

Date: March 2012

Common Object Request Broker Architecture (CORBA)
Specification, Version 3.3

Part 2: CORBA Interoperability

OMG Document Number: formal/2012-03-04
Standard document URL: http://www.omg.org/spec/CORBA/3.3/Interoperability/PDF

Copyright © 1997-2001 Electronic Data Systems Corporation
Copyright © 1997-2001 Hewlett-Packard Company
Copyright © 1997-2001 IBM Corporation
Copyright © 1997-2001 ICON Computing
Copyright © 1997-2001 i-Logix
Copyright © 1997-2001 IntelliCorp
Copyright © 2007, IONA Technologies, PLC
Copyright © 1997-2001 Microsoft Corporation
Copyright © 2011-2012 Object Management Group
Copyright © 1997-2001 ObjecTime Limited
Copyright © 1997-2001 Oracle Corporation
Copyright © 1997-2001 Platinum Technology, Inc.
Copyright © 1997-2001 Ptech Inc.
Copyright © 1997-2001 Rational Software Corporation
Copyright © 1997-2001 Reich Technologies
Copyright © 2007-2012 Remedy IT
Copyright © 1997-2001 Softeam
Copyright © 1997-2001 Sterling Software
Copyright © 1997-2001 Taskon A/S
Copyright © 2008-2009, Telefónica Investigación y Desarrollo S.A.Unipersonal
Copyright © 1997-2001 Unisys Corporation

Use of Specification - Terms, Conditions & Notices

The material in this document details an Object Management Group specification in accordance with the terms, conditions and
notices set forth below. This document does not represent a commitment to implement any portion of this International
Standard in any company’s products. The information contained in this document is subject to change without notice.

Licenses

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free, paid up,
worldwide license to copy and distribute this document and to modify this document and distribute copies of the modified
version. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed the copyright
in the included material of any such copyright holder by reason of having used the specification set forth herein or having
conformed any computer software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this International Standard hereby grant you a
fully-paid up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use this
International Standard to create and distribute software and special purpose specifications that are based upon this
International Standard, and to use, copy, and distribute this International Standard as provided under the Copyright Act;
provided that: (1) both the copyright notice identified above and this permission notice appear on any copies of this
International Standard; (2) the use of the specifications is for informational purposes and will not be copied or posted on any
network computer or broadcast in any media and will not be otherwise resold or transferred for commercial purposes; and (3)
no modifications are made to this International Standard. This limited permission automatically terminates without notice if
you breach any of these terms or conditions. Upon termination, you will destroy immediately any copies of the specifications
in your possession or control.

Patents

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may
require use of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a
license may be required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of
those patents that are brought to its attention. OMG specifications are prospective and advisory only. Prospective users are
responsible for protecting themselves against liability for infringement of patents.

General Use Restrictions

Any unauthorized use of this International Standard may violate copyright laws, trademark laws, and communications
regulations and statutes. This document contains information which is protected by copyright. All Rights Reserved. No
part of this work covered by copyright herein may be reproduced or used in any form or by any means--graphic,
electronic, or mechanical, including photocopying, recording, taping, or information storage and retrieval systems--
without permission of the copyright owner.

Disclaimer Of Warranty

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY CONTAIN
ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE
MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS PUBLICATION,
INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF
MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE.

IN NO EVENT SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE COMPANIES LISTED ABOVE
BE LIABLE FOR ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS, REVENUE, DATA OR
USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE FURNISHING,
PERFORMANCE, OR USE OF THIS MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

The entire risk as to the quality and performance of software developed using this International Standard is borne by you.
This disclaimer of warranty constitutes an essential part of the license granted to you to use this International Standard.

Restricted Rights Legend

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1) (ii)
of The Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph (c)(1) and
(2) of the Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified in 48 C.F.R.
227-7202-2 of the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of the Federal
Acquisition Regulations and its successors, as applicable. The specification copyright owners are as indicated above and
may be contacted through the Object Management Group, 140 Kendrick Street, Needham, MA 02494, U.S.A.

Trademarks

MDA®, Model Driven Architecture®, UML®, UML Cube logo®, OMG Logo®, CORBA® and XMI® are registered
trademarks of the Object Management Group, Inc., and Object Management Group™, OMG™ , Unified Modeling
Language™, Model Driven Architecture Logo™, Model Driven Architecture Diagram™, CORBA logos™, XMI Logo™,

CWM™, CWM Logo™, IIOP™ , MOF™ and OMG Interface Definition Language (IDL)™ , and Systems Modeling
Language (SysML™) are trademarks of the Object Management Group. All other products or company names mentioned are
used for identification purposes only, and may be trademarks of their respective owners.

Compliance

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its designees) is
and shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer software to use
certification marks, trademarks or other special designations to indicate compliance with these materials.

Software developed under the terms of this license may claim compliance or conformance with this International Standard if
and only if the software compliance is of a nature fully matching the applicable compliance points as stated in the
specification. Software developed only partially matching the applicable compliance points may claim only that the software
was based on this International Standard, but may not claim compliance or conformance with this International Standard. In
the event that testing suites are implemented or approved by Object Management Group, Inc., software developed using this
International Standard may claim compliance or conformance with the specification only if the software satisfactorily
completes the testing suites.

OMG’s Issue Reporting Procedure

All OMG specifications are subject to continuous review and improvement. As part of this
process we encourage readers to report any ambiguities, inconsistencies, or inaccuracies they
may find by completing the Issue Reporting Form listed on the main web page http://
www.omg.org, under Documents, Report a Bug/Issue (http://www.omg.org/technology/agree-
ment.htm).

Table of Contents

Preface ...vii

1 Scope .. 1

2 Conformance and Compliance .. 1
2.1 Unreliable Multicast ...2
2.2 GIOP Compression ...2

3 Normative References ... 2
3.1 Identical Recommendations | International Standards ..2
3.2 Other Specifications ..3

4 Terms and definitions ... 4
4.1 Recommendations | International Standards ..4
4.2 Terms Defined in this Standard ..4
4.3 Keywords for Requirment statements ...6

5 Symbols (and abbreviated terms) .. 6

6 Interoperability Overview ... 7
6.1 Elements of Interoperability ..7

 6.1.1 ORB Interoperability Architecture .. 7
 6.1.2 Inter-ORB Bridge Support .. 7
 6.1.3 General Inter-ORB Protocol (GIOP) .. 8
 6.1.4 Internet Inter-ORB Protocol (IIOP)® ... 8
 6.1.5 Environment-Specific Inter-ORB Protocols (ESIOPs) .. 9

6.2 Relationship to Previous Versions of CORBA ..9
6.3 Examples of Interoperability Solutions ..10

 6.3.1 Example 1 .. 10
 6.3.2 Example 2 .. 10
 6.3.3 Example 3 .. 10
 6.3.4 Interoperability Compliance ... 10

6.4 Motivating Factors ...13
 6.4.1 ORB Implementation Diversity ... 13
 6.4.2 ORB Boundaries .. 13
 6.4.3 ORBs Vary in Scope, Distance, and Lifetime .. 13

6.5 Interoperability Design Goals ..14
 6.5.1 Non-Goals .. 14

7 ORB Interoperability Architecture .. 15
7.1 Overview ...15

 7.1.1 Domains ... 15
CORBA - Part 2: Interoperability, v3.3 i

 7.1.2 Bridging Domains ... 15
7.2 ORBs and ORB Services ..16

 7.2.1 The Nature of ORB Services .. 16
 7.2.2 ORB Services and Object Requests .. 16
 7.2.3 Selection of ORB Services ... 17

7.3 Domains ..17
 7.3.1 Definition of a Domain .. 18
 7.3.2 Mapping Between Domains: Bridging .. 19

7.4 Interoperability Between ORBs ...19
 7.4.1 ORB Services and Domains .. 19
 7.4.2 ORBs and Domains ... 20
 7.4.3 Interoperability Approaches ... 20
 7.4.4 Policy-Mediated Bridging ... 22
 7.4.5 Configurations of Bridges in Networks ... 22

7.5 Object Addressing ...23
 7.5.1 Domain-relative Object Referencing .. 24
 7.5.2 Handling of Referencing Between Domains .. 24

7.6 An Information Model for Object References ..25
 7.6.1 What Information Do Bridges Need? ... 25
 7.6.2 Interoperable Object References: IORs ... 25
 7.6.3 IOR Profiles .. 26
 7.6.4 Standard IOR Profiles .. 28
 7.6.5 IOR Components ... 29
 7.6.6 Standard IOR Components .. 29
 7.6.7 Profile and Component Composition in IORs .. 31
 7.6.8 IOR Creation and Scope .. 32
 7.6.9 Stringified Object References ... 32
 7.6.10 Object URLs ... 33

7.7 Service Context ...37
 7.7.1 Standard Service Contexts .. 39
 7.7.2 Service Context Processing Rules... 40

7.8 Coder/Decoder Interfaces ...40
 7.8.1 Codec Interface .. 41
 7.8.2 Codec Factory .. 42

7.9 Feature Support and GIOP Versions ..43
7.10 Code Set Conversion ..45

 7.10.1 Character Processing Terminology .. 45
 7.10.2 Code Set Conversion Framework .. 48
 7.10.3 Mapping to Generic Character Environments .. 55
 7.10.4 Example of Generic Environment Mapping .. 56
 7.10.5 Relevant OSFM Registry Interfaces ... 57

8 Building Inter-ORB Bridges .. 63
8.1 Introduction ...63
8.2 In-Line and Request-Level Bridging ..63

 8.2.1 In-line Bridging ... 64
 8.2.2 Request-level Bridging ... 64
 8.2.3 Collocated ORBs .. 65
ii CORBA - Part 2: Interoperability, v3.3

8.3 Proxy Creation and Management ...66
8.4 Interface-specific Bridges and Generic Bridges ..66
8.5 Building Generic Request-Level Bridges ..66
8.6 Bridging Non-Referencing Domains ...67
8.7 Bootstrapping Bridges ...68

9 General Inter-ORB Protocol ... 69
9.1 Goals of the General Inter-ORB Protocol ...69
9.2 GIOP Overview ...69

 9.2.1 Common Data Representation (CDR) ... 70
 9.2.2 GIOP Message Overview .. 70
 9.2.3 GIOP Message Transfer .. 71

9.3 CDR Transfer Syntax .. 71
 9.3.1 Primitive Types .. 72
 9.3.2 OMG IDL Constructed Types ... 77
 9.3.3 Encapsulation .. 79
 9.3.4 Value Types ... 80
 9.3.5 Pseudo-Object Types .. 87
 9.3.6 Object References ... 93
 9.3.7 Abstract Interfaces ... 93

9.4 GIOP Message Formats ...93
 9.4.1 GIOP Message Header .. 94
 9.4.2 Request Message .. 96
 9.4.3 Reply Message .. 99
 9.4.4 CancelRequest Message ... 102
 9.4.5 LocateRequest Message ... 103
 9.4.6 LocateReply Message ... 104
 9.4.7 CloseConnection Message .. 106
 9.4.8 MessageError Message ... 106
 9.4.9 Fragment Message .. 106

9.5 GIOP Message Transport ... 107
 9.5.1 Connection Management ... 108
 9.5.2 Message Ordering ... 109

9.6 Object Location ...110
9.7 Internet Inter-ORB Protocol (IIOP) ..111

 9.7.1 TCP/IP Connection Usage ... 111
 9.7.2 IIOP IOR Profiles ... 112
 9.7.3 IIOP IOR Profile Components .. 114

9.8 Bi-Directional GIOP ...115
 9.8.1 Bi-directional IIOP .. 117

9.9 Bi-directional GIOP policy ... 118
9.10 OMG IDL ...119

 9.10.1 GIOP Module ... 119
 9.10.2 IIOP Module ... 123
 9.10.3 BiDirPolicy Module ... 124

10 Secure Interoperability ... 125
10.1 Overview ...125
CORBA - Part 2: Interoperability, v3.3 iii

 10.1.1 Assumptions ... 126
10.2 Protocol Message Definitions ..127

 10.2.1 The Security Attribute Service Context Element .. 127
 10.2.2 SAS context_data Message Body Types ... 127
 10.2.3 Authorization Token Format ... 131
 10.2.4 Client Authentication Token Format ... 133
 10.2.5 Identity Token Format .. 135
 10.2.6 Principal Names and Distinguished Names ... 136

10.3 Security Attribute Service Protocol ..137
 10.3.1 Compound Mechanisms .. 137
 10.3.2 Session Semantics ... 141
 10.3.3 TSS State Machine .. 142
 10.3.4 CSS State Machine .. 145
 10.3.5 ContextError Values and Exceptions ... 148

10.4 Transport Security Mechanisms ..149
 10.4.1 Transport Layer Interoperability ... 149
 10.4.2 Transport Mechanism Configuration .. 149

10.5 Interoperable Object References ..150
 10.5.1 Target Security Configuration .. 150
 10.5.2 Client-side Mechanism Selection ... 158
 10.5.3 Client-Side Requirements and Location Binding .. 160
 10.5.4 Server Side Consideration ... 160

10.6 Conformance Levels ...160
 10.6.1 Conformance Level 0 ... 160
 10.6.2 Conformance Level 1 ... 161
 10.6.3 Conformance Level 2 ... 162
 10.6.4 Stateful Conformance .. 162

10.7 Sample Message Flows and Scenarios ..162
 10.7.1 Confidentiality, Trust in Server, and Trust in Client Established in the Connection 163
 10.7.2 Confidentiality and Trust in Server Established in the Connection - Stateless
 Trust in Client Established in Service Context .. 165
 10.7.3 Confidentiality, Trust in Server, and Trust in Client Established in the Connection
 Stateless Trust Association Established in Service Context .. 167
 10.7.4 Confidentiality, Trust in Server, and Trust in Client Established in the
 Connection - Stateless Forward Trust Association Established in Service Context 170

10.8 References ..171
10.9 IDL ...172

 10.9.1 Module GSSUP - Username/Password GSSAPI Token Formats 172
 10.9.2 Module CSI - Common Secure Interoperability .. 173
 10.9.3 Module CSIIOP - CSIv2 IOR Component Tag Definitions ... 177

11 Unreliable Multicast Inter-ORB Protocol .. 181
11.1 Introduction ...181

 11.1.1 Purpose .. 181
 11.1.2 MIOP Packet .. 181
 11.1.3 Packet Collection ... 181
 11.1.4 PacketHeader .. 182
 11.1.5 Joining an IP/Multicast Group .. 183
 11.1.6 Quality Of Service .. 184
iv CORBA - Part 2: Interoperability, v3.3

 11.1.7 Delivery Requirements ... 184
11.2 MIOP Object Model ...184

 11.2.1 Definition .. 184
 11.2.2 Unreliable IP/Multicast Profile Body (UIPMC_ProfileBody) ... 185
 11.2.3 Group IOR .. 187
 11.2.4 Extending PortableServer::POA to include Group Operations 189
 11.2.5 MIOP Gateway ... 192
 11.2.6 Multicast Group Manager ... 192
 11.2.7 MIOP URL .. 208

11.3 Request Issues ... 209
 11.3.1 GIOP Request Message Compatibility .. 209
 11.3.2 MIOP Request Efficiency ... 209
 11.3.3 Client Use Cases ... 210
 11.3.4 Server Use Cases .. 211

11.4 Consolidated IDL ..211
 11.4.1 OMG IDL .. 211

12 ZIOP Protocol .. 219
12.1 ZIOP Messages ..219
12.2 ZIOP Message use ...220
12.3 ZIOP Compression Policies ..221

 12.3.1 CompressionEnablingPolicy interface ... 221
 12.3.2 CompressorIdLevelListPolicy interface .. 221
 12.3.3 CompressionLowValuePolicy interface .. 221
 12.3.4 CompressionMinRatioPolicy interface ... 221

12.4 Propagation of ZIOP Compression Policies ..221
12.5 Consolodated IDL ...221

Annex A - IDL Tags and Exceptions ... 223
CORBA - Part 2: Interoperability, v3.3 v

vi CORBA - Part 2: Interoperability, v3.3

Preface

About the Object Management Group

OMG

Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer industry
standards consortium that produces and maintains computer industry specifications for interoperable, portable and reusable
enterprise applications in distributed, heterogeneous environments. Membership includes Information Technology vendors,
end users, government agencies and academia.

OMG member companies write, adopt, and maintain its specifications following a mature, open process. OMG's
specifications implement the Model Driven Architecture® (MDA®), maximizing ROI through a full-lifecycle approach to
enterprise integration that covers multiple operating systems, programming languages, middleware and networking
infrastructures, and software development environments. OMG's specifications include: UML® (Unified Modeling
Language™); CORBA® (Common Object Request Broker Architecture); CWM™ (Common Warehouse Metamodel); and
industry-specific standards for dozens of vertical markets.

More information on the OMG is available at http://www.omg.org

OMG Specifications
As noted, OMG specifications address middleware, modeling, and vertical domain frameworks. A catalog of all OMG
Specifications is available from the OMG website at:

http://www.omg.org/technology/documents/spec_catalog.htm

Specifications within the Catalog are organized by the following categories:

OMG Modeling Specifications

• UML

• MOF

• XMI

• CWM

• Profile specifications.

OMG Middleware Specifications

• CORBA/IIOP

• IDL/Language Mappings

• Specialized CORBA specifications

• CORBA Component Model (CCM)
CORBA - Part 2: Interoperability, v3.3 vii

Platform Specific Model and Interface Specifications

• CORBAservices

• CORBAfacilities

• OMG Domain specifications

• OMG Embedded Intelligence specifications

• OMG Security specifications.

All of OMG’s formal specifications may be downloaded without charge from our website. (Products implementing OMG
specifications are available from individual suppliers.) Copies of specifications, available in PostScript and PDF format, may
be obtained from the Specifications Catalog cited above or by contacting the Object Management Group, Inc. at:

OMG Headquarters
140 Kendrick Street
Building A, Suite 300
Needham, MA 02494
USA
Tel: +1-781-444-0404
Fax: +1-781-444-0320
Email: pubs@omg.org

Certain OMG specifications are also available as ISO standards. Please consult http://www.iso.org

Typographical Conventions
The type styles shown below are used in this document to distinguish programming statements from ordinary English.
However, these conventions are not used in tables or section headings where no distinction is necessary.

Times/Times New Roman - 10 pt.: Standard body text

Helvetica/Arial - 10 pt. Bold: OMG Interface Definition Language (OMG IDL) and syntax elements.

Courier - 10 pt. Bold: Programming language elements.

Helvetica/Arial - 10 pt: Exceptions

Note – Terms that appear in italics are defined in the glossary. Italic text also represents the name of a document, specification, or
other publication.

Issues
The reader is encouraged to report any technical or editing issues/problems with this specification to http://www.omg.org/
technology/agreement.htm.
viii CORBA - Part 2: Interoperability, v3.3

1 Scope

This document specifies a comprehensive, flexible approach to supporting networks of objects that are distributed across
and managed by multiple, heterogeneous CORBA-compliant Object Request Brokers (ORBs). The approach to inter-ORB
operation is universal, because elements can be combined in many ways to satisfy a very broad range of needs.

The standard covers the specification of:

• ORB interoperability architecture

• Inter-ORB bridge support

• The General Inter-ORB Protocol (GIOP) for object request broker (ORB) interoperability. GIOP can be mapped onto
any connection-oriented transport protocol that meets a minimal set of assumptions defined by this standard.

• The Internet Inter-ORB Protocol (IIOP), a specific mapping of the GIOP which runs directly over connections that use
the Internet Protocol and the Transmission Control Protocol (TCP/IP connections).

• The CORBA Security Attribute Service (SAS) protocol and its use within the CSIv2 architecture to address the
requirements of CORBA security for interoperable authentication, delegation, and privileges.

Issue 16922 ZIOP has to be part of the core CORBA specification

• The Zipped Inter-ORB Protocol (ZIOP) which defines a compression mechanism for the CORBA GIOP protocol.

The standard provides a widely implemented and used particularization of ITU-T Rec. X.931 | ISO/IEC 14752. Open
Distributed Processing - Protocol Support for Computational Interactions. It supports interoperability and location
transparency in ODP systems.

2 Conformance and Compliance

An ORB is considered to be interoperability-compliant when it meets the following requirements:

• In the CORBA Core part of this specification, standard APIs are provided by an ORB to enable the construction of
request-level inter-ORB bridges. APIs are defined by the Dynamic Invocation Interface, the Dynamic Skeleton
Interface, and by the object identity operations described in the Interface Repository clause of this book.

• An Internet Inter-ORB Protocol (IIOP) (explained in the Building Inter-ORB Bridges clause) defines a transfer syntax
and message formats (described independently as the General Inter-ORB Protocol), and defines how to transfer
messages via TCP/IP connections. The IIOP can be supported natively or via a halfbridge.

Support for additional Environment Specific Inter-ORB Protocols (ESIOPs) and other proprietary protocols is optional in
an interoperability-compliant system. However, any implementation that chooses to use the other protocols defined by the
CORBA interoperability specifications must adhere to those specifications to be compliant with CORBA interoperability.

Figure 6.2 on page 12 shows examples of interoperable ORB domains that are CORBA-compliant. These compliance
points support a range of interoperability solutions. For example, the standard APIs may be used to construct “half
bridge”" to the IIOP, relying on another “half bridge” to connect to another ORB. The standard APIs also support
CORBA - Part 2: Interoperability, v3.2 1

construction of “full bridges,” without using the Internet IOP to mediate between separated bridge components. ORBs
may also use the Internet IOP internally. In addition, ORBs may use GIOP messages to communicate over other network
protocol families (such as Novell or OSI), and provide transport-level bridges to the IIOP.

The GIOP is described separately from the IIOP to allow future specifications to treatit as an independent compliance
point.

2.1 Unreliable Multicast

Summary of Optional Verses Mandatory Interfaces
An interface to an MIOP gateway should be considered an optional interface within the MIOP specification.

Proposed Compliance Points
The MIOP specification is a single, optional compliance point within the CORBA Core specification.

Changes to Other OMG Specifications
This specification contains an extension to the IOP module.

module IOP {
const ProfileId TAG_UIPMC = 3;
const ComponentId TAG_GROUP = 39;
const ComponnetId TAG_GROUP_IIOP = 40

};

2.2 GIOP Compression

Issue 16922 ZIOP has to be part of the core CORBA specification

GIOP Compression is defined as an optional CORBA conformance point. In order to claim GIOP Compression compliance
an ORB implementation must support the following conformance point:

• ZIOP - The ORB implements the ZIOP wire protocol and the ZIOP module policy interfaces for controlling it, with
support for at least the zlib algorithm.

When an ORB claims GIOP compression compliance it optionally can claim the following GIOP compression compliance
point:

• Pluggable compression - The ORB implements the Compression module interfaces, and the registered
CompressorFactory instances are available for use by ZIOP.

3 Normative References

The following referenced documents are indispensable for the application of this document. For dated references, only the
edition cited applies. For undated references, the latest edition of the referenced document (including any amendments)
applies.
2 CORBA - Part 2: Interoperability, v3.3

3.1 Identical Recommendations | International Standards

Issue 14400: fix years in ODP refs

• ITU-T Recommendation X.902 (1995) | ISO/IEC 10746-2:1996, Open Distributed Processing - Reference Model:
Foundations

• ITU-T Recommendation X.903 (1995) | ISO/IEC 10746-3:1996, Open Distributed Processing - Reference Model:
Architecture

• ITU-T Recommendation X.920 (1999) | ISO/IEC 10750:1999, Open Distributed Processing - Interface Definition
Language

• ITU-T Recommendation X.931(2000) | ISO/IEC 14752:2000, Open Distributed Processing - Protocol Support for
Computational Interactions

• ISO/IEC 8859-1: 1998, Information Technology - 8-bit single byte coded graphic character sets - Part 1: Latin alphabet
No. 1

• ISO/IEC 10646-1:1993 Information Technology - Universal Multiple-Octect coded character set (UCS) - Part 1:
Architecture and Basic Multilingual Plane

• ISO/IEC 10646-1:1993/Amd 1:1996 Transformation Format for 16 planes of group 00 (UTF - 16)

• ISO/IEC 10646-1: 1993/Amd 2:1996 UCS Transformation Format 8 (UTF - 8)

• ISO/IEC 19500-1: 200n Open Distributed Processing - CORBA Specification Part 1: CORBA Interfaces

3.2 Other Specifications

Issue 14399: Add references to OMG specs

Issue 14404: Add reference to rfc 2119

• STD 007 (also, RFC 793), Transmission Control Protocol, J. Postel, Internet Engineering Task Force, Sept. 1981

• STD 005 (also, RFC 791), Internet Protocol, J. Postel, Internet Engineering Task Force, Sept. 1981

• OSF Character and Code Set Registry, OSF DCE FRC 40.1 (Public Version), S. (Martin) O'Donnell, June 1994.

• RPC Runtime Support For I18N Characters - Functional Specification, OSF DCE SIG RFC 41.2, M. Romagna, R.
Mackey, November 1994.

• [JAV2I] Object Management Group, “Java to IDL,” available from http://www.omg.org/spec/JAV2I/1.4

• [CORBASEC] Object Management Group, “Security Service,” available from http://www.omg.org/technology/
documents/formal/security_service.htm

• [ASMOTS] Object Management Group, “Additional Structuring Mechanisms for the OTS,” available from http://
www.omg.org/technology/documents/formal/add_struct.htm

• [TRANS] Object Management Group, “Transaction Service,” available from http://www.omg.org/technology/
documents/formal/transaction_service.htm
CORBA - Part 2: Interoperability, v3.3 3

• [FIREWALL] Object Management Group, “CORBA Firewall Traversal Specification,” available from http://
www.omg.org/members/cgi-bin/doc?ptc/04-04-05.pdf

• [SCCP] Object Management Group, “CORBA / TC Interworking and SCCP-Inter ORB Protocol (SCCP).” Available
from http://www.omg.org/spec/SCCP

• [FTCORBA] Object Management Group, “Fault Tolerant Corba,” clause 23 of CORBA 3.0.3, available from http://
www.omg.org/cgi-bin/doc?formal/2004-03-01

• [RTCORBA] Object Management Group, “Real-Time CORBA, version 1.2,” available from http://www.omg.org/
technology/documents/formal/real-time_CORBA.htm

• [WATM] Object Management Group, “Wireless Access and Telecom Mobility in CORBA, Version 1.2,” available
from http://www.omg.org/spec/WATM/1.2/

• [DCOMI] Object Management Group, “Interoperability with non-CORBA Systems” clause 20 of CORBA 3.0.3,
available from http://www.omg.org/cgi-bin/doc?formal/2004-03-01

• [TSAS] Object Management Group “Telecommunications Service Access and Subscription Specification,” available
from http://www.omg.org/spec/TSAS/1.0/

• IETF RFC2119, “Key words for use in RFCs to Indicate Requirement Levels,” S. Bradner, March 1997 (http://ietf.org/
rfc/rfc2119)

4 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

4.1 Recommendations | International Standards

Issue 14386: fix puctuation in refs

Issue 14387: add service and tranparency to list

This Recommendation | International Standard makes use of the following terms defined in ITU-T Rec. X.902 | ISO/IEC
10746-2:

• behavior
• interface
• instance
• object
• service
• state
• transparency
• type
4 CORBA - Part 2: Interoperability, v3.3

This Recommendation | International Standard makes use of the following terms defined in ITU-T Rec. X.903 | ISO/IEC
10746-3:

• operation
• stub

Issue 14388: Remove row for “repository in 4.2

Issue 14389: change wiat to wait and tow to two

Issue 14390: change definition for request

4.2 Terms Defined in this Standard

adapter Same as object adapter.
attribute An identifiable association between an object and a value. An attribute A is made visable

to clients as a pair of operations: get_A and set_A. Readonly attributes only generate a
get operation.

client The code or process that invokes an operation on an object.
data type A categorization of values operation arguments, typically covering both behavior and

representation (i.e., the traditional no-OO programming language notion of type.)
domain A concept important to interoperability, it is a distinct scope, within which common

characteristics are exhibited, common rules observed, and over which a distribution
transparency is preserved.

dynamic invocation Constructing and issuing a request whose signature is possibly not known until run-time.
dynamic skeleton An interface-independent kind of skeleton, used by servers to handle requests whose

signatures are possibly not known until run-time.
implementation A definition that provides the information needed to create an object and allow the object

to participate in providing an appropriate set of services. An implementation typically
includes a description of the data structure used to represent the core state associated
with an object, as well as definitions of the methods that access that data structure. It will
also typically include information about the intended interface of the object.

interface repository A storage place for interface information.
ORB core The ORB component which moves a request from a client to the appropriate adapter

for the target object.
request A message issued by a client to cause a service to be performed.
results The information returned to the client, which may include values as well as status

information indicating that exceptional conditions were raised in attempting to perform
the requested service.

server A process implementing one or more operations on one or more objects.
CORBA - Part 2: Interoperability, v3.3 5

Issue 14404: ad explanation for RFC 2119 terms

4.3 Keywords for Requirment statements
The keywords “must,” “must not,” “shall,” “shall not,” “should,” “should not,” and “may” in this specification are to be
interpreted as described in IETF RFC 2119.

5 Symbols (and abbreviated terms)

Issue 14391: add ESIOP to list of abbreviations

For the purposes of this standard, the following abbreviations apply:

ADT Abstract Data Type

CSIv2 Common Secure Interoperability, version 2

CCCS Client Conversion Code Sets

CCS Conversion Code Sets

CDR Common Data Representation

signature Defines the parameters of a given operation including their number order, data types, and
passing mode; the results if any; and the possible outcomes (normal vs. exceptional) that
might occur.

skeleton The object-interface-specific ORB component which assists an object adapter in passing
requests to particular methods.

synchronous request A request where the client pauses to wait for completion of the request. Contrast with
deferred synchronous request and one-way request.

interface type A type satisfied by any object that satisfies a particular interface.
interoperability The ability for two or more ORBs to cooperate to deliver requests to the proper object.

Interoperating ORBs appear to a client to be a single ORB.
language binding or
mapping

The means and conventions by which a programmer writing in a specific programming
language accesses ORB capabilities.

method An implementation of an operation. Code that may be executed to perform a requested
service. Methods associated with an object may be structured into one or more programs.

object adapter The ORB component which provides object reference, activation, and state related
services to an object implementation. There may be different adapters provided for
different kinds of implementations.

object implementation Same as implementation.
object reference A value that unambiguously identifies an object. Object references are never reused to

identify another object.
objref An abbreviation for object reference
value Any entity that may be a possible actual parameter in a request. Values that serve to

identify objects are called object references.
6 CORBA - Part 2: Interoperability, v3.3

CMIR Client Makes it Right

CNCS Client Native Code Set

CORBA Common Object Request Broker Architecture

DCE Distributed Computing Environment

ESIOP Environment Specific Inter-ORB Protocol

OMG Object Management Group

GIOP General Inter-ORB Protocol

IDL Interface Definition Language

IIOP Internet Inter-ORB Protocol

IOR Interoperable Object Reference

ORB Object Request Broker

SAS Security Attribute Service

SCCS Server Conversion Code Sets

SMIR Server Makes It Right

SNCS Server Native Code Set

TCS Transmission Code Set

TCS-C Char Transmission Code Set

TCS-W Wchar Transmission Code Set

VSCID Vender Service Context codeset ID
CORBA - Part 2: Interoperability, v3.3 7

8 CORBA - Part 2: Interoperability, v3.3

6 Interoperability Overview

ORB interoperability specifies a comprehensive, flexible approach to supporting networks of objects that are distributed
across and managed by multiple, heterogeneous CORBA-compliant ORBs. The approach to “interORBability” is
universal because its elements can be combined in many ways to satisfy a very broad range of needs.

6.1 Elements of Interoperability
The elements of interoperability are as follows:

• ORB interoperability architecture

• Inter-ORB bridge support

• General and Internet Inter-ORB Protocols (GIOPs and IIOPs)

In addition, the architecture accommodates Environment Specific Inter-ORB Protocols (ESIOPs) that are optimized for
particular environments such as DCE.

6.1.1 ORB Interoperability Architecture

The ORB Interoperability Architecture provides a conceptual framework for defining the elements of interoperability and
for identifying its compliance points. It also characterizes new mechanisms and specifies conventions necessary to
achieve interoperability between independently produced ORBs.

Specifically, the architecture introduces the concepts of immediate and mediated bridging of ORB domains. The Internet
Inter-ORB Protocol (IIOP) forms the common basis for broad-scope mediated bridging. The inter-ORB bridge support
can be used to implement both immediate bridges and to build “half-bridges” to mediated bridge domains.

By use of bridging techniques, ORBs can interoperate without knowing any details of that ORB’s implementation, such
as what particular IPC or protocols (such as ESIOPs) are used to implement the CORBA specification.

The IIOP may be used in bridging two or more ORBs by implementing “half bridges” that communicate using the IIOP.
This approach works for both stand-alone ORBs, and networked ones that use an ESIOP.

The IIOP may also be used to implement an ORB’s internal messaging, if desired. Since ORBs are not required to use the
IIOP internally, the goal of not requiring prior knowledge of each others’ implementation is fully satisfied.

6.1.2 Inter-ORB Bridge Support

The interoperability architecture clearly identifies the role of different kinds of domains for ORB-specific information.
Such domains can include object reference domains, type domains, security domains (e.g., the scope of a Principal
identifier), a transaction domain, and more.

Where two ORBs are in the same domain, they can communicate directly. In many cases, this is the preferable approach.
This is not always true, however, since organizations often need to establish local control domains.

When information in an invocation must leave its domain, the invocation must traverse a bridge. The role of a bridge is
to ensure that content and semantics are mapped from the form appropriate to one ORB to that of another, so that users of
any given ORB only see their appropriate content and semantics.
CORBA - Part 2: Interoperability, v3.3 7

The inter-ORB bridge support element specifies ORB APIs and conventions to enable the easy construction of
interoperability bridges between ORB domains. Such bridge products could be developed by ORB vendors, Sieves,
system integrators, or other third-parties.

Because the extensions required to support Inter-ORB Bridges are largely general in nature, do not impact other ORB
operation, and can be used for many other purposes besides building bridges, they are appropriate for all ORBs to
support. Other applications include debugging, interposing of objects, implementing objects with interpreters and
scripting languages, and dynamically generating implementations.

The inter-ORB bridge support can also be used to provide interoperability with non-CORBA systems, such as Microsoft’s
Component Object Model (COM). The ease of doing this will depend on the extent to which those systems conform to the
CORBA Object Model.

6.1.3 General Inter-ORB Protocol (GIOP)

The General Inter-ORB Protocol (GIOP) element specifies a standard transfer syntax (low-level data representation) and
a set of message formats for communications between ORBs. The GIOP is specifically built for ORB to ORB interactions
and is designed to work directly over any connection-oriented transport protocol that meets a minimal set of assumptions.
It does not require or rely on the use of higher level RPC mechanisms. The protocol is simple, scalable, and relatively
easy to implement. It is designed to allow portable implementations with small memory footprints and reasonable
performance, with minimal dependencies on supporting software other than the underlying transport layer.

While versions of the GIOP running on different transports would not be directly interoperable, their commonality would
allow easy and efficient bridging between such networking domains.

6.1.4 Internet Inter-ORB Protocol (IIOP)®

The Internet Inter-ORB Protocol (IIOP)® element specifies how GIOP messages are exchanged using TCP/IP
connections. The IIOP specifies a standardized interoperability protocol for the Internet, providing “out of the box”
interoperation with other compatible ORBs based on the most popular product- and vendor-neutral transport layer. It can
also be used as the protocol between half-bridges (see below).

The protocol is designed to be suitable and appropriate for use by any ORB to interoperate in Internet Protocol domains
unless an alternative protocol is necessitated by the specific design center or intended operating environment of the ORB.
In that sense it represents the basic inter-ORB protocol for TCP/IP environments, a most pervasive transport layer.

The IIOP’s relationship to the GIOP is similar to that of a specific language mapping to OMG IDL; the GIOP may be
mapped onto a number of different transports, and specifies the protocol elements that are common to all such mappings.
The GIOP by itself, however, does not provide complete interoperability, just as IDL cannot be used to build complete
programs. The IIOP and other similar mappings to different transports, are concrete realizations of the abstract GIOP
definitions, as shown in Figure 6.1 on page 9.
8 CORBA - Part 2: Interoperability, v3.3

Figure 6.1 - Inter-ORB Protocol Relationships

6.1.5 Environment-Specific Inter-ORB Protocols (ESIOPs)

This specification also makes provision for an open-ended set of Environment-Specific Inter-ORB Protocols (ESIOPs).
Such protocols would be used for “out of the box” interoperation at user sites where a particular networking or
distributing computing infrastructure is already in general use.

Because of the opportunity to leverage and build on facilities provided by the specific environment, ESIOPs might
support specialized capabilities such as those relating to security and administration.

While ESIOPs may be optimized for particular environments, all ESIOP specifications will be expected to conform to the
general ORB interoperability architecture conventions to enable easy bridging. The inter-ORB bridge support enables
bridges to be built between ORB domains that use the IIOP and ORB domains that use a particular ESIOP.

6.2 Relationship to Previous Versions of CORBA
The ORB Interoperability Architecture builds on Common Object Request Broker Architecture by adding the notion of
ORB Services and their domains. (ORB Services are described in “ORBs and ORB Services” on page 16). The
architecture defines the problem of ORB interoperability in terms of bridging between those domains, and defines several
ways in which those bridges can be constructed. The bridges can be internal (in-line) and external (request-level) to
ORBs.

Issue 14392: change self reference to “this part of this International Standard”

APIs included in the interoperability specifications include compatible extensions to previous versions of CORBA to
support request-level bridging:

• A Dynamic Skeleton Interface (DSI) is the basic support needed for building request-level bridges. It is the server-side
analogue of the Dynamic Invocation Interface and in the same way it has general applicability beyond bridging. For
information about the Dynamic Skeleton Interface, refer to the Dynamic Skeleton Interface clause.

• APIs for managing object references have been defined, building on the support identified for the Relationship
Service. The APIs are defined in Object Reference Operations in the ORB Interface clause of Part 1 of this
International Standard (ISO/IEC 19500-1). The Relationship Service is described in the Relationship Service
specification; refer to CosObjectIdentity Module in that specification.

GIOP

IIOP

CORBA/IDL

ESIOPs

other GIOP
mappings...

Mandatory for CORBA
CORBA - Part 2: Interoperability, v3.3 9

6.3 Examples of Interoperability Solutions
The elements of interoperability (Inter-ORB Bridges, General and Internet Inter-ORB Protocols, Environment-Specific
Inter-ORB Protocols) can be combined in a variety of ways to satisfy particular product and customer needs. This sub
clause provides some examples.

6.3.1 Example 1

ORB product A is designed to support objects distributed across a network and provide “out of the box” interoperability
with compatible ORBs from other vendors. In addition it allows bridges to be built between it and other ORBs that use
environment-specific or proprietary protocols. To accomplish this, ORB A uses the IIOP and provides inter-ORB bridge
support.

6.3.2 Example 2

ORB product B is designed to provide highly optimized, very high-speed support for objects located on a single machine.
For example, to support thousands of Fresco GUI objects operated on at near function-call speeds. In addition, some of
the objects will need to be accessible from other machines and objects on other machines will need to be infrequently
accessed. To accomplish this, ORB A provides a half-bridge to support the Internet IOP for communication with other
“distributed” ORBs.

6.3.3 Example 3

ORB product C is optimized to work in a particular operating environment. It uses a particular environment-specific
protocol based on distributed computing services that are commonly available at the target customer sites. In addition,
ORB C is expected to interoperate with other arbitrary ORBs from other vendors. To accomplish this, ORB C provides
inter-ORB bridge support and a companion half-bridge product (supplied by the ORB vendor or some third-party)
provides the connection to other ORBs. The half-bridge uses the IIOP to enable interoperability with other compatible
ORBs.

6.3.4 Interoperability Compliance

Issue 14393: change reference to part 1

An ORB is considered to be interoperability-compliant when it meets the following requirements:

• In the CORBA Core part of this specification, standard APIs are provided by an ORB to enable the construction of
request-level inter-ORB bridges. APIs are defined by the Dynamic Invocation Interface, the Dynamic Skeleton
Interface, and by the object identity operations described in the Interface Repository clause of Part 1 of this
International Standard (ISO/IEC 19500-1).

• An Internet Inter-ORB Protocol (IIOP) (explained in the Building Inter-ORB Bridges clause) defines a transfer syntax
and message formats (described independently as the General Inter-ORB Protocol), and defines how to transfer
messages via TCP/IP connections. The IIOP can be supported natively or via a half-bridge.

Support for additional ESIOPs and other proprietary protocols is optional in an interoperability-compliant system.
However, any implementation that chooses to use the other protocols defined by the CORBA interoperability
specifications must adhere to those specifications to be compliant with CORBA interoperability.
10 CORBA - Part 2: Interoperability, v3.3

Figure 6.2 on page 12 shows examples of interoperable ORB domains that are CORBA-compliant.

These compliance points support a range of interoperability solutions. For example, the standard APIs may be used to
construct “half bridges” to the IIOP, relying on another “half bridge” to connect to another ORB. The standard APIs also
support construction of “full bridges,” without using the Internet IOP to mediate between separated bridge components.
ORBs may also use the Internet IOP internally. In addition, ORBs may use GIOP messages to communicate over other
network protocol families (such as Novell or OSI), and provide transport-level bridges to the IIOP.

The GIOP is described separately from the IIOP to allow future specifications to treat it as an independent compliance
point.
CORBA - Part 2: Interoperability, v3.3 11

Figure 6.2 - Examples of CORBA Interoperability Compliance

ORB Domains ORB Domains

IIOP

DCE-CIOP

*e.g. Proprietary protocol or
GIOP OSI mapping

IIOP

IIOP Other
Protocol*

CORBA V2.0 Interoperable

CORBA V2.0 Interoperable

CORBA V2.0 Interoperable

Half
Bridge

Half
Bridge
12 CORBA - Part 2: Interoperability, v3.3

6.4 Motivating Factors
This sub clause explains the factors that motivated the creation of interoperability specifications.

6.4.1 ORB Implementation Diversity

Today, there are many different ORB products that address a variety of user needs. A large diversity of implementation
techniques is evident. For example, the time for a request ranges over at least 5 orders of magnitude, from a few
microseconds to several seconds. The scope ranges from a single application to enterprise networks. Some ORBs have
high levels of security, others are more open. Some ORBs are layered on a particular widely used protocol, others use
highly optimized, proprietary protocols.

The market for object systems and applications that use them will grow as object systems are able to be applied to more
kinds of computing. From application integration to process control, from loosely coupled operating systems to the
information superhighway, CORBA-based object systems can be the common infrastructure.

6.4.2 ORB Boundaries

Even when it is not required by implementation differences, there are other reasons to partition an environment into
different ORBs.

For security reasons, it may be important to know that it is not generally possible to access objects in one domain from
another. For example, an “internet ORB” may make public information widely available, but a “company ORB” will want
to restrict what information can get out. Even if they used the same ORB implementation, these two ORBs would be
separate, so that the company could allow access to public objects from inside the company without allowing access to
private objects from outside. Even though individual objects should protect themselves, prudent system administrators
will want to avoid exposing sensitive objects to attacks from outside the company.

Supporting multiple ORBs also helps handle the difficult problem of testing and upgrading the object system. It would be
unwise to test new infrastructure without limiting the set of objects that might be damaged by bugs, and it may be
impractical to replace “the ORB” everywhere simultaneously. A new ORB might be tested and deployed in the same
environment, interoperating with the existing ORB until either a complete switch is made or it incrementally displaces the
existing one.

Management issues may also motivate partitioning an ORB. Just as networks are subdivided into domains to allow
decentralized control of databases, configurations, resources, management of the state in an ORB (object reference
location and translation information, interface repositories, per-object data) might also be done by creating sub-ORBs.

6.4.3 ORBs Vary in Scope, Distance, and Lifetime

Even in a single computing environment produced by a single vendor, there are reasons why some of the objects an
application might use would be in one ORB, and others in another ORB. Some objects and services are accessed over
long distances, with more global visibility, longer delays, and less reliable communication. Other objects are nearby, are
not accessed from elsewhere, and provide higher quality service. By deciding which ORB to use, an implementor sets
expectations for the clients of the objects.

One ORB might be used to retain links to information that is expected to accumulate over decades, such as library
archives. Another ORB might be used to manage a distributed chess program in which the objects should all be destroyed
when the game is over. Although while it is running, it makes sense for “chess ORB” objects to access the “archives
ORB,” we would not expect the archives to try to keep a reference to the current board position.
CORBA - Part 2: Interoperability, v3.3 13

6.5 Interoperability Design Goals
Because of the diversity in ORB implementations, multiple approaches to interoperability are required. Options identified
in previous versions of CORBA include:

• Protocol Translation, where a gateway residing somewhere in the system maps requests from the format used by one
ORB to that used by another.

• Reference Embedding, where invocation using a native object reference delegates to a special object whose job is to
forward that invocation to another ORB.

• Alternative ORBs, where ORB implementations agree to coexist in the same address space so easily that a client or
implementation can transparently use any of them, and pass object references created by one ORB to another ORB
without losing functionality.

In general, there is no single protocol that can meet everyone’s needs, and there is no single means to interoperate
between two different protocols. There are many environments in which multiple protocols exist, and there are ways to
bridge between environments that share no protocols.

This specification adopts a flexible architecture that allows a wide variety of ORB implementations to interoperate and
that includes both bridging and common protocol elements.

The following goals guided the creation of interoperability specifications:

• The architecture and specifications should allow high-performance, small footprint, lightweight interoperability
solutions.

• The design should scale, should not be unduly difficult to implement, and should not unnecessarily restrict
implementation choices.

• Interoperability solutions should be able to work with any vendors’ existing ORB implementations with respect to
their CORBA-compliant core feature set; those implementations are diverse.

• All operations implied by the CORBA object model (i.e., the stringify and destringify operations defined on the
CORBA:ORB pseudo-object and all the operations on CORBA:Object) as well as type management (e.g.,
narrowing, as needed by the C++ mapping) should be supported.

6.5.1 Non-Goals

The following were taken into account, but were not goals:

• Support for security

• Support for future ORB Services
14 CORBA - Part 2: Interoperability, v3.3

7 ORB Interoperability Architecture

7.1 Overview
The original Interoperability RFP defines interoperability as the ability for a client on ORB A to invoke an OMG IDL-
defined operation on an object on ORB B, where ORB A and ORB B are independently developed. It further identifies
general requirements including in particular:

• Ability for two vendors’ ORBs to interoperate without prior knowledge of each other’s implementation.

• Support of all ORB functionality.

• Preservation of content and semantics of ORB-specific information across ORB boundaries (for example, security).

In effect, the requirement is for invocations between client and server objects to be independent of whether they are on
the same or different ORBs, and not to mandate fundamental modifications to existing ORB products.

7.1.1 Domains

The CORBA Object Model identifies various distribution transparencies that must be supported within a single ORB
environment, such as location transparency. Elements of ORB functionality often correspond directly to such
transparencies. Interoperability can be viewed as extending transparencies to span multiple ORBs.

In this architecture a domain is a distinct scope, within which certain common characteristics are exhibited and common
rules are observed over which a distribution transparency is preserved. Thus, interoperability is fundamentally involved
with transparently crossing such domain boundaries.

Domains tend to be either administrative or technological in nature, and need not correspond to the boundaries of an ORB
installation. Administrative domains include naming domains, trust groups, resource management domains, and other
“run-time” characteristics of a system. Technology domains identify common protocols, syntaxes, and similar “build-
time” characteristics. In many cases, the need for technology domains derives from basic requirements of administrative
domains.

Within a single ORB, most domains are likely to have similar scope to that of the ORB itself: common object references,
network addresses, security mechanisms, and more. However, it is possible for there to be multiple domains of the same
type supported by a given ORB: internal representation on different machine types, or security domains. Conversely, a
domain may span several ORBs: similar network addresses may be used by different ORBs, type identifiers may be
shared.

7.1.2 Bridging Domains

The abstract architecture describes ORB interoperability in terms of the translation required when an object request
traverses domain boundaries. Conceptually, a mapping or bridging mechanism resides at the boundary between the
domains, transforming requests expressed in terms of one domain’s model into the model of the destination domain.

The concrete architecture identifies two approaches to inter-ORB bridging:

• At application level, allowing flexibility and portability.

• At ORB level, built into the ORB itself.
CORBA - Part 2: Interoperability, v3.3 15

7.2 ORBs and ORB Services
The ORB Core is that part of the ORB which provides the basic representation of objects and the communication of
requests. The ORB Core therefore supports the minimum functionality to enable a client to invoke an operation on a
server object, with (some of) the distribution transparencies required by CORBA.

An object request may have implicit attributes which affect the way in which it is communicated - though not the way in
which a client makes the request. These attributes include security, transactional capabilities, recovery, and replication.
These features are provided by “ORB Services,” which will in some ORBs be layered as internal services over the core,
or in other cases be incorporated directly into an ORB’s core. It is an aim of this specification to allow for new ORB
Services to be defined in the future, without the need to modify or enhance this architecture.

Within a single ORB, ORB services required to communicate a request will be implemented and (implicitly) invoked in a
private manner. For interoperability between ORBs, the ORB services used in the ORBs, and the correspondence between
them, must be identified.

7.2.1 The Nature of ORB Services

ORB Services are invoked implicitly in the course of application-level interactions. ORB Services range from
fundamental mechanisms such as reference resolution and message encoding to advanced features such as support for
security, transactions, or replication.

An ORB Service is often related to a particular transparency. For example, message encoding – the marshaling and
unmarshaling of the components of a request into and out of message buffers – provides transparency of the
representation of the request. Similarly, reference resolution supports location transparency. Some transparencies, such as
security, are supported by a combination of ORB Services and Object Services while others, such as replication, may
involve interactions between ORB Services themselves.

ORB Services differ from Object Services in that they are positioned below the application and are invoked transparently
to the application code. However, many ORB Services include components that correspond to conventional Object
Services in that they are invoked explicitly by the application.

Security is an example of service with both ORB Service and normal Object Service components, the ORB components
being those associated with transparently authenticating messages and controlling access to objects while the necessary
administration and management functions resemble conventional Object Services.

7.2.2 ORB Services and Object Requests

Interoperability between ORBs extends the scope of distribution transparencies and other request attributes to span
multiple ORBs. This requires the establishment of relationships between supporting ORB Services in the different ORBs.

In order to discuss how the relationships between ORB Services are established, it is necessary to describe an abstract
view of how an operation invocation is communicated from client to server object.

1. The client generates an operation request, using a reference to the server object, explicit parameters, and an implicit
invocation context. This is processed by certain ORB Services on the client path.

2. On the server side, corresponding ORB Services process the incoming request, transforming it into a form directly
suitable for invoking the operation on the server object.
16 CORBA - Part 2: Interoperability, v3.3

3. The server object performs the requested operation.

4. Any result of the operation is returned to the client in a similar manner.

The correspondence between client-side and server-side ORB Services need not be one-to-one and in some circumstances
may be far more complex. For example, if a client application requests an operation on a replicated server, there may be
multiple server-side ORB service instances, possibly interacting with each other.

In other cases, such as security, client-side or server-side ORB Services may interact with Object Services such as
authentication servers.

7.2.3 Selection of ORB Services

The ORB Services used are determined by:

• Static properties of both client and server objects; for example, whether a server is replicated.

• Dynamic attributes determined by a particular invocation context; for example, whether a request is transactional.

• Administrative policies (e.g., security).

Within a single ORB, private mechanisms (and optimizations) can be used to establish which ORB Services are required
and how they are provided. Service selection might in general require negotiation to select protocols or protocol options.
The same is true between different ORBs: it is necessary to agree which ORB Services are used, and how each transforms
the request. Ultimately, these choices become manifest as one or more protocols between the ORBs or as transformations
of requests.

In principle, agreement on the use of each ORB Service can be independent of the others and, in appropriately constructed
ORBs, services could be layered in any order or in any grouping. This potentially allows applications to specify selective
transparencies according to their requirements, although at this time CORBA provides no way to penetrate its
transparencies.

A client ORB must be able to determine which ORB Services must be used in order to invoke operations on a server
object. Correspondingly, where a client requires dynamic attributes to be associated with specific invocations, or
administrative policies dictate, it must be possible to cause the appropriate ORB Services to be used on client and server
sides of the invocation path. Where this is not possible - because, for example, one ORB does not support the full set of
services required - either the interaction cannot proceed or it can only do so with reduced facilities or transparencies.

7.3 Domains
From a computational viewpoint, the OMG Object Model identifies various distribution transparencies which ensure that
client and server objects are presented with a uniform view of a heterogeneous distributed system. From an engineering
viewpoint, however, the system is not wholly uniform. There may be distinctions of location and possibly many others
such as processor architecture, networking mechanisms and data representations. Even when a single ORB
implementation is used throughout the system, local instances may represent distinct, possibly optimized scopes for some
aspects of ORB functionality.
CORBA - Part 2: Interoperability, v3.3 17

Figure 7.1 - Different Kinds of Domains can Coexist

Interoperability, by definition, introduces further distinctions, notably between the scopes associated with each ORB. To
describe both the requirements for interoperability and some of the solutions, this architecture introduces the concept of
domains to describe the scopes and their implications.

Informally, a domain is a set of objects sharing a common characteristic or abiding by common rules. It is a powerful
modeling concept that can simplify the analysis and description of complex systems. There may be many types of
domains (e.g., management domains, naming domains, language domains, and technology domains).

7.3.1 Definition of a Domain

Domains allow partitioning of systems into collections of components that have some characteristic in common. In this
architecture a domain is a scope in which a collection of objects, said to be members of the domain, is associated with
some common characteristic; any object for which the association does not exist, or is undefined, is not a member of the
domain. A domain can be modeled as an object and may be itself a member of other domains.

It is the scopes themselves and the object associations or bindings defined within them which characterize a domain. This
information is disjoint between domains. However, an object may be a member of several domains, of similar kinds as
well as of different kinds, and so the sets of members of domains may overlap.

The concept of a domain boundary is defined as the limit of the scope in which a particular characteristic is valid or
meaningful. When a characteristic in one domain is translated to an equivalent in another domain, it is convenient to
consider it as traversing the boundary between the two domains.

Domains are generally either administrative or technological in nature. Examples of domains related to ORB
interoperability issues are:

• Referencing domain – the scope of an object reference.

• Representation domain – the scope of a message transfer syntax and protocol.

• Network addressing domain – the scope of a network address.

• Network connectivity domain – the potential scope of a network message.

• Security domain – the extent of a particular security policy.

• Type domain – the scope of a particular type identifier.

• Transaction domain – the scope of a given transaction service.

Domains can be related in two ways: containment, where a domain is contained within another domain, and federation,
where two domains are joined in a manner agreed to and set up by their administrators.

Representation Representation

Reference Reference

Security

Networking
18 CORBA - Part 2: Interoperability, v3.3

7.3.2 Mapping Between Domains: Bridging

Interoperability between domains is only possible if there is a well-defined mapping between the behaviors of the
domains being joined. Conceptually, a mapping mechanism or bridge resides at the boundary between the domains,
transforming requests expressed in terms of one domain’s model into the model of the destination domain. Note that the
use of the term “bridge” in this context is conceptual and refers only to the functionality that performs the required
mappings between distinct domains. There are several implementation options for such bridges and these are discussed
elsewhere.

For full interoperability, it is essential that all the concepts used in one domain are transformable into concepts in other
domains with which interoperability is required, or that if the bridge mechanism filters such a concept out, nothing is lost
as far as the supported objects are concerned. In other words, one domain may support a superior service to others, but
such a superior functionality will not be available to an application system spanning those domains.

A special case of this requirement is that the object models of the two domains need to be compatible. This specification
assumes that both domains are strictly compliant with the CORBA Object Model and the CORBA specifications. This
includes the use of OMG IDL when defining interfaces, the use of the CORBA Core Interface Repository, and other
modifications that were made to CORBA. Variances from this model could easily compromise some aspects of
interoperability.

7.4 Interoperability Between ORBs
An ORB “provides the mechanisms by which objects transparently make and receive requests and responses. In so doing,
the ORB provides interoperability between applications on different machines in heterogeneous distributed
environments...” ORB interoperability extends this definition to cases in which client and server objects on different
ORBs “transparently make and receive requests.”

Note that a direct consequence of this transparency requirement is that bridging must be bidirectional: that is, it must
work as effectively for object references passed as parameters as for the target of an object invocation. Were bridging
unidirectional (e.g., if one ORB could only be a client to another), then transparency would not have been provided
because object references passed as parameters would not work correctly: ones passed as “callback objects,” for example,
could not be used.

Without loss of generality, most of this specification focuses on bridging in only one direction. This is purely to simplify
discussions, and does not imply that unidirectional connectivity satisfies basic interoperability requirements.

7.4.1 ORB Services and Domains

In this architecture, different aspects of ORB functionality - ORB Services - can be considered independently and
associated with different domain types. The architecture does not, however, prescribe any particular decomposition of
ORB functionality and interoperability into ORB Services and corresponding domain types. There is a range of
possibilities for such a decomposition:

1. The simplest model, for interoperability, is to treat all objects supported by one ORB (or, alternatively, all ORBs of a
given type) as comprising one domain. Interoperability between any pair of different domains (or domain types) is
then achieved by a specific all-encompassing bridge between the domains. (This is all CORBA implies.)

2. More detailed decompositions would identify particular domain types - such as referencing, representation, security,
and networking. A core set of domain types would be pre-determined and allowance made for additional domain
types to be defined as future requirements dictate (e.g., for new ORB Services).
CORBA - Part 2: Interoperability, v3.3 19

7.4.2 ORBs and Domains

In many respects, issues of interoperability between ORBs are similar to those which can arise with a single type of ORB
(e.g., a product). For example:

• Two installations of the ORB may be installed in different security domains, with different Principal identifiers.
Requests crossing those security domain boundaries will need to establish locally meaningful Principals for the caller
identity, and for any Principals passed as parameters.

• Different installations might assign different type identifiers for equivalent types, and so requests crossing type domain
boundaries would need to establish locally meaningful type identifiers (and perhaps more).

Conversely, not all of these problems need to appear when connecting two ORBs of a different type (e.g., two different
products). Examples include:

• They could be administered to share user visible naming domains, so that naming domains do not need bridging.

• They might reuse the same networking infrastructure, so that messages could be sent without needing to bridge
different connectivity domains.

Additional problems can arise with ORBs of different types. In particular, they may support different concepts or models,
between which there are no direct or natural mappings. CORBA only specifies the application level view of object
interactions, and requires that distribution transparencies conceal a whole range of lower level issues. It follows that
within any particular ORB, the mechanisms for supporting transparencies are not visible at the application-level and are
entirely a matter of implementation choice. So there is no guarantee that any two ORBs support similar internal models
or that there is necessarily a straightforward mapping between those models.

These observations suggest that the concept of an ORB (instance) is too coarse or superficial to allow detailed analysis of
interoperability issues between ORBs. Indeed, it becomes clear that an ORB instance is an elusive notion: it can perhaps
best be characterized as the intersection or coincidence of ORB Service domains.

7.4.3 Interoperability Approaches

When an interaction takes place across a domain boundary, a mapping mechanism, or bridge, is required to transform
relevant elements of the interaction as they traverse the boundary. There are essentially two approaches to achieving this:
mediated bridging and immediate bridging. These approaches are described in the following sub clauses.

Figure 7.2 - Two bridging techniques, different uses of an intermediate form agreed on between the two domains.

7.4.3.1 Mediated Bridging

With mediated bridging, elements of the interaction relevant to the domain are transformed, at the boundary of each
domain, between the internal form of that domain and an agreed, common form.

Observations on mediated bridging are as follows:

Domain

Interop

Mediated Bridging

Domain Domain Domain

Interop

Immediate Bridging
20 CORBA - Part 2: Interoperability, v3.3

• The scope of agreement of a common form can range from a private agreement between two particular ORB/domain
implementations to a universal standard.

• There can be more than one common form, each oriented or optimized for a different purpose.

• If there is more than one possible common form, then which is used can be static (e.g., administrative policy agreed
between ORB vendors, or between system administrators) or dynamic (e.g., established separately for each object, or
on each invocation).

• Engineering of this approach can range from in-line specifically compiled (compare to stubs) or generic library code
(such as encryption routines), to intermediate bridges to the common form.

7.4.3.2 Immediate Bridging

With immediate bridging, elements of the interaction relevant to the domain are transformed, at the boundary of each
domain, directly between the internal form of one domain and the internal form of the other.

Observations on immediate bridging are as follows:

• This approach has the potential to be optimal (in that the interaction is not mediated via a third party, and can be
specifically engineered for each pair of domains) but sacrifices flexibility and generality of interoperability to achieve
this.

• This approach is often applicable when crossing domain boundaries that are purely administrative (i.e., there is no
change of technology). For example, when crossing security administration domains between similar ORBs, it is not
necessary to use a common intermediate standard.

As a general observation, the two approaches can become almost indistinguishable when private mechanisms are used
between ORB/domain implementations.

7.4.3.3 Location of Inter-Domain Functionality

Logically, an inter-domain bridge has components in both domains, whether the mediated or immediate bridging approach
is used. However, domains can span ORB boundaries and ORBs can span machine and system boundaries; conversely, a
machine may support, or a process may have access to more than one ORB (or domain of a given type). From an
engineering viewpoint, this means that the components of an inter-domain bridge may be dispersed or co-located, with
respect to ORBs or systems. It also means that the distinction between an ORB and a bridge can be a matter of
perspective: there is a duality between viewing inter-system messaging as belonging to ORBs, or to bridges.

For example, if a single ORB encompasses two security domains, the inter-domain bridge could be implemented wholly
within the ORB and thus be invisible as far as ORB interoperability is concerned. A similar situation arises when a bridge
between two ORBs or domains is implemented wholly within a process or system that has access to both. In such cases,
the engineering issues of inter-domain bridging are confined, possibly to a single system or process. If it were practical to
implement all bridging in this way, then interactions between systems or processes would be solely within a single
domain or ORB.

7.4.3.4 Bridging Level

As noted at the start of this sub clause, bridges may be implemented both internally to an ORB and as layers above it.
These are called respectively “in-line” and “request-level” bridges.

Request-level bridges use the CORBA APIs, including the Dynamic Skeleton Interface, to receive and issue requests.
However, there is an emerging class of “implicit context” which may be associated with some invocations, holding ORB
Service information such as transaction and security context information, which is not at this time exposed through
general purpose public APIs. (Those APIs expose only OMG IDL-defined operation parameters, not implicit ones.)
CORBA - Part 2: Interoperability, v3.3 21

Rather, the precedent set with the Transaction Service is that special purpose APIs are defined to allow bridging of each
kind of context. This means that request-level bridges must be built to specifically understand the implications of bridging
such ORB Service domains, and to make the appropriate API calls.

7.4.4 Policy-Mediated Bridging

An assumption made through most of this specification is that the existence of domain boundaries should be transparent
to requests: that the goal of interoperability is to hide such boundaries. However, if this were always the goal, then there
would be no real need for those boundaries in the first place.

Realistically, administrative domain boundaries exist because they reflect ongoing differences in organizational policies or
goals. Bridging the domains will in such cases require policy mediation. That is, inter-domain traffic will need to be
constrained, controlled, or monitored; fully transparent bridging may be highly undesirable. Resource management
policies may even need to be applied, restricting some kinds of traffic during certain periods.

Security policies are a particularly rich source of examples: a domain may need to audit external access, or to provide
domain-based access control. Only a very few objects, types of objects, or classifications of data might be externally
accessible through a “firewall.”

Such policy-mediated bridging requires a bridge that knows something about the traffic being bridged. It could in general
be an application-specific policy, and many policy-mediated bridges could be parts of applications. Those might be
organization-specific, off-the-shelf, or anywhere in between.

Request-level bridges, which use only public ORB APIs, easily support the addition of policy mediation components,
without loss of access to any other system infrastructure that may be needed to identify or enforce the appropriate
policies.

7.4.5 Configurations of Bridges in Networks

In the case of network-aware ORBs, we anticipate that some ORB protocols will be more frequently bridged to than
others, and so will begin to serve the role of “backbone ORBs.” (This is a role that the IIOP is specifically expected to
serve.) This use of “backbone topology” is true both on a large scale and a small scale. While a large scale public data
network provider could define its own backbone ORB, on a smaller scale, any given institution will probably designate
one commercially available ORB as its backbone.
22 CORBA - Part 2: Interoperability, v3.3

Figure 7.3 - An ORB chosen as a backbone will connect other ORBs through bridges, both
 full-bridges and half-bridges.

Adopting a backbone style architecture is a standard administrative technique for managing networks. It has the
consequence of minimizing the number of bridges needed, while at the same time making the ORB topology match
typical network organizations. (That is, it allows the number of bridges to be proportional to the number of protocols,
rather than combinatorial.)

In large configurations, it will be common to notice that adding ORB bridges doesn’t even add any new “hops” to
network routes, because the bridges naturally fit in locations where connectivity was already indirect, and augment or
supplant the existing network firewalls.

7.5 Object Addressing

Issue 14394: Change ambiguous reference to part 1 clause

The Object Model in “The Object Model” clause of Part 1 of this International Standard (ISO/IEC 19500-1) defines an
object reference as an object name that reliably denotes a particular object. An object reference identifies the same object
each time the reference is used in a request, and an object may be denoted by multiple, distinct references.

The fundamental ORB interoperability requirement is to allow clients to use such object names to invoke operations on
objects in other ORBs. Clients do not need to distinguish between references to objects in a local ORB or in a remote one.
Providing this transparency can be quite involved, and naming models are fundamental to it.

This sub clause discusses models for naming entities in multiple domains, and transformations of such names as they
cross the domain boundaries. That is, it presents transformations of object reference information as it passes through
networks of inter-ORB bridges. It uses the word “ORB” as synonymous with referencing domain; this is purely to
simplify the discussion. In other contexts, “ORB” can usefully denote other kinds of domain.

Backbone ORB

ORB A

ORB CORB D

ORB B
CORBA - Part 2: Interoperability, v3.3 23

7.5.1 Domain-relative Object Referencing

Since CORBA does not require ORBs to understand object references from other ORBs, when discussing object
references from multiple ORBs one must always associate the object reference’s domain (ORB) with the object reference.
We use the notation D0.R0 to denote an object reference R0 from domain D0; this is itself an object reference. This is
called “domain-relative” referencing (or addressing) and need not reflect the implementation of object references within
any ORB.

At an implementation level, associating an object reference with an ORB is only important at an inter-ORB boundary;
that is, inside a bridge. This is simple, since the bridge knows from which ORB each request (or response) came,
including any object references embedded in it.

7.5.2 Handling of Referencing Between Domains

When a bridge hands an object reference to an ORB, it must do so in a form understood by that ORB: the object reference
must be in the recipient ORB’s native format. Also, in cases where that object originated from some other ORB, the
bridge must associate each newly created “proxy” object reference with (what it sees as) the original object reference.

Several basic schemes to solve these two problems exist. These all have advantages in some circumstances; all can be
used, and in arbitrary combination with each other, since CORBA object references are opaque to applications. The
ramifications of each scheme merits attention, with respect to scaling and administration. The schemes include:

1. Object Reference Translation Reference Embedding: The bridge can store the original object reference itself, and pass
an entirely different proxy reference into the new domain. The bridge must then manage state on behalf of each
bridged object reference, map these references from one ORB’s format to the other’s, and vice versa.

2. Reference Encapsulation: The bridge can avoid holding any state at all by conceptually concatenating a domain
identifier to the object name. Thus if a reference D0.R, originating in domain D0, traversed domains D1... D4 it could
be identified in D4 as proxy reference d3.d2.d1.d0.R, where dn is the address of Dn relative to Dn+1.

Figure 7.4 - Reference encapsulation adds domain information during bridging

3. Domain Reference Translation: Like object reference translation, this scheme holds some state in the bridge.
However, it supports sharing that state between multiple object references by adding a domain-based route identifier
to the proxy (which still holds the original reference, as in the reference encapsulation scheme). It achieves this by
providing encoded domain route information each time a domain boundary is traversed; thus if a reference D0.R,
originating in domain D0, traversed domains D1...D4 it would be identified in D4 as (d3, x3).R, and in D2 as
(d1,x1).R, and so on, where dn is the address of Dn relative to Dn+1, and xn identifies the pair (dn-1, xn-1).

Figure 7.5 - Domain Reference Translation substitutes domain references during bridging

R
D0 D1 D2 D3 D4

d0 d1 d2 d3

R
D0 D1 D2 D3 D4

d0 d1 d2 d3
x1 x2 x3
24 CORBA - Part 2: Interoperability, v3.3

4. Reference Canonicalization: This scheme is like domain reference translation, except that the proxy uses a “well-
known” (e.g., global) domain identifier rather than an encoded path. Thus a reference R, originating in domain D0
would be identified in other domains as D0.R.

Observations about these approaches to inter-domain reference handling are as follows:

• Naive application of reference encapsulation could lead to arbitrarily large references. A “topology service” could
optimize cycles within any given encapsulated reference and eliminate the appearance of references to local objects as
alien references.

• A topology service could also optimize the chains of routes used in the domain reference translation scheme. Since the
links in such chains are re-used by any path traversing the same sequence of domains, such optimization has
particularly high leverage.

• With the general purpose APIs defined in CORBA, object reference translation can be supported even by ORBs not
specifically intended to support efficient bridging, but this approach involves the most state in intermediate bridges. As
with reference encapsulation, a topology service could optimize individual object references. (APIs are defined by the
Dynamic Skeleton Interface and Dynamic Invocation Interface.)

• The chain of addressing links established with both object and domain reference translation schemes must be
represented as state within the network of bridges. There are issues associated with managing this state.

• Reference canonicalization can also be performed with managed hierarchical name spaces such as those now in use on
the Internet and X.500 naming.

7.6 An Information Model for Object References
This sub clause provides a simple, powerful information model for the information found in an object reference. That
model is intended to be used directly by developers of bridging technology, and is used in that role by the IIOP, described
in the General Inter-ORB Protocol clause of this standard, Object References.

7.6.1 What Information Do Bridges Need?

The following potential information about object references has been identified as critical for use in bridging
technologies:

• Is it null? Nulls only need to be transmitted and never support operation invocation.

• What type is it? Many ORBs require knowledge of an object’s type in order to efficiently preserve the integrity of their
type systems.

• What protocols are supported? Some ORBs support objrefs that in effect live in multiple referencing domains, to allow
clients the choice of the most efficient communications facilities available.

• What ORB Services are available? As noted in Selection of ORB Services on page 17, several different ORB Services
might be involved in an invocation. Providing information about those services in a standardized way could in many
cases reduce or eliminate negotiation overhead in selecting them.

7.6.2 Interoperable Object References: IORs

To provide the information above, an “Interoperable Object Reference,” (IOR) data structure has been provided. This data
structure need not be used internally to any given ORB, and is not intended to be visible to application-level ORB
programmers. It should be used only when crossing object reference domain boundaries, within bridges.
CORBA - Part 2: Interoperability, v3.3 25

This data structure is designed to be efficient in typical single-protocol configurations, while not penalizing multiprotocol
ones.

module IOP { // IDL

// Standard Protocol Profile tag values

typedef unsigned long ProfileId;

typedef CORBA::OctetSeq ProfileData;
struct TaggedProfile {

ProfileId tag;
ProfileData profile_data;

};
typedef sequence <TaggedProfile> TaggedProfileSeq ;

// an Interoperable Object Reference is a sequence of
// object-specific protocol profiles, plus a type ID.

struct IOR {
string type_id;
TaggedProfileSeq profiles;

};

// Standard way of representing multicomponent profiles.
// This would be encapsulated in a TaggedProfile.

typedef unsigned long ComponentId;
typedef CORBA::OctetSeq ComponentData;

struct TaggedComponent {
ComponentId tag;
ComponentData component_data;

};

typedef sequence<TaggedComponent> TaggedComponentSeq;
typedef sequence <TaggedComponent> MultipleComponentProfile;
typedef CORBA::OctetSeq ObjectKey;

};

7.6.3 IOR Profiles

Object references have at least one tagged profile. Each profile supports one or more protocols and encapsulates all the
basic information the protocols it supports need to identify an object. Any single profile holds enough information to
drive a complete invocation using any of the protocols it supports; the content and structure of those profile entries are
wholly specified by these protocols.

When a specific protocol is used to convey an object reference passed as a parameter in an IDL operation invocation (or
reply), an IOR which reflects, in its contained profiles, the full protocol understanding of the operation client (or server in
case of reply) may be sent. A receiving ORB which operates (based on topology and policy information available to it) on
26 CORBA - Part 2: Interoperability, v3.3

profiles rather than the received IOR as a whole, to create a derived reference for use in its own domain of reference, is
placing itself as a bridge between reference domains. Interoperability inhibiting situations can arise when an orb sends an
IOR with multiple profiles (using one of its supported protocols) to a receiving orb, and that receiving orb later returns a
derived reference to that object, which has had profiles or profile component data removed or transformed from the
original IOR contents.

To assist in classifying behavior of ORBS in such bridging roles, two classes of IOR conformance may be associated with
the conformance requirements for a given ORB interoperability protocol:

• Full IOR conformance requires that an orb which receives an IOR for an object passed to it through that ORB
interoperability protocol, shall recover the original IOR, in its entirety, for passing as a reference to that object from
that orb through that same protocol.

• Limited-Profile IOR conformance requires that an orb which receives an IOR passed to it through a given ORB
interoperability protocol, shall recover all of the standard information contained in the IOR profile for that protocol,
whenever passing a reference to that object, using that same protocol, to another ORB.

NOTE: Conformance to IIOP versions 1.0, 1.1, and 1.2 only requires support of limited-Profile IOR conformance, specifically
for the IIOP IOR profile. However, due to interoperability problems induced by Limited-Profile IOR conformance, it is now
deprecated by the CORBA 2.4 specification for an orb to not support Full IOR conformance. Some future IIOP versions could
require Full IOR conformance.

An ORB may be unable to use any of the profiles provided in an IOR for various reasons which may be broadly
categorized as transient ones like temporary network outage, and non-transient ones like unavailability of appropriate
protocol software in the ORB. The decision about the category of outage that causes an ORB to be unable to use any
profile from an IOR is left up to the ORB. At an appropriate point, when an ORB discovers that it is unable to use any
profile in an IOR, depending on whether it considers the reason transient or non-transient, it should raise the standard
system exception TRANSIENT with standard minor code 2, or IMP_LIMIT with the standard minor code 1.

Issue 14395: change “see section” to “see clause”

Each profile has a unique numeric tag, assigned by the OMG. The ones defined here are for the IIOP (see clause 9.7.3,
IIOP IOR Profile Components, on page 114) and for use in “multiple component profiles.” Profile tags in the range
0x80000000 through 0xffffffff are reserved for future use, and are not currently available for assignment.

Null object references are indicated by an empty set of profiles, and by a “Null” type ID (a string that contains only a
single terminating character). Type IDs may only be “Null” in any message, requiring the client to use existing knowledge
or to consult the object, to determine interface types supported. The type ID is a Repository ID identifying the interface
type, and is provided to allow ORBs to preserve strong typing. This identifier is agreed on within the bridge and, for
reasons outside the scope of this interoperability specification, needs to have a much broader scope to address various
problems in system evolution and maintenance. Type IDs support detection of type equivalence, and in conjunction with
an Interface Repository, allow processes to reason about the relationship of the type of the object referred to and any other
type.

The type ID, if provided by the server, indicates the most derived type that the server wishes to publish, at the time the
reference is generated. The object’s actual most derived type may later change to a more derived type. Therefore, the type
ID in the IOR can only be interpreted by the client as a hint that the object supports at least the indicated interface. The
client can succeed in narrowing the reference to the indicated interface, or to one of its base interfaces, based solely on
the type ID in the IOR, but must not fail to narrow the reference without consulting the object via the “_is_a” or
“_get_interface” pseudo-operations.
CORBA - Part 2: Interoperability, v3.3 27

ORBs claiming to support the Full-IOR conformance are required to preserve all the semantic content of any IOR
(including the ordering of each profile and its components), and may only apply transformations which preserve
semantics (e.g., changing Byte order for encapsulation).

For example, consider an echo operation for object references:
interface Echoer {Object echo(in Object o);};

Assume that the method body implementing this “echo” operation simply returns its argument. When a client application
invokes the echo operation and passes an arbitrary object reference, if both the client and server ORBs claim support to
Full IOR conformance, the reference returned by the operation is guaranteed to have not been semantically altered by
either client or server ORB. That is, all its profiles will remain intact and in the same order as they were present when the
reference was sent. This requirement for ORBs which claim support for Full-IOR conformance, ensures that, for example,
a client can safely store an object reference in a naming service and get that reference back again later without losing
information inside the reference.

7.6.4 Standard IOR Profiles

module IOP {
const ProfileId TAG_INTERNET_IOP = 0;
const ProfileId TAG_MULTIPLE_COMPONENTS = 1;
const ProfileId TAG_SCCP_IOP = 2;
const ProfileId TAG_UIPMC = 3;

};

7.6.4.1 The TAG_INTERNET_IOP Profile

The TAG_INTERNET_IOP tag identifies profiles that support the Internet Inter-ORB Protocol. The ProfileBody of this
profile, described in detail in IIOP IOR Profiles on page 112, contains a CDR encapsulation of a structure containing
addressing and object identification information used by IIOP. Version 1.1 of the TAG_INTERNET_IOP profile also
includes a sequence<TaggedComponent> that can contain additional information supporting optional IIOP features,
ORB services such as security, and future protocol extensions.

Protocols other than IIOP (such as ESIOPs and other GIOPs) can share profile information (such as object identity or
security information) with IIOP by encoding their additional profile information as components in the
TAG_INTERNET_IOP profile. All TAG_INTERNET_IOP profiles support IIOP, regardless of whether they also
support additional protocols. Interoperable ORBs are not required to create or understand any other profile, nor are they
required to create or understand any of the components defined for other protocols that might share the
TAG_INTERNET_IOP profile with IIOP.

The profile_data for the TAG_INTERNET_IOP profile is a CDR encapsulation of the IIOP::ProfileBody_1_1 type,
described in IIOP IOR Profiles on page 112.

7.6.4.2 The TAG_MULTIPLE_COMPONENTS Profile

The TAG_MULTIPLE_COMPONENTS tag indicates that the value encapsulated is of type
MultipleComponentProfile. In this case, the profile consists of a list of protocol components, the use of which must be
specified by the protocol using this profile. This profile may be used to carry IOR components, as specified in IOR
Components on page 29.

The profile_data for the TAG_MULTIPLE_COMPONENTS profile is a CDR encapsulation of the
MultipleComponentProfile type shown above.
28 CORBA - Part 2: Interoperability, v3.3

7.6.4.3 The TAG_SCCP_IOP Profile

Issue 14399: fix references to OMG specs, and Remove redundant Annex A from this part

See the OMG specification [SCCP] and Annex A of Part 2 of this International Standard for additional information.

7.6.4.4 The TAG_UIPMC Profile

Issue 14397: fix self reference to this part

The TAG_UIPMC tag is used by MIOP. See clause 11 of this Part of this International standard and Annex A of Part 2 of
this International Standard for additional information.

7.6.5 IOR Components

TaggedComponents contained in TAG_INTERNET_IOP and TAG_MULTIPLE_COMPONENTS profiles are
identified by unique numeric tags using a namespace distinct form that is used for profile tags. Component tags are
assigned by the OMG.

Specifications of components must include the following information:

• Component ID: The compound tag that is obtained from OMG.

• Structure and encoding: The syntax of the component data and the encoding rules. If the component value is encoded
as a CDR encapsulation, the IDL type that is encapsulated and the GIOP version which is used for encoding the value,
if different than GIOP 1.0, must be specified as part of the component definition.

• Semantics: How the component data is intended to be used.

• Protocols: The protocol for which the component is defined, and whether it is intended that the component be usable by
other protocols.

• At most once: whether more than one instance of this component can be included in a profile.

Specifications of protocols must describe how the components affect the protocol. In addition, a protocol definition must
specify, for each TaggedComponent, whether inclusion of the component in profiles supporting the protocol is required
(MANDATORY PRESENCE) or not required (OPTIONAL PRESENCE). An ORB claiming to support Full-IOR
conformance shall not drop optional components, once they have been added to a profile.

7.6.6 Standard IOR Components

Issue 14398: remove all DCE ESIOP tags and references

The following are standard IOR components that can be included in TAG_INTERNET_IOP and
TAG_MULTIPLE_COMPONENTS profiles, and may apply to IIOP, other GIOPs, ESIOPs, or other protocols. An ORB
must not drop these components from an existing IOR.

module IOP {
const ComponentId TAG_ORB_TYPE = 0;
const ComponentId TAG_CODE_SETS = 1;
const ComponentId TAG_POLICIES = 2;
const ComponentId TAG_ALTERNATE_IIOP_ADDRESS = 3;
CORBA - Part 2: Interoperability, v3.3 29

const ComponentId TAG_ASSOCIATION_OPTIONS = 13;
const ComponentId TAG_SEC_NAME = 14;
const ComponentId TAG_SPKM_1_SEC_MECH = 15;
const ComponentId TAG_SPKM_2_SEC_MECH = 16;
const ComponentId TAG_KerberosV5_SEC_MECH = 17;
const ComponentId TAG_CSI_ECMA_Secret_SEC_MECH = 18;
const ComponentId TAG_CSI_ECMA_Hybrid_SEC_MECH = 19;
const ComponentId TAG_SSL_SEC_TRANS = 20;
const ComponentId TAG_CSI_ECMA_Public_SEC_MECH = 21;
const ComponentId TAG_ GENERIC_SEC_MECH = 22;
const ComponentId TAG_FIREWALL_TRANS = 23;
const ComponentId TAG_SCCP_CONTACT_INFO = 24;
const ComponentId TAG_JAVA_CODEBASE = 25;
const ComponentId TAG_TRANSACTION_POLICY = 26;
const ComponentId TAG_MESSAGE_ROUTERS = 30;
const ComponentId TAG_OTS_POLICY = 31;
const ComponentId TAG_INV_POLICY = 32;
const ComponentId TAG_CSI_SEC_MECH_LIST = 33;
const ComponentId TAG_NULL_TAG = 34;
const ComponentId TAG_SECIOP_SEC_TRANS = 35;
const ComponentId TAG_TLS_SEC_TRANS = 36;
const ComponentId TAG_ACTIVITY_POLICY = 37;
const ComponentId TAG_RMI_CUSTOM_MAX_STREAM_FORMAT = 38;
const ComponentId TAG_GROUP = 39;
const ComponentId TAG_GROUP_IIOP = 40;
const ComponentId TAG_PASSTHRU_TRANS = 41;
const ComponentId TAG_FIREWALL_PATH = 42;
const ComponentId TAG_IIOP_SEC_TRANS = 43;

const ComponentId TAG_INET_SEC_TRANS = 123;
};

7.6.6.1 TAG_ORB_TYPE Component

It is often useful in the real world to be able to identify the particular kind of ORB an object reference is coming from, to
work around problems with that particular ORB, or exploit shared efficiencies.

The TAG_ORB_TYPE component has an associated value of type unsigned long, encoded as a CDR encapsulation,
designating an ORB type ID allocated by the OMG for the ORB type of the originating ORB. Anyone may register any
ORB types by submitting a short (one-paragraph) description of the ORB type to the OMG, and will receive a new ORB
type ID in return. A list of ORB type descriptions and values will be made available on the OMG web server.

The TAG_ORB_TYPE component can appear at most once in any IOR profile. For profiles supporting IIOP 1.1 or
greater, it is optionally present.

7.6.6.2 TAG_ALTERNATE_IIOP_ADDRESS Component

In cases where the same object key is used for more than one internet location, the following standard IOR Component is
defined for support in IIOP version 1.2.

The TAG_ALTERNATE_IIOP_ADDRESS component has an associated value of type:
30 CORBA - Part 2: Interoperability, v3.3

struct {
string HostID,
unsigned short Port

};

encoded as a CDR encapsulation.

Zero or more instances of the TAG_ALTERNATE_IIOP_ADDRESS component type may be included in a version 1.2
TAG_INTERNET_IOP Profile. Each of these alternative addresses may be used by the client orb, in addition to the host
and port address expressed in the body of the Profile. In cases where one or more TAG_ALTERNATE_IIOP_ADDRESS
components are present in a TAG_INTERNET_IOP Profile, no order of use is prescribed by Version 1.2 of IIOP.

7.6.6.3 Other Components

Issue 14399: change to use proper OMG spec references

The following standard components are specified in various OMG specifications:

• TAG_CODE_SETS - See CodeSet Component of IOR Multi-Component Profile in clause 7.10.2.4 of this part of this
specification.

• TAG_POLICIES - See the “CORBA Messaging” clause of CORBA, v3.2 - Part 1.

• TAG_SEC_NAME - See the Mechanism Tags sub clause of [CORBASEC].

• TAG_ASSOCIATION_OPTIONS - See the Tag Association Options sub clause of [CORBASEC]

• TAG_SSL_SEC_TRANS - See the Mechanism Tags sub clause of [CORBASEC].

• TAG_GENERIC_SEC_MECH and all other tags with names in the form TAG_*_SEC_MECH - See the
“Mechanism Tags” sub clause of [CORBASEC].

• TAG_FIREWALL_SEC - See [FIREWALL].

• TAG_SCCP_CONTACT_INFO - See [SCCP].

• TAG_JAVA_CODEBASE - See [JAV2I].

• TAG_TRANSACTION_POLICY - See [TRANS].

• TAG_MESSAGE_ROUTERS - See the “CORBA Messaging” clause of CORBA, v3.2 - Part 1.

• TAG_OTS_POLICY - See [TRANS].

• TAG_INV_POLICY - See [TRANS].

• TAG_INET_SEC_TRANS - See [CORBASEC].

• TAG_CSI_SEC_MECH_LIST, TAG_NULL_TAG, TAG_SECIOP_SEC_TRANS, TAG_TLS_SEC_TRANS -
See the “Secure Interoperability” clause 10 (this part of the CORBA specification).

• TAG_ACTIVITY_POLICY - See [ASMOTS].

• TAG_RMI_CUSTOM_MAX_STREAM_FORMAT - See [JAV2I].

• TAG_GROUP and TAG_GROUP_IIOP - See the “Unreliable Multicast Inter-ORB Protocol” clause 11 (this part of
the CORBA specification).

• TAG_IIOP_SEC_TRANS - See the “Secure Interoperability” clause 10 (this part of the CORBA specification).
CORBA - Part 2: Interoperability, v3.3 31

7.6.7 Profile and Component Composition in IORs

The following rules augment the preceding discussion:

1. Profiles must be independent, complete, and self-contained. Their use shall not depend on information contained in
another profile.

2. Any invocation uses information from exactly one profile.

3. Information used to drive multiple inter-ORB protocols may coexist within a single profile, possibly with some
information (e.g., components) shared between the protocols, as specified by the specific protocols.

4. Unless otherwise specified in the definition of a particular profile, multiple profiles with the same profile tag may be
included in an IOR.

5. Unless otherwise specified in the definition of a particular component, multiple components with the same
component tag may be part of a given profile within an IOR.

6. A TAG_MULTIPLE_COMPONENTS profile may hold components shared between multiple protocols. Multiple
such profiles may exist in an IOR.

7. The definition of each protocol using a TAG_MULTIPLE_COMPONENTS profile must specify which components
it uses, and how it uses them.

8. Profile and component definitions can be either public or private. Public definitions are those whose tag and data
format is specified in OMG documents. For private definitions, only the tag is registered with OMG.

9. Public component definitions shall state whether or not they are intended for use by protocols other than the one(s)
for which they were originally defined, and dependencies on other components.

The OMG is responsible for allocating and registering protocol and component tags. Neither allocation nor registration
indicates any “standard” status, only that the tag will not be confused with other tags. Requests to allocate tags should be
sent to tag_request@omg.org.

7.6.8 IOR Creation and Scope

IORs are created from object references when required to cross some kind of referencing domain boundary. ORBs will
implement object references in whatever form they find appropriate, including possibly using the IOR structure. Bridges
will normally use IORs to mediate transfers where that standard is appropriate.

7.6.9 Stringified Object References

Object references can be “stringified” (turned into an external string form) by the ORB::object_to_string operation,
and then “destringified” (turned back into a programming environment’s object reference representation) using the
ORB::string_to_object operation.

There can be a variety of reasons why being able to parse this string form might not help make an invocation on the
original object reference:

• Identifiers embedded in the string form can belong to a different domain than the ORB attempting to destringify the
object reference.
32 CORBA - Part 2: Interoperability, v3.3

• The ORBs in question might not share a network protocol, or be connected.

• Security constraints may be placed on object reference destringification.

Nonetheless, there is utility in having a defined way for ORBs to generate and parse stringified IORs, so that in some
cases an object reference stringified by one ORB could be destringified by another.

To allow a stringified object reference to be internalized by what may be a different ORB, a stringified IOR representation
is specified. This representation instead establishes that ORBs could parse stringified object references using that format.
This helps address the problem of bootstrapping, allowing programs to obtain and use object references, even from
different ORBs.

The following is the representation of the stringified (externalized) IOR:

(1) <oref> ::= <prefix> <hex_Octets>
(2) <prefix> ::= <i><o><r>“:”
(3) <hex_Octets> ::= <hex_Octet> {<hex_Octet>}*
(4) <hex_Octet>::= <hexDigit> <hexDigit>
(5) <hexDigit> ::= <digit> | <a> | | <c> | <d> | <e> | <f>
(6) <digit> ::= “0” | “1” | “2” | “3” | “4” | “5” |
(7) “6” | “7” | “8” | “9”
(8) <a>::= “a” | “A”
(9) ::= “b” | “B”
(10) <c>::= “c” | “C”
(11) <d>::= “d” | “D”
(12) <e>::= “e” | “E”
(13) <f>::= “f” | “F”
(14) <i>:: =“i” | “I”
(15) <o>:: =“o” | “O”
(16) <r>:: =“r” | “R”

NOTE: The case for characters in a stringified IOR is not significant.

The hexadecimal strings are generated by first turning an object reference into an IOR, and then encapsulating the IOR
using the encoding rules of CDR, as specified in GIOP 1.0. (See clause 9.3, CDR Transfer Syntax, on page 71 for more
information.) The content of the encapsulated IOR is then turned into hexadecimal digit pairs, starting with the first octet
in the encapsulation and going until the end. The high four bits of each octet are encoded as a hexadecimal digit, then the
low four bits.

7.6.10 Object URLs

To address the problem of bootstrapping and allow for more convenient exchange of human-readable object references,
ORB::string_to_object allows URLs in the corbaloc and corbaname formats to be converted into object references.
CORBA - Part 2: Interoperability, v3.3 33

If conversion fails, string_to_object raises a BAD_PARAM exception with one of following standard minor codes, as
appropriate:

7.6.10.1 corbaloc URL

The corbaloc URL scheme provides stringified object references that are more easily manipulated by users than IOR
URLs. Currently, corbaloc URLs denote objects that can be contacted by IIOP or resolve_initial_references. Other
transport protocols can be explicitly specified when they become available. Examples of IIOP and
resolve_initial_references (rir:) based corbaloc URLs are:

corbaloc::555xyz.com/Prod/TradingService
corbaloc:iiop:1.1@555xyz.com/Prod/TradingService
corbaloc::555xyz.com,:556xyz.com:80/Dev/NameService
corbaloc:rir:/TradingService
corbaloc:rir:/NameService
corbaloc:iiop:192.168.14.25:555/NameService
corbaloc::[1080::8:800:200C:417A]:88/DefaultEventChannel

A corbaloc URL contains one or more:

• protocol identifiers

• protocol specific components such as address and protocol version information

When the rir protocol is used, no other protocols are allowed. After the addressing information, a corbaloc URL ends
with a single object key. The full syntax is:

<corbaloc> = “corbaloc:”<obj_addr_list>[“/”<key_string>]
<obj_addr_list> = [<obj_addr> “,”]* <obj_addr>
<obj_addr> = <prot_addr> | <future_prot_addr>
<prot_addr> = <rir_prot_addr> | <iiop_prot_addr>

<rir_prot_addr> = <rir_prot_token>”:”
<rir_prot_token> = “rir”

<iiop_prot_addr> = <iiop_id><iiop_addr>
<iiop_id> = “:” | <iiop_prot_token>”:”
<iiop_prot_token> = “iiop”
<iiop_addr> = [<version> <host> [“:” <port>]]
<host> = DNS_style_host_name | ip_address
<host> = DNS_style_host_name | IPv4_address

 | "[" IPv6_address "]"
<version> = <major> “.” <minor> “@” | empty_string
<port> = number

Minor Code Description

7 string_to_object conversion failed due to bad scheme name

8 string_to_object conversion failed due to bad address

9 string_to_object conversion failed due to bad schema specific part

10 string_to_object conversion failed due to non-specific reason
34 CORBA - Part 2: Interoperability, v3.3

<major> = number
<minor> = number

<future_prot_addr> = <future_prot_id><future_prot_addr>
<future_prot_id> = <future_prot_token>”:”
<future_prot_token> = possible examples: “atm” | “dce”
<future_prot_addr> = protocol specific address

<key_string> = <string> | empty_string

Where:

obj_addr_list: comma-separated list of protocol id, version, and address information. This list is used in an
implementation-defined manner to address the object An object may be contacted by any of the addresses and protocols.

NOTE: If the rir protocol is used, no other protocols are allowed.

obj_addr: A protocol identifier, version tag, and a protocol specific address. The comma ‘,’ and ‘/’ characters are
specifically prohibited in this component of the URL.

rir_prot_addr: resolve_initial_references protocol identifier. This protocol does not have a version tag or address.
See 7.6.10.2, ’corbaloc:rir URL’.

iiop_prot_addr: iiop protocol identifier, version tag, and address containing a DNS-style host name or IP address. See
corbaloc:iiop URL on page 36 for the iiop specific definitions.

future_prot_addr: a placeholder for future corbaloc protocols.

future_prot_id: token representing a protocol terminated with a “:”.

future_prot_token: token representing a protocol. Currently only “iiop” and “rir” are defined.

future_prot_addr: a protocol specific address and possibly protocol version information. An example of this for iiop is
“1.1@555xyz.com.”

key_string: a stringified object key.

The key_string corresponds to the octet sequence in the object_key member of a GIOP Request or LocateRequest
header as defined in 15.4 of CORBA 2.3. The key_string uses the escape conventions described in RFC 2396 to map
away from octet values that cannot directly be part of a URL. US-ASCII alphanumeric characters are not escaped.
Characters outside this range are escaped, except for the following:

“;” | “/” | “:” | “?”| “:” | “@” | “&” | “=” | “+” | “$” |
“,” | “-” | “_” | “!” | “~” | “*” | “’” | “(“ | “)”

The key_string is not NUL-terminated.

7.6.10.2 corbaloc:rir URL

The corbaloc:rir URL is defined to allow access to the ORB’s configured initial references through a URL. The protocol
address syntax is:

<rir_prot_addr> = <rir_prot_token>”:”
<rir_prot_token> = “rir”
CORBA - Part 2: Interoperability, v3.3 35

Where:

rir_prot_addr: resolve_initial_references protocol identifier. There is no version or address information when rir is
used.

rir_prot_token: The token “rir” identifies this protocol.

For a corbaloc:rir URL, the <key_string> is used as the argument to resolve_initial_references. An empty
<key_string> is interpreted as the default “NameService.”

The rir protocol cannot be used with any other protocol in a URL.

7.6.10.3 corbaloc:iiop URL

The corbaloc:iiop URL is defined for use in TCP/IP- and DNS-centric environments The full protocol address syntax is:

<iiop_prot_addr> = <iiop_id><iiop_addr>
<iiop_id> = <iiop_default> | <iiop_prot_token>”:”
<iiop_default> = “:”
<iiop_prot_token> = “iiop”
<iiop_addr> = [<version> <host> [“:” <port>]]
<host> = DNS_style_host_name | IPv4_address

 | "[" IPv6_address "]"
<version> = <major> “.” <minor> “@” | empty_string
<port> = number
<major> = number
<minor> = number

Where:

iiop_prot_addr: iiop protocol identifier, version tag, and address containing a DNS-style host name or IP address.

iiop_id: tokens recognized to indicate an iiop protocol corbaloc.

iiop_default: default token indicating iiop protocol, “:”.

iiop_prot_token: iiop protocol token, “iiop.”

iiop_address: a single address.

host: DNS-style host name or IP address. If not present, the local host is assumed.

version: a major and minor version number, separated by ‘.’ and followed by ‘@’. If the version is absent, 1.0 is
assumed.

IPv4_address: numeric IPv4 address (dotted decimal notation).

IPv6_address: numeric IPv6 address (colon separated hexadecimal or mixed hexadecimal/decimal notation as described
in RFC 2373).

port: port number the agent is listening on (see below). Default is 2809.
36 CORBA - Part 2: Interoperability, v3.3

7.6.10.4 corbaloc Server Implementation

The only requirements on an object advertised by a corbaloc URL are that there must be a software agent listening on
the host and port specified by the URL. This agent must be capable of handling GIOP Request and LocateRequest
messages targeted at the object key specified in the URL.

A normal CORBA server meets these criteria. It is also possible to implement lightweight object location forwarding
agents that respond to GIOP Request messages with Reply messages with a LOCATION_FORWARD status, and
respond to GIOP LocateRequest messages with LocateReply messages.

7.6.10.5 corbaname URL

The corbaname URL scheme is described in the Naming Service specification. It extends the capabilities of the
corbaloc scheme to allow URLs to denote entries in a Naming Service. Resolving corbaname URLs does not require
a Naming Service implementation in the ORB core. Some examples are:

corbaname::555objs.com#a/string/path/to/obj

This URL specifies that at host 555objs.com, an object of type NamingContext (with an object key of
NameService) can be found, or alternatively, that an agent is running at that location which will return a reference to a
NamingContext. The (stringified) name a/string/path/to/obj is then used as the argument to a resolve operation on
that NamingContext. The URL denotes the object reference that results from that lookup.

corbaname:rir:#a/local/obj

This URL specifies that the stringified name a/local/obj is to be resolved relative to the naming context returned by
resolve_initial_references(“NameService”).

7.6.10.6 Future corbaloc URL Protocols

This specification only defines use of iiop with corbaloc. New protocols can be added to corbaloc as required. Each new
protocol must implement the <future_prot_addr> component of the URL and define described in corbaloc URL on
page 34.

A possible example of a future corbaloc URL that incorporates an ATM address is:

corbaloc:iiop:xyz.com,atm:E.164:358.400.1234567/dev/test/objectX

7.6.10.7 Future URL Schemes

Several currently defined non-CORBA URL scheme names are reserved. Implementations may choose to provide these or
other URL schemes to support additional ways of denoting objects with URLs.

Table 7.1 lists the required and some optional formats.

Table 7.1

Scheme Description Status

IOR: Standard stringified IOR format Required

corbaloc: Simple object reference. rir: must be supported. Required

corbaname: CosName URL Required
CORBA - Part 2: Interoperability, v3.3 37

7.7 Service Context
Emerging specifications for Object Services occasionally require service-specific context information to be passed
implicitly with requests and replies. The Interoperability specifications define a mechanism for identifying and passing
this service-specific context information as “hidden” parameters. The specification makes the following assumptions:

• Object Service specifications that need additional context passed will completely specify that context as an OMG IDL
data type.

• ORB APIs will be provided that will allow services to supply and consume context information at appropriate points in
the process of sending and receiving requests and replies.

• It is an ORB’s responsibility to determine when to send service-specific context information, and what to do with such
information in incoming messages. It may be possible, for example, for a server receiving a request to be unable to de-
encapsulate and use a certain element of service-specific context, but nevertheless still be able to successfully reply to
the message.

As shown in the following OMG IDL specification, the IOP module provides the mechanism for passing Object Service–
specific information. It does not describe any service-specific information. It only describes a mechanism for transmitting
it in the most general way possible. The mechanism is currently used by the DCE ESIOP and could also be used by the
Internet Inter-ORB protocol (IIOP) General Inter-ORB Protocol (GIOP).

Each Object Service requiring implicit service-specific context to be passed through GIOP will be allocated a unique
service context ID value by OMG. Service context ID values are of type unsigned long. Object service specifications
are responsible for describing their context information as single OMG IDL data types, one data type associated with each
service context ID.

The marshaling of Object Service data is described by the following OMG IDL:

module IOP { // IDL

typedef unsigned long ServiceId;
typedef CORBA::OctetSeq ContextData;

struct ServiceContext {
ServiceId context_id;
ContextData context_data;

};
typedef sequence <ServiceContext>ServiceContextList;

};

file:// Specifies a file containing a URL/IOR Optional

ftp:// Specifies a file containing a URL/IOR that is accessible via ftp protocol. Optional

http:// Specifies an HTTP URL that returns an object URL/IOR. Optional

Table 7.1

Scheme Description Status
38 CORBA - Part 2: Interoperability, v3.3

The context data for a particular service will be encoded as specified for its service-specific OMG IDL definition, and that
encoded representation will be encapsulated in the context_data member of IOP::ServiceContext (see
Encapsulation on page 79). The context_id member contains the service ID value identifying the service and data
format. Context data is encapsulated in octet sequences to permit ORBs to handle context data without unmarshaling, and
to handle unknown context data types.

During request and reply marshaling, ORBs will collect all service context data associated with the Request or Reply in a
ServiceContextList, and include it in the generated messages. No ordering is specified for service context data within
the list. The list is placed at the beginning of those messages to support security policies that may need to apply to the
majority of the data in a request (including the message headers).

Each Object Service requiring implicit service-specific context to be passed through GIOP will be allocated a unique
service context ID value by the OMG. Service context ID values are of type unsigned long. Object service specifications
are responsible for describing their context information as single OMG IDL data types, one data type associated with each
service context ID.

The high-order 24 bits of a service context ID contain a 24-bit vendor service context codeset ID (VSCID); the low-order
8 bits contain the rest of the service context ID. A vendor (or group of vendors) who wishes to define a specific set of
service context IDs should obtain a unique VSCID from the OMG, and then define a specific set of service context IDs
using the VSCID for the high-order bits.

The VSCIDs of zero to 15 inclusive (0x000000 to 0x00000f) are reserved for use for OMG-defined standard service
context IDs (i.e., service context IDs in the range 0-4095 are reserved as OMG standard service contexts).

7.7.1 Standard Service Contexts

module IOP { // IDL
const ServiceId TransactionService = 0;
const ServiceId CodeSets = 1;
const ServiceId ChainBypassCheck = 2;
const ServiceId ChainBypassInfo = 3;
const ServiceId LogicalThreadId = 4;
const ServiceId BI_DIR_IIOP = 5;
const ServiceId SendingContextRunTime = 6;
const ServiceId INVOCATION_POLICIES = 7;
const ServiceId FORWARDED_IDENTITY = 8;
const ServiceId UnknownExceptionInfo = 9;
const ServiceId RTCorbaPriority = 10;
const ServiceId RTCorbaPriorityRange = 11;
const ServiceId FT_GROUP_VERSION = 12;
const ServiceId FT_REQUEST = 13;
const ServiceId ExceptionDetailMessage = 14;
const ServiceId SecurityAttributeService = 15;
const ServiceId ActivityService = 16;
const ServiceId RMICustomMaxStreamFormat = 17;
const ServiceId ACCESS_SESSION_ID = 18;
const ServiceId SERVICE_SESSION_ID = 19;
const ServiceId FIREWALL_PATH = 20;
const ServiceId FIREWALL_PATH_RESP = 21;

};
CORBA - Part 2: Interoperability, v3.3 39

Issue 14399: Use proper references to OMG specs

The standard ServiceIds currently defined are:

• TransactionService identifies a CDR encapsulation of the CosTransactions::PropogationContext defined in
the Object Transaction Service specification [TRANS].

• CodeSets identifies a CDR encapsulation of the CONV_FRAME::CodeSetContext defined in GIOP Code Set
Service Context on page 52.

• DCOM-CORBA Interworking uses three service contexts as defined in “DCOM-CORBA Interworking” in [DCOMI].
They are:

• ChainBypassCheck, which carries a CDR encapsulation of the struct CosBridging::ChainBypassCheck.
This is carried only in a Request message as described in [DCOMI].

• ChainBypassInfo, which carries a CDR encapsulation of the struct CosBridging::ChainBypassInfo. This
is carried only in a Reply message as described in [DCOMI].

• LogicalThreadId, which carries a CDR encapsulation of the struct CosBridging::LogicalThreadId as
described in [DCOMI].

• BI_DIR_IIOP identifies a CDR encapsulation of the IIOP::BiDirIIOPServiceContext defined in the General Inter-
ORB Protocol clause of this part of this InternationalStandard.

• SendingContextRunTime identifies a CDR encapsulation of the IOR of the SendingContext::RunTime object.
See the Value Type Semantics clause (Part 1 of this International Standard).

• For information on INVOCATION_POLICIES refer to the CORBA Messaging clause (see Part 1 of this International
Standard).

• For information on FORWARDED_IDENTITY refer to the Firewall Traversal specification ([FIREWALL]).

• UnknownExceptionInfo identifies a CDR encapsulation of a marshaled instance of a java.lang.throwable or one
of its subclasses as described in the Java to IDL Mapping specification [JAVA2I].

• For information on RTCorbaPriority refer to the Real-time CORBA specification [RTCORBA].

• For information on RTCorbaPriorityRange refer to the Real-time CORBA specification [RTCORBA].

• FT_GROUP_VERSION, FT_REQUEST - refer to the Fault Tolerant CORBA [FTCORBA].

• ExceptionDetailMessage identifies a CDR encapsulation of a wstring, encoded using GIOP 1.2 with a TCS-W of
UTF-16. This service context may be sent on Reply messages with a reply_status of SYSTEM_EXCEPTION or
USER_EXCEPTION. The usage of this service context is defined by language mappings.

• SecurityAttributeService - refer to the Secure Interoperability clause (Part 2 of this International Standard).

• ActivityService - refer to the Additional Structuring Mechanisms for OTS specification [ASMOTS].

• RMICustomMaxStreamFormat - refer to the Java to IDL Language Mapping specification [JAVA2I].

• ACCESS_SESSION_ID and SERVICE_SESSION_ID - refer to the Telecommunication Service Access and
Subscription Specification [TSAS}.

• FIREWALL_PATH and FIREWALL_PATH_RESP - refer to the Firewall Traversal specification ([FIREWALL]).

7.7.2 Service Context Processing Rules
Service context IDs are associated with a specific version of GIOP, but will always be allocated in the OMG service
context range. This allows any ORB to recognize when it is receiving a standard service context, even if it has been
defined in a version of GIOP that it does not support.
40 CORBA - Part 2: Interoperability, v3.3

The following are the rules for processing a received service context:

• The service context is in the OMG defined range:

• If it is valid for the supported GIOP version, then it must be processed correctly according to the rules associated
with it for that GIOP version level.

• If it is not valid for the GIOP version, then it may be ignored by the receiving ORB; however, it must be passed on
through a bridge and must be made available to interceptors. No exception shall be raised.

• The service context is not in the OMG-defined range:

• The receiving ORB may choose to ignore it, or process it if it “understands” it; however, the service context must
be passed on through a bridge and must made available to interceptors.

7.8 Coder/Decoder Interfaces
The formats of IOR components and service context data used by ORB services are often defined as CDR encapsulations
encoding instances of IDL defined data types. The Codec provides a mechanism to transfer these components between
their IDL data types and their CDR encapsulation representations.

A Codec is obtained from the CodecFactory. The CodecFactory is obtained through a call to
ORB::resolve_initial_references (“CodecFactory”).

7.8.1 Codec Interface

module IOP {
local interface Codec {

exception InvalidTypeForEncoding {};
exception FormatMismatch {};
exception TypeMismatch {};

CORBA::OctetSeq encode (in any data)
raises (InvalidTypeForEncoding);

any decode (in CORBA::OctetSeq data)
raises (FormatMismatch);

CORBA::OctetSeq encode_value (in any data)
raises (InvalidTypeForEncoding);

any decode_value (
in CORBA::OctetSeq data,
in CORBA::TypeCode tc)
raises (FormatMismatch, TypeMismatch);

};
};

7.8.1.1 Exceptions

InvalidTypeForEncoding

This exception is raised by encode or encode_value when the type is invalid for the encoding. For example, this
exception is raised if the encoding is ENCODING_CDR_ENCAPS version 1.0 and a type that does not exist in that
version, such as wstring, is passed to the operation.
CORBA - Part 2: Interoperability, v3.3 41

FormatMismatch

This exception is raised by decode or decode_value when the data in the octet sequence cannot be decoded into an
any.

TypeMismatch

This exception is raised by decode_value when the given TypeCode does not match the given octet sequence.

7.8.1.2 Operations

encode

Convert the given any into an octet sequence based on the encoding format effective for this Codec. This operation may
raise InvalidTypeForEncoding.

Parameter: data The data, in the form of an any, to be encoded into an octet sequence.

Return Value: An octet sequence containing the encoded any. This octet sequence contains both the
TypeCode and the data of the type.
42 CORBA - Part 2: Interoperability, v3.3

decode

Decode the given octet sequence into an any based on the encoding format effective for this Codec. This operation
raises FormatMismatch if the octet sequence cannot be decoded into an any.

encode_value

Convert the given any into an octet sequence based on the encoding format effective for this Codec. Only the data from
the any is encoded, not the TypeCode. This operation may raise InvalidTypeForEncoding.

decode_value

Decode the given octet sequence into an any based on the given TypeCode and the encoding format effective for this
Codec. This operation raises FormatMismatch if the octet sequence cannot be decoded into an any.

7.8.2 Codec Factory

module IOP {
typedef short EncodingFormat;
const EncodingFormat ENCODING_CDR_ENCAPS = 0;

struct Encoding {
EncodingFormat format;
octet major_version;
octet minor_version;

};

local interface CodecFactory {
exception UnknownEncoding {};
Codec create_codec (in Encoding enc)

raises (UnknownEncoding);
};

};

Parameter: data The data, in the form of an octet sequence, to be decoded into an any.

Return Value: An any containing the data from the decoded octet sequence.

Parameter: data The data, in the form of an any, to be encoded into an octet sequence.

Return Value: An octet sequence containing the data from the encoded any.

Parameters:

 data The data, in the form of an octet sequence, to be decoded into an any.

 tc The TypeCode to be used to decode the data.

Return Value: An any containing the data from the decoded octet sequence.
CORBA - Part 2: Interoperability, v3.3 43

7.8.2.1 Encoding Structure

The Encoding structure defines the encoding format of a Codec. It details the encoding format, such as CDR
Encapsulation encoding, and the major and minor versions of that format. The encodings which shall be supported are:

• ENCODING_CDR_ENCAPS, version 1.0;

• ENCODING_CDR_ENCAPS, version 1.1;

• ENCODING_CDR_ENCAPS, version 1.2;

• ENCODING_CDR_ENCAPS for all future versions of GIOP as they arise.

Vendors are free to support additional encodings.

7.8.2.2 CodecFactory Interface

create_codec

Create a Codec of the given encoding.

This operation raises UnknownEncoding if this factory cannot create a Codec of the given encoding.

7.9 Feature Support and GIOP Versions
The association of service contexts with GIOP versions, (along with some other supported features tied to GIOP minor
version), is shown in Table 7.2.

Parameter: enc The Encoding for which to create a Codec.

Return Value: A Codec obtained with the given encoding.

Table 7.2 Feature Support Tied to Minor GIOP Version Number

Feature V1.0 V1.1 V1.2 V1.3 V1.4

TransactionService Service Context yes yes yes yes yes

CodeSets Service Context yes yes yes yes

DCOM Bridging Service Contexts:
 ChainBypassCheck
 ChainBypassInfo
 LogicalThreadId

yes yes yes

Object by Value Service Context:
 SendingContextRunTime

yes yes yes

Bi-Directional IIOP Service Context:
 BI_DIR_IIOP

yes yes yes

Asynch Messaging Service Context:
 INVOCATION_POLICIES

optional$ yes yes

Firewall Service Context:
 FORWARDED_IDENTITY

optional$ yes yes
44 CORBA - Part 2: Interoperability, v3.3

Java Language Throwable Service Context:
 UnknownExceptionInfo

yes yes yes

Realtime CORBA Service Contexts
 RTCorbaPriority
 RTCorbaPriorityRange

optional
(Realtime
CORBA
only)

optional
(Realtime
CORBA
only)

optional
(Realtime
CORBA
only)

ExceptionDetailMessage Service Context optional yes yes

FT_GROUP_VERSION optional$$ yes yes

FT_REQUEST optional$$ yes yes

SecurityAttributeService optional$$ yes yes

ActivityService optional$$ yes yes

IOR components in IIOP profile yes yes yes yes

TAG_ORB_TYPE yes yes yes yes

TAG_CODE_SETS yes yes yes yes

TAG_ALTERNATE_IIOP_ADDRESS yes yes yes

TAG_ASSOCIATION_OPTION yes yes yes yes

TAG_SEC_NAME yes yes yes yes

TAG_SSL_SEC_TRANS yes yes yes yes

TAG_GENERIC_SEC_MECH yes yes yes yes

TAG_*_SEC_MECH yes yes yes yes

TAG_JAVA_CODEBASE yes yes yes

TAG_FIREWALL_TRANS optional$ yes yes

TAG_SCCP_CONTACT_INFO optional$ yes yes

TAG_TRANSACTION_POLICY optional$ yes yes

TAG_MESSAGE_ROUTERS optional$ yes yes

TAG_OTS_POLICY optional$ yes yes

TAG_INV_POLICY optional$ yes yes

TAG_INET_SEC_TRANS optional$ yes yes

Extended IDL data types yes yes yes yes

Bi-Directional GIOP Features yes yes yes

Value types and Abstract Interfaces yes yes yes

TAG_CSI_SEC_MECH_LIST optional$$ yes yes

TAG_NULL_TAG optional$$ yes yes

Table 7.2 Feature Support Tied to Minor GIOP Version Number (Continued)

Feature V1.0 V1.1 V1.2 V1.3 V1.4
CORBA - Part 2: Interoperability, v3.3 45

NOTE: $, $$All features that have been added after CORBA 2.3 have been marked as optional in GIOP 1.2. These features
cannot be compulsory in GIOP 1.2 since there is no way to incorporate them in deployed implementations of 1.2. However, in
order to have the additional features of CORBA 2.4 work properly these optional features must be supported by the GIOP 1.2
implementation connecting CORBA 2.4$ or later ORBs.

7.10 Code Set Conversion

7.10.1 Character Processing Terminology

This sub clause introduces a few terms and explains a few concepts to help understand the character processing portions
of this clause.

7.10.1.1 Character Set

A finite set of different characters used for the representation, organization, or control of data. In this specification, the
term “character set” is used without any relationship to code representation or associated encoding. Examples of character
sets are the English alphabet, Kanji or sets of ideographic characters, corporate character sets (commonly used in Japan),
and the characters needed to write certain European languages.

7.10.1.2 Coded Character Set, or Code Set

A set of unambiguous rules that establishes a character set and the one-to-one relationship between each character of the
set and its bit representation or numeric value. In this specification, the term “code set” is used as an abbreviation for the
term “coded character set.” Examples include ASCII, ISO 8859-1, JIS X0208, which includes Roman characters,
Japanese hiragana, Greek characters, Japanese kanji, etc. and Unicode.

TAG_SECIOP_SEC_TRANS, TAG_IIOP_SEC_TRANS optional$$ yes yes

TAG_TLS_SEC_TRANS optional$$ yes yes

TAG_ACTIVITY_POLICY optional$$ yes yes

_component yes yes

tk_abstract_interface
tk_local_interfacel

optional$$ yes yes

tk_component
tk_home
tk_event

yes yes

_repository_id yes

IPV6 addresses in IOR yes

TAG_GROUP, TAG_GROUP_IIOP and TAG_UIPMC + Group
features

optional

RMICustomMaxStreamFormat
TAG_RMI_CUSTOM_MAX_STREAM_FORMAT

optional

Table 7.2 Feature Support Tied to Minor GIOP Version Number (Continued)

Feature V1.0 V1.1 V1.2 V1.3 V1.4
46 CORBA - Part 2: Interoperability, v3.3

7.10.1.3 Code Set Classifications

Some language environments distinguish between byte-oriented and “wide characters.” The byte-oriented characters are
encoded in one or more 8-bit bytes. A typical single-byte encoding is ASCII as used for western European languages like
English. A typical multi-byte encoding that uses from one to three 8-bit bytes for each character is eucJP (Extended
UNIX Code - Japan, packed format) as used for Japanese workstations.

Wide characters are a fixed 16 or 32 bits long, and are used for languages like Chinese, Japanese, etc., where the number
of combinations offered by 8 bits is insufficient and a fixed-width encoding is needed. A typical example is Unicode (a
“universal” character set defined by the Unicode Consortium, which uses an encoding scheme identical to ISO 10646
UCS-2, or 2-byte Universal Character Set encoding). An extended encoding scheme for Unicode characters is UTF-16
(UCS Transformation Format, 16-bit representations).

The C language has data types char for byte-oriented characters and wchar_t for wide characters. The language
definition for C states that the sizes for these characters are implementation-dependent. Some environments do not
distinguish between byte-oriented and wide characters (e.g., Ada and Smalltalk). Here again, the size of a character is
implementation-dependent. The following table illustrates code set classifications as used in this document.

7.10.1.4 Narrow and Wide Characters

Some language environments distinguish between “narrow” and “wide” characters. Typically the narrow characters are
considered to be 8-bit long and are used for western European languages like English, while the wide characters are 16-
bit or 32-bit long and are used for languages like Chinese, Japanese, etc., where the number of combinations offered by 8
bits are insufficient. However, as noted above there are common encoding schemes in which Asian characters are encoded
using multi-byte code sets and it is incorrect to assume that Asian characters are always encoded as “wide” characters.

Within this specification, the general terms “narrow character” and “wide character” are only used in discussing OMG
IDL.

7.10.1.5 Char Data and Wchar Data

The phrase “char data” in this specification refers to data whose IDL types have been specified as char or string.
Likewise “wchar data” refers to data whose IDL types have been specified as wchar or wstring.

7.10.1.6 Byte-Oriented Code Set

An encoding of characters where the numeric code corresponding to a character code element can occupy one or more
bytes. A byte as used in this specification is synonymous with octet, which occupies 8 bits.

Table 7.3 - Code Set Classification

Orientation Code Element Encoding Code Set Examples C Data Type

byte-oriented single-byte ASCII, ISO 8859-1 (Latin-1), EBCDIC, ... char

multi-byte UTF-8, eucJP, Shift-JIS, JIS, Big5, ... char[]

non-byte-oriented fixed-length ISO 10646 UCS-2 (Unicode), ISO 10646 UCS-4,
UTF-16, ...

wchar_t
CORBA - Part 2: Interoperability, v3.3 47

7.10.1.7 Multi-Byte Character Strings

A character string represented in a byte-oriented encoding where each character can occupy one or more bytes is called a
multi-byte character string. Typically, wide characters are converted to this form from a (fixed-width) process code set
before transmitting the characters outside the process (see below about process code sets). Care must be taken to correctly
process the component bytes of a character’s multi-byte representation.

7.10.1.8 Non-Byte-Oriented Code Set

An encoding of characters where the numeric code corresponding to a character code element can occupy fixed 16 or 32
bits.

7.10.1.9 Char and Wchar Transmission Code Set (TCS-C and TCS-W)

These two terms refer to code sets that are used for transmission between ORBs after negotiation is completed. As the
names imply, the first one is used for char data and the second one for wchar data. Each TCS can be byte-oriented or
non-byte oriented.

7.10.1.10 Process Code Set and File Code Set

Processes generally represent international characters in an internal fixed-width format which allows for efficient
representation and manipulation. This internal format is called a “process code set.” The process code set is irrelevant
outside the process, and hence to the interoperation between CORBA clients and servers through their respective ORBs.

When a process needs to write international character information out to a file, or communicate with another process
(possibly over a network), it typically uses a different encoding called a “file code set.” In this specification, unless
otherwise indicated, all references to a program’s code set refer to the file code set, not the process code set. Even when
a client and server are located physically on the same machine, it is possible for them to use different file code sets.

7.10.1.11 Native Code Set

A native code set is the code set that a client or a server uses to communicate with its ORB. There might be separate
native code sets for char and wchar data.

7.10.1.12 Transmission Code Set

A transmission code set is the commonly agreed upon encoding used for character data transfer between a client’s ORB
and a server’s ORB. There are two transmission code sets established per session between a client and its server, one for
char data (TCS-C) and the other for wchar data (TCS-W). Figure 7.6 illustrates these relationships:

Figure 7.6 - Transmission Code Sets

The intent is for TCS-C to be byte-oriented and TCS-W to be non-byte-oriented. However, this specification does allow
both types of characters to be transmitted using the same transmission code set. That is, the selection of a transmission
code set is orthogonal to the wideness or narrowness of the characters, although a given code set may be better suited for
either narrow or wide characters.

ORB ORB
transmission

code set

native
client process server processcode setscode set

native
48 CORBA - Part 2: Interoperability, v3.3

7.10.1.13 Conversion Code Set (CCS)

With respect to a particular ORB’s native code set, the set of other or target code sets for which an ORB can convert all
code points or character encodings between the native code set and that target code set. For each code set in this CCS, the
ORB maintains appropriate translation or conversion procedures and advertises the ability to use that code set for
transmitted data in addition to the native code set.

7.10.2 Code Set Conversion Framework

7.10.2.1 Requirements

The file code set that an application uses is often determined by the platform on which it runs. In Japan, for example,
Japanese EUC is used on Unix systems, while Shift-JIS is used on PCs. Code set conversion is therefore required to
enable interoperability across these platforms. This specification defines a framework for the automatic conversion of
code sets in such situations. The requirements of this framework are:

1. Backward compatibility. In previous CORBA specifications, IDL type char was limited to ISO 8859-1. The
conversion framework should be compatible with existing clients and servers that use ISO 8859-1 as the code set for
char.

2. Automatic code set conversion. To facilitate development of CORBA clients and servers, the ORB should perform
any necessary code set conversions automatically and efficiently. The IDL type octet can be used if necessary to
prevent conversions.

3. Locale support. An internationalized application determines the code set in use by examining the LOCALE string
(usually found in the LANG environment variable), which may be changed dynamically at run time by the user.
Example LOCALE strings are fr_FR.ISO8859-1 (French, used in France with the ISO 8859-1 code set) and ja_JP.ujis
(Japanese, used in Japan with the EUC code set and X11R5 conventions for LOCALE). The conversion framework
should allow applications to use the LOCALE mechanism to indicate supported code sets, and thus select the correct
code set from the registry.

4. CMIR and SMIR support. The conversion framework should be flexible enough to allow conversion to be performed
either on the client or server side. For example, if a client is running in a memory-constrained environment, then it is
desirable for code set converters to reside in the server and for a Server Makes It Right (SMIR) conversion method to
be used. On the other hand, if many servers are executed on one server machine, then converters should be placed in
each client to reduce the load on the server machine. In this case, the conversion method used is Client Makes It Right
(CMIR).

7.10.2.2 Overview of the Conversion Framework

Both the client and server indicate a native code set indirectly by specifying a locale. The exact method for doing this is
language-specific, such as the XPG4 C/C++ function setlocale. The client and server use their native code set to
communicate with their ORB. (Note that these native code sets are in general different from process code sets and hence
conversions may be required at the client and server ends.)
CORBA - Part 2: Interoperability, v3.3 49

The conversion framework is illustrated in Figure 7.7. The server-side ORB stores a server’s code set information in a
component of the IOR multiple-component profile structure (see Interoperable Object References: IORs on page 25)1.
The code sets actually used for transmission are carried in the service context field of an IOP (Inter-ORB Protocol)
request header (see Service Context on page 38 and GIOP Code Set Service Context on page 52). Recall that there are
two code sets (TCS-C and TCS-W) negotiated for each session.

Figure 7.7 - Code Set Conversion Framework Overview

If the native code sets used by a client and server are the same, then no conversion is performed. If the native code sets
are different and the client-side ORB has an appropriate converter, then the CMIR conversion method is used. In this
case, the server’s native code set is used as the transmission code set. If the native code sets are different and the client-
side ORB does not have an appropriate converter but the server-side ORB does have one, then the SMIR conversion
method is used. In this case, the client’s native code set is used as the transmission code set.

The conversion framework allows clients and servers to specify a native char code set and a native wchar code set,
which determine the local encodings of IDL types char and wchar, respectively. The conversion process outlined above
is executed independently for the char code set and the wchar code set. In other words, the algorithm that is used to
select a transmission code set is run twice, once for char data and once for wchar data.

The rationale for selecting two transmission code sets rather than one (which is typically inferred from the locale of a
process) is to allow efficient data transmission without any conversions when the client and server have identical
representations for char and/or wchar data. For example, when a Windows NT client talks to a Windows NT server and
they both use Unicode for wide character data, it becomes possible to transmit wide character data from one to the other
without any conversions. Of course, this becomes possible only for those wide character representations that are well-
defined, not for any proprietary ones. If a single transmission code set was mandated, it might require unnecessary
conversions. (For example, choosing Unicode as the transmission code set would force conversion of all byte-oriented
character data to Unicode.)

7.10.2.3 ORB Databases and Code Set Converters

The conversion framework requires an ORB to be able to determine the native code set for a locale and to convert
between code sets as necessary. While the details of exactly how these tasks are accomplished are implementation-
dependent, the following databases and code set converters might be used:

1. Version 1.1 of the IIOP profile body can also be used to specify the server’s code set information, as this version introduces an
extra field that is a sequence of tagged components.

ServerClient

ORB ORB

Client’s native
code set

Server’s native
code set

IOP service context
indicates transmission
code sets information

IOR multi-component
profile structure indicates
server’s native code set information
50 CORBA - Part 2: Interoperability, v3.3

• Locale database. This database defines a native code set for a process. This code set could be byte-oriented or non-byte-
oriented and could be changed programmatically while the process is running. However, for a given session between a
client and a server, it is fixed once the code set information is negotiated at the session’s setup time.

• Environment variables or configuration files. Since the locale database can only indicate one code set while the ORB
needs to know two code sets, one for char data and one for wchar data, an implementation can use environment
variables or configuration files to contain this information on native code sets.

• Converter database. This database defines, for each code set, the code sets to which it can be converted. From this
database, a set of “conversion code sets” (CCS) can be determined for a client and server. For example, if a server’s
native code set is eucJP, and if the server-side ORB has eucJP-to-JIS and eucJP-to-SJIS bilateral converters, then the
server’s conversion code sets are JIS and SJIS.

• Code set converters. The ORB has converters which are registered in the converter database.

7.10.2.4 CodeSet Component of IOR Multi-Component Profile

The code set component of the IOR multi-component profile structure contains:

• server’s native char code set and conversion code sets, and

• server’s native wchar code set and conversion code sets.

Both char and wchar conversion code sets are listed in order of preference. The code set component is identified by the
following tag:

const IOP::ComponentID TAG_CODE_SETS = 1;

This tag has been assigned by OMG (See Standard IOR Components on page 29). The following IDL structure defines the
representation of code set information within the component:

module CONV_FRAME { // IDL
typedef unsigned long CodeSetId;
typedef sequence<CodeSetId> CodeSetIdSeq;
struct CodeSetComponent {

CodeSetId native_code_set;
CodeSetIdSeq conversion_code_sets;

};
struct CodeSetComponentInfo {

CodeSetComponent ForCharData;
CodeSetComponent ForWcharData;

};
};

Code sets are identified by a 32-bit integer id from the OSF Character and Code Set Registry (See Character and Code Set
Registry on page 58 for further information). Data within the code set component is represented as a structure of type
CodeSetComponentInfo, and is encoded as a CDR encapsulation. In other words, the char code set information
comes first, then the wchar information, represented as structures of type CodeSetComponent.

A null value should be used in the native_code_set field if the server desires to indicate no native code set (possibly
with the identification of suitable conversion code sets).
CORBA - Part 2: Interoperability, v3.3 51

If the code set component is not present in a multi-component profile structure, then the default char code set is ISO
8859-1 for backward compatibility. However, there is no default wchar code set. If a server supports interfaces that use
wide character data but does not specify the wchar code sets that it supports, client-side ORBs will raise exception
INV_OBJREF, with standard minor code 1.

If a client application invokes an operation that results in an attempt by the client ORB to marshal wchar or wstring data
for an in parameter (or to unmarshal wchar or wstring data for an in/out parameter, out parameter or the return value),
and the associated Object Reference does not include a codeset component, then the client ORB shall raise the
INV_OBJREF standard system exception with standard minor code 2 as a response to the operation invocation.

Non-presence of a codeset component in an IOR means that:

• The server and/or server-side ORB support only ISO 8859-1 for char/string, and

• the server and/or server-side ORB don’t support wchar/wstring.

Thus if client tries to send wchar or wstring data on an any type, and there is no codeset component in target server’s
IOR, the client-side ORB can raise an exception BAD_PARAM, with standard minor code set to 42.

7.10.2.5 GIOP Code Set Service Context

The code set GIOP service context contains:

• char transmission code set, and

• wchar transmission code set

in the form of a code set service. This service is identified by:

const IOP::ServiceID CodeSets = 1;

The following IDL structure defines the representation of code set service information:

module CONV_FRAME { // IDL
typedef unsigned long CodeSetId;
struct CodeSetContext {

CodeSetId char_data;
CodeSetId wchar_data;

};
};

For GIOP versions 1.1, 1.2 and 1.3, Code sets are identified by a 32-bit integer id from the OSF Character and Code Set
Registry (See Character and Code Set Registry on page 58 for further information).

For GIOP versions greater than 1.3, Code sets are identified by a 32 bit integer id, from either the OSF Character and
Code set registry (See Character and Code Set Registry on page 58 for further information) or the IANA Character Set
registry (current version at http://www.iana.org/assignments/character-sets).

The OSF Registry and the IANA Registry have non-overlapping ranges, so there is no need for mapping values from one
codeset registry to the other.

NOTE: A server’s char and wchar Code set components are usually different, but under some special circumstances they can
be the same. That is, one could use the same code set for both char data and wchar data. Likewise the CodesetIds in the
service context don’t have to be different.
52 CORBA - Part 2: Interoperability, v3.3

7.10.2.6 Code Set Negotiation

The client-side ORB determines a server’s native and conversion code sets from the code set component in an IOR multi-
component profile structure, and it determines a client’s native and conversion code sets from the locale setting (and/or
environment variables/configuration files) and the converters that are available on the client. From this information, the
client-side ORB chooses char and wchar transmission code sets (TCS-C and TCS-W). For both requests and replies, the
char TCS-C determines the encoding of char and string data, and the wchar TCS-W determines the encoding of
wchar and wstring data.

Code set negotiation is not performed on a per-request basis, but only when a client initially connects to a server. All text
data communicated on a connection are encoded as defined by the TCSs selected when the connection is established.

A codeset service context must be sent by the client (i.e., codeset negotiation must be completed) over a specific transport
connection, before the client or the server may send international character values (i.e., char or string values with non
Latin-1 encodings, or Wchar or Wstring values) in messages on that transport connection.

If used, the codeset service context shall be sent before, or included with, the first request message sent on that transport
connection.

A request sent by the client before sending a codeset service context or not containing a service context itself, implies the
client is using the default codesets on that connection (i.e., Latin-1 for string, and no ability to send Wstring on any
message over that connection).

Some existing Standard Service contexts have defined their encapsulated data content including International Character
information, and have also specified that the codeset used is that which is negotiated using codeset negotiation. Such
service contexts may not be sent until after the Codeset Service context is sent (i.e., in the GIOP message, the codeset
service context must precede any service context which depends on it being present.). Such Service Contexts that exist
today are grandfathered in. Barring that exception, since all encapsulation definitions need to specify the Codeset used for
their encodings, it is an error for a Service Context to depend on information that is not contained within the
encapsulation to determine the codeset used within it.

Figure 7.8 illustrates there are two channels for character data flowing between the client and the server. The first, TCS-
C, is used for char data and the second, TCS-W, is used for wchar data. Also note that two native code sets, one for each
type of data, could be used by the client and server to talk to their respective ORBs (as noted earlier, the selection of the
particular native code set used at any particular point is done via setlocale or some other implementation-dependent
method).

Figure 7.8 - Transmission Code Set Use

S
erverC

lie
nt

ORB ORB

Client’s native
code set for char for char (TCS-C)

Transmission code set

Client’s native
code set for wchar

Server’s native
code set for char

Server’s native
code set for wcharfor wchar (TCS-W)

Transmission code set

Client
Side Side

Server
CORBA - Part 2: Interoperability, v3.3 53

Let us look at an example. Assume that the code set information for a client and server is as shown in the table below.
(Note that this example concerns only char code sets and is applicable only for data described as chars in the IDL.)

The client-side ORB first compares the native code sets of the client and server. If they are identical, then the
transmission and native code sets are the same and no conversion is required. In this example, they are different, so code
set conversion is necessary. Next, the client-side ORB checks to see if the server’s native code set, eucJP, is one of the
conversion code sets supported by the client. It is, so eucJP is selected as the transmission code set, with the client (i.e.,
its ORB) performing conversion to and from its native code set, SJIS, to eucJP. Note that the client may first have to
convert all its data described as chars (and possibly wchar_ts) from process codes to SJIS first.

Now let us look at the general algorithm for determining a transmission code set and where conversions are performed.
First, we introduce the following abbreviations:

• CNCS - Client Native Code Set;

• CCCS - Client Conversion Code Sets;

• SNCS - Server Native Code Set;

• SCCS - Server Conversion Code Sets; and

• TCS - Transmission Code Set.

The algorithm is as follows:

if (CNCS==SNCS)
TCS = CNCS; // no conversion required

else {
if (elementOf(SNCS,CCCS))

TCS = SNCS; // client converts to server’s native code set
else if (elementOf(CNCS,SCCS))

TCS = CNCS; // server converts from client’s native code set
else if (intersection(CCCS,SCCS) != emptySet) {

TCS = oneOf(intersection(CCCS,SCCS));
// client chooses TCS, from intersection(CCCS,SCCS), that is
// most preferable to server;
// client converts from CNCS to TCS and server
// from TCS to SNCS

else if (compatible(CNCS,SNCS))
TCS = fallbackCS; // fallbacks are UTF-8 (for char data) and

// UTF-16 (for wchar data)
else

raise CODESET_INCOMPATIBLE exception;
}

The algorithm first checks to see if the client and server native code sets are the same. If they are, then the native code set
is used for transmission and no conversion is required. If the native code sets are not the same, then the conversion code
sets are examined to see if

Client Server

Native code set: SJIS eucJP

Conversion code sets: eucJP, JIS SJIS, JIS
54 CORBA - Part 2: Interoperability, v3.3

1. the client can convert from its native code set to the server’s native code set,

2. the server can convert from the client’s native code set to its native code set, or

3. transmission through an intermediate conversion code set is possible.

If the third option is selected and there is more than one possible intermediate conversion code set (i.e., the intersection
of CCCS and SCCS contains more than one code set), then the one most preferable to the server is selected.1

If none of these conversions is possible, then the fallback code set (UTF-8 for char data and UTF-16 for wchar data—
see below) is used. However, before selecting the fallback code set, a compatibility test is performed. This test looks at
the character sets encoded by the client and server native code sets. If they are different (e.g., Korean and French), then
meaningful communication between the client and server is not possible and a CODESET_INCOMPATIBLE exception
with standard minor code 1 is raised. This test is similar to the DCE compatibility test and is intended to catch those cases
where conversion from the client native code set to the fallback, and the fallback to the server native code set would result
in massive data loss. (See clause 7.10.5, Relevant OSFM Registry Interfaces, on page 58 for the relevant OSF registry
interfaces that could be used for determining compatibility.) If either the CNCS or SNCS is from the IANA Character Set
registry, then the codesets are automatically assumed to be compatible and the fallback codeset is used.

A DATA_CONVERSION exception is raised when a client or server attempts to transmit a character that does not map
into the negotiated transmission code set. For example, not all characters in Taiwan Chinese map into Unicode. When an
attempt is made to transmit one of these characters via Unicode, an ORB is required to raise a DATA_CONVERSION
exception, with standard minor code 1.

In summary, the fallback code set is UTF-8 for char data (identified in the Registry as 0x05010001, “X/Open UTF-8;
UCS Transformation Format 8 (UTF-8)”), and UTF-16 for wchar data (identified in the Registry as 0x00010109, “ISO/
IEC 10646-1:1993; UTF-16, UCS Transformation Format 16-bit form”). As mentioned above the fallback code set is
meaningful only when the client and server character sets are compatible, and the fallback code set is distinguished from
a default code set used for backward compatibility.

If a server’s native char code set is not specified in the IOR multi-component profile, then it is considered to be ISO
8859-1 for backward compatibility. However, a server that supports interfaces that use wide character data is required to
specify its native wchar code set; if one is not specified, then the client-side ORB raises exception INV_OBJREF, with
standard minor code set to 1.

Similarly, if no char transmission code set is specified in the code set service context, then the char transmission code
set is considered to be ISO 8859-1 for backward compatibility. If a client transmits wide character data and does not
specify its wchar transmission code set in the service context, then the server-side ORB raises exception BAD_PARAM,
with standard minor code set to 23.

If the client delivers a codeset via a CodeSetContext that the server does not support as a transmission codeset then the
server returns a CODESET_INCOMPATIBLE exception with the standard minor code 2.

If the client (or the server if Bi-Directional GIOP is in use) sends multiple codeset service contexts on the same
connection, with different parameter values, then the behavior is undefined. The receiver of a codeset service context with
different values from those received on the same connection and processed previously may return a MARSHAL system
exception with the standard minor code 9.

1. Recall that server conversion code sets are listed in order of preference.
CORBA - Part 2: Interoperability, v3.3 55

To guarantee “out-of-the-box” interoperability, clients and servers must be able to convert between their native char code
set and UTF-8 and their native wchar code set (if specified) and Unicode. Note that this does not require that all server
native code sets be mappable to Unicode, but only those that are exported as native in the IOR. The server may have other
native code sets that aren’t mappable to Unicode and those can be exported as SCCSs (but not SNCSs). This is done to
guarantee out-of-the-box interoperability and to reduce the number of code set converters that a CORBA-compliant ORB
must provide.

ORB implementations are strongly encouraged to use widely-used code sets for each regional market. For example, in the
Japanese marketplace, all ORB implementations should support Japanese EUC, JIS, and Shift JIS to be compatible with
existing business practices.

7.10.3 Mapping to Generic Character Environments

Certain language environments do not distinguish between byte-oriented and wide characters. In such environments both
char and wchar are mapped to the same “generic” character representation of the language. String and wstring are
likewise mapped to generic strings in such environments. Examples of language environments that provide generic
character support are Smalltalk and Ada.

Even while using languages that do distinguish between wide and byte-oriented characters (e.g., C and C++), it is possible
to mimic some generic behavior by the use of suitable macros and support libraries. For example, developers of Windows
NT and Windows 95 applications can write portable code between NT (which uses Unicode strings) and Windows 95
(which uses byte-oriented character strings) by using a set of macros for declaring and manipulating characters and
character strings.

Another way to achieve generic manipulation of characters and strings is by treating them as abstract data types (ADTs).
For example, if strings were treated as abstract data types and the programmers are required to create, destroy, and
manipulate strings only through the operations in the ADT interface, then it becomes possible to write code that is
representation-independent. This approach has an advantage over the macro-based approach in that it provides portability
between byte-oriented and wide character environments even without recompilation (at runtime the string function calls
are bound to the appropriate byte-oriented/wide library). Another way of looking at it is that the macro-based genericity
gives compile-time flexibility, while ADT-based genericity gives runtime flexibility.

Yet another way to achieve generic manipulation of character data is through the ANSI C++ Strings library defined as a
template that can be parameterized by char, wchar_t, or other integer types.

Given that there can be several ways of treating characters and character strings in a generic way, this standard cannot,
and therefore does not, specify the mapping of char, wchar, string, and wstring to all of them. It only specifies the
following normative requirements that are applicable to generic character environments:

• wchar must be mapped to the generic character type in a generic character environment.

• wstring must be mapped to a string of such generic characters in a generic character environment.

• The language binding files (i.e., stubs) generated for these generic environments must ensure that the generic type
representation is converted to the appropriate code sets (i.e., CNCS on the client side and SNCS on the server side)
before character data is given to the ORB runtime for transmission.

7.10.3.1 Describing Generic Interfaces

To describe generic interfaces in IDL we recommend using wchar and wstring. These can be mapped to generic
character types in environments where they do exist and to wide characters where they do not. Either way interoperation
between generic and non-generic character type environments is achieved because of the code set conversion framework.
56 CORBA - Part 2: Interoperability, v3.3

7.10.3.2 Interoperation

Let us consider an example to see how a generic environment can interoperate with a non-generic environment. Let us say
there is an IDL interface with both char and wchar parameters on the operations, and let us say the client of the interface
is in a generic environment while the server is in a non-generic environment (for example the client is written in
Smalltalk and the server is written in C++).

Assume that the server’s (byte-oriented) native char code set (SNCS) is eucJP and the client’s native char code set
(CNCS) is SJIS. Further assume that the code set negotiation led to the decision to use eucJP as the char TCS-C and
Unicode as the wchar TCS-W.

As per the above normative requirements for mapping to a generic environment, the client’s Smalltalk stubs are
responsible for converting all char data (however they are represented inside Smalltalk) to SJIS and all wchar data to the
client’s wchar code set before passing the data to the client-side ORB. Note that this conversion could be an identity
mapping if the internal representation of narrow and wide characters is the same as that of the native code set(s). The
client-side ORB now converts all char data from SJIS to eucJP and all wchar data from the client’s wchar code set to
Unicode, and then transmits to the server side.

The server side ORB and stubs convert the eucJP data and Unicode data into C++’s internal representation for chars and
wchars as dictated by the IDL operation signatures. Notice that when the data arrives at the server side it does not look
any different from data arriving from a non-generic environment (e.g., that is just like the server itself). In other words,
the mappings to generic character environments do not affect the code set conversion framework.

7.10.4 Example of Generic Environment Mapping

This sub clause shows how char, wchar, string, and wstring can be mapped to the generic C/C++ macros of the
Windows environment. This is merely to illustrate one possibility. This sub clause is not normative and is applicable only
in generic environments. See Mapping to Generic Character Environments on page 56.

7.10.4.1 Generic Mappings

Char and string are mapped to C/C++ char and char* as per the standard C/C++ mappings. wchar is mapped to the
TCHAR macro which expands to either char or wchar_t depending on whether _UNICODE is defined. wstring is
mapped to pointers to TCHAR as well as to the string class CORBA::Wstring_var. Literal strings in IDL are mapped
to the _TEXT macro as in _TEXT(<literal>).

7.10.4.2 Interoperation and Generic Mappings

We now illustrate how the interoperation works with the above generic mapping. Consider an IDL interface operation
with a wstring parameter, a client for the operation which is compiled and run on a Windows 95 machine, and a server
for the operation which is compiled and run on a Windows NT machine. Assume that the locale (and/or the environment
variables for CNCS for wchar representation) on the Windows 95 client indicates the client’s native code set to be SJIS,
and that the corresponding server’s native code set is Unicode. The code set negotiation in this case will probably choose
Unicode as the TCS-W.

Both the client and server sides will be compiled with _UNICODE defined. The IDL type wstring will be represented as
a string of wchar_t on the client. However, since the client’s locale or environment indicates that the CNCS for wide
characters is SJIS, the client side ORB will get the wstring parameter encoded as a SJIS multi-byte string (since that is
the client’s native code set), which it will then convert to Unicode before transmitting to the server. On the server side the
ORB has no conversions to do since the TCS-W matches the server’s native code set for wide characters.
CORBA - Part 2: Interoperability, v3.3 57

We therefore notice that the code set conversion framework handles the necessary translations between byte-oriented and
wide forms.

7.10.5 Relevant OSFM Registry Interfaces

7.10.5.1 Character and Code Set Registry

The OSF character and code set registry is defined in OSF Character and Code Set Registry (see References in the
Preface) and current registry contents may be obtained directly from the Open Software Foundation (obtain via
anonymous ftp to ftp.opengroup.org:/pub/code_set_registry). This registry contains two parts: character sets and code
sets. For each listed code set, the set of character sets encoded by this code set is shown.

Each 32-bit code set value consists of a high-order 16-bit organization number and a 16-bit identification of the code set
within that organization. As the numbering of organizations starts with 0x0001, a code set null value (0x00000000) may
be used to indicate an unknown code set.

When associating character sets and code sets, OSF uses the concept of “fuzzy equality,” meaning that a code set is
shown as encoding a particular character set if the code set can encode “most” of the characters.

“Compatibility” is determined with respect to two code sets by examining their entries in the registry, paying special
attention to the character sets encoded by each code set. For each of the two code sets, an attempt is made to see if there
is at least one (fuzzy-defined) character set in common, and if such a character set is found, then the assumption is made
that these code sets are “compatible.” Obviously, applications that exploit parts of a character set not properly encoded in
this scheme will suffer information loss when communicating with another application in this “fuzzy” scheme.

The ORB is responsible for accessing the OSF registry and determining “compatibility” based on the information
returned.

OSF members and other organizations can request additions to both the character set and code set registries by email to
cs-registry@opengroup.org; in particular, one range of the code set registry (0xf5000000 through 0xffffffff) is
reserved for organizations to use in identifying sets that are not registered with the OSF (although such use would not
facilitate interoperability without registration).

7.10.5.2 Access Routines

The following routines are for accessing the OSF character and code set registry. These routines map a code set string
name to code set id and vice versa. They also help in determining character set compatibility. These routine interfaces,
their semantics and their actual implementation are not normative (i.e., ORB vendors do not have to bundle the OSF
registry implementation with their products for compliance).

The following routines are adopted from RPC Runtime Support For I18N Characters - Functional Specification (see
References in the Preface).

7.10.5.2.1 dce_cs_loc_to_rgy

Maps a local system-specific string name for a code set to a numeric code set value specified in the code set registry.
58 CORBA - Part 2: Interoperability, v3.3

Synopsis
void dce_cs_loc_to_rgy(
idl_char *local_code_set_name,
unsigned32 *rgy_code_set_value,
unsigned16 *rgy_char_sets_number,
unsigned16 **rgy_char_sets_value,
error_status_t *status);

Description

The dce_cs_loc_to_rgy() routine maps operating system-specific names for character/code set encodings to their unique
identifiers in the code set registry.

The dce_cs_loc_to_rgy() routine takes as input a string that holds the host-specific “local name” of a code set and returns
the corresponding integer value that uniquely identifies that code set, as registered in the host’s code set registry. If the
integer value does not exist in the registry, the routine returns the status dce_cs_c_unknown.

The routine also returns the number of character sets that the code set encodes and the registered integer values that
uniquely identify those character sets. Specifying NULL in the rgy_char_sets_number and rgy_char_sets_value[]
parameters prevents the routine from performing the additional search for these values. Applications that want only to

Parameters - Input

local_code_set_name A string that specifies the name that the local host’s locale environment uses to refer to
the code set. The string is a maximum of 32 bytes: 31 data bytes plus a terminating
NULL character.

Parameters - Output

rgy_code_set_value 0 The registered integer value that uniquely identifies the code set specified by
local_code_set_name.

rgy_char_sets_number The number of character sets that the specified code set encodes. Specifying NULL
prevents this routine from returning this parameter.

rgy_char_sets_value A pointer to an array of registered integer values that uniquely identify the character
set(s) that the specified code set encodes. Specifying NULL prevents this routine from
returning this parameter. The routine dynamically allocates this value.

status Returns the status code from this routine. This status code indicates whether the routine
completed successfully or, if not, why not. The possible status codes and their meanings
are as follows:

• dce_cs_c_ok – Code set registry access operation succeeded.

• dce_cs_c_cannot_allocate_memory – Cannot allocate memory for code
set info.

• dce_cs_c_unknown – No code set value was not found in the registry
which corresponds to the code set name specified.

• dce_cs_c_notfound – No local code set name was found in the registry
which corresponds to the name specified.
CORBA - Part 2: Interoperability, v3.3 59

obtain a code set value from the code set registry can specify NULL for these parameters in order to improve the routine's
performance. If the value is returned from the routine, application developers should free the array after it is used, since
the array is dynamically allocated.

7.10.5.2.2 dce_cs_rgy_to_loc

Maps a numeric code set value contained in the code set registry to the local system-specific name for a code set.

Synopsis

void dce_cs_rgy_to_loc(
 unsigned32 *rgy_code_set_value,
 idl_char **local_code_set_name,
 unsigned16 *rgy_char_sets_number,
 unsigned16 **rgy_char_sets_value,
 error_status_t *status);

Parameters - Input

rgy_code_set_value The registered hexadecimal value that uniquely identifies the code set.

Parameters - Output

local_code_set_name A string that specifies the name that the local host's locale environment uses to refer to
the code set. The string is a maximum of 32 bytes: 31 data bytes and a terminating
NULL character.

rgy_char_sets_number The number of character sets that the specified code set encodes. Specifying NULL in
this parameter prevents the routine from returning this value.

rgy_char_sets_value A pointer to an array of registered integer values that uniquely identify the character
set(s) that the specified code set encodes. Specifying NULL in this parameter prevents
the routine from returning this value. The routine dynamically allocates this value.

status Returns the status code from this routine. This status code indicates whether the routine
completed successfully or, if not, why not. The possible status codes and their meanings
are as follows:

• dce_cs_c_ok – Code set registry access operation succeeded.

• dce_cs_c_cannot_allocate_memory – Cannot allocate memory for code set
info.

• dce_cs_c_unknown – The requested code set value was not found in the
code set registry.

• dce_cs_c_notfound – No local code set name was found in the registry that
corresponds to the specific code set registry ID value. This implies that the
code set is not supported in the local system environment.
60 CORBA - Part 2: Interoperability, v3.3

Description

The dce_cs_rgy_to_loc() routine maps a unique identifier for a code set in the code set registry to the operating system-
specific string name for the code set, if it exists in the code set registry.

The dce_cs_rgy_to_loc() routine takes as input a registered integer value of a code set and returns a string that holds the
operating system-specific, or local name, of the code set.

If the code set identifier does not exist in the registry, the routine returns the status dce_cs_c_unknown and returns an
undefined string.

The routine also returns the number of character sets that the code set encodes and the registered integer values that
uniquely identify those character sets. Specifying NULL in the rgy_char_sets_number and rgy_char_sets_value[]
parameters prevents the routine from performing the additional search for these values. Applications that want only to
obtain a local code set name from the code set registry can specify NULL for these parameters in order to improve the
routine's performance. If the value is returned from the routine, application developers should free the
rgy_char_sets_value array after it is used.

7.10.5.2.3 rpc_cs_char_set_compat_check

Evaluates character set compatibility between a client and a server.

Synopsis

void rpc_cs_char_set_compat_check(
 unsigned32 client_rgy_code_set_value,
 unsigned32 server_rgy_code_set_value,
 error_status_t *status);

Parameters - Input

client_rgy_code_set_value The registered hexadecimal value that uniquely identifies the code set that the client is
using as its local code set.

server_rgy_code_set_value The registered hexadecimal value that uniquely identifies the code set that the server is
using as its local code set.

Parameters - Output

status Returns the status code from this routine. This status code indicates whether the routine
completed successfully or, if not, why not. The possible status codes and their meanings
are as follows:

• rpc_s_ok – Successful status.

• rpc_s_ss_no_compat_charsets – No compatible code set found. The client
and server do not have a common encoding that both could recognize and
convert.

• The routine can also return status codes from the dce_cs_rgy_to_loc()
routine.
CORBA - Part 2: Interoperability, v3.3 61

Description

The rpc_cs_char_set_compat_check() routine provides a method for determining character set compatibility between a
client and a server; if the server's character set is incompatible with that of the client, then connecting to that server is
most likely not acceptable, since massive data loss would result from such a connection.

The routine takes the registered integer values that represent the code sets that the client and server are currently using
and calls the code set registry to obtain the registered values that represent the character set(s) that the specified code sets
support. If both client and server support just one character set, the routine compares client and server registered character
set values to determine whether or not the sets are compatible. If they are not, the routine returns the status message
rpc_s_ss_no_compat_charsets.

If the client and server support multiple character sets, the routine determines whether at least two of the sets are
compatible. If two or more sets match, the routine considers the character sets compatible, and returns a success status
code to the caller.

7.10.5.2.4 rpc_rgy_get_max_bytes

Gets the maximum number of bytes that a code set uses to encode one character from the code set registry on a host.

Synopsis

void rpc_rgy_get_max_bytes(
unsigned32 rgy_code_set_value,
unsigned16 *rgy_max_bytes,
error_status_t *status);

Parameters - Input

rgy_code_set_value The registered hexadecimal value that uniquely identifies the code set.

Parameters - Output

rgy_max_bytes The registered decimal value that indicates the number of bytes this code set uses to
encode one character.

status Returns the status code from this routine. This status code indicates whether the routine
completed successfully or, if not, why not. The possible status codes and their meanings
are as follows:

• rpc_s_ok – Operation succeeded.

• dce_cs_c_cannot_allocate_memory – Cannot allocate memory for code set
info.

• dce_cs_c_unknown – No code set value was not found in the registry that
corresponds to the code set value specified.

• dce_cs_c_notfound – No local code set name was found in the registry that
corresponds to the value specified.
62 CORBA - Part 2: Interoperability, v3.3

Description

The rpc_rgy_get_max_bytes() routine reads the code set registry on the local host. It takes the specified registered code
set value, uses it as an index into the registry, and returns the decimal value that indicates the number of bytes that the
code set uses to encode one character.

This information can be used for buffer sizing as part of the procedure to determine whether additional storage needs to
be allocated for conversion between local and network code sets.
CORBA - Part 2: Interoperability, v3.3 63

64 CORBA - Part 2: Interoperability, v3.3

8 Building Inter-ORB Bridges

8.1 Introduction
This clause provides an implementation-oriented conceptual framework for the construction of bridges to provide
interoperability between ORBs. It focuses on the layered request level bridges that the CORBA Core specifications
facilitate, although ORBs may always be internally modified to support bridges.

Key features of the specifications for inter-ORB bridges are as follows:

• Enables requests from one ORB to be translated to requests on another.

• Provides support for managing tables keyed by object references.

The OMG IDL specification for interoperable object references, which are important to inter-ORB bridging, is shown in
Interoperable Object References: IORs on page 25.

8.2 In-Line and Request-Level Bridging
Bridging of an invocation between a client in one domain and a server object in another domain can be mediated through
a standardized mechanism, or done immediately using non-standard ones.

The question of how this bridging is constructed is broadly independent of whether the bridging uses a standardized
mechanism. There are two possible options for where the bridge components are located:

1. Code inside the ORB may perform the necessary translation or mappings; this is termed in-line bridging.

2. Application style code outside the ORB can perform the translation or mappings; this is termed request-level
bridging.

Request-level bridges that mediate through a common protocol (using networking, shared memory, or some other IPC
provided by the host operating system) between distinct execution environments will involve components, one in each
ORB, known as “half bridges.”

When that mediation is purely internal to one execution environment, using a shared programming environment’s binary
interfaces to CORBA- and OMG-IDL-defined data types, this is known as a “full bridge.”1 From outside the execution
environment this will appear identical to some kinds of in-line bridging, since only that environment knows the
construction techniques used. However, full bridges more easily support portable policy mediation components, because
of their use of only standard CORBA programming interfaces.

Network protocols may be used immediately “in-line,” or to mediate between request-level half bridges. The General
Inter-ORB Protocol can be used in either manner. In addition, this specification provides for Environment Specific Inter-
ORB Protocols (ESIOP), allowing for alternative mediation mechanisms.

1. Special initialization supporting object referencing domains (e.g., two protocols) to be exposed to application programmers to
support construction of this style bridge.
CORBA - Part 2: Interoperability, v3.3 63

Note that mediated, request-level half-bridges can be built by anyone who has access to an ORB, without needing
information about the internal construction of that ORB. Immediate-mode request-level half-bridges (i.e., ones using non-
standard mediation mechanisms) can be built similarly without needing information about ORB internals. Only in-line
bridges (using either standard or non-standard mediation mechanisms) need potentially proprietary information about
ORB internals.

8.2.1 In-line Bridging

In-line bridging is in general the most direct method of bridging between ORBs. It is structurally similar to the
engineering commonly used to bridge between systems within a single ORB (e.g., mediating using some common inter-
process communications scheme, such as a network protocol). This means that implementing in-line bridges involves as
fundamental a set of changes to an ORB as adding a new inter-process communications scheme. (Some ORBs may be
designed to facilitate such modifications, though.)

In this approach, the required bridging functionality can be provided by a combination of software components at various
levels:

• As additional or alternative services provided by the underlying ORBs

• As additional or alternative stub and skeleton code.

Figure 8.1 - In-Line bridges are built using ORB internal APIs

8.2.2 Request-level Bridging

The general principle of request-level bridging is as follows:

1. The original request is passed to a proxy object in the client ORB.

2. The proxy object translates the request contents (including the target object reference) to a form that will be
understood by the server ORB.

3. The proxy invokes the required operation on the apparent server object.

4. Any operation result is passed back to the client via a complementary route.

Client Server

 ORB Core ORB Core

ORB Services ORB Services

Logical client to server operation request

(DII)
64 CORBA - Part 2: Interoperability, v3.3

Figure 8.2 - Request-Level bridges are built using public ORB APIs

The request translation involves performing object reference mapping for all object references involved in the request (the
target, explicit parameters, and perhaps implicit ones such as transaction context). As elaborated later, this translation may
also involve mappings for other domains: the security domain of CORBA::Principal parameters, type identifiers, and so
on.

It is a language mapping requirement of the CORBA Core specification that all dynamic typing APIs (e.g., Any,
NamedValue) support such manipulation of parameters even when the bridge was not created with compile-time
knowledge of the data types involved.

8.2.3 Collocated ORBs

In the case of immediate bridging (i.e., not via a standardized, external protocol) the means of communication between
the client-side bridge component and that on the server-side is an entirely private matter. One possible engineering
technique optimizes this communication by coalescing the two components into the same system or even the same
address space. In the latter case, accommodations must be made by both ORBs to allow them to share the same execution
environment.

Similar observations apply to request-level bridges, which in the case of collocated ORBs use a common binary interface
to all OMG IDL-defined data as their mediating data format.

Figure 8.3 - When the two ORBs are collocated in a bridge execution environment, network communications will
be purely intra-ORB. If the ORBs are not collocated, such communications must go between ORBs.

Client Server

 ORB Core ORB Core

ORB Services ORB Services

Logical client to server operation request

(DII) DSI (DII)

Bridge

Bridge
Bridge Bridge

BridgeBridge

ORB 2
ORB 3ORB 1

ORB 1 ORB 2

Inter-ORB messaging Intra-ORB messaging
CORBA - Part 2: Interoperability, v3.3 65

An advantage of using bridges spanning collocated ORBs is that all external messaging can be arranged to be intra-ORB,
using whatever message-passing mechanisms each ORB uses to achieve distribution within a single ORB, multiple
machine system. That is, for bridges between networked ORBs such a bridge would add only a single “hop,” a cost
analogous to normal routing.

8.3 Proxy Creation and Management
Bridges need to support arbitrary numbers of proxy objects, because of the (bidirectional) object reference mappings
required. The key schemes for creating and managing proxies are reference translation and reference encapsulation, as
discussed in Handling of Referencing Between Domains on page 24.

• Reference translation approaches are possible with CORBA V2.0 Core APIs. Proxies themselves can be created as
normal objects using the Basic Object Adapter (BOA) and the Dynamic Skeleton Interface (DSI).

• Reference Encapsulation is not supported by the BOA, since it would call for knowledge of more than one ORB. Some
ORBs could provide other object adapters that support such encapsulation.

Note that from the perspective of clients, they only deal with local objects; clients do not need to distinguish between
proxies and other objects. Accordingly, all CORBA operations supported by the local ORB are also supported through a
bridge. The ORB used by the client might, however, be able to recognize that encapsulation is in use, depending on how
the ORB is implemented.

Also, note that the CORBA::InterfaceDef used when creating proxies (e.g., the one passed to CORBA::BOA::create)
could be either a proxy to one in the target ORB, or could be an equivalent local one. When the domains being bridged
include a type domain, then the InterfaceDef objects cannot be proxies since type descriptions will not have the same
information. When bridging CORBA-compliant ORBs, type domains by definition do not need to be bridged.

8.4 Interface-specific Bridges and Generic Bridges
Request-level bridges may be:

• Interface-specific: they support predetermined IDL interfaces only, and are built using IDL-compiler generated stub
and skeleton interfaces.

• Generic: capable of bridging requests to server objects of arbitrary IDL interfaces, using the interface repository and
other dynamic invocation support (DII and DSI).

Interface-specific bridges may be more efficient in some cases (a generic bridge could conceivably create the same stubs
and skeletons using the interface repository), but the requirement for prior compilation means that this approach offers
less flexibility than using generic bridges.

8.5 Building Generic Request-Level Bridges
The CORBA Core specifications define the following interfaces. These interfaces are of particular significance when
building a generic request-level bridge:

• Dynamic Invocation Interface (DII) lets the bridge make arbitrary invocations on object references whose types may
not have been known when the bridge was developed or deployed.

• Dynamic Skeleton Interface (DSI) lets the bridge handle invocations on proxy object references that it implements,
even when their types may not have been known when the bridge was developed or deployed.

• Interface Repositories are consulted by the bridge to acquire the information used to drive DII and DSI, such as the
type codes for operation parameters, return values, and exceptions.
66 CORBA - Part 2: Interoperability, v3.3

• Object Adapters (such as the Basic Object Adapter) are used to create proxy object references both when
bootstrapping the bridge and when mapping object references, which are dynamically passed from one ORB to the
other.

• CORBA Object References support operations to fully describe their interfaces and to create tables mapping object
references to their proxies (and vice versa).

Interface repositories accessed on either side of a half bridge need not have the same information, though of course the
information associated with any given repository ID (e.g., an interface type ID, exception ID) or operation ID must be the
same.

Using these interfaces and an interface to some common transport mechanism such as TCP, portable request-level half
bridges connected to an ORB can:

• Use DSI to translate all CORBA invocations on proxy objects to the form used by some mediating protocol such as
IIOP (see the General Inter-ORB Protocol clause in this standard).

• Translate requests made using such a mediating protocol into DII requests on objects in the ORB.

As noted in In-Line and Request-Level Bridging on page 63, translating requests and responses (including exceptional
responses) involves mapping object references (and other explicit and implicit parameter data) from the form used by the
ORB to the form used by the mediating protocol, and vice versa. Explicit parameters, which are defined by an operation’s
OMG-IDL definition, are presented through DII or DSI and are listed in the Interface Repository entry for any particular
operation.

Operations on object references such as hash() and is_equivalent() may be used to maintain tables that support such
mappings. When such a mapping does not exist, an object adapter is used to create ORB-specific proxy object references,
and bridge-internal interfaces are used to create the analogous data structure for the mediating protocol.

8.6 Bridging Non-Referencing Domains
In the simplest form of request-level bridging, the bridge operates only on IDL-defined data, and bridges only object
reference domains. In this case, a proxy object in the client ORB acts as a representative of the target object and is, in
almost any practical sense, indistinguishable from the target server object - indeed, even the client ORB will not be aware
of the distinction.

However, as alluded to above, there may be multiple domains that need simultaneous bridging. The transformation and
encapsulation schemes described above may not apply in the same way to Principal or type identifiers. Request-level
bridges may need to translate such identifiers, in addition to object references, as they are passed as explicit operation
parameters.

Moreover, there is an emerging class of “implicit context” information that ORBs may need to convey with any particular
request, such as transaction and security context information. Such parameters are not defined as part of an operation’s
OMG-IDL signature, hence are “implicit” in the invocation context. Bridging the domains of such implicit parameters
could involve additional kinds of work, needing to mediate more policies than bridging the object reference, Principal,
and type domains directly addressed by CORBA.

CORBA does not yet have a generic way (including support for both static and dynamic invocations) to expose such
implicit context information.
CORBA - Part 2: Interoperability, v3.3 67

8.7 Bootstrapping Bridges
A particularly useful policy for setting up bridges is to create a pair of proxies for two Naming Service naming contexts
(one in each ORB) and then install those proxies as naming contexts in the other ORB’s naming service. (The Naming
Service is described in the Naming Service specification.) This will allow clients in either ORB to transparently perform
naming context lookup operations on the other ORB, retrieving (proxy) object references for other objects in that ORB.
In this way, users can access facilities that have been selectively exported from another ORB, through a naming context,
with no administrative action beyond exporting those initial contexts. (See the ORB Interface clause in CORBA, Part 1
for additional information.)

This same approach may be taken with other discovery services, such as a trading service or any kind of object that could
provide object references as operation results (and in “out” parameters). While bridges can be established that only pass a
predefined set of object references, this kind of minimal connectivity policy is not always desirable.
68 CORBA - Part 2: Interoperability, v3.3

9 General Inter-ORB Protocol

This clause specifies a General Inter-ORB Protocol (GIOP) for ORB interoperability, which can be mapped onto any
connection-oriented transport protocol that meets a minimal set of assumptions. This clause also defines a specific
mapping of the GIOP, which runs directly over TCP/IP connections, called the Internet Inter-ORB Protocol (IIOP). The
IIOP must be supported by conforming networked ORB products regardless of other aspects of their implementation.
Such support does not require using it internally; conforming ORBs may also provide bridges to this protocol.

9.1 Goals of the General Inter-ORB Protocol
The GIOP and IIOP support protocol-level ORB interoperability in a general, low-cost manner. The following objectives
were pursued vigorously in the GIOP design:

• Widest possible availability - The GIOP and IIOP are based on the most widely-used and flexible communications
transport mechanism available (TCP/IP), and defines the minimum additional protocol layers necessary to transfer
CORBA requests between ORBs.

• Simplicity - The GIOP is intended to be as simple as possible, while meeting other design goals. Simplicity is deemed
the best approach to ensure a variety of independent, compatible implementations.

• Scalability - The GIOP/IIOP protocol should support ORBs, and networks of bridged ORBs, to the size of today’s
Internet, and beyond.

• Low cost - Adding support for GIOP/IIOP to an existing or new ORB design should require small engineering
investment. Moreover, the run-time costs required to support IIOP in deployed ORBs should be minimal.

• Generality - While the IIOP is initially defined for TCP/IP, GIOP message formats are designed to be used with any
transport layer that meets a minimal set of assumptions; specifically, the GIOP is designed to be implemented on other
connection-oriented transport protocols.

• Architectural neutrality - The GIOP specification makes minimal assumptions about the architecture of agents that
will support it. The GIOP specification treats ORBs as opaque entities with unknown architectures.

The approach a particular ORB takes to providing support for the GIOP/IIOP is undefined. For example, an ORB could
choose to use the IIOP as its internal protocol, it could choose to externalize IIOP as much as possible by implementing
it in a half-bridge, or it could choose a strategy between these two extremes. All that is required of a conforming ORB is
that some entity or entities in, or associated with, the ORB be able to send and receive IIOP messages.

9.2 GIOP Overview
The GIOP specification consists of the following elements:

• The Common Data Representation (CDR) definition. CDR is a transfer syntax mapping OMG IDL data types into a
bicanonical low-level representation for “on-the-wire” transfer between ORBs and Inter-ORB bridges (agents).

• GIOP Message Formats. GIOP messages are exchanged between agents to facilitate object requests, locate object
implementations, and manage communication channels.

CORBA - Part 2: Interoperability, v3.3 69

• GIOP Transport Assumptions. The GIOP specification describes general assumptions made concerning any network
transport layer that may be used to transfer GIOP messages. The specification also describes how connections may be
managed, and constraints on GIOP message ordering.

The IIOP specification adds the following element to the GIOP specification:

• Internet IOP Message Transport. The IIOP specification describes how agents open TCP/IP connections and use them
to transfer GIOP messages.

The IIOP is not a separate specification; it is a specialization, or mapping, of the GIOP to a specific transport (TCP/IP).
The GIOP specification (without the transport-specific IIOP element) may be considered as a separate conformance point
for future mappings to other transport layers.

The complete OMG IDL specifications for the GIOP and IIOP are shown in OMG IDL on page 119. Fragments of the
specification are used throughout this document as necessary.

9.2.1 Common Data Representation (CDR)

CDR is a transfer syntax, mapping from data types defined in OMG IDL to a bicanonical, low-level representation for
transfer between agents. CDR has the following features:

• Variable byte ordering - Machines with a common byte order may exchange messages without byte swapping. When
communicating machines have different byte order, the message originator determines the message byte order, and the
receiver is responsible for swapping bytes to match its native ordering. Each GIOP message (and CDR encapsulation)
contains a flag that indicates the appropriate byte order.

• Aligned primitive types - Primitive OMG IDL data types are aligned on their natural boundaries within GIOP
messages, permitting data to be handled efficiently by architectures that enforce data alignment in memory.

• Complete OMG IDL Mapping - CDR describes representations for all OMG IDL data types, including transferable
pseudo-objects such as TypeCodes. Where necessary, CDR defines representations for data types whose
representations are undefined or implementation-dependent in the CORBA Core specifications.

9.2.2 GIOP Message Overview

The GIOP specifies formats for messages that are exchanged between inter-operating ORBs. GIOP message formats have
the following features:

• Few, simple messages - With only seven message formats, the GIOP supports full CORBA functionality between
ORBs, with extended capabilities supporting object location services, dynamic migration, and efficient management of
communication resources. GIOP semantics require no format or binding negotiations. In most cases, clients can send
requests to objects immediately upon opening a connection.

• Dynamic object location - Many ORBs’ architectures allow an object implementation to be activated at different
locations during its lifetime, and may allow objects to migrate dynamically. GIOP messages provide support for object
location and migration, without requiring ORBs to implement such mechanisms when unnecessary or inappropriate to
an ORB’s architecture.

• Full CORBA support - GIOP messages directly support all functions and behaviors required by CORBA, including
exception reporting, passing operation context, and remote object reference operations (such as
CORBA::Object::get_interface).
70 CORBA - Part 2: Interoperability, v3.3

GIOP also supports passing service-specific context, such as the transaction context defined by the Transaction Service
(the Transaction Service is described in CORBAservices: Common Object Service Specifications). This mechanism is
designed to support any service that requires service related context to be implicitly passed with requests.

9.2.3 GIOP Message Transfer

The GIOP specification is designed to operate over any connection-oriented transport protocol that meets a minimal set of
assumptions (described in GIOP Message Transport on page 107). GIOP uses underlying transport connections in the
following ways:

• Asymmetrical connection usage - The GIOP defines two distinct roles with respect to connections, client, and server.
The client side of a connection originates the connection, and sends object requests over the connection. In GIOP
versions 1.0 and 1.1, the server side receives requests and sends replies. The server side of a connection may not send
object requests. This restriction, which was included to make GIOP 1.0 and 1.1 much simpler and avoid certain race
conditions, has been relaxed for GIOP version 1.2 and later, as specified in the BiDirectional GIOP specification, see
Bi-Directional GIOP on page 115.

• Request multiplexing - If desirable, multiple clients within an ORB may share a connection to send requests to a
particular ORB or server. Each request uniquely identifies its target object. Multiple independent requests for different
objects, or a single object, may be sent on the same connection.

• Overlapping requests - In general, GIOP message ordering constraints are minimal. GIOP is designed to allow
overlapping asynchronous requests; it does not dictate the relative ordering of requests or replies. Unique request/reply
identifiers provide proper correlation of related messages. Implementations are free to impose any internal message
ordering constraints required by their ORB architectures.

• Connection management - GIOP defines messages for request cancellation and orderly connection shutdown. These
features allow ORBs to reclaim and reuse idle connection resources.

• GIOP versions for requests and replies - The GIOP version of the message carrying a response to a request shall be the
same as the GIOP version of the message carrying the request. This rule does not apply when the server is responding
with a MessageError because it does not support the GIOP minor version in the request.

9.3 CDR Transfer Syntax
The Common Data Representation (CDR) transfer syntax is the format in which the GIOP represents OMG IDL data
types in an octet stream.

An octet stream is an abstract notion that typically corresponds to a memory buffer that is to be sent to another process or
machine over some IPC mechanism or network transport. For the purposes of this discussion, an octet stream is an
arbitrarily long (but finite) sequence of eight-bit values (octets) with a well-defined beginning. The octets in the stream
are numbered from 0 to n-1, where n is the size of the stream. The numeric position of an octet in the stream is called its
index. Octet indices are used to calculate alignment boundaries, as described in Alignment on page 72.

GIOP defines two distinct kinds of octet streams:

• Message - an octet stream constituting the basic unit of information exchange in GIOP, described in detail in GIOP
Message Formats on page 93.

• Encapsulation - an octet stream into which OMG IDL data structures may be marshaled independently, apart from any
particular message context, described in detail in Encapsulation on page 79.
CORBA - Part 2: Interoperability, v3.3 71

9.3.1 Primitive Types

Primitive data types are specified for both big-endian and little-endian orderings. The message formats (see GIOP
Message Formats on page 93) include tags in message headers that indicate the byte ordering in the message.
Encapsulations include an initial flag that indicates the byte ordering within the encapsulation, described in
Encapsulation on page 79. The byte ordering of any encapsulation may be different from the message or encapsulation
within which it is nested. It is the responsibility of the message recipient to translate byte ordering if necessary. Primitive
data types are encoded in multiples of octets. An octet is an 8-bit value.

9.3.1.1 Alignment

In order to allow primitive data to be moved into and out of octet streams with instructions specifically designed for those
primitive data types, in CDR all primitive data types must be aligned on their natural boundaries (i.e., the alignment
boundary of a primitive datum is equal to the size of the datum in octets). Any primitive of size n octets must start at an
octet stream index that is a multiple of n. In CDR, n is one of 1, 2, 4, or 8.

Where necessary, an alignment gap precedes the representation of a primitive datum. The value of octets in alignment
gaps is undefined. A gap must be the minimum size necessary to align the following primitive. Table 9.1 gives alignment
boundaries for CDR/OMG-IDL primitive types.

Table 9.1

TYPE OCTET ALIGNMENT

char 1

wchar 1, 2 or 4 for GIOP 1.1 |
1 for GIOP 1.2 and later

octet 1

short 2

unsigned short 2

long 4

unsigned long 4

long long 8

unsigned long long 8

float 4

double 8

long double 8

boolean 1

enum 4
72 CORBA - Part 2: Interoperability, v3.3

Alignment is defined above as being relative to the beginning of an octet stream. The first octet of the stream is octet
index zero (0); any data type may be stored starting at this index. Such octet streams begin at the start of a GIOP message
header (see GIOP Message Header on page 94) and at the beginning of an encapsulation, even if the encapsulation itself
is nested in another encapsulation. (See Encapsulation on page 79).

9.3.1.2 Integer Data Types

Figure 9.1 on page 73 illustrates the representations for OMG IDL integer data types, including the following data types:

• short
• unsigned short
• long

• unsigned long
• long long
• unsigned long long

The figure illustrates bit ordering and size. Signed types (short, long, and long long) are represented as two’s
complement numbers; unsigned versions of these types are represented as unsigned binary numbers.

Figure 9.1 - Sizes and bit ordering in big-endian and little-endian encodings of OMG IDL integer data types, both
 signed and unsigned.

0
1

0
1
2
3

0
1

0
1
2
3

MSB
LSB

MSB

LSB

LSB

LSB

MSB

MSB
short

long

octet octet

Big-Endian Little-Endian

long long

0
1
2
3
4
5
6
7

0
1
2
3
4
5
6
7

MSB

LSB

LSB

MSB
CORBA - Part 2: Interoperability, v3.3 73

9.3.1.3 Floating Point Data Types

Figure 9.2 on page 75 illustrates the representation of floating point numbers. These exactly follow the IEEE standard
formats for floating point numbers1, selected parts of which are abstracted here for explanatory purposes. The diagram
shows three different components for floating points numbers, the sign bit (s), the exponent (e), and the fractional part (f)
of the mantissa. The sign bit has values of 0 or 1, representing positive and negative numbers, respectively.

For single-precision float values the exponent is 8 bits long, comprising e1 and e2 in the figure, where the 7 bits in e1 are
most significant. The exponent is represented as excess 127. The fractional mantissa (f1 - f3) is a 23-bit value f where 1.0
<= f < 2.0, f1 being most significant and f3 being least significant. The value of a normalized number is described by:

For double-precision values the exponent is 11 bits long, comprising e1 and e2 in the figure, where the 7 bits in e1 are
most significant. The exponent is represented as excess 1023. The fractional mantissa (f1 - f7) is a 52-bit value m where
1.0 <= m < 2.0, f1 being most significant and f7 being least significant. The value of a normalized number is described
by:

For double-extended floating-point values the exponent is 15 bits long, comprising e1 and e2 in the figure, where the 7
bits in e1 are the most significant. The fractional mantissa (f1 through f14) is 112 bits long, with f1 being the most
significant. The value of a long double is determined by:

1. “IEEE Standard for Binary Floating-Point Arithmetic,” ANSI/IEEE Standard 754-1985, Institute of Electrical and Electronics
 Engineers, August 1985.

1sign 2 exponent 127–()× 1 fraction+()×–

1sign 2 exponent 1023–()× 1 fraction+()×–

1sign 2 exponent 16383–()× 1 fraction+()×–
74 CORBA - Part 2: Interoperability, v3.3

Figure 9.2 - Sizes and bit ordering in big-endian and little-endian representations of OMG IDL single,
double precision, and double extended floating point numbers.

9.3.1.4 Octet

Octets are uninterpreted 8-bit values whose contents are guaranteed not to undergo any conversion during transmission.
For the purposes of describing possible octet values in this specification, octets may be considered as unsigned 8-bit
integer values.

s
e2

e1
f1
f2
f3s

e2
e1
f1
f2
f3

s e1
e2 f1

f2
f3
f4
f5
f6
f7

0
1
2
3

0
1
2
3
4
5
6
7

0
1
2
3

0
1
2
3
4
5
6
7

Big-Endian Little-Endian

float

double s e1
e2 f1

f2
f3
f4
f5
f6
f7

s e1
e2
f1
f2
f3
f4
f5
f6

f7
f8
f9

f10
f11
f12
f13
f14 s e1

e2
f1
f2
f3
f4
f5
f6
f7
f8
f9

f10
f11
f12
f13
f140

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

long double
CORBA - Part 2: Interoperability, v3.3 75

9.3.1.5 Boolean

Boolean values are encoded as single octets, where TRUE is the value 1, and FALSE as 0.

9.3.1.6 Character Types

An IDL character is represented as a single octet; the code set used for transmission of character data (e.g., TCS-C)
between a particular client and server ORBs is determined via the process described in Code Set Conversion on page 46.
In the case of multi-byte encodings of characters, a single instance of the char type may hold only one octet of any multi-
byte character encoding.

NOTE: Full representation of multi-byte characters will require the use of an array of IDL char variables.

For GIOP version 1.1, the transfer syntax for an IDL wide character depends on whether the transmission code set (TCS-
W, which is determined via the process described in Code Set Conversion on page 46) is byte-oriented or non-byte-
oriented:

• Byte-oriented (e.g., SJIS). Each wide character is represented as one or more octets, as defined by the selected TCS-W.

• Non-byte-oriented (e.g., Unicode UTF-16). Each wide character is represented as one or more codepoints. A codepoint
is the same as “Coded-Character data element,” or “CC data element” in ISO terminology. Each codepoint is encoded
using a fixed number of bits as determined by the selected TCS-W. The OSF Character and Code Set Registry may be
examined using the interfaces in Relevant OSFM Registry Interfaces on page 58 to determine the maximum length
(max_bytes) of any character codepoint.

For GIOP version 1.2, and later wchar is encoded as an unsigned binary octet value, followed by the elements of the
octet sequence representing the encoded value of the wchar. The initial octet contains a count of the number of elements
in the sequence, and the elements of the sequence of octets represent the wchar, using the negotiated wide character
encoding.

NOTE: The GIOP 1.2 and later encoding of wchar is similar to the encoding of an octet sequence, except for its use of a single
octet to encode the value of the length.

For GIOP versions prior to 1.2 and later, interoperability for wchar is limited to the use of two- octet fixed-length
encoding.

Wchar values in encapsulations are assumed to be encoded using GIOP version 1.2 and later CDR.

If UTF-16 is selected as the TCS-W, the CDR encoding purposes can be big endian or little endian, but defaults to big
endian. By placing a BOM (byte order marker) at the front of the wstring or wchar encoding, it can be sent either big-
endian or little-endian. In particular, the CDR rules for endian-ness of UTF-16 encoded wstring or wchar values are as
follows:

• If the first two bytes (after the length indication) are FE FF, it’s big-endian.

• If the first two bytes (after the length indication) are FF FE, it’s little-endian.

• If the first two bytes (after the length indication) are neither, it’s big-endian.

If an ORB decides to use BOM to indicate endianness, it shall add the BOM to the beginning of wchar or wstring values
when encoding the value, since it is not present in wchar or wstring values passed by the user.

If a BOM is present at the beginning of a wchar or wstring received in a GIOP message, the ORB shall remove the BOM
before passing the value to the user.
76 CORBA - Part 2: Interoperability, v3.3

If a client orb erroneously sends wchar or wstring data in a GIOP 1.0 message, the server shall generate a MARSHAL
standard system exception, with standard minor code 5.

If a server erroneously sends wchar data in a GIOP 1.0 response, the client ORB shall raise a MARSHAL exception to
the client application with standard minor code 6.

For GIOP 1.1, 1.2, and 1.3, UCS-2 and UCS-4 should be encoded using the endianess of the GIOP message, for backward
compatibility.

For GIOP 1.4, the byte order rules for UCS-2 and UCS-4 are the same as for UTF-16.

UTF-16LE and UTF-16BE, from IANA codeset registry, have their own endianess definition. Thus these should be
encoded using the endianess specified by their endianness definition.

9.3.2 OMG IDL Constructed Types

Constructed types are built from OMG IDL’s data types using facilities defined by the OMG IDL language.

9.3.2.1 Alignment

Constructed types have no alignment restrictions beyond those of their primitive components. The alignment of those
primitive types is not intended to support use of marshaling buffers as equivalent to the implementation of constructed
data types within any particular language environment. GIOP assumes that agents will usually construct structured data
types by copying primitive data between the marshaled buffer and the appropriate in-memory data structure layout for the
language mapping implementation involved.

9.3.2.2 Struct

The components of a structure are encoded in the order of their declaration in the structure. Each component is encoded
as defined for its data type.

9.3.2.3 Union

Unions are encoded as the discriminant tag of the type specified in the union declaration, followed by the representation
of any selected member, encoded as its type indicates.

9.3.2.4 Array

Arrays are encoded as the array elements in sequence. As the array length is fixed, no length values are encoded. Each
element is encoded as defined for the type of the array. In multidimensional arrays, the elements are ordered so the index
of the first dimension varies most slowly, and the index of the last dimension varies most quickly.

9.3.2.5 Sequence

Sequences are encoded as an unsigned long value, followed by the elements of the sequence. The initial unsigned long
contains the number of elements in the sequence. The elements of the sequence are encoded as specified for their type.

9.3.2.6 Enum

Enum values are encoded as unsigned longs. The numeric values associated with enum identifiers are determined by the
order in which the identifiers appear in the enum declaration. The first enum identifier has the numeric value zero (0).
Successive enum identifiers take ascending numeric values, in order of declaration from left to right.
CORBA - Part 2: Interoperability, v3.3 77

9.3.2.7 Strings and Wide Strings

A string is encoded as an unsigned long indicating the length of the string in octets, followed by the string value in
single- or multi-byte form represented as a sequence of octets. The string contents include a single terminating null
character. The string length includes the null character, so an empty string has the length of the encoding of the null
character in the transmission character set.

For GIOP version 1.1, 1.2, and 1.3, when encoding a string, always encode the length as the total number of bytes used
by the encoding string, regardless of whether the encoding is byte-oriented or not.

For GIOP version 1.1, a wide string is encoded as an unsigned long indicating the length of the string in octets or
unsigned integers (determined by the transfer syntax for wchar) followed by the individual wide characters. The string
contents include a single terminating null character. The string length includes the null character. The terminating null
character for a wstring is also a wide character.

For GIOP version 1.2 and 1.3, when encoding a wstring, always encode the length as the total number of octets used by
the encoded value, regardless of whether the encoding is byte-oriented or not. For GIOP version 1.2 and 1.3 a wstring is
not terminated by a null character. In particular, in GIOP version 1.2 and 1.3 a length of 0 is legal for wstring.

NOTE: For GIOP versions prior to 1.2 and 1.3, interoperability for wstring is limited to the use of two-octet fixed-length
encoding.

Wstring values in encapsulations are assumed to be encoded using GIOP version 1.2 and 1.3 CDR.

9.3.2.8 Fixed-Point Decimal Type

The IDL fixed type has no alignment restrictions, and is represented as shown in Figure 9.4. Each octet contains (up to)
two decimal digits. If the fixed type has an odd number of decimal digits, then the representation begins with the first
(most significant) digit — d0 in the figure. Otherwise, this first half-octet is all zero, and the first digit is in the second
half-octet — d1 in the figure. The sign configuration, in the last half-octet of the representation, is 0xD for negative
numbers and 0xC for positive and zero values.

The number of digits present must equal the number of significant digits specified in the IDL definition for the fixed type
being marshaled, with the exception of the inclusion of a leading 0x0 half octet when there are an even number of
significant digits.

Decimal digits are encoded as hexadecimal values in each half-octet as follows:

Figure 9.3 - Decimal Digit Encoding for Fixed Type

0

1

2
...

9

0x0

0x1

0x2

...
0x9

Decimal Digit Half-Octet Value
78 CORBA - Part 2: Interoperability, v3.3

Figure 9.4 - IDL Fixed Type Representation

9.3.3 Encapsulation

Encapsulations are octet streams into which OMG IDL data structures may be marshaled independently, apart from any
particular message context. Once a data structure has been encapsulated, the octet stream can be represented as the OMG
IDL opaque data type sequence<octet>, which can be marshaled subsequently into a message or another encapsulation.
Encapsulations allow complex constants (such as TypeCodes) to be pre-marshaled; they also allow certain message
components to be handled without requiring full unmarshaling. Whenever encapsulations are used in CDR or the GIOP,
they are clearly noted.

The GIOP and IIOP explicitly use encapsulations in three places: TypeCodes (see TypeCode on page 87), the IIOP
protocol profile inside an IOR (see Object References on page 93), and in service-specific context (see Service Context on
page 38). In addition, some ORBs may choose to use an encapsulation to hold the object_key (see IIOP IOR Profiles on
page 112), or in other places that a sequence<octet> data type is in use.

When encapsulating OMG IDL data types, the first octet in the stream (index 0) contains a boolean value indicating the
byte ordering of the encapsulated data. If the value is FALSE (0), the encapsulated data is encoded in big-endian order;
if TRUE (1), the data is encoded in little-endian order, exactly like the byte order flag in GIOP message headers (see
GIOP Message Header on page 94). This value is not part of the data being encapsulated, but is part of the octet stream
holding the encapsulation. Following the byte order flag, the data to be encapsulated is marshaled into the buffer as
defined by CDR encoding rules. Marshaled data are aligned relative to the beginning of the octet stream (the first octet of
which is occupied by the byte order flag).

When the encapsulation is encoded as type sequence<octet> for subsequent marshaling, an unsigned long value
containing the sequence length is prefixed to the octet stream, as prescribed for sequences (see Sequence on page 77). The
length value is not part of the encapsulation’s octet stream, and does not affect alignment of data within the encapsulation.

Note that this guarantees a four-octet alignment of the start of all encapsulated data within GIOP messages and nested
encapsulations.2

Whenever the use of an encapsulation is specified, the GIOP version to use for encoding the encapsulation, if different
than GIOP version 1.0, shall be explicitly defined (i.e., the default is GIOP 1.0).

Big and Little-Endian octet

0

1

2

= =

n

d0 d1

d2 d3

d4 d5

dm s

fixed

MSD

LSD

=

CORBA - Part 2: Interoperability, v3.3 79

If a parameter with IDL char or string type is defined to be carried in an encapsulation using GIOP version greater than
1.0, the transmission Code Set for characters (TCS-C), to be used when encoding the encapsulation, shall also be
explicitly defined.

If a parameter with IDL wchar or wstring type is defined to be carried in an encapsulation using GIOP version greater
than 1.0, the transmission Code Set for wide characters (TCS-W), to be used when encoding the encapsulation shall also
be explicitly defined.

9.3.4 Value Types

Value types are built from OMG IDL’s value type definitions. Their representation and encoding is defined in this sub
clause.

Value types may be used to transmit and encode complex state. The general approach is to support the transmission of the
data (state) and type information encoded as RepositoryIDs.

The loading (and possible transmission) of code is outside of the scope of the GIOP definition, but enough information is
carried to support it, via the CodeBase object.

The format makes a provision for the support of custom marshaling (i.e., the encoding and transmission of state using
application-defined code). Consistency between custom encoders and decoders is not ensured by the protocol.

The encoding supports all of the features of value types as well as supporting the “chunking” of value types. It does so in
a compact way.

At a high level the format can be described as the linearization of a graph. The graph is the depth-first exploration of the
transitive closure that starts at the top-level value object and follows its “reference to value objects” fields (an ordinary
remote reference is just written as an IOR). It is a recursive encoding similar to the one used for TypeCodes. An
indirection is used to point to a value that has already been encoded.

The data members are written beginning with the highest possible base type to the most derived type in the order of their
declaration.

9.3.4.1 Partial Type Information and Versioning

The format provides support for partial type information and versioning issues in the receiving context. However the
encoding has been designed so that this information is only required when “advanced features” such as truncation are
used.

The presence (or absence) of type information and codebase URL information is indicated by flags within the
<value_tag>, which is a long in the range between 0x7fffff00 and 0x7fffffff inclusive. The last octet of this tag is
interpreted as follows:

• The least significant bit (<value_tag> & 0x00000001) is the value 1 if a <codebase_URL> is present. If this bit is 0,
no <codebase_URL> follows in the encoding. The <codebase_URL> is a blank-separated list of one or more URLs.

2. Accordingly, in cases where encapsulated data holds data with natural alignment of greater than four octets, some processors may
need to copy the octet data before removing it from the encapsulation. For example, an appropriate way to deal with long long dis-
criminator type in an encapsulation for a union TypeCode is to encode the body of the encapsulation as if it was aligned at the 8
byte boundary, and then copy the encoded value into the encapsulation. This may result in long long data values inside the encap-
sulation being aligned on only a 4 byte boundary when viewed from outside the encapsulation.
80 CORBA - Part 2: Interoperability, v3.3

• The second and third least significant bits (<value_tag> & 0x00000006) are:

• the value 0 if no type information is present in the encoding. This indicates the actual parameter is the same type as
the formal argument.

• the value 2 if only a single repository id is present in the encoding, which indicates the most derived type of the
actual parameter (which may be either the same type as the formal argument or one of its derived types).

• the value 6 if the partial type information list of repository ids is present in the encoding as a list of repository ids.

When a list of RepositoryIDs is present, the encoding is a long specifying the number of RepositoryIDs, followed by
the RepositoryIDs. The first RepositoryID is the id for the most derived type of the value. If this type has any base
types, the sending context is responsible for listing the RepositoryIDs for all the base types to which it is safe to
truncate the value passed. These truncatable base types are listed in order, going up the derivation hierarchy. The sending
context may choose to (but need not) terminate the list at any point after it has sent a RepositoryID for a type well
known to the receiving context. A well known type is any of the following:

• A type that is a formal parameter, result of the method call, or exception, for which this GIOP message is being
marshaled.

• A base type of a well known type.

• A member type of a well known type.

• An element type of a well known type.

For value types that have an RMI: RepositoryId, ORBs must include at least the most derived RepositoryId, in the
value type encoding.

For value types marshaled as abstract interfaces (see Abstract Interfaces on page 93), RepositoryId information must be
included in the value type encoding.

If the receiving context needs more typing information than is contained in a GIOP message that contains a codebase
URL information, it can go back to the sending context and perform a lookup based on that RepositoryID to retrieve
more typing information (e.g., the type graph).

CORBA RepositoryIDs may contain standard version identification (major and minor version numbers or a hash code
information). The ORB run time may use this information to check whether the version of the value being transmitted is
compatible with the version expected. In the event of a version mismatch, the ORB may apply product-specific
truncation/conversion rules (with the help of a local interface repository or the SendingContext::RunTime service).
For example, the Java serialization model of truncation/conversion across versions can be supported. See the JDK 1.1
documentation for a detailed specification of this model.

9.3.4.2 Example

The following examples demonstrate legal combinations of truncatability, actual parameter types and GIOP encodings.
This is not intended to be an exhaustive list of legal possibilities.

The following example uses valuetypes animal and horse, where horse is derived from animal. The actual parameters
passed to the specified operations are an_animal of runtime type animal and a_horse of runtime type horse.

The following combinations of truncatability, actual parameter types and GIOP encodings are legal.

1. If there is a single operation:
CORBA - Part 2: Interoperability, v3.3 81

 op1(in animal a);
a). If the type horse cannot be truncated to animal (i.e., horse is declared):

 valuetype horse: animal ...
 then the encoding is as shown below:

 Note that if the type horse is not available to the receiver, then the receiver throws a demarshaling exception.

b). If the type horse can be truncated to animal (i.e., horse is declared):

 valuetype horse: truncatable animal ...
 then the encoding is as shown below

 Note that if the type horse is not available to the receiver, then the receiver tries to truncate to animal.

c). Regardless of the truncation relationships, when the exact type of the formal argument is sent, then the
 encoding is as shown below:

2. Given the additional operation:

 op2(in horse h);
(i.e., the sender knows that both types horse and animal and their derivation relationship are known to the
 receiver)
a). If the type horse cannot be truncated to animal (i.e., horse is declared):

 valuetype horse: animal ...
 then the encoding is as shown below:

Actual Invocation Legal Encoding

op1(a_horse) 2 horse

6 1 horse

Actual Invocation Legal Encoding

 op1(a_horse) 6 2 horse animal

Actual Invocation Legal Encoding

 op1(an_animal) 0

2 animal

6 1 animal

Actual Invocation Legal Encoding

 op2(a_horse) 2 horse

6 1 horse
82 CORBA - Part 2: Interoperability, v3.3

 Note that the demarshaling exception of case 1 will not occur, since horse is available to the receiver.

 b). If the type horse can be truncated to animal (i.e., horse is declared):

 valuetype horse: truncatable animal ...
 then the encoding is as shown below:

Note that truncation will not occur, since horse is available to the receiver.

9.3.4.3 Scope of the Indirections

The special value 0xffffffff introduces an indirection (i.e., it directs the decoder to go somewhere else in the marshaling
buffer to find what it is looking for). This can be codebase URL information that has already been encoded, a
RepositoryID that has already been encoded, a list of repository IDs that has already been encoded, or another value
object that is shared in a graph. 0xffffffff is always followed by a long indicating where to go in the buffer. A
repositoryID or URL, which is the target of an indirection used for encoding a valuetype must have been introduced as the
type or codebase information for a valuetype.

It is not permissible for a repositoryID marshaled for some purpose other than as the type information of a valuetype to
use indirection to reference a previously marshaled value. The encoding used to indicate an indirection is the same as that
used for recursive TypeCodes (i.e., a 0xffffffff indirection marker followed by a long offset (in units of octets) from
the beginning of the long offset). As an example, this means that an offset of negative four (-4) is illegal, because it is
self-indirecting to its indirection marker. Indirections may refer to any preceding location in the GIOP message, including
previous fragments if fragmentation is used. This includes any previously marshaled parameters. Non-negative offsets are
reserved for future use. Indirections may not cross encapsulation boundaries.

Fragmentation support in GIOP versions 1.1, 1.2, and 1.3 introduces the possibility of a header for a FragmentMessage
being marshaled between the target of an indirection and the start of the encapsulation containing the indirection. The
octets occupied by any such headers are not included in the calculation of the offset value.

9.3.4.4 Null Values

All value types have a distinguished “null.” All null values are encoded by the <null_tag> (0x0). The CDR encoding of
null values includes no type information.

9.3.4.5 Other Encoding Information

A “new” value is coded as a value header followed by the value’s state. The header contains a tag and codebase URL
information if appropriate, followed by the RepositoryID and an octet flag of bits. Because the same RepositoryID
(and codebase URL information) could be repeated many times in a single request when sending a complex graph, they
are encoded as a regular string the first time they appear, and use an indirection for later occurrences.

Actual Invocation Legal Encoding

op2 (a_horse) 2 horse

6 1 horse

6 2 horse animal
CORBA - Part 2: Interoperability, v3.3 83

9.3.4.6 Fragmentation

It is anticipated that value types may be rather large, particularly when a graph is being transmitted. Hence the encoding
supports the breaking up of the serialization into an arbitrary number of chunks in order to facilitate incremental
processing.

Values with truncatable base types need a length indication in case the receiver needs to truncate them to a base type.
Value types that are custom marshaled also need a length indication so that the ORB run time can know exactly where
they end in the stream without relying on user-defined code. This allows the ORB to maintain consistency and ensure the
integrity of the GIOP stream when the user-written custom marshaling and demarshaling does not marshal the entire value
state. For simplicity of encoding, we use a length indication for all values whether or not they have a truncatable base
type or use custom marshaling.

If limited space is available for marshaling, it may be necessary for the ORB to send the contents of a marshaling buffer
containing a partially marshaled value as a GIOP fragment. At that point in the marshaling, the length of the entire value
being marshaled may not be known. Calculating this length may require processing as costly as marshaling the entire
value. It is therefore desirable to allow the value to be encoded as multiple chunks, each with its own length. This allows
the portion of a value that occupies a marshaling buffer to be sent as a chunk of known length with no need for additional
length calculation processing.

The data may be split into multiple chunks at arbitrary points except within primitive CDR types, arrays of primitive
types, strings, and wstrings, or between the tag and offset of indirections. It is never necessary to end a chunk within one
of these types as the length of these types is known before starting to marshal them so they can be added to the length of
the currently open chunk. It is the responsibility of the CDR stream to hide the chunking from the marshaling code.

The presence (or absence) of chunking is indicated by flags within the <value_tag>. The fourth least significant bit
(<value_tag> & 0x00000008) is the value 1 if a chunked encoding is used for the value’s state. The chunked encoding is
required for custom marshaling and truncation. If this bit is 0, the state is encoded as <octets>.

Each chunk is preceded by a positive long, which specifies the number of octets in the chunk.

A chunked value is terminated by an end tag that is a non-positive long so the start of the next value can be differentiated
from the start of another chunk. In the case of values that contain other values (e.g., a linked list) the “nested” value is
started without there being an end tag. The absolute value of an end tag (when it finally appears) indicates the nesting
level of the value being terminated. A single end tag can be used to terminate multiple nested values. The detailed rules
are as follows:

• End tags, chunk size tags, and value tags are encoded using non-overlapping ranges so that the unmarshaling code can
tell after reading each chunk whether:

• another chunk follows (positive tag).

• one or multiple value types are ending at a given point in the stream (negative tag).

• a nested value follows (special large positive tag).

• The end tag is a negative long whose value is the negation of the absolute nesting depth of the value type ending at this
point in the CDR stream. Any value types that have not already been ended and whose nesting depth is greater than the
depth indicated by the end tag are also implicitly ended. The end tag value 0 is reserved for future use (e.g., supporting
a nesting depth of more than 2^31). The outermost value type will always be terminated by an end tag with a value of
-1. Enclosing non-chunked valuetypes are not considered when determining the nesting depth.

The following example describes how end tags may be used. Consider a valuetype declaration that contains two member
values:
84 CORBA - Part 2: Interoperability, v3.3

// IDL
valuetype simpleNode{ ... };
valuetype node truncatable simpleNode {
public node node1;
public node node2;

};

When an instance of type ‘node’ is passed as a parameter of type ‘simpleNode’ a chunked encoding is used. In
all cases, the outermost value is terminated with an end tag with a value of -1. The nested value ‘node1’ is
terminated with an end tag with a value of -2 since only the second-level value ‘node1’ ends at that point. Since
the nested value ‘node2’ coterminates with the outermost value, either of the following end tag layouts is legal:

• A single end tag with a value of -1 marks the termination of the outermost value, implying the termination of the
nested value, ‘node2’as well. This is the most compact marshaling.

• An end tag with a value of -2 marks the termination of the nested value, ‘node2.’ This is then followed by an end
tag with a value of -1 to mark the termination of the outermost value.

Because data members are encoded in their declaration order, declaring a value type data member of a value type
last is likely to result in more compact encoding on the wire because it maximizes the number of values ending at
the same place and so allows a single end tag to be used for multiple values. The canonical example for that is a
linked list.

• For the purposes of chunking, values encoded as indirections or null are treated as non-value data.

• Chunks are never nested. When a value is nested within another value, the outer value’s chunk ends at the place in the
stream where the inner value starts. If the outer value has non-value data to be marshaled following the inner value, the
end tag for the inner value is followed by a continuation chunk for the remainder of the outer value.

• Regardless of the above rules, any value nested within a chunked value is always chunked. Furthermore, any such
nested value that is truncatable must encode its type information as a list of RepositoryIDs (see Section 9.3.4.1,
Partial Type Information and Versioning, on page 80).

• The scope of an encoded valuetype is a complete GIOP message or an encapsulation. Starting a new encapsulation
starts a new scope. Ending an encapsulation ends the current scope and restores the previous scope. Starting a new
scope starts a new count of end tag nesting (initially 0), chunking status (initially false) and chunk position (initially 0).

• Chunks in the same scope are never nested. When a value is nested within another value, the outer value's chunk ends
at the place in the stream where the inner value starts. If the outer value has non-value data to be marshaled following
the inner value, the end tag for the inner value is followed by a continuation chunk for the remainder of the outer value.

• Regardless of the above rules, any value nested within a chunked value in the same scope is always chunked.
Furthermore, any such nested value that is truncatable must encode its type information as a list of RepositoryIDs (see
Partial Type Information and Versioning on page 80).

Truncating a value type in the receiving context may require keeping track of unused nested values (only during
unmarshaling) in case further indirection tags point back to them. These values can be held in their “raw” GIOP form, as
fully unmarshaled value objects, or in any other product-specific form.

Value types that are custom marshaled are encoded as chunks in order to let the ORB run-time know exactly where they
end in the stream without relying on user-defined code.
CORBA - Part 2: Interoperability, v3.3 85

9.3.4.7 Notation

The on-the-wire format is described by a BNF grammar with conventions similar to the ones used to define IDL syntax.
The terminals of the grammar are to be interpreted differently. We are describing a protocol format. Although the
terminals have the same names as IDL tokens they represent either:

• constant tags, or

• the GIOP CDR encoding of the corresponding IDL construct.

For example, long is a shorthand for the GIOP encoding of the IDL long data type -with all the GIOP alignment rules.
Similarly struct is a shorthand for the GIOP CDR encoding of a struct.

A (type) constant means that an instance of the given type having the given value is encoded according to the rules for
that type. So that (long) 0 means that a CDR encoding for a long having the value 0 appears at that location.

9.3.4.8 The Format

(1) <value> ::= <value_tag> [<codebase_URL>]
[<type_info>] <state>

| <value_ref>
(2) <value_ref>::=<indirection_tag> <indirection> | <null_tag>
(3) <value_tag>::= long// 0x7fffff00 <= value_tag <= 0x7fffffff
(4) <type_info> ::= <rep_ids> | <repository_id>
(5) <state>::= <octets> |<value_data>* [<end_tag>]
(6) <value_data>::= <value_chunk> | <value>
(7) <rep_ids> ::= long <repository_id>+

| <indirection_tag> <indirection>
(8) <repository_id> ::= string | <indirection_tag> <indirection>
(9) <value_chunk> ::= <chunk_size_tag> <octets>
(10) <null_tag> ::= (long) 0
(11) <indirection_tag> ::= (long) 0xffffffff
(12) <codebase_URL> ::= string | <indirection_tag> <indirection>
(13) <chunk_size_tag> ::= long

// 0 < chunk_size_tag < 2^31-256 (0x7fffff00)
(14) <end_tag>::= long // -2^31 < end_tag < 0
(15) <indirection> ::= long // -2^31 < indirection < 0
(16) <octets> ::= octet | octet <octets>

The concatenated octets of consecutive value chunks within a value encode state members for the value according to the
following grammar:

(1)<state members> ::= <state_member>
| <state_member> <state members>

(2) <state_member> ::=<value_ref>
// All legal IDL types should be here

| octet
| boolean
| char
| short
86 CORBA - Part 2: Interoperability, v3.3

| unsigned short
| long
| unsigned long
| float
| wchar
| wstring
| string
| struct
| union
| sequence
| array
| Object
| any
| long long
| unsigned long long
| double
| long double
| fixed

9.3.5 Pseudo-Object Types

CORBA defines some kinds of entities that are neither primitive types (integral or floating point) nor constructed ones.

9.3.5.1 TypeCode

In general, TypeCodes are encoded as the TCKind enum value, potentially followed by values that represent the
TypeCode parameters. Unfortunately, TypeCodes cannot be expressed simply in OMG IDL, since their definitions are
recursive. The basic TypeCode representations are given in Table 9.2 on page 88. The integer value column of this table
gives the TCKind enum value corresponding to the given TypeCode, and lists the parameters associated with such a
TypeCode. The rest of this sub clause presents the details of the encoding.

Basic TypeCode Encoding Framework

The encoding of a TypeCode is the TCKind enum value (encoded, like all enum values, using four octets), followed by
zero or more parameter values. The encodings of the parameter lists fall into three general categories, and differ in order
to conserve space and to support efficient traversal of the binary representation:

• Typecodes with an empty parameter list are encoded simply as the corresponding TCKind enum value.

• Typecodes with simple parameter lists are encoded as the TCKind enum value followed by the parameter value(s),
encoded as indicated in Table 9.2. A “simple” parameter list has a fixed number of fixed length entries, or a single
parameter that has its length encoded first.

• All other typecodes have complex parameter lists, which are encoded as the TCKind enum value followed by a CDR
encapsulation octet sequence (see Encapsulation on page 79) containing the encapsulated, marshaled parameters. The
order of these parameters is shown in the fourth column of Table 9.2.

The third column of Table 9.2 shows whether each parameter list is empty, simple, or complex. Also, note that an internal
indirection facility is needed to represent some kinds of typecodes; this is explained in Indirection: Recursive and
Repeated TypeCodes on page 91. This indirection does not need to be exposed to application programmers.
CORBA - Part 2: Interoperability, v3.3 87

TypeCode Parameter Notation

TypeCode parameters are specified in the fourth column of Table 9.2 on page 88. The ordering and meaning of
parameters is a superset of those given in the ORB Interface clause, CORBA, Part 1 specification. More information is
needed by CDR’s representation in order to provide the full semantics of TypeCodes as shown by the API.

• Each parameter is written in the form type (name), where type describes the parameter’s type, and name describes the
parameter’s meaning.

• The encoding of some parameter lists (specifically, tk_struct, tk_union, tk_enum, and tk_except) contain a
counted sequence of tuples.

Such counted tuple sequences are written in the form count {parameters}, where count is the number of tuples in
the encoded form, and the parameters enclosed in braces are available in each tuple instance. First the count,
which is an unsigned long, and then each parameter in each tuple (using the noted type), is encoded in the
CDR representation of the typecode. Each tuple is encoded, first parameter followed by second, before the next
tuple is encoded (first, then second, etc.).

Note that the tuples identifying struct, union, exception, and enum members must be in the order defined in the OMG
IDL definition text. Also, that the types of discriminant values in encoded tk_union TypeCodes are established by the
second encoded parameter (discriminant type), and cannot be specified except with reference to a specific OMG IDL
definition.3

Table 9.2

TCKind Integer
Value

Type Parameters

tk_null 0 empty – none –

tk_void 1 empty – none –

tk_short 2 empty – none –

tk_long 3 empty – none –

tk_ushort 4 empty – none –

tk_ulong 5 empty – none –

tk_float 6 empty – none –

tk_double 7 empty – none –

tk_boolean 8 empty – none –

tk_char 9 empty – none –

tk_octet 10 empty – none –

tk_any 11 empty – none –

tk_TypeCode 12 empty – none –

tk_Principal 13 empty – none –

tk_objref 14 complex string (repository ID), string(name)
88 CORBA - Part 2: Interoperability, v3.3

3. This means that, for example, two OMG IDL unions that are textually equivalent, except that one uses a “char” discriminant, and
the other uses a “long” one, would have different size encoded TypeCodes.

tk_struct 15 complex string (repository ID),
string (name),
ulong (count)
{string (member name),
TypeCode (member type)}

tk_union 16 complex string (repository ID), string(name),
TypeCode (discriminant type),
long (default used),
ulong (count)
{discriminant typea (label value),
string (member name),
TypeCode (member type)}

tk_enum 17 complex string (repository ID),
string (name),
ulong (count)
{string (member name)}

tk_string 18 simple ulong (max lengthb)

tk_sequence 19 complex TypeCode (element type),
ulong (max lengthc)

tk_array 20 complex TypeCode (element type),
ulong (length)

tk_alias 21 complex string (repository ID),
string (name),
TypeCode

tk_except 22 complex string (repository ID),
string (name),
ulong (count)
{string (member name),
TypeCode (member type)}

tk_longlong 23 empty – none –

tk_ulonglong 24 empty – none –

tk_longdouble 25 empty – none –

tk_wchar 26 empty – none –

Table 9.2

TCKind Integer
Value

Type Parameters
CORBA - Part 2: Interoperability, v3.3 89

9.3.5.1.1 Encoded Identifiers and Names

The Repository ID parameters in tk_objref, tk_struct, tk_union, tk_enum, tk_alias, tk_except, tk_native,
tk_value, tk_value_box, and tk_abstract_interface TypeCodes are Interface Repository RepositoryId values,
whose format is described in the specification of the Interface Repository.

tk_wstring 27 simple ulong(max length or zero if
unbounded)

tk_fixed 28 simple ushort(digits), short(scale)

tk_value 29 complex string (repository ID),
string (name, may be empty),
short(ValueModifier),
TypeCode(of concrete base)d,
ulong (count),
{string (member name),
TypeCode (member type),
short(Visibility)}

tk_value_box 30 complex string (repository ID), string(name),
TypeCode

tk_native 31 complex string (repository ID), string(name)

tk_abstract_interface 32 complex string(RepositoryId), string(name)

tk_local_interface 33 complex string(RepositoryId), string(name)

tk_component 34 complex string (repository ID), string(name)

tk_home 35 complex string (repository ID), string(name)

tk_event 36 complex string (repository ID),
string (name, may be empty),
short(ValueModifier),
TypeCode(of concrete base)e,
ulong (count),
{string (member name),
TypeCode (member type),
short(Visibility)}

– none – 0xffffffff simple long (indirectionf)

a. The type of union label values is determined by the second parameter, discriminant type.
b. For unbounded strings, this value is zero.
c. For unbounded sequences, this value is zero.
d. Should be tk_null if there is no concrete base.
e. Should be tk_null if there is no concrete base.
f. See Indirection: Recursive and Repeated TypeCodes on page 91.

Table 9.2

TCKind Integer
Value

Type Parameters
90 CORBA - Part 2: Interoperability, v3.3

For GIOP 1.2 onwards, repositoryID values are required to be sent, if known by the ORB4. For GIOP 1.2 and 1.3 an
empty repositoryID string is only allowed if a repositoryID value is not available to the ORB sending the type code.

For GIOP 1.0 and 1.1, RepositoryId values are required for tk_objref and tk_except TypeCodes; for tk_struct,
tk_union, tk_enum, and tk_alias TypeCodes RepositoryIds are optional and encoded as empty strings if omitted.

The name parameters in tk_objref, tk_struct, tk_union, tk_enum, tk_alias, tk_value, tk_value_box,
tk_abstract_interface, tk_native and tk_except TypeCodes and the member name parameters in tk_struct,
tk_union, tk_enum, tk_value, and tk_except TypeCodes are not specified by (or significant in) GIOP. Agents should
not make assumptions about type equivalence based on these name values; only the structural information (including
RepositoryId values, if provided) is significant. If provided, the strings should be the simple, unscoped names supplied
in the OMG IDL definition text. If omitted, they are encoded as empty strings.

When a reference to a base Object is encoded, there are two allowed encodings for the Repository ID: either
“IDL:omg.org/CORBA/Object:1.0” or “” may be used.

Encoding the tk_union Default Case

In tk_union TypeCodes, the long default used value is used to indicate which tuple in the sequence describes the
union’s default case. If this value is less than zero, then the union contains no default case. Otherwise, the value contains
the zero-based index of the default case in the sequence of tuples describing union members.

The discriminant value used in the actual typecode parameter associated with the default member position in the list, may
be any valid value of the discriminant type, and has no semantic significance (i.e., it should be ignored and is only
included for syntactic completeness of union type code marshaling).

TypeCodes for Multi-Dimensional Arrays

The tk_array TypeCode only describes a single dimension of any array. TypeCodes for multi-dimensional arrays are
constructed by nesting tk_array TypeCodes within other tk_array TypeCodes, one per array dimension. The
outermost (or top-level) tk_array TypeCode describes the leftmost array index of the array as defined in IDL; the
innermost nested tk_array TypeCode describes the rightmost index.

Indirection: Recursive and Repeated TypeCodes

The typecode representation of OMG IDL data types that can indirectly contain instances of themselves (e.g., struct foo
{sequence <foo> bar;}) must also contain an indirection. Such an indirection is also useful to reduce the size of
encodings; for example, unions with many cases sharing the same value.

CDR provides a constrained indirection to resolve this problem:

• The indirection applies only to TypeCodes nested within some “top-level” TypeCode. Indirected TypeCodes are not
“freestanding,” but only exist inside some other encoded TypeCode.

• For GIOP 1.2 and below, the indirection applies only to TypeCodes nested within some “top-level” TypeCode.
Indirected TypeCodes are not “freestanding,” but only exist inside some other encoded TypeCode.

• For GIOP 1.3 and above, the indirection applies only to TypeCodes nested within some “top-level” TypeCode, or from

4. A type code passed via a GIOP 1.2 connection shall contain non-empty repositoryID strings, unless a repositoryID value is not
available to the sending ORB for a specific type code. This situation can arise, for example, if an ORB receives a type code con-
taining empty repository IDs via a GIOP 1.0 or 1.1 connection and passes that type code on via a GIOP 1.2 connection).
CORBA - Part 2: Interoperability, v3.3 91

one top-level TypeCode to another. Indirected TypeCodes nested within a top-level TypeCode can only reference
TypeCodes that are part of the same top-level TypeCode, including the top-level TypeCode itself. Indirected top-level
TypeCodes can reference other top-level TypeCodes but cannot reference TypeCodes nested within some other top-
level TypeCode.

• Only the second (and subsequent) references to a TypeCode in that scope may use the indirection facility. The first
reference to that TypeCode must be encoded using the normal rules. In the case of a recursive TypeCode, this means
that the first instance will not have been fully encoded before a second one must be completely encoded.

The indirection is a numeric octet offset within the scope of the “top-level” TypeCode and points to the TCKind value
for the typecode. (Note that the byte order of the TCKind value can be determined by its encoded value.) This indirection
may well cross encapsulation boundaries, but this is not problematic because of the first constraint identified above.
Because of the second constraint, the value of the offset will always be negative.

Fragmentation support in GIOP versions 1.1, 1.2, and 1.3 introduces the possibility of a header for a FragmentMessage
being marshaled between the target of an indirection and the start of the encapsulation containing the indirection. The
octets occupied by any such headers are not included in the calculation of the offset value.

The encoding of such an indirection is as a TypeCode with a “TCKind value” that has the special value 232-1 (0xffffffff,
all ones). Such typecodes have a single (simple) parameter, which is the long offset (in units of octets) from the simple
parameter. (This means that an offset of negative four (-4) is illegal because it will be self-indirecting.)

9.3.5.2 Any

Any values are encoded as a TypeCode (encoded as described above) followed by the encoded value. For Any values
containing a tk_null or tk_void TypeCode, the encoded value shall have zero length (i.e., shall be absent).

9.3.5.3 Principal

Principal pseudo objects are encoded as sequence<octet>. In the absence of a Security service specification,
Principal values have no standard format or interpretation, beyond serving to identify callers (and potential callers). This
specification does not prescribe any usage of Principal values.

By representing Principal values as sequence<octet>, GIOP guarantees that ORBs may use domain-specific principal
identification schemes; such values undergo no translation or interpretation during transmission. This allows bridges to
translate or interpret these identifiers as needed when forwarding requests between different security domains.

9.3.5.4 Context

Context pseudo objects are encoded as sequence<string>. The strings occur in pairs. The first string in each pair is
the context property name, and the second string in each pair is the associated value. If an operation has an IDL context
sub clause but the client does not supply any properties matching the context sub clause at run time, an empty sequence
is marshaled.

9.3.5.5 Exception

Exceptions are encoded as a string followed by exception members, if any. The string contains the RepositoryId for the
exception, as defined in the Interface Repository clause of CORBA (Part 1). Exception members (if any) are encoded in
the same manner as a struct.

If an ORB receives a non-standard system exception that it does not support, or a user exception that is not defined as part
of the operation’s definition, the exception shall be mapped to UNKNOWN, with standard minor code set to 2 for a
system exception, or set to 1 for a user exception.
92 CORBA - Part 2: Interoperability, v3.3

9.3.6 Object References

Object references are encoded in OMG IDL (as described in Object Addressing on page 23). IOR profiles contain
transport-specific addressing information, so there is no general-purpose IOR profile format defined for GIOP. Instead,
this specification describes the general information model for GIOP profiles and provides a specific format for the IIOP
(see IIOP IOR Profiles on page 112).

In general, GIOP profiles include at least these three elements:

1. The version number of the transport-specific protocol specification that the server supports.

2. The address of an endpoint for the transport protocol being used.

3. An opaque datum (an object_key, in the form of an octet sequence) used exclusively by the agent at the specified
endpoint address to identify the object.

9.3.7 Abstract Interfaces

Abstract interfaces are encoded as a union with a boolean discriminator. The union has an object reference (see Object
References on page 93) if the discriminator is TRUE, and a value type (see Value Types on page 80) if the discriminator
is FALSE. The encoding of value types marshaled as abstract interfaces always includes RepositoryId information. If
there is no indication whether a nil abstract interface represents a nil object reference or a null valuetype, it shall be
encoded as a null valuetype.

9.4 GIOP Message Formats
GIOP has restriction on client and server roles with respect to initiating and receiving messages. For the purpose of GIOP
versions 1.0 and 1.1, a client is the agent that opens a connection (see more details in Connection Management on
page 108) and originates requests. Likewise, for GIOP versions 1.0 and 1.1, a server is an agent that accepts connections
and receives requests.When Bidirectional GIOP is in use for GIOP protocol version 1.2 and 1.3, either side may originate
messages, as specified in Bi-Directional GIOP on page 115.

GIOP message types are summarized in Table 9.3, which lists the message type names, whether the message is originated
by client, server, or both, and the value used to identify the message type in GIOP message headers.

Table 9.3

Message Type Originator Value GIOP Versions

Request Client 0 1.0, 1.1, 1.2, 1.3

Request Both 0 1.2 with BiDir GIOP in use,
1.3 with BiDir GIOP in use

Reply Server 1 1.0, 1.1, 1.2, 1.3

Reply Both 1 1.2 with BiDir GIOP in use,
1.3 with BiDir GIOP in use

CancelRequest Client 2 1.0, 1.1, 1.2, 1.3
CORBA - Part 2: Interoperability, v3.3 93

9.4.1 GIOP Message Header

All GIOP messages begin with the following header, defined in OMG IDL:

module GIOP { // IDL extended for version 1.1, 1.2, and 1.3
struct Version {

octet major;
octet minor;

};

#if MAX_GIOP_VERSION_NUMBER == 0
// GIOP 1.0
enum MsgType_1_0 { // Renamed from MsgType
 Request, Reply, CancelRequest,

LocateRequest, LocateReply,
CloseConnection, MessageError

};

#else
// GIOP 1.1
enum MsgType_1_1 {
 Request, Reply, CancelRequest,

LocateRequest, LocateReply,
CloseConnection, MessageError,
Fragment // GIOP 1.1 addition

};
#endif // MAX_GIOP_VERSION_NUMBER

CancelRequest Both 2 1.2 with BiDir GIOP in use,
1.3 with BiDir GIOP in use

LocateRequest Client 3 1.0, 1.1, 1.2, 1.3

LocateRequest Both 3 1.2 with BiDir GIOP in use,
1.3 with BiDir GIOP in use

LocateReply Server 4 1.0, 1.1, 1.2, 1.3

LocateReply Both 4 1.2 with BiDir GIOP in use,
1.3 with BiDir GIOP in use

CloseConnection Server 5 1.0, 1.1, 1.2, 1.3

CloseConnection Both 5 1.2, 1.3

MessageError Both 6 1.0, 1.1, 1.2, 1.3

Fragment Both 7 1.1, 1.2, 1.3

Table 9.3

Message Type Originator Value GIOP Versions
94 CORBA - Part 2: Interoperability, v3.3

// GIOP 1.0
typedef char Magicn[4]

struct MessageHeader_1_0 {// Renamed from MessageHeader
Magicn magic;
Version GIOP_version;
boolean byte_order;
octet message_type;
unsigned long message_size;

};

// GIOP 1.1
struct MessageHeader_1_1 {

Magicn magic;
Version GIOP_version;
octet flags; // GIOP 1.1 change
octet message_type;
unsigned long message_size;

};

// GIOP 1.2, 1.3
typedef MessageHeader_1_1 MessageHeader_1_2;
typedef MessageHeader_1_1 MessageHeader_1_3;

};

The message header clearly identifies GIOP messages and their byte-ordering. The header is independent of byte ordering
except for the field encoding message size.

• magic identifies GIOP messages. The value of this member is always the four (upper case) characters “GIOP,”
encoded in ISO Latin-1 (8859.1).

• GIOP_version contains the version number of the GIOP protocol being used in the message. The version number
applies to the transport-independent elements of this specification (i.e., the CDR and message formats) that constitute
the GIOP. This is not equivalent to the IIOP version number (as described in Object References on page 93) though it
has the same structure. The major GIOP version number of this specification is one (1); the minor versions are zero (0),
one (1), and two (2).

A server implementation supporting a minor GIOP protocol version 1.n (with n > 0 and n < 3), must also be able
to process GIOP messages having minor protocol version 1.m, with m less than n. A GIOP server, which receives
a request having a greater minor version number than it supports, should respond with an error message having the
highest minor version number that that server supports, and then close the connection.

A client should not send a GIOP message having a higher minor version number than that published by the server
in the tag Internet IIOP Profile body of an IOR.

• byte_order (in GIOP 1.0 only) indicates the byte ordering used in subsequent elements of the message (including
message_size). A value of FALSE (0) indicates big-endian byte ordering, and TRUE (1) indicates little-endian byte
ordering.

• flags (in GIOP 1.1, 1.2, and 1.3) is an 8-bit octet. The least significant bit indicates the byte ordering used in subsequent
elements of the message (including message_size). A value of FALSE (0) indicates big-endian byte ordering, and
TRUE (1) indicates little-endian byte ordering. The byte order for fragment messages must match the byte order of the
initial message that the fragment extends.
CORBA - Part 2: Interoperability, v3.3 95

The second least significant bit indicates whether or not more framents follow. A value of FALSE (0) indicates this
message is the last fragment, and TRUE (1) indicates more fragments follow this message.

The most significant 6 bits are reserved. These 6 bits must have value 0 for GIOP version 1.1, 1.2, and 1.3.

• message_type indicates the type of the message, according to Table 9.3; these correspond to enum values of type
MsgType.

• message_size contains the number of octets in the message following the message header, encoded using the byte
order specified in the byte order bit (the least significant bit) in the flags field (or using the byte_order field in GIOP
1.0). It refers to the size of the message body, not including the 12-byte message header. This count includes any
alignment gaps and must match the size of the actual request parameters (plus any final padding bytes that may
follow the parameters to have a fragment message terminate on an 8-byte boundary).

A MARSHAL exception with minor code 9 indicates that fewer bytes were present in a message than indicated by
the count. (This condition can arise if the sender sends a message in fragments, and the receiver detects that the final
fragment was received but contained insufficient data for all parameters to be unmarshaled.).

A MARSHAL exception with minor code 8 indicates that more bytes were present in a message than indicated by
the count. Depending on the ORB implementation, this condition may be reported for the current message or the
next message that is processed (when the receiver detects that the previous message is not immediately followed by
the GIOP magic number).

The use of a message size of 0 with a Request, LocateRequest, Reply, or LocateReply message is reserved for
future use.

For GIOP version 1.2, and 1.3, if the second least significant bit of Flags is 1, the sum of the message_size
value and 12 must be evenly divisible by 8.

Messages with different GIOP minor versions may be mixed on the same underlying transport connection.

9.4.2 Request Message

Request messages encode CORBA object invocations, including attribute accessor operations, and CORBA::Object
operations get_interface, repository_id, and get_implementation. Requests flow from client to server.

Request messages have three elements, encoded in this order:

• A GIOP message header

• A Request Header

• The Request Body

9.4.2.1 Request Header

The request header is specified as follows:
96 CORBA - Part 2: Interoperability, v3.3

module GIOP { // IDL extended for version 1.1, 1.2, and 1.3

// GIOP 1.0
struct RequestHeader_1_0 { // Renamed from RequestHeader

IOP::ServiceContextList service_context;
unsigned long request_id;
boolean response_expected;
IOP::ObjectKey object_key;
string operation;
CORBA::OctetSeq requesting_principal;

};

typedef octet RequestReserved[3];
struct RequestHeader_1_1 {

IOP::ServiceContextList service_context;
unsigned long request_id;
boolean response_expected;
RequestReserved reserved; // Added in GIOP 1.1
IOP::ObjectKey object_key;
string operation;
CORBA::OctetSeq requesting_principal;

};

// GIOP 1.2, 1.3
typedef short AddressingDisposition;
const short KeyAddr = 0;
const short ProfileAddr = 1;
const short ReferenceAddr = 2;

struct IORAddressingInfo {
unsigned long selected_profile_index;
IOP::IOR ior;

};

union TargetAddress switch (AddressingDisposition) {
case KeyAddr: IOP::ObjectKey object_key;
case ProfileAddr: IOP::TaggedProfile profile;
case ReferenceAddr: IORAddressingInfo ior;

};

struct RequestHeader_1_2 {
unsigned long request_id;
octet response_flags;

 RequestReserved reserved; // Added in GIOP 1.1
TargetAddress target;
string operation;
IOP::ServiceContextList service_context;
// requesting_principal not in GIOP 1.2 and 1.3

};
typedef RequestHeader_1_2 RequestHeader_1_3;

};
CORBA - Part 2: Interoperability, v3.3 97

The members have the following definitions:

• request_id is used to associate reply messages with request messages (including LocateRequest messages). The
client (requester) is responsible for generating values so that ambiguity is eliminated; specifically, a client must not re-
use request_id values during a connection if:

(a) the previous request containing that ID is still pending, or

(b) if the previous request containing that ID was canceled and no reply was received. (See the semantics of the
CancelRequest Message on page 102).

• response_flags is set to 0x0 for a SyncScope of NONE and WITH_TRANSPORT. The flag is set to 0x1 for a
SyncScope of WITH_SERVER. A non exception reply to a request message containing a response_flags value
of 0x1 should contain an empty body, i.e., the equivalent of a void operation with no out/inout parameters. The flag is
set to 0x3 for a SyncScope of WITH_TARGET. These values ensure interworking compatibility between this and
previous versions of GIOP.

For GIOP 1.0 and 1.1 a response_expected value of TRUE is treated like a response_flags value of \x03,
and a response_expected value of FALSE is treated like a response_flags value of \x00.

• reserved is always set to 0 in GIOP 1.1. These three octets are reserved for future use.

• For GIOP 1.0 and 1.1, object_key identifies the object that is the target of the invocation. It is the object_key field
from the transport-specific GIOP profile (e.g., from the encapsulated IIOP profile of the IOR for the target object). This
value is only meaningful to the server and is not interpreted or modified by the client.

• For GIOP 1.2, 1.3, target identifies the object that is the target of the invocation. The possible values of the union are:

• KeyAddr is the object_key field from the transport-specific GIOP profile (e.g., from the encapsulated IIOP
profile of the IOR for the target object). This value is only meaningful to the server and is not interpreted or
modified by the client.

• ProfileAddr is the transport-specific GIOP profile selected for the target’s IOR by the client ORB.

• IORAddressingInfo is the full IOR of the target object. The selected_profile_index indicates the transport-
specific GIOP profile that was selected by the client ORB. The first profile has an index of zero.

• operation is the IDL identifier naming, within the context of the interface (not a fully qualified scoped name), the
operation being invoked. In the case of attribute accessors, the names are _get_<attribute> and _set_<attribute>.
The case of the operation or attribute name must match the case of the operation name specified in the OMG IDL
source for the interface being used.

In the case of CORBA::Object operations that are defined in the ORB Interface clause, CORBA, Part 1 and that
correspond to GIOP request messages, the operation names are _interface, _is_a, _non_existent,
_domain_managers, _component, and _repository_id.

NOTE: The name _get_domain_managers is not used, to avoid conflict with a get operation invoked on a user defined
attribute with name domain_managers.

For GIOP 1.2 and later versions, only the operation name _non_existent shall be used.
The correct operation name to use for GIOP 1.0 and 1.1 is _non_existent. Due to a typographical error in CORBA
2.0, 2.1, and 2.2, some legacy implementations of GIOP 1.0 and 1.1 respond to the operation name _not_existent.
For maximum interoperability with such legacy implementations, new implementations of GIOP 1.0 and 1.1 may wish
to respond to both operation names, _non_existent and _not_existent.
98 CORBA - Part 2: Interoperability, v3.3

• service_context contains ORB service data being passed from the client to the server, encoded as described in
Service Context on page 38.

• requesting_principal contains a value identifying the requesting principal. It is provided to support the
BOA::get_principal operation. The usage of the requesting_principal field is deprecated for GIOP versions 1.0
and 1.1. The field is not present in the request header for GIOP version 1.2 and 1.3.

There is no padding after the request header when an unfragmented request message body is empty.

9.4.2.2 Request Body

In GIOP versions 1.0 and 1.1, request bodies are marshaled into the CDR encapsulation of the containing Message
immediately following the Request Header. In GIOP version 1.2 and 1.3, the Request Body is always aligned on an 8-
octet boundary. The fact that GIOP specifies the maximum alignment for any primitive type is 8 guarantees that the
Request Body will not require remarshaling if the Message or Request header are modified. The data for the request body
includes the following items encoded in this order:

• All in and inout parameters, in the order in which they are specified in the operation’s OMG IDL definition, from left
to right.

• An optional Context pseudo object, encoded as described in Context on page 92. This item is included only if the
operation’s OMG IDL definition includes a context expression, and only includes context members as defined in that
expression.

For example, the request body for the following OMG IDL operation:

double example (in short m, out string str, inout long p);

would be equivalent to this structure:

struct example_body {
short m; // leftmost in or inout parameter
long p; // ... to the rightmost

};

9.4.3 Reply Message

Reply messages are sent in response to Request messages if and only if the response expected flag in the request is set
to TRUE. Replies include inout and out parameters, operation results, and may include exception values. In addition,
Reply messages may provide object location information. In GIOP versions 1.0 and 1.1, replies flow only from server to
client.

Reply messages have three elements, encoded in this order:

• A GIOP message header

• A ReplyHeader structure

• The reply body

9.4.3.1 Reply Header

The reply header is defined as follows:
CORBA - Part 2: Interoperability, v3.3 99

module GIOP { // IDL extended for 1.2 and 1.3

#if MAX_GIOP_MINOR_VERSION < 2

// GIOP 1.0 and 1.1
enum ReplyStatusType_1_0 { // Renamed from ReplyStatusType

NO_EXCEPTION,
USER_EXCEPTION,
SYSTEM_EXCEPTION,
LOCATION_FORWARD

};

// GIOP 1.0
struct ReplyHeader_1_0 { // Renamed from ReplyHeader

IOP::ServiceContextList service_context;
unsigned long request_id;
ReplyStatusType_1_0 reply_status;

};

// GIOP 1.1
typedef ReplyHeader_1_0 ReplyHeader_1_1;
// Same Header contents for 1.0 and 1.1

#endif // MAX_GIOP_VERSION_NUMBER

#if MAX_GIOP_MINOR_VERSION >= 2

// GIOP 1.2, 1.3
enum ReplyStatusType_1_2 {

NO_EXCEPTION,
USER_EXCEPTION,
SYSTEM_EXCEPTION,
LOCATION_FORWARD,
LOCATION_FORWARD_PERM,// new value for 1.2
NEEDS_ADDRESSING_MODE // new value for 1.2

};

struct ReplyHeader_1_2 {
unsigned long request_id;
ReplyStatusType_1_2 reply_status;
IOP::ServiceContextList service_context;

};
typedef ReplyHeader_1_2 ReplyHeader_1_3;

#endif // MAX_GIOP_VERSION_NUMBER

};

The members have the following definitions:

• request_id is used to associate replies with requests. It contains the same request_id value as the corresponding
request.
100 CORBA - Part 2: Interoperability, v3.3

• reply_status indicates the completion status of the associated request, and also determines part of the reply body
contents. If no exception occurred and the operation completed successfully, the value is NO_EXCEPTION and the
body contains return values. Otherwise the body

• contains an exception, or

• directs the client to reissue the request to an object at some other location, or

• directs the client to supply more addressing information.

• service_context contains ORB service data being passed from the server to the client, encoded as described in GIOP
Message Transfer on page 71.

There is no padding after the reply header when an unfragmented reply message body is empty.

9.4.3.2 Reply Body

In GIOP version 1.0 and 1.1, reply bodies are marshaled into the CDR encapsulation of the containing Message
immediately following the Reply Header. In GIOP version 1.2 and 1.3, the Reply Body is always aligned on an 8-octet
boundary. The fact that GIOP specifies the maximum alignment for any primitive type is 8 guarantees that the ReplyBody
will not require remarshaling if the Message or the Reply Header are modified. The data for the reply body is determined
by the value of reply_status. There are the following types of reply body:

• If the reply_status value is NO_EXCEPTION, the body is encoded as if it were a structure holding first any
operation return value, then any inout and out parameters in the order in which they appear in the operation’s OMG
IDL definition, from left to right. (That structure could be empty.)

• If the reply_status value is USER_EXCEPTION or SYSTEM_EXCEPTION, then the body contains the
exception that was raised by the operation, encoded as described in Exception on page 92. (Only the user-defined
exceptions listed in the operation’s OMG IDL definition may be raised.)

When a GIOP Reply message contains a reply_status value of SYSTEM_EXCEPTION, the body of the Reply
message conforms to the following structure:

module GIOP { // IDL
struct SystemExceptionReplyBody {

string exception_id;
 unsigned long minor_code_value;
unsigned long completion_status;
};

};

The high-order 20 bits of minor_code_value contain a 20-bit “Vendor Minor Codeset ID” (VMCID); the low-
order 12 bits contain a minor code. A vendor (or group of vendors) wishing to define a specific set of system
exception minor codes should obtain a unique VMCID from the OMG, and then use those 4096 minor codes as
they see fit; for example, defining up to 4096 minor codes for each system exception. Any vendor may use the
special VMCID of zero (0) without previous reservation, but minor code assignments in this codeset may conflict
with other vendor’s assignments, and use of the zero VMCID is officially deprecated.

NOTE: OMG standard minor codes are identified with the 20 bit VMCID \x4f4d0. This appears as the characters ‘O’ followed
by the character ‘M’ on the wire, which is defined as a 32-bit constant called OMGVMCID \x4f4d0000 (see the ORB Interface
clause, CORBA, Part 1) so that allocated minor code numbers can be or-ed with it to obtain the minor_code_value.
CORBA - Part 2: Interoperability, v3.3 101

• If the reply_status value is LOCATION_FORWARD, then the body contains an object reference (IOR) encoded as
described in Object References on page 93. The client ORB is responsible for re-sending the original request to that
(different) object. This resending is transparent to the client program making the request.

• The usage of the reply_status value LOCATION_FORWARD_PERM behaves like the usage of
LOCATION_FORWARD, but when used by a server it also provides an indication to the client that it may replace the
old IOR with the new IOR. Both the old IOR and the new IOR are valid, but the new IOR is preferred for future use.

• If the reply_status value is NEEDS_ADDRESSING_MODE, then the body contains a
GIOP::AddressingDisposition. The client ORB is responsible for re-sending the original request using the
requested addressing mode. The resending is transparent to the client program making the request.

NOTE: Usage of LOCATATION_FORWARD_PERM is now deprecated, due to problems it causes with the semantics of the
Object::hash() operation. LOCATATION_FORWARD_PERM features could be removed from some future GIOP
versions if solutions to these problems are not provided.

For example, the reply body for a successful response (the value of reply_status is NO_EXCEPTION) to the Request
example shown on page 99 would be equivalent to the following structure:

struct example_reply {
double return_value; // return value
string str;
long p; // ... to the rightmost

};

Note that the object_key field in any specific GIOP profile is server-relative, not absolute. Specifically, when a new
object reference is received in a LOCATION_FORWARD Reply or in a LocateReply message, the object_key field
embedded in the new object reference’s GIOP profile may not have the same value as the object_key in the GIOP
profile of the original object reference. For details on location forwarding, see Object Location on page 110.

9.4.4 CancelRequest Message

CancelRequest messages may be sent, in GIOP versions 1.0 and 1.1, only from clients to servers. CancelRequest
messages notify a server that the client is no longer expecting a reply for a specified pending Request or
LocateRequest message.

CancelRequest messages have two elements, encoded in this order:

• A GIOP message header

• A CancelRequestHeader

9.4.4.1 Cancel Request Header

The cancel request header is defined as follows:

module GIOP { // IDL
struct CancelRequestHeader {

unsigned long request_id;
};

};
102 CORBA - Part 2: Interoperability, v3.3

The request_id member identifies the Request or LocateRequest message to which the cancel applies. This value is
the same as the request_id value specified in the original Request or LocateRequest message.

When a client issues a cancel request message, it serves in an advisory capacity only. The server is not required to
acknowledge the cancellation, and may subsequently send the corresponding reply. The client should have no expectation
about whether a reply (including an exceptional one) arrives.

9.4.5 LocateRequest Message

LocateRequest messages may be sent from a client to a server to determine the following regarding a specified object
reference:

• whether the current server is capable of directly receiving requests for the object reference, and if not,

• to what address requests for the object reference should be sent.

Note that this information is also provided through the Request message, but that some clients might prefer not to
support retransmission of potentially large messages that might be implied by a LOCATION_FORWARD status in a
Reply message. That is, client use of this represents a potential optimization.

LocateRequest messages have two elements, encoded in this order:

• A GIOP message header

• A LocateRequestHeader

9.4.5.1 LocateRequest Header

The LocateRequest header is defined as follows:

module GIOP { // IDL extended for version 1.2 and 1.3

// GIOP 1.0
struct LocateRequestHeader_1_0 {

// Renamed LocationRequestHeader
unsigned long request_id;
IOP::ObjectKey object_key;

};

// GIOP 1.1
typedef LocateRequestHeader_1_0 LocateRequestHeader_1_1;
// Same Header contents for 1.0 and 1.1

// GIOP 1.2, 1.3
struct LocateRequestHeader_1_2 {

unsigned long request_id;
TargetAddress target;

};
typedef LocateRequestHeader_1_2 LocateRequestHeader_1_3;

};

The members are defined as follows:
CORBA - Part 2: Interoperability, v3.3 103

• request_id is used to associate LocateReply messages with LocateRequest ones. The client (requester) is
responsible for generating values; see Request Message on page 96 for the applicable rules.

• For GIOP 1.0 and 1.1, object_key identifies the object being located. In an IIOP context, this value is obtained from
the object_key field from the encapsulated IIOP::ProfileBody in the IIOP profile of the IOR for the target object.
When GIOP is mapped to other transports, their IOR profiles must also contain an appropriate corresponding value.
This value is only meaningful to the server and is not interpreted or modified by the client.

• For GIOP 1.2, 1.3, target identifies the object being located. The possible values of this union are:

• KeyAddr is the object_key field from the transport-specific GIOP profile (e.g., from the encapsulated IIOP
profile of the IOR for the target object). This value is only meaningful to the server and is not interpreted or
modified by the client.

• ProfileAddr is the transport-specific GIOP profile selected for the target’s IOR by the client ORB.

• IORAddressingInfo is the full IOR of the target object. The selected_profile_index indicates the transport-
specific GIOP profile that was selected by the client ORB.

See Object Location on page 110 for details on the use of LocateRequest.

9.4.6 LocateReply Message

LocateReply messages are sent from servers to clients in response to LocateRequest messages. In GIOP versions 1.0
and 1.1 the LocateReply message is only sent from the server to the client.

A LocateReply message has three elements, encoded in this order:

1. A GIOP message header

2. A LocateReplyHeader

3. The locate reply body

9.4.6.1 Locate Reply Header

The locate reply header is defined as follows:

module GIOP { // IDL extended for GIOP 1.2 and 1.3
#if MAX_GIOP_MINOR_VERSION < 2

// GIOP 1.0 and 1.1
enum LocateStatusType_1_0 {// Renamed from LocateStatusType

UNKNOWN_OBJECT,
OBJECT_HERE,
OBJECT_FORWARD

};

// GIOP 1.0
struct LocateReplyHeader_1_0 {// Renamed from LocateReplyHeader

unsigned long request_id;
LocateStatusType_1_0 locate_status;

};
104 CORBA - Part 2: Interoperability, v3.3

// GIOP 1.1
typedef LocateReplyHeader_1_0 LocateReplyHeader_1_1;
// same Header contents for 1.0 and 1.1

#else
// GIOP 1.2, 1.3
enum LocateStatusType_1_2 {

UNKNOWN_OBJECT,
OBJECT_HERE,
OBJECT_FORWARD,
OBJECT_FORWARD_PERM, // new value for GIOP 1.2
LOC_SYSTEM_EXCEPTION, // new value for GIOP 1.2
LOC_NEEDS_ADDRESSING_MODE // new value for GIOP 1.2

};

struct LocateReplyHeader_1_2 {
unsigned long request_id;
LocateStatusType_1_2 locate_status;

};
typedef LocateReplyHeader_1_2 LocateReplyHeader_1_3;

#endif // MAX_GIOP_VERSION_NUMBER
};

The members have the following definitions:

• request_id - is used to associate replies with requests. This member contains the same request_id value as the
corresponding LocateRequest message.

• locate_status - the value of this member is used to determine whether a LocateReply body exists. Values are:

• UNKNOWN_OBJECT - the object specified in the corresponding LocateRequest message is unknown to the
server; no body exists.

• OBJECT_HERE - this server (the originator of the LocateReply message) can directly receive requests for the
specified object; no body exists.

• OBJECT_FORWARD and OBJECT_FORWARD_PERM - a LocateReply body exists.

• LOC_SYSTEM_EXCEPTION - a LocateReply body exists.

• LOC_NEEDS_ADDRESSING_MODE - a LocateReply body exists.

9.4.6.2 LocateReply Body

The body is empty, except for the following cases:

• If the LocateStatus value is OBJECT_FORWARD or OBJECT_FORWARD_PERM, the body contains an object
reference (IOR) that may be used as the target for requests to the object specified in the LocateRequest message.
The usage of OBJECT_FORWARD_PERM behaves like the usage of OBJECT_FORWARD, but when used by the
server it also provides an indication to the client that it may replace the old IOR with the new IOR. When using
OBJECT_FORWARD_PERM, both the old IOR and the new IOR are valid, but the new IOR is preferred for future use.

• If the LocateStatus value is LOC_SYSTEM_EXCEPTION, the body contains a marshaled
GIOP::SystemExceptionReplyBody.
CORBA - Part 2: Interoperability, v3.3 105

• If the LocateStatus value is LOC_NEEDS_ADDRESSING_MODE, then the body contains a
GIOP::AddressingDisposition. The client ORB is responsible for re-sending the LocateRequest using the
requested addressing mode.

NOTE: Usage of OBJECT_FORWARD_PERM is now deprecated, due to problems it causes with the semantics of the
Object::hash operation. OBJECT_FORWARD_PERM features could be removed from some future GIOP versions if
solutions to these problems are not provided.

LocateReply bodies are marshaled immediately following the LocateReply header.

9.4.6.3 Handling ForwardRequest Exception from ServantLocator

If the ServantLocator in a POA raises a ForwardRequest exception the ORB shall send a LocateReply message to
the client with locate_status set to OBJECT_FORWARD, and with the body containing the object reference from the
ForwardRequest exception’s forward_reference field.

9.4.7 CloseConnection Message

CloseConnection messages are sent only by servers in GIOP protocol versions 1.0 and 1.1. They inform clients that the
server intends to close the connection and must not be expected to provide further responses. Moreover, clients know that
any requests for which they are awaiting replies will never be processed, and may safely be reissued (on another
connection). In GIOP version 1.2 or later both sides of the connection may send the CloseConnection message.

The CloseConnection message consists only of the GIOP message header, identifying the message type.

For details on the usage of CloseConnection messages, see Connection Management on page 108.

9.4.8 MessageError Message

The MessageError message is sent in response to any GIOP message whose version number or message type is
unknown to the recipient or any message received whose header is not properly formed (e.g., has the wrong magic value).
Error handling is context-specific.

The MessageError message consists only of the GIOP message header, identifying the message type.

9.4.9 Fragment Message

This message is added in GIOP 1.1.

The Fragment message is sent following a previous request or response message that has the more fragments bit set to
TRUE in the flags field.

All of the GIOP messages begin with a GIOP header. One of the fields of this header is the message_size field, a 32-
bit unsigned number giving the number of bytes in the message following the header. Unfortunately, when actually
constructing a GIOP Request or Reply message, it is sometimes impractical or undesirable to ascertain the total size of
the message at the stage of message construction where the message header has to be written. GIOP 1.1 provides an
alternative indication of the size of the message, for use in those cases.
106 CORBA - Part 2: Interoperability, v3.3

In GIOP 1.1, a Request or Reply message can be broken into multiple fragments. In GIOP 1.2 and later, a Request,
Reply, LocateRequest, or LocateReply message can be broken into multiple fragments. The first fragment is a
regular message (e.g., Request or Reply) with the more fragments bit in the flags field set to TRUE. This initial
fragment can be followed by one or more messages using the fragment messages. The last fragment shall have the more
fragment bit in the flag field set to FALSE.

A CancelRequest message may be sent by the client before the final fragment of the message being sent. In this case,
the server should assume no more fragments will follow.

NOTE: A GIOP client that fragments the header of a Request message before sending the request ID may not send a
CancelRequest message pertaining to that request ID and may not send another Request message until after the request ID
is sent.

A primitive data type of 8 bytes or smaller should never be broken across two fragments.

In GIOP 1.1, the data in a fragment is marshaled with alignment relative to its position in the fragment, not relative to its
position in the whole unfragmented message.

For GIOP version 1.2 and later, the total length (including the message header) of a fragment other than the final fragment
of a fragmented message are required to be a multiple of 8 bytes in length, allowing bridges to defragment and/or
refragment messages without having to remarshal the encoded data to insert or remove padding.

For GIOP version 1.2 and later, a fragment header is included in the message, immediately after the GIOP message
header and before the fragment data. The request ID, in the fragment header, has the same value as that used in the
original message associated with the fragment.

The byte order and GIOP protocol version of a fragment shall be the same as that of the message it continues.

module GIOP {//IDL extension for GIOP 1.2 and later

struct FragmentHeader_1_2 {
unsigned long request_id;

};
typedef FragmentHeader_1_2 FragmentHeader_1_3;

};

9.5 GIOP Message Transport
The GIOP is designed to be implementable on a wide range of transport protocols. The GIOP definition makes the
following assumptions regarding transport behavior:

• The transport is connection-oriented. GIOP uses connections to define the scope and extent of request IDs.

• The transport is reliable. Specifically, the transport guarantees that bytes are delivered in the order they are sent, at most
once, and that some positive acknowledgment of delivery is available.

• The transport can be viewed as a byte stream. No arbitrary message size limitations, fragmentation, or alignments are
enforced.

• The transport provides some reasonable notification of disorderly connection loss. If the peer process aborts, the peer
host crashes, or network connectivity is lost, a connection owner should receive some notification of this condition.
CORBA - Part 2: Interoperability, v3.3 107

• The transport’s model for initiating connections can be mapped onto the general connection model of TCP/IP.
Specifically, an agent (described herein as a server) publishes a known network address in an IOR, which is used by the
client when initiating a connection.

The server does not actively initiate connections, but is prepared to accept requests to connect (i.e., it listens for
connections in TCP/IP terms). Another agent that knows the address (called a client) can attempt to initiate connections
by sending connect requests to the address. The listening server may accept the request, forming a new, unique
connection with the client, or it may reject the request (e.g., due to lack of resources). Once a connection is open, either
side may close the connection. (See Connection Management on page 108 for semantic issues related to connection
closure.) A candidate transport might not directly support this specific connection model; it is only necessary that the
transport’s model can be mapped onto this view.

9.5.1 Connection Management

For the purposes of this discussion, the roles client and server are defined as follows:

• A client initiates the connection, presumably using addressing information found in an object reference (IOR) for an
object to which it intends to send requests.

• A server accepts connections, but does not initiate them.

These terms only denote roles with respect to a connection. They do not have any implications for ORB or application
architectures.

In GIOP protocol versions 1.0 and 1.1, connections are not symmetrical. Only clients can send Request,
LocateRequest, and CancelRequest messages over a connection, in GIOP 1.0 and 1.1. In all GIOP versions, a server
can send Reply, LocateReply, and CloseConnection messages over a connection; however, in GIOP 1.2 and later the
client can send them as well. Either client or server can send MessageError messages, in GIOP 1.0 and 1.1.

If multiple GIOP versions are used on an underlying transport connection, the highest GIOP version used on the
connection can be used for handling the close. A CloseConnection message sent using any GIOP version applies to all
GIOP versions used on the connection (i.e., the underlying transport connection is closed for all GIOP versions). In
particular, if GIOP version 1.2 or higher has been used on the connection, the client can send the CloseConnection
message by using the highest GIOP version in use.

Only GIOP messages are sent over GIOP connections.

Request IDs must unambiguously associate replies with requests within the scope and lifetime of a connection. Request
IDs may be re-used if there is no possibility that the previous request using the ID may still have a pending reply. Note
that cancellation does not guarantee no reply will be sent. It is the responsibility of the client to generate and assign
request IDs. Request IDs must be unique among both Request and LocateRequest messages.

9.5.1.1 Connection Closure

Connections can be closed in two ways: orderly shutdown, or abortive disconnect.

For GIOP versions 1.0, and 1.1:

• Orderly shutdown is initiated by servers sending a CloseConnection message, or by clients just closing down a
connection.

• Orderly shutdown may be initiated by the client at any time.
108 CORBA - Part 2: Interoperability, v3.3

• A server may not initiate shutdown if it has begun processing any requests for which it has not either received a
CancelRequest or sent a corresponding reply.

• If a client detects connection closure without receiving a CloseConnection message, it must assume an abortive
disconnect has occurred, and treat the condition as an error.

For GIOP Version 1.2 and later:

• Orderly shutdown is initiated by either the originating client ORB (connection initiator) or by the server ORB
(connection responder) sending a CloseConnection message

• If the ORB sending the CloseConnection is a server, or bidirectional GIOP is in use, the sending ORB must not
currently be processing any Requests from the other side.

• The ORB that sends the CloseConnection must not send any messages after the CloseConnection.

• If either ORB detects connection closure without receiving a CloseConnection message, it must assume an abortive
disconnect has occurred, and treat the condition as an error.

• If bidirectional GIOP is in use, the conditions of Bi-Directional GIOP on page 115 apply.

For all uses of CloseConnection (for GIOP versions 1.0, 1.1, 1.2, and later):

• If there are any pending non-oneway requests, which were initiated on a connection by the ORB shutting down that
connection, the connection-peer ORB should consider them as canceled.

• If an ORB receives a CloseConnection message from its connection-peer ORB, it should assume that any
outstanding messages (i.e., without replies) were received after the connection-peer ORB sent the CloseConnection
message, were not processed, and may be safely re-sent on a new connection.

• After issuing a CloseConnection message, the issuing ORB may close the connection. Some transport protocols (not
including TCP) do not provide an “orderly disconnect” capability, guaranteeing reliable delivery of the last message
sent. When GIOP is used with such protocols, an additional handshake needs to be provided as part of the mapping to
that protocol’s connection mechanisms, to guarantee that both ends of the connection understand the disposition of any
outstanding GIOP requests.

9.5.1.2 Multiplexing Connections

A client, if it chooses, may send requests to multiple target objects over the same connection, provided that the
connection’s server side is capable of responding to requests for the objects. It is the responsibility of the client to
optimize resource usage by reusing connections, if it wishes. If not, the client may open a new connection for each active
object supported by the server, although this behavior should be avoided.

9.5.2 Message Ordering

Only the client (connection originator) may send Request, LocateRequest, and CancelRequest messages, if Bi-
Directional GIOP is not in use.

Clients may have multiple pending requests. A client need not wait for a reply from a previous request before sending
another request.

Servers may reply to pending requests in any order. Reply messages are not required to be in the same order as the
corresponding Requests.
CORBA - Part 2: Interoperability, v3.3 109

The ordering restrictions regarding connection closure mentioned in Connection Management, above, are also noted here.
Servers may only issue CloseConnection messages when Reply messages have been sent in response to all received
Request messages that require replies.

9.6 Object Location
The GIOP is defined to support object migration and location services without dictating the existence of specific ORB
architectures or features. The protocol features are based on the following observations.

A given transport address does not necessarily correspond to any specific ORB architectural component (such as an object
adapter, object server process, Inter-ORB bridge, and so forth). It merely implies the existence of some agent with which
a connection may be opened, and to which requests may be sent.

The “agent” (owner of the server side of a connection) may have one of the following roles with respect to a particular
object reference:

• The agent may be able to accept object requests directly for the object and return replies. The agent may or may not
own the actual object implementation; it may be an Inter-ORB bridge that transforms the request and passes it on to
another process or ORB. From GIOP’s perspective, it is only important that requests can be sent directly to the agent.

• The agent may not be able to accept direct requests for any objects, but acts instead as a location service. Any
Request messages sent to the agent would result in either exceptions or replies with LOCATION_FORWARD
status, providing new addresses to which requests may be sent. Such agents would also respond to LocateRequest
messages with appropriate LocateReply messages.

• The agent may directly respond to some requests (for certain objects) and provide forwarding locations for other
objects.

• The agent may directly respond to requests for a particular object at one point in time, and provide a forwarding
location at a later time (perhaps during the same connection).

Agents are not required to implement location forwarding mechanisms. An agent can be implemented with the policy that
a connection either supports direct access to an object, or returns exceptions. Such an ORB (or inter-ORB bridge) always
returns LocateReply messages with either OBJECT_HERE or UNKNOWN_OBJECT status, and never
OBJECT_FORWARD status.

Clients must, however, be able to accept and process Reply messages with LOCATION_FORWARD status, since any ORB
may choose to implement a location service. Whether a client chooses to send LocateRequest messages is at the
discretion of the client. For example, if the client routinely expected to see LOCATION_FORWARD replies when using the
address in an object reference, it might always send LocateRequest messages to objects for which it has no recorded
forwarding address. If a client sends LocateRequest messages, it should be prepared to accept LocateReply messages.

A client shall not make any assumptions about the longevity of object addresses returned by LOCATION_FORWARD
(OBJECT_FORWARD) mechanisms. Once a connection based on location-forwarding information is closed, a client can
attempt to reuse the forwarding information it has, but, if that fails, it shall restart the location process using the original
address specified in the initial object reference.

For GIOP version 1.2 and later, the usage of LOCATION_FORWARD_PERM (OBJECT_FORWARD_PERM) behaves like
the usage of LOCATION_FORWARD (OBJECT_FORWARD), but when used by the server it also provides an indication to
the client that it may replace the old IOR with the new IOR. When using LOCATION_FORWARD_PERM
(OBJECT_FORWARD_PERM), both the old IOR and the new IOR are valid, but the new IOR is preferred for future use.
110 CORBA - Part 2: Interoperability, v3.3

NOTE: Usage of LOCATION_FORWARD_PERM and OBJECT_FORWARD_PERM is now deprecated, due to problems it
causes with the semantics of the Object::hash operation. LOCATION_FORWARD_PERM and OBJECT_FORWARD_PERM
features could be removed from some future GIOP versions if solutions to these problems are not provided.

Even after performing successful invocations using an address, a client should be prepared to be forwarded. The only
object address that a client should expect to continue working reliably is the one in the initial object reference. If an
invocation using that address returns UNKNOWN_OBJECT, the object should be deemed non-existent.

In general, the implementation of location forwarding mechanisms is at the discretion of ORBs, available to be used for
optimization and to support flexible object location and migration behaviors.

9.7 Internet Inter-ORB Protocol (IIOP)
The baseline transport specified for GIOP is TCP/IP5. Specific APIs for libraries supporting TCP/IP may vary, so this
discussion is limited to an abstract view of TCP/IP and management of its connections. The mapping of GIOP message
transfer to TCP/IP connections is called the Internet Inter-ORB Protocol (IIOP).

IIOP 1.0 is based on GIOP 1.0.

IIOP 1.1 can be based on either GIOP 1.0 or 1.1. An IIOP 1.1 client must support GIOP 1.1, and may also support GIOP
1.0. An IIOP 1.1 server must support processing both GIOP 1.0 and GIOP 1.1 messages.

IIOP 1.2 can be based on any of the GIOP minor versions 1.0, 1.1, or 1.2. An IIOP 1.2 client must support GIOP 1.2, and
may also support lesser GIOP minor versions. An IIOP 1.2 server must also support processing messages with all lesser
GIOP versions.

IIOP 1.3 can be based on any of the GIOP minor versions 1.0, 1.1, 1.2, or 1.3. An IIOP 1.3 client must support GIOP 1.3,
and may also support lesser GIOP minor versions. An IIOP 1.3 server must also support processing messages with all
lesser GIOP versions.

IIOP 1.4 can be based on any of the GIOP minor versions 1.0, 1.1, 1.2, 1.3, or 1.4. An IIOP 1.4 client must support GIOP
1.4, and may also support lesser GIOP minor versions. An IIOP 1.4 server must also support processing messages with all
lesser GIOP versions.

Conformance to IIOP versions 1.1, 1.2, 1.3, and 1.4 requires support of Limited-Profile IOR conformance (see
Interoperable Object References: IORs on page 25), specifically for the IIOP IOR Profile. As of CORBA 2.4, this limited
IOR conformance is deprecated, and ORBs implementing IIOP are strongly recommended to support Full IOR
conformance. Some future IIOP versions could require support of Full IOR conformance.

9.7.1 TCP/IP Connection Usage

Agents that are capable of accepting object requests or providing locations for objects (i.e., servers) publish TCP/IP
addresses in IORs, as described in IIOP IOR Profiles on page 112. A TCP/IP address consists of an IP host address,
typically represented by a host name, and a TCP port number. Servers must listen for connection requests.

A client needing an object’s services must initiate a connection with the address specified in the IOR, with a connect
request.

5. Postel, J., “Transmission Control Protocol – DARPA Internet Program Protocol Specification,” RFC-793, Information Sciences
Institute, September 1981
CORBA - Part 2: Interoperability, v3.3 111

The listening server may accept or reject the connection. In general, servers should accept connection requests if possible,
but ORBs are free to establish any desired policy for connection acceptance (e.g., to enforce fairness or optimize resource
usage).

Once a connection is accepted, the client may send Request, LocateRequest, or CancelRequest messages by
writing to the TCP/IP socket it owns for the connection. The server may send Reply, LocateReply, and
CloseConnection messages by writing to its TCP/IP connection. In GIOP 1.2, and later, the client may send the
CloseConnection message, and if BiDirectional GIOP is in use, the client may also send Reply and LocateReply
messages.

After receiving a CloseConnection message, an ORB must close the TCP/IP connection. After sending a
CloseConnection, an ORB may close the TCP/IP connection immediately, or may delay closing the connection until it
receives an indication that the other side has closed the connection. For maximum interoperability with ORBs using TCP
implementations that do not properly implement orderly shutdown, an ORB may wish to only shutdown the sending side
of the connection, and then read any incoming data until it receives an indication that the other side has also shutdown, at
which point the TCP connection can be closed completely.

Given TCP/IP’s flow control mechanism, it is possible to create deadlock situations between clients and servers if both
sides of a connection send large amounts of data on a connection (or two different connections between the same
processes) and do not read incoming data. Both processes may block on write operations, and never resume. It is the
responsibility of both clients and servers to avoid creating deadlock by reading incoming messages and avoiding blocking
when writing messages, by providing separate threads for reading and writing, or any other workable approach. ORBs are
free to adopt any desired implementation strategy, but should provide robust behavior.

9.7.2 IIOP IOR Profiles

IIOP profiles, identifying individual objects accessible through the Internet Inter-ORB Protocol, have the following form:

module IIOP { // IDL extended for version 1.1, 1.2, and later
struct Version {

octet major;
octet minor;

};

struct ProfileBody_1_0 {// renamed from ProfileBody
Version iiop_version;
string host;
unsigned short port;
IOP::ObjectKey object_key;

};

struct ProfileBody_1_1 {// also used for 1.2 and later
Version iiop_version;
string host;
unsigned short port;
IOP::ObjectKey object_key;
112 CORBA - Part 2: Interoperability, v3.3

// Added in 1.1 unchanged for 1.2 and later
 IOP::TaggedComponentSeq components;
};

};

IIOP Profile version number:

• Indicates the IIOP protocol version.

• Major number can stay the same if the new changes are backward compatible.

• Clients with lower minor version can attempt to invoke objects with higher minor version number by using only the
information defined in the lower minor version protocol (ignore the extra information).

Profiles supporting only IIOP version 1.0 use the ProfileBody_1_0 structure, while those supporting IIOP version 1.1
or 1.2 or later use the ProfileBody_1_1 structure. An instance of one of these structure types is marshaled into an
encapsulation octet stream. This encapsulation (a sequence <octet>) becomes the profile_data member of the
IOP::TaggedProfile structure representing the IIOP profile in an IOR, and the tag has the value TAG_INTERNET_IOP
(as defined earlier).

The version number published in the Tag Internet IIOP Profile body signals the highest GIOP minor version number that
the server supports at the time of publication of the IOR.

If the major revision number is 1, and the minor revision number is greater than 0, then the length of the encapsulated
profile may exceed the total size of components defined in this specification for profiles with minor revision number 0.
ORBs that support only revision 1.0 IIOP profiles must ignore any data in the profile that occurs after the object_key. If
the revision of the profile is 1.0, there shall be no extra data in the profile (i.e., the length of the encapsulated profile must
agree with the total size of components defined for version 1.0).

For Version 1.2 and later of IIOP, no order of use is prescribed in the case where more than one TAG Internet IOP Profile
is present in an IOR.

The members of IIOP::ProfileBody_1_0 and IOP::ProfileBody_1_1 are defined as follows:

• iiop_version describes the version of IIOP that the agent at the specified address is prepared to receive. When an
agent generates IIOP profiles specifying a particular version, it must be able to accept messages complying with the
specified version or any previous minor version (i.e., any smaller version number). The major version number of this
specification is 1; the minor versions defined to date are 0, 1, and 2. Compliant ORBs must generate version 1.1
profiles, and must accept any profile with a major version of 1, regardless of the minor version number. If the minor
version number is 0, the encapsulation is fully described by the ProfileBody_1_0 structure. If the minor version
number is 1 or 2, the encapsulation is fully described by the ProfileBody_1_1 structure. If the minor version number
is greater than 2, then the length of the encapsulated profile may exceed the total size of components defined in this
specification for profiles with minor version number 1 or 2. ORBs that support only version 1.1 or 1.2 IIOP profiles
must ignore, but preserve, any data in the profile that occurs after the components member, for IIOP profiles with
minor version greater than 1.2.

NOTE: As of version 1.2 of GIOP and IIOP and minor versions beyond, the minor version in the TAG_INTERNET_IOP profile
signals the highest minor revision of GIOP supported by the server at the time of publication of the IOR.

• host identifies the Internet host to which GIOP messages for the specified object may be sent. In order to promote a
very large (Internet-wide) scope for the object reference, this will typically be the fully qualified domain name of the
host, rather than an unqualified (or partially qualified) name. However, per Internet standards, the host string may also
contain a host address expressed in standard “dotted decimal” form (e.g., “192.231.79.52”).
CORBA - Part 2: Interoperability, v3.3 113

• port contains the TCP/IP port number (at the specified host) where the target agent is listening for connection requests.
The agent must be ready to process IIOP messages on connections accepted at this port.

• object_key is an opaque value supplied by the agent producing the IOR. This value will be used in request messages
to identify the object to which the request is directed. An agent that generates an object key value must be able to map
the value unambiguously onto the corresponding object when routing requests internally.

• components is a sequence of TaggedComponent, which contains additional information that may be used in
making invocations on the object described by this profile. TaggedComponents that apply to IIOP 1.2 are described
below in IIOP IOR Profile Components on page 114. Other components may be included to support enhanced versions
of IIOP, to support ORB services such as security, and to support other GIOPs, ESIOPs, and proprietary protocols. If
an implementation puts a non-standard component in an IOR, it cannot be assured that any or all non-standard
components will remain in the IOR.

The relationship between the IIOP protocol version and component support conformance requirements is as
follows:

• Each IIOP version specifies a set of standard components and the conformance rules for that version. These rules
specify which components are mandatory and which are optional. A conformant implementation has to conform to
these rules, and is not required to conform to more than these rules.

• New components can be added, but they do not become part of the versions conformance rules.

• When there is a need to specify conformance rules that include the new components, there will be a need to create
a new IIOP version.

Note that host addresses are restricted in this version of IIOP to be Class A, B, or C Internet addresses. That is, Class D
(multi-cast) addresses are not allowed. Such addresses are reserved for use in future versions of IIOP.

Agents may freely choose TCP port numbers for communication; IIOP supports multiple agents per host.

9.7.3 IIOP IOR Profile Components

The following components are part of IIOP 1.1, 1.2, and later conformance. All these components are optional.

• TAG_ORB_TYPE
• TAG_CODE_SETS

• TAG_SEC_NAME

• TAG_ASSOCIATION_OPTIONS
• TAG_GENERIC_SEC_MECH
• TAG_SSL_SEC_TRANS
• TAG_SPKM_1_SEC_MECH
• TAG_SPKM_2_SEC_MECH
• TAG_KerberosV5_SEC_MECH
• TAG_CSI_ECMA_Secret_SEC_MECH
• TAG_CSI_ECMA_Hybrid_SEC_MECH
• TAG_SSL_SEC_TRANS
• TAG_CSI_ECMA_Public_SEC_MECH
114 CORBA - Part 2: Interoperability, v3.3

• TAG_FIREWALL_TRANS
• TAG_JAVA_CODEBASE
• TAG_TRANSACTION_POLICY
• TAG_MESSAGE_ROUTERS
• TAG_INET_SEC_TRANS

The following components are part of IIOP 1.2, and later conformance. All these components are optional.

• TAG_ALTERNATE_IIOP_ADDRESS
• TAG_POLICIES
• TAG_DCE_STRING_BINDING
• TAG_DCE_BINDING_NAME
• TAG_DCE_NO_PIPES
• TAG_DCE_MECH
• TAG_COMPLETE_OBJECT_KEY
• TAG_ENDPOINT_ID_POSITION
• TAG_LOCATION_POLICY
• TAG_OTS_POLICY
• TAG_INV_POLICY
• TAG_CSI_SEC_MECH_LIST
• TAG_NULL_TAG
• TAG_SECIOP_SEC_TRANS
• TAG_TLS_SEC_TRANS
• TAG_ACTIVITY_POLICY

9.8 Bi-Directional GIOP
The specification of GIOP connection management, in GIOP minor versions 1.0 and 1.1, states that connections are not
symmetrical. For example, only clients that initialize connections can send requests, and only servers that accept
connections can receive them.

This GIOP 1.0 and 1.1 restriction gives rise to significant difficulties when operating across firewalls. It is common for
firewalls not to allow incoming connections, except to certain well-known and carefully configured hosts, such as
dedicated HTTP or FTP servers. For most CORBA-over-the-internet applications it is not practicable to require that all
potential client firewalls install GIOP proxies to allow incoming connections, or that any entities receiving callbacks will
require prior configuration of the firewall proxy.

An applet, for example, downloaded to a host inside such a firewall will be restricted in that it cannot receive requests
from outside the firewall on any object it creates, as no host outside the firewall will be able to connect to the applet
through the client’s firewall, even though the applet in question would typically only expect callbacks from the server it
initially registered with.
CORBA - Part 2: Interoperability, v3.3 115

In order to circumvent this unnecessary restriction, GIOP minor protocol version 1.2 or later specifies that the asymmetry
stipulation above be relaxed in cases where the client and the server agree on it. In these cases, the client (the applet in
the above case) would still initiate the connection to the server, but any requests from the server on any objects.

The client creates an object for exporting to a server, and arranges that the server receive an IOR for the object. The most
common use case would be for the client to pass the IOR as a parameter in a GIOP request, but other mechanisms are
possible, such as the use of a Name Service. If the client ORB policy permits bi-directional use of a connection, a Request
message should contain an IOP::ServiceContext structure in its Request header, which indicates that this GIOP
connection is bi-directional. The service context may provide additional information that the server may need to invoke
the callback object. To determine whether an ORB may support bi-directional GIOP new policies has been defined (Bi-
directional GIOP policy on page 118).

Each mapping of GIOP to a particular transport should define a transport-specific bi-directional service context, and have
an IOP::ServiceId allocated by the OMG. It is recommended that names for this service context follows the pattern
BiDir<protocolname>, where <protocol name> identifies a mapping of GIOP to a transport protocol (e.g., for IIOP the
name is BiDirIIOP). The service context for bi-directional IIOP is defined in Bi-directional IIOP on page 117.

The server receives the Request, which contains a bi-directional IOP::ServiceContext. If the server supports bi-
directional connections for that protocol, it may now send invocations along the same connection to any object that
supports the particular protocol and matches the particular location information found in the bi-directional service
context. If the server does not support bi-directional connections for that protocol, the service context can be ignored.

The data encapsulated in the BiDirIIOPServiceContext structure (see below), which is identified by the ServiceId
BI_DIR_IIOP as defined in Service Context on page 38, allows the ORB to determine whether it needs to open a new
connection in order to invoke on an object. If a host and port pair in a listen_point list matches a host and port of an
object to which it does not yet have a connection (a callback object newly received, for instance), rather than open a new
connection, the server may re-use any of the connections on which the listen_point data was received.

A server talking to a client on a bi-directional GIOP connection can use any message type traditionally used by clients
only, so it can use Request, LocateRequest, CancelRequest, MessageError, and Fragment (for a Request or
LocateRequest). Similarly the client can use message types traditionally used only by servers: Reply, LocateReply,
MessageError, CloseConnection, and Fragment (for a Reply or LocateReply).

CloseConnection messages are a special case however. Either ORB may send a CloseConnection message, but the
conditions in Connection Management on page 108 apply.

Bi-directional GIOP connections modify the behavior of Request IDs. In the GIOP specification, Connection
Management on page 108, it is noted that “Request IDs must unambiguously associate replies with requests within the
scope and lifetime of a connection.” This property of unambiguous association of requests and replies must be preserved
while permitting each end to generate Request Ids for new requests independently. To ensure this, on a connection that is
used bi-directionally in GIOP 1.2, and later, the connection originator shall assign only even valued Request IDs and the
other side of the connection shall assign only odd valued Request IDs. This requirement applies to the full lifetime of the
connection, even before a BiDirIIOPServiceContext is transmitted. A connection on which this regime of Request ID
assignment is not used, shall never be used to transmit bi-directional GIOP 1.2, or later messages.

It should be noted that a single-threaded ORB needs to perform event checking on the connection, in case a Request
from the other endpoint arrives in the window between it sending its own Request and receiving the corresponding
reply; otherwise a client and server could send Requests simultaneously, resulting in deadlock. If the client cannot
support event checking, it must not indicate that bi-directionality is supported. If the server cannot support event
checking, it must not make callbacks along the same connection even if the connection indicates it is supported.
116 CORBA - Part 2: Interoperability, v3.3

A server making a callback to a client cannot specify its own bi-directional service context – only the client can announce
the connection’s bi-directionality.

An important security issue should be observed in the use of bi-directional GIOP. In the absence of other security
mechanisms, a malicious client may claim that its connection is Bi-Directional for use with any host and port it chooses.
In particular it may specify the host and port of security sensitive objects not even resident on its host. All the client has
to do is pass the host and port in the listen data service context and the server may then invoke a masquerading object
instead. In general, and in the absence of other security mechanisms, a server that has accepted an incoming connection
has no way to discover the identity or verify the integrity of the client that initiated the connection. If the server has
doubts in the integrity of the client, it is recommended that bi-directional GIOP is not used.

9.8.1 Bi-directional IIOP

The IOP::ServiceContext used to support bi-directional IIOP contains a BiDirIIOPServiceContext structure as
defined below:

// IDL
module IIOP {

struct ListenPoint {
string host;
unsigned short port;

};

typedef sequence<ListenPoint> ListenPointList;

struct BiDirIIOPServiceContext {
ListenPointList listen_points;

};
};

The data encapsulated in the BiDirIIOPServiceContext structure, which is identified by the ServiceId BI_DIR_IIOP as
defined in Service Context on page 38, allows the ORB, which intends to open a new connection in order to invoke on an
object, to look up its list of active client-initiated connections and examine the structures associated with them, if any. If
a host and port pair in a listen_points list matches a host and port, which the ORB intends to open a connection to,
rather than open a new connection to that listen_point, the server may re-use any of the connections that were initiated
by the client on which the listen point data was received.

The host element of the structure should contain whatever values the client may use in the IORs it creates. The rules for
host and port are identical to the rules for the IIOP IOR ProfileBody_1_1 host and port elements; see IIOP IOR
Profiles on page 112. Note that if the server wishes to make a callback connection to the client in the standard way, it
must use the values from the client object's IOR, not the values from this BiDirIIOPServiceContext structure; these
values are only to be used for bi-directional GIOP support.

The BI_DIR_IIOP service context may be sent by a client at any point in a connection's lifetime. The listen_points
specified therein must supplement any listen_points already sent on the connection, rather than replacing the existing
points.
CORBA - Part 2: Interoperability, v3.3 117

If a client supports a secure connection mechanism, such as SECIOP or IIOP/SSL, and sends a BI_DIR_IIOP service
context over an insecure connection, the host and port endpoints listed in the BI_DIR_IIOP should not contain the
details of the secure connection mechanism if insecure callbacks to the client’s secure objects would be a violation of the
client’s security policy.

It is the ORB’s responsibility to ensure that an IOR contains an appropriate address.

9.8.1.1 IIOP/SSL considerations

Bi-directional IIOP can operate over IIOP/SSL without defining any additions to the IIOP/SSL or the bi-directional GIOP
mechanisms. However, if the client wants to authenticate the server when the client receives a callback this cannot be
done unless the client has already authenticated the server. This has to be performed during the initial SSL handshake. It
is not possible to do this at any point after the initial handshake without establishing a new SSL connection (which
defeats the purpose of the bi-directional connections).

9.9 Bi-directional GIOP policy
In GIOP protocol versions 1.0 and 1.1, there are strict rules on which side of a connection can issue what type of
messages (for example version 1.0 and 1.1 clients can not issue GIOP reply messages). However, as documented above,
it is sensible to relax this restriction if the ORB supports this functionality and policies dictate that bi-directional
connection are allowed. To indicate a bi-directional policy, the following is defined.

// Self contained module for Bi-directional GIOP policy

module BiDirPolicy {

typedef unsigned short BidirectionalPolicyValue;
const BidirectionalPolicyValue NORMAL = 0;
const BidirectionalPolicyValue BOTH = 1;

const CORBA::PolicyType BIDIRECTIONAL_POLICY_TYPE = 37;

interface BidirectionalPolicy : CORBA::Policy {
readonly attribute BidirectionalPolicyValue value;

};
};

A BidirectionalPolicyValue of NORMAL states that the usual GIOP restrictions of who can send what GIOP messages
apply (i.e., bi-directional connections are not allowed). A value of BOTH indicates that there is a relaxation in what party
can issue what GIOP messages (i.e., bi-directional connections are supported). The default value of a
BidirectionalPolicy is NORMAL.

In the absence of a BidirectionalPolicy being passed in the PortableServer::POA::create_POA operation, a POA
will assume a policy value of NORMAL.

A client and a server ORB must each have a BidirectionalPolicy with a value of BOTH for bi-directional
communication to take place.

To create a BidirectionalPolicy, the ORB::create_policy operation is used.
118 CORBA - Part 2: Interoperability, v3.3

9.10 OMG IDL
This sub clause contains the OMG IDL for the GIOP and IIOP modules.

9.10.1 GIOP Module

module GIOP { // IDL extended for version 1.1, 1.2, and later

struct Version {
octet major;
octet minor;

};

#if MAX_GIOP_MINOR_VERSION == 0
// GIOP 1.0
enum MsgType_1_0{ // rename from MsgType

Request, Reply, CancelRequest,
LocateRequest, LocateReply,
CloseConnection, MessageError
};

#else
// GIOP 1.1
enum MsgType_1_1{

Request, Reply, CancelRequest,
LocateRequest, LocateReply,
CloseConnection, MessageError,
Fragment // GIOP 1.1 addition

};
#endif // MAX_GIOP_MINOR_VERSION

// GIOP 1.0

typedef char Magicn[4]
struct MessageHeader_1_0 {// Renamed from MessageHeader

Magicn magic;
Version GIOP_version;
boolean byte_order;
octet message_type;
unsigned long message_size;

};

// GIOP 1.1
struct MessageHeader_1_1 {

Magicn magic;
Version GIOP_version;
octet flags; // GIOP 1.1 change
octet message_type;
unsigned long message_size;

};
CORBA - Part 2: Interoperability, v3.3 119

// GIOP 1.2 and later
typedef MessageHeader_1_1 MessageHeader_1_2;
typedef MessageHeader_1_1 MessageHeader_1_3;

// GIOP 1.0

struct RequestHeader _1_0 {
IOP::ServiceContextList service_context;
unsigned long request_id;
boolean response_expected;
IOP::ObjectKey object_key;
string operation;
CORBA::OctetSeq requesting_principal;

};

// GIOP 1.1
typedef octet RequestReserved[3];
struct RequestHeader_1_1 {

IOP::ServiceContextList service_context;
unsigned long request_id;
boolean response_expected;

 RequestReserved reserved; // Added in GIOP 1.1
IOP::ObjectKey object_key;
string operation;
CORBA::OctetSeq requesting_principal;

};

// GIOP 1.2, and later
typedef short AddressingDisposition;
const short KeyAddr = 0;
const short ProfileAddr = 1;
const short ReferenceAddr = 2;

struct IORAddressingInfo {
unsigned long selected_profile_index;
IOP::IOR ior;

};

union TargetAddress switch (AddressingDisposition) {
case KeyAddr: IOP::ObjectKey object_key;
case ProfileAddr: IOP::TaggedProfile profile;
case ReferenceAddr: IORAddressingInfo ior;

};

struct RequestHeader_1_2 {
unsigned long request_id;

octet response_flags;
 RequestReserved reserved; // Added in GIOP 1.1

TargetAddress target;
string operation;
120 CORBA - Part 2: Interoperability, v3.3

// requesting_principal not in GIOP 1.2 and later
IOP::ServiceContextList service_context; // 1.2 change

};

#if MAX_GIOP_MINOR_VERSION < 2

// GIOP 1.0 and 1.1
enum ReplyStatusType_1_0 {// Renamed from ReplyStatusType

NO_EXCEPTION,
USER_EXCEPTION,
SYSTEM_EXCEPTION,
LOCATION_FORWARD

};

// GIOP 1.0
struct ReplyHeader_1_0 {// Renamed from ReplyHeader

IOP::ServiceContextList service_context;
unsigned long request_id;
ReplyStatusType_1_0 reply_status;

};

// GIOP 1.1
typedef ReplyHeader_1_0 ReplyHeader_1_1;
// Same Header contents for 1.0 and 1.1

#endif // MAX_GIOP_VERSION_NUMBER

#if MAX_GIOP_MINOR_VERSION >= 2

// GIOP 1.2, and later
enum ReplyStatusType_1_2 {

NO_EXCEPTION,
USER_EXCEPTION,
SYSTEM_EXCEPTION,
LOCATION_FORWARD,
LOCATION_FORWARD_PERM, // new value for 1.2
NEEDS_ADDRESSING_MODE // new value for 1.2

};

struct ReplyHeader_1_2 {
unsigned long request_id;
ReplyStatusType_1_2 reply_status;
IOP::ServiceContextList service_context; // 1.2 change

};
typedef ReplyHeader_1_2 ReplyHeader_1_3;

#endif // MAX_GIOP_VERSION_NUMBER

struct SystemExceptionReplyBody {
string exception_id;
unsigned long minor_code_value;
CORBA - Part 2: Interoperability, v3.3 121

unsigned long completion_status;
};

struct CancelRequestHeader {
 unsigned long request_id;
};

// GIOP 1.0
struct LocateRequestHeader_1_0 {

// Renamed LocationRequestHeader
unsigned long request_id;
IOP::ObjectKey object_key;

};

// GIOP 1.1
typedef LocateRequestHeader_1_0 LocateRequestHeader_1_1;
// Same Header contents for 1.0 and 1.1

// GIOP 1.2 and later
struct LocateRequestHeader_1_2 {

unsigned long request_id;
TargetAddress target;

};
typedef LocateRequestHeader_1_2 LocateRequestHeader_1_3;

#if MAX_GIOP_MINOR_VERSION < 2

// GIOP 1.0 and 1.1
enum LocateStatusType_1_0 {// Renamed from LocateStatusType

UNKNOWN_OBJECT,
OBJECT_HERE,
OBJECT_FORWARD

};

// GIOP 1.0
struct LocateReplyHeader_1_0 {

// Renamed from LocateReplyHeader
unsigned long request_id;
LocateStatusType_1_0 locate_status;

};

// GIOP 1.1
typedef LocateReplyHeader_1_0 LocateReplyHeader_1_1;
// same Header contents for 1.0 and 1.1

#else
// GIOP 1.2, and later
enum LocateStatusType_1_2 {

UNKNOWN_OBJECT,
OBJECT_HERE,
OBJECT_FORWARD,
122 CORBA - Part 2: Interoperability, v3.3

OBJECT_FORWARD_PERM, // new value for GIOP 1.2
LOC_SYSTEM_EXCEPTION, // new value for GIOP 1.2
LOC_NEEDS_ADDRESSING_MODE // new value for GIOP 1.2

};

struct LocateReplyHeader_1_2 {
unsigned long request_id;
LocateStatusType_1_2 locate_status;

};
typedef LocateReplyHeader_1_2 LocateReplyHeader_1_3;

#endif // MAX_GIOP_VERSION_NUMBER

// GIOP 1.2, and later
struct FragmentHeader_1_2 {

unsigned long request_id;
};
typedef FragmentHeader_1_2 FragmentHeader_1_3;

};

9.10.2 IIOP Module

module IIOP { // IDL extended for version 1.1, 1.2, and later
struct Version {

octet major;
octet minor;

};

struct ProfileBody_1_0 {// renamed from ProfileBody
Version iiop_version;
string host;
unsigned short port;
IOP::ObjectKey object_key;

};

struct ProfileBody_1_1 {// also used for 1.2, and later
Version iiop_version;
string host;
unsigned short port;
IOP::ObjectKey object_key;

// Added in 1.1 unchanged for 1.2, and later
 IOP::TaggedComponentSeq components;
};

struct ListenPoint {
string host;
unsigned short port;

};
CORBA - Part 2: Interoperability, v3.3 123

typedef sequence<ListenPoint> ListenPointList;

struct BiDirIIOPServiceContext {// BI_DIR_IIOP Service Context
ListenPointList listen_points;

};
};

9.10.3 BiDirPolicy Module

// Self contained module for Bi-directional GIOP policy

module BiDirPolicy {

typedef unsigned short BidirectionalPolicyValue;
const BidirectionalPolicyValue NORMAL = 0;
const BidirectionalPolicyValue BOTH = 1;

const CORBA::PolicyType BIDIRECTIONAL_POLICY_TYPE = 37;

interface BidirectionalPolicy : CORBA::Policy {
readonly attribute BidirectionalPolicyValue value;

};
};
124 CORBA - Part 2: Interoperability, v3.3

10 Secure Interoperability

This clause defines the CORBA Security Attribute Service (SAS) protocol and its use within the CSIv2 architecture to
address the requirements of CORBA security for interoperable authentication, delegation, and privileges.

10.1 Overview
The SAS protocol is designed to exchange its protocol elements in the service context of GIOP request and reply
messages that are communicated over a connection-based transport. The protocol is intended to be used in environments
where transport layer security, such as that available via SSL/TLS or SECIOP, is used to provide message protection (that
is, integrity and or confidentiality) and server-to-client authentication. The protocol provides client authentication,
delegation, and privilege functionality that may be applied to overcome corresponding deficiencies in an underlying
transport.1 The SAS protocol facilitates interoperability by serving as the higher-level protocol under which secure
transports may be unified.

The SAS protocol is divided into two layers:

• The authentication layer is used to perform client authentication where sufficient authentication could not be
accomplished in the transport.

• The attribute layer may be used by a client to push (that is, deliver) security attributes (identity and privilege) to a target
where they may be applied in access control decisions.

The attribute layer also provides a means for a client to assert identity attributes that differ from the client’s authentication
identity (as established in the transport and/or SAS authentication layers). This identity assertion capability is the
foundation of a general-purpose impersonation mechanism that makes it possible for an intermediate to act on behalf of
some identity other than itself. An intermediate’s authority to act on behalf of another identity may be based on trust by
the target in the intermediate, or on trust by the target in a privilege authority that endorses the intermediate to act as
proxy for the asserted identity. Identity assertion may be used by an intermediate to assume the identity of its callers in its
calls.

The SAS protocol is modeled after the Generic Security Service API (GSSAPI) token exchange paradigm. A client
initiates a context exchange by including a protocol element in the service context of its request that instructs the target to
initiate a security context. The target either rejects or accepts the context.2 When a target rejects a context, the target will
reject the request and return an exception that contains a SAS protocol element that identifies the reason the context was
rejected. When a target accepts a context, the reply to the request will carry a SAS protocol element that indicates that the
context was accepted.

The SAS protocol element sent to initiate a security context carries layer-specific security tokens as necessary to establish
the SAS authentication-layer and attribute-layer functionality corresponding to the context. Standard token formats are
employed to represent the layer-specific authentication and attribute tokens. If the context includes SAS authentication-
layer functionality, the protocol element will contain a mechanism-specific GSSAPI initial context token that
authenticates the client to the target. If the context includes attribute-layer privilege attributes (and possibly proxy

1. For example, the SSL/TLS protocol does not enforce client authentication. Moreover, in a given environment, certificate-based cli-
ent authentication may not be feasible because clients often do not have a certificate.

2. In the GSSAPI protocol, a target can challenge a client for additional context-establishment information. This is not true of the
SAS context protocol, which assumes that at most one message in each direction may be used to establish a context.
CORBA - Part 2: Interoperability, v3.3 125

endorsements), they will be contained in an attribute certificate signed by a privilege authority and corresponding to the
subject of the invocation. If the context includes an attribute-layer identity assertion, the asserted identity will be
represented in a standard name form corresponding to the technology domain of the asserted identity.

The SAS protocol supports the establishment of both transient and reusable security contexts. Transient contexts, also
known as stateless contexts, exist only for the duration of the GIOP request that was used to establish the context.
Reusable contexts, also known as stateful contexts, endure until they are discarded, and can be referenced for use with
subsequent requests. The SAS protocol includes a simple negotiation protocol that defines a least-common-denominator
form of interoperability between implementations that support only transient contexts and those that support both
transient and reusable forms.

10.1.1 Assumptions

The SAS protocol was designed under the following assumptions:

• Secure interoperability is predicated on the use of a common transport-layer security mechanism, such as that provided
by SSL/TLS.3

• The transport layer provides message protection as necessary to protect GIOP input and output request arguments.

• The transport layer provides target-to-client authentication as necessary to identify the target for the purpose of
ensuring that the target is the intended target.

• Transport-layer security can ensure that the client does not have to issue a preliminary request to establish a
confidential association with the intended target.4

• To support clients that cannot authenticate using transport-layer security mechanisms, the SAS protocol shall provide
for client authentication above the transport layer.

• To support the formation of security contexts using GIOP service context, the SAS protocol shall require at most one
message in each direction to establish a security context.

• The protocol shall support security contexts that exist only for the duration of a single request/reply pair.

• The protocol shall support security contexts that can be reused for multiple request/reply pairs.

• Targets cannot rely on clients to manage the lifecycle of reusable security contexts accepted by the target.

• Clients that reuse security contexts shall be capable of processing replies that indicate that the context has been
discarded by the target.

3. Transport security mechanisms include unprotected transports within trusted environments.
4. This assumption does not preclude the use of such mechanisms, but rather sustains the use of this protocol in environments where

such mechanisms are not considered favorably.
126 CORBA - Part 2: Interoperability, v3.3

Figure 10.1 - CSIv2 Security Architecture

10.2 Protocol Message Definitions

10.2.1 The Security Attribute Service Context Element

This specification defines a new GIOP service context element type, the security attribute service (SAS) element. The
SAS context element may be used to associate any or all of the following contexts with GIOP request and reply messages:

• Identity context, to be accepted based on trust

• Authorization context, including authorization-based delegation context

• Client authentication context

A new context_id has been defined for the SAS element.

const ServiceId SecurityAttributeService = 15;

The context_data of a SAS element is an encapsulation octet stream containing a SAS message body marshaled
according to the CDR encoding rules. The formats of the SAS message bodies are defined in the next sub clause.

struct ServiceContext {
ServiceId context_id;
sequence <octet> context_data;

};

At most one instance of this new service context element may be included in a GIOP request or reply.

10.2.2 SAS context_data Message Body Types

Four message types comprise the security attribute service context management protocol. Each security attribute service
context element shall contain a message body that carries one of the following message body types:

Security Attribute Layer

Supplemental Client
Authentication Layer

Transport Layer

SAS Service

Message Protection
Target-to-Client Authentication

Client Authentication

Client Authentication

Identity Assertion
Pushed Privilege Attributes

Proxy Endorsement

Context Protocol

SSL/TLS or SECIOP
CORBA - Part 2: Interoperability, v3.3 127

• EstablishContext
Sent by a client security service (CSS) to establish a security attribute service context.

• ContextError
Sent by a target security service (TSS) to indicate errors that were encountered in context creation, in the
message protocol, or in use of a context.

• CompleteEstablishContext
Sent by a target security service (TSS) to indicate the outcome of a successful request to establish a security
attribute service context.

• MessageInContext
Sent by a client security service (CSS) to associate request messages with an existing stateful security attribute
service context. This message may also be used to indicate that the context should be discarded after processing
the request. Stateful contexts, also known as reusable contexts, endure until they are discarded, and can be
referenced for use with subsequent requests.

A client security service (CSS) is the security service associated with the ORB that is used by the client to invoke the
target object. A target security service (TSS) is the security service associated with the ORB that hosts the target object.

10.2.2.1 EstablishContext Message Format

An EstablishContext message is sent by a CSS to establish a SAS context with a TSS. The SAS context and the context
identifier allocated by the CSS to refer to it are scoped to the transport layer connection or association over which the
CSS and TSS are communicating. When an association is dismantled, all SAS contexts scoped to the connection shall be
invalidated and may be discarded. The EstablishContext message contains the following fields:

• client_context_id
The CSS allocated identifier for the security attribute service context. A stateless CSS shall set the
client_context_id to 0, indicating to the TSS that it is stateless. A stateful CSS may allocate a nonzero
client_context_id. See Stateful/Reusable Contexts on page 141 for a definition of the rules governing the
use and allocation of context identifiers.

• authorization_token
May be used by a CSS to “push” privilege information to a TSS. A CSS may use this token to send proxy
privileges to a TSS as a means to enable the target to issue calls as the client.

• identity_token
Carries a representation of the invocation identity for the call (that is, the identity under which the call is to be
authorized). The identity_token carries a representation of the invocation identity in one of the following
forms:
• A typed mechanism-specific representation of a principal name.
• A chain of identity certificates representing the subject and a chain of verifying authorities.
• A distinguished name.
• The anonymous principal identity (a type, not a name).

An identity_token is used to assert a caller identity when that identity differs from the identity proven by
authentication in the authentication layer(s). If the caller identity is intended to be the same as that
established in the authentication layer(s), then it does not need to be asserted in an identity_token.

• client_authentication_token

Carries a mechanism-specific GSS initial context token that authenticates the client to the TSS. It contains a
mechanism type identifier and the mechanism-specific evidence (that is, the authenticator) required by the
TSS to authenticate the client.
128 CORBA - Part 2: Interoperability, v3.3

When an initial context token contains private credentials, such as a password, this message may be safely
sent only after a confidential connection with a trusted TSS has been established. The determination of when
it is safe to send a client authentication token in an EstablishContext message shall be considered in the
context of the CORBA location-binding paradigm for persistent objects (where an invocation may be
“location forwarded” by a location daemon to the target object). This issue is considered in Client-Side
Requirements and Location Binding on page 160.

When a TSS is unable to validate a security attribute service context, the TSS shall not dispatch on the target object
method invocation. The TSS shall reply with a ContextError message that carries major and minor codes indicating the
reason for the failure.

If an EstablishContext message contains an identity token, then it is the responsibility of the TSS to extract a principal
identity from the identity token and determine if the identity established in the authentication layer(s) is trusted to assert
the extracted identity. If so, the asserted identity is used as the caller identity in the target’s authorization determination.

The processing of a request to establish a context that arrives on a one-way call shall be the same as an ordinary call,
except that the TSS will not send an indication of the success (CompleteEstablishContext) or failure (ContextError)
of the context validation.

10.2.2.2 ContextError Message Format

A ContextError message is sent by a TSS in response to an EstablishContext or MessageInContext message to
indicate to the client that the TSS detected an error. CSS State Machine on page 145 defines the circumstances under
which a TSS returns specific error values and exceptions. The ContextError message contains the following fields:

• client_context_id
The value of the client_context_id that identifies the CSS context in the EstablishContext or
MessageInContext message in response to which the ContextError is being returned.

• major_status
The reason the TSS rejected the context.

• minor_status
A more specific error code that further defines the reason for rejection in the context of the major status.

• error_token
A GSS mechanism-specific error token. When an EstablishContext message is rejected because it contains
a client_authentication_token (a GSS initial context token) that is invalidated by the TSS, then depending
on the mechanism, the TSS may return a CDR encapsulation of a mechanism-specific GSS error token in this
field. Not all GSS mechanisms produce error tokens in response to initial context token validation failures.

In all circumstances where a TSS returns a ContextError, the GIOP request that carried the rejected SAS context shall
not be dispatched by the target ORB.

10.2.2.3 CompleteEstablishContext Message Format

A CompleteEstablishContext message is sent by a TSS in response to an EstablishContext message to indicate that
the context was established. The CompleteEstablishContext message contains the following fields:

• client_context_id
The CSS allocated identifier for the security attribute context. It is returned by the target so that a stateful
CSS can link this message to the EstablishContext request. A TSS shall always return the value of the
client_context_id it received in the EstablishContext message.

CORBA - Part 2: Interoperability, v3.3 129

• context_stateful
The value returned by the TSS to indicate whether or not the established context is stateful, and thus reusable.
A stateless TSS shall always return false. A stateful TSS shall return true if the established context is reusable.
Otherwise a stateful TSS shall return false.

• final_context_token
The GSS mechanism-specific final context token that is returned by a TSS if the client requests mutual
authentication. When a TSS accepts an EstablishContext message containing an initial context token that
requires mutual authentication, the TSS shall return a mechanism-specific final context token. Not all GSS
mechanisms support mutual authentication, and thus not all responses to initial context tokens may include
final (or output) context tokens.5

When a CompleteEstablishContext message contains a final_context_token, the token shall be
applied (with GSS_Init_sec_context) to the client-side GSS state machine.

Two or more stateful SAS contexts are equivalent if they are established over the same transport layer connection or
association, have the same non-zero client_context_id and have byte-equivalent identity, authorization, and
authentication tokens.

A multithreaded CSS may issue multiple concurrent requests to establish (that is, with an EstablishContext message)
an equivalent stateful SAS context.

A TSS shall not create a duplicate stateful SAS context in response to a request to establish a context that is equivalent to
an existing context.

A TSS shall return an exception containing a ContextError service context element if it receives a stateful
EstablishContext message with a client_context_id that matches that of an existing context (established over the
same transport layer connection or association) and for which any of the security tokens arriving in the message are not
byte-equivalent to those recorded in the existing context. The request shall also be rejected. The exception and error values
to be returned are defined in CSS State Machine on page 145.

5. SAS layer authentication capabilities are designed to authenticate client to server where such authentication did not occur in the
transport. The SAS protocol is predicated on server-to-client authentication having occurred in the transport layer, and in advance
of the request. Server-to-client authentication in service context (which requires that the target return a final_context_token) is not
the typical use model for SAS layer authentication capabilities.

Table 10.1- CompleteEstablishContext Message Semantics

client_context_id in
EstablishContext
Message

client_context_id in
CompleteEstablishContext
Message

context_stateful in
CompleteEstablishContext
Message

Semantic

0 0 False Client requested stateless context.

N != 0 N False TSS is stateless or TSS did not
choose to remember context. In
either case, if the client attempts to
reuse the context (via
MessageInContext) it should expect
to receive an error.

True Stateful TSS accepted reusable
context.
130 CORBA - Part 2: Interoperability, v3.3

10.2.2.4 MessageInContext Message Format

A MessageInContext message is used by a CSS that wishes to reuse an existing context with a request. A CSS may
also use this message to release context that it has established with a stateful TSS. The MessageInContext message
contains the following fields:

• client_context_id
The nonzero context identifier allocated by the client in the EstablishContext message used to create the
context.

• discard_context
A boolean value that indicates whether the CSS wishes the TSS to discard the context after it processes the
request. A value of true indicates that the CSS wishes the context to be discarded, a value of false, indicates that
it does not. The purpose of the discard_context field is to allow a CSS to help a TSS manage the cleanup of
reusable contexts.6

Any request message may be used to carry a MessageInContext message to a target. A TSS that receives a
MessageInContext message shall complete the processing of the request before it discards the context (if
discard_context is set to true).

A TSS may receive a MessageInContext message that refers to a context that does not exist at the TSS. This can occur
either because the context never existed at the TSS or because it has been discarded by the TSS. In either case, the TSS
shall return an exception containing a ContextError service context element with major and minor error codes indicating
that the referenced context does not exist. The exception and error values to be returned are defined in CSS State
Machine on page 145.

The processing of a MessageInContext message that arrives on a one-way call shall be the same as for an ordinary call,
except that the TSS will not return a ContextError when the referenced context does not exist.

10.2.3 Authorization Token Format

The authorization_token field of the EstablishContext message of the Security Attribute Service context element is
used to carry a sequence (0 or more) of typed representations of authorization data. The AuthorizationElementType
defines the contents and encoding of the contents of the_element field.

The high order 20-bits of each AuthorizationElementType constant shall contain the Vendor Minor Codeset ID
(VMCID) of the organization that defined the element type. The low order 12 bits shall contain the organization-scoped
element type identifier. The high-order 20 bits of all element types defined by the OMG shall contain the VMCID
allocated to the OMG (that is, 0x4F4D0).

Organizations must register their VMCIDs with the OMG before using them to define an AuthorizationElementType.

typedef unsigned long AuthorizationElementType;

typedef sequence <octet> AuthorizationElementContents;

struct AuthorizationElement {
AuthorizationElementType the_type;
AuthorizationElementContents the_element;

6. Stateful clients are under no obligation to manage TSS state, so their use of this message for that purpose is discretionary.
CORBA - Part 2: Interoperability, v3.3 131

};
typedef sequence <AuthorizationElement> AuthorizationToken;

const AuthorizationElementType X509AttributeCertChain = OMGVMCID | 1;

This specification has defined one element encoding type, an X509AttributeCertChain. For this type, the field
the_element contains an octet stream containing an ASN.1 type composed of an X.509 AttributeCertificate and a
sequence of 0 or more X.509 Certificates. The corresponding ASN.1 definition appears below:

VerifyingCertChain ::= SEQUENCE OF Certificate

AttributeCertChain ::= SEQUENCE {
attributeCert AttributeCertificate,
certificateChain VerifyingCertChain,

}

The chain of identity certificates may be provided to certify the attribute certificate. Each certificate in the chain shall
directly certify the one preceding it. The first certificate in the chain shall certify the attribute certificate. The ASN.1
representation of Certificate shall be as defined in [IETF RFC 2459]. The ASN.1 representation of AttributeCertificate
shall be as defined in [IETF ID PKIXAC].

10.2.3.1 Extensions of the IETF AC Profile for CSIv2

The extensions field of the X.509 Attribute Certificates (AC) provides for the association of additional attributes with
the holder or subject of the AC.

Each extension includes an extnID (an object identifier), an extnValue (an octet string), and a critical field (a boolean).
The extnID identifies the extension, and the extnValue contains the value of the instance of the identified extension. The
critical field indicates whether a certificate-using system shall reject the certificate if it does not recognize the extension.
If the critical field is set to TRUE and the extension is not recognized (by its extnID), then the certificate shall be
rejected. A non-critical extension that is not recognized may be ignored.

Extensions ::= SEQUENCE SIZE (1..MAX) OF Extension

Extension ::= SEQUENCE {
extnID OBJECT IDENTIFIER,
critical BOOLEAN DEFAULT FALSE,
extnValue OCTET STRING

}

[IETF ID PKIXAC] defines a profile for ACs that defines a collection of extensions that may be used in ACs that
conform to the profile. An AC that includes any subset of these extensions conforms to the profile. An AC that includes
any other critical extension does not conform to the profile. An AC that includes any other non-critical extension
conforms to the profile.

The CSIv2 AC profile adds the Proxy Info extension to the collection of extensions defined by the IETF profile. This
critical extension may be used to define who may act as proxy for the AC subject. Refer to [IETF ID PKIXAC] for the
details of the format and semantics of the Proxy Info extension.
132 CORBA - Part 2: Interoperability, v3.3

A TSS shall reject a security context that contains an authorization element of type X509AttributeCertChain that
contains critical extensions or attributes not recognized by the TSS. In this case, the TSS shall return a ContextError
service context element containing major and minor error codes indicating the evidence is invalid (that is, “Invalid
evidence”) as defined in ContextError Values and Exceptions on page 148.

10.2.4 Client Authentication Token Format

A CSIv2 client authentication token is a mechanism-specific GSS initial context token. It contains a mechanism type
identifier (an object identifier) and the mechanism-specific evidence (that is, the authenticator) required to authenticate
the client.

The following ASN.1 basic token definition describes the format of all GSSAPI initial context tokens. The definition of
the inner context tokens is mechanism-specific.

-- basic Token Format
[APPLICATION 0] IMPLICIT SEQUENCE {

thisMech MechType
-- MechType is an Object Identifier

innerContextToken ANY DEFINED BY thisMech
-- contents mechanism specific

};

The client authentication token has been designed to accommodate the initial context token corresponding to any GSSAPI
mechanism. Implementations are free to employ GSSAPI mechanisms other than those required for conformance to
CSIv2, such as Kerberos.

The format of the mechanism OID in GSS initial context tokens is defined in [IETF RFC 2743] 3.1, “Mechanism-
Independent Token Format,” pp. 81-82.

10.2.4.1 Username Password GSS Mechanism (GSSUP)

This specification defines a GSSAPI mechanism to support the delivery of authentication secrets above the transport such
that they may be applied by a TSS to authenticate clients at shared secret authentication systems.

The GSSUP mechanism assumes that transport layer security, such as that provided by SSL/TLS, will be used to achieve
confidentiality and trust in server, such that the contents of the initial context token do not have to be protected against
exposures that occur as the result of networking.

The object identifier allocated for the GSSUP mechanism is defined as follows:

{ iso-itu-t (2) international-organization (23) omg (130) security (1) authentication (1)
gssup-mechanism (1) }

10.2.4.1.1 GSSUP Initial Context Token

For the GSSUP mechanism, only an inner context token corresponding to the initial context token is defined.

The format of a GSSUP initial context token shall be as defined in [IETF RFC 2743] 3.1, “Mechanism-Independent
Token Format,” pp. 81-82. This GSSToken shall contain an ASN.1 tag followed by a token length, an authentication
mechanism identifier, and a CDR encapsulation containing a GSSUP inner context token as defined by the type
GSSUP::InitialContextToken in Module GSSUP - Username/Password GSSAPI Token Formats on page 172 (and
repeated below).
CORBA - Part 2: Interoperability, v3.3 133

// GSSUP::InitialContextToken

struct InitialContextToken {
CSI::UTF8String username;
CSI::UTF8String password;
CSI::GSS_NT_ExportedName target_name;

};

The target_name field of the GSSUP::InitialContextToken contains the name of the authentication domain in which
the client is authenticating. This field aids the TSS in processing the authentication should the TSS support several
authentication domains. A CSS shall fill the target_name field of the GSSUP::InitialContextToken with the contents
of the target_name field of the CSIIOP::AS_ContextSec structure of the chosen CSI mechanism.

The format of the name passed in the username field depends on the authentication domain. If the mechanism identifier
of the target domain is GSSUP, then the format of the username shall be a Scoped-Username (with name_value) as
defined in Scoped-Username GSS Name Form on page 136.

10.2.4.1.2 GSSUP Mechanism-Specific Error Token

The GSSUP mechanism-specific error token contains a GSSUP fatal error code.

typedef unsigned long ErrorCode;

// GSSUP Mechanism-Specific Error Token
struct ErrorToken {

ErrorCode error_code;
};

The following fatal error codes are defined by the GSSUP mechanism:

// The context validator has chosen not to reveal the GSSUP
// specific cause of the failure.
const ErrorCode GSS_UP_S_G_UNSPECIFIED = 1;

// The user identified in the username field of the
// GSSUP::InitialContextToken is unknown to the target.
const ErrorCode GSS_UP_S_G_NOUSER = 2;

// The password supplied in the GSSUP::InitialContextToken was
// incorrect.
const ErrorCode GSS_UP_S_G_BAD_PASSWORD = 3;

// The target_name supplied in the GSSUP::InitialContextToken does
// not match a target_name in a mechanism definition of the target.
const ErrorCode GSS_UP_S_G_BAD_TARGET = 4;

A TSS is under no obligation to return a GSSUP error token; however, returning this token may facilitate the transition of
the client-side GSS state machine through error processing. Accordingly, a TSS may indicate that SAS context validation
failed in GSSUP client authentication by returning a GSSUP error token in a SAS ContextError message. In this case, a
TSS that chooses not to reveal specific information as to the cause of the failed GSSUP authentication shall return a status
value of GSS_UP_S_G_UNSPECIFIED.
134 CORBA - Part 2: Interoperability, v3.3

10.2.5 Identity Token Format

An identity token is used in an EstablishContext message to carry a “spoken for” or asserted identity. The following
table lists the five identity token types and defines the type of identity value that may be carried by each of the token
types.

In addition to the identity token types described in the following table, the IdentityTokenType as defined in Module CSI
- Common Secure Interoperability on page 173 provides for the definition of additional CSIv2 identity token types
through the default selector of the IdentityToken union type. Additional standard identity token types shall only be
defined by the OMG. All IdentityTokenType constants shall be a power of 2.

Identity tokens of type ITTX509CertChain contain an ASN.1 encoding of a sequence of 1 or more X.509 certificates.
The asserted identity may be extracted as a distinguished name from the subject field of the first certificate. Subsequent
certificates shall directly certify the certificate they follow. The ASN.1 encoding of identity tokens of this type is defined
as follows:

CertificateChain ::= SEQUENCE SIZE (1..MAX) OF Certificate

Interpretation of identity tokens that carry a GSS mechanism-independent exported name object (that is, an identity token
type of ITTPrincipalName) is dependent on support for GSS mechanism-specific name manipulation functionality.

When a TSS rejects a request because it carries an identity token constructed using an identity type or naming mechanism
that is not supported by the target, the TSS shall return a ContextError service context element containing major and
minor status codes indicating the mechanism was invalid.

Asserting entities may choose to overcome limitations in a target’s supported mechanisms by mapping GSS mechanism-
specific identities to distinguished names or certificates. The specifics of such mapping mechanisms are outside the scope
of this specification.

10.2.5.1 GSS Exported Name Object Form for GSSUP Mechanism

The mechanism OID within the exported name object shall be that of the GSSUP mechanism.

{ iso-itu-t (2) international-organization (23) omg (130) security (1) authentication (1)
gssup-mechanism (1) }

Table 10.2 - Identity Token Types

IdentityTokenType
(Union Discriminator)

Meaning

ITTAbsent Identity token is absent; the message conveys no representation of identity assertion.

ITTAnonymous Identity token is being used to assert a valueless representation of an unauthenticated caller.

ITTPrincipalName Identity token contains an octet stream containing a GSS mechanism-independent exported name
object as defined in [IETF RFC 2743].

ITTDistinguishedName Identity token contains an octet stream containing an ASN.1 encoding of an X.501 distinguished
name.

ITTX509CertChain Identity token contains an octet stream containing an ASN.1 encoding of a chain of X.509 identity
certificates.
CORBA - Part 2: Interoperability, v3.3 135

The name component within the exported name object shall be a contiguous string conforming to the syntax of the
scoped-username GSS name form. The encoding of GSS mechanism-independent exported name objects is defined in
[IETF RFC 2743].

10.2.5.2 Scoped-Username GSS Name Form

The scoped-username GSS name form is defined as follows, where name_value and name_scope contain a sequence
of 1 or more UTF8 encoded characters.

scoped-username ::= name_value | name_value@name_scope | @name_scope

The '@' character shall be used to delimit name_value from name_scope. All non-delimiter instances of '@' and all
non-quoting instances of '\' shall be quoted with an immediately-preceding '\'. Except for these cases, the quoting
character, '\', shall not be emitted within a scoped-username.

The Object Identifier corresponding to the GSS scoped-username name form is:

{ iso-itu-t (2) international-organization (23) omg (130) security (1) naming (2) scoped-username(1) }

The identity token for ITTPrincipalName, ITTDistinguishedName, ITTX509CertChain should contain their
respective ASN.1 encodings of the name directly. However, the token may contain a CDR encapsulation of the octet
stream that contains the ASN.1 encoding of the name. The TSS shall distinguish the difference by the first octet of the
field. The values of 0x00 or 0x01 shall indicate that the field contains a CDR encapsulation. Any other value indicates the
field for these identity token types contains the ASN.1 encoded value. For instance, the ASN.1 encoding for
ITTPrincipalName starts with 0x04, and ITTDistinguishedName and ITTX509CertChain each start with 0x30. The
TSS shall accept both the CDR encapsulation form and the direct ASN.1 encoding for these identity token types.

10.2.6 Principal Names and Distinguished Names

Principal names are carried in EstablishContext messages of the SAS protocol, where they may appear in the
identity_token (the ITTPrincipalName discriminated type of an IdentityTokenType) or in the
client_authentication_token, which is a GSS initial context token.

Principal names are also present in the compound mechanisms defined within a TAG_CSI_SEC_MECH_LIST tagged
component within IORs. The target_name field of the AS_ContextSec structure may contain a sequence of principal
names corresponding to the authentication identities of the target (see struct AS_ContextSec on page 155). A principal
name may be used as one variant of the ServiceSpecificName form used to identify one of the privilege_authorities
within the SAS_ContextSec structure of a compound mechanism definition within a target IOR (see struct
SAS_ContextSec on page 156).

The principal names appearing in initial context tokens are in mechanism-specific; that is, internal form, and may be
converted to GSS mechanism-independent exported name object format; that is, an external form by calling a mechanism-
specific implementation of GSS_Export_name. The inverse translation is performed by a mechanism-specific
implementation of GSS_Import_name. A mechanism-specific implementation of GSS_Display_name allows its
caller to convert an internal name representation into a printable form with an associated mechanism type identifier.7

7. As defined in IETF RFC 2743 on page 172, “Generic Security Service Application Program Interface Version 2, Update 1”, J.
Linn, January 2000.
136 CORBA - Part 2: Interoperability, v3.3

The principal names in identity tokens — those in the target_name field of AS_ContextSec structures and those in the
privilege_authorities field of SAS_ContextSec structures — are in external form (GSS_NT_ExportedName), and
may be converted to internal form by calling the appropriate mechanism-specific GSS_import_name function.

Distinguished names may appear within an identity token, either as an asserted identity or indirectly as the subject
distinguished name within an asserted X.509 Identity Certificate. Distinguished names may also be derived from the
underlying transport authentication layer if client authentication is done using SSL certificates. Distinguished names may
also be used as a form of GeneralName in the GeneralNames variant of the ServiceSpecificName type. The
ServiceSpecificName type is used to identify privilege_authorities within the SAS_ContextSec structure of a
compound mechanism definition within a target IOR.

10.3 Security Attribute Service Protocol

10.3.1 Compound Mechanisms

The SAS protocol combines common authorization (security attribute) functionality with client authentication
functionality and is intended to be used in conjunction with a transport-layer security mechanism, so that there may be as
many as three protocol layers of security functionality. This sub clause describes the semantics of the compound security
mechanisms that may be realized using this interoperability architecture.

The three protocol layers build on top of each other. The transport layer is at the bottom. The client authentication
functionality of the SAS protocol provides a way to layer additional client authentication functionality above the transport
layer. The common authorization functionality provides a way to layer security attribute functionality above the
authentication layers. Any or all of the layers may be absent.

A target describes in its IORs the CSI compound security mechanisms it supports. Each mechanism defines a combination
of layer-specific security functionality supported by the target, as defined in TAG_CSI_SEC_MECH_LIST on page 154.

The mechanisms a client uses to interact with a target shall be compatible with the target’s capabilities and sufficient to
satisfy its requirements.

10.3.1.1 Context Validation

A target indicates its requirements for client authentication in its IORs. The layers at which a CSS authenticates to a TSS
shall satisfy the requirements established by the target (see the description in Target Security Configuration on page 150).
When a CSS attempts to authenticate with a TSS using the client authentication functionality of the SAS context layer
protocol (by including a client_authentication_token in an EstablishContext message), the authentication context
established in the TSS will reflect the result of the service context authentication (after having satisfied the target’s
requirement for transport level authentication, if any).

If the service context authentication fails, the following shall happen:

• The request shall be rejected, whether or not authentication is required by the target.

• An exception containing a ContextError service context element shall be returned to the CSS. The ContextError
service context element shall contain major and minor status codes indicating that client authentication failed.

If the request does not include a client_authentication_token, the client authentication identity is derived from the
transport layer.

When a request includes an identity token, the TSS shall determine if the identity established as the client authentication
identity is trusted to assert the identity represented in the identity token.
CORBA - Part 2: Interoperability, v3.3 137

A TSS that does not support authorization-token-based delegation (see Conformance Levels on page 160) shall evaluate
trust by applying the client authentication identity and the asserted identity to trust rules stored at the target. We call the
evaluation of trust based on rules of the target a backward trust evaluation.

When a TSS that supports authorization-token-based delegation receives a request that includes both an identity token and
an authorization token with embedded proxy attributes, the TSS shall evaluate trust by determining whether the proxy
attributes were established (that is, signed) by a privilege authority acceptable to the target and whether the client
authentication identity is included in the identities named in the proxy attributes. We call the evaluation of trust based on
rules provided by the caller a forward trust evaluation. A TSS shall not accept requests that failed a forward trust
evaluation based on a backward trust evaluation.

A TSS shall determine that a trusted identity established in the authentication layer(s) is trusted to assert exactly the same
identity (in terms of identifier value and identification mechanism) in an identity token.

In either case of forward or backward trust evaluation, if trust is established, the context is considered correctly formed.
Otherwise, the TSS shall reject the request by returning an exception containing a ContextError service context element.
The ContextError element shall contain major and minor status codes indicating that the evidence was invalid.

If a request includes an authorization token but does not include an identity token, the TSS shall ensure that the access
identity named in the authorization token is the same as the client authentication identity. If the request includes an
identity token, the TSS shall ensure that the access identity is the same as the identity in the identity token. A TSS that
supports authorization-token-based privilege attributes shall reject any request that does not satisfy this constraint and
return an exception containing a ContextError service context element. The ContextError element shall contain major
and minor status codes indicating that the evidence was invalid.

When a request includes an authorization token, it is the responsibility of the TSS to determine if the target trusts the
authorities that signed the privileges in the token. A TSS that supports authorization-token-based privilege attributes shall
reject any request with an authorization token that contains privilege information signed by an authority that is not trusted
by the target. In this case, the TSS shall return an exception containing a ContextError service context element. The
ContextError element shall contain major and minor status codes indicating that the evidence was invalid.

10.3.1.2 Legend for Request Principal Interpretations

This sub clause serves as a key to the invocation scenarios represented in Table 10.3 on page 139, Table 10.4 on page 140,
and Table 10.5 on page 141. The three tables describe the interpretation of security context information arriving at a target
object from a calling object, object 2, that may have been called by another object, object 1. The authentication identity
of object 2, as seen by the target object, may have been established in the transport layer, or the SAS context layer, or
both. If the authentication identity was established at the transport layer it is referred to as P2A. If the authentication
identity was established at the SAS context layer, it is referred to as P2B. The authentication identity seen by object 2
when it is called by another object (that is, object 1) is referred to as P1, the authentication identity of object 1. No
distinction is made between the transport and SAS layer authentication identities of object 1 as seen by object 2. Object 1
may also call object 2 anonymously.

P1 is also used to represent a non-anonymous identity that may be asserted by object 2 when it calls the target object.
When object 2 calls the target object, it may include an asserted identity in the form of an identity token in its SAS layer
context. The asserted identity may be the anonymous identity or, a non-anonymous identity (represented by P1). When
object 2 asserts an identity to the target object, it may (or may not) establish proof of its own identity by authenticating at
either or both of the transport (P2A), or SAS (P2B) layers. When the target object receives a request made with an asserted
identity, the target object will determine if it trusts the client authentication identity (that of object 2, or P2) acting as
proxy for the asserted identity (that of object 1, or P1).
138 CORBA - Part 2: Interoperability, v3.3

When object 2 asserts a non-anonymous identity to the target object, it may include with its request a SAS layer
authorization token containing PACs. Each PAC may include an attribute that assigns proxy to a collection of identities
that are endorsed by the authority that created the PAC to assert the identity to which the privileges in the PAC apply.
When the target object receives a request made with an asserted identity and an authorization token containing proxy
rules, the target object will use the proxy rules to determine if it may trust the client authentication identity (P2A or P2B)
as proxy for the asserted identity(P1).

Figure 10.2 - Invocation Scenarios

10.3.1.3 Anonymous Identity Assertion

The anonymous identity is used to represent an unauthenticated entity. To assert an anonymous caller identity, a CSS
(perhaps acting as an intermediate) shall include a SAS context element containing an EstablishContext message with
an identity_token containing the anonymous IdentityTokenType in its request.

10.3.1.4 Presumed Trust

Presumed trust is a special case of the evaluation of identity assertions by a TSS. In presumed trust, a TSS accepts
identity assertions based on the fact of their occurrence and without consideration of the authentication identity of the
asserting entity. The presumption is that communications are constrained such that only trusted entities are capable of
asserting an identity to the TSS.

10.3.1.5 Failed Trust Evaluations

Table 10.3 shows the circumstances under which the interpretation of caller credentials by a TSS results in a failed trust
evaluation. None of these circumstances correspond to presumed trust, where trust evaluations are not performed (and
therefore cannot fail).

A failed trust evaluation shall result in the request being rejected with an indication that client authentication failed.

Table 10.3 - Conditions under which Trust Evaluation Fails

Transport Client
Principal

SAS Client Authentication
Principal

SAS Identity
Token Identity

Does Target Trust P2, or Is P2 Named as Proxy in
Authorization Elements?

None None P1 Not Applicable

None P2B P1 No (with respect to P2B)

P2A None P1 No (with respect to P2A)

P2A P2B P1 No (with respect to P2B)

object 1 Object 2
target
object

P1

SAS: P2B

Transport: P2AP2
CORBA - Part 2: Interoperability, v3.3 139

10.3.1.6 Request Principal Interpretations

The entries in Table 10.4 describe the interpretation of client credentials by a TSS after an incoming call has satisfied the
target’s security requirements and has been validated by the TSS.

The entries in Table 10.5 describe additional TSS interpretation rules to support delegation. These rules have been
separated from those in Table 10.4 on page 140, because they describe functionality required of implementations that
conform to a higher level of secure interoperability as defined in Conformance Level 2 on page 162. The entries in Table
10.5 correspond to invocations that carry an identity token and an authorization token with embedded delegation token (that
is, a proxy endorsement attribute) in an EstablishContext service context element. Invocations that do not carry all of these
tokens are represented in Table 10.4.

An authorization token may contain authorization elements that contain proxy statements, which endorse principals to
proxy for other entities. Table 10.5 describes delegation scenarios in which endorsements from the issuer of the
authorization element authorize the authenticated identity, which is P2A or P2B, to proxy for the asserted identity. In this
table, the column “Proxies Named in Authorization Element” defines the identities who are endorsed by the authorization
element to proxy for P1, the asserted identity and the subject of the authorization element. The value “Any” indicates that

Table 10.4 - TSS Interpretation of Client Credentials After Validation

Transport
Client
Principal

SAS Client
Authentication
Principal

SAS Identity
Token Identity

Client Principal is
Trusted

Invocation
Principal

Scenario

None None Absent Not applicable Anonymous Unauthenticated

None P2B Absent Not applicable P2 Client authentication

P2A None Absent Not applicable P2 Client authentication

P2A P2B (by rule 1a)

a. Rule 1: TSS trusts P2A to use authenticator for P2B is implied by P2B having been authenticated.

Absent Not applicable P2B Client authentication

None None P1 Yes if rule 2b

b. Rule 2: TSS presumes trust in transport to accept None, P2A, or P2B speaking for P1.

P1 identity assertion

None P2B P1 Yes if rule 2 or rule 3c

c. Rule 3: TSS trusts P2A, or P2B to speak for P1.

P1 identity assertion

P2A None P1 Yes if rule 2 or rule 3 P1 identity assertion

P2A P2B (by rule 1) P1 Yes if rule 2 or rule 3 P1 identity assertion

None None Anonymous Yes if rule 4d

d. Rule 4: TSS trusts None, P2A, or P2B to speak for Anonymous. A TSS shall support the configuration of rule 4, such that
Anonymous identity assertions are accepted independent of authentication of the asserter.

Anonymous assertion of anonymous

None P2B Anonymous Yes if rule 4 Anonymous assertion of anonymous

P2A None Anonymous Yes if rule 4 Anonymous assertion of anonymous

P2A P2B (by rule 1) Anonymous Yes if rule 4 Anonymous assertion of anonymous

none No SAS Message Not Applicable Anonymous Unauthenticated

P2 No SAS Message Not Applicable P2 Client authentication
140 CORBA - Part 2: Interoperability, v3.3

the authorization element contains a blanket endorsement, such that as far as its issuer is concerned, any identity may
proxy for P1. The outcomes described in Table 10.5 assume that the TSS trusts the issuer of the authorization element to
endorse principals to proxy for others.

10.3.2 Session Semantics

This sub clause describes the negotiation of security contexts between a CSS and a TSS. A TSS is said to be stateless if
it does not operate in the mode of accepting reusable (that is, stateful) security contexts. A TSS that accepts reusable
security contexts is said to be stateful. A CSS is said to be stateless if it operates in the mode of establishing transient,
non-reusable (that is, stateless) security contexts. A CSS that issues requests to establish reusable security contexts is said
to be stateful.

10.3.2.1 Negotiation of Statefulness

A client initiates a stateless interaction by specifying a client_context_id of 0. A client issues a request to establish a
stateful context by including a nonzero client_context_id in an EstablishContext message.

When a stateless TSS receives a request to establish a stateful session, the TSS shall attempt to validate the security
tokens bound to the request. If the validation fails, an exception containing an appropriate ContextError service context
element shall be returned to the client. If the validation succeeds, the TSS shall negotiate to stateless by responding with
a CompleteEstablishContext message with context_stateful set to false.

A client that initiates a stateful interaction shall be capable of accepting that the target negotiated the context to stateless.

10.3.2.2 Stateful/Reusable Contexts

Each transport layer session defines a context identifier number scope. The CSS selects context identifiers for use within
a scope.

A CSS may use the EstablishContext message to issue multiple concurrent requests to establish a stateful security
context within a scope.

To avoid duplicate sessions, when the stateful EstablishContext requests sent within a scope carry equivalent security
contexts, the CSS shall assign to them the same nonzero client_context_id.

Within a scope, a TSS shall reject any request to establish a stateful context that carries a different security context from
an established context with the same client_context_id. In this case, an exception containing a ContextError service
context element shall be returned to the caller.

Table 10.5 - Additional TSS Rules to Support Delegation

Transport
Client
Principal

SAS Client
Authentication
Principal

SAS Identity
Token Identity

Proxies Named in
Authorization Element

Invocation
Principal

Scenario

None P2B P1 Any P1 Delegation

P2A None P1 Any P1 Delegation

P2A P2B P1 Any P1 Delegation

None P2B P1 Restricted to set including P2B P1 Restricted delegation

P2A None P1 Restricted to set including P2A P1 Restricted delegation

P2A P2B P1 Restricted to set including P2B P1 Restricted delegation
CORBA - Part 2: Interoperability, v3.3 141

Two security contexts are equivalent if all of the authentication, identity, and authorization tokens match both in existence
and in value. Token values shall be evaluated for equivalence by comparing the corresponding byte sequences used to
carry the tokens in EstablishContext messages.

When a target that supports stateful contexts receives a request to establish a stateful context, the TSS shall attempt to
validate the security tokens in the EstablishContext element. If the validation succeeds, the request shall be accepted,
and the reply (if there is one) shall carry a CompleteEstablishContext element that indicates (that is,
context_stateful = true) that the context is available at the TSS for the caller’s reuse. If the validation fails, an
exception containing an appropriate ContextError service context element shall be returned to the caller.

A TSS that accepts stateful contexts shall bear the responsibility for managing the lifecycle of these sessions. Clients that
reuse stateful contexts shall capable of processing replies that indicate that an established stateful context has been
unilaterally discarded by the TSS.

A TSS shall not establish a stateful context in response to a request to establish a stateless context (that is, one with a
client_context_id of zero).

A TSS that supports stateful contexts may negotiate a request to establish a stateful context to a stateless context in order
to preserve resources. It may do so only if it does not already have an established matching stateful context.

Conversely, a stateful TSS that has negotiated a request to stateless may respond statefully to a subsequent context with
the same (non-zero) client_context_id.

10.3.2.2.1 Relationship to Transport-Layer

A SAS context shall not persist beyond the lifetime of the transport-layer secure association over which it was
established.

Stateful SAS contexts are not compatible with transports that do not make the relationship between the connection and the
association transparent.

10.3.3 TSS State Machine

The TSS state machine is defined in the state diagram, Figure 10.3 on page 143 and in the TSS state table, Table 10.6 on
page 144. Each TSS call thread shall operate independently with respect to this state machine. Where necessary, thread
synchronization at shared state shall be handled in the actions called by this state machine.

An ORB must not invoke the TSS state machine if the target object does not exist at the ORB. The TSS state machine has
no capacity to reject or forward8 a request because the target object does not exist, and must rely on the ORB to only
invoke the TSS when the target object exists at the ORB.

In response to a one-way call, a TSS shall not perform any of the send actions described by the state machine.

The shaded rows in Table 10.6 on page 144 indicate transitions and states that do not exist in a stateless implementation
of the SAS protocol.

The state names, function names, and function signatures that appear in the state diagram and the state table are not
prescriptive.

8. A TSS uses the LOCATION_FORWARD status to return an IOR containing up-to-date security mechanism configuration for an
existing object.
142 CORBA - Part 2: Interoperability, v3.3

Figure 10.3 - TSS State Machine

Verify Transport
Context

Establish
Context

Request In
Context

Send Only
Reply

Send
Reply

Reuse
Context

accept_trpt_ctxt successful / proc rqst

ref found / proc rqst

Waiting for
Request

rqst proc complete / send Rply()

rqst proc complete / send Rply(CompEstCtxt)

rqst proc complete / send Reply

ref not found / send Rply(CtxtErr)
accept_trpt_ctxt failed / send Rply(N0_PERM)

recv Rqst no SAS msg / accept_trpt_ctxt() recv Rqst(MsgInCtxt) / ref_ctxt

recv Rqst(EstCtxt) / accept_ctxt

accept_ctxt successful / proc rqst

accept_ctxt failed[inv evidence] / send Rply(CtxtErr)
accept_ctxt fai led [inv mech] / send Rply(CtxtErr)
accept_ctxt failed[policy chg] / send Rply(LOC_FWD, new IOR)
accept_ctxt failed[conflict] / send Rply(CtxtErr)
CORBA - Part 2: Interoperability, v3.3 143

10.3.3.1 TSS State Machine Actions

This sub clause defines the intended semantics of the actions appearing in the TSS state machine. As noted above, the
function names and function signatures are not prescriptive.

• accept_context (tokens, N, Out stateful)
This action validates the security context captured in the tokens including ensuring that they are compatible
with the mechanisms supported by the target object. If a context is not validated, accept_context returns error
codes that describe the reason the context was rejected.

When called by a stateless TSS, accept_context always returns false in the output argument “stateful.”
When called by a stateful TSS, accept_context may (depending on the effective policy of the target object)
attempt to record state corresponding to the context. If state for the identified context already exists and the

Table 10.6 -TSS State Table

State Event Action New State

1 Waiting for
Request

receive request without SAS message accept_transport_context() Verify Transport
Context

receive Request + EstablishContext
{client_context_id = N, tokens}

accept_context(tokens, N, Out stateful) Establish Context

receive Request + MessageInContext
{client_context_id = N,
discard_context = D}

reference_context(N) Request In Context

2 Verify
Transport
Context

accept_transport_context() returned
success

process request Send Only
Reply

accept_transport_context() returned failure send exception (NO_PERMISSION) Waiting for Request

3 Send Only
Reply

request processing completed send Reply Waiting for Request

4 Send Reply request processing completed send Reply +
CompleteEstablishContext { N, stateful}

Waiting For Request

5 Establish
Context

accept_context (tokens, N, Out stateful)
returned success

process request Send Reply

accept_context (tokens, N, Out stateful)
returned failure (invalid evidence)

send exception +
ContextError (invalid evidence)

Waiting for Request

accept_context (tokens, N, Out stateful)
returned failure (invalid mechanism)

send exception +
ContextError (invalid mechanism)

Waiting for Request

accept_context (tokens, N, Out stateful)
returned failure (policy change)

send Reply + LOCATION_FORWARD
status + updated IOR

Waiting for Request

accept_context (tokens, N, Out stateful)
returned failure (conflicting evidence)

send exception +
ContextError (conflicting evidence)

Waiting for Request

6 Request in
Context

reference_context(N)
returned reference

process request Reuse Context

reference_context(N)
returned empty reference

send exception +
ContextError (context does not exist)

Waiting for Request

7 Reuse
Context

request processing completed send Reply
if (D) discard_context(N)

Waiting for Request
144 CORBA - Part 2: Interoperability, v3.3

 received tokens are not equivalent to those captured in the existing context, accept_context shall reject the
context. If the context state either already existed, or was recorded, accept_context returns true in the output
argument “stateful.” An implementation of accept_context shall implement the error semantics defined in
the following table.

When accept_context returns any of Invalid evidence, Conflicting evidence, or Invalid mechanism
the TSS shall reject the request and send a NO_PERMISSION exception containing a ContextError service
context element with error codes as defined in Table 10.9 on page 149. When accept_context returns Policy
change, the TSS action shall reject the request and return a reply with status LOCATION_FORWARD and
containing a new IOR for the target object that contains an up-to-date representation of the target’s security
mechanism configuration.

• accept_transport_context()
This action validates that a request that arrives without a SAS protocol message; that is, EstablishContext or
MessageInContext satisfies the CSIv2 security requirements of the target object. This routine returns true if
the transport layer security context (including none) over which the request was delivered satisfies the security
requirements of the target object. Otherwise, accept_transport_context returns false. When
accept_transport_context returns false, the TSS shall reject the request and send a NO_PERMISSION
exception.

• reference_context (N)
If there is an existing context with client_context_id = N, reference_context returns a reference to it.
Otherwise, reference_context returns an empty reference.

• discard_context (N)
If context N exists and it is not needed to complete the processing of another thread, discard_context causes
the context to be deleted.

10.3.4 CSS State Machine

A proposed implementation of the CSS state machine is defined in the state diagram, Figure 10.4 on page 146, and in the
CSS state table, Table 10.8 on page 147. Each CSS call thread shall operate independently with respect to this state
machine. Where necessary, thread synchronization at shared state shall be handled in the actions called by this state
machine.

When a CSS processes a one-way call, it returns to the caller and sets its next state to done, as no response will be sent
by the TSS. The shaded rows in the state table indicate transitions and states that need not exist in a stateless CSS client
side implementation.

Table 10.7- Accept Context Error Semantics

Semantic Returned Error Code

Tokens match mechanism definition of target object but could not be validated. Invalid evidence

Context has non-zero client_context_id that matches that of an exiting context but tokens are not
equivalent to those used to establish the existing context.

Conflicting evidence

The mechanism configuration of the target object has changed and request indicates that CSS is not
aware of the current mechanism configuration.

Policy change

The mechanism configuration of the target object has not changed, and request is not consistent
with target mechanism configuration.

Invalid mechanism
CORBA - Part 2: Interoperability, v3.3 145

The state names, function names, and function signatures that appear in the state diagram and state table are not
prescriptive.

Figure 10.4 - CSS State Machine

Try
Mechanism

Unprotected
Request

Wait f or
Reply

Wait f or
Credentials

Wait f or
Context

Wait f or
SAS Reply

Request in
Context

Wait for
Connection

Also, inv_ctxt
if stateful

Also,
compl_ctxt i f
stateful

request, client policy, IOR rdy / get_mech(thisIOR)

mech is unprotected / get_c onn

conn ready / send Rqst

mech is protected / get_client_creds

creds ready / get_conn

cred not ready / raise except

conn rejected / raise except

recv Rply

recv Rply(LOC_FWD, newIOR) / get_mech(newIOR)

recv Rply(CtxtErr)[inv evidence] / raise except

recv Rply(CtxtErr)[conflict] / inv_ctxt, raise except

recv Rply(CompEstCtxt) / comp_ctxt

recv Rply(CtxtErr)[inv mech] / raise except

conn ready / get_ctxt_element

conn rejected / raise except

recv Rply(CtxtErr) / inv_ctxt, get_ctxt_element

recv Rply

NULL ctxt / send Rqst

new ctxt[stateless] / send Rqst(EstCtxt, N=0)
new ctxt[stateful] / send Rqst(EstCtxt, N!=0)

existing ctxt / send Rqst(MsgInCtxt, N)
146 CORBA - Part 2: Interoperability, v3.3

Table 10.8 - CSS State Table

State Event Action New State

1 start Request + client policy + IOR ready to send get_mechanism (policy, thisIOR, Out mech) Try Mechanism

2 Try
Mechanism

the selected mechanism is unprotected get_connection (mech, Out c) Unprotected Request

the selected mechanism is protected get_client_creds (policy, mech, Out creds) Wait for Credentials

3 Unprotected
Request

connection ready send request Wait for Reply

connection rejected raise exception and return to callera done

4 Wait for
Reply

receive reply return to caller done

5 Wait for
Credentials

client credentials ready get_connection (policy, mech, creds, Out c) Wait for Connection

necessary credentials not obtained raise exception and return to callerb done

6 Wait for
Connection

connection ready get_context_element (c, policy, creds, mech, Out
element)

Wait for Context

connection rejected raise exception and return to callerc done

7 Wait for
Context

get_context_element returned EstablishContext
{N = 0, tokens}

send Request + EstablishContext
{client_context_id = N = 0, tokens}

Wait for SAS Reply

get_context_element returned EstablishContext
{N != 0, tokens}

send Request + EstablishContext
{client_context_id = N != 0, tokens}

Wait for SAS Reply

get_context_element returned NULL send request Wait for Reply

get_context_element returned
MessageInContext {N != 0, D}

send Request + MessageInContext
{client_context_id = N != 0, D}

Request In Context

8 Wait for SAS
Reply

receive exception +
ContextError (invalid evidence)

raise exception and return to callerd done

receive exception +
ContextError (invalid mechanism)

raise exception and return to caller done

receive exception +
ContextError (conflicting evidence)

invalidate_context (c, N) done

raise exception and return to caller

receive Reply + LOCATION_FORWARD status
+ updated IOR

return to caller done

receive Reply + CompleteEstablishContext {N,
context_stateful}

complete_context (c, N, context_stateful) done

return to caller

9 Request in
Context

receive exception +
ContextError (context does not exist)

invalidate_context (c, N)
get_context_element (c, policy, creds, mech, Out
element)

Wait for Context

receive Reply return to caller done

a. A CSS may do next mechanism processing, in which case it might call get_next_mechanism(policy,thisIOR) and transition to
state Try Mechanism.

b. Same note as 1.
c. Same note as 1.
d. A CSS may re-collect authentication evidence and try again, in which case it might call get_client_creds(policy, mech, Out

creds) and transition to state Wait for Credentials.
CORBA - Part 2: Interoperability, v3.3 147

10.3.4.1 CSS State Machine Actions

This sub clause defines the intended semantics of the actions appearing in the CSS state machine. As noted above the
function names and function signatures are not prescriptive. The descriptions appearing in the following sub clauses are
provided to facilitate understanding of the proposed implementation of the CSS state machine.

• get_mechanism (policy, IOR, Out mech)
Select from the IOR a mechanism definition that satisfies the client policy.

• get_client_creds (policy, mech, Out creds)
Get the client credentials as necessary to satisfy the client policy and the target policy in the mechanism.

• get_connection (mech, Out c)
Open a connection based on the port information in the mechanism argument.

• get_connection (policy, mech, creds, Out c)
Open a secure connection based on the client policy, the target policy in the mechanism argument, and using
the client credentials in the creds argument.

• get_context_element (c, policy, creds, mech, Out element)
In the scope of connection c, use the client creds to create a SAS protocol context element that satisfies
the client policy and the target policy in the mechanism. If the CSS supports reusable contexts, and the client
policy is to establish a reusable context, the CSS allocates a client_context_id, and initializes a context
element in the context table of the connection. A NULL context element may be returned by
get_context_element when the target mechanism definition either does not support or require SAS layer
security functionality, and the client establishes a policy not to use such functionality unless required to do so.

• invalidate_context (c, N)
Mark context N in connection scope c as invalid such that no more requests may (re)use it.

• complete_context (c, N, context_stateful)
This action applies the contents of a returned CompleteEstablishContext message to context N, in
connection scope c, to change its state to completed. In a stateful CSS, get_context_element will not
return a MessageInContext element until complete_context is called with context_stateful true.

10.3.5 ContextError Values and Exceptions

Table 10.9 defines the circumstances under which error values and exceptions shall be returned by a TSS. The state and
event columns contain states and events appearing in Table 10.6.
148 CORBA - Part 2: Interoperability, v3.3

10.4 Transport Security Mechanisms

10.4.1 Transport Layer Interoperability

The secure interoperability architecture that is defined by this specification partitions secure interoperability into three
layers: the transport layer, authentication above the transport layer, and the secure attribute layer. This specification
defines secure interoperability that uses transport-layer security for message protection and authentication of the target to
the client.

10.4.2 Transport Mechanism Configuration

The configuration of transport-layer security mechanisms is specified in IORs. Support for CSI is indicated within an IOR
profile by the presence of at most one TAG_CSI_SEC_MECH_LIST tagged component that defines the mechanism
configuration pertaining to the profile. This component contains a list of one or more CompoundSecMech structures,
each of which defines the layer-specific security mechanisms that comprise a compound mechanism that is supported by
the target. This specification does not define support for CSI mechanisms in multiple-component IOR profiles.

Each CompoundSecMech structure contains a transport_mech field that defines the transport-layer security
mechanism of the compound mechanism. A compound mechanism that does not implement security functionality at the
transport layer shall contain the TAG_NULL_TAG component in its transport_mech field. Otherwise, the
transport_mech field shall contain a tagged component that defines a transport protocol and its configuration.
TAG_TLS_SEC_TRANS on page 152 and TAG_SECIOP_SEC_TRANS on page 154 define valid transport-layer
components that can be used in the transport_mech field.

10.4.2.1 Recommended SSL/TLS Ciphersuites

This specification recommends that implementations support the following ciphersuites in addition to the mandatory
ciphersuites identified in [IETF RFC 2246]. Of these additional ciphersuites, those which use weak encryption keys are
only recommended for use in environments where strong encryption of SAS protocol elements (including GSSUP
authenticators) and request arguments is not required. Some of the recommended ciphersuites are known to be
encumbered by licensing constraints.

• TLS_RSA_WITH_RC4_128_MD5

• SSL_RSA_WITH_RC4_128_MD5

• TLS_DHE_DSS_WITH_DES_CBC_SHA

• SSL_DHE_DSS_WITH_DES_CBC_SHA

• TLS_RSA_EXPORT_WITH_RC4_40_MD5

Table 10.9- ContextError Codes and Exceptions

State Event Semantic Major Minor Exception

Establish Context accept_context returned failure Invalid evidence 1 1 NO_PERMISSION

Invalid mechanism 2 1 NO_PERMISSION

Conflicting evidence 3 1 NO_PERMISSION

Request In Context reference_context (N) returned
false

No Context 4 1 NO_PERMISSION
CORBA - Part 2: Interoperability, v3.3 149

• SSL_RSA_EXPORT_WITH_RC4_40_MD5

• TLS_DHE_DSS_EXPORT_WITH_DES40_CBC_SHA

• SSL_DHE_DSS_EXPORT_WITH_DES40_CBC_SHA

10.5 Interoperable Object References

10.5.1 Target Security Configuration

A target that supports unprotected IIOP invocations shall specify in the corresponding TAG_INTERNET_IOP profile a
nonzero port number at which the target will accept unprotected invocations.9 A target that supports only protected IIOP
invocations shall specify a port number of 0 (zero) in the corresponding TAG_INTERNET_IOP profile. A target may
support both protected and unprotected IIOP invocations at the same port, but it is not required to do so.

struct IOR {
string type_id;
sequence <TaggedProfile> profiles = {

ProfileId tag = TAG_INTERNET_IOP;
struct ProfileBody_1_1 profile_data = {

Version iiop_version;
string host;
unsigned short port;
sequence <octet> object_key;
sequence <IOP::TaggedComponent> components;

};
};

};

A target that supports protected invocations shall describe in a CompoundSecMech structure the characteristics of each
of the alternative compound security mechanisms that it supports. The CompoundSecMech structure shall be included
in a list of such structures in the body of a TAG_CSI_SEC_MECH_LIST tagged component.

sequence <IOP::TaggedComponent> components = {
IOP::TaggedComponent {

ComponentId tag = TAG_CSI_SEC_MECH_LIST;
sequence <octet> component_data = {

CSIIOP::CompoundSecMechList = {
boolean stateful;
CompoundSecMechanisms mechanism_list = {

CompoundSecMech;
};

};
};

};
};

9. The OMG has registered port numbers for IIOP (683) and IIOP/SSL (684) with IANA. Although the existence of these reserva-
tions does not prescribe their use, it may be useful to recognize these port numbers as defaults for the corresponding protocols.
150 CORBA - Part 2: Interoperability, v3.3

The order of occurrence of the alternative compound mechanism definitions in a TAG_CSI_SEC_MECH_LIST component
indicates the target’s mechanism preference. The target prefers mechanism definitions occurring earlier in the list. An IOR
profile shall contain at most one TAG_CSI_SEC_MECH_LIST tagged component. An IOR profile that contains multiple
TAG_CSI_SEC_MECH_LIST tagged components is malformed and should be rejected by a client implementation.

10.5.1.1 AssociationOptions Type

The AssociationOptions type is an unsigned short bit mask containing the logical OR of the configured options. The
properties of security mechanisms are defined in an IOR in terms of the association options supported and required by the
target. A CSS shall be able to interpret the association options defined in Table 10.10.

The representation of supported options is used by a client to determine if a mechanism is capable of supporting the
client’s security requirements. The supported association options shall be a superset of those required by the target.

When the IdentityAssertion bit is set in target_supports, it indicates that the target accepts asserted caller identities
based on trust in the authentication identity of the asserting entity. When the DelegationByClient bit is not set, the
target will evaluate trust based on rules of the target (that is, a backward trust evaluation). When the IdentityAssertion and
DelegationByClient bits are set, they indicate that the target is also capable of evaluating trust in an asserting entity
based on trust rules delivered in an authorization token (that is, a forward trust evaluation). A target that can perform a
forward trust evaluation does so when trust rules are delivered in an authorization token. Otherwise a backward trust
evaluation is performed.

Table 10.10 - Association Options

Association Option target_supports target_requires

Integrity Target supports integrity protected messages Target requires integrity protected messages .

Confidentiality Target supports privacy protected messages Target requires privacy protected messages.

EstablishTrustInTarget Target can authenticate to a client Not applicable. This bit should never be set,
and should be ignored by CSS.

EstablishTrustInClient Target can authenticate a client Target requires client authentication.

IdentityAssertion Target accepts asserted caller identities based on trust in
the authentication identity of the asserting entity. Target
can evaluate trust based on trust rules of the target. If
DelegationByClient is set, target can also evaluate trust
when provided with a delegation token (that is, a proxy
attribute contained in an authorization token).a

a. A target policy that accepts only identity assertions based on forward trust cannot be communicated in an IOR (although it can
be enforced).

Not applicable. This bit should never be set,
and should be ignored by CSS.

DelegationByClient When it occurs in conjunction with support for
IdentityAssertion, this bit indicates that target can
evaluate trust in an asserting entity based on a
delegation token.b

b. If an incoming request includes an identity token and a delegation token, the request shall be rejected if the delegation token
does not endorse the asserting entity (see Section 10.3.1.1, Context Validation, on page 137)

Target requires that CSS provide a delegation
token that endorses the target as proxy for the
client.c

c. A target with DelegationByClient set in target_requires shall also have this bit set in target_supports. As noted in the table,
this has an impact on the target’ s identity assertion policy (if any).
CORBA - Part 2: Interoperability, v3.3 151

When the DelegationByClient bit is set in target_requires, it indicates that the target requires a delegation token to
complete the processing of a request. Such circumstances will occur when a target, acting as an intermediate, attempts to
issue a request as its caller and sanctioned by the delegation token delivered by its caller.

The rules for interpreting asserted identities in the presence or absence of a delegation token (that is, a proxy attribute
contained in an authorization token) are as defined in Context Validation on page 137.

The security mechanism configuration in an IOR being used by a CSS may (as the result of target policy administration)
no longer represent the actual security mechanism configuration of the target object.

10.5.1.1.1 Alternative Transport Association Options

Implementations that choose to employ the service context protocol defined in this specification to achieve
interoperability over an alternative secure transport (one other than SSL/TLS) may also be required to support the
message protection options defined in Table 10.11.

10.5.1.2 Transport Address

The TransportAddress structure indicates an INTERNET address where the TSS is listening for connection requests.

struct TransportAddress {
string host_name;
unsigned short port;

};

typedef sequence <TransportAddress> TransportAddressList;

The host_name field identifies the Internet host to which connection requests will be made. The host_name field shall
not contain an empty string. The host_name field shall contain a host name or an IP address in standard numerical
address (e.g., dotted-decimal) form.

The port field contains the TCP/IP port number (at the specified host) where the TSS is listening for connection requests.
The port number shall not be zero.

10.5.1.3 TAG_TLS_SEC_TRANS

An instance of the TAG_TLS_SEC_TRANS component may occur in the transport_mech field within a
CompoundSecMech structure in a TAG_CSI_SEC_MECH_LIST component.

When an instance of the TAG_TLS_SEC_TRANS component occurs in the transport_mech field of the
CompoundSecMech structure, it defines the sequence of transport addresses at which the target will be listening for
SSL/TLS protected invocations. The supported (target_supports) and required (target_requires) association options
defined in the component shall define the transport level security characteristics of the target at the given addresses.

Table 10.11 - Alternative Transport Association Options

Association Option target_supports target_requires

DetectReplay Target can detect replay of requests (and request
fragments).

Target requires security associations to detect
replay.

DetectMisordering Target can detect sequence errors of request (and
request fragments).

Target requires security associations to detect
message sequence errors.
152 CORBA - Part 2: Interoperability, v3.3

const IOP::ComponentId TAG_TLS_SEC_TRANS = 36;

struct TLS_SEC_TRANS {
AssociationOptions target_supports;
AssociationOptions target_requires;
TransportAddressList addresses;

};

The addresses field provides a shorthand for defining multiple security mechanisms that differ only in their transport
addresses. The addresses field shall contain at least one address.

Table 10.12, Table 10.13, Table 10.14, and Table 10.15 describe the association option semantics relating to the
TAG_TLS_SEC_TRANS tagged component that shall be interpreted by a CSS and enforced by a TSS. The
IdentityAssertion and DelegationByClient association options shall not occur in an instance of this component.

Table 10.12 - Integrity Semantics

Integrity Semantic

Not supported None of the ciphersuites supported by the target designate a MAC algorithm.

Supported Target supports one or more ciphersuites that designate a MAC algorithm.

Required All the ciphersuites supported by the target designate a MAC algorithm.

Table 10.13 - Confidentiality Semantics

Confidentiality Semantic

Not supported None of the ciphersuites supported by the target designate a bulk encryption algorithma.

a. Bulk encryption algorithms include both block and stream ciphers.

Supported Target supports one or more ciphersuites that designate a bulk encryption algorithm.

Required All the ciphersuites supported by the target designate a bulk encryption algorithm.

Table 10.14 - EstablishTrustInTarget Semantics

EstablishTrustInTarget Semantic

Not supported None of the ciphersuites supported by the target designate a key exchange algorithm that will
authenticate the target to the client.

Supported Target supports one or more ciphersuites that designate a key exchange algorithm that will
authenticate the target to the client.

Required Not applicable. This bit should never be set, and should be ignored by CSS.

Table 10.15 - EstablishTrustInClient Semantics

EstablishTrustInClient Semantic

Not supported Target does not support client authentication during the handshake. Moreover, target provides no
opportunity for client to authenticate in the handshake (that is, target does not send certificate
request message).

Supported Target provides client with an opportunity to authenticate in handshake. Target will accept
connection if client does not authenticate.

Required Target accepts connections only from clients who successfully authenticate in the handshake.
CORBA - Part 2: Interoperability, v3.3 153

10.5.1.4 TAG_SECIOP_SEC_TRANS

A tagged component with the TAG_SECIOP_SEC_TRANS tag is a valid component for the transport_mech field of the
CompoundSecMech structure. The presence of this component indicates the generic use of the SECIOP protocol as a
secure transport underneath the CSI mechanisms. A component tagged with this value shall contain the CDR encoding of
the SECIOP_SEC_TRANS structure.

The SECIOP_SEC_TRANS structure defines the transport addresses for SECIOP messages, the association options
pertaining to the particular GSS mechanism being supported, the GSS mechanism identifier, and the target’s GSS
exported name.

const IOP::ComponentId TAG_SECIOP_SEC_TRANS = 35;

struct SECIOP_SEC_TRANS {
AssociationOptions target_supports;
AssociationOptions target_requires;
CSI::OID mech_oid;
CSI::GSS_NT_ExportedName target_name;
TransportAddressList addresses;

};

The addresses field provides a shorthand for defining multiple security mechanisms that differ only in their transport
addresses. The addresses field shall contain at least one address.

Table 10.12, Table 10.13, Table 10.14, and Table 10.15 also describe the association option semantics relating to the
TAG_SECIOP_SEC_TRANS tagged component that shall be interpreted by a CSS and enforced by a TSS.

10.5.1.5 TAG_CSI_SEC_MECH_LIST

This new tagged component, TAG_CSI_SEC_MECH_LIST, is used to describe support in the target for a sequence of one
or more compound security mechanisms represented in the mechanism_list field of a CompoundSecMechList
structure. The mechanism descriptions in the mechanism_list occur in decreasing order of target preference.

const IOP::ComponentId TAG_CSI_SEC_MECH_LIST = 33;

struct CompoundSecMech {
AssociationOptions target_requires;
IOP::TaggedComponent transport_mech;
AS_ContextSec as_context_mech;
SAS_ContextSec sas_context_mech;

};

typedef sequence <CompoundSecMech> CompoundSecMechanisms;

struct CompoundSecMechList {
 boolean stateful;
 CompoundSecMechanisms mechanism_list;
};

The CompoundSecMech structure is used to describe support in the target for a compound security mechanism that
may include security functionality that is realized in the transport and/or security functionality realized above the
transport in service context. Where a compound security mechanism implements security functionality in the transport
154 CORBA - Part 2: Interoperability, v3.3

layer, the transport functionality shall be represented in a transport-specific component (for example,
TAG_TLS_SEC_TRANS) contained in the transport_mech field of the CompoundSecMech structure. Where a
compound security mechanism implements client authentication functionality in service context, the mechanism shall be
represented in an AS_ContextSec structure contained in the as_context_mech field of the CompoundSecMech
structure. Where a compound security mechanism supports identity assertion or supports authorization attributes delivered
in service context, the mechanism shall be represented in a SAS_ContextSec structure contained in the
sas_context_mech field of the CompoundSecMech structure.

At least one of the transport_mech, as_context_mech, or sas_context_mech fields shall be configured. The
TAG_NULL_TAG component shall be used in the transport_mech field to indicate that a mechanism does not
implement security functionality at the transport layer. A value of “no bits set” in the target_supports field of either the
as_context_mech or sas_context_mech fields shall be used to indicate that the mechanism does not implement
security functionality at the corresponding layer.

The target_requires field of the CompoundSecMech structure is used to designate a required outcome that shall be
satisfied by one or more supporting (but not requiring) layers. The target_requires field also represents all the options
required independently by the various layers as defined within the mechanism.

Each compound mechanism defines a combination of layer-specific functionality that is supported by the target. A target’s
mechanism configuration is the sum of the combinations defined in the individual mechanisms.

A value of TRUE in the stateful field of the CompoundSecMechList structure indicates that the target supports the
establishment of stateful or reusable SAS contexts. This field is provided to assist clients in their selection of a target that
supports stateful contexts. It is also provided to sustain implementations that serialize stateful context establishment on
the client side as a means to conserve precious server-side authentication capacity.10

A TSS shall set the stateful bit to FALSE in the CompoundSecMechList structure of IORs corresponding to target
objects at which it will not accept reusable security contexts.

10.5.1.5.1 struct AS_ContextSec

The AS_ContextSec structure is used in the as_context_mech field within a CompoundSecMech structure in a
TAG_CSI_SEC_MECH_LIST component to describe the client authentication functionality that the target expects to be
layered above the transport in service context by means of the client_authentication_token of the EstablishContext
element of the SAS protocol.

struct AS_ContextSec{
AssociationOptions target_supports;

 AssociationOptions target_requires;
 CSI::OID client_authentication_mech;
 CSI::GSS_NT_ExportedName target_name;
};

A value of “no bits set” in the target_supports field indicates that the mechanism does not implement client
authentication functionality above the transport in service context. In this case, the values present in any of the other
fields in this structure are irrelevant.

10. This serialization is only done when an attempt is being made to establish a stateful context.
CORBA - Part 2: Interoperability, v3.3 155

If the target_supports field indicates that the mechanism supports client authentication in service context, then the
client_authentication_mech field shall contain a GSS OID that identifies the GSS mechanism that the compound
mechanism supports for client authentication above the transport.

The target uses the target_name field to make its security name and or authentication domain available to clients. This
information may be required by the client to obtain or construct (depending on the mechanism) a suitable initial context
token.

Table 10.16 describes the association options that are supported by conforming implementations.

When a compound mechanism that implements client authentication functionality above the transport also contains a
transport mechanism (in the transport_mech field), any required association options configured in the transport
component shall be interpreted as a prerequisite to satisfying the requirements of the client authentication mechanism.

struct SAS_ContextSec

The SAS_ContextSec structure is used in the sas_context_mech field within a CompoundSecMech structure in a
TAG_CSI_SEC_MECH_LIST component to describe the security functionality that the target expects to be layered
above the transport in service context by means of the identity_token and authorization_token of the
EstablishContext element of the SAS service context protocol. The security functionality represented by this structure
is configured as association options in the target_supports and target_requires fields.

// The high order 20-bits of each ServiceConfigurationSyntax constant shall contain the Vendor Minor
// Codeset ID (VMCID) of the organization that defined the syntax. The low order 12 bits shall contain the
// organization-scoped syntax identifier. The high-order 20 bits of all syntaxes defined by the OMG shall
// contain the VMCID allocated to the OMG (that is, 0x4F4D0).

typedef unsigned long ServiceConfigurationSyntax;

const ServiceConfigurationSyntax SCS_GeneralNames = CSI::OMGVMCID | 0;
const ServiceConfigurationSyntax SCS_GSSExportedName = CSI::OMGVMCID | 1;

typedef sequence <octet> ServiceSpecificName;

// The name field of the ServiceConfiguration structure identifies a privilege authority in the format
// identified in the syntax field. If the syntax is SCS_GeneralNames, the name field contains an ASN.1 (BER)
// SEQUENCE[1..MAX] OF GeneralName, as defined by the type GeneralNames in [IETF RFC 2459]. If the
// syntax is SCS_GSSExportedName, the name field contains a GSS exported name encoded according to
// the rules in [IETF RFC 2743] 3.2, "Mechanism-Independent Exported Name Object Format," p. 84.

Table 10.16 - EstablishTrustInClient Semantics

EstablishTrustInClient Semantic

1 Not supported Target does not support client authentication in service context (at this compound
mechanism).

2 Supported Target supports client authentication in service context. If a CSS does not send an initial
context token (in an EstablishContext service context element), then the caller identity is
obtained from the transport.

3 Required Target requires client authentication in service context. The CSS may have also authenticated
in the transport, but the caller identity is obtained from the service context layer.
156 CORBA - Part 2: Interoperability, v3.3

struct ServiceConfiguration {
ServiceConfigurationSyntax syntax;
ServiceSpecificName name;

};

typedef sequence <ServiceConfiguration> ServiceConfigurationList;

struct SAS_ContextSec{
AssociationOptions target_supports;
AssociationOptions target_requires;
ServiceConfigurationList privilege_authorities;
CSI::OIDList supported_naming_mechanisms;
CSI::IdentityTokenType supported_identity_types;

};

The privilege_authorities field contains a sequence of zero or more ServiceConfiguration elements. A non-empty
sequence indicates that the target supports the CSS delivery of an AuthorizationToken, which is delivered in the
EstablishContext message. A CSS shall not be required to look beyond the first element of this sequence unless
required by the first element.

The syntax field within the ServiceConfiguration element identifies the format used to represent the authority. Two
alternative formats are currently defined: an ASN.1 encoding of the GeneralNames (as defined in [IETF RFC 2459])
which identify a privilege authority, or a GSS exported name (as defined in [IETF RFC 2743] 3.2) encoding of the name
of a privilege authority.

The high order 20-bits of each ServiceConfigurationSyntax constant shall contain the Vendor Minor Codeset ID
(VMCID) of the organization that defined the syntax. The low order 12 bits shall contain the organization-scoped syntax
identifier. The high-order 20 bits of all syntaxes defined by the OMG shall contain the VMCID allocated to the OMG
(that is, 0x4F4D0).

Organizations must register their VMCIDs with the OMG before using them to define a ServiceConfigurationSyntax.

The supported_naming_mechanisms field contains a list of GSS mechanism OIDs. A TSS shall set the value of this
field to contain the GSS mechanism OIDs for which the target supports identity assertions using an identity token of type
ITTPrincipalName. The Identity token types are defined in Identity Token Format on page 135.

The value of the supported_identity_types field shall be the bitmapped representation of the set of identity token
types supported by the target. A target always supports ITTAbsent.

The value in supported_identity_types shall be non-zero if and only if the IdentityAssertion bit is non-zero in
target_supports. The bit corresponding to the ITTPrincipalName identity token type shall be non-zero in
supported_identity_types if and only if the value in supported_naming_mechanisms contains at least one
element.

Table 10.17 describes the combinations of association options that are supported by conforming implementations. Each
combination in the table describes the attribute layer functionality of a target that may be defined in a mechanism
definition. A target that defines multiple mechanisms may support multiple combinations.

A compound mechanism definition with the DelegationByClient bit set shall include the name of at least one authority
in the privilege_authorities field.
CORBA - Part 2: Interoperability, v3.3 157

When a compound mechanism configuration that defines SAS attribute layer functionality also defines client
authentication layer or transport layer functionality, any required association options configured in these other layers shall
be interpreted as a prerequisite to satisfying the requirements of the functionality defined in the attribute layer

10.5.1.6 TAG_NULL_TAG

This new tagged component is used in the transport_mech field of a CompoundSecMech structure to indicate that
the compound mechanism does not implement security functionality at the transport layer.

// The body of the TAG_NULL_TAG component is a sequence of octets of
// length 0.
const IOP::ComponentId TAG_NULL_TAG = 34;

10.5.2 Client-side Mechanism Selection

A client should evaluate the compound security mechanism definitions contained within the CompoundSecMechList
in the TAG_CSI_SEC_MECH_LIST component in an IOR to select a mechanism that supports the options required by
the client.

The options supported by a compound mechanism are the union (the logical OR) of the options supported by the
transport_mech, as_context_mech, and sas_context_mech fields of the CompoundSecMech structure.

Table 10.17 - Attribute Layer Association Option Combinations

DelegationByClient IdentityAssertion Semantic

1 Not supported Not supported Target does not support identity assertion (that is, identity tokens in the
EstablishContext message of the SAS protocol). The caller identity will
be obtained from the authentication layer(s).

2 Not supported Supported Target evaluates asserted caller identities based on trust rules of the
target. In the absence of an asserted identity, the caller identity will be
obtained from the authentication layer(s).

3 Supported Not supported Target accepts delegation tokens that indicate who has been endorsed to
assert an identity. Target does not accept asserted caller identities. The
caller identity will be obtained from the authentication layer(s).

4 Supported Supported Target accepts delegation tokens that indicate who has been endorsed to
assert an identity.
Target evaluates asserted caller identities based on trust rules of the
target or based on endorsements in a delegation token.
In the absence of an asserted identity, the caller identity will be obtained
from the authentication layer(s).

5 Required Not supported Same as 3, with the addition that target requires a delegation token that
endorses the target as proxy for the calle.

6 Required Supported Same as 4, with the addition that target requires a delegation token that
endorses the target as proxy for the caller.
158 CORBA - Part 2: Interoperability, v3.3

The following table defines the semantics defined by the union of association options in compound mechanism
definitions. Association options for server to client authentication and message protection add additional semantics that
are not represented in the table.

Table 10.18- Interpretation of Compound Mechanism Association Options

Semantic EstablishTrustInClient IdentityAssertion DelegationByClient

Supported Required Supported Supported Required

1 No client identification. Don’t careb

b. If DelegationByClient is supported, a delegation token may be provided, but it is not required to process the request

2 Presumed trust. X

3 Authentication optional. X Don’t care

4 Authentication optional, assertion
supported.

X X

5 Authentication Required. X X Don’t care

6 Authentication Required, assertion
supported.

X X X

7 Presumed trust including support
for provided target restrictions.

X X

8 Authentication optional, assertion
supported including forward trust
rules.

X X X

9 Authentication required, assertion
supported including forward trust
rules.

X X X X

10 Presumed Trust including support
for provided target restrictions,
delegation token required which
implies assertion requireda.

a. If a delegation token is required, a non-anonymous client identity shall be established so that it can be endorsed by the delega-
tion token. This same rule applies to row 11, and explains why there is no row that supports client authentication and requires a
delegation token.

X X X

11 Authentication optional, assertion
supported including forward trust
rules, delegation token required
which implies either client
authentication or assertion
required.

X X X X

12 Authentication required,
delegation token required.

X X X X

13 Authentication required, assertion
supported including forward trust
rules, delegation token required.

X X X X X
CORBA - Part 2: Interoperability, v3.3 159

10.5.3 Client-Side Requirements and Location Binding

The primary assumption of this interoperability protocol is that transport layer security can ensure that it is not necessary
to issue a preliminary request to establish a confidential association with the intended target.

In order to sustain this assumption, trust in target and a confidential transport shall be established prior to issuing any call
that may contain arguments (including object keys) or service context elements that the client considers confidential. A
CSS acting on behalf of a client may trust a target to locate an object (process a locate request) without having to trust the
target with confidential arguments (other than object keys) or service context elements. For example, a CSS may have
established a confidential connection to an address it learned from an IOR, and may then determine if the client trusts the
target with its request arguments and any associated service context elements. If the client does not trust the target with
its request, the CSS may send a locate request.11 If the locate reply contains a new address, the CSS may establish a new
confidential connection, evaluate the level of trust the client has in the new target, and determine whether it can issue the
client’s request to the target. If in response to the request, the CSS receives a location forward, it will establish another
confidential connection with the new address and repeat its trust determination.

Compound security mechanisms appearing in IORs leading to a location daemon should not require clients to authenticate
using the username/password mechanism if doing so would cause an overly trusting caller to share its password with an
untrusted location daemon.

The way in which a location daemon derives an IOR for a target object is not prescribed by this specification.

10.5.3.1 Comments on Establishing Trust in Client

A client that does not have the artifacts necessary to provide evidence of its authenticity over at least one of the transports
supported by it and its target should search the IOR for a security mechanism definition that does not require client
authentication to occur in a transport mechanism.

10.5.4 Server Side Consideration

If the target requires client authentication, and the transport does not provide that authentication, then the target should
always respond with OBJECT_HERE to LocateRequest messages and defer the real forwarding response until it
receives a GIOP Request message.

10.6 Conformance Levels

10.6.1 Conformance Level 0

Level 0 defines the base level of secure interoperability that all implementations are required to support. Level 0 requires
support for SSL/TLS protected connections. Level 0 implementations are also required to support username/password
client authentication and identity assertion by using the service context protocol defined in this specification.

10.6.1.1 Transport-Layer Requirements

Implementations shall support the Security Attribute Service (SAS) protocol within the service context lists of GIOP
request and reply messages exchanged over SSL 3.0 and TLS 1.0 protected connections.

11. CSS can use the Object::validate_connection operation to get the ORB to issue a locate request.
160 CORBA - Part 2: Interoperability, v3.3

Implementations shall also support the SAS protocol within the service context lists of GIOP request and reply messages
over unprotected transports defined within IIOP.12

10.6.1.1.1 Required Ciphersuites

Conforming implementations are required to support both SSL 3.0 and TLS 1.0 and the mandatory TLS 1.0 ciphersuites
identified in [IETF RFC 2246]. Conforming implementations are also required to support the SSL 3.0 ciphersuites
corresponding to the mandatory TLS 1.0 ciphersuites.

An additional set of recommended ciphersuites is identified in Recommended SSL/TLS Ciphersuites on page 149.

10.6.1.2 Service Context Protocol Requirements

All implementations shall support the Security Attribute Service (SAS) context element protocol in the manner described
in the following sub clauses.

10.6.1.2.1 Stateless Mode

All implementations shall support the stateless CSS and stateless TSS modes of operation as defined in Session
Semantics on page 141, and in the protocol message definitions appearing in SAS context_data Message Body Types on
page 127.

10.6.1.2.2 Client Authentication Tokens and Mechanisms

All implementations shall support the username password (GSSUP) mechanism for client authentication as defined in
Username Password GSS Mechanism (GSSUP) on page 133.

10.6.1.2.3 Identity Tokens and Identity Assertion

All implementations shall support the identity assertion functionality defined in Context Validation on page 137 and the
identity token formats and functionality defined in Identity Token Format on page 135.

All implementations shall support GSSUP mechanism specific identity tokens of type ITTPrincipalName.

10.6.1.2.4 Authorization Tokens (not required)

At this level of conformance, implementations are not required to be capable of including an authorization token in the
SAS protocol elements they send or of interpreting such tokens if they are included in received SAS protocol elements.

The format of authorization tokens is defined in Authorization Token Format on page 131.

10.6.1.3 Interoperable Object References (IORs)

The security mechanism configuration of CSIv2 target objects, shall be as defined in Target Security Configuration on
page 150, with the exception that Level 0 implementations are not required to support the DelegationByClient
functionality described in AssociationOptions Type on page 151.

10.6.2 Conformance Level 1

Level 1 adds the following additional requirements to those of Level 0.

12. SAS protocol elements should only be sent over unprotected transports within trusted environments.
CORBA - Part 2: Interoperability, v3.3 161

10.6.2.1 Authorization Tokens

Level 1 implementations shall support the push model for privilege attributes.

Level 1 requires that a CSS provide clients with an ability to include an authorization token, as defined in Authorization
Token Format on page 131, in SAS EstablishContext protocol messages.

Level 1 requires that a TSS be capable of evaluating its support for a received authorization token according to the rules
defined in Extensions of the IETF AC Profile for CSIv2 on page 132.

A Level 1 TSS shall recognize the standard attributes and extensions defined in the attribute certificate profile defined in
[IETF ID PKIXAC].

Level 1 requires that a target object that supports pushed privilege attributes include in its IORs the names of the privilege
authorities trusted by the target object (as defined in struct SAS_ContextSec on page 156).

10.6.3 Conformance Level 2

Level 2 adds to Level 1 the following additional requirements.

10.6.3.1 Authorization-Token-Based Delegation

Level 2 adds to Level 1 a requirement that implementations support the authorization-token-based delegation mechanism
implemented by the SAS protocol.

A Level 2 TSS shall be capable of evaluating proxy rules arriving in an authorization token to determine whether an
asserting entity has been endorsed (by the authority which vouched for the privilege attributes in the authorization token)
to assert the identity to which the privilege attributes pertain. The semantics of the relationship between the identity token
and authorization token shall be as defined in Context Validation on page 137.

A Level 2 TSS shall recognize the Extensions of the IETF AC Profile for CSIv2 on page 132” (that is, the Proxy Info
extension) as defined on that page.

Level 2 requires that a target object that accepts identity assertions based on endorsements in authorization tokens
represent this support in its IORs as defined in Table 10.17.

Level 2 requires that a target object that requires an endorsement to act as proxy for its callers represent this requirement
in its IORs as defined in Table 10.17.

10.6.4 Stateful Conformance

Implementations are differentiated not only by the conformance levels described in the preceding sub clauses but also by
whether or not they support stateful security contexts.

For an implementation to claim stateful conformance, it shall implement the stateless and stateful functionality as defined
in Session Semantics on page 141 and in SAS context_data Message Body Types on page 127.

10.7 Sample Message Flows and Scenarios
This sub clause contains sequence diagrams and sample IORs for a set of scenarios selected to illustrate the
interoperability protocols defined in this specification. The sample IORs are expressed in pseudocode.
162 CORBA - Part 2: Interoperability, v3.3

10.7.1 Confidentiality, Trust in Server, and Trust in Client Established in the Connection

1. Initiate SSL/TLS connection to TSS.

2. SSL/TLS connection and ciphersuite negotiation accepted by both CSS and TSS. CSS evaluates its trust in target
authentication identity and decides to continue. Client (P2) authenticates to TSS in the handshake.

3. Send request (with no security service context element).

4. Receive reply (with no security service context element).

5. Same as 3.

6. Same as 4.

10.7.1.1 Sample IOR Configuration

The following sample IOR was designed to address the related scenario.

CompoundSecMechList{
stateful = FALSE;
mechanism_list = {

Client (P2) :
SecurityService

Target :
SecurityService

1: connect to target()

2: accept connection(authenticate client P2)

3: request()

4: reply()

5: request()

6: reply()
CORBA - Part 2: Interoperability, v3.3 163

CompoundSecMec {
target_requires = {Integrity, Confidentiality, EstablishTrustInClient};
transport_mech = TAG_TLS_SEC_TRANS {

target_supports = {Integrity, Confidentiality, EstablishTrustInClient,
EstablishTrustInTarget};

target_requires = {Integrity, Confidentiality, EstablishTrustInClient};
addresses = {

TransportAddress {
host_name = x;
port = y;

};
};

};
as_context_mech = {

target_supports = {};
...

};
sas_context_mech = {

target_supports = {};
...

};
};

};
};

Note that based on the ciphersuites listed in Required Ciphersuites on page 161 and the rules for target_supports and
target_requires appearing in the tables in TAG_TLS_SEC_TRANS on page 152, all target IORs should include {Integrity,
Confidentiality, EstablishTrustInTarget} in target_supports and at least {Integrity, Confidentiality} in target_requires.
This statement applies to all the sample IORs corresponding to all the scenarios described in this sub clause.
164 CORBA - Part 2: Interoperability, v3.3

10.7.2 Confidentiality and Trust in Server Established in the Connection - Stateless Trust
in Client Established in Service Context

1. Initiate SSL/TLS connection to TSS.

2. SSL/TLS connection and ciphersuite negotiation accepted by both CSS and TSS. CSS evaluates its trust in target
authentication identity and decides to continue.

3. Send request (with stateless security service context element containing a client_authentication_token).

4. Receive reply with CompleteEstablishContext service context element indicating context (and request) was
accepted.

5. Same as 3.

6. Same as 4.

10.7.2.1 Sample IOR Configuration

The following sample IOR was designed to address the related scenario.

Client (P2) :
SecurityService

Target :
SecurityService

1: connect to target()

2: accept connection()

3: request(EstablishContext(0,,IT(absent),CAT(P2+password)))

4: reply(CompleteEstablishContext(0,FALSE))

6:reply(CompleteEstablishContext(0,FALSE))

5: request(EstablishContext(0,,IT(absent),CAT(P2+password)))
CORBA - Part 2: Interoperability, v3.3 165

CompoundSecMechList{
stateful = FALSE;
mechanism_list = {

CompoundSecMec {
target_requires = {Integrity, Confidentiality, EstablishTrustInClient};
transport_mech = TAG_TLS_SEC_TRANS {

target_supports = {Integrity, Confidentiality, EstablishTrustInClient,
EstablishTrustInTarget};

target_requires = {Integrity, Confidentiality};
addresses = {

TransportAddress {
host_name = x;
port = y;

};
};

};
as_context_mech = {

target_supports = {EstablishTrustInClient};
target_requires = {EstablishTrustInClient};
client_authentication_mech = GSSUPMechOID;
target_name = (GSSUPMechOID + name_scope);

};
sas_context_mech = {

target_supports = {};
...

};
};

};
};
166 CORBA - Part 2: Interoperability, v3.3

10.7.3 Confidentiality, Trust in Server, and Trust in Client Established in the Connection
Stateless Trust Association Established in Service Context

1. Initiate SSL/TLS connection to TSS.

2. SSL/TLS connection and ciphersuite negotiation accepted by both CSS and TSS. CSS evaluates its trust in target
authentication identity and decides to continue. Client (P2) authenticates to TSS in the handshake.

3. Send request (with stateless security service context element containing spoken for identity (P1) in identity_token).

4. TSS validates that target trusts P2 to speak for P1.

5. Receive reply with CompleteEstablishContext service context element indicating context (and request) was
accepted.

6. Same as 3.

7. Same as 4.

8. Same as 5.

Intermediate (P2) :
SecurityService

1: connect to target()

3: request(EstablishContext(0,,IT(P1),))

6: request(EstablishContext(0,,IT(P1),))

8: reply(CompleteEstablishContext(0,FALSE))

2: accept connection(authenticate client P2)

5: reply(CompleteEstablishContext(0,FALSE)) apply trust
rule to validate
intermediary
(P2)

7:

4:

apply trust
rule to validate
intermediary
(P2)

Target :
SecurityService
CORBA - Part 2: Interoperability, v3.3 167

10.7.3.1 Sample IOR Configuration

The following sample IOR was designed to address the related scenario.

CompoundSecMechList {
stateful = FALSE;
mechanism_list = {

CompoundSecMec {
target_requires = {Integrity, Confidentiality, EstablishTrustInClient};
transport_mech = TAG_TLS_SEC_TRANS {

target_supports = {Integrity, Confidentiality, EstablishTrustInClient,
 EstablishTrustInTarget};

target_requires = {Integrity, Confidentiality, EstablishTrustInClient};
addresses = {

TransportAddress {
host_name = x;
port = y;

};
};

};
as_context_mech = {

target_supports = {};
...

};
sas_context_mech = {

target_supports = {IdentityAssertion};
target_requires = {};
privilege_authorities = {};
supported_naming_mechanisms = {GSSUPMechOID};
supported_identity_types = {ITTPrincipalName};

};
};

};
};

10.7.3.2 Validating the Trusted Server

If trust is not presumed, then the TSS shall evaluate the trustworthiness of the speaking for identity (i.e., the client
identity established in the authentication layer(s) - P2 in the preceding example) in order to determine if it is authorized
to speak for the spoken for identity (i.e., the non-anonymous identity represented as P1 in the identity token in the
preceding example).

10.7.3.3 Presuming the Security of the Connection

There are variants of this scenario where either no security is established in the connection, or the connection is used to
establish confidentiality only, and/or trust in the target only. These cases all fall under what is referred to as a presumed
trust association. Where the security of the connection and the party using it is presumed, the TSS will not validate the
trustworthiness of the speaking-for identity.

CompoundSecMechList {
stateful = FALSE;
mechanism_list = {
168 CORBA - Part 2: Interoperability, v3.3

CompoundSecMec {
target_requires = {Integrity, Confidentiality};
transport_mech = TAG_TLS_SEC_TRANS {

target_supports = {Integrity, Confidentiality, EstablishTrustInTarget};
target_requires = {Integrity, Confidentiality};
addresses = {

TransportAddress {
host_name = x;
port = y;

};
};

};
as_context_mech = {

target_supports = {};
...

 };
sas_context_mech = {

target_supports = {IdentityAssertion};
target_requires = {};
privilege_authorities = {};
supported_naming_mechanisms = {GSSUPMechOID};
supported_identity_types = {ITTPrincipalName};

};
};

};
};
CORBA - Part 2: Interoperability, v3.3 169

10.7.4 Confidentiality, Trust in Server, and Trust in Client Established in the
Connection - Stateless Forward Trust Association Established in Service Context

1. Initiate SSL/TLS connection to TSS.

2. SSL/TLS connection and ciphersuite negotiation accepted by both CSS and TSS. CSS evaluates its trust in target
authentication identity and decides to continue. Intermediate (P2) authenticates to TSS in the handshake.

3. Send request with stateless security service context element containing spoken for identity (P1) in identity_token,
and trust rule from P1 in authorization_token delegating proxy to P2.

4. Receive reply with CompleteEstablishContext service context element indicating context (and request) was
accepted.

5. Same as 3.

6. Same as 4.

10.7.4.1 Sample IOR Configuration

The following sample IOR was designed to address the related scenario.

Intermediate(P2) :
SecurityService

Target :
SecurityService

1: connect to target()

3: request(EstablishContext(0,AT(P1,proxies{P2}),IT(P1),))

4: reply(CompleteEstablishContext(0,FALSE))

5: request(EstablishContext(0,AT(P1,proxies{P2}),IT(P1),))

6: reply(CompleteEstablishContext(0,FALSE))

2: accept connection(authenticate client P2)
170 CORBA - Part 2: Interoperability, v3.3

CompoundSecMechList {
stateful = FALSE;
mechanism_list = {

CompoundSecMec {
target_requires = {Integrity, Confidentiality, EstablishTrustInClient};
transport_mech = TAG_TLS_SEC_TRANS {

target_supports = {Integrity, Confidentiality, EstablishTrustInClient,
EstablishTrustInTarget};

target_requires = {Integrity, Confidentiality, EstablishTrustInClient};
addresses = {

TransportAddress {
host_name = x;
port = y;

};
};

};
as_context_mech = {

target_supports = {};
...

};
sas_context_mech = {

target_supports = {IdentityAssertion, DelegationByClient};
target_requires = {};
privilege_authorities = {

ServiceConfigurationSyntax {
syntax = s;
name = n;

};
};
supported_naming_mechanisms = {GSSUPMechOID};
supported_identity_types = {ITTPrincipalName};

};
};

};
};

10.8 References

CORBASEC

CORBA Security Service, Revision 1.2, http://www.omg.org/docs/ptc/98-01-02

CORBA Security Service, Revision 1.5, http://www.omg.org/docs/ptc/98-12-03

CORBA Security Service, Revision 1.7, http://www.omg.org/docs/ptc/99-12-03

IETF ID PKIXAC

An Internet Attribute Certificate Profile for Authorization, <draft-ietf-pkix-ac509prof-05.txt>, S. Farrell, Baltimore
Technologies, R. Housley, SPYRUS, August 2000.
CORBA - Part 2: Interoperability, v3.3 171

IETF RFC 2246

The TLS Protocol Version 1.0, T. Dierks, C. Allen, January 1999.

IETF RFC 2459

Internet X.509 Public Key Infrastructure Certificate and CRL Profile, R Housley, W. Ford, W. Polk, and D. Solo, January
1999.

IETF RFC 2743

Generic Security Service Application Program Interface Version 2, Update 1, J. Linn, January 2000.

X.501-93

ITU-T Recommendation X.501: Information Technology - Open Systems Interconnection - The Directory: Models, 1993.

10.9 IDL

10.9.1 Module GSSUP - Username/Password GSSAPI Token Formats

#ifndef _GSSUP_IDL_
#define _GSSUP_IDL_

import ::CSI;

module GSSUP {
typeprefix GSSUP “omg.org”;

// The GSS Object Identifier allocated for the
// username/password mechanism is defined below.
//
// { iso-itu-t (2) international-organization (23) omg (130)
// security (1) authentication (1) gssup-mechanism (1) }

const CSI::StringOID GSSUPMechOID = "oid:2.23.130.1.1.1";

// The following structure defines the inner contents of the
// username password initial context token. This structure is
// CDR encapsulated and appended at the end of the
// username/password GSS (initial context) Token.

struct InitialContextToken {
CSI::UTF8String username;
CSI::UTF8String password;
CSI::GSS_NT_ExportedName target_name;

};
typedef unsigned long ErrorCode;

// GSSUP Mechanism-Specific Error Token
172 CORBA - Part 2: Interoperability, v3.3

struct ErrorToken {
ErrorCode error_code;

};
// The context validator has chosen not to reveal the GSSUP
// specific cause of the failure.
const ErrorCode GSS_UP_S_G_UNSPECIFIED = 1;

// The user identified in the username field of the
// GSSUP::InitialContextToken is unknown to the target.
const ErrorCode GSS_UP_S_G_NOUSER = 2;

// The password supplied in the GSSUP::InitialContextToken was
// incorrect.
const ErrorCode GSS_UP_S_G_BAD_PASSWORD = 3;

// The target_name supplied in the GSSUP::InitialContextToken does
// not match a target_name in a mechanism definition of the target.
const ErrorCode GSS_UP_S_G_BAD_TARGET = 4;

}; // GSSUP

#endif

10.9.2 Module CSI - Common Secure Interoperability

#ifndef _CSI_IDL_
#define _CSI_IDL_

module CSI {
typeprefix CSI “omg.org”;

// The OMG VMCID; same value as CORBA::OMGVMCID. Do not change ever.

const unsigned long OMGVMCID = 0x4F4D0;

// An X509CertificateChain contains an ASN.1 BER encoded SEQUENCE
// [1..MAX] OF X.509 certificates in a sequence of octets. The
// subject’s certificate shall come first in the list. Each following
// certificate shall directly certify the one preceding it. The ASN.1
// representation of Certificate is as defined in [IETF RFC 2459].

typedef sequence <octet> X509CertificateChain;

// an X.501 type name or Distinguished Name in a sequence of
// octets containing the ASN.1 encoding.

typedef sequence <octet> X501DistinguishedName;

// UTF-8 Encoding of String
CORBA - Part 2: Interoperability, v3.3 173

typedef sequence <octet> UTF8String;

// ASN.1 Encoding of an OBJECT IDENTIFIER

typedef sequence <octet> OID;

typedef sequence <OID> OIDList;

// A sequence of octets containing a GSStoken. Initial context tokens are
// ASN.1 encoded as defined in [IETF RFC 2743] 3.1,
// "Mechanism-Independent token Format", pp. 81-82. Initial context tokens
// contain an ASN.1 tag followed by a token length, a mechanism identifier,
// and a mechanism-specific token (i.e. a GSSUP::InitialContextToken). The
// encoding of all other GSS tokens (e.g. error tokens and final context
// tokens) is mechanism dependent.

typedef sequence <octet> GSSToken;

// An encoding of a GSS Mechanism-Independent Exported Name Object as
// defined in [IETF RFC 2743] 3.2, "GSS Mechanism-Independent
// Exported Name Object Format," p. 84.
typedef sequence <octet> GSS_NT_ExportedName;
typedef sequence <GSS_NT_ExportedName> GSS_NT_ExportedNameList;

// The MsgType enumeration defines the complete set of service context
// message types used by the CSI context management protocols, including
// those message types pertaining only to the stateful application of the
// protocols (to insure proper alignment of the identifiers between
// stateless and stateful implementations). Specifically, the
// MTMessageInContext is not sent by stateless clients (although it may
// be received by stateless targets).

typedef short MsgType;

 const MsgType MTEstablishContext = 0;
 const MsgType MTCompleteEstablishContext = 1;
 const MsgType MTContextError = 4;
 const MsgType MTMessageInContext = 5;

// The ContextId type is used carry session identifiers. A stateless
// application of the service context protocol is indicated by a session
// identifier value of 0.

typedef unsigned long long ContextId;

// The AuthorizationElementType defines the contents and encoding of
// the_element field of the AuthorizationElement.

// The high order 20-bits of each AuthorizationElementType constant
// shall contain the Vendor Minor Codeset ID (VMCID) of the
// organization that defined the element type. The low order 12 bits
174 CORBA - Part 2: Interoperability, v3.3

// shall contain the organization-scoped element type identifier. The
// high-order 20 bits of all element types defined by the OMG shall
// contain the VMCID allocated to the OMG (that is, 0x4F4D0).

 typedef unsigned long AuthorizationElementType;

// An AuthorizationElementType of X509AttributeCertChain indicates that
// the_element field of the AuthorizationElement contains an ASN.1 BER
// SEQUENCE composed of an (X.509) AttributeCertificate followed by a
// SEQUENCE OF (X.509) Certificate.
// The chain of identity certificates is provided
// to certify the attribute certificate. Each certificate in the chain
// shall directly certify the one preceding it. The first certificate
// in the chain shall certify the attribute certificate. The ASN.1
// representation of (X.509) Certificate is as defined in [IETF RFC 2459].
// The ASN.1 representation of (X.509) AtributeCertificate is as defined
// in [IETF ID PKIXAC].

const AuthorizationElementType X509AttributeCertChain = OMGVMCID | 1;

typedef sequence <octet> AuthorizationElementContents;

// The AuthorizationElement contains one element of an authorization token.
// Each element of an authorization token is logically a PAC.

struct AuthorizationElement {
AuthorizationElementType the_type;
AuthorizationElementContents the_element;

 };

// The AuthorizationToken is made up of a sequence of
// AuthorizationElements

typedef sequence <AuthorizationElement> AuthorizationToken;

 typedef unsigned long IdentityTokenType;

// Additional standard identity token types shall only be defined by the
// OMG. All IdentityTokenType constants shall be a power of 2.

const IdentityTokenType ITTAbsent = 0;
 const IdentityTokenType ITTAnonymous = 1;
 const IdentityTokenType ITTPrincipalName = 2;
 const IdentityTokenType ITTX509CertChain = 4;
 const IdentityTokenType ITTDistinguishedName = 8;

typedef sequence <octet> IdentityExtension;

 union IdentityToken switch (IdentityTokenType) {
case ITTAbsent: boolean absent;

 case ITTAnonymous: boolean anonymous;
 case ITTPrincipalName: GSS_NT_ExportedName principal_name;
CORBA - Part 2: Interoperability, v3.3 175

case ITTX509CertChain: X509CertificateChain certificate_chain;
case ITTDistinguishedName: X501DistinguishedName dn;
default: IdentityExtension id;

 };

struct EstablishContext {
ContextId client_context_id;

 AuthorizationToken authorization_token;
 IdentityToken identity_token;
 GSSToken client_authentication_token;

};

 struct CompleteEstablishContext {
ContextId client_context_id;
boolean context_stateful;
GSSToken final_context_token;

 };

struct ContextError {
ContextId client_context_id;
long major_status;
long minor_status;
GSSToken error_token;

};

// Not sent by stateless clients. If received by a stateless server, a
// ContextError message should be returned, indicating the session does
// not exist.

 struct MessageInContext {
ContextId client_context_id;
boolean discard_context;

};

 union SASContextBody switch (MsgType) {
case MTEstablishContext: EstablishContext establish_msg;
case MTCompleteEstablishContext: CompleteEstablishContext complete_msg;
case MTContextError: ContextError error_msg;
case MTMessageInContext: MessageInContext in_context_msg;

};

// The following type represents the string representation of an ASN.1
// OBJECT IDENTIFIER (OID). OIDs are represented by the string "oid:"
// followed by the integer base 10 representation of the OID separated
// by dots. For example, the OID corresponding to the OMG is represented
// as: "oid:2.23.130"

typedef string StringOID;

// The GSS Object Identifier for the KRB5 mechanism is:
// { iso(1) member-body(2) United States(840) mit(113554) infosys(1)
176 CORBA - Part 2: Interoperability, v3.3

// gssapi(2) krb5(2) }

const StringOID KRB5MechOID = "oid:1.2.840.113554.1.2.2";

// The GSS Object Identifier for name objects of the Mechanism-independent
// Exported Name Object type is:
// { iso(1) org(3) dod(6) internet(1) security(5) nametypes(6)
// gss-api-exported-name(4) }

const StringOID GSS_NT_Export_Name_OID = "oid:1.3.6.1.5.6.4";

// The GSS Object Identifier for the scoped-username name form is:
// { iso-itu-t (2) international-organization (23) omg (130) security (1)
// naming (2) scoped-username(1) }

const StringOID GSS_NT_Scoped_Username_OID = "oid:2.23.130.1.2.1";

}; // CSI
#endif

10.9.3 Module CSIIOP - CSIv2 IOR Component Tag Definitions

#ifndef _CSIIOP_IDL_
#define _CSIIOP_IDL_

import ::IOP;
import ::CSI;

module CSIIOP {
typeprefix CIIOP “omg.org”;
// Association options
typedef unsigned short AssociationOptions;
const AssociationOptions NoProtection = 1;
const AssociationOptions Integrity = 2;
const AssociationOptions Confidentiality = 4;
const AssociationOptions DetectReplay = 8;
const AssociationOptions DetectMisordering = 16;
const AssociationOptions EstablishTrustInTarget = 32;
const AssociationOptions EstablishTrustInClient = 64;
const AssociationOptions NoDelegation = 128;
const AssociationOptions SimpleDelegation = 256;
const AssociationOptions CompositeDelegation = 512;
const AssociationOptions IdentityAssertion = 1024;
const AssociationOptions DelegationByClient = 2048;

// The high order 20-bits of each ServiceConfigurationSyntax constant
// shall contain the Vendor Minor Codeset ID (VMCID) of the
// organization that defined the syntax. The low order 12 bits shall
// contain the organization-scoped syntax identifier. The high-order 20
// bits of all syntaxes defined by the OMG shall contain the VMCID
CORBA - Part 2: Interoperability, v3.3 177

// allocated to the OMG (that is, 0x4F4D0).

typedef unsigned long ServiceConfigurationSyntax;

const ServiceConfigurationSyntax SCS_GeneralNames = CSI::OMGVMCID | 0;
const ServiceConfigurationSyntax SCS_GSSExportedName = CSI::OMGVMCID | 1;

 typedef sequence <octet> ServiceSpecificName;

// The name field of the ServiceConfiguration structure identifies a
// privilege authority in the format identified in the syntax field. If the
// syntax is SCS_GeneralNames, the name field contains an ASN.1 (BER)
// SEQUENCE [1..MAX] OF GeneralName, as defined by the type GeneralNames in
// [IETF RFC 2459]. If the syntax is SCS_GSSExportedName, the name field
// contains a GSS exported name encoded according to the rules in
// [IETF RFC 2743] 3.2, "Mechanism-Independent Exported Name
// Object Format," p. 84.

struct ServiceConfiguration {
ServiceConfigurationSyntax syntax;
ServiceSpecificName name;

};

typedef sequence <ServiceConfiguration> ServiceConfigurationList;

// The body of the TAG_NULL_TAG component is a sequence of octets of
// length 0.

// type used to define AS layer functionality within a compound mechanism
// definition

 struct AS_ContextSec {
AssociationOptions target_supports;
AssociationOptions target_requires;
CSI::OID client_authentication_mech;
CSI::GSS_NT_ExportedName target_name;

};

// type used to define SAS layer functionality within a compound mechanism
// definition

 struct SAS_ContextSec {
AssociationOptions target_supports;
AssociationOptions target_requires;
ServiceConfigurationList privilege_authorities;
CSI::OIDList supported_naming_mechanisms;
CSI::IdentityTokenType supported_identity_types;

};

// type used in the body of a TAG_CSI_SEC_MECH_LIST component to
// describe a compound mechanism
178 CORBA - Part 2: Interoperability, v3.3

 struct CompoundSecMech {
AssociationOptions target_requires;
IOP::TaggedComponent transport_mech;
AS_ContextSec as_context_mech;
SAS_ContextSec sas_context_mech;

};

typedef sequence <CompoundSecMech> CompoundSecMechanisms;

// type corresponding to the body of a TAG_CSI_SEC_MECH_LIST
// component

 struct CompoundSecMechList {
boolean stateful;
CompoundSecMechanisms mechanism_list;

};

struct TransportAddress {
string host_name;
unsigned short port;

};

typedef sequence <TransportAddress> TransportAddressList;

// Tagged component for configuring SECIOP as a CSIv2 transport mechanism

const IOP::ComponentId TAG_SECIOP_SEC_TRANS = 35;

struct SECIOP_SEC_TRANS {
AssociationOptions target_supports;
AssociationOptions target_requires;
CSI::OID mech_oid;
CSI::GSS_NT_ExportedName target_name;
TransportAddressList addresses;

};

// tagged component for configuring TLS/SSL as a CSIv2 transport mechanism
const IOP::ComponentId TAG_TLS_SEC_TRANS = 36;
struct TLS_SEC_TRANS {

AssociationOptions target_supports;
AssociationOptions target_requires;
TransportAddressList addresses;

};

 }; //CSIIOP

#endif
CORBA - Part 2: Interoperability, v3.3 179

180 CORBA - Part 2: Interoperability, v3.3

11 Unreliable Multicast Inter-ORB Protocol

11.1 Introduction

11.1.1 Purpose

The purpose of MIOP (Unreliable Multicast Inter-ORB Protocol) is to provide a common mechanism to deliver GIOP
request and fragment messages via multicast. The default transport specified for MIOP is IP Multicast1 through UDP/IP2
which will provide the ability to perform connectionless multicast. This requires that IDL operations will have one-way
semantics.

The initial version of MIOP will be designated 1.0. This version scheme will be independent of the GIOP version.

MIOP will not be dependent upon data that is contained in the GIOP header, request header, or fragment header; MIOP
does not read or interpret GIOP messages. This will provide the capability for MIOP to be used for future and existing
protocols as defined in by the OMG.

This specification mandates that implementers of this technology shall reuse the CDR marshaling.

The following sub clauses describe the wire protocol and send/receive semantics of MIOP.

11.1.2 MIOP Packet

An MIOP Packet is defined as the MIOP PacketHeader information, which is defined below, as well as the raw GIOP data
(body) contained in the rest of the MIOP Packet. An MIOP Packet will be sent and later reassembled on the receiving
side. MIOP Packets are the atomic pieces that comprise a Packet Collection that is discussed below.

11.1.3 Packet Collection

A Packet Collection is comprised of one or more MIOP Packets and is defined as complete, packaged, GIOP request/
fragment message. Only GIOP request messages and associated request message fragments are allowed in an MIOP
Packet in a Packet Collection.

The total data contained in a GIOP message (header, request/fragment header and body), determines the total number of
MIOP Packets that need to be sent and subsequently reassembled by the receiver.

The number of packets that comprise a Packet Collection are dependent on the maximum size of the frame buffer
supported by the hardware. Typically Ethernet supports 1518 bytes per frame, although UDP will allow up to 65536 bytes
per frame if the physical layer can support it. If the Packet Collection cannot fit in the hardware specified frame size, the
MIOP protocol requires that the GIOP message be broken up into packets that comprise a Packet Collection.

The MIOP sender will label the packet data so that the receiving MIOP layer can determine the number of packets in the
MIOP message, as well as the position of each packet as a part of the Packet Collection (e.g., packet 3 of 20). In addition,
the sender provides a unique signature for each Packet Collection to ensure that the receiver can properly reassemble the
packets (i.e., make sure that 3 of 20 is not some other message’s 3 of 20).

1. Deering, S. “Host Extensions for IP Multicasting” RFC 1112 Network Working Group, Stanford University August 1989
2. Postel,J. “User Datagram Protocol” RFC-768 Information Sciences Institute, August 28, 1980
CORBA - Part 2: Interoperability, v3.3 181

11.1.4 PacketHeader

The PacketHeader is the MIOP data structure that represents the state information for a single packet within the Packet
Collection in MIOP. This data structure is used to send and receive packetized GIOP messages in the form of MIOP
Packet Collections. This data structure precedes any associated GIOP data which has been packetized. All MIOP packets
in a Packet Collection must start with a PacketHeader.

Therefore it is required that:

• MIOP senders insert a PacketHeader in front of each packet of GIOP request/fragment data;

• MIOP receivers read and strip off MIOP PacketHeaders and concatenate all the GIOP related data from the packets of
a message before posting the GIOP request to the ORB; and

• the GIOP data in the MIOP Packet body must start on a eight byte boundary following the UniqueId field.

The following IDL defines the fields of the Packet Header. The text following the IDL will describe the field in detail.

module MIOP
{
 typedef sequence <octet, 252> UniqueId;

 struct PacketHeader_1_0
 {
 char magic[4]; // 4bytes
 octet hdr_version; // 1 byte
 octet flags; // 1 byte
 unsigned short packet_length; // 2 bytes
 unsigned long packet_number; // 4 bytes
 unsigned long number_of_packets; // 4bytes, sub-total 16 bytes
 UniqueId id; // body data must begin on a

// 8 byte boundary
 };

};

11.1.4.1 struct PacketHeader

The PacketHeader is a variable length data structure that provides the capability for packet reassembly on the receivers
side. The sending side is responsible for properly filling in the values before it is sent.

11.1.4.1.1 Magic

The magic field is a four byte character array which will always be the literal value ‘MIOP.’ This field will provide a
mechanism for determining if a multicast message is a CORBA MIOP message or some other unrelated datagram.

11.1.4.1.2 Header Version

This field is a 1 byte value that contains the major and minor versions of MIOP. The high-order four bits of the octet will
be the major version and the low-order four bits are the minor version (e.g., decimal 16 will equal version 1.0).
182 CORBA - Part 2: Interoperability, v3.3

11.1.4.1.3 Flags

The Flags field is a single octet that provides the value of the sending endian, and a stop message bit as well as unused,
additional bits for future use.

The 1.0 version of MIOP specifies that the lowest order bit of the octet will contain the endian flag. The value zero for
the endian flag indicates big-endian byte ordering and the value one indicates little-endian byte ordering.

The second lowest order bit will designate the stop message flag. This bit contains a value of one for the last packet sent
in a Packet Collection; otherwise it must be zero.

The values of the six reserved bits must be set to zero for MIOP 1.0.

11.1.4.1.4 Packet Length

This field is mandatory and is used to define the actual number of bytes delivered with an MIOP Packet in a Packet
Collection. This value must be the same for all MIOP Packets with the exception of the last packet which may contain a
value which is less than the length specified in the other packets in the Packet Collection. This value is constrained by the
physical layer of the underlying transport. For instance, UDP allows as much as 65K or as little as 512 bytes for the size
of a single UDP packet.

The value specified in this field will not take into account the length of the header.

11.1.4.1.5 Packet Number

This field is mandatory and is an unsigned long value that states the current packet number that is being delivered (e.g.,
packet 3 of 20 in the Packet Collection). The number of the first packet must be zero and the number of the last packet
must be n-1.

11.1.4.1.6 Number of Packets

This field is optional but can be used in conjunction with the first instance of an MIOP Packet in the Packet Collection,
Packet Length field, to perform optimizations for allocating the receive message buffer used in packet reassembly. The
number-of-packets field is an unsigned long value that states the total number of packets that are to be delivered3. In the
event that this field is not used it must be set to the value zero.

11.1.4.1.7 UniqueId

This variable length data structure provides the unique signature required for packet reassembly on the receiving side.
This field must be identical for all packets associated with a Packet Collection. The data structure for this field is a
bounded sequence of octets not to exceed 252 bytes of octet data4. The data contained in the body of the packet following
the octet portion of the sequence must start on an eight byte boundary to maintain the integrity of the GIOP data in the
packet. Implementations must provide as a default, uniqueness appropriate for the internet as a whole (e.g., GUID format
of COM).

11.1.5 Joining an IP/Multicast Group

IP/Multicast only requires receivers to explicitly join an IP/Multicast group before they receive their first MIOP packet.

3. Based on a UDP packet of 512, and the maximum number of packets (4,294,967,296) packets, the maximum message size would
be approximately 2GB. This size would include the IP header, UDP header, MIOP PacketHeader(s), and all other related data.

4. The unique id should be kept as small as possible for those applications that broadcast small GIOP messages.
CORBA - Part 2: Interoperability, v3.3 183

11.1.6 Quality Of Service

11.1.6.1 Time-To-Live

When the implementation is using IP/Multicast, the socket option IP_MULTICAST_TTL, provides the capability for a
UDP/IP datagram to be sent over more than one subnet. This value could be assigned statically or dynamically. This
specification does not address how an application would set TTL.

11.1.6.2 Incomplete Receipt of a Packet Collection

In the event that an MIOP packet is received out of order in the context of its Packet Collection, the protocol should wait
for the missing packets until the last packet is received. If the missing packets are not received by the time of the receipt
of the last packet, the Packet Collection is in error and should be dropped.

The receiver should provide a mechanism to time out incomplete Packet Collections in the event that a partial collection
has been received but no further packets are incoming. This will keep the protocol from expending resources and waiting
indefinitely.

11.1.7 Delivery Requirements

The MIOP protocol requires that a single GIOP request message, including any fragment, must be sent as a single MIOP
message. This does not imply that the entire GIOP request must be encoded before it is delivered to the MIOP layer. The
MIOP protocol must be notified that the last portion of the GIOP message is being sent. This notification must also occur
for non-fragmented GIOP requests. Upon receipt of the last portion or the whole GIOP message. MIOP will generate
packets from the GIOP data and set the stop bit in the Packet Header flags for the last MIOP packet it creates. All MIOP
packets associated with a GIOP request, including the fragments will have the same data image expressed in their
UniqueId field of their Packet Header in a given Packet Collection.

11.2 MIOP Object Model

11.2.1 Definition

The current CORBA object model specifies that a single object reference will map to a single object implementation via
an object key. The invocation semantics are both two-way and one-way with reliability requirements for the delivery and
ordering of messages.

The specification for the MIOP object model does not specify an object key but a group identifier that can be associated
to multiple PortableServer::ObjectId values which in turn can be used to activate implementation objects. The delivery
semantics of CORBA messages over MIOP are one-way with no reliability of message receipt. There are no requirements
for MIOP to be reliable so therefore no group membership is needed. It is entirely possible to have an application sending
CORBA messages via MIOP with no receiving applications present (e.g., the unpopular radio station that no one listens
to but broadcasts none-the-less).

An on-going theme in the MIOP object model is the behavior of object groups. An object group in MIOP consists of
group identification information as well as network communication information. Object group technology is necessary for
implementing the MIOP object model. Therefore, the role of object groups will be covered during the discussion of the
following document sub clauses.

The object model for MIOP will consist of the following topics:
184 CORBA - Part 2: Interoperability, v3.3

• MIOP Unreliable IP/Multicast Profile Body,

• Group IOR,

• Portable Group Adapter (PGA),

• Gateway, and the

• Multicast Group Manager (MGM).

11.2.2 Unreliable IP/Multicast Profile Body (UIPMC_ProfileBody)

The UIPMC_ProfileBody contains all the information required to make an invocation on a servant object using IP/
Multicast as a transport mechanism. The profile differs from the IIOP profile in that:

• the object key field is omitted; and

• the field expressing a host name is replaced by a multiple character field that will express a valid IPv4/IPv6 multicast
address, or an alias name to a multicast address.

The absence of the object key in the UIPMC profile is due to the fact that an MIOP request will typically be delivered to
multiple servants that are associated with an object group and are housed in applications built using different vendor’s
ORBs. This of course is different than the classical IIOP scenario in which an object key provides a mapping to a single
servant.

The definition of the UIPMC profile is defined below.

module MIOP
{

...
typedef GIOP::Version Version;
typedef string Address;
struct UIPMC_ProfileBody
{

Version miop_version;
Address the_address;
short the_port;
sequence<IOP::TaggedComponents> components;

};
};

11.2.2.1 Version

The version field contains the major and minor version of the data structure. The version nomenclature will start at 1.0.
This version field should be considered separate from the version of the MIOP PacketHeader.

11.2.2.2 Address

The Address field specifies either

• a class D address for IPv4 (e.g., 225.1.1.1);

• an IPv6 address (e.g., FF01:0:0:0:0:0:0:1 - all nodes address); or

• an alias to a multicast address.
CORBA - Part 2: Interoperability, v3.3 185

11.2.2.3 Port

This field is an unsigned short value that contains the port value associated with the Address field.

11.2.2.4 Group Components

This field will contain any additional component profiles. It has the same semantics as in an IIOP ProfileBody. At least
one of these components must contain a group component and additionally a component specifying an IIOP profile to be
used for two-way operations and operations supporting the CORBA::Object OMA. The concepts of the components are
discussed below.

module IOP {

const ProfileId TAG_UIPMC = 3;
const ComponentId TAG_GROUP = 39;
const ComponentId TAG_GROUP_IIOP = 40

};

module PortableGroup {

typedef GIOP::Version Version;

struct GroupInfo { // tag = TAG_GROUP;
Version component_version;
GroupDomainId group_domain_id;
ObjectGroupId object_group_id;
ObjectGroupRefVersion object_group_ref_version;

};
typedef sequence <octet> GroupIIOPProfile

};

Object Groups can have lifetimes that persist after senders and receivers are no longer invoking on the destination
endpoints of the object group. In fact, object groups can exist with no associated, participating sender or receiver objects.
They should therefore be created to be unique to avoid ambiguity.

11.2.2.4.1 GroupInfo

The fields associated with this tagged component are used to provide unique information to describe a group.

Version

The current version of the tagged component.

GroupDomainId

A simple string that applies scope to the ObjectGroupId. This was changed from the FT::FTDomainId.

ObjectGroupId

A 64 bit identifier that uniquely defines the group.
186 CORBA - Part 2: Interoperability, v3.3

ObjectGroupRefVersion

This field is optional and will be set to zero for MIOP when it is not being used. An implementation may set the value if
multiple versions of an object group reference exist.

11.2.2.4.2 GroupIIOPProfile

This data field will contain the profile data for an IIOP tagged profile. This IIOP profile will be used to support the OMA
of CORBA::Object. This component is not required to complete the UIPMC profile.

11.2.3 Group IOR

A Group IOR will serve the purpose of providing the client with the means to invoke directly to

• an IIOP gateway application in the event that the client is not multicast capable (via a standard IIOP profile); or

• MIOP aware servant objects that support the same interface and belong to the same multicast group (via a multicast
profile; for example, UIPMC_ProfileBody).

The creator of the IOR, (typically the MGM but not necessarily), creates the number of profiles in the IOR based on the
requirements of the object group participants. This suggests that one or both profiles could be present in the Group IOR.
MIOP aware clients will directly target the UIPMC profile contained in the Group IOR. This would allow them to directly
use the multicast capability as opposed to using a gateway. All the profiles are essentially optional but one of course must
be present. The figure below details the contents of the Group IOR.
CORBA - Part 2: Interoperability, v3.3 187

Figure 11.1 - An example of the Group Interoperable Object Reference used for Unreliable Multicast.

11.2.3.1 Gateway Profile

The profile for the gateway is a standard IIOP profile. The gateway itself could be multicast aware, or like the CORBA
EventService, simply multiplex requests to the servant objects via a conventional IIOP mechanism. Therefore no
restrictions should be placed on servants that would not allow both standard GIOP over IIOP requests and MIOP requests
to target the same servant object.

If the gateway supports GIOP version 1.2, the creator of the Group IOR should place the UIPMC Profile5 information in
the profile field of the union field for GIOP::TargetAddress.

If the gateway supports GIOP version 1.0 or 1.1, the creator of the Group IOR should place the UIPMC Profile
information in the object key field. This data will appear as an encapsulation preceded by the literal characters ‘MIOP.’

Providing the entire profile as part of the request header allows the gateway to use the destination endpoints for
forwarding the request to its intended destinations via multicast.

5. It is assumed that other profiles created for MIOP will be handled in a similar fashion.

Type_id Number
of profiles

IIOP_Profile UIPMC_Profile

TAG_INTERNET
_IOP

ProfileBody TAG_UIPMC ProfileBody

IIOP
Version

Host Port Object Components
 Key MIOP Multicast Port Components

Version Address

Number of
components Components Number of Tag Group Tag Group IIOP

components Component Component Components
 Other

Component Group Object Object
Version Domain Group Reference

 Id Id Version

IIOP Host Port Object Components
Version Key

Number of Components
components
188 CORBA - Part 2: Interoperability, v3.3

11.2.3.2 UIPMC Profile

The UIPMC profile would directly support MIOP operations. This could be the only profile associated with an IOR for
those situations where there are no gateway applications available. In addition, the creator of the group IOR can specify
an IIOP profile to be placed as a tagged component of the UIPMC profile to support the OMA of CORBA::Object. The
UIPMC profile differs from an IIOP profile in that the object key field is not present. The identify of the group is defined
by the PortableGroup::GroupInfo data supplied in the components.

11.2.3.3 Unreliable Multicast Object Groups

Object groups represent a collection of participating objects, both invoking and receiving CORBA operations on common
object group information, that take their identity from the information associated with the group definition. Typically this
group information is stored in the Multicast Group Manager (MGM) when such an application is present. Often, though
not in this specification, an object group’s information will define a group’s object membership; this specification ignores
membership. It is assumed that future reliable multicast oriented specifications will address group membership.

For the scope of this specification, an object group will provide some unique identification of itself (id, name, type
version) as well as the ability to disclose its destination endpoints.

11.2.4 Extending PortableServer::POA to include Group Operations

This sub clause discusses how to extend the current model for the PortableServer::POA to take into account servant
groups. Several operations will be added to the interface GOA (Group Object Adapter) in the PortableGroup module to
extend the POA and provide object group functionality.

The UIPMC profile for the Group IOR does not define a universal object key; object keys are opaque structures that are
vendor defined. In addition, an object key as defined in IIOP, is intended to specify a single object as opposed to an object
group. The intent of this specification was to not change the semantics of object keys or define a common object key
format; neither of which would be hardily welcomed by the vendor community. Instead, the ORB implementation for the
Group Object Adapter should use the PortableGroup::GroupInfo in the UIPMC profile components field and an
associated PortableServer::ObjectId to correctly dispatch the MIOP operation to the correct objects6.

The operations discussed below provide a mechanism to map a well known multicast group reference associated with an
object group to a standard PortableServer::ObjectId. This removes the need of having a common object key format.
This also provides a mechanism to allow servant objects residing in different vendor’s ORB applications to all receive the
same messages. This of course is dependent on:

1. The servants using the same group reference containing the definition for the same object group.

2. The destination endpoints in the group reference being used for receiving requests.

3. The interface that the request is being invoked upon is identical, or derived from the parent interface by inheritance,
to the one contained in the object group’s definition.

There should be no restrictions on different object groups sharing the same destination endpoints.

6. The plural is used here to address multiple objects all associated with the same object group within a single process space. This
requirement is necessary to address location transparency. Multiple collocated objects that have associated themselves with the
same object group, which are invoked upon locally, will need to receive the request.
CORBA - Part 2: Interoperability, v3.3 189

11.2.4.1 New Operations

module PortableGroup {

exception NotAGroupObject {};
typedef sequence <PortableServer::ObjectId> IDs;

interface GOA : PortableServer::POA {
...
PortableServer::ObjectId

create_id_for_reference(in Object the_ref)
raises (NotAGroupObject);

IDs
reference_to_ids (in Object the_ref)

raises (NotAGroupObject);

void
associate_reference_with_id

(in Object ref, in PortableServer::ObjectId oid)
raises(NotAGroupObject);

void
disassociate_reference_with_id

(in Object ref, in PortableServer::ObjectId oid)
raises(NotAGroupObject);

}; // end interface GOA

}; // end module PortableGroup

11.2.4.1.1 Group Object Adapter Operations

create_id_for_reference

The operation create_id_for_reference() takes as an argument a widened Group IOR and generates a unique
PortableServer::ObjectId for that reference. This identifier returned by this routine is of the type
PortableServer::ObjectId. This identifier is later associated with a servant via the standard API in the POA; that is,
activate_object_with_id().

PortableServer::ObjectId
create_id_for_reference(in Object the_ref)

raises (NotAGroupObject);

Parameter: the_ref A reference for the object group.

Return Value: A unique ObjectId.

Raises: NotAGroupObject Raised if the object reference is not a group reference.
190 CORBA - Part 2: Interoperability, v3.3

reference_to_ids

The operation reference_to_ids() takes as an argument a widened Group IOR and returns a sequence of object
identifiers that are currently associated with the Group IOR.

IDs
reference_to_ids (in Object group_ref)

raises (NotAGroupObject);

associate_reference_with_id

The operation takes a previously generated ObjectId and associates it with a group reference. Servants activated using this
ObjectId will be candidates for receiving MIOP requests via the group information provided in the IOR. The operation
silently ignores repeat/duplicate associations of a POA/ObjectId pair with the provided object reference.

void
associate_reference_with_id

(in Object ref, in PortableServer::ObjectId oid)
raises(NotAGroupObject);

disassociate_reference_with_id

The operation takes a previously generated ObjectId and removes the association it had with a group reference. Servants
activated using this ObjectId will no longer receive MIOP requests via the group information provided in the IOR. The
operation silently ignores disassociations that no longer or never existed.

void
disassociate_reference_with_id

(in Object ref, in PortableServer::ObjectId oid)
raises(NotAGroupObject);

Parameter: the_ref A reference for the object group.

Return Value: A sequence of servant object identifiers that are currently associated with the group.

Raises: NotAGroupObject Raised if the object reference is not a group reference

Parameters:

 ref A reference for the object group.

 oid A system or user generated ObjectId.

Return Value: None

Raises: NotAGroupObject Raised if the object reference is not a group reference
CORBA - Part 2: Interoperability, v3.3 191

11.2.4.2 Invocation Scenarios

The routines listed above do not have the capability to modify or destroy an ObjectId that is generated by the POA or by
the application programmer. They simply associate an ID to a reference either implicitly or explicitly. Therefore a call to
create_id_for_reference() or associate_id_with_reference() followed by a call to
disassociate_id_with_reference() does nothing to the existence of the ObjectId and allows that same ObjectId to be
reused again in a call to associate_id_with_reference().

11.2.5 MIOP Gateway

A gateway may be used to provide access to all MIOP aware servants that are in the object group. Prior to the creation of
the group IOR, the creator can specify the use of a gateway and creator of the group IOR can insert the IIOP profile of
the gateway in the Group IOR.

An MIOP unaware client ORB uses the IIOP profile from the group IOR and establishes a connection to the gateway. The
gateway in turn uses the destination endpoints specified by the UIPMC profile (placed in the object key pre GIOP 1.2,
and in the TargetAddress profile field in GIOP 1.2) to forward GIOP request messages to the members of the object
group. The gateway could use MIOP multicast or an IIOP mechanism similar to the CORBA EventService.

An MIOP client application using a gateway would be MIOP unaware. Like any normal IIOP sending application, it
simply makes requests without regard to the UIPMC profile in the IOR.

11.2.6 Multicast Group Manager

The Multicast Group Manager serves the purpose creating and managing multicast object groups as well as managing
multicast transport resources. Creation of the multicast group can result in the assignment of multicast destination
endpoints on which senders multicast their messages and receivers accept them. Once an object group is created, the
group reference can be stored in the Naming Service to be retrieved by applications interested in participating in the
object group.

When the MGM is instructed to create a multicast object group, it may perform one of the following criteria:

• Just create the group with no destination endpoints;

• Create the group and automatically allocate the endpoints; or

• Create the group and supply its own preferred destination endpoints.

When the endpoints of the multicast transport are specified, the MGM can create a completed group reference and publish
the reference to the world. The newly created/updated group reference would contain any specific IIOP profiles to the
gateway, as well as the UIPMC profile. Once a client application gets a group reference, it can then start multicasting to

Parameters:

 ref A reference for the object group.

 oid A system or user generated ObjectId.

Return Value: None

Raises: NotAGroupObject Raised if the object reference is not a group reference
192 CORBA - Part 2: Interoperability, v3.3

servant objects who are listening on those same destination endpoints. A receiving application would acquire a published
IOR and associate this reference with an ObjectId and then activate a servant object with that id allowing the dispatching
of request to the participating servant objects.

A single MIOP multicast address may be associated with more than one object group. This allows a process to listen to
messages for more than one group on a single multicast address.

Objects that are recipients of multicasts have interfaces defined in IDL like any other objects. However, because multicast
is unidirectional, the only operations that can be invoked on an interface are operations that have a void return type, in
parameters only, and do not raise exceptions. These restrictions create a problem because all IDL interfaces inherit from
CORBA::Object which contains operations that do not meet these restrictions. For example, is_a() and non_existent()
are operations that have a return value.

Therefore the group IOR created by the MGM must be able to:

• Provide a common factory to manage object groups; and

• Provide the capability to be able to support the OMA of CORBA::Object.

The MGM’s role in implementing the OMA will be discussed at the end of this sub clause on the MGM. The following
sub clauses will discuss the IDL that comprises the MGM.

Since the implementation of the MGM is optional, an orb vendor should use the corbaloc mechanism to create a group
reference with a UIPMC profile if the MGM is not available. Once this reference is properly created, it needs to be
published in a conventional application determined place (e.g., file, CORBA Naming Service, etc.) so that participating
applications can acquire the reference to send and receive multicast requests.

11.2.6.1 module PortableGroup

This sub clause presents the IDL for the module PortableGroup. The module will be used for other specifications outside
this specification that deal with Object Groups. The IDL from the discussion of the PGA above is not included in the full
IDL definition of PortableGroup pending its full acceptance. The full IDL for module will be presented at the end of this
specification.

11.2.6.1.1 Common Types

module PortableGroup {

// Specification for Interoperable Object Group References
typedef string GroupDomainId;
typedef unsigned long long ObjectGroupId;
typedef unsigned long ObjectGroupRefVersion;

typedef GIOP::Version Version;

struct GroupInfo { // tag = TAG_GROUP;
Version component_version;
GroupDomainId group_domain_id;
ObjectGroupId object_group_id;
ObjectGroupRefVersion object_group_ref_version;

};
typedef sequence <octet> GroupIIOPProfile
CORBA - Part 2: Interoperability, v3.3 193

// Specification of Common Types and Exceptions
// for GroupManagement
interface GenericFactory;

typedef CORBA::RepositoryId TypeId;
typedef Object ObjectGroup;
typedef CosNaming::Name Name;
typedef any Value;

struct Property {
Name nam;
Value val;

};

typedef sequence<Property> Properties;
typedef Name Location;
typedef sequence<Location> Locations;
typedef Properties Criteria;

struct FactoryInfo {
GenericFactory the_factory;
Location the_location;
Criteria the_criteria;

};

typedef sequence<FactoryInfo> FactoryInfos;
typedef long MembershipStyleValue;

const MembershipStyleValue MEMB_APP_CTRL = 0;
const MembershipStyleValue MEMB_INF_CTRL = 1;

typedef unsigned short InitialNumberReplicasValue;
typedef unsigned short MinimumNumberReplicasValue;

exception InterfaceNotFound {};
exception ObjectGroupNotFound {};
exception MemberNotFound {};
exception ObjectNotFound {};
exception MemberAlreadyPresent {};
exception BadReplicationStyle {};
exception ObjectNotCreated {};
exception ObjectNotAdded {};
exception UnsupportedProperty {

Name nam;
};

exception InvalidProperty {
Name nam;
Value val;

};
194 CORBA - Part 2: Interoperability, v3.3

exception NoFactory {
Location the_location;
TypeId type_id;

};

exception InvalidCriteria {
Criteria invalid_criteria;

};

exception CannotMeetCriteria {
Criteria unmet_criteria;

};
};

11.2.6.2 Identifiers for PortableGroup

The identifiers listed below are identical to those defined in fault tolerant CORBA.

GroupDomainId

The name of the Group Domain. This name provides additional scoping with a group identifier.

ObjectGroupId

Unique Id for the Object Group.

ObjectGroupRefVersion

The current version of the reference. It should start at version 1.0.

GroupInfo

The unique information used object group identification as well as being used for object dispatching in the Portable
Group Adapter.

GroupIIOPProfile

This is additional component information that is defined as an IIOP profile. This profile is used to support the implicit
two-way operations associated with CORBA::Object.

TypeId

Repository Id of the Group Object’s supported interface.

ObjectGroup

A collection of information used to define how one contacts a group of related group participants. It is uniquely identified
by the information in the GroupInfo and the destination endpoints used to contact the servants in the group.

Name

The name of a property - may be hierarchical.
CORBA - Part 2: Interoperability, v3.3 195

Value

The value of a property - may be any valid IDL type.

Property

A Name/Value pair.

Properties

A sequence of Property.

Location

This type is not used in MIOP for unreliable multicast.

Locations

This type is not used for MIOP for unreliable multicast.

Criteria

An IDL rename of the type Properties.

FactoryInfo

This type is not used for MIOP for unreliable multicast.

FactoryInfos

This type is not used for MIOP for unreliable multicast.

MembershipStyleValue

This type is not used for MIOP for unreliable multicast.

11.2.6.3 Exceptions for PortableGroup

The behavior of the exceptions is the same as in the CORBA Fault Tolerant specification except where differences are
noted.

InterfaceNotFound

The exception is not used by the MGM.

ObjectGroupNotFound

The object group cannot be found by the MGM based on the identifier that was provided.

MemberNotFound

The exception is not used by the MGM.
196 CORBA - Part 2: Interoperability, v3.3

ObjectNotFound

The exception is raised if no group reference is associated with the object group.

MemberAlreadyPresent

The exception is not used by the MGM.

BadReplicationStyle

The exception is not used by the MGM.

ObjectNotCreated

The GenericFactory did not create the object.

ObjectNotAdded

The exception is not used by the MGM.

UnsupportedProperty

The property is not recognized or unsupported.

InvalidProperty

The property was either repeated or is in conflict with an existing property.

NoFactory

The factory cannot create an object with the id provided.

InvalidCriteria

The criteria provided was not understood by the factory.

CannotMeetCriteria

The criteria was understood but the factory is unable to support the criteria.

11.2.6.4 interface PropertyManager

// Specification of PropertyManager Interface
interface PropertyManager {

void set_default_properties
(in Properties props)

raises (InvalidProperty, UnsupportedProperty);

Properties get_default_properties();

void remove_default_properties
(in Properties props)

raises (InvalidProperty, UnsupportedProperty);
CORBA - Part 2: Interoperability, v3.3 197

void set_type_properties
(in TypeId type_id, in Properties overrides)

raises (InvalidProperty, UnsupportedProperty);

Properties get_type_properties(in TypeId type_id);

void remove_type_properties
(in TypeId type_id, in Properties props)

raises (InvalidProperty, UnsupportedProperty);

void set_properties_dynamically
(in ObjectGroup object_group, in Properties overrides)

raises
(ObjectGroupNotFound,
 InvalidProperty,
 UnsupportedProperty);

Properties get_properties
(in ObjectGroup object_group)

raises(ObjectGroupNotFound);

}; // endPropertyManager

This interface was taken from the CORBA Fault Tolerant specification. It has been modified to be general to object
groups

11.2.6.4.1 Operations for PropertyManager

set_default_properties

The method sets all the default properties in the object group domain for all object groups. The default property values are
determined by the implementation.

void set_default_properties
(in Properties props)

raises (InvalidProperty, UnsupportedProperty);

get_default_properties

This method returns the default properties for the object groups within the object group domain.

Parameter: props A sequence of properties that are to applied to all object groups within a object
group domain.

Return Value: None

Raises:

 InvalidProperty If one or more of the properties in the sequence is not valid

 UnsupportedProperty If one or more of the properties in the sequence is not supported.
198 CORBA - Part 2: Interoperability, v3.3

Properties get_default_properties();

remove_default_properties

This method removes the given default properties.

void remove_default_properties(in Properties props)
raises (InvalidProperty, UnsupportedProperty);

set_type_properties

This method sets the properties that override the default properties of the object groups, with the given type identifier, that
are created in the future.

void set_type_properties
(in TypeId type_id, in Properties overrides)
raises (InvalidProperty, UnsupportedProperty);

get_type_properties

This method returns the properties of the object groups, with the given type identifier, that are created in the future. These
properties include the properties determined by set_type_properties(), as well as the default properties that are not
overridden by set_type_properties().

Parameter: None

Return Value: The default properties that have been set for the object groups.

Raises: None

Parameter: props The properties to be removed.

Return Value: None

Raises:

 InvalidProperty If one or more of the properties in the sequence is not valid.

 UnsupportedProperty If one or more of the properties in the sequence is not supported.

Parameter:

 type_id The repository id for which the properties, that are to override the existing
properties, are set.

 overrides The overriding properties.

Return Value: None

Raises:

 InvalidProperty If one or more of the properties in the sequence is not valid.

 UnsupportedProperty If one or more of the properties in the sequence is not supported.
CORBA - Part 2: Interoperability, v3.3 199

Properties get_type_properties(in TypeId type_id);

remove_type_properties

This method removes the given properties, with the given type identifier.

void remove_type_properties
(in TypeId type_id, in Properties props)
raises (InvalidProperty, UnsupportedProperty);

set_properties_dynamically

This method sets the properties for the object group with the given reference dynamically while the application executes.
The properties given as a parameter override the properties for the object when it was created which, in turn, override the
properties for the given type which, in turn, override the default properties.

void set_properties_dynamically
(in ObjectGroup object_group, in Properties overrides)
raises(ObjectGroupNotFound, InvalidProperty, UnsupportedProperty);

Parameter: type_id The repository id for which the properties, that are to override the existing
properties, are set.

Return Value: The overriding properties for the given type identifier.

Raises: None

Parameter:

 type_id The repository id for which the given properties are to be removed.

 props The properties to be removed.

Return Value: None

Raises:

 InvalidProperty If one or more of the properties in the sequence is not valid.

 UnsupportedProperty If one or more of the properties in the sequence is not supported.

Parameter:

 object_group The reference of the object group for which the overriding properties are set.

 overrides The overriding properties.

Raises:

 ObjectGroupNotFound If object group specified cannot be found.

 InvalidProperty If one or more of the properties in the sequence is not valid.

 UnsupportedProperty If one or more of the properties in the sequence is not supported.
200 CORBA - Part 2: Interoperability, v3.3

get_properties

This method returns the current properties of the given object group. These properties include those that are set
dynamically, those that are set when the object group was created but are not overridden by
set_properties_dynamically(), those that are set as properties of a type but are not overridden by create_object()
and set_properties_dyamically(), and those that are set as defaults but are not overridden by set_type_properties(),
create_object(), and set_properties_dyamically().

Properties get_properties(in ObjectGroup object_group)
raises(ObjectGroupNotFound);

11.2.6.5 interface ObjectGroupManager

// Specification of ObjectGroupManager Interface
interface ObjectGroupManager {

ObjectGroup create_member
(in ObjectGroup object_group,
 in Location the_location,
 in TypeId type_id,
 in Criteria the_criteria)
raises

(ObjectGroupNotFound,
 MemberAlreadyPresent,
 NoFactory,
 ObjectNotCreated,
 InvalidCriteria,
 CannotMeetCriteria);

ObjectGroup add_member
(in ObjectGroup object_group,
 in Location the_location,
 in Object member)
raises

(ObjectGroupNotFound,
 CORBA::INV_OBJREF,
 MemberAlreadyPresent,
 ObjectNotAdded);

ObjectGroup remove_member
(in ObjectGroup object_group,
 in Location the_location)

raises
(ObjectGroupNotFound, MemberNotFound);

Parameter: object_group The reference of the object group for which the properties are to be returned.

Return Value: The set of current properties for the object group with the given reference.

Raises: ObjectGroupNotFound If the object group is not found.
CORBA - Part 2: Interoperability, v3.3 201

Locations locations_of_members
(in ObjectGroup object_group) raises(ObjectGroupNotFound);

ObjectGroupId get_object_group_id
(in ObjectGroup object_group) raises(ObjectGroupNotFound);

ObjectGroup get_object_group_ref
(in ObjectGroup object_group) raises(ObjectGroupNotFound);

Object get_member_ref
(in ObjectGroup object_group,
 in Location loc)

raises(ObjectGroupNotFound, MemberNotFound);

}; // end ObjectGroupManager

This interface is largely unused by the MGM with the exception of two methods which will be discussed below. The
MGM will use this interface to obtain the current reference and identifier of an object group. The routines that are not
discussed in the table below all return the exception CORBA::NO_IMPLEMENT. The behavior of the operations in this
interface is the same as in the CORBA Fault Tolerant specification except where differences are noted.

11.2.6.5.1 Operations for ObjectGroupManager

get_object_group_id

The method takes an object group reference as a parameter and returns the identifier of the object group.

ObjectGroupId get_object_group_id
(in ObjectGroup object_group) raises (ObjectGroupNotFound);

get_object_group_ref

The method takes an object group reference as a parameter and returns the current reference of the object group. Any
address changes or new allocations can be found by updating this reference.

ObjectGroupId get_object_group_ref
(in ObjectGroup object_group) raises (ObjectGroupNotFound):

Parameter: object_group A reference for the object group.

Return Value: The identifier of the object group.

Raises: ObjectGroupNotFound Raised if the object group is not found by the MGM.

Parameter: object_group A reference for the object group.

Return Value: The identifier of the object group.

Raises: ObjectGroupNotFound Raised if the object group is not found by the MGM.
202 CORBA - Part 2: Interoperability, v3.3

11.2.6.6 interface GenericFactory

// Specification of GenericFactory Interface
interface GenericFactory {

typedef any FactoryCreationId;

Object create_object
(in TypeId type_id,
 in Criteria the_criteria,
 out FactoryCreationId factory_creation_id)

raises
(NoFactory,
 ObjectNotCreated,
 InvalidCriteria,
 InvalidProperty,
 CannotMeetCriteria);

void delete_object
(in FactoryCreationId factory_creation_id)

raises (ObjectNotFound);

}; // end GenericFactory

This interface provides a generic create and destroy functionality for object groups. The call to create_object() will
return a type Any that contains a PortableGroup::ObjectGroupId. The call to destroy_object() will remove the
object group and the group reference from the factory. The behavior of the operations in this interface are the same as in
the CORBA Fault Tolerant specification except where differences are noted.

11.2.6.6.1 Operations for GenericFactory

create_object

This routine creates a group reference from the type id and criteria list specified. It returns a group object identifier and a
group object reference.

Object create_object
 (in TypeId type_id,
 in Criteria the_criteria,
 out FactoryCreationId factory_creation_id)
raises
 (NoFactory,
 ObjectNotCreated,
 InvalidCriteria,
 InvalidProperty,
 CannotMeetCriteria
);
CORBA - Part 2: Interoperability, v3.3 203

delete_object

This method deletes an object group, and all its available information, based on the type id specified.

void delete_object
 (in FactoryCreationId factory_creation_id) raises (ObjectNotFound);

11.2.6.7 module MGM

module MGM {

// Property values

typedef long GroupCreationMode
const GroupCreationMode CREATE_ADDRESS_DEFERED = 0;
const GroupCreationMode CREATE_ADDRESS_GENERATED = 1;
const GroupCreationMode CREATE_ADDRESS_SUPPLIED = 2;

interface ObjectGroupFactory :
PortableGroup::GenericFactory,
PortableGroup::PropertyManager,
PortableGroup::ObjectGroupManager {}

};

Parameters:

 object_group A reference for the object group.

 type_id The repository id of the object to be created.

 the_criteria Additional information that is evaluated before the object is created. MIOP can use these
to set the types and numbers of profiles in the Group IOR.

 factory_creation_id Unique value assigned by the factory and later used for deletion.

Return Value: The group object created by the factory.

Raises:

 NoFactory The object cannot be created.

 ObjectNotCreated The object cannot be created.

 InvalidCriteria The criteria is not understood.

 InvalidProperty Invalid property was passed in the criteria.

 CannotMeetCriteria The application understands the criteria but is unable to process it.

Parameter: factory_creation_id An identifier that was previously provided by a create call.

Return Value: None

Raises: ObjectNotFound Raised if the object reference is not found by the MGM.
204 CORBA - Part 2: Interoperability, v3.3

This module will encapsulate the specific properties of the MGM as well as the interface for ObjectGroupFactory.

11.2.6.8 MGM Properties

The following sub clauses document the policies in the MGM. It is assumed that the implementers may add to the list of
properties based on their specific protocol and application needs. The only protocol currently supported is IP/Multicast.

11.2.6.8.1 GroupCreationMode

The creation mode CREATE_ADDRESS_DEFERED will direct the creation of an object group without any multicast
destination endpoints. The inclusion of properties that involve destination endpoints will cause the exception
CannotMeetCriteria to be raised.

The creation mode CREATE_ADDRESS_GENERATED will direct the creation of an object group with MGM selected
multicast destination endpoints. The inclusion of properties that involve destination endpoints will cause the exception
CannotMeetCriteria to be raised.

The creation mode CREATE_ADDRESS_SUPPLIED will direct the creation of an object group with those destination
endpoints which are specified in another property. The exclusion of properties that contain destination endpoints will
cause the exception CannotMeetCriteria to be raised.

These properties can only be set at group creation time.

11.2.6.8.2 CreateSpecifyGateway

This property will register the MIOP gateway in the object group. This property can be set anytime.

11.2.6.8.3 SupportImplicitOperations

This property will allow the MGM to create an IOR with a profile that supports the OMA of the object group. The IOR
value could be one of the following:

• An object not associated with an MIOP gateway (application defined);

• an MIOP gateway; or

• the MGM.

If the value of the IOR is null, the MGM will assume it will be supporting the OMA. This property can be set anytime.

Name: org.omg.mgm.GroupCreationMode

Value: CREATE_ADDRESS_DEFERED

CREATE_ADDRESS_GENERATED

CREATE_ADDRESS_SUPPLIED

Name: org.omg.mgm.CreateSpecifyGateway

Value: The CORBA::Object of the gateway.

Name: org.omg.mgm.SupportImplicitOperations

Value: CORBA::Object
CORBA - Part 2: Interoperability, v3.3 205

11.2.6.8.4 CreateIncludeGateway

If the value of the property is set to TRUE, the profile of the gateway is included in the group IOR. If the value of the
property is set to FALSE, the profile of the gateway is excluded in the group IOR. This property can be set anytime.

11.2.6.8.5 ProtocolEndpointsIPPort

This property can be set anytime.

11.2.6.8.6 ProtocolEndpointsIPAddress

This property can be set anytime.

11.2.6.8.7 GroupDomainId

This value is used to scope the group identifier. If this property is not specified, the group domain identifier will default
to “DefaultGroupDomain.” This property can only be set once during the life of the object group. If an attempt is made
to set this value after the default has been changed, the exception PortableGroup::InvalidProperty will be raised.

11.2.6.9 interface ObjectGroupFactory

This interface provides the capability to manage objects groups. It directly inherits the ObjectGroupManager,
PropertyManager, and the GenericFactory interfaces. It completely reuses the specifications for its inherited
interfaces.

11.2.6.10 Interoperable Object Group Reference Operations

To avoid breaking the CORBA object model, it is recommended that each group IOR’s UIPMC profile contain the
PortableGroup::GroupIIOPProfile tagged component which will profile the capability to invoke two-way
CORBA::Object implicit operations. The methods for addressing these operations are discussed in the following sub
clauses.

Name: org.omg.mgm.CreateIncludeGateway

Value: CORBA::Boolean

Name: org.omg.mgm.ProtocolEndpointsIPPort

Value: An unsigned short value designating a unique port.

Name: org.omg.mgm.ProtocolEndpointsIPv4Address

Value: A string designating an IPv4 or IPv6 multicast address.

Name: org.omg.mgm.GroupDomainId

Value: string
206 CORBA - Part 2: Interoperability, v3.3

is_a

This operation is unchanged. If the interface is understood by the client ORB, the call will return true. If the UIPMC
profile was created without the PortableGroup::GroupIIOPProfile component, the client ORB should try to resolve
the interface internally and only return false it cannot resolve the interface name internally. Otherwise if will use the IIOP
profile in the PortableGroup::GroupIIOPProfile to try to resolve the call.

non_existent

For a group IOR, this operation always returns the value true.

validate_connection

For a group IOR, this operation always replies with true if the current policies are correct.

get_domain_managers

Similar considerations as for is_a here.

get_interface

Same considerations as for is_a and get_domain_managers.

is_nil

This operation would return false if at least one profile is present, otherwise it returns true if no profiles are present.

is_equivalent

Cases:

• If both references are non-group references the behavior is unchanged.

• If one reference is a group reference and the other is not a group reference, then the references are not equivalent.

• The number of profiles must be equal. If both references are group references, then the field of the group components
are compared and must be identical for all profiles that contain them.

hash

Follows the semantics of is_equivalent.

create_request

Unchanged.

get_policy

Unchanged.

set_policy_overrides

Unchanged.
CORBA - Part 2: Interoperability, v3.3 207

Other Two Way Calls

If the group IOR contains only the UIPMC profile, the client ORB may use the tagged component
PortableGroup::GroupIIOPProfile, if it exists, to process two-way calls on an interface that supports both two-way
and one-ways calls.

If the group IOR contains both an IIOP gateway profile and the UIPMC profile, the sending ORB can choose to use the
gateway IIOP profile even if it is MIOP aware. An MIOP unaware client would always use the IIOP gateway profile even
in the existence of the UIPMC profile.

11.2.7 MIOP URL

This sub clause provides a corbaloc URL definition of an MIOP profile. The following defines the syntax:

<corbaloc> = "corbaloc:"<obj_addr_list>["/"<key_string>]
<obj_addr_list> = [<obj_addr> ","]* <obj_addr>
<obj_addr> = <prot_addr>
<prot_addr> = <iiop_prot_addr> | <miop_prot_addr>
<miop_prot_addr> = <miop_prot_token><miop_addr>
<miop_prot_token> = "miop"
<iiop_prot_token> = “iiop”
<miop_addr> = <version><group_addr>[;<group_iiop>]
<version> = <major> "." <minor> "@" | empty_string
<group_addr> = <group_id>”/”<ip_multicast_addr>
<group_iiop> = <iiop_prot_token>”:”<version> <hostname>":"\

<port> “/” <objecy_key>
<ip_multicast_addr> = <classD_IP_address> | <IPv6_address> ":" <port>
<classD_IP_address> = "224.0.0.0" - "239.255.255.255"
<port> = number (default to be defined)
<group_id> = <group component version>”-”<group_domain_id>”-”

<object_group_id>[“-”<object group reference version>]
<group component version> = <major> "." <minor>
<group_domain_id> = string
<object_group_id> = unsigned long long
<object group reference version> = unsigned long
<major> = number (default 1)
<minor> = number (default 0)

It would be written as follows below. The example URL does not use the Object Reference Version as defined in the
PortableGroup::GroupInfo. Therefore this value must be 0 in the constructed profile. Not that both the multicast
address and the group information are required. This example also supplies a PortableGroup::GroupIIOPProfile
tagged component.

corbaloc:miop:1.0@1.0-MyLIttleDomin-1/225.1.1.8:5000;
iiop:1.1@oma_host:1234/object_key,\
iiop:1.2@gateway_host:1234/object_key
208 CORBA - Part 2: Interoperability, v3.3

11.3 Request Issues

11.3.1 GIOP Request Message Compatibility

Client ORBs will fall into two categories when invoking operations via MIOP:

1. MIOP aware clients; and

2. MIOP unaware clients.

If the client is MIOP aware, it will use the UIPMC profile even if the IIOP gateway profile is present. In addition, the
MIOP aware client may make use of the PortableGroup::GroupIIOPProfile tagged component to resolve
CORBA::Object implicit operations and other interface specific two-way operations.

The MIOP unaware client will always use the gateway IIOP profile and ignore the UIPMC profile. All calls (one-way,
two-way including implicit operations) will be sent to the gateway application.

11.3.1.1 GIOP 1.2 Request Message

All requests involving MIOP operations will send the UIPMC profile along with the request. This will be placed in the
target field of the GIOP 1.2 request header. This profile will be used by the object adapter to dispatch the request to the
appropriate objects that support the interface within the confines of their object adapter. Some client ORBs may decide to
set the destination endpoints to null or zero value since they are not required for message dispatching.

11.3.1.2 Object Key Support in Pre-GIOP 1.2

In order to achieve inter-ORB interoperability for MIOP, the notion of an object key had to be abandoned unless one was
willing to define a common object key format for MIOP. For GIOP version 1.2, the target field can contain either an
IOR, an object key or a tagged profile making it possible for the UIPMC profile can be sent along with the request. To
insure consistency, the ORB must always send the UIPMC profile for GIOP version 1.2.

GIOP versions 1.0 and 1.1 do not have the flexibility of the target field in their request header. Support for these
protocols must be negotiated through their object_key field. The encoding for pre-GIOP 1.2 versions shall be required
to mark the first four octets of the sequence with ‘MIOP.’ ORB vendors on the receiving side that do not recognize the
object key format will have to check the beginning of the sequence for the presence of the literal value ‘MIOP.’ The
remainder of the sequence will contain the UIPMC profile as an encapsulation. This data can then be used by the object
adapter to correctly dispatch the request after it is extracted from the object_key field.

11.3.2 MIOP Request Efficiency

There are two efficiency related scenarios for invoking requests via a UIPMC profile. Since the semantics of these
requests are one-way with no remote status or exceptions, there is no way to detect the failure of a request message.

In one scenario there could be a registered object group with no members. Although this is not desirable, it is perfectly
legal in MIOP since the notion of group membership is not enforced or discussed. The client in this case would be
broadcasting messages to no recipients. There is nothing specified in this specification keep this from occurring. It will be
the responsibility of the participating applications to make sure that group resources are cleaned up by one of the
participants and that listening applications exist and are cooperating with the broadcasters.
CORBA - Part 2: Interoperability, v3.3 209

A different scenario involves a client invoking requests on a non-existent object group or one that has been destroyed by
a participating application. This scenario is detectable if the MGM is present. It is therefore advisable that the requesting
objects periodically poll the MGM for the presence of the object group via two of the CORBA::Object implicit
operations is_a() and non_existent(). These operations will return the values false and true respectively in the event
that the object group no longer exists. Another alternative would be to invoke
MGM::ObjectGroupFactory::get_object_group_ref(), which would raise an exception in the event that the object
group had been deleted or could not be found.

11.3.3 Client Use Cases

The following sub clauses address specific scenarios that clients would potentially use to initiate their communication
with a multicast object group.

11.3.3.1 Using the MGM

11.3.3.1.1 Creating/Finding an Object Group

The application responsible for creating object groups obtains the IOR of the MGM::ObjectGroupManager. The
application responsible for creating object groups invokes create_object() and specifies a list of properties to create an
object group. The IOR that is returned to the client potentially contains an IIOP profile for the MIOP gateway and a
UIPMC profile for multicast object group. This IOR is made available to participating group applications via some
applications determined mechanism such as the Naming Service.

11.3.3.2 No MGM is Present

The application responsible for creating object groups creates an object group reference via the corbaloc scheme. The
application is responsible to make sure that the TAG_GROUP information in the profile’s component field is unique.
This IOR is made available to participating group applications via some applications determined mechanism such as the
Naming Service.

11.3.3.3 Gateway Application is Used

The presence of a gateway is usually an indication that the sender or some subset of senders are not MIOP aware. MIOP
unaware sending applications simply invoke on the gateway reference as they would any IIOP IOR and ignore the
UIPMC profile.

11.3.3.4 Sender is MIOP Aware

The sending application potentially acquires a group reference with all possible profiles:

• a UIPMC profile with a PortableGroup::GroupInfo and a PortableGroup::GroupIIOPProfile component; and

• an IIOP profile of the gateway.

The client will choose the UIPMC profile and send its MIOP request via this profile.

11.3.3.5 Sender is MIOP Unaware

The sending application potentially acquires a group reference with all possible profiles:

• a UIPMC profile with a PortableGroup::GroupInfo and a PortableGroup::GroupIIOPProfile component; and

• an IIOP profile of the gateway.

The client will always choose the IIOP gateway profile and send its request via this profile and ignore the UIPMC profile.
210 CORBA - Part 2: Interoperability, v3.3

11.3.4 Server Use Cases
The following sub clauses address specific scenarios that server ORBs would potentially use to initiate their
communication with a multicast object group.

11.3.4.1 Using an Object Group

1. The receiving ORB acquires a group IOR from the Naming Service.

2. The server ORB associates the group reference with a PortableServer::ObjectId to provide a mechanism for dis-
patching requests to this servant object or collection of servant objects.

3. The server ORB will have to use the destination endpoints in the UIPMC profile to read messages from sending
applications. This can be done ahead of time if the endpoints are well known or dynamically from the acquired group
reference.

11.3.4.2 Gateway Application is Used

Since the gateway is acting as an advocate of the sending applications, there is no effect on the server applications. They
would behave as defined in the previous sub clause.

11.3.4.3 Narrowing to a PortableGroup::GOA

Server applications that will be using the PortableGroup::GOA must first resolve initial references to the root POA and
then attempt to narrow to a the appropriate type.

CORBA::Object_var temp =
orb->resolve_initial_references("RootPOA");

PortableGroup::GOA_var the_goa_poa =
PortableGroup::GOA::_narrow(temp);

11.4 Consolidated IDL

11.4.1 OMG IDL
#ifndef _MIOP_IDL_
#define _MIOP_IDL_
#ifndef _PRE_3_0_COMPILER_
#pragma prefix "omg.org"
#include <IOP.idl>
#include <GIOP.idl>
#else
import ::IOP;
import ::GIOP;
#endif //_PRE_3_0_COMPILER_
module MIOP
{
#ifndef _PRE_3_0_COMPILER_

typeprefix MIOP "omg.org";
#endif // _PRE_3_0_COMPILER_

typedef sequence <octet, 252> UniqueId;
CORBA - Part 2: Interoperability, v3.3 211

struct PacketHeader_1_0
{

char magic[4];
octet hdr_version;
octet flags;
unsigned short packet_length;
unsigned long packet_number;
unsigned long number_of_packets;
UniqueId Id;

};

typedef GIOP::Version Version;

typedef string Address;

struct UIPMC_ProfileBody
{

Version miop_version;
Address the_address;
short the_port;
sequence<IOP::TaggedComponents> components;

};
};
#endif

#ifndef _PortableGroup_IDL_
#define _PortableGroup_IDL_

#ifndef _PRE_3_0_COMPILER_
#pragma prefix "omg.org"
#include <PortableServer.idl>// CORBA 3.0, Chapter 11
#include <CosNaming.idl>// 98-10-19.idl
#include <IOP.idl>// from 98-03-01.idl
#include "GIOP.idl"// from 98-03-01.idl
#include <orb.idl>
#else
import ::IOP;
import ::GIOP;
import ::CORBA;
import ::PortableServer::POA;
#endif //_PRE_3_0_COMPILER_
module PortableGroup {
#ifndef _PRE_3_0_COMPILER_

typeprefix PortableGroup "omg.org";
#endif // _PRE_3_0_COMPILER_

// Specification for Interoperable Object Group References
typedef GIOP::Version Version;
typedef string GroupDomainId;
typedef unsigned long long ObjectGroupId;
typedef unsigned long ObjectGroupRefVersion;
212 CORBA - Part 2: Interoperability, v3.3

struct TagGroupTaggedComponent { // tag = TAG_GROUP;
GIOP::Version group_version;
GroupDomainId group_domain_id;
ObjectGroupId object_group_id;
ObjectGroupRefVersion object_group_ref_version;

};

typedef sequence <octet> GroupIIOPProfile; // tag = TAG_GROUP_IIOP

// Specification of Common Types and Exceptions
// for GroupManagement
interface GenericFactory;
typedef CORBA::RepositoryId TypeId;
typedef Object ObjectGroup;
typedef CosNaming::Name Name;
typedef any Value;

struct Property {
Name nam;
Value val;

};

typedef sequence<Property> Properties;
typedef Name Location;
typedef sequence<Location> Locations;
typedef Properties Criteria;

struct FactoryInfo {
GenericFactory the_factory;
Location the_location;
Criteria the_criteria;

};

typedef sequence<FactoryInfo> FactoryInfos;
typedef long MembershipStyleValue;

const MembershipStyleValue MEMB_APP_CTRL = 0;
const MembershipStyleValue MEMB_INF_CTRL = 1;

typedef unsigned short InitialNumberReplicasValue;
typedef unsigned short MinimumNumberReplicasValue;

exception InterfaceNotFound {};
exception ObjectGroupNotFound {};
exception MemberNotFound {};
exception ObjectNotFound {};
exception MemberAlreadyPresent {};
exception BadReplicationStyle {};
exception ObjectNotCreated {};
exception ObjectNotAdded {};
exception UnsupportedProperty {
CORBA - Part 2: Interoperability, v3.3 213

Name nam;
};

exception InvalidProperty {
Name nam;
Value val;

};

exception NoFactory {
Location the_location;
TypeId type_id;

};

exception InvalidCriteria {
Criteria invalid_criteria;

};
exception CannotMeetCriteria {

Criteria unmet_criteria;
};

// Specification of PropertyManager Interface
interface PropertyManager {

void set_default_properties
(in Properties props)

raises (InvalidProperty, UnsupportedProperty);

Properties get_default_properties();

void remove_default_properties
(in Properties props)

raises (InvalidProperty, UnsupportedProperty);

void set_type_properties
(in TypeId type_id, in Properties overrides)

raises (InvalidProperty, UnsupportedProperty);

Properties get_type_properties(in TypeId type_id);

void remove_type_properties
(in TypeId type_id, in Properties props)

raises (InvalidProperty, UnsupportedProperty);

void set_properties_dynamically
(in ObjectGroup object_group, in Properties overrides)

raises
(ObjectGroupNotFound,
 InvalidProperty,
 UnsupportedProperty);

Properties get_properties
214 CORBA - Part 2: Interoperability, v3.3

(in ObjectGroup object_group)
raises(ObjectGroupNotFound);

}; // endPropertyManager

// Specification of ObjectGroupManager Interface
interface ObjectGroupManager {

ObjectGroup create_member
(in ObjectGroup object_group,
 in Location the_location,
 in TypeId type_id,
 in Criteria the_criteria)
raises

(ObjectGroupNotFound,
 MemberAlreadyPresent,
 NoFactory,
 ObjectNotCreated,
 InvalidCriteria,
 CannotMeetCriteria);

ObjectGroup add_member
(in ObjectGroup object_group,
 in Location the_location,
 in Object member)
raises

(ObjectGroupNotFound,
 CORBA::INV_OBJREF,
 MemberAlreadyPresent,
 ObjectNotAdded);

ObjectGroup remove_member
(in ObjectGroup object_group,
 in Location the_location)

raises
(ObjectGroupNotFound, MemberNotFound);

Locations locations_of_members
(in ObjectGroup object_group) raises(ObjectGroupNotFound);

ObjectGroupId get_object_group_id
(in ObjectGroup object_group) raises(ObjectGroupNotFound);

ObjectGroup get_object_group_ref
(in ObjectGroup object_group) raises(ObjectGroupNotFound);

Object get_member_ref
(in ObjectGroup object_group,
 in Location loc)

raises(ObjectGroupNotFound, MemberNotFound);
}; // end ObjectGroupManager
CORBA - Part 2: Interoperability, v3.3 215

// Specification of GenericFactory Interface
interface GenericFactory {

typedef any FactoryCreationId;

Object create_object
(in TypeId type_id,
 in Criteria the_criteria,
 out FactoryCreationId factory_creation_id)

raises
(NoFactory,
 ObjectNotCreated,
 InvalidCriteria,
 InvalidProperty,
 CannotMeetCriteria);

void delete_object
(in FactoryCreationId factory_creation_id)

raises (ObjectNotFound);
}; // end GenericFactory

exception NotAGroupObject {};
typedef sequence <ObjectId> IDs;

interface GOA : PortableServer::POA
...

PortableServer::ObjectId
create_id_for_reference(in Object the_ref)
raises (NotAGroupObject);

IDs
reference_to_ids (in Object the_ref)

raises (NotAGroupObject);

void
associate_reference_with_id

(in Object ref, in PortableServer::ObjectId oid)
raises(NotAGroupObject);

void
disassociate_reference_with_id

(in Object ref, in PortableServer::ObjectId oid)
raises(NotAGroupObject);

}; // end interface GOA

}; // end PortableGroup
#endif // for #ifndef _PortableGroup_IDL_

#ifndef _MGM_IDL_
#define _MGM_IDL_
216 CORBA - Part 2: Interoperability, v3.3

#ifndef _PRE_3_0_COMPILER_
#pragma prefix "omg.org"
#include "PortableGroup.idl"
#else
import ::PortableGroup;
#endif //_PRE_3_0_COMPILER_
module MGM {
#ifndef _PRE_3_0_COMPILER_

typeprefix MIOP "omg.org";
#endif // _PRE_3_0_COMPILER_

// Property values

typedef long GroupCreationMode
const GroupCreationMode CREATE_ADDRESS_DEFERED = 0;
const GroupCreationMode CREATE_ADDRESS_GENERATED = 1;
const GroupCreationMode CREATE_ADDRESS_SUPPLIED = 2;

interface ObjectGroupFactory :
PortableGroup::GenericFactory,
PortableGroup::PropertyManager,
PortableGroup::ObjectGroupManager {}

};
#endif // _MGM_idl
CORBA - Part 2: Interoperability, v3.3 217

218 CORBA - Part 2: Interoperability, v3.3

12 ZIOP Protocol

Issue 16922 ZIOP has to be part of the core CORBA specification

The ZIOP protocol applies compression to GIOP, it is the same as GIOP Compression. ZIOP is the way to introduce
compression between CORBA parties with the aim to reduce the amount of data to be transmitted on the wire. In a
CORBA communication that uses ZIOP protocol, the GIOP message is compressed using a specific compression
algorithm. For this purpose a compressed message is defined as ZIOP message.

The compression features will be provided to ZIOP protocol by some entities. The Compressor will be in charge of basic
compression and decompression operations. The CompressorFactory will create Compressors and then
CompressorFactory will be registered by the CompressionManager interface.

ORB vendors may deliver ZIOP through pluggable compressors or support a standard and well known compression
algorithm.

12.1 ZIOP Messages
A ZIOP message is a GIOP message that has ZIOP as first four magical bytes instead of the regular GIOP magical bytes.
GIOP compression can be applied to send or receive GIOP 1.2 and higher messages and includes fragmented messages.

// PIDL: ZIOP body in ZIOP Message
module ZIOP {

struct CompressionData {
Compression::CompressorId compressor;
unsigned long original_length;
Compression::Buffer data;

 };
};

A ZIOP message defines how the application data of the GIOP Messages is compressed: when the magic bytes are ZIOP
then the data after the GIOP MessageHeader is replaced by the CompressionData structure, which contains the following
items encoded in this order:

1. compressor: contains the identifier that indicates the compressor used for the current ZIOP message.

2. original_length: contains an unsigned long value that represents the GIOP body length of the current GIOP message
without applying any compression.

3. data: is an octet sequence that contains the compressed message.

The length in the GIOP Header is updated to reflect the new message length, the other fields are unchanged as it is
described below.

To allow interoperability between a ZIOP and a non ZIOP party the client that supports ZIOP will send only ZIOP
messages to servers that have been declared to accept ZIOP messages.

At message level, the sequence of message exchange is as follows:

1. When client and server ORB support a compatible compression algorithm, and if the message fulfills the compres-
sion policies (for example message size threshold), the message is compressed and the four magic start bytes are
CORBA - Part 2: Interoperability, v3.3 219

changed to ZIOP. The length field in the GIOP MessageHeader is updated, all other fields are unchanged.

2. The server ORB reads the ZIOP header. It then takes the CompressionData struct and uncompresses the data. The
other fields of the header and the uncompressed data can then be used as a regular GIOP message.

3. In the server side, if the GIOPReply message fulfills the compression policies, a compressor object is retrieved and
server ORB will generate a compressed GIOP Reply and will send it to client where the magic bytes in the header are
set to ZIOP.

4. The client ORB side will read the ZIOP magic bytes message and then will continue reading the compressed GIOP
Reply and decompressing the GIOPBody.

Both client and server only send ZIOP messages when it knows that the remote ORB supports ZIOP and it has a
compatible compressor implementation, as is described in the following section.

12.2 ZIOP Message use
Client and server ORBs interchange available compression details through a set of new ZIOP CORBA Policies. These
policies must be propagated as standard CORBA Policies in a ServiceContext into a GIOP Request and GIOP Reply
messages. They may also be propagated into an IOR by using the Messaging propagation of QoS. Policies which values
are transferred to the remote ORB are called ‘client-exposed’ policies. The Messaging propagation mechanism is
described in detail in section 17.3 of the CORBA 3.3 specification (Part 1 Interfaces: formal/2011-11--1).

ORB server side applications may set available compression algorithms via appointing ZIOP Policies list to the POA that
will create object references that embed these policies into the IOR component. The client side ORB could send ZIOP
messages defining similar Policies using PolicyContext interfaces, at ORB, thread or reference level.

As previously described servers and clients must agree on which compression algorithm will be used. To allow this, each
party must know if the other party supports ZIOP and its preferences about compression before sending to it a ZIOP
message.

The server must register the CORBA object in a POA that was created with ZIOP Policies. These ZIOP Policies will be
transmitted as part of the IOR through the Messaging QoS Profile Component. The client may indicate through
'set_policies_overrides' over the remote CORBA object reference the ZIOP Polices which it has as preferences.

The client-side ORB will decide the compatible ZIOP Policies list which the ORB must use to send a GIOPRequest to
the server. For this, the client-side ORB will extract the compression server preferences (ZIOP Policies) from a
TaggedComponent of an IOR if it is present. The client will select a compression algorithm and send the application data
compressed to the server. The client-side ORB will also create a Policy list with its compression policies and send them
in the Request as a Messaging ServiceContext.

The server-side ORB will reply to the request taking into account the ZIOP Policies that it found in the ServiceContext
of the ZIOP messaging and compare it with the ZIOP Policies of the POA object.

If the server does not allow receipt of compressed GIOP Requests, then the client-side ORB should not send any GIOP
compressed messages. Instead, the client-side ORB will only send the ZIOP Policies values that the client supports in
Messaging ServiceContext. In a similar way a server may not respond to a client with a compressed GIOP Reply if the
client does not support GIOP compression.

In this way, a client and server may decide independently if compression could be used or not. There is no necessity to
exchange CORBA messages between client and server to obtain the best set of ZIOP Policies to be applied in
communication to get the optimal performance.
220 CORBA - Part 2: Interoperability, v3.3

12.3 ZIOP Compression Policies
This module ZIOP provides all necessary elements to allow interchange of compressed GIOP messages between client
and servers using mechanisms defined in Compression module. If a specific policy is not supplied, then an ORB default
is used. The following interfaces are the ZIOP policies.

12.3.1 CompressionEnablingPolicy interface

This interface represents the ZIOP policy CompressionEnablingPolicy that has a boolean attribute indicating if
compression is enabled or not by the tier. Only when this policy has been set to true ZIOP may be used by the ORB. This
policy is client-exposed and both client and server must have set this policy to TRUE in order to enable ZIOP.

12.3.2 CompressorIdLevelListPolicy interface

This interface represents the ZIOP policy CompressorIdLevelListPolicy. It has a list of CompressorId/CompressionLevel
attributes indicating the compression algorithms with their respective levels that may be used. The
CompressorIdLevelListPolicy contains a sequence of structures and this sequence is ordered by preference priority. This
policy is client-exposed, the client/server will take its own sequence and search for the first CompressorId that is also
supported by the other tier. For this Compressor then the lowest CompressionLevel is selected.

12.3.3 CompressionLowValuePolicy interface

This interface represents the ZIOP policy CompressionLowValuePolicy. It has an unsigned long attribute indicating the
minimum size of application data that has to be sent before the ORB will consider this as a ZIOP message. This policy is
not client exposed.

12.3.4 CompressionMinRatioPolicy interface

This interface represents the ZIOP policy CompressionMinRatioPolicy. It has a float attribute indicating the minimum
compression ratio that must be obtained at compression time to send with a compressed GIOP message. This policy tries
to prevent the sending of compressed messages with few improvements about the original size in order to not overload the
server with a useless decompression process. The ratio must be obtained with the following formula: compressed_length
/ original_length. This policy is not client exposed.

12.4 Propagation of ZIOP Compression Policies
ZIOP Compression policies are transferred using the Messaging QoS Profile Component that is defined in section 17.3 of
the CORBA 3.3 specification (Part 1 Interfaces: formal/2012-01-01). That section also describes the concept of client-
exposed policies.

12.5 Consolidated IDL

#pragma prefix “omg.org”
module ZIOP {

struct CompressedData {
Compression::CompressorId compressorid;
unsigned long original_length;
CORBA - Part 2: Interoperability, v3.3 221

Compression::Buffer data;
};

typedef boolean CompressionEnablingPolicyValue;

const CORBA::PolicyType COMPRESSION_ENABLING_POLICY_ID = 64;

local interface CompressionEnablingPolicy: CORBA::Policy
{

readonly attribute CompressionEnablingPolicyValue compression_enabled;
};

const CORBA::PolicyType COMPRESSOR_ID_LEVEL_LIST_POLICY_ID = 65;

local interface CompressionIdLevelListPolicy: CORBA::Policy
{

readonly attribute Compression::CompressorIdLevelList compressor_ids;
};

typedef unsigned long CompressionLowValuePolicyValue;

const CORBA::PolicyType COMPRESSION_LOW_VALUE_POLICY_ID = 66;

local interface CompressionLowValuePolicy: CORBA::Policy
{

readonly attribute CompressionLowValuePolicyValue low_value;
};

const CORBA::PolicyType COMPRESSION_MIN_RATIO_POLICY_ID = 67;

local interface CompressionMinRatioPolicy: CORBA::Policy
{

readonly attribute Compression::CompressionRatio ratio;
};

};
222 CORBA - Part 2: Interoperability, v3.3

Annex A
IDL Tags and Exceptions

(normative)

This annex lists the standardized profile, service, component, policy tags and exception codes described in the CORBA
documentation. Implementor-defined tags can also be registered in this manual. Requests to register tags with the OMG
should be sent to tag_request@omg.org.

A.1 Profile ID Tags

Tag Name Tag Value Described in
ProfileId TAG_INTERNET_IOP = 0 Part 2 of this International Standard - Orb In-

teroperability Architecture Clause
ProfileId TAG_MULTIPLE_COMPONENTS = 1 Part 2 of this International Standard - Orb In-

teroperability Architecture Clause
ProfileId TAG_SCCP_IOP = 2 CORBA/TC Interworking specification

ProfileId TAG_UIPMC = 3 Part 2 of this International Standard -
Unreliable Multicast clause

ProfileId TAG_MOBILE_TERMINAL_IOP = 4 Telecom Wireless specification
CORBA - Part 2: Interoperability, v3.3 223

A.2 Service ID Tags

Tag Name Tag Value Described in
ServiceId TransactionService = 0 Object Transaction Service specification

ServiceId CodeSets = 1 Part 2 of this International Standard - ORB
Interoperability Architecture clause.

ServiceId ChainBypassCheck = 2 Interoperability with non-CORBA Systems clause:
see Part 2 of this International Standard

ServiceId ChainBypassInfo = 3 Interoperability with non-CORBA Systems clause:
see Part 2 of this International Standard.

ServiceId LogicalThreadId = 4 Interoperability with non-CORBA Systems clause:
see Part 2 of this International Standard

ServiceId BI_DIR_IIOP = 5 Part 2 of this International Standard - General
Inter-ORB Protocol clause.

ServiceId SendingContextRunTime = 6 This Part of this International Standard - Value
Type Semantics clause.

ServiceId INVOCATION_POLICIES = 7 This Part of this International Standard -
CORBA Messaging clause.

ServiceId FORWARDED_IDENTITY = 8 Firewall Traversal specification (ptc/04-03-01)

ServiceId UnknownExceptionInfo = 9 Java to IDL Language Mapping specification:

ServiceId RTCorbaPriority = 10 Real-Time CORBA specification: see

ServiceId RTCorbaPriorityRange = 11 Real-Time CORBA specification: see

ServiceId FT_GROUP_VERSION = 12 Fault Tolerant CORBA clause: see CORBA, v3.0.3.

ServiceId FT_REQUEST= 13 Fault Tolerant CORBA clause: see CORBA, v3.0.3.

ServiceId ExceptionDetailMessage = 14 Part 2 of this International Standard - ORB
Interoperability Architecture clause.

ServiceId SecurityAttributeService = 15 Part 2 of this International Standard - Secure
Interoperability clause.

ServiceId ActivityService = 16 Additional Structuring Mechanisms for the OTS.

ServiceId RMICustomMaxStreamFormat = 17 Java to IDL Language Mapping specification.

ServiceId ACCESS_SESSION_ID = 18 Telecom Service Access Subscription (TSAS)
specification.

ServiceId SERVICE_SESSION_ID = 19 Telecom Service Access Subscription (TSAS)
specification.

ServiceId FIREWALL_PATH = 20 Firewall Traversal specification (ptc/04-03-01)

ServiceId FIREWALL_PATH_RESP = 21 Firewall Traversal specification (ptc/04-03-01)
224 CORBA - Part 2: Interoperability, v3.3

A.3 Component ID Tags

Tag Name Tag Value Described in
ComponentId TAG_ORB_TYPE = 0 CORBA 3.1, Part 2 - ORB Interoperability

Architecture clause.

ComponentId TAG_CODE_SETS = 1 CORBA 3.1, Part 2 - ORB Interoperability
Architecture clause.

ComponentId TAG_POLICIES = 2 CORBA 3.1, Part 1 - CORBA Messaging clause.

ComponentId TAG_ALTERNATE_IIOP_ADDRESS = 3 CORBA 3.1, Part 2 - General Inter-ORB Protocol
clause.

ComponentId TAG_COMPLETE_OBJECT_KEY = 5 The DCE ESIOP clause: see CORBA, v3.0.3.

ComponentId TAG_ENDPOINT_ID_POSITION = 6 The DCE ESIOP clause: see CORBA, v3.0.3.

ComponentId TAG_LOCATION_POLICY = 12 The DCE ESIOP clause: see CORBA, v3.0.3.

ComponentId TAG_ASSOCIATION_OPTIONS =13 Security Service specification.

ComponentId TAG_SEC_NAME = 14

ComponentId TAG_SPKM_1_SEC_MECH = 15

ComponentId TAG_SPKM_2_SEC_MECH = 16

ComponentId TAG_KerberosV5_SEC_MECH = 17

ComponentId TAG_CSI_ECMA_Secret_SEC_MECH = 18

ComponentId TAG_CSI_ECMA_Hybrid_SEC_MECH = 19

ComponentId TAG_SSL_SEC_TRANS = 20

ComponentId TAG_CSI_ECMA_Public_SEC_MECH = 21

ComponentId TAG_GENERIC_SEC_MECH = 22

ComponentId TAG_FIREWALL_TRANS = 23 Firewall Traversal specification (ptc/04-03-01)

ComponentId TAG_SCCP_CONTACT_INFO = 24 CORBA/TC Interworking and SCCP Inter-ORB
Protocol specification.

ComponentId TAG_JAVA_CODEBASE = 25 Java to IDL Language Mapping specification.

ComponentId TAG_TRANSACTION_POLICY = 26 Object Transaction Service specification.

ComponentId TAG_ FT_GROUP= 27 Fault Tolerant CORBA clause: see CORBA, v3.0.3.

ComponentId TAG_ FT_PRIMARY= 28 Fault Tolerant CORBA clause: see CORBA, v3.0.3.

ComponentId TAG_ FT_HEARTBEAT_ENABLED = 29 Fault Tolerant CORBA clause: see CORBA, v3.0.3.

ComponentId TAG_MESSAGE_ROUTERS = 30 This Part of this International Standard -
CORBA Messaging clause.

ComponentId TAG_OTS_POLICY = 31 Object Transaction Service specification.

ComponentId TAG_INV_POLICY = 32 Object Transaction Service specification.

ComponentId TAG_CSI_SEC_MECH_LIST = 33 Part 2 of this International Standard - Secure
Interoperability clause

ComponentId TAG_NULL_TAG = 34 Part 2 of this International Standard - Secure
Interoperability clause
CORBA - Part 2: Interoperability, v3.3 225

A.4 Policy Type Tags
The table below lists the standard policy types that are defined by various parts of CORBA and CORBA Services in this
version of CORBA/IIOP.

Issue 16922 ZIOP has to be part of the core CORBA specification

ComponentId TAG_SECIOP_SEC_TRANS = 35 Part 2 of this International Standard - Secure
Interoperability clause

ComponentId TAG_TLS_SEC_TRANS = 36 Part 2 of this International Standard - Secure
Interoperability clause

ComponentId TAG_ACTIVITY_POLICY = 37 Additional Structuring Mechanisms for the OTS.

ComponentId TAG_RMI_CUSTOM_MAX_STREAM_FORMAT = 38 Java to IDL Language Mapping specification.

ComponentId TAG_GROUP = 39 Part 2 of this International Standard - Unreli-
able Multicast clause

ComponentId TAG_GROUP_IIOP = 40 Part 2 of this International Standard - Unreli-
able Multicast clause

ComponentId TAG_PASSTHRU_TRANS = 41 Firewall Traversal (ptc/04-03-01)

ComponentId TAG_FIREWALL_PATH = 42 Firewall Traversal (ptc/04-03-01)

ComponentId TAG_IIOP_SEC_TRANS = 43 Firewall Traversal (ptc/04-03-01)

ComponentId TAG_HOME_LOCATION_INFO = 44 Telecom Wireless specification.

ComponentId TAG_DCE_STRING_BINDING = 100 The DCE ESIOP clause: see Part 2 of this Interna-
tional Standard

ComponentId TAG_DCE_BINDING_NAME = 101 The DCE ESIOP clause: see Part 2 of this Interna-
tional Standard.

ComponentId TAG_DCE_NO_PIPES = 102 The DCE ESIOP clause: see Part 2 of this Interna-
tional Standard

ComponentId TAG_DCE_SEC_MECH = 103 Security Service specification.

ComponentId TAG_INET_SEC_TRANS = 123 Security Service specification.

Tag Name Tag Value Described in
226 CORBA - Part 2: Interoperability, v3.3

Policy Type Policy Interface Defined in Uses
create
_policy

SecClientInvocationAccess = 1 SecurityAdmin::AccessPolicy Security Service
specification.

N

SecTargetInvocationAccess = 2 SecurityAdmin::AccessPolicy N

SecApplicationAccess = 3 SecurityAdmin::AccessPolicy N

SecClientInvocationAudit = 4 SecurityAdmin::AuditPolicy N

SecTargetInvocationAudit = 5 SecurityAdmin::AuditPolicy N

SecApplicationAudit = 6 SecurityAdmin::AuditPolicy N

SecDelegation = 7 SecurityAdmin::Delegation Policy N

SecClientSecureInvocation = 8 SecurityAdmin::SecureInvocationPolicy N

SecTargetSecureInvocation = 9 SecurityAdmin::SecureInvocationPolicy N

SecNonRepudiation = 10 NRService::NRPolicy N

SecConstruction = 11 CORBA::SecConstruction CORBA 3.1, Part 1 - ORB
Interface clause

N

SecMechanismPolicy = 12 SecurityLevel2::MechanismPolicy Security Service
specification.

Y

SecInvocationCredentialsPolicy = 13 SecurityLevel2::InvocationCredentials
Policy

Y

SecFeaturesPolicy = 14 SecurityLevel2::FeaturesPolicy Y

SecQOPPolicy = 15 SecurityLevel2::QOPPolicy Y

THREAD_POLICY_ID = 16 PortableServer::ThreadPolicy CORBA 3.1, Part 1 -
Portable Object Adapter
clause

Y

LIFESPAN_POLICY_ID = 17 PortableServer::LifespanPolicy Y

ID_UNIQUENESS_POLICY_ID = 18 PortableServer::IdUniquenessPolicy Y

ID_ASSIGNMENT_POLICY_ID = 19 PortableServer::IdAssignmentPolicy Y

IMPLICIT_ACTIVATION_POLICY_ID = 20 PortableServer::ImplicitActivationPolicy Y

SERVENT_RETENTION_POLICY_ID = 21 PortableServer::ServentRetentionPolicy Y

REQUEST_PROCESSING_POLICY_ID = 22 PortableServer::RequestProcessingPolicy Y
CORBA - Part 2: Interoperability, v3.3 227

REBIND_POLICY_TYPE = 23 Messaging::RebindPolicy CORBA 3.1, Part 1 -
CORBA Messaging clause

Y

SYNC_SCOPE_POLICY_TYPE = 24 Messaging::SyncScopePolicy Y

REQUEST_PRIORITY_POLICY_TYPE = 25 Messaging::RequestPriorityPolicy Y

REPLY_PRIORITY_POLICY_TYPE = 26 Messaging::ReplyPriorityPolicy Y

REQUEST_START_TIME_POLICY_TYPE =
27

Messaging::RequestStartTimePolicy Y

REQUEST_END_TIME_POLICY_TYPE = 28 Messaging::RequestEndTimePolicy Y

REPLY_START_TIME_POLICY_TYPE = 29 Messaging::ReplyStartTimePolicy Y

REPLY_END_TIME_POLICY_TYPE = 30 Messaging::ReplyEndTimePolicy Y

RELATIVE_REQ_TIMEOUT_POLICY_
TYPE = 31

Messaging::RelativeRequestTimeoutPolicy Y

RELATIVE_RT_TIMEOUT_POLICY_
TYPE = 32

Messaging::RelativeRoundtripTimeout
Policy

Y

ROUTING_POLICY_TYPE = 33 Messaging::RoutingPolicy Y

MAX_HOPS_POLICY_TYPE =34 Messaging::MaxHopsPolicy Y

QUEUE_ORDER_POLICY_TYPE = 35 Messaging::QueueOrderPolicy Y

FIREWALL_POLICY_TYPE = 36 Firewall::FirewallPolicy Firewall Traversal
specification: (ptc/04-03-
01)

Y

BIDIRECTIONAL_POLICY_TYPE = 37 BiDirPolicy::BidirectionalPolicy Part 2 of this Internation-
al Standard - General
Inter-ORB Protocol clause

Y

SecDelegationDirectivePolicy = 38 SecurityLevel2::DelegtionDirectivePolicy Security Service
specification.

Y

SecEstablishTrustPolicy = 39 SecurityLevel2::EstablishTrustPolicy Y

PRIORITY_MODEL_POLICY_TYPE = 40 RTCORBA::PriorityModelPolicy Real-Time CORBA
specification.

Y

THREADPOOL_POLICY_TYPE = 41 RTCORBA::ThreadpoolPolicy Y

SERVER_PROTOCOL_POLICY_TYPE = 42 RTCORBA::ServerProtocolPolicy Y

CLIENT_PROTOCOL_POLICY_TYPE = 43 RTCORBA::ClientProtocolPolicy Y

PRIVATE_CONNECTION_POLICY_
TYPE = 44

RTCORBA::PrivateConnectionpolicy Y

PRIORITY_BANDED_CONNECTION_
POLICY_TYPE = 45

RTCORBA::PriorityBandedConnection
Policy

Y

TransactionPolicyType = 46 CosTransactions::TransactionPolicy Object Transaction Service
specification.

Y

REQUEST_DURATION_POLICY_
TYPE = 47

Fault Tolerant CORBA: see
CORBA, v3.0.3.

Policy Type Policy Interface Defined in Uses
create
_policy
228 CORBA - Part 2: Interoperability, v3.3

HEARTBEAT_POLICY_TYPE = 48 Fault Tolerant CORBA: see
CORBA, v3.0.3.

HEARTBEAT_ENABLED_POLICY_
TYPE = 49

IMMEDIATE_SUSPEND_POLICY_
TYPE = 50

valuetype MessageRouting::
ImmediateSuspend

CORBA 3.1, Part 1 -
CORBA Messaging clause

N

UNLIMITED_PING_POLICY_TYPE =
51

valuetype
MessageRouting::UnlimitedPing

N

LIMITED_PING_POLICY_TYPE = 52 valuetype MessageRouting::LimitedPing N

DECAY_POLICY_TYPE = 53 valuetype
MessageRouting::DecayPolicy

N

RESUME_POLICY_TYPE = 54 valuetype
MessageRouting::ResumePolicy

N

INVOCATION_POLICY_TYPE = 55 CosTransactions::InvocationPolicy Object Transaction Service
specification.

Y

OTS_POLICY_TYPE = 56 CosTransactions::OTSPolicy Y

NON_TX_TARGET_POLICY_TYPE =
57

CosTransactions::NonTxTargetPolicy Y

ActivityPolicyType = 58 CORBA::PolicyType Additional Structuring
Mechanisms for the OTS.

Y

OSA_MANAGER_POLICY = 59 Security Domain
Membership (orbos/01-06-
01)ODM_MANAGER_POLICY = 60

PATH_SELECTION_POLICY_TYPE =
61

Firewall Traversal
specification (ptc/04-03-01)

PATH_INSERTION_POLICY_TYPE =
62

PROCESSING_MODE_POLICY_TYPE
= 63

CORBA 3.1, Part 1 -
Portable Interceptor clause

COMPRESSION_ENABLING_POLICY_
ID = 64

CompressionEnablingPolicy ZIOP Y

COMPRESSOR_ID_LEVEL_LIST_POL
ICY_ID = 65

CompressionIdLevelListPolicy Y

COMPRESSION_LOW_VALUE_POLIC
Y_ID = 66

CompressionLowValuePolicy Y

COMPRESSION_MIN_RATIO_POLICY
_ID = 67

CompressionMinRatioPolicy Y

Policy Type Policy Interface Defined in Uses
create
_policy
CORBA - Part 2: Interoperability, v3.3 229

A.5 Exception Codes
If an exception that is to be raised for an error condition does not explicitly specify a specific standard minor code for that
error condition, implementations can either use a minor code of zero, or use a vendor-specific minor code to convey more
detail about the error.

The following table specifies standard minor exception codes that have been assigned for the standard system exceptions.
The actual value that is to be found in the minor field of the ex_body structure is obtained by or-ing the values in this
table with the OMGVMCID constant. For example “Missing local value implementation” for the exception
NO_IMPLEMENT would be denoted by the minor value 0x4f4d0001.

.

SYSTEM EXCEPTION MINOR
CODE

EXPLANATION

ACTIVITY_COMPLETED 1 Activity context completed through timeout, or in some way other
than requested.

ACTIVITY_REQUIRED 1 Calling thread lacks required activity context.
BAD_CONTEXT 1 IDL context not found.

2 No matching IDL context property.
230 CORBA - Part 2: Interoperability, v3.3

BAD_INV_ORDER 1 Dependency exists in IFR preventing destruction of this object.
2 Attempt to destroy indestructible objects in IFR.
3 Operation would deadlock.
4 ORB has shutdown
5 Attempt to invoke send or invoke operation of the same Request

object more than once.
6 Attempt to set a servant manager after one has already been set.
7 ServerRequest::arguments called more than once or after a call

to ServerRequest:: set_exception.
8 ServerRequest::ctx called more than once or before

ServerRequest::arguments or after ServerRequest::ctx,
ServerRequest::set_result or
ServerRequest::set_exception.

9 ServerRequest::set_result called more than once or before
ServerRequest::arguments or after
ServerRequest::set_result or
ServerRequest::set_exception.

10 Attempt to send a DII request after it was sent previously.
11 Attempt to poll a DII request or to retrieve its result before the

request was sent.
12 Attempt to poll a DII request or to retrieve its result after the result

was retrieved previously.
13 Attempt to poll a synchronous DII request or to retrieve results from

a synchronous DII request.
14 Invalid portable interceptor call.
15 Service context add failed in portable interceptor because a service

context with the given id already exists.
16 Registration of PolicyFactory failed because a factory already

exists for the given PolicyType.

SYSTEM EXCEPTION MINOR
CODE

EXPLANATION
CORBA - Part 2: Interoperability, v3.3 231

17 POA cannot create POAs while undergoing destruction
18 Attempt to reassign priority.
19 An OTS/XA integration xa_start call returned

XAER_OUTSIDE.
20 An OTS/XA integration xa_ call returned XAER_PROTO.
21 Transaction context of request and client threads do not match in

interceptor.
22 Poller has not returned any response yet.
23 Registration of TaggedProfileFactory failed because a factory

already exists for the given id.
24 Registration of TaggedComponentFactory failed because a factory

already exists for the given id.
25 Iteration has no more elements.
26 Invocation of this operation not allowed in post_init.

BAD_OPERATION 1 ServantManager returned wrong servant type.
2 Operation or attribute not known to target object

SYSTEM EXCEPTION MINOR
CODE

EXPLANATION
232 CORBA - Part 2: Interoperability, v3.3

BAD_PARAM 1 Failure to register, unregister, or lookup value factory.
2 RID already defined in IFR.
3 Name already used in the context in IFR.
4 Target is not a valid container.
5 Name clash in inherited context.
6 Incorrect type for abstract interface.
7 string_to_object conversion failed due to bad scheme name.
8 string_to_object conversion failed due to bad address.
9 string_to_object conversion failed due to bad bad schema specific

part.
10 string_to_object conversion failed due to non specific reason.
11 Attempt to derive abstract interface from non-abstract base interface

in the Interface Repository.
12 Attempt to let a ValueDef support more than one non-abstract

interface in the Interface Repository.
13 Attempt to use an incomplete TypeCode as a parameter.
14 Invalid object id passed to POA::create_reference_by_id.
15 Bad name argument in TypeCode operation.
16 Bad RepositoryId argument in TypeCode operation.
17 Invalid member name in TypeCode operation.
18 Duplicate label value in create_union_tc.
19 Incompatible TypeCode of label and discriminator in

create_union_tc.
20 Supplied discriminator type illegitimate in create_union_tc.
21 Any passed to ServerRequest::set_exception does not contain

an exception.
22 Unlisted user exception passed to

ServerRequest::set_exception.
23 wchar transmission code set not in service context.
24 Service context is not in OMG-defined range.
25 Enum value out of range.
26 Invalid service context Id in portable interceptor.
27 Attempt to call register_initial_reference with a null Object.
28 Invalid component Id in portable interceptor.
29 Invalid profile Id in portable interceptor.

SYSTEM EXCEPTION MINOR
CODE

EXPLANATION
CORBA - Part 2: Interoperability, v3.3 233

30 Two or more Policy objects with the same PolicyType value
supplied to Object::set_policy_overrides or
PolicyManager::set_policy_overrides.

31 Attempt to define a oneway operation with non-void result, out or
inout parameters or user exceptions.

32 DII asked to create request for an implicit operation.
33 An OTS/XA integration xa_ call returned XAER_INVAL.
34 Union branch modifier called with bad case label discriminator.
35 Illegal IDL context property name.
36 Illegal IDL property search string.
37 Illegal IDL context name.
38 Non-empty IDL context.
39 Unsupported RMI/IDL custom value type stream format.
40 ORB output stream does not support ValueOutputStream interface.
41 ORB input stream does not support ValueInputStream interface.
42 Character support limited to ISO 8859-1 for this object reference.
43 Attempt to add a Pollable to a second PollableSet.

BAD_TYPECODE 1 Attempt to marshal incomplete TypeCode.
2 Member type code illegitimate in TypeCode operation.
3 Illegal parameter type.

CODESET_INCOMPATIBLE 1 Codeset negotiation failed.
2 Codeset delivered in CodeSetContext is not supported by server as

transmission codeset.
DATA_CONVERSION 1 Character does not map to negotiated transmission code set.

2 Failure of PriorityMapping object.
IMP_LIMIT 1 Unable to use any profile in IOR.
INITIALIZE 1 Priority range too restricted for ORB.
INTERNAL 1 An OTS/XA integration xa_ call returned XAER_RMERR.

2 An OTS/XA integration xa_ call returned XAER_RMFAIL.
INTF_REPOS 1 Interface Repository not available

2 No entry for requested interface in Interface Repository
INVALID_ACTIVITY 1 Transaction or Activity resumed in wrong context, or invocation

incompatible with Activity’s current state.
INV_OBJREF 1 wchar Code Set support not specified.

2 Codeset component required for type using wchar or wstring data

SYSTEM EXCEPTION MINOR
CODE

EXPLANATION
234 CORBA - Part 2: Interoperability, v3.3

INV_POLICY 1 Unable to reconcile IOR specified policy with effective policy
override.

2 Invalid PolicyType.
3 No PolicyFactory has been registered for the given PolicyType.

MARSHAL 1 Unable to locate value factory.
2 ServerRequest::set_result called before ServerRequest::ctx

when the operation IDL contains a context clause.
3 NVList passed to ServerRequest::arguments does not describe

all parameters passed by client.
4 Attempt to marshal Local object.
5 wchar or wstring data erroneosly sent by client over GIOP 1.0

connection
6 wchar or wstring data erroneously returned by server over GIOP

1.0 connection.
7 Unsupported RMI/IDL custom value type stream format.

NO_IMPLEMENT 1 Missing local value implementation.
2 Incompatible value implementation version.
3 Unable to use any profile in IOR.
4 Attempt to use DII on Local object.
5 Biomolecular Sequence Analysis iterator cannot be reset.
6 Biomolecular Sequence Analysis metadata is not available as

XML.
7 Genomic Maps iterator cannot be rest.
8 Operation not implemented in local object.

NO_RESOURCES 1 Portable Interceptor operation not supported in this binding.
2 No connection for request’s priority.

NO_RESPONSE 1 Reply is not available immediately in a non-blocking call.
OBJ_ADAPTER 1 System exception in AdapterActivator::unknown_adapter.

2 Incorrect servant type returned by servant manager.
3 No default servant available [POA policy].
4 No servant manager available [POA Policy].
5 Violation of POA policy by ServantActivator::incarnate.
6 Exception in

PortableInterceptor::IORInterceptor.components_established.
7 Null servant returned by servant manager

SYSTEM EXCEPTION MINOR
CODE

EXPLANATION
CORBA - Part 2: Interoperability, v3.3 235

A.6 Identity Tokens
The following identity tokens are defined in the Security Context clause (Part 2 of this International Standard) and the
Firewall Traversal specification (ptc/04-03-01). These tokens must be powers of two.

• ITTAbsent = 0;

• ITTAnonymous = 1;

• ITTPrincipalName = 2;

• ITTX509CertChain = 4;

• ITTDistinguishedName = 8;

• ITTCompoundToken = 16;

OBJECT_NOT_EXIST 1 Attempt to pass an unactivated (unregistered) value as an object
reference.

2 Failed to create or locate Object Adapter.
3 Biomolecular Sequence Analysis Service is no longer available.
4 Object Adapter inactive.
5 This Poller has already delivered a reply to some client.

TIMEOUT 1 Reply is not available in the Poller by the timeout set for it.
2 End time specified in RequestEndTimePolicy or

RelativeRequestTimeoutPolicy has expired.
3 End time specified in ReplyEndTimePolicy or

RelativeReplyTimeoutPolicy has expired.
TRANSACTION_ROLLEDBACK 1 An OTS/XA integration xa_ call returned XAER_RB.

2 An OTS/XA integration xa_ call returned XAER_NOTA.
3 OTS/XA integration end was called with success set to TRUE

while transaction rollback was deferred.
4 Deferred transaction rolled back.

TRANSIENT 1 Request discarded because of resource exhaustion in POA, or
because POA is in discarding state.

2 No usable profile in IOR.
3 Request cancelled.
4 POA destroyed.

UNKNOWN 1 Unlisted user exception received by client.
2 Non-standard System Exception not supported.
3 An unknown user exception received by a portable interceptor.

SYSTEM EXCEPTION MINOR
CODE

EXPLANATION
236 CORBA - Part 2: Interoperability, v3.3

	OMG’s Issue Reporting Procedure
	Preface
	1 Scope
	2 Conformance and Compliance
	2.1 Unreliable Multicast
	2.2 GIOP Compression

	3 Normative References
	3.1 Identical Recommendations | International Standards
	3.2 Other Specifications

	4 Terms and definitions
	4.1 Recommendations | International Standards
	4.2 Terms Defined in this Standard
	4.3 Keywords for Requirment statements

	5 Symbols (and abbreviated terms)
	6 Interoperability Overview
	6.1 Elements of Interoperability
	6.1.1 ORB Interoperability Architecture
	6.1.2 Inter-ORB Bridge Support
	6.1.3 General Inter-ORB Protocol (GIOP)
	6.1.4 Internet Inter-ORB Protocol (IIOP)®
	6.1.5 Environment-Specific Inter-ORB Protocols (ESIOPs)

	6.2 Relationship to Previous Versions of CORBA
	6.3 Examples of Interoperability Solutions
	6.3.1 Example 1
	6.3.2 Example 2
	6.3.3 Example 3
	6.3.4 Interoperability Compliance

	6.4 Motivating Factors
	6.4.1 ORB Implementation Diversity
	6.4.2 ORB Boundaries
	6.4.3 ORBs Vary in Scope, Distance, and Lifetime

	6.5 Interoperability Design Goals
	6.5.1 Non-Goals

	7 ORB Interoperability Architecture
	7.1 Overview
	7.1.1 Domains
	7.1.2 Bridging Domains

	7.2 ORBs and ORB Services
	7.2.1 The Nature of ORB Services
	7.2.2 ORB Services and Object Requests
	7.2.3 Selection of ORB Services

	7.3 Domains
	7.3.1 Definition of a Domain
	7.3.2 Mapping Between Domains: Bridging

	7.4 Interoperability Between ORBs
	7.4.1 ORB Services and Domains
	7.4.2 ORBs and Domains
	7.4.3 Interoperability Approaches
	7.4.4 Policy-Mediated Bridging
	7.4.5 Configurations of Bridges in Networks

	7.5 Object Addressing
	7.5.1 Domain-relative Object Referencing
	7.5.2 Handling of Referencing Between Domains

	7.6 An Information Model for Object References
	7.6.1 What Information Do Bridges Need?
	7.6.2 Interoperable Object References: IORs
	7.6.3 IOR Profiles
	7.6.4 Standard IOR Profiles
	7.6.5 IOR Components
	7.6.6 Standard IOR Components
	7.6.7 Profile and Component Composition in IORs
	7.6.8 IOR Creation and Scope
	7.6.9 Stringified Object References
	7.6.10 Object URLs

	7.7 Service Context
	7.7.1 Standard Service Contexts
	7.7.2 Service Context Processing Rules

	7.8 Coder/Decoder Interfaces
	7.8.1 Codec Interface
	7.8.2 Codec Factory

	7.9 Feature Support and GIOP Versions
	7.10 Code Set Conversion
	7.10.1 Character Processing Terminology
	7.10.2 Code Set Conversion Framework
	7.10.3 Mapping to Generic Character Environments
	7.10.4 Example of Generic Environment Mapping
	7.10.5 Relevant OSFM Registry Interfaces

	8 Building Inter-ORB Bridges
	8.1 Introduction
	8.2 In-Line and Request-Level Bridging
	8.2.1 In-line Bridging
	8.2.2 Request-level Bridging
	8.2.3 Collocated ORBs

	8.3 Proxy Creation and Management
	8.4 Interface-specific Bridges and Generic Bridges
	8.5 Building Generic Request-Level Bridges
	8.6 Bridging Non-Referencing Domains
	8.7 Bootstrapping Bridges

	9 General Inter-ORB Protocol
	9.1 Goals of the General Inter-ORB Protocol
	9.2 GIOP Overview
	9.2.1 Common Data Representation (CDR)
	9.2.2 GIOP Message Overview
	9.2.3 GIOP Message Transfer

	9.3 CDR Transfer Syntax
	9.3.1 Primitive Types
	9.3.2 OMG IDL Constructed Types
	9.3.3 Encapsulation
	9.3.4 Value Types
	9.3.5 Pseudo-Object Types
	9.3.6 Object References
	9.3.7 Abstract Interfaces

	9.4 GIOP Message Formats
	9.4.1 GIOP Message Header
	9.4.2 Request Message
	9.4.3 Reply Message
	9.4.4 CancelRequest Message
	9.4.5 LocateRequest Message
	9.4.6 LocateReply Message
	9.4.7 CloseConnection Message
	9.4.8 MessageError Message
	9.4.9 Fragment Message

	9.5 GIOP Message Transport
	9.5.1 Connection Management
	9.5.2 Message Ordering

	9.6 Object Location
	9.7 Internet Inter-ORB Protocol (IIOP)
	9.7.1 TCP/IP Connection Usage
	9.7.2 IIOP IOR Profiles
	9.7.3 IIOP IOR Profile Components

	9.8 Bi-Directional GIOP
	9.8.1 Bi-directional IIOP

	9.9 Bi-directional GIOP policy
	9.10 OMG IDL
	9.10.1 GIOP Module
	9.10.2 IIOP Module
	9.10.3 BiDirPolicy Module

	10 Secure Interoperability
	10.1 Overview
	10.1.1 Assumptions

	10.2 Protocol Message Definitions
	10.2.1 The Security Attribute Service Context Element
	10.2.2 SAS context_data Message Body Types
	10.2.3 Authorization Token Format
	10.2.4 Client Authentication Token Format
	10.2.5 Identity Token Format
	10.2.6 Principal Names and Distinguished Names

	10.3 Security Attribute Service Protocol
	10.3.1 Compound Mechanisms
	10.3.2 Session Semantics
	10.3.3 TSS State Machine
	10.3.4 CSS State Machine
	10.3.5 ContextError Values and Exceptions

	10.4 Transport Security Mechanisms
	10.4.1 Transport Layer Interoperability
	10.4.2 Transport Mechanism Configuration

	10.5 Interoperable Object References
	10.5.1 Target Security Configuration
	10.5.2 Client-side Mechanism Selection
	10.5.3 Client-Side Requirements and Location Binding
	10.5.4 Server Side Consideration

	10.6 Conformance Levels
	10.6.1 Conformance Level 0
	10.6.2 Conformance Level 1
	10.6.3 Conformance Level 2
	10.6.4 Stateful Conformance

	10.7 Sample Message Flows and Scenarios
	10.7.1 Confidentiality, Trust in Server, and Trust in Client Established in the Connection
	10.7.2 Confidentiality and Trust in Server Established in the Connection - Stateless Trust in Client Established in Service Context
	10.7.3 Confidentiality, Trust in Server, and Trust in Client Established in the Connection Stateless Trust Association Established in Service Context
	10.7.4 Confidentiality, Trust in Server, and Trust in Client Established in the Connection - Stateless Forward Trust Association Established in Service Context

	10.8 References
	10.9 IDL
	10.9.1 Module GSSUP - Username/Password GSSAPI Token Formats
	10.9.2 Module CSI - Common Secure Interoperability
	10.9.3 Module CSIIOP - CSIv2 IOR Component Tag Definitions

	11 Unreliable Multicast Inter-ORB Protocol
	11.1 Introduction
	11.1.1 Purpose
	11.1.2 MIOP Packet
	11.1.3 Packet Collection
	11.1.4 PacketHeader
	11.1.5 Joining an IP/Multicast Group
	11.1.6 Quality Of Service
	11.1.7 Delivery Requirements

	11.2 MIOP Object Model
	11.2.1 Definition
	11.2.2 Unreliable IP/Multicast Profile Body (UIPMC_ProfileBody)
	11.2.3 Group IOR
	11.2.4 Extending PortableServer::POA to include Group Operations
	11.2.5 MIOP Gateway
	11.2.6 Multicast Group Manager
	11.2.7 MIOP URL

	11.3 Request Issues
	11.3.1 GIOP Request Message Compatibility
	11.3.2 MIOP Request Efficiency
	11.3.3 Client Use Cases
	11.3.4 Server Use Cases

	11.4 Consolidated IDL
	11.4.1 OMG IDL

	12 ZIOP Protocol
	12.1 ZIOP Messages
	12.2 ZIOP Message use
	12.3 ZIOP Compression Policies
	12.3.1 CompressionEnablingPolicy interface
	12.3.2 CompressorIdLevelListPolicy interface
	12.3.3 CompressionLowValuePolicy interface
	12.3.4 CompressionMinRatioPolicy interface

	12.4 Propagation of ZIOP Compression Policies
	12.5 Consolidated IDL
	A.1 Profile ID Tags
	A.2 Service ID Tags
	A.3 Component ID Tags
	A.4 Policy Type Tags
	A.5 Exception Codes
	A.6 Identity Tokens

