‘—,’ - — |
—-—

= s L — —— = _{-ﬁ'/-’

= = ' = T & &

—_— = T B = =

| — . - =

7y | V- s -

\““l“l
\
W
"
'

[¢]
w
-
m
0
-
3
>
y 4
>
@
m
ES
m
y 4
-
@
~
(o]
c
b

Date: August 2011

Common Object Request Broker Architecture (CORBA)

Specification, Version 3.1.1

Part 1: CORBA Interfaces

OMG Document Number: formal/2011-08-01

Standard document URL: http://www.omg.org/spec/CORBA/3.1.1/Interfaces/PDF

Copyright © 1997-2001 Electronic Data Systems Corporation
Copyright © 1997-2001 Hewlett-Packard Company
Copyright © 1997-2001 IBM Corporation

Copyright © 1997-2001 ICON Computing

Copyright © 1997-2001 i-L ogix

Copyright © 1997-2001 IntelliCorp

Copyright © 1997-2001 Microsoft Corporation
Copyright © 2011 Object Management Group
Copyright © 1997-2001 ObjecTime Limited

Copyright © 1997-2001 Oracle Corporation

Copyright © 1997-2001 Platinum Technology, Inc.
Copyright © 1997-2001 Ptech Inc.

Copyright © 1997-2001 Rationa Software Corporation
Copyright © 1997-2001 Reich Technologies
Copyright © 1997-2001 Softeam

Copyright © 1997-2001 Sterling Software

Copyright © 1997-2001 Taskon A/S

Copyright © 1997-2001 Unisys Corporation

Use of Specification - Terms, Conditions & Notices

The material in this document details an Object Management Group specification in accordance with the terms, conditions and
notices set forth below. This document does not represent a commitment to implement any portion of this International
Standard in any company’s products. The information contained in this document is subject to change without notice.

Licenses

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free, paid up,
worldwide license to copy and distribute this document and to modify this document and distribute copies of the modified
version. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed the copyright
in the included material of any such copyright holder by reason of having used the specification set forth herein or having
conformed any computer software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this International Standard hereby grant you a
fully-paid up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use this
International Standard to create and distribute software and specia purpose specifications that are based upon this
International Standard, and to use, copy, and distribute this International Standard as provided under the Copyright Act;
provided that: (1) both the copyright notice identified above and this permission notice appear on any copies of this
International Standard; (2) the use of the specifications is for informational purposes and will not be copied or posted on any
network computer or broadcast in any media and will not be otherwise resold or transferred for commercial purposes; and (3)
no modifications are made to this International Standard. This limited permission automatically terminates without notice if
you breach any of these terms or conditions. Upon termination, you will destroy immediately any copies of the specifications
in your possession or control.

Patents

The attention of adoptersis directed to the possibility that compliance with or adoption of OMG specifications may
require use of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a
license may be required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of
those patents that are brought to its attention. OMG specifications are prospective and advisory only. Prospective users are
responsible for protecting themselves against liability for infringement of patents.

General Use Restrictions

Any unauthorized use of this International Standard may violate copyright laws, trademark laws, and communications
regulations and statutes. This document contains information which is protected by copyright. All Rights Reserved. No
part of this work covered by copyright herein may be reproduced or used in any form or by any means--graphic,
electronic, or mechanical, including photocopying, recording, taping, or information storage and retrieval systems--
without permission of the copyright owner.

Disclaimer Of Warranty

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY CONTAIN
ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE
MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS PUBLICATION,
INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF
MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE.

IN NO EVENT SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE COMPANIES LISTED ABOVE
BE LIABLE FOR ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS, REVENUE, DATA OR
USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE FURNISHING,
PERFORMANCE, OR USE OF THIS MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

The entire risk as to the quality and performance of software developed using this International Standard is borne by you.
This disclaimer of warranty constitutes an essential part of the license granted to you to use this International Standard.

Restricted Rights Legend

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1) (ii)
of The Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph (c)(1) and
(2) of the Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified in 48 C.F.R.
227-7202-2 of the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of the Federal
Acquisition Regulations and its successors, as applicable. The specification copyright owners are as indicated above and
may be contacted through the Object Management Group, 140 Kendrick Street, Needham, MA 02494, U.S.A.

Trademarks

MDA®, Model Driven Architecture®, UML®, UML Cube logo®, OMG Logo®, CORBA® and XMI® are registered
trademarks of the Object Management Group, Inc., and Object Management Group™, OMG™ |, Unified Modeling
Language™, Model Driven Architecture Logo™, Model Driven Architecture Diagram™, CORBA logos™, XMI Logo™,
CWM™ CWM Logo™, [ITOP™ MOF™ and OMG Interface Definition Language (IDL)™ , and Systems Modeling
Language (SysML ™) are trademarks of the Object Management Group. All other products or company names mentioned
are used for identification purposes only, and may be trademarks of their respective owners.

Compliance

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its designees) is
and shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer software to use
certification marks, trademarks or other special designations to indicate compliance with these materials.

Software developed under the terms of this license may claim compliance or conformance with this International Standard if
and only if the software compliance is of a nature fully matching the applicable compliance points as stated in the
specification. Software developed only partially matching the applicable compliance points may claim only that the software
was based on this International Standard, but may not claim compliance or conformance with this International Standard. In
the event that testing suites are implemented or approved by Object Management Group, Inc., software developed using this
International Standard may claim compliance or conformance with the specification only if the software satisfactorily
completes the testing suites.

OMG’sIssue Reporting Procedure

All OMG specifications are subject to continuous review and improvement. As part of this pro-
cess we encourage readers to report any ambiguities, inconsistencies, or inaccuracies they may
find by completing the Issue Reporting Form listed on the main web page http://mmww.omg.org,
under Documents, Report a Bug/l ssue (http://www.omg.org/technol ogy/agreement.htm).

Table of Contents

PrEIACE . eeiii e
L S COPE e 1
2 Conformance and Compliancecccooveviiiiiiiiiiiineeennnee, 1
3 Normative ReferenCescccoveeveiiiiiiiicice e 1
4 Additional Informationcccoeieiiiiii) 2
4.1 Outling of CONtENES.......uiiiiiiie e e e 2

4.2 Keywords for Requirement StatementS...........cceevvevveiiiiiineeeceiiineen, 3

5 The Object Modelcooiiiiiiii e, 5
T R CT=T g T=T - | TR UPPPURR PPN 5

B.2 OVEBIVIEW ... ettt e e e e e e e et e e et e e et e et e e et e eeanaees 5

5.3 ODJeCt SEMANLICS ...vuuiiiiiieeiie e e 6

5.3.1 ODJECLS ... 6

5.3.2 REQUESTS ..oeiiiiiii et 6

5.3.3 Object Creation and DeStrUCLIONuuueiiiiiiiiiieeieeeieeeeeeeer e 7

TR IR A I o1 ST P PP 7

G T T 1] (=] 1 7= (o= PPPPPRRRRSPN 8

5.3.6 VAlUB TYPES ooieiiiiiiiiie i e ettt e e s e e e e e e e e e e e e et et aar e e e e e e e aaaeeeeees 9

5.3.7 ADSract INtEIrfaCeSuoiiiiiiiiiii e 9

G RO o= = 1o 1SS 9

5.3.9 AMIDULES ..o 11

5.4 Object Implementation............ccouuiii e 11

5.4.1 The Execution Model: Performing ServiCescccccvvvrrivrvnvriiiiineieeeeeeeen 11

5.4.2 The Construction MOdeloiiiiiiiiiiii e 12

6 CORBA OVEIVIEW ..oviiiiiiieeeeeeeee e 13
B.1 GENETAL......ueiiiii i 13

6.2 Structure of an Object Request BroKer...........ccccviiiiiiiiiiiiinieieeeenn, 13

Common Object Request Broker Architecture (CORBA), v3.1.1 iii

6.2.1 Object ReqQUESE BrOKETccooviieieeiiiiiiee e e e e e e e 17

B.2.2 ClIBNTS .o a e e 18
6.2.3 Object IMpIEMENALIONScovviiiiiiiiiiie e 18
6.2.4 ODJeCt REfEIENCESccceeiieeeeeeee e e e e e e e 18
6.2.5 OMG Interface Definition Languagecccccvvvvveeiiiiiiiiiiiiiieee e eeeeeeeeee, 19
6.2.6 Mapping of IDL to Programming LANQUAJESeeuvuvriiiieeeeeeeeeeeeeeeenennnens 19
6.2.7 ClIENT STUDS ...t 19
6.2.8 Dynamic Invocation INtErfacecccooeiiieiiiiiiiiiiieerces e e e, 19
6.2.9 Implementation SKeleton ... 20
6.2.10Dynamic SKeleton INtErfaceccccoevieeeeiiiiiiieieeece e 20
(I B L@ o T=Tox o =T o) (= £ TS 20
6.2.120RB INEITACEeeiiiiii e 20
6.2.13INterface REPOSITONY ...ccciiieieeiieiiiee e e e e e e e e e e e e e eeaeaannes 21
6.2.14Implementation REPOSITONYuuuuuiiiiieiieieeeeee e e e e e e aaeeees 21
6.3 EXamMPIE ORBSuuiiiiiiiiii e 21
6.3.1 Client- and Implementation-resident ORBcccccceiiiiiiiiiiiiiieeeeeiei, 21
6.3.2 Server-based ORB ..o 21
6.3.3 System-based ORB ... 22
6.3.4 Library-based ORBcoooiiiii e 22
6.4 Structure of @ Client...........oooiiiiii e 22
6.5 Structure of an Object Implementationcccccoeeevvvviiiiiieceeiiinnnnn. 23
6.6 Structure of an Object Adapterccovvviiiiiiiiiiii e, 25
6.7 CORBA Required Object Adaptercccooeevveeiiiiiieeeeiiiee e 26
6.7.1 Portable Object AJAPLErouuuiiiuiiiiiieee e 26
6.8 The Integration of Foreign Object Systemscccevvvviiiiieveennnnnn. 26
7 IDL Syntax and SemantiCscccoeevvieiieiiiiieiieeee e, 29
A8 RO =T VTP 29
7.2 Lexical CONVENLIONS..........uuiiiiiiieiiie e e e 30
T.2.1 TOKENS oottt ettt ettt et e s anne 33
7.2.2 COMIMENES ...ttt e e e et e e e e e et e e e e e e ara e e e e e e ernaa e eeas 33
7.2.3 1ENLTIEIS i 33
A =) VA1 o o S 35
T.2.5 LILEIAIS oot 36
7.3 PrePrOCESSING .. ccevettiieeeeeeiiie e e e eeetta e e e e e et e e e s eerta e e e eeeerraaeaaeennnns 38
A 1] €] = 1 4] 0 = 38
7.5 IDL SPeCIfICALIONui i e 45

Common Object Request Broker Architecture (CORBA), v3.1.1

7.6 IMPOIt DECIArationcocovieiiiiie et eeeeees 45

7.7 Module Declaration............uuiiieiieeiiiie e e e e e eeanes 46
7.8 Interface Declarationoiveiiiiii i 47
7.8.1 Interface HEAENccooiiiiii e 47
7.8.2 Interface Inheritance Specificationcccccceiiiiiiiie e a7
7.8.3 INErfaCe BOAYoovueiiiiiiiiiie e 48
7.8.4 Forward DecClarationcooiiiiiiiiiiiiiiiii e 48
7.8.5 Interface INNEIANCEooooiiiiiii e 49
7.8.6 ADSIract INTEITACEcoiieiiiiee e 51
7.8.7 LOCAl INTEITACE ...vveeiiieie e 51
7.9 Value DecClarationccceuuuiiieeiiiiiii e e e e e e e e eennes 52
7.9.1 Regular Value TYPE ..cooiiieieiiieeeeeeee ettt 52
7.9.2 BOXEA VAIUE TYPE oureiiiiiiii i ettt e e e e e e e e e e e e e as 54
7.9.3 ADSIract ValUe TYPE ...coee et e e e e e e e 55
7.9.4 Value Forward Declarationueeoiiiiiiiiiieeeeieeceeeeciii e 55
7.9.5 Valuetype INNErItANCEccooiiiiiieee e e 55
7.10 Constant Declarationcooveviiiiie i 57
T L0 LSYNTAX ettt e e ettt e e e e e e et e e e e eae b et eeen e e e e nara s 57
7. 10.2SEMEANTICS ..eeeiiiiieiiiieee ettt ettt e e e e e e e e e e e e e s aa s bbb bbb e b b ae e e e s 58
7.11 Type DecClarationcoceuuiiiiiiiiiiiie e 61
4000 - T T I o = 62
7.11.2C0ONSITUCIEA TYPES rruiiiiiiii i e e eeee et e e e e e e e e e e e e ae e e as 64
7.11.3TEMPIALE TYPES .oeveeeeniiiiiee ettt e e e e e e e e e ee e e s 68
7.11.4ComPpIleX DECIAratoroooviiuiiiiiiiiiii s a e e e 69
7. 11.5NALVE TYPES rrruuruuniiiieiieeeeeeeee ettt ettt s e e e e e e e e e aeeaaeeeasaasasnaa e aaaaaaaaaees 69
7.11.6Deprecated ANONYMOUS TYPES ..ooeiiiiiiiiiiiiiiiaiaaaeeeeeeeeeeeeeeeiesreenna e ns 70
7.12 Exception Declaration..............coovvvviiiiiiiiiiiiie e 73
7.13 Operation Declaration..............oooveuuiiiniiiiiiiii e 73
7.13.10peration AIHDULEccooiiii e 74
7.13.2Parameter DecClarationsoooiiiiiiiiiiiiiiiiiiiii e 74
7.13.3RAISES EXPIreSSIONS ..ottt 74
7.13.4C0ONEXE EXPrESSIONS ...ciiieeeeeeieeeeeeeitr s e e e e e e e e e e e e e e et e e e e e e e aeaeees 75
7.14 Attribute Declarationccouiieiiiiii e 76
7.15 Repository Identity Related Declarationscccoeeevvvviiiineeenenns 77
7.15.1Repository Identity DecClarationcccooeevieeeeeeeiiieiieeee e 77
7.15.2Repository Identifier Prefix Declarationcoooviiiiiiiiiiiiinineeeeeeeeeee 78
7.15.3Repository [d ConfliCtccooviiiiee e 79
7.16 Event Declarationccooooeiiiiiiiii e 79

Common Object Request Broker Architecture (CORBA), v3.1.1 Y

Vi

7.16.1Regular EVENT TYPE ..ccceiiiieieeeeieiee e e e et e e e e e e e e e e e aaeeeees 79

7.16.2ADSIract EVENT TYPE ooiiiiiiiieieeiiiiie s ee e e e e e e et e e e e e e e e e e e eeeenaennnees 80
7.16.3Event Forward DecClarationccoooooeeiiiiiiiieiiiiiiieee e 80
7.16.4Eventtype INNEITANCEoooviviiiiiiiicce e e e e e e e 80
7.17 Component Declarationcooveeiiiiiiiiiiieic e 80
7.17.LCOMPONENT ...ttt ettt e e e e e e e e e e e et e e e e e erne e e e e eneean e eeaeas 80
7.17.2C0o0mMPoNent HEAUETcooiiiieeeeece s e e e e e e e e e e e eaeaneees 81
7.17.3CoMPONENE BOAYcoeiiiiiiiiieieee e 82
7.17.4Event Sources—publishers and emitters ... 84
T.L7.5EVENTE SINKS ..ottt e e e e e e e e 84
7.17.6Basic and Extended COMPONENTSuuuuiiiiiiiiieeeeeeeeeeeeeeiiiii e 85
7.18 HOME DECIarationcooiiiiiiiiiiiiiies et 85
400 T8 1 (0] 5 T PRSPPI 85
7.18.2HOME HEAUEK ...ttt e e e e e e e eeeeeeenanees 86

A = 301 o 0 0= = T To | PRSP 87
7.19 CORBA MOAUIEeecei e 88
7.20 Names and SCOPING ...cvvvvrrieeeriiiii et e e e e e e e e e e eeaans 89
7.20.1QuUAlifIed NAMES ...cooviiii e e e e e e e e e e 89
7.20.2Scoping Rules and Name ReSOIUtIONcoooeiiiiiiiiiiiiiie e 90
7.20.3Special Scoping Rules for Type Namescoovvvvveiiiiiiiiiiiiiieeeeeeeeeeeeeeee 93

8 ORB INterfacecooooeeiiiiiiiiii e 95
8.1 OVEBIVIEW .. . ittt e et e e e e e et e e e e e e et e e e et e e e eaneeeenes 95
8.2 The ORB OPEratiONSiieiiiiiiie e eeeeeie e e e et e e e e e e s 95
8.2.1 ORB IHENTILY ...uuuiviiiiiiiiiieiiiiee e e e e e e e e e e e e e e e e s e e e ae e 101
8.2.2 Converting Object References to Stringscoovvvveviiiiiiiiiiiineeeeeeeeee 101
8.2.3 Getting Service INfOrmMationcccceeiiiieiiieeeeiier e 102
8.2.4 Creating @ NeW CONLEXLccvvvieiieiiiiiiie s e e e e e e e e 102
8.2.5 Thread-Related OpPerationscccceiiiiiieiiiiiiieeieeeieii e 102
8.3 Object Reference Operationsc.ccocvveeviiieeeeeeiiiie e eeeeeannn 105
8.3.1 Determining the Object INnterface ... 107
8.3.2 Duplicating and Releasing Copies of Object Referencesccccc......... 107
8.3.3 Nil ObjecCt REfEIENCESccoveeeeeeeiece e 107
8.3.4 Equivalence Checking Operationcccceeieeiiiiiiiiieiiiiiiiee e 108
8.3.5 Probing for Object NON-EXISTENCEccovviiiiiiiiiiiiiieeee e 108
8.3.6 Object Reference 1dentityccccceeeiiiiiiiiieiiiiieieeeer e e 108
8.3.7 Type Coercion CONSIAEIAtIONSuuiiiiiiieee et 110
8.3.8 Getting Policy Associated with the Objectoevvviiiiiiiiiiiiiii 110
8.3.9 Overriding Associated Policies on an Object Reference 111

Common Object Request Broker Architecture (CORBA), v3.1.1

8.3.10Validating CoNNECTIONccoviiiiieeiiiie e e e e e e e 112

8.3.11Getting the Domain Managers Associated with the Object 112
8.3.12Getting Component Associated with the Objectccooviiiviiiriinnnnnn. 113
8.3.13Getting the ORB ..o e 113
8.3.14L0calODbject OPEerationSccveuuiiiuiiiiiiieee e e e e e e e e eeaees 113
8.4 ValueBase OpPerationS..........ccoueuuiiiiiiieiiiiiee et e e 114
8.5 ORB and OA Initialization and Initial References............ccccc..uu.... 115
8.5.1 ORB INILIAlIZALION ...iiiiieeeie e e 115
8.5.2 Obtaining Initial Object REferencescccccceveiiiiviieeiicccie e 117
8.5.3 Configuring Initial Service Referencescccccceevvvviiiiiiiiieeeeeee, 120
8.6 CoNteXt ODJECT.....couuiiiiiiiiie e 122
8.6.1 INrOTUCTION ...vviiiiiiiiiiiiie e e e e e e e e e e e e e s 122
8.6.2 Context Object OPEratiONScouiuuuuiiuiiiiiiae e ee e ee e 122
8.7 CUIMeNt ODJECT ...cevviii i e anans 125
8.8 POIICY ODJECT... . 126
8.8.1 Definition of POliCYy ODJECTcooviiiiiiiiiiei e 126
8.8.2 Creation Of POIICY ODJECLScevveeeiiiiiiiiei e 127
8.8.3 Usages of POlICY ODJECLScooiiiiiiiiiiiiiiiiie e 129
8.8.4 Policy Associated with the Execution Environmentccccceeeeevevnnnnnn. 129
8.8.5 Specification of New Policy ODJECESccceeeiiiiiiiiiecrr e 130
8.8.6 Standard POIICIEScoooiiiiiiiiie e 131
8.9 Management Of POIICIESccovvviiiiiiiiiiii e 131
8.9.1 Client Side Policy Managementcceeeeiiiiiiieeeeeeieeeeeeeviienn e e 131
8.9.2 Server Side Policy Managementccoeeeeiieeeeiiiiiieieiiiineen e 132
8.9.3 Policy Management INtErfacesccceeveiiiieieeeiiieieeeeen e 132
8.10 Management of Policy DOMainS............ceviivieiiiiiineeieeiiceee e 134
8.10.1BASIC CONCEPLS .vvvunuiiiieeeeeee ettt s e e e e e e e e e e e e be e e e e e e e e eeaees 134
8.10.2Domain Management OPEratioNScccoovveeeeeeeereereeieeiiirinesseeeeeeeeeeeeeens 136
S0 I R Y/ o 1= o o [T PP 138
8.11.1The TypeCode INtErfaCeooevveeiiriiiiiiie e 138
8.11.2TypeCode CONSLANTScccvviieiieiiiiiiiires e e e e ee e e e e e e e e e e e e eeeeens 142
8.11.3Creating TYPECOUESccoiiiiiiiiiiiiiiiiiie et e e e e e e e e eeees 143
8.12 EXCEPLONS ...t ee ettt e e e e e ea 148
8.12.1DefINItIoN Of TEIMS ...eiiiiii e 148
8.12.2SyStem EXCEPLIONS ... s 148
8.12.3Standard System Exception Definitionsccoovvvvveiiiiiiiiiiiiiee e 150
8.12.4Standard Minor EXCeption COUESuuuiiiiiiiiiiieieiieeeeeeeeiiii e 156

Common Object Request Broker Architecture (CORBA), v3.1.1 Vii

9 Value Type SemantiCsccceviiiiiiiieiii e 157

S B R @ V=T T 157
9.2 AICNITECIUN i 157
9.2.1 ABSIIACt VAlUBS ... 158

S I @ o =] = 1o] 1 158
9.2.3 Value Type VS. INLErfaCeScouvviviviiiiiiiii e 159
9.2.4 Parameter PASSINGcooooiiiiiiiiiiiiiiiiiiie s ee ettt e e e e e 159
9.2.5 Substitutability ISSUEScuvviiiiiiiiiii e 160
9.2.6 WideninG/NarrOWINGcceeveueeriiiiiiiaaseeeeeeeeeeeeereeeaeesnssnnnn e eeaaeeeeseeesens 161
9.2.7 ValuB BaASE TYP oottt 161
9.2.8 Life CYCIE ISSUEScoeieee ettt e e e e e e e e e e 161
9.2.9 Security CoNSIAEratioNSuuuuuuiiiiiiieeieeeeeeeee e e e e eeaees 162
9.3 Standard Value Box DefinitionScoocvviiiiiiiiiicciicceei e, 162
9.4 Language MappPingsS ...cccouuuiieireeeiiieeeeeeitieeeeeeeain e e e eesaan e e eeeennns 163
9.4.1 General REQUIFEMENEScooeiiiiiiiiiiiiiie ettt e e e e e eeeees 163
9.4.2 Language Specific Marshalingcccccovveeiiiiiiiiiiieeee e 163
9.4.3 Language Specific Value Factory Requirementscccccceeeeeeeeeeeeeennen, 163
9.4.4 Value Method Implementationcccooooiiiiiiiiiiii e 164
9.5 Custom Marshaling...........coieeiiiiiiiiiiceeces e 164
9.5.1 Implementation of Custom Marshalingccccoviiiiiiiiiiiiii 164
9.5.2 Marshaling StreamsScoooiiiiiiiiiiiiiii e 165
9.6 Access to the Sending Context Run Timecccooovvvvviiieeeeeevnnnnnn. 171
10 Abstract Interface SemantiCscccoeeveiieeiiveennnn, 173
10,1 OVEIVIEW ...t e e e e e e e e e e e e eaanas 173
10.2 Semantics of Abstract INnterfaces..........ccccevvveveiiiiiiiiiine e, 173
10.3 Usage GUIAEIINEScooevuiiiiiiiiiii e 174
10.4 EXAMPI@...ceiiii i 174
10.5 Security ConsiderationS...........ccevuuuiiiieerieiiiiie e e 175
10.5.1Passing Values to Trusted DOMAINSccooeeeeeeeeiiieeiieeeeieeiir e 175
11 Dynamic Invocation Interfacecccccoevvviiiiiiiinennnnnn. 177
0 I R V=T YT 177
11.1.2Common Data SIrUCIUIEScccoeiiiiiiiiieeieee e 177
11.1.2MEMOIY USAQE ..uiiiiiiiiiiiiie ittt e e e e e e e eaa s 179
11.1.3Return Status and EXCEPLIONSouuuivuiiiiiiiieee et 179

Viii Common Object Request Broker Architecture (CORBA), v3.1.1

11.2 ReqUESt OPEIaAtiONS.....ccciiiiiiiieeeeeeiiie et 179

11.2.1CrEAtE_FEQUESTee ettt e et a e e et e e e e e e e e e e e e eennanas 180

0 - Vo (o = T o 182
L11.2.3INVOKE .o 182
L1.2.40CIETE ..o e e 183
LL.2.5SENMA ..ot 183
11.2.6PO0IL_TESPONSE ...ttt e e e e e e e e e e e e e rananaaa 183
11.2.7QEL_TESPONSE ... eeeeeietia e e e eeet e e e e ettt e s e e e eeet e e e eeeata e aeeeeesnnaaaaaeees 183
B 11T o | o TSP SUORR 184

L1 2.0 PIEPAIE ..eeeiieeieeeet ettt e ettt ettt e et e et et ab e e e e erra e aeeeeaa 184

0 2 1057 Lo [PPSR PPPPPRTRRTRPPPIN 184
11.3 ORB OPEratioNSciieiiiiiiiiiieeeeiiiee e e e e e e e e 185
11.3.1send_MUItIPIe_reQUESTESccooiiieiiiie e 185
11.3.2get_next_response and poll_next_reSponseccccceeeeveeeeeevvvvnnnnnnnnnnn 185
11,4 POHING i 186
11.4.1Abstract Valuetype Pollable ... 187
11.4.2Abstract Valuetype DIIPollableooviiiiiiiiii 188
11.4.3interface PollableSet ... 188
T I @] 1= = 11 o] 189
L11.5.1CIEALE LISt wuuuieiiiiiiie et r e e aeraa 190
11.5.2800_IEM e 190
TR 1 (=T PP 191
11.5.4fr€€ _MEMOIY .oiiiiiiiieee ettt e e e e e e e e e e e e e e b e bbb e 191

j ISR To (=] A oTo 11 o | AU PR PP 191
11.5.6create_operation_liStcooooiiiiiiiiiiie e 191
12 Dynamic Skeleton Interfaceccooeeviiiiiiiiiiineennnnee, 193
12. 2 INtrOAUCTION .. cceeicc e e e e e e e e aeas 193
12.2 OVEIVIBWottt ettt e e e e e e e e e et bbb e e e e e e 193
12.3 ServerRequestPseudo-ODbjectcooovviviiiiiiiiiiiiiii e 194
12.3.1ExplicitRequest State: ServerRequestPseudo-Objectccccceeeeeeennn. 194
12.4 DSI: Language Mappingooeeeeeeeuiiineeieeiiiineeeeeeeii e e e eeeenne e 195
12.4.1ServerRequest’'s Handling of Operation Parametersccccceeeeeeennn. 195
12.4.2Registering Dynamic Implementation ROULINEScooevvevvvviiniiinnennnn. 195
13 Dynamic Management of Any Values 197
13.1 GENEIAL.....uii e 197
13.2 OVEIVIBW ...ttt e e e e e e e e e ab bbb e e e e 197

Common Object Request Broker Architecture (CORBA), v3.1.1 iX

13.3 DYNANY AP .. 198

13.3.1Creating a DYNANY ODJECT ...coeviiiiiiiiiiiiieee e 204
13.3.2The DynANY INtEIfaceooovvviiiiiiiiie e 206
13.3.3The DynFixed INterface ... 210
13.3.4The DyNnENUM INLEITACEccoviiiiiiiiiicee e 210
13.3.5The DyNStruct INterfaceoouevvuiiiiiiiiiii e 211
13.3.6The DynUnion INtErfaceooueeuiiiiiiiiiiiiiee e 212
13.3.7The DynSequence INtErfacecoouuuuuumiiiiiiiiiee e 214
13.3.8The DynArray INtErfaceoooeueeiiiiiiiiiiii e e e 215
13.3.9The DynValueCommon INtErfaceccoeeiiiiiiiiiiiiiiiiiieri e 216
13.3.10The DynValue INterfaceoooiiiiiiiiiiiiiiiee e 216
13.3.11The DynValueBoxX INterfaceccceeeeiiiiiieiee e 217
13.4 Usage iN CH++ LanNQUAJEcoeeeeiiiiieeeieiiiieeeeeeeiiin e e e eeeiinn e e eeenens 218
13.4.1Dynamic Creation of CORBA::ANY VAIUESccevvvviiiiniiiiiiieieeeeeeeeeeee 218
13.4.2Dynamic Interpretation of CORBA::ANY VAlUESccvvvvviviiiiiiieieeeeeeea, 219
14 The Interface REPOSIONYccocvviveviiiiiiiieiiiieeee e 221
I R @ Y= YT 221
14.2 Scope of an Interface RepoSItoryccoeevevvviiiiiiiieveecee e 221
14.3 Implementation DependencCiesccovuuviiieeeieiiiinieeeeeeiee e 223
14.3.1Managing Interface REPOSItONIESuueiiiiiiiie e eeee e 223
i T 1 [PSR 224
14.4.1Names and IdentifierScooooiiiiiiiiiiiiii e 224
14.4.2Types and TYPECOUESccceeiiiieeeeeer e 225
14.4.3Interface RepOSItory ODJECESuuveeiiiiiiiiiee e 225
14.4.4Structure and Navigation of the Interface Repositoryccccceeeeeveeeee. 226
14.5 Interface Repository INterfaces.........cccceiiiiiiiiiiiiiieeceeicee e 228
14.5.1Supporting Type DefiNitiONScoouiiuuiiriiiiieieeeee e 229
LA.5.2IRODJECT ...ttt e e e e e e e e e e e e e 230
14.5.3C0NTAINEA ...coiiiiiieiiiiei e e e e e e e e s 231
T @ o] o] =] [T PR 233

LA 5. 5IDLTYPE .eiiiiiiiiiieieeeite ettt e ettt et e e e e e e e e e e e e e e a e 238
N CY B =T o0 1] (0] o VPP 238
14.5.7MOTUIEDET ..o 240
14.5.8CONSEANTDETovviiiiiiiiiiiiiee e 240
14.5.9TYPEACIDET ..o 241
L14.5.10SHIUCEIDET ... s 241
145 21UNIONDET ettt 242
145 12ENUMDET ..o 243
145, 13ANASDET ..ot 243

Common Object Request Broker Architecture (CORBA), v3.1.1

T I Y o 4] V1 A V<Y B 1Y TSR 244

L14.5.15SHINGDET ... —————- 244
14.5.16WSHINGDET ..o 244
LA 5. 17FIXEADET .ooiiiiiiie it 245
14.5.18SeqUENCEDET ... ————— 245
L14.5.10AITAYDET .. aareean 245
14.5.20EXCEPLONDET ...cceeeeeieiieieee e ————- 246
14.5.21ANDUIEDET ..o 247
14.5.22EXtARINDULEDET ... 247
14.5.230pP€eratioNDeEfovvviiiiiiiiiie e ——————- 248
14.5.24INterfaCeDeErcooiiiie s 250
14.5.25EXHNIEITACEDET ..o 252
14.5.26AbstractinterfacebDefccociiiiiiiiiiii 253
14.5.27ExtAbstractinterfaceDefeuuvieiiiiiii 254
14.5.28LocallnterfaceDefueeeiiiiiiiie s 255
14.5.29ExtLocallnterfaceDefcccuiiiiiiiiiiieiiiee e 256
14.5.30ValueMemberDefcoooiii i 256
L14.5.31VAIUEDET ... 257
14.5.32EXIVAIUEDET ... 260
14.5.33VAlUEBOXDET ... s 262
14.5.34ANAUVEDET ... 262
14.6 Component Interface Repository Interfaces.........ccccoevvvvvveeeenee, 262
14.6.1ComponentiR::CONTAINETccooeiiiiieieieeeeee s 262
14.6.2ComponentiR:IREPOSITONY ...coooiiiiiiiiieieeieit s 264
14.6.3ComponentIR::ProvidesDefooovvviviiiiiiiiii e 265
14.6.4ComMpPonentiR:IUSESDES ... 265
14.6.5ComponentiR:EVENIDES ... 266
14.6.6ComponentIR::EVENtPOMDEScovviiiece e 266
14.6.7ComponentiR:ZEMITSDET ..o 267
14.6.8ComponentIR::PublishesDef ... 268
14.6.9ComponentlR::ConsSUMESDEScovvviiiiiiiiieeer e 268
14.6.10ComponentlR::ComponentDef ... 268
14.6.11ComponentlR::FACtOryDefcoooviiiiiiii e 271
14.6.12ComponentlR::FINderDefcooviiiiieccc e 272
14.6.13ComponentlR::HOMEDES ... 272
I A S U= 0T 1S | 0] V4 (o £ 274
L1A4.7.1IDL FOIMAL ..eeiiiiiiiiiieee ettt ettt e e e e e e e e e e e e e s b b aeee e 275
14.7.2RMI Hashed FOrmMat ..o 275
14.7.3DCE UUID FOIMMAL ..ccciiiiiiiieiiiiie ittt 277
14.7. ALOCAL FOIMAL ooiiiiiiiiiiiieeie ettt ae e 277
14.7.5Pragma Directives for RepoSItoryldccccoovveniieiiiiiiiiiiieiiiiiiiieee e 277
14.7.6F0or More INfOrmationoooiiiiiiiiiiiiieieie s 282

Common Object Request Broker Architecture (CORBA), v3.1.1 Xi

14.7.7RepositorylDs for OMG-Specified TYPEScevveiiieeeeiiiiieieeeiieeee e 282

14.7.8Uniqueness Constraints on Repository IDSccccovvvvvveeviiiiiiiiiiiineeeennn 283
14.8 IDL for Interface RePOSItOrY.......cuuiiiiiiiiiiiiiieeeeeiin e 284
15 The Portable Object Adapterccccvveiiiiiininn, 303
15.1 OVEIVIEWceiiieiiiiitiaae e e e ettt e e e e e e e e e et a e e e e e e e e eees 303
15.2 Abstract Model DeSsCrption.........c..uiiieiiiiiiiieeeeee e 303
15.2.1Model COMPONENESuuiiiiiei e s e e e e e e e e e e e e e eeeas 303
15.2.2Model ArChITECIUIE ..o e 305
15.2.3POA CrEALION vttt ettt e e e e e e e e e e e ee et abe s aeaeeeeas 306
15.2.4Reference Creationoooooiiiiiiiiiiiii ettt 307
15.2.50Dbject ACIVALION STALEScceeviiiiiiiiiiiiiie e 308
15.2.6REQUESE PrOCESSING . .iiieiiiiiiieeieeeitt ettt e e e 308
15.2.7IMPICIt ACHVALION ..eveiiee e e e e e e e e 309
15.2.8MUltI-tRIrEAAING ..vvvveiiiiiee e 310
15.2.9Dynamic Skeleton INterfaceccceeeeiiiiiiiiiiiiiieeee e 311
15.2.10L0Cation TraNSPAIEINCYccvveveerurrruiriiiaiaeeaeeeeeeeeereereennnrrnnaaaaeaeaeaees 312
TG I [1 (=T = U0l 312
15.3.1The Servant IDL TYPEccceviieieeieeeeiiiee e s e e e e e e aeeees 313
15.3.2POAManNager INterfaceoouvvuiiiiiiiiiiii e 314
15.3.3POAManagerFactory INterfacecccoooiieiiiiiiiiiiiiiiei e 318
15.3.4AdapterActivator INterfaceuvvveiiiiiiiiii e 319
15.3.5ServantManager INterfacevcciiiiiiiiiii e 320
15.3.6ServantActivator INterfaceevveiiiiiiiiiii e 321
15.3.7ServantLocator INtErfaceccocciiiiiiiiiiiiiiiiiee e 323
15.3.8POA POlICY ODJECIS ..ot e e 325
15.3.9POA INTEITACE ...veeiiiiiiiiiee e e e 328
15.3.10CUrrent OPEratiONSccccvieeeeeiiieeeeeei s e s eeeees 337
15.4 IDL for PortableServer Moduleccccooooiiiiiiiiiiiieeeee, 338
15.5 UML Description of PortableServercccccoooevviiiiiiiiiiviiiiineeee, 344
15.6 USAQE SCENANOS ..uuuiiiiiiiiiieeeieeiiiee e e e ettt e e e e et e e e e e e e e e eeenee 346
15.6.1Getting the ROOt POA ... e 346
15.6.2Creating @ POA ...oo it 347
15.6.3Explicit Activation with POA-assigned Object [dScccceevviiiiiiiiiniiienen. 347
15.6.4Explicit Activation with User-assigned Object [dSccccovviiiiiieeiniinnnnn. 348
15.6.5Creating References before Activationccovvvviviiiiiiiciiiiiee e 349
15.6.6Servant Manager Definition and Creationcouuuviviiiiiiinineeeee e 349
15.6.70Dbject Activation 0N DemMandccooeeeiiieiiiiiiiieieeeiei e 351
15.6.8Persistent Objects with POA-assigned Idsocvvvviiviiiiiiiiiieeeeeeeeee 352

Common Object Request Broker Architecture (CORBA), v3.1.1

15.6.9Multiple Object Ids Mapping to a Single Servantccccccvvvviieeenennn. 352
15.6.100ne Servant for All ODBJECEScoovvvveiiiiiicce e 352
15.6.11Single Servant, Many Objects and Types, Using DSIccccceeeeieennn. 355

16 Portable Interceptors 359

16.1 INrOAUCTION ... 359
16.1.10DJECE CrEALIONuveeieiiiiieie e e ettt e e e e e e e e e b es 359
16.1.2ClIeNnt SENAS REQUESToiiiiiiei e s 360
16.1.3Server REeCeIVES REQUESTcccoeei i e e e e e e e ee e 361
16.1.4Server SeNdS REPIY ...ouuuiieiiiiiei e 361
16.1.5Client ReCeiVeS REPIYuuiiiiieeieee e 362

16.2 General Behavior of Local ObjectS.........ccccceeveeivviiiiiii e 362

16.3 Interceptor INterface ..o 362

16.4 ReqUESTE INTEICEPLONS ...uuiiiiieee et 363
16.4.1DeSIgN PriNCIPIES ...vveiiiiiie et 363
16.4.2General FIOW RUIEScoooiiiiieee e 364
16.4.3The Flow Stack Visual Modelccccuuiiiiiiiiiiiiiiiie 364
16.4.4The Request Interceptor POINEScoooiiiiiiiiiiiiiiii e 365
16.4.5Clent-Side INTEICEPLONuuiiei e e e e e e e e e e e e e e eaennnnns 365
16.4.6Client-Side Interception POINtScovvviiiiiiiiiiiiieee e 365
16.4.7Client-Side Interception POINt FIOWuoiiiiiiiiiiiiiiiieeii 367
16.4.8Server-Side INTErCEPLOrciiiiiee e e e 370
16.4.9Server-Side Interception POINEScccovvviiiiiiiiiiiiiiiieee e ee e 370
16.4.10Server-Side Interception PoINt FIOWcccooviiiiiiiiiiiiiii e 372
16.4.11Request INfFOrmMationccccoeieiiiiiii e 375
16.4.12Requestinfo INterface ... 375
16.4.13ClientRequestinfo Interfaceooovuiiiiiiiiiiiiii 379
16.4.14ServerRequestInfo INterfaceoovvvviiiiiiiiiiie 382
16.4.15ForwardRequest EXCEPLIONcovviveiiiiiiiiiiiin e eeeeeee e 386

16.5 Portable Interceptor CUITENt.........cuvoiieiiieiiiiiiee e 386
L6.5.LOVEIVIEW ..ottt et e e e e e e e e e e e e e e e s bbb b e b ee e 386
16.5.20btaining the Portable Interceptor Currentccccooevvveviiiiiiiieiiicennennn. 386
16.5.3Portable Interceptor Current Interfaceccccceevveveeiiiiiiiiiiiiiiiiiieenenn 387
16.5.4Use of Portable Interceptor CUrrentcccceeveeiieeeeeeeeieeeeeeesee e 388

16.6 IOR INTEICEPION ...ttt e 392
L16.6.LOVEIVIEW ..eeeeiieiiiieeee e e e ettt et e e e e e e e e e e e e e e e e e e e bbb bbb bbb ee s 392
16.6.2An Abstract Model for Object Adaptersccccceevveieeeeiiiiiiieeeeiee e 392
16.6.30bject Reference Templateooooeeiiiiiiiiiiiiii e 394
16.6.410RINterceptor INTErfaceccooviiiiiiiiice e 396
16.6.5I0RINTO INTEITACE ...ccoeeieeeeee e 397

Common Object Request Broker Architecture (CORBA), v3.1.1 Xiii

Xiv

16.7 Interceptor Policy ODJEeCtS........ccouuiiiiiiiii e 400

16.7.1ProcessSINgMOde POLICYoooviiiiiiiiiiiiiieei e 400
16.8 PONCYFACIOIY ... 401
16.8.1PolicyFactory INTErfaceooeuuiuuuiiiiiiiieie e 401
16.9 Registering INterCeptors.......ov i 401
16.9.10RBInitializer INterface ..o 401
16.9.20RBINItINTO INTEITACE ...ccoeee e 402
16.9.3reqister_orb_initializer Operationccccceevveviveeeiiiiiiciis e 406
16.9.4Notes about Registering INterceptorsccccevveeeeeeeiiiiiiieieiiiiiineee e 408
16.10 Dynamic Initial References........ccccccovvevviiiiii i 409
16.10.1reqister_initial_referenceiceiiiiiiii e 409
16.11 MOdUule DYNAMICoiiiiiiiiiie e eeeees 410
16.11.1NVList PIDL Represented by ParameterList IDLcccccieiiiieeeennnn. 410
16.11.2ContextList PIDL Represented by ContextList IDLccccooeveeeeiiiinnnee. 410
16.11.3ExceptionList PIDL Represented by ExceptionList IDLc....... 410
16.11.4Context PIDL Represented by RequestContext IDLccccoeeeeeeeeeeenne. 410
16.12 ConsOlidated IDLcoovviiiiiiie e 410
G 200)V o = U 0 o 410
16.12.2Portions of IOP Relevant to Portable Interceptorccccccvvvvviiieneennn. 411
16.12.3P0rtablelNterCePLOrccooo i 412
17 CORBA MESSAQiNg ...ccvuviiiiiiiiiiiiiieee e 417
17.1 GENEIAL ...t 417
17.2 Quality Of SEIVICE......ciiiiiieiiiis e 417
17.3 Messaging Quality of SErviCecccovevviiiiiiiiiiieiie e, 417
17.3.1ReDINA SUPPOIT .oeeeiieie e 419
17.3.2SyNChroNization SCOPEccoeeeiiiiiiiiieiiiiii et 420
17.3.3Request and Reply Priorityouueviuiiiiiiiiie e 421
17.3.4Request and Reply TIMEOULcoooviiiiiiiiiiiiiiiiine e 422
RS Y o Lo U1 o TS 424
17.3.6QUEUE OFUEING .evvvvveruniiiiieeeeeeeee e e et e eeeeei e e s e e e e e e e aeaeeeeeeaaeesnnn e e eeeeas 425
17.4 Propagation of Messaging QOS.........ccoovviiiiiiieiieiiiinneeeeeeeie e 426
L17. 4. 1SITUCKIUIES ... e e e e e e e e e e e e e e e nnnn s 426
17.4.2Messaging QoS Profile Componentcccceevvviieeieiiiiiiiicen e 426
17.4.3Messaging QOS ServiCe CONEXEuuiiiiiiieiieeeeieeeeeeieeiir e 426
17.5 Messaging Programming Modelcccooveeiiiiiiiiiiivecie e 427
17.6 RUNNING EXAMPIE ..onii e 428

Common Object Request Broker Architecture (CORBA), v3.1.1

17.7 Async Operation Mappingcoeeeeueiiieeiieiiiineee et 428

17.7.1Callback Model Signatures (SENAC)ueerririiiiiniie et 429
17.7.2Polling Model Signatures (SENAP)cevevvrrrerimiiiiieiieeeeeeeeeeeeeeeeeeeeanenennnnns 431
17.8 Exception Delivery in the Callback Modelcccccooviiiiiinnin. 433
17.8.1Messaging::ExceptionHolder valuetypecccccceeeeeeiiiiivieieiiiiieee e 433
17.9 Type-Specific ReplyHandler Mappingcccoooevvevviiiiiiiiceiiiineeeee, 433
17.9.1ReplyHandler Operations for NO_EXCEPTION Repliescccccceeevennnn. 434
17.9.2ReplyHandler Operations for Exceptional Repliesccccvvvvvvviivvnnnnnnns 435
17.9.3EXAMPIE ... 435
17.10 Generic Poller Value...........ooooiiiiiiiiiiiei e 436
A O I o] o= =Y 1o T o T = U = 437
17.10.20P€IatION_NAMIEeeiiieiiiie e e e e e e e e eeeeeeeeetitba e e e e e e e e e e e eeeeeaeeebennnnnaeeeas 437
17.10.3associated_handleroooiiiiiiiiiii e 437
17.10.4iS_from_POIIEE ...oveeieiieee e ————————— 437
17.11 Type-Specific Poller Mappingccoooevveiiiiiniiiiiiiee e 437
17.11.1Basic Type-SpecCific POIIETcovvviiiiiiiiie e 438
17.11.2Persistent Type-Specific POIIEruueiiiiiiiiii e 440
17.11.3EXAMPIE ... 440
17.12 Example Programmer USAgEeuuuviiiiiieeeeeiieeeeiinicien e 441
17.12.1Example Programmer Usage (Examples Mapped to C++)cccceeennn.n. 441
17.12.2Client-Side C++ Example for the Asynchronous Method Signatures ...441
17.12.3Client-Side C++ Example of the Callback Modelccoovvvvvrvvnnnnnnns 442
17.12.4 Client-Side C++ Example of the Polling Modelcccevriiiiiiiinnnns 449
17.12.5 SEIVEI SIUG ..ooeeiieiie ettt 454
17.13 Message Routing Interoperabilityccoovviiiiiiiiiiiiiiiiiineee, 455
17.14 Routing Object REeferenCesccceevveviviiiiie e 456
17.15 MeSSage ROULINGoiii ittt 457
L1705, LSHIUCTUIES ..ottt e e e et e e e e e et e e e e e e e st e e e e eennnnas 459
17.15.2INTEITACES ..oeviiiiieeeee ettt 460
17.15.3R0OULING ProtOCOIoveieiiiiiiee e 462
17.16 Router AdmINISIrationcouvuviuiiiiiinnee e 467
17.16.2CONSTANTS ...ceieeieiie et e e e e e e 470
A A (o= o 1 [0 o TR 470
17.16.3VAIUBLYPES ..ooeeeeeeeeeeeii et e ettt e e e e e e e e e e e e e e e et s 471
17.16.4INTEITACES ..oeviiiieeeiee ettt 471
17.17 CORBA MeSSaging IDLcccvvuuiiiiieiiiiiiiie e 472
17.17.1 Messaging MOAUIEccooiiiiiii e 472
17.17.2MessageRouting ModUIEoooiiiiiiiiiii e 475

Common Object Request Broker Architecture (CORBA), v3.1.1 XV

Chapter 17 Annexes

A.1 QoS Abstract Model DeSignccovevvviiiieciiiiiiie e 480
A.2 Model COMPONENESuiiiiiiiii e 480
A.2.1 Component RelationShips ..o 481
A.2.2 COMPONENT DESION .eeiieiiiiiiiiiiaie e e e e e et ettt e e e e e e e e eeeeeeeeeeeesnnnnnns 481
A.3 AMI/TII Abstract Model DeSign..........uueeieeeiiiiiiiieeeeeeiee e 482
A.3.1 Asynchronous Method Invocation Componentscccccevevvvvvvvnnncenennnn. 482
A.3.2 Time-Independent Invocation COMPONENTScviiiiiiiieeieiiiiiieeeeiiiiiiiinens 483
A.3.3 Component Relationships ..o 483
A.3.4 Callback Model Detailed DeSIgNccvvvuvuiiiiiiiiiiiiee e e eeeee e e 486
A.3.5 Poller/PersistentRequest Detailed DeSigncceeeeeiiiiiiiiiiiiiiinnnnennn 487
A.4 Message Routing Abstract Model Designcccccvvevvievieiiineeenn, 488
A.4.1 Model COMPONENLEScoviiiiiiiiiiiiaeae e e e e e et ee et e e e e e e e e e eeeeeaeeeennnnns 489
A.4.2 Component RelationShips ... 489
A.4.3 Router Administration DeSIGNoovvvvviiiiiiiiiiie e eeeee e 489
B.1 CoNfOrmManCe ISSUEBSccouuuiiiiiiiiiiie ettt 491
B.2 Compatibility ISSUEScceveiiiii e 491
B.2.1 TranSacCtioN SEIVICEccciiiiiiiiiiiiiiiiiiiiei e 491
B.2.2 Changes to Current OTS Behaviorccceiiiiiiiiiiiiiiiieii e 491
B.2.3 SECUIMLY SEIVICE ..oovvivveiiiiiiiiii e e e eee e e ee ettt s s e e e e e e e e e e eeeeeeeeenesnnnnnnns 492
Annex A - IDL Tags and EXCePLioNSccceeveviviiiiiieiiieeeiieeeeie, 493
Annex B - Legal Information..........ccoooveiiiiiiiiiiii e, 507

XVi Common Object Request Broker Architecture (CORBA), v3.1.1

Preface

About the Object Management Group

OMG

Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer industry
standards consortium that produces and maintains computer industry specifications for interoperable, portable and
reusable enterprise applications in distributed, heterogeneous environments. Membership includes Information
Technology vendors, end users, government agencies and academia.

OMG member companies write, adopt, and maintain its specifications following a mature, open process. OMG's
specifications implement the Model Driven Architecture® (MDA®), maximizing ROI through a full-lifecycle approach to
enterprise integration that covers multiple operating systems, programming languages, middleware and networking
infrastructures, and software development environments. OMG'’s specifications include: UML® (Unified Modeling
Language™); CORBA® (Common Object Request Broker Architecture); CWM™ (Common Warehouse Metamodel);
and industry-specific standards for dozens of vertical markets.

More information on the OMG is available at http://www.omg.org/.

OMG Specifications

As noted, OMG specifications address middleware, modeling and vertical domain frameworks. A catalog of all OMG
Specifications is available from the OMG website at:

http://mww.omg.org/technol ogy/documents/spec _catalog.htm

Specifications within the Catalog are organized by the following categories:

OMG Modeling Specifications

. UML
. MOF
e XMI

. CWM

. Profile specifications.

OMG Middleware Specifications
. CORBA/IIOP
. IDL/Language Mappings
. Specialized CORBA specifications
. CORBA Component Model (CCM).

Platform Specific Model and Interface Specifications
. CORBAservices

Common Object Request Broker Architecture (CORBA), v3.1.1 Xiii

e CORBAfacilities

. OMG Domain specifications

. OMG Embedded Intelligence specifications
. OMG Security specifications.

All of OMG’s formal specifications may be downloaded without charge from our website. (Products implementing OMG
specifications are available from individual suppliers.) Copies of specifications, available in PostScript and PDF format,
may be obtained from the Specifications Catalog cited above or by contacting the Object Management Group, Inc. at:

OMG Headquarters
140 Kendrick Street
Building A, Suite 300
Needham, MA 02494
USA

Tel: +1-781-444-0404
Fax: +1-781-444-0320
Email: pubs@omg.org

Certain OMG specifications are also available as SO standards. Please consult http://www.iso.org

Typographical Conventions

The type styles shown below are used in this document to distinguish programming statements from ordinary English.
However, these conventions are not used in tables or section headings where no distinction is necessary.

Times/Times New Roman - 10 pt.: Standard body text
Helvetica/Arial - 10 pt. Bold: OMG Interface Definition Language (OMG IDL) and syntax elements.
Courier - 10 pt. Bold: Programming language elements.

Helvetica/Arial - 10 pt: Exceptions

Note — Terms that appear in italics are defined in the glossary. Italic text also represents the name of a document, specification,
or other publication.

Issues

The reader is encouraged to report any technical or editing issues/problems with this specification to http://www.omg.org/
technol ogy/agreement.htm.

Xiv Common Object Request Broker Architecture (CORBA), v3.1.1

1 Scope

This document specifies the CORBA Object Model and uses concepts from that model to define the operation of the
Object Request Broker (ORB). The ORB is the basic mechanism by which objects transparently make requests to, and
receive responses from, each other on the same machine or across a network. A client need not be aware of the
mechanisms used to communicate with or activate an object, how the object is implemented, or where the object is
located.

2 Conformance and Compliance

The minimum required for a CORBA-compliant system is adherence to the specifications in this specification and one
mapping. Each additional language mapping is a separate, optional compliance point. Optional means users aren’t
required to implement these points if they are unnecessary at their site, but if implemented, they must adhere to the
CORBA specifications to be called CORBA-compliant. For instance, if a vendor supports C++, their ORB must comply
with the OMG IDL to C++ binding specified in the C++ Language Mapping Specification.

The CORBA Language Mappings have been separated from this standard and each language mapping is its own separate
OMG specification.

3 Normative References

The following referenced documents are indispensable for the application of this document. For dated references, only the
edition cited applies. For undated references, the latest edition of the referenced document (including any amendments)

applies.

« ITU-T Recommendation X.902 (1995) | ISO/IEC 10746-2:1996, Information Technology - Open Distributed
Processing - Reference Model: Foundations

« ITU-T Recommendation X.903 (1995) | ISO/IEC 10746-3:1996, Information Technology - Open Distributed
Processing - Reference Model: Architecture

« ITU-T Recommendation X.920 (1997) | ISO/IEC 14750:1997, Information Technology - Open Distributed Processing
- Interface Definition Language

» ISO/IEC 14882:2003, Information Technology - Programming languages - C++
« ISO/IEC 9899:1999, Information Technology - Programming languages - C

+ [OMA] Object Management Group, “Object Management Architecture Guide, revision 3.0,” available from http://
www.omg.org/oma/

« [ASMOTS] Object Management Group, “ Additional Structuring Mechanisms for the OTS,” available from http://
www.omg.org/spec/OTS

+ [TRANS] Object Management Group, “Transaction Service,” available from http://www.omg.org/spec/ TRANS/

Common Object Request Broker Architecture (CORBA), v3.1.1 1

4

4.1

[FIREWALL] Object Management Group, “CORBA Firewall Traversal Specification,” available from http://
www.omg.org/members/cgi-bin/doc?ptc/04-04-05. pdf

[SCCP] Object Management Group, “CORBA / TC Interworking and SCCP-Inter ORB Protocol (SCCP),” available
from http://www.omg.org/spec/SCCP

[FTCORBA] Object Management Group, “Fault Tolerant Corba,” clause 23 of CORBA 3.0.3, available from http://
www.omg.org/cgi-bin/doc?formal /2004-03-01

[RTCORBA] Object Management Group, “Real-Time CORBA, version 1.2,” available from http://www.omg.org/
Spec/RT/

[WATM] Object Management Group, “Wireless Access and Telecom Mobility in CORBA, Version 1.2, available
from http://www.omg.org/spec/WATM/

[DCOMI] Object Management Group, “Interoperability with non-CORBA Systems” clause 20 of CORBA 3.0.3,
available from http://www.omg.org/cgi-bin/doc?formal/2004-03-01

[TSAS] Object Management Group “ Telecommunications Service Access and Subscription Specification,” available
from http://www.omg.org/spec/TSAS/

[SECDOM] Object Management Group “ Security Domain Membership Management Service,” available from http://
www.omg.org/members/cgi-bin/doc?orbos/01-06-01. pdf

[RFC2119] IETF RFC 2119, “Key words for use in RFCsto Indicate Requirement Levels,” S. Bradner, March 1997.
Available from http://ietf.org/rfc/rfc2119

Additional Information

Outline of Contents

This part consists of the following:

1

The syntax and semantics of the OMG interface definition language (OMG IDL), which is used to describe the
interfaces that client objects call and object implementations provide. Throughout this specification the abbreviation
IDL isused, for brevity, as shorthand for OMG IDL.

The interface to the ORB functions that do not depend on object adapters: these operations are the same for all ORBs
and object implementations.

The semantics of passing an object by value.

An IDL abstract interface, which provides the capability to defer the determination of whether an object is passed by
reference or by value until runtime.

The Dynamic Invocation Interface (DI1), the client’s side of theinterface that allows dynamic creation and invocation
of request to objects.

The Dynamic Skeleton Interface (DSI), the server’s-side interface that can deliver requests from an ORB to an object
implementation that does not have compile-time knowledge of the type of the object it isimplementing.

The interface for the Dynamic Any type which allows statically-typed programming languages such as C and Javato
create or receive values of type Any without compile-time knowledge that the typer contained in the Any.

Common Object Request Broker Architecture (CORBA), v3.1.1

8. The Interface Repository that manages and provides access to a collection of object definitions.

9. The Portable Object Adapter which defines agroup of IDL interfaces that an implementation uses to access ORB
functions.

10. ORB operations that allow services such as security to be inserted in the invocation path.

11. Messaging which covers. Quality of Service, Asynchronous Method Invocations (to include Time-1ndependent or
“Persistent” Requests), and the specification of interoperable Routing interfaces to support the transport of requests
asynchronously from the handling of their replies.

4.2 Keywords for Requirement Statements

The keywords “must,” “must not,” “shall,” “shall not,” “should,” “should not,” and “may” in this specification are to be
interpreted as described in [RFC 2119].

Common Object Request Broker Architecture (CORBA), v3.1.1 3

Common Object Request Broker Architecture (CORBA), v3.1.1

5 The Object Model

51 General

This clause describes the concrete object model that underlies the CORBA architecture. The model is derived from the
abstract Core Object Model defined by the Object Management Group in the Object Management Architecture Guide.

5.2 Overview

The object model provides an organized presentation of object concepts and terminology. It defines a partial model for
computation that embodies the key characteristics of objects as realized by the submitted technologies. The OMG object
model is abstract in that it is not directly realized by any particular technology. The model described here is a concrete
object model. A concrete object model may differ from the abstract object model in several ways:

» It may elaborate the abstract object model by making it more specific, for example, by defining the form of request
parameters or the language used to specify types.

- It may populate the model by introducing specific instances of entities defined by the model, for example, specific
objects, specific operations, or specific types.

» It may restrict the model by eliminating entities or placing additional restrictions on their use.

An object system is a collection of objects that isolates the requestors of services (clients) from the providers of services
by a well-defined encapsulating interface. In particular, clients are isolated from the implementations of services as data
representations and executable code.

The object model first describes concepts that are meaningful to clients, including such concepts as object creation and
identity, requests and operations, types and signatures. It then describes concepts related to object implementations,
including such concepts as methods, execution engines, and activation.

The object model is most specific and prescriptive in defining concepts meaningful to clients. The discussion of object
implementation is more suggestive, with the intent of allowing maximal freedom for different object technologies to
provide different ways of implementing objects.

There are some other characteristics of object systems that are outside the scope of the object model. Some of these
concepts are aspects of application architecture, some are associated with specific domains to which object technology is
applied. Such concepts are more properly dealt with in an architectural reference model. Examples of excluded concepts
are compound objects, links, copying of objects, change management, and transactions. Also outside the scope of the
object model are the details of control structure: the object model does not say whether clients and/or servers are single-
threaded or multi-threaded, and does not specify how event loops are programmed nor how threads are created, destroyed,
or synchronized.

This object model is an example of a classical object model, where a client sends a message to an object. Conceptually,

the object interprets the message to decide what service to perform. In the classical model, a message identifies an object
and zero or more actual parameters. As in most classical object models, a distinguished first parameter is required, which
identifies the operation to be performed; the interpretation of the message by the object involves selecting a method based
on the specified operation. Operationally, of course, method selection could be performed either by the object or the ORB.

Common Object Request Broker Architecture (CORBA), v3.1.1 5

5.3 Object Semantics

An object system provides services to clients. A client of a service is any entity capable of requesting the service. This
sub clause defines the concepts associated with object semantics, that is, the concepts relevant to clients.

5.3.1 Objects

An object system includes entities known as objects. An object is an identifiable, encapsulated entity that provides one or
more services that can be requested by a client.

5.3.2 Requests

Clients request services by issuing requests.

The term request is broadly used to refer to the entire sequence of causally related events that transpires between a client
initiating it and the last event causally associated with that initiation. For example:

» theclient receivesthe final response associated with that request from the server,
» theserver carries out the associated operation in case of a oneway request, or

« the sequence of events associated with the request terminatesin afailure of some sort. The initiation of a Request isan
event.

The information associated with a request consists of an operation, a target object, zero or more (actual) parameters, and
an optional request context.

A request form is a description or pattern that can be evaluated or performed multiple times to cause the issuing of
requests. As described in the IDL Syntax and Semantics clause, request forms are defined by particular language
bindings. An alternative request form consists of calls to the dynamic invocation interface to create an invocation
structure, add arguments to the invocation structure, and to issue the invocation (refer to the Dynamic Invocation Interface
clause for descriptions of these request forms).

A value is anything that may be a legitimate (actual) parameter in a request. More particularly, a value is an instance of
an IDL datatype. There are non-object values, as well as values that reference objects.

An object reference is a value that reliably denotes a particular object. Specifically, an object reference will identify the
same object each time the reference is used in a request (subject to certain pragmatic limits of space and time). An object
may be denoted by multiple, distinct object references.

A request may have parameters that are used to pass data to the target object; it may also have a request context that
provides additional information about the request. A request context is a mapping from strings to strings.

A request causes a service to be performed on behalf of the client. One possible outcome of performing a service is
returning to the client the results, if any, defined for the request.

If an abnormal condition occurs during the performance of a request, an exception is returned. The exception may carry
additional return parameters particular to that exception.

The request parameters are identified by position. A parameter may be an input parameter, an output parameter, or an
input-output parameter. A request may also return a single return result value, as well as the results stored into the output
and input-output parameters.

6 Common Object Request Broker Architecture (CORBA), v3.1.1

The following semantics hold for all requests:
» Any aliasing of parameter values is neither guaranteed removed nor guaranteed to be preserved.
« The order in which aliased output parameters are written is not guaranteed.

» Thereturn result and the values stored into the output and input-output parameters are undefined if an exception is
returned.

For descriptions of the values and exceptions that are permitted, see Types on page 7 and Exceptions on page 10.
5.3.3 Object Creation and Destruction

Objects can be created and destroyed. From a client’s point of view, there is no special mechanism for creating or
destroying an object. Objects are created and destroyed as an outcome of issuing requests. The outcome of object creation
is revealed to the client in the form of an object reference that denotes the new object.

5.34 Types

A type is an identifiable entity with an associated predicate (a single-argument mathematical function with a boolean
result) defined over entities. An entity satisfies a type if the predicate is true for that entity. An entity that satisfies a type
is called a member of the type.

Types are used in signatures to restrict a possible parameter or to characterize a possible result.
The extension of a type is the set of entities that satisfy the type at any particular time.

An object type is a type whose members are object references. In other words, an object type is satisfied only by object
references.

Constraints on the data types in this model are shown in this sub clause.

5.3.4.1 Basic types
» 16-hit, 32-hit, and 64-bit signed and unsigned 2's complement integers.

» Single-precision (32-hit), double-precision (64-bit), and double-extended (a mantissa of at least 64 bits, asign bit and
an exponent of at least 15 bits) |EEE floating point numbers.

» Fixed-point decimal numbers of up to 31 significant digits.

» Characters, as defined in 1SO Latin-1 (8859.1) and other single- or multi-byte character sets.

» A boolean type taking the values TRUE and FAL SE.

« An 8-bit opaque detectable, guaranteed to not undergo any conversion during transfer between systems.
» Enumerated types consisting of ordered sequences of identifiers.

» A string type, which consists of avariable-length array of characters; the length of the string is a non-negative integer,
and is available at run-time. The length may have a maximum bound defined.

« A wide character string type, which consists of avariable-length array of (fixed width) wide characters; the length of
the wide string is a non-negative integer, and is available at run-time. The length may have a maximum bound defined.

Common Object Request Broker Architecture (CORBA), v3.1.1 7

A container type “any,” which can represent any possible basic or constructed type.
Wide characters that may represent characters from any wide character set.

Wide character strings, which consist of alength, available at runtime, and a variable-length array of (fixed width)
wide characters.

5.3.4.2 Constructed types

A record type (called struct), which consists of an ordered set of (name,value) pairs.

A discriminated union type, which consists of a discriminator (whose exact value is always available) followed by an
instance of atype appropriate to the discriminator value.

A sequence type, which consists of a variable-length array of a single type; the length of the sequence is available at
run-time.

An array type, which consists of afixed-shape multidimensional array of asingletype.
An interface type, which specifies the set of operations that an instance of that type must support.

A value type, which specifies state as well as a set of operations that an instance of that type must support.

Entities in a request are restricted to values that satisfy these type constraints. The legal entities are shown in Figure 5.1.
No particular representation for entities is defined.

Short
Object Reference Long
LongLong
UShort
Ulong
UlongLong
Float
Double
LongDouble
Fixed

Char
Wchar
String
Wstring
Boolean
Octet
Enum

Any

— Value Type

—— Abstract Interface

Entity Basic Value

Struct
Sequence
Union
Array

Constructed Value

Figure 5.1 - Legal Values

5.3.5

Interfaces

An interface is a description of a set of possible operations that a client may request of an object, through that interface.
It provides a syntactic description of how a service provided by an object supporting this interface, is accessed via this set
of operations. An object satisfies an interface if it provides its service through the operations of the interface according to
the specification of the operations (see Operations on page 9).

8

Common Object Request Broker Architecture (CORBA), v3.1.1

The interface type for a given interface is an object type, such that an object reference will satisfy the type, if and only if
the referent object also satisfies the interface.

Interfaces are specified in IDL. Interface inheritance provides the composition mechanism for permitting an object to
support multiple interfaces. The principal interface is simply the most-specific interface that the object supports, and
consists of all operations in the transitive closure of the interface inheritance graph.

Interfaces satisfy the Liskov substitution principle. If interface A is derived from interface B, then a reference to an object
that supports interface A can be used where the formal type of a parameter is declared to be B.

5.3.6 Value Types

A value type is an entity, which shares many of the characteristics of interfaces and structs. It is a description of both a set
of operations that a client may request and of state that is accessible to a client. Instances of a value type are always local
concrete implementations in some programming language.

A value type, in addition to the operations and state defined for itself, may also inherit from other value types, and
through multiple inheritance support other interfaces.

Value types are specified in IDL.

An abstract value type describes a value type that is a “pure” bundle of operations with no state.
5.3.7 Abstract Interfaces

An abstract interface is an entity, which may at runtime represent either a regular interface (see Interfaces on page 8) or
a value type (see Value Types on page 9). Like an abstract value type, it is a pure bundle of operations with no state.
Unlike an abstract value type, it does not imply pass-by-value semantics, and unlike a regular interface type, it does not
imply pass-by-reference semantics. Instead, the entity’s runtime type determines which of these semantics are used.

5.3.8 Operations

An operation is an identifiable entity that denotes the indivisible primitive of service provision that can be requested. The
act of requesting an operation is referred to as invoking the operation. An operation is identified by an operation
identifier.
An operation has a signature that describes the legitimate values of request parameters and returned results. In particular,
a signature consists of:

» A specification of the parameters required in requests for that operation.

» A specification of the result of the operation.

« Anidentification of the user exceptions that may be raised by an invocation of the operation.

» A specification of additional contextual information that may affect the invocation.

« Anindication of the execution semantics the client should expect from an invocation of the operation.

Operations are (potentially) generic, meaning that a single operation can be uniformly invoked on objects with different
implementations, possibly resulting in observably different behavior. Genericity is achieved in this model via interface
inheritance in IDL and the total decoupling of implementation from interface specification.

Common Object Request Broker Architecture (CORBA), v3.1.1 9

The general form for an operation signature is:

[oneway] <op_type_spec> <identifier> (paraml, ..., paramL)
[raises(exceptl,...,exceptN)] [context(namel, ..., nameM)]

where:

» Theoptional oneway keyword indicates that best-effort semantics are expected of requests for this operation; the
default semantics are exactly-once if the operation successfully returns results or at-most-once if an exception is
returned.

« The<op_type_spec> isthetype of the return result.
» The<identifier> provides aname for the operation in the interface.

« The operation parameters needed for the operation; they are flagged with the modifiersin, out, or inout to indicate
the direction in which the information flows (with respect to the object performing the request).

» Theoptional raises expression indicates which user-defined exceptions can be signaled to terminate an invocation of
this operation; if such an expression is not provided, no user-defined exceptions will be signaled.

» Theoptional context expression indicates which request context information will be available to the object
implementation; no other contextual information is required to be transported with the request.

Parameters

A parameter is characterized by its mode and its type. The mode indicates whether the value should be passed from client
to server (in), from server to client (out), or both (inout). The parameter’s type constrains the possible value, which may
be passed in the directions dictated by the mode.

Return Result

The return result is a distinguished out parameter.

Exceptions

An exception is an indication that an operation regquest was not performed successfully. An exception may be
accompanied by additional, exception-specific information.

The additional, exception-specific information is a specialized form of record. As arecord, it may consist of any of the
types described in Types on page 7.

All signatures implicitly include the system exceptions; the standard system exceptions are described in System
Exceptions on page 148.

Contexts

A request context provides additional, operation-specific information that may affect the performance of a request.
Execution Semantics

Two styles of execution semantics are defined by the object model:

» At-most-once: if an operation request returns successfully, it was performed exactly once; if it returns an exception
indication, it was performed at-most-once.

10 Common Object Request Broker Architecture (CORBA), v3.1.1

» Best-effort: abest-effort operation is a request-only operation (i.e., it cannot return any results and the requester never
synchronizes with the completion, if any, of the request).

The execution semantics to be expected is associated with an operation. This prevents a client and object implementation
from assuming different execution semantics.

Note that a client is able to invoke an at-most-once operation in a synchronous or deferred-synchronous manner.
5.3.9 Attributes

An interface may have attributes. An attribute is logically equivalent to declaring a pair of accessor functions: one to
retrieve the value of the attribute and one to set the value of the attribute.

An attribute may be read-only, in which case only the retrieval accessor function is defined.

5.4 Object Implementation

This sub clause defines the concepts associated with object implementation (i.e., the concepts relevant to realizing the
behavior of objects in a computational system).

The implementation of an object system carries out the computational activities needed to effect the behavior of requested
services. These activities may include computing the results of the request and updating the system state. In the process,
additional requests may be issued.

The implementation model consists of two parts: the execution model and the construction model. The execution model
describes how services are performed. The construction model describes how services are defined.

5.4.1 The Execution Model: Performing Services

A requested service is performed in a computational system by executing code that operates upon some data. The data
represents a component of the state of the computational system. The code performs the requested service, which may
change the state of the system.

Code that is executed to perform aservice is called a method. A method is an immutable description of a computation that
can be interpreted by an execution engine. A method has an immutable attribute called a method format that defines the
set of execution engines that can interpret the method. An execution engine is an abstract machine (not a program) that
can interpret methods of certain formats, causing the described computations to be performed. An execution engine
defines a dynamic context for the execution of a method. The execution of a method is called a method activation.

When a client issues a request, a method of the target object is called. The input parameters passed by the requestor are
passed to the method and the output and input-output parameters and return result value (or exception and its parameters)
are passed back to the requestor.

Performing a requested service causes a method to execute that may operate upon an object’s persistent state. If the
persistent form of the method or state is not accessible to the execution engine, it may be necessary to first copy the
method or state into an execution context. This process is called activation; the reverse process is called deactivation.

Common Object Request Broker Architecture (CORBA), v3.1.1 11

5.4.2 The Construction Model

A computational object system must provide mechanisms for realizing behavior of requests. These mechanisms include
definitions of object state, definitions of methods, and definitions of how the object infrastructure is to select the methods
to execute and to select the relevant portions of object state to be made accessible to the methods. Mechanisms must also
be provided to describe the concrete actions associated with object creation, such as association of the new object with
appropriate methods.

An object implementation—or implementation, for short—is a definition that provides the information needed to create an
object and to allow the object to participate in providing an appropriate set of services. An implementation typically
includes, among other things, definitions of the methods that operate upon the state of an object. It aso typically includes
information about the intended types of the object.

12 Common Object Request Broker Architecture (CORBA), v3.1.1

6 CORBA Overview

6.1 General

The Common Object Request Broker Architecture (CORBA) is structured to allow integration of a wide variety of object
systems. The motivation for some of the features may not be apparent at first, but as we discuss the range of
implementations, policies, optimizations, and usages we expect to encompass, the value of the flexibility becomes clearer.

6.2 Structure of an Object Request Broker

Figure 6.1 shows a request being sent by a client to an object implementation. The Client is the entity that wishes to
perform an operation on the object and the Object Implementation is the code and data that actually implements the
object.

Client) CObject Implementation

Request ‘

ORB

Figure 6.1 - A Request Being Sent Through the Object Request Broker

The ORB is responsible for al of the mechanisms required to find the object implementation for the request, to prepare
the object implementation to receive the request, and to communicate the data making up the request. The interface the
client sees is completely independent of where the object is located, what programming language it is implemented in, or
any other aspect that is not reflected in the object’s interface.

Figure 6.2 shows the structure of an individual Object Request Broker (ORB). The interfaces to the ORB are shown by
striped boxes, and the arrows indicate whether the ORB is called or performs an up-call across the interface.

Common Object Request Broker Architecture (CORBA), v3.1.1 13

Client Object Implementation

T

Dynamic IDL ORB Static IDL| | Dynamic Object
Invocation Stubs Interface Skeleton | | Skeleton Adapter
ORB Core

LAY Interface identical for all ORB implementations
iz There may be multiple object adapters
I There are stubs and a skeleton for each object type ‘ Normal call interface

? Up-call interface

H

ORB-dependent interface

Figure 6.2 - The Structure of Object Request Interfaces

To make a request, the Client can use the Dynamic Invocation interface (the same interface independent of the target
object’s interface) or an IDL stub (the specific stub depending on the interface of the target object). The Client can also
directly interact with the ORB for some functions.

The Object Implementation receives a request as an up-call either through the IDL generated skeleton or through a
dynamic skeleton. The Object Implementation may call the Object Adapter and the ORB while processing a request or at
other times.

Definitions of the interfaces to objects can be defined in two ways. 1) Interfaces can be defined statically in an interface
definition language, called the OMG Interface Definition Language (IDL). This language defines the types of objects
according to the operations that may be performed on them and the parameters to those operations. 2) Alternatively, or in
addition, interfaces can be added to an Interface Repository service. This service represents the components of an
interface as objects, permitting run-time access to these components. In any ORB implementation, the Interface Definition
Language (which may be extended beyond its definition in this document) and the Interface Repository have equivalent
expressive power.

The client performs a request by having access to an Object Reference for an object and knowing the type of the object
and the desired operation to be performed. The client initiates the request by calling stub routines that are specific to the
object or by constructing the request dynamically (see Figure 6.3).

14 Common Object Request Broker Architecture (CORBA), v3.1.1

LY Interface identical for all ORB implementations

I There are stubs and a skeleton for each object type
[] ORB-dependent interface

Figure 6.3 - A Client Using the Stub or Dynamic Invocation Interface

The dynamic and stub interface for invoking a request satisfy the same request semantics, and the receiver of the message
cannot tell how the request was invoked.

The ORB locates the appropriate implementation code, transmits parameters, and transfers control to the Object
Implementation through an IDL skeleton or a dynamic skeleton (see Figure 6.4). Skeletons are specific to the interface
and the object adapter. In performing the request, the object implementation may obtain some services from the ORB
through the Object Adapter. When the request is complete, control and output values are returned to the client.

Common Object Request Broker Architecture (CORBA), v3.1.1 15

Object Implementation

Static IDL| | Dynamic Object
Interface Skeleton | | Skeleto Adapter

Interface identical for all ORB implementations f Up-call interface
There may be multiple object adapters

I There are stubs and a skeleton for each object type * Normal call interface
ORB-dependent interface

H

Figure 6.4 - An Object Implementation Receiving a Request

The Object Implementation may choose which Object Adapter to use. This decision is based on what kind of services the
Object Implementation requires.

Figure 6.5 shows how interface and implementation information is made available to clients and object implementations.
The interface is defined in IDL and/or in the Interface Repository; the definition is used to generate the client Stubs and

the object implementation Skeletons.

16 Common Object Request Broker Architecture (CORBA), v3.1.1

IDL. Implementation
Definitions Installation

Implementation
Interface Stubs Skeletons Reposr_[ory
Repository — .
Client (Object Implementation

Figure 6.5 - Interface and Implementation Repositories

The object implementation information is provided at installation time and is stored in the Implementation Repository for
use during request delivery.

6.2.1 Object Request Broker

In the architecture, the ORB is not required to be implemented as a single component, but rather it is defined by its
interfaces. Any ORB implementation that provides the appropriate interface is acceptable. The interface is organized into
three categories:

1. Operationsthat are the samefor all ORB implementations.
2. Operationsthat are specific to particular types of objects.
3. Operations that are specific to particular styles of object implementations.

Different ORBs may make quite different implementation choices, and, together with the IDL compilers, repositories, and
various Object Adapters, provide a set of services to clients and implementations of objects that have different properties
and qualities.

There may be multiple ORB implementations (also described as multiple ORBs), which have different representations for
object references and different means of performing invocations. It may be possible for a client to simultaneously have
access to two aobject references managed by different ORB implementations. When two ORBSs are intended to work
together, those ORBs must be able to distinguish their object references. It is not the responsibility of the client to do so.

Common Object Request Broker Architecture (CORBA), v3.1.1 17

The ORB Core is that part of the ORB that provides the basic representation of objects and communication of requests.
CORBA is designed to support different object mechanisms, and it does so by structuring the ORB with components
above the ORB Core, which provide interfaces that can mask the differences between ORB Cores.

6.2.2 Clients

A client of an object has access to an object reference for the object, and invokes operations on the object. A client knows
only the logical structure of the object according to its interface and experiences the behavior of the object through
invocations. Although we will generally consider a client to be a program or process initiating requests on an object, it is
important to recognize that something is a client relative to a particular object. For example, the implementation of one
object may be a client of other objects.

Clients generally see objects and ORB interfaces through the perspective of alanguage mapping, bringing the ORB right
up to the programmer’s level. Clients are maximally portable and should be able to work without source changes on any
ORB that supports the desired language mapping with any object instance that implements the desired interface. Clients
have no knowledge of the implementation of the object, which object adapter is used by the implementation, or which
ORB is used to access it.

6.2.3 Object Implementations

An object implementation provides the semantics of the object, usually by defining data for the object instance and code
for the object’s methods. Often the implementation will use other objects or additional software to implement the
behavior of the object. In some cases, the primary function of the object is to have side-effects on other things that are not
objects.

A variety of object implementations can be supported, including separate servers, libraries, a program per method, an
encapsulated application, an object-oriented database, etc. Through the use of additional object adapters, it is possible to
support virtually any style of object implementation.

Generally, object implementations do not depend on the ORB or how the client invokes the object. Object
implementations may select interfaces to ORB-dependent services by the choice of Object Adapter.

6.2.4 Object References

An Object Reference is the information needed to specify an object within an ORB. Both clients and object
implementations have an opaque notion of object references according to the language mapping, and thus are insulated
from the actual representation of them. Two ORB implementations may differ in their choice of Object Reference
representations.

The representation of an object reference handed to a client is only valid for the lifetime of that client.

All ORBs must provide the same language mapping to an object reference (usually referred to as an Object) for a
particular programming language. This permits a program written in a particular language to access object references
independent of the particular ORB. The language mapping may also provide additional ways to access object references
in atyped way for the convenience of the programmer.

There is a distinguished object reference, guaranteed to be different from all object references, that denotes no object.

18 Common Object Request Broker Architecture (CORBA), v3.1.1

6.2.5 OMG Interface Definition Language

The OMG Interface Definition Language (IDL) defines the types of objects by specifying their interfaces. An interface
consists of a set of nhamed operations and the parameters to those operations. Note that although IDL provides the
conceptual framework for describing the objects manipulated by the ORB, it is not necessary for there to be IDL source
code available for the ORB to work. As long as the equivalent information is available in the form of stub routines or a
run-time interface repository, a particular ORB may be able to function correctly.

IDL is the means by which a particular object implementation tells its potential clients what operations are available and
how they should be invoked. From the IDL definitions, it is possible to map CORBA objects into particular programming
languages or object systems.

6.2.6 Mapping of IDL to Programming Languages

Different object-oriented or non-object-oriented programming languages may prefer to access CORBA objectsin different
ways. For object-oriented languages, it may be desirable to see CORBA objects as programming language objects. Even
for non-object-oriented languages, it is a good idea to hide the exact ORB representation of the object reference, method
names, etc. A particular mapping of IDL to a programming language should be the same for all ORB implementations.
Language mapping includes definition of the language-specific data types and procedure interfaces to access objects
through the ORB. It includes the structure of the client stub interface (not required for object-oriented languages), the
dynamic invocation interface, the implementation skeleton, the object adapters, and the direct ORB interface.

A language mapping also defines the interaction between object invocations and the threads of control in the client or
implementation. The most common mappings provide synchronous calls, in that the routine returns when the object
operation completes. Additional mappings may be provided to allow a call to be initiated and control returned to the
program. In such cases, additional language-specific routines must be provided to synchronize the program'’s threads of
control with the object invocation.

6.2.7 Client Stubs

Generally, the client stubs will present access to the IDL-defined operations on an object in away that is easy for
programmers to predict once they are familiar with IDL and the language mapping for the particular programming
language. The stubs make calls on the rest of the ORB using interfaces that are private to, and presumably optimized for,
the particular ORB Core. If more than one ORB is available, there may be different stubs corresponding to the different
ORBs. In this case, it is necessary for the ORB and language mapping to cooperate to associate the correct stubs with the
particular object reference.

6.2.8 Dynamic Invocation Interface

An interface is also available that allows the dynamic construction of object invocations, that is, rather than calling a stub
routine that is specific to a particular operation on a particular object, a client may specify the object to be invoked, the
operation to be performed, and the set of parameters for the operation through a call or sequence of calls. The client code
must supply information about the operation to be performed and the types of the parameters being passed (perhaps
obtaining it from an Interface Repository or other run-time source). The nature of the dynamic invocation interface may
vary substantially from one programming language mapping to another.

Common Object Request Broker Architecture (CORBA), v3.1.1 19

6.2.9 Implementation Skeleton

For a particular language mapping, and possibly depending on the object adapter, there will be an interface to the methods
that implement each type of object. The interface will generally be an up-call interface, in that the object implementation
writes routines that conform to the interface and the ORB calls them through the skeleton.

The existence of a skeleton does not imply the existence of a corresponding client stub (clients can also make requests via
the dynamic invocation interface).

It is possible to write an object adapter that does not use skeletons to invoke implementation methods. For example, it
may be possible to create implementations dynamically for languages such as Smalltalk.

6.2.10 Dynamic Skeleton Interface

An interface is available, which allows dynamic handling of object invocations. That is, rather than being accessed
through a skeleton that is specific to a particular operation, an object’s implementation is reached through an interface that
provides access to the operation name and parameters in a manner analogous to the client side’s Dynamic Invocation
Interface. Purely static knowledge of those parameters may be used, or dynamic knowledge (perhaps determined through
an Interface Repository) may also be used, to determine the parameters.

The implementation code must provide descriptions of all the operation parameters to the ORB, and the ORB provides the
values of any input parameters for use in performing the operation. The implementation code provides the values of any
output parameters, or an exception, to the ORB after performing the operation. The nature of the dynamic skeleton
interface may vary substantially from one programming language mapping or object adapter to another, but will typically
be an up-call interface.

Dynamic skeletons may be invoked both through client stubs and through the dynamic invocation interface; either style of
client request construction interface provides identical results.

6.2.11 Object Adapters

An object adapter is the primary way that an object implementation accesses services provided by the ORB. There are
expected to be a few object adapters that will be widely available, with interfaces that are appropriate for specific kinds
of objects. Services provided by the ORB through an Object Adapter often include: generation and interpretation of object
references, method invocation, security of interactions, object and implementation activation and deactivation, mapping
object references to implementations, and registration of implementations.

The wide range of abject granularities, lifetimes, policies, implementation styles, and other properties make it difficult for
the ORB Core to provide a single interface that is convenient and efficient for all objects. Thus, through Object Adapters,
it is possible for the ORB to target particular groups of object implementations that have similar requirements with
interfaces tailored to them.

6.2.12 ORB Interface

The ORB Interface is the interface that goes directly to the ORB, which is the same for all ORBs and does not depend on
the object’s interface or object adapter. Because most of the functionality of the ORB is provided through the object
adapter, stubs, skeleton, or dynamic invocation, there are only a few operations that are common across all objects. These
operations are useful to both clients and implementations of objects.

20 Common Object Request Broker Architecture (CORBA), v3.1.1

6.2.13 Interface Repository

The Interface Repository is a service that provides persistent objects that represent the IDL information in a form
available at run-time. The Interface Repository information may be used by the ORB to perform requests. Moreover,
using the information in the Interface Repository, it is possible for a program to encounter an object whose interface was
not known when the program was compiled, yet, be able to determine what operations are valid on the object and make
an invocation on it.

In addition to its role in the functioning of the ORB, the Interface Repository is a common place to store additional
information associated with interfaces to ORB objects. For example, debugging information, libraries of stubs or
skeletons, routines that can format or browse particular kinds of objects might be associated with the Interface Repository.

6.2.14 Implementation Repository

The Implementation Repository contains information that allows the ORB to locate and activate implementations of
objects. Although most of the information in the Implementation Repository is specific to an ORB or operating
environment, the Implementation Repository is the conventional place for recording such information. Ordinarily,
installation of implementations and control of policies related to the activation and execution of object implementationsis
done through operations on the Implementation Repository.

In addition to itsrole in the functioning of the ORB, the Implementation Repository is a common place to store additional
information associated with implementations of ORB objects. For example, debugging information, administrative
control, resource allocation, security, etc., might be associated with the Implementation Repository.

6.3 Example ORBs

There are a wide variety of ORB implementations possible within the Common ORB Architecture. This sub clause will
illustrate some of the different options. Note that a particular ORB might support multiple options and protocols for
communication.

6.3.1 Client- and Implementation-resident ORB

If there is a suitable communication mechanism present, an ORB can be implemented in routines resident in the clients
and implementations. The stubs in the client either use a location-transparent |PC mechanism or directly access alocation
service to establish communication with the implementations. Code linked with the implementation is responsible for
setting up appropriate databases for use by clients.

6.3.2 Server-based ORB

To centralize the management of the ORB, all clients and implementations can communicate with one or more servers
whose job it is to route requests from clients to implementations. The ORB could be a normal program as far as the
underlying operating system is concerned, and normal 1PC could be used to communicate with the ORB.

Common Object Request Broker Architecture (CORBA), v3.1.1 21

6.3.3 System-based ORB

To enhance security, robustness, and performance, the ORB could be provided as a basic service of the underlying

operating system. Object references could be made unforgeable, reducing the expense of authentication on each request.
Because the operating system could know the location and structure of clients and implementations, it would be possible
for avariety of optimizations to be implemented, for example, avoiding marshalling when both are on the same machine.

6.3.4 Library-based ORB

For objects that are light-weight and whose implementations can be shared, the implementation might actually be in a
library. In this case, the stubs could be the actual methods. This assumes that it is possible for a client program to get
access to the data for the objects and that the implementation trusts the client not to damage the data.

6.4 Structure of a Client

A client of an object has an abject reference that refers to that object. An object reference is a token that may be invoked
or passed as a parameter to an invocation on a different object. Invocation of an object involves specifying the object to
be invoked, the operation to be performed, and parameters to be given to the operation or returned from it.

The ORB manages the control transfer and data transfer to the object implementation and back to the client. In the event
that the ORB cannot complete the invocation, an exception response is provided. Ordinarily, a client calls aroutine in its
program that performs the invocation and returns when the operation is complete.

Clients access object-type-specific stubs as library routinesin their program (see Figure 6.6). The client program thus sees
routines callable in the normal way in its programming language. All implementations will provide a language-specific
data type to use to refer to objects, often an opaque pointer. The client then passes that object reference to the stub
routines to initiate an invocation. The stubs have access to the object reference representation and interact with the ORB
to perform the invocation. (See the C Language Mapping specification for additional, general information on language
mapping of object references.)

22 Common Object Request Broker Architecture (CORBA), v3.1.1

(" Client Program ‘

Language-dependent object references

ORB object references

Dynamic Invocation Stubs for Stubs for
Interface Interface A Interface B

\ J

Figure 6.6 - The Structure of a Typical Client

An alternative set of library code is available to perform invocations on objects, for example when the object was not
defined at compile time. In that case, the client program provides additional information to name the type of the object
and the method being invoked, and performs a sequence of calls to specify the parameters and initiate the invocation.

Clients most commonly obtain object references by receiving them as output parameters from invocations on other
objects for which they have references. When a client is also an implementation, it receives object references as input
parameters on invocations to objects it implements. An object reference can also be converted to a string that can be
stored in files or preserved or communicated by different means and subsequently turned back into an object reference by
the ORB that produced the string.

6.5 Structure of an Object Implementation

An object implementation provides the actual state and behavior of an object. The object implementation can be
structured in a variety of ways. Besides defining the methods for the operations themselves, an implementation will
usually define procedures for activating and deactivating objects and will use other objects or non-object facilities to
make the object state persistent, to control access to the object, as well as to implement the methods.

The object implementation (see Figure 6.7) interacts with the ORB in a variety of ways to establish its identity, to create
new objects, and to obtain ORB-dependent services. It primarily does this via access to an Object Adapter, which
provides an interface to ORB services that is convenient for a particular style of object implementation.

Common Object Request Broker Architecture (CORBA), v3.1.1 23

Object Implementation

O Object data

Methods for
Interface A

ORB object references

ary Routines

Skeleton for
Interface A

\ v,

Figure 6.7 - The Structure of a Typical Object Implementation

Dynamic Object adapter
Skeleton routines

Because of the range of possible object implementations, it is difficult to be definitive about how an object
implementation is structured. See the Portable Object Adapter clauses.

When an invocation occurs, the ORB Core, object adapter, and skeleton arrange that a call is made to the appropriate
method of the implementation. A parameter to that method specifies the object being invoked, which the method can use
to locate the data for the object. Additional parameters are supplied according to the skeleton definition. When the method
is complete, it returns, causing output parameters or exception results to be transmitted back to the client.

When a new object is created, the ORB may be notified so that it knows where to find the implementation for that object.
Usually, the implementation also registers itself as implementing objects of a particular interface, and specifies how to
start up the implementation if it is not already running.

Most object implementations provide their behavior using facilities in addition to the ORB and object adapter. For
example, although the Portable Object Adapter provides some persistent data associated with an object (its OID or Object
ID), that relatively small amount of data is typically used as an identifier for the actual object data stored in a storage
service of the object implementation’s choosing. With this structure, it is not only possible for different object
implementations to use the same storage service, it is also possible for objects to choose the service that is most
appropriate for them.

24 Common Object Request Broker Architecture (CORBA), v3.1.1

6.6

An object adapter (see Figure 6.8) is the primary means for an object implementation to access ORB services such as
object reference generation. An object adapter exports a public interface to the object implementation, and a private
interface to the skeleton. It is built on a private ORB-dependent interface.

Structure of an Object Adapter

Object adapters are responsible for the following functions:

Generation and interpretation of object references

Method invocation

Security of interactions

Object and implementation activation and deactivation

Mapping object references to the corresponding object implementations

Registration of implementations

These functions are performed using the ORB Core and any additional components necessary. Often, an object adapter
will maintain its own state to accomplish its tasks. It may be possible for a particular object adapter to delegate one or
more of its responsibilities to the Core upon which it is constructed.

(

-

Object Implementation

Interface A
Methods

Interface B
Methods

~

Dynamic Interface A Interface B Obiect
Skeleton Skeleton Jec
Skeleton Adapter
Interface
ORB Core

Figure 6.8 - The Structure of a Typical Object Adapter

As shown in Figure 6.8, the Object Adapter is implicitly involved in invocation of the methods, although the direct

interface is through the skeletons. For example, the Object Adapter may be involved in activating the implementation or

authenticating the request.

Common Object Request Broker Architecture (CORBA), v3.1.1

25

The Object Adapter defines most of the services from the ORB that the Object Implementation can depend on. Different
ORBs will provide different levels of service and different operating environments may provide some properties
implicitly and require others to be added by the Object Adapter. For example, it is common for Object Implementations
to want to store certain values in the object reference for easy identification of the object on an invocation. If the Object
Adapter allows the implementation to specify such values when a new object is created, it may be able to store them in
the object reference for those ORBs that permit it. If the ORB Core does not provide this feature, the Object Adapter
would record the value in its own storage and provide it to the implementation on an invocation. With Object Adapters, it
is possible for an Object Implementation to have access to a service whether or not it is implemented in the ORB Core —
if the ORB Core provides it, the adapter simply provides an interface to it; if not, the adapter must implement it on top of
the ORB Core. Every instance of a particular adapter must provide the same interface and service for all the ORBsiit is
implemented on.

It is also not necessary for all Object Adapters to provide the same interface or functionality. Some Object
Implementations have special requirements. For example, an object-oriented database system may wish to implicitly
register its many thousands of objects without doing individual calls to the Object Adapter. In such a case, it would be
impractical and unnecessary for the object adapter to maintain any per-object state. By using an object adapter interface
that is tuned towards such object implementations, it is possible to take advantage of particular ORB Core details to
provide the most effective access to the ORB.

6.7 CORBA Required Object Adapter

There are a variety of possible object adapters; however, since the object adapter interface is something that object
implementations depend on, it is desirable that there be as few as practical. Most object adapters are designed to cover a
range of object implementations, so only when an implementation requires radically different services or interfaces should
a new object adapter be considered. In this sub clause, we briefly describe the object adapter defined in this International
Standard.

6.7.1 Portable Object Adapter

This International Standard defines a Portable Object Adapter that can be used for most ORB objects with conventional
implementations. (See the Portable Object Adapter clause for more information.) The intent of the POA, as its name
suggests, is to provide an Object Adapter that can be used with multiple ORBs with a minimum of rewriting needed to
deal with different vendors’ implementations.

This International Standard allows several ways of using servers but it does not deal with the administrative issues of starting
server programs. Once started, however, there can be a servant started and ended for a single method call, a separate servant
for each object, or a shared servant for all instances of the object type. It allows for groups of objects to be associated by
means of being registered with different instances of the POA object and allows implementations to specify their own
activation techniques. If the implementation is not active when an invocation is performed, the POA will start one. The
POA is specified in IDL, so its mapping to languages is largely automatic, following the language mapping rules. (The
primary task left for a language mapping is the definition of the Servant type.)

6.8 The Integration of Foreign Object Systems
The Common ORB Architecture is designed to allow interoperation with a wide range of object systems (see Figure 6.9).
Because there are many existing object systems, a common desire will be to allow the objects in those systems to be

accessible via the ORB. For those object systems that are ORBs themselves, they may be connected to other ORBs
through the mechanisms described throughout this manual.

26 Common Object Request Broker Architecture (CORBA), v3.1.1

Object system as
a POA object
implementation

Object system as
an implementation
with a special-purpose

object adapter

Portable Object
Adapter

Special-purpose
Adapter

ORB Core

Gateway

Figure 6.9 - Different Ways to Integrate Foreign Object Systems

Object system as
another ORB
interoperating via a
gateway

For aobject systems that simply want to map their objects into ORB objects and receive invocations through the ORB, one

approach is to have those aobject systems appear to be implementations of the corresponding ORB objects. The object
system would register its objects with the ORB and handle incoming requests, and could act like a client and perform

outgoing requests.

In some cases, it will be impractical for another object system to act like a POA object implementation. An object adapter

could be designed for objects that are created in conjunction with the ORB and that are primarily invoked through the

ORB. Another object system may wish to create objects without consulting the ORB, and might expect most invocations
to occur within itself rather than through the ORB. In such a case, a more appropriate object adapter might allow objects
to be implicitly registered when they are passed through the ORB.

Common Object Request Broker Architecture (CORBA), v3.1.1

27

28

Common Object Request Broker Architecture (CORBA), v3.1.1

7 IDL Syntax and Semantics

7.1 Overview

This clause describes OMG Interface Definition Language (IDL) semantics and gives the syntax for IDL grammatical
constructs.

The OMG Interface Definition Language (IDL) is the language used to describe the interfaces that client objects call and
object implementations provide. An interface definition written in IDL completely defines the interface and fully specifies
each operation’s parameters. An IDL interface provides the information needed to develop clients that use the interface’s
operations.

Clients are not written in IDL, which is purely a descriptive language, but in languages for which mappings from IDL
concepts have been defined. The mapping of an IDL concept to a client language construct will depend on the facilities
available in the client language. For example, an IDL exception might be mapped to a structure in a language that has no
notion of exception, or to an exception in a language that does. The binding of IDL concepts to several programming
languages is described in this International Standard.

The description of IDL's lexical conventionsis presented in 7.2, Lexical Conventions. A description of IDL preprocessing
is presented in 7.3, Preprocessing. The scope rules for identifiersin an IDL specification are described in 7.20, Names and
Scoping.

IDL is a declarative language. The grammar is presented in IDL Grammar on page 38 and associated semantics is
described in the rest of this clause either in place or through references to other sub clauses of this standard.

IDL-specific pragmas (those not defined for C++) may appear anywhere in a specification; the textual location of these
pragmas may be semantically constrained by a particular implementation.

A source file containing interface specifications written in IDL must have a“.idl” extension.

The description of IDL grammar uses a syntax notation that is similar to Extended Backus-Naur Format (EBNF). Table
7.1 lists the symbols used in this format and their meaning.

Table 7.1- IDL EBNF

Symbol Meaning

n= Is defined to be

| Alternatively

<text> Nonterminal

“text” Literal

* The preceding syntactic unit can be repeated zero or more times

+ The preceding syntactic unit can be repeated one or more times

{ The enclosed syntactic units are grouped as a single syntactic unit

1] The enclosed syntactic unit is optional—may occur zero or one time

Common Object Request Broker Architecture (CORBA), v3.1.1 29

7.2 Lexical Conventions

This sub clause® presents the lexical conventions of IDL. It defines tokens in an IDL specification and describes
comments, identifiers, keywords, and literals—integer, character, and floating point constants and string literals.

An IDL specification logically consists of one or more files. A file is conceptually translated in several phases.

The first phase is preprocessing, which performs file inclusion and macro substitution. Preprocessing is controlled by
directives introduced by lines having # as the first character other than white space. The result of preprocessing is a
sequence of tokens. Such a sequence of tokens, that is, a file after preprocessing, is called a translation unit.

IDL uses the ASCII character set, except for string literals and character literals, which use the 1SO Latin-1 (8859.1)
character set. The 1SO Latin-1 character set is divided into aphabetic characters (letters) digits, graphic characters, the
space (blank) character, and formatting characters. Table 7.2 shows the 1SO Latin-1 alphabetic characters; upper and
lower case equivalences are paired. The ASCII alphabetic characters are shown in the left-hand column of Table 7.3.

Table 7.2- Characters

Char. Description Char. Description

Aa Upper/Lower-case A Aa Upper/Lower-case A with grave accent

Bb Upper/Lower-case B Upper/Lower-case A with acute accent

Cc Upper/Lower-case C Upper/Lower-case A with circumflex accent
Dd Upper/Lower-case D Upper/Lower-case A with tilde

Ee Upper/Lower-case E Upper/Lower-case A with diaeresis

Ff Upper/Lower-case F Upper/Lower-case A with ring above

Gg Upper/Lower-case G Upper/Lower-case dipthong A with E

Hh Upper/Lower-case H Upper/Lower-case C with cedilla

li Upper/Lower-case | Upper/Lower-case E with grave accent

Jj Upper/Lower-case J Upper/Lower-case E with acute accent

Kk Upper/Lower-case K Upper/Lower-case E with circumflex accent
LI Upper/Lower-case L Upper/Lower-case E with diaeresis

Mm Upper/Lower-case M Upper/Lower-case | with grave accent

Nn Upper/Lower-case N Upper/Lower-case | with acute accent

Oo Upper/Lower-case O Upper/Lower-case | with circumflex accent
Pp Upper/Lower-case P Upper/Lower-case | with diaeresis

Qq Upper/Lower-case Q fi Upper/Lower-case N with tilde

1. Thissub clauseis an adaptation of The Annotated C++ Reference Manual, Clause 2; it differsin thelist of legal keywords and

punctuation.

30

Common Object Request Broker Architecture (CORBA), v3.1.1

Table 7.2- Characters

Char. Description Char. Description
Rr Upper/Lower-case R 0o Upper/Lower-case O with grave accent
Ss Upper/Lower-case S 06 Upper/Lower-case O with acute accent
Tt Upper/Lower-case T 06 Upper/Lower-case O with circumflex accent
Uu Upper/Lower-case U (oh] Upper/Lower-case O with tilde
Vv Upper/Lower-case V (os] Upper/Lower-case O with diaeresis
Ww Upper/Lower-case W %17 Upper/Lower-case O with oblique stroke
XX Upper/Lower-case X U] Upper/Lower-case U with grave accent
Yy Upper/Lower-case Y Ua Upper/Lower-case U with acute accent
Zz Upper/Lower-case Z Oa Upper/Lower-case U with circumflex accent
Ou Upper/Lower-case U with diaeresis
R Lower-case German sharp S
y Lower-case Y with diaeresis

Table 7.3 lists the decimal digit characters.

Table 7.3- Decimal Digits

0123456789

Table 7.4 shows the graphic characters.

Table 7.4 - Graphic Characters

Character | Description Character Description

! exclamation point [inverted exclamation mark
double quote ¢ cent sign

number sign £ pound sign

$ dollar sign a currency sign

% percent sign ¥ yensign

& ampersand broken bar
apostrophe § section/paragraph sign

(left parenthesis diaeresis

) right parenthesis © copyright sign

Common Object Request Broker Architecture (CORBA), v3.1.1

31

Table 7.4 - Graphic Characters

Character | Description Character Description
* asterisk a feminine ordinal indicator
+ plussign « left angle quotation mark
; comma - not sign
- hyphen, minus sign soft hyphen

period, full stop ® registered trade mark sign
/ solidus B macron

colon ° ring above, degree sign
; semicolon + plus-minus sign
< less-than sign 2 superscript two
= equals sign 3 superscript three
> greater-than sign acute
? question mark m micro
@ commercia at 1 pilcrow
[left square bracket . middle dot
\ reverse solidus cedilla
] right square bracket ! superscript one
n circumflex © masculine ordinal indicator
_ low line, underscore » right angle quotation mark
‘ grave vulgar fraction 1/4
{ left curly bracket vulgar fraction 1/2
| vertical line vulgar fraction 3/4
} right curly bracket é inverted question mark
~ tilde ¥ multiplication sign

3 division sign
32

Common Object Request Broker Architecture (CORBA), v3.1.1

The formatting characters are shown in Table 7.5.

Table 7.5 Formatting Characters

Description | Abbreviation ISO 646 Octal Value
alert BEL 007
backspace BS 010
horizontal tab HT 011
newline NL, LF 012
vertical tab VT 013
form feed FF 014
carriage return CR 015
7.2.1 Tokens

There are five kinds of tokens: identifiers, keywords, literals, operators, and other separators. Blanks, horizontal and
vertical tabs, newlines, formfeeds, and comments (collective, “white space”) as described below are ignored except as
they serve to separate tokens. Some white space is required to separate otherwise adjacent identifiers, keywords, and
constants.

If the input stream has been parsed into tokens up to a given character, the next token is taken to be the longest string of
characters that could possibly constitute a token.

7.2.2 Comments

The characters /* start a comment, which terminates with the characters */. These comments do not nest. The characters /
[start a comment, which terminates at the end of the line on which they occur. The comment characters//, /*, and */ have
no special meaning within a// comment and are treated just like other characters. Similarly, the comment characters// and

/* have no special meaning within a/* comment. Comments may contain aphabetic, digit, graphic, space, horizonta tab,

vertical tab, form feed, and newline characters.

7.2.3 ldentifiers

An identifier is an arbitrarily long sequence of ASCII alphabetic, digit, and underscore (
character must be an ASCII alphabetic character. All characters are significant.

) characters. The first

When comparing two identifiers to see if they collide:

« Upper- and lower-case | etters are treated as the same letter. Table 7.2 defines the equival ence mapping of upper- and
lower-case letters.

» All characters are significant.

Identifiers that differ only in case collide, and will yield a compilation error under certain circumstances. An identifier for
a given definition must be spelled identically (e.g., with respect to case) throughout a specification.

Common Object Request Broker Architecture (CORBA), v3.1.1 33

There is only one namespace for IDL identifiers in each scope. Using the same identifier for a constant and an interface,
for example, produces a compilation error.

For example:

module M {
typedef long Foo;
const long thing = 1;

interface thing { I/l error: reuse of identifier
void doit (
in Foo foo /I error: Foo and foo collide and refer to different things
)i

readonly attribute long Attribute; // error: Attribute collides with keyword attribute
h
|3

7.2.3.1 Escaped Identifiers

As IDL evolves, new keywords that are added to the IDL language may inadvertently collide with identifiers used in
existing IDL and programs that use that IDL. Fixing these collisions will require not only the IDL to be modified, but
programming language code that depends upon that IDL will have to change as well. The language mapping rules for the
renamed IDL identifiers will cause the mapped identifier names (e.g., method names) to be changed.

To minimize the amount of work, users may lexically “escape” identifiers by prepending an underscore () to an
identifier. This is a purely lexical convention that ONLY turns off keyword checking. The resulting identifier follows all
the other rules for identifier processing. For example, the identifier _Anldentifier istreated as if it were Anldentifier.

The following is a non-exclusive list of implications of these rules:

» The underscore does not appear in the Interface Repository.

» Theunderscoreis not used in the DIl and DSI.

» Theunderscoreis not transmitted over “the wire.”

» Case sensitivity rules are applied to the identifier after stripping off the leading underscore.
For example:
module M {

interface thing {

attribute boolean abstract; /I error: abstract collides with

/I keyword abstract
attribute boolean _abstract; // ok: abstract is an identifier

|3
3
To avoid unnecessary confusion for readers of IDL, it is recommended that interfaces only use the escaped form of
identifiers when the unescaped form clashes with a newly introduced IDL keyword. It is al'so recommended that interface

designers avoid defining new identifiers that are known to require escaping. Escaped literals are only recommended for
IDL that expresses legacy interface, or for IDL that is mechanically generated.

34 Common Object Request Broker Architecture (CORBA), v3.1.1

7.2.4 Keywords

The identifierslisted in Table 7.6 are reserved for use as keywords and may not be used otherwise, unless escaped with a

leading underscore.

Table 7.6 - Keywords

abstract exception inout provides truncatable
any emits interface public typedef
attribute enum local publishes typeid
boolean eventtype long raises typeprefix
case factory module readonly unsigned
char FALSE multiple setraises union
component finder native sequence uses

const fixed Object short ValueBase
consumes float octet string valuetype
context getraises oneway struct void
custom home out supports wchar
default import primarykey switch wstring
double in private TRUE

Keywords must be written exactly as shown in the above list. Identifiers that collide with keywords (see 7.2.3, Identifiers)

areillegal. For example, “boolean” is avalid keyword; “Boolean” and “BOOLEAN" are illegal identifiers.

For example:
module M {
typedef Long Foo; /I Error: keyword is long not Long
typedef boolean BOOLEAN; /I Error: BOOLEAN collides with
I/l the keyword boolean;
h

IDL specifications use the characters shown in Table 7.7 as punctuation.

Table 7.7 - Punctuation

{ } : , = + - () < > []

LS I T A I N A 73 [

In addition, the tokens listed in Table 7.8 are used by the preprocessor.

Table 7.8 - Tokens

| # | I &&

Common Object Request Broker Architecture (CORBA), v3.1.1

35

7.2.5 Literals

This sub clause describes the following literals:

* Integer

« Character
» Floating-point

« String

» Fixed-point

7.2.5.1 Integer Literals

An integer literal consisting of a sequence of digits is taken to be decimal (base ten) unless it begins with 0 (digit zero).
A sequence of digits starting with 0 is taken to be an octal integer (base eight). The digits 8 and 9 are not octal digits. A
sequence of digits preceded by Ox or OX is taken to be a hexadecimal integer (base sixteen). The hexadecimal digits

include a or A through f or F with decimal values ten through fifteen, respectively. For example, the number twelve can

be written 12, 014, or OXC.

7.2.5.2 Character Literals

A character literal is one or more characters enclosed in single quotes, as in 'x." Character literals have type char.

A character is an 8-bit quantity with a numerical value between 0 and 255 (decimal). The value of a space, alphabetic,
digit, or graphic character literal is the numerical value of the character as defined in the ISO Latin-1 (8859.1) character
set standard (See Table 7.2 on page 30, Table 7.3 on page 31, and Table 7.4 on page 31). The value of anull is 0. The
value of aformatting character literal isthe numerical value of the character as defined in the 1SO 646 standard (see Table
7.5 on page 33). The meaning of all other characters is implementati on-dependent.

Nongraphic characters must be represented using escape sequences as defined below in Table 7.9. Note that escape
sequences must be used to represent single quote and backslash characters in character literals.

Table 7.9 - Escape Sequences

Description Escape Sequence
newline \n
horizontal tab \t
vertical tab \v
backspace \b
carriage return \r
form feed \f
alert \a
backslash \
question mark \?
single quote \'
36

Common Object Request Broker Architecture (CORBA), v3.1.1

Table 7.9 - Escape Sequences

Description Escape Sequence
double quote \"

octal number \ooo
hexadecimal number \xhh
unicode character \uhhhh

If the character following a backslash is not one of those specified, the behavior is undefined. An escape sequence
specifies a single character.

The escape \ooo consists of the backslash followed by one, two, or three octal digits that are taken to specify the value of
the desired character. The escape \xhh consists of the backslash followed by x followed by one or two hexadecimal digits
that are taken to specify the value of the desired character.

The escape \uhhhh consists of a backslash followed by the character ‘u,” followed by one, two, three, or four hexadecimal
digits. This represents a unicode character literal. Thus the literal “\uOO2E” represents the unicode period ‘.’ character and
the literal “\u3BC” represents the unicode greek small letter ‘mu.” The \u escape is valid only with wchar and wstring
types. Because awide string literal is defined as a sequence of wide character literals a sequence of \u literals can be used
to define a wide string literal. Attempts to set a char type to a\u defined literal or a string type to a sequence of \u literals
result in an error.

A sequence of octal or hexadecimal digits is terminated by the first character that is not an octal digit or a hexadecimal
digit, respectively. The value of a character constant is implementation dependent if it exceeds that of the largest char.

Wide character literals have an L prefix, for example:

const wchar C1 = L'X’;

Attempts to assign a wide character literal to a non-wide character constant or to assign a non-wide character literal to a
wide character constant result in a compile-time diagnostic.

Both wide and non-wide character literals must be specified using characters from the ISO 8859-1 character set.

7.2.5.3 Floating-point Literals

A floating-point literal consists of an integer part, a decimal point, a fraction part, an e or E, and an optionally signed
integer exponent. The integer and fraction parts both consist of a sequence of decimal (base ten) digits. Either the integer
part or the fraction part (but not both) may be missing; either the decimal point or the letter e (or E) and the exponent (but
not both) may be missing.

7.2.5.4 String Literals

A string literal is a sequence of characters (as defined in 7.2.5.2, Character Literals), with the exception of the character
with numeric value 0, surrounded by double quotes, asin “...".

Adjacent string literals are concatenated. Characters in concatenated strings are kept distinct. For example,

"\xA" "B"

contains the two characters ‘\xA’ and ‘B’ after concatenation (and not the single hexadecimal character ‘\xAB").

Common Object Request Broker Architecture (CORBA), v3.1.1 37

The size of a string literal is the number of character literals enclosed by the quotes, after concatenation. Within a string,
the double quote character " must be preceded by a\.

A string literal may not contain the character ‘\0'.

Wide string literals have an L prefix, for example:

const wstring S1 =L"Hello";

Attempts to assign a wide string literal to a non-wide string constant or to assign a non-wide string literal to a wide string
constant result in a compile-time diagnostic.

Both wide and non-wide string literals must be specified using characters from the SO 8859-1 character set.

A wide string literal shall not contain the wide character with value zero.

7.2.5.5 Fixed-Point Literals

A fixed-point decimal literal consists of an integer part, a decimal point, a fraction part and a d or D. The integer and
fraction parts both consist of a sequence of decimal (base 10) digits. Either the integer part or the fraction part (but not
both) may be missing; the decimal point (but not the letter d (or D)) may be missing.

7.3 Preprocessing

IDL is preprocessed according to the specification of the preprocessor in |SO/IEC 14882:2003. The preprocessor may be
implemented as a separate process or built into the IDL compiler.

Lines beginning with # (also called “directives’) communicate with this preprocessor. White space may appear before the
#. These lines have syntax independent of the rest of IDL; they may appear anywhere and have effects that last
(independent of the IDL scoping rules) until the end of the translation unit. The textual location of IDL-specific pragmas
may be semantically constrained.

A preprocessing directive (or any line) may be continued on the next line in a source file by placing a backslash character
(“\"), immediately before the newline at the end of the line to be continued. The preprocessor effects the continuation by
deleting the backslash and the newline before the input sequence is divided into tokens. A backslash character may not be
the last character in a source file.

A preprocessing token isan IDL token (see 7.2.1, Tokens), afile name asin a#include directive, or any single character
other than white space that does not match another preprocessing token.

The primary use of the preprocessing facilities is to include definitions from other IDL specifications. Text in files
included with a #include directive is treated as if it appeared in the including file, except that Repositoryld related
pragmas are handled in a special way. The special handling of these pragmas is described in 14.7, Repositorylds.

Note that whether a particular IDL compiler generates code for included files is an implementation-specific issue. To
support separate compilation, IDL compilers may not generate code for included files, or do so only if explicitly
instructed.

7.4 IDL Grammar

(1) <specification>::=<import>* <definition>"
(2) <definition>::=<type_dcl>"“;"

38 Common Object Request Broker Architecture (CORBA), v3.1.1

<const_dcl>*“;"
<except_dcl>";"
<interface>"“;”
<module>*;"
<value>*“;”
<type_id_dcl>*“;"
<type_prefix_dcl>"“;"
<event>*“;”
<component>“;”
<home_dcl>*“;"
(3) <module>::="module” <identifier>“{" <definition>* “}"
(4) <interface>::=<interface_dcl>
| <forward_dcl>
(5) <interface_dcl>::=<interface_header>“{" <interface_body>“}"
(6) <forward_dcl>::=[“abstract” | “local”] “interface” <identifier>

(7) <interface_header>::=[“abstract” | “local”] “interface” <identifier>
[<interface_inheritance_spec>]

(8) <interface_body>::=<export>"

(9) <export>::=<type_dcl>";"
| <const_dcl>*;"
| <except_dcl>*“;”
| <attr_dcl>*;"

| <op_dcl>*“;"

I

I

<type_id_dcl>";"
<type_prefix_dcl>"*;"

(10) <interface_inheritance_spec>::=":" <interface_name>

{",” <interface_name> }*
(11) <interface_name>::=<scoped_name>
(12) <scoped_name>::=<identifier>

| “::" <identifier>
| <scoped_name>“::" <identifier>

(13) <value>::=(<value_dcl> | <value_abs_dcl>| <value_box_dcl> | <value_forward_dcl>)
(14) <value_forward_dcl> ::=[“abstract”] “valuetype” <identifier>
(15) <value_box_dcl> ::="valuetype” <identifier> <type_spec>
(16) <value_abs_dcl> ::="abstract” “valuetype” <identifier>

[<value_inheritance_spec>]

“{* <export>*“}”
(17) <value_dcl> ::=<value_header>“{" <value_element>*“}"
(18) <value_header> ::=[*custom”] “valuetype” <identifier>

[<value_inheritance_spec>]
(19) <value_inheritance_spec> ::=[“:" [“truncatable”] <value_name>

{"“,” <value_name> }*]

[“supports” <interface_name>

{“,” <interface_name> }*]
(20) <value_name> ::=<scoped_name>
(21) <value_element> ::=<export> | < state_member> | <init_dcl>

Common Object Request Broker Architecture (CORBA), v3.1.1

39

40

(22)
(23)
(24)
(25)
(26)
(27)

(28)

(29)
(30)

(1)
(32)

(33)

(34)

(39)

(36)

(37)

(38)

(39)

<state_member> ::=(“public” | “private”)
<type_spec> <declarators>*“;"
<init_dcl> ::="factory” <identifier>
“(* [<init_param_decls>] “)”

[<raises_expr>]

<init_param_decls> :;=<init_param_decl>{ ",

[l
)

<init_param_decl> }*

<init_param_decl> ::=<init_param_attribute> <param_type_spec> <simple_declarator>

<init_param_attribute> ::

— inn

<const_dcl>::="const” <const_type>
<identifier>“=" <const_exp>
<const_type>::=<integer_type>

<char_type>
<wide_char_type>
<boolean_type>
<floating_pt_type>
<string_type>
<wide_string_type>

<fixed_pt_const_type>

<scoped_name>
<octet_type>

<const_exp>::=<or_expr>

<or_expr>::=<xor_expr>

<or_expr>"“|" <xor_e

<xor_expr>::=<and_expr>
<xor_expr>*“~" <and_expr>
<and_expr>::=<shift_expr>

<and_expr>“&" <shi

<shift_expr>::=<add_expr>
<shift_expr>“>>" <add_expr>
<shift_expr>“<<” <add_expr>
<add_expr>::=<mult_expr>
<add_expr>“+" <mult_expr>
<add_expr>*“-" <mult_expr>
<mult_expr>::=<unary_expr>
<mult_expr>“*" <unary_expr>
<mult_expr>"“/" <unary_expr>
<mult_expr>“%" <unary_expr>
<unary_expr>::=<unary_operator> <primary_expr>

I
<unary_operator>::="*-"
I
I

<primary_expr>

“yn

<primary_expr>::=<scoped_name>

<literal>
" (H <COnSt_eXp> “)”

<literal>::=<integer_literal>

<string_literal>
<wide_string_literal>

Xpr=>

ft_expr>

Common Object Request Broker Architecture (CORBA), v3.1.1

(40)

(41)
(42)

(43)
(44)

(45)

(46)

(47)

(48)
(49)
(50)
(51)
(52)
(53)
(54)

(59)

<character_literal>
<wide_character_literal>
<fixed_pt_literal>
<floating_pt_literal>
<boolean_literal>

<boolean_literal>::="TRUE"

“FALSE”

<positive_int_const>::=<const_exp>
<type_dcl>::="typedef” <type_declarator>

<struct_type>
<union_type>
<enum_type>

“native” <simple_declarator>

<constr_forward_decl>

<type_declarator>::=<type_spec> <declarators>
<type_spec>:.:=<simple_type_spec>

<constr_type_spec>

<simple_type_spec>::=<base_type_spec>

<template_type_spec>
<scoped_name>

<base_type_spec>::=<floating_pt_type>

<integer_type>
<char_type>
<wide_char_type>
<boolean_type>
<octet_type>
<any_type>
<object_type>
<value_base_type>

<template_type_spec>::=<sequence_type>

<string_type>
<wide_string_type>
<fixed_pt_type>

<constr_type_spec>::=<struct_type>

<union_type>
<enum_type>

<declarators>::=<declarator> { *,” <declarator>}*
<declarator>::=<simple_declarator>

<complex_declarator>

<simple_declarator>::=<identifier>
<complex_declarator>:;=<array_declarator>
<floating_pt_type>::="float”

“double”
“long” “double”

<integer_type>::=<signed_int>

<unsigned_int>

<sighed_int>::=<signed_short_int>

<signed_long_int>

Common Object Request Broker Architecture (CORBA), v3.1.1

41

42

(56)
(57)
(58)
(59)

(60)
(61)
(62)
(63)
(64)
(65)
(66)
(67)
(68)
(69)
(70)
(V1)
(72)

(73)

(74)
(75)
(76)

(77)
(78)

(79)
(80)

(81)
(82)
(83)

(84)

(86)

| <signed_longlong_int>
<signed_short_int>::="short”
<signed_long_int>::="long”
<signed_longlong_int>::="long” “long”
<unsignhed_int>::=<unsigned_short_int>
| <unsigned_long_int>
| <unsigned_longlong_int>
<unsigned_short_int>::="unsigned” “short”
<unsigned_long_int>::="unsigned” “long”
<unsigned_longlong_int>::="unsigned” “long” “long”
<char_type>::=“char”
<wide_char_type>::=“wchar”
<boolean_type>::=“boolean”
<octet_type>::="“octet”
<any_type>::=“any”
<object_type>::="“Object”
<struct_type>::="struct” <identifier>“{" <member_list>"“}"
<member_list>::=<member>*
<member>::=<type_spec> <declarators>*“;"
<union_type>::=“union” <identifier> “switch”
“(" <switch_type spec>")"
“{" <switch_body>*“}"
<switch_type_spec>::=<integer_type>
| <char_type>
| <boolean_type>
| <enum_type>
| <scoped_name>
<switch_body>::=<case>"
<case>::=<case_label>* <element_spec> “;”
<case_label>::="case” <const_exp>"“:"
| “default” “:”
<element_spec>::=<type_spec> <declarator>
<enum_type>::=“enum” <identifier>
“{” <enumerator>{ “,” <enumerator>}*“}"
<enumerator>::=<identifier>
<sequence_type>::="sequence” “<” <simple_type_spec>“,” <positive_int_const>“>
| “sequence” “<” <simple_type_spec>"“>"
<string_type>::="string” “<” <positive_int_const>“>"
| “string”
<wide_string_type>::="wstring” “<” <positive_int_const>“>"
| “wstring”
<array_declarator>::=<identifier> <fixed_array_size>"
<fixed_array_size>::="[" <positive_int_const>"“]"
(85) <attr_dcl> ::= <readonly_attr_spec>
| <attr_spec>
<except_dcl>::="exception” <identifier>“{* <member>* “}”

Common Object Request Broker Architecture (CORBA), v3.1.1

(87) <op_dcl>::=[<op_attribute>] <op_type_spec>
<identifier> <parameter_dcls>
[<raises_expr>][<context_expr>]
(88) <op_attribute>::="oneway”
(89) <op_type_spec>::=<param_type_spec>
| “void”
(90) <parameter_dcls>::="(" <param_dcl>{*“,” <param_dcl>}"*)"
| =)
(91) <param_dcl>::=<param_attribute> <param_type_spec> <simple_declarator>
(92) <param_attribute>::="in"
| “out
| “inout”
(93) <raises_expr>::="raises” “(” <scoped_name>
{*,” <scoped_name>}"*)"
(94) <context_expr>::="context” “(* <string_literal>
{*,” <string_literal>}"*)"
(95) <param_type_spec>::=<base_type_spec>
| <string_type>
| <wide_string_type>
| <scoped_name>
(96) <fixed_pt_type>::="fixed” “<" <positive_int_const>"“," <positive_int_const>“>"
(97) <fixed_pt_const_type>::="fixed”
(98) <value_base_type>::=“ValueBase”
(99) <constr_forward_decl>::="struct” <identifier>
| “union” <identifier>
(100) <import>::="“import” <imported_scope>"*“;”
(101) <imported_scope> :;= <scoped_name> | <string_literal>
(102) <type_id_dcl>::="typeid” <scoped_name> <string_literal>
(103) <type_prefix_dcl>::="typeprefix” <scoped_name> <string_literal>
(104) <readonly_attr_spec> ::="“readonly” “attribute” <param_type_spec>
<readonly_attr_declarator>
(105) <readonly_attr_declarator>::= <simple_declarator> <raises_expr>
| <simple_declarator>
{",” <simple_declarator> }*
(106) <attr_spec> ::="attribute” <param_type_spec>
<attr_declarator>
(107) <attr_declarator> ::=<simple_declarator> <attr_raises_expr>
| <simple_declarator>
{“,” <simple_declarator> }*
(108) <attr_raises_expr>::=<get_excep_expr>[<set_excep_expr>]
| <set_excep_expr>
(109) <get_excep_expr>::="“getraises” <exception_list>
(110) <set_excep_expr>::=“setraises” <exception_list>
(111) <exception_list>::="“(" <scoped_name>
{", <scoped_name>1}+«")"

”

NOTE: Grammar rules 1 through 111 with the exception of the last three lines of rule 2 constitutes the portion of IDL that

Common Object Request Broker Architecture (CORBA), v3.1.1 43

is not related to components.
(112) <component> ::=<component_dcl>
| <component_forward_dcl>

(113) <component_forward_dcl> ::= “component” <identifier>
(114) <component_dcl> ::= <component_header>

“{" <component_body>*“}"
(115) <component_header>::=“component” <identifier>

[<component_inheritance_spec>]

[<supported_interface_spec>]

(116) <supported_interface_spec> ::= “supports” <scoped _name>
{“, <scoped_name> }*
(117) <component_inheritance_spec>::="“:" <scoped_name>

(118) <component_body> ::=<component_export>*
(119) <component_export>::=<provides_dcl>"“;"

| <uses_dcl>*“;”

| <emits_dcl>"*;"

| <publishes_dcl>*;"

| <consumes_dcl>"“;"
I

<attr_dcl>*“;"
(120) <provides_dcl>::="“provides” <interface_type> <identifier>
(121) <interface_type>::= <scoped_name>
| “Object”

(122) <uses_dcl>::="uses” [“multiple”]

< interface_type> <identifier>
(123) <emits_dcl> ::= “emits” <scoped_name> <identifier>
(124) <publishes_dcl> ::=“publishes” <scoped_name> <identifier>
(125) <consumes_dcl>::= “consumes” <scoped_name> <identifier>
(126) <home_dcl> ::= <home_header> <home_body>
(127) <home_header>::=“home” <identifier>

[<home_inheritance_spec>]
[<supported_interface_spec>]
“manages” <scoped_name>
[<primary_key_spec>]
(128) <home_inheritance_spec> ::= “:” <scoped_nhame>
(129) <primary_key_spec> ::=“primarykey” <scoped_name>
(130) <home_body>::=“{" <home_export>*“}"
(131) <home_export ::= <export>
| <factory_dcl>"*;"
| <finder_dcl>*“;"
(132) <factory_dcl> ::=“factory” <identifier>
“(* [<init_param_decls>1")"
[<raises_expr>]
(133) <finder_dcl> ::=“finder” <identifier>
“(* [<init_param_decls>]1")"
[<raises_expr>]
(134) <event> ::=(<event_dcl>| <event_abs_dcl> |
<event_forward_dcl>)

44 Common Object Request Broker Architecture (CORBA), v3.1.1

(135) <event_forward_dcl> ::=[“abstract”] “eventtype” <identifier>
(136) <event_abs_dcl>::="abstract” “eventtype” <identifie

[<value_inheritance_spec>]

“{" <export>**“}"
(137) <event_dcl>::=<event_header> “{" <value_element>*"“}"

(138) <event_header>::=[“custom”] “eventtype”
<identifier>[<value_inheritance_spec>]

7.5 IDL Specification

An IDL specification consists of one or more type definitions, constant definitions, exception definitions, or module

definitions. The syntax is:

(1)<specification>::=<import>* <definition>*
(2) <definition>::=<type_dcl>*“;"

| <const_dcl>*;"

| <except_dcl>*“;”

| <interface>"*;”

| <module>"*;"

| <value>*;”

| <type_id_dcl>*;”

| <type_prefix_dcl>*";"
| <event>*;”

| <component>*“;”

| <home_dcl>"*;"

See Import Declaration on page 45, for the specification of <import>.
See Module Declaration on page 46, for the specification of <module>.
See Interface Declaration on page 47, for the specification of <interface>.

See Vaue Declaration on page 52, for the specification of <value>.

See Constant Declaration on page 57, Type Declaration on page 61, and Exception Declaration on page 73 respectively

for specifications of <const_dcl>, <type_dcl>, and <except_dcl>.

See Repository Identity Related Declarations on page 77, for specification of Repository Identity declarations which

include <type_id_dcl> and <type_prefix_dcl>.
See Event Declaration on page 79, for specification of <event>.
See Component Declaration on page 80, for specification of <component>.

See Section 7.18, <$paratext>, on page 85, for specification of <home_dcl>.

7.6 Import Declaration

The grammar for the import statement is described by the following Backus Naur Form (BNF):

(100)<import> ::= “import” <imported_scope> “;”
(101) <imported_scope>::= <scoped_name> | <string_literal>

Common Object Request Broker Architecture (CORBA), v3.1.1

45

The <imported_scope> non-terminal may be either a fully-qualified scoped name dencting an IDL name scope, or a
string containing the interface repository ID of an IDL name scope, i.e., a definition object in the repository whose
interface derives from CORBA::Container.

The definition of import obviates the need to define the meaning of IDL constructs in terms of “file scopes.” This
International Standard defines the concepts of a specification as a unit of IDL expression. In the abstract, a specification
consists of afinite sequence of SO Latin-1 characters that form alegal IDL sentence. The physical representation of the
specification is of no consequence to the definition of IDL, though it is generally associated with afile in practice.

Any scoped name that begins with the scope token (“::”) is resolved relative to the global scope of the specification in
which it is defined. In isolation, the scope token represents the scope of the specification in which it occurs.

A specification that imports name scopes must be interpreted in the context of a well-defined set of IDL specifications
whose union constitutes the space from within which name scopes are imported. By “a well-defined set of IDL
specifications,” we mean any identifiable representation of IDL specifications, such as an interface repository. The
specific representation from which name scopes are imported is not specified, nor is the means by which importing is
implemented, nor is the means by which a particular set of IDL specifications (such as an interface repository) is
associated with the context in which the importing specification is to be interpreted.

The effects of an import statement are as follows:

» The contents of the specified name scope are visible in the context of the importing specification. Names that occur in
IDL declarations within the importing specification may be resolved to definitions in imported scopes.

« Imported IDL name scopes exist in the same space as names defined in subsequent declarations in the importing
specification.

« IDL module definitions may re-open modul es defined in imported name scopes.

« Importing an inner name scope (i.e., a name scope nested within one or more enclosing name scopes) does not
implicitly import the contents of any of the enclosing name scopes.

« When aname scope is imported, the names of the enclosing scopesin the fully-qualified pathname of the enclosing
scope are exposed within the context of the importing specification, but their contents are not imported. Animporting
specification may not redefine or reopen a name scope that has been exposed (but not imported) by an import
statement.

« Importing a name scope recursively imports all name scopes nested within it.

 For the purposes of this International Standard, name scopes that can be imported (i.e., specified in an import
statement) include the following: modules, interfaces, valuetypes, and eventtypes.

» Redundant imports (e.g., importing an inner scope and one of its enclosing scopes in the same specification) are
disregarded. The union of all imported scopesis visible to the importing program.

» ThisInternational Standard does not define a particular form for generated stubs and skeletons in any given
programming language. In particular, it does not imply any normative relationship between units specification and
units of generation and/or compilation for any language mapping.

7.7 Module Declaration
A module definition satisfies the following syntax:

(3)<module>::="module” <identifier>“{" <definition>*“}"

46 Common Object Request Broker Architecture (CORBA), v3.1.1

The module construct is used to scope IDL identifiers;, sse CORBA Module on page 88 for details.

7.8 Interface Declaration
An interface definition satisfies the following syntax:

(4) <interface>::=<interface_dcl>

| <forward_dcl>
(5) <interface_dcl>::=<interface_header>“{" <interface_body>“}"
(6) <forward_dcl>::=[“abstract” | “local”] “interface” <identifier>

(7) <interface_header>::=[“abstract” | “local”] “interface” <identifier>
[<interface_inheritance_spec>]

(8) <interface_body>::=<export>"

(9) <export>::=<type_dcl>"“;"

<const_dcl>*“;"

<except_dcl>";"

<attr_dcl>";"

<op_dcl>*“;"

<type_id_decl>"“;"

<type_prefix_decl>";”

7.8.1 Interface Header

The interface header consists of three elements:
1. Anoptiona modifier specifying if theinterface is an abstract interface.

2. Theinterface name. The name must be preceded by the keyword interface, and consists of an identifier that names
the interface.

3. Anoptional inheritance specification. The inheritance specification is described in the next sub clause.

The <identifier> that names an interface defines a legal type name. Such a type name may be used anywhere an
<identifier> islegal in the grammar, subject to semantic constraints as described in the following sub clauses. Since one
can only hold references to an aobject, the meaning of a parameter or structure member, which is an interface typeisasa
reference to an object supporting that interface. Each language binding describes how the programmer must represent
such interface references.

Abstract interfaces have dlightly different rules and semantics from “regular” interfaces, as described in Abstract
Interface on page 51. They also follow different language mapping rules.

Local interfaces have slightly different rules and semantics from “regular” interfaces, as described in Local Interface on
page 51. They also follow different language mapping rules.

7.8.2 Interface Inheritance Specification

The syntax for inheritance is as follows:

(10) <interface_inheritance_spec>::=":" <interface_name>
{",” <interface_name> }*

Common Object Request Broker Architecture (CORBA), v3.1.1 47

(11) <interface_name>::=<scoped_name>
(12) <scoped_name>::=<identifier>
| “::" <identifier>
| <scoped_name>“::" <identifier>
Each <scoped_name> inan <interface_inheritance_spec> must be the name of a previously defined interface or an
aliasto apreviously defined interface. See Interface Inheritance on page 49 for the description of inheritance.

7.8.3 Interface Body

The interface body contains the following kinds of declarations:

» Constant declarations, which specify the constants that the interface exports. Constant declaration syntax is described
in Constant Declaration on page 57.

» Type declarations, which specify the type definitions that the interface exports. Type declaration syntax is described in
Type Declaration on page 61.

» Exception declarations, which specify the exception structures that the interface exports. Exception declaration syntax
is described in Exception Declaration on page 73.

« Attribute declarations, which specify the associated attributes exported by the interface. Attribute declaration syntax is
described in Attribute Declaration on page 76.

» Operation declarations, which specify the operations that the interface exports and the format of each, including
operation name, the type of data returned, the types of all parameters of an operation, legal exceptions that may be
returned as aresult of an invocation, and contextual information that may affect method dispatch. Operation
declaration syntax is described in Operation Declaration on page 73.

Empty interfaces are permitted (that is, those containing no declarations).

Some implementations may require interface-specific pragmas to precede the interface body.
7.8.4 Forward Declaration

A forward declaration declares the name of an interface without defining it. This permits the definition of interfaces that
refer to each other. The syntax is: optionally either the keyword abstract or the keyword local, followed by the keyword
interface, followed by an <identifier> that names the interface.

Multiple forward declarations of the same interface name are legal.

It isillegal to inherit from a forward-declared interface whose definition has not yet been seen:

module Example {
interface base; /l Forward declaration

...
interface derived : base {}; // Error

interface base {}; /l Define base
interface derived : base {}; // OK

48 Common Object Request Broker Architecture (CORBA), v3.1.1

7.8.5 Interface Inheritance

An interface can be derived from another interface, which is then called a base interface of the derived interface. A
derived interface, like all interfaces, may declare new elements (constants, types, attributes, exceptions, and operations).
In addition, unless redefined in the derived interface, the elements of a base interface can be referred to as if they were
elements of the derived interface. The name resolution operator (“::”) may be used to refer to a base element explicitly;
this permits reference to a name that has been redefined in the derived interface.

A derived interface may redefine any of the type, constant, and exception names that have been inherited; the scope rules
for such names are described in Names and Scoping on page 89.

Aninterface is called a direct base if it is mentioned in the <interface_inheritance_spec> and an indirect base if it is
not a direct base but is a base interface of one of the interfaces mentioned in the <interface_inheritance_spec>.

An interface may be derived from any number of base interfaces. Such use of more than one direct base interface is often
called multiple inheritance. The order of derivation is not significant.

An abstract interface may only inherit from other abstract interfaces.

An interface may not be specified as a direct base interface of a derived interface more than once; it may be an indirect
base interface more than once. Consider the following example:

interface A{ ...}

interface B: A{ ...}

interface C: A{ ...}

interfaceD: B,C{ ...}

interface E: A,B{ ... }; Il OK

The relationships between these interfaces is shown in Figure 7.1. This “diamond” shape is legal, as is the definition of E
on theright.

NN

Figure 7.1 - Legal Multiple Inheritance Example

References to base interface elements must be unambiguous. A Reference to a base interface element is ambiguous if the
name is declared as a constant, type, or exception in more than one base interface. Ambiguities can be resolved by
qualifying a name with its interface name (that is, using a <scoped_name>). It isillegal to inherit from two interfaces
with the same operation or attribute name, or to redefine an operation or attribute name in the derived interface.

So for example in:

Common Object Request Broker Architecture (CORBA), v3.1.1 49

interface A {
typedef long L1;
short opA(in L11_1);
¥

interface B {
typedef short L1;
L1 opB(in long I);

h
interface C: B, A {
typedef L1 L2; /I Error: L1 ambiguous
typedef A::L1L3; /I A::L1is OK
B::L1 opC(in L31_3); //all OK no ambiguities
h

References to constants, types, and exceptions are bound to an interface when it is defined (i.e., replaced with the
equivalent global <scoped_name>s). This guarantees that the syntax and semantics of an interface are not changed
when the interface is a base interface for a derived interface. Consider the following example:

constlong L = 3;

interface A {
typedef float coord[L]:
void f (in coord s); I/l s has three floats

b

interface B {
constlong L =4;

|3
interface C: B, A { }; /I what is C::f()’s sighature?

The early binding of constants, types, and exceptions at interface definition guarantees that the signature of operation f in
interface C is

typedef float coord[3];
void f (in coord s);

which isidentical to that in interface A. This rule also prevents redefinition of a constant, type, or exception in the derived
interface from affecting the operations and attributes inherited from a base interface.

Interface inheritance causes all identifiers defined in base interfaces, both direct and indirect, to be visible in the current
naming scope. A type name, constant name, enumeration value name, or exception name from an enclosing scope can be
redefined in the current scope. An attempt to use an ambiguous name without qualification produces a compilation error.
Thusin:

interface A {
typedef string<128> string _t;
¥

interface B {

50 Common Object Request Broker Architecture (CORBA), v3.1.1

typedef string<256> string_t;

5

interface C: A, B {
attribute string_t Title; /l Error: string_t ambiguous
attribute A::string_t Name; Il OK
attribute B::string_t City; Il OK

5

operation and attribute names are used at run-time by both the stub and dynamic interfaces. As aresult, all operations and
attributes that might apply to a particular object must have unique names. This requirement prohibits redefining an
operation or attribute name in a derived interface, as well as inheriting two operations or attributes with the same name.

interface A {
void make_it_so();

h

interface B: A {
short make_it_so(in long times); // Error: redefinition of make_it_so

3
For a complete summary of allowable inheritance and supporting relationships among interfaces and val uetypes see Table
7.10 on page 56.
7.8.6 Abstract Interface
An interface declaration containing the keyword abstract in its header, declares an abstract interface. The following
special rules apply to abstract interfaces:

» Abstract interfaces may only inherit from other abstract interfaces.

« Value types may support any number of abstract interfaces.

See Semantics of Abstract Interfaces on page 173 for CORBA implementation semantics associated with abstract
interfaces.

For a complete summary of allowable inheritance and supporting relationships among interfaces and val uetypes see Table
7.10 on page 56.
7.8.7 Local Interface

An interface declaration containing the keyword local in its header declares alocal interface. An interface declaration not
containing the keyword local is referred to as an unconstrained interface. An object implementing a local interface is
referred to as a local object. The following special rules apply to local interfaces:

» A local interface may inherit from other local or unconstrained interfaces.

« Anunconstrained interface may not inherit from alocal interface. An interface derived from alocal interface must be
explicitly declared local.

« A vauetype may support alocal interface.

Common Object Request Broker Architecture (CORBA), v3.1.1 51

« Any IDL type, including an unconstrained interface, may appear as a parameter, attribute, return type, or exception
declaration of alocal interface.

- Alocdl interfaceisalocal type, asis any non-interface type declaration constructed using alocal interface or other
local type. For example, a struct, union, or exception with amember that isalocal interfaceis also itself alocal type.

» A local type may be used as a parameter, attribute, return type, or exception declaration of alocal interface or of a
valuetype.

» A loca type may not appear as a parameter, attribute, return type, or exception declaration of an unconstrained
interface.

For a complete summary of allowable inheritance and supporting relationships among interfaces and val uetypes see Table
7.10 on page 56.

See LocalObject Operations on page 113 for CORBA implementation semantics associated with local objects.

7.9 Value Declaration

There are several kinds of value type declarations: “regular” value types, boxed value types, abstract value types, and
forward declarations.

A value declaration satisfies the following syntax:

(13) <value>::=(<value_dcl> | <value_abs_dcl>| <value_box_dcl> | <value_forward_dcl>)
7.9.1 Regular Value Type

A regular value type satisfies the following syntax:

(17)<value_dcl> ::=<value_header>"“{" <value_element>**"}"

(18) <value_header> ::=[“custom”] “valuetype” <identifier>
[<value_inheritance_spec>]

(21)<value_element> ::=<export>
| < state_member> |
| <init_dcl>

7.9.1.1 Value Header
The value header consists of two elements:
1. Thevaluetype's name and optional modifier specifying whether the value type uses custom marshaling.

2. Anoptional value inheritance specification. The value inheritance specification is described below.

7.9.1.2 Value Element

A value can contain all the elements that an interface can as well as the definition of state members, and initializers for
that state.

7.9.1.3 Value Inheritance Specification

(19)<value_inheritance_spec> ::=[“:” [“truncatable”] <value_name>
{"“,” <value_name>}*]

52 Common Object Request Broker Architecture (CORBA), v3.1.1

[“supports” <interface_name>
{",” <interface_name> }*]
(20) <value_name> ::=<scoped_name>

Each <value_name> ina<value_inheritance_spec> must be the name of a previously defined value type or an aliasto
apreviously defined value type. Each <interface_name> ina<value_inheritance_spec> must be the name of a
previously defined interface or an alias to a previously defined interface. See “Valuetype Inheritance” for the description of
value type inheritance.

The truncatable modifier may not be used if the value type being defined is a custom value.

A valuetype that supports a local interface does not itself become local (i.e., unmarshalable) as a result of that support.

7.9.1.4 State Members
(22)<state_member> ::=(“public” | “private”)

<type_spec> <declarators>"“;

Each <state_member> defines an element of the state, which is marshaled and sent to the receiver when the value type
is passed as a parameter. A state member is either public or private. The annotation directs the language mapping to hide
or expose the different parts of the state to the clients of the value type. The private part of the state is only accessible to
the implementation code and the marshaling routines.

A valuetype that has a state member that islocal (i.e., hon-marshalable like alocal interface), isitself rendered local. That
is, such valuetypes behave similar to local interfaces when an attempt is made to marshal them.

Note that certain programming languages may not have the built in facilities needed to distinguish between the public and
private members. In these cases, the language mapping specifies the rules that programmers are responsible for following.

7.9.1.5 Initializers
(23) <init_dcl>::="factory” <identifier>
“(* [<init_param_decls>] “)”
[<raises_expr>1]1"“;"
(24) <init_param_decls> ::=<init_param_decl> { “,” <init_param_decl> }*
(25) <init_param_decl> ::=<init_param_attribute> <param_type_spec> <simple_declarator>

(26) <init_param_attribute> ::="in"

In order to ensure portability of value implementations, designers may also define the signatures of initializers (or
constructors) for non-abstract value types. Syntactically these look like local operation signatures except that they are
prefixed with the keyword factory, have no return type, and must use only in parameters. There may be any number of
factory declarations. The names of the initializers are part of the name scope of the value type. Initializers defined in a
valuetype are not inherited by derived valuetypes, and hence the names of the initializers are free to be reused in a derived
valuetype.

If noinitializers are specified in IDL, the value type does not provide a portable way of creating a runtime instance of its
type. There is no default initializer. This allows the definition of IDL value types, which are not intended to be directly
instantiated by client code.

Common Object Request Broker Architecture (CORBA), v3.1.1 53

7.9.1.6 Value Type Example

interface Tree {
void print()
¥

valuetype WeightedBinaryTree {
/I state definition
private unsigned long weight;
private WeightedBinaryTree left;
private WeightedBinaryTree right;
Il initializer
factory init(in unsigned long w);
/l'local operations
WeightSeq pre_order();
WeightSeq post_order();
¥
valuetype WTree: WeightedBinaryTree supports Tree {};

7.9.2 Boxed Value Type

(15)<value_box_dcl>::="valuetype” <identifier> <type_spec>

It is often convenient to define a value type with no inheritance or operations and with a single state member. A shorthand
IDL notation is used to simplify the use of value types for this kind of simple containment, referred to as a “value box.”

Since a value box of a valuetype adds no additional properties to a valuetype, it is an error to box valuetypes.

Value box is particularly useful for strings and sequences. Basically one does not have to create what is in effect an
additional namespace that will contain only one name.

An example is the following IDL:

module Example {
interface Foo {
... [*anything */
b
valuetype FooSeq sequence<Foo>;
interface Bar {
void dolt (in FooSeq seql);
b
b

The above IDL provides similar functionality to writing the following IDL. However the type identities (repository IDs)
would be different.

module Example {
interface Foo {
... I*anything */
|3
valuetype FooSeq {
public sequence<Foo> data;

54 Common Object Request Broker Architecture (CORBA), v3.1.1

b
interface Bar {
void dolt (in FooSeq seq);

h
h

The former is easier to manipulate after it is mapped to a concrete programming language.
Any IDL type may be used to declare a value box except for a valuetype.

The declaration of a boxed value type does not open a hew scope. Thus a construction such as

valuetype FooSeq sequence <FooSeq>;

isnot legal IDL. The identifier being declared as a boxed value type cannot be used subsequent to its initial use and prior
to the completion of the boxed value declaration.

7.9.3 Abstract Value Type

(16) <value_abs_dcl> ::="abstract” “valuetype” <identifier>
[<value_inheritance_spec>]
u{u <eXpOI’t>* u}u

Value types may also be abstract. They are called abstract because an abstract value type may not be instantiated. No
<state_member> or <initializers> may be specified. However, local operations may be specified. Essentially they are
a bundle of operation signatures with a purely local implementation.

Note that a concrete value type with an empty state is not an abstract value type.
7.9.4 Value Forward Declaration

(14)<value_forward_dcl> ::=[“abstract”] “valuetype” <identifier>

A forward declaration declares the name of a value type without defining it. This permits the definition of value types that
refer to each other. The syntax consists simply of the keyword valuetype followed by an <identifier> that names the
value type.

Multiple forward declarations of the same value type name are legal.
Boxed value types cannot be forward declared; such a forward declaration would refer to a normal value type.
It isillegal to inherit from a forward-declared value type whose definition has not yet been seen.

Itisillegal for a value type to support a forward-declared interface whose definition has not yet been seen.
7.9.5 Valuetype Inheritance

The terminology that is used to describe value type inheritance is directly analogous to that used to describe interface
inheritance (see Interface Inheritance on page 49).

The name scoping and name collision rules for valuetypes are identical to those for interfaces. In addition, no valuetype
may be specified as a direct abstract base of a derived valuetype more than once; it may be an indirect abstract base more
than once. See Interface Inheritance on page 49 for a detailed description of the analogous properties for interfaces.

Common Object Request Broker Architecture (CORBA), v3.1.1 55

Values may be derived from other values and can support an interface and any number of abstract interfaces.

Once implementation (state) is specified at a particular point in the inheritance hierarchy, all derived value types (which
must of course implement the state) may only derive from a single (concrete) value type. They can however derive from
other additional abstract values and support an additional interface.

The single immediate base concrete value type, if present, must be the first element specified in the inheritance list of the
value declaration’s IDL. It may be followed by other abstract values from which it inherits. The interface and abstract
interfaces that it supports are listed following the supports keyword.

While a valuetype may only directly support one interface, it is possible for the valuetype to support other interfaces as

well through inheritance. In this case, the supported interface must be derived, directly or indirectly, from each interface
that the valuetype supports through inheritance. This rule does not apply to abstract interfaces that the val uetype supports.

For example:

interface 11 { };
interface 12 { };
interface 13: 11, 12 { };

abstract valuetype V1 supports 11 { };
abstract valuetype V2 supports 12 { };
valuetype V3: V1, V2 supports I3 { }; // legal
valuetype V4: V1 supports 12 { }; // illegal

A stateful value that derives from another stateful value may specify that it is truncatable. This means that it is to
“truncate” (see Value instance -> Value type on page 160) an instance to be an instance of any of its truncatable parent
(stateful) value types under certain conditions. Note that all the intervening types in the inheritance hierarchy must be
truncatable in order for truncation to a particular type to be allowed.

Because custom values require an exact type match between the sending and receiving context, truncatable may not be
specified for a custom value type.

Non-custom value types may not (transitively) inherit from custom value types.
Boxed value types may not be derived from, nor may they derive from, anything else.

These rules are summarized in the following table.

Table 7.10
May inherit Interface Abstract Abstract Stateful Value Boxed
from: Interface Value value
Interface multiple multiple no no no
Abstract no multiple no no no
Interface
Abstract Value supports single supports multiple multiple no no
Sateful Value supports single supports multiple multiple single (may be no

truncatabl €)

Boxed Value no no no no no

56 Common Object Request Broker Architecture (CORBA), v3.1.1

7.10 Constant Declaration

This sub clause describes the syntax for constant declarations.

7.10.1 Syntax

The syntax for a constant declaration is:

(27)<const_dcl>::="const” <const_type>
<identifier>“=" <const_exp>
(28) <const_type>::=<integer_type>
| <char_type>
| <wide_char_type>
| <boolean_type>
| <floating_pt_type>
| <string_type>
| <wide_string_type>
| <fixed_pt_const_type>
| <scoped_name>
| <octet_type>
(29) <const_exp>::=<or_expr>
(30) <or_expr>::=<xor_expr>
| <or_expr>*"|" <xor_expr>
(31) <xor_expr>::=<and_expr>
| <xor_expr>*“~" <and_expr>
(32) <and_expr>::=<shift_expr>
| <and_expr>*“&” <shift_expr>
(33) <shift_expr>::=<add_expr>
| <shift_expr>“>>" <add_expr>
| <shift_expr>“<<” <add_expr>
(34) <add_expr>::=<mult_expr>
| <add_expr>“+" <mult_expr>
| <add_expr>"“-" <mult_expr>
(35) <mult_expr>::=<unary_expr>
| <mult_expr>"“*" <unary_expr>
| <mult_expr>*“/" <unary_expr>
| <mult_expr>“%" <unary_expr>
(36) <unary_expr>::=<unary_operator> <primary_expr>
| <primary_expr>
(37) <unary_operator>::="-"
| ¥
| o~
(38) <primary_expr>::=<scoped_name>
| <literal>
| “(" <const_exp>"*)"
(39) <literal>::=<integer_literal>
| <string_literal>
| <wide_string_literal>

Common Object Request Broker Architecture (CORBA), v3.1.1

57

<character_literal>
<wide_character_literal>
<fixed_pt_literal>
<floating_pt_literal>

| <boolean_literal>
(40) <boolean_literal>::="TRUE”

| “FALSE”

(41) <positive_int_const>::=<const_exp>

7.10.2 Semantics

The <scoped_name> in the <const_type> production must be a previously defined name of an <integer_type>,
<char_type>, <wide_char_type>, <boolean_type>, <floating_pt_type>, <string_type>, <wide_string_type>,
<octet_type>, or <enum_type> constant.

Octet literals have integer value in the range 0..255. If the right hand side of an octet constant declaration is outside this
range it shall be flagged as a compile time error.

Integer literals have positive integer values. Constant integer literals are considered unsigned long unless the value is
too large, then they are considered unsigned long long. Unary minus is considered an operator, not a part of an integer
literal. Only integer values can be assigned to integer type (short, long, long long) constants, and octet constants.
Only positive integer values can be assigned to unsigned integer type constants. If the value of the right hand side of an
integer constant declaration is too large to fit in the actual type of the constant on the left hand side, for example

const short s = 655592;

or is inappropriate for the actual type of the left hand side, for example

const octet o = -54;
it shall be flagged as a compile time error.

Floating point literals have floating point values. Only floating point values can be assigned to floating point type (float,
double, long double) constants. Constant floating point literals are considered double unless the value is too large,
then they are considered long double. If the value of the right hand side is too large to fit in the actual type of the
constant to which it is being assigned, it shall be flagged as a compile time error. Truncation on the right for floating point
types is OK.

Fixed point literals have fixed point values. Only fixed point values can be assigned to fixed point type constants. If the
fixed point value in the expression on the right hand side is too large to fit in the actual fixed point type of the constant
on the left hand side, then it shall be flagged as a compile time error. Truncation on the right for fixed point types is OK.

If the type of an integer constant islong or unsigned long, then each subexpression of the associated constant
expression istreated as an unsigned long by default, or asigned long for negated literals or negative integer constants.
It isan error if any subexpression values exceed the precision of the assigned type (long or unsigned long), or if afinal
expression value (of type unsigned long) exceeds the precision of the target type (long).

If the type of an integer constant islong long or unsigned long long, then each subexpression of the associated
constant expression is treated as an unsigned long long by default, or a signed long long for negated literals or
negative integer constants. It is an error if any subexpression values exceed the precision of the assigned type (long long
or unsigned long long), or if afinal expression value (of type unsigned long long) exceeds the precision of the
target type (long long).

58 Common Object Request Broker Architecture (CORBA), v3.1.1

If the type of afloating-point constant is double, then each subexpression of the associated constant expression is treated
asadouble. It is an error if any subexpression value exceeds the precision of double.

If the type of afloating-point constant islong double, then each subexpression of the associated constant expression is
treated as along double. It is an error if any subexpression value exceeds the precision of long double.

An infix operator can combine two integer types, floating point types or fixed point types, but not mixtures of these. Infix
operators are applicable only to integer, floating point, and fixed point types.

Integer expressions are evaluated using the imputed type of each argument of a binary operator in turn. If either argument
isunsigned long long, use unsigned long long. If either argument islong long, uselong long. If either argument
isunsigned long., use unsigned long. Otherwise use long. The final result of an integer arithmetic expression must
fit in the range of the declared type of the constant, otherwise an error shall be flagged by the compiler. In addition to the
integer types, the final result of an integer arithmetic expression can be assigned to an octet constant, subject to it fitting
in the range for octet type.

Floating point expressions are evaluated using the imputed type of each argument of a binary operator in turn. If either
argument islong double, use long double. Otherwise use double. The final result of a floating point arithmetic
expression must fit in the range of the declared type of the constant, otherwise an error shall be flagged by the compiler.

Fixed-point decimal constant expressions are evaluated as follows. A fixed-point literal has the apparent number of total
and fractional digits. For example, 0123.450d is considered to be fixed<7,3> and 3000.00d is fixed<6,2>. Prefix
operators do not affect the precision; a prefix + is optional, and does not change the result. The upper bounds on the
number of digits and scale of the result of an infix expression, fixed<d1,s1> op fixed<d2,s2>, are shown in the
following table.

Op Result: fixed<d,s>

+ fixed<max(d1-s1,d2-s2) + max(sl,s2) + 1, max(sl,s2)>

- fixed<max(d1-sl,d2-s2) + max(sl,s2) + 1, max(sl,s2)>

* fixed<d1+d2, s1+s2>

/ fixed<(d1-s1+s2) + sinf, sinf>

A quotient may have an arbitrary number of decimal places, denoted by a scale of s+. The computation proceeds
pairwise, with the usual rules for left-to-right association, operator precedence, and parentheses. All intermediate
computations shall be performed using double precision (i.e., 62 digit) arithmetic. If an individual computation between a
pair of fixed-point literals actually generates more than 31 significant digits, then a 31-digit result is retained as follows:

fixed<d,s> => fixed<31, 31-d+s>

Leading and trailing zeros are not considered significant. The omitted digits are discarded; rounding is not performed. The
result of the individual computation then proceeds as one literal operand of the next pair of fixed-point literals to be
computed.

Unary (+ -) and binary (* / + -) operators are applicable in floating-point and fixed-point expressions. Unary (+ - ~) and
binary (*/ % + - << >> & | ™) operators are applicable in integer expressions.

Common Object Request Broker Architecture (CORBA), v3.1.1 59

The“~" unary operator indicates that the bit-complement of the expression to which it is applied should be generated. For
the purposes of such expressions, the values are 2's complement numbers. As such, the complement can be generated as
follows:

Integer Constant Expression Type Generated 2's Complement Numbers
long long -(value+1)

unsigned long unsigned long (2**32-1) - value

long long long long -(value+1)

unsigned long long unsigned long (2**64-1) - value

The “%” binary operator yields the remainder from the division of the first expression by the second. If the second
operand of “%" is 0O, the result is undefined; otherwise

(a/b)*b + a%b

is equal to a. If both operands are non-negative, then the remainder is non-negative; if not, the sign of the remainder is
implementation dependent.

The “<<” binary operator indicates that the value of the left operand should be shifted left the number of bits specified by
the right operand, with O fill for the vacated bits. The right operand must be in the range 0 <= right operand < 64.

The “>>" binary operator indicates that the value of the left operand should be shifted right the number of bits specified
by the right operand, with O fill for the vacated bits. The right operand must be in the range 0 <= right operand < 64.

The “&” binary operator indicates that the logical, bitwise AND of the left and right operands should be generated.
The “|" binary operator indicates that the logical, bitwise OR of the left and right operands should be generated.

The “~" binary operator indicates that the logical, bitwise EXCLUSIVE-OR of the left and right operands should be
generated.

<positive_int_const> must evaluate to a positive integer constant.
An octet constant can be defined using an integer literal or an integer constant expression, for example:
Values for an octet constant outside the range 0 - 255 shall cause a compile-time error.

An enum constant can only be defined using a scoped name for the enumerator. The scoped name is resolved using the
normal scope resolution rules 7.20, Names and Scoping. For example:

enum Color { red, green, blue };
const Color FAVORITE_COLOR =red;

module M {
enum Size { small, medium, large };

b
const M::Size MYSIZE = M::medium;

The constant name for the RHS of an enumerated constant definition must denote one of the enumerators defined for the
enumerated type of the constant. For example:

60 Common Object Request Broker Architecture (CORBA), v3.1.1

const Color col =red; //is OK but
const Color another = M::medium; // is an error

7.11 Type Declaration

IDL provides constructs for naming data types; that is, it provides C language-like declarations that associate an identifier
with atype. IDL uses the typedef keyword to associate a name with a data type. A name is also associated with a data

type via the struct, union, enum, and native declarations. The syntax is:

(42) <type_dcl>::="typedef” <type_declarator>
<struct_type>

<union_type>

<enum_type>

“native” <simple_declarator>
| <constr_forward_decl>

(43) <type_declarator>::=<type_spec> <declarators>

For type declarations, IDL defines a set of type specifiers to represent typed values. The syntax is as follows:

(44) <type_spec>::=<simple_type_spec>

| <constr_type_spec>
(45) <simple_type_spec>::=<base_type_spec>

| <template_type_spec>

| <scoped_name>
(46) <base_type_spec>::=<floating_pt_type>
<integer_type>
<char_type>
<wide_char_type>
<boolean_type>
<octet_type>
<any_type>
<object_type>
<value_base_type>
(47) <template_type_spec>::=<sequence_type>

| <string_type>

| <wide_string_type>

| <fixed_pt_type>
(48) <constr_type spec>::=<struct_type>

| <union_type>

| <enum_type>

(49) <declarators>::=<declarator> { “,” <declarator> }*

(50) <declarator>::=<simple_declarator>
| <complex_declarator>

(51) <simple_declarator>::=<identifier>
(52) <complex_declarator>::=<array_declarator>

Common Object Request Broker Architecture (CORBA), v3.1.1

61

The <scoped_name> in <simple_type_spec> must be a previously defined type introduced by an interface
declaration (<interface_dcl> - see 7.8, Interface Declaration), a value declaration (<value_dcl>, <value_box_dcl> or
<abstract_value_dcl> - see 7.9, Value Declaration) or a type declaration (<type_dcl> - see 7.11, Type Declaration).
Note that exceptions are not considered types in this context.

As seen above, IDL type specifiers consist of scalar data types and type constructors. IDL type specifiers can be used in
operation declarations to assign data types to operation parameters. The next sub clauses describe basic and constructed
type specifiers.

7.11.1 Basic Types

The syntax for the supported basic types is as follows:

(53) <floating_pt_type>::="float”
| “double”
| “long” “double”
(54) <integer_type>::=<signed_int>
| <unsigned_int>
(55) <signed_int>::=<signed_short_int>
| <signed_long_int>
| <signed_longlong_int>
(56) <signed_short_int>::="short”
(57) <signed_long_int>::="long”
(58) <signed_longlong_int>::="long” “long”
(59) <unsigned_int>::=<unsigned_short_int>
| <unsigned_long_int>
| <unsigned_longlong_int>
(60) <unsigned_short_int>::="unsigned” “short”
(61) <unsigned_long_int>::="unsigned” “long”
(62) <unsigned_longlong_int>::=*unsigned” “long” “long”
(63) <char_type>::=“char”
(64) <wide_char_type>::="wchar”
(65) <boolean_type>::=“boolean”
(66) <octet_type>::="octet”
(67) <any_type>::="any”

Each IDL datatype is mapped to a native data type via the appropriate language mapping. Conversion errors between |DL
data types and the native types to which they are mapped can occur during the performance of an operation invocation.

The invocation mechanism (client stub, dynamic invocation engine, and skeletons) may signal an exception condition to
the client if an attempt is made to convert an illegal value. The standard system exceptions that are to be raised in such

situations are defined in 8.12, Exceptions.

62 Common Object Request Broker Architecture (CORBA), v3.1.1

7.11.1.1 Integer Types

IDL integer types are short, unsigned short, long, unsigned long, long long, and unsigned long long
representing integer values in the range indicated below in Table 7.11.

Table 7.11
short 215 21501
long 281 28l
long long 288 2831
unsigned short 0.216.1
unsigned long 0..2%.1
unsigned long long 0.2%-1

7.11.1.2 Floating-Point Types

IDL floating-point types are float, double, and long double. The float type represents |EEE single-precision floating
point numbers; the double type represents IEEE double-precision floating point numbers. The long double data type
represents an |EEE double-extended floating-point number, which has an exponent of at least 15 bits in length and a
signed fraction of at least 64 bits. See |IEEE Sandard for Binary Floating-Point Arithmetic, ANSI/IEEE Standard 754-
1985, for a detailed specification.

7.11.1.3 Char Type

IDL defines achar datatype that is an 8-hit quantity that (1) encodes a single-byte character from any byte-oriented code
set, or (2) when used in an array, encodes a multi-byte character from a multi-byte code set. In other words, an
implementation is free to use any code set internally for encoding character data, though conversion to another form may
be required for transmission.

The 1SO 8859-1 (Latinl) character set standard defines the meaning and representation of all possible graphic characters
used in IDL (i.e., the space, alphabetic, digit, and graphic characters defined in Table 7.2 on page 30, Table 7.3 on page
31, and Table 7.4 on page 31). The meaning and representation of the null and formatting characters (see Table 7.5 on
page 33) is the numerical value of the character as defined in the ASCII (1SO 646) standard. The meaning of all other
characters is implementation-dependent.

During transmission, characters may be converted to other appropriate forms as required by a particular language binding.
Such conversions may change the representation of a character but maintain the character’s meaning. For example, a
character may be converted to and from the appropriate representation in international character sets.

7.11.1.4 Wide Char Type

IDL defines awchar data type that encodes wide characters from any character set. As with character data, an
implementation is free to use any code set internally for encoding wide characters, though, again, conversion to another
form may be required for transmission. The size of wchar is implementation-dependent.

7.11.1.5 Boolean Type
The boolean data type is used to denote a data item that can only take one of the values TRUE and FALSE.

Common Object Request Broker Architecture (CORBA), v3.1.1 63

7.11.1.6 Octet Type

The octet type is an 8-bit quantity that is guaranteed not to undergo any conversion when transmitted by the
communication system.

7.11.1.7 Any Type
The any type permits the specification of values that can express any IDL type.

An any logically contains a TypeCode (see 8.11, TypeCodes) and a value that is described by the TypeCode. Each IDL
language mapping provides operations that allow programers to insert and access the TypeCode and value contained in
an any.

7.11.2 Constructed Types

Structs, unions, and enums are the constructed types. Their syntax is presented below:

(42)<type_dcl>::="typedef” <type_declarator>

| <struct_type>

| <union_type>

| <enum_type>

| “native” <simple_declarator>

| <constr_forward_decl>
(48)<constr_type_spec>::=<struct_type>

| <union_type>

| <enum_type>
(99)<constr_forward_decl>::="struct” <identifier>

| “union” <identifier>
7.11.2.1 Structures
The syntax for struct typeis:
(69)<struct_type>::="struct” <identifier>"“{" <member_list>“}"

(70) <member_list>::=<member>*
(71) <member>::=<type_spec> <declarators>*“;"

The <identifier> in <struct_type> defines a new legal type. Structure types may also be named using a typedef
declaration.

Name scoping rules require that the member declarators in a particular structure be unique. The value of a struct isthe
value of al of its members.

7.11.2.2 Discriminated Unions
The discriminated union syntax is:
(72) <union_type>::=“union” <identifier> “switch”
“(" <switch_type spec>")"
“{" <switch_body>*“}"

(73) <switch_type_spec>::=<integer_type>
| <char_type>

64 Common Object Request Broker Architecture (CORBA), v3.1.1

| <boolean_type>

| <enum_type>

| <scoped_name>
(74) <switch_body>::=<case>*
(75) <case>::=<case_label>* <element_spec>*;”
(76) <case_label>::="case” <const_exp>"“:"

| “default” “:”
(77) <element_spec>::=<type_spec> <declarator>

IDL unions are a cross between the C union and switch statements. IDL unions must be discriminated; that is, the
union header must specify atyped tag field that determines which union member to use for the current instance of a call.
The <identifier> following the union keyword defines a new legal type. Union types may also be named using a
typedef declaration. The <const_exp> in a<case_label> must be consistent with the <switch_type spec>. A
default case can appear at most once. The <scoped_name> in the <switch_type_spec> production must be a
previously defined integer, char, boolean, or enum type.

Case labels must match or be automatically castable to the defined type of the discriminator. Name scoping rules require
that the element declarators in a particular union be unique. If the <switch_type_spec> isan <enum_type>, the
identifier for the enumeration is in the scope of the union; as a result, it must be distinct from the element declarators.

It isnot required that all possible values of the union discriminator be listed in the <switch_body>. The value of a union
is the value of the discriminator together with one of the following:

 If the discriminator value was explicitly listed in acase statement, the value of the element associated with that case
Statement;

- If adefault case label was specified, the value of the element associated with the default case label;
- No additiona value.

The values of the constant expressions for the case labels of a single union definition must be distinct. A union type can
contain a default label only where the values given in the non-default labels do not cover the entire range of the union's
discriminant type.

Access to the discriminator and the related element is language-mapping dependent.

NOTE: Whileany I1SO Latin-1 (8859.1) IDL character literal may be used in a<case_label> in aunion definition whose
discriminator typeischar, not all of these characters are present in all transmission code sets that may be negotiated by GIOP
or in al native code sets that may be used by implementation language compilers and runtimes. When an attempt is made to
marshal to CDR aunion whose discriminator value of char typeisnot available in the negotiated transmission code set, or to
demarshal from CDR aunion whose discriminator value of char type is not available in the native code set, a
DATA_CONVERSION system exception israised. Therefore, to ensure portability and interoperability, care must be
exercised when assigning the <case_label> for aunion member whose discriminator typeischar. Dueto these issues, use
of char types as the discriminator type for unionsis not recommended.

7.11.2.3 Constructed Recursive Types and IForward Declarations

The IDL syntax allows the generation of recursive structures and unions via members that have a sequence type. The
element type of a recursive sequence struct or union member must identify a struct, union, or valuetype. (A valuetype is
allowed to have a member of its own type either directly or indirectly through a member of a constructed type—see
7.9.1.6, Value Type Example.) For example, the following is legal:

Common Object Request Broker Architecture (CORBA), v3.1.1 65

struct Foo {
long value;
sequence<Foo> chain; /I Deprecated (see Section 7.11.6)

}
See Sequences on page 68 for details of the sequence template type.

IDL supports recursive types via a forward declaration for structures and unions (as well as for valuetypes—see 7.9.1.6,
Value Type Example). Because anonymous types are deprecated (see Deprecated Anonymous Types on page 70), the
previous example is better written as:

struct Foo; /l Forward declaration
typedef sequence<Foo> FooSeq;
struct Foo {

long value;

FooSeq chain;

b

The forward declaration for the structure enables the definition of the sequence type FooSeq, which is used as the type
of the recursive member.

Forward declarations are legal for structures and unions. A structure or union type is termed incomplete until its full
definition is provided; that is, until the scope of the structure or union definition is closed by aterminating “}.” For
example:

struct Foo; /l Introduces Foo type name,
/[Foo is incomplete now
...
struct Foo {
...
% /[Foo is complete at this point

If a structure or union is forward declared, a definition of that structure or union must follow the forward declaration in
the same source file. Compilers shall issue a diagnostic if this rule is violated. Multiple forward declarations of the same
structure or union are legal.

If a sequence member of a structure or union refers to an incomplete type, the structure or union itself remains incomplete
until the member’s definition is completed. For example:

struct Foo;
typedef sequence<Foo> FooSeq;
struct Bar {
long value;
FooSeq chain; //Use of incomplete type
% /[Bar itself remains incomplete
struct Foo {
...
4 /[Foo and Bar are complete

Compilers shall issue a diagnostic if this rule is violated.

Recursive definitions can span multiple levels. For example:

66 Common Object Request Broker Architecture (CORBA), v3.1.1

union Bar; /I Forward declaration
typedef sequence<Bar> BarSeq;
union Bar switch(long) { // Define incomplete union
case 0:
long |_mem;
case 1:
struct Foo {
double d_mem;
BarSeq nested; // OK, recurse on enclosing
/[incomplete type
}s_mem;

h

An incomplete type can only appear as the element type of a sequence definition. A sequence with incomplete element
type is termed an incomplete sequence type. For example:

struct Foo; /l Forward declaration
typedef sequence<Foo> FooSeq; /lincomplete

An incomplete sequence type can appear only as the element type of another sequence, or as the member type of a
structure or union definition. For example:

struct Foo; /l Forward declaration
typedef sequence<Foo> FooSeq; /I OK
typedef sequence<FooSeq> FooTree; // OK

interface | {
FooSeq opl(); /I lllegal, FooSeq is incomplete
void op2(I/l lllegal, FooTree is incomplete

in FooTree t

)i

h

struct Foo { /l Provide definition of Foo
long |_mem;
FooSeq chain; /I OK
FooTree tree; Il OK

h

interface J {
FooSeq opl(); /I OK, FooSeq is complete
void op2(
in FooTreet // OK, FooTree is complete
)i
h

Compilers shall issue a diagnostic if this rule is violated.

7.11.2.4 Enumerations

Enumerated types consist of ordered lists of identifiers. The syntax is:

Common Object Request Broker Architecture (CORBA), v3.1.1 67

(78)<enum_type>::="enum” <identifier>

“{” <enumerator>{ “,” <enumerator>}"*“}"
(79) <enumerator>::=<identifier>

A maximum of 2% identifiers may be specified in an enumeration; as such, the enumerated names must be mapped to a
native data type capable of representing a maximally-sized enumeration. The order in which the identifiers are named in
the specification of an enumeration defines the relative order of the identifiers. Any language mapping that permits two
enumerators to be compared or defines successor/predecessor functions on enumerators must conform to this ordering
relation. The <identifier> following the enum keyword defines a new legal type. Enumerated types may also be named
using a typedef declaration.

7.11.3 Template Types

The template types are:
(47)<template_type_spec>::=<sequence_type>
| <string_type>
| <wide_string_type>
| <fixed_pt_type>

7.11.3.1 Sequences

IDL defines the sequence type sequence. A sequence is a one-dimensional array with two characteristics: a maximum
size (which is fixed at compile time) and a length (which is determined at run time). The syntax is:

(80)<sequence_type>::=“sequence” “<” <simple_type_spec>"“," <positive_int_const>"“>"
| “sequence” “<” <simple_type_spec> “>"

The second parameter in a sequence declaration indicates the maximum size of the sequence. If a positive integer constant
is specified for the maximum size, the sequence is termed a bounded sequence. If no maximum size is specified, size of
the sequence is unspecified (unbounded).

Prior to passing a bounded or unbounded sequence as a function argument (or as afield in a structure or union), the length
of the sequence must be set in a language-mapping dependent manner. After receiving a sequence result from an
operation invocation, the length of the returned sequence will have been set; this value may be obtained in a language-
mapping dependent manner.

A sequence type may be used as the type parameter for another sequence type. For example, the following:

typedef sequence< sequence<long> > Fred;

declares Fred to be of type “unbounded sequence of unbounded sequence of long.” Note that for nested sequence
declarations, white space must be used to separate the two “>" tokens ending the declaration so they are not parsed as a
single “>>" token.

7.11.3.2 Strings

IDL defines the string type string consisting of all possible 8-hit quantities except null. A string is similar to a sequence
of char. As with sequences of any type, prior to passing a string as a function argument (or as afield in a structure or
union), the length of the string must be set in a language-mapping dependent manner. The syntax is:

"o

(81)<string_type>::="string” “<" <positive_int_const> “>"

| “string”

68 Common Object Request Broker Architecture (CORBA), v3.1.1

The argument to the string declaration is the maximum size of the string. If a positive integer maximum size is specified,
the string is termed a bounded string. If no maximum size is specified, the string is termed an unbounded string.

Strings are singled out as a separate type because many languages have special built-in functions or standard library
functions for string manipulation. A separate string type may permit substantial optimization in the handling of strings
compared to what can be done with sequences of general types.

7.11.3.3 Wstrings

The wstring data type represents a sequence of wchar, except the wide character null. The type wstring is similar to that
of type string, except that its element type is wchar instead of char. The actual length of awstring is set at run-time and,
if the bounded form is used, must be less than or equal to the bound. The syntax for defining a wstring is:

(82) <wide_string_type>::="wstring” “<” <positive_int_const>“>"
| “wstring”

7.11.3.4 Fixed Type

The fixed data type represents a fixed-point decimal number of up to 31 significant digits. The scale factor is a non-
negative integer less than or equal to the total number of digits (note that constants with effectively negative scale, such
as 10000, are always permitted).

The fixed data type will be mapped to the native fixed point capability of a programming language, if available. If there
is not a native fixed point type, then the IDL mapping for that language will provide a fixed point data type. Applications
that use the IDL fixed point type across multiple programming languages must take into account differences between the
languages in handling rounding, overflow, and arithmetic precision. The syntax of fixed typeis:

(96)<fixed_pt_type>::="fixed” “<" <positive_int_const>"“" <positive_int_const>“>"
(97) <fixed_pt_const_type>::="fixed”

7.11.4 Complex Declarator

7.11.4.1 Arrays

IDL defines multidimensional, fixed-size arrays. An array includes explicit sizes for each dimension.

The syntax for arraysis:

(83)<array_declarator>::=<identifier> <fixed_array_size>"
(84) <fixed_array_size>::="[" <positive_int_const>“]"

The array size (in each dimension) is fixed at compile time. When an array is passed as a parameter in an operation
invocation, all elements of the array are transmitted.

The implementation of array indices is language mapping specific; passing an array index as a parameter may yield
incorrect results.

7.11.5 Native Types

IDL provides a declaration for use by object adapters to define an opaque type whose representation is specified by the
language mapping for that object adapter. The syntax is:

Common Object Request Broker Architecture (CORBA), v3.1.1 69

(42)<type_dcl>::="native” <simple_declarator>
(51)<simple_declarator>::=<identifier>

This declaration defines a new type with the specified name. A native type is similar to an IDL basic type. The possible
values of a native type are language-mapping dependent, as are the means for constructing them and manipulating them.
Any interface that defines a native type requires each language mapping to define how the native type is mapped into that
programming language.

A native type may be used only to define operation parameters, results, and exceptions. If a native type is used for an
exception, it must be mapped to a type in a programming language that can be used as an exception. Native type
parameters are permitted only in operations of local interfaces or valuetypes. Any attempt to transmit a value of a
native type in a remote invocation may raise the MARSHAL standard system exception.

It is recommended that native types be mapped to equivalent type names in each programming language, subject to the
normal mapping rules for type names in that language. For example, in a hypothetical Object Adapter IDL module

module HypotheticalObjectAdapter {
native Servant;
interface HOA {
Object activate_object(in Servant x);
|3
|3

The IDL type Servant would map to HypotheticalObjectAdapter::Servant in C++ and the activate_object
operation would map to the following C++ member function signature:

CORBA::Object ptr activate object(
HypotheticalObjectAdapter: :Servant Xx);

The definition of the C++ type HypotheticalObjectAdapter: : Servant would be provided as part of the C++
mapping for the Hypothetical ObjectAdapter module.

NOTE: Thenativetype declarationisprovided specifically for usein object adapter interfaces, which require parameterswhose
values are concrete representations of object implementation instances. It isstrongly recommended that it not be used in service
or application interfaces. The native type declaration allows object adapters to define new primitive types without requiring
changesto the IDL language or to the IDL compiler.

7.11.6 Deprecated Anonymous Types

IDL currently permits the use of anonymous types in a number of places. For example:

struct Foo {
long value;
sequence<Foo> chain; /I Legal (but deprecated)

}

Anonymous types cause a number of problems for language mappings and are therefore deprecated by this International
Standard. Anonymous types will be removed in a future version, so new IDL should avoid use of anonymous types and
use a typedef to name such types instead. Compilers need not issue a warning if a deprecated construct is encountered.

The following (non-exhaustive) examples illustrate deprecated uses of anonymous types.

70 Common Object Request Broker Architecture (CORBA), v3.1.1

Anonymous bounded string and bounded wide string types are deprecated. This rule affects constant definitions, attribute
declarations, return value and parameter type declarations, sequence and array element declarations, and structure, union,

exception, and valuetype member declarations. For example:

const string<5> GREETING = “Hello”; I/l Deprecated
interface Foo {

readonly attribute wstring<5> name; /l Deprecated

wstring<5> op(in wstring<5> param); /I Deprecated
5
typedef sequence<wstring<5> > WS5Seq; I/l Deprecated
typedef wstring<5> NameVector [10]; I/l Deprecated
struct A {

wstring<5> mem; I/l Deprecated
|3

/I Anonymous member type in unions, exceptions,
/l and valuetypes are deprecated as well.

This is better written as:

typedef string<5> GreetingType;
const GreetingType GREETING = “Hello”;

typedef wstring<5> ShortWName;
interface Foo {
readonly attribute ShortWName name;
ShortWName op(in ShortWName param);
h
typedef sequence<ShortWName> NameSeq;
typedef ShortWName NameVector[10];
struct A {
GreetingType mem;

h

Anonymous fixed-point types are deprecated. This rule affects attribute declarations, return value and parameter type
declarations, sequence and array element declarations, and structure, union, exception, and valuetype member
declarations.

struct Foo {
fixed<10,5> member,; I/l Deprecated

h
This is better written as:
typedef fixed<10,5> MyType;

struct Foo {
MyType member;

h

Anonymous member types in structures, unions, exceptions, and valuetypes are deprecated:

Common Object Request Broker Architecture (CORBA), v3.1.1

71

union U switch(long) {

case 1:

long array_mem[10]; I/l Deprecated
case 2:

sequence<long> seq_mem,; // Deprecated
case 3:

string<5> bstring_mem;

b

This is better written as:

typedef long LongArray[10];
typedef sequence<long> LongSeq;
typedef string<5> ShortName;
union U switch (long) {
case 1:
LongArray array_mem;
case 2:
LongSeq seq_mem,;
case 3:
ShortName bstring_mem;

h

Anonymous array and seguence elements are deprecated:

typedef sequence<sequence<long>> NumberTree; // Deprecated
typedef fixed<10,2> FixedArray[10];

This is better written as:

typedef sequence<long> ListOfNumbers;
typedef sequence<ListOfNumbers> NumberTree;
typedef fixed<10,2> Fixed_10_2;

typedef Fixed_10_2 FixedArray[10];

The preceding examples are not exhaustive. They simply illustrate the rule that, for atype to be used in the definition of
another type, constant, attribute, return value, parameter, or member, that type must have a name. Note that the following
example is not deprecated (even though stylistically poor):

struct Foo {
struct Bar {

long |_mem;
double d_mem;
} bar_mem_1; /l OK, not anonymous
Bar bar_mem_2; /l OK, not anonymous
3
typedef sequence<Foo::Bar> FooBarSeq; /l Scoped names are OK

72 Common Object Request Broker Architecture (CORBA), v3.1.1

7.12 Exception Declaration

Exception declarations permit the declaration of struct-like data structures, which may be returned to indicate that an
exceptional condition has occurred during the performance of arequest. The syntax is as follows:;

(86)<except_dcl>::="exception” <identifier> “{* <member>*“}"

Each exception is characterized by its IDL identifier, an exception type identifier, and the type of the associated return
value (as specified by the <member> in its declaration). If an exception is returned as the outcome to a request, then the
value of the exception identifier is accessible to the programmer for determining which particular exception was raised.

If an exception is declared with members, a programmer will be able to access the values of those members when an
exception is raised. If no members are specified, no additional information is accessible when an exception is raised.

An identifier declared to be an exception identifier may thereafter appear only in a raises clause of an operation
declaration, and nowhere else.

A set of standard system exceptions is defined corresponding to standard run-time errors, which may occur during the
execution of arequest. These standard system exceptions are documented in 8.12, Exceptions.

7.13 Operation Declaration

Operation declarations in IDL are similar to C function declarations. The syntax is:

(87) <op_dcl>::=[<op_attribute>] <op_type_spec>

<identifier> <parameter_dcls>
[<raises_expr>]|[<context_expr>]

(88) <op_attribute>::="oneway”
(89) <op_type_spec>::=<param_type_spec>

| uvoidn

An operation declaration consists of:

An optional operation attribute that specifies which invocation semantics the communication system should provide
when the operation isinvoked. Operation attributes are described in 7.13.1, Operation Attribute.

The type of the operation’s return result; the type may be any type that can be defined in IDL. Operations that do not
return aresult must specify the void type.

An identifier that names the operation in the scope of the interface in which it is defined.

A parameter list that specifies zero or more parameter declarations for the operation. Parameter declaration is
described in 7.13.2, Parameter Declarations.

An optional raises expression that indicates which exceptions may be raised as a result of an invocation of this
operation. Raises expressions are described in 7.13.3, Raises Expressions.

An optional context expression that indicates which elements of the request context may be consulted by the method
that implements the operation. Context expressions are described in 7.13.4, Context Expressions.

Some implementations and/or language mappings may require operation-specific pragmas to immediately precede the
affected operation declaration.

Common Object Request Broker Architecture (CORBA), v3.1.1 73

7.13.1 Operation Attribute

The operation attribute specifies which invocation semantics the communication service must provide for invocations of
a particular operation. An operation attribute is optional. The syntax for its specification is as follows:

(88)<op_attribute>::="oneway”

When a client invokes an operation with the oneway attribute, the invocation semantics are best-effort, which does not
guarantee delivery of the call; best-effort implies that the operation will be invoked at most once. An operation with the
oneway attribute must not contain any output parameters and must specify avoid return type. An operation defined with
the oneway attribute may not include araises expression; invocation of such an operation, however, may raise a standard
system exception.

If an <op_attribute> is not specified, the invocation semantics is at-most-once if an exception is raised; the semantics
are exactly-once if the operation invocation returns successfully.

7.13.2 Parameter Declarations

Parameter declarations in IDL operation declarations have the following syntax:

(90)<parameter_dcls>::="(" <param_dcl>{*“,” <param_dcl>}**)”

| =)
(91) <param_dcl>::=<param_attribute> <param_type_spec> <simple_declarator>
(92) <param_attribute>::="in"

| “out”

| “inout”
(95)<param_type_spec>::=<base_type_spec>

| <string_type>

| <wide_string_type>

| <scoped_name>

A parameter declaration must have a directional attribute that informs the communication service in both the client and
the server of the direction in which the parameter is to be passed. The directional attributes are:

 in - the parameter is passed from client to server.
» out - the parameter is passed from server to client.
« inout - the parameter is passed in both directions.

It is expected that an implementation will not attempt to modify an in parameter. The ability to even attempt to do so is
language-mapping specific; the effect of such an action is undefined.

If an exception is raised as aresult of an invocation, the values of the return result and any out and inout parameters are
undefined.

7.13.3 Raises Expressions

There are two kinds of raises expressions as described in this sub clause.

74 Common Object Request Broker Architecture (CORBA), v3.1.1

7.13.3.1 Raises Expression

A raises expression specifies which exceptions may be raised as a result of an invocation of the operation or accessing
(invoking the _get operation of) a readonly attribute. The syntax for its specification is as follows:

(93)<raises_expr>::="raises” “(” <scoped_name>
{*, <scoped_name>}"*)”

The <scoped_name>sin the raises expression must be previously defined exceptions or native types. If a native type
is used as an exception for an operation, the operation must appear in either alocal interface or a valuetype.

In addition to any operation-specific exceptions specified in the raises expression, there are a standard set of system
exceptions that may be signalled by the ORB. These standard system exceptions are described in 8.12.3, Standard System
Exception Definitions. However, standard system exceptions may not be listed in araises expression.

The absence of araises expression on an operation implies that there are no operation-specific exceptions. Invocations
of such an operation are still liable to receive one of the standard system exceptions.

7.13.3.2 getraises and setraises Expressions

getraises and setraises expressions specify which exceptions may be raised as a result of an invocation of the accessor
(_get) and a mutator (_set) functions of an attribute. The syntax for its specification is as follows:

(108)<attr_raises_expr>::=<get_excep_expr>[<set_excep_expr>]
| <set_excep_expr>
(109) <get_excep_expr>::="“getraises” <exception_list>
(110) <set_excep_expr>::=“setraises” <exception_list>
(111) <exception_list::="“(" <scoped_name>
{",” <scoped_name>1}+")"

The <scoped_name>sin the getraises and setraises expressions must be previously defined exceptions.

I'n addition to any attribute-specific exceptions specified in the getraises and setraises expressions, there are a standard
set of exceptions that may be signalled by the ORB. These standard exceptions are described in 8.12.3, Standard System
Exception Definitions. However, standard exceptions may not be listed in a getraises or setraises expression.

The absence of a getraises or setraises expression on an attribute implies that there are no accessor-specific or
mutator-exceptions respectively. Invocations of such an accessor or mutator are still liable to receive one of the standard
exceptions.

NOTE: The exceptions associated with the accessor operation corresponding to areadonly attribute is specified using a
simple raises expression as specified in 7.13.3.1, Raises Expression. The getraises and setraises expressions are used
only in attributesthat are not readonly.

7.13.4 Context Expressions

A context expression specifies which elements of the client’s context may affect the performance of a request by the
object. The syntax for its specification is as follows:

" ow

(94)<context_expr>::="context” “(” <string_literal>
{*,” <string_literal>}"*)"

Common Object Request Broker Architecture (CORBA), v3.1.1 75

The run-time system guarantees to make the value (if any) associated with each <string_literal> in the client’s context
available to the object implementation when the request is delivered. The ORB and/or object is free to use information in
this regquest context during request resolution and performance.

The absence of a context expression indicates that there is no request context associated with requests for this operation.

Each string_literal is a non-empty string. If the character *' appearsin string_literal, it must appear only once, as the
last character of string_literal, and must be preceded by one or more characters other than ™'

The mechanism by which a client associates values with the context identifiers is described in 8.6, Context Object.

7.14 Attribute Declaration

An interface can have attributes as well as operations; as such, attributes are defined as part of an interface. An attribute
definition islogically equivalent to declaring a pair of accessor functions; oneto retrieve the value of the attribute and one
to set the value of the attribute.

The syntax for attribute declaration is:

(85)<attr_dcl>::= <readonly_attr_spec>
| <attr_spec>
(104)<readonly_attr_spec> ::="“readonly” “attribute” <param_type spec> <readonly_attr_declarator>
(105) <readonly_attr_declarator>::= <simple_declarator> <raises_expr>
| <simple_declarator>
{",” <simple_declarator> }*
(106) <attr_spec> ::="attribute” <param_type_spec> <attr_declarator>
(107) <attr_declarator> ::=<simple_declarator> <attr_raises_expr>
| <simple_declarator>
{“,” <simple_declarator> }*

The optional readonly keyword indicates that there is only a single accessor function—the retrieve value function.
Consider the following example;

interface foo {
enum material_t {rubber, glass};
struct position_t {
float x, y;

b

attribute float radius;
attribute material_t material;
readonly attribute position_t position;

b

The attribute declarations are equivalent to the following pseudo-specification fragment, assuming that one of the leading
‘ 'sisremoved by application of the Escaped Identifier rule described in Escaped Identifiers on page 34.

float __get_radius ();
void __set_radius (in float r);

76 Common Object Request Broker Architecture (CORBA), v3.1.1

material_t _ get _material ();
void __set_material (in material_t m);
position_t _ get_position ();

The actual accessor function hames are language-mapping specific. The attribute name is subject to IDL’s name scoping
rules; the accessor function names are guaranteed not to collide with any legal operation names specifiable in IDL.

Attributes are inherited. An attribute name cannot be redefined to be a different type. See 7.19, CORBA Module for more
information on redefinition constraints and the handling of ambiguity.

7.15 Repository ldentity Related Declarations

Two constructs that are provided for specifying information related to Repository Id are described in this sub clause.

7.15.1 Repository Identity Declaration

The syntax of arepository identity declaration is as follows:
(102)<type_id_dcl> ::="typeid” <scoped_name> <string_literal>
A repository identifier declaration includes the following elements:
» thekeywordtypeid.
» a<scoped _name> that denotes the named IDL construct to which the repository identifier is assigned.
« asgtring literal that must contain avalid repository identifier value.

The <scoped_name> is resolved according to normal IDL name resolution rules, based on the scope in which the
declaration occurs. It must denote a previously-declared name of one of the following IDL constructs:

* module

« interface

* component

* home

« facet

* receptacle

* event sink

* event source
« finder

« factory

* event type

« valuetype

« value type member
* value box

* constant

Common Object Request Broker Architecture (CORBA), v3.1.1 77

* typedef

* exception
* atribute
* operation
* enum

* loca

The value of the string literal is assigned as the repository identity of the specified type definition. This value will be
returned as the Repositoryld by the interface repository definition object corresponding to the specified type definition.
Language mappings constructs, such as Java helper classes, that return repository identifiers shall return the values
declared for their corresponding definitions.

At most one repository identity declaration may occur for any named type definition. An attempt to redefine the
repository identity for a type definition is illegal, regardless of the value of the redefinition.

If no explicit repository identity declaration exists for a type definition, the repository identifier for the type definition
shall be an IDL format repository identifier, as defined in 14.7.1, IDL Format.

7.15.2 Repository Identifier Prefix Declaration

The syntax of arepository identifier prefix declaration is as follows:
(103) <type_prefix_dcl>::="typeprefix” <scoped_name> <string_literal>
A repository identifier declaration includes the following elements:
» Thekeyword typeprefix.
» A <scoped name> that denotes an IDL name scope to which the prefix applies.
» A dtring literal that must contain the string to be prefixed to repository identifiers in the specified name scope.

The <scoped_name> is resolved according to normal IDL name resolution rules, based on the scope in which the
declaration occurs. It must denote a previously-declared name of one of the following IDL constructs:

e module
« interface (including abstract or local interface)
« value type (including abstract, custom, and box value types)
« event type (including abstract and custom value types)
« specification scope (::)
The specified string is prefixed to the body of all repository identifiers in the specified name scope, whose values are

assigned by default. The specified string shall be a list of one or more identifiers, separated by the “/” characters. These
identifiers are arbitrarily long sequences of aphabetic, digit, underscore (“_"), hyphen (“-"), and period (“.”) characters.

The string shall not contain a trailing slash (“/”), and it shall not begin with the characters underscore (*_"), hyphen
(“-") or period (“.”). To elaborate;

78 Common Object Request Broker Architecture (CORBA), v3.1.1

By “prefixed to the body of a repository identifier,” we mean that the specified string is inserted into the default IDL
format repository identifier immediately after the format name and colon (“IDL:”) at the beginning of the identifier. A
forward slash (‘/") character is inserted between the end of the specified string and the remaining body of the repository
identifier.

The prefix is only applied to repository identifiers whose values are not explicitly assigned by a typeid declaration. The
prefix is applied to all such repository identifiersin the specified name scope, including the identifier of the construct that
constitutes the name scope.

7.15.3 Repository Id Conflict

In IDL that contains both pragma prefix/ID declarations (as defined in Pragma Directives for Repositoryld on page 277)
and typeprefix/typeid declarations (as defined in Repository Identity Declaration on page 77 and Repository Identifier
Prefix Declaration on page 78), if the repository id for an IDL element computed by using pragmas and typeid/typeprefix
are not identical it is an error. Note that this rule applies only when the repository id value computation uses explicitly
declared values from declarations of both kinds. If the repository id computed using explicitly declared values of one kind
conflicts with 9ne computed with implicit values of the other kind, the repository id based on explicitly declared values
shall prevail.

7.16 Event Declaration

Event type is a specialization of value type dedicated to asynchronous component communication. There are several kinds
of event type declarations: “regular” event types, abstract event types, and forward declarations.

An event declaration satisfies the following syntax:

(134)<event> ::= (<event_dcl> | <event_abs_dcl> | <event_forward_dcl>)
7.16.1 Regular Event Type

A regular event type satisfies the following syntax:

(137) <event_dcl>::=<event_header> “{" <value_element>*“}"

(138) <event_header>::=[“custom”] “eventtype”
<identifier>[<value_inheritance_spec>]

7.16.1.1 Event Header
The event header consists of two elements:
» The event type's name and optional modifier specifying whether the event type uses custom marshaling.

« Anoptional value inheritance specification described in 7.9.1.3, Value Inheritance Specification.

7.16.1.2 Event Element

An event can contain al the elements that a value can as described in 7.9.1.2, Value Element (i.e., attributes, operations,
initializers, state members).

Common Object Request Broker Architecture (CORBA), v3.1.1 79

7.16.2 Abstract Event Type

(136)<event_abs_dcl>::="abstract” “eventtype” <identifier>
[<value_inheritance_spec>]
u{u <exp0rt>* u}n

Event types may also be abstract. They are called abstract because an abstract event type may not be instantiated. No
<state_ member> or <initializers> may be specified. However, local operations may be specified. Essentially they are a
bundle of operation signatures with a purely local implementation.

Note that a concrete event type with an empty state is not an abstract event type.
7.16.3 Event Forward Declaration

(135)<event_forward_dcl> ::=[“abstract”] “eventtype” <identifier>

A forward declaration declares the name of an event type without defining it. This permits the definition of event types
that refer to each other. The syntax consists simply of the keyword eventtype followed by an <identifier> that names
the event type.

Multiple forward declarations of the same event type name are legal.

It isillegal to inherit from a forward-declared event type whose definition has not yet been seen.
7.16.4 Eventtype Inheritance

As event type is a specialization of value type then event type inheritance is directly analogous to value inheritance (see
7.9.1.3, Value Inheritance Specification for a detailed description of the analogous properties for valuetypes). In addition,
an event type could inherit from a single immediate base concrete event type, which must be the first element specified in
the inheritance list of the event declaration’s IDL. It may be followed by other abstract values or events from which it
inherits.

7.17 Component Declaration

7.17.1 Component

A component declaration describes an interface for a component. The salient characteristics of a component declaration
are as follows:

« A component declaration specifies the name of the component.
« A component declaration may specify alist of interfaces that the component supports.
» Component declarations support single inheritance from other component definitions.

» Component declarations may include in its body any attribute declarations that are legal in normal interface
declarations, together with declarations of facets and receptacles of the component, and the event sources and sinks
that the component defines.

80 Common Object Request Broker Architecture (CORBA), v3.1.1

7.17.1.1 Syntax

The syntax for declaring a component is as follows:

(112)<component> ;;=<component_dcl>
| <component_forward_dcl>

(113) <component_forward_dcl>::=“component” <identifier>
(114) <component_dcl> ::= <component_header>
“{" <component_body>“}"

<component_forward_dcl> is described in 7.17.1.2, Forward Declaration.
<component_header> is described in 7.17.2, Component Header.

<component_body> is described in 7.17.3, Component Body.

7.17.1.2 Forward Declaration

A forward declaration declares the name of a component without defining it. This permits the definition of components
that refer to each other. The syntax consists simply of the keyword component followed by an <identifier> that names
the component. The actual definition must follow later in the specification.

Multiple forward declarations of the same component name are legal.

It isillegal to inherit from a forward-declared component whose definition has not yet been seen.
7.17.2 Component Header

A <component_header> declares the primary characteristics of a component interface.

7.17.2.1 Syntax
The syntax for declaring a component header is as follows:
(115) <component_header> ::= “component” <identifier>

[<component_inheritance_spec>]
[<supported_interface_spec>]

(116) <supported_interface_spec> ::= “supports” <scoped_name>
{"” <scoped_name> }*
(117) <component_inheritance_spec>::=":” <scoped_name>

A component header comprises the following elements:
» Thekeyword component.
« An<identifier> that names the component type.

« Anoptional <inheritance_spec>, consisting of acolon and a single <scoped_name> that must denote a previously-
defined component type.

» Anoptional <supported_interface spec> that must denote one or more previously-defined IDL interfaces.

Common Object Request Broker Architecture (CORBA), v3.1.1 81

7.17.2.2 Supported interfaces

A component may optionally support one or more interfaces. When a component definition header includes a supports
clause as follows:

component <component_name> supports <interface_name>{ ... };

For further details see the CORBA Components specification, Clause 1, Supported Interfaces.

7.17.2.3 Component Inheritance

A component may optionally inherit from a component that supports one or more interfaces. Thisis specified by using the
inheritance construct that looks like:

component <component_name>: <component_name>{ ... };
The following rules apply to component inheritance:
» A derived component type may not directly support an interface.
» Theinterface for a derived component type is derived from the interface of its base component type.
A component type may have at most one base component type.

» Thefeatures of a component that are inherited by the derived component are:
« theprovides statements
* theuses statements
* theemits statements
« thepublishes statements
» theconsumes statements
* attributes

See 7.17.2.3, Component Inheritance for details of component inheritance.
7.17.3 Component Body

(118) <component_body> ::=<component_export>*
(119) <component_export>::=<provides_dcl>"“;"
| <uses_dcl>*;”
| <emits_dcl>";"
| <publishes_dcl>*;”
| <consumes_dcl>*;"
| <attr_dcl>*;"

A component forms a naming scope, nested within the scope in which the component is declared. A component body can
contain the following kinds of declarations:

» Facet declarations (provides)
» Receptacle declarations (uses)

» Event source declarations (emits or publishes)

82 Common Object Request Broker Architecture (CORBA), v3.1.1

» Event sink declarations (consumes)

« Attribute declarations (attribute and readonly attribute)
These declarations and their meanings are described in detail in the CORBA Components specification, Component Model
clause, “Facets and Navigation” through “Events’ sub clauses.
7.17.3.1 Facets and Navigation

A component type may provide severa independent interfaces to its clients in the form of facets. Facets are intended to
be the primary vehicle through which a component exposes its functional application behavior to clients during normal
execution. A component may exhibit zero or more facets.

Syntax

A facet is declared with the following syntax:

(120) <provides_dcl> ::=“provides” <interface_type> <identifier>
(121) <interface_type>::=<scoped_name>
| “Object”

The interface type shall be either the keyword Object, or a scoped name that denotes a previously-declared interface type
that is not a component interface (i.e., is not the interface corresponding to a component definition). The identifier names
the facet within the scope of the component, allowing multiple facets of the same type to be provided by the component.

See the CORBA Components specification, Component Model clause, “Facets and Navigation” for further details.

7.17.3.2 Receptacles

A component definition can describe the ability to accept object references upon which the component may invoke
operations. When a component accepts an object reference in this manner, the relationship between the component and
the referent object is called a connection; they are said to be connected. The conceptual point of connection is called a
receptacle. A receptacle is an abstraction that is concretely manifested on a component as a set of operations for
establishing and managing connections. A component may exhibit zero or more receptacles.

Syntax

The syntax for describing a receptacle is as follows:

(122) <uses_dcl>::="uses” [“multiple”]
< interface_type> <identifier>

A receptacle declaration comprises the following elements:
» Thekeyword uses.

» The optiona keyword multiple. The presence of this keyword indicates that the receptacle may accept multiple
connections simultaneoudly, and results in different operations on the component’s associated interface.

» An<interface type>, which must be either the keyword Object or a scoped name that denotes the interface type that
the receptacle will accept. The scoped name must denote a previously-defined non-component interface type.

« An<identifier> that names the receptacle in the scope of the component.

Common Object Request Broker Architecture (CORBA), v3.1.1 83

See the CORBA Components specification (Part 3), Component Model clause, “Receptacles” sub clause for further
details.

7.17.4 Event Sources—publishers and emitters

An event source embodies the potential for the component to generate events of a specified type, and provides
mechanisms for associating consumers with sources.

There are two categories of event sources, publishers and emitters. Both are implemented using event channels supplied
by the container. An emitter can be connected to at most one consumer. A publisher can be connected through the channel
to an arbitrary number of consumers, who are said to subscribe to the publisher event source. A component may exhibit
zero or more emitters and publishers.

7.17.4.1 Publishers
Syntax

The syntax for an event publisher is as follows:

(124)<publishes_dcl> ::=“publishes” <scoped_name> <identifier>
A publisher declaration consists of the following elements:
» Thekeyword publishes.
» A <scoped name> that denotes a previousy-defined event type.
« An<identifier> that names the publisher event source in the scope of the component.

See the CORBA Components specification, Component Model clause, “Publisher” sub clause for further details.

7.17.4.2 Emitters
Syntax

The syntax for an emitter declaration is as follows:

(123)<emits_dcl> ;= “emits” <scoped_name> <identifier>
An emitter declaration consists of the following elements:
» Thekeyword emits.
» A <scoped_name> that denotes a previoudy-defined event type.
« An<identifier> that names the event source in the scope of the component.

See the CORBA Components specification, Component Model clause, “Emitters” sub clause for further details.

7.17.5 Event Sinks

An event sink embodies the potential for the component to receive events of a specified type. An event sink is, in essence,
a special-purpose facet whose type is an event consumer. External entities, such as clients or configuration services, can
obtain the reference for the consumer interface associated with the sink.

84 Common Object Request Broker Architecture (CORBA), v3.1.1

A component may exhibit zero or more consumers.

See the CORBA Components specification, Component Model clause, “Event Sinks” sub clause for further details.

Syntax

The syntax for an event sink declaration is as follows:

(125)<consumes_dcl> ::=“consumes” <scoped_name> <identifier>
An event sink declaration contains the following elements:

« Thekeyword consumes.

» A <scoped name> that denotes a previoudy-defined event type.

» An<identifier> that names the event sink in the component’s scope.

See the CORBA Components specification, Component Model clause, “Event Sinks” sub clause for further details.

7.17.6 Basic and Extended Components

A component that satisfies the following properties is known as a Basic Component:
It does not inherit from another component.
 Itsdeclaration does not contain any provides statements.
 Itsdeclaration does not contain any uses statements.
 Itsdeclaration does not contain any publishes, emits, or consumes statements.

In effect a declaration of a Basic Component fits the pattern:

“component” <identifier> [<supported_interface_spec>]
“ {H {<attr_dcl> “ ;H }* “}11

A component that is not a Basic Component is referred to as an Extended Component.

7.18 Home Declaration
A home declaration describes an interface for managing instances of a specified component type.

7.18.1 Home

The salient characteristics of a home declaration are as follows:

» A home declaration must specify exactly one component type that it manages. Multiple homes may manage the same

component type.

A home declaration may specify a primary key type. Primary keys are values assigned by the application environment
that uniquely identify component instances managed by a particular home. Primary key types must be value types

Common Object Request Broker Architecture (CORBA), v3.1.1 85

derived from Components::PrimaryKeyBase. There are more specific constraints placed on primary key types,
which are specified in the CORBA Components specification, Component Model clause, “Primary key type
constraints” sub clause.

Home declarations may include any declarations that are legal in normal interface declarations.

Home declarations support single inheritance from other home definitions, subject to a number of constraints that are
described in the CORBA Components specification, Component Model clause, “Home inheritance” sub clause.

Home declarations may specify alist of interfaces that the home supports.

Syntax

The syntax for a home definition is as follows:

(126) <home_dcl> ::= <home_header> <home_body>

<home_header> is described in “Home Header.”

<home_body> is described in “Home Body.”

7.18.2 Home Header

A <home_header> describes fundamental characteristics of a home interface.

Syntax

The syntax for a home header declaration is as follows:

(127) <home_header>::=“home” <identifier>

[<home_inheritance_spec>]

[<supported_interface_spec>]
“manages” <scoped_name>

[<primary_key spec>]

(128) <home_inheritance_spec> ::=“:” <scoped_name>
(129) <primary_key_spec> ::= “primarykey” <scoped_name>

A <home_header> consists of the following elements:

86

The keyword home.
An <identifier> that names the home in the enclosing name scope.

An optional <home _inheritance_spec>, consisting of acolon “:” and asingle <scoped name> that denotes a
previously defined home type.

An optional <supported interface _spec> that must denote one or more previously defined IDL interfaces.
The keyword manages.
A <scoped_name> that denotes a previously defined component type.

An optiona primary key definition, consisting of the keyword primarykey followed by a <scoped_name> that
denotes a previously defined value type that is derived from the abstract value type
Components::PrimaryKeyBase. Additional constraintson primary keys are described in the CORBA Components
specification, Component Model clause, “ Primary key type constraints’ sub clause.

Common Object Request Broker Architecture (CORBA), v3.1.1

Details of semantics can be found in the CORBA Components specification, Component Model clause, “Homes’ sub
clause.

7.18.3 Home Body

(130) <home_body> ::=“{” <home_export>* “}”
(131) <home_export ::= <export>

| <factory_dcl>*“;”

| <finder_dcl>*“;"

7.18.3.1 Operation Declarations

A home body may include zero or more operation declarations, where the operation may be a factory operation, a finder

operation, or a normal operation or attribute.

Factory operations

The syntax of afactory operation is as follows:

(132) <factory_dcl> ::= “factory” <identifier>
“(* [<init_param_decls>1")"
[<raises_expr>]

A factor operation declaration consists of the following elements:
» Thekeyword factory.
» An<identifier> that names the operation in the scope of the home declaration.
» Anoptional list of initialization parameters (<init_param decls>) enclosed in parentheses.
» Anoptional <raises expr> declaring exceptions that may be raised by the operation.

A factory declaration has an implicit return value of type reference to component.

See the CORBA Components specification, Component Model clause, “Factory operations’ sub clause for further details.

Finder operations

The syntax of afinder operation is as follows:

(133) <finder_dcl> ::=“finder” <identifier>
“(* [<init_param_decls>1")"
[<raises_expr>]

A finder operation declaration consists of the following elements:

» Thekeyword finder.

« Anidentifier that names the operation in the scope of the storage home declaration.

« Anoptional list of initialization parameters (<init_param decls>) enclosed in parentheses.
» Anoptional <raises expr> declaring exceptions that may be raised by the operation.

A finder declaration has an implicit return value of type reference to component.

Common Object Request Broker Architecture (CORBA), v3.1.1

87

See the CORBA Components specification, Component Model clause, “Finder operations’ sub clause for further details.

7.19 CORBA Module

Names defined by the CORBA specification are in a module named CORBA. In an IDL specification, however, IDL
keywords such as Object must not be preceded by a“CORBA::" prefix. Other interface names such as TypeCode are
not IDL keywords, so they must be referred to by their fully scoped names (e.g., CORBA::TypeCode) within an IDL
specification.

For example in:

#include <orb.idl>

module M {
typedef CORBA::Object myObjRef; // Error: keyword Object scoped
typedef TypeCode myTypeCode,; /I Error: TypeCode undefined

typedef CORBA::TypeCode TypeCode;// OK
|3

The file orb.idl contains the IDL definitions for the CORBA module. Except for CORBA::TypeCode, the file orb.idl
must be included in IDL files that use names defined in the CORBA module. IDL files that use CORBA::TypeCode
may obtain its definition by including either the file orb.idl or the file TypeCode.idl.

The exact contents of TypeCode.idl are implementation dependent. One possible implementation of TypeCode.idl may
be:

// PIDL
#ifndef _TYPECODE_IDL _
#define _TYPECODE_IDL_
#pragma prefix "omg.org"
module CORBA {

interface TypeCode;
|3
#endif // _TYPECODE_IDL _

For IDL compilers that implicitly define CORBA::TypeCode, TypeCode.idl could consist entirely of a comment as
shown below:

/I PIDL
/l CORBA::TypeCode implicitly built into the IDL compiler
/I Hence there are no declarations in this file

Because the compiler implicitly contains the required declaration, this file meets the requirement for compliance.

The version of CORBA specified in this release of the specification is version <x.y>, and this is reflected in the IDL for
the CORBA module by including the following pragma version (see 14.7.5.3, The Version Pragma):

#pragma version CORBA <x.y>

as the first line immediately following the very first CORBA module introduction line, which in effect associates that
version number with the CORBA entry in the IR. The version number in that version pragma line must be changed
whenever any changes are made to any remotely accessible parts of the CORBA module in an officially released OMG
standard.

88 Common Object Request Broker Architecture (CORBA), v3.1.1

7.20 Names and Scoping

IDL identifiers are case insensitive; that is, two identifiers that differ only in the case of their characters are considered
redefinitions of one another. However, all references to a definition must use the same case as the defining occurrence.
This allows natural mappings to case-sensitive languages. For example:

module M {
typedef long Long; /I Error: Long clashes with keyword long
typedef long TheThing;
interface | {
typedef long MyLong;
myLong op1(/I Error: inconsistent capitalization
in TheThing thething; // Error: TheThing clashes with thething

7.20.1 Qualified Names

A qualified name (one of the form <scoped-name>::<identifier>) is resolved by first resolving the qualifier <scoped-
name> to a scope S, and then locating the definition of <identifier> within S. The identifier must be directly defined in S
or (if Sisan interface) inherited into S. The <identifier> is not searched for in enclosing scopes.

When a qualified name begins with “::”, the resolution process starts with the file scope and locates subsequent identifiers
in the qualified name by the rule described in the previous paragraph.

Every IDL definition in a file has a global name within that file. The global name for a definition is constructed as
follows.

Prior to starting to scan afile containing an IDL specification, the name of the current root isinitially empty (") and the
name of the current scope is initially empty (“”). Whenever a module keyword is encountered, the string “::” and the
associated identifier are appended to the name of the current root; upon detection of the termination of the module, the
trailing “::" and identifier are deleted from the name of the current root. Whenever an interface, struct, union, or
exception keyword is encountered, the string “::” and the associated identifier are appended to the name of the current
scope; upon detection of the termination of the interface, struct, union, or exception, the trailing “::” and identifier
are deleted from the name of the current scope. Additionally, a new, unnamed, scope is entered when the parameters of an
operation declaration are processed; this allows the parameter names to duplicate other identifiers; when parameter
processing has completed, the unnamed scope is exited.

The global name of an IDL definition is the concatenation of the current root, the current scope, a“::", and the
<identifier>, which is the local name for that definition.

Note that the global name in an IDL files correspond to an absolute ScopedName in the Interface Repository. (See
14.5.1, Supporting Type Definitions’).

Inheritance causes all identifiers defined in base interfaces, both direct and indirect, to be visible in derived interfaces.
Such identifiers are considered to be semantically the same as the original definition. Multiple paths to the same original
identifier (as results from the diamond shape in Figure 7.1 on page 49) do not conflict with each other.

Inheritance introduces multiple global IDL names for the inherited identifiers. Consider the following example:

Common Object Request Broker Architecture (CORBA), v3.1.1 89

interface A {
exception E {
long L;

|3
void f() raises(E);
¥

interface B: A {
void g() raises(E);
¥

In this example, the exception is known by the global names ::A::E and ::B::E. Ambiguity can arise in specifications due

to the nested naming scopes. For example:

interface A {
typedef string<128> string_t;
¥

interface B {
typedef string<256> string_t;

¥

interface C: A, B {
attribute string_t Title; /[Error: Ambiguous
attribute A::string_t Name; Il OK
attribute B::string_t City; Il OK

|3

The declaration of attribute Title in interface C is ambiguous, since the compiler does not know which string_t is

desired. Ambiguous declarations yield compilation errors.

7.20.2 Scoping Rules and Name Resolution

Contents of an entire IDL file, together with the contents of any files referenced by #include statements, forms a naming
scope. Definitions that do not appear inside a scope are part of the global scope. There is only a single global scope,
irrespective of the number of source files that form a specification. The following kinds of definitions form scopes:

90

module
interface
valuetype
struct
union
operation
exception
eventtype
component
home

Common Object Request Broker Architecture (CORBA), v3.1.1

The scope for module, interface, valuetype, struct, exception, eventtype, component, and home begins immediately
following its opening ‘{* and ends immediately preceding its closing ‘}’. The scope of an operation begins immediately
following its ‘(* and ends immediately preceding its closing ‘). The scope of a union begins immediately following the
‘(* following the keyword switch, and ends immediately preceding its closing ‘}’. The appearance of the declaration of
any of these kinds in any scope, subject to semantic validity of such declaration, opens a nested scope associated with that
declaration.

An identifier can only be defined once in a scope. However, identifiers can be redefined in nested scopes. An identifier
declaring a module is considered to be defined by its first occurrence in a scope. Subsequent occurrences of a module
declaration with the same identifier within the same scope reopens the module and hence its scope, allowing additional
definitions to be added to it.

The name of an interface, value type, struct, union, exception, or a module may not be redefined within the immediate
scope of the interface, value type, struct, union, exception, or the module. For example:

module M {
typedef short M; [l Error: M is the name of the module
/ in the scope of which the typedef is.
interface | {

void i (in short j); // Error: i clashes with the interface name |
5
5

An identifier from a surrounding scope is introduced into a scope if it is used in that scope. An identifier is not introduced
into a scope by merely being visible in that scope. The use of a scoped name introduces the identifier of the outermost
scope of the scoped name. For example in:

module M {
module Innerl {
typedef string S1;

h

module Inner2 {
typedef string inner1; /l OK
h
}

The declaration of Inner2::innerl is OK because the identifier Innerl, while visible in module Inner2, has not been
introduced into module Inner2 by actual use of it. On the other hand, if module Inner2 were:

module Inner2{
typedef Innerl::S1 S2; /l Innerl introduced
typedef string innerl; /[Error
typedef string S1; I/ OK

h

The definition of innerl is now an error because the identifier Inner1 referring to the module Innerl has been
introduced in the scope of module Inner2 in the first line of the module declaration. Also, the declaration of S1 in the
last line is OK since the identifier S1 was not introduced into the scope by the use of Inner1::S1 in the first line.

Common Object Request Broker Architecture (CORBA), v3.1.1 91

Only the first identifier in a qualified name is introduced into the current scope. Thisis illustrated by Innerl::S1 in the
example above, which introduces “Innerl” into the scope of “Inner2” but does not introduce “S1.” A qualified name of
the form “::X::Y::Z" does not cause “ X" to be introduced, but a qualified name of the form “X::Y::Z” does.

Enumeration value names are introduced into the enclosing scope and then are treated like any other declaration in that
scope. For example:

interface A {
enum E{ E1, E2, E3 }; /l'line 1

enum BadE { E3, E4, E5}; // Error: E3is already introduced
/l into the A scopein line 1 above

b

interface C {
enum AnotherE { E1, E2, E3 };

b

interface D : C, A{
union U switch (E){
case A::El: boolean b;// OK.
case E2:long [; /I Error: E2 is ambiguous (notwithstanding
I/l the switch type specification!!)
¥
¥

Type names defined in a scope are available for immediate use within that scope. In particular, see 7.11.2, Constructed
Types on cycles in type definitions.

A name can be used in an unqualified form within a particular scope; it will be resolved by successively searching farther
out in enclosing scopes, while taking into consideration inheritance relationships among interfaces. For example:

module M {
typedef long ArgType;
typedef ArgType AType; /l'line 11
interface B {
typedef string ArgType; //linel3
ArgType opb(in ATypei); //linel2

|3
|3
module N {
typedef char ArgType; /l'line 14
interface Y : M::B {
void opy(in ArgType i); /l'line 15
|3
|3

The following scopes are searched for the declaration of ArgType used on line 15:

1. Scopeof N::Y before the use of ArgType.

92 Common Object Request Broker Architecture (CORBA), v3.1.1

2. Scopeof N::Y’sbaseinterface M::B. (inherited scope).
3. Scope of module N before the definition of N::Y.
4. Global scope before the definition of N.

M::B::ArgType isfound in step 2 inline |3, and that is the definition that isused in line |5, hence ArgType inline I5
is string. It should be noted that ArgType is not char in line 15. Now if line 13 were removed from the definition of
interface M::B, then ArgType on line I5 would be char from line 14, which is found in step 3.

Following analogous search steps for the types used in the operation M::B::opb on line 12, the type of AType used on
line 12 islong from the typedef in line 11 and the return type ArgType is string from line 13.

7.20.3 Special Scoping Rules for Type Names

Once a type has been defined anywhere within the scope of a module, interface or valuetype, it may not be redefined
except within the scope of a nested module, interface or valuetype, or within the scope of a derived interface or valuetype.
For example:

typedef short TempType; I/l Scope of TempType begins here
module M {
typedef string ArgType; // Scope of ArgType begins here
struct S {
;:M::ArgType al; /I Nothing introduced here
M::ArgType a2; /I M introduced here
;:TempType temp; /I Nothing introduced here
}; /l Scope of (introduced) M ends here
..
}; /I Scope of ArgType ends here

/I Scope of global TempType ends here (at end of file)
The scope of an introduced type name is from the point of introduction to the end of its enclosing scope.

However, if atype name is introduced into a scope that is nested in a non-module scope definition, its potential scope
extends over all its enclosing scopes out to the enclosing non-module scope. (For types that are defined outside an inon-
module scope, the scope and the potential scope are identical.) For example:

module M {
typedef long ArgType;
constlong | = 10;
typedef short ;

interface A {

struct S {
struct T {
ArgType x[l]; // ArgType and |l introduced
long vy; /I anewy is defined, the existing Y
/l'is not used
}m;
b

Common Object Request Broker Architecture (CORBA), v3.1.1 93

typedef string ArgType; // Error: ArgType redefined
enum [{11, 12}; /I Error: | redefined
typedef short Y; Il OK

}; /I Potential scope of ArgType and | ends here

interface B : A {
typedef long ArgType // OK, redefined in derived interface
struct S { /I OK, redefined in derived interface
ArgType X; /I x is along
A::ArgTypeyy; /l'y is a string

b

A type may not be redefined within its scope or potential scope, as shown in the preceding example. This rule prevents
type names from changing their meaning throughout a non-module scope definition, and ensures that reordering of
definitions in the presence of introduced types does not affect the semantics of a specification.

Note that, in the following, the definition of M::A::U::1 is legal because it is outside the potential scope of the |
introduced in the definition of M::A::S::T::ArgType. However, the definition of M::A::l is still illegal because it is
within the potential scope of the | introduced in the definition of M::A::S::T::ArgType.

module M {
typedef long ArgType;
const long | = 10;

interface A {

struct S {
struct T {
ArgType X[I]; // ArgType and | introduced
}m;
b
struct U {
long I; I OK, | is not a type name
b

enum [{11,12}; /[Error: I redefined
}; I/ Potential scope of ArgType and | ends here

h
Note that redefinition of a type after use in amodule is OK as in the example:

typedef long ArgType;

module M {
struct S {
ArgType X; /I xis along
|3
typedef string ArgType; // OK!
struct T {
ArgTypey; /' Ugly but OK, y is a string
h
}

94 Common Object Request Broker Architecture (CORBA), v3.1.1

8 ORB Interface

8.1 Overview

This clause introduces the operations that are implemented by the ORB core, and describes some basic ones, while
providing reference to the description of the remaining operations that are described elsewhere. The ORB interface is the
interface to those ORB functions that do not depend on which object adapter is used. These operations are the same for
all ORBs and all object implementations, and can be performed either by clients of the objects or implementations. The
Object interface contains operations that are implemented by the ORB, and are accessed as implicit operations of the
Object Reference. The ValueBase interface contains operations that are implemented by the ORB, and are accessed as
implicit operations of the ValueBase Reference.

Because the operations in this sub clause are implemented by the ORB itself, they are not in fact operations on objects,
although they are described that way for the Object or ValueBase interface operations and the language binding will,
for consistency, make them appear that way.

8.2 The ORB Operations

The ORB interface contains the operations that are available to both clients and servers. These operations do not depend
on any specific object adapter or any specific object reference.

module CORBA {

interface NVList; /l forward declaration
interface OperationDef; // forward declaration
interface TypeCode; /l forward declaration

typedef short PolicyErrorCode;
I/l for the definition of consts see PolicyErrorCode on page 128
typedef unsigned long PolicyType;

interface Request; // forward declaration
typedef sequence <Request> RequestSeq;

native AbstractBase;
exception PolicyError {PolicyErrorCode reason;};

typedef string Repositoryld;
typedef string Identifier;

/I StructMemberSeq defined in Chapter 10
/I UnionMemberSeq defined in Chapter 10
/I EnumMemberSeq defined in Chapter 10

typedef unsigned short ServiceType;

Common Object Request Broker Architecture (CORBA), v3.1.1 95

96

typedef unsigned long ServiceOption;
typedef unsigned long ServiceDetail Type;

typedef CORBA::OctetSeq ServiceDetailData;
typedef sequence<ServiceOption> ServiceOptionSeq;

const ServiceType Security = 1;

struct ServiceDetail {
ServiceDetail Type service_detail _type;
ServiceDetailData service_detail;

|3
typedef sequence<ServiceDetail> ServiceDetailSeq;

struct Servicelnformation {
ServiceOptionSeq service_options;
ServiceDetailSeq service_details;

|3

native ValueFactory;
typedef string ORBid;
interface ORB {

typedef string Objectld;
typedef sequence <Objectld> ObjectldList;

exception InvalidName {};
ORBid id();

string object_to_string (
in Object obj
)i

Object string_to_object (
in string str

)i
/l Dynamic Invocation related operations

void create_list (
in long count,
out NVList new_list

);

void create_operation_list (
in OperationDef oper,

Common Object Request Broker Architecture (CORBA), v3.1.1

out NVList new_list

);

void get_default_context (
out Context ctx

);

void send_multiple_requests_oneway(
in RequestSeq req

);

void send_multiple_requests_deferred(
in RequestSeq req

)i
boolean poll_next_response();

void get_next_response(
out Request req
) raises (WrongTransaction);

I/l Service information operations

boolean get_service_information (
in ServiceType service_type,
out Servicelnformation service_information

)i
ObjectldList list_initial_services ();
I Initial reference operation

Object resolve_initial_references (
in Objectld identifier
) raises (InvalidName);

/I Type code creation operations

TypeCode create_struct_tc (
in Repositoryld id,
in Identifier name,
in StructMemberSeq members

);

TypeCode create_union_tc (
in Repositoryld id,
in Identifier name,
in TypeCode discriminator_type,
in UnionMemberSeq members

);

Common Object Request Broker Architecture (CORBA), v3.1.1

97

98

TypeCode create_enum_tc (
in Repositoryld id,
in Identifier name,
in EnumMemberSeq members

);

TypeCode create_alias_tc (

in Repositoryld id,

in Identifier name,

in TypeCode original_type
)i

TypeCode create_exception_tc (
in Repositoryld id,
in Identifier name,
in StructMemberSeq members

);

TypeCode create_interface_tc (
in Repositoryld id,
in Identifier name

);

TypeCode create_string_tc (
in unsigned long bound

);

TypeCode create_wstring_tc (
in unsigned long bound

);

TypeCode create_fixed_tc (
in unsigned short digits,
in short scale

);

TypeCode create_sequence_tc (
in unsigned long bound,
in TypeCode element type

);

TypeCode create_recursive_sequence_tc (// deprecated
in unsigned long bound,
in unsigned long offset

);

TypeCode create_array_tc (
in unsigned long length,
in TypeCode element_type

);

Common Object Request Broker Architecture (CORBA), v3.1.1

TypeCode create_value_tc (

in Repositoryld id,
in Identifier name,
in ValueModifier type_modifier,
in TypeCode concrete_base,
in ValueMembersSeq members
)i
TypeCode create_value_box_tc (
in Repositoryld id,
in Identifier name,
in TypeCode boxed_type
)i
TypeCode create_native_tc (
in Repositoryld id,
in Identifier name
)i
TypeCode create_recursive_tc(
in Repositoryld id
)i
TypeCode create_abstract_interface_tc(
in Repositoryld id,
in Identifier name
)i
TypeCode create_local_interface_tc(
in Repositoryld id,
in Identifier name
)i
TypeCode create_component_tc (
in Repositoryld id,
in Identifier name
)i
TypeCode create_home_tc (
in Repositoryld id,
in Identifier name
)i
TypeCode create_event_tc (
in Repositoryld id,
in Identifier name,
in ValueModifier type_modifier,
in TypeCode concrete_base,

in ValueMemberSeq members

Common Object Request Broker Architecture (CORBA), v3.1.1

99

/l Thread related operations
boolean work_pending();
void perform_work();

void run();

void shutdown(
in boolean wait_for_completion

)i
void destroy();
/l Policy related operations

Policy create_policy(
in PolicyType type,
in any val

) raises (PolicyError);

/l Dynamic Any related operations deprecated and removed
/l from primary list of ORB operations

/I Value factory operations

ValueFactory register_value_factory(
in Repositoryld id,
in ValueFactory_factory

)i
void unregister_value_factory(in Repositoryld id);
ValueFactory lookup_value_factory(in Repositoryld id);

void register_initial_reference(
in Objectld id,
in Object obj
) raises (InvalidName);
|3
h

All types defined in this clause are part of the CORBA module. When referenced in IDL, the type names must be prefixed
by “CORBA::".

The operations object_to_string and string_to_object are described in Converting Object References to Strings on
page 101.

100 Common Object Request Broker Architecture (CORBA), v3.1.1

For a description of the create_list and create_operation_list operations, see Polling on page 186. The
get_default_context operation is described in get_default_context on page 102. The
send_multiple_requests_oneway and send_multiple_requests_deferred operations are described in
send_multiple_requests on page 185. The poll_next_response and get_next_response operations are described in
get_next_response and poll_next_response on page 185.

Thelist_intial_services and resolve_initial_references operations are described in Obtaining Initial Object
References on page 117.

The Type code creation operations with names of the form create_<type>_tc are described in Creating TypeCodes on
page 143.

The work_pending, perform_work, shutdown, destroy and run operations are described in Thread-Related
Operations on page 102.

The create_policy operations is described in Create_policy on page 128.

Theregister_value_factory, unregister_value_factory and lookup_value_factory operations are described in
Language Specific Value Factory Requirements on page 163.

The register_initial_reference operation is described in register_initial_reference on page 409.

8.2.1 ORB ldentity

8.2.1.1 id
ORBiId id();

The id operation returns the identity of the ORB. The returned ORBId is the string that was passed to ORB _init (see
ORSB Initialization on page 115) asthe orb_identifier parameter when the ORB was created. If that was the empty string,
the returned string is the value associated with the -ORBid tag in the arg_list parameter. Calling id on the default ORB
returns the empty string.

8.2.2 Converting Object References to Strings

8.2.2.1 object_to_string

string object_to_string (
in Object obj
)i

8.2.2.2 string_to_object

Object string_to_object (
in string str

);

Because an object reference is opaque and may differ from ORB to ORB, the object reference itself is not a convenient
value for storing references to objects in persistent storage or communicating references by means other than invocation.
Two problems must be solved: allowing an object reference to be turned into a value that a client can store in some other
medium, and ensuring that the value can subsequently be turned into the appropriate object reference.

Common Object Request Broker Architecture (CORBA), v3.1.1 101

An object reference may be translated into a string by the operation object _to_string. The value may be stored or
communicated in whatever ways strings may be manipulated. Subsequently, the string_to_object operation will accept
a string produced by object_to_string and return the corresponding object reference.

To guarantee that an ORB will understand the string form of an object reference, that ORB’sobject_to_string operation
must be used to produce the string. For all conforming ORBs, if obj is a valid reference to an object, then
string_to_object(object_to_string(obj)) will return a valid reference to the same object, if the two operations are
performed on the same ORB. For al conforming ORB’s supporting 10P, this remains true even if the two operations are
performed on different ORBSs.

8.2.3 Getting Service Information

8.2.3.1 get_service_information

boolean get_service_information (
in ServiceType service_type;
out Servicelnformation service_information;

);

The get_service_information operation is used to obtain information about CORBA facilities and services that are
supported by this ORB. The service type for which information is being requested is passed in as the in parameter
service_type, the values defined by constants in the CORBA module. If service information is available for that type,
that is returned in the out parameter service_information, and the operation returns the value TRUE. If no information
for the requested services type is available, the operation returns FALSE (i.e., the service is not supported by this ORB).

8.2.4 Creating a New Context

8.2.4.1 get_default_context

void get_default_context(/ PIDL
out Context ctx I/l context object

);

This operation creates a new empty Context object every time it is called. The operation is defined in the ORB interface.
8.2.5 Thread-Related Operations

To support single-threaded ORBs, as well as multi-threaded ORBs that run multi-thread-unaware code, several operations
are included in the ORB interface. These operations can be used by single-threaded and multi-threaded applications. An
application that is a pure ORB client would not need to use these operations. Both the ORB::run and ORB::shutdown
are useful in fully multi-threaded programs.

These operations are defined on the ORB rather than on an object adapter to allow the main thread to be used for all kinds
of asynchronous processing by the ORB. Defining these operations on the ORB also allows the ORB to support multiple
object adapters, without requiring the application main to know about all the object adapters. The interface between the
ORB and an object adapter is not standardized.

8.2.5.1 work_pending

boolean work_pending();

102 Common Object Request Broker Architecture (CORBA), v3.1.1

This operation returns an indication of whether the ORB needs the main thread to perform some work.

A result of TRUE indicates that the ORB needs the main thread to perform some work and aresult of FALSE indicates that
the ORB does not need the main thread.

8.2.5.2 perform_work

void perform_work();
If called by the main thread, this operation performs an implementation-defined unit of work; otherwise, it does nothing.
It is platform-specific how the application and ORB arrange to use compatible threading primitives.

The work_pending() and perform_work() operations can be used to write a simple polling loop that multiplexes the
main thread among the ORB and other activities. Such aloop would most likely be needed in a single-threaded server. A
multi-threaded server would need a polling loop only if there were both ORB and other code that required use of the main
thread.

Here is an example of such a polling loop:

// C++
for (;;) {
if (orb->work pending()) {
orb->perform work() ;
}i

// do other things
// sleep?
}i
Once the ORB has shutdown, work_pending and perform_work will raise the BAD_INV_ORDER exception with
minor code 4. An application can detect this exception to determine when to terminate a polling loop.

8.2.5.3 run

void run();

This operation provides execution resources to the ORB so that it can perform its internal functions. Single threaded ORB
implementations, and some multi-threaded ORB implementations, need the use of the main thread in order to function
properly. For maximum portability, an application should call either run or perform_work on its main thread. run may
be called by multiple threads simultaneously.

This operation will block until the ORB has completed the shutdown process, initiated when some thread calls
shutdown.

8.2.5.4 shutdown

void shutdown(
in boolean wait_for_completion

);

This operation instructs the ORB to shut down, that is, to stop processing in preparation for destruction. Shutting down
the ORB causes all object adapters to be destroyed, since they cannot exist in the absence of an ORB.

Common Object Request Broker Architecture (CORBA), v3.1.1 103

In the case of the POA, all POAManagers are deactivated prior to destruction of all POAs. The deactivation that the
ORB performs should be the equivalent of calling deactivate with the value TRUE for etherealize_objects and with the
wait_for_completion parameter same as what shutdown was called with.

Shut down is complete when all ORB processing (including request processing and object deactivation or other operations
associated with object adapters) has completed and the object adapters have been destroyed. In the case of the POA, this
means that all object etherealizations have finished and root POA has been destroyed (implying that all descendent POAs
have also been destroyed).

Shut down is complete when all ORB processing has completed and the object adapters have been destroyed. ORB
processing is defined as including request processing and object deactivation or other operations associated with object
adapters, and the forwarding of the responses from deferred synchronous invocations to their associated reply handlers. In
the case of the POA, this means that all object etherealizations have finished and root POA has been destroyed (implying
that all descendent POAs have also been destroyed)

If the wait_for_completion parameter is TRUE, this operation blocks until the shut down is complete. If an application
does thisin a thread that is currently servicing an invocation, the ORB will not shutdown, and the BAD_INV_ORDER

system exception will be raised with the OMG minor code 3, and completion status COMPLETED_NO, since blocking

would result in a deadlock.

If the wait_for_completion parameter is FALSE, then shutdown may not have completed upon return. An ORB
implementation may require the application to call (or have a pending call to) run or perform_work after shutdown
has been called with its parameter set to FALSE, in order to complete the shutdown process.

Additionally in systems that have Portable Object Adapters (see Clause 14) shutdown behaves as if POA::destroy is
called on the Root POA with its first parameter set to TRUE and the second parameter set to the value of the
wait_for_completion parameter that shutdown isinvoked with.

While the ORB is in the process of shutting down, the ORB operates as hormal, servicing incoming and outgoing requests
until all requests have been completed. An implementation may impose a time limit for requests to complete while a
shutdown is pending.

Once an ORB has shutdown, only object reference management operations(duplicate, release and is_nil) may be
invoked on the ORB or any object reference obtained from it. An application may also invoke the destroy operation on
the ORB itself. Invoking any other operation will raise the BAD_INV_ORDER system exception with the OMG minor
code 4.

8.2.5.5 destroy

void destroy();

This operation destroys the ORB so that its resources can be reclaimed by the application. Any operation invoked on a
destroyed ORB reference will raise the OBJECT_NOT_EXIST exception. Once an ORB has been destroyed, another
call to ORB_init with the same ORBid will return a reference to a newly constructed ORB.

If destroy is called on an ORB that has not been shut down, it will start the shut down process and block until the ORB
has shut down before it destroys the ORB. The behavior is similar to that achieved by calling shutdown with the
wait_for_completion parameter set to TRUE. If an application calls destroy in athread that is currently servicing an
invocation, the BAD_INV_ORDER system exception will be raised with the OMG minor code 3, since blocking would
result in a deadlock.

For maximum portability and to avoid resource leaks, an application should aways call shutdown and destroy on all
ORB instances before exiting.

104 Common Object Request Broker Architecture (CORBA), v3.1.1

8.3 Object Reference Operations

There are some operations that can be done on any object. These are not operations in the normal sense, in that they are
implemented directly by the ORB, not passed on to the object implementation. We will describe these as being operations
on the object reference, although the interfaces actually depend on the language binding. As above, where we used
interface Object to represent the object reference, we define an interface for Object:

module CORBA {

interface DomainManager; /l forward declaration
typedef sequence <DomainManager> DomainManagersList;

interface Policy; I/l forward declaration

typedef sequence <Policy> PolicyList;

typedef sequence<PolicyType> PolicyTypeSeq;

exception InvalidPolicies { sequence <unsigned short> indices; };
interface Context; /l forward declaration

typedef string Identifier;

interface Request; // forward declaration
interface NVList; /l forward declaration
struct NamedValue{}; /I an implicitly well known type

typedef unsigned long Flags;
interface InterfaceDef;

enum SetOverrideType {SET_OVERRIDE, ADD_OVERRIDE};
interface ORB; /I PIDL forward declaration
interface Object { /l PIDL

InterfaceDef get_interface ();

boolean is_nil();

Object duplicate ();

void release ();

booleanis_a (

in Repositoryld logical_type_id
)i
boolean non_existent();

boolean is_equivalent (
in Object other_object

);

Common Object Request Broker Architecture (CORBA), v3.1.1 105

unsigned long hash(

in unsigned long maximum
)i
void create_request (
in Context ctx
in Identifier operation,
in NVList arg_list,
inout NamedValue result,
out Request req,
in Flags req_flag

);

Policy get_policy (
in PolicyType policy_type
)i

DomainManagersList get_domain_managers ();

Object set_policy_overrides(
in PolicyList policies,
in SetOverrideType set_add
) raises (InvalidPolicies);

Policy get_client_policy(
in PolicyType type
)i

PolicyList get_policy_overrides(
in PolicyTypeSeq types
)i

boolean validate_connection(
out PolicyList inconsistent_policies

)i
Object get_component ();
string respository_id();
ORB get_orb();
h
h

The create_request operation is part of the Object interface because it creates a pseudo-object (a Request) for an object.
It is described with the other Request operations in Request Operations on page 179.

Unless otherwise stated below, the operations in the IDL above do not require access to remote information.

106 Common Object Request Broker Architecture (CORBA), v3.1.1

8.3.1 Determining the Object Interface

8.3.1.1 get_interface

InterfaceDef get_interface();

get_interface, returns an object in the Interface Repository that describes the most derived type of the object addressed
by the reference. See the Interface Repository clause for a definition of operations on the Interface Repository. The
implementation of this operation may involve contacting the ORB that implements the target object.

If the interface repository is not available, get_interface raises INTF_REPQOS with standard minor code 1. If the
interface repository does not contain an entry for the object's (most derived) interface, get_interface raises
INTF_REPOS with standard minor code 2.

8.3.1.2 repository_id

repository_id returnsthe repository 1D of an object (see Component Interface Repository Interfaces on page 262 for details
of repository IDs). The implementation of this operation must contact the ORB that implements the target object.

8.3.2 Duplicating and Releasing Copies of Object References

8.3.2.1 duplicate

Object duplicate();

8.3.2.2 release

void release();

Because object references are opague and ORB-dependent, it is not possible for clients or implementations to allocate
storage for them. Therefore, there are operations defined to copy or release an object reference.

If more than one copy of an object reference is needed, the client may create a duplicate. Note that the object
implementation is not involved in creating the duplicate, and that the implementation cannot distinguish whether the
original or a duplicate was used in a particular request.

When an object reference is no longer needed by a program, its storage may be reclaimed by use of the release
operation. Note that the object implementation is not involved, and that neither the object itself nor any other references
to it are affected by the release operation.

8.3.3 Nil Object References

8.3.3.1 is_nil

boolean is_nil();

An object reference whose value is OBJECT_NIL denotes no object. An object reference can be tested for this value by
the is_nil operation. The object implementation is not involved in the nil test.

Common Object Request Broker Architecture (CORBA), v3.1.1 107

8.3.4 Equivalence Checking Operation

8.3.4.1 is_a

boolean is_a(
in Repositoryld logical_type_id
)i

An operation is defined to facilitate maintaining type-safety for object references over the scope of an ORB.

Thelogical type_id is a string denoting a shared type identifier (Repositoryld). The operation returns true if the
object is really an instance of that type, including if that type is an ancestor of the “most derived” type of that object.

Determining whether an object’s type is compatible with the logical_type_id may require contacting a remote ORB or
interface repository. Such an attempt may fail at either the local or the remote end. If is_a cannot make a reliable
determination of type compatibility due to failure, it raises an exception in the calling application code. This enables the
application to distinguish among the TRUE, FALSE, and indeterminate cases.

This operation exposes to application programmers functionality that must already exist in ORBs that support “type safe
narrow” and allows programmers working in environments that do not have compile time type checking to explicitly
maintain type safety.

This operation always returns TRUE for the logical_type_id IDL:omg.org/CORBA/Object:1.0
8.3.5 Probing for Object Non-Existence

8.3.5.1 non_existent

boolean non_existent ();

The non_existent operation may be used to test whether an object (e.g., a proxy object) has been destroyed. It does this
without invoking any application level operation on the object, and so will never affect the object itself. It returns true
(rather than raising CORBA::OBJECT_NOT_EXIST) if the ORB knows authoritatively that the object does not exist;
otherwise, it returns false.

Services that maintain state that includes object references, such as bridges, event channels, and base relationship
services, might use this operation in their “idle time” to sift through object tables for objects that no longer exist, deleting
them as they go, as a form of garbage collection. In the case of proxies, this kind of activity can cascade, such that
cleaning up one table allows others then to be cleaned up.

Probing for object non-existence may require contacting the ORB that implements the target object. Such an attempt may
fail at either the local or the remote end. If non-existent cannot make a reliable determination of object existence due to
failure, it raises an exception in the calling application code. This enables the application to distinguish among the true,
false, and indeterminate cases.

8.3.6 Object Reference Identity

In order to efficiently manage state that include large numbers of object references, services need to support a notion of
object reference identity. Such services include not just bridges, but relationship services and other layered facilities.

108 Common Object Request Broker Architecture (CORBA), v3.1.1

Two identity-related operations are provided. One maps object references into disjoint groups of potentially equivalent
references, and the other supports more expensive pairwise equivalence testing. Together, these operations support
efficient maintenance and search of tables keyed by object references.

8.3.6.1 Hashing Object Identifiers
hash

unsigned long hash(
in unsigned long maximum

);

Object references are associated with ORB-internal identifiers that may indirectly be accessed by applications using the
hash operation. The value of this identifier does not change during the lifetime of the object reference, and so neither
will any hash function of that identifier.

The value of this operation is not guaranteed to be unique; that is, another object reference may return the same hash
value. However, if two object references hash differently, applications can determine that the two object references are not
identical.

The maximum parameter to the hash operation specifies an upper bound on the hash value returned by the ORB. The
lower bound of that value is zero. Since a typical use of this feature is to construct and access a collision chained hash
table of object references, the more randomly distributed the values are within that range, and the cheaper those values are
to compute, the better.

For bridge construction, note that proxy objects are themselves objects, so there could be many proxy objects representing
agiven “real” object. Those proxies would not necessarily hash to the same value.

8.3.6.2 Equivalence Testing
is_equivalent

boolean is_equivalent(
in Object other_object

);

Theis_equivalent operation is used to determine if two object references are equivalent, so far as the ORB can easily
determine. It returns TRUE if the target object reference is known to be equivalent to the other object reference passed as
its parameter, and FALSE otherwise.

If two object references are identical, they are equivalent. Two different object references that in fact refer to the same
object are also equivalent.

ORBs are allowed, but not required, to attempt determination of whether two distinct object references refer to the same
object. In general, the existence of reference translation and encapsulation, in the absence of an omniscient topology
service, can make such determination impractically expensive. This means that a FALSE return from is_equivalent
should be viewed as only indicating that the object references are distinct, and not necessarily an indication that the
references indicate distinct objects. Setting of local policies on the object reference is not taken into consideration for the
purposes of determining object reference equivalence.

A typical application use of this operation is to match object references in a hash table. Bridges could use it to shorten the
lengths of chains of proxy object references. Externalization services could use it to “flatten” graphs that represent
cyclical relationships between objects. Some might do this as they construct the table, others during idle time.

Common Object Request Broker Architecture (CORBA), v3.1.1 109

8.3.7 Type Coercion Considerations

Many programming languages map Object to programming constructs that support inheritance. Mappings to languages
(such as C++ and Java) typically provide a mechanism for narrowing (down-casting) an object reference from a base
interface to a more derived interface. To do such down-casting in a type safe way, knowledge of the full inheritance
hierarchy of the target interface may be required. The implementation of down-cast must either contact an interface
repository or the target itself, to determine whether or not it is safe to down-cast the client’s object reference. This
requirement is not acceptable when a client is expecting only asynchronous communication with the target. Therefore, for
the appropriate languages an unchecked down-cast operation (also referred to as unchecked narrow operation) shall be
provided in the mapping of Object. This unchecked narrow always returns a stub of the requested type without checking
that the target really implements that interface.

8.3.8 Getting Policy Associated with the Object

8.3.8.1 get_policy

The get_policy operation returns the policy object of the specified type (see Policy Object on page 126), which applies to
this object. It returns the effective Policy for the object reference. The effective Policy is the one that would be used if a
request were made.

This Policy is determined first by obtaining the effective override for the PolicyType as returned by
get_client_policy. The effective override is then compared with the Policy as specified in the IOR. The effective
Policy is determined by reconciling the effective override and the IOR-specified Policy (see Server Side Policy
Management on page 132). If the two policies cannot be reconciled, the standard system exception INV_POLICY is
raised with standard minor code 1. The absence of a Policy value in the IOR implies that any legal value may be used.

Invoking non_existent on an object reference prior to get_policy ensures the accuracy of the returned effective
Policy. If get_policy isinvoked prior to the abject reference being bound, a compliant implementation shall attempt a
binding and then return the effective Policy. If the binding attempt fails it shall pass through the system exception
returned from the binding attempt. Note that if the effective Policy may change from invocation to invocation due to
transparent rebinding.

Policy get_policy (
in PolicyType policy_type

)i
Parameter(s)
e policy_type

The type of policy to be obtained.

Return Value
A Policy object of the type specified by the policy_type parameter.

Exception(s)

* CORBA:INV_POLICY
Raised when the value of policy typeisnot valid either because the specified type is not supported by this ORB
or because a policy object of that type is not associated with this Object.

110 Common Object Request Broker Architecture (CORBA), v3.1.1

The implementation of this operation may involve remote invocation of an operation (e.g.,
DomainManager::get_domain_policy for some security policies) for some policy types.

8.3.8.2 get_client_policy

Policy get_client_policy(
in PolicyType type
)i

Returns the effective overriding Policy for the object reference. The effective override is obtained by first checking for an
override of the given PolicyType at the Object scope, then at the Current scope, and finally at the ORB scope. If no
overrideis present for the requested Policy Type, a system-dependent default value for that Policy Type may be returned.
A nil Policy reference may also be returned to indicate that there is no default for the policy. Portable applications are
expected to set the desired “defaults’ at the ORB scope since default Policy values are not specified.

8.3.8.3 get_policy_overrides

PolicyList get_policy_overrides(
in PolicyTypeSeq types
)i

Returns the list of Policy overrides (of the specified policy types) set at the Object scope. If the specified sequence is
empty, all Policy overrides at this scope will be returned. If none of the requested PolicyTypes are overridden at the
Object scope, an empty sequence is returned.

8.3.9 Overriding Associated Policies on an Object Reference

8.3.9.1 set_policy_overrides

The set_policy_overrides operation returns a new object reference with the new policies associated with it. It takes
two input parameters. The first parameter policies is a sequence of references to Policy objects. The second parameter
set_add of type SetOverrideType indicates whether these policies should be added onto any other overrides that
already exist (ADD_OVERRIDE) in the object reference, or they should be added to a clean override free object
reference (SET_OVERRIDE). This operation associates the policies passed in the first parameter with a newly created
object reference that it returns. Only certain policies that pertain to the invocation of an operation at the client end can be
overridden using this operation. Attempts to override any other policy will result in the raising of the
CORBA::NO_PERMISSION exception.

enum SetOverrideType {SET_OVERRIDE, ADD_OVERRIDE};

Object set_policy_overrides(

in PolicyList policies,
in SetOverrideType set_add
) raises (InvalidPolicies);
Parameter(s)
e policies

A sequence of Policy objectsthat are to be associated with the new copy of the object reference returned by this
operation. If the sequence contains two or more Policy objects with the same PolicyType value, the operation
raises the standard system exception BAD_PARAM with minor code 30.

Common Object Request Broker Architecture (CORBA), v3.1.1 111

* set_add
Whether the association isin addition to (ADD_OVERRIDE) or as areplacement of (SET_OVERRIDE) any
existing overrides aready associated with the object reference. If the value of this parameter is SET_OVERRIDE,
the supplied policies completely replace all existing overrides associated with the object reference. If the value of
this parameter is ADD_OVERRIDE, the supplied policies are added to the existing overrides associated with the
object reference, except that if a supplied Policy object has the same Policy Type value as an existing override, the
supplied Policy object replaces the existing override.

Return Value

A copy of the object reference with the overrides from policies associated with it in accordance with the value of
set_add.

Exception(s)

« InvalidPolicies
Raised when an attempt is made to override any policy that cannot be overridden.

8.3.10 Validating Connection

8.3.10.1 validate_connection

boolean validate_connection(
out PolicyList inconsistent_policies

);

Returns the value TRUE if the current effective policies for the Object will alow an invocation to be made. If the object
reference is not yet bound, a binding will occur as part of this operation. If the object reference is already bound, but
current policy overrides have changed or for any other reason the binding is no longer valid, a rebind will be attempted
regardless of the setting of any RebindPolicy override. The validate_connection operation is the only way to force such
a rebind when implicit rebinds are disallowed by the current effective RebindPolicy. The attempt to bind or rebind may
involve processing GIOP LocateRequests by the ORB.

If the RoutingPolicy ROUTE_FORWARD or ROUTE_STORE_AND_FORWARD are in effect when
validate_connection isinvoked then the client ORB shall attempt to open a connection for the first hop to the first
target Router (applies to both Router and PersistentRequestRouter) as if it were the target Object and return
success or failure based on success or failure to establish this connection.

Returns the value FALSE if the current effective policies would cause an invocation to raise the standard system
exception INV_POLICY. If the current effective policies are incompatible, the out parameter inconsistent_policies
contains those policies causing the incompatibility. This returned list of policiesis not guaranteed to be exhaustive. If the
binding fails due to some reason unrelated to policy overrides, the appropriate standard system exception is raised.

8.3.11 Getting the Domain Managers Associated with the Object

8.3.11.1 get_domain_managers

The get_domain_managers operation allows administration services (and applications) to retrieve the domain
managers (see Management of Policies on page 131), and hence the security and other policies applicable to individual
objects that are members of the domain.

112 Common Object Request Broker Architecture (CORBA), v3.1.1

typedef sequence <DomainManager> DomainManagersList;
DomainManagersList get_domain_managers ();

Return Value

The list of immediately enclosing domain managers of this object. At least one domain manager is always returned in the
list since by default each object is associated with at least one domain manager at creation.

The implementation of this operation may involve contacting the ORB that implements the target object.

8.3.12 Getting Component Associated with the Object

8.3.12.1 get_component
Object get_component ();

If the target object reference is itself a component reference (i.e., it denotes the component itself), the get_component
operation returns the same reference (or another equivalent reference). If the target object reference is a facet reference
the get_component operation returns an object reference for the component. If the target reference is neither a
component reference nor a provided reference, get_component returns a nil reference.

8.3.13 Getting the ORB

8.3.13.1 get_orb

ORB get_orb();

This operation returns the local ORB that is handling this particular Object Reference.

8.3.14 LocalObject Operations

Local interfaces are implemented by using CORBA::LocalObject, which derives from CORBA::Object and provides
implementations of Object pseudo operations and any other ORB specific support mechanisms that are appropriate for
such objects. Object implementation techniques are inherently language mapping specific. Therefore, the LocalObject
type is not defined in IDL, but is specified by each language mapping.

« ThelLocalObject type provides implementations of the following Object pseudo-operations that raise the
NO_IMPLEMENT system exception with standard minor code 8:
e get_interface
e get_domain_managers
e get_policy
e get_client_policy
e set_policy_overrides
e get_policy_overrides
e validate_connection
* get_component

e respository_id

Common Object Request Broker Architecture (CORBA), v3.1.1 113

» ThelLocalObject type provides implementations of the following pseudo-operations:
e non_existent - alwaysreturnsfalse.
« hash - returns ahash value that is consistent for the lifetime of the object.
«is_equivalent - returns true if the references refer to the same LocalObject implementation.

*is_a - returns TRUE if the LocalObject derives from or isitself the type specified by thelogical_type_id
argument.

e get_orb - The default behavior of this operation when invoked on areference to alocal object isto return the
system exception NO_IMPLEMENT with standard minor code 8. Certain local objects that have close association
with an ORB, like POASs, Current objects and certain portable interceptorsrelated local objects override the default
behavior and return areference to the ORB that they are associated with. These are documented in the sub clauses
where these local objects are specified

» Attempting to use aLocalObject to create a DIl request shall result inaNO_IMPLEMENT system exception with
standard minor code 4. Attempting to marshal or stringify aL ocal Object shall resultinaMARSHAL system exception
with standard minor code 4. Narrowing and widening of referencesto LocalObjects must work as for regular object
references.

» Local types cannot be marshaled and references to local objects cannot be converted to strings. Any attempt to marshal
alocal object, such asviaan unconstrained base interface, asan Object, or asthe contents of an any, or to passalocal
object to ORB::0object_to_string, shall resultinaMARSHAL system exception with OMG minor code 4.

» The DIl isnot supported on local objects, nor are asynchronous invocation interfaces.

» Language mappings shall specify server side mechanisms, including base classes and/or skeletonsif necessary, for
implementing local objects, so that invocation overhead is minimized.

» The usage of client side language mappings for local types shall be identical to those of equivalent unconstrained
types.

» Invocations on local objects are not ORB mediated. Specifically, parameter copy semantics are not honored,
interceptors are not invoked, and the execution context of alocal object does not have ORB service Current object
contexts that are distinct from those of the caller. Implementations of local interfaces are responsible for providing the
parameter copy semantics expected by clients.

» Local objects have no inherent identities beyond their implementations’ identities as programming objects. The
lifecycle of the implementation is the same as the lifecycle of the reference.

» Instances of local objects defined as part of OMG specifications to be supplied by ORB products or object service
products shall be exposed through the ORB::resolve_initial_references operation or through some other local
object obtained fromresolve_initial_references.

8.4 ValueBase Operations

ValueBase serves asimilar role for value types that Object serves for interfaces. Its mapping is language-specific and
must be explicitly specified for each language.

Typically it is mapped to a concrete language type which serves as a base for all value types. Any operations that are
required to be supported for all values are conceptually defined on ValueBase, athough in reality their actual mapping
depends upon the specifics of any particular language mapping.

114 Common Object Request Broker Architecture (CORBA), v3.1.1

Analogous to the definition of the Object interface for implicit operations of object references, the implicit operations of
ValueBase are defined on a pseudo-valuetype as follows:

module CORBA {
valuetype ValueBase{ PIDL
ValueDef get_value_def();
h
b

The get_value_def() operation returns a description of the value's definition as described in the interface repository
(ValueDef on page 257).

8.5 ORB and OA Initialization and Initial References

Before an application can enter the CORBA environment, it must first:
« Beinitiaized into the ORB and possibly the object adapter (POA) environments.

» Get references to ORB pseudo-object (for use in future ORB operations) and perhaps other objects (including the root
POA or some Object Adapter objects).

The following operations are provided to initialize applications and obtain the appropriate object references:

» Operations providing access to the ORB. These operations reside in the CORBA module, but not in the ORB interface
and are described in ORB Initialization on page 115.

» Operations providing access to Object Adapters, Interface Repository, Naming Service, and other Object Services.
These operations reside in the ORB interface and are described in Obtaining Initial Object References on page 117.

8.5.1 ORSB Initialization

When an application requires a CORBA environment it needs a mechanism to get the ORB pseudo-object reference and
possibly an OA object reference (such as the root POA). This serves two purposes. First, it initializes an application into
the ORB and OA environments. Second, it returns the ORB pseudo-object reference and the OA object reference to the
application for use in future ORB and OA operations.

The ORB and OA initialization operations must be ordered with ORB occurring before OA: an application cannot call
OA initialization routines until ORB initialization routines have been called for the given ORB. The operation to initialize
an application in the ORB and get its pseudo-object reference is not performed on an object. This is because applications
do not initially have an object on which to invoke operations. The ORB initialization operation is an application’s
bootstrap call into the CORBA world. The ORB_init call is part of the CORBA module but not part of the ORB
interface.

Applications can be initialized in one or more ORBs. When an ORB initialization is complete, its pseudo reference is
returned and can be used to obtain other references for that ORB.

In order to obtain an ORB pseudo-abject reference, applications call the ORB_init operation. The parameters to the call
comprise an identifier for the ORB for which the pseudo-object reference is required, and an arg_list, which is used to
allow environment-specific data to be passed into the call. PIDL for the ORB initialization is as follows:

Common Object Request Broker Architecture (CORBA), v3.1.1 115

// PIDL
module CORBA {

typedef sequence <string> arg_list;

ORB ORB _init (inout arg_list argv, in ORBIid orb_identifier);
¥

The identifier for the ORB will be a name of type CORBA::ORBid. All ORBid strings other than the empty string are
allocated by ORB administrators and are not managed by the OMG. ORB administration is the responsibility of each ORB
supplier. ORB suppliers may optionally delegate this responsibility. ORBIid strings other than the empty string are
intended to be used to uniquely identify each ORB used within the same address space in a multi-ORB application. These
special ORBid strings are specific to each ORB implementation and the ORB administrator is responsible for ensuring
that the names are unambiguous.

If an empty ORBId string is passed to ORB _init, then the arg_list arguments shall be examined to determine if they
indicate an ORB reference that should be returned. This is achieved by searching the arg_list parameters for one
preceded by “-ORBid” for example, “-ORBid example_orb” (the white space after the “~-ORBIid” tag is ignored) or “-
ORBidMyFavoriteORB” (with no white space following the “-ORBIid” tag). Alternatively, two sequential parameters
with the first being the string “-ORBid” indicates that the second is to be treated as an ORBid parameter. If an empty
string is passed and no arg_list parameters indicate the ORB reference to be returned, the default ORB for the
environment will be returned.

Other parameters of significance to the ORB can also be identified in arg_list, for example, “Hostname,”
“SpawnedServer,” and so forth. To allow for other parameters to be specified without causing applications to be re-
written, it is necessary to specify the parameter format that ORB parameters may take. In general, parameters shall be
formatted as either one single arg_list parameter:

—ORB<suffix><optional white space> <value>

or as two sequential arg_list parameters:
-ORB<suffix>

<value>

Regardless of whether an empty or non-empty ORBId string is passed to ORB _init, the arg_list arguments are
examined to determine if any ORB parameters are given. If a non-empty ORBId string is passed to ORB_init, all ORBid
parameters in the arg_list are ignored. All other -ORB<suffix> parameters in the arg_list may be of significance
during the ORB initialization process.

Before ORB _init returns, it will remove from the arg_list parameter al strings that match the -ORB<suffix> pattern
described above and that are recognized by that ORB implementation, along with any associated sequential parameter
strings. If any strings in arg_list that match this pattern are not recognized by the ORB implementation, ORB _init will
raise the BAD_PARAM system exception instead.

The ORB _init operation may be called any number of times and shall return the same ORB reference when the same
ORBId string is passed, either explicitly as an argument to ORB_init or through the arg_list. All other -ORB<suffix>
parameters in the arg_list may be considered on subsequent calls to ORB _init.

NOTE: Whenever an ORB_init argument of the form -ORBxxx is specified, it is understood that the argument may be
represented in different ways in different languages. For example, in Java-ORBxxXx is equivalent to a property named
org.omg.CORBA.ORBxxx.

116 Common Object Request Broker Architecture (CORBA), v3.1.1

8.5.1.1 Server ID

A Server ID must uniquely identify a server to an IMR. This specification only requires unique identification using a
string of some kind. We do not intend to make more specific requirements for the structure of a server ID.

The server ID may be specified by an ORB_init argument of the form

-ORBServerld

The value assigned to this property is a string. All templates created in this ORB will return this server ID in the
server_id attribute.

It isrequired that all ORBs in the same server share the same server ID. Specific environments may choose to implement
-ORBServerld in ways that automatically enforce this requirement.

For example, the org.omg.CORBA.Serverld system property may be set to the server 1D in Java when a Java server is
activated. This system property is then picked up as part of the ORB_init call for every ORB created in the server.

8.5.1.2 Server Endpoint

The server endpoint information is passed into ORB_init by an argument of the form

-ORBListenEndpoints <endpoints>

The format of the <endpoints> argument is proprietary. All that is required by this specification is that each time
ORB_init is called with the same value for this argument, the resulting ORB will listen for requests on the same set of
endpoints, so that persistent object references for the ORB will continue to function correctly.

8.5.1.3 Starting Servers with No Proprietary Server Activation Support
Any server started with the flag:

-ORBNoProprietaryActivation

shall avoid the use of any proprietary activation framework.
8.5.2 Obtaining Initial Object References

Applications require a portable means by which to obtain their initial object references. References are required for the
root POA, POA Current, Interface Repository and various Object Services instances. (The POA is described in the
Portable Object Adapter clause; the Interface Repository is described in the Interface Repository clause; Object Services
are described in the individual service specifications.) The functionality required by the application is similar to that
provided by the Naming Service. However, the OMG does not want to mandate that the Naming Service be made
available to all applications in order that they may be portably initialized. Consequently, the operations shown in this sub
clause provide a simplified, local version of the Naming Service that applications can use to obtain a small, defined set of
object references that are essential to its operation. Because only a small well-defined set of objects are expected with this
mechanism, the naming context can be flattened to be a single-level name space. This simplification results in only two
operations being defined to achieve the functionality required.

Initial references are not obtained via a new interface; instead two operations are provided in the ORB pseudo-object
interface, providing facilities to list and resolve initial object references.

Common Object Request Broker Architecture (CORBA), v3.1.1 117

list_initial_services

typedef string Objectld;
typedef sequence <Objectld> ObjectldList;
ObjectldList list_initial_services ();

resolve_initial_references

exception InvalidName {};

Object resolve_initial_references (
in Objectld identifier
) raises (InvalidName);

Theresolve_initial_references operation is an operation on the ORB rather than the Naming Service's
NamingContext. The interface differs from the Naming Service's resolve in that Objectld (a string) replaces the more
complex Naming Service construct (a sequence of structures containing string pairs for the components of the name). This
simplification reduces the name space to one context.

Objectlds are strings that identify the object whose reference is required. To maintain the simplicity of the interface for
obtaining initial references, only alimited set of objects are expected to have their references found via this route. Unlike
the ORB identifiers, the Objectld name space requires careful management. To achieve this, the OMG may, in the future,
define which services are required by applications through this interface and specify names for those services.

resolve_initial_references never returns a nil reference. Instead, the non-availability of a particular reference is
indicated by throwing an InvalidName exception (even if a nil reference is explicitly configured for an Objectid).

Currently, reserved Objectlds are RootPOA, POACurrent, InterfaceRepository, NameService, TradingService,
SecurityCurrent, TransactionCurrent, DynAnyFactory, ORBPolicyManager, PolicyCurrent,
NotificationService, TypedNotificationService, CodecFactory, PICurrent, ComponentHomeFinder and PSS.

Table 8.1- Objectlds for resolve_initial_references

Objectld Type of Object Reference Reference
RootPOA PortableServer::POA POA Interface on page 328.
POACurrent PortableServer::Current POA Interface on page 328.
InterfaceRepository CORBA::Repository Repository on page 238 and
CORBA::ComponentIR::Repository Component| R::Repository on
page 264.
NameService CosNaming:: Naming Service specification
NamingContext (formal/00-06-19), the CosNaming

Module sub clause.

TradingService CosTrading::Lookup Trading Object Service specification
(formal/00-06-27), the Functional
Interfaces sub clause.

SecurityCurrent SecurityLevell::Current or Security Service specification
SecurityLevel2::Current (formal/00-06-25), the Security
Operations on Current sub clause.

118 Common Object Request Broker Architecture (CORBA), v3.1.1

Table 8.1- Objectlds for resolve_initial_references

Objectld Type of Object Reference Reference
TransactionCurrent CosTransaction::Current Transaction Service specification
(formal/00-06-28), the Transaction
Service Interfaces sub clause.
DynAnyFactory DynamicAny:: Creating a DynAny Object on
DynAnyFactory page 204.
ORBPolicyManager CORBA::PolicyManager Policy Management Interfaces on
page 132.
PolicyCurrent CORBA::PolicyCurrent Policy Management Interfaces on
page 132.
NotificationService CosNotifyChannelAdmin:: Notification Service specification
EventChannelFactory (formal/00-06-20)
TypedNotificationService CosTypedNotifyChannelAdmin:: Typed Notification Service specification
EventChannelFactory (formal/00-06-20)
CodecFactory IOP::CodecFactory See Part 2 of this specification,
Architecture clause.
PICurrent Portablelnterceptors::Current Portable Interceptor Current

Interface on page 387.

ComponentHomeFinder Components::HomeFinder Components specification

(formal/02-06-65).

PSS CosPersistentState::ConnectorRegistry Persistent Sate specification

(formal/02-09-06).

To allow an application to determine which objects have references available via the initial references mechanism, the
list_initial_services operation (also a call on the ORB) is provided. It returns an ObjectldList, which is a sequence of
Objectlds. Objectlds are typed as strings. Each object, which may need to be made available at initialization time, is
allocated a string value to represent it.

In addition to defining the id, the type of object being returned must be defined; that is, “InterfaceRepository” returns
an object of type Repository, or ComponentIR::Repository, which is derived from Repository, depending on whether
the ORB supports components or not, and “NameService” returns a CosNaming::NamingContext object.

The application is responsible for narrowing the object reference returned from resolve_initial_references to the type
that was requested in the Objectld. For example, for InterfaceRepository the object returned would be narrowed to
Repository type or ComponentlR::Repository type, depending on whether the ORB supports components.

Specifications for Object Services (see individual service specifications) state whether it is expected that a service's initial
reference be made available via the resolve_initial_references operation or not; that is, whether the service is
necessary or desirable for bootstrap purposes.

Common Object Request Broker Architecture (CORBA), v3.1.1 119

8.5.3 Configuring Initial Service References

8.5.3.1 ORB-specific Configuration

It is required that an ORB can be administratively configured to return an arbitrary object reference from
CORBA::ORB::resolve_initial_references for non-locality-constrained objects.

In addition to this required implementation-specific configuration, two CORBA::ORB_init arguments are provided to
override the ORB initial reference configuration.

8.5.3.2 ORBInitRef

The ORB initia reference argument, -ORBInitRef, allows specification of an arbitrary object reference for an initial
service. The format is:

-ORBInitRef <ObjectID>=<ObjectURL>

Examples of use are:
-ORBInitRef NameService=IOR:00230021AB...
-ORBInitRef NotificationService=corbaloc::5550bjs.com/NotificationService

-ORBInitRef TradingService=corbaname::5550bjs.com#Dev/Trader

<ObjectID> represents the well-known ObjectID for a service defined in the CORBA specification, such as
NameService. This mechanism allows an ORB to be configured with new initial service Object IDs that were not
defined when the ORB was installed.

<ObjectURL> can be any of the URL schemes supported by CORBA::ORB::string_to_object (ISO/IEC 19500-2 ,
Clause 7, ORB Interoperability Architecture - 7.6.1, Object URLS), with the exception of the corbaloc URL scheme with
the rir protocol (i.e., corbalocrir...). If a URL is syntactically malformed or can be determined to be invalid in an
implementation defined manner, ORB _init raises a BAD_PARAM exception.

8.5.3.3 ORBDefaultlnitRef

The ORB default initial reference argument, -ORBDefaultInitRef, assists in resolution of initial references not explicitly
specified with -ORBInitRef. -ORBDefaultInitRef requires a URL that, after appending a slash ‘/’ character and a
stringified object key, forms a new URL to identify an initial object reference. For example:

-ORBDefaultInitRef corbaloc::5550bjs.com

A call to resolve_initial_references (see the “NotificationService”) with this argument results in a new URL:

corbaloc::5550bjs.com/NotificationService
That URL is passed to CORBA::ORB::string_to_object to obtain the initial reference for the service.

Another example is:

-ORBDefaultInitRef \
corbaname::555ResolveRefs.com,:555Backup.com#Prod/Local

120 Common Object Request Broker Architecture (CORBA), v3.1.1

After calling resolve_initial_references(* NameService”), one of the corbaname URLs

corbaname::555ResolveRefs.com#Prod/Local/NameService

or

corbaname::555Backup41l.com#Prod/Local/NameService

is used to obtain an object reference from string_to_object. (In this example, Prod/Local/NameService represents a
stringified CosNaming::Name).

See Part 2 of this specification for details of the corbaloc and corbaname URL schemes. The -ORBDefaultinitRef
argument naturally extends to URL schemes that may be defined in the future, provided the final part of the URL is an
object key.

8.5.3.4 Configuration Effect on resolve_initial_references

Default Resolution Order
The default order for processing a call to CORBA::ORB::resolve_initial_references for a given <ObjectID> is:
1. Resolvewithregister_initial_reference entry if possible.
2. Resolvewith -ORBInitRef for this<ObjectID> if possible
3. Resolve with pre-configured ORB settings if possible.
4.

Resolve with an -ORBDefaultInitRef entry if possible.

ORB Configured Resolution Order

There are cases where the default resolution order may not be appropriate for all services and use of
-ORBDefaultInitRef may have unintended resolution side effects). For example, an ORB may use a proprietary service,
such as ImplementationRepository, for internal purposes and may want to prevent a client from unknowingly
diverting the ORB’s reference to an implementation repository from another vendor. To prevent this, an ORB is allowed
to ignore the -ORBDefaultInitRef argument for any or all <ObjectID>s for those services that are not OMG-specified
services with a well-known service name as accepted by resolve_initial_references. An ORB can only ignore the
-ORBDefaultInitRef argument but must always honor the -ORBInitRef argument.

8.5.3.5 Configuration Effect on list_initial_services

The <ObjectID>s of all -ORBInitRef argumentsto ORB _init appear in the list of tokens returned by
list_initial_services as well as all ORB-configured <ObjectID>s. Any other tokens that may appear are
implementation-dependent.

The list of <ObjectID>s returned by list_initial_services can be a subset of the <ObjectID>s recognized as valid by
resolve_initial_references.

Common Object Request Broker Architecture (CORBA), v3.1.1 121

8.6 Context Object

8.6.1 Introduction

A context object contains a list of properties, each consisting of a name and a string value associated with that name. By
convention, context properties represent information about the client, environment, or circumstances of a request that are
passed as a single parameter representing that collection of information.

Context properties represent a portion of a client's or application’s environment that is meant to be propagated to (and
made available to) a server’s environment (for example, a window identifier, or user preference information). Once an
operation has been invoked in the server, the operation implementation may query its context object for these properties.

An operation definition may contain a context clause that specifies the context properties that may be of interest to a
particular operation. These context properties (if present for the actual call) are propagated to the server. A client-side
ORB may choose to pass more properties than are specified by an operation's context clause. An example of an operation
with a context clause is

interface Example {
void op() context("USER", " X*");

b

This context clause specifies that the “USER” property is to be made available to the server, as well as al properties with
names beginning with “X.” Note that there is no obligation on the client to actually pass values for these properties at run
time; if the client omits one or more properties, the call proceeds normally and the operation implementation simply will
not be able to retrieve the corresponding property values.

Property names are non-empty strings that cannot contain the character ‘*’ - there are no other syntactic restrictions on
property names. Property names that differ only in case are distinct names, so the following is alegal context clause that
transmits two distinct properties:

interface Example2 {
void op() context("FOQ", "foo");

|3
Context property values are strings. An empty string is alegal property value.

Property values are modified and accessed via the Context interface. A Context object represents a collection of
property values. Context objects may be connected into hierarchies; properties defined in child Context objects lower in
the hierarchy override properties in parent Context objects higher in the hierarchy.

8.6.2 Context Object Operations

Properties are represented as named value lists.

module CORBA {
interface Context { /I PIDL
void set_one_value(
in Identifier prop_name, // property name to set
in string value I/l property value to set
)i

void set_values(

122 Common Object Request Broker Architecture (CORBA), v3.1.1

in NVList values /l property values to set
)i
void get_values(

in Identifier start_scope, // search scope

in Flags op_flags, /l operation flags
in Identifie prop_name, // name of property(s) to retrieve
out NVList values I/l requested property(s)

)i
void delete_values(
in Identifie prop_name // name of property(s) to delete

)i
void create_child(
in Identifier ctx_name, /I name of context object
out Context child_ctx /l newly created context object
)i
void delete(
in Flags del_flags /l flags controlling deletion
)i

b
b

8.6.2.1 set_one_value

void set_one_value(
in Identifier prop_name, // property name to set
in string value I/l property value to set
)i
This operation sets a single context object property. If prop_name is the empty string or contains the character ‘*,’ the

operation raises BAD_PARAM with minor code 35.

8.6.2.2 set_values

void set_values(
in NVLis values /I property values to set

);

This operation sets one or more property values in its context object. If a property name appears more than once in the
NVList, the value with higher index (later in the list) overwrites the value with lower index.

The flags field of each passed NVList element must be zero. A non-zero flag in any of the NVList elements raises
INV_FLAGS.

The property name of each NVList element must be a non-empty string not containing the character ‘*’. Otherwise the
operation raises BAD_PARAM with minor code 35.

The value of each property of the passed NVList must be a (possibly empty) unbounded string. Property values other than
unbounded strings raise BAD_TYPECODE with minor code 3.

Common Object Request Broker Architecture (CORBA), v3.1.1 123

8.6.2.3 get_values

void get_values(
in Identifie start_scope, //search scope

in Flags op_flags, /l operation flags
in Identifier prop_name, // name of property(s) to retrieve
out NVList values /l requested property(s)

);

This operation returns an NVList with those properties that match the prop_name parameter. Legal values for
prop_name are:

A non-empty string that does not contain the character ‘*.’
In this case, the values parameter returns the property with the name specified by prop_name.
A string beginning with one or more characters other than ‘*,” followed by asingle ‘*’ at the end, such as“XYZ*.”

In this case, the values parameter contains the properties that have names beginning with “XY Z” (such as
“XYZABC" or “XYZ").

If prop_name is the empty string, the string “*,” contains more than one ‘*’ character, or contains a‘*’ anywhere but at
the end of the string, the operation raises BAD_PARAM with minor code 36.

The start_scope parameter controls the context object level at which to initiate the search for the specified properties
as follows:

The start_scope parameter specifies the name of the context object in which the search for propertiesis to start.

If the context object on which get_values isinvoked has aname equal to start_scope, that context object becomes
the starting context object for the search.

If start_scopeis"” the context object on which get_values isinvoked becomesthe starting context object for the
search.

« If the context object on which get_values isinvoked does not have a name equal to start_scope (and
start_scope isnot“"), the parent context object is retrieved and its name compared to start_scope; this
process repeats until either a starting context object whose name equals start_scope isfound, or the search
terminates because it runs out of parent objects.

The name of the root context object created by get_default_context is“RootContext.”

If no starting context object can be found, the operation raises BAD_CONTEXT with minor code 1.
« Once a starting context object isfound, get_values searches for properties in the matching context object.

« If op_flagsis CORBA::CTX_RESTRICT_SCOPE, get_values searches only the starting context object for
properties that match prop_name. (Thevalue of CTX_RESTRICT_SCOPE is15.)

If op_flags iszero, get_values searchesthe starting context and its parent contexts for properties that match
prop_name. The property valuesthat are returned are taken from the first context object in which they are found, so
properties in child contexts override the values of propertiesin parent contexts.

In either case, if no property matches prop_name, the operation raises BAD_CONTEXT with minor code 2.

124

Common Object Request Broker Architecture (CORBA), v3.1.1

8.6.2.4 delete_values

void delete_values(
in Identifie prop_name // name of property(s) to delete

)i
This operation deletes the properties that match prop_name. prop_name may have atrailing ‘*’ character, in which
case all properties whose name matches the specified prefix are deleted.

If prop_name is the empty string, the string "*", contains more than one ‘*’ character, or contains a‘*’ anywhere but at
the end of the string, the operation raises BAD_PARAM with minor code 36. The operation only affects the context
object on which it isinvoked (that is, parent contexts are never affected by delete_values).

If no property name matches prop_name, the operation raises BAD_CONTEXT with minor code 2.

8.6.2.5 create_child

void create_child(
in Identifier ctx_name, /l name of context object
out Context child_ctx /l newly created context object

);

This operation creates an empty child context object. The child context has the name ctx_name. ctx_name may not be
the empty string or “RootContext;” otherwise, the operation raises BAD_PARAM with minor code 37. Calling
create_child more than once with the same name on the same parent context is legal and results in the creation of a
new, empty child context for each call.

8.6.2.6 delete

void delete(
in Flags del_flags /l flags controlling deletion

)i
This operation deletes the context object on which it is invoked:

- |If del_flags is zero, the context object is deleted only if it has no child contexts; otherwise, if del_flags is zero and
the context object has child contexts, the operation raisesBAD_PARAM with minor code 38.

- If del_flags iSCORBA::CTX_DELETE_DESCENDANTS, the context object on which deleteisinvoked is destroyed,
together with (recursively) its child contexts. The value of CTX_DELETE_DESCENDANTS is 1.

If del_flags has a value other than zero or CTX_DELETE_DESCENDANTS, the operation raises INV_FLAGS.

8.7 Current Object

ORB and CORBA services may wish to provide access to information (context) associated with the thread of execution
in which they are running. This information is accessed in a structured manner using interfaces derived from the Current
interface defined in the CORBA module.

Each ORB or CORBA service that needs its own context derives an interface from the CORBA module's Current. Users
of the service can obtain an instance of the appropriate Current interface by invoking
ORB::resolve_initial_references. For example the Security service obtains the Current relevant to it by invoking.

Common Object Request Broker Architecture (CORBA), v3.1.1 125

ORB::resolve_initial_references(“ SecurityCurrent”)

A CORBA service does not have to use this method of keeping context but may choose to do so.

module CORBA {

/l interface for the Current object
local interface Current {
¥
¥

Operations on interfaces derived from Current access state associated with the thread in which they are invoked, not
state associated with the thread from which the Current was obtained. This prevents one thread from manipulating
another thread's state, and avoids the need to obtain and narrow a new Current in each method’s thread context.

Current objects must not be exported to other processes, or externalized with ORB::object_to_string. If any attempt
is made to do so, the offending operation will raise a MARSHAL system exception. Currents are per-process singleton
objects, so no destroy operation is needed.

8.8 Policy Object

8.8.1 Definition of Policy Object

An ORB or CORBA service may choose to allow access to certain choices that affect its operation. This information is
accessed in a structured manner using interfaces derived from the Policy interface defined in the CORBA module. A
CORBA service does not have to use this method of accessing operating options, but may choose to do so. The Security
Service in particular uses this technique for associating Security Policy with objects in the system.

module CORBA {
typedef unsigned long PolicyType;

// Basic IDL definition

interface Policy {
readonly attribute PolicyType policy_type;
Policy copy();
void destroy();

h

typedef sequence <Policy> PolicyList;
typedef sequence <PolicyType> PolicyTypeSeq;
¥

PolicyType defines the type of Policy object. In general the constant values that are allocated are defined in conjunction
with the definition of the corresponding Policy object. The values of PolicyTypes for policies that are standardized by
OMG are allocated by OMG. Additionally, vendors may reserve blocks of 4096 PolicyType values identified by a 20 bit
Vendor PolicyType Valueset ID (VPVID) for their own use.

126 Common Object Request Broker Architecture (CORBA), v3.1.1

PolicyType which is an unsigned long consists of the 20-bit VPVID in the high order 20 bits, and the vendor assigned
policy value in the low order 12 bits. The VPVIDs 0 through \xf are reserved for OMG. All values for the standard
PolicyTypes are allocated within this range by OMG. Additionally, the VPVIDs \xfffff is reserved for experimental use
and OMGVMCID (8.12.3, Standard System Exception Definitions) is reserved for OMG use. These will not be allocated
to anybody. Vendors can request allocation of VPVID by sending mail to tag-request@omg.org.

When a VMCID (Exceptions on page 148) is allocated to a vendor automatically the same value of VPVID is reserved for
the vendor and vice versa. So once a vendor gets either a VMCID or a VPVID registered they can use that value for both
their minor codes and their policy types.

8.8.1.1 Copy
Policy copy();

Return Value

This operation copies the policy object. The copy does not retain any relationships that the policy had with any domain,
or object.

8.8.1.2 Destroy

void destroy();

This operation destroys the policy object. It is the responsibility of the policy object to determine whether it can be
destroyed.

Exception(s)

« CORBA:NO_PERMISSION
Raised when the policy object determines that it cannot be destroyed.

8.8.1.3 Policy_type
readonly attribute policy_type
Return Value
This readonly attribute returns the constant value of type PolicyType that corresponds to the type of the Policy object.

8.8.2 Creation of Policy Objects

A generic ORB operation for creating new instances of Policy objects is provided as described in this sub clause.
module CORBA {

typedef short PolicyErrorCode;

const PolicyErrorCode BAD_POLICY = 0;

const PolicyErrorCode UNSUPPORTED_POLICY = 1;

const PolicyErrorCode BAD_POLICY_TYPE = 2;

const PolicyErrorCode BAD_POLICY_VALUE = 3;

const PolicyErrorCode UNSUPPORTED_POLICY_VALUE = 4;

Common Object Request Broker Architecture (CORBA), v3.1.1 127

exception PolicyError {PolicyErrorCode reason;};

interface ORB {

Policy create_policy(
in PolicyType type,
in any val

) raises(PolicyError);

¥
|3
8.8.2.1 PolicyErrorCode

A request to create a Policy may be invalid for the following reasons:
« BAD_POLICY - therequested Policy is not understood by the ORB.

« UNSUPPORTED_POLICY - therequested Policy is understood to be valid by the ORB, but is not currently
supported.

« BAD_POLICY_TYPE - Thetype of the value requested for the Policy isnot valid for that PolicyType.

« BAD_POLICY_VALUE - The value requested for the Policy is of avalid type but is not within the valid range for
that type.

« UNSUPPORTED_POLICY_VALUE - The value requested for the Policy is of avalid type and within the valid
range for that type, but thisvalid value is not currently supported.

8.8.2.2 PolicyError

exception PolicyError {PolicyErrorCode reason;};

PolicyError exception is raised to indicate problems with parameter values passed to the ORB::create_policy
operation. Possible reasons are described above.

8.8.2.3 Create_policy

The ORB operation create_policy can be invoked to create new instances of policy objects of a specific type with
specified initial state. If create_policy fails to instantiate a new Policy object due to its inability to interpret the
requested type and content of the policy, it raises the PolicyError exception with the appropriate reason as described in
PolicyErrorCode on page 128.

Policy create_policy(
in PolicyType type,
in any val

) raises(PolicyError);

Parameters

* type
The PolicyType of the policy object to be created.

128 Common Object Request Broker Architecture (CORBA), v3.1.1

« val
The value that will be used to set the initial state of the Policy object that is created.

Return Value
Reference to anewly created Policy object of type specified by thetype parameter and initialized to a state specified by the
val parameter.

Exception

e PolicyError
Raised when the requested policy is not supported or arequested initial state for the policy is not support.

When new policy types are added to CORBA or CORBA Services specification, it is expected that the IDL type and the
valid values that can be passed to create_policy also be specified.

8.8.3 Usages of Policy Objects

Policy Objects are used in general to encapsulate information about a specific policy, with an interface derived from the
policy interface. The type of the Policy object determines how the policy information contained within it is used. Usually
a Policy object is associated with another object to associate the contained policy with that object.

Objects with which policy objects are typically associated are Domain Managers, POA, the execution environment, both
the process/capsule/ORB instance and thread of execution (Current object) and object references. Only certain types of
policy object can be meaningfully associated with each of these types of objects.

These relationships are documented in sub clauses that pertain to these individual objects and their usages in various core
facilities and object services. The use of Policy Objects with the POA are discussed in the Portable Object Adapter
clause. The use of Palicy objects in the context of the Security services, involving their association with Domain
Managers as well as with the Execution Environment are discussed in the Security Service specification.

In the following sub clause the association of Policy objects with the Execution Environment is discussed. In
Management of Policies on page 131 the use of Policy objects in association with Domain Managers is discussed.

8.8.4 Policy Associated with the Execution Environment

Certain policies that pertain to services like security (e.g., QOP, Mechanism, invocation credentials, etc.) are associated
by default with the process/capsule(RM-ODP)/ORB instance (hereinafter referred to as “ capsule”) when the application is
instantiated together with the capsule. By default these policies are applicable whenever an invocation of an operation is
attempted by any code executing in the said capsule. The Security service provides operations for modulating these
policies on a per-execution thread basis using operations in the Current interface. Certain of these policies (e.g.,
invocation credentials, qop, mechanism, etc.) which pertain to the invocation of an operation through a specific object
reference can be further modulated at the client end, using the set_policy_overrides operation of the Object reference.
For a description of this operation see Overriding Associated Policies on an Object Reference on page 111. It associates a
specified set of policies with a newly created object reference that it returns.

The association of these overridden policies with the object reference is a purely local phenomenon. These associations
are never passed on in any 10OR or any other marshaled form of the object reference. the associations last until the object
reference in the capsule is destroyed or the capsule in which it exists is destroyed.

Common Object Request Broker Architecture (CORBA), v3.1.1 129

The palicies thus overridden in this new object reference and all subsequent duplicates of this new object reference apply
to al invocations that are done through these object references. The overridden policies apply even when the default
policy associated with Current is changed. It is always possible that the effective policy on an object reference at any
given time will fail to be successfully applied, in which case the invocation attempt using that object reference will fail
and return a CORBA::NO_PERMISSION exception. Only certain policies that pertain to the invocation of an operation
at the client end can be overridden using this operation. These are listed in the Security specification. Attempts to override
any other policy will result in the raising of the CORBA::NO_PERMISSION exception.

In general the policy of a specific type that will be used in an invocation through a specific object reference using a
specific thread of execution is determined first by determining if that policy type has been overridden in that object
reference. if so then the overridden policy is used. if not then if the policy has been set in the thread of execution then that
policy is used. If not, then the policy associated with the capsule is used. For policies that matter, the ORB ensures that
there is a default policy object of each type that matters associated with each capsule (ORB instance). Hence, in a
correctly implemented ORB there is no case when a required type policy is not available to use with an operation
invocation.

8.8.5 Specification of New Policy Objects

When new PolicyTypes are added to CORBA specifications, the following details must be defined. It must be clearly
stated which particular uses of a new policy are legal and which are not:

» Specify the assigned CORBA::Policy Type and the policy’s interface definition.

« If thePolicy can be created through CORBA::ORB::create_policy, specify the allowable values for the any
argument ‘val’ and how they correspond to theinitial state/behavior of that Policy (such asinitial values of attributes).
For example, if a Policy has multiple attributes and operations, it ismost likely that create_policy will receive some
complex data for the implementation to initialize the state of the specific policy:

/DL

struct MyPolicyRange {
long low;
long high;

¥

const CORBA::PolicyType MY_POLICY_TYPE = 666;
interface MyPolicy : Policy {

readonly attribute long low;

readonly attribute long high;

b

If this sample MyPolicy can be constructed via create_policy, the specification of MyPolicy will have a statement
such as: “When instances of MyPolicy are created, avalue of type MyPolicyRange is passed to
CORBA::ORB::create_policy and the resulting MyPolicy’s attribute ‘ low’ has the same value as the
MyPolicyRange member ‘low’ and attribute ‘high’ has the same value as the MyPolicyRange member ‘high.’

- If thePolicy can be passed as an argument to POA::create_POA, specify the effects of the new policy on that POA.
Specifically defineincompatibilities (or inter-dependencies) with other POA policies, effects on the behavior of
invocations on objects activated with the POA, and whether or not presence of the POA policy implies some IOR
profile/component contents for object references created with that POA. If the POA policy implies some addition/
maodification to the object reference, it is marked as “ client-exposed” and the exact details are specified including
which profiles are affected and how the effects are represented.

130 Common Object Request Broker Architecture (CORBA), v3.1.1

 |If the component that is used to carry thisinformation can be set within a client to tune the client’s behavior, specify
the policy’s effects on the client specifically with respect to (a) establishment of connections and reconnections for an
object reference; (b) effects on marshaling of requests; (c) effects on insertion of service contexts into requests; (d)
effects upon receipt of service contextsin replies. In addition, incompatibilities (or inter-dependencies) with other
client-side policies are stated. For policies that cause service contexts to be added to requests, the exact details of this
addition are given.

» If the Policy can be used with POA creation to tune IOR contents and can also be specified (overridden) in the client,
specify how to reconcile the policy’s presence from both the client and server. It is strongly recommended to avoid this
case! Asan exercisein completeness, most POA policies can probably be extended to have some meaning in the client
and vice versa, but this does not help make usable systems, it just makes them more complicated without adding really
useful features. There are very few cases where a policy isreally appropriate to specify in both places, and for these
policies the interaction between the two must be described.

» Pure client-side policies are assumed to be immutable. This allows efficient processing by the runtime that can avoid
re-evaluating the policy upon every invocation and instead can perform updates only when new overrides are set (or
policies change due to rebind). If the newly specified policy is mutable, it must be clearly stated what happensif non-
readonly attributes are set or operations are invoked that have side-effects.

 For certain policy types, override operations may be disallowed. If thisisthe case, the policy specification must clearly
state what happens if such overrides are attempted.

8.8.6 Standard Policies

NOTE: See Annex A for alist of the standard policy types that are defined by various parts of CORBA and CORBA services
in this version of CORBA.

8.9 Management of Policies

8.9.1 Client Side Policy Management

Client-side Policy management is performed through operations accessible in the following contexts:

» ORB-level Policies - A locality-constrained PolicyManager is accessible through the ORB interface. This
PolicyManager has operations through which a set of Policies can be applied and the current overriding Policy
settings can be obtained. Policies applied at the ORB level override any system defaults. The ORB’s PolicyManager
is obtained through an invocation of ORB::resolve_initial_references, specifying an identifier of
“ORBPolicyManager.”

» Thread-level Policies - A standard PolicyCurrent is defined with operations for the querying and applying of quality
of service values specific to athread. Policies applied at the thread level override any system defaults or values set at
the ORB level. The locality-constrained PolicyCurrent is obtained through an invocation of
ORB::resolve_initial_references, specifying an identifier of “PolicyCurrent.” When accessed from a newly
spawned thread, the PolicyCurrent initially has no overridden policies. The PolicyCurrent also has no overridden
values when a POA with ThreadPolicy of ORB_CONTROL_MODEL dispatches an invocation to a servant. Each
time an invocation is dispatched through a SINGLE_ THREAD_MODEL POA, the thread-level overrides are reset to
have no overridden values.

» Object-level Palicies - Operations are defined on the base Object interface through which a set of Policies can be
applied. Policies applied at the Object level override any system defaults or values set at the ORB or Thread levels. In
addition, accessors are defined for querying the current overriding Policies set at the Object level, and for abtaining the

Common Object Request Broker Architecture (CORBA), v3.1.1 131

current effective client-side Policy of agiven Policy Type. The effective client-side Policy isthe value of aPolicyType
that would bein effect if arequest were made. Thisis determined by checking for overrides at the Object level, then at
the Thread level, and finally at the ORB level. If no overriding policies are set at any level, the system-dependent
default valueis returned. Portabl e applications are expected to override the ORB-level policies since default values are
not specified in most cases.

8.9.2 Server Side Policy Management

Server-side Policy management is handled by associating Policy objects with a POA. Since all policy objects are derived
from interface Policy, those that are applicable to server-side behavior can be passed as argumentsto POA::create_ POA.
Any such Policies that affect the behavior of requests (and therefore must be accessible to the ORB at the client side) are
exported within the Object references that the POA creates. It is clearly noted in a POA Policy definition when that
Policy is of interest to the Client. For those policies that can be exported within an Object reference, the absence of a
value for that policy type implies that the target supports any legal value of that PolicyType.

Most Policies are appropriate only for management at either the Server or Client, but not both. For those Policies that can
be established at the time of Object reference creation (through POA Policies) and overridden by the client (through
overrides set at the ORB, thread, or Object reference scopes), reconciliation is done on a per-Policy basis. Such Palicies
are clearly noted in their definitions and describe the mechanism of reconciliation between the Policies that are set by the
POA and overridden in the client. Furthermore, obtaining the effective Policy of some PolicyTypes requires evaluating
the effective Policy of other types of Policies. Such hierarchical Policy definitions are also noted clearly when used.

At the Thread and ORB scopes, the common operations for querying the current set of policies and for overriding these
settings are encapsulated in the PolicyManager interface.

8.9.3 Policy Management Interfaces

module CORBA {
local interface PolicyManager {
PolicyList get_policy_overrides(in PolicyTypeSeq ts);

void set_policy_overrides(
in PolicyList policies,
in SetOverrideType set_add
) raises (InvalidPolicies);

b

local interface PolicyCurrent : PolicyManager, Current {
|3
|3

8.9.3.1 interface PolicyManager

The PolicyManager operations are used for setting and accessing Policy overrides at a particular scope. For example, an
instance of the PolicyCurrent is used for specifying Policy overrides that apply to invocations from that thread (unless
they are overridden at the Object scope as described in Client Side Policy Management on page 131).

132 Common Object Request Broker Architecture (CORBA), v3.1.1

get_policy_overrides
PolicyList get_policy_overrides(in PolicyTypeSeq ts);
Parameter

ts
A sequence of overridden policy types identifying the policies that are to be retrieved.

Return Value

Reference to anewly created Policy object of type specified by thetype parameter and initialized to a state specified by the
val parameter.

e policy list
Thelist of overridden policies of the types specified by ts.

Exception
None

Returns a PolicyList containing the overridden Polices for the requested PolicyTypes. If the specified sequence is empty,
all Policy overrides at this scope will be returned. If none of the requested PolicyTypes are overridden at the target
PolicyManager, an empty sequence is returned. This accessor returns only those Policy overrides that have been set at
the specific scope corresponding to the target PolicyManager (no evaluation is done with respect to overrides at other
scopes).

8.9.3.2 set_policy_overrides

void set_policy_overrides(
in PolicyList policies,
in SetOverrideType set_add
) raises (InvalidPolicies);

Parameters

e policies
A sequence of Policy objectsthat are to be associated with the PolicyManager object. If the sequence contains
two or more Policy objects with the same PolicyType value, the operation raises the standard system exception
BAD_PARAM with standard minor code 30.

e set_add
Whether the association is in addition to (ADD_OVERRIDE) or as areplacement of (SET_OVERRIDE) any
existing overrides aready associated with the PolicyManager object. If the value of this parameter is
SET_OVERRIDE, the supplied policies completely replace all existing overrides associated with the
PolicyManager object. If the value of this parameter is ADD_OVERRIDE, the supplied policies are added to the
existing overrides associated with the PolicyManager object, except that if a supplied Policy object has the same
PolicyType value as an existing override, the supplied Policy object replaces the existing override.

Return Value
None

Common Object Request Broker Architecture (CORBA), v3.1.1 133

Exception

* InvalidPolicies
A list of indicesidentifying the position in the input policies list that are occupied by invalid policies.

Modifies the current set of overrides with the requested list of Policy overrides. The first parameter policiesis a sequence
of references to Policy objects. The second parameter set_add of type SetOverrideType indicates whether these
policies should be added onto any other overrides that already exist (ADD_OVERRIDE) in the PolicyManager, or they
should be added to a clean PolicyManager free of any other overrides (SET_OVERRIDE). Invoking
set_policy_overrides with an empty sequence of policies and a mode of SET_OVERRIDE removes all overrides from
a PolicyManager. Only certain policies that pertain to the invocation of an operation at the client end can be overridden
using this operation. Attempts to override any other policy will result in the raising of the CORBA::NO_PERMISSION
exception. If the request would put the set of overriding policies for the target PolicyManager in an inconsistent state,
no policies are changed or added, and the exception.

8.9.3.3 interface PolicyCurrent

This specific PolicyManager provides access to policies overridden at the Thread scope. A reference to a thread’s
PolicyCurrent is obtained through an invocation of CORBA::ORB::resolve_initial_references.

8.10 Management of Policy Domains

8.10.1 Basic Concepts

This sub clause describes how policies, such as security policies, are associated with objects that are managed by an ORB.
The interfaces and operations that facilitate this aspect of management is described in this sub clause together with the
sub clause describing Policy objects.

8.10.1.1 Policy Domain

A policy domain is a set of objects to which the policies associated with that domain apply. These objects are the domain
members. The policies represent the rules and criteria that constrain activities of the objects that belong to the domain. On
object reference creation, the ORB implicitly associates the object reference with one or more policy domains. Policy
domains provide leverage for dealing with the problem of scale in policy management by allowing application of policy
at a domain granularity rather than at an individual object instance granularity.

8.10.1.2 Policy Domain Manager

A policy domain includes a unique object, one per policy domain, called the domain manager, which has associated with
it the policy objects for that domain. The domain manager also records the membership of the domain and provides the
means to add and remove members. The domain manager is itself a member of a domain, possibly the domain it manages.

8.10.1.3 Policy Objects

A policy object encapsulates a policy of a specific type. The policy encapsulated in a policy object is associated with the
domain by associating the policy object with the domain manager of the policy domain.

There may be several policies associated with a domain, with a policy object for each. There is at most one policy of each
type associated with a policy domain. The policy objects are thus shared between aobjects in the domain, rather than being
associated with individual objects. Consequently, if an object needs to have an individua policy, then it must be a
singleton member of a domain.

134 Common Object Request Broker Architecture (CORBA), v3.1.1

8.10.1.4 Object Membership of Policy Domains

Since the only way to access objects is through object references, associating object references with policy domains,
implicitly associates the domain policies with the object associated with the object reference. Care should be taken by the
application that is creating object references using POA operations to ensure that object references to the same object are
not created by the server of that object with different domain associations. Henceforth whenever the concept of “object
membership” is used, it actually means the membership of an object reference to the object in question.

An object can simultaneously be a member of more than one policy domain. In that case the object is governed by all
policies of its enclosing domains. The reference model allows an object to be a member of multiple domains, which may
overlap for the same type of policy (for example, be subject to overlapping access policies). This would require conflicts
among policies defined by the multiple overlapping domains to be resolved. The specification does not include explicit
support for such overlapping domains and, therefore, the use of policy composition rules required to resolve conflicts at
policy enforcement time.

Policy domain managers and policy objects have two types of interfaces:

« Theoperational interfaces used when enforcing the policies. These are the interfaces used by the ORB during an object
invocation. Some policy objects may also be used by applications, which enforce their own policies.

The caller asks for the policy of a particular type (e.g., the delegation policy), and then uses the policy object returned
to enforce the policy. The caller finding apolicy and then enforcing it does not see the domain manager objects and the
domain structure.

« Theadministrative interfaces used to set policies (e.g., specifying which eventsto audit or who can access objects of a
specified type in this domain). The administrator sees and navigates the domain structure, so he is aware of the scope
of what he is administering.

NOTE: This specification does not include any explicit interfaces for managing the policy domains themselves:. creating and
deleting them; moving objects between them; changing the domain structure and adding, changing, and removing policies
applied to the domains.

8.10.1.5 Domains Association at Object Reference Creation

When a new object reference is created, the ORB implicitly associates the object reference (and hence the object that it is
associated with) with the following elements forming its environment:

« One or more Policy Domains, defining all the policies to which the object associated with the object reference is
subject.

» The Technology Domains, characterizing the particular variants of mechanisms (including security) availablein the
ORB.

The ORB will establish these associations when one of the object reference creation operations of the POA is called.
Some or all of these associations may subsequently be explicitly referenced and modified by administrative or application
activity, which might be specifically security-related but could also occur as a side-effect of some other activity, such as
moving an object to another host machine.

In some cases, when a new object reference is created, it needs to be associated with a new domain. Within a given
domain a construction policy can be associated with a specific object type thus causing a new domain; that is, a domain
manager object to be created whenever an object reference of that type is created and the newly created object reference
associated with the new domain manager. This construction policy is enforced at the same time as the domain
membership; that is, by the POA when it creates an object reference.

Common Object Request Broker Architecture (CORBA), v3.1.1 135

8.10.1.6 Implementor’s View of Object Creation

For policy domains, the construction policy of the application or factory creating the object proceeds as follows. The
application (which may be a generic factory) calls one of the object reference creation operations of the POA to create the
new object reference. The ORB obtains the construction policy associated with the creating object, or the default domain
absent a creating object.

By default, the new object reference that is created is made a member of the domain to which the parent belongs. Non-
object applications on the client side are associated with a default, per-ORB instance policy domain by the ORB.

Each domain manager has a construction policy associated with it, which controls whether, in addition to creating the
specified new object reference, a new domain manager is created with it. This object provides a single operation
make_domain_manager which can be invoked with the constr_policy parameter set to TRUE to indicate to the
ORB that new object references of the specified type are to be associated their own separate domains. Once such a
construction policy is set, it can be reversed by invoking make_domain_manager again with the constr_policy
parameter set to FALSE.

When creating an object reference of the type specified in the make_domain_manager call with constr_policy set to
TRUE, the ORB must also create a new domain for the newly created object reference. If a new domain is needed, the

ORB creates both the requested object reference and a domain manager object. A reference to this domain manager can
be found by calling get_domain_managers on the newly created object reference.

While the management interface to the construction policy object is standardized, the interface from the ORB to the
policy object is assumed to be a private one, which may be optimized for different implementations.

If a new domain is created, the policies initially applicable to it are the policies of the enclosing domain. The ORB will
always arrange to provide a default enclosing domain with default ORB policies associated with it, in those cases where
there would be no such domain as in the case of a non-object client invoking object creation operations.

The calling application, or an administrative application later, can change the domains to which this object belongs, using
the domain management interfaces, which will be defined in the future.

Since the ORB has control only over domain associations with object references, it is the responsibility of the creator of
new object to ensure that the object references that are created to the new object are associated meaningfully with
domains.

8.10.2 Domain Management Operations

This sub clause defines the interfaces and operations needed to find domain managers and find the policies associated
with these. However, it does not include operations to manage domain membership, structure of domains, or to manage
which policies are associated with domains.

This sub clause also includes the interface to the construction policy object, as that is relevant to domains. The basic
definitions of the interfaces and operations related to these are part of the CORBA module, since other definitions in the
CORBA module depend on these.

module CORBA {
interface DomainManager {
Policy get_domain_policy (
in PolicyType policy_type
)i
|3

136 Common Object Request Broker Architecture (CORBA), v3.1.1

const PolicyType SecConstruction = 11;

interface ConstructionPolicy: Policy{
void make_domain_manager(
in CORBA::InterfaceDef object_type,
in boolean constr_policy

);
h

typedef sequence <DomainManager> DomainManagersList;
5
8.10.2.1 Domain Manager

The domain manager provides mechanisms for:
» Establishing and navigating relationships to superior and subordinate domains.
» Creating and accessing policies.

There should be no unnecessary constraints on the ordering of these activities, for example, it must be possible to add new
policies to a domain with a pre-existing membership. In this case, some means of determining the members that do not
conform to a policy that may be imposed is required. It should be noted that interfaces for adding new policies to domains
or for changing domain memberships have not currently been standardized.

All domain managers provide the get_domain_policy operation. By virtue of being an object, the Domain Managers
also have the get_policy and get_domain_managers operations, which is available on all objects (see Getting Policy
Assaciated with the Object on page 110 and Getting the Domain Managers Associated with the Object on page 112).

CORBA::DomainManager::get_domain_policy
This returns the policy of the specified type for objects in this domain.
Policy get_domain_policy (

in PolicyType policy_type
)i
Parameters
e policy_type

The type of policy for objects in the domain which the application wants to administer. For security, the possible
policy types are described in the Security Service specification, Security Policies Introduction sub clause.

Return Value

A reference to the policy object for the specified type of policy in this domain.

Exception

« CORBA:INV_POLICY
Raised when the value of policy typeisnot valid either because the specified type is not supported by this
ORB or because a policy object of that typeis not associated with this Object.

Common Object Request Broker Architecture (CORBA), v3.1.1 137

8.10.2.2 Construction Policy

The construction policy object allows callers to specify that when instances of a particular object reference are created,
they should be automatically assigned membership in a newly created domain at creation time.

CORBA::ConstructionPolicy::make_domain_manager

This operation enables the invoker to set the construction policy that is to be in effect in the domain with which this
ConstructionPolicy object is associated. Construction Policy can either be set so that when an object reference of the
type specified by the input parameter is created, a new domain manager will be created and the newly created object
reference will respond to get_domain_managers by returning a reference to this domain manager. Alternatively the
policy can be set to associate the newly created object reference with the domain associated with the creator. This policy
is implemented by the ORB during execution of any one of the object reference creation operations of the POA, and
results in the construction of the application-specified object reference and a Domain Manager object if so dictated by the
policy in effect at the time of the creation of the object reference.

void make_domain_manager (
in InterfaceDef object_type,
in boolean constr_policy

);

Parameter(s)

e object_type
The type of the object references for which Domain Managers will be created. If thisis nil, the policy appliesto
all object referencesin the domain.

e constr_policy
If TRUE the construction policy is set to create a new domain manager associated with the newly created object
reference of thistypein thisdomain. If FALSE construction policy is set to associate the newly created object
references with the domain of the creator or a default domain as described above.

8.11 TypeCodes

TypeCodes are values that represent invocation argument types and attribute types. They can be obtained from the
Interface Repository or from IDL compilers.

TypeCodes have a number of uses. They are used in the dynamic invocation interface to indicate the types of the actual
arguments. They are used by an Interface Repository to represent the type specifications that are part of many I1DL
declarations. Finally, they are crucia to the semantics of the any type.

Abstractly, TypeCodes consist of a “kind” field, and a set of parameters appropriate for that kind. For example, the
TypeCode describing IDL type long has kind tk_long and no parameters. The TypeCode describing IDL type
sequence<boolean,10> has kind tk_sequence and two parameters: 10 and boolean.

8.11.1 The TypeCode Interface

The PIDL interface for TypeCodes is as follows:
module CORBA {
enum TCKind {
tk_null, tk_void,

138 Common Object Request Broker Architecture (CORBA), v3.1.1

tk_short, tk_long, tk_ushort, tk_ulong,
tk_float, tk_double, tk_boolean, tk_char,
tk_octet, tk_any, tk_TypeCode, tk_Principal, tk_objref,
tk_struct, tk_union, tk_enum, tk_string,
tk_sequence, tk_array, tk_alias, tk_except,
tk_longlong, tk_ulonglong, tk_longdouble,
tk_wchar, tk_wstring, tk_fixed,

tk_value, tk_value_box,

tk_native,

tk_abstract_interface,

tk_local_interface

tk_component, tk_home,

tk_event

h

typedef short ValueModifier;
const ValueModifier VM_NONE = 0;
const ValueModifier VM_CUSTOM = 1;
const ValueModifier VM_ABSTRACT = 2;
const ValueModifier VM_TRUNCATABLE = 3;

interface TypeCode {
exception Bounds {};
exception BadKind {};

[/l for all TypeCode kinds
boolean equal (in TypeCode tc);

boolean equivalent(in TypeCode tc);
TypeCode get_compact_typecode();

TCKind kind ();

I/l for tk_objref, tk_struct, tk_union, tk_enum, tk_alias,

/I tk_value, tk_value_box, tk_native, tk_abstract_interface
/Il tk_local_interface, tk_except

/l tk_component, tk_home and tk_event

Repositoryld id () raises (BadKind);

I/l for tk_objref, tk_struct, tk_union, tk_enum, tk_alias,

/I tk_value, tk_value_box, tk_native, tk_abstract_interface
/I tk_local_interface, tk_except

/l tk_component, tk_home and tk_event

Identifier name () raises (BadKind);

I/l for tk_struct, tk_union, tk_enum, tk_value,

I/l tk_except and tk_event

unsigned long member_count () raises (BadKind);

Identifier member_name (in unsigned long index)
raises(BadKind, Bounds);

Common Object Request Broker Architecture (CORBA), v3.1.1 139

b
b

Il for tk_struct, tk_union, tk_value,

Il tk_except and tk_event

TypeCode member_type (in unsigned long index)
raises (BadKind, Bounds);

[/l for tk_union

any member_label (in unsigned long index)
raises(BadKind, Bounds);

TypeCode discriminator_type () raises (BadKind);

long default_index () raises (BadKind);

Il for tk_string, tk_wstring, tk_sequence, and tk_array
unsigned long length () raises (BadKind);

I/l for tk_sequence, tk_array, tk_value_box and tk_alias
TypeCode content_type () raises (BadKind);

/I for tk_fixed
unsigned short fixed_digits() raises(BadKind);
short fixed_scale() raises(BadKind);

/I for tk_value and tk_event

Visibility member_visibility(in unsigned long index)
raises(BadKind, Bounds);

ValueModifier type_modifier() raises(BadKind);

TypeCode concrete_base_type() raises(BadKind);

With the above operations, any TypeCode can be decomposed into its constituent parts. The BadKind exception is
raised if an operation is not appropriate for the TypeCode kind it invoked.

The equal operation can be invoked on any TypeCode. The equal operation returns TRUE if and only if for the target
TypeCode and the TypeCode passed through the parameter tc, the set of legal operationsis the same and invoking any
operation from that set on the two TypeCodes return identical results.

The equivalent operation is used by the ORB when determining type equivalence for values stored in an IDL any.
TypeCodes are considered equivalent based on the following semantics:

140

If theresult of the kind operation on either TypeCode istk_alias, recursively replace the TypeCode with the result
of calling content_type, until the kind isno longer tk_alias.

If results of the kind operation on each typecode differ, equivalent returns false.

If theid operation isvalid for the TypeCode kind, equivalent returns TRUE if the results of id for both
TypeCodes are non-empty strings and both strings are equal . If both ids are non-empty but are not equal, then
equivalent returns FALSE. If either or both id is an empty string, or the TypeCode kind does not support the id
operation, equivalent will perform a structural comparison of the TypeCodes by comparing the results of the other
TypeCode operationsin the following bullet items (ignoring aliases as described in the first bullet.). The structural
comparison only calls operationsthat are valid for the given TypeCode kind. If any of these operations do not return
equal results, then equivalent returns FALSE. If al comparisons are equal, equivalent returns true.

The results of the name and member_name operations are ignored and not compared.

Common Object Request Broker Architecture (CORBA), v3.1.1

« Theresults of themember_count, default_index, length, digits, scale, and type_modifier operations are
compared.

» Theresults of themember_label operation for each member index of aunion TypeCode are compared for
equality. Note that this means that unions whose members are not defined in the same order are not considered
structurally equivalent.

» Theresults of thediscriminator_type, member_type, and concrete_base_type operation and for each
member index, and the result of the content_type operation are compared by recursively calling equivalent.

» Theresults of themember_visibility operation are compared for each member index.

Applications that need to distinguish between a type and different aliases of that type can supplement equivalent by
directly invoking the id operation and comparing the results.

The get_compact_typecode operation strips out all optional name and member name fields, but it leaves all alias
typecodes intact.

The kind operation can be invoked on any TypeCode. Its result determines what other operations can be invoked on the
TypeCode.

The id operation can be invoked on object reference, valuetype, boxed valuetype, abstract interface, local interface,
native, structure, union, enumeration, alias, exception, component, home, and event TypeCodes. It returns the
Repositoryld globally identifying the type. Object reference, valuetype, boxed valuetype, native, exception, component,
home, and event TypeCodes always have a Repositoryld. Structure, union, enumeration, and alias TypeCodes
obtained from the Interface Repository or the ORB::create_operation_list operation also always have a
Repositoryld. Otherwise, the id operation can return an empty string.

When the id operation is invoked on an object reference TypeCode that contains a base Object, the returned value is
IDL:omg.org/CORBA/Object:1.0.

When it isinvoked on a valuetype TypeCode that contains a ValueBase, the returned value is IDL:omg.org/CORBA/
ValueBase:1.0.

When it is invoked on a component TypeCode that contains a Components::CCMObject, the returned value is
IDL:omg.org/Components/CCMObiject:1.0.

When it is invoked on a home TypeCode that contains a Components::CCMHome, the returned value is
IDL:omg.org/Components/CCMHome:1.0.

When it is invoked on an eventtype TypeCode that contains a Components::EventBase, the returned value is
IDL:omg.org/Components/EventBase:1.0.

The name operation can also be invoked on object reference, structure, union, enumeration, alias, abstract interface, local
interface, value type, boxed valuetype, native, and exception TypeCodes. It returns the simple name identifying the type
within its enclosing scope. Since names are local to a Repository, the name returned from a TypeCode may not match
the name of the type in any particular Repository, and may even be an empty string.

The order in which members are presented in the interface repository is the same as the order in which they appeared in
the IDL specification, and this ordering determines the index value for each member. The first member has index value 0.
For example for a structure definition:

struct example {
short memberl;

Common Object Request Broker Architecture (CORBA), v3.1.1 141

short member2,;
long member3;

b

In this example memberl has index = 0, member2 hasindex = 1, and member3 has index = 2. The value of
member_count in this caseis 3.

The member_count and member_name operations can be invoked on structure, union, non-boxed valuetype, non-
boxed eventtype, exception, and enumeration TypeCodes. Member_count returns the number of members constituting
the type. Member_name returns the simple name of the member identified by index. Since names are local to a
Repository, the name returned from a TypeCode may not match the name of the member in any particular
Repository, and may even be an empty string.

The member_type operation can be invoked on structure, non-boxed valuetype, non-boxed eventtype, exception and
union TypeCodes. It returns the TypeCode describing the type of the member identified by index.

The member_label, discriminator_type, and default_index operations can only be invoked on union TypeCodes.
Member_label returns the label of the union member identified by index. For the default member, the label is the zero
octet. The discriminator_type operation returns the type of all non-default member |abels. The default_index
operation returns the index of the default member, or -1 if there is ho default member.

The member_visibility operation can only be invoked on non-boxed valuetype and non-boxed eventtype, TypeCodes.
It returns the Visibility of the valuetype/eventtype member identified by index.

The member_name, member_type, member_label and member_visibility operations raise Bounds if the index
parameter is greater than or equal to the number of members constituting the type.

The content_type operation can be invoked on sequence, array, boxed valuetype and alias TypeCodes. For sequences
and arrays, it returns the element type. For aliases, it returns the original type. For boxed valuetype, it returns the boxed

type.

An array TypeCode only describes a single dimension of an IDL array. Multi-dimensional arrays are represented by
nesting TypeCodes, one per dimension. The outermost tk_array Typecode describes the leftmost array index of the
array as defined in IDL. Its content_type describes the next index. The innermost nested tk_array TypeCode
describes the rightmost index and the array element type.

The type_modifier and concrete_base_type operations can be invoked on non-boxed valuetype and non-boxed
eventtypeTypeCodes. The type_modifier operation returns the ValueModifier that applies to the valuetype/eventtype
represented by the target TypeCode. If the valuetype/eventtype represented by the target TypeCode has a concrete base
valuetype/eventtype, the concrete_base_type operation returns a TypeCode for the concrete base, otherwise it returns
anil TypeCode reference.

The length operation can be invoked on string, wide string, sequence, and array TypeCodes. For strings and sequences,
it returns the bound, with zero indicating an unbounded string or sequence. For arrays, it returns the number of elements
in the array. For wide strings, it returns the bound, or zero for unbounded wide strings.

8.11.2 TypeCode Constants

For IDL type declarations, the IDL compiler produces (if asked) a declaration of a TypeCode constant. See the language
mapping rules for more information about the names of the generated TypeCode constants. TypeCode constants include
tk_alias definitions wherever an IDL typedef is referenced. These constants can be used with the dynamic invocation
interface and other routines that require TypeCodes.

142 Common Object Request Broker Architecture (CORBA), v3.1.1

The predefined TypeCode constants, named according to the C language mapping, are:

TC null

TC void

TC short

TC long

TC _longlong

TC ushort

TC ulong

TC_ulonglong

TC float

TC double

TC_longdouble

TC boolean

TC char

TC_wchar

TC_octet

TC any

TC_TypeCode

TC_Object = tk_objref { Object}
TC_string= tk_string {0} // unbounded
TC_wstring = tk_wstring{ 0} /// unbounded
TC_ValueBase = tk_value { ValueBase}
TC_Component = tk_component { CCM Object}
TC_Home = tk_home { CCMHome}
TC_EventBase = tk_event { EventBase}

For the TC_Object TypeCode constant, calling id returns “IDL:omg.org/CORBA/Object:1.0” and calling name
returns “Object.”

For the TC_ValueBase TypeCode constant, calling id returns “IDL:omg.org/CORBA/ValueBase:1.0,” caling
name returns “ValueBase,” calling member_count returns 0, calling type_modifier returns CORBA::VM_NONE,
and calling concrete_base_type returns a nil TypeCode.

For the TC_Component TypeCode constant, calling id returns “IDL:omg.org/Components/CCMObject:1.0” and
calling name returns “CCMObject.”

For the TC_Home TypeCode constant, calling id returns “IDL:omg.org/Components/CCMHome:1.0” and calling
name returns “CCMHome.”

For the TC_EventBase TypeCode constant, calling id returns “IDL:omg.org/Components/EventBase:1.0,”
calling name returns “EventBase,” calling member_count returns 0, calling type_modifier returns
CORBA::VM_NONE, and calling concrete_base_type returns a nil TypeCode.

8.11.3 Creating TypeCodes

When creating type definition objects in an Interface Repository, types are specified in terms of object references, and the
TypeCodes describing them are generated automatically.

In some situations, such as bridges between ORBs, TypeCodes need to be constructed outside of any Interface
Repository. This can be done using operations on the ORB pseudo-object.

Common Object Request Broker Architecture (CORBA), v3.1.1 143

module CORBA {
interface ORB {
/l other operations ...

TypeCode create_struct_tc (

in Repositoryld id;

in Identifier name,

in StructMemberSeq members
)i
TypeCode create_union_tc (

in Repositoryld id,

in Identifier name,

in TypeCode discriminator_type,

in UnionMemberSeq members
)i
TypeCode create_enum_tc (

in Repositoryld id,

in Identifier name,

in EnumMemberSeq members
)i
TypeCode create_alias_tc (

in Repositoryld id,

in Identifier name,

in TypeCode original_type
)i
TypeCode create_exception_tc (

in Repositoryld id,

in Identifier name,

in StructMemberSeq members
)i
TypeCode create_interface_tc (

in Repositoryld id,

in Identifier name

);

TypeCode create_string_tc (
in unsigned long bound

);

TypeCode create_wstring_tc (
in unsigned long bound

);

144 Common Object Request Broker Architecture (CORBA), v3.1.1

TypeCode create_fixed_tc (

in unsigned short digits,
in unsigned short scale
)i
TypeCode create_sequence_tc (
in unsigned long bound,
in TypeCode element_type
)i
TypeCode create_recursive_sequence_tc (// deprecated
in unsigned long bound,
in unsigned long offset
)i
TypeCode create_array_tc (
in unsigned long length,
in TypeCode element_type
)i
TypeCode create _value_tc (
in Repositoryld id,
in Identifier name,
in ValueModifier type_modifier,
in TypeCode concrete_base,
in ValueMemberSeq members
)i
TypeCode create_value_box_tc (
in Repositoryld id,
in Identifier name,
in TypeCode boxed_type
)i
TypeCode create_native_tc (
in Repositoryld id,
in Identifier name
)i
TypeCode create_recursive_tc(
in Repositoryld id
)i
TypeCode create_abstract_interface_tc(
in Repositoryld id,
in Identifier name

Common Object Request Broker Architecture (CORBA), v3.1.1 145

TypeCode create_local_interface_tc(

in Repositoryld id,
in Identifier name
)i
TypeCode create_component_tc (
in Repositoryld id,
in Identifier name
)i
TypeCode create_home_tc (
in Repositoryld id,
in Identifier name
)i
TypeCode create_event_tc (
in Repositoryld id,
in Identifier name,
in ValueModifier type_modifier,
in TypeCode concrete_base,

in ValueMemberSeq members

b
b

Most of these operations are similar to corresponding IR operations for creating type definitions. TypeCodes are used
here instead of IDLType object references to refer to other types. In the StructMember, UnionMember, and
ValueMember structures, only the type is used, and the type_def should be set to nil.

Typecode creation operations that take name as an argument shall check that the name is avalid IDL name or is an
empty string. If not, they shall raise the BAD_PARAM exception with standard minor code 15. Operations that take a
Repositoryld argument shall check that the argument passed in is a string of the form <format>:<string> and if not,
then raise a BAD_PARAM exception with standard minor code 16. Operations that take content or member types as
arguments shall check that they are legitimate (i.e., that they don’'t have kinds tk_null, tk_void, or tk_exception). If
not, they shall raise the BAD_TYPECODE exception with standard minor code 2. Operations that take members shall
check that the member names are valid IDL names and that they are unique within the member list, and if the name is
found to be incorrect, they shall raise a BAD_PARAM with standard minor code 17.

The create_union_tc operation shall check that there are no duplicate label values. It shall also check that each label
TypeCode compares equivalent to the discriminator TypeCode. If a duplicate label is found, raise BAD_PARAM with
standard minor code 18. If the TypeCode of alabel is not equivalent to the TypeCode of the discriminator (other than
the octet TypeCode to indicate the default 1abel), the operation shall raise BAD_PARAM with standard minor code 19.
The create_union_tc operation shall also check that the supplied discriminator type is legitimate, and if the check fails,
raise BAD_PARAM with standard minor code 20.

NOTE: Thecreate recursive_sequence_tc operation is deprecated. No new code should make use of this operation. Its
functionality is subsumed by the new operation create_recursive_tc. Thecreate_recursive_sequence_tc operation
will be removed from afuture revision of the standard.

146 Common Object Request Broker Architecture (CORBA), v3.1.1

The create_recursive_sequence_tc operation is used to create TypeCodes describing recursive sequences that are
members of structs or unions. The result of this operation should be used as the typecode in the StructMemberSeq or
UnionMemberSeq arguments of the create_struct_tc or create_union_tc operations. The offset parameter
specifies which enclosing struct or union is the target of the recursion, with the value 1 indicating the most immediate
enclosing struct or union, and larger values indicating successive enclosing struct or unions. For example, the offset
would be 1 for the following IDL structure:

struct foo {
long value;
sequence <foo> chain;

h

Once the recursive sequence TypeCode has been properly embedded in its enclosing TypeCodes, it will function as a
normal sequence TypeCode. Invoking operations on the recursive sequence TypeCode before it has been embedded in
the required number of enclosing TypeCodes will result in undefined behavior. Attempt to marshal incomplete
typecodes shall raise the BAD_TYPECODE exception with standard minor code 1. Attempt to use an incomplete
TypeCode as a parameter of any operation when detected shall cause the BAD_PARAM exception to be raised with
standard minor code 13.

For create_value_tc operation, the concrete_base parameter is a TypeCode for the immediate concrete valuetype
base of the valuetype for which the TypeCode is being created. If the valuetype does not have a concrete base, the
concrete_base parameter is a nil TypeCode reference.

The create_recursive_tc operation is used to create a recursive TypeCode, which serves as a place holder for a
concrete TypeCode during the process of creating TypeCodes that contain recursion. The id parameter specifies the
repository id of the type for which the recursive TypeCode is serving as a place holder. Once the recursive TypeCode
has been properly embedded in the enclosing TypeCode, which corresponds to the specified repository id, it will
function as a normal TypeCode. Invoking operations on the recursive TypeCode before it has been embedded in the
enclosing TypeCode will result in undefined behavior. For example, the following IDL type declarations contain
recursion:

struct foo {
long value;
sequence<foo> chain;

h

valuetype V{
public V member;

h

To create a TypeCode for valuetype V, you would invoke the TypeCode creation operations as shown below:

// C++
TypeCode var recursive tc
= orb->create recursive tc(“IDL:V:1.0”);

ValueMemberSeq v_seq;
v_seqg.length(1l);

v_seq[0] .name = string dup(“member”) ;
v_seq[0] .type = recursive tc;
v_seq[0] .access = PUBLIC_ MEMBER;

Common Object Request Broker Architecture (CORBA), v3.1.1 147

TypeCode var v_val tc
= orb->create value tc(“IDL:V:1.0”,
wy
VM _NONE,
TypeCode:: nil(),
v_seq);

For create_event_tc operation, the concrete_base parameter is a TypeCode for the immediate concrete base of the
eventtype for which the TypeCode is being created. If the eventtype does not have a concrete base, the concrete_base
parameter is a nil TypeCode reference.

8.12 Exceptions

The terms “system” and “user” exception are defined in this sub clause. Further the terms “ standard system exception”
and “standard user exception” are defined, and then a list of “standard system exceptions’ is provided.

8.12.1 Definition of Terms

In general the following terms should be used consistently in all OMG standards documents to refer to exceptions:
Standard Exception: Any exception that is defined in an OMG Standard.

System Exception: Clients must be prepared to handle these exceptions even though they are not declared in a raises
clause. These exceptions cannot appear in a raises clause. These have the structure defined in Annex A and they are of
type SYSTEM_EXCEPTION (see PIDL below).

Standard System Exception: A System Exception that is part of the CORBA Standard (e.g., BAD_PARAM). See Annex
A for more details.

Non-Standard System Exceptions. System exceptions that are proprietary to a particular vendor/implementation.

User Exception: Exceptions that can be raised only by those operations that explicitly declare them in the raises clause
of their signature. These exceptions are of type USER_EXCEPTION (see IDL below).

Standard User Exception: Any User Exception that is defined in a published OMG standard (e.g., WrongTransaction).
These are documented in the documentation of individual interfaces.

Non-standard User Exception: User exceptions that are not defined in any published OMG specification.
8.12.2 System Exceptions

In order to bound the complexity in handling the standard exceptions, the set of standard exceptions should be kept to a
tractable size. This constraint forces the definition of equivalence classes of exceptions rather than enumerating many
similar exceptions. For example, an operation invocation can fail at many different points due to the inability to allocate
dynamic memory. Rather than enumerate several different exceptions corresponding to the different ways that memory
allocation failure causes the exception (during marshaling, unmarshaling, in the client, in the object implementation,
allocating network packets), a single exception corresponding to dynamic memory allocation failure is defined.

module CORBA {
const unsigned long OMGVMCID = 0x4f4d0000;

148 Common Object Request Broker Architecture (CORBA), v3.1.1

#define ex_body {unsigned long minor; completion_status completed;}

enum completion_status {
COMPLETED_YES,
COMPLETED_NO,
COMPLETED_MAYBE

h

enum exception_type {
NO_EXCEPTION,
USER_EXCEPTION,

SYSTEM_EXCEPTION
b
b

Each system exception includes a minor code to designate the subcategory of the exception.

Minor exception codes are of type unsigned long and consist of a 20-bit “Vendor Minor Codeset ID”(VMCID), which
occupies the high order 20 bits, and the minor code that occupies the low order 12 bits.

The standard minor codes for the standard system exceptions are prefaced by the VMCID assigned to OMG, defined as the
unsigned long constant CORBA::OMGVMCID, which has the VMCID allocated to OMG occupying the high order 20
bits. The minor exception codes associated with the standard exceptions that are found in Annex A, “Exception Codes’
are or-ed with OMGVMCID to get the minor code value that is returned in the ex_body structure (see Standard System
Exception Definitions on page 150 and Standard Minor Exception Codes on page 156).

Within a vendor assigned space, the assignment of values to minor codes is left to the vendor. Vendors may request
allocation of VMCIDs by sending email to tag-request@omg.org.

The VMCID 0 and Oxfffff are reserved for experimental use. The VMCID OMGVMCID (8.12.3, Standard System
Exception Definitions) and 1 through Oxf are reserved for OMG use.

Each standard system exception also includes a completion_status code that takes one of the values
{COMPLETED_YES, COMPLETED _NO, COMPLETED_MAYBE}. These have the following meanings:

COMPLETED_YES The object implementation has completed processing prior to the exception being
raised.

COMPLETED_NO The object implementation was never initiated prior to the exception being raised.

COMPLETED_MAYBE The status of implementation completion is indeterminate.

Client applications must be prepared to handle system exceptions other than the standard system exception defined below
in Standard System Exception Definitions on page 150, both because future versions of this specification may define
additional standard system exceptions, and because ORB implementations may raise non-standard system exceptions.

Vendors may define non-standard system exceptions, but these exceptions are discouraged because they are non-portable.
A non-standard system exception, when passed to an ORB that does not recognize it, shall be presented by that ORB as
an UNKNOWN standard system exception. The completion status shall be preserved in the UNKNOWN exception, and
the minor code shall be set to standard value 2 for system exception and standard value 1 for user exception.

Common Object Request Broker Architecture (CORBA), v3.1.1 149

Non-standard system exceptions shall have the same structure as of standard standard system exceptions as specified in
Standard System Exception Definitions on page 150 (i.e., they have the same ex_body). They also shall follow the same
language mappings as standard system exceptions. Although they are PIDL, vendors should ensure that their names do
not clash with any other names following the normal naming and scoping rules as they apply to regular IDL exceptions.

8.12.3 Standard System Exception Definitions

The standard system exceptions are defined in this sub clause.
module CORBA { /l PIDL

exception UNKNOWN ex_body;

/l the unknown exception
exception BAD_PARAM ex_body;

/l an invalid parameter was passed
exception NO_MEMORY ex_body;

/l dynamic memory allocation failure
exception IMP_LIMIT ex_body;

/l violated implementation limit
exception COMM_FAILURE ex_body;

/I communication failure
exception INV_OBJREF ex_body;

/l invalid object reference
exception NO_PERMISSION ex_body;

/I no permission for attempted op.
exception INTERNAL ex_body;

/ ORB internal error
exception MARSHAL ex_body;

/l error marshaling param/result
exception INITIALIZE ex_body;

/ ORB initialization failure
exception NO_IMPLEMENT ex_body;

/l operation implementation unavailable
exception BAD_TYPECODE ex_body;

/I bad typecode
exception BAD_OPERATION ex_body;

/I invalid operation
exception NO_RESOURCES ex_body;

/l insufficient resources for req.
exception NO_RESPONSE ex_body;

/l response to req. not yet available
exception PERSIST_STORE ex_body;

Il persistent storage failure
exception BAD_INV_ORDER ex_body;

/l routine invocations out of order
exception TRANSIENT ex_body;

/l transient failure - reissue request
exception FREE_MEM ex_body;

/I cannot free memory
exception INV_IDENT ex_body;

150 Common Object Request Broker Architecture (CORBA), v3.1.1

h

/l invalid identifier syntax
exception INV_FLAG ex_body;
/I invalid flag was specified
exception INTF_REPOS ex_body;
I/l error accessing interface repository
exception BAD_CONTEXT ex_body;
I/l error processing context object
exception OBJ_ADAPTER ex_body;
/l failure detected by object adapter
exception DATA_CONVERSION ex_body;
// data conversion error
exception OBJECT_NOT_EXIST ex_body;
/ non-existent object, delete reference
exception TRANSACTION_REQUIRED ex_body;
/l transaction required
exception TRANSACTION_ROLLEDBACK x_body;
/l transaction rolled back
exception INVALID_TRANSACTION ex_body;
/l invalid transaction
exception INV_POLICY ex_body;
/l invalid policy
exception CODESET_INCOMPATIBLE ex_body
/l incompatible code set
exception REBIND ex_body;
/l rebind needed
exception TIMEOUT ex_body;
/l operation timed out
exception TRANSACTION_UNAVAILABLE ex_body;
/l no transaction
exception TRANSACTION_MODE ex_body;
/l invalid transaction mode
exception BAD_QOS ex_body;
/l bad quality of service
exception INVALID_ACTIVITY ex_body;
/l bad quality of service
exception ACTIVITY_COMPLETED ex_body;
/l bad quality of service
exception ACTIVITY_REQUIRED ex_body;
/I bad quality of service

8.12.3.1 UNKNOWN

This exception is raised if an operation implementation throws a non-CORBA exception (such as an exception specific to

the implementation’s programming language), or if an operation raises a user exception that does not appear in the

operation’s raises expression. UNKNOWN is also raised if the server returns a system exception that is unknown to the
client. (This can happen if the server uses a later version of CORBA than the client and new system exceptions have been
added to the later version.)

Common Object Request Broker Architecture (CORBA), v3.1.1

151

8.12.3.2 BAD_PARAM

A parameter passed to a call is out of range or otherwise considered illegal. An ORB may raise this exception if null
values or null pointers are passed to an operation (for language mappings where the concept of a null pointers or null
values applies). BAD_PARAM can also be raised as a result of client generating requests with incorrect parameters using
the DII.

8.12.3.3 NO_MEMORY

The ORB run time has run out of memory.

8.12.3.4 IMP_LIMIT

This exception indicates that an implementation limit was exceeded in the ORB run time. For example, an ORB may
reach the maximum number of references it can hold simultaneously in an address space, the size of a parameter may
have exceeded the allowed maximum, or an ORB may impose a maximum on the number of clients or servers that can
run simultaneously.

8.12.3.5 COMM_FAILURE
This exception is raised if communication is lost while an operation isin progress, after the request was sent by the client,
but before the reply from the server has been returned to the client.

8.12.3.6 INV_OBJREF

This exception indicates that an object reference is internally malformed. For example, the repository ID may have
incorrect syntax or the addressing information may be invalid.

An ORB may choose to detect calls via nil references (but is not obliged to detect them). INV_OBJREF is used to
indicate this.

If the client invokes an operation that results in an attempt by the client ORB to marshal wchar or wstring data for an in
parameter (or to unmarshal wchar or wstring data for an in/out parameter, out parameter or the return value), and the
associated object reference does not contain a codeset component, the INV_OBJREF standard system exception is raised.

8.12.3.7 NO_PERMISSION

An invocation failed because the caller has insufficient privileges.

8.12.3.8 INTERNAL

This exception indicates an internal failure in an ORB, for example, if an ORB has detected corruption of itsinternal data
structures.

8.12.3.9 MARSHAL

A request or reply from the network is structurally invalid. This error typically indicates a bug in either the client-side or
server-side run time. For example, if areply from the server indicates that the message contains 1000 bytes, but the actual
message is shorter or longer than 1000 bytes, the ORB raises this exception. MARSHAL can also be caused by using the
DIl or DSI incorrectly, for example, if the type of the actual parameters sent does not agree with IDL signature of an
operation.

152 Common Object Request Broker Architecture (CORBA), v3.1.1

8.12.3.10 INITIALIZE

An ORB has encountered a failure during its initialization, such as failure to acquire networking resources or detecting a
configuration error.

8.12.3.11 NO_IMPLEMENT

This exception indicates that even though the operation that was invoked exists (it has an IDL definition), no
implementation for that operation exists. NO_IMPLEMENT can, for example, be raised by an ORB if aclient asks for an
object’s type definition from the interface repository, but no interface repository is provided by the ORB.

8.12.3.12 BAD_TYPECODE

The ORB has encountered a malformed type code (for example, atype code with an invalid TCKind value).

8.12.3.13 BAD_OPERATION

This indicates that an object reference denotes an existing object, but that the object does not support the operation that
was invoked.

8.12.3.14 NO_RESOURCES

The ORB has encountered some general resource limitation. For example, the run time may have reached the maximum
permissible number of open connections.

8.12.3.15 NO_RESPONSE

This exception is raised if a client attempts to retrieve the result of a deferred synchronous call, but the response for the
request is not yet available.

8.12.3.16 PERSIST_STORE

This exception indicates a persistent storage failure, for example, failure to establish a database connection or corruption
of a database.

8.12.3.17 BAD_INV_ORDER

This exception indicates that the caller has invoked operations in the wrong order. For example, it can be raised by an
ORSB if an application makes an ORB-related call without having correctly initialized the ORB first.

8.12.3.18 TRANSIENT

TRANSIENT indicates that the ORB attempted to reach an object and failed. It is not an indication that an object does
not exist. Instead, it simply means that no further determination of an object's status was possible because it could not be
reached. This exception is raised if an attempt to establish a connection fails, for example, because the server or the
implementation repository is down.

8.12.3.19 FREE_MEM

The ORB failed in an attempt to free dynamic memory, for example because of heap corruption or memory segments
being locked.

Common Object Request Broker Architecture (CORBA), v3.1.1 153

8.12.3.20 INV_IDENT

This exception indicates that an IDL identifier is syntactically invalid. It may be raised if, for example, an identifier
passed to the interface repository does not conform to IDL identifier syntax, or if an illegal operation name is used with
the DII.

8.12.3.21 INV_FLAG

An invalid flag was passed to an operation (for example, when creating a DIl request).

8.12.3.22 INTF_REPOS

An ORB raises this exception if it cannot reach the interface repository, or some other failure relating to the interface
repository is detected.

8.12.3.23 BAD_CONTEXT

An operation may raise this exception if a client invokes the operation but the passed context does not contain the context
values required by the operation.

8.12.3.24 OBJ_ADAPTER

This exception typically indicates an administrative mismatch. For example, a server may have made an attempt to
register itself with an implementation repository under a name that is already in use, or is unknown to the repository.
OBJ_ADAPTER is also raised by the POA to indicate problems with application-supplied servant managers.

8.12.3.25 DATA_CONVERSION

This exception is raised if an ORB cannot convert the representation of data as marshaled into its native representation or
vice-versa. For example, DATA_CONVERSION can be raised if wide character codeset conversion fails, or if an ORB
cannot convert floating point values between different representations.

8.12.3.26 OBJECT_NOT_EXIST

The OBJECT_NOT_EXIST exception is raised whenever an invocation on a deleted object was performed. It is an
authoritative “hard” fault report. Anyone receiving it is allowed (even expected) to delete all copies of this object
reference and to perform other appropriate “final recovery” style procedures.

Bridges forward this exception to clients, also destroying any records they may hold (for example, proxy objects used in
reference translation). The clients could in turn purge any of their own data structures.
8.12.3.27 TRANSACTION_REQUIRED

The TRANSACTION_REQUIRED exception indicates that the request carried a null transaction context, but an active
transaction is required.

8.12.3.28 TRANSACTION_ROLLEDBACK

The TRANSACTION_ROLLEDBACK exception indicates that the transaction associated with the request has already
been rolled back or marked to roll back. Thus, the requested operation either could not be performed or was not
performed because further computation on behalf of the transaction would be fruitless.

154 Common Object Request Broker Architecture (CORBA), v3.1.1

8.12.3.29 INVALID_TRANSACTION

The INVALID_TRANSACTION indicates that the request carried an invalid transaction context. For example, this
exception could be raised if an error occurred when trying to register a resource.

8.12.3.30 INV_POLICY

INV_POLICY israised when an invocation cannot be made due to an incompatibility between Policy overrides that apply
to the particular invocation.

8.12.3.31 CODESET_INCOMPATIBLE

This exception is raised whenever meaningful communication is not possible between client and server native code sets.
See CORBA, Part Il - ORB Interoperability Architecture.

8.12.3.32 REBIND

REBIND is raised when the current effective RebindPolicy, as described in interface RebindPolicy on page 420, has a
value of NO_REBIND or NO_RECONNECT and an invocation on a bound object reference results in a LocateReply
message with status OBJECT_FORWARD or a Reply message with status LOCATION_FORWARD. This exceptionis
also raised if the current effective RebindPolicy has a value of NO_RECONNECT and a connection must be re-opened.
The invocation can be retried once the effective RebindPolicy is changed to TRANSPARENT or binding is re-
established through an invocation of CORBA::Object::validate_connection.

REBIND is raised when there is a problem in carrying out a requested or implied attempt to rebind an object reference
(interface RebindPolicy on page 420).

8.12.3.33 TIMEOUT

TIMEOUT is raised when no delivery has been made and the specified time-to-live period has been exceeded. It isa
standard system exception because time-to-live QoS can be applied to any invocation.

8.12.3.34 TRANSACTION_UNAVAILABLE

TRANSACTION_UNAVAILABLE exception is raised by the ORB when it cannot process a transaction service context
because its connection to the Transaction Service has been abnormally terminated.

8.12.3.35 TRANSACTION_MODE

TRANSACTION_MODE exception is raised by the ORB when it detects a mismatch between the TransactionPolicy
in the IOR and the current transaction mode.

8.12.3.36 BAD_QOS

The BAD_QOS exception is raised whenever an object cannot support the quality of service required by an invocation
parameter that has a quality of service semantics associated with it.

8.12.3.37 INVALID_ACTIVITY

The INVALID_ACTIVITY system exception may be raised on the Activity or Transaction services resume methods if a
transaction or Activity is resumed in a context different to that from which it was suspended. It is also raised when an
attempted invocation is made that is incompatible with the Activity’s current state.

Common Object Request Broker Architecture (CORBA), v3.1.1 155

8.12.3.38 ACTIVITY_COMPLETED

The ACTIVITY_COMPLETED system exception may be raised on any method for which Activity context is accessed. It
indicates that the Activity context in which the method call was made has been completed due to a timeout of either the
Activity itself or a transaction that encompasses the Activity, or that the Activity completed in a manner other than that
originally requested.

8.12.3.39 ACTIVITY_REQUIRED

The ACTIVITY_REQUIRED system exception may be raised on any method for which an Activity context is required.
It indicates that an Activity context was necessary to perform the invoked operation, but one was not found associated
with the calling thread.

8.12.4 Standard Minor Exception Codes

Please refer to Annex A for atable that specifies standard minor exception codes that have been assigned for the standard
system exceptions.

156 Common Object Request Broker Architecture (CORBA), v3.1.1

9 Value Type Semantics

9.1 Overview

Objects, more specifically, interface types that objects support, are defined by an IDL interface, allowing arbitrary
implementations. There is great value, which is described in great detail elsewhere, in having a distributed object system
that places amost no constraints on implementations.

However there are many occasions in which it is desirable to be able to pass an object by value, rather than by reference.
This may be particularly useful when an object’s primary “purpose” is to encapsulate data, or an application explicitly
wishes to make a “copy” of an object.

The semantics of passing an object by value are similar to that of standard programming languages. The receiving side of
a parameter passed by value receives a description of the “state” of the object. It then instantiates a new instance with that
state but having a separate identity from that of the sending side. Once the parameter passing operation is complete, no
relationship is assumed to exist between the two instances.

Because it is necessary for the receiving side to instantiate an instance, it must necessarily know something about the
object’s state and implementation.
Value types provide semantics that bridge between CORBA structs and CORBA interfaces:

 They support description of complex state (i.e., arbitrary graphs, with recursion and cycles).

« Their instances are aways local to the context in which they are used (because they are always copied when passed
as a parameter to aremote call).

« They support both public and private (to the implementation) data members.
« They can be used to specify the state of an object implementation (i.e., they can support an interface).
« They support single inheritance (of valuetype) and can support an interface.

» They may be also be abstract.

9.2 Architecture

The basic notion is relatively simple. A value type is, in some sense, half way between a “regular” IDL interface type
and a struct. The use of a value type is a signal from the designer that some additional properties (state) and
implementation details be specified beyond that of an interface type. Specification of this information puts some
additional constraints on the implementation choices beyond that of interface types. Thisisreflected in both the semantics
specified herein, and in the language mappings.

An essential property of value types is that their implementations are always local. That is, the explicit use of value type
in a concrete programming language is always guaranteed to use a local implementation, and will not require a remote
call. They have no identity (their value is their identity) and they are not “registered” with the ORB.

There are two kinds of value types, concrete (or stateful) value types, and abstract (stateless) ones. As explained below
the essential characteristics of both are the same. The differences between them result from the differences in the way
they are mapped in the language mappings. In this specificaiton the semantics of value types apply to both kinds, unless
specifically stated otherwise.

Concrete (stateful) values add to the expressive power of (IDL) structs by supporting:

Common Object Request Broker Architecture (CORBA), v3.1.1 157

« Single derivation (from other value types).
« Supports a single non-abstract interface.

« Arbitrary recursive value type definitions, with sharing semantics providing the ability to define lists, trees,
|attices, and more generally arbitrary graphs using value types.

* Null value semantics.

When an instance of such atype is passed as a parameter, the sending context marshals the state (data) and passes it to
the receiving context. The receiving context instantiates a new instance using the information in the GIOP request and
unmarshals the state. It is assumed that the receiving context has available to it an implementation that is consistent with
the sender’s (i.e., only needs the state information), or that it can somehow download a usable implementation. Provision
is made in the on-the-wire format to support the carrying of an optional call back object (CodeBase) to the sending
context, which enables such downloading when it is appropriate.

It should be noted that it is possible to define a concrete value type with an empty state as a degenerate case.
9.2.1 Abstract Values

Value types may also be abstract. They are called abstract because an abstract value type may not be instantiated. Only
concrete types derived from them may be actually instantiated and implemented. Their implementation, of course, is still
local. However, because no state information may be specified (only local operations are allowed), abstract value types
are not subject to the single inheritance restrictions placed upon concrete value types. Essentially they are a bundle of
operation signatures with a purely local implementation. This distinction is made clear in the language mappings for
abstract values.

Note that a concrete value type with an empty state is not an abstract value type. They are considered to be stateful, may
be instantiated, marshaled, and passed as actual parameters. Consider them to be a degenerate case of stateful values.

9.2.2 Operations

Operations defined on a value type specify signatures whose implementation can only be local. Because these operations
are local, they must be directly implemented by a body of code in the language mapping (no proxy or indirection is
involved).

The language mappings of such operations require that instances of value types passed into and returned by such local
methods are passed by reference (programming language reference semantics, not CORBA object reference semantics)
and that a copy is not made. Note, such a (local) invocation is not a CORBA invocation. Hence it is not mediated by the
ORB, although the API to be used is specified in the language mapping.

The (copy) semantics for instances of value type are only guaranteed when instances of these value types are passed as a
parameter to an operation defined on a CORBA interface, and hence mediated by the ORB. If an instance of a value type
is passed as a parameter to a method of another value type in an invocation, then this call is a“normal” programming
language call. In this case both of the instances are local programming language constructs. No CORBA style copy
semantics are used and programming language reference semantics apply.

Operations on the value type are supported in order to guarantee the portability of the client code for these value types.
They have no representation on the wire and hence no impact on interoperability.

158 Common Object Request Broker Architecture (CORBA), v3.1.1

9.2.3 Value Type vs. Interfaces

By default value types are not CORBA Objects. In particular, instances of value types do not inherit from
CORBA::Object and do not support normal object reference semantics. However it is always possible to explicitly
declare that a given value type supports an interface type. In this case instances of the type may support CORBA object
reference semantics (if they are registered with the ORB using an object adapter).

9.2.4 Parameter Passing

This sub clause describes semantics when a value instance is passed as parameter in a CORBA invocation. It does not
deal with the case of calling another non-CORBA (i.e., local) programming method, which happens to have a parameter
of the same type.

9.2.4.1 Value vs. Reference Semantics

Determination of whether a parameter is to be passed by value or reference is made by examining the parameter’s formal
type (i.e., the signature of the operation it is being passed to). If it is a value type, then it is passed by value. If it isan
ordinary interface, then it is passed by reference (the case today for all CORBA objects). This rule is simple and
consistent with the handling of the same situation in recursive state definitions or in structs.

In the case of abstract interfaces, the determination is made at runtime. See Semantics of Abstract Interfaces on page 173
for a description of the rules.

9.2.4.2 Sharing Semantics

In order to be expressive enough to describe arbitrary graphs, lattice, trees, etc., value types support sharing and null
semantics. Instances of a value type can be shared by others across or within other instances. They can also be null. This
is unlike other IDL data types such as structs, unions, and sequences that can never be shared. The sharing of values
within and between the parameters to an operation is preserved across an invocation; that is, the graph that is
reconstructed in the receiving context is structurally isomorphic to the sending context’s.

9.2.4.3 Identity Semantics

When an instance of the value type is passed as a parameter to an operation of a non-local interface, the effect in all cases
shall be as if an independent copy of the instance is instantiated in the receiving context. While certain implementation
optimizations are possible the net effect shall be as if the copy is a separate independent entity and there is no explicit or
implicit sharing of state. This appliesto all valuetypes involved in the invocation, including those embedded in other IDL
datatypes or in an any. This notional copying occurs twice, once for in and inout parameters when the invocation is
initiated, and once again for inout, out, and return parameters when the invocation completes. Optimization techniques
such as copy on write, etc. must make sure that the semantics of copying as described above is preserved.

9.2.4.4 Any parameter type

When an instance of a value type is passed to an any, as with all cases of passing instances to an anyj, it is the
responsibility of the implementor to insert and extract the value according to the language mapping specification.

Common Object Request Broker Architecture (CORBA), v3.1.1 159

9.2.5 Substitutability Issues

The substitutability requirements for CORBA require the definition of what happens when an instance of a derived value
type is passed as a parameter that is declared to be a base value type or an instance of a value type that supports an
interface is passed as a parameter that is declared as the interface type.

There are three cases to consider: the parameter type is a regular interface, the parameter type is an abstract interface, and
the parameter type is a value type.

9.2.5.1 Valueinstance -> Interface type

A value type that supports a regular interface is not a subtype of that interface, and hence cannot be substituted for that
interface in an invocation parameter. In this case an object reference corresponding to the value type instance that has
been registered with the ORB must be obtained and this object reference must be used as the actual parameter. Different
language mappings provide different facilities to aid in such parameter passing.

9.2.5.2 Value Instance -> Abstract interface type

A value type that supports an abstract interface is a subtype of that interface, and can be substituted for that interface in
an invocation parameter.

9.2.5.3 Valueinstance ->Value type

In this case the receiving context is expecting to receive a value type. If the receiving context currently has the
appropriate implementation class, then there is no problem.

If the receiving context does not currently hold an implementation with which to reconstruct the original type, then the
following algorithm is used to find such an implementation:

1. Load- Attempt toload (locally in C/C++, possibly remotely in Java and other “ portable” languages) the real type of
the object (with its methods). If this succeeds, OK.

2. Truncate - Truncate the type of the object to the base type (if specified astruncatable inthe IDL). Truncation can
never lead to faulty programs because, from a structural point view base types structurally subsume a derived type
and an object created in the receiving context bears no relationship with the original one. However, it might be
semantically puzzling, asthe derived type may completely re-interpret the meaning of the state of the base. For that
reason a derived value needsto indicate if it is safe to truncate to its immediate non-abstract parent.

3. Raise Exception - If none of these work or are possible, then raisethe NO_IMPLEMENT exception with standard
minor code 1.

Truncatability is a transitive property.

Example

valuetype EmployeeRecord { // note this is not a CORBA::Object
/I state definition
private string name;
private string email;
private string SSN;
Il initializer
factory init(in string name, in string SSN);

160 Common Object Request Broker Architecture (CORBA), v3.1.1

valuetype ManagerRecord: truncatable EmployeeRecord {
/I state definition
private sequence<EmployeeRecord> direct_reports;

5
9.2.6 Widening/Narrowing

As has been described above, value type instances may be widened/narrowed to other value types. Each language
mapping is responsible for specifying how these operations are made available to the programmer.

Narrowing from an interface type instance to a value type instance is not allowed. If the interface designer wants to allow
the receiving context to create a local implementation of the value type (i.e., a value representing the interface), an
operation that returns the appropriate value type may be defined.

9.2.7 Value Base Type

All value types have a conventional base type called ValueBase. Thisisatype, which fulfillsarole that is similar to that
played by Object. Conceptually it supports the common operations available on all value types. See ValueBase
Operations on page 114 for a description of those operations. In each language mapping ValueBase will be mapped to an
appropriate base type that supports the marshaling/unmarshaling protocol as well as the model for custom marshaling.

The mapping for other operations, which all value types must support, such as getting meta information about the type,
may be found in the specifics for each language mapping.

9.2.8 Life Cycleissues

Value type instances are always local to their creating context. For example, in a given language mapping an instance of
avalue type is always created as a local “language” object with no POA semantics attached to it initially.

When passed using a CORBA invocation, a copy of the value is made in the receiving context and that copy startsits life
as a local programming language entity with no POA semantics attached to it.

If a value type supports an ordinary interface type, its instances may aso be passed by reference when the formal
parameter type is an interface type (see Parameter Passing on page 159). In this case they behave like ordinary object
implementations and must be associated with a POA policy and also be registered with the ORB (e.g.,
POA::activate_object() before they can be passed by reference. Not registering the value as a CORBA object and/or
not associating an appropriate policy with it results in an exception when trying to use it as a remote object, the “normal”
behavior. The exception raised shall be OBJECT_NOT_EXIST with standard minor code 1.

9.2.8.1 Creation and Factories

When an instance of avalue type is received by the ORB, it must be unmarshaled and an appropriate factory for its actual
type found in order for the new instance to be created. The type is encoded by the Repositoryl D, which is passed over the
wire as part of an invocation. The mapping between the type (as specified by the RepositorylD) and the factory is
language specific. In certain languages it may be possible to specify default policies that are used to find the factory,
without requiring that specific routines be called. In others the runtime and/or generated code may have to explicitly
specify the mapping on a per type basis. In others a combination may be used. In any event the ORB implementation is
responsible for maintaining this mapping See Language Specific Value Factory Requirements on page 163 for more
details on the requirements for each language mapping. Value box types do not need or use factories.

Common Object Request Broker Architecture (CORBA), v3.1.1 161

9.2.9 Security Considerations

The addition of value types has few impacts on the CORBA security model. In essence, the security implications in
defining and using value types are similar to those involved with the use of IDL structs. Instances of value types are
mapped to local, concrete programming language constructs. Except for providing the marshaling mechanisms, the ORB
is not directly involved with accessing value type implementations. This specification is mostly about two things: how
value types manifest themselves as concrete programming language constructs and how they are transmitted.

To see this consider how value types are actually used. The IDL definition of a value type in conjunction with a
programming language mapping is used to generate the concrete programming language definitions for that type.

Let us consider its life cycle. In order to use it, the programmer uses the mechanisms in the programming language to
instantiate an instance. This is instance is a local programming language construct. It is not “registered” with the ORB,
object adapter, etc. The programmer may manipulate this programming construct just like any other programming
language construct. So far there are no security implications. As long as no ORB-mediated invocations are made, the
programmer may manipulate the construct. Note, this includes making “local,” non ORB-mediated calls to any locally
implemented operations. Any assignments to the construct are the responsibility of the programmer and have no special
security implications.

Things get interesting when the program attempts to pass one of these constructs through an orb-mediated invocation (i.e.,
calls a stub that uses it as a parameter type, or uses the DII). There are two cases to consider: 1) Value as Value and 2)
Value as Object Reference.

9.2.9.1 Value as Value

The formal type of the parameter is a value. This case is no different from using any other kind of a value (long, string,
struct) in a CORBA invocation, with respect to security. The value (data) is marshaled and delivered to the receiving
context. On the receiving context, the knowledge of the type is used (at least implicitly) to find the factory to create the
correct local programming language construct. The datais then unmarshaled to fill in the newly created construct. Thisis
similar to using other values (longs, strings, structs) except that the knowledge of the factory is not “built-in” to the
ORB'’s skeleton/DSI engine.

9.2.9.2 Value as Object Reference

The formal type of the parameter is an interface type that is supported by a value. The program must have “registered” the
value with an object adapter and is really using the returned object reference (see for the specific rules.) Thus this case
“reduces’ to aregular CORBA invocation, using a regular object reference. An IOR is passed to the receiving context.
All the “normal” security considerations apply. From the point of view of the receiving context, the IOR is a “normal”
object reference. No “special” rules, with respect to security or otherwise, apply to it. The fact that it is ultimately a
reference to an implementation that was created from instantiating and registering a value type implementation is not
relevant.

In both of these cases, security considerations are involved with the decision to allow the ORB-mediated invocation to
proceed. The fact that a value type is involved is not material.

9.3 Standard Value Box Definitions

For some CORBA-defined types for which preservation of sharing and transmission of nulls are likely to be important,
the following value box type definitions are added to the CORBA module.

162 Common Object Request Broker Architecture (CORBA), v3.1.1

module CORBA {
valuetype StringValue string;
valuetype WStringValue wstring;

5
9.4 Language Mappings
9.4.1 General Requirements

A concrete value is mapped to a concrete usable “class’ construct in each programming language, plus possibly some
helper classes where appropriate. In Java, C++, and Smalltalk thisis areal concrete class. In C it is a struct.

An abstract value is mapped to some sort of an abstract construct--an interface in Java, and an abstract class with pure
virtual function membersin C++.

Tools that implement the language mapping are free to “extend” the implementation classes with “extra’ data members
and methods. When an instance of such a class is used as a parameter, only the portions that correspond directly to the
IDL declaration, are marshaled and delivered to the receiving context. This allows freedom of implementations while
preserving the notion of contract and type safety in IDL.

9.4.2 Language Specific Marshaling

Each language mapping defines an appropriate marshaling/unmarshaling API and the entry point for custom marshaling/
unmarshaling.

9.4.3 Language Specific Value Factory Requirements

Each language mapping specifies the algorithm and means by which RepositorylDs are used to find the appropriate
factory for an instance of a value type so that it may be created as it is unmarshaled “ off the wire.”

It is desirable, where it makes sense, to specify a “default” policy for automatically using RepositorylDs that are in
common formats to find the appropriate factory. Such a policy can be thought of as an implicit registration.

Each language mapping specifies how and when the registration occurs, both explicit and implicit. The registration must
occur before an attempt is made to unmarshal an instance of a value type. If the ORB is unable to locate and use the
appropriate factory, then a MARSHAL exception with standard minor code 1 is raised.

Because the type of the factory is programming language specific and each programming language platform has different
policies, the factory type is specified as native. It is the responsibility of each language mapping to specify the actual
programming language type of the factory.

module CORBA {

/I DL
native ValueFactory;

h

Common Object Request Broker Architecture (CORBA), v3.1.1 163

9.4.4 Value Method Implementation

The mapped class must support method bodies (i.e., code) that implement the required IDL operations. The means by
which this association is accomplished is a language mapping “detail” in much the same way that an IDL compiler is.

9.5 Custom Marshaling

Value types can override the default marshaling/unmarshaling model and provide their own way to encode/decode their
state. Custom marshaling is intended to be used to facilitate integration of existing “class libraries’ and other legacy
systems. It is explicitly not intended to be a standard practice, nor used in other OMG specifications to avoid “ standard
ORB” marshaling.

The fact that a value type has some custom marshaling code is declared explicitly in the IDL. This explicit declaration has
two goals:

* Type safety - stubs and skeleton can know statically that a given type is custom marshaled and can then do a sanity
check on what is coming over the wire.

« efficiency - for value types that are not custom marshaled no run time test is necessary in the marshaling code.

If a custom marshaled value type has a state definition, the state definition is treated the same as that of a non custom
value type for mapping purposes (i.e., the fields show up in the same fashion in the concrete programming language). It
is provided to help with application portability.

A custom marshaled value type is aways a stateful value type.
/l Example IDL

custom valuetype T {
/l optional state definition

b

Custom value types can never be safely truncated to base (i.e., they always require an exact match for their Repositoryld
in the receiving context).

Once a value type has been marked as custom, it needs to provide an implementation that marshals and unmarshals the
valuetype. The marshaling code encapsulates the application code that can marshal and unmarshal instances of the value
type over a stream using the CDR encoding. It is the responsibility of the implementation to marshal the state of all of its
base types.

The following sub clauses define the operations and streams that are used for custom marshaling.
9.5.1 Implementation of Custom Marshaling

Once a value type has been marked as custom, an implementation of the custom marshaling code must be provided. This
is specified by providing a concrete implementation of an abstract value type, CustomMarshal, as part of the
implementation of the value type. CustomMarshal encapsulates the application code that can marshal and unmarshal
instances of the value type over a stream using the CDR encoding.

The following IDL defines the interfaces that are used to support the definition and use of custom marshaling.

164 Common Object Request Broker Architecture (CORBA), v3.1.1

module CORBA {
abstract valuetype CustomMarshal {
void marshal (in DataOutputStream 0s);
void unmarshal (in DatalnputStream is);
5
5

CustomMarshal is an abstract value type that is meant to be used by the ORB, not the user. Semantically it is treated as
a custom valuetype's implicit base class, although the custom valuetype does not actually inherit it in IDL. The
implementor of a custom value type provides an implementation of the CustomMarshal operations. The manner in
which this is done is specified for each language mapping. Each custom marshaled value type has its own
implementation. The interface is exposed in the CORBA module so that the implementor can use the skeletons generated
by the IDL compiler as the basis for the implementation. Hence there is no need for the application to acquire a reference
to a Stream.

Note that while nothing prevents a user from writing IDL that inherits from CustomMarshal, doing so will not make the
type custom, nor will it cause the ORB to treat it as custom.

The implementation requirements of the streaming mechanism require that the implementations must be local since local
memory addresses (i.e., the marshal buffers) have to be manipulated.

9.5.2 Marshaling Streams

The streams used for marshaling are defined below. They are responsible for marshaling and demarshaling the data that
makes up a custom value in CDR format.

module CORBA {

typedef sequence<any> AnySeq;

typedef sequence<boolean> BooleanSeq;
typedef sequence<char> CharSeq;

typedef sequence<wchar> WCharSeq;

typedef sequence<octet> OctetSeq;

typedef sequence<short> ShortSeq;

typedef sequence<unsigned short> UShortSeq;
typedef sequence<long> LongSeq;

typedef sequence<unsigned long> ULongSeq;
typedef sequence<long long> LongLongSeq;
typedef sequence<unsigned long long> ULonglLongSeq;
typedef sequence<float> FloatSeq;

typedef sequence<double> DoubleSeq;

typedef sequence<long double> LongDoubleSeq;
typedef sequence<string> StringSeq;

typedef sequence<wstring> WStringSeq;

exception BadFixedValue {
unsigned long offset;

h

abstract valuetype DataOutputStream {
void write_any(in any value);

Common Object Request Broker Architecture (CORBA), v3.1.1 165

166

void write_boolean(in boolean value);

void write_char(in char value);

void write_wchar(in wchar value);

void write_octet(in octet value);

void write_short(in short value);

void write_ushort(in unsigned short value);
void write_long(in long value);

void write_ulong(in unsigned long value);
void write_longlong(in long long value);

void write_ulonglong(in unsigned long long value);

void write_float(in float value);

void write_double(in double value);

void write_longdouble(in long double value);
void write_string(in string value);

void write_wstring(in wstring value);

void write_Object(in Object value);

void write_Abstract(in AbstractBase value);
void write_Value(in ValueBase value);

void write_TypeCode(in TypeCode value);

void write_any_array(
in AnySeq seq,
in unsigned long offset,
in unsigned long length
)i
void write_boolean_array(
in BooleanSeq seq,
in unsigned long offset,
in unsigned long length
)i
void write_char_array(
in CharSeq seq,
in unsigned long offset,
in unsigned long length
)i
void write_wchar_array(
in WCharSeq seq,
in unsigned long offset,
in unsigned long length
)i
void write_octet_array(
in OctetSeq seq,
in unsigned long offset,
in unsigned long length
)i
void write_short_array(
in ShortSeq seq,
in unsigned long offset,
in unsigned long length
)i

void write_ushort_array(

Common Object Request Broker Architecture (CORBA), v3.1.1

in UShortSeq seq,
in unsigned long offset,
in unsigned long length
)i
void write_long_array(
in LongSeq seq,
in unsigned long offset,
in unsigned long length
)i
void write_ulong_array(
in ULongSeq seq,
in unsigned long offset,
in unsigned long length
)i
void write_ulonglong_array(
in ULongLongSeq seq,
in unsigned long offset,
in unsigned long length
)i
void write_longlong_array(
in LongLongSeq seq,
in unsigned long offset,
in unsigned long length
)i
void write_float_array(
in FloatSeq seq,
in unsigned long offset,
in unsigned long length
)i
void write_double_array(
in DoubleSeq seq,
in unsigned long offset,
in unsigned long length

);

void write_long_double_array(
in LongDoubleSeq seq,
in unsigned long offset,
in unsigned long length

);

void write_fixed(
in any fixed_value
) raises (BadFixedValue);
void write_fixed_array(
in AnySeq seq,
in unsigned long offset,
in unsigned long length
) raises (BadFixedValue);

Common Object Request Broker Architecture (CORBA), v3.1.1

167

168

abstract valuetype DatalnputStream {

any read_any();

boolean read_boolean();

char read_char();

wchar read_wchar();

octet read_octet();

short read_short();

unsigned short read_ushort();
long read_long();

unsigned long read_ulong();
long long read_longlong();
unsigned long long read_ulonglong();
float read_float();

double read_double();

long double read_longdouble();
string read_string();

wstring read_wstring();

Object read_Object();
AbstractBase read_Abstract();
ValueBase read_Value();
TypeCode read_TypeCode();

void read_any_array(
inout AnySeq seq,
in unsigned long offset,
in unsigned long length
)i
void read_boolean_array(
inout BooleanSeq seq,
in unsigned long offset,
in unsigned long length
)i
void read_char_array(
inout CharSeq seq,
in unsigned long offset,
in unsigned long length
)i
void read_wchar_array(
inout WCharSeq seq,
in unsigned long offset,
in unsigned long length
)i
void read_octet_array(
inout OctetSeq seq,
in unsigned long offset,
in unsigned long length
)i
void read_short_array(
inout ShortSeq seq,
in unsigned long offset,
in unsigned long length

Common Object Request Broker Architecture (CORBA), v3.1.1

)i

void read_ushort_array(
inout UShortSeq seq,
in unsigned long offset,
in unsigned long length

)i

void read_long_array(
inout LongSeq seq,
in unsigned long offset,
in unsigned long length

)i

void read_ulong_array(
inout ULongSeq seq,
in unsigned long offset,
in unsigned long length

)i

void read_ulonglong_array(
inout ULongLongSeq seq,
in unsigned long offset,
in unsigned long length

)i

void read_longlong_array(
inout LongLongSeq seq,
in unsigned long offset,
in unsigned long length

)i

void read_float_array(
inout FloatSeq seq,
in unsigned long offset,
in unsigned long length

)i

void read_double_array(
inout DoubleSeq seq,
in unsigned long offset,
in unsigned long length

);

void read_long_double_array(
inout DoubleSeq seq,
in unsigned long offset,
in unsigned long length
)i
any read_fixed(
in unsigned short digits,
in short scale
) raises (BadFixedValue);
void read_fixed_array(
inout AnySeq seq,
in unsigned long offset,
in unsigned long length,
in unsigned short digits,

Common Object Request Broker Architecture (CORBA), v3.1.1 169

in short scale
) raises (BadFixedValue);
b
b

Note that the Data streams are abstract value types. This ensures that their implementation will be local, which is required
in order for them to properly flatten and encode nested value types.

The read_ operations that have an inout parameter named seq are expected to extend the sequence to fit the read value.

The ORB (i.e., the CDR encoding engine) is responsible for actually constructing the value's encoding. The application
marshaling code merely calls the above operations. The details of writing the value tag, header information, end tag(s) are
specifically not exposed to the application code. In particular the size of the custom data is not written by the application.
This guarantees that the custom marshaling (and unmarshaling code) cannot corrupt the other parameters of the call.

If an inconsistency is detected, then the standard system exception MARSHAL is raised.

A possible implementation might have the engine determine that a custom marshal parameter is “next.” It would then
write the value tag and other header information and then return control back to the application defined marshaling policy,
which would do the marshaling by calling the DataOutputStream operations to write the data as appropriate. (Note the
stream takes care of breaking the data into chunks, if necessary.) When control was returned back to the engine, it
performs any other cleanup activities to complete the value type, and then proceeds onto the next parameter. How thisis
actually accomplished is an implementation detail of the ORB.

The Data Streams shall test for possible shared or null values and place appropriate indirections or null encodings (even
when used from the custom streaming policy).

There are no explicit operations for creating the streams. It is assumed that the ORB implicitly acts as a factory. In a sense
they are always available.

For write_fixed, the fixed_value parameter must be an “any” containing a fixed value. If the “any” passed in does not
contain a fixed value, then a BadFixedValue exception is raised with the offset field set to 0.

For write_fixed_array, the elements of the seq parameter that are specified by the offset and length parameters must be
a sequence of “any”s each of which contains a fixed value. If any of these “any”s do not contain a fixed value, or if any
of them contain a fixed value whose digits and scale (as specified by the TypeCode in the “any”) differ from those of
the first of these “any”s (as specified by its TypeCode), then a BadFixedValue exception is raised with the offset field
set to a zero-origin ordinal number indicating the position of the first incorrect “any” within the subsequence of fixed
values written to the stream.

For both write_fixed and write_fixed_array, the TypeCode within each “any” being written specifies the digits and
scale to be used to write the fixed value contained in the “any.” The TypeCode itself is not written to the
DataOutputStream.

The read_fixed operation returns an “any” containing the fixed value that was read from the DatalnputStream. The
digits and scale in the TypeCode of the returned “any” are set to the digits and scale parameters passed to read_fixed.
If the fixed value read from the DatalnputStream is incompatible with the digits and scale parameters passed to
read_fixed, then a BadFixedValue exception is raised with the offset field set to 0.

Theread_fixed_array operation sets the elements of the seq parameter that are specified by the offset and length
parameters. These elements are set to “any”s with TypeCodes specifying a fixed value whose digits and scale are the
same as the digits and scale parameters, and fixed values that were read from the DatalnputStream. The previous
contents of these “any”s, including their TypeCodes, are destroyed by theread_fixed_array operation. Other “any”sin

170 Common Object Request Broker Architecture (CORBA), v3.1.1

the seq parameter (if any) are left unchanged. No TypeCode information is read from the DatalnputStream. If any of
the fixed values read from the DatalnputStream are incompatible with the digits and scale parameters, then a
BadFixedValue exception is raised with the offset field set to a zero-origin ordinal number indicating the position of the
first incorrect “any” within the subsegquence of fixed values read from the stream.

The stream representation of a fixed value is considered incompatible if its digit and scale values do not match the
digits and scale values being used to read it from the stream.

9.6 Access to the Sending Context Run Time

There are two cases where a receiving context might want to access the run time environment of the sending context:
« To attempt the downloading of some missing implementation for the value.
« To access some meta information about the version of the value just received.

In order to provide that kind of service a call back object interface is defined. It may optionally be supported by the
sending context (it can be seen as a service). If such a callback object is supported, its IOR may be added to an optional
service context in the GIOP header passed from the sending context to the receiving context.

A service context tagged with the ServicelD SendingContextRunTime (see Part 2 of this specification) contains an
encapsulation of the IOR for a SendingContext::RunTime object. Because ORBs are always free to skip a service
context they don’t understand, this addition does not impact 110OP interoperability.

module SendingContext {
interface RunTime {}; // so that we can provide more
/I sending context run time
/I services in the future

interface CodeBase: RunTime {
typedef string URL; // blank-separated list of one or more URLs
typedef sequence<URL> URLSeq;
typedef sequence
<CORBA::ValueDef::FullValueDescription> ValueDescSeq;

/I Operation to obtain the IR from the sending context
CORBA::Repository get_ir();

/I Operations to obtain a location of the implementation code
URL implementation(in CORBA::Repositoryld x);
URLSeq implementations(in CORBA::RepositoryldSeq x);

/I Operations to obtain complete meta information about a Value
/[This is just a performance optimization the IR can provide

/l the same information

CORBA::FullValueDescription meta(in CORBA::Repositoryld x);
ValueDescSeq metas(in CORBA::RepositoryldSeq x);

/l To obtain a type graph for a value type
/l same comment as before the IR can provide similar

Common Object Request Broker Architecture (CORBA), v3.1.1 171

/I information
CORBA::RepositoryldSeq bases(in CORBA::Repositoryld x);
¥
¥

Supporting the CodeBase interface for a given ORB run time is an issue of quality of service. The point here is that if
the sending context does not support a CodeBase, then the receiving context will simply raise an exception with which
the sending context had to be prepared to deal. There will always be cases where a receiving context will get avalue type
and won't be able to interpret it because:

« It can’t get alegal implementation for it (even if it knows where it is, possibly due to security and/or resource
access issues).

« Itslocal version is so radically different that it cannot make sense out of the piece of state being provided.

These two failure modes will be represented by the CORBA system exception NO_IMPLEMENT with identified minor
codes, for a missing local value implementation and for incompatible versions (see Standard Minor Exception Codes on
page 156).

Under certain conditions it is possible that when several values of the same CORBA type (same repository id) are sent in
either arequest or reply, that the reality is that they have distinct implementations. In this case, in addition to the codebase
URL(s) sent in the service context, each value that has a different codebase may have codebase URL (s) associated with

it. This is encoded by using a different tag to encode the value on the wire.

The sending context does not need to resend the same value for this service context on subsequent requests over the same
underlying connection. Resending a different value for this service context is only necessary if the callback object reference
in use is changed by the sending context within the lifetime of the underlying connection.

172 Common Object Request Broker Architecture (CORBA), v3.1.1

10

Abstract Interface Semantics

10.1 Overview

In many cases it may be useful to defer the determination of whether an object is passed by reference or by value until
runtime. An IDL abstract interface provides this capability. See Example on page 174 for an example of when this might
be useful.

10.2 Semantics of Abstract Interfaces

Abstract interfaces differ from regular IDL interfaces in the following ways:

1

When used in an operation signature, they do not determine whether actual parameters are passed as an object
reference or by value. Instead, the type of the actual parameter (regular interface or value) is used to make this
determination using the following rules:

» The actual parameter is passed as an object referenceiif it isaregular interface type (or a subtype of aregular
interface type), and that regular interface type is a subtype of the signature abstract interface type, and the object is
aready registered with the ORB/OA.

» The actual parameter is passed asavalueif it cannot be passed as an object reference but can be passed as avalue.
Otherwise, aBAD_PARAM exception is raised.

Abstract interfaces do not implicitly inherit from CORBA::Object. Thisis because they can represent either value
types or CORBA object references, and value types do not necessarily support the object reference operations (see
Object Reference Operations on page 105). If an IDL abstract interface type can be successfully narrowed to an
object reference type (aregular IDL interface), then the CORBA::Object operations can be invoked on the
narrowed object reference.

Abstract interfaces implicitly inherit from CORBA::AbstractBase. Thistypeis defined as native. It isthe
responsihility of each language mapping to specify the actual programming language type that is used for this type.

module CORBA {
//'IDL
native AbstractBase;

5
Abstract interfaces do not imply copy semantics for value types passed as arguments to their operations. Thisis
because their operations may be either CORBA invocations (for abstract interfaces that represent CORBA object
references) or local programming language calls (for abstract interfaces that represent CORBA value types). See
Operations on page 158 and Parameter Passing on page 159 for details of these differences.

Special inheritance rules that apply to abstract interfaces are described in Abstract Interface on page 51.

See the General Inter-orb Protocol clause in Part 2 of this specification - for special consideration when transmitting
an abstract interface using GIOP.

In other respects, abstract interfaces are identical to regular IDL interfaces. For example, consider the following operation
m1() in abstract interface foo.

Common Object Request Broker Architecture (CORBA), v3.1.1 173

abstract interface foo {
void m1(in AninterfaceType X, in AnAbstractinterfaceTypey,
in AvValueType z);

3
x’'s are always passed by reference.
Z's are passed as:
« copied valuesif foo refersto an ordinary interface.
« non-copied valuesif foo refersto avalue type.

y’s are passed as:

« referenceif their concrete typeis an ordinary interface subtype of AnAbstractinterfaceType (registered with
the ORB), no matter what foo’s concrete typeis.

« copied valuesif their concrete typeis value and foo’ s concrete type is ordinary interface.

« non-copied valuesif their concrete typeis value and foo’s concrete type is value.

10.3 Usage Guidelines

Abstract interfaces are intended for situations where it cannot be known at compile time whether an object reference or a
value will be passed. In other cases, aregular interface or value type should be used. Abstract interfaces are not intended
to replace regular CORBA interfaces in situations where there is no clear need to provide runtime flexibility to pass either
an object reference or a value. If reference semantics are intended, regular interfaces should be used.

10.4 Example

For example, in a business application it is extremely common to need to display a list of objects of a given type, with
some identifying attribute like account number and a translated text description such as “ Savings Account.” A developer
might define an interface such as Describable whose methods provide this information, and implement this interface on
awide range of types. This allows the method that displays items to take an argument of type Describable and query it
for the necessary information. The Describable objects passed in to the display method may be either CORBA
interface types (passed in as object references) or CORBA value types (passed in by value).

In this example, Describable is used as a polymorphic abstract type. No instances of type Describable exist, but many
different instances have interfaces that support the Describable type abstraction. In C++, Describable would be an
abstract base class; in Java, an interface. In statically typed languages, the compiler can check that the actual parameter
type passed by callers of display is avalid subtype of Describable and therefore supports the methods defined by
Describable. The display method can simply invoke the methods of Describable on the objects that it receives,
without concern for any details of their implementation.

Describable could not be declared as a regular IDL interface. This is because arguments of declared interface type are
always passed as object references (see Parameter Passing on page 159) and we also want the display method to be able
to accept value type objects that can only be passed by value. Similarly we cannot define Describable as a value type
because then the display method would not be able to accept actual parameter objects that only support passing as an
object reference. Abstract interfaces are needed to cover such cases.

The Describable abstract interface could be defined and used by the following IDL:

174 Common Object Request Broker Architecture (CORBA), v3.1.1

abstract interface Describable {
string get_description();

h

interface Example {
void display (in Describable anObject);

h

interface Account : Describable {// passed by reference
/' add Account methods here

h

valuetype Currency supports Describable {// passed by value
/l add Currency methods here

h

If Describable was defined as a regular interface instead of an abstract interface, then it would not be possible to pass a
Currency value to the display method, even though the Currency IDL type supports the Describable interface.

10.5 Security Considerations

Security considerations for abstract interfaces are similar to those for regular interfaces and values (see Security
Considerations on page 162). This is because an abstract interface formal parameter type allows either a regular interface
(IOR) or a value to be passed. Likewise, an operation defined in an abstract interface can be implemented by either a
regular interface (with “normal” security considerations) or by a value type (in which case it is alocal call, not mediated
by the ORB). The security implication of making the choice between these alternatives a runtime determination is that the
programmer must ensure that for both alternatives, no security violations can occur. For example, a technique similar to
that described in “Passing Values to Trusted Domains’ could be used to avoid inadvertently passing values outside a
domain of trust.

10.5.1 Passing Values to Trusted Domains

When a server passes an object reference, it can be sure that access control policies will apply to any attempt to access
anything through that object reference. When the underlying object is passed as a value, the granularity and level/
semantics of access control are different. In the “by value” case, all the data for the object is passed, and method
invocations on the passed object are local calls that are not mediated by the ORB. Whether the server wants to use the
(potentially more permissive) pass by value access control or not could depend on the security domain, which is receiving
the said object or object reference.

Consider the case where the server S has an object O that it is willing to pass only in the form of an object reference Or'
to a domain Du that it does not trust, but is willing to pass the object by value Ow to another domain Ot that it trusts.

This flexibility is not possible without abstract interfaces. Signatures would have to be written to either always pass
references or always pass values, irrespective of the level of trust of the invocation target domain. However, abstract
interfaces provide the necessary flexibility. The formal parameter type MyType can be declared as an abstract interface
and the method invocation can be coded along the lines of

Common Object Request Broker Architecture (CORBA), v3.1.1 175

myExample->foo(security check(myExample,mydata)) ;

where the security check function determines the level of trust of myExample’s domain and returns a regular
interface subtype of My Type for untrusted domains and a value subtype of My Type for trusted domains. The rules for
abstract interfaces will then pass the correct thing in both these cases.

176 Common Object Request Broker Architecture (CORBA), v3.1.1

11 Dynamic Invocation Interface

11.1 Overview

The Dynamic Invocation Interface (DII) describes the client’s side of the interface that allows dynamic creation and
invocation of request to objects. All types defined in this clause are part of the CORBA module.

The Dynamic Invocation Interface (DII) alows dynamic creation and invocation of requests to objects. A client using this
interface to send a request to an object obtains the same semantics as a client using the operation stub generated from the
type specification.

A request consists of an object reference, an operation, and a list of parameters. The ORB applies the implementation-
hiding (encapsulation) principle to requests.

In the Dynamic Invocation Interface, parameters in a request are supplied as elements of alist. Each element is an
instance of a NamedValue (see Common Data Structures on page 177). Each parameter is passed in its native data form.

Parameters supplied to a request may be subject to run-time type checking upon request invocation. Parameters must be
supplied in the same order as the parameters defined for the operation in the Interface Repository.

The standard user exception WrongTransaction is defined in the CORBA module, prior to the definitions of the ORB
and Reguest interfaces, as follows:

exception WrongTransaction {};

This exception can be raised only if the request is implicitly associated with a transaction (the current transaction at the
time that the request was issued).

11.1.1 Common Data Structures

The type NamedValue is awell known data type in IDL. It can be used either as a parameter type directly or as a
mechanism for describing arguments to a request. The types are described in IDL as:

module CORBA {

typedef unsigned long Flags;

struct NamedValue { PIDL
Identifier name; /[argument name
any argument; // argument
long len; /I length/count of argument value
Flags arg_modes;// argument mode flags

5

h

For out parameters, applications can set the argument member of the NamedValue structure to a value that includes
either a NULL or anon-NULL storage pointer. If a non-null storage pointer is provided for an out parameter, the ORB
will attempt to use the storage pointed to for holding the value of the out parameter. If the storage pointed to is not
sufficient to hold the value of the out parameter, the behavior is undefined.

Common Object Request Broker Architecture (CORBA), v3.1.1 177

A named value includes an argument name, argument value (as an any), length of the argument, and a set of argument
mode flags. When named value structures are used to describe arguments to a request, the names are the argument
identifiers specified in the IDL definition for a specific operation.

As described in CORBA (Mapping: COM and CORBA) an any consists of a TypeCode and a pointer to the data value.
The TypeCode is a well known opaque type that can encode a description of any type specifiable in IDL. See this sub
clause for a full description of TypeCodes.

For most data types, len is the actual number of bytes that the value occupies. For object references, len is 1. Table 11.1
shows the length of data values for the C language binding. The behavior of aNamedValue is undefined if the len value
is inconsistent with the TypeCode.

Table 11.1 - C Language Binding Data Values

Datatype: X

Length (X)

short

sizeof (CORBA _short)

unsigned short

sizeof (CORBA _unsigned_short)

long

sizeof (CORBA_long)

unsigned long

sizeof (CORBA_unsigned_long)

long long

sizeof (CORBA_long_long)

unsigned long long

sizeof (CORBA _unsigned_long_long)

float sizeof (CORBA _float)

double sizeof (CORBA _double)

long double sizeof (CORBA_long_double)

fixed<d,s> sizeof (CORBA_fixed_d_s)

char sizeof (CORBA_char)

wchar sizeof (CORBA_wchar)

boolean sizeof (char)

octet sizeof (CORBA _octet)

string strlen (string) /* does NOT include \0’ byte! */
wstring number of wide characters in string, not including wide null terminator
enum E {}; sizeof (CORBA_enum)

union U {}; sizeof (U)

struct S{}; sizeof (S)

Object 1

array N of type T1

Length (T1) * N

sequence V of type T2

Length (T2) *V /* V is the actual, dynamic, number of elements */

178

Common Object Request Broker Architecture (CORBA), v3.1.1

The arg_mode field is of type Flags which is an unsigned long. This field is used as follows in this structure. It

should be noted that Flags type is used as parameter type in many operations and the meaning of the constants passed in
those cases are specific to those operations. Those values should not be confused with the specific use of this type in the
context of the NamedValue structure. These values are reserved, as are the high order 16 bits of the unsigned long.:

CORBA::ARG_IN 1 The associated value is an input only argument.
CORBA::ARG_OUT 2 The associated value is an output only argument.
CORBA::ARG_INOUT 3 The associated value is an infout argument.

The specific usage of Flags in other contexts are described as part of the description of the operation that uses this type
of parameters.

11.1.2 Memory Usage

The values for output argument data types that are unbounded strings or unbounded sequences are returned as pointers to
dynamically allocated memory. In order to facilitate the freeing of all “out-arg memory,” the request routines provide a
mechanism for grouping, or keeping track of, this memory. If so specified, out-arg memory is associated with the
argument list passed to the create request routine. When the list is deleted, the associated out-arg memory will
automatically be freed.

If the programmer chooses not to associate out-arg memory with an argument list, the programmer is responsible for
freeing each out parameter using CORBA free (), Which is discussed in the C Language Mapping specification
(Mapping for Sructure Types sub clause).

11.1.3 Return Status and Exceptions

In the Dynamic Invocation interface, routines typically indicate errors or exceptional conditions either via programming
language exception mechanisms, or via an Environment parameter for those languages that do not support exceptions.
Thus, the return type of these routinesis void.

11.2 Request Operations

The request operations (except create_request) are defined in terms of the Request pseudo-object. The Request
routines use the NVList definition defined in the preceding sub clause.

module CORBA {

native OpaqueValue;

interface Request { // PIDL
void add_arg (
in Identifier name, /[argument name
in TypeCode arg_type, // argument datatype
in OpaqueValue value, /l argument value to be added
in long len, /l length/count of argument value

Common Object Request Broker Architecture (CORBA), v3.1.1 179

in Flags arg_flags //argument flags

);

void invoke (
in Flags invoke_flags //invocation flags

)i
void delete ();

void send (
in Flags invoke_flags //invocation flags

)i

void get_response () raises (WrongTransaction);
boolean poll_response();

Object sendp();

void prepare(in Object p);

void sendc(in Object handler);
|3
|3
In IDL, The native type OpaqueValue is used to identify the type of the implementation language representation of the

value that is to be passed as a parameter. For example in the C language this is the C language type (void *). Each
language mapping specifies what OpaqueValue maps to in that specific language.

For each Request pseudo-object instance, only one call to either the invoke or the send operations is legal during the
lifetime of the Request object. In addition, once a Request object was passed to one of the
send_multiple_requests_* operations, neither invoke nor send can be called, nor can it be passed in another
invocation of send_multiple_request_* operation.Violations raise BAD_INV_ORDER with standard minor code 5
or 10.

11.2.1 create_request

Because it creates a pseudo-object, this operation is defined in the Object interface (see Object Reference Operations on
page 105 for the complete interface definition). The create_request operation is performed on the Object that is to be
invoked.

module CORBA({

interface Object{ / PIDL

void create_request (

in Context ctx, /I context object for operation
in Identifier operation, //intended operation on object
in NVList arg_list, //args to operation

180 Common Object Request Broker Architecture (CORBA), v3.1.1

inout NamedValue result, I/l operation result
out Request request, // newly created request
in Flags req_flags // request flags
)i
5
5

This operation creates an ORB request. The actual invocation occurs by calling invoke or by using the send /
get_response calls.

The operation name specified on create_request is the same operation identifier that is specified in the IDL definition
for this operation. In the case of attributes, it is the name as constructed following the rules specified in the
ServerRequest interface as described in the DSI in ServerRequestPseudo-Object on page 194.

The arg_list, if specified, contains alist of arguments (input, output, and/or input/output) that become associated with the
request. If arg_list is omitted (specified as NULL), the arguments (if any) must be specified using the add_arg call
below.

Arguments may be associated with a request by passing in an argument list or by using repetitive callsto add_arg. One
mechanism or the other may be used for supplying arguments to a given request; a mixture of the two approaches is not
supported.

If specified, the arg_list becomes associated with the request; until the invoke call has completed (or the request has
been deleted), the ORB assumes that arg_list (and any values it points to) remains unchanged.

When specifying an argument list, the value and len for each argument must be specified. An argument’s datatype,
name, and usage flags (i.e., in, out, inout) may also be specified; if so indicated, arguments are validated for data type,
order, name, and usage correctness against the set of arguments expected for the indicated operation.

An implementation of the request services may relax the order constraint (and allow arguments to be specified out of
order) by doing ordering based upon argument name.

The context properties associated with the operation are passed to the object implementation. The object implementation
may not modify the context information passed to it.

The operation result is placed in the result argument after the invocation completes.
The req_flags argument is defined as a bitmask (long) that may contain the following flag values:
CORBA::OUT_LIST_MEMORY indicates that any out-arg memory is associated with the argument list (NVList).

Setting the OUT_LIST_MEMORY flag controls the memory alocation mechanism for out-arg memory (output
arguments, for which memory is dynamically allocated). If OUT_LIST_MEMORY is specified, an argument list must
also have been specified on the create_request call. When output arguments of this type are allocated, they are
associated with the list structure. When the list structure is freed (see below), any associated out-arg memory is also freed.

If OUT_LIST_MEMORY is not specified, then each piece of out-arg memory remains available until the programmer
explicitly frees it with procedures provided by the language mappings (see the C Language Mapping specification,
Argument Passing Considerations sub clause; C++ Language Mapping specification, NVList sub clause; and the COBOL
Language Mapping specification, Argument Passing Considerations sub clause).

The implicit object reference operations non_existent, is_a, repository_id and get_interface may be invoked using
DIl. No other implicit object reference operations may be invoked via DII.

Common Object Request Broker Architecture (CORBA), v3.1.1 181

To create arequest for any one of these allowed implicit object reference operations, create_request must be passed the
name of the operation with a“_" prepended, in the parameter “operation.” For example to create a DIl request for
“is_a", the name passed to create_request must be“_is_a.” If the name of an implicit operation that is not invocable
through DII is passed to create_request with a“ " prepended, create_request shall raise a BAD_PARAM standard
system exception with the standard minor code 32. For example, if “_is_equivalent” is passed to create_request as
the “operation” parameter will cause create_request to raise the BAD_PARAM standard system exception with the
standard minor code 32.

11.2.2 add_arg

void add_arg (/ PIDL
in Identifier name, /[argument name
in TypeCode arg_type, //argument datatype
in OpaqueValue value, /l argument value to be added
in long len, /I length/count of argument value
in Flags arg_flags //argument flags
)i

add_arg incrementally adds arguments to the request.

For each argument, minimally its value and len must be specified. len is the length in octets, of the thing that the value
parameter refers to. An argument’s data type, name, and usage flags (i.e., in, out, inout) may also be specified. If so
indicated, arguments are validated for data type, order, name, and usage correctness against the set of arguments expected
for the indicated operation.

An implementation of the request services may relax the order constraint (and alow arguments to be specified out of
order) by doing ordering based upon argument name.

The arguments added to the request become associated with the request and are assumed to be unchanged until the invoke
has completed (or the request has been deleted).

Arguments may be associated with a request by specifying them on the Object::create_request call or by adding them
via callsto add_arg. Using both methods for specifying arguments for the same request is not supported.

In addition to the argument modes defined in Common Data Structures on page 177, arg_flags may also take the flag
value IN_COPY_VALUE. The argument passing flags defined in “Common Data Structures’ may be used here to
indicate the intended parameter passing mode of an argument.

If the IN_COPY_VALUE flag is set, a copy of the argument value is made and used instead. This flag isignored for inout
and out arguments.

11.2.3 invoke
void invoke (// PIDL
in Flags invoke_flags /l invocation flags
)i

This operation calls the ORB, which performs method resolution and invokes an appropriate method. If the method
returns successfully, its result is placed in the result argument specified on create_request. Calling invoke on a
Request after invoke, send, or ORB::send_multiple_requests for that Request was called raises
BAD_INV_ORDER with standard minor code 5 or 10.

182 Common Object Request Broker Architecture (CORBA), v3.1.1

11.2.4 delete

void delete (); /l PIDL

This operation deletes the request. Any memory associated with the request (i.e., by using the IN_COPY_VALUE flag) is
also freed.

11.2.5 send

void send (/l PIDL
in Flags invoke_flags /I invocation flags

)i
Send initiates an operation according to the information in the Request. Unlike invoke, send returns control to the
caller without waiting for the operation to finish. To determine when the operation is done, the caller must use the

get_response or ORB::get_next_response operations described below. The out parameters and return value must
not be used until the operation is done.

Although it is possible for some standard system exceptions to be raised by the send operation, there is no guarantee that
all possible errors will be detected. For example, if the object reference is not valid, send might detect it and raise an
exception, or might return before the object reference is validated, in which case the exception will be raised when
get_response is called.

If the operation is defined to be oneway or if INV_NO_RESPONSE is specified, and the effective SyncScopePolicy
does not have a value of WITH_SERVER or WITH_TARGET, then get_response does not need to be called. In such
cases, some errors might go unreported, since if they are not detected before send returns there is no way to inform the
caller of the error.

The following invocation flags are currently defined for send:

CORBA::INV_NO_RESPONSE indicates that the invoker wishes the request to be subject to the effective
SyncScopePolicy. If the SyncScopePolicy has a value of NONE or WITH_TRANSPORT, the invoker will not
receive a response, nor does it expect any of the output arguments (in/out and out) to be updated. This option may be
specified even if the operation has not been defined to be oneway.

11.2.6 poll _response

// PIDL
boolean poll_response ();

poll_response determines whether the request has completed. A TRUE return indicates that it has; FALSE indicates it
has not.

Return is immediate, whether the response has completed or not. Values in the request are not changed.

11.2.7 get_response

//PIDL
void get_response () raises (WrongTransaction);

Common Object Request Broker Architecture (CORBA), v3.1.1 183

get_response returns the result of arequest. If get_response is called before the request has completed, it blocks
until the request has completed. Upon return, the out parameters and return values defined in the Request are set
appropriately and they may be treated as if the Request invoke operation had been used to perform the request.

A request has an associated transaction context if the thread originating the request had a non-null transaction context and
the target object is a transactional object. The get_response operation may raise the WrongTransaction exception if
the request has an associated transaction context, and the thread invoking get_response either has a null transaction
context or a non-null transaction context that differs from that of the request. If a BAD_INV_ORDER exception with
standard minor code X3599 is received, it shall be trapped and a WrongTransaction shall be returned to the caller.

11.2.8 sendp

sendp initiates an operation according to the information in the Request and returns a reference to a
MessageRouting::PersistentRequest as a CORBA::Object. Aswith send, the results of invocations made with
sendp will be available once the caller uses get_response or get_next_response. The out parameters and return
value must not be used before the operation is done. A new CORBA::Request may be constructed (in this same or a
different process) and used to poll for the response to this request by calling create_request, properly associating the
out arguments and return value with that request and then passing the PersistentRequest reference to the new
Request’'s prepare (described below). The caller can then invoke get_response or get_next_response to obtain the
operation results.

As with send, sendc may raise a standard system exception if a failure is detected before control is returned to the
client, but this is not guaranteed. All other exceptions will be raised when get_response is called.

11.2.9 prepare

prepare is called to associate an initialized CORBA::Request with a previous operation that was initiated via sendp.
The Request must be created and associated with the operation’s out arguments and return value prior to calling prepare.
Once prepare has been called, it is as if that prepared Request was the one that actually had sendp used. Each Request
is subject only to one of these operations, which puts it in a valid state for an invocation of get_response: send,
sendp, sendc, or prepare. Invoking prepare on a Request that had previously been used for a send (or one of its
variants) raises the standard system exception BAD_INV_ORDER. Invoking prepare with an object reference that was
not previously returned from an invocation of sendp raises the standard system exception BAD_PARAM.

11.2.10 sendc

sendc initiates an operation according to the information in the Request. Unlike send, the results of invocations made
with sendc will be available through the callback Messaging::ReplyHandler passed into sendc as a base
CORBA::Object. For an invocation of operation “foo,” the “foo” or “foo_excep” methods of the ReplyHandler is
invoked to receive the reply. See Type-Specific ReplyHandler Mapping on page 433 for details of how the names of the
operations to be invoked to return the reply are constructed, as well as the form of the argument lists for the reply
invocations. A truly dynamic client can implement this ReplyHandler using the DSI. Specifying a nil ReplyHandler is
equivalent to invoking send with a flag of CORBA::INV_NO_RESPONSE.

As with send, sendc may raise a standard system exception if afailure is detected before control is returned to the
client, but this is not guaranteed. All other exceptions will be passed to the ReplyHandler.

184 Common Object Request Broker Architecture (CORBA), v3.1.1

11.3 ORB Operations

11.3.1 send_multiple_requests

module CORBA {

interface Request; // forward declaration
typedef sequence <Request> RequestSeq;

interface ORB {

void send_multiple_requests_oneway(
in RequestSeq req

):

void send_multiple_requests_deferred(
in RequestSeq req
)i
5
5

send_multiple_requests initiates more than one request in parallel. Like send, send_multiple_requests returns to
the caller without waiting for the operations to finish. To determine when each operation is done, the caller must use the

Request::get_response or get_next_response operations.

Cdling send on arequest after invoke, send, or send_multiple_requests for that request was called raises

BAD_INV_ORDER with standard minor code 10.

Cdling send_multiple_requests for arequest after invoke, send, or send_multiple_requests for that request was

called raises BAD_INV_ORDER with standard minor code 10. If send_multiple_requests raises
BAD_INV_ORDER, the actual number of requests that were sent is implementation dependent.

11.3.2 get_next_response and poll_next_response

module CORBA {

interface Request; // forward declaration
typedef sequence <Request> RequestSeq;

interface ORB {

boolean poll_next_response();

void get_next_response(
out Request req
) raises (WrongTransaction);
h
h

Common Object Request Broker Architecture (CORBA), v3.1.1

185

Poll_next_response determines whether any request has completed. A TRUE return indicates that at |east one has;
FALSE indicates that none have completed. Return is immediate, whether any response has completed or not.

Get_next_response returns the next request that completes. Despite the name, there is no guaranteed ordering among
the completed requests, so the order in which they are returned from successive get_next_response callsis not
necessarily related to the order in which they finish.

A request has an associated transaction context if the thread originating the request had a non-null transaction context and
the target object is a transactional object. The get_next_response operation may raise the WrongTransaction
exception if the request has an associated transaction context, and the thread invoking get_next_response has a non-
null transaction context that differs from that of the request. If aBAD_INV_ORDER exception with standard minor code
X3599 is received, it shall be trapped and a WrongTransaction shall be returned to the caller.

Calling poll_response before send or send_multiple_requests for that request raises BAD_INV_ORDER with
standard minor code 11. Calling poll_response after calling invoke raises BAD_INV_ORDER with standard minor
code 13. Calling poll_response after calling get_response raises BAD_INV_ORDER with standard minor code 12.
Calling poll_response after that request was returned by get_next_response raises BAD_INV_ORDER with
standard minor code 12.

Calling get_next_response or poll_next_response at atime when no requests are outstanding raises
BAD_INV_ORDER with standard minor code 11. If concurrent callsto get_next_response or poll_next_response
are in progress, the exact outcome is implementation dependent; however, get_next_response is guaranteed not to
return the same completed request to more than one caller.

11.4 Polling

There are two types of Polling model invocations that allow a client to proceed before the request finishes: The DII's
send (which supports deferred synchronous invocations) and the typed sendp variants of the interface stubs (which
support both deferred synchronous and asynchronous invocations). This sub clause describes a single mechanism that
allows a client to query or block on the completion of outstanding requests.

» For the typed polling model (sendp), aclient invokes the request’s type-specific Poller to receive the response.
This poll can either block (wait for the completion) or return immediately if the request isn’t finished yet, depending
on the value of the first parameter. Alternately, a client can simply query whether the request has completed by
using the generic non-blocking CORBA::Pollable::is_ready() operation defined on the base interface that is
inherited by all type-specific pollers. For the sake of efficiency, it must be possible to query or block on multiple
async pollersin asingle operation. To do this, it is necessary to identify precisely, which such pollers are to be
polled.

« A client might want to mix deferred typed and dynamic operations. Deferred DIl (in some unholy combination of
language mappings) has operations somewhat similar to those of the typed Poller: ORB::poll_next_response
and ORB::get_next_response. It should be possible to mix the two kinds of polling: typed and dynamic.

» Other potential happenings might occur that are susceptible to polling in current or future CORBA. This mechanism
is designed for extensibility so that other ORB services can perform apoll as a part of the single poll operation
described here.

The mechanism for generalized polling on multiple types of occurrences uses the CORBA::PollableSet interface.

186 Common Object Request Broker Architecture (CORBA), v3.1.1

module CORBA {
local interface PollableSet;

abstract valuetype Pollable {
boolean is_ready(
in unsigned long timeout

);

PollableSet create_pollable_set();

h
abstract valuetype DIlIPollable : Pollable { };
local interface PollableSet {

exception NoPossiblePollable { };
exception UnknownPollable { };

DllIPollable create_dii_pollable();

void add_pollable(
in Pollable potential

);

Pollable get_ready_pollable(
in unsigned long timeout
) raises(NoPossiblePollable);

void remove(
in Pollable potential
) raises(UnknownPollable);

unsigned short number_left();
h
h

11.4.1 Abstract Valuetype Pollable

A Pollable supports queries to see if it is ready to be used, and can be registered with a pollable set to allow a single

client thread to block on multiple potential happenings at the same time.

11.4.1.1 is_ready

boolean is_ready(
in unsigned long timeout

);

Common Object Request Broker Architecture (CORBA), v3.1.1

187

Returns the value TRUE if and only if the specific happening represented by the pollable is ready to be consumed.
Returns the value FALSE if the pollable is not yet ready to be consumed. If thetimeout argument is the maximum value
for unsigned long, the operation will block until it can return the value TRUE indicating that its happening is ready to
be consumed. If the timeout argument is the value 0, the operation returns immediately.

11.4.1.2 create_pollable_set

PollableSet create_pollable_set();

Once there is a Pollable, it is possible to create a set of such pollables, which can be queried or upon which a client can
block. The create_pollable_set operation creates a PollableSet object reference for an object with an empty set of
pollable entities.

11.4.2 Abstract Valuetype DlIPollable

The specific Pollable that indicates interest in DIl requests. A DIIPollable can be used in conjunction with a pollable
set to allow a client to block or poll for the completion of DIl requests, similar to the use of
CORBA::ORB::get_next_response. When the DIIPollable is returned from PollableSet::poll, the reply to some
DIl request must be ready for processing.

11.4.3 interface PollableSet

The pollable set contains potential happenings for which a poll can be performed. The client adds potential happenings to
the set and later queries the set to see if any have occurred. PollableSet is alocality constrained object.

NOTE: Thereisafactory for PollableSet on the generic Pollable interface. Some implementation of thisinterface, such as
atype-specific poller value, must first be accessible before a client can create aPollableSet.

11.4.3.1 create_dii_pollable

DllIPollable create_dii_pollable();

Returns an instance of DIIPollable that can subsequently be registered to indicate interest in replies to DIl requests.

11.4.3.2 add_pollable

void add_pollable(
in Pollable potential

);

The add_pollable operation adds a potential happening to the PollableSet. The supplied Pollable parameter is some
implementation that can be polled for readiness. To register interest in DIl requests, an instance of DIIPollable is added
to the pollable set.

If the supplied Pollable has already been added to another PollableSet, this operation raises the standard
BAD_PARAM system exception with minor code 43.

11.4.3.3 get_ready_pollable

Pollable get_ready_pollable(
in unsigned long timeout

188 Common Object Request Broker Architecture (CORBA), v3.1.1

) raises(NoPossiblePollable);

The get_ready_pollable operation asks the PollableSet if any of its potential happenings have occurred. The
timeout parameter indicates how many milliseconds this call should wait until the response becomes available. If this
timeout expires before areply is available, the operation raises the standard system exception TIMEOUT. Any delegated
invocations used by the implementation of this polling operation are subject to the single timeout parameter, which
supersedes any ORB or thread-level timeout quality of service. Two specific values are of interest:

» 0-thecal isanon-blocking query that raises the standard system exception NO_RESPONSE if thereply is not
immediately available.

. o

-1 - the maximum value for unsigned long indicates no timeout should be used. The query will not return until
the reply isavailable.

If the PollableSet contains no potential happenings, the NoPossiblePollable exception is raised. If an actual happening
is returned, the PollableSet removes that happening from the set. For the typed Poller, removing the happening is
necessary since its usefulness ends once the Poller completes. In the case of a DIl happening, there may still be deferred
requests outstanding; if this is the case, the client application must add the DIIPollable again to the PollableSet.

When the get_ready_pollable operation blocks, the ORB has control of the thread and can process any work it has
(such as receiving and dispatching requests through its Object Adapter). The get_ready_pollable operation can be used
in an “event-style main loop” using ORB::work_pending and ORB::perform_work.

If the ORB supports multiple threads, one thread may be blocking on a PollableSet while another is adding and
removing potential happenings from the set. It is valid for the PollableSet to change dynamically while a poll isin
progress. If another thread’s PollableSet::remove operation leaves the PollableSet empty, any blocked threads raise
the NoPossiblePollable exception.

11.4.3.4 remove

void remove(
in Pollable potential
) raises(UnknownPollable);

Theremove operation deletes the potential happening identified by the potential parameter from the PollableSet. If it
was not a member of the set, the UnknownPollable exception is raised.

11.4.3.5 number_left

unsigned short number_left();

The number_left operation returns the number of potential happenings in the pollable set. A returned value of zero
means that there are no potential happenings in the set, in which case a query on the set would raise the
NoPossibleHappening exception. A return value of 65535 indicates that there are at least 65535 remaining number of
potential happenings.

11.5 List Operations

NVList is a pseudo-interface that facilitates manipulation of list of name value pairs. The operations that create NVList
objects are defined in the ORB interface Clause, but are described in this sub clause. The NVList pseudo-interface is
shown below.

Common Object Request Broker Architecture (CORBA), v3.1.1 189

interface NVList { / PIDL
void add_item (

in Identifier item_name, // name of item
in TypeCode item_type, [/l item datatype
in OpaqueValue value, I/l item value
in long value_len, /l'length of item value
in Flags item_flags Il item flags
)i
void free ();

void free_memory ();
void get_count (
out long count /I number of entries in the list

);
b

Interface NVList is defined in the CORBA module.

11.5.1 create_list

This operation, which creates a pseudo-object, is defined in the ORB interface and excerpted below.

void create_list (//PIDL
in long count, /I number of items to allocate for list
out NVList new_list // newly created list

)i

This operation allocates a list and clears it for initial use. The specified count is a“hint” to help with the storage
allocation. List items may be added to the list using the add_item routine. Items are added starting with the “slot(),” in
the next available slot.

An NVList is a partially opague structure. It may only be alocated via a call to create_list.

11.5.2 add_item

void add_item (/ PIDL
in Identifier item_name, /I name of item
in TypeCode item_type, [/l item datatype
in OpaqueValue value, I/l item value
in long value_len, /l'length of item value
in Flags item_flags /I item flags

)i

This operation adds a new item to the indicated list. The item is added after the previously added item.

In addition to the argument modes defined in Common Data Structures on page 177, item_flags may aso take the
following flag values: IN_COPY_VALUE, DEPENDENT_LIST. The argument passing flags defined in Common Data
Structures on page 177 may be used here to indicate the intended parameter passing mode of an argument.

If the IN_COPY_VALUE flag is set, a copy of the argument value is made and used instead.

If alist structure is added as an item (e.g., a “sublist”), the DEPENDENT _LIST flag may be specified to indicate that the
sublist should be freed when the parent list is freed.

190 Common Object Request Broker Architecture (CORBA), v3.1.1

11.5.3 free

void free (); /l PIDL

This operation frees the list structure and any associated memory (an implicit call to the list free_memory operation is
done).

11.5.4 free_memory

void free_memory (); // PIDL

This operation frees any dynamically allocated out-arg memory associated with the list. The list structure itself is not
freed.

11.5.5 get_count

void get_count (// PIDL
out long count /I number of entries in the list

)i
This operation returns the total number of items added to the list.

11.5.6 create_operation_list

This operation, which creates a pseudo-object, is defined in the ORB interface.

void create_operation_list (/l PIDL
in OperationDef oper, I/l operation
out NVList new_list // argument definitions

)i

This operation returns an NVList initialized with the argument descriptions for a given operation. The information is
returned in aform that may be used in Dynamic Invocation requests. The arguments are returned in the same order as they
were defined for the operation.

The list free operation is used to free the returned information.

Common Object Request Broker Architecture (CORBA), v3.1.1 191

192 Common Object Request Broker Architecture (CORBA), v3.1.1

12 Dynamic Skeleton Interface

12.1 Introduction

The Dynamic Skeleton Interface (DSI) allows dynamic handling of object invocations. That is, rather than being accessed
through a skeleton that is specific to a particular operation, an object’s implementation is reached through an interface that
provides access to the operation name and parameters in a manner analogous to the client side’'s Dynamic Invocation
Interface. Purely static knowledge of those parameters may be used, or dynamic knowledge (perhaps determined through
an Interface Repository) may also be used, to determine the parameters.

The Dynamic Skeleton Interface is a way to deliver requests from an ORB to an object implementation that does not have
compile-time knowledge of the type of the object it isimplementing. This contrasts with the type-specific, IDL-based
skeletons, but serves the same architectural role.

DSl is the server side's analogue to the client side’s Dynamic Invocation Interface (DII). Just as the implementation of an
object cannot distinguish whether its client is using type-specific stubs or the DIl, the client who invokes an object cannot
determine whether the implementation is using a type-specific skeleton or the DSI to connect the implementation to the
ORB.

Dynamic Object Implementation

Dynamy€ Skeleton Skeleton

/ Object Adapter
/ ORB Core

Figure 12.1 - Requests are delivered through skeletons, including dynamic ones

DS, like DII, has many applications beyond interoperability solutions. Uses include interactive software development
tools based on interpreters, debuggers, and monitors that want to dynamically interpose on objects, and support for
dynamically-typed languages such as LISP.

12.2 Overview

The basic idea of the DSI is to implement all requests on a particular object by having the ORB invoke the same upcall
routine, a Dynamic Implementation Routine (DIR). Since in any language binding all DIRs have the same signature, a
single DIR could be used as the implementation for many objects, with different interfaces.

Common Object Request Broker Architecture (CORBA), v3.1.1 193

The DIR is passed all the explicit operation parameters, and an indication of the object that was invoked and the operation
that was requested. The information is encoded in the request parameters. The DIR can use the invoked object, its object
adapter, and the Interface Repository to learn more about the particular object and invocation. It can access and operate
on individual parameters. It can make the same use of an object adapter as other object implementations.

This chapter describes the elements of the DSI that are common to all object adapters that provide a DSI. See Single
Servant, Many Objects and Types, Using DSI on page 355 for the specification of the DSI for the Portable Object
Adapter.

12.3 ServerRequestPseudo-Object

12.3.1 ExplicitRequest State: ServerRequestPseudo-Object

The ServerRequest pseudo-object captures the explicit state of a request for the DSI, analogous to the Request pseudo-
object in the DII. The object adapter dispatches an invocation to a DSI-based object implementation by passing an
instance of ServerRequest to the DIR associated with the object implementation. The following shows how it provides
access to the reguest information:

module CORBA {

interface ServerRequest { // PIDL
readonly attribute Identifier operation;
void arguments(inout NVList nv);
Context ctx();
void set_result(in Any val);
void set_exception(in Any val);
|3

b

The identity and/or reference of the target object of the invocation is provided by the object adapter and its language
mapping. In the context of a bridge, the target object will typically be a proxy for an object in some other ORB.

The operation attribute provides the identifier naming the operation being invoked; according to IDL’s rules, these
names must be unique among all operations supported by the object’s “most-derived” interface. Note that the operation
names for getting and setting attributes are _get_<attribute_name> and _set_<attribute_name>, respectively. The
operation attribute can be accessed by the DIR at any time.

Operation parameter types will be specified, and “in” and “inout” argument values will be retrieved, with arguments.
Unlessit calls set_exception, the DIR must call arguments exactly once, even if the operation signature contains no
parameters. Once arguments or set_exception has been called, calling arguments on the same ServerRequest will
result ina BAD_INV_ORDER system exception with standard minor code 7. The DIR must passin to arguments an
NVList initialized with TypeCodes and Flags describing the parameter types for the operation, in the order in which they
appear in the IDL specification (left to right). A potentially-different NVList will be returned from arguments, with the
“in” and “inout” argument values supplied. If it does not call set_exception, the DIR must supply the returned NVList
with return values for any “out” arguments before returning, and may also change the return values for any “inout”
arguments.

194 Common Object Request Broker Architecture (CORBA), v3.1.1

When the operation is not an attribute access, and the operation’s IDL definition contains a context expression, ctx will
return the context information specified in IDL for the operation. Otherwise it will return a nil Context reference. Calling
ctx before arguments has been called or after ctx, set_result, or set_exception has been caled will result in a
BAD_INV_ORDER system exception with standard minor code 8.

The set_result operation is used to specify any return value for the call. Unless set_exception is caled, if the invoked
operation has a non-void result type, set_result must be called exactly once before the DIR returns. If the operation has a
void result type, set_result may optionally be called once with an Any whose type istk_void. Calling set_result before
arguments has been called or after set_result or set_exception has been called will result in aBAD_INV_ORDER
system exception with standard minor code 8. Calling set_result without having previously called ctx when the operation
IDL contains a context expression will result in a MARSHAL system exception with standard minor code 2. If the NVList
passed to arguments did not describe all parameters passed by the client, it may result in a MARSHAL system exception
with standard minor code 3.

The DIR may call set_exception at any time to return an exception to the client. The Any passed to set_exception must
contain either a system exception or one of the user exceptions specified in the raises expression of the invoked operation’s
IDL definition. Passing in an Any that does not contain an exception will result in aBAD_PARAM system exception with
standard minor code 21. Passing in an unlisted user exception will result in either the DIR receiving aBAD_PARAM system
exception with standard minor code 22 or in the client receiving an UNKNOWN system exception with standard minor code
1

See each language mapping for a description of the memory management aspects of the parameters to the
ServerRequest operations.
12.4 DSI: Language Mapping

Because DSl is defined in terms of a pseudo-object, special attention must be paid to it in the language mapping. This
section provides general information about mapping the Dynamic Skeleton Interface to programming languages. Each
language provides its own mapping for DSI.

12.4.1 ServerRequest’'s Handling of Operation Parameters

There is no requirement that a ServerRequest pseudo-object be usable as a general argument in IDL operations, or
listed in “orb.idl.”

The client-side memory management rules normally applied to pseudo-objects do not strictly apply to a ServerRequest’s
handling of operation parameters. Instead, the memory associated with parameters follows the memory management rules
applied to data passed from skeletons into statically typed implementation routines, and vice versa.

12.4.2 Registering Dynamic Implementation Routines

In an ORB implementation, the Dynamic Skeleton Interface is supported entirely through the Object Adapter. An Object
Adapter does not have to support the Dynamic Skeleton Interface but, if it does, the Object Adapter is responsible for the
details.

Common Object Request Broker Architecture (CORBA), v3.1.1 195

196 Common Object Request Broker Architecture (CORBA), v3.1.1

13 Dynamic Management of Any Values

13.1 General

An any can be passed to a program that doesn’t have any static information for the type of the any (code generated for
the type by an IDL compiler has not been compiled with the object implementation). As a result, the object receiving the
any does not have a portable method of using it.

The facility presented here enables traversal of the data value associated with an any at runtime and extraction of the
primitive constituents of the data value. This is especially helpful for writing powerful generic servers (bridges, event
channels supporting filtering).

Similarly, this facility enables the construction of an any at runtime, without having static knowledge of its type. Thisis
especially helpful for writing generic clients (bridges, browsers, debuggers, user interface tools).

13.2 Overview

Unless explicitly stated otherwise, all IDL presented in Overview through Usage in C++ Language is part of the
DynamicAny module.

Any values can be dynamically interpreted (traversed) and constructed through DynAny objects. A DynAny object is
associated with a data value, which corresponds to a copy of the value inserted into an any.

A DynAny object may be viewed as an ordered collection of component DynAnys. For DynAnys representing a basic
type, such aslong, or atype without components, such as an empty exception, the ordered collection of components is
empty. Each DynAny object maintains the notion of a current position into its collection of component DynAnys. The
current position is identified by an index value that runs from 0 to n—1, where n is the number of components. The special
index value —1 indicates a current position that points nowhere. For values that cannot have a current position (such as an
empty exception), the index value is fixed at —1. If a DynAny isinitialized with a value that has components, the index
isinitialized to 0. After creation of an uninitialized DynAny (that is, a DynAny that has no value but a TypeCode that
permits components), the current position depends on the type of value represented by the DynAny. (The current position
is set to 0 or —1, depending on whether the new DynAny gets default values for its components.)

The iteration operations rewind, seek, and next can be used to change the current position and the
current_component operation returns the component at the current position. The component_count operation
returns the number of components of a DynAny. Collectively, these operations enable iteration over the components of a
DynAny, for example, to (recursively) examine its contents.

A constructed DynAny object is a DynAny object associated with a constructed type. There is a different interface,
inheriting from the DynAny interface, associated with each kind of constructed type in IDL (fixed, enum, struct,
sequence, union, array, exception, and valuetype).

A constructed DynAny object exports operations that enable the creation of new DynAny objects, each of them
associated with a component of the constructed data value.

As an example, a DynStruct is associated with a struct value. This means that the DynStruct may be seen as owning an
ordered collection of components, one for each structure member. The DynStruct object exports operations that enable
the creation of new DynAny objects, each of them associated with a member of the struct.

Common Object Request Broker Architecture (CORBA), v3.1.1 197

If aDynAny object has been obtained from another (constructed) DynAny object, such as a DynAny representing a
structure member that was created from a DynStruct, the member DynAny is logicaly contained in the DynStruct.

Destroying a top-level DynAny object (one that was not obtained as a component of another DynAny) also destroys any
component DynAny objects obtained from it. Destroying a non-top level DynAny object does nothing. Invoking operations
on a destroyed top-level DynAny or any of its descendants raises OBJECT_NOT_EXIST. Note that simply releasing all
references to a DynAny object does not delete the DynAny or components; each DynAny created with one of the create
operations or with the copy operation must be explicitly destroyed to avoid memory leaks.

If the programmer wants to destroy a DynAny object but still wants to manipulate some component of the data value
associated with it, then he or she should first create a DynAny for the component and, after that, make a copy of the
created DynAny object.

The behavior of DynAny objects has been defined in order to enable efficient implementations in terms of allocated
memory space and speed of access. DynAny abjects are intended to be used for traversing values extracted from anys or
constructing values of anys at runtime. Their use for other purposes is not recommended.

13.3 DynAny AP

The DynAny API comprises the following IDL definitions, located in the DynamicAny module:

/I IDL

[/l File: DynamicAny.idl

#ifndef _DYNAMIC_ANY_IDL_
#define _DYNAMIC_ANY_IDL _

import ::CORBA,;

module DynamicAny {
typeprefix DynamicAny “omg.org”;

local interface DynAny {
exception InvalidValue {};
exception TypeMismatch {};

CORBA::TypeCode type();

void assign(in DynAny dyn_any) raises(TypeMismatch);
void from_any(in any value) raises(TypeMismatch, InvalidValue);
any to_any();

boolean equal(in DynAny dyn_any);

void destroy();
DynAny copy();

void insert_boolean(in boolean value)
raises(TypeMismatch, InvalidValue);
void insert_octet(in octet value)
raises(TypeMismatch, InvalidValue);
void insert_char(in char value)

198 Common Object Request Broker Architecture (CORBA), v3.1.1

raises(TypeMismatch, InvalidValue);
void insert_short(in short value)
raises(TypeMismatch, InvalidValue);
void insert_ushort(in unsigned short value)
raises(TypeMismatch, InvalidValue);
void insert_long(in long value)
raises(TypeMismatch, InvalidValue);
void insert_ulong(in unsigned long value)
raises(TypeMismatch, InvalidValue);
void insert_float(in float value)
raises(TypeMismatch, InvalidValue);
void insert_double(in double value)
raises(TypeMismatch, InvalidValue);
void insert_string(in string value)
raises(TypeMismatch, InvalidValue);
void insert_reference(in Object value)
raises(TypeMismatch, InvalidValue);
void insert_typecode(in CORBA::TypeCode value)
raises(TypeMismatch, InvalidValue);
void insert_longlong(in long long value)
raises(TypeMismatch, InvalidValue);
void insert_ulonglong(in unsigned long long value)
raises(TypeMismatch, InvalidValue);
void insert_longdouble(in long double value)
raises(TypeMismatch, InvalidValue);
void insert_wchar(in wchar value)
raises(TypeMismatch, InvalidValue);
void insert_wstring(in wstring value)
raises(TypeMismatch, InvalidValue);
void insert_any(in any value)
raises(TypeMismatch, InvalidValue);
void insert_dyn_any(in DynAny value)
raises(TypeMismatch, InvalidValue);
void insert_val(in ValueBase value)
raises(TypeMismatch, InvalidValue);

boolean get_boolean()

raises(TypeMismatch, InvalidValue);
octet get_octet()

raises(TypeMismatch, InvalidValue);
char get_char()

raises(TypeMismatch, InvalidValue);
short get_short()

raises(TypeMismatch, InvalidValue);
unsigned short get_ushort()

raises(TypeMismatch, InvalidValue);
long get_long()

raises(TypeMismatch, InvalidValue);
unsigned long get_ulong()

raises(TypeMismatch, InvalidValue);
float get_float()

Common Object Request Broker Architecture (CORBA), v3.1.1 199

raises(TypeMismatch, InvalidValue);
double get_double()
raises(TypeMismatch, InvalidValue);
string get_string()
raises(TypeMismatch, InvalidValue);
Object get_reference()
raises(TypeMismatch, InvalidValue);
CORBA::TypeCode get_typecode()
raises(TypeMismatch, InvalidValue);
long long get_longlong()
raises(TypeMismatch, InvalidValue);
unsigned long long get_ulonglong()
raises(TypeMismatch, InvalidValue);
long double get_longdouble()
raises(TypeMismatch, InvalidValue);
wchar get_wchar()
raises(TypeMismatch, InvalidValue);
wstring get_wstring()
raises(TypeMismatch, InvalidValue);
any get_any()
raises(TypeMismatch, InvalidValue);
DynAny get_dyn_any/()
raises(TypeMismatch, InvalidValue);
ValueBase get_val()
raises(TypeMismatch, InvalidValue);

boolean seek(in long index);

void rewind();

boolean next();

unsignhed long component_count();

DynAny current_component() raises(TypeMismatch);

void insert_abstract(in CORBA::AbstractBase value)
raises(TypeMismatch, InvalidValue);

CORBA::AbstractBase get_abstract()
raises(TypeMismatch, InvalidValue);

void insert_boolean_seq(in CORBA::BooleanSeq value)
raises(TypeMismatch, InvalidValue);

void insert_octet_seq(in CORBA::OctetSeq value)
raises(TypeMismatch, InvalidValue);

void insert_char_seq(in CORBA::CharSeq value)
raises(TypeMismatch, InvalidValue);

void insert_short_seq(in CORBA::ShortSeq value)
raises(TypeMismatch, InvalidValue);

void insert_ushort_seq(in CORBA::UShortSeq value)
raises(TypeMismatch, InvalidValue);

void insert_long_seq(in CORBA::LongSeq value)
raises(TypeMismatch, InvalidValue);

void insert_ulong_seq(in CORBA::ULongSeq value)
raises(TypeMismatch, InvalidValue);

200 Common Object Request Broker Architecture (CORBA), v3.1.1

void insert_float_seq(in CORBA::FloatSeq value)
raises(TypeMismatch, InvalidValue);

void insert_double_seq(in CORBA::DoubleSeq value)
raises(TypeMismatch, InvalidValue);

void insert_longlong_seq(in CORBA::LongLongSeq value)
raises(TypeMismatch, InvalidValue);

void insert_ulonglong_seq(in CORBA::ULongLongSeq value)
raises(TypeMismatch, InvalidValue);

void insert_longdouble_seq(in CORBA::LongDoubleSeq value)
raises(TypeMismatch, InvalidValue);

void insert_wchar_seq(in CORBA::WCharSeq value)
raises(TypeMismatch, InvalidValue);

CORBA::BooleanSeq get_boolean_seq()
raises(TypeMismatch, InvalidValue);

CORBA::OctetSeq get_octet_seq()
raises(TypeMismatch, InvalidValue);

CORBA::CharSeq get_char_seq()
raises(TypeMismatch, InvalidValue);

CORBA::ShortSeq get_short_seq()
raises(TypeMismatch, InvalidValue);

CORBA::UShortSeq get_ushort_seq()
raises(TypeMismatch, InvalidValue);

CORBA::LongSeq get_long_seq()
raises(TypeMismatch, InvalidValue);

CORBA::ULongSeq get_ulong_seq()
raises(TypeMismatch, InvalidValue);

CORBA::FloatSeq get_float_seq()
raises(TypeMismatch, InvalidValue);

CORBA::DoubleSeq get_double_seq()
raises(TypeMismatch, InvalidValue);

CORBA::LongLongSeq get_longlong_seq()
raises(TypeMismatch, InvalidValue);

CORBA::ULongLongSeq get_ulonglong_seq()
raises(TypeMismatch, InvalidValue);

CORBA::LongDoubleSeq get_longdouble_seq()
raises(TypeMismatch, InvalidValue);

CORBA::WCharSeq get_wchar_seq()
raises(TypeMismatch, InvalidValue);

h

local interface DynFixed : DynAny {
string get_value();
boolean set_value(in string val) raises(TypeMismatch, InvalidValue);

h

local interface DynEnum : DynAny {
string get_as_string();
void set_as_string(in string value) raises(InvalidValue);
unsigned long get_as_ulong();
void set_as_ulong(in unsigned long value) raises(InvalidValue);

h

Common Object Request Broker Architecture (CORBA), v3.1.1

201

typedef string FieldName;

struct NameValuePair {
FieldName id;
any value;

¥
typedef sequence<NameValuePair> NameValuePairSeq;

struct NameDynAnyPair {
FieldName id;
DynAny value;

|3

typedef sequence<NameDynAnyPair> NameDynAnyPairSeq;

local interface DynStruct : DynAny {

FieldName current_member_name()
raises(TypeMismatch, InvalidValue);

CORBA::TCKind current_member_kind()
raises(TypeMismatch, InvalidValue);

NameValuePairSeq get_members();

void set_members(in NameValuePairSeq value)
raises(TypeMismatch, InvalidValue);

NameDynAnyPairSeq get_members_as_dyn_any();

void set_members_as_dyn_any(in NameDynAnyPairSeq value)
raises(TypeMismatch, InvalidValue);

b

local interface DynUnion : DynAny {
DynAny get_discriminator();
void set_discriminator(in DynAny d) raises(TypeMismatch);
void set_to_default_member() raises(TypeMismatch);
void set_to_no_active_member() raises(TypeMismatch);
boolean has_no_active_member();
CORBA::TCKind discriminator_kind();
DynAny member() raises(InvalidValue);
FieldName member_name() raises(InvalidValue);
CORBA::TCKind member_kind() raises(InvalidValue);

|3

typedef sequence<any> AnySeq;
typedef sequence<DynAny> DynAnySeq;

local interface DynSequence : DynAny {
unsigned long get_length();
void set_length(in unsigned long len) raises(InvalidValue);
AnySeq get_elements();
void set_elements(in AnySeq value)

202 Common Object Request Broker Architecture (CORBA), v3.1.1

raises(TypeMismatch, InvalidValue);

DynAnySeq get_elements_as_dyn_any();

void set_elements_as_dyn_any(in DynAnySeq value)
raises(TypeMismatch, InvalidValue);

h

local interface DynArray : DynAny {
AnySeq get_elements();
void set_elements(in AnySeq value)
raises(TypeMismatch, InvalidValue);
DynAnySeq get_elements_as_dyn_any();
void set_elements_as_dyn_any(in DynAnySeq value)
raises(TypeMismatch, InvalidValue);

h

local interface DynValueCommon : DynAny {
boolean is_null();
void set_to_null();
void set_to_value();

h

local interface DynValue : DynValueCommon {

FieldName current_member_name()
raises(TypeMismatch, InvalidValue);

CORBA::TCKind current_member_kind()
raises(TypeMismatch, InvalidValue);

NameValuePairSeq get_members()
raises(InvalidValue);

void set_members(in NameValuePairSeq value)
raises(TypeMismatch, InvalidValue);

NameDynAnyPairSeq get_members_as_dyn_any()
raises(InvalidValue);

void set_members_as_dyn_any(in NameDynAnyPairSeq value)

raises(TypeMismatch, InvalidValue);

h

local interface DynValueBox : DynValueCommon {

any get_boxed_value()
raises(InvalidValue);

void set_boxed_value(in any boxed)
raises(TypeMismatch, InvalidValue);

DynAny get_boxed_value_as_dyn_any()
raises(InvalidValue);

void set_boxed_value_as_dyn_any(in DynAny boxed)
raises(TypeMismatch);

h
exception MustTruncate { };

local interface DynAnyFactory {
exception InconsistentTypeCode {};

Common Object Request Broker Architecture (CORBA), v3.1.1 203

DynAny create_dyn_any(in any value)
raises(InconsistentTypeCode);

DynAny
create_dyn_any_from_type _code(in CORBA::TypeCode type)
raises(InconsistentTypeCode);

DynAny create_dyn_any_without_truncation(in any value)
raises(InconsistentTypeCode, MustTruncate);
DynAnySeq create_multiple_dyn_anys(
in AnySeq values,
in boolean allow_truncate)
raises(InconsistentTypeCode, MustTruncate);

AnySeq create_multiple_anys(in DynAnySeq values);
|3
}; // module DynamicAny
#endif // _DYNAMIC_ANY_IDL_

13.3.1 Creating a DynAny Object

A DynAny object can be created as a result of:

 invoking an operation on an existing DynAny object.
 invoking an operation on aDynAnyFactory object.

A constructed DynAny object supports operations that enable the creation of new DynAny objects encapsulating access
to the value of some constituent. DynAny objects also support the copy operation for creating new DynAny objects.

In addition, DynAny objects can be created by invoking operations on the DynAnyFactory object. A reference to the
DynAnyFactory object is obtained by calling CORBA::ORB::resolve_initial_references with the identifier
parameter set to “ DynAnyFactory.”

local interface DynAnyFactory {
exception InconsistentTypeCode {};
DynAny create_dyn_any(in any value)
raises(InconsistentTypeCode);
DynAny create_dyn_any from_type code(in CORBA::TypeCode type)
raises(InconsistentTypeCode);

b

The create_dyn_any operation creates a new DynAny object from an any value. A copy of the TypeCode associated
with the any value is assigned to the resulting DynAny object. The value associated with the DynAny object is a copy
of the value in the original any. The create_dyn_any operation sets the current position of the created DynAny to zero
if the passed value has components; otherwise, the current position is set to —1. The operation raises
InconsistentTypeCode if value has a TypeCode with a TCKind of tk_Principal or tk_native.

The create_dyn_any_from_type_code operation creates a DynAny from a TypeCode. Depending on the
TypeCode, the created object may be of type DynAny, or one of its derived types, such as DynStruct. The returned
reference can be narrowed to the derived type.

204 Common Object Request Broker Architecture (CORBA), v3.1.1

For both create_dyn_any and create_dyn_any_from_type_code, the source type code is copied into the DynAny
object unchanged. This means that, after creation of a DynAny object, the source type code and the type code inside the
DynAny must compare equal as determined by TypeCode::equal. The same is true for type codes extracted from a
DynAny with the type operation and for type codes that are part of any values that are constructed from a DynAny: such
type codes compare equal to the type code that was originally used to create the DynAny. For a given parent DynAny
with its associated TypeCode, the TypeCode of a component DynAny also compares equal to the corresponding results
of the member_type or component_type operation on the parent TypeCode.

The create_dyn_any_without_truncation operation has the same semantics as create_dyn_any, but will raise the
MustTruncate exception if it cannot avoid truncating a valuetype.

The create_multiple_dyn_anys operation converts a sequence of anys into a sequence of DynAnys, ensuring that
each reference to a valuetype instance is converted consistently to the same DynValue or DynValueBox instance. If the
allow_truncate parameter is false, the operation will raise the MustTruncate exception if it cannot avoid truncating a
valuetype.

The create_multiple_anys operation converts a sequence of DynAnys into a sequence of anys, ensuring that each
DynValue or DynValueBox instance is consistently converted to the same valuetype instance.

Creation of DynAnys with TCKind tk_null and tk_void is legal and results in the creation of a DynAny without a
value and with zero components.

In all cases, a DynAny constructed from a TypeCode has an initial default value. The default values of basic types are:

« FALSE for Boolean

» zero for numeric types

» zerofor typesoctet, char, and wchar

» the empty string for string and wstring

- nil for object references

» atype code with a TCKind value of tk_null for type codes

- for any values, an any containing atype code with a TCKind value of tk_null type and no value

Fol

=

complex types, creation of the corresponding DynAny assigns a default value as follows:
« For DynSequence, the operation sets the current position to —1 and creates an empty segquence.

» For DynEnum, the operation sets the current position to —1 and sets the value of the enumerator to the first
enumerator value indicated by the TypeCode.

» For DynFixed, operations set the current position to —1 and sets the value zero.

« For DynStruct, the operation sets the current position to —1 for empty exceptions and to zero for all other
TypeCodes. The members (if any) are (recursively) initialized to their default values.

« For DynArray, the operation sets the current position to zero and (recursively) initializes elements to their default
value.

« For DynUnion, the operation sets the current position to zero. The discriminator valueis set to avalue consistent with
the first named member of the union. That member is activated and (recursively) initialized to its default value.

« DynValue and DynValueBox areinitialized to anull value.

Common Object Request Broker Architecture (CORBA), v3.1.1 205

Dynamic interpretation of an any usually involves creating a DynAny object using DynAnyFactory::create_dyn_any
as the first step. Depending on the type of the any, the resulting DynAny object reference can be narrowed to a
DynFixed, DynStruct, DynSequence, DynArray, DynUnion, DynEnum, or DynValue object reference.

Dynamic creation of an any involves creating a DynAny abject using
DynAnyFactory::create_dyn_any_from_type _code, passing the TypeCode associated with the value to be
created. The returned reference is narrowed to one of the complex types, such as DynStruct, if appropriate. Then, the
value can be initialized by means of invoking operations on the resulting object. Finally, the to_any operation can be
invoked to create an any value from the constructed DynAny.

13.3.2 The DynAny Interface

The following operations can be applied to a DynAny object:
» Obtaining the TypeCode associated with the DynAny object.
» Generating an any vaue from the DynAny object.
» Comparing two DynAny objects for equality.
» Destroying the DynAny object.
» Creating aDynAny object asacopy of the DynAny object.
 Inserting/getting a value of some basic type into/from the DynAny object.
« lterating through the components of aDynAny.
 Initializing aDynAny object from another DynAny object.

 Initializing aDynAny object from an any value.

13.3.2.1 Obtaining the TypeCode associated with a DynAny object

CORBA::TypeCode type();

A DynAny object is created with a TypeCode value assigned to it. This TypeCode vaue determines the type of the
value handled through the DynAny object. The type operation returns the TypeCode associated with a DynAny object.

Note that the TypeCode associated with a DynAny object is initialized at the time the DynAny is created and cannot be
changed during the lifetime of the DynAny object.

13.3.2.2 Initializing a DynAny object from another DynAny object
void assign(in DynAny dyn_any) raises(TypeMismatch);

The assign operation initializes the value associated with a DynAny object with the value associated with another
DynAny object.

If the type of the passed DynAny is not equivalent to the type of target DynAny, the operation raises TypeMismatch.
The current position of the target DynAny is set to zero for values that have components and to —1 for values that do not
have components.

206 Common Object Request Broker Architecture (CORBA), v3.1.1

13.3.2.3 Initializing a DynAny object from an any value

void from_any(in any value) raises(TypeMismatch, InvalidValue);
The from_any operation initializes the value associated with a DynAny object with the value contained in an any.

If the type of the passed Any is not equivalent to the type of target DynAny, the operation raises TypeMismatch. If the
passed Any does not contain a legal value (such as a null string), the operation raises InvalidValue. The current position
of the target DynAny is set to zero for values that have components and to —1 for values that do not have components.

13.3.2.4 Generating an any value from a DynAny object
any to_any();

The to_any operation creates an any value from a DynAny object. A copy of the TypeCode associated with the
DynAny object is assigned to the resulting any. The value associated with the DynAny object is copied into the any.

13.3.2.5 Comparing DynAny values
boolean equal(in DynAny dyn_any);

The equal operation compares two DynAny references for equality and returns true if the DynAnys are equal, false
otherwise. For DynAny references that are not derived from DynValueCommon, they are equal if their TypeCodes are
equivalent and, recursively, all component DynAnys are equal. For DynAny references that are derived from
DynValueCommon, they are equal only if they are exactly the same reference. The current position of the two
DynAnys being compared has no effect on the result of equal. To determine equality of object references, the equal
operation uses Object::is_equivalent. To determine equality of type codes, the equal operation uses
TypeCode::equivalent.

NOTE: If twoDynAnyshappento contain*values* of type TypeCode, these valuesare compared using TypeCode::equal.
Thetype codesthat * describe* the values of DynAnysare always compared using TypeCode::equivalent, however. (Inthe
case of comparing two DynAnys containing type code values, the type codes describing these type code values are
tk_TypeCode in each DynAny, and will therefore always compare as equivalent.)

13.3.2.6 Destroying a DynAny object

void destroy();

The destroy operation destroys a DynAny object. This operation frees any resources used to represent the data value
associated with a DynAny object. destroy must be invoked on references obtained from one of the creation operations
on the DynAnyFactory interface or on areference returned by DynAny::copy to avoid resource leaks. Invoking
destroy on component DynAny objects (for example, on objects returned by the current_component operation) does
nothing.

Destruction of a DynAny object implies destruction of all DynAny objects obtained from it. That is, references to
components of a destroyed DynAny become invalid; invocations on such references raise OBJECT_NOT_EXIST.

It is possible to manipulate a component of a DynAny beyond the life time of the DynAny from which the component
was obtained by making a copy of the component with the copy operation before destroying the DynAny from which the
component was obtained.

Common Object Request Broker Architecture (CORBA), v3.1.1 207

13.3.2.7 Creating acopy of a DynAny object

DynAny copy();

The copy operation creates a new DynAny object whose value is a deep copy of the DynAny on which it is invoked.
The operation is polymorphic, that is, invoking it on one of the types derived from DynAny, such as DynStruct, creates
the derived type but returns its reference as the DynAny base type.

13.3.2.8 Accessing avalue of some basic type in aDynAny object

The insert and get operations enable insertion/extraction of basic data type values into/from a DynAny object.

Both bounded and unbounded strings are inserted using insert_string and insert_wstring. These operations raise the
InvalidValue exception if the string inserted is longer than the bound of a bounded string.

Calling an insert or get operation on a DynAny that has components but has a current position of —1 raises InvalidValue.

Get operations raise TypeMismatch if the accessed component in the DynAny is of atype that is not equivalent to the
requested type. (Note that get_string and get_wstring are used for both unbounded and bounded strings.)

A typeis consistent for inserting or extracting a value if its TypeCode is equivalent to the TypeCode contained in the
DynAny or, if the DynAny has components, is equivalent to the TypeCode of the DynAny at the current position.

The get_dyn_any and insert_dyn_any operations are provided to deal with any values that contain another any. The
operations behave identically to get_any and insert_any, but use parameters of type DynAny (instead of any); they are
useful to avoid otherwise redundant conversions between any and DynAny.

Calling an insert or get operation leaves the current position unchanged.

These operations are necessary to handle basic DynAny objects but are also helpful to handle constructed DynAny
objects. Inserting a basic data type value into a constructed DynAny object implies initializing the current component of
the constructed data value associated with the DynAny object. For example, invoking insert_boolean on a DynStruct
implies inserting a boolean data value at the current position of the associated struct data value. If dyn _construct
points to a constructed DynAny object, then:

result = dyn construct->get boolean() ;
has the same effect as:
DynamicAny: :DynAny var temp =

dyn construct->current component () ;
result = temp->get boolean();

Calling an insert or get operation on a DynAny whose current component itself has components raises TypeMismatch.

In addition, availability of these operations enable the traversal of anys associated with sequences of basic data types
without the need to generate a DynAny object for each element in the sequence.

In the same way that basic types are inserted/extracted from a DynAny object, arrays or sequences of basic types can be
inserted/extracted from a DynAny. For example, the get_boolean_seq operation extracts a sequence of booleans
from aDynAny that contains either a sequence or an array of booleans, and the insert_boolean_seq operation stores
the sequence back into the DynAny.

208 Common Object Request Broker Architecture (CORBA), v3.1.1

The TypeCode of the DynAny, or the TypeCode of the component at the current position of the DynAny, must be
equivalent to a sequence or array TypeCode with the basic type as its element, otherwise the operations raise
TypeMismatch. For the insert operations, if the length of the sequence is incompatible with a bounded sequence or array
represented by the DynAny, then the operations raise InvalidValue.

13.3.2.9 Iterating through components of a DynAny

The DynAny interface allows a client to iterate through the components of the values pointed to by DynStruct,
DynSequence, DynArray, DynUnion, DynAny, and DynValue objects.

As mentioned previously, a DynAny object may be seen as an ordered collection of components, together with a current
position.

boolean seek(in long index);

The seek operation sets the current position to index. The current position is indexed O to n—1, that is, index zero
corresponds to the first component. The operation returns true if the resulting current position indicates a component of
the DynAny and false if index indicates a position that does not correspond to a component.

Cdlling seek with a negative index is legal. It sets the current position to —1 to indicate no component and returns false.
Passing a non-negative index value for a DynAny that does not have a component at the corresponding position sets the
current position to —1 and returns false.

void rewind();

The rewind operation is equivalent to calling seek(0);

boolean next();

The next operation advances the current position to the next component. The operation returns true while the resulting
current position indicates a component, false otherwise. A false return value leaves the current position at —1. Invoking
next on a DynAny without components leaves the current position at —1 and returns false.

unsigned long component_count();

The component_count operation returns the number of components of a DynAny. For a DynAny without
components, it returns zero. The operation only counts the components at the top level. For example, if
component_count isinvoked on a DynStruct with a single member, the return value is 1, irrespective of the type of
the member.

For sequences, the operation returns the current number of elements. For structures, exceptions, and valuetypes, the
operation returns the number of members. For arrays, the operation returns the number of elements. For unions, the
operation returns 2 if the discriminator indicates that a named member is active; otherwise, it returns 1. For DynFixed
and DynEnum, the operation returns zero.

DynAny current_component() raises(TypeMismatch);

The current_component operation returns the DynAny for the component at the current position. It does not advance
the current position, so repeated calls to current_component without an intervening call to rewind, next, or seek
return the same component.

The returned DynAny object reference can be used to get/set the value of the current component. If the current
component represents a complex type, the returned reference can be narrowed based on the TypeCode to get the
interface corresponding to the to the complex type.

Common Object Request Broker Architecture (CORBA), v3.1.1 209

Calling current_component on a DynAny that cannot have components, such as a DynEnum or an empty exception,
raises TypeMismatch. Calling current_component on a DynAny whose current position is—1 returns a nil reference.

The iteration operations, together with current_component, can be used to dynamically compose an any value. After
creating a dynamic any, such as a DynStruct, current_component and next can be used to initialize all the
components of the value. Once the dynamic value is completely initialized, to_any creates the corresponding any value.

13.3.3 The DynFixed Interface

DynFixed objects are associated with values of the IDL fixed type.

local interface DynFixed : DynAny {
string get_value();
boolean set_value(in string val)
raises (TypeMismatch, InvalidValue);

h

Because IDL does not have a generic type that can represent fixed types with arbitrary number of digits and arbitrary
scale, the operations use the IDL string type.

The get_value operation returns the value of a DynFixed.

The set_value operation sets the value of the DynFixed. The val string must contain afixed string constant in the same
format as used for IDL fixed-point literals. However, the trailing d or D is optional. If val has more fractional digits than
specified by the scale of the DynFixed, the extra digits are truncated. If the truncated value has more digits than the
DynFixed, the operation raises InvalidValue. If the value is not too large, set_value returns TRUE if no truncation was
required, FALSE otherwise. The return value is TRUE if val can be represented as the DynFixed without loss of
precision. If val has more fractional digits than can be represented in the DynFixed, fractional digits are truncated and
the return value is FALSE. If val does not contain a valid fixed-point literal or contains extraneous characters other than
leading or trailing white space, the operation raises TypeMismatch.

13.3.4 The DynEnum Interface

DynEnum objects are associated with enumerated values.

local interface DynEnum : DynAny {
string get_as_string();
void set_as_string(in string value) raises(InvalidValue);
unsigned long get_as_ulong();
void set_as_ulong(in unsigned long value) raises(InvalidValue);

|3
The get_as_string operation returns the value of the DynEnum as an IDL identifier.

The set_as_string operation sets the value of the DynEnum to the enumerated value whose IDL identifier is passed in
the value parameter. If value contains a string that is not a valid IDL identifier for the corresponding enumerated type,
the operation raises InvalidValue.

The get_as_ulong operation returns the value of the DynEnum as the enumerated value's ordina value. Enumerators
have ordinal values 0 to n—1, as they appear from left to right in the corresponding IDL definition.

210 Common Object Request Broker Architecture (CORBA), v3.1.1

The set_as_ulong operation sets the value of the DynEnum as the enumerated value's ordinal value. If value contains
avalue that is outside the range of ordinal values for the corresponding enumerated type, the operation raises
InvalidValue.

The current position of a DynEnum is always —1.

13.3.5 The DynStruct Interface

DynStruct objects are associated with struct values and exception values.
typedef string FieldName;

struct NameValuePair {
FieldName id;
any value;

5

typedef sequence<NameValuePair> NameValuePairSeq;

struct NameDynAnyPair {
FieldName id;
DynAny value;
5
typedef sequence<NameDynAnyPair> NameDynAnyPairSeq;

local interface DynStruct : DynAny {

FieldName current_member_name()
raises(TypeMismatch, InvalidValue);

CORBA::TCKind current_member_kind()
raises(TypeMismatch, InvalidValue);

NameValuePairSeq get_ members();

void set_members(in NameValuePairSeq value)
raises(TypeMismatch, InvalidValue);

NameDynAnyPairSeq get_members_as_dyn_any();

void set_members_as_dyn_any(in NameDynAnyPairSeq value)
raises(TypeMismatch, InvalidValue);

FieldName current_member_name()
raises(TypeMismatch, InvalidValue);

The current_member_name operation returns the name of the member at the current position. If the DynStruct
represents an empty exception, the operation raises TypeMismatch. If the current position does not indicate a member,
the operation raises InvalidValue.

This operation may return an empty string since the TypeCode of the value being manipulated may not contain the
names of members.

CORBA::TCKind current_member_kind()
raises(TypeMismatch, InvalidValue);

Common Object Request Broker Architecture (CORBA), v3.1.1 211

current_member_kind returns the TCKind associated with the member at the current position. If the DynStruct
represents an empty exception, the operation raises TypeMismatch. If the current position does not indicate a member,
the operation raises InvalidValue.

NameValuePairSeq get_members();

The get_members operation returns a sequence of nhame/value pairs describing the name and the value of each member
in the struct associated with a DynStruct object. The sequence contains members in the same order as the declaration
order of members as indicated by the DynStruct’s TypeCode. The current position is not affected. The member names
in the returned sequence will be empty strings if the DynStruct’s TypeCode does not contain member names.

void set_members(in NameValuePairSeq value)
raises(TypeMismatch, InvalidValue);

The set_members operation initializes the struct data value associated with a DynStruct object from a sequence of
name value pairs. The operation sets the current position to zero if the passed sequences has non-zero length; otherwise,
if an empty sequence is passed, the current position is set to —1.

Members must appear in the NameValuePairSeq in the order in which they appear in the IDL specification of the
struct. If one or more sequence elements have a type that is not equivalent to the TypeCode of the corresponding
member, the operation raises TypeMismatch. If the passed sequence has a number of elements that disagrees with the
number of members as indicated by the DynStruct’s TypeCode, the operation raises InvalidValue.

If member names are supplied in the passed sequence, they must either match the corresponding member name in the
DynStruct’s TypeCode or must be empty strings, otherwise, the operation raises TypeMismatch. Members must be
supplied in the same order as indicated by the DynStruct’s TypeCode. (The operation makes no attempt to assign
member values based on member names.)

The get_members_as_dyn_any and set._members_as_dyn_any operations have the same semantics as their Any
counterparts, but accept and return values of type DynAny instead of Any.

DynStruct objects can also be used for handling exception values. In that case, members of the exceptions are handled
in the same way as members of a struct.

13.3.6 The DynUnion Interface

DynUnion objects are associated with unions.

local interface DynUnion : DynAny {

DynAny get_discriminator();

void set_discriminator(in DynAny d)
raises(TypeMismatch);

void set_to_default_member()
raises(TypeMismatch);

void set_to_no_active_member()
raises(TypeMismatch);

boolean has_no_active_member()
raises(InvalidValue);

CORBA::TCKind discriminator_kind();

DynAny member()
raises(InvalidValue);

212 Common Object Request Broker Architecture (CORBA), v3.1.1

FieldName member_name()
raises(InvalidValue);

CORBA::TCKind member_kind()
raises(InvalidValue);

boolean is_set_to_default_member();

b
The DynUnion interface allows for the insertion/extraction of an IDL union type into/from a DynUnion object.

A union can have only two valid current positions: zero, which denotes the discriminator, and one, which denotes the
active member. The component_count value for a union depends on the current discriminator: it is 2 for a union whose
discriminator indicates a named member, and 1 otherwise.

DynAny get_discriminator()

The get_discriminator operation returns the current discriminator value of the DynUnion.

void set_discriminator(in DynAny d)
raises(TypeMismatch);

The set_discriminator operation sets the discriminator of the DynUnion to the specified value. If the TypeCode of
the d parameter is not equivalent to the TypeCode of the union’s discriminator, the operation raises TypeMismatch.

Setting the discriminator to a value that is consistent with the currently active union member does not affect the currently
active member. Setting the discriminator to a value that is inconsistent with the currently active member deactivates the
member and activates the member that is consistent with the new discriminator value (if there is a member for that value)
by initializing the member to its default value.

Setting the discriminator of a union sets the current position to 0 if the discriminator value indicates a non-existent union
member (has_no_active_member returns true in this case). Otherwise, if the discriminator value indicates a named
union member, the current position is set to 1 (has_no_active_member returns false and component_count
returns 2 in this case).

void set_to_default_member()
raises(TypeMismatch);

The set_to_default_member operation sets the discriminator to a value that is consistent with the value of the default
case of aunion; it sets the current position to zero and causes component_count to return 2. Calling
set_to_default_member on a union that does not have an explicit default case raises TypeMismatch.

void set_to_no_active_member()
raises(TypeMismatch);

The set_to_no_active_member operation sets the discriminator to a value that does not correspond to any of the
union’s case labels; it sets the current position to zero and causes component_count to return 1. Calling
set_to_no_active_member on a union that has an explicit default case or on a union that uses the entire range of
discriminator values for explicit case labels raises TypeMismatch.

boolean has_no_active_member();

Common Object Request Broker Architecture (CORBA), v3.1.1 213

The has_no_active_member operation returns true if the union has no active member (that is, the union’s value
consists solely of its discriminator because the discriminator has a value that is not listed as an explicit case label).
Calling this operation on a union that has a default case returns false. Calling this operation on a union that uses the
entire range of discriminator values for explicit case labels returns false.

CORBA::TCKind discriminator_kind();
The discriminator_kind operation returns the TCKind value of the discriminator’s TypeCode.

CORBA::TCKind member_kind()
raises(InvalidValue);

The member_kind operation returns the TCKind value of the currently active member’s TypeCode. Calling this
operation on a union that does not have a currently active member raises InvalidValue.

DynAny member()
raises(InvalidValue);

The member operation returns the currently active member. If the union has no active member, the operation raises
InvalidValue. Note that the returned reference remains valid only for as long as the currently active member does not
change. Using the returned reference beyond the life time of the currently active member raises OBJECT_NOT_EXIST.

FieldName member_name()
raises(InvalidValue);

The member_name operation returns the name of the currently active member. If the union’s TypeCode does not
contain a member name for the currently active member, the operation returns an empty string. Calling member_name
on a union without an active member raises InvalidValue.

boolean is_set_to_default_member();

Theis_set_to_default_member operation returns TRUE if a union has an explicit default label and the discriminator
value does not match any of the union’s other case labels.

13.3.7 The DynSequence Interface

DynSequence objects are associated with sequences.

typedef sequence<any> AnySeq;
typedef sequence<DynAny> DynAnySeq;

local interface DynSequence : DynAny {

unsigned long get_length();

void set_length(in unsigned long len)
raises(InvalidValue);

AnySeq get_elements();

void set_elements(in AnySeq value)
raises(TypeMismatch, InvalidValue);

DynAnySeq get_elements_as_dyn_any();

void set_elements_as_dyn_any(in DynAnySeq value)
raises(TypeMismatch, InvalidValue);

214 Common Object Request Broker Architecture (CORBA), v3.1.1

unsigned long get_length();

The get_length operation returns the current length of the sequence.

void set_length(in unsigned long len)
raises(InvalidValue);

The set_length operation sets the length of the sequence. Increasing the length of a sequence adds new elements at the
tail without affecting the values of already existing elements. Newly added elements are default-initialized.

Increasing the length of a sequence sets the current position to the first newly-added element if the previous current
position was —1. Otherwise, if the previous current position was not —1, the current position is not affected.

Increasing the length of a bounded sequence to a value larger than the bound raises InvalidValue.

Decreasing the length of a sequence removes elements from the tail without affecting the value of those elements that
remain. The new current position after decreasing the length of a sequence is determined as follows:

- If thelength of the sequenceis set to zero, the current position is set to —1.
« If the current position is—1 before decreasing the length, it remains at —1.

- If the current position indicates a valid element and that element is not removed when the length is decreased, the
current position remains unaffected.

- If the current position indicates avalid element and that element is removed, the current position is set to —1.

DynAnySeq get_elements();

The get_elements operation returns the elements of the sequence.

void set_elements(in AnySeq value)
raises(TypeMismatch, InvalidValue);

The set_elements operation sets the elements of a sequence. The length of the DynSequence is set to the length of
value. The current position is set to zero if value has non-zero length and to —1 if value is a zero-length sequence.

If value contains one or more elements whose TypeCode is not equivalent to the element TypeCode of the
DynSequence, the operation raises TypeMismatch. If the length of value exceeds the bound of a bounded segquence,
the operation raises InvalidValue.

The get_elements_as_dyn_any and set_elements_as_dyn_any operations have the same semantics, but accept
and return values of type DynAny instead of Any.

13.3.8 The DynArray Interface

DynArray objects are associated with arrays.

local interface DynArray : DynAny {
AnySeq get_elements();
void set_elements(in AnySeq value)
raises(TypeMismatch, InvalidValue);
DynAnySeq get_elements_as_dyn_any();
void set_elements_as_dyn_any(in DynAnySeq value)

Common Object Request Broker Architecture (CORBA), v3.1.1 215

raises(TypeMismatch, InvalidValue);

DynAnySeq get_elements();

The get_elements operation returns the elements of the DynArray.

void set_elements(in DynAnySeq value)
raises(TypeMismatch, InvalidValue);

The set_elements operation sets the DynArray to contain the passed elements. If the sequence does not contain the
same number of elements as the array dimension, the operation raises InvalidValue. If one or more elements have a type
that is inconsistent with the DynArray’s TypeCode, the operation raises TypeMismatch.

The get_elements_as_dyn_any and set_elements_as_dyn_any operations have the same semantics as their Any
counterparts, but accept and return values of type DynAny instead of Any.

Note that the dimension of the array is contained in the TypeCode, which is accessible through the type attribute. It can
also be obtained by calling the component_count operation.

13.3.9 The DynValueCommon Interface

DynValueCommon provides operations supported by both the DynValue and DynValueBox interfaces.

local interface DynValueCommon : DynAny {
boolean is_null();
void set_to_null();
void set_to_value();

b
boolean is_null();

The is_null operation returns TRUE if the DynValueCommon represents a null valuetype.

void set_to_null();

The set_to_null operation changes the representation of a DynValueCommon to a null valuetype.
void set_to_value();

If the DynValueCommon represents a null valuetype, then set_to_value replaces it with a newly constructed value,
with its components initialized to default values asin DynAnyFactory::create_dyn_any from_type_code. If the
DynValueCommon represents a non-null valuetype, then this operation has no effect.

A reference to a DynValueCommon interface (and interfaces derived from it) exhibit the same sharing semantics as the
underlying valuetype that it represents. This means that the relationships between valuetypes in a graph of valuetypes
will remain unchanged when converted into DynAny form and vice versa. This is necessary to ensure that applications
that use the DIl and DSI can correctly view and preserve the semantics of the valuetype graph.

13.3.10 The DynValue Interface

DynValue abjects are associated with non-boxed valuetypes.

216 Common Object Request Broker Architecture (CORBA), v3.1.1

local interface DynValue : DynValueCommon {

FieldName current_member_name()
raises(TypeMismatch, InvalidValue);

CORBA::TCKind current_member_kind()
raises(TypeMismatch, InvalidValue);

NameValuePairSeq get_members()
raises(InvalidValue);

void set_members(in NameValuePairSeq value)
raises(TypeMismatch, InvalidValue);

NameDynAnyPairSeq get_members_as_dyn_any()
raises(InvalidValue);

void set_members_as_dyn_any(in NameDynAnyPairSeq value)
raises(TypeMismatch, InvalidValue);

h

The DynValue interface can represent both null and non-null valuetypes. For a DynValue representing a non-null
valuetype, the DynValue’s components comprise the public and private members of the valuetype, including those
inherited from concrete base valuetypes, in the order of definition. A DynValue representing a null valuetype has no
components and a current position of -1.

The remaining operations on the DynValue interface generally have equivalent semantics to the same operations on
DynStruct. When invoked on a DynValue representing a null valuetype, get_members and
get_members_as_dyn_any raise InvalidValue. When invoked on a DynValue representing a null valuetype,
set_members and set_members_as_dyn_any convert the DynValue to a non-null valuetype.

WARNING: Indiscriminately changing the contents of private valuetype members can cause the valuetype
implementation to break by violating internal constraints. Access to private membersis provided to support such activities
as ORB bridging and debugging and should not be used to arbitrarily violate the encapsulation of the valuetype.

13.3.11 The DynValueBox Interface

DynValueBox objects are associated with boxed valuetypes.

local interface DynValueBox : DynValueCommon {

any get_boxed_value()
raises(InvalidValue);

void set_boxed_value(in any boxed)
raises(TypeMismatch, InvalidValue);

DynAny get_boxed_value_as_dyn_any()
raises(InvalidValue);

void set_boxed_value_as_dyn_any(in DynAny boxed)
raises(TypeMismatch);

h

The DynValueBox interface can represent both null and non-null valuetypes. For a DynValueBox representing a non-
null valuetype, the DynValueBox has a single component of the boxed type. A DynValueBox representing a null
valuetype has no components and a current position of -1.

any get_boxed_value()
raises(InvalidValue);

Common Object Request Broker Architecture (CORBA), v3.1.1 217

The get_boxed_value operation returns the boxed value as an any. If the DynBoxedValue represents a null
valuetype, the operation raises InvalidValue.

void set_boxed_value(in any boxed)
raises(TypeMismatch, InvalidValue);

The set_boxed_value operation replaces the boxed value with the specified value. If the type of the passed Any is not
equivalent to the boxed type, the operation raises TypeMismatch. If the passed Any does not contain a legal value, the
operation raises InvalidValue. If the DynBoxedValue represents a null valuetype, it is converted to a non-null value.

The get_boxed_value_as_dyn_any and set_boxed_value_as_dyn_any have the same semantics as their any
counterparts, but accept and return values of type DynAny instead of any.

13.4 Usage in C++ Language

13.4.1 Dynamic Creation of CORBA::Any values

13.4.1.1 Creating an any that contains a struct

Consider the following IDL definition:

// IDL

struct MyStruct {
long memberl;
boolean member2;

b

The following example illustrates how a CORBA: : Any value may be constructed on the fly containing a value of type
MyStruct:

// C++
CORBA::0RB var orb = ...;
DynamicAny: :DynAnyFactory var dafact

= orb->resolve initial references (“DynAnyFactory”) ;
CORBA: : StructMemberSeq mems (2) ;
CORBA: :Any var result;
CORBA: :Long valuel
CORBA: :Boolean value2
mems.length(2) ;
mems [0] .name = CORBA::string dup (“memberl”) ;
mems [0] . type CORBA: : TypeCode:: duplicate(CORBA:: tc long);
mems [1] .name CORBA: :string dup (“member2”) ;
mems [1] . type

= CORBA: :TypeCode:: duplicate(CORBA:: tc boolean) ;

99;
1;

CORBA: :TypeCode var new tc = orb->create struct tc(
“IDL:MyStruct:1.0”,
“MyStruct”,
mems

218 Common Object Request Broker Architecture (CORBA), v3.1.1

// Construct the DynStruct object. Values for members are

// the valuel and value2 variables

DynamicAny: :DynAny ptr dyn any
= dafact->create dyn any(new tc);
DynamicAny: :DynStruct ptr dyn struct
= DynamicAny: :DynStruct:: narrow(dyn any);
CORBA: :release(dyn any);
dyn struct->insert long(valuel) ;
dyn struct->next();
dyn struct->insert boolean(value2) ;
result = dyn struct->to _any():;
dyn struct->destroy() ;
CORBA: :release(dyn struct);

13.4.2 Dynamic Interpretation of CORBA::Any values

13.4.2.1 Filtering of events

Suppose there is a CORBA object that receives events and prints all those events, which correspond to a data structure

containing a member called is_urgent whose value is true.

The following fragment of code corresponds to a method that determines if an event should be printed or not. Note that

the program allows several struct events to be filtered with respect to some common member.

// C++

CORBA: :Boolean Tester::eval filter(
DynamicAny: :DynAnyFactory ptr dafact,
const CORBA::Any & event

CORBA: :Boolean success = FALSE;
DynamicAny: :DynAny var;
try {
// First, convert the event to a DynAny.

// Then attempt to narrow it to a DynStruct.

// The narrow only returns a reference
// if the event is a struct.

dyn var = dafact->create dyn any(event) ;
DynamicAny: :DynStruct var dyn struct

= DynamicAny: :DynStruct:: narrow(dyn any) ;

if (!CORBA::is nil(dyn struct)) {
CORBA: :Boolean found = FALSE;
do {
CORBA::String var member name

= dyn struct->current member name() ;
found = (strcmp (member name, "is urgent")

} while (!found && dyn struct->next());
if (found) {

// We only create a DynAny object for the member

Common Object Request Broker Architecture (CORBA), v3.1.1

0)

.
I

219

// we were looking for:
DynamicAny: :DynAny var dyn member

= dyn struct->current component () ;
success = dyn member->get boolean() ;

}
}
catch(...) {};
if (!CORBA::is nil(dyn var))
dyn var->destroy();
return success;

220 Common Object Request Broker Architecture (CORBA), v3.1.1

14 The Interface Repository

14.1 Overview

The Interface Repository is the component of the ORB that provides persistent storage of interface definitions—it
manages and provides access to a collection of object definitions specified in IDL.

An ORB provides distributed access to a collection of objects using the objects’ publicly defined interfaces specified in
IDL. The Interface Repository provides for the storage, distribution, and management of a collection of related objects’
interface definitions.

For an ORB to correctly process requests, it must have access to the definitions of the objects it is handling. Object
definitions can be made available to an ORB in one of two forms:

1. By incorporating the information procedurally into stub routines (e.g., as code that maps C language subroutinesinto
communication protocols).

2. Asobjects accessed through the dynamically accessible Interface Repository (i.e., as interface objects accessed
through IDL-specified interfaces).

In particular, the ORB can use object definitions maintained in the Interface Repository to interpret and handle the values
provided in a request to:

» Provide type-checking of request signatures (whether the request was issued through the DIl or through a stub).

» Assist in checking the correctness of interface inheritance graphs.

» Assist in providing interoperability between different ORB implementations.
As the interface to the object definitions maintained in an Interface Repository is public, the information maintained in
the Repository can also be used by clients and services. For example, the Repository can be used to:

» Managetheinstallation and distribution of interface definitions.

» Provide components of a CASE environment (for example, an interface browser).

» Provideinterface information to language bindings (such as a compiler).

» Provide components of end-user environments (for example, a menu bar constructor).

The complete IDL specification for the Interface Repository isin IDL for Interface Repository on page 284; however,
fragments of the specification are used throughout this clause as necessary.

14.2 Scope of an Interface Repository

Interface definitions are maintained in the Interface Repository as a set of objects that are accessible through a set of IDL-
specified interface definitions. An interface definition contains a description of the operations it supports, including the
types of the parameters, exceptions it may raise, and context information it may use.

In addition, the interface repository stores constant values, which might be used in other interface and value definitions or
might simply be defined for programmer convenience and it stores TypeCodes [TypeCodes on page 138], which are
values that describe a type in structural terms.

Common Object Request Broker Architecture (CORBA), v3.1.1 221

The Interface Repository uses modules as a way to group interfaces and to navigate through those groups by name.
Modules can contain constants, typedefs, exceptions, interface/ component/home definitions, and other modules. Modules
may, for example, correspond to the organization of IDL definitions. They may also be used to represent organizations
defined for administration or other purposes.

The Interface Repository consists of a set of interface repository objects that represent the information in it. There are
operations that operate on this apparent object structure. It is an implementation’s choice whether these objects exist
persistently or are created when referenced in an operation on the repository. There are also operations that extract
information in an efficient form, obtaining a block of information that describes a whole interface or a whole operation.

An ORB may have access to multiple Interface Repositories. This may occur because

- two ORBs have different requirements for the implementation of the Interface Repository,
+ an object implementation (such as an OODB) prefers to provide its own type information, or
« itisdesired to have different additional information stored in different repositories.

The use of TypeCodes (TypeCodes on page 138) and repository identifiers is intended to alow different repositories to
keep their information consistent.

Asshown in Figure 14.1, the same interface Doc isinstalled in two different repositories, one at SoftCo, Inc., which sells
Doc objects, and one at Customer, Inc., which buys Doc abjects from SoftCo. SoftCo sets the repository id for the Doc
interface when it defines it. Customer might first install the interface in its repository in a module where it could be tested
before exposing it for general use. Because it has the same repository id, even though the Doc interface is stored in a
different repository and is nested in a different module, it is known to be the same.

Meanwhile at SoftCo, someone working on a new Doc interface has given it a new repository id 456, which allows the
ORBs to distinguish it from the current product Doc interface.

SoftCo, Customer, Inc., Repository
Inc.,

Reposi-

tory module testfirst {

module softco {

interface Doc <id 123> {
mm void print();
softco { |5
int Doc <id 123> { 5
vdid print(); |5
|3
h

module newrelease {
interface Doc <id 456> {

Figure 14.1 - Using Repository IDs to establish correspondence between repositories

Not all interfaces will be visible in all repositories. For example, Customer employees cannot see the new release of the
Doc interface. However, widely used interfaces will generally be visible in most repositories.

222 Common Object Request Broker Architecture (CORBA), v3.1.1

This Interface Repository specification defines operations for retrieving information from the repository as well as
creating definitions within it. There may be additional ways to insert information into the repository (for example,
compiling IDL definitions, copying objects from one repository to another).

A critical use of the interface repository information is for connecting ORBSs together. When an object is passed in a
request from one ORB to another, it may be necessary to create a new object to represent the passed object in the
receiving ORB. This may require locating the interface information in an interface repository in the receiving ORB. By
getting the repository id from a repository in the sending ORB, it is possible to look up the interface in a repository in the
receiving ORB. To succeed, the interface for that object must be installed in both repositories with the same repository id.

14.3 Implementation Dependencies

An implementation of an Interface Repository requires some form of persistent object store. Normally the kind of
persistent object store used determines how interface definitions are distributed and/or replicated throughout a network
domain. For example, if an Interface Repository isimplemented using afiling system to provide object storage, there may
be only a single copy of a set of interfaces maintained on a single machine. Alternatively, if an OODB is used to provide
object storage, multiple copies of interface definitions may be maintained each of which is distributed across several
machines to provide both high-availability and load-balancing.

The kind of object store used may determine the scope of interface definitions provided by an implementation of the
Interface Repository. For example, it may determine whether each user has a local copy of a set of interfaces or if thereis
one copy per community of users. The object store may also determine whether or not all clients of an interface set see
exactly the same set at any given point in time or whether latency in distributing copies of the set gives different users
different views of the set at any point in time.

An implementation of the Interface Repository is also dependent on the security mechanism in use. The security
mechanism (usually operating in conjunction with the object store) determines the nature and granularity of access
controls available to constrain access to objects in the repository.

14.3.1 Managing Interface Repositories

Interface Repositories contain the information necessary to alow programs to determine and manipulate the type
information at run-time. Programs may attempt to access the interface repository at any time by using the get_interface
operation on the object reference. Once information has been installed in the repository, programs, stubs, and objects may
depend on it. Updates to the repository must be done with care to avoid disrupting the environment. A variety of
techniques are available to help do so.

A coherent repository is one whose contents can be expressed as a valid collection of IDL definitions. For example, all
inherited interfaces exist, there are no duplicate operation names or other name collisions, all parameters have known
types, and so forth. As information is added to the repository, it is possible that it may pass through incoherent states.
Media failures or communication errors might also cause it to appear incoherent. In general, such problems cannot be
completely eliminated.

Replication is one technique to increase the availability and performance of a shared database. It is likely that the same
interface information will be stored in multiple repositories in a computing environment. Using repository 1Ds, the
repositories can establish the identity of the interfaces and other information across the repositories.

Multiple repositories might also be used to insulate production environments from development activity. Developers
might be permitted to make arbitrary updates to their repositories, but administrators may control updates to widely used
repositories. Some repository implementations might permit sharing of information, for example, severa developers

Common Object Request Broker Architecture (CORBA), v3.1.1 223

repositories may refer to parts of a shared repository. Other repository implementations might instead copy the common
information. In any case, the result should be a repository facility that creates the impression of a single, coherent
repository.

The interface repository itself cannot make all repositories have coherent information, and it may be possible to enter
information that does not make sense. The repository will report errors that it detects (e.g., defining two attributes with
the same name) but might not report all errors, for example, adding an attribute to a base interface may or may not detect
a name conflict with a derived interface. Despite these limitations, the expectation is that a combination of conventions,
administrative controls, and tools that add information to the repository will work to create a coherent view of the
repository information.

Transactions and concurrency control mechanisms defined by the Object Services may be used by some repositories when
updating the repository. Those services are designed so that they can be used without changing the operations that update
the repository. For example, a repository that supports the Transaction Service would inherit the Repository interface,
which contains the update operations, as well as the Transaction interface, which contains the transaction management
operations. (For more information about Object Services, including the Transaction and Concurrency Control Services,
refer to the individual CORBA Services specifications.)

Often, rather than change the information, new versions will be created, allowing the old version to continue to be valid.
The new versions will have distinct repository IDs and be completely different types as far as the repository and the
ORBs are concerned. The IR provides storage for version identifiers for named types, but does not specify any additional
versioning mechanism or semantics.

14.4 Basics

This sub clause introduces some basic ideas that are important to understanding the Interface Repository. Topics
addressed in this sub clause are:

« Namesand Identifiers

» Typesand TypeCodes

» Interface Repository Objects

» Structure and Navigation of the Interface Repository

14.4.1 Names and ldentifiers

Simple names are not necessarily unique within an Interface Repository; they are always relative to an explicit or implicit
module. In this context, interface, struct, union, exception, and value type definitions are considered implicit modules.

Scoped names uniquely identify modules, interfaces, components, homes, value and event types, value members, value
boxes, constant, typedefs, exceptions, attributes, and operations in an Interface Repository.

Repository identifiers globally identify modules, interfaces, components, homes, value and event types, value members,
value boxes, constants, typedefs, exceptions, attributes, and operations. They can be used to synchronize definitions
across multiple ORBs and Repositories.

224 Common Object Request Broker Architecture (CORBA), v3.1.1

14.4.2 Types and TypeCodes

The Interface Repository stores information about types that are not interfaces in a data value called a TypeCode. From
the TypeCode alone it is possible to determine the complete structure of a type. See TypeCodes on page 138 for more
information on the internal structure of TypeCodes.

14.4.3 Interface Repository Objects

Information about the entities that are managed in an Interface Repository is maintained as a collection of interface
repository objects of the following types:

Repository: thetop-level modul e for the repository name space; it contains constants, typedefs, exceptions, interface,
component, home, value or event type definitions, and modules.

ModuleDef: alogical grouping of interfaces and value types; it contains constants, typedefs, exceptions, interface,
component, home, value or event type definitions, and other modules.

InterfaceDef: an interface definition; it contains lists of constants, types, exceptions, operations, and attributes.

ExtinterfaceDef: an extended version of InterfaceDef that is capable of accommodating attributes with
exceptions.

AbstractinterfaceDef: an abstract interface definition; it contains lists of constants, types, exceptions, operations,
and attributes.

ExtAbstractinterfaceDef: an extended version of AbstractinterfaceDef that is capable of accommodating
attributes with exceptions.

LocallnterfaceDef: alocal interface definition; it contains lists of constants, types, exceptions, operations, and
attributes.

ExtLocallnterfaceDef: an extended version of LocallnterfaceDef that is capable of accommodating attributes
with exceptions.

ValueDef: avalue type definition that contains lists of constants, types, exceptions, operations, attributes, and
members

ExtValueDef: an extended version of ValueDef that is capable of accommodating attributes and initializers with
exceptions.

EventDef: an event type definition that contains lists of constants, types, exceptions, operations, attributes, and
members.

ValueBoxDef: the definition of a boxed value type.
ValueMemberDef: the definition of a member of the value type.
AttributeDef: the definition of an attribute of the interface or value type.

ExtAttributeDef: an extended version of AttributeDef that is capable of accommodating attributes with
exceptions.

OperationDef: the definition of an operation of the interface, value or event type; it contains lists of parameters and
exceptions raised by this operation.

Common Object Request Broker Architecture (CORBA), v3.1.1 225

« TypedefDef: base interface for definitions of named types that are not interfaces components, homes, or value and
event types.

« ConstantDef: the definition of a named constant.
» ExceptionDef: the definition of an exception that can be raised by an operation.

« ComponentDef: acomponent definition; it contains lists of provides, uses, consumes, publishes, supports, emits,
and attributes.

- HomeDef: ahome definition; it contains lists of constants, types, exceptions, operations, attributes, factories and
finders.

» FactoryDef: the definition of afactory; it isan operation that is specifically used for creating new instances of
components in a home.

« FinderDef: the definition of afinder; it is an operation that is specifically used to find components within a home.
» ProvidesDef: the definition of an interface that is provided by a component.

» UsesDef: the definition of an interface that is used by a component.

- EmitsDef: the definition of events that are emitted by a component.

» PublishesDef: the definition of events that are published by a component.

» ConsumesDef: the definition of eventsthat are consumed by a component.

The interface specifications for each interface repository object lists the attributes maintained by that object (see Interface
Repository Interfaces on page 228). Many of these attributes correspond directly to IDL statements. An implementation
can choose to maintain additional attributes to facilitate managing the Repository or to record additional (proprietary)
information about an interface. Implementations that extend the IR interfaces shall do so by deriving new interfaces, not
by modifying the standard interfaces.

The CORBA specification defines a minimal set of operations for interface repository objects. Additional operations that
an implementation of the Interface Repository may provide could include operations that provide for the versioning of
entities and for the reverse compilation of specifications (i.e., the generation of a file containing an object’s IDL
specification).

14.4.4 Structure and Navigation of the Interface Repository

The definitions in the Interface Repository are structured as a set of interface repository objects. These objects are
structured the same way definitions are structured—some objects (definitions) “contain” other objects.

226 Common Object Request Broker Architecture (CORBA), v3.1.1

The containment relationships for the interface repository objects types in the Interface Repository are shown in Figure
14.2

Repository or ComponentIR::Repository Each interface repository is represented
by a global root repository object.

ConstantDef The Repository IR object represents the constants,
TypedefDef typedefs, exceptions, interfaces, valuetypes,
ExceptionDef value boxes and modules that are defined outside
[Ext]interfaceDef the scope of a module.

[Ext]ValueDef

EventDef - only in ComponentIR::Repository
ValueBoxDef

ModuleDef

ComponentDef - only in ComponentIR::Repository
HomeDef - only in ComponentIR::Repository

ConstantDef The Module IR object represents the constants,
TVPEdeDEf typedefs, exceptions, interfaces, valuetypes,
ExceptionDef value boxes, eventtypes, components, homes and other
ValueBoxDef modules defined within the scope of the module.
ModuleDef

[Ext][Abstract | local]InterfaceDef

An Interface IR object represents constants,

ConstantDef typedefs, exceptions, attributes, and operations
B’(Fc’ggﬁgagef defined within or inherited by the interface.
[Ext]AttributeDef))

OperationDef Operation IR objects reference

exception objects.
[Ext]ValueDef | EventDef - only in ComponentIR::Repository
ConstantDef A Valuetype IR object represents constants,

typedefs, exceptions, attributes, and operations
TypedefDef - SO : X '
ExceptionDef defined within or inherited by the interface.

[Ext]AttributeDef]]
OperationDef Operation IR objects reference
ValueMemberDef ExceptionDef exception objects.

ComponentDef - only in ComponentIR::Repository

ProvidesDef A ComponentDef IR object represents the provides, uses,

UsesDef emits, publishes, consumes and attributes

Emlthef contained in the component.

PublishesDef Emits, publishes and consumes refers to event objects.
([:EOXQ]SXtrt]:iel:)Su[t):Ef)ef Provides and uses refers to interface objects.

AttributeDef IR objects reference exception objects

HomeDef - only in ComponentIR::Repository

A HomeDef IR object represents factory and finder
defined within or inherited by home.
Factory and finder refer to exception objects.

FactoryDef
FinderDef

Figure 14.2 - Interface Repository Object Containment
There are three ways to locate an interface in the Interface Repository, by:

1. Obtaining an InterfaceDef object directly from the ORB.

Common Object Request Broker Architecture (CORBA), v3.1.1 227

2. Navigating through the module name space using a sequence of names.
3. Locating the InterfaceDef object that corresponds to a particular repository
identifier.
There are four ways to locate a component in the Interface Repository, by:
1. Obtaining an ComponentDef object directly from the ORB.

2. Navigating through the module name space using a sequence of names.

3. Locating the ComponentDef object that corresponds to a particular repository
identifier.
4. Obtaining the ComponentDef from the HomeDef object corresponding to its home.
There are three ways to locate a home in the Interface Repository, by:
1. Obtaining aHomeDef object directly from the ORB.
2. Navigating through the module name space using a sequence of names.
3. Locating the HomeDef object that corresponds to a particular repository
identifier.
NOTE: It should be noted that given aComponentDef IR object, it is not possible to obtain the HomeDef IR object for the
home that manages this component, since there could be multiple such homes, and the actual relation of a specific component

to aspecific homeisavailableonly at runtime. To get to the HomeDef object corresponding to the home of a given component,
one needs to do a CCMObject::get_home, and then do aCCMHome::get_home_def on the home thus obtained.

Obtaining an InterfaceDef object directly is useful when an object is encountered whose type was not known at compile
time. By using the get_interface operation on the object reference, it is possible to retrieve the Interface Repository
information about the object. That information could then be used to perform operations on the object. Similarly, by using
the CCMObiject::get_component_def operation, it is possible to retrieve the Component Repository information about
a component.

Navigating the module name space is useful when information about a particular named interface is desired. Starting at
the root module of the repository, it is possible to obtain entries by name.

Locating the InterfaceDef aobject by ID is useful when looking for an entry in one repository that corresponds to another.
A repository identifier must be globally unique. By using the same identifier in two repositories, it is possible to obtain
the interface identifier for an interface in one repository, and then obtain information about that interface from another
repository that may be closer or contain additional information about the interface.

Analogous operations are provided for manipulating value and event types.

The ComponentIR module contains the IR Objects that were added to reflect new IDL constructs that were added to
support Components. These are built upon the IR interfaces defined in CORBA module including ExtIinterfaceDef,
ExtValueDef, and ExtAttributeDef and thus are backward compatible extensions of the 2.5 and earlier versions of the
IR.

14.5 Interface Repository Interfaces

Several interfaces are used as base interfaces for objects in the IR. These base interfaces are not instantiable.

228 Common Object Request Broker Architecture (CORBA), v3.1.1

A common set of operations is used to locate objects within the Interface Repository. These operations are defined in the
interfaces IRObject, Container, and Contained described below. All IR objects inherit from the IRObject interface,
which provides an operation for identifying the actual type of the object. Objects that are containers inherit navigation
operations from the Container interface. Objects that are contained by other objects inherit navigation operations from
the Contained interface.

The IDLType interface is inherited by all IR objects that represent IDL types, including interfaces, typedefs, and
anonymous types. The TypedefDef interface is inherited by all named non-interface types.

The base interfaces IRObject, Contained, Container, IDLType, TypedefDef ComponentIR::Container and
ComponentlR::EventPortDef are not instantiable.

All string data in the Interface Repository are encoded as defined by the 1SO 8859-1 coded character set.

Interface Repository operations indicate error conditions using the system exceptions BAD_PARAM and
BAD_INV_ORDER with specific minor codes. The specific operations that raise these exceptions are documented in the
description of the operations. For a description of how these minor codes are encoded in the ex_body of standard
exceptions see System Exceptions on page 148 and Standard Minor Exception Codes on page 156. The exceptions and
minor codes that are used by Interface Repository interfaces are as follows:

Exception Minor Code | Explanation
BAD_PARAM 2 RID isaready defined in IFR
3 Name aready used in the context in IFR
4 Target isnot avalid container
5 Name clash in inherited context
31 Attempt to define a oneway operation with non-void result, out or inout
parameters or user exceptions.
BAD_INV_ORDER 1 Dependency existsin IFR preventing destruction of this object
2 Attempt to destroy indestructible objectsin IFR

14.5.1 Supporting Type Definitions

Several types are used throughout the IR interface definitions.

module CORBA {

typedef string Identifier;
typedef string ScopedName;
typedef string Repositoryld;

enum DefinitionKind {
dk_none, dk_all,
dk_Attribute, dk_Constant, dk_Exception, dk_Interface,
dk_Module, dk_Operation, dk_Typedef,
dk_Alias, dk_Struct, dk_Union, dk_Enum,
dk_Primitive, dk_String, dk_Sequence, dk_Array,
dk_Repository,

Common Object Request Broker Architecture (CORBA), v3.1.1 229

dk_Wstring, dk_Fixed,
dk_Value, dk_ValueBox, dk_ValueMember,
dk_Native,
dk_Abstractinterface,
dk_Locallnterface
dk_Component, dk_Home,
dk_Factory, dk_Finder,
dk_Emits, dk_Publishes, dk_Consumes,
dk_Provides, dk_Uses,
dk_Event
¥
|3

Identifiers are the simple names that identify modules, interfaces, components, homes, value and event types, value
members, value boxes, constants, typedefs, exceptions, attributes, operations, ports, and native types. They correspond
exactly to IDL identifiers. An Identifier is not necessarily unique within an entire Interface Repository; it is unique only
within a particular Repository, ModuleDef, InterfaceDef, ComponentDef, HomeDef, ValueDef , EventDef,
OperationDef, FactoryDef, or FinderDef.

A ScopedName is aname made up of one or more Identifiers separated by the characters “::”. They correspond to IDL
scoped names.

An absolute ScopedName is one that begins with “::” and unambiguously identifies a definition in a Repository. An
absolute ScopedName in a Repository corresponds to a global name in an IDL file. A relative ScopedName does
not begin with “::” and must be resolved relative to some context.

A Repositoryld is an identifier used to uniquely and globally identify a module, interface, component, home, value type,
event type, value member, value box, native type, constant, typedef, exception, attribute, or operation. As Repositorylds
are defined as strings, they can be manipulated (e.g., copied and compared) using a language binding's string
manipulation routines.

A DefinitionKind identifies the type of an IR object.
14.5.2 IRObject

The base interface IRObject represents the most generic interface from which all other Interface Repository interfaces
are derived, even the Repository itself.

module CORBA {
interface IRODbject {
/l read interface
readonly attribute DefinitionKind def_kind;
/I write interface
void destroy ();
|3
|3

14.5.2.1 Read Interface
The def_kind type_name attribute identifies the type of the definition.

230 Common Object Request Broker Architecture (CORBA), v3.1.1

14.5.2.2 Write Interface

The destroy operation causes the object to cease to exist. If the object is a Container, destroy is applied to all its
contents. If the object contains an IDLType attribute for an anonymous type, that IDLType is destroyed. If the object is
currently contained in some other object, it is removed. If destroy isinvoked on a Repository or on a PrimitiveDef,
then the BAD_INV_ORDER exception is raised with minor value 2. Implementations may vary in their handling of
references to an object that is being destroyed, but the Repository should not be left in an incoherent state. Attempt to
destroy an object that would leave the repository in an incoherent state shall cause BAD_INV_ORDER exception to be
raised with the minor code 1.

14.5.3 Contained

The base interface Contained is inherited by all Interface Repository interfaces that are contained by other IR objects.
All objects within the Interface Repository, except the root object (Repository) and definitions of anonymous
(ArrayDef, StringDef, WstringDef, FixedDef, and SequenceDef), and primitive types are contained by other
objects.

module CORBA {
typedef string VersionSpec;

interface Contained : IRObject {
/l read/write interface

attribute Repositoryld id;
attribute Identifier name;
attribute VersionSpec version;

/l read interface

readonly attribute Container defined_in;
readonly attribute ScopedName absolute_name;
readonly attribute Repository containing_repository;

struct Description {
DefinitionKind kind;
any value;

h
Description describe ();
/l write interface
void move (
in Container new_container,

in Identifier new_name,
in VersionSpec new_version

);

Common Object Request Broker Architecture (CORBA), v3.1.1 231

14.5.3.1 Read Interface

An object that is contained by another object has an id attribute that identifies it globally, and a name attribute that
identifies it uniquely within the enclosing Container object. It also has a version attribute that distinguishes it from
other versioned objects with the same name. IRs are not required to support simultaneous containment of multiple
versions of the same named object. Supporting multiple versions will require mechanisms and policy not specified in this
document.

Contained objects also have adefined_in attribute that identifies the Container within which they are defined. Objects
can be contained either because they are defined within the containing object (for example, an interface is defined within
amodule) or because they are inherited by the containing object (for example, an operation may be contained by an
interface because the interface inherits the operation from another interface). If an object is contained through inheritance,
the defined_in attribute identifies the InterfaceDef or ValueDef from which the object is inherited.

The absolute_name attribute is an absolute ScopedName that identifies a Contained object uniquely within its
enclosing Repository. If thisobject’'s defined_in attribute references a Repository, the absolute_name is formed by
concatenating the string “::” and this object’s name attribute. Otherwise, the absolute_name is formed by
concatenating the absolute_name attribute of the object referenced by this object’s defined_in attribute, the string

o

::”, and this object’s name attribute.

The containing_repository attribute identifies the Repository that is eventually reached by recursively following the
object’'s defined_in attribute.

The within operation returns the list of objects that contain the object. If the object is an interface or module it can be
contained only by the object that defines it. Other objects can be contained by the objects that define them and by the
objects that inherit them.

The describe operation returns a structure containing information about the interface. The description structure
associated with each interface is provided below with the interface's definition. The kind of definition described by name
of the structure returned is provided with the returned structure. The kind field of the returned Description struct shall
give the DefinitionKind for the most derived type of the abject. For example, if the describe operation is invoked on
an attribute object, the kind field contains dk_Attribute name field contains “ AttributeDescription” and the value field
contains an any, which contains the AttributeDescription structure. The kind field in this must contain dk_attribute
and not the kind of any IRObject from which the attribute object is derived. For example returning dk_all would be an
error.

14.5.3.2 Write Interface

Setting the id attribute changes the global identity of this definition. A BAD_PARAM exception is raised with minor code
2 if an object with the specified id attribute already exists within this object’s Repository.

Setting the name attribute changes the identity of this definition within its Container. A BAD_PARAM exception is
raised with minor code 1 if an object with the specified name attribute already exists within this object’s Container. The
absolute_name attribute is also updated, along with any other attributes that reflect the name of the object. If this object
is a Container, the absolute_name attribute of any objects it contains are also updated.

The move operation atomically removes this object from its current Container, and adds it to the Container specified
by new_container must satisfy the following conditions:

» It must beinthe same Repository. If itisnot, then BAD_PARAM exception is raised with minor code 4.

« It must be capable of containing this object’s type (see Structure and Navigation of the Interface Repository on
page 226). If it is not, then BAD_PARAM exception is raised with minor code 4.

232 Common Object Request Broker Architecture (CORBA), v3.1.1

» It must not already contain an object with this object’s name (unless multiple versions are supported by the IR). If this
condition is not satisfied, then BAD_PARAM exception is raised with minor code 3.

The name attribute is changed to new_name, and the version attribute is changed to new_version.

The defined_in and absolute_name attributes are updated to reflect the new container and name. If this object is also
a Container, the absolute_name attributes of any objects it contains are also updated.

14.5.4 Container

The base interface Container is used to form a containment hierarchy in the Interface Repository. A Container can
contain any humber of objects derived from the Contained interface. All Containers, except for Repository, are also
derived from Contained.

module CORBA {
typedef sequence <Contained> ContainedSeq;

interface Container : IRObject {
Il read interface

Contained lookup (in ScopedName search_name);

ContainedSeq contents (

in DefinitionKind limit_type,
in boolean exclude_inherited
)i
ContainedSeq lookup_name (
in Identifier search_name,
in long levels_to_search,
in DefinitionKind limit_type,
in boolean exclude_inherited
)i
struct Description {
Contained contained_object;
DefinitionKind kind;
any value;
5

typedef sequence<Description> DescriptionSeq;

DescriptionSeq describe_contents (

in DefinitionKind limit_type,
in boolean exclude_inherited,
in long max_returned_objs

);

/I write interface

Common Object Request Broker Architecture (CORBA), v3.1.1 233

ModuleDef create_module (

in Repositoryld id,
in Identifier name,
in VersionSpec version
)i
ConstantDef create_constant (
in Repositoryld id,
in Identifier name,
in VersionSpec version,
in IDLType type,
in any value
)i
StructDef create_struct (
in Repositoryld id,
in Identifier name,
in VersionSpec version,
in StructMemberSeq members
)i
UnionDef create_union (
in Repositoryld id,
in Identifier name,
in VersionSpec version,
in IDLType discriminator_type,
in UnionMemberSeq members
)i
EnumDef create_enum (
in Repositoryld id,
in Identifier name,
in VersionSpec version,
in EnumMemberSeq members
)i
AliasDef create_alias (
in Repositoryld id,
in Identifier name,
in VersionSpec version,
in IDLType original_type
)i
InterfaceDef create_interface (
in Repositoryld id,
in Identifier name,
in VersionSpec version,
in InterfaceDefSeq base_interfaces,
)i

234 Common Object Request Broker Architecture (CORBA), v3.1.1

ExceptionDef create_exception(

in Repositoryld

in Identifier

in VersionSpec

in StructMemberSeq

);

ValueDef create_value(
in Repositoryld
in Identifier
in VersionSpec
in boolean
in boolean
in ValueDef
in boolean
in ValueDefSeq
in InterfaceDefSeq
in InitializerSeq

);

id,

name,
version,
members

id,

name,

version,

is_custom,
is_abstract,

base value,
is_truncatable,
abstract_base values,
supported_interfaces,
initializers

ValueBoxDef create_value_box(

in Repositoryld
in Identifier
in VersionSpec
in IDLType

);

NativeDef create_native(

in Repositoryld
in Identifier
in VersionSpec

);

id,

name,

version,
original_type_def

id,
name,
version

AbstractinterfaceDef create_abstract_interface(

in Repositoryld id,
in Identifier name,

in VersionSpec version,
in AbstractinterfaceDefSeq base_interfaces,

);

LocallnterfaceDef create local_interface(

in Repositoryld id,
in Identifier name,

in VersionSpec version,
in InterfaceDefSeq base_interfaces

);

ExtValueDef create_ext_value (

in Repositoryld
in Identifier
in VersionSpec

id,
name,
version,

Common Object Request Broker Architecture (CORBA), v3.1.1

235

in boolean is_custom,

in boolean is_abstract,

in ValueDef base value,

in boolean is_truncatable,

in ValueDefSeq abstract_base_values,
in InterfaceDefSeq supported_interfaces,
in ExtlnitializerSeq initializers

14.5.4.1 Read Interface

The lookup operation locates a definition relative to this container given a scoped name using IDL’s name scoping rules.
An absolute scoped name (beginning with “::") locates the definition relative to the enclosing Repository. If no object is
found, a nil object reference is returned.

The contents operation returns the list of objects directly contained by or inherited into the object. The operation is used
to navigate through the hierarchy of objects. Starting with the Repository object, a client uses this operation to list all of
the objects contained by the Repository, all of the objects contained by the modules within the Repository, and then all of
the interfaces and val ue types within a specific module, and so on.

limit_type If limit_typeissetto dk_all “al,” objects of all interface types are returned. For example, if
thisis an InterfaceDef, the attribute, operation, and exception objects are all returned. If
limit_type is set to a specific interface, only objects of that interface type are returned. For
example, only attribute objects are returned if limit_typeis set to dk_Attribute “ AttributeDef.”

exclude_inherited If set to TRUE, inherited objects (if there are any) are not returned. If set to FALSE, all
contained objects—whether contained due to inheritance or because they were defined within
the object—are returned.

Thelookup_name operation is used to |ocate an object by name within a particular object or within the objects contained by
that object. Use of values of levels to_search of 0 or of negative numbers other than -1 is undefined.

search_name Specifies which name isto be searched for.

levels to search Controlswhether thelookup is constrained to the object the operation isinvoked on or whether
it should search through objects contained by the object aswell.

Setting levels to _search to -1 searches the current object and all contained objects. Setting levels to_search to
1 searches only the current object. Use of values of levels to search of O or of negative numbers other than -
1 is undefined.

The describe_contents operation combines the contents operation and the describe operation. For each object
returned by the contents operation, the description of the object is returned (i.e., the object’s describe operation
is invoked and the results returned).

max_returned _objs Limits the number of objects that can be returned in an invocation of the call to the number
provided. Setting the parameter to -1 meansreturn all contained objects.

236 Common Object Request Broker Architecture (CORBA), v3.1.1

contents and describe_contents return alist of elements in their original order (i.e., the order in which the elements
were created in or moved into the container). If exclude_inherited is false, the ordering of inherited elements is
undefined.

14.5.4.2 Write Interface

The Container interface provides operations to create ModuleDefs, ConstantDefs, StructDefs, UnionDefs,
EnumDefs, AliasDefs, InterfaceDefs, ValueDefs ValueBoxDefs, and NativeDefs as contained objects. The
defined_in attribute of a definition created with any of these operationsisinitialized to identify the Container on which
the operation is invoked, and the containing_repository attribute is initialized to its Repository.

The create_<type> operations all take id and name parameters that are used to initialize the identity of the created
definition. A BAD_PARAM exception is raised with minor code 2 if an object with the specified id already exists in the
Repository. A BAD_PARAM exception with minor code 3 is raised if the specified name already exists within this
Container and multiple versions are not supported. Certain interfaces derived from Container may restrict the types of
definitions that they may contain. Any create_<type> operation that would insert a definition that is not allowed by a
Container will raise the BAD_PARAM exception with minor code 4.

The create_module operation returns a new empty ModuleDef. Definitions can be added using
Container::create_<type> operations on the new module, or by using the Contained::move operation.

The create_constant operation returns a new ConstantDef with the specified type and value.

The create_struct operation returns a new StructDef with the specified members. The type member of the
StructMember structures is ignored, and should be set to TC_void. See StructDef on page 241 for more information.

The create_union operation returns a new UnionDef with the specified discriminator_type and members. The
type member of the UnionMember structures is ignored, and should be set to TC_void. See UnionDef on page 242 for
more information.

The create_enum operation returns a new EnumDef with the specified members. See EnumDef on page 243 for more
information.

The create_alias operation returns a new AliasDef with the specified original_type.

The create_interface operation returns a new empty ExtinterfaceDef with the specified base_interfaces. Type,
exception, and constant definitions can be added using Container::create_<type> operations on the new InterfaceDef.
OperationDefs can be added using InterfaceDef::create_operation and AttributeDefs can be added using
InterfaceDef::create_attribute. Definitions can also be added using the Contained::move operation.

The create_abstract_interface operation returns a new empty ExtAbstractinterfaceDef with the specified
base_interfaces. Type, exception, and constant definitions can be added using Container::create_<type> operations
on the new AbstractinterfaceDef. OperationDefs can be added using AbstractinterfaceDef::create_operation
and AttributeDefs can be added using AbstractinterfaceDef::create_attribute. Definitions can also be added using
the Contained::move operation.

The create_local_interface operation returns a new empty ExtLocallnterfaceDef with the specified
base_interfaces. Type, exception, and constant definitions can be added using Container::create_<type> operations
on the new LocallnterfaceDef. OperationDefs can be added using LocallnterfaceDef::create_operation and
AttributeDefs can be added using LocallnterfaceDef::create_attribute. Definitions can also be added using the
Contained::move operation.

Common Object Request Broker Architecture (CORBA), v3.1.1 237

The create_value operation returns a new empty ValueDef with the specified base interfaces and values (base_value,
supported_interfaces, and abstract_base_values) as well as the other information describing the new values
characteristics (is_custom, is_abstract, is_truncatable, and initializers). Type, exception, and constant definitions
can be added using Container::create_<type> operations on the new ValueDef. OperationDefs can be added using
ValueDef::create_operation and AttributeDefs can be added using ValueDef::create_attribute. Definitions can
also be added using the Contained::move operation.

The create_value_box operation returns a new ValueBoxDef with the specified original_type_def.

The create_exception operation returns a new ExceptionDef with the specified members. The type member of the
StructMember structures should be set to TC_void.

The create_native operation returns a new NativeDef with the specified name.

The create_ext_value operation returns a new empty ExtValueDef with the specified base interfaces and values
(base_value, supported_interfaces, and abstract_base_values) as well as the other information describing the
new values characteristics (is_custom, is_abstract, is_truncatable, and initializers). The initializers argument is of
type ExtlInitializerSeq allowing one to specify user exceptions for initializers. Type, exception, and constant definitions
can be added using Container::create_<type> operations on the new ExtValueDef. OperationDefs can be added
using ExtValueDef::create_operation and ExtAttributeDefs can be added using
ExtValueDef::create_ext_attribute. Definitions can also be added using the Contained::move operation.

14.5.5 IDLType

The base interface IDLType is inherited by all IR objects that represent IDL types. It provides access to the TypeCode
describing the type, and is used in defining other interfaces wherever definitions of IDL types must be referenced.

module CORBA {
interface IDLType : IRObject {
readonly attribute TypeCode type;
|3
|3

The type attribute describes the type defined by an object derived from IDLType.
14.5.6 Repository

Repository is an interface that provides global access to the Interface Repository that does not support access to
information related to CORBA Components. The Repository object can contain constants, typedefs, exceptions,
interfaces, value types, value boxes, native types, and modules. As it inherits from Container, it can be used to look up
any definition (whether globally defined or defined within a module or interface) either by name or by id.

Since Repository derives only from Container and not from Contained, it does not have a Repositoryld associated
with it. By default it is deemed to have the Repositoryld "" (the empty string) for purposes of assigning a value to the
defined_in field of the description structure of ModuleDef, InterfaceDef, ValueDef, ValueBoxDef, TypedefDef,
ExceptionDef, and ConstantDef that are contained immediately in the Repository object.

There may be more than one Interface Repository in a particular ORB environment (although some ORBs might require
that definitions they use be registered with a particular repository). Each ORB environment will provide a means for
obtaining object references to the Repositories available within the environment.

238 Common Object Request Broker Architecture (CORBA), v3.1.1

module CORBA {
interface Repository : Container {
/l read interface

Contained lookup_id (in Repositoryld search_id);
TypeCode get_canonical_typecode(in TypeCode tc);
PrimitiveDef get_primitive (in PrimitiveKind kind);

Il write interface

StringDef create_string (in unsigned long bound);
WstringDef create_wstring(in unsigned long bound);

SequenceDef create_sequence (
in unsigned long bound,
in IDLType element_type

);

ArrayDef create_array (
in unsigned long length,
in IDLType element_type

);

FixedDef create_fixed(
in unsigned short digits,
in short scale

b
b

14.5.6.1 Read Interface

The lookup_id operation is used to lookup an object in a Repository given its Repositoryld. If the Repository does
not contain a definition for search_id, a nil object reference is returned. The lookup_id operations always return a nil
reference if the value of search_id isIDL:omg.org/CORBA/Object:1.0, or IDL:omg.org/CORBA/ValueBase:1.0,
signifying the fact that the implicit base types are not contained in the Interface Repository.

The get_canonical_typecode operation looks up the TypeCode in the Interface Repository and returns an equivalent
TypeCode that includes all repository ids, names, and member_names. If the top level TypeCode does not
contain a Repositoryld, such as array and sequence TypeCodes, or TypeCodes from older ORBSs, or if it contains a
Repositoryld that is not found in the target Repository, then a new TypeCode is constructed by recursively calling
get_canonical_typecode on each member TypeCode of the original TypeCode.

The get_primitive operation returns a reference to a PrimitiveDef (see PrimitiveDef on page 244) with the specified
kind attribute. All PrimitiveDefs are immutable and are owned by the Repository.

Common Object Request Broker Architecture (CORBA), v3.1.1 239

14.5.6.2 Write Interface

The five create_<type> operations that create new IR objects defining anonymous types. As these interfaces are not
derived from Contained, it is the caller’s responsibility to invoke destroy on the returned object if it is not successfully
used in creating a definition that is derived from Contained. Each anonymous type definition must be used in defining
exactly one other object.

1. Thecreate_string operation returns anew StringDef with the specified bound, which must be non-zero. The
get_primitive operation is used for unbounded strings.

2. Thecreate_wstring operation returns anew WstringDef with the specified bound, which must be non-zero. The
get_primitive operation is used for unbounded strings.

3. Thecreate_sequence operation returns anew SequenceDef with the specified bound and element_type.
4. Thecreate_array operation returns a new ArrayDef with the specified length and element_type.

5. Thecreate_fixed operation returns a new FixedDef with the specified number of digits and scale. The number of
digits must be from 1 to 31, inclusive.

14.5.7 ModuleDef

A ModuleDef can contain constants, typedefs, exceptions, interfaces, value types, value boxes, native types, and other
module objects.

module CORBA {
interface ModuleDef : Container, Contained {};

struct ModuleDescription {
Identifier name;
Repositoryld id;
Repositoryld defined_in;
VersionSpec version;
|3
|3

The inherited describe operation for a ModuleDef object returns a ModuleDescription.
14.5.8 ConstantDef

A ConstantDef object defines a named constant.

module CORBA {
interface ConstantDef : Contained {
readonly attribute TypeCode type;

attribute IDLType type_def;
attribute any value;
¥
struct ConstantDescription {
Identifier name;
Repositoryld id;

240 Common Object Request Broker Architecture (CORBA), v3.1.1

Repositoryld defined_in;

VersionSpec version;
TypeCode type;
any value;

h
h

14.5.8.1 Read Interface

The type attribute specifies the TypeCode describing the type of the constant. The type of a constant must be one of the
primitive types allowed in constant declarations (see Constant Declaration on page 57). The type_def attribute identifies
the definition of the type of the constant.

The value attribute contains the value of the constant, not the computation of the value (e.g., the fact that it was defined
as " 1+2”).

The describe operation for a ConstantDef object returns a ConstantDescription.

14.5.8.2 Write Interface
Setting the type_def attribute also updates the type attribute.

When setting the value attribute, the TypeCode of the supplied any must be equal to the type attribute of the
ConstantDef.

14.5.9 TypedefDef

The base interface TypedefDef isinherited by all named non-object.types (structures, unions, enumerations, and aliases).
The TypedefDef interface is not inherited by the definition objects for primitive or anonymous types.

module CORBA {
interface TypedefDef : Contained, IDLType {};

struct TypeDescription {

Identifier name;
Repositoryld id;
Repositoryld defined_in;
VersionSpec version;
TypeCode type;

b
b

The inherited describe operation for interfaces derived from TypedefDef returns a TypeDescription.
14.5.10 StructDef

A StructDef represents an IDL structure definition. It can contain structs, unions, and enums.

module CORBA {

struct StructMember {
Identifier name;

Common Object Request Broker Architecture (CORBA), v3.1.1 241

TypeCode type;
IDLType type_def;
¥

typedef sequence <StructMember> StructMemberSeq;

interface StructDef : TypedefDef, Container {
attribute StructMemberSeq members;

b
b

14.5.10.1 Read Interface

The members attribute contains a description of each structure member. The inherited type attribute is atk_struct
TypeCode describing the structure.

14.5.10.2 Write Interface

Setting the members attribute also updates the type attribute. When setting the members attribute, the type member
of the StructMember structure should be set to TC_void.

A StructDef used as a Container may only contain StructDef, UnionDef, or EnumDef definitions.
14.5.11 UnionDef

A UnionDef represents an IDL union definition.

module CORBA {
struct UnionMember {

Identifier name;
any label;
TypeCode type;
IDLType type_def;

b

typedef sequence <UnionMember> UnionMemberSeq;

interface UnionDef : TypedefDef, Container {
readonly attribute TypeCode discriminator_type;
attribute IDLType discriminator_type_def;
attribute UnionMemberSeq members;

b
b

14.5.11.1 Read Interface
The discriminator_type and discriminator_type_def attributes describe and identify the union’s discriminator type.

The members attribute contains a description of each union member. The label of each UnionMemberDescription is
adistinct value of the discriminator_type. Adjacent members can have the same name. Members with the same name
must also have the same type. A label with type octet and value 0 indicates the default union member.

The inherited type attribute is atk_union TypeCode describing the union.

242 Common Object Request Broker Architecture (CORBA), v3.1.1

14.5.11.2 Write Interface

Setting the discriminator_type_def attribute also updates the discriminator_type attribute and setting the
discriminator_type_def or members attribute also updates the type attribute.

When setting the members attribute, the type member of the UnionMember structure should be set to TC_void.

A UnionDef used as a Container may only contain StructDef, UnionDef, or EnumDef definitions.

14.5.12 EnumDef

An EnumDef represents an IDL enumeration definition.

module CORBA {
typedef sequence <Identifier> EnumMemberSeq;

interface EnumbDef : TypedefDef {
attribute EnumMemberSeq members;

b
b

14.5.12.1 Read Interface
The members attribute contains a distinct name for each possible value of the enumeration.

The inherited type attribute is atk_enum TypeCode describing the enumeration.

14.5.12.2 Write Interface
Setting the members attribute also updates the type attribute.

14.5.13 AliasDef

An AliasDef represents an IDL typedef that aliases another definition.

module CORBA {
interface AliasDef : TypedefDef {
attribute IDLType original_type_def;

b
b

14.5.13.1 Read Interface
The original_type_def attribute identifies the type being aliased.

The inherited type attribute is atk_alias TypeCode describing the aias.

14.5.13.2 Write Interface
Setting the original_type_def attribute also updates the type attribute.

Common Object Request Broker Architecture (CORBA), v3.1.1

243

14.5.14 PrimitiveDef

A PrimitiveDef represents one of the IDL primitive types. As primitive types are unnamed, this interface is not derived
from TypedefDef or Contained.

module CORBA {
enum PrimitiveKind {
pk_null, pk_void, pk_short, pk_long, pk_ushort, pk_ulong,
pk_float, pk_double, pk_boolean, pk_char, pk_octet,
pk_any, pk_TypeCode, pk_Principal, pk_string, pk_obijref,
pk_longlong, pk_ulonglong, pk_longdouble, pk_wchar, pk_wstring,
pk_value_base

b

interface PrimitiveDef: IDLType {
readonly attribute PrimitiveKind kind;
|3
|3
The kind attribute indicates which primitive type the PrimitiveDef represents. There are no PrimitiveDefs with kind
pk_null. A PrimitiveDef with kind pk_string represents an unbounded string. A PrimitiveDef with kind pk_objref
represents the IDL type Object. A PrimitiveDef with kind pk_value_base represents the IDL type ValueBase.

The inherited type attribute describes the primitive type. All PrimitiveDefs are owned by the Repository. References to
them are obtained using Repository::get_primitive.

14.5.15 StringDef

A StringDef represents an IDL bounded string type. The unbounded string type is represented as a PrimitiveDef. As
string types are anonymous, this interface is not derived from TypedefDef or Contained.

module CORBA {
interface StringDef : IDLType {
attribute unsigned long bound,;

3
3
The bound attribute specifies the maximum number of characters in the string and must not be zero. The inherited type
attribute is atk_string TypeCode describing the string.

14.5.16 WstringDef

A WstringDef represents an IDL wide string. The unbounded wide string type is represented as a PrimitiveDef. As
wide string types are anonymous, this interface is not derived from TypedefDef or Contained.

module CORBA {
interface WstringDef : IDLType {
attribute unsigned long bound;

h

244 Common Object Request Broker Architecture (CORBA), v3.1.1

The bound attribute specifies the maximum number of wide characters in a wide string, and must not be zero. The
inherited type attribute is atk_wstring TypeCode describing the wide string.

14.5.17 FixedDef

A FixedDef represents an IDL fixed point type.

module CORBA {
interface FixedDef : IDLType {
attribute unsigned short digits;
attribute short scale;

b
b

The digits attribute specifies the total number of decimal digits in the number, and must be from 1 to 31, inclusive. The
scale attribute specifies the position of the decimal point.

The inherited type attribute is atk_fixed TypeCode, which describes a fixed-point decima number.
14.5.18 SequenceDef

A SequenceDef represents an IDL sequence type. As sequence types are anonymous, this interface is not derived from
TypedefDef or Contained.

module CORBA {
interface SequenceDef : IDLType {

attribute unsigned long bound;
readonly attribute TypeCode element_type;
attribute IDLType element_type_def;

b
b

14.5.18.1 Read Interface

The bound attribute specifies the maximum number of elements in the sequence. A bound of zero indicates an
unbounded sequence.

The type of the elements is described by element_type and identified by element_type_def. The inherited type
attribute is atk_sequence TypeCode describing the sequence.

14.5.18.2 Write Interface

Setting the element_type_def attribute also updates the element_type attribute. Setting the bound or
element_type_def attribute also updates the type attribute.

14.5.19 ArrayDef

An ArrayDef represents an IDL array type. As array types are anonymous, this interface is not derived from TypedefDef
or Contained.

Common Object Request Broker Architecture (CORBA), v3.1.1 245

module CORBA {
interface ArrayDef : IDLType {

attribute unsigned long length;
readonly attribute TypeCode element_type;
attribute IDLType element_type_def;

b
b

14.5.19.1 Read Interface

The length attribute specifies the number of elements in the array.

The type of the elements is described by element_type and identified by element_type_def. Since an ArrayDef only
represents a single dimension of an array, multi-dimensional IDL arrays are represented by multiple ArrayDef abjects,
one per array dimension. The element_type_def attribute of the ArrayDef representing the leftmost index of the array,
asdefined in IDL, will refer to the ArrayDef representing the next index to the right, and so on. The innermost ArrayDef
represents the rightmost index and the element type of the multi-dimensional IDL array.

The inherited type attribute is atk_array TypeCode describing the array.

14.5.19.2 Write Interface

Setting the element_type_def attribute also updates the element_type attribute. Setting the bound or
element_type_def attribute also updates the type attribute.

14.5.20 ExceptionDef

An ExceptionDef represents an exception definition. It can contain structs, unions, and enums.

module CORBA {
interface ExceptionDef : Contained, Container {
readonly attribute TypeCode type;
attribute StructMemberSeq members;

b

struct ExceptionDescription {
Identifier name;
Repositoryld id;
Repositoryld defined _in;
VersionSpec version;
TypeCode type;

¥

¥

14.5.20.1 Read Interface

Thetype attribute isatk_except TypeCode describing the exception. The members attribute describes any exception
members. The describe operation for an ExceptionDef object returns an ExceptionDescription.

246 Common Object Request Broker Architecture (CORBA), v3.1.1

14.5.20.2 Write Interface

Setting the members attribute also updates the type attribute. When setting the members attribute, the type member
of the StructMember structure is ignored and should be set to TC_void.

An ExceptionDef used as a Container may only contain StructDef, UnionDef, or EnumDef definitions.

14.5.21 AttributeDef

An AttributeDef represents the information that defines an attribute of an interface, component, home, valuetype, or
eventtype.

module CORBA {
enum AttributeMode {ATTR_NORMAL, ATTR_READONLY};

interface AttributeDef : Contained {
readonly attribute TypeCode type;

attribute IDLType type_def;
attribute AttributeMode mode;
5
struct AttributeDescription {
Identifier name;
Repositoryld id;
Repositoryld defined_in;
VersionSpec version;
TypeCode type;
AttributeMode mode;
h

h

14.5.21.1 Read Interface

The type attribute provides the TypeCode describing the type of this attribute. The type_def attribute identifies the
object defining the type of this attribute.

The mode attribute specifies read only or read/write access for this attribute.

The describe operation for an AttributeDef object returns an AttributeDescription.

14.5.21.2 Write Interface
Setting the type_def attribute also updates the type attribute.

14.5.22 ExtAttributeDef
An ExtAttributeDef represents the information that defines an attribute of an interface, component, home, valuetype, or
eventtype that can potentially have user exceptions associated with it.

module CORBA({
struct ExtAttributeDescription {
Identifier name;

Common Object Request Broker Architecture (CORBA), v3.1.1 247

Repositoryld id;

Repositoryld defined _in;
VersionSpec version;
TypeCode type;
AttributeMode mode;

ExcDescriptionSeq get_exceptions;
ExcDescriptionSeq put_exceptions;

h
interface ExtAttributeDef : AttributeDef {

Il read/write interface
attribute ExcDescriptionSeq get_exceptions;
attribute ExcDescriptionSeq set_exceptions;

/l read interface
ExtAttributeDescription describe_attribute();

b

14.5.22.1 Read Interface

The operations inherited from AttributeDef behave exactly the same as in AttributeDef. In particular, the def_kind
attribute that has the value dk_Attribute, exactly as in AttributeDef.

The get_exceptions and set_exceptions attributes specify the list of exception types that can be raised by the
attribute.

The describe_attribute operation for an ExtAttributeDef object returns an ExtAttributeDescription. that contains
information about user exceptions in addition to the information that is available through AttributeDescription.

14.5.22.2 Write Interface
Same as for AttributeDef.

14.5.23 OperationDef

An OperationDef represents the information needed to define an operation of an interface.

module CORBA {
enum OperationMode {OP_NORMAL, OP_ONEWAY};

enum ParameterMode {PARAM_IN, PARAM_OUT, PARAM_INOUT};

struct ParameterDescription {

Identifier name;
TypeCode type;
IDLType type_def;

ParameterMode mode;
b

typedef sequence <ParameterDescription> ParDescriptionSeq;

typedef Identifier Contextldentifier;

248 Common Object Request Broker Architecture (CORBA), v3.1.1

typedef sequence <Contextldentifier> ContextldSeq;

typedef sequence <ExceptionDef> ExceptionDefSeq;
typedef sequence <ExceptionDescription> ExcDescriptionSeq;

interface OperationDef : Contained {
readonly attribute TypeCode result;

attribute IDLType result_def;
attribute ParDescriptionSeq params;
attribute OperationMode mode;
attribute ContextldSeq contexts;
attribute ExceptionDefSeq exceptions;
h
struct OperationDescription {
Identifier name;
Repositoryld id;
Repositoryld defined_in;
VersionSpec version;
TypeCode result;
OperationMode mode;
ContextldSeq contexts;

ParDescriptionSeq parameters;
ExcDescriptionSeq exceptions;

h
h
14.5.23.1 Read Interface

The result attribute is a TypeCode describing the type of the value returned by the operation. The result_def attribute
identifies the definition of the returned type.

The params attribute describes the parameters of the operation. It is a sequence of ParameterDescription structures.
The order of the ParameterDescriptions in the sequence is significant. The name member of each structure provides
the parameter name. The type member is a TypeCode describing the type of the parameter. The type_def member
identifies the definition of the type of the parameter. The mode member indicates whether the parameter is an in, out, or
inout parameter.

The operation’s mode is either oneway (i.e., no output is returned) or normal.
The contexts attribute specifies the list of context identifiers that apply to the operation.
The exceptions attribute specifies the list of exception types that can be raised by the operation.

The inherited describe operation for an OperationDef object returns an OperationDescription.

14.5.23.2 Write Interface
Setting the result_def attribute also updates the result attribute.

The mode attribute can be set to OP_ONEWAY only if the result is TC_void and all elements of params have a mode of
PARAM_IN, and the list of exceptions is empty. If the mode is set to OP_ONEWAY when these conditions do not hold,
a BAD_PARAM exception is raised with minor code 31.

Common Object Request Broker Architecture (CORBA), v3.1.1 249

14.5.24 InterfaceDef

An InterfaceDef object represents interface definition. It can contain constants, typedefs, exceptions, operations, and
attributes.

module CORBA {
interface InterfaceDef;
typedef sequence <InterfaceDef> InterfaceDefSeq;
typedef sequence <Repositoryld> RepositoryldSeq;
typedef sequence <OperationDescription> OpDescriptionSeq;
typedef sequence <AttributeDescription> AttrDescriptionSeq;

interface InterfaceDef : Container, Contained, IDLType {
Il read/write interface

attribute InterfaceDefSeq base_interfaces;
/I read interface
boolean is_a (in Repositoryld interface_id);

struct FullinterfaceDescription {

Identifier name;
Repositoryld id;

Repositoryld defined_in;
VersionSpec version;
OpDescriptionSeq operations;
AttrDescriptionSeq attributes;
RepositoryldSeq base_interfaces;
TypeCode type;

|3
FullinterfaceDescription describe_interface();
/I write interface

AttributeDef create_attribute (

in Repositoryld id,
in Identifier name,
in VersionSpec version,
in IDLType type,
in AttributeMode mode

)i

OperationDef create_operation (
in Repositoryld id,
in Identifier name,
in VersionSpec version,
in IDLType result,
in OperationMode mode,

250 Common Object Request Broker Architecture (CORBA), v3.1.1

in ParDescriptionSeq params,
in ExceptionDefSeq exceptions,

in ContextldSeq contexts

)i

5

struct InterfaceDescription {
Identifier name;
Repositoryld id;
Repositoryld defined_in;
VersionSpec version;

RepositoryldSeq base_interfaces;
h

14.5.24.1 Read Interface

The base_interfaces attribute lists all the interfaces from which this interface inherits.

The is_a operation returns TRUE if the interface on which it is invoked either is identical to or inherits, directly or
indirectly, from the interface identified by its interface_id parameter. Otherwise it returns FALSE. If the value of
interface_id is IDL:omg.org/CORBA/Object:1.0, is_a returns TRUE signifying the fact that all interfaces are
implicitly derived from the base type Object.

The describe_interface operation returns a FullinterfaceDescription describing the interface, including its
operations and attributes. The operations and attributes fields of the FullinterfaceDescription structure include
descriptions of all of the operations and attributes in the transitive closure of the inheritance graph of the interface being
described.

The inherited describe operation for an InterfaceDef returns an InterfaceDescription.

The inherited contents operation returns the list of constants, typedefs, and exceptions defined in this InterfaceDef and
the list of attributes and operations either defined or inherited in this InterfaceDef. If the exclude_inherited parameter
is set to TRUE, only attributes and operations defined within this interface are returned. If the exclude_inherited
parameter is set to FALSE, all attributes and operations are returned.

14.5.24.2 Write Interface

Setting the base_interfaces attribute causes a BAD_PARAM exception with minor code 5 to be raised if the name
attribute of any object contained by this InterfaceDef conflicts with the name attribute of any object contained by any
of the specified base InterfaceDefs.

The create_attribute operation returns a new AttributeDef contained in the InterfaceDef on which it isinvoked. The
id, name, version, type_def, and mode attributes are set as specified. The type attribute is also set. The defined_in
attribute is initialized to identify the containing InterfaceDef. A BAD_PARAM exception with standard minor code 2 is
raised if an object with the specified id already exists in the Repository. BAD_PARAM exception with standard minor
code 3 israised if an object with the same name already exists in this InterfaceDef.

The create_operation operation returns a new OperationDef contained in the InterfaceDef on which it is invoked.
Theid, name, version, result_def, mode, params, exceptions, and contexts attributes are set as specified. The
result attribute is also set. The defined_in attribute is initialized to identify the containing InterfaceDef. A

Common Object Request Broker Architecture (CORBA), v3.1.1 251

BAD_PARAM exception with standard minor code 2 israised if an object with the specified id already exists in the
Repository. BAD_PARAM exception with standard minor code 3 israised if an object with the same name already
exists in this InterfaceDef.

An InterfaceDef used as a Container may only contain TypedefDef, (including definitions derived from
TypedefDef), ConstantDef, and ExceptionDef definitions.

14.5.25 ExtInterfaceDef

An ExtinterfaceDef object represents interface definition. It can contain constants, typedefs, exceptions, operations, and
attributes with exceptions.

module CORBA {
interface InterfaceAttrExtension {
/l read interface

struct ExtFullinterfaceDescription {

b

b

Identifier name;
Repositoryld id;

Repositoryld defined_in;
VersionSpec version;
OpDescriptionSeq operations;
ExtAttrDescriptionSeq attributes;
RepositoryldSeq base_interfaces;
TypeCode type;

ExtFullinterfaceDescription describe_ext_interface();

/l write interface
ExtAttributeDef create_ext_attribute (

);

in Repositoryld id,

in Identifier name,
in VersionSpec version,
in IDLType type,

in AttributeMode mode,

in ExceptionDefSeq
in ExceptionDefSeq

get_exceptions,
set_exceptions

interface ExtInterfaceDef : InterfaceDef,

b
b

InterfaceAttrExtension {

14.5.25.1 Read Interface

All operations and attributes inherited from InterfaceDef behave the same as for InterfaceDef. In particular, the
def _kind attribute has the value dk_Interface, exactly as in InterfaceDef.

252 Common Object Request Broker Architecture (CORBA), v3.1.1

The inherited describe_ext_interfaces operation returns the ExtFullinterfaceDescription structure that contains
information about attributes with exceptions, in addition to the information found in FullinterfaceDescription.

14.5.25.2 Write Interface

All operations and attributes inherited from InterfaceDef behave the same as for InterfaceDef.

The inherited create_ext_attribute operation returns a new ExtAttributeDef contained in the ExtinterfaceDef on
which it isinvoked. Theid, name, version, type_def, mode, get_exceptions and set_exceptions attributes are set
as specified. The type attribute is also set. The defined_in attribute is initialized to identify the containing
ExtinterfaceDef. A BAD_PARAM exception with standard minor code 2 is raised if an object with the specified id
already exists in the Repository. BAD_PARAM exception with standard minor code 3 is raised if an object with the
same name already exists in this ExtinterfaceDef.

14.5.26 AbstractinterfaceDef

An AbstractinterfaceDef aobject represents a CORBA 2.3 abstract interface definition. It can contain constants,
typedefs, exceptions, operations, and attributes. Its base interfaces can only contain AbstractinterfaceDefs.

module CORBA {
interfaceAbstractinterfaceDef;
typedef sequence <AbstractinterfaceDef> AbstractinterfaceDefSeq;
interface AbstractinterfaceDef : InterfaceDef {
5
5

14.5.26.1 Read Interface
The inherited base_interfaces attribute returns a list of abstract interfaces from which this abstract interface inherits.

NOTE: base_interfaces isof type InterfaceDefSeq, but since AbstractinterfaceDef is derived from InterfaceDef, a
list of AbstractinterfaceDefs can legitimately be returned in an InterfaceDefSeq.

The inherited is_a operation returns TRUE if the interface on which it isinvoked either isidentical to or inherits, directly
or indirectly, from the abstract interface identified by itsinterface_id parameter, or if the value of interface_id is
IDL:omg.org/CORBA/AbstractBase:1.0. Otherwise it returns FALSE.

The inherited describe_interface operation returns a FullinterfaceDescription describing the abstract interface,
including its operations and attributes.

The inherited describe operation for an AbstractinterfaceDef returns an InterfaceDescription.

The inherited contents operation returns the list of constants, typedefs, and exceptions defined in this
AbstractinterfaceDef and the list of attributes and operations either defined or inherited in this AbstractinterfaceDef.
If the exclude_inherited parameter is set to TRUE, only attributes and operations defined within this abstract interface
are returned. If the exclude_inherited parameter is set to FALSE, all attributes and operations are returned.

Common Object Request Broker Architecture (CORBA), v3.1.1 253

14.5.26.2 Write Interface

Setting the inherited base_interfaces attribute causes a BAD_PARAM exception with standard minor code 5 to be
raised if the name attribute of any object contained by this AbstractinterfaceDef conflicts with the name attribute of
any object contained by any of the specified base AbstractinterfaceDefs. If any of the InterfaceDefs in
base_interface are not AbstractinterfaceDefs, then aBAD_PARAM exception with standard minor code 11 is raised.

The inherited create_attribute operation returns a new AttributeDef contained in the AbstractinterfaceDef on which
itisinvoked. Theid, name, version, type_def, and mode attributes are set as specified. The type attribute is also set.
The defined_in attribute is initialized to identify the containing AbstractinterfaceDef. A BAD_PARAM exception
with standard minor code 2 israised if an object with the specified id aready exists in the Repository. BAD_PARAM
exception with standard minor code 3 is raised if an object with the same name already exists in this
AbstractinterfaceDef.

The inherited create_operation operation returns a new OperationDef contained in the AbstractinterfaceDef on
which it isinvoked. Theid, name, version, result_def, mode, params, exceptions, and contexts attributes are set
as specified. The result attribute is also set. The defined_in attribute is initialized to identify the containing
AbstractinterfaceDef. A BAD_PARAM exception with standard minor code 2 is raised if an object with the specified
id aready exists in the Repository. BAD_PARAM exception with standard minor code 3 is raised if an object with the
same name already exists in this AbstractinterfaceDef.

14.5.27 ExtAbstractinterfaceDef

An ExtAbstractinterfaceDef object represents an abstract interface definition. It can contain constants, typedefs,
exceptions, operations, and attributes with exceptions. Its base interfaces can only contain ExtAbstractinterfaceDefs.

module CORBA {

interface ExtAbstaractinterfaceDef : AbstractinterfaceDef,
InterfaceAttrExtension {
b
b

14.5.27.1 Read Interface

All operations and attributes inherited from AbstractinterfaceDef behave the same as for AbstaractinterfaceDef. In
particular, the def _kind attribute has the value dk_Abstractinterface, exactly as in AbstaractinterfaceDef.

The inherited describe_ext_interface operation returns the ExtFullinterfaceDescription structure that contains
information about attributes with exceptions, in addition to the information found in FullinterfaceDescription.

14.5.27.2 Write Interface

All operations and attributes inherited from AbstaractinterfaceDef behave the same as for AbstractinterfaceDef.

The inherited create_ext_attribute operation returns a new ExtAttributeDef contained in the
ExtAbstractinterfaceDef on which it is invoked. The id, name, version, type_def, mode, get_exceptions, and
set_exceptions attributes are set as specified. The type attribute is also set. The defined _in attribute is initialized to
identify the containing ExtAbstractinterfaceDef. A BAD_PARAM exception with standard minor code 2 israised if an
object with the specified id already exists in the Repository. BAD_PARAM exception with standard minor code 3 is
raised if an object with the same name already exists in this ExtAbstractinterfaceDef.

254 Common Object Request Broker Architecture (CORBA), v3.1.1

14.5.28 LocallnterfaceDef

A LocallnterfaceDef object represents alocal interface definition. It can contain constants, typedefs, exceptions,
operations, and attributes. Its base interfaces can only contain InterfaceDefs or LocallnterfaceDefs.

module CORBA {
interfaceLocallnterfaceDef;
typedef sequence <LocallnterfaceDef> LocallnterfaceDefSeq;

interface LocallnterfaceDef : InterfaceDef {
5
3

14.5.28.1 Read Interface

The inherited base_interfaces attribute returns alist of interfaces, local or otherwise, from which this local interface
inherits.

NOTE: base_interfaces isof type InterfaceDefSeq, but since LocallnterfaceDef is derived from InterfaceDef, alist
that consists of some regular InterfaceDefs and some LocallnterfaceDefs can legitimately be returned in an
InterfaceDefSeq.

The inherited is_a operation returns TRUE if the local interface on which it is invoked either is identical to or inherits,
directly or indirectly, from the local interface identified by itsinterface_id parameter, or if the value of interface_id is
IDL:omg.org/CORBA/LocalBase:1.0. Otherwise it returns FALSE.

The inherited describe_interface operation returns a FullinterfaceDescription describing the local interface,
including its operations and attributes.

The inherited describe operation for a LocallnterfaceDef returns an InterfaceDescription.

The inherited contents operation returns the list of constants, typedefs, and exceptions defined in this
LocallnterfaceDef and the list of attributes and operations either defined or inherited in this LocalinterfaceDef. If the
exclude_inherited parameter is set to TRUE, only attributes and operations defined within this local interface are
returned. If the exclude_inherited parameter is set to FALSE, all attributes and operations are returned.

14.5.28.2 Write Interface

Setting the inherited base_interfaces attribute causes a BAD_PARAM exception with standard minor code 5 to be
raised if the name attribute of any object contained by this LocallnterfaceDef conflicts with the name attribute of any
object contained by any of the specified base InterfaceDefs (local or otherwise).

The inherited create_attribute operation returns a new AttributeDef contained in the LocallnterfaceDef on which it
isinvoked. The id, name, version, type_def, and mode attributes are set as specified. The type attribute is also set.
The defined_in attribute is initialized to identify the containing LocallnterfaceDef. A BAD_PARAM exception with
standard minor code 2 is raised if an object with the specified id already exists in the Repository. BAD_PARAM
exception with standard minor code 3 is raised if an object with the same name already exists in this
LocallnterfaceDef.

The inherited create_operation operation returns a new OperationDef contained in the LocallnterfaceDef on which
itisinvoked. Theid, name, version, result_def, mode, params, exceptions, and contexts attributes are set as
specified. The result attribute is also set. The defined_in attribute is initialized to identify the containing

Common Object Request Broker Architecture (CORBA), v3.1.1 255

LocallnterfaceDef. A BAD_PARAM exception with standard minor code 2 is raised if an object with the specified id
already exists in the Repository. BAD_PARAM exception with standard minor code 3 is raised if an object with the
same name already exists in this LocallnterfaceDef.

14.5.29 ExtLocallnterfaceDef

An ExtLocallnterfaceDef object represents a local interface definition. It can contain constants, typedefs, exceptions,
operations, and attributes with exceptions. Its base interfaces can only contain ExtinterfaceDefs or
ExtLocallnterfaceDefs.

module CORBA {

interface ExtLocallnterfaceDef : LocallnterfaceDef,
InterfaceAttrExtension {

b
b

14.5.29.1 Read Interface

All operations and attributes inherited from LocallnterfaceDef behave the same as for LocallnterfaceDef. In
particular, the def_kind attribute has the value dk_Locallnterface, exactly as in LocallnterfaceDef.

The inherited describe_ext_interface operation returns the ExtFullinterfaceDescription structure that contains
information about attributes with exceptions, in addition to the information found in FullinterfaceDescription.

14.5.29.2 Write Interface

All operations and attributes inherited from LocallnterfaceDef behave the same as for LocallnterfaceDef.

The inherited create_ext_attribute operation returns a new ExtAttributeDef contained in the ExtLocallnterfaceDef
on which it isinvoked. Theid, name, version, type_def, mode, get_exceptions, and set_exceptions attributes
are set as specified. The type attribute is also set. The defined_in attribute is initialized to identify the containing
ExtLocallnterfaceDef. A BAD_PARAM exception with standard minor code 2 is raised if an object with the specified
id aready exists in the Repository. BAD_PARAM exception with standard minor code 3 is raised if an object with the
same name already exists in this ExtLocallnterfaceDef.

14.5.30 ValueMemberDef

A ValueMemberDef IR Object represents a value member.

module CORBA {
typedef short Visibility;
const Visibility PRIVATE_MEMBER = 0;
const Visibility PUBLIC_MEMBER = 1;

struct ValueMember {

Identifier name;
Repositoryld id;
Repositoryld defined_in;
VersionSpec version;
TypeCode type;

256 Common Object Request Broker Architecture (CORBA), v3.1.1

IDLType type_def;
Visibility access;

5
typedef sequence <ValueMember> ValueMemberSeq;

interface ValueMemberDef : Contained {
readonly attribute TypeCode type;
attribute IDLType type_def;
attribute Visibility access;

h
h
14.5.30.1 Read Interface

The type attribute provides the TypeCode describing the type of this value member. The type_def attribute identifies
the object defining the type of this value member. The access attribute specifies private or public access for this value
member. The describe operation for a ValueMemberDef object returns a ValueMember.

14.5.30.2 Write Interface
Setting the type_def attribute also updates the type attribute.

14.5.31 ValueDef

A ValueDef object represents a value definition. It can contain constants, typedefs, exceptions, operations, and attributes.

module CORBA {
interface ValueDef;
typedef sequence <ValueDef> ValueDefSeq;

struct Initializer {

StructMemberSeq members;
Identifier name;

5
typedef sequence<initializer> InitializerSeq;

interface ValueDef : Container, Contained, IDLType {
Il read/write interface

attribute InterfaceDefSeq supported_interfaces;

attribute InitializerSeq initializers;

attribute ValueDef base value;

attribute ValueDefSeq abstract_base_values;
attribute boolean is_abstract;

attribute boolean is_custom;

attribute boolean is_truncatable;

/l read interface
boolean is_a(

Common Object Request Broker Architecture (CORBA), v3.1.1 257

in Repositoryld id

)i

struct FullValueDescription {
Identifier name;
Repositoryld id;
boolean is_abstract;
boolean is_custom;
Repositoryld defined_in;
VersionSpec version;
OpDescriptionSeq operations;
AttrDescriptionSeq attributes;
ValueMemberSeq members;
InitializerSeq initializers;

RepositoryldSeq
RepositoryldSeq

supported_interfaces;
abstract_base values;

boolean is_truncatable;
Repositoryld base value;
TypeCode type;

b

FullValueDescription describe_value();

/l write interface

ValueMemberDef create_value_member(

in Repositoryld id,

in Identifier name,
in VersionSpec version,
in IDLType type,

in Visibility access

);

AttributeDef create_attribute(

in Repositoryld id,
in Identifier name,
in VersionSpec version,
in IDLType type,
in AttributeMode mode

)i

OperationDef create_operation (
in Repositoryld id,
in Identifier name,
in VersionSpec version,
in IDLType result,
in OperationMode mode,

in ParDescriptionSeq params,
in ExceptionDefSeq exceptions,

258 Common Object Request Broker Architecture (CORBA), v3.1.1

in ContextldSeq contexts

)i

5

struct ValueDescription {
Identifier name;
Repositoryld id;
boolean is_abstract;
boolean is_custom;
Repositoryld defined_in;
VersionSpec version;
RepositoryldSeq supported_interfaces;
RepositoryldSeq abstract_base_values;
boolean is_truncatable;
Repositoryld base value;

b
b

14.5.31.1 Read Interface

The supported_interfaces attribute lists the interfaces that this value type supports.

The initializers attribute lists the initializers this value type supports.

The base_value attribute describes the value type from which this value inherits.

The abstract_base_values attribute lists the abstract value types from which this value inherits.
Theis_abstract attribute is TRUE if the value is an abstract value type.

Theis_custom attribute is TRUE if the value uses custom marshaling.

Theis_truncatable attribute is TRUE if the value inherits “safely” (i.e., supports truncation) from another value.

The is_a operation returns TRUE if the value on which it is invoked either isidentical to or inherits, directly or
indirectly, from the interface or value identified by itsid parameter or if the value of id isIDL:omg.org/CORBA/
ValueBase:1.0. Otherwise it returns FALSE.

The describe_value operation returns a FullValueDescription describing the value, including its operations and
attributes.

The inherited describe operation for a ValueDef returns a ValueDescription.

The inherited contents operation returns the list of constants, typedefs, and exceptions defined in this ValueDef and the
list of attributes, operations, and members either defined or inherited in this ValueDef. If the exclude_inherited
parameter is set to TRUE, only attributes, operations, and members defined within this value are returned. If the
exclude_inherited parameter is set to FALSE, all attributes, operations, and members are returned.

Common Object Request Broker Architecture (CORBA), v3.1.1 259

14.5.31.2 Write Interface

Setting the supported_interfaces, base_value, or abstract_base_values attribute causes a BAD_PARAM
exception with minor code 5 to be raised if the name attribute of any object contained by this ValueDef conflicts with
the name attribute of any object contained by any of the specified bases. If an attempt is made to set the
supported_interfaces attribute to an InterfaceDefSeq that contains more than one InterfaceDef that is not an
AbstractinterfaceDef, then the BAD_PARAM exception shall be raised with standard minor code 12.

The create_value_member operation returns a new ValueMemberDef contained in the ValueDef on which it is
invoked. The id, name, version, type_def, and access attributes are set as specified. The type attribute is also set.
The defined_in attribute is initialized to identify the containing ValueDef. A BAD_PARAM exception with minor code
2 israised if an object with the specified id aready exists in the Repository. A BAD_PARAM exception with minor
code 3 israised if an object with the same name already exists in this ValueDef.

The create_attribute operation returns a new AttributeDef contained in the ValueDef on which it is invoked. Theid,
name, version, type_def, and mode attributes are set as specified. The type attribute is also set. The defined_in
attribute is initialized to identify the containing ValueDef. A BAD_PARAM exception with minor code 2 israised if an
object with the specified id already exists in the Repository. A BAD_PARAM exception with minor code 3 is raised if
an object with the same name already exists in this ValueDef.

The create_operation operation returns a new OperationDef contained in the ValueDef on which it is invoked. The
id, name, version, result_def, mode, params, exceptions, and contexts attributes are set as specified. The result
attribute is also set. The defined_in attribute isinitialized to identify the containing ValueDef. A BAD_PARAM
exception with minor code 2 is raised if an object with the specified id already exists in the Repository. A
BAD_PARAM exception with minor code 3 is raised if an object with the same name already exists in this ValueDef.

A ValueDef used as a Container may only contain TypedefDef, (including definitions derived from TypedefDef),
ConstantDef, and ExceptionDef definitions.

14.5.32 ExtValueDef

An ExtValueDef object represents a value definition. It can contain constants, typedefs, exceptions, operations, and
attributes with exceptions. Value definitions that contain initializers with user exceptions can also be represented in
ExtValueDef objects.

module CORBA {

struct Extlnitializer {

StructMemberSeq members;
ExcDescriptionSeq exceptions;
Identifier name;

b

typedef sequence <Extlnitializer> ExtInitializerSeq;
interface ExtValueDef : ValueDef {

/I read/write interface
attribute ExtlnitializerSeq ext_initializers;

/l read interface

260 Common Object Request Broker Architecture (CORBA), v3.1.1

struct ExtFullValueDescription {

Identifier name;

Repositoryld id;

boolean is_abstract;

boolean is_custom;
Repositoryld defined_in;
VersionSpec version;
OpDescriptionSeq operations;
ExtAttrDescriptionSeq attributes;
ValueMemberSeq members;
ExtlnitializerSeq initializers;
RepositoryldSeq supported_interfaces;
RepositoryldSeq abstract_base_values;
boolean is_truncatable;
Repositoryld base value;
TypeCode type;

h
ExtFullValueDescription describe_ext_value();

/I write interface
ExtAttributeDef create_ext_attribute (

in Repositoryld id,

in Identifier name,

in VersionSpec version,

in IDLType type,

in AttributeMode mode,

in ExceptionDefSeq get_exceptions,
in ExceptionDefSeq set_exceptions

14.5.32.1 Read Interface

All operations and attributes inherited from ValueDef behave the same as for ValueDef. In particular, the def_kind
attribute has the value dk_Value, exactly asin ValueDef.

The ext_initializers attribute lists the initializers with exceptions that this value type supports.

The inherited initializers attribute lists the same initializers as in ext_initializers but does not have the exception
information.

The describe_ext_value operation returns the ExtFullValueDescription structure that contains information about
attributes with exceptions and initializers with exceptions, in addition to the information found in
FullvValueDescription.

14.5.32.2 Write Interface

All operations and attributes inherited from ValueDef behave the same as for ValueDef.

Common Object Request Broker Architecture (CORBA), v3.1.1 261

The create_ext_attribute operation returns a new ExtAttributeDef contained in the ExtValueDef on which it is
invoked. The id, name, version, type_def, mode, get_exceptions, and set_exceptions attributes are set as
specified. The type attribute is also set. The defined_in attribute is initialized to identify the containing ExtValueDef.
A BAD_PARAM exception with standard minor code 2 israised if an object with the specified id already exists in the
Repository. BAD_PARAM exception with standard minor code 3 israised if an object with the same name already
exists in this ExtValueDef.

14.5.33 ValueBoxDef

A ValueBoxDef object represents a value box definition. It merely identifies the IDL type_def that is being “boxed.”

module CORBA {
interface ValueBoxDef : TypedefDef {
attribute IDLType original_type_def;
¥
¥

14.5.33.1 Read Interface

The original_type_def attribute identifies the type being boxed. The inherited type attribute is atk_value_box
TypeCode describing the value box.

14.5.33.2 Write Interface
Setting the original_type_def attribute also updates the type attribute.

14.5.34 NativeDef

A NativeDef aobject represents a native definition.

module CORBA {
interface NativeDef : TypedefDef {};

h
The inherited type attribute is atk_native TypeCode describing the native type.

14.6 Component Interface Repository Interfaces

The IRObjects that represent IDL concepts that are specific to the Components extension are described in this sub clause.
These IRObjects can be contained only in a ComponentlIR::Repository described in this sub clause.

14.6.1 ComponentlR::Container

The base interface ComponentIR::Container is used to form a containment hierarchy in the Component Interface
Repository.

module CORBA {
module ComponentIR {

262 Common Object Request Broker Architecture (CORBA), v3.1.1

interface Container {
ComponentDef create_component (

);

in Repositoryld id,

in Identifier name,

in VersionSpec version,

in ComponentDef base_component,

in InterfaceDefSeq supports_interfaces

HomeDef create_home (

);

in Repositoryld id,

in Identifier name,

in VersionSpec version,

in HomeDef base_home,

in ComponentDef managed_component,
in InterfaceDefSeq supports_interfaces,
in ValueDef primary_key

EventDef create_event (

in Repositoryld id,

in Identifier name,

in VersionSpec version,

in boolean is_custom,

in boolean is_abstract,

in ValueDef base value,

in boolean is_truncatable,

in ValueDefSeq abstract_base values,
in InterfaceDefSeq supported_interfaces,
in ExtlnitializerSeq initializers

14.6.1.1 Write Interface

The three create_<type> operations defined in the ComponentIR::Container interface create new empty IR objects
defining component, home, and event types. The defined_in attribute of a definition created with any of these operations

isinitialized to identify the ComponentIR::Container on which the operation is invoked, and the
containing_repository attribute is initialized to its ComponentIR::Repository.

These create_<type> operations all take id and name parameters that are used to initialize the identity of the created

definition.

+ A BAD_PARAM exception is raised with minor code 2 if an object with the specified id already existsin the

ComponentlR::Repository.

« A BAD_PARAM exception with minor code 3 israised if the specified name already exists within this
ComponentlR::Container and multiple versions are not supported.

Common Object Request Broker Architecture (CORBA), v3.1.1

263

The create_component operation returns a new empty ComponentDef with the specified base_component, and
the specified supports_interfaces. AttributeDefs can be added using ComponentDef::create_attribute.
ComponentDef::create_provides, ComponentDef::create_uses, ComponentDef::create_emits,
ComponentDef::create_publishes, and ComponentDef::create_consumes can be used to add ProvidesDefs,
UsesDefs, EmitsDefs, PublishesDefs, and ConsumesDefs respectively. Definitions can also be added using the
Contained::move operation.

The create_home operation returns a new HomeDef with the specified base_home, managed_component,
supported_interfaces, and primary_key. Type, exception, and constant definitions can be added using
Container::create_<type> operations on the new HomeDefs. OperationDefs can be added using
HomeDef::create_operation and AttributeDefs can be added using HomeDef::create_attribute. FinderDefs and
FactoryDefs can be added using HomeDef::create_finder and HomeDef::create_factory respectively. Definitions
can also be added using the Contained::move operation.

The create_event operation returns a new empty EventDef with the specified base interfaces and events (base_value,
supported_interfaces, and abstract_base_values) as well as the other information describing the new events
characteristics (is_custom, is_abstract, is_truncatable, and initializers). The initializers argument is of type
ExtlnitializerSeq allowing one to specify user exceptions for initializers. Type, exception, and constant definitions can
be added using Container::create_<type> operations on the new EventDef. OperationDefs can be added using
ExtValueDef::create_operation and ExtAttributeDefs can be added using ExtValueDef::create_ext_attribute.
Definitions can also be added using the Contained::move operation.

14.6.2 ComponentlIR::Repository

ComponentlR::Repository is an interface that provides global access to the Interface Repository that supports access
to information related to CORBA Components. The ComponentIR::Repository object can contain components, home,
and event definitions in addition to everything else that a Repository type can contain. As it inherits from Container
and ComponentlR::Container, it can be used to look up any definition (whether globally defined or defined within a
module or interface) either by name or by id.

Since ComponentIR::Repository derives from CORBA::Repository and hence from Container and not from
Contained, it does not have a Repositoryld associated with it. By default it is deemed to have the Repositoryld
(the empty string) for purposes of assigning a value to the defined_in field of the description structure of ModuleDef,
InterfaceDef, ValueDef, ValueBoxDef, ComponentDef, HomeDef, EventDef, TypedefDef, ExceptionDef, and
ConstantDef that are contained immediately in the ComponentlIR::Repository object. Since
ComponentlR::Repository derives from ComponentIR::Container, it can contain ComponentDefs, HomeDefs
as well as EventDefs.

module CORBA {
module ComponentIR {

interface Repository : CORBA::Repository, Container {};
¥
¥

14.6.2.1 Read Interface

ComponentlR::Repository has the same read operations as Repository.

264 Common Object Request Broker Architecture (CORBA), v3.1.1

14.6.2.2 Write Interface

Write operations inherited from ComponentlIR::Container behave the same way asin ComponentIR::Container.
The rest of the write operations are inherited from CORBA::Repository and behave the same way asin
CORBA::Repository.

14.6.3 ComponentlIR::ProvidesDef

A ComponentIR::ProvidesDef object represents an interface that is provided by a component.

module CORBA {
module ComponentIR {

interface ProvidesDef : Contained {
attribute InterfaceDef interface_type;

h

struct ProvidesDescription {
Identifier name;
Repositoryld id;
Repositoryld defined_in;
VersionSpec version;
Repositoryld interface_type;

14.6.3.1 Read Interface
The attribute interface_type returns the object identifying the interface that is provided by the component.

The inherited operation describe returns a ProvidesDescription.
14.6.3.2 Write Interface
Setting the attribute interface_type changes the object identifying the interface that is provided by the component.

The rest of the write operations are inherited from CORBA::Contained and behave the same way asin
CORBA::Contained.

14.6.4 ComponentIR::UsesDef

A ComponentIR::UsesDef object represents an interface that is used by a component.

module CORBA {
module ComponentIR {

interface UsesDef : Contained {
attribute InterfaceDef interface_type;
attribute boolean is_multiple;

h

Common Object Request Broker Architecture (CORBA), v3.1.1 265

struct UsesDescription {
Identifier name;
Repositoryld id;
Repositoryld defined_in;
VersionSpec version;
Repositoryld interface_type;
boolean is_multiple;

14.6.4.1 Read Interface

The attribute interface_type returns the object identifying the interface that is used by the component.
The attribute is_multiple is TRUE if the interface is used multiple times.

The inherited operation describe returns a UsesDescription.

14.6.4.2 Write Interface

Setting the attribute interface_type changes the object identifying the interface that is used by the component. Setting
the attribute is_multiple changes the multiplicity of the used interface.

The rest of the write operations are inherited from CORBA::Contained and behave the same way asin
CORBA::Contained.

14.6.5 ComponentlIR::EventDef

A ComponentIR::EventDef object represents an eventtype definition. It can contain constants, typedefs, exceptions,
operations, and attributes with exceptions. Eventtype definitions that contain initializers with user exceptions can also be
represented in ComponentIR::EventDef objects.

module CORBA {
module ComponentIR {

interface EventDef : ExtValueDef {};
|3

The read and write interfaces for ComponentIR::EventDef have the same semantics as the read and write interfaces for
ExtValueDef.

14.6.6 ComponentlIR::EventPortDef

A ComponentIR::EventPortDef aobject represents an event port definition. It refers to an EventDef object that
contains the actual information about the event. This interface is never instantiated as itself. It is instantiated only as one
of its derived types (i.e., EmitsDef, PublishesDef, or ConsumesDef).

module CORBA {
module ComponentIR {

266 Common Object Request Broker Architecture (CORBA), v3.1.1

interface EventPortDef : Contained {
/l read/write interface
attribute EventDef event;

Il read interface
boolean is_a (in Repositoryld event_id);

5

struct EventPortDescription {
Identifier name;
Repositoryld id;
Repositoryld defined_in;
VersionSpec version;
Repositoryld event;

14.6.6.1 Read Interface

The event attribute returns the object containing the definition of the event for this event port.

The is_a operation returns TRUE if the event value associated with this EventPortDef is identical to or inherits from
the event value associated with the EventPortDef identified by the event_id.

The inherited describe operation returns an EventPortDescription.
14.6.6.2 Write Interface
Setting the attribute event changes the object containing the definition of the event for this event port.

The rest of the write operations are inherited from CORBA::Contained and behave the same way asin
CORBA::Contained.

14.6.7 ComponentIR::EmitsDef

A ComponentIR::EmitsDef object represents the port definition of an event that is emitted by a component.

module CORBA {
module ComponentIR {

interface EmitsDef : EventPortDef {};
|3
|3

14.6.7.1 Read Interface

The read interface for EmitsDef has the same semantics as the read interface for EventPortDef.

14.6.7.2 Write Interface

The write interface for EmitsDef has the same semantics as the write interface for EventPortDef.

Common Object Request Broker Architecture (CORBA), v3.1.1 267

14.6.8 ComponentIR::PublishesDef

A ComponentIR::PublishesDef object represents the port definition of an event that is published by a component.

module CORBA {
module ComponentIR {

interface PublishesDef : EventPortDef {};
|3
|3

14.6.8.1 Read Interface

The read interface for PublishesDef has the same semantics as the read interface for EventPortDef.

14.6.8.2 Write Interface

The write interface for PublishesDef has the same semantics as the write interface for EventPortDef.
14.6.9 ComponentlIR::ConsumesDef

A ComponentIR::ConsumesDef object represents the port definition of an event that is consumed by a component.

module CORBA {
module ComponentIR {

interface ConsumesDef : EventPortDef {};
|3
|3

14.6.9.1 Read Interface

The read interface for ConsumesDef has the same semantics as the read interface for EventPortDef.

14.6.9.2 Write Interface

The write interface for ConsumesDef has the same semantics as the write interface for EventPortDef.

14.6.10 ComponentIR::ComponentDef

A ComponentIR::ComponentDef object represents the definition of a component. It contains provides, uses, emits,
publishes, consumes, and attributes.

module CORBA {
module ComponentIR {

interface ComponentDef : ExtIinterfaceDef {
I/l read/write interface
attribute ComponentDef base_component;
attribute InterfaceDefSeq supported_interfaces;

268 Common Object Request Broker Architecture (CORBA), v3.1.1

/I write interface
ProvidesDef create_provides (
in Repositoryld id,
in Identifier name,
in VersionSpec version,
in InterfaceDef interface_type

);

UsesDef create_uses (
in Repositoryld id,
in Identifier name,
in VersionSpec version,
in InterfaceDef interface_type,
in boolean is_multiple

);

EmitsDef create_emits (
in Repositoryld id,
in Identifier name,
in VersionSpec version,
in EventDef event

);

PublishesDef create_publishes (
in Repositoryld id,
in Identifier name,
in VersionSpec version,
in EventDef event

);

ConsumesDef create_consumes (
in Repositoryld id,
in Identifier name,
in VersionSpec version,
in EventDef event
)i
h

typedef sequence<ProvidesDescription>

ProvidesDescriptionSeq;
typedef sequence<UsesDescription> UsesDescriptionSeq;

typedef sequence<EventPortDescription>

EventPortDescriptionSeq;

struct ComponentDescription {
Identifier name;
Repositoryld id;
Repositoryld defined_in;
VersionSpec version;
Repositoryld base_component;
RepositoryldSeq supported_interfaces;

Common Object Request Broker Architecture (CORBA), v3.1.1

269

ProvidesDescriptionSeq provided_interfaces;
UsesDescriptionSeq used_interfaces;
EventPortDescriptionSeq emits_events;
EventPortDescriptionSeq publishes_events;
EventPortDescriptionSeq consumes_events;
ExtAttrDescriptionSeq attributes;

TypeCode type;

14.6.10.1 Read Interface

The base_component attribute returns the component that this component derives from.
The supported_interfaces attribute lists the interfaces that this component type supports.

The inherited is_a operation returns TRUE if the component on which it isinvoked either is identical to or inherits from
the component identified by itsid parameter. Otherwise it returns FALSE.

The inherited describe operation for a ComponentDef returns a ComponentDescription.

The inherited contents operation returns the list of attributes, provides, uses, emits, publishes, and consumes either
defined or inherited in this ComponentDef. If the exclude_inherited parameter is set to TRUE, only attributes,
provides, uses, emits, publishes, and consumes defined within this object are returned. If the exclude_inherited
parameter is set to FALSE, all attributes, provides, uses, emits, publishes, and consumes are returned.

14.6.10.2 Write Interface

Setting the base_component attribute causes a BAD_PARAM exception with minor code 5 to be raised if the name
attribute of any object contained by this ComponentDef conflicts with the name attribute of any object contained by
the specified base ComponentDef.

Setting the supported_interfaces attribute changes the interfaces that this component type supports.

The create_<type> operations defined in the ComponentIR::ComponentDef interface create new corresponding
empty IR objects. The defined_in attribute is initialized to identify the containing ComponentDef, and the
containing_repository attribute is initialized to its ComponentIR::Repository.

These create_<type> operations all take id and name parameters that are used to initialize the identity of the created
definition. A BAD_PARAM exception is raised with minor code 2 if an object with the specified id already exists in the
ComponentlR::Repository. A BAD_PARAM exception with minor code 3 is raised if the specified name already
exists within this ComponentDef and multiple versions are not supported.

The inherited create_ext_attribute operation returns a new ExtAttributeDef contained in the ComponentDef on
which it isinvoked. Theid, name, version, type_def, mode, get_exceptions, and set_exceptions attributes are
set as specified. The type attribute is also set.

The inherited create_operation, and all other create_* operations inherited from Container and Contained return
BAD_PARAM exception with minor code 4.

The create_provides operation returns a new ProvidesDef contained in the ComponentDef on which it is invoked.
Theid, name, version, and interface_type attributes are set as specified.

270 Common Object Request Broker Architecture (CORBA), v3.1.1

The create_uses operation returns a new UsesDef contained in the ComponentDef on which it is invoked. The id,
name, version, interface_type, and is_multiple attributes are set as specified.

The create_emits, create_publishes, and create_consumes operations respectively return new EmitsDef,
PublishesDef, and ConsumesDef contained in the ComponentDef on which it isinvoked. The id, name, version,
and event attributes are set as specified.

A ComponentDef used as a Container may not contain any TypedefDef (including definitions derived from
TypedefDef), ConstantDef, or ExceptionDef definitions.

A ComponentDef used as an InterfaceDef may only contain ExtAttributeDef definitions.
14.6.11 ComponentIR::FactoryDef

A ComponentIR::FactoryDef object represents the definition of a factory operation in a home.

module CORBA {
module ComponentIR {

interface FactoryDef : OperationDef { // only PARAM_IN parameters
|3
|3
|3
14.6.11.1 Read Interface

The result attribute is a TypeCode describing the type of the value returned by the operation, which is always
tk_component for FactoryDef. The result_def attribute identifies the definition of the returned type, which is always
a ComponentDef in case of FactoryDef.

The params attribute describes the parameters of the operation. It is a sequence of ParameterDescription structures.
The order of the ParameterDescriptions in the sequence is significant. The name member of each structure provides
the parameter name. The type member is a TypeCode describing the type of the parameter. The type_def member
identifies the definition of the type of the parameter. The mode member indicates whether the parameter is an in, out, or
inout parameter. For FactoryDef the value of mode for all parametersis PARAM_IN.

The operation’s mode is always normal for FactoryDef.
The kind attribute is always OP_IDL for FactoryDef.

The contexts attribute specifies the list of context identifiers that apply to the operation, and is an empty list for
FactoryDef.

The exceptions attribute specifies the list of exception types that can be raised by the operation.

The inherited describe operation for a FactoryDef object returns an OperationDescription.

14.6.11.2 Write Interface
Setting the result_def attribute has no effect.

The mode and contexts attributes cannot be changed.

Common Object Request Broker Architecture (CORBA), v3.1.1 271

14.6.12 ComponentIR::FinderDef

A ComponentlIR::FinderDef object represents the definition of a finder operation in a home.

module CORBA {
module ComponentIR {

interface FinderDef : OperationDef { // only PARAM_IN parameters
|3
|3
|3
14.6.12.1 Read Interface

The result attribute is a TypeCode describing the type of the value returned by the operation, which is always
tk_component for FinderDef. Theresult_def attribute identifies the definition of the returned type, which is always a
ComponentDef in case of a FinderDef.

The params attribute describes the parameters of the operation. It is a sequence of ParameterDescription structures.
The order of the ParameterDescriptions in the sequence is significant. The name member of each structure provides
the parameter name. The type member is a TypeCode describing the type of the parameter. The type_def member
identifies the definition of the type of the parameter. The mode member indicates whether the parameter is an in, out, or
inout parameter. For FinderDef the value of mode for all parametersis PARAM_IN.

The operation’s mode is aways normal for FinderDef.
The kind attribute is always OP_IDL for FinderDef.

The contexts attribute specifies the list of context identifiers that apply to the operation, and is an empty list for
FinderDef.

The exceptions attribute specifies the list of exception types that can be raised by the operation.

The inherited describe operation for a FinderDef object returns an OperationDescription.

14.6.12.2 Write Interface
Setting the result_def attribute has no effect.

The mode and contexts attributes cannot be changed.

14.6.13 ComponentIR::HomeDef

A ComponentIR::HomeDef object represents the definition of a home. It contains attributes, operations, factories, and
finders.

module CORBA {
module ComponentIR {

interface HomeDef : ExtinterfaceDef {

/I read/write interface
attribute HomeDef base_home;

272 Common Object Request Broker Architecture (CORBA), v3.1.1

attribute InterfaceDefSeq supported_interfaces;
attribute ComponentDef managed_component;
attribute ValueDef primary_key;

/I write interface
FactoryDef create_factory (
in Repositoryld id,
in Identifier name,
in VersionSpec version,
in ParDescriptionSeq params,
in ExceptionDefSeq exceptions

);

FinderDef create_finder (
in Repositoryld id,
in Identifier name,
in VersionSpec version,
in ParDescriptionSeq params,
in ExceptionDefSeq exceptions
)i
h

struct HomeDescription {
Identifier name;
Repositoryld id;
Repositoryld defined_in;
VersionSpec version;
Repositoryld base_home;
Repositoryld managed_component;
ValueDescription primary_key;
OpDescriptionSeq factories;
OpDescriptionSeq finders;
OpDescriptionSeq operations;
ExtAttrDescriptionSeq attributes;
TypeCode type;

14.6.13.1 Read Interface

The base_home attribute returns the home that this home definition derives from.

The supported_interfaces attribute lists the interfaces that this home type supports.
The managed_component attribute returns the component that this home manages.
The primary_key attribute returns the primary key that is associated with this home.

The inherited is_a operation returns TRUE if the home on which it is invoked either is identical to or inherits from the
home identified by its id parameter. Otherwise it returns FALSE.

Common Object Request Broker Architecture (CORBA), v3.1.1 273

The inherited describe operation for a HomeDef returns a HomeDescription.

The inherited contents operation returns the list of constants, typedefs, exceptions, attributes, operations, finders, and
factories defined or inherited in this HomeDef. If the exclude_inherited parameter is set to TRUE, only objects
defined within this home are returned. If the exclude_inherited parameter is set to FALSE, all objects are returned.

14.6.13.2 Write Interface

Setting the base_home attribute causes a BAD_PARAM exception with minor code 5 to be raised if the name attribute
of any object contained by this HomeDef conflicts with the name attribute of any object contained by the specified base
HomeDef.

The create_<type> operations defined in the HomeDef interface create new corresponding empty IR objects. The
defined_in attribute is initialized to identify the containing HomeDef, and the containing_repository attribute is
initialized to its ComponentIR::Repository.

These create_<type> operations all take id and name parameters that are used to initialize the identity of the created
definition. A BAD_PARAM exception is raised with minor code 2 if an object with the specified id aready exists in the
ComponentlR::Repository. A BAD_PARAM exception with minor code 3 is raised if the specified name already
exists within this HomeDef and multiple versions are not supported.

The inherited create_ext_attribute operation returns a new ExtAttributeDef contained in the HomeDef on which it is
invoked. Theid, name, version, type_def, mode, get_exceptions, and set_exceptions attributes are set as
specified. The type attribute is also set.

The inherited create_operation operation returns a new OperationDef contained in the HomeDef on which it is
invoked. The id, name, version, result_def, mode, params, exceptions, and contexts attributes are set as
specified. The result attribute is also set.

The create_factory operation returns a new FactoryDef contained in the HomeDef on which it is invoked. Theid,
name, version, params, and exceptions attributes are set as specified. The parameters in the params attribute must
al be of PARAM_IN type.

The create_finder operation returns a new FinderDef contained in the HomeDef on which it isinvoked. Theid,
name, versions, params, and exceptions attributes are set as specified. The parameters in the params attribute must
all be of PARAM_IN type.

A HomeDef used as a Container may only contain TypedefDef (including definitions derived from TypedefDef),
ConstantDef, and ExceptionDef definitions.

14.7 Repositorylds

Repositorylds are values that can be used to establish the identity of information in the repository. A Repositoryld is
represented as a string, allowing programs to store, copy, and compare them without regard to the structure of the value.
It does not matter what format is used for any particular Repositoryld. However, conventions are used to manage the
name space created by these IDs.

Repositorylds may be associated with IDL definitions in a variety of ways. Installation tools might generate them, they
might be defined with pragmas in IDL source, or they might be supplied with the package to be installed. Ensuring
consistency of Repositorylds with the IDL source or the IR contents is the responsibility of the programmer allocating
Repositoryids.

274 Common Object Request Broker Architecture (CORBA), v3.1.1

The format of theid is a short format name followed by a colon (“:”) followed by characters according to the format. This
specification defines four formats:

one derived from IDL names,

N

one that uses Java class names and Java serialization version UIDs,
3. onethat uses DCE UUIDs, and
4. another intended for short-term use, such as in a development environment.

Since new repository 1D formats may be added from time to time, compliant IDL compilers must accept any string value
of the form

“<format>:<string>"

provided as the argument to the id pragma and use it as the repository ID. The OMG maintains a registry of allocated
format identifiers. The <format> part of the ID may not contain a colon (:) character.

The version and prefix pragmas only affect default repository 1Ds that are generated by the IDL compiler using the IDL
format.

14.7.1 IDL Format

The IDL format for Repositorylds primarily uses IDL scoped names to distinguish between definitions. It also includes
an optional unique prefix, and major and minor version numbers.

The Repositoryld consists of three components, separated by colons, (“:")
1. Thefirst component isthe format name, “IDL."

2. (".").The second component is alist of identifiers, separated by “/” characters. These identifiers are arbitrarily long
sequences of alphabetic, digit, underscore (“_"), hyphen (“-"), and period (“.”) characters. Typically, the first identi-
fier isaunique prefix, and therest arethe IDL Identifiers that make up the scoped name of the definition. The second
component shall not contain atrailing slash ("/") and it shall not begin with the characters underscore ("_"), hyphen

("-"), or period (".").

3. Thethird component is made up of major and minor version numbers, in decimal format, separated by a*“.”. When
two interfaces have Repositoryldsdiffering only in minor version number it can be assumed that the definition with
the higher version number is upwardly compatible with (i.e., can be treated as derived from) the one with the lower
minor version number.

14.7.2 RMI Hashed Format

The IDL format defined above does not include any structural information. Identity of IDL types determined for this
format depends upon the names used in the RepositoryID being correct. For interfaces, if stubs and skeletons are not
actually in synch, even though the Repositorylds report they are, the worst that can happen is that the result of an
invocation isa BAD_OPERATION exception. With value types, these kinds of errors are more problematic. An
inconsistency between the stub and skeleton marshaling/unmarshaling code can confuse the marshaling engine and may
even corrupt memory and/or cause a crash failure.

The RMI Hashed format is used for Java RMI values mapped to IDL using the Javato IDL Mapping (see the Java/IDL
Language Mapping document). It is computed based upon the structural information of the original Java definition.
Whenever the Java definition changes, the hash function will (statistically) produce a hash code, which is different from

Common Object Request Broker Architecture (CORBA), v3.1.1 275

the previous one. When an ORB run time receives a value with a different hash from what is expected, it is free to raise
a BAD_PARAM exception. It may also try to resolve the incompatibility by some means. If it is not successful, then it
shall raise the BAD_PARAM exception.

An RMI Hashed Repositoryld consists of either three or four components, separated by colons:

RMI: <class name> : <hash code> [: <serialization version UID>]

The class name is a Java class name as returned by the getName method of java.lang.Class. Any charactersnot in
I1SO Latin 1 are replaced by “\U” followed by the 4 hexadecimal characters (in upper case) representing the Unicode
value.

For classes that do not implement java.io.Serializable, and for interfaces, the hash code is aways zero, and the
RepositorylD does not contain a serial version UID.

For classes that implement java.io.Externalizable, the hash code is aways the 64-bit value 1.

For classes that implement java.io.Serializable but not java.io.Externalizable, the hash codeis a 64-
bit hash of a stream of bytes (transcribed as a 16-digit upper case hex string). An instance of
java.lang.DataOutputStream is used to convert primitive data types to a sequence of bytes. The sequence of
items in the stream is as follows:

1. Thehash code of the superclass, written as a 64-bit long.

2. Thevalue 1if the class hasno writeoObject method, or the value 2 if the class hasawriteObject method,
written as a 32-bit integer.

3. For each field of the class that is mapped to IDL, sorted lexicographically by Javafield name, inincreasing order:
a. Javafield name, in UTF encoding
b. field descriptor, as defined by the Java Virtual Machine Specification, in UTF encoding.

The National Institute of Sandards and Technology (NIST) Secure Hash Algorithm (SHA-1) is executed on the stream of
bytes produced by DataoOutputStream, producing a 20 byte array of values, sha[0..19]. The hash code is assembled
from the first 8 bytes of this array as follows:

long hash = 0;
for (int i = 0; i < Math.min(8, sha.length); i++) {
hash += (long) (sha[i] & 255) << (i * 8);
}

For Serializable (including Externalizable) classes, the Java serialization version UID, transcribed as a 16 digit upper-case
hex string, shall be appended to the RepositoryId following the hash code and a colon. The Java serialization version
UID is defined in the Java Object Serialization Specification.

Examples for the valuetype : : foo: :bar would be

RMI:foo/bar;:1234567812345678
RMI:foo/bar;:1234567812345678:ABCD123456781234

An example of a Java array of valuetype : : foo: :bar would be

276 Common Object Request Broker Architecture (CORBA), v3.1.1

RMI: [Lfoo.bar;:1234567812345678:ABCD123456781234

For a Java class x\u03bCy that contains a Unicode character not in ISO Latin 1, an example RepositoryId is

RMI:foo.x\UO3BCy:8765432187654321

A conforming implementation that uses this format shall implement the standard hash algorithm defined above.

14.7.3 DCE UUID Format

DCE UUID format Repositorylds start with the characters “DCE:” and are followed by the printable form of the UUID,
a colon, and a decimal minor version number, for example: “DCE:700dc518-0110-11ce-ac8f-0800090b5d3e: 1.”

14.7.4 LOCAL Format

Local format Repositorylds start with the characters “LOCAL:” and are followed by an arbitrary string. Local format

IDs are not intended for use outside a particular repository, and thus do not need to conform to any particular convention.
Local IDs that are just consecutive integers might be used within a development environment to have a very cheap way
to manufacture the IDs while avoiding conflicts with well-known interfaces.

14.7.5 Pragma Directives for Repositoryld

Three pragma directives (id, prefix, and version), are specified to accommodate arbitrary Repositoryld formats and still
support the IDL Repositoryld format with minimal annotation. The prefix and version pragma directives apply only to
the IDL format. An IDL compiler must interpret these annotations as specified. Conforming IDL compilers may support
additional non-standard pragmas, but must not refuse to compile IDL source containing non-standard pragmas that are not
understood by the compiler.

14.7.5.1 The ID Pragma
An IDL pragma of the format

#pragma ID <name> “<id>"

associates an arbitrary Repositoryld string with a specific IDL name. The <name> can be a fully or partially scoped
name or a simple identifier, interpreted according to the usual IDL name lookup rules relative to the scope within which
the pragma is contained. The <id> must be a repository 1D of the form described in Repositorylds on page 274.

An attempt to assign a repository ID to the same IDL construct a second time shall be an error unless the repository 1D
used in the attempt is identical to the previous one.

interface A {};
#pragma ID A “IDL:A:1.1"
#pragma ID A “IDL:X:1.1" /l Compile-time error

interface B {};
#pragma ID B “IDL:BB:1.1"
#pragma ID B “IDL:BB:1.1" /l OK, same ID

It isalso an error to apply an ID to a forward-declared IDL construct (interface, valuetype, structure, and union) and then
later assign a different ID to that IDL construct.

Common Object Request Broker Architecture (CORBA), v3.1.1 277

14.7.5.2 The Prefix Pragma
An IDL pragmais of the form:

#pragma prefix “<string>"

This sets the current prefix used in generating IDL format Repositorylds. For example, the Repositoryld for the initial
version of interface Printer defined on module Office by an organization known as “SoftCo” might be “I1DL:SoftCo/
Office/Printer:1.0.”

Since the “prefix” pragma applies to Repository Ids of the IDL format, the <string> above shall be alist of one or more
identifiers, separated by the “/” characters. These identifiers are arbitrarily long sequences of alphabetic, digit, underscore

(“_"), hyphen (“-"), and period (“.”) characters. The string shall not contain a trailing slash ("/") and it shall not begin
with the characters underscore ("_"

), hyphen ("-"), or period (".").

This format makes it convenient to generate and manage a set of 1Ds for a collection of IDL definitions. The person
creating the definitions sets a prefix (“SoftCo”), and the IDL compiler or other tool can synthesize al the needed IDs.

Because Repositorylds may be used in many different computing environments and ORBS, as well as over along period
of time, care must be taken in choosing them. Prefixes that are distinct, such as trademarked names, domain names,
UUIDs, and so forth, are preferable to generic names such as “document.”

The specified prefix applies to Repositorylds generated after the pragma until the end of the current scope is reached or
another prefix pragmais encountered. An IDL file forms a scope for this purpose, so a prefix resets to the previous prefix
at the end of the scope of an included file;

/I A.idl
#pragma prefix “A”
interface A {};

/I B.idl

#pragma prefix “B”
#include “A.idl”
interface B {};

The repository 1Ds for interfaces A and B in this case are:

IDL:A/A:1.0
IDL:B/B:1.0

Similarly, a prefix in an including file does not affect the prefix of an included file:

/I C.idl
interface C {};

// D.idl

#pragma prefix “D”
#include “C.idl”
interface D {};

The repository 1Ds for interface C and D in this case are;

IDL:C:1.0

278 Common Object Request Broker Architecture (CORBA), v3.1.1

IDL:D/D:1.0

If an included file does not contain a #pragma prefix, the current prefix implicitly resets to the empty prefix:

// E.idl
interface E {};

/I Fidl
module M {
#include <E.idl>

h

The repository 1Ds for module M and interface E in this case are:

IDL:M:1.0
IDL:E:1.0

If a #include directive appears at non-global scope and the included file contains a prefix pragma, the included file's

prefix takes precedence, for example:

/I A.idl
#pragma prefix “A”
interface A {};

// B.idI

#pragma prefix “B”
module M {
#include “A.idl”

h

The repository 1D for module M and interface A in this case are:

IDL:B/M:1.0
IDL:A/A:1.0

Forward-declared constructs (interfaces, value types, structures, and unions) must have the same prefix in effect wherever
they appear. Attempts to assign conflicting prefixes to a forward-declared construct result in a compile-time diagnostic.

For example:

#pragma prefix “A”
interface A; /I Forward decl.

#pragma prefix “B”
interface A; /l Compile-time error

#pragma prefix “C”

interface A { /I Compile-time error
void op();

h

Common Object Request Broker Architecture (CORBA), v3.1.1

279

A prefix pragma of the form

#pragma prefix

resets the prefix to the empty string. For example:

#pragma prefix “ X”
interface X {};
#pragma prefix
interface Y {};

The repository I1Ds for interface X and Y in this case are:

IDL:X/X:1.0
IDL:Y:1.0

If a specification contains both a prefix pragma and an ID or version pragma, the prefix pragma does not affect the
repository ID for an ID pragma, but does affect the repository ID for a version pragma:

#pragma prefix “A”
interface A {};

interface B {};

interface C {};

#pragma ID B “IDL:myB:1.0"
#pragma version C 9.9

The repository 1Ds for this specification are:

IDL:A/A:1.0
IDL:myB:1.0
IDL:A/C:9.9

A #pragma prefix must appear before the beginning of an IDL definition. Placing a #pragma prefix elsewhere has
undefined behavior, for example:

interface Bar
#pragma prefix “foo” // Undefined behavior

{
...

b

14.7.5.3 The Version Pragma
An IDL pragma of the format:

#pragma version <name> <major>.<minor>

provides the version specification used in generating an IDL format Repositoryld for a specific IDL name. The
<name> can be a fully or partially scoped name or a simple identifier, interpreted according to the usual IDL name
lookup rules relative to the scope within which the pragma is contained. The <major> and <minor> components are
decimal unsigned shorts.

280 Common Object Request Broker Architecture (CORBA), v3.1.1

If no version pragma is supplied for a definition, version 1.0 is assumed. If an attempt is made to change the version of a
repository ID that was specified with an ID pragma, a compliant compiler shall emit a diagnostic:

interface A {};
#pragma ID A “IDL:myA:1.1"
#pragma version A 9.9 /[Compile-time error

An attempt to assign a version to the same IDL construct a second time shall be an error unless the version used in the
attempt is identical to the existing one.

interface A {};

#pragma version A 1.1

#pragma version A 1.1 /I OK
#pragma version A 1.2 /I Error

interface B {};
#pragma ID B “IDL:myB:1.2”
#pragma version B 1.2 /I OK

14.7.5.4 Generation of IDL - Format IDs
A definition is globally identified by an IDL - format Repositoryld if no ID pragma is encountered for it.

The ID string shall be generated by starting with the string “IDL:”. Then, if the current prefix pragmais a non-empty
string, it is appended, followed by a“/” character. Next, the components of the scoped name of the definition, relative to
the scope in which any prefix that applies was encountered, are appended, separated by “/” characters. Finally, a“:” and
the version specification are appended.

For example, the following IDL:

module M1 {
typedef long T1;
typedef long T2;
#pragma ID T2 “DCE:d62207a2-011e-11ce-88b4-0800090b5d3e: 3"

5
#pragma prefix “P1”

module M2 {
module M3 {
#pragma prefix “P2”
typedef long T3;
5
typedef long T4;
#pragma version T4 2.4

h
specifies types with the following scoped names and Repositorylds:
mM1T1 IDL:M1/T1:1.0
M1 T2 DCE:d62207a2-011e-11ce-88b4-0800090b5d3e:3

Common Object Request Broker Architecture (CORBA), v3.1.1 281

M2:M3::T3 IDL:P2/T3:1.0
M2::T4 IDL:P1/M2/T4:2.4

For this scheme to provide reliable global identity, the prefixes used must be unique. Two non-colliding options are
suggested: Internet domain names and DCE UUIDs.

Furthermore, in a distributed world where different entities independently evolve types, a convention must be followed to
avoid the same Repositoryld being used for two different types. Only the entity that created the prefix has authority to
create new 1Ds by simply incrementing the version number. Other entities must use a new prefix, even if they are only
making a minor change to an existing type.

Prefix pragmas can be used to preserve the existing IDs when a module or other container is renamed or moved.

module M4 {
#pragma prefix “P1/M2”
module M3 {
#pragma prefix “P2”
typedef long T3;
|3
typedef long T4;
#pragma version T4 2.4

|3

This IDL declares types with the same global identities as those declared in module M2 above.

See The Prefix Pragmaon page 278 for further details of the effects of various prefix pragma settings on the generated
Repositorylds.

14.7.6 For More Information

IDL for Interface Repository on page 284 shows the IDL specification of the IR, including the #pragma directive.
Preprocessing on page 38 contains additional, general information on the pragma directive.

14.7.7 RepositorylDs for OMG-Specified Types

Interoperability between implementations of official OMG specifications, including but not limited to CORBA, CORBA
Services, and CORBA Facilities, depends on unambiguous specification of Repositorylds for all IDL-defined typesin
such specifications.

All official IDL files shall contain the following pragma prefix directive:
#pragma prefix “omg.org”
unless said file already contains a pragma prefix identifying the original source of the file (e.g., “w3c.org”).

Revisions to existing OMG specifications must not change the definition of an existing type in any way. Two types with
different repository Ids are considered different types, regardless of which part of the repository Id differs.

If an implementation must extend an OM G-specified interface, interoperability requires it to derive a new interface from
the standard interface, rather than modify the standard definition.

282 Common Object Request Broker Architecture (CORBA), v3.1.1

14.7.8 Uniqueness Constraints on Repository IDs

Within an IDL definition, a module must have the same repository 1D throughout. For example:

#pragma prefix "A"
module M {
...

h

#pragma prefix "B"

module M { /[Error, inconsistent repository ID

I ...
h

This definition attempts to use the same type name M with two different repository 1Ds in the same compilation unit.

Compilers shall issue a diagnostic for this error.

The same error can arise through inclusion of source files in the same compilation unit. For example:

Il Filel.idl
module M {
module N {
...
h
#pragma ID N "abc"
h

/Il File2.idl
module M {
module N {
...
h
3

/I File3.idl
#include "Filel.idl

#include "File2.idl // Error, inconsistent repository ID

Similarly:

/I Filel.idl
module M {
...

b

/Il File2.idl
#include Filel.idl
#pragma prefix " X"

module M { /[Error, inconsistent repository 1D

I ...
h

Common Object Request Broker Architecture (CORBA), v3.1.1

283

Such errors are detectable only if they occur in a single compilation unit (or in files included in a single compilation unit);
if, in different compilation units, different repository 1Ds are used for the same module, and these compilation units are

combined into a single executable, the behavior is undefined.

14.8 IDL for Interface Repository

This sub clause contains the complete IDL specification for the Interface Repository.

module CORBA {

typeprefix CORBA “omg.org”;
typedef string Identifier;
typedef string ScopedName;
typedef string Repositoryld;

284

enum DefinitionKind {

b

dk_none, dk_all,

dk_Attribute, dk_Constant, dk_Exception, dk_Interface,
dk_Module, dk_Operation, dk_Typedef,
dk_Alias, dk_Struct, dk_Union, dk_Enum,
dk_Primitive, dk_String, dk_Sequence, dk_Array,
dk_Repository,

dk_Wstring, dk_Fixed,

dk_Value, dk_ValueBox, dk_ValueMember,
dk_Native,

dk_Abstractinterface,

dk_Locallnterface

dk_Component, dk_Home,

dk_Factory, dk_Finder,

dk_Emits, dk_Publishes, dk_Consumes,
dk_Provides, dk_Uses,

dk_Event

interface IRObject {

b

/l read interface

readonly attribute DefinitionKind def _kind;
/I write interface

void destroy ();

typedef string VersionSpec;

interface Contained;
interface Repository;
interface Container;

interface Contained : IRObject {

/l read/write interface

Common Object Request Broker Architecture (CORBA), v3.1.1

attribute Repositoryld id;
attribute Identifier name;
attribute VersionSpec version;

Il read interface
readonly attribute Container defined_in;
readonly attribute ScopedName absolute_name;
readonly attribute Repository containing_repository;
struct Description {

DefinitionKind kind;

any value;

h
Description describe ();
/l write interface

void move (

in Container new_container,
in Identifier new_name,
in VersionSpec new_version

);
b

interface ModuleDef;

interface ConstantDef;

interface IDLType;

interface StructDef;

interface UnionDef;

interface EnumDef;

interface AliasDef;

interface InterfaceDef;

interface ExceptionDef;

interface NativeDef;

typedef sequence <InterfaceDef> InterfaceDefSeq;

interface ValueDef;

typedef sequence <ValueDef> ValueDefSeq;

interface ValueBoxDef;

interface AbstractinterfaceDef;

typedef sequence <AbstractinterfaceDef> AbstractinterfaceDefSeq;

interface LocallnterfaceDef;

typedef sequence <LocallnterfaceDef> LocallnterfaceDefSeq;

interface ExtinterfaceDef;

typedef sequence <ExtinterfaceDef> ExtinterfaceDefSeq;

interface ExtValueDef;

typedef sequence <ExtValueDef> ExtValueDefSeq;

interface ExtAbstractinterfaceDef;

typedef sequence <ExtAbstractinterfaceDef>
ExtAbstractinterfaceDefSeq;

Common Object Request Broker Architecture (CORBA), v3.1.1 285

286

interface ExtLocallnterfaceDef;
typedef sequence <ExtLocallnterfaceDef>
ExtLocallnterfaceDefSeq;

typedef sequence <Contained> ContainedSeq;
struct StructMember {

Identifier name;
TypeCode type;
IDLType type_def;

h
typedef sequence <StructMember> StructMemberSeq;

struct Initializer {
StructMemberSeq members;
Identifier name;

|3

typedef sequence <lInitializer> InitializerSeq;

struct ExceptionDescription {

Identifier name;
Repositoryld id;
Repositoryld defined_in;
VersionSpec version;
TypeCode type;

b

typedef sequence <ExceptionDescription> ExcDescriptionSeq;

struct Extlnitializer {

StructMemberSeq members;
ExcDescriptionSeq exceptions;
Identifier name;

b

typedef sequence <Extlnitializer> ExtInitializerSeq;

struct UnionMember {

Identifier name;
any label;
TypeCode type;
IDLType type_def;

h
typedef sequence <UnionMember> UnionMemberSeq;
typedef sequence <ldentifier> EnumMemberSeq;

interface Container : IRObject {
/l read interface

Contained lookup (
in ScopedName search_name);

Common Object Request Broker Architecture (CORBA), v3.1.1

ContainedSeq contents (

in DefinitionKind limit_type,
in boolean exclude_inherited
)i
ContainedSeq lookup_name (
in Identifier search_name,
in long levels_to_search,
in DefinitionKind limit_type,
in boolean exclude_inherited
)i
struct Description {
Contained contained_object;
DefinitionKind kind;
any value;

h
typedef sequence<Description> DescriptionSeq;

DescriptionSeq describe_contents (

in DefinitionKind limit_type,
in boolean exclude_inherited,
in long max_returned_objs

);
/l write interface

ModuleDef create_module (

in Repositoryld id,
in Identifier name,
in VersionSpec version

);

ConstantDef create_constant (

in Repositoryld
in Identifier

in VersionSpec
in IDLType

in any

);

StructDef create_struct (

in Repositoryld
in Identifier
in VersionSpec

in StructMemberSeq

);

UnionDef create_union (

in Repositoryld

id,
name,
version,

type,
value

id,

name,
version,
members

id,

Common Object Request Broker Architecture (CORBA), v3.1.1

287

288

in Identifier

in VersionSpec

in IDLType

in UnionMemberSeq

);

EnumDef create_enum (
in Repositoryld
in Identifier
in VersionSpec
in EnumMemberSeq

);

AliasDef create_alias (
in Repositoryld
in Identifier
in VersionSpec
in IDLType

);

name,
version,
discriminator_type,
members

id,

name,
version,
members

id,

name,
version,
original_type

InterfaceDef create_interface (

in Repositoryld

in Identifier

in VersionSpec

in InterfaceDefSeq

);

ValueDef create_value(
in Repositoryld
in Identifier
in VersionSpec
in boolean
in boolean
in ValueDef
in boolean
in ValueDefSeq
in InterfaceDefSeq
in InitializerSeq

);

id,

name,

version,
base_interfaces,

id,

name,

version,

is_custom,
is_abstract,

base value,
is_truncatable,
abstract_base values,
supported_interfaces,
initializers

ValueBoxDef create_value_box(

in Repositoryld
in Identifier
in VersionSpec
in IDLType

);

id,

name,

version,
original_type_def

ExceptionDef create_exception(

in Repositoryld
in Identifier
in VersionSpec

id,
name,
version,

Common Object Request Broker Architecture (CORBA), v3.1.1

in StructMemberSeq members

)i

NativeDef create_native(
in Repositoryld id,
in Identifier name,
in VersionSpec version

);

AbstractinterfaceDef create_abstract_interface (
in Repositoryld id,
in Identifier name,
in VersionSpec version,
in AbstractinterfaceDefSeq base_interfaces,

);

LocallnterfaceDef create_local_interface (
in Repositoryld id,
in Identifier name,
in VersionSpec version,
in InterfaceDefSeq base_interfaces

)i
ExtValueDef create_ext_value (
in Repositoryld id,
in Identifier name,
in VersionSpec version,
in boolean is_custom,
in boolean is_abstract,
in ValueDef base value,
in boolean is_truncatable,
in ValueDefSeq abstract_base values,
in InterfaceDefSeq supported_interfaces,
in ExtlnitializerSeq initializers

);
b

interface IDLType : IRObject {
readonly attribute TypeCode type;

h

interface PrimitiveDef;
interface StringDef;
interface SequenceDef;
interface ArrayDef;
interface WstringDef;
interface FixedDef;

enum PrimitiveKind {

pk_null, pk_void, pk_short, pk_long, pk_ushort, pk_ulong,
pk_float, pk_double, pk_boolean, pk_char, pk_octet,

Common Object Request Broker Architecture (CORBA), v3.1.1 289

290

pk_any, pk_TypeCode, pk_Principal, pk_string, pk_obijref,
pk_longlong, pk_ulonglong, pk_longdouble,
pk_wchar, pk_wstring, pk_value_base

b

interface Repository : Container {
Il read interface

Contained lookup_id (in Repositoryld search_id);
TypeCode get_canonical_typecode(in TypeCode tc);
PrimitiveDef get_primitive (in PrimitiveKind kind);

/I write interface

StringDef create_string (in unsigned long bound);
WstringDef create_wstring (in unsigned long bound);

SequenceDef create_sequence (

in unsigned long bound,
in IDLType element_type
)i
ArrayDef create_array (
in unsigned long length,
in IDLType element_type
)i
FixedDef create_fixed (
in unsigned short digits,
in short scale
)i
|3
interface ModuleDef : Container, Contained {
h
struct ModuleDescription {
Identifier name;
Repositoryld id;
Repositoryld defined_in;
VersionSpec version;

b

interface ConstantDef : Contained {
readonly attribute TypeCode type;
attribute IDLType type_def;
attribute any value;

b

Common Object Request Broker Architecture (CORBA), v3.1.1

struct ConstantDescription {

Identifier name;
Repositoryld id;
Repositoryld defined_in;
VersionSpec version;
TypeCode type;
any value;

3

interface TypedefDef : Contained, IDLType {

5

struct TypeDescription {
Identifier name;
Repositoryld id;
Repositoryld defined_in;
VersionSpec version;
TypeCode type;

h

interface StructDef : TypedefDef, Container {
attribute StructMemberSeq members;

h

interface UnionDef : TypedefDef, Container {
readonly attribute TypeCode discriminator_type;
attribute IDLType discriminator_type_def;
attribute UnionMemberSeq members;

h

interface EnumbDef : TypedefDef {
attribute EnumMemberSeq members;

h

interface AliasDef : TypedefDef {
attribute IDLType original_type_def;

h

interface NativeDef : TypedefDef {
h

interface PrimitiveDef: IDLType {
readonly attribute PrimitiveKind kind;

h

interface StringDef : IDLType {
attribute unsigned long bound;

h
interface WstringDef : IDLType {

Common Object Request Broker Architecture (CORBA), v3.1.1 291

292

attribute unsigned long

b

interface FixedDef : IDLType {
attribute unsigned short
attribute short

b

interface SequenceDef : IDLType {

attribute unsigned long
readonly attribute TypeCode
attribute IDLType

b

interface ArrayDef : IDLType {
attribute unsigned long
readonly attribute TypeCode

bound;

digits;
scale;

bound;
element_type;
element_type_def;

length;
element_type;

attribute IDLType
|3

element_type_def;

interface ExceptionDef : Contained, Container {
readonly attribute TypeCode type;

attribute StructMemberSeq

b

members;

enum AttributeMode {ATTR_NORMAL, ATTR_READONLY},

interface AttributeDef : Contained {
readonly attribute TypeCode type;

attribute IDLType

attribute AttributeMode

b

type_def;
mode;

struct AttributeDescription {

Identifier
Repositoryld
Repositoryld
VersionSpec
TypeCode
AttributeMode

b

name;
id;

defined _in;
version;
type;
mode;

struct ExtAttributeDescription {

Identifier
Repositoryld
Repositoryld
VersionSpec
TypeCode
AttributeMode
ExcDescriptionSeq
ExcDescriptionSeq

name;
id;

defined _in;
version;

type;

mode;
get_exceptions;
put_exceptions;

Common Object Request Broker Architecture (CORBA), v3.1.1

5
interface ExtAttributeDef : AttributeDef {

Il read/write interface
attribute ExcDescriptionSeq get_exceptions;
attribute ExcDescriptionSeq set_exceptions;

Il read interface
ExtAttributeDescription describe_attribute ();

h

enum OperationMode {OP_NORMAL, OP_ONEWAY};
enum ParameterMode {PARAM_IN, PARAM_OUT, PARAM_INOUT};

struct ParameterDescription {

Identifier name,;
TypeCode type;
IDLType type_def;
ParameterMode mode;

h

typedef sequence <ParameterDescription> ParDescriptionSeq;
typedef Identifier Contextldentifier;

typedef sequence <Contextldentifier> ContextldSeq;

typedef sequence <ExceptionDef> ExceptionDefSeq;

interface OperationDef : Contained {
readonly attribute TypeCode result;

attribute IDLType result_def;
attribute ParDescriptionSeq params;
attribute OperationMode mode;
attribute ContextldSeq contexts;
attribute ExceptionDefSeq exceptions;
h
struct OperationDescription {
Identifier name;
Repositoryld id;
Repositoryld defined_in;
VersionSpec version;
TypeCode result;
OperationMode mode;
ContextldSeq contexts;

ParDescriptionSeq parameters;
ExcDescriptionSeq exceptions;

h
typedef sequence <Repositoryld> RepositoryldSeq;

typedef sequence <OperationDescription> OpDescriptionSeq;
typedef sequence <AttributeDescription> AttrDescriptionSeq;

Common Object Request Broker Architecture (CORBA), v3.1.1 293

294

typedef sequence <ExtAttributeDescription> ExtAttrDescriptionSeq;

interface InterfaceDef : Container, Contained, IDLType {

/l read/write interface
attribute InterfaceDefSeq
/l read interface

booleanis_a (

base_interfaces;

in Repositoryld interface_id

)i

struct FullinterfaceDescription {
Identifier name;
Repositoryld id;
Repositoryld defined_in;
VersionSpec version;
OpDescriptionSeq operations;
AttrDescriptionSeq attributes;
RepositoryldSeq base_interfaces;
TypeCode type;

b

FullinterfaceDescription describe_interface();

/l write interface

AttributeDef create_attribute (

in Repositoryld
in Identifier

in VersionSpec
in IDLType

in AttributeMode

);

id,
name,
version,

type,
mode

OperationDef create_operation (

in Repositoryld
in Identifier
in VersionSpec
in IDLType
in OperationMode
in ParDescriptionSeq
in ExceptionDefSeq
in ContextldSeq
)i
h

struct InterfaceDescription {
Identifier
Repositoryld
Repositoryld

id,

name,
version,
result,
mode,
params,
exceptions,
contexts

name;
id;
defined _in;

Common Object Request Broker Architecture (CORBA), v3.1.1

h

interface InterfaceAttrExtension {

VersionSpec
RepositoryldSeq

/l read interface

version;
base_interfaces;

struct ExtFullinterfaceDescription {

Identifier name;
Repositoryld id;

Repositoryld defined_in;
VersionSpec version;
OpDescriptionSeq operations;
ExtAttrDescriptionSeq attributes;
RepositoryldSeq base_interfaces;
TypeCode type;

h
ExtFullinterfaceDescription describe_ext_interface ();

/l write interface
ExtAttributeDef create_ext_attribute (

in Repositoryld id,

in Identifier name,

in VersionSpec version,

in IDLType type,

in AttributeMode mode,

in ExceptionDefSeq get_exceptions,
in ExceptionDefSeq set_exceptions

);
b

interface ExtInterfaceDef : InterfaceDef,
InterfaceAttrExtension {

h

typedef short Visibility;

const Visibility PRIVATE_MEMBER = 0;
const Visibility PUBLIC_MEMBER = 1;

struct ValueMember {

Identifier name;
Repositoryld id;
Repositoryld defined_in;
VersionSpec version;
TypeCode type;
IDLType type_def;
Visibility access;

Common Object Request Broker Architecture (CORBA), v3.1.1

295

typedef sequence <ValueMember> ValueMemberSeq;

interface ValueMemberDef : Contained {
readonly attribute TypeCode type;
attribute IDLType type_def;
attribute Visibility access;

b

interface ValueDef : Container, Contained, IDLType {
Il read/write interface

attribute InterfaceDefSeq supported_interfaces;
attribute InitializerSeq initializers;

attribute ValueDef base_value;

attribute ValueDefSeq abstract_base_values;
attribute boolean is_abstract;

attribute boolean is_custom;

attribute boolean is_truncatable;

/l read interface
boolean is_a(

in Repositoryld id

)i

struct FullValueDescription {
Identifier name;
Repositoryld id;
boolean is_abstract;
boolean is_custom;
Repositoryld defined_in;
VersionSpec version;
OpDescriptionSeq operations;
AttrDescriptionSeq attributes;
ValueMemberSeq members;
InitializerSeq initializers;
RepositoryldSeq supported_interfaces;
RepositoryldSeq abstract_base_values;
boolean is_truncatable;
Repositoryld base value;
TypeCode type;

h
FullValueDescription describe_value();
/l write interface

ValueMemberDef create_value_member(

in Repositoryld id,

in Identifier name,
in VersionSpec version,
in IDLType type,

296 Common Object Request Broker Architecture (CORBA), v3.1.1

in Visibility access

)i

AttributeDef create_attribute(
in Repositoryld id,
in Identifier name,
in VersionSpec version,
in IDLType type,
in AttributeMode mode

)i

OperationDef create_operation (
in Repositoryld id,
in Identifier name,
in VersionSpec version,
in IDLType result,
in OperationMode mode,
in ParDescriptionSeq params,
in ExceptionDefSeq exceptions,
in ContextldSeq contexts

)i

h
struct ValueDescription {

Identifier name;

Repositoryld id;

boolean is_abstract;

boolean is_custom;

Repositoryld defined_in;

VersionSpec version;

RepositoryldSeq supported_interfaces;
RepositoryldSeq abstract_base values;
boolean is_truncatable;
Repositoryld base value;

h
interface ExtValueDef : ValueDef {

/l read/write interface
attribute ExtlnitializerSeq ext_initializers;

/l read interface

struct ExtFullValueDescription {

Identifier name;
Repositoryld id;

boolean is_abstract;
boolean is_custom;
Repositoryld defined_in;
VersionSpec version;
OpDescriptionSeq operations;

Common Object Request Broker Architecture (CORBA), v3.1.1

297

"

b

ExtAttrDescriptionSeq
ValueMemberSeq
ExtlnitializerSeq
RepositoryldSeq
RepositoryldSeq
boolean

Repositoryld
TypeCode

attributes;

members;

initializers;
supported_interfaces;
abstract_base_values;
is_truncatable;

base value;

type;

ExtFullValueDescription describe_ext_value ();

/[write interface
ExtAttributeDef create_ext_attribute (

);
b

in Repositoryld

in Identifier

in VersionSpec

in IDLType

in AttributeMode

in ExceptionDefSeq
in ExceptionDefSeq

id,

name,

version,

type,

mode,
get_exceptions,
set_exceptions

interface ValueBoxDef : TypedefDef {
attribute IDLType original_type_def;

b

interface AbstractinterfaceDef : InterfaceDef {

b

interface ExtAbstractinterfaceDef :

b

interface LocallnterfaceDef : InterfaceDef {

b

interface ExtLocallnterfaceDef :

b

LocallnterfaceDef,

InterfaceAttrExtension {

298

module ComponentIR {
typeprefix ComponentIR “omg.org”;

interface ComponentDef;
interface HomeDef;

interface EventDef : ExtValueDef {};

interface Container{

Common Object Request Broker Architecture (CORBA), v3.1.1

AbstractinterfaceDef,
InterfaceAttrExtension {

ComponentDef create_component (
in Repositoryld id,
in Identifier name,
in VersionSpec version,
in ComponentDef base _component,
in InterfaceDefSeq supports_interfaces

);

HomeDef create_home (
in Repositoryld id,

in Identifier name,
in VersionSpec version,
in HomeDef base _home,

in ComponentDef managed_component,
in InterfaceDefSeq supports_interfaces,

in ValueDef primary_key
)i
EventDef create_event (
in Repositoryld id,
in Identifier name,
in VersionSpec version,
in boolean is_custom,
in boolean is_abstract,
in ValueDef base value,
in boolean is_truncatable,
in ValueDefSeq abstract_base_values,
in InterfaceDefSeq supported_interfaces,
in ExtlnitializerSeq initializers

);
h

interface ModuleDef : CORBA::ModuleDef, Container{};
interface Repository : CORBA::Repository, Container{};

interface ProvidesDef : Contained {
attribute InterfaceDef interface_type;

h

struct ProvidesDescription {
Identifier name;
Repositoryld id;
Repositoryld defined_in;
VersionSpec version;
Repositoryld interface_type;

h

interface UsesDef : Contained {
attribute InterfaceDef interface_type;
attribute boolean is_multiple;

h

Common Object Request Broker Architecture (CORBA), v3.1.1 299

struct UsesDescription {
Identifier name;
Repositoryld id;
Repositoryld defined _in;
VersionSpec version;
Repositoryld interface_type;
boolean is_multiple;

h
interface EventPortDef : Contained {

/l read/write interface
attribute EventDef event;

/l read interface
boolean is_a (in Repositoryld event_id);

|3

struct EventPortDescription {
Identifier name;
Repositoryld id;
Repositoryld defined _in;
VersionSpec version;
Repositoryld event;

¥

interface EmitsDef : EventPortDef {};
interface PublishesDef : EventPortDef {};
interface ConsumesDef ; EventPortDef {};
interface ComponentDef : ExtIinterfaceDef {

Il read/write interface
attribute ComponentDef base_component;
attribute InterfaceDefSeq supported_interfaces;

/Il write interface
ProvidesDef create_provides (
in Repositoryld id,

in Identifier name,
in VersionSpec version,
in InterfaceDef interface_type

);

UsesDef create_uses (
in Repositoryld id,

in Identifier name,

in VersionSpec version,

in InterfaceDef interface_type,
in boolean is_multiple

);

EmitsDef create_emits (

300 Common Object Request Broker Architecture (CORBA), v3.1.1

in Repositoryld id,

in ldentifier name,
in VersionSpec version,
in EventDef event

);

PublishesDef create_publishes (
in Repositoryld id,

in Identifier name,
in VersionSpec version,
in EventDef event

);

ConsumesDef create_consumes (
in Repositoryld id,

in ldentifier name,
in VersionSpec version,
in EventDef event

):
h

typedef sequence<ProvidesDescription>
ProvidesDescriptionSeq;

typedef sequence<UsesDescription> UsesDescriptionSeq;

typedef sequence<EventPortDescription>
EventPortDescriptionSeq;

struct ComponentDescription {

Identifier name;

Repositoryld id;

Repositoryld defined_in;
VersionSpec version;

Repositoryld base _component;
RepositoryldSeq supported_interfaces;
ProvidesDescriptionSeq provided_interfaces;
UsesDescriptionSeq used_interfaces;

EventPortDescriptionSeq emits_events;
EventPortDescriptionSeq publishes_events;
EventPortDescriptionSeq consumes_events;
ExtAttrDescriptionSeq attributes;
TypeCode type;

3

interface FactoryDef : OperationDef {};
interface FinderDef : OperationDef {};
interface HomeDef : ExtinterfaceDef {

/l read/write interface

attribute HomeDef base_home;

attribute InterfaceDefSeq supported_interfaces;
attribute ComponentDef managed_component;

Common Object Request Broker Architecture (CORBA), v3.1.1 301

302

b

attribute ValueDef primary_key;

/I write interface
FactoryDef create_factory (

in Repositoryld id,
in Identifier name,
in VersionSpec version,

in ParDescriptionSeq params,
in ExceptionDefSeq exceptions

)i
FinderDef create_finder (

in Repositoryld id,

in Identifier name,

in VersionSpec version,

in ParDescriptionSeq params,

in ExceptionDefSeq exceptions
)i

struct HomeDescription {

Identifier name;
Repositoryld id;
Repositoryld defined_in;
VersionSpec version;
Repositoryld base home;
Repositoryld managed_component;
ValueDescription primary_key;

OpDescriptionSeq factories;
OpDescriptionSeq finders;

OpDescriptionSeq operations;
ExtAttrDescriptionSeq attributes;
TypeCode type;

Common Object Request Broker Architecture (CORBA), v3.1.1

15 The Portable Object Adapter

15.1 Overview

This clause describes the Portable Object Adapter, or POA. It presents the design goals, a description of the abstract
model of the POA and its interfaces, followed by a detailed description of the interfaces themselves. The POA is
designed to meet the following goals:

» Allow programmers to construct object implementations that are portable between different ORB products.

« Provide support for objects with persistent identities. More precisely, the POA is designed to alow programmers to
build object implementations that can provide consistent service for objects whose lifetimes (from the perspective of a
client holding a reference for such an object) span multiple server lifetimes.

» Provide support for transparent activation of objects.

» Allow asingle servant to support multiple object identities simultaneously.

« Allow multiple distinct instances of the POA to exist in a server.

» Provide support for transient objects with minimal programming effort and overhead.
» Provide support for implicit activation of servants with POA-allocated Object Ids.

» Allow object implementations to be maximally responsible for an object’s behavior. Specifically, an implementation
can control an object’s behavior by establishing the datum that defines an object’s identity, determining the
relationship between the object’sidentity and the object’s state, managing the storage and retrieval of the object’s state,
providing the code that will be executed in response to requests, and determining whether or not the object exists at
any point in time.

» Avoid requiring the ORB to maintain persistent state describing individual objects, their identities, where their state is
stored, whether certain identity values have been previously used or not, whether an object has ceased to exist or not,
and so on.

» Provide an extensible mechanism for associating policy information with objects implemented in the POA.

» Allow programmers to construct object implementations that inherit from static skeleton classes, generated by IDL
compilers, or aDS| implementation.

15.2 Abstract Model Description

The POA interfaces described in this clause imply a particular abstract computational model. This sub clause presents that
model and defines terminology and basic concepts that will be used in subsequent sub clauses.

This sub clause provides the rationale for the POA design, describes some of its intended uses, and provides a background
for understanding the interface descriptions.

15.2.1 Model Components

The model supported by the POA is a specialization of the general object model described in the OMA guide. Most of the
elements of the CORBA object model are present in the model described here, but there are some new components, and
some of the names of existing components are defined more precisely than they are in the CORBA object model. The
abstract model supported by the POA has the following components:

« Client—A client is acomputational context that makes requests on an object through one of its references.

Common Object Request Broker Architecture (CORBA), v3.1.1 303

304

Server—A server is acomputational context in which the implementation of an object exists. Generally, a server
corresponds to a process. Note that client and server are roles that programs play with respect to a given object. A
program that is a client for one object may be the server for another. The same process may be both client and server
for asingle object.

Object—In this discussion, we use object to indicate a CORBA object in the abstract sense, that is, a programming
entity with an identity, an interface, and an implementation. From a client’s perspective, the object’s identity is
encapsulated in the object’s reference. This specification defines the server’s view of object identity, whichis
explicitly managed by object implementations through the POA interface.

Servant—A servant is a programming language object or entity that implements requests on one or more objects.
Servants generally exist within the context of a server process. Requests made on an object’s references are mediated
by the ORB and transformed into invocations on a particular servant. In the course of an object’slifetime it may be
associated with (that is, requests on its references will be targeted at) multiple servants.

Object Id—An Object Id isavalue that is used by the POA and by the user-supplied implementation to identify a
particular abstract CORBA object. Object 1d values may be assigned and managed by the POA, or they may be
assigned and managed by the implementation. Object 1d values are hidden from clients, encapsulated by references.
Object Ids have no standard form; they are managed by the POA as uninterpreted octet sequences.

Note that the Object Id defined in this specification is a mechanical device used by an object implementation to
correlate incoming requests with references it has previously created and exposed to clients. It does not constitute a
unique logical identity for an object in any larger sense. The assignment and interpretation of Object Id valuesis
primarily the responsibility of the application developer, although the SYSTEM_ID policy enables the POA to
generate Object 1d values for the application.

Object Reference—An object reference in this model is the same asin the CORBA object model. This model implies,
however, that areference specifically encapsulates an Object Id and a POA identity.

Note that a concrete reference in a specific ORB implementation will contain more information, such as the location of
the server and POA in question. For example, it might contain the full name of the POA (the names of all POAs
starting from the root and ending with the specific POA). The reference might not, in fact, actually contain the Object
Id, but instead contain more compact values managed by the ORB that can be mapped to the Object Id. Thisisa
description of the abstract information model implied by the POA. Whatever encoding is used to represent the POA
name and the Object Id must not restrict the ability to use any legal character in a POA name or any legal octet in an
Object Id.

POA—A POA isanidentifiable entity within the context of a server. Each POA provides a namespace for Object Ids
and a namespace for other (nested or child) POAs. Policies associated with a POA describe characteristics of the
objects implemented in that POA. Nested POAs form a hierarchical name space for objects within a server.

Policy—A Palicy is an object associated with a POA by an application in order to specify a characteristic shared by the
objects implemented in that POA. This specification defines policies controlling the POA’s threading model aswell as
avariety of other options related to the management of objects. Other specifications may define other policies that
affect how an ORB processes requests on objects implemented in the POA.

POA Manager—A POA manager is an object that encapsul ates the processing state of one or more POAs. Using
operations on a POA manager, the developer can cause requests for the associated POASs to be queued or discarded.
The devel oper can also use the POA manager to deactivate the POAS.

POA Manger Factory -- A POA Manager Factory allows explicit creation of POA managers and lookup of existing
POA managers. With explicit creation, the developer can control the identity (the name) of a POA manager as well
as pass configuration policies to the factory operation.

Servant Manager—A servant manager is an object that the application developer can associate with a POA. The ORB
will invoke operations on servant managers to activate servants on demand, and to deactivate servants. Servant

Common Object Request Broker Architecture (CORBA), v3.1.1

managers are responsible for managing the association of an object (as characterized by its Object 1d value) with a
particular servant, and for determining whether an object exists or not. There are two kinds of servant managers, called
ServantActivator and ServantLocator; the type used in a particular situation depends on policiesin the POA.

» Adapter Activator—An adapter activator is an object that the application developer can associate with a POA. The
ORB will invoke an operation on an adapter activator when arequest is received for a child POA that does not
currently exist. The adapter activator can then create the required POA on demand.

15.2.2 Model Architecture

This section describes the architecture of the abstract model implied by the POA, and the interactions between various
components. The ORB is an abstraction visible to both the client and server. The POA is an object visible to the server.
User-supplied implementations are registered with the POA (this statement is a simplification; more detail is provided
below). Clients hold references upon which they can make requests. The ORB, POA, and implementation all cooperate to
determine which servant the operation should be invoked on, and to perform the invocation.

Figure 15.1 shows the detail of the relationship between the POA and the implementation. Ultimately, a POA deals with
an Object Id and an active servant. By active servant, we mean a programming object that exists in memory and has been
presented to the POA with one or more associated object identities. There are several ways for this association to be
made.

Object Reference

Object Id
(ORB x)
POA
-, ®
O
User-supplied
servants
POA
O

.)

Client Server

Figure 15.1 - Abstract POA Model

If the POA supports the RETAIN policy, it maintains a map, labeled Active Object Map, that associates Object 1ds with
active servants, each association constituting an active object. If the POA has the USE_DEFAULT_SERVANT policy, a
default servant may be registered with the POA. Alternatively, if the POA hasthe USE_SERVANT_MANAGER policy, a
user-written servant manager may be registered with the POA. If the Active Object Map is not used, or arequest arrives for
an object not present in the Active Object Map, the POA either uses the default servant to perform the request or it invokes
the servant manager to obtain a servant to perform the request. If the RETAIN policy is used, the servant returned by a
servant manager is retained in the Active Object Map. Otherwise, the servant is used only to process the one request.

Common Object Request Broker Architecture (CORBA), v3.1.1 305

In this specification, the term active is applied equally to servants, Object Ids, and objects. An object is active in a POA
if the POA's Active Object Map contains an entry that associates an Object Id with an existing servant. When this
specification refers to active Object Ids and active servants, it means that the Object 1d value or servant in question is part
of an entry in the Active Object Map. An Object Id can appear in a POA’s Active Object Map only once.

POAManager
Factory
<. /” POAA I User-supplied
t
& default servant // ki
A N . . i
: N ActiveObjectMap | > User-s;Jpplled
O L servan
/~ root \ Lo -
oot O Ogect |g g User-supplied
o o) J.ecﬂ R User-suoolied ServantM anager.
NARELEERN Object Id O————— ~== =PP 7
RN Object Id O~ T—F—>
L K) Ml e
. m . servant
Object IdO YR Ty
‘ ser-suppli
/ o /7 PoaB) o el
Al 1 | —7 servant
R servant mgr. |-
A A E]
a .
g Sl n| | | Opectid O User-supplied
.- a x| Object Id O/// servant
. g | "+ .| Objectid O
e L
e a =
M AN 7 POA C User-supplied
- [Object Id_{ servant
r < .. .
I O AdapterActivator
User-supplied k / j
ol B ——— > Object reference

—> Servant pointer

Figure 15.1 - POA Architecture
15.2.3 POA Creation

To implement an object using the POA requires that the server application obtain a POA object. A distinguished POA
object, called the root POA, is managed by the ORB and provided to the application using the ORB initialization interface
under the initial object name “RootPOA.” The application developer can create objects using the root POA if those
default policies are suitable. The root POA has the following policies.

« Thread Policy: ORB_CTRL_MODEL

« Lifespan Policy: TRANSIENT

306 Common Object Request Broker Architecture (CORBA), v3.1.1

» Object Id Uniqueness Policy: UNIQUE_ID

» |d Assignment Policy: SYSTEM_ID

« Servant Retention Policy: RETAIN

» Request Processing Policy: USE_ACTIVE_OBJECT_MAP_ONLY
« Implicit Activation Policy: IMPLICIT_ACTIVATION

The developer can aso create new POAS. Creating a new POA allows the application developer to declare specific policy
choices for the new POA and to provide a different adapter activator and servant manager (these are callback objects used
by the POA to activate objects and nested POAs on demand). Creating new POAs also alows the application devel oper
to partition the name space of objects, as Object Ids are interpreted relative to a POA. Finally, by creating new POAs, the
developer can independently control request processing for multiple sets of objects.

A POA is created as a child of an existing POA using the create_ POA operation on the parent POA. When a POA is
created, the POA is given a name that must be unique with respect to all other POAs with the same parent.

POA objects are not persistent. No POA state can be assumed to be saved by the ORB. It is the responsibility of the
server application to create and initialize the appropriate POA objects during server initialization or to set an
AdapterActivator to create POA objects needed later.

Creating the appropriate POA objects is particularly important for persistent objects, objects whose existence can span
multiple server lifetimes. To support an object reference created in a previous server process, the application must recreate
the POA that created the object reference as well as al of its ancestor POAs. To ensure portability, each POA must be
created with the same name as the corresponding POA in the original server process and with the same policies. (It is the
user’s responsibility to create the POA with these conditions.)

A portable server application can presume that there is no conflict between its POA names and the POA names chosen by
other applications. It is the responsibility of the ORB implementation to provide a way to support this behavior.

Each distinct ORB created as the result of an ORB_init call in an application has its own separate root POA and POA
namespace.

15.2.4 Reference Creation

Object references are created in servers. Once they are created, they may be exported to clients.

From this model’s perspective, object references encapsulate object identity information and information required by the
ORSB to identify and locate the server and POA with which the object is associated (that is, in whose scope the reference
was created.) References are created in the following ways:

» The server application may directly create areference with the create_reference and create_reference_with_id
operations on a POA aobject. These operations collect the necessary information to constitute the reference, either from
information associated with the POA or as parameters to the operation. These operations only create areference. In
doing so, they bring the abstract object into existence, but do not associate it with an active servant.

« The server application may explicitly activate a servant, associating it with an object identity using the
activate_object or activate_object_with_id operations. Once a servant is activated, the server application can
map the servant to its corresponding reference using the servant_to_reference orid_to_reference operations.

» The server application may cause a servant to implicitly activate itself. This behavior can only occur if the POA has
been created with the IMPLICIT_ACTIVATION policy. If an attempt is made to obtain an object reference
corresponding to an inactive servant, the POA may automatically assign a generated unique Object 1d to the servant
and activate the resulting object. The reference may be obtained by invoking POA::servant_to_reference with an

Common Object Request Broker Architecture (CORBA), v3.1.1 307

inactive servant, or by performing an explicit or implicit type conversion from the servant to areference typein
programming language mappings that permit this conversion.

Once a reference is created in the server, it can be made available to clients in a variety of ways. It can be advertised
through the OMG Naming and Trading Services. It can be converted to a string via ORB::object_to_string and
published in some way that allows the client to discover the string and convert it to a reference using
ORB::string_to_object. It can be returned as the result of an operation invocation.

Once a reference becomes available to a client, that reference constitutes the identity of the object from the client’s
perspective. As long as the client program holds and uses that reference, requests made on the reference should be sent to
the “same” object.

NOTE: The meaning of object identity and “sameness” is at present the subject of debate in the OMG. This specification does
not attempt to resolve that debate in any way, particularly by defining a concrete notion of identity that is exposed to clients,
beyond the existing notions of identity described in the CORBA specifications and the OMA guide.

The states of servers and implementation objects are opaque to clients. This specification deals primarily with the view of
the ORB from the server’s perspective.

15.2.5 Object Activation States

At any point in time, a CORBA object may or may not be associated with an active servant.

If the POA has the RETAIN policy, the servant and its associated Object Id are entered into the Active Object Map of the
appropriate POA. This type of activation can be accomplished in one of the following ways.

» The server application itself explicitly activatesindividual objects (viatheactivate_object or
activate_object_with_id operations).

« The server application instructs the POA to activate objects on demand by having the POA invoke a user-supplied
servant manager. The server application registers this servant manager with set_servant_manager.

» Under some circumstances (when the IMPLICIT_ACTIVATION poalicy is aso in effect and the language binding
alows such an operation), the POA may implicitly activate an object when the server application attemptsto obtain a
reference for a servant that is not already active (that is, not associated with an Object 1d).

If the USE_DEFAULT_SERVANT policy isalso in effect, the server application instructs the POA to activate unknown
objects by having the POA invoke a single servant no matter what the Object Id is. The server application registers this
servant with set_servant.

If the POA has the NON_RETAIN policy, for every request, the POA may use either a default servant or a servant
manager to locate an active servant. From the POA’s point of view, the servant is active only for the duration of that one
request. The POA does not enter the servant-object association into the Active Object Map.

15.2.6 Request Processing

A request must be capable of conveying the Object Id of the target object as well as the identification of the POA that
created the target object reference. When a client issues a request, the ORB first locates an appropriate server (perhaps
starting one if needed) and then it locates the appropriate POA within that server.

308 Common Object Request Broker Architecture (CORBA), v3.1.1

If the POA does not exist in the server process, the application has the opportunity to re-create the required POA by using
an adapter activator. An adapter activator is a user-implemented object that can be associated with a POA. It isinvoked
by the ORB when arequest is received for a non-existent child POA. The adapter activator has the opportunity to create
the required POA. If it does not, the client receives the OBJECT _NOT_EXIST exception with standard minor code 2.

Once the ORB has located the appropriate POA, it delivers the request to that POA. The further processing of that request
depends both upon the policies associated with that POA as well as the object's current state of activation.

If the POA has the RETAIN policy, the POA looks in the Active Object Map to find out if there is a servant associated
with the Object 1d value from the request. If such a servant exists, the POA invokes the appropriate method on the
servant.

If the POA has the NON_RETAIN policy or has the RETAIN policy but didn't find a servant in the Active Object Map,
the POA takes the following actions:

» |If the POA hasthe USE_DEFAULT_SERVANT policy, adefault servant has been associated with the POA so the
POA will invoke the appropriate method on that servant. If no servant has been associated with the POA, the POA
raisesthe OBJ_ADAPTER system exception with standard minor code 3.

« If the POA hasthe USE_SERVANT_MANAGER policy, a servant manager has been associated with the POA so
the POA will invokeincarnate or preinvoke on it to find a servant that may handle the request. (The choice of
method depends on the NON_RETAIN or RETAIN policy of the POA.) If no servant manager has been associated
with the POA, the POA raisesthe OBJ_ADAPTER system exception with standard minor code 4.

« IftheUSE_OBJECT_MAP_ONLY poalicy isin effect, the POA raisesthe OBJECT_NOT_EXIST system
exception with standard minor code 2.

If a servant manager is located and invoked, but the servant manager is not directly capable of incarnating the object, it
(the servant manager) may deal with the circumstance in a variety of ways, all of which are the application’s
responsibility. Any system exception raised by the servant manager will be returned to the client in the reply. In addition
to standard system exceptions, a servant manager is capable of raising a ForwardRequest exception. This exception
includes an object reference. The ORB will process this exception as specified in Common Information for Servant
Manager Types on page 321.

15.2.7 Implicit Activation

A POA can be created with a policy that indicates that its objects may be implicitly activated. This policy,
IMPLICIT_ACTIVATION, also requires the SYSTEM_ID and RETAIN policies.

When a POA supports implicit activation, an inactive servant may be implicitly activated in that POA by certain
operations that logically require an Object Id to be assigned to that servant. (IMPLICIT_ACTIVATION does not disallow
explicit activation; instead, it enables both implicit and explicit activation.)

Implicit activation of an object involves allocating a system-generated Object Id and registering the servant with that
Object I1d in the Active Object Map. The interface associated with the implicitly activated object is determined from the
servant (using static information from the skeleton, or, in the case of adynamic servant, using the _primary_interface()
operation).

The operations that support implicit activation include:

« ThePOA::servant_to_reference operation, which takes a servant parameter and returns a reference.
« ThePOA::servant_to_id operation, which takes a servant parameter and returns an Object I1d.

Common Object Request Broker Architecture (CORBA), v3.1.1 309

» Operations supported by alanguage mapping to obtain an object reference or an Object Id for a servant. For example,
the this () servant member function in C++ returns an object reference for the servant.

» Implicit conversions supported by alanguage mapping that convert a servant to an object reference or an Object Id.
The last two categories of operations are language-mapping-dependent.

If the POA has the UNIQUE_ID policy, then implicit activation will occur when any of these operations are performed
on a servant that is not currently active (that is, it is associated with no Object Id in the POA's Active Object Map).

If the POA has the MULTIPLE_ID policy, the servant_to_reference and servant_to_id operations will always
perform implicit activation, even if the servant is already associated with an Object Id. The behavior of language mapping
operations in the MULTIPLE_ID case is specified by the language mapping. For example, in C++, the this () servant
member function will not implicitly activate a MULTIPLE_ID servant if the invocation of _this () isimmediately
within the dynamic context of areguest invocation directed by the POA to that servant; instead, it returns the object
reference used to issue the request.

NOTE: Theexact timing of implicit activation is ORB implementati on-dependent. For example, instead of activating the object
immediately upon creation of alocal object reference, the ORB could defer the activation until the Object 1d is actually needed
(for example, when the object reference is exported outside the process).

15.2.8 Multi-threading

The POA does not require the use of threads and does not specify what support is needed from a threads package.
However, in order to allow the development of portable servers that utilize threads, the behavior of the POA and related
interfaces when used within a multiple-thread environment must be specified.

Specifying this behavior does not require that an ORB must support being used in a threaded environment, nor does it
require that an ORB must utilize threads in the processing of requests. The only requirement given here is that if an ORB
does provide support for multi-threading, these are the behaviors that will be supported by that ORB. This allows a
programmer to take advantage of multiple ORBs that support threads in a portable manner across those ORBs.

The POA'’s processing is affected by the thread-related calls available in the ORB: work_pending, perform_work,
run, and shutdown.
15.2.8.1 POA Threading Models

The POA supports three models of threading when used in conjunction with multi-threaded ORB implementations; ORB
controlled, single thread and main-thread behavior. The three models can be used together or independently. All can be
used in environments where a single-threaded ORB is used.

The threading model associated with a POA is indicated when the POA is created by including a ThreadPolicy object in
the policies parameter of the POA’s create_ POA operation. Once a POA is created with one model, it cannot be
changed to the other. All uses of the POA within the server must conform to that threading model associated with the
POA.

15.2.8.2 Using the Single Thread Model

Requests for each single-threaded POA are processed sequentially. In a multi-threaded environment, upcalls made by this
POA to servants shall not be made concurrently. This provides a degree of safety for code that is multi-thread-unaware.

NOTE: Inamulti-threaded environment, requests to distinct single-threaded POA s may be processed concurrently.

310 Common Object Request Broker Architecture (CORBA), v3.1.1

The POA will still allow reentrant calls from an object implementation to itself, or to another object implementation
managed by the same POA.

15.2.8.3 Using the ORB Controlled Model

The ORB controlled model of threading is used in environments where the developer wants the ORB/POA to control the
use of threads in the manner provided by the ORB. This model can also be used in environments that do not support
threads.

In this model, the ORB is responsible for the creation, management, and destruction of threads used with one or more
POAs.
15.2.8.4 Using the Main Thread Model

Requests for all main-thread POAs are processed sequentially. In a multi-threaded environment, all upcalls made by all
POA s with this policy to servants are made in a manner that is safe for code that is multi-thread-unaware.

If the environment has special requirements that some code must run on a distinguished “main” thread, servant upcalls
will be processed on that thread.

NOTE: Not all environments have such aspecial requirement. If not, while requests will be processed sequentially they might
not all be processed by the same thread.

15.2.8.5 Limitations When Using Multiple Threads

There are no guarantees that the ORB and POA will do anything specific about dispatching requests across threads with
asingle POA. Therefore, a server programmer who wants to use one or more POAs within multiple threads must take on
all of the serialization of access to objects within those threads.

There may be requests active for the same object being dispatched within multiple threads at the same time. The
programmer must be aware of this possibility and code with it in mind.

15.2.9 Dynamic Skeleton Interface

The POA is designed to enable programmers to connect servants to:

» type-specific skeletons, typically generated by IDL compilers, or
» dynamic skeletons.

Servants that are members of type-specific skeleton classes are referred to as type-specific servants. Servants connected to
dynamic skeletons are used to implement the Dynamic Skeleton Interface (DSI) and are referred to as DSI servants.

Whether a CORBA object is being incarnated by a DSI servant or atype-specific servant is transparent to its clients. Two
CORBA objects supporting the same interface may be incarnated, one by a DSI servant and the other with a type-specific
servant. Furthermore, a CORBA object may be incarnated by a DSI servant only during some period of time, while the
rest of the time is incarnated by a static servant.

The mapping for POA DSl servants is language-specific, with each language providing a set of interfaces to the POA.
These interfaces are used only by the POA. The interfaces required are the following.

- TakeaCORBA::ServerRequest object from the POA and perform the processing necessary to execute the request.

» Return the Interface Repository 1d identifying the most-derived interface supported by the target CORBA object in a
request.

Common Object Request Broker Architecture (CORBA), v3.1.1 311

The reason for the first interface is the entire reason for existence of the DSI: to be able to handle any request in the way
the programmer wishes to handle it. A single DSI servant may be used to incarnate several CORBA objects, potentially
supporting different interfaces.

The reason for the second interface can be understood by comparing DSI servants to type-specific servants.

A type-specific servant may incarnate several CORBA abjects but all of them will support the same IDL interface as the
most-derived IDL interface. In C++, for example, an IDL interface Window in module GraphicalSystem will generate
a type-specific skeleton class called Window in namespace POA_GraphicalSystem. A type-specific servant that is

directly derived from the POA_GraphicalSystem::Window skeleton class may incarnate several CORBA abjects at a
time, but all those CORBA objects will support the GraphicalSystem::Window interface as the most-derived interface.

A DSI servant may incarnate several CORBA aobjects, not necessarily supporting the same IDL interface as the most-
derived IDL interface.

In both cases (type-specific and DSI) the POA may need to determine, at runtime, the Interface Repository Id identifying
the most-derived interface supported by the target CORBA object in arequest. The POA should be able to determine this
by asking the servant that is going to serve the CORBA abject.

In the case of type-specific servants, the POA obtains that information from the type-specific skeleton class from which
the servant is directly derived. In the case of DSI servants, the POA obtains that information by using the second
language-specific interface above.

15.2.10 Location Transparency

The POA supports location transparency for objects implemented using the POA. Unless explicitly stated to the contrary, all
POA behavior described in this specification applies regardless of whether the client is local (same process) or remote. For
example, like a request from a remote client, a request from alocal client may cause object activation if the object is not
active, block indefinitely if the target object's POA isin the holding state, be rejected if the target object’s POA isin the
discarding or inactive states, be delivered to a thread-unaware object implementation, or be delivered to a different object if
the target object's servant manager raises the ForwardRequest exception. The Object Id and POA of the target object will
also be available to the server via the Current object, regardless of whether the client is local or remote.

NOTE: Theimplication of these requirementson the ORB implementationisto require the ORB to mediate all requeststo POA-
based objects, even if the client is co-resident in the same process. This specification is not intended to change CORBA Services
specifications that allow for behaviorsthat are not location transparent. This specification does not prohibit (nonstandard) POA
extensions to support object behavior that is not |ocation-transparent.

15.3 Interfaces

The POA-related interfaces are defined in a modul e separate from the CORBA module, the PortableServer module. It
consists of these interfaces:

* POA

* POAManager

* POAManagerFactory
 ServantM anager

* ServantActivator
 ServantL ocator

312 Common Object Request Broker Architecture (CORBA), v3.1.1

« AdapterActivator

* ThreadPolicy

« LifespanPolicy

« |[dUniquenessPolicy

« |ldAssignmentPolicy
 ImplicitActivationPolicy
« ServantRetentionPolicy
 RequestProcessingPolicy
* Current

In addition, the POA defines the Servant native type.

All local objects specified in this clause except for AdapterActivator, ServantManager, ServantActivator and
ServantLocator override the default behavior of the Object::get_orb operation and return the ORB that is associated
with the root POA local object.

15.3.1 The Servant IDL Type

This specification defines a native type PortableServer::Servant. Values of the type Servant are programming-
language-specific implementations of CORBA interfaces. Each language mapping must specify how Servant is mapped
to the programming language data type that corresponds to an object implementation. The Servant type has the
following characteristics and constraints.

» Values of type Servant are opague from the perspective of CORBA application programmers. There are no
operations that can be performed directly on them by user programs. They can be passed as parameters to certain POA
operations. Some language mappings may allow Servant valuesto be implicitly converted to object references under
appropriate conditions.

» Values of type Servant support alanguage-specific programming interface that can be used by the ORB to obtain a
default POA for that servant. Thisinterfaceis used only to support implicit activation. A language mapping may
provide a default implementation of thisinterface that returns the root POA of a default ORB.

« Values of type Servant provide default implementations of the standard object reference operations get_interface,
is_a, repository_id, and non_existent. These operations can be overridden by the programmer to provide
additional behavior needed by the object implementation. The default implementations of get_interface,
repository_id, and is_a operations use the most derived interface of a static servant or the most derived interface
retrieved from a dynamic servant to perform the operation. The default implementation of thenon_existent
operation returns FALSE. These operations are invoked by the POA just like any other operation invocation, so the
PortableServer::Current interface and any language-mapping-provided method of accessing the invocation
context are available.

» Values of type Servant must be testable for identity.
» Values of type Servant have no meaning outside of the process context or address space in which they are generated.

Common Object Request Broker Architecture (CORBA), v3.1.1 313

15.3.2 POAManager Interface

Each POA object has an associated POAManager object. A POA manager may be associated with one or more POA
objects. A POA manager encapsulates the processing state of the POAs it is associated with. Using operations on the POA
manager, an application can cause requests for those POAs to be queued or discarded, and can cause the POAs to be
deactivated.

Each POAManager has a unique string as its identity. The scope of the POAManager identity is the ORB, so no two
POAManagers within the same ORB can have the same identity (but POAManagers in different ORBs can). The
POAManager for the Root POA has the name “RootPOAManager.”

If aPOAManager is created implicitly (as part of the creation of a new POA), it is assigned a unique identity by the
ORB run time. If aPOAManager is created explicitly (using the POAManagerFactory), its identity is the string
passed to the factory operation. (An empty identity string islegal.) A POAManager is destroyed implicitly, when the last
of its POAs is destroyed.

POAManager is alocal interface.

15.3.2.1 Processing States

A POA manager has four possible processing states; active, inactive, holding, and discarding. The processing state
determines the capabilities of the associated POAs and the disposition of requests received by those POAs. Figure 15.1
illustrates the processing states and the transitions between them. For simplicity of presentation, this specification
sometimes describes these states as POA states, referring to the POA or POAs that have been associated with a particular
POA manager. A POA manager is created in the holding state. The root POA is therefore initially in the holding state.

For simplicity in the figure and the explanation, operations that would not cause a state change are not shown. For
example, if a POA isin “active’ state, it does not change state due to an activate operation. Such operations complete
successfully with no special notice.

The only exception is the inactive state: a deactivate operation invoked in the inactive state may block under certain
circumstances. See deactivate on page 317 for details.

314 Common Object Request Broker Architecture (CORBA), v3.1.1

X

destroy
inactive deactivate
deactivate
discard_requests

deactivate . S
active (discarding)
activate

activate hold_requests

(holding hold_requests
/P discard_requests
create_POA
o

Figure 15.1 Processing States

Active State

When a POA manager is in the active state, the associated POAs will receive and start processing requests (assuming that
appropriate thread resources are available). Note that even in the active state, a POA may need to queue requests
depending upon the ORB implementation and resource limits. The number of requests that can be received and/or queued
is an implementation limit. If this limit is reached, the POA should return a TRANSIENT system exception, with
standard minor code 1, to indicate that the client should re-issue the request.

A user program can legally transition a POA manager from the active state to either the discarding, holding, or inactive
state by calling the discard_requests, hold_requests, or deactivate operations, respectively. The POA enters the
active state through the use of the activate operation when in the discarding or holding state.

Discarding State

When a POA manager is in the discarding state, the associated POAs will discard all incoming requests (whose
processing has not yet begun). When a request is discarded, the TRANSIENT system exception, with standard minor
code 1, must be returned to the client-side to indicate that the request should be re-issued. (Of course, an ORB may always
reject a request for other reasons and raise some other system exception.)

In addition, when a POA manager is in the discarding state, the adapter activators registered with the associated POAs
will not get called. Instead, requests that require the invocation of an adapter activator will be discarded, as described in
the previous paragraph.

Common Object Request Broker Architecture (CORBA), v3.1.1 315

The primary purpose of the discarding state is to provide an application with flow-control capabilities when it determines
that an object’s implementation or POA is being flooded with requests. It is expected that the application will restore the
POA manager to the active state after correcting the problem that caused flow-control to be needed.

A POA manager can legally transition from the discarding state to either the active, holding, or inactive state by calling
the activate, hold_requests, or deactivate operations, respectively. The POA enters the discarding state through the
use of the discard_requests operation when in the active or holding state.

Holding State

When a POA manager is in the holding state, the associated POAs will queue incoming requests. The number of requests
that can be queued is an implementation limit. If this limit is reached, the POAs may discard requests and return the
TRANSIENT system exception, with standard minor code 1, to the client to indicate that the client should reissue the
request. (Of course, an ORB may always reject a request for other reasons and raise some other system exception.)

In addition, when a POA manager is in the holding state, the adapter activators registered with the associated POAs will
not get called. Instead, requests that require the invocation of an adapter activator will be queued, as described in the
previous paragraph.

A POA manager can legally transition from the holding state to either the active, discarding, or inactive state by calling
the activate, discard_requests, or deactivate operations, respectively. The POA enters the holding state through the
use of the hold_requests operation when in the active or discarding state. A POA manager is created in the holding
state.

Inactive State

The inactive state is entered when the associated POASs are to be shut down. Unlike the discarding state, the inactive state
is not atemporary state. When a POA manager is in the inactive state, the associated POAs will reject new requests. The
rejection mechanism used is specific to the vendor. The GIOP location forwarding mechanism and CloseConnection
message are examples of mechanisms that could be used to indicate the rejection. If the client is co-resident in the same
process, the ORB could raise the OBJ_ADAPTER system exception, with standard minor code 1, to indicate that the object
implementation is unavailable.

In addition, when a POA manager is in the inactive state, the adapter activators registered with the associated POAs will
not get called. Instead, requests that require the invocation of an adapter activator will be rejected, as described in the
previous paragraph.

The inactive state is entered using the deactivate operation. It is legal to enter the inactive state from either the active,
holding, or discarding states.

If the transition into the inactive state is a result of calling deactivate with an etherealize_objects parameter of

» TRUE - the associated POAswill call etherealize for each active object associated with the POA once al currently
executing requests have completed processing (if the POAs have the RETAIN and USE_SERVANT_MANAGER
policies). If aservant manager has been registered for the POA, the POA will get rid of the object. If there are any
queued requests that have not yet started executing, they will be treated asif they were new requests and rejected.

» FALSE - No deactivations or etherealizations will be attempted.

15.3.2.2 activate

void activate()
raises (Adapterinactive);

316 Common Object Request Broker Architecture (CORBA), v3.1.1

This operation changes the state of the POA manager to active. If issued while the POA manager isin the inactive state,
the Adapterlnactive exception is raised. Entering the active state enables the associated POAS to process requests.

15.3.2.3 hold_requests

void hold_requests(in boolean wait_for_completion)
raises(Adapterinactive);

This operation changes the state of the POA manager to holding. If issued while the POA manager is in the inactive state,
the Adapterlnactive exception is raised. Entering the holding state causes the associated POAS to queue incoming
requests. Any requests that have been queued but have not started executing will continue to be queued while in the
holding state.

If the wait_for_completion parameter is FALSE, this operation returns immediately after changing the state. If the
parameter is TRUE and the current thread is not in an invocation context dispatched by some POA belonging to the same
ORB as this POA, this operation does not return until either there are no actively executing requests in any of the POAs
associated with this POA manager (that is, all requests that were started prior to the state change have completed) or the state
of the POA manager is changed to a state other than holding. If the parameter is TRUE and the current thread isin an
invocation context dispatched by some POA belonging to the same ORB as this POA the BAD_INV_ORDER system
exception with standard minor code 3 is raised and the state is not changed.

15.3.2.4 discard_requests

void discard_requests(in boolean wait_for_completion)
raises (Adapterinactive);

This operation changes the state of the POA manager to discarding. If issued while the POA manager is in the inactive
state, the Adapterinactive exception is raised. Entering the discarding state causes the associated POAs to discard
incoming requests. In addition, any requests that have been queued but have not started executing are discarded. When a
request is discarded, a TRANSIENT system exception with standard minor code 1 is returned to the client.

If the wait_for_completion parameter is FALSE, this operation returns immediately after changing the state. If the
parameter is TRUE and the current thread is not in an invocation context dispatched by some POA belonging to the same
ORB as this POA, this operation does not return until either there are no actively executing requests in any of the POAs
associated with this POA manager (that is, all requests that were started prior to the state change have completed) or the state
of the POA manager is changed to a state other than discarding. If the parameter is TRUE and the current thread is in an
invocation context dispatched by some POA belonging to the same ORB as this POA the BAD_INV_ORDER system
exception with standard minor code 3 is raised and the state is not changed.

15.3.2.5 deactivate

void deactivate(in boolean etherealize_objects,
in boolean wait_for_completion);

This operation changes the state of the POA manager to inactive. This operation has no affect on the POA manager's state
if it is already in the inactive state, but may still block if wait_for_completion is TRUE and another call to deactivate
on the same POA manager is pending. Entering the inactive state causes the associated POAS to reject requests that have
not begun to be executed as well as any new requests.

After changing the state, if the etherealize_objects parameter is

Common Object Request Broker Architecture (CORBA), v3.1.1 317

» TRUE - the POA manager will cause al associated POAsthat havethe RETAIN and USE_SERVANT_MANAGER
policiesto perform the etherealize operation on the associated servant manager for all active objects.

» FALSE - the etherealize operation is not called. The purpose is to provide devel opers with a means to shut down
POAsin acrisis (for example, unrecoverable error) situation.

If the wait_for_completion parameter is FALSE, this operation will return immediately after changing the state. If the
parameter is TRUE and the current thread is not in an invocation context dispatched by some POA belonging to the same
ORB as this POA, this operation does not return until there are no actively executing requests in any of the POAs associated
with this POA manager (that is, al requests that were started prior to the state change have completed) and, in the case of a
TRUE etherealize_objects, all invocations of etherealize have completed for POASs having the RETAIN and
USE_SERVANT_MANAGER policies. If the parameter is TRUE and the current thread is in an invocation context
dispatched by some POA belonging to the same ORB as this POA the BAD_INV_ORDER system exception with standard
minor code 3 israised and the state is not changed.

If deactivate is called multiple times before destruction is complete (because there are active requests), the
etherealize_objects parameter applies only to the first call of deactivate; subsegquent calls with conflicting
etherealize_objects settings will use the value of the etherealize_objects from the first call. The
wait_for_completion parameter will be handled as defined above for each individual call (some callers may choose to
block, while others may not).

15.3.2.6 get_state

enum State {HOLDING, ACTIVE, DISCARDING, INACTIVE};
State get_state();

This operation returns the state of the POA manager.
15.3.2.7 get_id

string get_id();

This operation returns the POAManager's unique identity. The id of the POAManager for the Root POA is
“RootPOAManager.”

15.3.3 POAManagerFactory Interface

POAManagers can be created implicitly, by passing a nil POAManager reference to the create_ POA operation, or can be
created explicitly using a POAManagerFactory. Explicit creation of a POAManager permits application control of the
POAManager's identity, whereas implicit creation results in creation of a unique identity by the ORB run time. Explicit
creation of a POAManager also permits the application to assign policies to the new POAManager.

15.3.3.1 create_ POAManager

exception ManagerAlreadyExists {};

POAManager create_ POAManager(
in string id,

in CORBA::PolicyList policies
) raises(ManagerAlreadyExists, CORBA::PolicyError);

318 Common Object Request Broker Architecture (CORBA), v3.1.1

This operation creates a new POAManager with the given id. If a POAManager with the given id exists aready within the
ORB, the operation raises ManagerAlreadyExists. (Note that placing a POAManager into the inactive state does not
necessarily result in destruction of the POAManager because destruction of a POAManager only occurs once the last of its
POAs has been destroyed. create_ POAManager succeeds in creation of a new POAManager with the same identity as
a previous POAManager only once the previous POAManager’'s POAs are destroyed.)

The policies parameter permits an arbitrary number of policies to be passed; these policies can be used by an ORB
implementation to influence the POAManager's behavior in some way; for example, an ORB may choose to use this
mechanism to pass configuration information to the factory. The policies passed to create_ POAManager are deep-
copied during creation; modification of a policy sequence after creation has therefore no effect on already existing
POAManagers. If one or more of the policies are invalid, create_ POAManager raises CORBA::PolicyError.

The newly created POAManager is in the Holding state.

15.3.3.2 list

typedef sequence<POAManager> POAManagerSeq;
POAManagerSeq list();

The list operation returns all POAManagers (whether created implicitly or explicitly) that currently exist within the ORB.

15.3.3.3 find
POAManager find(in string id);

The find operation return the POAManager with the specified id. If no such POAManager exists, find returns a nil
reference.

15.3.4 AdapterActivator Interface

Adapter activators are associated with POAs. An adapter activator supplies a POA with the ability to create child POAs on
demand, as a side-effect of receiving a request that names the child POA (or one of its children), or when find_POA is
called with an activate parameter value of TRUE. An application server that creates al its needed POAS at the beginning of
execution does not need to use or provide an adapter activator; it is necessary only for the case in which POASs need to be
created during request processing.

While a request from the POA to an adapter activator isin progress, all requests to objects managed by the new POA (or
any descendant POAS) will be queued. This serialization allows the adapter activator to complete any initialization of the
new POA before requests are delivered to that POA.

An AdapterActivator object must be local to the process containing the POA objects it is registered with.
AdapterActivator isalocal interface.

15.3.4.1 unknown_adapter

boolean unknown_adapter(in POA parent, in string name);

This operation is invoked when the ORB receives a request for an object reference that identifies a target POA that does
not exist. The ORB invokes this operation once for each POA that must be created in order for the target POA to exist
(starting with the ancestor POA closest to the root POA). The operation is invoked on the adapter activator associated
with the POA that is the parent of the POA that needs to be created. That parent POA is passed as the parent parameter.
The name of the POA to be created (relative to the parent) is passed as the name parameter.

Common Object Request Broker Architecture (CORBA), v3.1.1 319

The implementation of this operation should either create the specified POA and return TRUE, or it should return FALSE.
If the operation returns TRUE, the ORB will proceed with processing the request. If the operation returns FALSE, the
ORB will return OBJECT_NOT_EXIST with standard minor code 2 to the client. If multiple POAS need to be created,
the ORB will invoke unknown_adapter once for each POA that needs to be created. If the parent of a nonexistent POA
does not have an associated adapter activator, the ORB will return the OBJECT_NOT_EXIST system exception with
standard minor code 2.

If unknown_adapter raises a system exception, the ORB will report an OBJ_ADAPTER system exception with
standard minor code 1.

NOTE: Itispossiblefor another thread to create the same POA the AdapterActivator is being asked to create if
AdapterActivatorsare used in conjunction with other threads calling create_ POA with the same POA name. Applications
should be prepared to deal with failuresfrom either the manual or automatic (AdapterActivator) POA creation request. There
can be no guarantee of the order of such calls.

For example, if the target object reference was created by a POA whose full nameis“A,” “B,” “C,” “D” and only POAs
“A” and “B” currently exist, the unknown_adapter operation will be invoked on the adapter activator associated with
POA “B" passing POA “B” as the parent parameter and “C” as the name of the missing POA. Assuming that the adapter
activator creates POA “C” and returns TRUE, the ORB will then invoke unknown_adapter on the adapter activator
associated with POA “C,” passing POA “C” as the parent parameter and “D” as the name.

The unknown_adapter operation is also invoked when find_POA is called on the POA with which the
AdapterActivator is associated, the specified child does not exist, and the activate it parameter to find_POA is
TRUE. If unknown_adapter creates the specified POA and returns TRUE, that POA is returned from find_POA. If
unknown_adapter returns FALSE then find_POA raises AdapterNonExistent. If unknown_adapter raises any
system exception then find_POA passes through the system exception it gets back from unknown_adapter.

NOTE: Thisallowsthe same code, theunknown_adapter implementation, to be used to initialize aPOA whether that POA
iscreated explicitly by the application or asaside-effect of processing arequest. Furthermore, it makesthisinitialization atomic
with respect to delivery of requeststo the POA.

15.3.5 ServantManager Interface

Servant managers are associated with POAs. A servant manager supplies a POA with the ability to activate objects on
demand when the POA receives a request targeted at an inactive object. A servant manager is registered with a POA as a
callback object, to be invoked by the POA when necessary. An application server that activates all its needed objects at the
beginning of execution does not need to use a servant manager; it is used only for the case in which an object must be
activated during request processing.

The ServantManager interface is itself empty. It is inherited by two other interfaces, ServantActivator and
ServantLocator.

The two types of servant managers correspond to the POA’s RETAIN policy (ServantActivator) and to the
NON_RETAIN policy (ServantLocator). The meaning of the policies and the operations that are available for POAs
using each policy are listed under the two types of derived interfaces.

Each servant manager type contains two operations, the first called to find and return a servant and the second to
deactivate a servant. The operations differ according to the amount of information usable for their situation.

ServantManager is alocal interface. A ServantManager object must be local to the process containing the POA
objects it is registered with.

320 Common Object Request Broker Architecture (CORBA), v3.1.1

15.3.5.1 Common Information for Servant Manager Types

The two types of servant managers have certain semantics that are identical.

The incarnate and preinvoke operation may raise any system exception deemed appropriate (for example,
OBJECT_NOT_EXIST if the object corresponding to the Object I1d value has been destroyed).

NOTE: If auser-written routine (servant manager or method code) raisesthe OBJECT_NOT_EXIST exception, the POA does
nothing but pass on that exception. It isthe user’ s responsibility to deactivate the object if it had been previously activated.

The incarnate and preinvoke operation may also raise a ForwardRequest exception. If this occurs, the ORB is
responsible for delivering the current request and subsequent requests to the object denoted in the forward_reference
member of the exception. The behavior of this mechanism must be the functional equivalent of the GIOP location
forwarding mechanism. If the current request was delivered via an implementation of the GIOP protocol (such as 110P),
the reference in the exception should be returned to the client in a reply message with LOCATION_FORWARD reply
status. If some other protocol or delivery mechanism was used, the ORB is responsible for providing equivalent behavior,
from the perspectives of the client and the object denoted by the new reference.

If the ForwardRequest exception is raised anywhere else, it is passed through the ORB as a normal user exception.

If a ServantManager returns a null servant (or the equivalent in a language mapping) as the result of an incarnate or
preinvoke operation, the POA returns the OBJ_ADAPTER system exception with standard minor code 7 as the result of
the request. If the ServantManager returns the wrong type of servant, it isindeterminate when that error is detected. An ORB
that chooses to detect the error shall raise OBJ_ADAPTER with standard minor code 2; an ORB that does not explicitly
check for this error condition likely raisesBAD_OPERATION with standard minor code 2 or aMARSHAL exception (with
unspecified minor code) at the time of method invocation.

15.3.6 ServantActivator Interface

When the POA has the RETAIN policy it uses servant managers that are ServantActivators. When using such servant
managers, the following statements apply for a given Objectld used in the incarnate and etherealize operations:

» Servantsincarnated by the servant manager will be placed in the Active Object Map with objects they have activated.
» Invocations of incarnate on the servant manager are serialized.

» Invocations of etherealize on the servant manager are serialized.

» Invocations of incarnate and etherealize on the servant manager are mutually exclusive.

» Incarnations of a particular object may not overlap; that is, incarnate shall not be invoked with a particular Objectld
while, within the same POA, that Objectld isin use asthe Objectld of an activated object or asthe argument of acall
to incarnate or etherealize that has not completed.

It should be noted that there may be a period of time between an object's deactivation and the etherealization (during
which outstanding requests are being processed) in which arriving requests on that object should not be passed to its
servant. During this period, requests targeted for such an object act as if the POA were in holding state until etherealize
completes. If etherealize is called as a consequence of a deactivate call with an etherealize_objects parameter of
TRUE, incoming requests are rejected.

It should also be noted that a similar situation occurs with incarnate. There may be a period of time after the POA
invokes incarnate and before that method returns in which arriving requests bound for that object should not be passed
to the servant.

Common Object Request Broker Architecture (CORBA), v3.1.1 321

A single servant manager object may be concurrently registered with multiple POAs. Invocations of incarnate and
etherealize on a servant manager in the context of different POASs are not necessarily serialized or mutually exclusive.
There are no assumptions made about the thread in which etherealize is invoked.

15.3.6.1 incarnate

Servant incarnate (
in Objectld oid,
in POA adapter)
raises (ForwardRequest);

This operation is invoked by the POA whenever the POA receives a request for an object that is not currently active,
assuming the POA has the USE_ SERVANT_MANAGER and RETAIN poalicies.

The oid parameter contains the Objectld value associated with the incoming request. The adapter is an object reference
for the POA in which the object is being activated.

The user-supplied servant manager implementation is responsible for locating or creating an appropriate servant that
corresponds to the Objectld value if possible. incarnate returns a value of type Servant, which is the servant that will
be used to process the incoming request (and potentially subsequent requests, since the POA has the RETAIN policy).

The POA enters the returned Servant value into the Active Object Map so that subsequent requests with the same
Objectld value will be delivered directly to that servant without invoking the servant manager.

If the incarnate operation returns a servant that is aready active for a different Object 1d and if the POA aso has the
UNIQUE_ID policy, the incarnate has violated the POA policy and is considered to be in error. The POA will raise an
OBJ_ADAPTER system exception for the request. In this case, etherealize is not called by the POA because the servant
was never added to the Active Object Map.

NOTE: If the same servant isused in two different POAS, it islegal for the POAsto use that servant even if the POAs have
different Object Id uniqueness policies. The POAs do not interact with each other in this regard.

15.3.6.2 etherealize

void etherealize (

in Objectld oid,

in POA adapter,

in Servant serv,

in boolean cleanup_in_progress,
in boolean remaining_activations);

This operation is invoked whenever a servant for an object is deactivated, assuming the POA has the
USE_SERVANT_MANAGER and RETAIN policies. Note that an active servant may be deactivated by the servant
manager via etherealize even if it was not incarnated by the servant manager.

The oid parameter contains the Object 1d value of the object being deactivated. The adapter parameter is an object
reference for the POA in whose scope the object was active. The serv parameter contains a reference to the servant that
is associated with the object being deactivated. If the servant denoted by the serv parameter is associated with other
objects in the POA denoted by the adapter parameter (that is, in the POA's Active Object Map) at the time that
etherealize is caled, the remaining_activations parameter has the value TRUE. Otherwise, it has the value FALSE.

322 Common Object Request Broker Architecture (CORBA), v3.1.1

If the cleanup_in_progress parameter is TRUE, the reason for the etherealize operation is that either the deactivate
or destroy operation was called with an etherealize_objects parameter of TRUE. If the parameter is FALSE, the
etherealize operation is called for other reasons.

Deactivation occurs in the following circumstances:

« When an object is deactivated explicitly by an invocation of POA::deactivate_object.

» When the ORB or POA determinesinternally that an object must be deactivated. For example, an ORB
implementation may provide policies that allow objects to be deactivated after some period of quiescence, or when the
number of active objects reaches some limit.

« If POAManager::deactivate isinvoked on a POA manager associated with a POA that has currently active objects.
Destroying a servant that is in the Active Object Map or is otherwise known to the POA can lead to undefined results.

In a multi-threaded environment, the POA makes certain guarantees that allow servant managers to safely destroy
servants. Specifically, the servant’s entry in the Active Object Map corresponding to the target object is removed before
etherealize is called. Because calls to incarnate and etherealize are serialized, this prevents new requests for the
target object from being invoked on the servant during etherealization. After removing the entry from the Active Object
Map, if the POA determines before invoking etherealize that other requests for the same target object are already in
progress on the servant, it delays the call to etherealize until all active methods for the target object have completed.
Therefore, when etherealize is called, the servant manager can safely destroy the servant if it wants to, unless the
remaining_activations argument is TRUE.

If the etherealize operation returns a system exception, the POA ignores the exception.

15.3.7 ServantLocator Interface

When the POA has the NON_RETAIN policy it uses servant managers that are ServantLocators. Because the POA
knows that the servant returned by this servant manager will be used only for a single request, it can supply extra
information to the servant manager’s operations and the servant manager’s pair of operations may be able to cooperate to
do something different than a ServantActivator.

ServantLocator isalocal interface. A ServantLocator object must be local to the process containing the POA objects
it is registered with.

When the POA uses the ServantLocator interface, immediately after performing the operation invocation on the servant
returned by preinvoke, the POA will invoke postinvoke on the servant manager, passing the Objectld value and the
Servant value as parameters (among others). The next request with this Objectld value will then cause preinvoke to be
invoked again. This feature may be used to force every request for objects associated with a POA to be mediated by the
servant manager.

When using such a ServantLocator, the following statements apply for a given Objectld used in the preinvoke and
postinvoke operations:
» The servant returned by preinvoke isused only to process the single request that caused preinvoke to be invoked.
» No servant incarnated by the servant manager will be placed in the Active Object Map.
« When theinvocation of the request on the servant is complete, postinvoke will be invoked for the object.

» No serialization of invocations of preinvoke or postinvoke may be assumed; there may be multiple concurrent
invocations of preinvoke for the same Objectld. (However, if the SINGLE_THREAD_MODEL policy isbeing
used, that policy will serialize these calls.)

Common Object Request Broker Architecture (CORBA), v3.1.1 323

» The samethread will be used to preinvoke the object, process the request, and postinvoke the object.

» If preinvoke raises an exception, postinvoke is not called. Otherwise the preinvoke and postinvoke operations
are dlways called in pairsin response to any ORB activity. In particular, for aresponseto aGIOP Locate message a
GIOP-conforming ORB may (or may not) call preinvoke to determine whether the object could be served at this
location. If the ORB makes such a call, whatever the result, the ORB does not invoke a method, but does call
postinvoke before responding to the Locate message.

NOTE: The ServantActivator interface does not behave similarly with respect to a GIOP Locate message since the
etherealize operation is not associated with request processing.

15.3.7.1 preinvoke

Servant preinvoke(

in Objectld oid,

in POA adapter,

in CORBA::Identifier operation,
out Cookie the_cookie)

raises (ForwardRequest
)i

This operation is invoked by the POA whenever the POA receives a request for an object that is not currently active,
assuming the POA has the USE_SERVANT_MANAGER and NON_RETAIN policies.

The oid parameter contains the Objectld value associated with the incoming request. The adapter is an object reference
for the POA in which the object is being activated.

The user-supplied servant manager implementation is responsible for locating or creating an appropriate servant that
corresponds to the Objectld value if possible. preinvoke returns a value of type Servant, which is the servant that will
be used to process the incoming request.

The Cookie is atype opaque to the POA that can be set by the servant manager for use later by postinvoke. The
operation is the name of the operation that will be called by the POA when the servant is returned.

15.3.7.2 postinvoke

void postinvoke(

in Objectld oid,

in POA adapter,

in CORBA::Identifier operation,
in Cookie the_cookie,
in Servant the_servant

);

This operation is invoked whenever a servant completes a request, assuming the POA has the
USE_SERVANT_MANAGER and NON_RETAIN policies.

The postinvoke operation is considered to be part of a request on an object.That is, the request is not complete until
postinvoke finishes. If the method finishes normally but postinvoke raises a system exception, the method’s normal return
is overridden; the request completes with the exception.

324 Common Object Request Broker Architecture (CORBA), v3.1.1

The oid parameter contains the Object Id value of the object on which the request was made. The adapter parameter is
an object reference for the POA in whose scope the object was active. The the_servant parameter contains a reference
to the servant that is associated with the object.

The Cookie is atype opague to the POA; it contains any value that was set by the preinvoke operation. The operation
is the name of the operation that was called by the POA for the request.

Destroying a servant that is known to the POA can lead to undefined results.

15.3.7.3 ServantLocator and Location Determination

Under certain circumstances, an ORB may need to determine the actual location of an object’s implementation. For
objects that are managed by a POA that is configured with a ServantLocator, it may invoke preinvoke and
postinvoke or it may determine the object’s location by some other means. If it invokes preinvoke and postinvoke
under these circumstances it shall use the argument “_locate.”

15.3.8 POA Policy Objects

Interfaces derived from CORBA::Policy are used with the POA::create_ POA operation to specify policies that apply
to a POA. Policy aobjects are created using factory operations on any pre-existing POA, such as the root POA, or by a call
to ORB::create_policy. Policy objects are specified when a POA is created. Policies may not be changed on an existing
POA. Policies are not inherited from the parent POA. All Policy interfaces defined in this sub clause are local interfaces.

The POA shall preserve Policies whose types have been registered via
Portablelnterceptor::ORBInitIinfo::register_policy_factory, even if the POA itself does not know about those
policies.

15.3.8.1 Thread Policy

Objects with the ThreadPolicy interface are obtained using the POA::create_thread_policy operation and passed to
the POA::create_ POA operation to specify the threading model used with the created POA. The value attribute of
ThreadPolicy contains the value supplied to the POA::create_thread_policy operation from which it was obtained.
The following values can be supplied.

« ORB_CTRL_MODEL - The ORB isresponsible for assigning requests for an ORB- controlled POA to threads. In a
multi-threaded environment, concurrent requests may be delivered using multiple threads.

+ SINGLE_THREAD_MODEL - Requests for a single-threaded POA are processed sequentially. In a multi-threaded
environment, all upcalls made by this POA to implementation code (servants and servant managers) are madein a
manner that is safe for code that is multi-thread-unaware. The POA will still allow reentrant calls from an object
implementation to itself, or to another object implementation managed by the same POA.

« MAIN_THREAD_MODEL - Requests for all main-thread POAs are processed sequentially. In a multi-threaded
environment, all upcalls made by all POAs with this policy to servants are made in a manner that is safe for code that
is multi-thread-unaware. If the environment has specia reguirements that some code must run on a distinguished
“main” thread, servant upcalls will be processed on that thread.

If no ThreadPolicy object is passed to create_POA, the thread policy defaults to ORB_CTRL_MODEL.

NOTE: In some environments, calling multi-thread-unaware code safely (that is, using the MAIN_THREAD_MODEL) may
mean that the POA will use only the main thread, in which case the application programmer is responsible to ensure that the
main thread is given to the ORB, using ORB::perform_work or ORB::run.

Common Object Request Broker Architecture (CORBA), v3.1.1 325

POAsusing the SINGLE_ THREAD_MODEL may need to cooperate to ensure that calls are safe even when implementation
code (such as a servant manager) is shared by multiple single-threaded POAs.

These models presume that the ORB and the application are using compatible threading primitives in a multi-threaded
environment.

15.3.8.2 Lifespan Policy

Objects with the LifespanPolicy interface are obtained using the POA::create_lifespan_policy operation and passed
to the POA::create_POA operation to specify the lifespan of the objects implemented in the created POA. The following
values can be supplied.

+ TRANSIENT - The objectsimplemented in the POA cannot outlive the POA instance in which they arefirst created.
Once the POA's POAManager enters the deactivated state, any requests received by this POA will cause the POA
toraisean OBJECT_NOT_EXIST system exception with standard minor code 4.

« PERSISTENT - The objectsimplemented in the POA can outlive the process in which they are first created.

« Persistent objects have a POA associated with them (the POA that created them). When the ORB receives a
reguest on a persistent object, it first searches for the matching POA, based on the names of the POA and al of its
ancestors.

« Administrative action beyond the scope of this specification may be necessary to inform the ORB’ s location
service of the creation and eventual termination of existence of thisPOA, and optionally to arrange for on-demand
activation of a process implementing this POA.

* POA names must be unique within their enclosing scope (the parent POA). A portable program can assume that
POA names used in other processes will not conflict with its own POA names. A conforming CORBA
implementation will provide a method for ensuring this property.

If no LifespanPolicy object is passed to create_POA, the lifespan policy defaults to TRANSIENT.

15.3.8.3 Object Id Uniqueness Policy

Objects with the IdUniquenessPolicy interface are obtained using the POA::create_id_uniqueness_policy
operation and passed to the POA::create_ POA operation to specify whether the servants activated in the created POA
must have unique object identities. The following values can be supplied.

» UNIQUE_ID - Servants activated with that POA support exactly one Object Id.

+ MULTIPLE_ID - aservant activated with that POA may support one or more Object Ids.

If no IdUniquenessPolicy is specified at POA creation, the default is UNIQUE_ID.

NOTE: Use of UNIQUE_ID policy is meaninglessin conjunction with NON_RETAIN policy. A conforming application
should not use this policy combination. A conforming orb may, but need not, report an error during create_POA if this
combination is used. If an orb permits this combination of policiesto be used, the resulting POA shall not treat the use of the
same servant for concurrent requests on different object ids as an error.

15.3.8.4 Id Assignment Policy

Objects with the IdAssignmentPolicy interface are obtained using the POA::create_id_assignment_policy
operation and passed to the POA::create_POA operation to specify whether Object Ids in the created POA are
generated by the application or by the ORB. The following values can be supplied.

326 Common Object Request Broker Architecture (CORBA), v3.1.1

+ USER_ID - Objects created with that POA are assigned Object Ids only by the application.
+ SYSTEM_ID - Objects created with that POA are assigned Object Ids only by the POA. If the POA aso has the
PERSISTENT palicy, assigned Object Ids must be unique across all instantiations of the same POA.

If no IdAssignmentPolicy is specified at POA creation, the default is SYSTEM_ID.

15.3.8.5 Servant Retention Policy

Objects with the ServantRetentionPolicy interface are obtained using the POA::create_servant_retention_policy
operation and passed to the POA::create_POA operation to specify whether the created POA retains active servants in
an Active Object Map. The following values can be supplied.

« RETAIN - The POA will retain active servantsin its Active Object Map.
+ NON_RETAIN - Servants are not retained by the POA.

If no ServantRetentionPolicy is specified at POA creation, the default is RETAIN.

NOTE: The NON_RETAIN policy requires either the USE_DEFAULT_SERVANT or USE_SERVANT_MANAGER
policies.

15.3.8.6 Request Processing Policy

Objects with the RequestProcessingPolicy interface are obtained using the
POA::create_request_processing_policy operation and passed to the POA::create_POA operation to specify how
requests are processed by the created POA. The following values can be supplied.

+ USE_ACTIVE_OBJECT_MAP_ONLY - If the Object Id is not found in the Active Object Map, an
OBJECT_NOT_EXIST system exception with standard minor code 2 is returned to the client. The RETAIN policy is
also required.

+ USE_DEFAULT_SERVANT - If the Object Id isnot found in the Active Object Map or the NON_RETAIN policy is
present, and a default servant has been registered with the POA using the set_servant operation, the request is
dispatched to the default servant. If no default servant has been registered, an OBJ_ADAPTER system exception with
standard minor code 3 is returned to the client. The MULTIPLE_ID policy is also required.

+ USE_SERVANT_MANAGER - If the Object Id is ot found in the Active Object Map or the NON_RETAIN policy
is present, and a servant manager has been registered with the POA using the set_servant_manager operation, the
servant manager is given the opportunity to locate a servant or raise an exception. If no servant manager has been
registered, an OBJ_ADAPTER system exception with standard minor code 4 is returned to the client.

If no RequestProcessingPolicy is specified at POA creation, the default is USE_ACTIVE_OBJECT_MAP_ONLY.

By means of combining the USE_ACTIVE_OBJECT_MAP_ONLY / USE_DEFAULT_SERVANT /
USE_SERVANT_MANAGER policies and the RETAIN / NON_RETAIN policies, the programmer is able to define a
rich number of possible behaviors.

RETAIN and USE_ACTIVE_OBJECT_MAP_ONLY

This combination represents the situation where the POA does no automatic object activation (that is, the POA searches
only the Active Object Map).

RETAIN and USE_SERVANT_MANAGER

This combination represents a very common situation, where there is an Active Object Map and a ServantManager.

Common Object Request Broker Architecture (CORBA), v3.1.1 327

Because RETAIN isin effect, the application can call activate_object or activate_object_with_id to establish known
servants in the Active Object Map for use in later requests.

If the POA doesn't find a servant in the Active Object Map for a given object, it tries to determine the servant by means
of invoking incarnate in the ServantManager (specifically a ServantActivator) registered with the POA. If no
ServantManager is available, the POA raises the OBJ_ADAPTER system exception with standard minor code 4.

RETAIN and USE_DEFAULT_SERVANT

This combination represents the situation where there is a default servant defined for all requests involving unknown
objects.

Because RETAIN isin effect, the application can call activate_object or activate_object_with_id to establish known
servants in the Active Object Map for use in later requests.

The POA first tries to find a servant in the Active Object Map for a given object. If it does not find such a servant, it uses
the default servant. If no default servant is available, the POA raises the OBJ_ADAPTER system exception with
standard minor code 3.

NON-RETAIN and USE_SERVANT_MANAGER
This combination represents the situation where one servant is used per method call.

The POA doesn't try to find a servant in the Active Object Map because the ActiveObjectMap does not exist. In every
request, it will call preinvoke on the ServantManager (specifically a ServantLocator) registered with the POA. If no
ServantManager is available, the POA will raise the OBJ_ADAPTER system exception.

NON-RETAIN and USE_DEFAULT_SERVANT
This combination represents the situation where there is one single servant defined for all CORBA objects.

The POA does not try to find a servant in the Active Object Map because the ActiveObjectMap doesn't exist. In every
request, the POA will invoke the appropriate operation on the default servant registered with the POA. If no default
servant is available, the POA will raise the OBJ_ADAPTER system exception.

15.3.8.7 Implicit Activation Policy

Objects with the ImplicitActivationPolicy interface are obtained using the POA::create_implicit_activation_policy
operation and passed to the POA::create_POA operation to specify whether implicit activation of servants is supported
in the created POA. The following values can be supplied.

« IMPLICIT_ACTIVATION - the POA will support implicit activation of servants. IMPLICIT_ACTIVATION also
requiresthe SYSTEM_ID and RETAIN policies.

« NO_IMPLICIT_ACTIVATION - the POA will not support implicit activation of servants.
If no ImplicitActivationPolicy is specified at POA creation, the default is NO_IMPLICIT_ACTIVATION.

15.3.9 POA Interface

A POA object manages the implementation of a collection of objects. The POA supports a name space for the objects,
which are identified by Object Ids.

328 Common Object Request Broker Architecture (CORBA), v3.1.1

A POA also provides a name space for POAs. A POA is created as a child of an existing POA, which forms a hierarchy
starting with the root POA.

The POA interface is alocal interface.

15.3.9.1 create_ POA

POA create POA(
in string adapter_name,
in POAManager a_POAManager,
in CORBA::PolicyList policies)
raises (AdapterAlreadyExists, InvalidPolicy

);

This operation creates a new POA as a child of the target POA. The specified name identifies the new POA with respect
to other POAs with the same parent POA. If the target POA already has a child POA with the specified name, the
AdapterAlreadyExists exception is raised.

If thea_ POAManager parameter is null, a new POAManager object is created and associated with the new POA.
Otherwise, the specified POAManager object is associated with the new POA. The POAManager object can be
obtained using the attribute name the_ POAManager.

The specified policy objects are associated with the POA and used to control its behavior. The policy objects are
effectively copied before this operation returns, so the application is free to destroy them while the POA isin use. Policies
are not inherited from the parent POA.

The POA shall preserve Policies whose types have been registered via
Portablelnterceptor::ORBInitIinfo::register_policy_factory, even if the POA itself does not know about those
policies.

If any of the policy objects specified are not valid for the ORB implementation, if conflicting policy objects are specified,
or if any of the specified policy objects require prior administrative action that has not been performed, an InvalidPolicy
exception is raised containing the index in the policies parameter value of the first offending policy object.

NOTE: Creating a POA using a POA manager that isin the active state can lead to race conditionsif the POA supports
preexisting objects, because the new POA may receive arequest beforeits adapter activator, servant manager, or default servant
have been initialized. These problems do not occur if the POA is created by an adapter activator registered with a parent of the
new POA, because requests are queued until the adapter activator returns. To avoid these problems when a POA must be
explicitly initialized, the application can initialize the POA by invoking find_POA with a TRUE activate parameter.

15.3.9.2 find_POA

POA find_POA(
in string adapter_name,
in boolean activate_it)
raises (AdapterNonExistent

);

If the target POA is the parent of a child POA with the specified name (relative to the target POA), that child POA is
returned. If a child POA with the specified name does not exist and the value of the activate_it parameter is TRUE, the
target POA’'s AdapterActivator, if one exists, isinvoked, and, if it successfully activates the child POA, that child POA
is returned. Otherwise, the AdapterNonExistent exception is raised.

Common Object Request Broker Architecture (CORBA), v3.1.1 329

If find_POA receives a system exception in response to acall to unknown_adapter on a POA, then find_POA passes
through the system exception it received from unknown_adapter.

15.3.9.3 destroy

void destroy(
in boolean etherealize_objects,
in boolean wait_for_completion

);

This operation destroys the POA and all descendant POAs. All descendant POAS are destroyed (recursively) before the
destruction of the containing POA. The POA so destroyed (that is, the POA with its name) may be re-created later in the
same process. (This differs from the POAManager::deactivate operation that does not allow a re-creation of its
associated POA in the same process. After a deactivate, re-creation is allowed only if the POA is later destroyed.)

When destroy is called the POA behaves as follows:

» The POA assumesthe discarding state except when its POAManager isin theinactive statein which case the POA
assumes the inactive state. Any further changes to the POAManager’s state do not affect this POA.

» The POA disablesthe create_ POA operation. Subsegquent callsto create POA will result in a
BAD_INV_ORDER system exception with standard minor code 17.

» The POA calsdestroy on all of itsimmediate descendants.

» After al descendant POAs have been destroyed and their servants etherealized, the POA continuesto process requests
until there are no requests executing in the POA. At this point, apparent destruction of the POA has occurred.

 After destruction has become apparent, the POA may be re-created via either an AdapterActivator or acall to
create_POA.

» If theetherealize_objects parameter is TRUE, the POA has the RETAIN policy, and a servant manager is
registered with the POA, the etherealize operation on the servant manager is called for each active object in the
Active Object Map. The apparent destruction of the POA occurs before any callsto etherealize are made. Thus, for
example, an etherealize method that attempts to invoke operations on the POA receives the
OBJECT_NOT_EXIST exception.

« If the POA hasan AdapterActivator installed, any requests that would have caused unknown_adapter to be
called cause a TRANSIENT exception with standard minor code 4 to be raised instead.

The wait_for_completion parameter is handled as follows:

« If wait_for_completion is TRUE and the current thread is not in an invocation context dispatched from some POA
belonging to the same ORB as this POA, the destroy operation returns only after all active requests have completed
and all invocations of etherealize have completed.

- If wait_for_completion is TRUE and the current thread isin an invocation context dispatched from some POA
belonging to the same ORB as this POA, the BAD_INV_ORDER system exception with standard minor code 3 is
raised and POA destruction does not occur.

« If wait_for_completion isFALSE, the destroy operation destroys the POA and its children but waits neither for
active requests to complete nor for etherealization to occur. If destroy is called multiple times before destruction is
complete (because there are active requests), the etherealize_objects parameter applies only to the first call of
destroy. Subsequent calls with conflicting etherealize_objects settings use the value of etherealize_objects
from thefirst call. Thewait_for_completion parameter is handled as defined above for each individual call (some
callers may choose to block, while others may not).

330 Common Object Request Broker Architecture (CORBA), v3.1.1

15.3.9.4 Policy Creation Operations

ThreadPolicy create_thread_policy(
in ThreadPolicyValue value);
LifespanPolicy create_lifespan_policy(
in LifespanPolicyValue value);
IdUniquenessPolicy create_id_uniqueness_policy(
in IdUniquenessPolicyValue value);
IdAssignmentPolicy create_id_assignment_policy(
in I[dAssignmentPolicyValue value);
ImplicitActivationPolicy create_implicit_activation_policy(
in ImplicitActivationPolicyValue value);
ServantRetentionPolicy create_servant_retention_policy(
in ServantRetentionPolicyValue value);
RequestProcessingPolicy create_request_processing_policy(
in RequestProcessingPolicyValue value);

These operations each return a reference to a policy object with the specified value. The application is responsible for
calling the inherited destroy operation on the returned reference when it is no longer needed.

15.3.9.5 the_name

readonly attribute string the_name;

This attribute identifies the POA relative to its parent. This name is assigned when the POA is created. The name of the
root POA is system-dependent and should not be relied upon by the application. In order to work properly with Portable
Interceptors (see Adapter Names on page 392) the name of the root POA must be the sequence containing only the string
“RootPOA.”

15.3.9.6 the_parent

readonly attribute POA the_parent;

This attribute identifies the parent of the POA. The parent of the root POA is null.
15.3.9.7 the_children

readonly attribute POAList the_children;

This attribute identifies the current set of all child POAs of the POA. The set of child POAs includes only the POA’s
immediate children, and not their descendants.

15.3.9.8 the_ POAManager

readonly attribute POAManager the_POAManager;

This attribute identifies the POA manager associated with the POA.

15.3.9.9 the_activator

attribute AdapterActivator the_activator;

Common Object Request Broker Architecture (CORBA), v3.1.1 331

This attribute identifies the adapter activator associated with the POA. A newly created POA has no adapter activator (the
attribute is null). It is system-dependent whether the root POA initially has an adapter activator; the application is free to
assign its own adapter activator to the root POA.

15.3.9.10 the_POAManagerFactory

readonly attribute POAManagerFactory the_ POAManagerFactory;
This attribute returns the POAManagerFactory that created the POA.

15.3.9.11 get_servant_manager

ServantManager get_servant_manager()
raises(WrongPolicy);

This operation requires the USE_SERVANT_MANAGER policy; if not present, the WrongPolicy exception is raised.
This operation returns the servant manager associated with the POA. If no servant manager has been associated with the

POA, it returns a null reference.

15.3.9.12 set_servant_manager

void set_servant_manager(
in ServantManager imgr
) raises(WrongPolicy);

This operation requires the USE_SERVANT_MANAGER policy; if not present, the WrongPolicy exception is raised.

If the ServantRetentionPolicy of the POA is RETAIN, then the ServantManager argument (imgr) shall support the
ServantActivator interface (e.g., in C++ imgr is narrowable to ServantActivator). If the ServantRetentionPolicy
of the POA is NON_RETAIN, then the ServantManager argument shall support the ServantLocator interface. If the
argument is nil, or does not support the required interface, then the OBJ_ADAPTER system exception with standard
minor code 4 is raised.

This operation sets the default servant manager associated with the POA. This operation may only be invoked once after
a POA has been created. Attempting to set the servant manager after one has already been set will result in the
BAD_INV_ORDER system exception with standard minor code 6 being raised.

15.3.9.13 get_servant

Servant get_servant()
raises(NoServant, WrongPolicy);

This operation requires the USE_DEFAULT_SERVANT policy; if not present, the WrongPolicy exception is raised.

This operation returns the default servant associated with the POA. If no servant has been associated with the POA, the
NoServant exception is raised.

15.3.9.14 set_servant

void set_servant(
in Servant p_servan
) raises(WrongPolicy);

332 Common Object Request Broker Architecture (CORBA), v3.1.1

This operation requires the USE_DEFAULT_SERVANT policy; if not present, the WrongPolicy exception is raised.

This operation registers the specified servant with the POA as the default servant. This servant will be used for all
requests for which no servant is found in the Active Object Map.

15.3.9.15 activate_object

Objectld activate_object(
in Servant p_servant
) raises (ServantAlreadyActive, WrongPolicy);

This operation requires the SYSTEM_ID and RETAIN policy; if not present, the WrongPolicy exception is raised.

If the POA has the UNIQUE_ID policy and the specified servant is already in the Active Object Map, the
ServantAlreadyActive exception is raised. Otherwise, the activate _object operation generates an Object 1d and enters
the Object Id and the specified servant in the Active Object Map. The Object Id is returned.

15.3.9.16 activate_object_with_id

void activate_object_with_id(
in Objectld oid,
in Servant p_servant
) raises (ObjectAlreadyActive, ServantAlreadyActive, WrongPolicy);

This operation requires the RETAIN policy; if not present, the WrongPolicy exception is raised.

If the CORBA object denoted by the Object Id value is already active in this POA (there is a servant bound to it in the
Active Object Map), the ObjectAlreadyActive exception is raised. If the POA has the UNIQUE_ID policy and the
servant is already in the Active Object Map, the ServantAlreadyActive exception is raised. Otherwise, the
activate_object_with_id operation enters an association between the specified Object Id and the specified servant in the
Active Object Map.

If the POA hasthe SYSTEM_ID policy and it detects that the Object Id value was not generated by the system or for this
POA, the activate_object_with_id operation may raise the BAD_PARAM system exception. An ORB is not required
to detect all such invalid Object Id values, but a portable application must not invoke activate_object_with_id on a
POA that has the SYSTEM_ID policy with an Object 1d value that was not previously generated by the system for that
POA, or, if the POA aso has the PERSISTENT policy, for a previous instantiation of the same POA. A POA is not
required to raise the BAD_PARAM exception in this case because, in the general case, accurate rejection of an invalid
Object Id requires unbounded persistent memory of all previously generated 1d values.

15.3.9.17 deactivate_object

void deactivate_object(
in Objectld oid
) raises (ObjectNotActive, WrongPalicy);

This operation requires the RETAIN policy; if not present, the WrongPolicy exception is raised.

This operation causes the Objectld specified in the oid parameter to be deactivated. An Objectld that has been
deactivated continues to process requests until there are no active requests for that Objectld. Active requests are those
requests that arrived before deactivate_object was called. A deactivated Objectld is removed from the Active Object
Map when all requests executing for that Objectld have completed. If a servant manager is associated with the POA,
ServantActivator::etherealize isinvoked with the oid and the associated servant after the Objectld has been removed

Common Object Request Broker Architecture (CORBA), v3.1.1 333

from the Active Object Map. Reactivation for the Objectld blocks until etherealization (if necessary) is complete. This
includes implicit activation (as described in etherealize) and explicit activation via POA::activate_object_with_id.
Once an Objectld has been removed from the Active Object Map and etherealized (if necessary) it may then be
reactivated through the usual mechanisms. The operation does not wait for requests or etherealization to complete and
always returns immediately after deactivating the Objectid.

If the servant associated with the oid is serving multiple Object Ids, ServantActivator::etherealize may be invoked
multiple times with the same servant when the other objects are deactivated. It is the responsibility of the object
implementation to refrain from destroying the servant while it is active with any Id.

15.3.9.18 create_reference

Object create_reference (
in CORBA::Repositoryld intf
) raises (WrongPolicy);

This operation requires the SYSTEM_ID policy; if not present, the WrongPolicy exception is raised.

This operation creates an object reference that encapsulates a POA-generated Object Id value and the specified interface
repository id. The specified repository id, which may be a null string, will become the type_id of the generated object
reference. A repository id that does not identify the most derived interface of the object or one of its base interfaces will
result in undefined behavior.

This operation does not cause an activation to take place. The resulting reference may be passed to clients, so that
subsequent requests on those references will cause the appropriate servant manager to be invoked, if one is available. The
generated Object Id value may be obtained by invoking POA::reference_to_id with the created reference.

15.3.9.19 create_reference_with_id

Object create_reference_with_id (
in Objectld oid,
in CORBA::Repositoryld intf

)i

This operation creates an object reference that encapsulates the specified Object 1d and interface repository Id values. The
specified repository id, which may be a null string, will become the type_id of the generated object reference. A
repository id that does not identify the most derived interface of the object or one of its base interfaces will result in
undefined behavior.

This operation does not cause an activation to take place. The resulting reference may be passed to clients, so that
subsequent requests on those references will cause the object to be activated if necessary, or the default servant used,
depending on the applicable policies.

If the POA hasthe SYSTEM_ID policy and it detects that the Object Id value was not generated by the system or for this
POA, the create_reference_with_id operation may raise the BAD_PARAM system exception with standard minor
code 14. An ORB is not required to detect al such invalid Object Id values, but a portable application must not invoke
this operation on a POA that has the SYSTEM_ID policy with an Object 1d value that was not previously generated by
the system for that POA, or, if the POA also hasthe PERSISTENT policy, for a previous instantiation of the same POA.

334 Common Object Request Broker Architecture (CORBA), v3.1.1

15.3.9.20 servant_to_id

Objectld servant_to_id(
in Servant p_servant
) raises (ServantNotActive, WrongPolicy);

This operation requires the USE_DEFAULT_SERVANT policy or a combination of the RETAIN policy and either the
UNIQUE_ID or IMPLICIT_ACTIVATION policies if invoked outside the context of an operation dispatched by this
POA. If this operation is not invoked in the context of executing a request on the specified servant and the policies
specified previously are not present, the WrongPolicy exception is raised.

This operation has four possible behaviors.

1. If the POA has both the RETAIN and the UNIQUE_ID policy and the specified servant is active, the Object I1d
associated with that servant is returned.
2. If the POA has both the RETAIN and the IMPLICIT_ACTIVATION policy and either the POA has the

MULTIPLE_ID policy or the specified servant is not active, the servant is activated using a POA-generated Object Id
and the Interface |d associated with the servant, and that Object Id is returned.

3. Ifthe POA hasthe USE_DEFAULT_SERVANT policy, the servant specified is the default servant, and the
operation is being invoked in the context of executing a request on the default servant, then the Objectld associated
with the current invocation is returned.

4. Otherwise, the ServantNotActive exception is raised.

15.3.9.21 servant_to_reference

Object servant_to_reference (
in Servant p_servant
) raises (ServantNotActive, WrongPolicy);

This operation requires the RETAIN policy and either the UNIQUE_ID or IMPLICIT_ACTIVATION policies if invoked
outside the context of an operation dispatched by this POA. If this operation is not invoked in the context of executing a
request on the specified servant and the policies specified previously are not present the WrongPolicy exception is raised.

This operation has four possible behaviors.

1. If the POA has both the RETAIN and the UNIQUE_ID policy and the specified servant is active, an object reference
encapsul ating the information used to activate the servant is returned.

2. If the POA has both the RETAIN and the IMPLICIT_ACTIVATION policy and either the POA has the
MULTIPLE_ID policy or the specified servant is not active, the servant is activated using a POA-generated Object Id
and the Interface |d associated with the servant, and a corresponding object reference is returned.

3. If the operation was invoked in the context of executing a request on the specified servant, the reference associated
with the current invocation is returned.

4. Otherwise, the ServantNotActive exception is raised.

NOTE: Theallocation of an Object Id value and installation in the Active Object Map caused by implicit activation may actually
be deferred until an attempt is made to externalize the reference. The real requirement here isthat areference is produced that
will behave appropriately (that is, yield a consistent Object 1d value when asked politely).

Common Object Request Broker Architecture (CORBA), v3.1.1 335

15.3.9.22 reference_to_servant

Servant reference_to_servant (
in Object reference
) raises (ObjectNotActive, WrongAdapter, WrongPolicy);

The table below summarizes the behavior of this operation based on the RETAIN policy, the USE_DEFAULT_POLICY
and the Object in question:

RETAIN USE_DEFAULT_SERVANT Object Action

Present Present In AOM Return Servant from AOM
Present Absent In AOM Return Servant from AOM
Present Present Not in AOM Return Default Servant
Present Absent Not in AOM Raise ObjectNotActive
Absent Present Return Default Servant
Absent Absent Raise Wrong Policy

If the object reference was not created by this POA, the WrongAdapter exception is raised.

15.3.9.23 reference_to_id

Objectld reference_to_id(
in Object reference
) raises (WrongAdapter, WrongPolicy);

The WrongPolicy exception is declared to alow future extensions.

This operation returns the Object 1d value encapsulated by the specified reference. This operation is valid only if the
reference was created by the POA on which the operation is being performed. If the reference was not created by that
POA, a WrongAdapter exception is raised. The object denoted by the reference does not have to be active for this
operation to succeed.

15.3.9.24 id_to_servant

Servant id_to_servant(
in Objectld oid
) raises (ObjectNotActive, WrongPolicy);

This operation requires the RETAIN policy or the USE_DEFAULT_SERVANT policy. If neither policy is present, the
WrongPolicy exception is raised.

If the POA has the RETAIN policy and the specified Objectld is in the Active Object Map, this operation returns the
servant associated with that object in the Active Object Map. Otherwise, if the POA has the USE_ DEFAULT_SERVANT
policy and a default servant has been registered with the POA, this operation returns the default servant. Otherwise the
ObjectNotActive exception is raised.

336 Common Object Request Broker Architecture (CORBA), v3.1.1

15.3.9.25 id_to_reference

Object id_to_reference(
in Objectld oid
) raises (ObjectNotActive, WrongPalicy);

This operation requires the RETAIN policy; if not present, the WrongPolicy exception is raised. If an object with the
specified Object Id value is currently active, a reference encapsulating the information used to activate the object is
returned. If the Object 1d value is not active in the POA, an ObjectNotActive exception is raised.

15.3.9.26 id

readonly attribute CORBA::OctetSeq id;

This returns the unique id of the POA in the process in which it is created. It is for use by portable interceptors. This id
is guaranteed unique for the life span of the POA in the process. For persistent POAS, this means that if a POA is created
in the same path with the same name as another POA, these POAs are identical and, therefore, have the same id. For
transient POAS, each POA is unique.

15.3.10 Current Operations

The PortableServer::Current interface, derived from CORBA::Current, provides method implementations with
access to the identity of the object on which the method was invoked. The Current interface is provided to support
servants that implement multiple objects, but can be used within the context of POA-dispatched method invocations on
any servant. To provide location transparency, ORBs are required to support use of Current in the context of both locally
and remotely invoked operations.

An instance of Current can be obtained by the application by issuing the
CORBA::ORB::resolve_initial_references("POACurrent") operation. Thereafter, it can be used within the context
of amethod dispatched by the POA to obtain the POA and Objectld that identify the object on which that operation was
invoked.

PortableServer::Current is alocal interface.

15.3.10.1 get_POA

POA get_POA()
raises (NoContext);

This operation returns a reference to the POA implementing the object in whose context it is called. If called outside the
context of a POA-dispatched operation, a NoContext exception is raised.

15.3.10.2 get_object_id

Objectld get_object_id()
raises (NoContext);

This operation returns the Objectld identifying the object in whose context it is called. If called outside the context of a
POA -dispatched operation, a NoContext exception is raised.

Common Object Request Broker Architecture (CORBA), v3.1.1 337

15.3.10.3 get_reference

Object get_reference()
raises(NoContext);

This operation returns a locally manufactured reference to the object in the context of which it is called. If called outside
the context of a POA dispatched operation, a NoContext exception is raised.

NOTE: Thisreferenceis not guaranteed to be identical to the original reference the client used to make the invocation, and
calling the Object::is_equivalent operation to compare the two references may not necessarily return true.

15.3.10.4 get_servant

Servant get_servant()
raises(NoContext);

This operation returns a reference to the servant that hosts the object in whose context it is called. If called outside the
context of a POA dispatched operation, a NoContext exception is raised.

15.4 IDL for PortableServer Module

/I DL

/I File: PortableServer.idl

#ifndef PORTABLE_SERVER_IDL
#define PORTABLE_SERVER_IDL

import ::CORBA,;

module PortableServer {
typeprefix PortableServer “org.omg”;
local interface POA; /l forward declaration
typedef sequence<POA> POAList;

native Servant;
typedef CORBA::OctetSeq Objectld;

exception ForwardRequest {
Object forward_reference;

b

/l Policy interfaces

const CORBA::PolicyType THREAD_POLICY_ID = 16;

const CORBA::PolicyType LIFESPAN_POLICY_ID = 17;

const CORBA::PolicyType ID_UNIQUENESS_POLICY_ID = 18;

const CORBA::PolicyType ID_ASSIGNMENT_POLICY_ID =19;

const CORBA::PolicyType IMPLICIT_ACTIVATION_POLICY_ID = 20;
const CORBA::PolicyType SERVANT_RETENTION_POLICY_ID = 21,
const CORBA::PolicyType REQUEST_PROCESSING_POLICY_ID = 22;

enum ThreadPolicyValue {

338

Common Object Request Broker Architecture (CORBA), v3.1.1

ORB_CTRL_MODEL,
SINGLE_THREAD_MODEL,
MAIN_THREAD_MODEL

h

local interface ThreadPolicy : CORBA::Policy {
readonly attribute ThreadPolicyValue value;

5

enum LifespanPolicyValue {
TRANSIENT,
PERSISTENT

h

local interface LifespanPolicy : CORBA::Policy {
readonly attribute LifespanPolicyValue value;

h

enum IdUniquenessPolicyValue {
UNIQUE_ID,
MULTIPLE_ID

h

local interface IdUniguenessPolicy : CORBA::Policy {
readonly attribute IdUniquenessPolicyValue value;

h

enum IdAssignmentPolicyValue {
USER_ID,
SYSTEM_ID

h

local interface IdAssignmentPolicy : CORBA::Policy {
readonly attribute IdAssignmentPolicyValue value;

h

enum ImplicitActivationPolicyValue {
IMPLICIT_ACTIVATION,
NO_IMPLICIT_ACTIVATION

h

local interface ImplicitActivationPolicy : CORBA::Policy {
readonly attribute ImplicitActivationPolicyValue value;

h

enum ServantRetentionPolicyValue {
RETAIN,
NON_RETAIN

h
local interface ServantRetentionPolicy : CORBA::Policy {

Common Object Request Broker Architecture (CORBA), v3.1.1 339

340

readonly attribute ServantRetentionPolicyValue value;

b

enum RequestProcessingPolicyValue {
USE_ACTIVE_OBJECT_MAP_ONLY,
USE_DEFAULT_SERVANT,
USE_SERVANT_MANAGER

b

local interface RequestProcessingPolicy : CORBA::Policy {
readonly attribute RequestProcessingPolicyValue value;

h
/I POAManager interface

local interface POAManager {
exception Adapterinactive{};

enum State {HOLDING, ACTIVE, DISCARDING, INACTIVE};

void activate()
raises(Adapterinactive);

void hold_requests(
in boolean wait_for_completion)
raises(Adapterinactive);

void discard_requests(
in boolean wait_for_completion)
raises(Adapterinactive);

void deactivate(
in boolean etherealize_objects,
in boolean wait_for_completion);
State get_state();
string get_id();
|3

/l PoaManagerFactory

local interface POAManagerFactory {
typedef sequence<POAManager> POAManagerSeq;

exception ManagerAlreadyExists {};

POAManager create_ POAManager(
in string id,
in CORBA::PolicyList policies
) raises(ManagerAlreadyExists, CORBA::PolicyError);

POAManagerSeq list();
POAManager find(in string id);

Common Object Request Broker Architecture (CORBA), v3.1.1

/I AdapterActivator interface

local interface AdapterActivator {
boolean unknown_adapter(
in POA parent,
in string name);
5
/l ServantManager interface
local interface ServantManager{ };
local interface ServantActivator : ServantManager {
Servant incarnate (
in Objectld oid,
in POA adapter)

raises (ForwardRequest);

void etherealize (

in Objectld oid,

in POA adapter,

in Servant serv,

in boolean cleanup_in_progress,
in boolean remaining_activations);

h

local interface ServantLocator : ServantManager {
native Cookie;
Servant preinvoke(

in Objectld oid,

in POA adapter,

in CORBA::Identifier operation,
out Cookie the_cookie)

raises (ForwardRequest);

void postinvoke(

in Objectld oid,

in POA adapter,

in CORBA::Identifier operation,
in Cookie the_cookie,
in Servant the_servant

);
b

/I POA interface

local interface POA {
exception AdapterAlreadyExists {};
exception AdapterNonExistent {};
exception InvalidPolicy {unsigned short index;};
exception NoServant {};

Common Object Request Broker Architecture (CORBA), v3.1.1 341

exception ObjectAlreadyActive {};
exception ObjectNotActive {};
exception ServantAlreadyActive {};
exception ServantNotActive {};
exception WrongAdapter {};
exception WrongPolicy {};

/I POA creation and destruction

POA create_ POA(
in string adapter_name,
in POAManager a_POAManager,
in CORBA::PolicyList policies)
raises (AdapterAlreadyExists, InvalidPolicy);

POA find_POA(
in string adapter_name,
in boolean activate_it)
raises (AdapterNonExistent);

void destroy(
in boolean etherealize_objects,
in boolean wait_for_completion);

I/l Factories for Policy objects

ThreadPolicy create_thread_policy(
in ThreadPolicyValue value);
LifespanPolicy create_lifespan_policy(
in LifespanPolicyValue value);
IdUniquenessPolicy create_id_uniqueness_policy(
in IdUniquenessPolicyValue value);
IdAssignmentPolicy create_id_assignment_policy(
in IdAssignmentPolicyValue value);
ImplicitActivationPolicy create_implicit_activation_policy(
in ImplicitActivationPolicyValue value);
ServantRetentionPolicy create_servant_retention_policy(
in ServantRetentionPolicyValue value);
RequestProcessingPolicy create_request_processing_policy(
in RequestProcessingPolicyValue value);

/ POA attributes

readonly attribute string the_name,;

readonly attribute POA the_parent;

readonly attribute POAList the_children;

readonly attribute POAManager the_ POAManager;
attribute AdapterActivator the_activator;

/I Servant Manager registration:

342 Common Object Request Broker Architecture (CORBA), v3.1.1

ServantManager get_servant_manager()
raises (WrongPolicy);

void set_servant_manager(
in ServantManager imgr)
raises (WrongPolicy);

/l operations for the USE_DEFAULT_SERVANT policy

Servant get_servant()
raises (NoServant, WrongPolicy);

void set_servant(in Servant p_servant)
raises (WrongPolicy);

I/l object activation and deactivation

Objectld activate_object(
in Servant p_servant)
raises (ServantAlreadyActive, WrongPolicy);

void activate_object_with_id(
in Objectld id,
in Servant p_servant)

raises (ServantAlreadyActive, ObjectAlreadyActive, WrongPolicy);

void deactivate_object(
in Objectld oid)
raises (ObjectNotActive, WrongPolicy);

I/l reference creation operations

Object create_reference (
in CORBA::Repositoryld intf)
raises (WrongPolicy);

Object create_reference_with_id (
in Objectld oid,
in CORBA::Repositoryld intf

)i
/l ldentity mapping operations:

Objectld servant_to_id(
in Servant p_servant)
raises (ServantNotActive, WrongPolicy);

Object servant_to_reference(
in Servant p_servant)
raises (ServantNotActive, WrongPolicy);

Common Object Request Broker Architecture (CORBA), v3.1.1

343

Servant reference_to_servant(
in Object reference)
raises(ObjectNotActive, WrongAdapter, WrongPolicy);

Objectld reference_to_id(
in Object reference)
raises (WrongAdapter, WrongPolicy);

Servant id_to_servant(
in Objectld oid)
raises (ObjectNotActive, WrongPolicy);

Object id_to_reference(in Objectld oid)
raises (ObjectNotActive, WrongPolicy);

readonly attribute CORBA::OctetSeq id;
readonly attribute POAManagerFactory the_ POAManagerFactory;

b
/I Current interface

local interface Current : CORBA::Current {
exception NoContext { };

POA get_POA()
raises (NoContext);

Objectld get_object_id()
raises (NoContext);

Object get_reference()
raises(NoContext);

Servant get_servant()
raises(NoContext);

b
b

15.5 UML Description of PortableServer

The following diagrams were generated by an automated tool and then annotated with the cardinalities of the associations.
They are intended to be an aid in comprehension to those who enjoy such representations. They are not normative.

344 Common Object Request Broker Architecture (CORBA), v3.1.1

PortableServer::AdapterActivator PortableServer::POAManager the
_parent
(from Portable Server) (from Portable Server)
activate()
unknown_adapter() hold_requests()

discard_requests() 1
deactivate() 0.n
get_state() PortableServer::POA

T I (from Portable Server)

the_POAI ager
1.0

the_name : string

the_parent : PortableServer::POA

the_children : PortableServer::POAList
the_POAmanager : PortableServer::POAManager
the_activator : PortableServer::AdapterActivator
id : CORBA::OctetSeq

the_POAManagerFactory :

PortableServer::ServantManager
(from Portable Server)

PortableServer-:ServantLocator PortableServer: ServantActivator 0.n PortableServer::POAManagerFactory
(from Portable Server) (from Portable Server) create_POA ()
find_POA()
preinvoke() incarnate() destroy()
postinvoke() etherealize() create_thread_policy()
create_lifespan_policy()
% \ / create_id_uniqueness_policy()
create_id_assignment_policy()
PortableServer::Cookie PortableServer::Servant create_implicit_activation_policy()
(from Portable Server) (from Portable Server) / create_servant_retention_policy()
create_request_processing_policy()

get_servant_manager()
set_servant_manager()
PortableServer::Current get_servant()
CORBA::Current (from Portable Server) set_servant()

activate_object()
(from CORBA Core) | activate_object_with_id()

deactivate_object()

« | create_reference()
create_reference_with_id()
servant_to_id()

get_POA()
get_object_id()

CORBA::Policy servant_to_reference()
(from CORBA Core) 7 reference_to_;:ervant()
: : enforces | reference_to_id()
policy_type : CORBA::PolicyType id_to_servant()
id_to_reference()
copy()
destroy() PortableServer::Objectld Ll.n
(from Portable Server) the_POAmanagerFactory
1.1

PortableServer::POAManagerFactory
(from Portable Server)

create_POAManager()
list()
find()

Figure 15.1 - UML for main part of PortableServer

Common Object Request Broker Architecture (CORBA), v3.1.1 345

IdAssignmentPolicy

IdUniquessPolicy

value:ldAssignmentPolicyValue
={USER_ID, SYSTEM_ID}

value:ldUniquenessPolicyValue
= {UNIQUE_ID, MULTIPLE_ID}

ImplicitActivationPolicy

value:ImpliciActivationPolicyValue
= {IMPLICIT_ACTIVATION,
NO_IMPLICIT_ACTIVATION}

CORBA::Policy
(from CORBA core)

ServantRetentionPolicy

policy_type : CORBA::PolicyType

copy()
destroy()

value:ServantRetentionPolicyValue
= {RETAIN, NON_RETAIN}

LifespanPolicy

RequestProcessingPolicy

ThreadPolicy

value:LifespanPolicyValue
= {TRANSIENT,
PERSISTENT}

value:RequestProcessingPolicyValue
={USE_ACTIVE_OBJECT_MAP_ONLY,

USE_DEFAULT_SERVANT,
USE_SERVANT_MANAGER}

Figure 15.2 - UML for PortableServer Policies

15.6 Usage Scenarios

value:ThreadPolicyValue

={ORB_CTRL_MODEL,
SINGLE_THREAD_MODEL,
MAIN_THREAD_MODEL}

This sub clause illustrates how different capabilities of the POA may be used in applications.

NOTE: In some of the following C++ examples, PortableServer names are not explicitly scoped. It is assumed that all the

examples have the C++ statement: using namespace PortableServer;

15.6.1 Getting the Root POA

All server applications must obtain a reference to the root POA, either to use it directly to manage objects, or to create
new POA objects. The following example demonstrates how the application server can obtain a reference to the root

POA.

// C++
CORBA: :0ORB_ptr orb =

orb->resolve initial references (“RootPOA”) ;

CORBA: :ORB_init(argc, argv);
CORBA: :Object ptr pfobj =

PortableServer::POA ptr rootPOA;

rootPOA =

346

PortableServer: :POA: :narrow (pfobj) ;

Common Object Request Broker Architecture (CORBA), v3.1.1

15.6.2 Creating a POA

For a variety of reasons, a server application might want to create a new POA. The POA is created as a child of an
existing POA. In this example, it is created as a child of the root POA.

// C++

CORBA: :PolicyList policies(2);
policies.length(2);

policies[0] = rootPOA->create thread policy(
PortableServer: :ThreadPolicy: :ORB_CTRL MODEL) ;
policies[l] = rootPOA->create lifespan policy(
PortableServer: :LifespanPolicy: : TRANSIENT) ;
PortableServer: :POA ptr poa =
rootPOA->create POA(“my little poa”,
PortableServer: :POAManager:: nil(), policies);

15.6.3 Explicit Activation with POA-assigned Object Ids

By specifying the SYSTEM_ID policy on a POA, objects may be explicitly activated through the POA without providing
a user-specified identity value. Using this approach, objects are activated by performing the activate_object operation
on the POA with the object in question. For this operation, the POA allocates, assigns, and returns a unique identity value
for the object.

Generally this capability is most useful for transient objects, where the Object Id needs to be valid only as long as the
servant is active in the server. The Object Ids can remain completely hidden and no servant manager need be provided.
When this is the case, the identity and lifetime of the servant and the abstract object are essentially equivalent. When
POA-assigned Object Ids are used with persistent objects or objects that are activated on demand, the application must be
able to associate the generated Object Id value with its corresponding object state.

This example illustrates a simple implementation of transient objects using POA-assigned Object Ids. It presumes a POA
that has the SYSTEM_ID, USE_SERVANT_MANAGER, and RETAIN policies.

Assume this interface:

/1 1DL
interface Foo {
long doit();
h
This might result in the generation of the following skeleton:

class POA Foo : public ServantBase

{

public:

virtual CORBA::Long doit() = 0;

}

Derive your implementation:

Common Object Request Broker Architecture (CORBA), v3.1.1 347

class MyFooServant : public POA Foo

{
public:
MyFooServant (POA ptr poa, Long value)
: my poa(POA:: duplicate(poa)), my value(value) {}
~MyFooServant () {CORBA::release (my poa);}
virtual POA ptr default POA()
{return POA:: duplicate(my poa);}
virtual Long doit() {return my value;}
protected:
POA ptr my poa;
Long my value;
}i

Now, somewhere in the program during initialization, probably inmain ():

MyFooServant* afoo = new MyFooServant (poa,27);
PortableServer::0bjectId var oid =
poa->activate object (afoo);
Foo var foo = afoo-> this();
poa->the POAManager () ->activate();
orb->run() ;

This object is activated with a generated Object Id.
15.6.4 Explicit Activation with User-assigned Object Ids

An object may be explicitly activated by a server using a user-assigned identity. This may be done for several reasons. For
example, a programmer may know that certain objects are commonly used, or act as initial points of contact through
which clients access other objects (for example, factories). The server could be implemented to create and explicitly
activate these objects during initialization, avoiding the need for a servant manager.

If an implementation has a reasonably small number of servants, the server may be designed to keep them all active
continuously (as long as the server is executing). If this is the case, the implementation need not provide a servant
manager. When the server initializes, it could create all available servants, loading their state and identities from some
persistent store. The POA supports an explicit activation operation, activate_object_with_id, that associates a servant
with an Object Id. This operation would be used to activate all of the existing objects managed by the server during server
initialization. Assuming the POA has the USE_SERVANT_MANAGER policy and no servant manager is associated
with a POA, any request received by the POA for an Object I1d value not present in the Active Object Map will result in
an OBJ_ADAPTER exception.

In simple cases of well-known, long-lived aobjects, it may be sufficient to activate them with well-known Object I1d values
during server initialization, before activating the POA. This approach ensures that the objects are always available when
the POA is active, and doesn’t require writing a servant manager. It has severe practical limitations for a large number of
objects, though.

This example illustrates the explicit activation of an object using a user-chosen Object Id. This example presumes a POA
that has the USER_ID, USE_SERVANT_MANAGER, and RETAIN policies.

The code is like the previous example, but replace the last portion of the example shown above with the following code:

348 Common Object Request Broker Architecture (CORBA), v3.1.1

// C++

MyFooServant* afoo = new MyFooServant (poa, 27);

PortableServer::0bjectId var oid =
PortableServer::string to ObjectId(“myLittleFoo”) ;

poa->activate object with id(oid.in(), afoo);

Foo var foo = afoo-> this();

15.6.5 Creating References before Activation

It is sometimes useful to create references for objects before activating them. This example extends the previous example
to illustrate this option:

// C++

PortableServer::0bjectId va