent that contains a sequence of Router IORs.

module MessageRouting {
const IOP::ComponentId TAG_MESSAGE_ROUTERS = 3;

interface Router;
typedef sequence<Router> RouterList;

};

A TaggedComponent containing Target routing hints is built by setting the tag member to
MessageRouting::TAG_MESSAGE_ROUTERS and the component_data to a CDR encapsulation of a
MessageRouting::RouterList. This component can appear in TAG_INTERNET_IOP and
TAG_MULTIPLE_COMPONENTS profiles.

Routers are listed in this sequence in order from most highly available to least highly available. It is expected that the
least highly available Router will be “closest” to the Target, whereas the most highly available Target Router will be
“closest” to the Internet. For example, the target in the reference example of III - Introduction on page 460 would have an
IOR containing a TAG_MESSAGE_ROUTERS Component containing a sequence of two Router IORs. The first
element in this sequence would be the reference of TargetRouter1 and the second element would be the reference of
TargetRouter.

Client

INTERNET

Target

TargetRouter1

TargetRouter0

ClientRouter1

ClientRouter0

TargetRouter2ClientRouter2

ReplyHandler

1

2

3

4

5

6
7

8

9b

9a

Polling Client
456 Common Object Request Broker Architecture (CORBA), v3.1.1

17.15 Message Routing

The messaging Routers serve two main purposes:

• forward a message to another Router, and

• synchronously deliver a message to its intended target.

This sub clause explains the interfaces and mechanisms that support these two functions of Routers. The interfaces
described here are not exposed to the application programmer in any way. They are intended entirely for use by
Messaging vendors to support interoperability between messaging implementations.

The following IDL is used to route asynchronous requests and their corresponding replies:

// IDL
module Messaging {

interface ReplyHandler { };
};

module MessageRouting {

typedef CORBA::OctetSeq BodyData;
struct MessageBody {

BodyData body;
boolean byte_order;

};

struct RequestMessage {
GIOP::Version giop_version;
IOP::ServiceContextList service_contexts;
octet response_flags;
GIOP::RequestReserved reserved;
IOP::ObjectKey object_key;
string operation;
MessageBody body;

};

enum ReplyDisposition { TYPED, UNTYPED };
struct ReplyDestination {

ReplyDisposition handler_type;
Messaging::ReplyHandler handler;

};

interface Router;
typedef sequence<Router> RouterList;
struct RequestInfo {

RouterList visited;
RouterList to_visit;
Object target;
unsigned short profile_index;
ReplyDestination reply_destination;
Common Object Request Broker Architecture (CORBA), v3.1.1 457

Messaging::PolicyValueSeq selected_qos;
RequestMessage payload;

};
typedef sequence<RequestInfo> RequestInfoSeq;

interface Router {
void send_request(in RequestInfo req);
void send_multiple_requests(in RequestInfoSeq reqSeq);

};

//
// Polling-related interfaces
//

interface UntypedReplyHandler : Messaging::ReplyHandler {
void reply(

in string operation_name,
in GIOP::ReplyStatusType reply_type,
in MessageBody reply_body);

};

exception ReplyNotAvailable { };

interface PersistentRequest {
readonly attribute boolean reply_available;

GIOP::ReplyStatusType get_reply(
in boolean blocking,
in unsigned long timeout,
out MessageBody reply_body)

raises (ReplyNotAvailable);

attribute Messaging::ReplyHandler associated_handler;

GIOP::ReplyStatusType get_reply_with_context(
 in boolean blocking,
 in unsigned long timeout,
out MessageBody reply_body,
 out IOP::ServiceContextList service_contexts)

raises (ReplyNotAvailable);
};

interface PersistentRequestRouter {
PersistentRequest create_persistent_request(

in unsigned short profile_index,
in RouterList to_visit,
in Object target,
in CORBA::PolicyList current_qos,
in RequestMessage payload);

};
};
458 Common Object Request Broker Architecture (CORBA), v3.1.1

17.15.1 Structures

17.15.1.1 MessageBody

This structure is used to wrap the marshaled GIOP message data (either request arguments or reply data) to support
repackaging as the request components around that data (such as service contexts or object key) change due to Routing.
Since GIOP 1.2 Request and Reply Bodies are always aligned to an 8-octet boundary, it is necessary to keep track of the

• data and the length of that data as a sequence of octet, and

• the byte order with which that data was originally marshaled.

17.15.1.2 RequestMessage

This structure explicitly contains all the components of a GIOP request. When the target is actually invoked, its members
are used to compose an actual GIOP request.

The RequestMessage has the following members:

• iop_version - the version of the GIOP that was used when the message was marshaled.

• service_contexts - the sequence of service contexts selected for this request. Routers must propagate all Service
Contexts with unknown tags.

• response_flags - As explained further in the General Inter-ORB Protocol clause, the meaning of the two least
significant bits is defined as:

• the least significant bit (bit-0) indicates whether or not a response may be returned. If this bit is “1”, then the
server-side ORB shall always send a ReplyMessage. If the bit-0 is “0”, no ReplyMessage will be sent. This
replicates the function of the response_expected boolean in CORBA.

• Bit-1 is considered if and only if bit-0 is “1.” If bit-1 is “0” the server sends a ReplyMessage before invoking
the target. If bit-1 is “1,” the ReplyMessage is sent after the target has completed the invocation
reserved.

• object_key - the opaque object key of the target. This may change if a GIOP object forwarding occurs for this
request.

• operation - the operation name of the request being made.

• body - the CDR stream message payload and marshaling byte order for repackaging within a new GIOP request once
the routed message can be synchronously invoked on the target.

17.15.1.3 ReplyDestination

This structure contains enough information for the response to be returned once the actual invocation has been made on
the target.

• handler_type - Either UNTYPED or TYPED indicating which type of ReplyHandler is to receive the response.
This flag is necessary to ensure that no is_a must be performed when the Target Router is ready to return the reply as
described in Target Router on page 464.

• handler - an Object reference to the ReplyHandler that is the destination of the response.
Common Object Request Broker Architecture (CORBA), v3.1.1 459

17.15.1.4 RequestInfo

This structure contains the information required for an intermediate Router to get a request closer to its target and for a
target Router to invoke that request on its target.

• visited - the sequence of Routers through which the message has been sent already. Each router may add its reference
to this sequence before forwarding the request to another Router. This sequence can be used by a Router to detect
cycles in a network of Routers, but this is not a requirement step in the Routing protocol.

• to_visit - the suggested sequence of Routers to which the message should be sent if the target is not available. This
sequence may be modified as the request is sent from Router to Router.

• profile_index - the index of the profile in the target IOR that is being used for this request. This is necessary so the
target router can choose the correct object key when composing the final GIOP request.

• target - the full IOR of this message’s target.

• reply_destination - a reference to the ReplyHandler for this request along with the disposition of that
ReplyHandler. If the handler_type is UNTYPED, the destination is an untyped ReplyHandler (meaning that it
was created when create_persistent_request was called and is implemented by the ClientRouter). If the
handler_type is TYPED, the reply destination is a type-specific ReplyHandler implemented by an application
using the callback model. If the reply destination is nil, no reply will be sent and the handler_type can be ignored.

• selected_qos - the list of QoS that was selected for the Routing of this message.

• message - the payload (arguments, return value, raised exception) for this message, including the byte order with
which the message was originally marshaled.

17.15.2 Interfaces

17.15.2.1 ReplyHandler

The ReplyHandler interface is a base interface for all specific ReplyHandlers (either type-specific or Generic ones). It
is used as the generic reply_destination argument when a request is sent to a Router:

17.15.2.2 Router

The Router interface is used to pass messages when a request cannot be synchronously invoked on its final target.

17.15.2.3 send_request

The Router is passed all the information necessary to either route the request toward the target by calling send_request
on another Router, or to invoke the request on its final target.

17.15.2.4 send_multiple_requests

The Router is passed a sequence of RequestInfo structures, where each RequestInfo is a completely self-contained set
of information allowing the Router to either route the request toward the target by calling send_request on another
Router, or to invoke the request on its final target.

17.15.2.5 UntypedReplyHandler

This interface is the target of replies when the polling model is used.
460 Common Object Request Broker Architecture (CORBA), v3.1.1

17.15.2.6 reply

The reply operation is invoked when the reply to a PersistentRequest becomes available. The operation is invoked
with the following arguments:

• operation_name - The string name of the original request operation. This is necessary if the untyped reply must be
turned into a callback on a typed ReplyHandler (as is the case if the polling client has switched models after making
the request and associated a ReplyHandler with its Poller).

• reply_type - The status of the Reply (either NO__EXCEPTION, USER_EXCEPTION, or
SYSTEM_EXCEPTION). LOCATION_FORWARD replies are not invoked on the ReplyHandler.

• reply_body - The marshaled data of the reply along with the byte order with which it was marshaled.

17.15.2.7 PersistentRequest

Instances of this interface are created by the Client Router for polling model invocations, and is queried to obtain the
status of a request, including the reply’s data if available.

17.15.2.8 readonly attribute reply_available

Returns the value TRUE if and only if the reply is currently available and has not yet been returned to some caller of
get_reply. Returns the value FALSE if and only if the reply has not yet been returned to the ClientRouter. This attribute
cannot be checked if the response has already been delivered to some caller of get_reply, as the PersistentRequest
instance will have been deactivated at that time and the ORB will return the system exception OBJECT_NOT_EXIST on
any subsequent invocations on that PersistentRequest.

17.15.2.9 get_reply and get_reply_with_context

The get_reply or get_reply_with_context operation is invoked to poll or block for a reply to a PersistentRequest.
The operation returns the status of the reply (either NO_EXCEPTION, USER_EXCEPTION, or
SYSTEM_EXCEPTION) or raises the ReplyNotAvailable exception if no reply is obtained before the specified timeout
occurs. If the response is returned to the caller, the PersistentRequest is deactivated so that future invocations of
get_reply or get_reply_with_context raise the system exception OBJECT_NOT_EXIST with standard minor code
5. The get_reply and get_reply_with_context operations takes the following arguments:

• blocking - if set, the operation does not return until either a reply can be returned or the PersistentRequest
becomes invalid (due to an expired time-to-live).

• timeout - ignored if blocking is TRUE. Otherwise, the request blocks for the specified number of seconds or until a
reply is available. If no reply becomes available after the specified timeout has expired, the ReplyNotAvailable
exception is raised.

• reply_body - the data of the reply as originally marshaled by the target.

The get_reply_with_context operation has the following additional argument:

• service_contexts - the list of service contexts that is associated with the reply message, in the form of a
SeviceContextList.

17.15.2.10 attribute associated_handler

The possibly nil ReplyHandler reference of the type-specific ReplyHandler registered to receive a callback reply for
this request. This attribute is initially nil if the PersistentRequest was created for a polling client, and becomes non-
nil if the client decides to switch from the polling model to the callback model.
Common Object Request Broker Architecture (CORBA), v3.1.1 461

17.15.2.11 PersistentRequestRouter

This interface is used by the messaging-aware client ORB to create a request that can be queried to obtain its status and
reply data (e.g., using the polling model).

17.15.2.12 create_persistent_request

When a PersistentRequest is created for a message, no reply destination is supplied. Instead, the
PersistentRequestRouter establishes itself as the reply destination and returns to the caller a reference that has
operations for obtaining the status and reply for the request. The operation that returns this new PersistentRequest
takes the following arguments:

• profile_index - the index of the profile in the target IOR that is being used for this request. This is necessary so the
target router can choose the correct object key when composing the final GIOP request.

• to_visit - the suggested sequence of Routers to which the message should be sent if the target is not available. This
sequence may be modified as the request is sent from Router to Router.

• target - the full IOR of this message’s target.

• selected_qos - the list of QoS that was selected for this message.

• message - the payload (arguments, return value, raised exception) for this message.

17.15.3 Routing Protocol

Processing of a time-independent invocation involves a series of roles played by various components of the distributed
system. These roles include:

• the invoking client

• an initial request router

• intermediate request routers

• a target router

• the target object

• intermediate reply routers

• a final reply router

• the response-receiving client.

Not all of these distinct roles are necessarily involved in every invocation, and more than one role can be played by the
same component of the distributed system. A router implementation is likely to be able to serve any of the router roles,
and may even serve multiple roles for the same invocation, such as when the initial request router also serves as the target
router with no intermediate request routers involved.

Routers can be collocated with client or server ORBs, or can be separate processes. Either way, routers must maintain
persistent state with transactional semantics.
462 Common Object Request Broker Architecture (CORBA), v3.1.1

17.15.3.1 Invoking Client

The client application makes an asynchronous invocation either by specifying a ReplyHandler object or by using the
polling API.

Depending on QoS requirements, the client ORB may try to synchronously invoke the operation on the target object,
using IIOP or some other synchronous protocol. This attempt will not be made if the client is part of an active transaction
and the target has a TransactionPolicy of Requires_unshared.

If the target is unreachable via a synchronous protocol, the client ORB tries to find an initial router to use. If the target
IOR has a TAG_MESSAGE_ROUTERS component, its list of routers may be tried, starting from the one closest to the
target, which is the last in the list. If none of these are reachable, or there is no TAG_MESSAGE_ROUTERS
component, then the client ORB’s default router closest to the target may be chosen. The order in which the client ORB
attempts to contact an initial router is not mandated by this specification. The client ORB may choose to send the request
to any Router (such as its own closest Router in all cases) according to implementation-specific configuration. If the client
application used the polling interface and a quality of service requiring the request to be persistent, the client ORB
attempts to narrow the initial request router to a PersistentRequestRouter, and if this fails, a different router must be
selected. If no router can be found meeting the required quality of service, the system exception CORBA::INV_POLICY
is raised.

Once an initial request router is identified, the client ORB delivers the request to it by invoking send_request if a
ReplyHandler was specified, or create_persistent_request if the polling API and persistent QoS was used. The
client application’s active transaction context, if any, is used for this invocation. Only service context information that is
meaningful to the target in a time-independent invocation, such as CodeSets (but not TransactionContext), is included
in the RequestMessage argument to send_request. Future ORB service specifications must state whether their
service contexts are to be considered end-to-end (and therefore included within the RequestMessage) or are only for a
single hop (and therefore used by the ORB when invoking the initial router but not included with the
RequestMessage).

An empty sequence is passed by the client ORB as the visited parameter. The list of routers from the target IOR’s
TAG_MESSAGE_ROUTERS component is used as the to_visit parameter. This list may have additional routers added
to it by the client ORB depending on administration of the network of routers. If the callback model is being used, the
type-specific ReplyHandler is passed as the reply_destination. If the request was originated using
create_persistent_request, the untyped ReplyHandler is passed as the reply_destination. For the reply to be able
to be delivered asynchronously, these ReplyHandler IORs must contain enough routing information (e.g.,
TAG_MESSAGE_ROUTERS component).

17.15.3.2 Initial Request Router

The initial request router’s role depends on whether the ReplyHandler or polling API was used by the client.

If the client ORB passed the request message, along with a ReplyHandler reference, to the initial router using the
send_request operation, the initial request router saves the request message to stable storage within the client
application’s transaction context, and then processes the request using the request routing algorithm described below.

If create_persistent_request was called, the initial request router must instantiate a PersistentRequest object and
return its reference to the client ORB, which will return it to the client application. Until the response for the request is
delivered to the client, or the request times out, such an initial request router must keep an association between the
identity of this PersistentRequest object and the state of the request. When routing the request (as described below),
this first router passes a reply_destination, which is an UntypedReplyHandler implemented by the first router itself.
This UntypedReplyHandler may be created either before or after the PersistentRequest and request state is
Common Object Request Broker Architecture (CORBA), v3.1.1 463

committed to stable storage. After returning the PersistentRequest object and committing the request state to stable
storage, all within the transaction context of the client application, the initial router processes the request using the routing
algorithm described below. The routing process does not continue until the client’s initial transaction has been committed.

17.15.3.3 Request Routing Algorithm

Any router that has received a request message and committed it to stable storage processes it in the same way. If it can
invoke the operation directly on the target object, the router serves as the target router for the invocation, as described
below. If not, it tries to deliver the request to another router closer to the target object. If it can’t do either of these, it
queues the request and tries again later, either after some period of time has elapsed, or in response to an announcement
of availability from another router closer to the target as described in Router Administration on page 467.

A router typically picks another router closer to the target by selecting from the list of routers passed to it as the to_visit
parameter to either send_request or create_persistent_request. Routers later in the list are given preference as
being closer to synchronous connection with the target. The next router can also be selected from some set of known
Routers based on an implementation-specific configuration. If QoS attributes of the request message require persistence
of requests, a transaction is first initiated. Then send_request is called on the selected router. The to_visit parameter
is formed by removing the callee from the to_visit list received with the original request. Any routers further from the
target than the callee (earlier in the to_visit list) are also removed. The target, reply_destination, selected_qos,
and message parameters are copied from the received request. After invoking send_request, the router removes the
request message from its stable storage, and commits the transaction if it initiated one.

A router must ensure that exactly-once semantics are preserved. If delivering a request message results in an exception
with a CompletionStatus of COMPLETED_NO, or in a transaction being aborted, it can retry. Since any invocation
can raise a system exception, all exception replies with a completion status other than COMPLETED_NO must be
reported back to the client via the reply message.

17.15.3.4 Intermediate Request Router

An intermediate router is simply a router that accepts a request message via send_request from one router and then,
eventually, delivers it to another router, again using send_request. The send_multiple_requests operation may also
be used to allow batching of requests between Routers. The intermediate routers may take a request’s
QueueOrderPolicy (if present) into account when prioritizing the delivery of requests to destination routers, but is not
required to do so.

17.15.3.5 Target Router

The target router for an invocation is a router that accepts a request message, delivers it to the target object, and, if a
response is expected, routes the target’s reply back to the client. The target router may have to queue the request message
before the invocation and/or may have to queue the response message after the invocation.

The target router may be collocated with the target, or may deliver the request to the target via a synchronous GIOP-based
protocol. The target router is responsible for processing any LOCATION_FORWARD replies that may be generated in
making the invocation on the target, so only NO_EXCEPTION, USER_EXCEPTION, or SYSTEM_EXCEPTION
replies are routed back to the client. When making the synchronous GIOP request on the target, the TargetRouter must
marshal its request with the same byte order with which the original message body was marshaled. This byte order is
recorded in the MessageBody structure. No Router is expected to remarshal the request body with a new byte order.
464 Common Object Request Broker Architecture (CORBA), v3.1.1

If persistence of requests is required, the target router ensures that the request message is removed from stable storage and
the reply message is committed to stable storage within the scope of a single transaction. If the target object’s IOR
indicates that it supports time-independent transactions (through a TransactionPolicy of Allows_unshared,
Allows_either, Requires_unshared, or Requires_either), then that same transaction context is propagated to the
server application. Otherwise no transaction context is propagated to the target when the request is invoked.

When guaranteed delivery is required, there may be one, two, or three distinct transactions involved in the target router’s
processing of the invocation. The target router receives the request message within the context of a transaction initiated
by a previous router or possibly the client ORB. If the target is accessible at that time, the operation can be invoked on
the target and the reply message either stored or sent back toward the reply destination using the transaction context
within which the request was received. If the target is not accessible, the request message is committed to stable storage
and queued for later delivery to the target under a second transaction. When the target operation is invoked and its reply
is received, the target router may deliver the reply to another router, or possibly to the client ORB. The router may deliver
the reply in the same transaction as it invoked the operation, or the router may commit the reply to stable storage and later
deliver it in yet another transaction. The completion of the transaction in which the TargetRouter actually delivers the
request to the target is governed by the following cases:

• A NO_EXCEPTION reply is returned and the transaction commits. This committed reply is the one that will be
returned to the client. Since the reply committed, the request is no longer waiting in some queue pending delivery.

A NO_EXCEPTION reply is returned but the transaction raises TRANSACTION_ROLLEDBACK with standard minor
code 4 upon commit. In this case the router must ensure that the request not be considered pending delivery anymore
(logically the request must be removed from some queue), and that a suitable reply be generated so that the client knows
that the target’s transaction rolled back. The router starts a new transaction in which it removes the request from its “to be
delivered” queue and generates a reply with the system exception TRANSACTION_ROLLEDBACK with standard
minor code 4. This reply is then committed as the reply for the request.

A user or system exception is returned. The Router should rollback the transaction so no work has been done in the target
server. There are two subcases here:

• the target was unreachable. In this case, since the transaction has rolled back, the request is still waiting in the Router’s
queue of pending requests. The retry policy is used to determine when next to attempt delivery.

• the target was reachable but an exception was raised. As in the TRANSACTION_ROLLEDBACK case above, the
Router starts a new transaction to remove the request from the queue of pending requests, and commits the exception
reply that it received from the target as the reply for this operation.

If the request has a QueueOrderPolicy associated with it, the target router is responsible for making invocations in the
proper order. Depending on the Ordering requested (e.g., PRIORITY, TEMPORAL), the appropriate request is selected
for delivery. Note that end-to-end ordering guarantees cannot be made when client and target are decoupled, so this
ordering is really only a guideline. If multiple threads are used in the router for request delivery, it is certainly possible for
delivery of requests to be out of order. The specification of QueueOrderPolicy does not require a router or server ORB
to limit its use of threads in delivering requests.

Regardless of how many transactions, if any, are used, the target router must route the reply back to the reply destination
if and only if the response_expected flag was set to a non-zero value in the RequestMessage. The reply can take
one of two forms depending on whether the reply_destination is a type-specific ReplyHandler (the client uses the
Callback model) or if the reply_destination is an UntypedReplyHandler (a PersistentRequest was created such
as when the client used the Polling model).

Common Object Request Broker Architecture (CORBA), v3.1.1 465

NOTE: The type-specific reply handlers and the UntypedReplyHandler are both derived from the common base
ReplyHandler interface, but there is no other inheritance relationship between the UntypedReplyHandler and the type-
specific reply handlers.

Regardless of destination, the new reply must be marshaled with the same byte order used by the target when the reply
was originally marshaled. The Target Router is not expected to remarshal the reply body.

17.15.3.6 Replying to a Type-specific ReplyHandler

If the client originally supplied a type-specific ReplyHandler, the reply must be converted into a typed request
invocation on the ReplyHandler. The Target Router determines this by verifying that the handler_type disposition of
the reply_destination argument has the value TYPED. The format of the generated request depends on the
reply_status:

• NO_EXCEPTION - the generated reply operation has the same operation name as the request. Its RequestBody is
exactly the same as the marshaled ReplyBody from the target’s GIOP reply.

• SYSTEM_EXCEPTION or USER_EXCEPTION - the generated reply operation has the same name as the request
operation, with the string _excep appended. The single argument to this request is the
Messaging::ExceptionHolder valuetype.

A reply with status LOCATION_FORWARD is handled as described below.

17.15.3.7 Replying to an UntypedReplyHandler

If the client originally created a PersistentRequest (such as by using the Polling model), the reply must be converted
into the generic request operation supported by the UntypedReplyHandler interface. The Target Router determines this
by verifying that the handler_type disposition of the reply_destination argument has the value UNTYPED. The
generated reply operation has the name “reply” and takes as arguments the original operation name, the reply_status
(NO_EXCEPTION, SYSTEM_EXCEPTION, or USER_EXCEPTION) and a sequence of octet containing the reply
data. The length is set to the size of the marshaled ReplyBody and the data is the marshaled body itself.

17.15.3.8 Handling of Service Contexts

When a TargetRouter receives a Reply, it generates a request on some ReplyTarget as described previously in this sub
clause. If the Reply contains service contexts, the TargetRouter must decide whether or not these contexts are to be used
in its request on the ReplyTarget. End-to-end service contexts, such as the CodeSets context, are propagated to the
ReplyTarget. Single-hop service contexts, such as the TransactionService context, are consumed by the
TargetRouter. Unknown service contexts are propagated from the reply to the generated request on the ReplyTarget.

17.15.3.9 Handling LOCATION_FORWARD Replies

When a TargetRouter receives a Reply with status LOCATION_FORWARD, it must either use the returned reference
as the new target for the request, or must return the new reference to the ReplyTarget. The Messaging protocol requires
that the TargetRouter continue processing the request by either directly invoking the new target or routing the request
toward the new target as has been described thus far.
466 Common Object Request Broker Architecture (CORBA), v3.1.1

17.15.3.10 Routing of Replies

As described above, the GIOP reply is turned into a request message targeted to the original reply_destination. Since
this reply is now a request, it may be sent to its destination using the message routing protocol described in this sub
clause. For example, if the ReplyHandler’s reference contains Routing information, the TargetRouter may invoke the
new request using some Router’s send_request operation. In this case, the specified routing protocol should be
followed for this new request, with the response_expected flags all set to 0 and the reply_destination set to nil.

17.15.3.11 UntypedReplyHandler

When an UntypedReplyHandler’s reply operation is invoked, several things may happen. The specific correlation of a
Router’s UntypedReplyHandler with the PersistentRequests it supports is not visible to this interoperability layer,
but at a high level one of the following occurs:

• A type-specific ReplyHandler has been associated with the corresponding PersistentRequest. If a callback has
been registered for this reply (the associated_handler is non-nil), the type-specific callback operation may be
invoked directly as described in Replying to a Type-specific ReplyHandler on page 466. For persistent delivery of
replies, the Router starts a transaction in which the reply is delivered. Once the client returns, the Router commits and
the reply is deleted. As with any transactional request, the application’s ReplyHandler implementation may choose
to invoke CosTransactions::Current::rollback_only or CosTransactions::coordinator::rollback_only
and then raise the CORBA::TRANSACTION_ROLLEDBACK system exception if it wishes to rollback the Router’s
transaction.

• A PersistentRequest::get_reply is pending for this request. The reply data may be immediately returned to the
waiting client. The reply is returned within the client’s transaction context and when that transaction is committed the
reply is deleted.

• The reply data may be saved to stable storage (for guaranteed delivery this is made durable when the sending Router
commits the transaction in which the reply has been delivered) or recorded in-process (if the reply is not guaranteed).
The UntypedReplyHandler::reply then returns. The reply is obtained by a client at a later time.

17.16 Router Administration

One basic function of a Router is to forward a request to another Router, which is “closer” to the eventual target of a
client’s original request. In terms of the relationship between these two routers, the first Router can be thought of as the
“source Router,” and the second can be called the “destination Router.” In the case where the network is partitioned or the
destination Router has temporarily or permanently become unavailable, the source Router will be unable to forward its
message. When this occurs, the Router must determine when and how to retry the request to the destination Router.

To enable scalable networks of routers, a RouterAdmin interface has been specified. The interface is defined mainly for
the purpose of avoiding the non-scaling scenario where a source Router has no choice but to consume network resources
by continuously “pinging” its destination Router.

This problem is analogous to the one faced by the target router when attempting delivery of the request to the message’s
target. Therefore, the mechanism specified here generically supports registrations of destination routers as well as actual
target object references.

module MessageRouting {

typedef short RegistrationState;
const RegistrationState NOT_REGISTERED = 0;
const RegistrationState ACTIVE = 1;
Common Object Request Broker Architecture (CORBA), v3.1.1 467

const RegistrationState SUSPENDED = 2;

exception InvalidState{
RegistrationState registration_state;

};

valuetype RetryPolicy supports CORBA::Policy { };

const CORBA::PolicyType IMMEDIATE_SUSPEND_POLICY_TYPE = 50;
valuetype ImmediateSuspend : RetryPolicy { };

const CORBA::PolicyType UNLIMITED_PING_POLICY_TYPE = 51;
valuetype UnlimitedPing : RetryPolicy {

public short max_backoffs;
public float backoff_factor;
public unsigned long base_interval_seconds;

};

const CORBA::PolicyType LIMITED_PING_POLICY_TYPE = 52;
valuetype LimitedPing : UnlimitedPing {

public unsigned long interval_limit;
};

const CORBA::PolicyType DECAY_POLICY_TYPE = 53;
valuetype DecayPolicy supports CORBA::Policy {

public unsigned long decay_seconds;
};

const CORBA::PolicyType RESUME_POLICY_TYPE = 54;
valuetype ResumePolicy supports CORBA::Policy {

public unsigned long resume_seconds;
};

interface RouterAdmin {
void register_destination(

in Object dest,
in boolean is_router,
in RetryPolicy retry,
in DecayPolicy decay);

void suspend_destination(
in Object dest,
in ResumePolicy resumption)

raises (InvalidState);

void resume_destination(
in Object dest)

raises (InvalidState);

void unregister_destination(
in Object dest)
468 Common Object Request Broker Architecture (CORBA), v3.1.1

raises (InvalidState);
};

interface Router {
readonly attribute RouterAdmin admin;

};
};

When a request arrives at a Router (source router) that must either be delivered directly to a target, or be forwarded on via
another Router (destination router), that source router attempts to send the message. If the message send fails, the source
router needs to decide when to retry the send. The following use of the RouterAdmin is intended for router-to-router
administration:

1. A source router gets a request that should be sent to a destination router. Since the source router has no registration for
that destination router, it attempts to send the message.

2. Upon receipt of the message, the destination router realizes that it has never registered back with the source router
and calls back to the source router's RouterAdmin (independent of the processing of the message - this is purely an
optional administrative request to avoid poor routing behavior in the future). By calling back to the RouterAdmin,
the destination router registers itself with its desired retry policy and decay policy for future messages. On subsequent
messages, the destination router knows that it has already registered and need perform no administrative processing at
this step.

3. At some time, the destination router knows it is being separated from the network. This case is termed “graceful dis-
connection.”

• The destination router notifies the source router that the registration should be suspended.

• Upon subsequent requests, the source router consults its list of registrations. Since the destination router is
currently SUSPENDED, no send is attempted (depending on the ResumePolicy at the time of suspension).

• At some later time, the destination router becomes reconnected. It resumes its registration and can now receive
stored (and later) messages.

4. At some time, the destination router becomes disconnected without any advanced warning (it may not know that it is
disconnected). This case is termed “unexpected disconnection.”

• Upon subsequent requests, the source router consults its list of registrations. Since the destination router is
currently ACTIVE, a send is attempted. When the send fails, the source router follows its RetryPolicy and keeps
pinging until the RetryPolicy indicates the registration should be suspended (immediately if the RetryPolicy is
ImmediateSuspend or never if the RetryPolicy is UnlimitedPing).

• At some time, the destination router becomes reconnected. If the source router discovers this due to pinging, the
pending requests can now be delivered. If the source router has SUSPENDED the registration or is in the midst of
the interval between pings when the destination router re-registers itself, the registration can immediately be set to
an ACTIVE state and pending requests can be sent to the destination router.

The “target router” is the one that synchronously delivers requests to the target. The RouterAdmin is also used for the
administration of policies that determine when this target router will actually attempt to deliver its request. A target’s use
of this interface is very similar to the way it is used for router-to-router administration described above. The analogous
scenarios are re-described here for clarity:
Common Object Request Broker Architecture (CORBA), v3.1.1 469

1. An object instance is activated with support for TII. Since the target is now ready to receive requests, it is registered
with some router’s RouterAdmin with the target’s desired retry policy and decay policy. Typically, a reference to
this router will also be contained in a MessageRouting::TAG_MESSAGE_ROUTERS component of the
target’s object reference.

2. A router gets a request that it can deliver directly to the target (therefore this router is considered a “target router”).
Since the target router has a registration for that object, it attempts to invoke the request.

3. At some time, the target knows it is being separated from the network. This case is termed “graceful disconnection.”

• The target notifies the target router that the registration should be suspended.

• Upon subsequent requests, the target router consults its list of registrations. Since the target is currently
SUSPENDED, no invocation is attempted (depending on the ResumePolicy at the time of suspension).

• At some later time, the target becomes reconnected. It resumes its registration and can now receive stored (and
later) requests.

4. At some time, the target becomes disconnected without any advanced warning (it may not know that it is discon-
nected). This case is termed “unexpected disconnection.”

• Upon subsequent requests, the target router consults its list of registrations. Since the target is currently ACTIVE,
an invocation is attempted. When this invocation fails, the target router follows its RetryPolicy and keeps
pinging until the RetryPolicy indicates the registration should be suspended (immediately if the RetryPolicy is
ImmediateSuspend or never if the RetryPolicy is UnlimitedPing).

• At some time, the target once again becomes available. If the target router discovers this due to pinging, the
pending requests can now be delivered. If the target router has SUSPENDED the registration or is in the midst of
the interval between pings when the target re-registers itself, the registration can immediately be set to an ACTIVE
state and pending requests can be invoked on the target.

17.16.1 Constants

17.16.1.1 typedef short RegistrationState

The RegistrationState indicates the current status of a registration for a particular destination (a router or a target). The
possible values are:

• NOT_REGISTERED - The given destination is not registered with this RouterAdmin.

• ACTIVE - The given destination is currently registered with this RouterAdmin and is not in the suspended state.

• SUSPENDED - The given destination is currently registered with this RouterAdmin and has been set to the
Suspended state.

17.16.2 Exceptions

17.16.2.1 exception InvalidState

The attempted operation attempts to affect a registration, which is not in a state with a valid transition to the new state
dictated by the operation. The State member contains the current status of the router or target for which the operation was
attempted:

• Suspend was attempted on a router/target either not registered or already suspended.

• Resume was attempted on a router/target either not registered or already active.
470 Common Object Request Broker Architecture (CORBA), v3.1.1

• Unregister was attempted on a router/target not registered.

17.16.3 Valuetypes

17.16.3.1 RetryPolicy

This valuetype is the abstract base from which all retry policies are derived.

17.16.3.2 ImmediateSuspend

The registered router is placed in the SUSPENDED state as soon as a message send fails.

17.16.3.3 UnlimitedPing

This valuetype is used to parameterize a pinging behavior:

• backoff_factor - If max_backoffs is non-zero, the backoff_factor is the number by which the current interval
between failed send attempts is multiplied to determine the interval before the next send should be attempted. For
example, a backoff_factor of 2 will cause the interval to double between each failed attempt.

• base_interval_seconds - The base number of seconds between retries.

• max_backoffs - If zero, the same interval is used between each retry (constant interval pinging). If non-zero, the
interval between retries is multiplied by the backoff_factor after each failed send attempt until max_backoffs
failed attempts have been made. Once max_backoffs have been performed, retry attempts are made at the constant
rate of the last interval used. Otherwise, the same interval is used between each retry (linear pinging).

17.16.3.4 LimitedPing

This valuetype is used to parameterize a pinging behavior that should be stopped after a specified number of attempts.
It derives from UnlimitedPing and adds the following state:

• interval_limit - The number of attempts before the pinging should be stopped.

17.16.3.5 DecayPolicy

This valuetype indicates how long a given registration is valid. If the decay_seconds are set to the value zero, the
registered destination router will only be unregistered with an invocation of unregister_router. Otherwise, the
registered destination router will be unregistered after the specified timeout has elapsed.

17.16.3.6 ResumePolicy

This valuetype indicates when a suspended registration should be resumed. If the resume_seconds are set to the
value zero, the registered destination will only become active once explicitly resumed. Otherwise, the suspended
destination will be resumed after the specified timeout has passed.

17.16.4 Interfaces

17.16.4.1 RouterAdmin

The RouterAdmin interface provides the operations for supporting scalable connection and disconnection between
source routers and their destination routers and targets.
Common Object Request Broker Architecture (CORBA), v3.1.1 471

17.16.4.2 register_destination

A registration is added for the specified target with the given policies. If the registration is marked as is_router, the
destination will receive messages via the Router interface as described in Intermediate Request Router on page 464.
Otherwise, the registration is assumed to be for a target, in which case delivery is made as described in Target Router on
page 464.

17.16.4.3 suspend_destination

The specified registration is suspended. If that target is not in an ACTIVE state, an InvalidState exception is raised. The
suspended destination will be returned to the ACTIVE state if an explicit resume_destination or
register_destination operation is performed for that destination. If the resume_policy allows for TimedResume,
this transition will occur in, at most, the specified amount of time (e.g., if an explicit resumption doesn’t happen first).

17.16.4.4 resume_destination

Resume the suspended destination. An InvalidState exception is raised if the destination is not in the SUSPENDED
state.

17.16.4.5 unregister_destination

Unregister the specified destination. An InvalidState exception is raised if the target is not registered.

17.17 CORBA Messaging IDL

17.17.1 Messaging Module

The following module has been added by CORBA Messaging:

// IDL
// File: Messaging.idl
#ifndef _MESSAGING_IDL_
#define _MESSAGING_IDL_

import ::CORBA;
import ::IOP;
import ::TimeBase;
module Messaging {

typeprefix Messaging “omg.org”;

//
// Messaging Quality of Service
//

typedef short RebindMode;
const RebindMode TRANSPARENT = 0;
const RebindMode NO_REBIND = 1;
const RebindMode NO_RECONNECT = 2;

typedef short SyncScope;
const SyncScope SYNC_NONE = 0;
const SyncScope SYNC_WITH_TRANSPORT = 1;
472 Common Object Request Broker Architecture (CORBA), v3.1.1

const SyncScope SYNC_WITH_SERVER = 2;
const SyncScope SYNC_WITH_TARGET = 3;

typedef short RoutingType;
const RoutingType ROUTE_NONE = 0;
const RoutingType ROUTE_FORWARD = 1;
const RoutingType ROUTE_STORE_AND_FORWARD = 2;

typedef short Priority;

typedef unsigned short Ordering;
const Ordering ORDER_ANY = 0x01;
const Ordering ORDER_TEMPORAL = 0x02;
const Ordering ORDER_PRIORITY = 0x04;
const Ordering ORDER_DEADLINE = 0x08;

//
// Locally-Constrained Policy Objects
//

// Rebind Policy (default = TRANSPARENT)
const CORBA::PolicyType REBIND_POLICY_TYPE = 23;
interface RebindPolicy : CORBA::Policy {

readonly attribute RebindMode rebind_mode;
};

// Synchronization Policy (default = SYNC_WITH_TRANSPORT)
const CORBA::PolicyType SYNC_SCOPE_POLICY_TYPE = 24;
interface SyncScopePolicy : CORBA::Policy {

readonly attribute SyncScope synchronization;
};

// Priority Policies
const CORBA::PolicyType REQUEST_PRIORITY_POLICY_TYPE = 25;
struct PriorityRange {

Priority min;
Priority max;

};
interface RequestPriorityPolicy : CORBA::Policy {

readonly attribute PriorityRange priority_range;
};
const CORBA::PolicyType REPLY_PRIORITY_POLICY_TYPE = 26;
interface ReplyPriorityPolicy : CORBA::Policy {

readonly attribute PriorityRange priority_range;
};

// Timeout Policies
const CORBA::PolicyType REQUEST_START_TIME_POLICY_TYPE = 27;
interface RequestStartTimePolicy : CORBA::Policy {

readonly attribute TimeBase::UtcT start_time;
};
Common Object Request Broker Architecture (CORBA), v3.1.1 473

const CORBA::PolicyType REQUEST_END_TIME_POLICY_TYPE = 28;
interface RequestEndTimePolicy : CORBA::Policy {

readonly attribute TimeBase::UtcT end_time;
};

const CORBA::PolicyType REPLY_START_TIME_POLICY_TYPE = 29;
interface ReplyStartTimePolicy : CORBA::Policy {

readonly attribute TimeBase::UtcT start_time;
};
const CORBA::PolicyType REPLY_END_TIME_POLICY_TYPE = 30;
interface ReplyEndTimePolicy : CORBA::Policy {

readonly attribute TimeBase::UtcT end_time;
};

const CORBA::PolicyType RELATIVE_REQ_TIMEOUT_POLICY_TYPE = 31;
interface RelativeRequestTimeoutPolicy : CORBA::Policy {

readonly attribute TimeBase::TimeT relative_expiry;
};

const CORBA::PolicyType RELATIVE_RT_TIMEOUT_POLICY_TYPE = 32;
interface RelativeRoundtripTimeoutPolicy : CORBA::Policy {

readonly attribute TimeBase::TimeT relative_expiry;
};

const CORBA::PolicyType ROUTING_POLICY_TYPE = 33;
struct RoutingTypeRange {

RoutingType min;
RoutingType max;

};
interface RoutingPolicy : CORBA::Policy {

readonly attribute RoutingTypeRange routing_range;
};

const CORBA::PolicyType MAX_HOPS_POLICY_TYPE = 34;
interface MaxHopsPolicy : CORBA::Policy {

readonly attribute unsigned short max_hops;
};

// Router Delivery-ordering Policy (default = ORDER_TEMPORAL)
const CORBA::PolicyType QUEUE_ORDER_POLICY_TYPE = 35;
interface QueueOrderPolicy : CORBA::Policy {

readonly attribute Ordering allowed_orders;
};

//
// Propagation of QoS Policies
//

typedef CORBA::OctetSeq PolicyData;
474 Common Object Request Broker Architecture (CORBA), v3.1.1

struct PolicyValue {
CORBA::PolicyType ptype;
PolicyData pvalue;

};
typedef sequence<PolicyValue> PolicyValueSeq;

//
// Exception Delivery in the Callback Model
//

typedef CORBA::OctetSeq MarshaledException;
native UserExceptionBase;
valuetype ExceptionHolder {

void raise_exception() raises (UserExceptionBase);
void raise_exception_with_list(

in CORBA::ExceptionList exc_list)
in Dynamic::ExceptionList exc_list)

raises (UserExceptionBase);
private boolean is_system_exception;
private boolean byte_order;
private MarshaledException marshaled_exception;

};

//
// Base interface for the Callback model
//

interface ReplyHandler { };

//
// Base value for the Polling model
//
abstract valuetype Poller : CORBA::Pollable {
typeid ::Messaging::Poller "IDL:omg.org/Messaging/Poller:3.1";

readonly attribute Object operation_target;
readonly attribute string operation_name;

attribute ReplyHandler associated_handler;
readonly attribute boolean is_from_poller;

};
};
#endif

17.17.2 MessageRouting Module

The following module has been added for the CORBA Messaging Interoperable Routing Protocol. These definitions are
only required for interoperable support of Time-Independent Invocations:
Common Object Request Broker Architecture (CORBA), v3.1.1 475

// IDL
// File: MessageRouting.idl
#ifndef _MESSAGE_ROUTING_IDL_
#define _MESSAGE_ROUTING_IDL_

import ::CORBA;
import::Dynamic;
import ::GIOP;
import ::IOP;
import ::Messaging;
module MessageRouting {

typeprefix MessageRouting “omg.org”;

//
// Basic Routing Interoperability
//

interface Router;
interface RouterAdmin;
typedef sequence<Router> RouterList;

typedef CORBA::OctetSeq BodyData;

struct MessageBody {
BodyData body;
boolean byte_order;

};

struct RequestMessage {
GIOP::Version giop_version;
IOP::ServiceContextList service_contexts;
octet response_flags;
GIOP::RequestReserved reserved;
IOP::ObjectKey object_key;
string operation;
MessageBody body;

};

enum ReplyDisposition { TYPED, UNTYPED };
struct ReplyDestination {

ReplyDisposition handler_type;
Messaging::ReplyHandler handler;

};

struct RequestInfo {
RouterList visited;
RouterList to_visit;
Object target;
unsigned short profile_index;
ReplyDestination reply_destination;
Messaging::PolicyValueSeq selected_qos;
476 Common Object Request Broker Architecture (CORBA), v3.1.1

RequestMessage payload;
};
typedef sequence<RequestInfo> RequestInfoSeq;

interface Router {
void send_request(in RequestInfo req);
void send_multiple_requests(in RequestInfoSeq reqSeq);

readonly attribute RouterAdmin admin;
};

//
// Polling-related interfaces
//

interface UntypedReplyHandler : Messaging::ReplyHandler {
void reply(

in string operation_name,
in GIOP::ReplyStatusType reply_type,

in MessageBody reply_body);
};

exception ReplyNotAvailable { };

interface PersistentRequest {
readonly attribute boolean reply_available;

GIOP::ReplyStatusType get_reply(
in boolean blocking,
in unsigned long timeout,
out MessageBody reply_body)

raises (ReplyNotAvailable);

attribute Messaging::ReplyHandler associated_handler;

GIOP::ReplyStatusType get_reply_with_context(
in boolean blocking,
in unsigned long timeout,
out MessageBody reply_body,
out IOP::ServiceContextList service_contexts)

raises (ReplyNotAvailable);
};

interface PersistentRequestRouter {
PersistentRequest create_persistent_request(

in unsigned short profile_index,
in RouterList to_visit,
in Object target,
in CORBA::PolicyList current_qos,
Common Object Request Broker Architecture (CORBA), v3.1.1 477

in RequestMessage payload);
};

//
// Router Administration
//

typedef short RegistrationState;
const RegistrationState NOT_REGISTERED = 0;
const RegistrationState ACTIVE = 1;
const RegistrationState SUSPENDED = 2;

exception InvalidState{
RegistrationState registration_state;

};

valuetype RetryPolicy supports CORBA::Policy { };

const CORBA::PolicyType IMMEDIATE_SUSPEND_POLICY_TYPE = 50;
valuetype ImmediateSuspend : RetryPolicy { };

const CORBA::PolicyType UNLIMITED_PING_POLICY_TYPE = 51;
valuetype UnlimitedPing : RetryPolicy {

public short max_backoffs;
public float backoff_factor;
public unsigned long base_interval_seconds;

};

const CORBA::PolicyType LIMITED_PING_POLICY_TYPE = 52;
valuetype LimitedPing : UnlimitedPing {

public unsigned long interval_limit;
};

const CORBA::PolicyType DECAY_POLICY_TYPE = 53;
valuetype DecayPolicy supports CORBA::Policy {

public unsigned long decay_seconds;
};

const CORBA::PolicyType RESUME_POLICY_TYPE = 54;
valuetype ResumePolicy supports CORBA::Policy {

public unsigned long resume_seconds;
};

interface RouterAdmin {
void register_destination(

in Object dest,
in boolean is_router,
in RetryPolicy retry,
in DecayPolicy decay);

void suspend_destination(
478 Common Object Request Broker Architecture (CORBA), v3.1.1

in Object dest,
in ResumePolicy resumption)

raises (InvalidState);

void resume_destination(
in Object dest)

raises (InvalidState);

void unregister_destination(
in Object dest)

raises (InvalidState);
};

};
#endif
Common Object Request Broker Architecture (CORBA), v3.1.1 479

Annex A for Clause 17
Overall Design Rationale

(normative)

A.1 QoS Abstract Model Design

This Annex describes each of the components in the Quality of Service (QoS) abstract model and their relationships. The
specification defines a framework within which current QoS levels are queried and overridden. This framework is
intended to be of use for CORBAServices specifiers, as well as for future revisions of CORBA. The Messaging-specific
QoS are defined in terms of this framework.

NOTE: The QoS definitions specified in this specification are applied to both synchronous as well as asynchronous invocations.

A.2 Model Components

The QoS framework abstract model consists of the following components:

• Policy - The base interface from which all QoS objects derive.

• PolicyList - A sequence of Policy objects.

• PolicyManager - An interface with operations for querying and overriding QoS Policy settings.

• Mechanisms for obtaining Policy override management operations at each relevant application scope:

• The ORB’s PolicyManager is obtained through invoking ORB::resolve_initial_references with the
ObjectId “ORBPolicyManager”.

• A CORBA::PolicyCurrent derived from CORBA::Current is used for managing the thread’s QoS Policies. A
reference to this interface is obtained through an invocation of ORB::resolve_initial_references with the
ObjectId “PolicyCurrent.”

• Accessor operations on CORBA::Object allow querying and overriding of QoS at the object reference scope.

• The application of QoS on a Portable Object Adapter is done through the currently existing mechanism of passing
a PolicyList to the POA::create_POA operation.

• Mechanisms for transporting Policy values as part of interoperable object references and within requests:

• TAG_POLICIES - A Profile Component containing the sequence of QoS policies exported with the object
reference by an object adapter.

• INVOCATION_POLICIES - A Service Context containing a sequence of QoS policies in effect for the
invocation.

The Messaging QoS abstract model consists of a number of CORBA::Policy-derived interfaces:

• Client-side Policies are applied to control the behavior of requests and replies. These include Priority,
 RequestEndTime, and Queueing QoS.

• Server-side Policies are applied to control the default behavior of invocations on a target. These include
 QueueOrder and Transactionality QoS.
480 Common Object Request Broker Architecture (CORBA), v3.1.1

A.2.1 Component Relationships

Programmers set QoS at various levels of scope by creating a Policy-derived Messaging QoS Policy and selecting the
interface for the particular scope. It is anticipated that the following is the standard use-case scenario:

• A POA is created with a certain set of QoS. When object references are created by that POA, the required and
supported QoS are encoded in that object reference. Such an object reference is then exported for use by a client.

• Within a client, the ORB’s PolicyManager interface is obtained to set QoS for the entire ORB (for the entire process
when only one ORB is present) either programmatically, or administratively. The Policies set here are valid for all
invocations in the process. A programmer-constructed PolicyList is used with this interface to actually set the QoS.

• Within that same client, the CORBA::PolicyCurrent is obtained to set QoS for all invocations in the current thread.
This interface is derived from the PolicyManager interface, which can be used to change the QoS for each
invocation. A programmer-constructed PolicyList is used with this interface to actually set the QoS.

• Within that same client, the object reference is obtained and an invocation of its get_client_policy operation queries
the most specific QoS overrides. A programmer-constructed PolicyList may be passed to the Object’s
set_policy_overrides operation to obtain a new Object reference with revised QoS. Setting the QoS here applies to
all invocations using the new Object reference and supersedes (if possible) those set at the ORB and thread (Current)
scopes. The current set of overrides can be validated by calling the Object’s pseudo-operation
validate_connection, which will attempt to locate a target for the object reference if no target has yet been located.
At this time, any Policy overrides placed at the Object, Thread or ORB scope will be reconciled with the QoS Policies
established for that object reference when it was created by the POA. The current effective Policy can then be queried
by invoking get_policy, which returns the Policy value that is in effect.

• Unseen by the application, the ORB (including the protocol engine) modifies its internal behavior in order to realize
the quality of service indicated by the client through the first three steps. See the description of the protocol abstract
design in Message Routing Abstract Model Design on page 488.

A.2.2 Component Design

Design decisions were made with respect to the following components of the QoS framework:

• Each QoS is an interface derived from CORBA::Policy. The design trade-offs focused on ease of application
interface for setting specific QoS values, extensibility for new QoS types and values, and compactness so the QoS
values can be represented efficiently in Service Contexts and IOR Profile Components. Several alternatives were
considered as the basic type for each QoS entity before the decision was made to use the Policy interface:

• CORBA::NamedValue - A pair of string and any were considered mainly due to the flexibility afforded by
using an any to represent QoS values. This design was discounted due to the untyped nature of the any and the
application development and execution costs of inserting typed data into and extracting typed data from values of
type any. Furthermore, the presence of a full typecode within an any makes the size of such pairs too large for
inclusion in compact Service Contexts and Profile Components.

• Stateful CORBA valuetype - Although the valuetype does present a typed interface to the application program,
including valuetypes in Service Contexts and IOR Profile Components is too expensive due to the presence of
full repository identifier information when the valuetype is marshaled. Furthermore, there are issues associated
with potential truncation of such QoS valuetypes when passed as formal arguments of their base type.

Common Object Request Broker Architecture (CORBA), v3.1.1 481

• Interfaces derived from CORBA::Policy and compact representation. In the model chosen by this specification,
the QoS values are accessible through locality-constrained interfaces. Derivation from CORBA::Policy allows
reuse of existing interfaces and operations for policy management. When certain QoS values must be marshaled in
a Service Context or an IOR Profile Component, the most compact format was chosen. The type of QoS Policy
represented is indicated by a structure containing the integral PolicyType and a sequence of octet holding the
values for that policy.

• A generic factory for creating QoS Policies. In the POA specification within CORBA, each POA Policy is created
through an operation on the POA itself. Although this presents a convenient typed interface for the creation of Policy
objects, it causes serious problems when new POA Policies are introduced. To fit with the current model, operations
would have to be added to the POA interface for every new type of POA Policy. To address this potential
administrative nightmare, this specification introduces a new ORB operation create_policy. Rather than introducing
typed operations for creating all of the Messaging QoS Policies discussed in this specification, the generic factory
operation is used.

• A RebindPolicy client-side QoS Policy to ensure deterministic effective QoS. In CORBA, transparent rebinding of
an object reference may take place during any invocation. Rebinding is defined here to mean changing the client-
visible QoS as a result of replacing the IOR Profile used by a client’s object reference with a new IOR Profile.
Transparent rebinding is defined as when this happens without notice to the client application. Typically, this happens
within GIOP through the use of location forwarding. The default RebindPolicy (and the only CORBA behavior)
supports this transparent rebind. For an application with rigorous quality of service requirements, such transparent
rebinding can cause problems. For instance, unexpected errors may occur if the application sets its QoS Policies
appropriately for an object reference, and then the ORB transparently changes the application’s assumptions about that
reference by obtaining a new IOR. The RebindPolicy has been added so that applications can prevent the ORB from
silently changing the IOR Profile (and therefore the server-side QoS) that have been assumed. A more rigorous value
of this Policy even precludes the ORB from silently closing and opening connections (when IIOP is being used, for
example). The specific requirements demanded by an application dictate which level of RebindPolicy is necessary.

A.3 AMI/TII Abstract Model Design

This sub clause describes each of the components in the Asynchronous Method Invocation /Time-Independent Invocation
(AMI/TII) abstract model and the relationships between them.

The model supported by Messaging is a specialization of the general object model described in the OMA guide. All of
the elements of the CORBA object model are present in the model described here. Some of the names of existing
components are defined more precisely than they are in the CORBA object model. In addition, this specification adds
some new components to support Messaging.

Some of the components described here have been borrowed from other specifications, which in some cases have yet to
be ratified. Where this occurs, it is clearly noted.

A.3.1 Asynchronous Method Invocation Components

The abstract model for AMI/TII supported by Messaging adds the following client-side components:

• ReplyHandler - A ReplyHandler is an Object that encapsulates the functionality for handling an asynchronous
reply. It is used for callback model reply handling.

• Poller - A Poller is a valuetype used by clients to obtain replies to asynchronous invocations. The Poller provides a
type-specific wrapping through which a Reply is obtained.
482 Common Object Request Broker Architecture (CORBA), v3.1.1

• Asynchronous Method Invocation (AMI) - A remote method invocation that returns immediately and whose reply is
handled by a ReplyHandler-derived class implemented by the programmer, or whose reply is obtained through a
Poller valuetype.

A.3.2 Time-Independent Invocation Components

The abstract model for AMI/TII supported by Messaging adds the following components to support interoperability of
Time-Independent Invocations:

• PersistentRequest - A PersistentRequest is an Object that encapsulates an outstanding request. It supports
operations for asynchronous operations (including polling or blocking until the reply comes). The
PersistentRequest is not a locality constrained object (as opposed to the CORBA::Request).

• Persistent ReplyHandler - A ReplyHandler whose Object reference is created by a POA with a PERSISTENT
LifeSpan Policy. The Persistent ReplyHandler may be implemented by a process other than the one that issued the
request.

• PersistentPoller - A Poller with state including a PersistentRequest reference. The PersistentPoller may be
used by a process other than the one that issued the request.

• Time-Independent Invocation (TII) - A time-independent invocation is an AMI request whose reply may outlive the
client process. This is addressed via the persistent ReplyHandler and Poller mechanisms.

• Router - A software routing agent that is used when the target objects (either the target of the request or the target of
the reply) are not available.

• Interoperable Routing Protocol -- An interoperable routing protocol built in terms of GIOP that provides a higher level
of Quality of Service with respect to message routing and delivery than is currently supported by IIOP. These
extensions allow out-of-the-box interoperability and define interfaces for MOM product plug-ins to support CORBA
Messaging with value-added QoS services that the particular MOM vendor brings to the market.

A.3.3 Component Relationships

Figure 17.2 denotes an abstract view of the general Messaging architecture and is not meant to imply any particular
implementation.
Common Object Request Broker Architecture (CORBA), v3.1.1 483

Figure 17.2 - TII: No direct connection possible

Figure 17.2 depicts the most general scenario in which a client application residing on a laptop wishes to make an
asynchronous method invocation on an object in a server residing on another laptop. Each laptop typically connects to its
own corporate or ISP network. Each of these networks has some set of Request/Reply Routers installed that are meant to
be highly available and reliable. These Routers provide store-and-forward capabilities.

In Figure 17.2 neither client nor server laptops are currently connected to their respective networks. In this scenario, the
client application makes its requests using the Time-Independent Invocation model. The dashed arrows indicate that the
client always tries to make the invocation on the target object or the Request/Reply Router closest to the target. Since the
client is not connected, it makes the invocation on the local router (indicated by the solid arrow).

Figure 17.3 depicts an asynchronous invocation in that the replies to the client invoke an operation on a callback object
called a ReplyHandler. In general, the client may passivate himself, or may die while the request is outstanding. If a
persistent delivery quality of service had been specified (with a long enough time-out period) the reply may be delivered
when the ReplyHandler instance becomes available again. All object adapter features including process activation,
Adapter activation and servant activation can be used in ensuring delivery of the reply to a persistent ReplyHandler.

Again, Figure 17.2 is meant to depict the most general case.

Internet

Client Laptop

ObjA_ref

Reply
Handlers

LocalRouter

Server Laptop

ObjA

LocalRouter

Corporate
or ISP

 Routers

Corporate
or ISP

 Routers

Corporate
or ISP

 Network

Corporate
or ISP

 Network

Request Tried

Request Made

Internet
Connection
484 Common Object Request Broker Architecture (CORBA), v3.1.1

Figure 17.3 - TII: Target not available synchronously

Figure 17.3 illustrates the case where the client laptop gains an Internet connection to its corporate network. In this
scenario, the Routers that are accessible exchange requests and replies always first trying to contact the target and then
sending to the accessible Router closest to the target. In Figure 17.3, the server laptop is not accessible so the routers
exchange information. Notice that Corporate Routers may have replies to invoke on the client’s set of ReplyHandlers now
that the client is reachable. Also, recognize that since the client laptop is now connected, there may be requests and
replies for other targets, which are not currently running on the Client Laptop and so are cached in the Client Laptop’s
Local Router.

Client Laptop Server LaptopCorporate
Network

Corporate
Network

Internet

Corporate
Routers

Corporate
Routers

 Local Router

ObjA

Request Tried

Request/Reply Made

Internet Connection

Local Router

ObjA_ref

Reply
Handlers
Common Object Request Broker Architecture (CORBA), v3.1.1 485

Figure 17.4 - Full connectivity available

Finally, Figure 17.4 represents full connectivity. Notice that all of the Request/Reply Routers exchange information to get
previously-queued requests/replies closer to their target objects. Since there is full connectivity between the two
applications, the client’s async invocations can be made on the target object directly and the replies can be sent directly
back to make the appropriate invocation on the ReplyHandler object.

If the client application has requested queued delivery, a Router is used even in the case depicted in Figure 17.4. Despite
the availability of the target, the client ORB sends the request to a Router, which can queue the request prior to attempting
the synchronous invocation on the target. As an optimization that limits the request to needing only a single network hop,
this Router may be local to the target, but it is still a Router with all the usual responsibilities.

Notice also that since the Server Laptop is connected its Request/Reply Router exchanges information for applications
that may or may not be running.

A.3.4 Callback Model Detailed Design

Several characteristics of the Callback programming model are worth extra attention:

• The ReplyHandler is a CORBA object that receives the reply to an AMI. The programmer writes the implementation
for a type-specific ReplyHandler. A client obtains an object reference for this ReplyHandler and passes it as part of
the asynchronous method invocation. When the server completes the request, its reply is delivered as an invocation on
the ReplyHandler object. This invocation is made on the ReplyHandler using the normal POA techniques of
servant and object activation. As a result, the callback operation may be handled in a different programming context
than that in which the original request was made.

• Exception replies require special handling in the Callback model. Since the ReplyHandler implements an IDL
interface, all arguments passed to its operations must be defined in IDL as well. However, exceptions cannot be passed
as arguments to operations; exceptions can only be raised as part of a reply. To solve this problem, an
ExceptionHolder valuetype is created to encapsulate the identity and contents of the exception that was raised. An

Client Laptop Server LaptopCorporate
Network

Corporate
Network

Internet

Corporate
Routers

Corporate
Routers

 Local Router

ObjA

Request Tried

Request/Reply Made

Internet Connection

Local Router

ObjA_ref

Reply
Handlers
486 Common Object Request Broker Architecture (CORBA), v3.1.1

instance of this ExceptionHolder is passed as the argument to the ReplyHandler operation that indicates an
exception was raised by the target. In addition to its exception state, the ExceptionHolder also has operations that
raise the returned exception, so the ReplyHandler implementation can have the returned exception re-raised within
its own context.

A.3.5 Poller/PersistentRequest Detailed Design

In the Polling model, the routing relationships are a superset of those seen in the Callback model. The differences in this
model appear at both the beginning and end of the request/reply cycle. For Polling, the client application does not
establish a Callback ReplyHandler. The events that occur when Polling are pictured in Example 17-1. The steps are as
follows:

1. The client invokes the “sendp” variation of the target object’s operation.

2. The ORB creates a PersistentRequest object and associates a reference to it with an invisible ReplyHandler that
is wrapped in a type-specific Poller value.

3. The ORB returns this Poller to the client.

4. The ORB then proceeds as if the invocation were done with the invisible ReplyHandler and sends its request into
the network.

5. At the very end, the invisible ReplyHandler receives the response and waits for a poll.

6. When the computing context holding the type-specific Poller asks for a response, the Poller obtains the response from
the invisible ReplyHandler and delivers that response to the caller.

Example 17-1. Sequence of Steps in Polling

A client uses the Poller in a similar fashion as in the DII deferred synchronous model. The programmer can at any time
choose to check whether or not the reply has arrived and deal with it in the current programming context. The user may
also ask a Poller to block until the reply has arrived. The PersistentRequest reference is not visible to the client
application, but is specified to enable interoperability between Messaging products.

ObjA_ref

Invisible ReplyHandler

ORB

2
3

4 ObjA_ref, to network

reply, from network
5

6

PersistentRequest

Client laptop

1

Type-Specific Poller
Common Object Request Broker Architecture (CORBA), v3.1.1 487

When a Time-Independent Invocation has been made, it is possible to poll for the reply in a client different from the one
that made the initial request. An application takes advantage of this by passing the Poller from the client that made the
request to the client that intends to poll for the reply (presumably by way of an Object instance that is collocated with the
latter client). Since this Poller is implemented through the use of a PersistentRequest object implemented by the
Messaging layer, that PersistentRequest must be accessible to whichever client uses that Poller. When the TII is used,
it is possible for the polling client to obtain the reply after the original invoking client no longer exists. Since the
PersistentRequest must be implemented in a server that is accessible to the Polling client, that PersistentRequest
must be external to the original invoking client. A common design might be to have the PersistentRequest in this case
be implemented by a corporate Router accessible to the invoking client as well as to the client that intends to poll for the
response. The creation of PersistentRequest objects is discussed in detail in the Section 17.12, Section III -
Introduction, on page 455.

In addition to being able to query the status of an individual Poller, the client can use the PollableSet interface to ask
about the status of several pollers, as well as the status of any deferred synchronous requests. The client can query to find
out if any of a particular set has completed or it can block until one of the set completes.

Note on CORBA AMI Support

Asynchrony is addressed in several places in CORBA. These items are taken into consideration by this specification and
are modified in the following ways:

• oneway operations - Operations can be defined in IDL to be oneway. Such operations are by their very nature
asynchronous, in that no reply is ever received from a oneway operation and no synchrony can be assumed between
the client and the target. However, the definition of oneway in the CORBA specification does not guarantee a
deterministic, portable behavior between compliant ORB products. To address this issue, the CORBA Messaging
specification introduces a QoS Policy that makes the behavior of oneway operations deterministic. Note that this new
Policy addresses the behavior of oneway operations regardless of the use of the new Polling and Callback stubs
introduced by this specification.

• DII Deferred Synchronous - Deferred synchronous invocations are supported in CORBA only when the DII is used.
The CORBA::Request pseudo-interface is enhanced by this specificaiton with the additions of TII and the Callback
model.

Note on Asynchrony and Narrowing of Object References

• Many programming languages map IDL interfaces to programming constructs that support inheritance. In those
language mappings (such as C++ and Java) that provide a mechanism for narrowing an Object reference of a base
interface to a more derived interface, the act of narrowing may require the full type hierarchy of the target. In this case,
the implementation of narrow must either contact an interface repository or the target itself to determine whether or not
it is safe to narrow the client’s object reference. This requirement is not acceptable when a client is expecting only
asynchronous communication with the target. Therefore, for the appropriate languages this specification adds an
unchecked narrow operation to the IDL mappings for interface. This unchecked narrow always returns a stub of the
requested type without checking that the target really implements that interface. If a client narrows the target to an
unsupported interface type, invoking the unsupported operations will raise the system exception
CORBA::BAD_OPERATION with standard minor code 2.

A.4 Message Routing Abstract Model Design

This sub clause describes each of the components of the Message Routing abstract model and their relationships.
488 Common Object Request Broker Architecture (CORBA), v3.1.1

A.4.1 Model Components

By and large the components of the message routing protocol are the same as those of GIOP. The differences come with
respect to two issues:

• TII is essentially a store-and-forwarding mechanism. This implies the use of Request routing agents. The protocol
followed by these Routers is defined in Message Routing on page 457.

• Dynamic Protocol Selection based on QoS is reconciled locally via information in the IOR and the local ORB. This
implies several newly defined items at the protocol level:

• Newly defined IOP::ServiceContext that contains QoS parameters.

• Newly defined IOP::ComponentId tag for Messaging and a Component consisting of a representation of default
QoS parameters.

• Newly defined IOP::ComponentId tag and Component representing the transaction policy.

• A newly defined IOP::ComponentId tag and Component containing a sequence of Request Routers. This
sequence of Routers represents the preferred addressing strategy when TIIs are made on an Object.

A.4.2 Component Relationships

The relationship between the above described components is based on the following:

• QoS resolution should be performed by the client ORB if possible. Routers and/or Messaging-aware Adapters must
ensure that only valid QoS have been selected.

• For efficient use of the Request/Reply Routers, their addressing information needs to be in the IOR.

• Request/Reply Routers re-route request and reply messages by explicitly sending messages between them, and then
generating a regular GIOP request (and receiving a regular GIOP reply) when interfacing with the real target. To allow
this routing to occur, the Router interface requires an encapsulation of a GIOP request in terms of:

• Routing information including the message header and pertinent QoS information.

• Message payload (the marshaled arguments and service contexts from the client).

The routers use the encapsulated QoS & re-routing information to re-route requests and replies and to decide whether to
store request/reply information for a specified lifetime. The GIOP must be flexible enough to allow the Router closest to
the request’s destination to generate a request that looks like it was marshalled at the original client. This closest Router
must be able to handle the full GIOP including the processing of a LOCATION_FORWARD reply without necessitating
a return to the original client.

A.4.3 Router Administration Design

Several features of the Router administration design are worth note. These fall into two main areas:

• Static vs. Dynamic Routing - Routing information for an Object is available to the client ORB through a Profile
Component in the object’s IOR. This Component contains a sequence of Router references through which Time-
Independent requests may pass on the way to the target. Therefore, portably exporting a target’s preferred Routers
must be done statically, at the time when the target’s reference is created. This specification introduces no interfaces
that support dynamic routing. It is expected that future work in CORBA Messaging will introduce portable
administrative interfaces through which domains of Routers may be connected. Note that since the Router is an
Object, the usual CORBA mechanisms for dynamic server relocation can certainly be used to allow migration of
Common Object Request Broker Architecture (CORBA), v3.1.1 489

Routers and other such dynamic Routing activities.

• Minimize administrative traffic - Administrative interfaces are introduced that will allow a minimal amount of network
bandwidth to be consumed when network disconnections occur. Furthermore, these administrative interfaces have
been designed so that additional overhead is not consumed when Routers would normally be in an idle state.
Administrative communication is only necessary when messages would otherwise have to be sent between Routers.
490 Common Object Request Broker Architecture (CORBA), v3.1.1

Annex B for Clause 17
Conformance and Compatibility Issues

(normative)

This Annex specifies the points that must be met for a compliant implementation of CORBA Messaging and compatibility
issues associated with this specification.

B.1 Conformance Issues

This specification can be separated into several logical components. In order to be conformant, the following mappings
and features must be supported and implemented using the specified semantics:

• Changes to CORBA and Services. These changes include the modifications to GIOP, OTS, and the
SyncScopePolicy refinements to oneway operations. This component includes the Policy management
framework for Quality of Service on page 417.

• Asynchronous Method Invocation (AMI) interfaces. This component includes the generation of asynchronous
stubs (sendc/sendp operations) along with all interfaces and values upon which these stubs rely. All modifications
 to the DII are also included in this component.

• Quality of Service Policies for Messaging. These new Policies and their possible values are described in
 Messaging Quality of Service on page 417.

Implementation of the following component is not required to be conformant:

• Time-Independent Invocations (TII). This component includes the QoS Policy that supports TII
(RoutingTypePolicy), the typed PersistentPollers described in Persistent Type-Specific Poller on page 440, and
Message Routing on page 457.

B.2 Compatibility Issues

B.2.1 Transaction Service

Transaction service compatibility is affected by two factors:

• Changes to existing transaction service behavior introduced as part of this specification.

• New transaction service functions introduced by this specification and the affect on existing implementations.

These are considered separately in each of the following sub clauses.

B.2.2 Changes to Current OTS Behavior

This specificaiton deprecates the TransactionalObject interface defined in the Transaction Service specification. The
TransactionalObject interface was defined to control propagation of the transaction context between the client and the
server. An interface that inherits from TransactionalObject will automatically have the client’s transaction context
established by the server ORB before any operations on that interface are invoked.
Common Object Request Broker Architecture (CORBA), v3.1.1 491

A new mechanism for transaction propagation is independent of the use of inheritance from TransactionalObject. This
mechanism has been defined so that existing applications will continue to operate correctly without change so they do not
have to remove TransactionalObject inheritance from their existing IDL. At most, they will need to ensure that a
definition of CosTransactions::TransactionalObject continues to be available to the IDL compiler.

The use of TransactionalObject inheritance had two other side effects in the Transaction Service specification.

• It affected the CORBA type of the interface being defined and thus the RepositoryID in the Interface Repository. This
means that once interface inheritance is actually removed, transactional and non-transactional implementations of the
same interface will have the same CORBA type.

• It provided for documentation within IDL of interfaces whose implementation was intended to be transactional. This
enabled application developers to easily track their use of transactions.

Once TransactionalObject is actually removed, these side effects will no longer be present.

B.2.2.1 Effects of New OTS Functions on Existing OTS Implementations

This specification introduces new functions and behaviors to the Transaction Service to support the global transaction
model used by messaging and to encode the transaction model in the object reference using a newly defined
TransactionPolicy. The default for this new policy has been chosen to be compatible with existing CORBA behavior
(i.e., a global transaction is associated with the target object if present) otherwise it is not. Existing applications, which
will not create TransactionPolicy objects, will get the existing CORBA behavior.

Existing Clients with New Servers

New server applications can create object references with new TransactionPolicy selections that can be exported to
existing clients. Depending on the TransactionPolicy selected, invoking methods on these objects may succeed
transparently to the client or produce failures (in the form of system exceptions) existing clients will not have previously
seen.

New AMI Clients with Existing Servers

Existing servers may require analysis of their existing semantics to determine the extent to which they may be able to
operate with new clients, especially clients that use the new AMI request invocation model. In general the following are
true and existing objects may as a result be usable without change by AMI clients:

• If transactions are not used, existing server objects will interoperate with new AMI clients.

• If transactions are used, AMI invocations will use the new queued transaction model causing invocations on the target
object to be rejected with a new system exception.

• Depending on application design, it is possible that some (but not all) of these existing applications can operate
successfully with AMI clients. This will require that these server objects be changed to produce new compatible object
references.

It is normally true that a server application design, which depends on updating recoverable resources managed by objects
at multiple sites cannot support an AMI invocation without producing different behavior. For the cases where this is not a
problem the application can take advantage of new AMI clients by changing the object reference at creation time.

B.2.3 Security Service

The issues surrounding Security and Time-Independent Invocations must be addressed in a subsequent RFP. Current
CORBA Security does fully support all other aspects of this specification, including typed deferred synchronous
invocations.
492 Common Object Request Broker Architecture (CORBA), v3.1.1

Annex A
IDL Tags and Exceptions

(normative)

A.1 General

This annex lists the standardized profile, service, component, policy tags and exception codes described in the CORBA
documentation. Implementor-defined tags can also be registered in this manual. Requests to register tags with the OMG
should be sent to tag_request@omg.org.

A.2 Profile ID Tags

Tag Name Tag Value Described in

ProfileId TAG_INTERNET_IOP = 0 Part 2 of this specification - Orb Interoperabil-
ity Architecture Clause

ProfileId TAG_MULTIPLE_COMPONENTS = 1 Part 2 of this specification - Orb Interoperabil-
ity Architecture Clause

ProfileId TAG_SCCP_IOP = 2 [SCCP]

ProfileId TAG_UIPMC = 3 Part 2 of this specification - Unreliable Multicast
clause

ProfileId TAG_MOBILE_TERMINAL_IOP = 4 [WATM]
Common Object Request Broker Architecture (CORBA), v3.1.1 493

A.3 Service ID Tags

A.4 Component ID Tags

Tag Name Tag Value Described in

ServiceId TransactionService = 0 [TRANS]

ServiceId CodeSets = 1 Part 2 of this specification - ORB Interoperability
Architecture clause.

ServiceId ChainBypassCheck = 2 [DCOMI]

ServiceId ChainBypassInfo = 3 [DCOMI]

ServiceId LogicalThreadId = 4 [DCOMI]

ServiceId BI_DIR_IIOP = 5 Part 2 of this specification - General Inter-ORB
Protocol clause.

ServiceId SendingContextRunTime = 6 This Part of this specification - Value Type
Semantics clause.

ServiceId INVOCATION_POLICIES = 7 This Part of this specification - CORBA
Messaging clause.

ServiceId FORWARDED_IDENTITY = 8 [FIREWALL]

ServiceId UnknownExceptionInfo = 9 [JAVA2I]

ServiceId RTCorbaPriority = 10 [RTCORBA]

ServiceId RTCorbaPriorityRange = 11 [RTCORBA]

ServiceId FT_GROUP_VERSION = 12 [FTCORBA]

ServiceId FT_REQUEST= 13 [FTCORBA]

ServiceId ExceptionDetailMessage = 14 Part 2 of this specification - ORB Interoperability
Architecture clause.

ServiceId SecurityAttributeService = 15 Part 2 of this specification - Secure
Interoperability clause.

ServiceId ActivityService = 16 [ASMOTS]

ServiceId RMICustomMaxStreamFormat = 17 [JAVA2I]

ServiceId ACCESS_SESSION_ID = 18 [TSAS]

ServiceId SERVICE_SESSION_ID = 19 [TSAS]

ServiceId FIREWALL_PATH = 20 [FIREWALL]

ServiceId FIREWALL_PATH_RESP = 21 [FIREWALL]

Tag Name Tag Value Described in

ComponentId TAG_ORB_TYPE = 0 Part 2 of this specification- ORB Interoperability
Architecture clause.

ComponentId TAG_CODE_SETS = 1 Part 2 of this specification - ORB Interoperability
Architecture clause.

ComponentId TAG_POLICIES = 2 This Part of this specification - CORBA Messaging
clause.
494 Common Object Request Architecture (CORBA), v3.1.1

ComponentId TAG_ALTERNATE_IIOP_ADDRESS = 3 Part 2 of this specification- General Inter-ORB
Protocol clause.

ComponentId TAG_ASSOCIATION_OPTIONS =13 [CORBASEC]

ComponentId TAG_SEC_NAME = 14

ComponentId TAG_SPKM_1_SEC_MECH = 15

ComponentId TAG_SPKM_2_SEC_MECH = 16

ComponentId TAG_KerberosV5_SEC_MECH = 17

ComponentId TAG_CSI_ECMA_Secret_SEC_MECH = 18

ComponentId TAG_CSI_ECMA_Hybrid_SEC_MECH = 19

ComponentId TAG_SSL_SEC_TRANS = 20

ComponentId TAG_CSI_ECMA_Public_SEC_MECH = 21

ComponentId TAG_GENERIC_SEC_MECH = 22

ComponentId TAG_FIREWALL_TRANS = 23 [FIREWALL]

ComponentId TAG_SCCP_CONTACT_INFO = 24 [SCCP]

ComponentId TAG_JAVA_CODEBASE = 25 [JAVA2I]

ComponentId TAG_TRANSACTION_POLICY = 26 [TRANS]

ComponentId TAG_ FT_GROUP= 27 [FTCORBA]

ComponentId TAG_ FT_PRIMARY= 28 [FTCORBA]

ComponentId TAG_ FT_HEARTBEAT_ENABLED = 29 [FTCORBA]

ComponentId TAG_MESSAGE_ROUTERS = 30 This Part of this specification - CORBA
Messaging clause.

ComponentId TAG_OTS_POLICY = 31 [TRANS]

ComponentId TAG_INV_POLICY = 32 [TRANS]

ComponentId TAG_CSI_SEC_MECH_LIST = 33 Part 2 of this specification - Secure
Interoperability clause

ComponentId TAG_NULL_TAG = 34 Part 2 of this specification - Secure
Interoperability clause

ComponentId TAG_SECIOP_SEC_TRANS = 35 Part 2 of this specification - Secure
Interoperability clause

ComponentId TAG_TLS_SEC_TRANS = 36 Part 2 of this specification - Secure
Interoperability clause

ComponentId TAG_ACTIVITY_POLICY = 37 [ASMOTS]

ComponentId TAG_RMI_CUSTOM_MAX_STREAM_FORMAT = 38 [JAVA2I]

ComponentId TAG_GROUP = 39 Part 2 of this specification - Unreliable Multicast
clause

ComponentId TAG_GROUP_IIOP = 40 Part 2 of this specification - Unreliable Multicast
clause

ComponentId TAG_PASSTHRU_TRANS = 41 [FIREWALL]

ComponentId TAG_FIREWALL_PATH = 42 [FIREWALL]

Tag Name Tag Value Described in
Common Object Request Broker Architecture (CORBA), v3.1.1 495

A.5 Policy Type Tags

The table below lists the standard policy types that are defined by various parts of CORBA and CORBA Services in this
version of CORBA/IIOP.

ComponentId TAG_IIOP_SEC_TRANS = 43 [FIREWALL]

ComponentId TAG_HOME_LOCATION_INFO = 44 [WATM]

ComponentId TAG_DCE_SEC_MECH = 103 [CORBASEC]

ComponentId TAG_INET_SEC_TRANS = 123 [CORBASEC]

Policy Type Policy Interface Defined in Uses
create
_policy

SecClientInvocationAccess = 1 SecurityAdmin::AccessPolicy [CORBASEC] N

SecTargetInvocationAccess = 2 SecurityAdmin::AccessPolicy N

SecApplicationAccess = 3 SecurityAdmin::AccessPolicy N

SecClientInvocationAudit = 4 SecurityAdmin::AuditPolicy N

SecTargetInvocationAudit = 5 SecurityAdmin::AuditPolicy N

SecApplicationAudit = 6 SecurityAdmin::AuditPolicy N

SecDelegation = 7 SecurityAdmin::Delegation Policy N

SecClientSecureInvocation = 8 SecurityAdmin::SecureInvocationPolicy N

SecTargetSecureInvocation = 9 SecurityAdmin::SecureInvocationPolicy N

SecNonRepudiation = 10 NRService::NRPolicy N

SecConstruction = 11 CORBA::SecConstruction This part of this
specification - ORB
Interface clause

N

SecMechanismPolicy = 12 SecurityLevel2::MechanismPolicy [CORBASEC] Y

SecInvocationCredentialsPolicy = 13 SecurityLevel2::InvocationCredentials
Policy

Y

SecFeaturesPolicy = 14 SecurityLevel2::FeaturesPolicy Y

SecQOPPolicy = 15 SecurityLevel2::QOPPolicy Y

Tag Name Tag Value Described in
496 Common Object Request Architecture (CORBA), v3.1.1

THREAD_POLICY_ID = 16 PortableServer::ThreadPolicy This Part of this
specification - Portable
Object Adapter clause

Y

LIFESPAN_POLICY_ID = 17 PortableServer::LifespanPolicy Y

ID_UNIQUENESS_POLICY_ID = 18 PortableServer::IdUniquenessPolicy Y

ID_ASSIGNMENT_POLICY_ID = 19 PortableServer::IdAssignmentPolicy Y

IMPLICIT_ACTIVATION_POLICY_ID = 20 PortableServer::ImplicitActivationPolicy Y

SERVENT_RETENTION_POLICY_ID = 21 PortableServer::ServentRetentionPolicy Y

REQUEST_PROCESSING_POLICY_ID = 22 PortableServer::RequestProcessingPolicy Y

REBIND_POLICY_TYPE = 23 Messaging::RebindPolicy This Part of this
specification - CORBA
Messaging clause

Y

SYNC_SCOPE_POLICY_TYPE = 24 Messaging::SyncScopePolicy Y

REQUEST_PRIORITY_POLICY_TYPE = 25 Messaging::RequestPriorityPolicy Y

REPLY_PRIORITY_POLICY_TYPE = 26 Messaging::ReplyPriorityPolicy Y

REQUEST_START_TIME_POLICY_TYPE =
27

Messaging::RequestStartTimePolicy Y

REQUEST_END_TIME_POLICY_TYPE = 28 Messaging::RequestEndTimePolicy Y

REPLY_START_TIME_POLICY_TYPE = 29 Messaging::ReplyStartTimePolicy Y

REPLY_END_TIME_POLICY_TYPE = 30 Messaging::ReplyEndTimePolicy Y

RELATIVE_REQ_TIMEOUT_POLICY_
TYPE = 31

Messaging::RelativeRequestTimeoutPolicy Y

RELATIVE_RT_TIMEOUT_POLICY_
TYPE = 32

Messaging::RelativeRoundtripTimeout
Policy

Y

ROUTING_POLICY_TYPE = 33 Messaging::RoutingPolicy Y

MAX_HOPS_POLICY_TYPE =34 Messaging::MaxHopsPolicy Y

QUEUE_ORDER_POLICY_TYPE = 35 Messaging::QueueOrderPolicy Y

FIREWALL_POLICY_TYPE = 36 Firewall::FirewallPolicy [FIREWALL] Y

BIDIRECTIONAL_POLICY_TYPE = 37 BiDirPolicy::BidirectionalPolicy Part 2 of this specifica-
tion - General Inter-ORB
Protocol clause

Y

SecDelegationDirectivePolicy = 38 SecurityLevel2::DelegtionDirectivePolicy [CORBASEC] Y

SecEstablishTrustPolicy = 39 SecurityLevel2::EstablishTrustPolicy Y

Policy Type Policy Interface Defined in Uses
create
_policy
Common Object Request Broker Architecture (CORBA), v3.1.1 497

PRIORITY_MODEL_POLICY_TYPE = 40 RTCORBA::PriorityModelPolicy [RTCORBA] Y

THREADPOOL_POLICY_TYPE = 41 RTCORBA::ThreadpoolPolicy Y

SERVER_PROTOCOL_POLICY_TYPE = 42 RTCORBA::ServerProtocolPolicy Y

CLIENT_PROTOCOL_POLICY_TYPE = 43 RTCORBA::ClientProtocolPolicy Y

PRIVATE_CONNECTION_POLICY_
TYPE = 44

RTCORBA::PrivateConnectionpolicy Y

PRIORITY_BANDED_CONNECTION_
POLICY_TYPE = 45

RTCORBA::PriorityBandedConnection
Policy

Y

TransactionPolicyType = 46 CosTransactions::TransactionPolicy [TRANS] Y

REQUEST_DURATION_POLICY_
TYPE = 47

[FTCORBA]

HEARTBEAT_POLICY_TYPE = 48 [FTCORBA]

HEARTBEAT_ENABLED_POLICY_
TYPE = 49

IMMEDIATE_SUSPEND_POLICY_
TYPE = 50

valuetype MessageRouting::
ImmediateSuspend

This Part of this
specification- CORBA
Messaging clause

N

UNLIMITED_PING_POLICY_TYPE =
51

valuetype
MessageRouting::UnlimitedPing

N

LIMITED_PING_POLICY_TYPE = 52 valuetype MessageRouting::LimitedPing N

DECAY_POLICY_TYPE = 53 valuetype
MessageRouting::DecayPolicy

N

RESUME_POLICY_TYPE = 54 valuetype
MessageRouting::ResumePolicy

N

INVOCATION_POLICY_TYPE = 55 CosTransactions::InvocationPolicy [TRANS] Y

OTS_POLICY_TYPE = 56 CosTransactions::OTSPolicy Y

NON_TX_TARGET_POLICY_TYPE =
57

CosTransactions::NonTxTargetPolicy Y

ActivityPolicyType = 58 CORBA::PolicyType [ASMOTS] Y

OSA_MANAGER_POLICY = 59 [SECDOM]

ODM_MANAGER_POLICY = 60

PATH_SELECTION_POLICY_TYPE =
61

[FIREWALL]

PATH_INSERTION_POLICY_TYPE =
62

PROCESSING_MODE_POLICY_TYPE
= 63

This Part of this
specification - Portable
Interceptor clause

Policy Type Policy Interface Defined in Uses
create
_policy
498 Common Object Request Architecture (CORBA), v3.1.1

A.6 Exception Codes

If an exception that is to be raised for an error condition does not explicitly specify a specific standard minor code for that
error condition, implementations can either use a minor code of zero, or use a vendor-specific minor code to convey more
detail about the error.

The following table specifies standard minor exception codes that have been assigned for the standard system exceptions.
The actual value that is to be found in the minor field of the ex_body structure is obtained by or-ing the values in this
table with the OMGVMCID constant. For example “Missing local value implementation” for the exception
NO_IMPLEMENT would be denoted by the minor value 0x4f4d0001.

.

SYSTEM EXCEPTION MINOR
CODE

EXPLANATION

ACTIVITY_COMPLETED 1 Activity context completed through timeout, or in some way other
than requested.

ACTIVITY_REQUIRED 1 Calling thread lacks required activity context.

BAD_CONTEXT 1 IDL context not found.

2 No matching IDL context property.
Common Object Request Broker Architecture (CORBA), v3.1.1 499

BAD_INV_ORDER 1 Dependency exists in IFR preventing destruction of this object.

2 Attempt to destroy indestructible objects in IFR.

3 Operation would deadlock.

4 ORB has shutdown

5 Attempt to invoke send or invoke operation of the same Request
object more than once.

6 Attempt to set a servant manager after one has already been set.

7 ServerRequest::arguments called more than once or after a call
to ServerRequest:: set_exception.

8 ServerRequest::ctx called more than once or before
ServerRequest::arguments or after ServerRequest::ctx,
ServerRequest::set_result or
ServerRequest::set_exception.

9 ServerRequest::set_result called more than once or before
ServerRequest::arguments or after
ServerRequest::set_result or
ServerRequest::set_exception.

10 Attempt to send a DII request after it was sent previously.

11 Attempt to poll a DII request or to retrieve its result before the
request was sent.

12 Attempt to poll a DII request or to retrieve its result after the result
was retrieved previously.

13 Attempt to poll a synchronous DII request or to retrieve results from
a synchronous DII request.

14 Invalid portable interceptor call.

15 Service context add failed in portable interceptor because a service
context with the given id already exists.

16 Registration of PolicyFactory failed because a factory already
exists for the given PolicyType.

SYSTEM EXCEPTION MINOR
CODE

EXPLANATION
500 Common Object Request Architecture (CORBA), v3.1.1

17 POA cannot create POAs while undergoing destruction

18 Attempt to reassign priority.

19 An OTS/XA integration xa_start call returned
XAER_OUTSIDE.

20 An OTS/XA integration xa_ call returned XAER_PROTO.

21 Transaction context of request and client threads do not match in
interceptor.

22 Poller has not returned any response yet.

23 Registration of TaggedProfileFactory failed because a factory
already exists for the given id.

24 Registration of TaggedComponentFactory failed because a factory
already exists for the given id.

25 Iteration has no more elements.

26 Invocation of this operation not allowed in post_init.

BAD_OPERATION 1 ServantManager returned wrong servant type.

2 Operation or attribute not known to target object

SYSTEM EXCEPTION MINOR
CODE

EXPLANATION
Common Object Request Broker Architecture (CORBA), v3.1.1 501

BAD_PARAM 1 Failure to register, unregister, or lookup value factory.

2 RID already defined in IFR.

3 Name already used in the context in IFR.

4 Target is not a valid container.

5 Name clash in inherited context.

6 Incorrect type for abstract interface.

7 string_to_object conversion failed due to bad scheme name.

8 string_to_object conversion failed due to bad address.

9 string_to_object conversion failed due to bad bad schema specific
part.

10 string_to_object conversion failed due to non specific reason.

11 Attempt to derive abstract interface from non-abstract base interface
in the Interface Repository.

12 Attempt to let a ValueDef support more than one non-abstract
interface in the Interface Repository.

13 Attempt to use an incomplete TypeCode as a parameter.

14 Invalid object id passed to POA::create_reference_by_id.

15 Bad name argument in TypeCode operation.

16 Bad RepositoryId argument in TypeCode operation.

17 Invalid member name in TypeCode operation.

18 Duplicate label value in create_union_tc.

19 Incompatible TypeCode of label and discriminator in
create_union_tc.

20 Supplied discriminator type illegitimate in create_union_tc.

21 Any passed to ServerRequest::set_exception does not contain
an exception.

22 Unlisted user exception passed to
ServerRequest::set_exception.

23 wchar transmission code set not in service context.

24 Service context is not in OMG-defined range.

25 Enum value out of range.

26 Invalid service context Id in portable interceptor.

27 Attempt to call register_initial_reference with a null Object.

28 Invalid component Id in portable interceptor.

29 Invalid profile Id in portable interceptor.

SYSTEM EXCEPTION MINOR
CODE

EXPLANATION
502 Common Object Request Architecture (CORBA), v3.1.1

30 Two or more Policy objects with the same PolicyType value
supplied to Object::set_policy_overrides or
PolicyManager::set_policy_overrides.

31 Attempt to define a oneway operation with non-void result, out or
inout parameters or user exceptions.

32 DII asked to create request for an implicit operation.

33 An OTS/XA integration xa_ call returned XAER_INVAL.

34 Union branch modifier called with bad case label discriminator.

35 Illegal IDL context property name.

36 Illegal IDL property search string.

37 Illegal IDL context name.

38 Non-empty IDL context.

39 Unsupported RMI/IDL custom value type stream format.

40 ORB output stream does not support ValueOutputStream interface.

41 ORB input stream does not support ValueInputStream interface.

42 Character support limited to ISO 8859-1 for this object reference.

43 Attempt to add a Pollable to a second PollableSet.

BAD_TYPECODE 1 Attempt to marshal incomplete TypeCode.

2 Member type code illegitimate in TypeCode operation.

3 Illegal parameter type.

CODESET_INCOMPATIBLE 1 Codeset negotiation failed.

2 Codeset delivered in CodeSetContext is not supported by server as
transmission codeset.

DATA_CONVERSION 1 Character does not map to negotiated transmission code set.

2 Failure of PriorityMapping object.

IMP_LIMIT 1 Unable to use any profile in IOR.

INITIALIZE 1 Priority range too restricted for ORB.

INTERNAL 1 An OTS/XA integration xa_ call returned XAER_RMERR.

2 An OTS/XA integration xa_ call returned XAER_RMFAIL.

INTF_REPOS 1 Interface Repository not available

2 No entry for requested interface in Interface Repository

INVALID_ACTIVITY 1 Transaction or Activity resumed in wrong context, or invocation
incompatible with Activity’s current state.

INV_OBJREF 1 wchar Code Set support not specified.

2 Codeset component required for type using wchar or wstring data

SYSTEM EXCEPTION MINOR
CODE

EXPLANATION
Common Object Request Broker Architecture (CORBA), v3.1.1 503

INV_POLICY 1 Unable to reconcile IOR specified policy with effective policy
override.

2 Invalid PolicyType.

3 No PolicyFactory has been registered for the given PolicyType.

MARSHAL 1 Unable to locate value factory.

2 ServerRequest::set_result called before ServerRequest::ctx
when the operation IDL contains a context clause.

3 NVList passed to ServerRequest::arguments does not describe
all parameters passed by client.

4 Attempt to marshal Local object.

5 wchar or wstring data erroneosly sent by client over GIOP 1.0
connection

6 wchar or wstring data erroneously returned by server over GIOP
1.0 connection.

7 Unsupported RMI/IDL custom value type stream format.

NO_IMPLEMENT 1 Missing local value implementation.

2 Incompatible value implementation version.

3 Unable to use any profile in IOR.

4 Attempt to use DII on Local object.

5 Biomolecular Sequence Analysis iterator cannot be reset.

6 Biomolecular Sequence Analysis metadata is not available as
XML.

7 Genomic Maps iterator cannot be rest.

8 Operation not implemented in local object.

NO_RESOURCES 1 Portable Interceptor operation not supported in this binding.

2 No connection for request’s priority.

NO_RESPONSE 1 Reply is not available immediately in a non-blocking call.

OBJ_ADAPTER 1 System exception in AdapterActivator::unknown_adapter.

2 Incorrect servant type returned by servant manager.

3 No default servant available [POA policy].

4 No servant manager available [POA Policy].

5 Violation of POA policy by ServantActivator::incarnate.

6 Exception in
PortableInterceptor::IORInterceptor.components_established.

7 Null servant returned by servant manager

SYSTEM EXCEPTION MINOR
CODE

EXPLANATION
504 Common Object Request Architecture (CORBA), v3.1.1

A.7 Identity Tokens

The following identity tokens are defined in the Security Context clause (Part 2 of this specification) and the Firewall
Traversal specification (ptc/04-03-01). These tokens must be powers of two.

• ITTAbsent = 0;

• ITTAnonymous = 1;

• ITTPrincipalName = 2;

• ITTX509CertChain = 4;

• ITTDistinguishedName = 8;

• ITTCompoundToken = 16;

OBJECT_NOT_EXIST 1 Attempt to pass an unactivated (unregistered) value as an object
reference.

2 Failed to create or locate Object Adapter.

3 Biomolecular Sequence Analysis Service is no longer available.

4 Object Adapter inactive.

5 This Poller has already delivered a reply to some client.

TIMEOUT 1 Reply is not available in the Poller by the timeout set for it.

2 End time specified in RequestEndTimePolicy or
RelativeRequestTimeoutPolicy has expired.

3 End time specified in ReplyEndTimePolicy or
RelativeReplyTimeoutPolicy has expired.

TRANSACTION_ROLLEDBACK 1 An OTS/XA integration xa_ call returned XAER_RB.

2 An OTS/XA integration xa_ call returned XAER_NOTA.

3 OTS/XA integration end was called with success set to TRUE
while transaction rollback was deferred.

4 Deferred transaction rolled back.

TRANSIENT 1 Request discarded because of resource exhaustion in POA, or
because POA is in discarding state.

2 No usable profile in IOR.

3 Request cancelled.

4 POA destroyed.

UNKNOWN 1 Unlisted user exception received by client.

2 Non-standard System Exception not supported.

3 An unknown user exception received by a portable interceptor.

SYSTEM EXCEPTION MINOR
CODE

EXPLANATION
Common Object Request Broker Architecture (CORBA), v3.1.1 505

506 Common Object Request Architecture (CORBA), v3.1.1

	Preface
	1 Scope
	2 Conformance and Compliance
	3 Normative References
	4 Additional Information
	4.1 Outline of Contents
	4.2 Keywords for Requirement Statements

	5 The Object Model
	5.1 General
	5.2 Overview
	5.3 Object Semantics
	5.4 Object Implementation

	6 CORBA Overview
	6.1 General
	6.2 Structure of an Object Request Broker
	6.3 Example ORBs
	6.4 Structure of a Client
	6.5 Structure of an Object Implementation
	6.6 Structure of an Object Adapter
	6.7 CORBA Required Object Adapter
	6.8 The Integration of Foreign Object Systems

	7 IDL Syntax and Semantics
	7.1 Overview
	7.2 Lexical Conventions
	7.3 Preprocessing
	7.4 IDL Grammar
	7.5 IDL Specification
	7.6 Import Declaration
	7.7 Module Declaration
	7.8 Interface Declaration
	7.9 Value Declaration
	7.10 Constant Declaration
	7.11 Type Declaration
	7.12 Exception Declaration
	7.13 Operation Declaration
	7.14 Attribute Declaration
	7.15 Repository Identity Related Declarations
	7.16 Event Declaration
	7.17 Component Declaration
	7.18 Home Declaration
	7.19 CORBA Module
	7.20 Names and Scoping

	8 ORB Interface
	8.1 Overview
	8.2 The ORB Operations
	8.3 Object Reference Operations
	8.4 ValueBase Operations
	8.5 ORB and OA Initialization and Initial References
	8.6 Context Object
	8.7 Current Object
	8.8 Policy Object
	8.9 Management of Policies
	8.10 Management of Policy Domains
	8.11 TypeCodes
	8.12 Exceptions

	9 Value Type Semantics
	9.1 Overview
	9.2 Architecture
	9.3 Standard Value Box Definitions
	9.4 Language Mappings
	9.5 Custom Marshaling
	9.6 Access to the Sending Context Run Time

	10 Abstract Interface Semantics
	10.1 Overview
	10.2 Semantics of Abstract Interfaces
	10.3 Usage Guidelines
	10.4 Example
	10.5 Security Considerations

	11 Dynamic Invocation Interface
	11.1 Overview
	11.2 Request Operations
	11.3 ORB Operations
	11.4 Polling
	11.5 List Operations

	12 Dynamic Skeleton Interface
	12.1 Introduction
	12.2 Overview
	12.3 ServerRequestPseudo-Object
	12.4 DSI: Language Mapping

	13 Dynamic Management of Any Values
	13.1 General
	13.2 Overview
	13.3 DynAny API
	13.4 Usage in C++ Language

	14 The Interface Repository
	14.1 Overview
	14.2 Scope of an Interface Repository
	14.3 Implementation Dependencies
	14.4 Basics
	14.5 Interface Repository Interfaces
	14.6 Component Interface Repository Interfaces
	14.7 RepositoryIds
	14.8 IDL for Interface Repository

	15 The Portable Object Adapter
	15.1 Overview
	15.2 Abstract Model Description
	15.3 Interfaces
	15.4 IDL for PortableServer Module
	15.5 UML Description of PortableServer
	15.6 Usage Scenarios

	16 Portable Interceptors
	16.1 Introduction
	16.2 General Behavior of Local Objects
	16.3 Interceptor Interface
	16.4 Request Interceptors
	16.5 Portable Interceptor Current
	16.6 IOR Interceptor
	16.7 Interceptor Policy Objects
	16.8 PolicyFactory
	16.9 Registering Interceptors
	16.10 Dynamic Initial References
	16.11 Module Dynamic
	16.12 Consolidated IDL

	17 CORBA Messaging
	17.1 General
	17.2 Quality of Service
	17.3 Messaging Quality of Service
	17.4 Propagation of Messaging QoS
	17.5 Messaging Programming Model
	17.6 Running Example
	17.7 Async Operation Mapping
	17.8 Exception Delivery in the Callback Model
	17.9 Type-Specific ReplyHandler Mapping
	17.10 Generic Poller Value
	17.11 Type-Specific Poller Mapping
	17.12 Example Programmer Usage
	17.13 Message Routing Interoperability
	17.14 Routing Object References
	17.15 Message Routing
	17.16 Router Administration
	17.17 CORBA Messaging IDL
	A.1 QoS Abstract Model Design
	A.2 Model Components
	A.3 AMI/TII Abstract Model Design
	A.4 Message Routing Abstract Model Design
	B.1 Conformance Issues
	B.2 Compatibility Issues
	A.1 General
	A.2 Profile ID Tags
	A.3 Service ID Tags
	A.4 Component ID Tags
	A.5 Policy Type Tags
	A.6 Exception Codes
	A.7 Identity Tokens

	Annex A - IDL Tags and Exceptions

