OBJECT MANAGEMENT GROUP

Common Object Request Broker Architecture (CORBA)

Version 3.4
Part 1: CORBA Interfaces - with change bars

OMG Document Number: formal/2021-02-03

Standard document URL: http://www.omg.org/spec/ CORBA/3.4/Interfaces/PDF

Release Date: March 2021

Normative Machine Consumable Files:
http://www.omg.org/spec/CORBA/20120301/BiDirPolicy.idl
http://www.omg.org/spec/ CORBA/20120301/CONV_FRAME.idl
http://www.omg.org/spec/ CORBA/20120301/CORBA_Context.idl
http://www.omg.org/spec/ CORBA/20120301/CORBA_Current.idl
http://www.omg.org/spec/CORBA/20120301/CORBA_CustomMarshal.idl
http://www.omg.org/spec/ CORBA/20120301/CORBA_DomainManager.idl
http://www.omg.org/spec/CORBA/20120301/CORBA _IDL_FAQ.html
http://www.omg.org/spec/CORBA/20120301/CORBA _InterfaceRepository.idl
http://www.omg.org/spec/ CORBA/20120301/CORBA_NVList.idl
http://www.omg.org/spec/CORBA/20120301/CORBA_Obiject.idl
http://www.omg.org/spec/CORBA/20120301/CORBA_ORB.idI
http://www.omg.org/spec/CORBA/20120301/CORBA_ORB_ Init.idl
http://www.omg.org/spec/CORBA/20120301/CORBA_Policy.idl
http://www.omg.org/spec/ CORBA/20120301/CORBA_Pollable.idl
http://www.omg.org/spec/CORBA/20120301/CORBA_Request.idl
http://www.omg.org/spec/CORBA/20120301/CORBA_ServerRequest.idl
http://www.omg.org/spec/CORBA/20120301/CORBA_StandardExceptions.idl
http://www.omg.org/spec/ CORBA/20120301/CORBA_Stream.idl
http://www.omg.org/spec/CORBA/20120301/CORBA_TypeCode.idl
http://www.omg.org/spec/ CORBA/20120301/CORBA_ValueBase.idl
http://www.omg.org/spec/CORBA/20120301/CSl.idl
http://www.omg.org/spec/CORBA/20120301/CSIIOP.idI
http://www.omg.org/spec/CORBA/20120301/Dynamic.idl
http://www.omg.org/spec/CORBA/20120301/DynamicAny.idl
http://www.omg.org/spec/ CORBA/20120301/FT.idI
http://www.omg.org/spec/CORBA/20120301/GIOP.idI
http://www.omg.org/spec/CORBA/20120301/GSSUP.idI
http://www.omg.org/spec/CORBA/20120301/IIOP.idl
http://www.omg.org/spec/CORBA/20120301/IOP.idl
http://www.omg.org/spec/CORBA/20120301/IOP_DCE.idI
http://www.omg.org/spec/CORBA/20120301/MessageRouting.idl
http://www.omg.org/spec/ CORBA/20120301/Messaging.idl
http://www.omg.org/spec/CORBA/20120301/orb.idl
http://www.omg.org/spec/CORBA/20120301/Portablelnterceptor.idl
http://www.omg.org/spec/ CORBA/20120301/PortableServer.idl
http://www.omg.org/spec/CORBA/20120301/pseudo_orb.idl
http://www.omg.org/spec/CORBA/20120301/SendingContext.idl

Copyright © 1997-2001 Electronic Data Systems Corporation
Copyright © 1997-2001 Hewlett-Packard Company
Copyright © 1997-2001 IBM Corporation

Copyright © 1997-2001 ICON Computing

Copyright © 2007 IONA Technologies, PLC

Copyright © 1997-2001 i-Logix

Copyright © 1997-2001 IntelliCorp

Copyright © 1997-2001 Microsoft Corporation
Copyright © 2011-2012 Object Management Group
Copyright © 1997-2001 ObjecTime Limited

Copyright © 1997-2001 Oracle Corporation

Copyright © 1997-2001 Platinum Technology, Inc.
Copyright © 1997-2001 Ptech Inc.

Copyright © 1997-2001 Rational Software Corporation
Copyright © 1997-2001 Reich Technologies

Copyright © 2007-2012 Remedy IT

Copyright © 1997-2001 Softeam

Copyright © 1997-2001 Sterling Software

Copyright © 1997-2001 Taskon A/S

Copyright © 2008-2009 Telefonica Investigacion y Desarrollo S.A.Unipersonal
Copyright © 1997-2001 Unisys Corporation

Use of Specification - Terms, Conditions & Notices

The material in this document details an Object Management Group specification in accordance with the terms, conditions and
notices set forth below. This document does not represent a commitment to implement any portion of this International
Standard in any company’s products. The information contained in this document is subject to change without notice.

Licenses

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free, paid up,
worldwide license to copy and distribute this document and to modify this document and distribute copies of the modified
version. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed the copyright
in the included material of any such copyright holder by reason of having used the specification set forth herein or having
conformed any computer software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this International Standard hereby grant you a
fully-paid up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use this
International Standard to create and distribute software and special purpose specifications that are based upon this
International Standard, and to use, copy, and distribute this International Standard as provided under the Copyright Act;
provided that: (1) both the copyright notice identified above and this permission notice appear on any copies of this
International Standard; (2) the use of the specifications is for informational purposes and will not be copied or posted on any
network computer or broadcast in any media and will not be otherwise resold or transferred for commercial purposes; and (3)

no modifications are made to this International Standard. This limited permission automatically terminates without notice
if you breach any of these terms or conditions. Upon termination, you will destroy immediately any copies of the
specifications in your possession or control.

Patents

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may
require use of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a
license may be required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of
those patents that are brought to its attention. OMG specifications are prospective and advisory only. Prospective users are
responsible for protecting themselves against liability for infringement of patents.

General Use Restrictions

Any unauthorized use of this International Standard may violate copyright laws, trademark laws, and communications
regulations and statutes. This document contains information which is protected by copyright. All Rights Reserved. No
part of this work covered by copyright herein may be reproduced or used in any form or by any means--graphic,
electronic, or mechanical, including photocopying, recording, taping, or information storage and retrieval systems--
without permission of the copyright owner.

Disclaimer Of Warranty

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY CONTAIN
ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE
MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS PUBLICATION,
INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF
MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE.

IN NO EVENT SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE COMPANIES LISTED ABOVE
BE LTIABLE FOR ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS, REVENUE, DATA OR
USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE FURNISHING,
PERFORMANCE, OR USE OF THIS MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

The entire risk as to the quality and performance of software developed using this International Standard is borne by you.
This disclaimer of warranty constitutes an essential part of the license granted to you to use this International Standard.

Restricted Rights Legend

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1) (ii) of
The Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph (c)(1) and (2)
of the Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified in 48 C.F.R.
227-7202-2 of the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of the Federal
Acquisition Regulations and its successors, as applicable. The specification copyright owners are as indicated above and
may be contacted through the Object Management Group, 109 Highland Avenue, Needham, MA 02494, U.S.A.

Trademarks

MDA®, Model Driven Architecture®, UML®, UML Cube logo®, OMG Logo®, CORBA® and XMI® are registered
trademarks of the Object Management Group, Inc., and Object Management Group™, OMG™ | Unified Modeling
Language™, Model Driven Architecture Logo™, Model Driven Architecture Diagram™, CORBA logos™, XMI Logo™,
CWM™_ CWM Logo™, [IOP™ | IMM™_ MOF™, OMG Interface Definition Language (IDL)™ , and Systems Modeling
Language (SysML™) are trademarks of the Object Management Group. All other products or company names mentioned are
used for identification purposes only, and may be trademarks of their respective owners.

Compliance

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its designees) is
and shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer software to use
certification marks, trademarks or other special designations to indicate compliance with these materials.

Software developed under the terms of this license may claim compliance or conformance with this International Standard if
and only if the software compliance is of a nature fully matching the applicable compliance points as stated in the
specification. Software developed only partially matching the applicable compliance points may claim only that the software
was based on this International Standard, but may not claim compliance or conformance with this International Standard. In
the event that testing suites are implemented or approved by Object Management Group, Inc., software developed using this
International Standard may claim compliance or conformance with the specification only if the software satisfactorily
completes the testing suites.

OMG’s Issue Reporting Procedure

All OMG specifications are subject to continuous review and improvement. As part of this process we
encourage readers to report any ambiguities, inconsistencies, or inaccuracies they may find by complet-
ing the Issue Reporting Form listed on the main web page Attp://www.omg.org, under Documents, Report
a Bug/Issue Report a Bug/Issue (http.//www.omg.org/report_issue.htm).

Table of Contents

PrefaCe ..o XV

S Tt o1 TP 1
1. OVEIVIEW ..t e e e e e e e e e eaa e 1

2 Conformance and Complianceccocoooiiiiiiiiiiiieiinnnn.., 1
2.1 OVEIVIEBW ...ttt e e et e et e e e et e e e e e eaannns 1

3 REEIrENCES ...ceeieeeee e, 1
3.1 Normative ReferenCeS.......coovveiiiieeeeeee e 1

4 Additional Informationcoooeiiiiiiii 2
4.1 0utline of ConteNES.......coeenii e 2

4.2 Keywords for Requirement Statements.............cccovveieiiiiciiiiieee e 2

5 The Object Modelooeiiiiii e, 3
5.1 OVEIVIEW ...t e e e e e et eeae e e e 3

5.2 Object SEMANTICScoiiie e 3

5.2.1 ODJEOES e 4

5.2.2 REQUESES ..ottt e e e e e e e aeananaa 4

5.2.3 Object Creation and Destructionccoooriiiiiiiiiiiiiie e, 5

IO Y/ o1 PP PPPPTPPPPPPRPR 5

I N [0] (=1 o =T o =Y S 6

5.2.6 ValUB TYPES ..eniiiieeiiii et e e e e e e e e e e aaae 7

5.2.7 ADBSIract INterfacesoouoiiiieeiee e 7

5.2.8 OPEratiONSuoiiiiiii it e e e e e e 7

5.29 AUMDULIES ..o 9

5.3 Object Implementation ... 9

5.3.1 The Execution Model: Performing ServiCesccccceeeiiiiiiiieiiiiiiiieiennnnns 9

5.3.2 The Construction MOAElcoooeeieeeeieeeeeee e 9

6 CORBA OVEIVIEW ..o 11
I I CT=T aT=T = | 11
CORBA - Part 1: Interfaces, v3.4 i

/

6.2 Structure of an Object Request Brokercccevvvvieiiiiiiciiiee e 11

6.2.1 Object Request BroKer ... 15

B.2.2 ClINTS oo a s 16

6.2.3 Object Implementationscccoiiiiiiiiiiii i 16

6.2.4 ODbject REfErENCESuiiiiiiiiiiiiii e 16

6.2.5 OMBG Interface Definition Languageccccooiiiiiiiiieiiieeeeeeeeeeiiin 17

6.2.6 Mapping of IDL to Programming Languagescccccceeeeeeeiiiiiiiiinnnnnnn, 17

6.2.7 Client STUDS ..o 17

6.2.8 Dynamic Invocation Interfacecccccoiriiiiiiicice 17

6.2.9 Implementation SKeleton ... 18
6.2.10 Dynamic Skeleton Interfaceccccooooiiiiiiiiiiiiii 18

6.2.11 ODbjJeCt Adapterscoooeiiiiecce e 18

6.2.12 ORB INterfacecccooieiieiiee s 18
6.2.13 Interface REPOSITOrYuuueiiiiiiiiiiiiiiie e 19
6.2.14 Implementation REPOSIHOIYccccoiiiiiiiiiiiiiieeee e 19

6.3 EXample ORBS ... 19
6.3.1 Client- and Implementation-resident ORBccccoooviiiiiiiiiiiiiiiiiiiiens 19

6.3.2 Server-based ORBouiiiiiiiiiiiiiiee s 19

6.3.3 System-based ORBoooiiiiiiiiii 20

6.3.4 Library-based ORBouuiiiiiiiiiiiii s 20

6.4 Structure of @ ClieNnt............oiiiii e 20
6.5 Structure of an Object Implementation............ccccoooviiiiiiiiin 21
6.6 Structure of an Object Adapter...........ooveviiiiiiiie e 23
6.7 CORBA Required Object Adapter........cccooovviiiiiiiiiiiicieeeeeeie e 24
6.7.1 Portable Object Adaptercccooiiiiiiiiiiiiieeeee e 24

6.8 The Integration of Foreign Object Systems............coooiiiiiiiiiiiiiineenne. 24
IDL Syntax and SemantiCsccoooiiiiiiiiiiiiiieeen, 27
A O A= V1 27
7.2 Lexical CoNVENLIONSuiiiiiieiiie e eeeeeees 27
7.3 PreproCeSSINGcoiii et 27
7.4 IDL GrammMar.........cieiiieiiioe e et e e et e e e e e et e e e e e easneeeeeeene 27
7.5 IDL SPeECIfiCatioNceeeieeeeee e 27
7.6 Import Declarationcooooieiiiiii e 27
7.7 Module Declaration ..o 27
7.8 Interface Declarationcooouuiiiiiiiiii e 27

CORBA - Part 1: Interfaces, v3.4

7.9 Value DecClaration ... 27

7.10 Constant Declaration.............ooouuuiiiiiiie e 27
7.11 Type Declarationooooiiiiiiiiiii e 28
7.12 Exception Declaration ... 28
7.13 Operation Declarationcouuiiiiiiiiiiii e 28
7.14 Attribute Declaration.............ocoooeiiiiii i 28
7.15 Repository Identity Related Declarationsccccovviiiiiiiiiiiiiiiinnns 28
7.16 Event Declaration ... 28
7.17 Component Declaration...............cooiiiiiiiiiiii e 28
7.18 Home Declaration..............iiiiieiii e 28
7.19 CORBA MOAUIE...... e 28
7400\ =10 0TS 3=T g o IS ToTo] o] o o PSR 28
8 ORB INterface ..o 93
S T B Y=Y V1 93
8.2 The ORB Operations...........coiiiiiiiiii e 93
8.2.1 ORB IAENLLY ..uvveiiieieeiieeee e 99

8.2.2 Converting Object References to Stringsovvviiiiiiieeiiiiii, 99

8.2.3 Getting Service Informationcccooooiiiiiiiiieeeee, 100

8.2.4 Creating a New Contextooooiiiiiiiiiiiiii e 100

8.2.5 Thread-Related Operationsccccceiiieiiiiiiiiiiiicier e 100

8.3 Object Reference Operations.........ccoooeveeeiiiiiiiiiiiiiiee e 103
8.3.1 Determining the Object Interfaceccccciiiiiiiiiiiiii e, 105

8.3.2 Duplicating and Releasing Copies of Object References 105

8.3.3 Nil ObjeCt REfErENCESoovvviiiieeeeieeeeeeee e 105

8.3.4 Equivalence Checking Operationccccceeviviiiiiiiiiiiiiiieeee e 106

8.3.5 Probing for Object Non-EXistenceccccoviiiiiiiiiiiiiii e, 106

8.3.6 Object Reference Identitycccooeriiiiiiiiiiiiiee e 106

8.3.7 Type Coercion Considerationsccccccuiiiiiiiiiiiiiiieieeee e 108

8.3.8 Getting Policy Associated with the Objectcccccceiiiiiiiiiiiiiii, 108

8.3.9 Overriding Associated Policies on an Object Reference 109
8.3.10 Validating ConNECHiONccooiiiiiiiiii e 110
8.3.11 Getting the Domain Managers Associated with the Object 110
8.3.12 Getting Component Associated with the Objectc..cos 111
8.3.13 Getting the ORB ... 111
8.3.14 LocalObject Operationscccceiiiiiiiiieeieeieeeeeeree e eeneaens 111

8.4 ValueBase Operations ..o 112

CORBA - Part 1: Interfaces, v3.4 iii

8.5 ORB and OA Initialization and Initial References.........cc.coovvvvveenn..... 113

8.5.1 ORB Initializationoueuiiiiiii e 113

8.5.2 Obtaining Initial Object Referencesccccccceeeeiieiiiiiiiiiiin 115

8.5.3 Configuring Initial Service Referencesccccccevvvvviiiiiiiviniinnnnnnes 117

8.6 Context ODJECT.......coi e 119
8.6.1 INtrodUCHION ... 119

8.6.2 Context Object Operationsccccooiiiiiiiiiiiiiie e 120

8.7 CUIrent ODJECT 123
8.8 PONCY ODJECE ..ottt eeeee et eee e e s et en s e erenees 124
8.8.1 Definition of Policy ODJECtcoviiiiiiiiiii e 124

8.8.2 Creation of Policy ObJectScccooeeiiiiiiiiicccee e 125

8.8.3 Usages of Policy ODJECLSoeiiiiiiiiiiiiiiiiii e 126

8.8.4 Policy Associated with the Execution Environmentcccccoeees 127

8.8.5 Specification of New Policy Objectsoovvviiiiiiiiiiiiiiiiiiei, 127

8.8.6 Standard POIlICIESoueiiiiiiieee e 129

8.9 Management Of POlICIEScuuuiiiiiiiiee e 129
8.9.1 Client Side Policy Managementoooovmiiiiiiiiiiiiieeeeeeeeeeeeeee 129

8.9.2 Server Side Policy Management ... 129

8.9.3 Policy Management Interfacesccccovimiiciiiiie e 130

8.10 Management of Policy Domains.............ccoooeiiiiiiiiiiiiieeeeeee e 132
8.10.1 BasiC CONCEPLS ...coviiiieeiiiiicie et e e e e 132
8.10.2 Domain Management Operationsooovviiiiiiiiiiiiie e 134

8. 11 TYPECOAES ... s 136
8.11.1 The TypeCode Interfaceccooeeiiiiiiiiiiieccc e 136
8.11.2 TypeCode CoNnStantscccceeeeiiiiiiiiiiiiieeece e 140
8.11.3 Creating TYPECOUAESuuuiiiiiiiiiiiiiiiiee e 141

.12 EXCEPLIONS .. e 145
8.12.1 Definition of TErMS ..cooiiiiiiee e 145
8.12.2 System EXCEPLIONSuuuiiiiiiiiiiiiiiiiieiee e 146
8.12.3 Standard System Exception Definitionsccccceeeiiiiiiiiiiiiiiiiiiiiii, 147
8.12.4 Standard Minor Exception Codesoooviiiiiiiiiiiiiiiiiee e 153

9 Value Type SemantiCscccoiveiiiiiiiiiii e, 155
S B O A =T T 155
9.2 ArChItECIUNE ... 155
9.2.1 ADBSIraCt ValUEScooveeieiiiiee e 156

9.2.2 OPEratiONScooeeeieeeeeeee e ———— 156

9.2.3 Value Type vs. Interfaces ... 157

iv CORBA - Part 1: Interfaces, v3.4

9.2.4 Parameter PAsSiNGccoouuiiiiiiiiiie e 157

9.2.5 Substitutability ISSUEScooeviiiiiiiii 158

9.2.6 Widening/NarrOWiNgcoouieeiiiiiiiiiiiiiiiie et a e e e e e 159

9.2.7 Value Base TYPE ...uuoiiiiiiiiie et 159

9.2.8 Life CYClE ISSUESuviiiiiiiiiiiiiieeee et 159

9.2.9 Security Considerationsccoooiiiiiiiiiiiiii e 160

9.3 Standard Value Box Definitions.............cooovviiiiiiiiiiiiii e 160
9.4 Language MappingsS......ccoooeeiiiiiiiiiiiee e 161
9.4.1 General ReqQUIrEMENLSoovviiiiiiiiiee e 161

9.4.2 Language Specific Marshalingccccoiiiiiiiiiiiiieeeeee e 161

9.4.3 Language Specific Value Factory Requirementsccccccceeeeeeennnn. 161

9.4.4 Value Method Implementation ... 162

9.5 Custom Marshalingccoooiiiiiiii e 162
9.5.1 Implementation of Custom Marshalingccooooiiiiiiiii 162

9.5.2 Marshaling Streamscooviiiiiiiiiiiie e 163

9.6 Access to the Sending Context Run Time.........cccccooeieviiiiiiiiiiveeeiinn. 169
10 Abstract Interface Semanticscccooooiiiiin. 171
(O T B Y= T 171
10.2 Semantics of Abstract Interfaces.............coooiiiiiiiiii 171
10.3 Usage GUIEIINESooeuieeiiieie et 172
10.4 EXAMPIE coeeeeeee e 172
10.5 Security Considerationscooeeeiiiieiiiiiicce e 173
10.5.1 Passing Values to Trusted Domainscoooiiiiiiiiiiiiiiiiieeeeeeeeeee 173

11 Dynamic Invocation Interfacecccoooeiiiiiiiiii, 175
(I I O Y= T 175
11.1.1 Common Data StruCturescccooeoi oo 175
11.1.2 MeMOrY USAQEuiiiiiiiiiiiiiiiieee ettt 177
11.1.3 Return Status and EXCeplionscccooooiiiiiiiiiiiiiiccciceee e, 177

11.2 Request Operationscooeuuiiiiiiiiiiie e 177
11.2.1 Create _reqUESToueiii e 178

L 27 To [I o [EERRTPPPIN 180
11.2.3 INVOKE oo e e e e e e e ettt a s e e e e e e e eeeeeeeeeeeeee 180
11.2.4 dEIELE ..o 181
11.2.5 SENA ..ot e e e e e e e e eeeaeees 181
11.2.6 POIl_IESPONSE ...ttt e e e e e e e e e e e e e e eeeeeeennnnns 181
11.2.7 gEL FESPONSE ... 181

LR P28 S == o T | o T EERIPPPIN 182

CORBA - Part 1: Interfaces, v3.4 v

L2 o (=T o Y- (= T 182

1 7 1 O o o o 182

11.3 ORB Operationscoooiiiiiiiiie e e e 183
11.3.1 send_multiple_reqUESESooiiiiiiiiii e 183
11.3.2 get_next_response and poll_next_responseccccceveeiirieiiiiinnnnnnn. 183

R o 11T T RSP 184
11.4.1 Abstract Valuetype Pollable ..., 185
11.4.2 Abstract Valuetype DIIPollable ... 186
11.4.3 interface PollableSet ... 186

11.5 List Operationsuuueiiiiii e 187
11.5.1 Create liSt oo 188
T1.5.2 add EM ceeeee e 188
T1.5.3 1@ e —————- 189

LR TR =TT 41T o T 189
11.5.5 gL _COUNL oot 189
11.5.6 create_operation_listoooiiiiiiii 189

12 Dynamic Skeleton Interfacec.cccooeiiiiiiiii i, 191
12,1 INtrOdUCHION. ... e e eaaae 191
12.2 ServerRequestPseudo-ODbject...........ccceeiviiiiiiiiiiiiecceiie e, 192
12.2.1 ExplicitRequest State: ServerRequestPseudo-Objectccccceennnn... 192

12.3 DSI: Language Mapping........ccoceeeeeiiioiieeeeiiiee e 193
12.3.1 ServerRequest’s Handling of Operation Parametersccccc......... 193
12.3.2 Registering Dynamic Implementation Routinesccccciiinneee. 193

13 Dynamic Management of Any Valuesc.....ooeeeene. 195
G TR B Y=Y T 195
13.2 DYNANY APl ..ottt e, 196
13.2.1 Creating a DynAny Objectooommmmiiiiice e 202
13.2.2 The DynAny Interface ... 204
13.2.3 The DynFixed Interfaceccccooiiiiiiiiiiii s 208
13.2.4 The DynEnum Interface ... 208
13.2.5 The DynStruct Interfacecccciiiiiiiiie 209
13.2.6 The DynUnion Interfaceccccoiiiiiiiiiiiii e 210
13.2.7 The DynSequence Interfaceooevviiiiiiiiiiiiiiieee e 212
13.2.8 The DynArray Interface ... 213
13.2.9 The DynValueCommon Interfaceccccccoiiiiiiiiiiiiiiiiiiiee 214
13.2.10 The DynValue Interfaceooommmmiiiiiiiiieee e 215

Vi CORBA - Part 1: Interfaces, v3.4

13.2.11 The DynValueBox Interfacecccccoeeeiiiiiiiiiiiieccceeee e, 215

13.3 Usage in C++ LanQUagEecooeeeeeiiiiiiiiiiiiaie e 216
13.3.1 Dynamic Creation of CORBA::Any valuescccceeeeiieeeiieeeeeeeeeeeeen, 216
13.3.2 Dynamic Interpretation of CORBA::Any valuesccccccccvvvveieeeeennnnn. 217

14 The Interface Repositoryccoooiviiiiiiiii e, 219

141 OVEIVIEW ...ttt e e et e e e e e e e e e e e et e e eaees 219

14.2 Scope of an Interface Repositoryuvvceiiiiiiiiiiiiieee e 219

14.3 Implementation Dependencies...........cccoovivviiiiiiiiiiiiicc e 221
14.3.1 Managing Interface Repositoriesooovvviiiiiiiiiiiieeieieeeeeeeee, 221

R T 11 (o 222
14.4.1 Names and [dentifiers ... 222
14.4.2 Types and TYPECOUESoovviiiiiiieeeieeei e 223
14.4.3 Interface Repository ObJects ..., 223
14.4.4 Structure and Navigation of the Interface Repositorycccceevnnn. 224

14.5 Interface Repository Interfacescoooviviiiiiiiii 226
14.5.1 Supporting Type Definitions ... 227
14.5.2 TRODJECE ..cooeeiiieeee et e e e e e e e e e 228
14.5.3 CONtAINEAoiiiiei e e e e eeaaees 229
14.5.4 CONLAINET ...oiiiiiiie et e e e e e e e e e e e e eeeenenens 231
14.5.5 IDLTYPE woeiiieiiiiiiiiiee ettt e e e e e e e e e e e e e e e e e nnnreeeeaeeaann 236
14.5.6 REPOSIIONY ...t 236
14.5.7 MOAUIEDET ... e e e e e e eaaees 238
14.5.8 ConstantDef ... 238
14.5.9 TyYPEAEfDES ..o 239
14.5.10 SHTUCIDET ..o e e e e e e e e e eeeeeees 239
14.5.11 UNIONDET ..ot e e e e e e e e e enes 240
14.5. 12 ENUMDET ..ot a e e e 241
14.5.13 AlIASDET ..o e e e e e e aaaes 241
14.5.14 PrimitiveDefoeiiiiiii e 242
14.5.15 SHHINGDET ..o a e 242
14.5.16 WSHNGDET ..o 242
14.5.17 FIXEADES ..ot e e e e e e e e e e anes 243
14.5.18 SequencCeDef ... 243
14.5.19 ArrayDef ... 243
14.5.20 EXCEPIONDES ... 244
14.5.21 AHIDULEDET ... 245
14.5.22 EXTAribULEDES ... 245
14.5.23 OperationDeEf ..o 246
14.5.24 InterfaceDef ... 248
14.5.25 ExtInterfaceDef ... 250
14.5.26 AbstractinterfaceDef ... 251

CORBA - Part 1: Interfaces, v3.4 vii

14.5.27 ExXtADStractinterfaCceDef ... 252

14.5.28 LocallnterfaceDef ... 253
14.5.29 ExtLocallnterfaceDef ... 254
14.5.30 ValueMemberDef ... 254
14.5.31 ValUEDES ...t 255
14.5.32 EXYVAIUEDES ..o 258
14.5.33 ValuEBOXDES ... 260
14.5.34 NAtIVEDET ..ot 260

14.6 Component Interface Repository Interfaces........c..cccooovvviiiieeinnnnnn, 260
14.6.1 ComponentlR::Containerccoooiiiiiiiiiiieece e 260
14.6.2 ComponentlR::REPOSItOryoooiimiiiiiiiciiee e 262
14.6.3 ComponentIR::ProvidesDef ... 263
14.6.4 ComponentlR::USESDESoovveiiiiiiii e, 263
14.6.5 ComponentlR::EventDef ... 264
14.6.6 ComponentIR::EventPortDef ... 264
14.6.7 ComponentlR:EMItsDefeoiiiiiiiiiiie e, 265
14.6.8 ComponentIR::PublishesDefiiiiieiiiiiiiiiceeee e, 266
14.6.9 ComponentIR::ConsumesDefooiiiiiiiiiiiii e 266
14.6.10 ComponentIR::ComponentDefcccooiiiiiiiiiiiiiieeeee e, 266
14.6.11 ComponentIR::FactoryDef ..o 269
14.6.12 ComponentIR::FinderDef ... 270
14.6.13 ComponentlR::HomeDef ..o, 270

14.7 REPOSIHONYIAS ... eeeeeane 272
T4.7.1 IDL FOrmat ..o 273
14.7.2 RMI Hashed Format ... 273
14.7.3 DCE UUID FOrmatcccooiiiiiiee e 275
14.7.4 LOCAL FOrmMatcoooiiiee et 275
14.7.5 Pragma Directives for Repositoryld ... 275
14.7.6 For More Informationccooriiiiiiii e 280
14.7.7 RepositorylDs for OMG-Specified TYPescccevvvviviiiiiiiiiiiiiieeeeeeeeee, 280
14.7.8 Uniqueness Constraints on Repository IDSccoooviiiiiiiiiiicieeeee. 281

14.8 IDL for Interface RepoSItoryuuuuuiiiiiiiiiieiiieeeeei e 282
15 The Portable Object Adaptercoeeeiiiiiiiiiieennn. 301
15.1 OVEIVIEW ...ttt e e e e e e e e e e e eenaas 301
15.2 Abstract Model Descriptioncuuiiiiiiiiiiiiie e 301
15.2.1 Model COMPONENTSuuiiiiiiiiiiee ettt 301
15.2.2 Model ArchiteCtureccoooi oo 303
15.2.3 POA Creationccooooiiiiii et 304
15.2.4 Reference Creationoooiiiiiiiiiiiiieeeee s 305

viii CORBA - Part 1: Interfaces, v3.4

15.2.5 Object Activation Statesccceeeiiiiiiiiiiiic e, 306

15.2.6 Request ProCeSSINGuuuiiiiiiiiiiiiiiii e 306
15.2.7 Implicit ACHIVAtiONcooeiieieee e 307
15.2.8 MUuUlti-threadingcooiiiiiiiiii e 308
15.2.9 Dynamic Skeleton Interfacecccoooiiiiiiiiiii 309
15.2.10 Location TranSPaAr€NnCYycceeueiiiiiiieieieiaieeeeee et e e 310

15.3 INtEIACES. .. e 310
15.3.1 The Servant IDL TYPEooiiiiiiiiiiii et 311
15.3.2 POAManager INterfaceioiiiiiiiiiiiiiieeeeeeeste e 312
15.3.3 POAManagerFactory Interfaceoooooiiciieeee e, 316
15.3.4 AdapterActivator Interface ... 317
15.3.5 ServantManager Interfaceccccoooeiiiiiiiiiiiiii e 318
15.3.6 ServantActivator Interfaceccccooiiiiiiiiiiii e 319
15.3.7 ServantLocator Interfaceccccoooiiiiiiiiiiiii e 321
15.3.8 POA POIICY ODJECES .ot 323
15.3.9 POA INEIFACEuuiiiiiiiiieeeeeeeeeeee e 326
15.3.10 Current Operationsoouuiiiiiiiiiiiie e e e e e e e e eeeeeees 335

15.4 IDL for PortableServer Module..............oouuviiiiiiiieiiiieece e 336
15.5 UML Description of PortableServer............cccoooiiiiiiiiiii 342
15.6 USAQe SCENANIOScceeeeeeiieiiiieee e e e e 344
15.6.1 Getting the ROOt POA ... e 344
15.6.2 Creating @ POA ... e 345
15.6.3 Explicit Activation with POA-assigned Object Idscceeverininnnnns 345
15.6.4 Explicit Activation with User-assigned Object I1dsceevveveeeinnnnn. 346
15.6.5 Creating References before Activationccccceeeeiiiiiiiiiiiiiiiiiiiiiiines 347
15.6.6 Servant Manager Definition and Creationccccoooeeeiiiiiiiiiiiiiininnnn, 347
15.6.7 Object Activation on Demand ... 349
15.6.8 Persistent Objects with POA-assigned Idscccccviiviiiiiiiiiinnnnnnnn. 350
15.6.9 Multiple Object Ids Mapping to a Single Servantccceeevninnn. 350
15.6.10 One Servant for All ODJECESccooiiiiiiiiiiiii e 350
15.6.11 Single Servant, Many Objects and Types, Using DSIccccccceeee. 353

16 Portable Interceptors ... 357
16.1 INtrOAUCHION. ... 357
16.1.1 ODJECt Creation e 357
16.1.2 Client Sends REQUESToveiiiiiiii i 358
16.1.3 Server Receives REQUESEcoooeiiiiiiiiiiiiee e 359
16.1.4 Server Sends REPIYoueeiiiiiiii e 359
16.1.5 Client Receives RePIYuuiiiiiiiiiiiiiii e 360

16.2 General Behavior of Local Objects.........cccoovviiiiiiiiiiii 360
16.3 Interceptor Interfacecoeveeeiiiii e 360

CORBA - Part 1: Interfaces, v3.4 ix

16.4 Request INterceptorso 361

16.4.1 Design PrinCiples ... 361
16.4.2 General FIoOW RUIES ... 362
16.4.3 The Flow Stack Visual Modelcccuveiiiiiiiiiiiiiiieeeeeeeeeeee 362
16.4.4 The Request Interceptor PoOiNtscccoeiiiiiiiiiiiiii e 363
16.4.5 Client-Side INterceptorooouuiiiiiiiiiii e 363
16.4.6 Client-Side Interception POINSovviiiiiiiiiiiiiiie s 363
16.4.7 Client-Side Interception Point FIOWccccooiiiiiiiiiiiiiii e 365
16.4.8 Server-Side INterCeptoruuiiii i 368
16.4.9 Server-Side Interception POINtScoeviiiiiiiiiiiiiieie 368
16.4.10 Server-Side Interception Point FIOWcccooiviiiiiiiiiiiee e 370
16.4.11 Request INnformation ... 373
16.4.12 Requestinfo Interface ..o 373
16.4.13 ClientRequestInfo Interface ... 377
16.4.14 ServerRequestinfo Interfaceoooeeiiiiiiiiiiiiiiiiceeeeeeeee e, 380
16.4.15 ForwardRequest EXCeplioncoooiiiiiiiiiiiieie e 384
16.5 Portable Interceptor Current...........ccoooiiiiiiii e 384
16.5.1 OVEIVIEW ..ottt e e e e e et e e e e e e snnnneeeeaens 384
16.5.2 Obtaining the Portable Interceptor Current ..., 384
16.5.3 Portable Interceptor Current Interfaceccccooiiiiiiiiiiiiiiiee e, 385
16.5.4 Use of Portable Interceptor Current ..., 386
16.6 IOR INterCeptor.....ccoveiie e 390
16.6.1 OVEIVIEW ..ottt e e e e e e e e e e e e e s 390
16.6.2 An Abstract Model for Object Adapterscccoooveeeeeiiiiiiiiiiiiiicces 390
16.6.3 Object Reference Templateccceuiiiiiiiiiiiiii s 392
16.6.4 [ORInterceptor Interfaceccooooviiiiiiiiiiicee e, 394
16.6.5 IORINfO INterfacecoooiiiiiiiii e 395
16.7 Interceptor Policy ObJECtScooviiiiiiiiiii e, 398
16.7.1 ProcessingMode POIICYuiiiiiiiiiiiiiie e 398
16.8 PONICYFaCIOrY ... 399
16.8.1 PolicyFactory Interface ... 399
16.9 Registering INterceptors ... 399
16.9.1 ORBInitializer Interfaceoooviiriiii 399
16.9.2 ORBInitInfo Interfacecoooiiiiee e 400
16.9.3 register_orb_initializer Operationcccooiiiiiiiii i 404
16.9.4 Notes about Registering Interceptorsccoooovieiiiies 406
16.10 Dynamic Initial References.............cceiiiiiiiieiiiecceiee e, 407
16.10.1 register_initial_reference ... 407
16.11 Module DYNamIC..........c.uiiiiiii e 408
16.11.1 NVList PIDL Represented by ParameterList IDLcccccciiiinnnnne. 408

CORBA - Part 1: Interfaces, v3.4

16.11.2 ContextList PIDL Represented by ContextList IDLcooeee. 408

16.11.3 ExceptionList PIDL Represented by ExceptionList IDL 408
16.11.4 Context PIDL Represented by RequestContext IDLccccoeees 408
16.12 Consolidated IDL...........uuueiiiiiiieee e 408
16.12.1 DYN@MIC ...ttt e e e e e e e e e e 408
16.12.2 Portions of IOP Relevant to Portable Interceptorccoeeiiiviinnn. 409
16.12.3 Portablelnterceptor ... 410

17 CORBA MeSSagingcoevvviiiiiieeeii et 415
7.1 OVEIVIEW ..ottt e e e e e e e e e e eaa e e eeees 415
17.2 Sub clause | - IntroducCtion............coovviiiiiiiicc e 415
17.3 Messaging Quality of Service..........ooooviiiiiii e 415
17.3.1 RebIiNd SUPPOIT ... 417
17.3.2 Synchronization SCOPEeeeiiiiiiiiiiiiiiiiiee s 419
17.3.3 Request and Reply Priority ... 420
17.3.4 Request and Reply Timeoutcccoooiiiiiiiii e 420
17.3.5 ROULING .o 422
17.3.6 QUEUE OrdEIINGuvviiiiiiiiiiiiiiiiie e e e e e e e e 423

17.4 Propagation of Messaging QoS ..., 424
17. 4.1 SHUCIUIES oot e e e e e e e e e e e e eeeeeeeees 424
17.4.2 Messaging QoS Profile Component ... 424
17.4.3 Messaging QoS Service Contextcooooeiiiiiiiiiiiiieeeeee e 425

17.5 Sub clause Il - IntroducCtion..............ccouiiiiiiiiii e, 425
17.6 Running EXample ... 426
17.7 Async Operation Mappingceeeeeeiiiiiieeeieee e 427
17.7.1 Callback Model Signatures (SENdC)ooovvviiiiiiiiiiiieeeeeeeeeeeeeeeia 427
17.7.2 Polling Model Signatures (SeNdpP)coovvriiiiiiiiii e 429

17.8 Exception Delivery in the Callback Modelccccoeeiiieiiiinnnne, 431
17.8.1 Messaging::ExceptionHolder valuetypeccceeiiiiiiiiiiiiiiiies 431

17.9 Type-Specific ReplyHandler Mapping..........ccceeveeeiiiiiiiiieiceieeeee 432
17.9.1 ReplyHandler Operations for NO_EXCEPTION Replies 432
17.9.2 ReplyHandler Operations for Exceptional Repliesccccoeeiiinnnnns 433
17.9.3 EXGMPIE oot e e e e eaaaes 434
17.10 Generic Poller Valuecoooiiieiiiiieeeeeie e 434
17.10.1 operation_targetoooooeiiiiiiiiie e 435
17.10.2 0peration_NAMEcoiiiiiiiiiie e 435
17.10.3 associated_handlereiiiiii i 435
17.10.40S_from_POIIEI ..o 435

17.11 Type-Specific Poller Mapping.......ccccuuueeiieeiiiiiie e, 436

CORBA - Part 1: Interfaces, v3.4 Xi

Xii

17.11.1 Basic Type-SpecCific POlleroooveiiiiiiieiee e 436

17.11.2 Persistent Type-SpecCific POIIErvuviiiiiiiiiiiieeecee e 438
L B I B = 1 0) = 438
17.12 Example Programmer Usageccooviviiiiiiiiiii e 439
17.12.1 Example Programmer Usage (Examples Mapped to C++) 439
17.12.2 Client-Side C++ Example for the Asynchronous Method Signatures ..439
17.12.3 Client-Side C++ Example of the Callback Modelccccceeeeeeeennnnn. 441
17.12.4 Client-Side C++ Example of the Polling Modelccoovvvviiceeenennn. 448
L S TS 1= =T s T o [452
17.13 Sub clause Il - Introduction..............cccooiiiiiiiiiiiiiicc e, 453
17.14 Routing Object Referencesuceiiiiiiiiiiiiiiiiiicie e, 454
17.15 Message ROULINGcooevniiii e 455
17151 STTUCLUIES ... e e e e 457
LI R T [0] (Y = T = S 458
17.15.3 Routing ProtOCOIooueiiiiii e 460
17.16 Router Administration..............coooviiiiiiiiii e 465
17.16.1 CONSLANTS ..ooeiiiiiiiieie et 468
T17.16.2 EXCEPLIONS ..o e e e e e e et e e e e e eaaaas 468
17.16.3 VAlUBLYPES ..ottt 469
17.16.4 INTEIFACES ..ooeieiiiiiiiee e 469
17.17 CORBA Messaging IDL.......ccoo oo 470
17.17.1 Messaging ModUIE ... 470
17.17.2 MessageRouting Moduleoooomiiiiiii e 473
A.1 QoS Abstract Model Design..........oeuuueiiiiiiiiii e 478
A.2 Model COMPONENTS......ccoeiiiieie e 478
A.2.1 Component Relationshipsooooiiiiiiiiiiiiii e 479
A.2.2 Component DESINcoooiiiiiiiii e 479
A.3 AMI/TII Abstract Model Designcceiiieiiieeiiieeeecee e, 480
A.3.1 Asynchronous Method Invocation Componentsccccuvnvinneee. 480
A.3.2 Time-Independent Invocation Componentscccccoeeeeiviiiiieeeeeeennnnnn. 481
A.3.3 Component Relationshipscccccuuiiiiiiiiiiiiiiiieeeee e 481
A.3.4 Callback Model Detailed DeSIgncceeeeiiiiiiiiiiiiiiiiiiieee 484
A.3.5 Poller/PersistentRequest Detailed Designccooovviviviiiiiiiiieeeeeennn. 485
A.4 Message Routing Abstract Model Design...........ccoeiviiiiiiiiiieieneenns 486
A4l Model COMPONENEScoeiiiiiieeeieeeeeee e 487
A.4.2 Component Relationshipscoooiiiiiiiiiiiiiie e 487
A.4.3 Router Administration Designeeeiiiiiiiiiiiiiiiiii 487
B.1 Conformance ISSUEScooiiiiiiiiiiiiee e 489

CORBA - Part 1: Interfaces, v3.4

B.2 Compatibility ISSUESccooiiiiie e 489

B.2.1 Transaction SErviCecooiiiiiiiiiieieee e 489

B.2.2 Changes to Current OTS Behaviorccccooviviiiiiiiiiiies 489

B.2.3 SECUNtY SEIVICEcooiiiiiiiiei e 490

18 COMPIESSION ..oueiiiiieii e 491
(S T B CT=T o= | S 491
18.2 Compressor INterface..........ooouuiiiiiiiiic e 491
18.2.1 CompressioNEXCEPLiONuueiiiiiiiii e 492

18.2.2 COMPIESS ..euiiiiiiiee et e e e e e e e e e e e e e e eeeeeaeannn e e e e e e e eeaeaeeeeeeenenes 492

18.2.3 AECOMPIESS ..uiiiieii i e e e e e e e e e ettt e e e e e e e e aeeeeeeeeeeenes 492

18.2.4 compressor_faCtoryooooviiiiiiiiiiii e 492

18.2.5 COMPIreSSION_IEVEIcoooiiiiii e 492

18.2.6 compressed _DYLesooooiiiiiiiiiii s 492

18.2.7 uncompressed _DYLESouiiiiiiiiiiii e 493

18.2.8 COMPIreSSION_ratioooeeeiiiiiiiiiiie e 493

18.3 CompressorFactory Interface...........oooooiiiiiii 493
18.3.1 COMPIESSOr I ..oieiiiiiiiieeie e e e e e e e e aaees 493

18.3.2 gl _COMPIESSOr ... e e e e e e e e e e eeeeeeees 493

18.4 CompressionManager Interface.............cooooviiiiiiiicii e, 493
18.4.1 register factory ... 494

18.4.2 unregister_factory ... 494

18.4.3 get_faCtOry ..o 494

18.4.4 gl _COMPIESSOL ..ot e e e e e e e e e e e e eeeeeeees 494

18.4.5 get_facCtoriesuuiiiiiiiiiiii 494

18.5 Consolidated IDL..........oouuuiiiieie e 494
Annex A: IDL Tags and Exceptionscccceeveviieeennnnne. 497
AT OVEIVIEW ...ttt e et e e e e e et e e e e e e et e e e e eeannns 497
A.2 Profile ID Tags ...ccooeeiiieie e 497
A3 SErVICE ID TaAQgS ..eeeeeiiiunniieie ettt 498
F N @7 g gl oTol aT=T o | o 1D I =T 1 499
A5 POlICY TYPE TAGS oeeeiviiiiiiie ettt 500
A.B6 EXCEPLioON COUES......ooviiii e 504
A7 Identity TOKENS......oooiieiie e 510

CORBA - Part 1: Interfaces, v3.4 Xiii

Xiv CORBA - Part 1: Interfaces, v3.4

Preface

About the Object Management Group

OMG

Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer industry
standards consortium that produces and maintains computer industry specifications for interoperable, portable and
reusable enterprise applications in distributed, heterogeneous environments. Membership includes Information
Technology vendors, end users, government agencies and academia.

OMG member companies write, adopt, and maintain its specifications following a mature, open process. OMG's
specifications implement the Model Driven Architecture® (MDA®), maximizing ROI through a full-lifecycle approach to
enterprise integration that covers multiple operating systems, programming languages, middleware and networking
infrastructures, and software development environments. OMG's specifications include: UML® (Unified Modeling
Language™); CORBA® (Common Object Request Broker Architecture); CWM™ (Common Warehouse Metamodel);
and industry-specific standards for dozens of vertical markets.

More information on the OMG is available at Attp./ www.omg.org/.

OMG Specifications

As noted, OMG specifications address middleware, modeling and vertical domain frameworks. All OMG Specifications
are available from this URL:

http.//www.omg.org/spec

Specifications are organized by the following categories:
Business Modeling Specifications

Middleware Specifications
e CORBAI/IIOP
. Data Distribution Services
. Specialized CORBA

IDL/Language Mapping Specifications

Modeling and Metadata Specifications
. UML, MOF, CWM, XMI
. UML Profile

Modernization Specifications

CORBA - Part 1: Interfaces, v3.4 XV

Platform Independent Model (PIM), Platform Specific Model (PSM), Interface Specifications
. CORBAServices
. CORBAFacilities

OMG Domain Specifications
CORBA Embedded Intelligence Specifications

CORBA Security Specifications

All of OMG’s formal specifications may be downloaded without charge from our website. (Products implementing OMG
specifications are available from individual suppliers.) Copies of specifications, available in PostScript and PDF format,
may be obtained from the Specifications Catalog cited above or by contacting the Object Management Group, Inc. at:

OMG Headquarters
109 Highland Avenue
Needham, MA 02494
USA

Tel: +1-781-444-0404
Fax: +1-781-444-0320

Email: pubs@omg.org

Certain OMG specifications are also available as ISO standards. Please consult kttp.//www.iso.org

Typographical Conventions

The type styles shown below are used in this document to distinguish programming statements from ordinary English.
However, these conventions are not used in tables or section headings where no distinction is necessary.

Times/Times New Roman - 10 pt.: Standard body text
Helvetical/Arial - 10 pt. Bold: OMG Interface Definition Language (OMG IDL) and syntax elements.
Courier/New - 10 pt. Bold: Programming language elements.

Helvetica/Arial - 10 pt: Exceptions

Note — Terms that appear in italics are defined in the glossary. Italic text also represents the name of a document, specification,
or other publication.

Issues

The reader is encouraged to report any technical or editing issues/problems with this specification to Attp./www.omg.org/
report_issue.htm.

XVi CORBA - Part 1: Interfaces, v3.4

1 Scope

1.1 Overview

This document specifies the CORBA Object Model and uses concepts from that model to define the operation of the
Object Request Broker (ORB). The ORB is the basic mechanism by which objects transparently make requests to - and
receive responses from - each other on the same machine or across a network. A client need not be aware of the
mechanisms used to communicate with or activate an object, how the object is implemented, or where the object is
located.

2 Conformance and Compliance

2.1 Overview

The minimum required for a CORBA-compliant system is adherence to the specifications in this standard and one
mapping. Each additional language mapping is a separate, optional compliance point. Optional means users aren’t
required to implement these points if they are unnecessary at their site, but if implemented, they must adhere to the
CORBA specifications to be called CORBA-compliant. For instance, if a vendor supports C++, their ORB must comply
with the OMG IDL to C++ binding specified in the C++ Language Mapping Specification.

The CORBA Language Mappings have been separated from this standard and each language mapping is its own separate
OMG specification. Please refer to http://www.omg.org/spec/ for these specifications.

3 References

3.1 Normative References

The following referenced documents are indispensable for the application of this document. For dated references, only the
edition cited applies. For undated references, the latest edition of the referenced document (including any amendments)
applies.

« ITU-T Recommendation X.902 (1995) | ISO/IEC 10746-2:1996, Information Technology - Open Distributed
Processing - Reference Model: Foundations

« ITU-T Recommendation X.903 (1995) | ISO/IEC 10746-3:1996, Information Technology - Open Distributed
Processing - Reference Model: Architecture

« ITU-T Recommendation X.920 (1997) | ISO/IEC 14750:1997, Information Technology - Open Distributed Processing
- Interface Definition Language

« ISO/IEC 14882:2003, Information Technology - Programming languages - C++
« ISO/IEC 9899:1999, Information Technology - Programming languages - C

CORBA - Part 1: Interfaces, v3.4 1

4.1

[OMA] Object Management Group, “Object Management Architecture Guide, revision 3.0” , available from http://
www.omg.org/oma/

[RFC2119] IETF RFC 2119, “Key words for use in RFCs to Indicate Requirement Levels”, S. Bradner, March 1997.
Available from http://ietf.org/rfc/rfc2119

[IDL4] Object Management Group, “Interface Definition Language”, Version 4.2 formal/2018-01-05 http://
www.omg.org/spec/IDL/4.2

Additional Information

Outline of Contents

Part 1 of this International Standard consists of the following:

1.

10.

I1.

4.2

The syntax and semantics of the OMG interface definition language (OMG IDL), which is used to describe the
interfaces that client objects call and object implementations provide. Throughout this specification the abbreviation
IDL is used, for brevity, as shorthand for OMG IDL.

The interface to the ORB functions that do not depend on object adapters: these operations are the same for all ORBs
and object implementations.

The semantics of passing an object by value.

An IDL abstract interface, which provides the capability to defer the determination of whether an object is passed by
reference or by value until runtime.

The Dynamic Invocation Interface (DII), the client's side of the interface that allows dynamic creation and invocation
of request to objects.

The Dynamic Skeleton Interface (DSI), the server’s-side interface that can deliver requests from an ORB to an object
implementation that does not have compile-time knowledge of the type of the object it is implementing.

The interface for the Dynamic Any type that allows statically-typed programming languages such as C and Java to
create or receive values of type Any without compile-time knowledge that the typer contained in the Any.

The Interface Repository that manages and provides access to a collection of object definitions.

The Portable Object Adapter that defines a group of IDL interfaces that an implementation uses to access ORB
functions.

ORB operations that allow services such as security to be inserted in the invocation path.

Messaging which covers: Quality of Service, Asynchronous Method Invocations (to include Time-Independent or
“Persistent” Requests), and the specification of interoperable Routing interfaces to support the transport of requests
asynchronously from the handling of their replies.

Keywords for Requirement Statements

The keywords “must,” “must not,” “shall,” “shall not,” “should,” “should not,” and “may” in this specification are to be
interpreted as described in [RFC 2119].

CORBA - Part 1: Interfaces, v3.4

ISO/IEC 19500-1:2008(E)

© ISO/IEC 2008 - All rights reserved 3

ISO/IEC 19500-1:2008(E)

4 © ISO/IEC 2008 - All rights reserved

5 The Object Model

5.1 Overview

This clause describes the concrete object model that underlies the CORBA architecture. The model is derived from the
abstract Core Object Model defined by the Object Management Group in the Object Management Architecture Guide.

The object model provides an organized presentation of object concepts and terminology. It defines a partial model for
computation that embodies the key characteristics of objects as realized by the submitted technologies. The OMG object
model is abstract in that it is not directly realized by any particular technology. The model described here is a concrete
object model. A concrete object model may differ from the abstract object model in several ways:

« It may elaborate the abstract object model by making it more specific, for example, by defining the form of request
parameters or the language used to specify types.

« It may populate the model by introducing specific instances of entities defined by the model, for example, specific
objects, specific operations, or specific types.

« It may restrict the model by eliminating entities or placing additional restrictions on their use.

An object system is a collection of objects that isolates the requestors of services (clients) from the providers of services
by a well-defined encapsulating interface. In particular, clients are isolated from the implementations of services as data
representations and executable code.

The object model first describes concepts that are meaningful to clients, including such concepts as object creation and
identity, requests and operations, types and signatures. It then describes concepts related to object implementations,
including such concepts as methods, execution engines, and activation.

The object model is most specific and prescriptive in defining concepts meaningful to clients. The discussion of object
implementation is more suggestive, with the intent of allowing maximal freedom for different object technologies to
provide different ways of implementing objects.

There are some other characteristics of object systems that are outside the scope of the object model. Some of these
concepts are aspects of application architecture, some are associated with specific domains to which object technology is
applied. Such concepts are more properly dealt with in an architectural reference model. Examples of excluded concepts
are compound objects, links, copying of objects, change management, and transactions. Also outside the scope of the
object model are the details of control structure: the object model does not say whether clients and/or servers are single-
threaded or multi-threaded, and does not specify how event loops are programmed nor how threads are created, destroyed,
or synchronized.

This object model is an example of a classical object model, where a client sends a message to an object. Conceptually,

the object interprets the message to decide what service to perform. In the classical model, a message identifies an object
and zero or more actual parameters. As in most classical object models, a distinguished first parameter is required, which
identifies the operation to be performed; the interpretation of the message by the object involves selecting a method based
on the specified operation. Operationally, of course, method selection could be performed either by the object or the ORB.

5.2 Object Semantics

An object system provides services to clients. A client of a service is any entity capable of requesting the service. This
sub clause defines the concepts associated with object semantics, that is, the concepts relevant to clients.

CORBA - Part 1: Interfaces, v3.4 3

5.2.1 Objects

An object system includes entities known as objects. An object is an identifiable, encapsulated entity that provides one or
more services that can be requested by a client.

5.2.2 Requests

Clients request services by issuing requests.

The term request is broadly used to refer to the entire sequence of causally related events that transpires between a client
initiating it and the last event causally associated with that initiation. For example:

« the client receives the final response associated with that request from the server,
« the server carries out the associated operation in case of a oneway request, or

« the sequence of events associated with the request terminates in a failure of some sort. The initiation of a Request is an
event.

The information associated with a request consists of an operation, a target object, zero or more (actual) parameters, and
an optional request context.

A request form is a description or pattern that can be evaluated or performed multiple times to cause the issuing of
requests. As described in the IDL Syntax and Semantics clause, request forms are defined by particular language
bindings. An alternative request form consists of calls to the dynamic invocation interface to create an invocation
structure, add arguments to the invocation structure, and to issue the invocation (refer to the Dynamic Invocation Interface
clause for descriptions of these request forms).

A value is anything that may be a legitimate (actual) parameter in a request. More particularly, a value is an instance of
an IDL data type. There are non-object values, as well as values that reference objects.

An object reference is a value that reliably denotes a particular object. Specifically, an object reference will identify the
same object each time the reference is used in a request (subject to certain pragmatic limits of space and time). An object
may be denoted by multiple, distinct object references.

A request may have parameters that are used to pass data to the target object; it may also have a request context that
provides additional information about the request. A request context is a mapping from strings to strings.

A request causes a service to be performed on behalf of the client. One possible outcome of performing a service is
returning to the client the results, if any, defined for the request.

If an abnormal condition occurs during the performance of a request, an exception is returned. The exception may carry
additional return parameters particular to that exception.

The request parameters are identified by position. A parameter may be an input parameter, an output parameter, or an
input-output parameter. A request may also return a single return result value, as well as the results stored into the output
and input-output parameters.

The following semantics hold for all requests:
+ Any aliasing of parameter values is neither guaranteed removed nor guaranteed to be preserved.

+ The order in which aliased output parameters are written is not guaranteed.

4 CORBA - Part 1: Interfaces, v3.4

« The return result and the values stored into the output and input-output parameters are undefined if an exception is
returned.

For descriptions of the values and exceptions that are permitted, see Types on page 5 and Exceptions on page 8.

5.2.3 Object Creation and Destruction

Objects can be created and destroyed. From a client’s point of view, there is no special mechanism for creating or
destroying an object. Objects are created and destroyed as an outcome of issuing requests. The outcome of object creation
is revealed to the client in the form of an object reference that denotes the new object.

5.2.4 Types

A type is an identifiable entity with an associated predicate (a single-argument mathematical function with a boolean
result) defined over entities. An entity satisfies a type if the predicate is true for that entity. An entity that satisfies a type
is called a member of the type.

Types are used in signatures to restrict a possible parameter or to characterize a possible result.
The extension of a type is the set of entities that satisfy the type at any particular time.

An object type is a type whose members are object references. In other words, an object type is satisfied only by object
references.

Constraints on the data types in this model are shown in this sub clause.

5.2.4.1 Basic types
« 16-bit, 32-bit, and 64-bit signed and unsigned 2’s complement integers.

« Single-precision (32-bit), double-precision (64-bit), and double-extended (a mantissa of at least 64 bits, a sign bit and
an exponent of at least 15 bits) IEEE floating point numbers.

« Fixed-point decimal numbers of up to 31 significant digits.

« Characters, as defined in ISO Latin-1 (8859.1) and other single- or multi-byte character sets.

« A boolean type taking the values TRUE and FALSE.

« An 8-bit opaque detectable, guaranteed to not undergo any conversion during transfer between systems.
« Enumerated types consisting of ordered sequences of identifiers.

+ A string type, which consists of a variable-length array of characters; the length of the string is a non-negative integer,
and is available at run-time. The length may have a maximum bound defined.

« A wide character string type, which consists of a variable-length array of (fixed width) wide characters; the length of
the wide string is a non-negative integer, and is available at run-time. The length may have a maximum bound defined.

« A container type “any,” which can represent any possible basic or constructed type.
« Wide characters that may represent characters from any wide character set.

« Wide character strings, which consist of a length, available at runtime, and a variable-length array of (fixed width)
wide characters.

CORBA - Part 1: Interfaces, v3.4 5

5.2.4.2 Constructed types

« A record type (called struct), which consists of an ordered set of (name,value) pairs.

+ A discriminated union type, which consists of a discriminator (whose exact value is always available) followed by an
instance of a type appropriate to the discriminator value.

« A sequence type, which consists of a variable-length array of a single type; the length of the sequence is available at
run-time.

« An array type, which consists of a fixed-shape multidimensional array of a single type.
+ An interface type, which specifies the set of operations that an instance of that type must support.
« A value type, which specifies state as well as a set of operations that an instance of that type must support.

Entities in a request are restricted to values that satisfy these type constraints. The legal entities are shown in Figure 5.1.
No particular representation for entities is defined.

Short
Object Reference Long
LonglLong
UShort
Ulong
UlongLong
—— Abstract Interface Float
Double
LongDouble
Fixed

Char
Wchar
String
Wstring
Boolean
Octet
Enum

Any

— Value Type

Entity Basic Value

Struct
Sequence
Union
Array

Constructed Value

Figure 5.1 - Legal Values
5.2.5 Interfaces

An interface is a description of a set of possible operations that a client may request of an object, through that interface.
It provides a syntactic description of how a service provided by an object supporting this interface, is accessed via this set
of operations. An object satisfies an interface if it provides its service through the operations of the interface according to
the specification of the operations (see Operations on page 7).

The interface type for a given interface is an object type, such that an object reference will satisfy the type, if and only if
the referent object also satisfies the interface.

Interfaces are specified in IDL. Interface inheritance provides the composition mechanism for permitting an object to
support multiple interfaces. The principal interface is simply the most-specific interface that the object supports, and
consists of all operations in the transitive closure of the interface inheritance graph.

6 CORBA - Part 1: Interfaces, v3.4

Interfaces satisfy the Liskov substitution principle. If interface A is derived from interface B, then a reference to an object
that supports interface A can be used where the formal type of a parameter is declared to be B.

5.2.6 Value Types

A value type is an entity, which shares many of the characteristics of interfaces and structs. It is a description of both a set
of operations that a client may request and of state that is accessible to a client. Instances of a value type are always local
concrete implementations in some programming language.

A value type, in addition to the operations and state defined for itself, may also inherit from other value types, and
through multiple inheritance support other interfaces.

Value types are specified in IDL.

An abstract value type describes a value type that is a “pure” bundle of operations with no state.
5.2.7 Abstract Interfaces

An abstract interface is an entity, which may at runtime represent either a regular interface (see Interfaces on page 6) or
a value type (see Value Types on page 7). Like an abstract value type, it is a pure bundle of operations with no state.
Unlike an abstract value type, it does not imply pass-by-value semantics, and unlike a regular interface type, it does not
imply pass-by-reference semantics. Instead, the entity’s runtime type determines which of these semantics are used.

5.2.8 Operations

An operation is an identifiable entity that denotes the indivisible primitive of service provision that can be requested. The
act of requesting an operation is referred to as invoking the operation. An operation is identified by an operation
identifier.

An operation has a signature that describes the legitimate values of request parameters and returned results. In particular,
a signature consists of:

« A specification of the parameters required in requests for that operation.

« A specification of the result of the operation.

« An identification of the user exceptions that may be raised by an invocation of the operation.

« A specification of additional contextual information that may affect the invocation.

« An indication of the execution semantics the client should expect from an invocation of the operation.

Operations are (potentially) generic, meaning that a single operation can be uniformly invoked on objects with different
implementations, possibly resulting in observably different behavior. Genericity is achieved in this model via interface
inheritance in IDL and the total decoupling of implementation from interface specification.

The general form for an operation signature is:

[oneway] <op_type_spec> <identifier> (param1, ..., paramL)
[raises(excepti,...,exceptN)] [context(name1, ..., nameM)]

where:

CORBA - Part 1: Interfaces, v3.4 7

« The optional oneway keyword indicates that best-effort semantics are expected of requests for this operation; the
default semantics are exactly-once if the operation successfully returns results or at-most-once if an exception is
returned.

« The <op_type_spec> is the type of the return result.
+ The <identifier> provides a name for the operation in the interface.

« The operation parameters needed for the operation; they are flagged with the modifiers in, out, or inout to indicate
the direction in which the information flows (with respect to the object performing the request).

 The optional raises expression indicates which user-defined exceptions can be signaled to terminate an invocation of
this operation; if such an expression is not provided, no user-defined exceptions will be signaled.

+ The optional context expression indicates which request context information will be available to the object
implementation; no other contextual information is required to be transported with the request.

Parameters

A parameter is characterized by its mode and its type. The mode indicates whether the value should be passed from client
to server (in), from server to client (out), or both (inout). The parameter’s type constrains the possible value, which may
be passed in the directions dictated by the mode.

Return Result

The return result is a distinguished out parameter.

Exceptions

An exception is an indication that an operation request was not performed successfully. An exception may be
accompanied by additional, exception-specific information.

The additional, exception-specific information is a specialized form of record. As a record, it may consist of any of the
types described in Types on page 5.

All signatures implicitly include the system exceptions; the standard system exceptions are described in System
Exceptions on page 146.

Contexts

A request context provides additional, operation-specific information that may affect the performance of a request.

Execution Semantics
Two styles of execution semantics are defined by the object model:

« At-most-once: if an operation request returns successfully, it was performed exactly once; if it returns an exception
indication, it was performed at-most-once.

« Best-effort: a best-effort operation is a request-only operation (i.e., it cannot return any results and the requester never
synchronizes with the completion, if any, of the request).

The execution semantics to be expected is associated with an operation. This prevents a client and object implementation
from assuming different execution semantics.

Note that a client is able to invoke an at-most-once operation in a synchronous or deferred-synchronous manner.

CORBA - Part 1: Interfaces, v3.4

< ©

5.2.9 Attributes

An interface may have attributes. An attribute is logically equivalent to declaring a pair of accessor functions: one to
retrieve the value of the attribute and one to set the value of the attribute.

An attribute may be read-only, in which case only the retrieval accessor function is defined.

5.3 Object Implementation

This sub clause defines the concepts associated with object implementation (i.e., the concepts relevant to realizing the
behavior of objects in a computational system).

The implementation of an object system carries out the computational activities needed to effect the behavior of requested
services. These activities may include computing the results of the request and updating the system state. In the process,
additional requests may be issued.

The implementation model consists of two parts: the execution model and the construction model. The execution model
describes how services are performed. The construction model describes how services are defined.

5.3.1 The Execution Model: Performing Services

A requested service is performed in a computational system by executing code that operates upon some data. The data
represents a component of the state of the computational system. The code performs the requested service, which may
change the state of the system.

Code that is executed to perform a service is called a method. A method is an immutable description of a computation that
can be interpreted by an execution engine. A method has an immutable attribute called a method format that defines the
set of execution engines that can interpret the method. An execution engine is an abstract machine (not a program) that
can interpret methods of certain formats, causing the described computations to be performed. An execution engine
defines a dynamic context for the execution of a method. The execution of a method is called a method activation.

When a client issues a request, a method of the target object is called. The input parameters passed by the requestor are
passed to the method and the output and input-output parameters and return result value (or exception and its parameters)
are passed back to the requestor.

Performing a requested service causes a method to execute that may operate upon an object’s persistent state. If the
persistent form of the method or state is not accessible to the execution engine, it may be necessary to first copy the
method or state into an execution context. This process is called activation; the reverse process is called deactivation.

5.3.2 The Construction Model

A computational object system must provide mechanisms for realizing behavior of requests. These mechanisms include
definitions of object state, definitions of methods, and definitions of how the object infrastructure is to select the methods
to execute and to select the relevant portions of object state to be made accessible to the methods. Mechanisms must also
be provided to describe the concrete actions associated with object creation, such as association of the new object with
appropriate methods.

CORBA - Part 1: Interfaces, v3.4 9

An object implementation—or implementation, for short—is a definition that provides the information needed to create an
object and to allow the object to participate in providing an appropriate set of services. An implementation typically

includes, among other things, definitions of the methods that operate upon the state of an object. It also typically includes
information about the intended types of the object.

10

CORBA - Part 1: Interfaces, v3.4
10

6 CORBA Overview

6.1 General

The Common Object Request Broker Architecture (CORBA) is structured to allow integration of a wide variety of object
systems. The motivation for some of the features may not be apparent at first, but as we discuss the range of
implementations, policies, optimizations, and usages we expect to encompass, the value of the flexibility becomes clearer.

6.2 Structure of an Object Request Broker

Figure 6.1 shows a request being sent by a client to an object implementation. The Client is the entity that wishes to
perform an operation on the object and the Object Implementation is the code and data that actually implements the
object.

Client) CObject Implementation

ORB

Figure 6.1 - A Request Being Sent Through the Object Request Broker

The ORB is responsible for all of the mechanisms required to find the object implementation for the request, to prepare
the object implementation to receive the request, and to communicate the data making up the request. The interface the

client sees is completely independent of where the object is located, what programming language it is implemented in, or
any other aspect that is not reflected in the object’s interface.

Figure 6.2 shows the structure of an individual Object Request Broker (ORB). The interfaces to the ORB are shown by
striped boxes, and the arrows indicate whether the ORB is called or performs an up-call across the interface.

CORBA - Part 1: Interfaces, v3.3 11

Client Object Implementation
Dynamic IDL ORB Static IDL| | Dynamic
Invocatio Stubs Interface Skeleton | | Skeleton

ORB Core

I |nterface identical for all ORB implementations
I There may be multiple object adapters
I There are stubs and a skeleton for each object type * Normal call interface
[1 ORB-dependent interface

f Up-call interface

Figure 6.2 - The Structure of Object Request Interfaces

To make a request, the Client can use the Dynamic Invocation interface (the same interface independent of the target
object’s interface) or an IDL stub (the specific stub depending on the interface of the target object). The Client can also
directly interact with the ORB for some functions.

The Object Implementation receives a request as an up-call either through the IDL generated skeleton or through a
dynamic skeleton. The Object Implementation may call the Object Adapter and the ORB while processing a request or at
other times.

Definitions of the interfaces to objects can be defined in two ways. 1) Interfaces can be defined statically in an interface
definition language, called the OMG Interface Definition Language (IDL). This language defines the types of objects
according to the operations that may be performed on them and the parameters to those operations. 2) Alternatively, or in
addition, interfaces can be added to an Interface Repository service. This service represents the components of an
interface as objects, permitting run-time access to these components. In any ORB implementation, the Interface Definition
Language (which may be extended beyond its definition in this document) and the Interface Repository have equivalent
expressive power.

The client performs a request by having access to an Object Reference for an object and knowing the type of the object
and the desired operation to be performed. The client initiates the request by calling stub routines that are specific to the
object or by constructing the request dynamically (see Figure 6.3).

12 CORBA - Part 1: Interfaces, v3.4

Client

I nterface identical for all ORB implementations

I There are stubs and a skeleton for each object type
[] ORB-dependent interface

Figure 6.3 - A Client Using the Stub or Dynamic Invocation Interface

The dynamic and stub interface for invoking a request satisfy the same request semantics, and the receiver of the message
cannot tell how the request was invoked.

The ORB locates the appropriate implementation code, transmits parameters, and transfers control to the Object
Implementation through an IDL skeleton or a dynamic skeleton (see Figure 6.4). Skeletons are specific to the interface
and the object adapter. In performing the request, the object implementation may obtain some services from the ORB
through the Object Adapter. When the request is complete, control and output values are returned to the client.

CORBA - Part 1: Interfaces, v3.3 13

Object Implementation

ORB Static IDL
Interface Skeleton

Object
Adapter

Dynamic
Skeleto

ORB Core

I Interface identical for all ORB implementations f Up-call interface
I There may be multiple object adapters

I There are stubs and a skeleton for each object type ‘ Normal call interface
[1 ORB-dependent interface

Figure 6.4 - An Object Implementation Receiving a Request

The Object Implementation may choose which Object Adapter to use. This decision is based on what kind of services the
Object Implementation requires.

Figure 6.5 shows how interface and implementation information is made available to clients and object implementations.
The interface is defined in IDL and/or in the Interface Repository; the definition is used to generate the client Stubs and
the object implementation Skeletons.

14 CORBA - Part 1: Interfaces, v3.4

I_DI___ Implementation
Definitions Installation

Implementation
R it
Interface Stubs Skeletons ePOSI.ory
Repository — .
Client Object Implementation

Figure 6.5 - Interface and Implementation Repositories

The object implementation information is provided at installation time and is stored in the Implementation Repository for
use during request delivery.

6.2.1 Object Request Broker

In the architecture, the ORB is not required to be implemented as a single component, but rather it is defined by its
interfaces. Any ORB implementation that provides the appropriate interface is acceptable. The interface is organized into
three categories:

1. Operations that are the same for all ORB implementations.
2. Operations that are specific to particular types of objects.
3. Operations that are specific to particular styles of object implementations.

Different ORBs may make quite different implementation choices, and, together with the IDL compilers, repositories, and
various Object Adapters, provide a set of services to clients and implementations of objects that have different properties
and qualities.

There may be multiple ORB implementations (also described as multiple ORBs), which have different representations for
object references and different means of performing invocations. It may be possible for a client to simultancously have
access to two object references managed by different ORB implementations. When two ORBs are intended to work
together, those ORBs must be able to distinguish their object references. It is not the responsibility of the client to do so.

CORBA - Part 1: Interfaces, v3.3 15

The ORB Core is that part of the ORB that provides the basic representation of objects and communication of requests.
CORBA is designed to support different object mechanisms, and it does so by structuring the ORB with components
above the ORB Core, which provide interfaces that can mask the differences between ORB Cores.

6.2.2 Clients

A client of an object has access to an object reference for the object, and invokes operations on the object. A client knows
only the logical structure of the object according to its interface and experiences the behavior of the object through
invocations. Although we will generally consider a client to be a program or process initiating requests on an object, it is
important to recognize that something is a client relative to a particular object. For example, the implementation of one
object may be a client of other objects.

Clients generally see objects and ORB interfaces through the perspective of a language mapping, bringing the ORB right
up to the programmer’s level. Clients are maximally portable and should be able to work without source changes on any
ORB that supports the desired language mapping with any object instance that implements the desired interface. Clients
have no knowledge of the implementation of the object, which object adapter is used by the implementation, or which
ORB is used to access it.

6.2.3 Object Implementations

An object implementation provides the semantics of the object, usually by defining data for the object instance and code
for the object’s methods. Often the implementation will use other objects or additional software to implement the
behavior of the object. In some cases, the primary function of the object is to have side-effects on other things that are not
objects.

A variety of object implementations can be supported, including separate servers, libraries, a program per method, an
encapsulated application, an object-oriented database, etc. Through the use of additional object adapters, it is possible to
support virtually any style of object implementation.

Generally, object implementations do not depend on the ORB or how the client invokes the object. Object
implementations may select interfaces to ORB-dependent services by the choice of Object Adapter.

6.2.4 Object References

An Object Reference is the information needed to specify an object within an ORB. Both clients and object
implementations have an opaque notion of object references according to the language mapping, and thus are insulated
from the actual representation of them. Two ORB implementations may differ in their choice of Object Reference
representations.

The representation of an object reference handed to a client is only valid for the lifetime of that client.

All ORBs must provide the same language mapping to an object reference (usually referred to as an Object) for a
particular programming language. This permits a program written in a particular language to access object references
independent of the particular ORB. The language mapping may also provide additional ways to access object references
in a typed way for the convenience of the programmer.

There is a distinguished object reference, guaranteed to be different from all object references, that denotes no object.

16 CORBA - Part 1: Interfaces, v3.4

6.2.5 OMG Interface Definition Language

The OMG Interface Definition Language (IDL) defines the types of objects by specifying their interfaces. An interface
consists of a set of named operations and the parameters to those operations. Note that although IDL provides the
conceptual framework for describing the objects manipulated by the ORB, it is not necessary for there to be IDL source
code available for the ORB to work. As long as the equivalent information is available in the form of stub routines or a
run-time interface repository, a particular ORB may be able to function correctly.

IDL is the means by which a particular object implementation tells its potential clients what operations are available and
how they should be invoked. From the IDL definitions, it is possible to map CORBA objects into particular programming
languages or object systems.

6.2.6 Mapping of IDL to Programming Languages

Different object-oriented or non-object-oriented programming languages may prefer to access CORBA objects in different
ways. For object-oriented languages, it may be desirable to see CORBA objects as programming language objects. Even
for non-object-oriented languages, it is a good idea to hide the exact ORB representation of the object reference, method
names, etc. A particular mapping of IDL to a programming language should be the same for all ORB implementations.
Language mapping includes definition of the language-specific data types and procedure interfaces to access objects
through the ORB. It includes the structure of the client stub interface (not required for object-oriented languages), the
dynamic invocation interface, the implementation skeleton, the object adapters, and the direct ORB interface.

A language mapping also defines the interaction between object invocations and the threads of control in the client or
implementation. The most common mappings provide synchronous calls, in that the routine returns when the object
operation completes. Additional mappings may be provided to allow a call to be initiated and control returned to the
program. In such cases, additional language-specific routines must be provided to synchronize the program’s threads of
control with the object invocation.

6.2.7 Client Stubs

Generally, the client stubs will present access to the IDL-defined operations on an object in a way that is easy for
programmers to predict once they are familiar with IDL and the language mapping for the particular programming
language. The stubs make calls on the rest of the ORB using interfaces that are private to, and presumably optimized for,
the particular ORB Core. If more than one ORB is available, there may be different stubs corresponding to the different
ORBs. In this case, it is necessary for the ORB and language mapping to cooperate to associate the correct stubs with the
particular object reference.

6.2.8 Dynamic Invocation Interface

An interface is also available that allows the dynamic construction of object invocations, that is, rather than calling a stub
routine that is specific to a particular operation on a particular object, a client may specify the object to be invoked, the
operation to be performed, and the set of parameters for the operation through a call or sequence of calls. The client code
must supply information about the operation to be performed and the types of the parameters being passed (perhaps
obtaining it from an Interface Repository or other run-time source). The nature of the dynamic invocation interface may
vary substantially from one programming language mapping to another.

CORBA - Part 1: Interfaces, v3.3 17

6.2.9 Implementation Skeleton

For a particular language mapping, and possibly depending on the object adapter, there will be an interface to the methods
that implement each type of object. The interface will generally be an up-call interface, in that the object implementation
writes routines that conform to the interface and the ORB calls them through the skeleton.

The existence of a skeleton does not imply the existence of a corresponding client stub (clients can also make requests via
the dynamic invocation interface).

It is possible to write an object adapter that does not use skeletons to invoke implementation methods. For example, it
may be possible to create implementations dynamically for languages such as Smalltalk.

6.2.10 Dynamic Skeleton Interface

An interface is available, which allows dynamic handling of object invocations. That is, rather than being accessed
through a skeleton that is specific to a particular operation, an object’s implementation is reached through an interface that
provides access to the operation name and parameters in a manner analogous to the client side’s Dynamic Invocation
Interface. Purely static knowledge of those parameters may be used, or dynamic knowledge (perhaps determined through
an Interface Repository) may also be used, to determine the parameters.

The implementation code must provide descriptions of all the operation parameters to the ORB, and the ORB provides the
values of any input parameters for use in performing the operation. The implementation code provides the values of any
output parameters, or an exception, to the ORB after performing the operation. The nature of the dynamic skeleton
interface may vary substantially from one programming language mapping or object adapter to another, but will typically
be an up-call interface.

Dynamic skeletons may be invoked both through client stubs and through the dynamic invocation interface; either style of
client request construction interface provides identical results.

6.2.11 Object Adapters

An object adapter is the primary way that an object implementation accesses services provided by the ORB. There are
expected to be a few object adapters that will be widely available, with interfaces that are appropriate for specific kinds
of objects. Services provided by the ORB through an Object Adapter often include: generation and interpretation of object
references, method invocation, security of interactions, object and implementation activation and deactivation, mapping
object references to implementations, and registration of implementations.

The wide range of object granularities, lifetimes, policies, implementation styles, and other properties make it difficult for
the ORB Core to provide a single interface that is convenient and efficient for all objects. Thus, through Object Adapters,
it is possible for the ORB to target particular groups of object implementations that have similar requirements with
interfaces tailored to them.

6.2.12 ORB Interface

The ORB Interface is the interface that goes directly to the ORB, which is the same for all ORBs and does not depend on
the object’s interface or object adapter. Because most of the functionality of the ORB is provided through the object
adapter, stubs, skeleton, or dynamic invocation, there are only a few operations that are common across all objects. These
operations are useful to both clients and implementations of objects.

18 CORBA - Part 1: Interfaces, v3.4

6.2.13 Interface Repository

The Interface Repository is a service that provides persistent objects that represent the IDL information in a form
available at run-time. The Interface Repository information may be used by the ORB to perform requests. Moreover,
using the information in the Interface Repository, it is possible for a program to encounter an object whose interface was
not known when the program was compiled, yet, be able to determine what operations are valid on the object and make
an invocation on it.

In addition to its role in the functioning of the ORB, the Interface Repository is a common place to store additional
information associated with interfaces to ORB objects. For example, debugging information, libraries of stubs or
skeletons, routines that can format or browse particular kinds of objects might be associated with the Interface Repository.

6.2.14 Implementation Repository

The Implementation Repository contains information that allows the ORB to locate and activate implementations of
objects. Although most of the information in the Implementation Repository is specific to an ORB or operating
environment, the Implementation Repository is the conventional place for recording such information. Ordinarily,
installation of implementations and control of policies related to the activation and execution of object implementations is
done through operations on the Implementation Repository.

In addition to its role in the functioning of the ORB, the Implementation Repository is a common place to store additional
information associated with implementations of ORB objects. For example, debugging information, administrative
control, resource allocation, security, etc., might be associated with the Implementation Repository.

6.3 Example ORBs

There are a wide variety of ORB implementations possible within the Common ORB Architecture. This sub clause will
illustrate some of the different options. Note that a particular ORB might support multiple options and protocols for
communication.

6.3.1 Client- and Implementation-resident ORB

If there is a suitable communication mechanism present, an ORB can be implemented in routines resident in the clients
and implementations. The stubs in the client either use a location-transparent IPC mechanism or directly access a location
service to establish communication with the implementations. Code linked with the implementation is responsible for
setting up appropriate databases for use by clients.

6.3.2 Server-based ORB

To centralize the management of the ORB, all clients and implementations can communicate with one or more servers
whose job it is to route requests from clients to implementations. The ORB could be a normal program as far as the
underlying operating system is concerned, and normal IPC could be used to communicate with the ORB.

CORBA - Part 1: Interfaces, v3.3 19

6.3.3 System-based ORB

To enhance security, robustness, and performance, the ORB could be provided as a basic service of the underlying

operating system. Object references could be made unforgeable, reducing the expense of authentication on each request.
Because the operating system could know the location and structure of clients and implementations, it would be possible
for a variety of optimizations to be implemented, for example, avoiding marshalling when both are on the same machine.

6.3.4 Library-based ORB

For objects that are light-weight and whose implementations can be shared, the implementation might actually be in a
library. In this case, the stubs could be the actual methods. This assumes that it is possible for a client program to get
access to the data for the objects and that the implementation trusts the client not to damage the data.

6.4 Structure of a Client

A client of an object has an object reference that refers to that object. An object reference is a token that may be invoked
or passed as a parameter to an invocation on a different object. Invocation of an object involves specifying the object to
be invoked, the operation to be performed, and parameters to be given to the operation or returned from it.

The ORB manages the control transfer and data transfer to the object implementation and back to the client. In the event
that the ORB cannot complete the invocation, an exception response is provided. Ordinarily, a client calls a routine in its
program that performs the invocation and returns when the operation is complete.

Clients access object-type-specific stubs as library routines in their program (see Figure 6.6). The client program thus sees
routines callable in the normal way in its programming language. All implementations will provide a language-specific
data type to use to refer to objects, often an opaque pointer. The client then passes that object reference to the stub
routines to initiate an invocation. The stubs have access to the object reference representation and interact with the ORB
to perform the invocation. (See the C Language Mapping specification for additional, general information on language
mapping of object references.)

20 CORBA - Part 1: Interfaces, v3.4

(Client Program R

Language-dependent object references

ORB object references

Dynamic Invocation Stubs for Stubs for
Interface Interface A Interface B

- _J

Figure 6.6 - The Structure of a Typical Client

An alternative set of library code is available to perform invocations on objects, for example when the object was not
defined at compile time. In that case, the client program provides additional information to name the type of the object
and the method being invoked, and performs a sequence of calls to specify the parameters and initiate the invocation.

Clients most commonly obtain object references by receiving them as output parameters from invocations on other
objects for which they have references. When a client is also an implementation, it receives object references as input
parameters on invocations to objects it implements. An object reference can also be converted to a string that can be
stored in files or preserved or communicated by different means and subsequently turned back into an object reference by
the ORB that produced the string.

6.5 Structure of an Object Implementation

An object implementation provides the actual state and behavior of an object. The object implementation can be
structured in a variety of ways. Besides defining the methods for the operations themselves, an implementation will
usually define procedures for activating and deactivating objects and will use other objects or non-object facilities to
make the object state persistent, to control access to the object, as well as to implement the methods.

The object implementation (see Figure 6.7) interacts with the ORB in a variety of ways to establish its identity, to create
new objects, and to obtain ORB-dependent services. It primarily does this via access to an Object Adapter, which
provides an interface to ORB services that is convenient for a particular style of object implementation.

CORBA - Part 1: Interfaces, v3.3 21

Object Implementation

O Object data

Methods for
Interface A

ORB object references

ary Routines

Skeleton for
Interface A

_ J

Figure 6.7 - The Structure of a Typical Object Implementation

Dynamic Object adapter
Skeleton routines

Because of the range of possible object implementations, it is difficult to be definitive about how an object
implementation is structured. See the clauses on the Portable Object Adapter.

When an invocation occurs, the ORB Core, object adapter, and skeleton arrange that a call is made to the appropriate
method of the implementation. A parameter to that method specifies the object being invoked, which the method can use
to locate the data for the object. Additional parameters are supplied according to the skeleton definition. When the method
is complete, it returns, causing output parameters or exception results to be transmitted back to the client.

When a new object is created, the ORB may be notified so that it knows where to find the implementation for that object.
Usually, the implementation also registers itself as implementing objects of a particular interface, and specifies how to
start up the implementation if it is not already running.

Most object implementations provide their behavior using facilities in addition to the ORB and object adapter. For
example, although the Portable Object Adapter provides some persistent data associated with an object (its OID or Object
ID), that relatively small amount of data is typically used as an identifier for the actual object data stored in a storage
service of the object implementation’s choosing. With this structure, it is not only possible for different object
implementations to use the same storage service, it is also possible for objects to choose the service that is most
appropriate for them.

22 CORBA - Part 1: Interfaces, v3.4

6.6 Structure of an Object Adapter

An object adapter (see Figure 6.8) is the primary means for an object implementation to access ORB services such as
object reference generation. An object adapter exports a public interface to the object implementation, and a private
interface to the skeleton. It is built on a private ORB-dependent interface.

Object adapters are responsible for the following functions:

« Generation and interpretation of object references

» Method invocation

« Security of interactions

+ Object and implementation activation and deactivation

« Mapping object references to the corresponding object implementations

« Registration of implementations

These functions are performed using the ORB Core and any additional components necessary. Often, an object adapter
will maintain its own state to accomplish its tasks. It may be possible for a particular object adapter to delegate one or
more of its responsibilities to the Core upon which it is constructed.

-

o

Object Implementation

Interface A

Methods

Interface B
Methods

Dynamic
Skeleton

Interface A
Skeleton

Interface B
Skeleton

Object
Adapter
Interface

ORB Core

Figure 6.8 - The Structure of a Typical Object Adapter

As shown in Figure 6.8, the Object Adapter is implicitly involved in invocation of the methods, although the direct

interface is through the skeletons. For example, the Object Adapter may be involved in activating the implementation or

authenticating the request.

CORBA - Part 1: Interfaces, v3.3

23

The Object Adapter defines most of the services from the ORB that the Object Implementation can depend on. Different
ORBs will provide different levels of service and different operating environments may provide some properties
implicitly and require others to be added by the Object Adapter. For example, it is common for Object Implementations
to want to store certain values in the object reference for easy identification of the object on an invocation. If the Object
Adapter allows the implementation to specify such values when a new object is created, it may be able to store them in
the object reference for those ORBs that permit it. If the ORB Core does not provide this feature, the Object Adapter
would record the value in its own storage and provide it to the implementation on an invocation. With Object Adapters, it
is possible for an Object Implementation to have access to a service whether or not it is implemented in the ORB Core —
if the ORB Core provides it, the adapter simply provides an interface to it; if not, the adapter must implement it on top of
the ORB Core. Every instance of a particular adapter must provide the same interface and service for all the ORBs it is
implemented on.

It is also not necessary for all Object Adapters to provide the same interface or functionality. Some Object
Implementations have special requirements. For example, an object-oriented database system may wish to implicitly
register its many thousands of objects without doing individual calls to the Object Adapter. In such a case, it would be
impractical and unnecessary for the object adapter to maintain any per-object state. By using an object adapter interface
that is tuned towards such object implementations, it is possible to take advantage of particular ORB Core details to
provide the most effective access to the ORB.

6.7 CORBA Required Object Adapter

There are a variety of possible object adapters; however, since the object adapter interface is something that object

implementations depend on, it is desirable that there be as few as practical. Most object adapters are designed to cover a
range of object implementations, so only when an implementation requires radically different services or interfaces should
a new object adapter be considered. In this sub clause, we briefly describe the object adapter defined in this specification.

6.7.1 Portable Object Adapter

This specification defines a Portable Object Adapter that can be used for most ORB objects with conventional
implementations. (See the Portable Object Adapter clause for more information.) The intent of the POA, as its name
suggests, is to provide an Object Adapter that can be used with multiple ORBs with a minimum of rewriting needed to
deal with different vendors’ implementations.

This specification allows several ways of using servers but it does not deal with the administrative issues of starting server
programs. Once started, however, there can be a servant started and ended for a single method call, a separate servant for
each object, or a shared servant for all instances of the object type. It allows for groups of objects to be associated by means
of being registered with different instances of the POA object and allows implementations to specify their own activation
techniques. If the implementation is not active when an invocation is performed, the POA will start one. The POA is
specified in IDL, so its mapping to languages is largely automatic, following the language mapping rules. (The primary
task left for a language mapping is the definition of the Servant type.)

6.8 The Integration of Foreign Object Systems

The Common ORB Architecture is designed to allow interoperation with a wide range of object systems (see Figure 6.9).
Because there are many existing object systems, a common desire will be to allow the objects in those systems to be
accessible via the ORB. For those object systems that are ORBs themselves, they may be connected to other ORBs
through the mechanisms described throughout this manual.

24 CORBA - Part 1: Interfaces, v3.4

Object system as
a POA object
implementation

Object system as
an implementation
with a special-purpose
object adapter

Portable Object
Adapter

Special-purpose
Adapter

ORB Core

Gateway

Figure 6.9 - Different Ways to Integrate Foreign Object Systems

Object system as
another ORB
interoperating via a
gateway

For object systems that simply want to map their objects into ORB objects and receive invocations through the ORB, one

approach is to have those object systems appear to be implementations of the corresponding ORB objects. The object
system would register its objects with the ORB and handle incoming requests, and could act like a client and perform

outgoing requests.

In some cases, it will be impractical for another object system to act like a POA object implementation. An object adapter

could be designed for objects that are created in conjunction with the ORB and that are primarily invoked through the

ORB. Another object system may wish to create objects without consulting the ORB, and might expect most invocations
to occur within itself rather than through the ORB. In such a case, a more appropriate object adapter might allow objects
to be implicitly registered when they are passed through the ORB.

CORBA - Part 1: Interfaces, v3.3

25

26

CORBA - Part 1: Interfaces, v3.4

7 IDL Syntax and Semantics

7.1 Overview

Although it was originally defined here, the Interface Definition Language is now maintained in a separate OMG
specification. See [IDL4] section 7.1 for the Overview and section 9.2 for the CORBA and CCM Profiles of IDL.

7.2 Lexical Conventions

See [IDL4] section 7.2.

7.3 Preprocessing

See [IDL4] section 7.3.

7.4 IDL Grammar

See [IDL4] sections 7.4 (the introduction before 7.4.1), 9.2, 7.4.1-10, and Annex A.

7.5 IDL Specification

See [IDL4] sections 7.4.1.4.1, 7.4.3.4.1, 7.4.5.4, 7.4.6.4.1.

7.6 Import Declaration

See [IDL4] section 7.4.6.4.1.4.

7.7 Module Declaration

See [IDL4] section 7.4.1.4.2.

7.8 Interface Declaration

See [IDL4] sections 7.4.3.4.3, 7.4.4, 7.4.6.

7.9 Value Declaration

See [IDL4] sections 7.4.5 and 7.4.7.

7.10 Constant Declaration

See [IDL4] section 7.4.1.4.3.

CORBA - Part 1: Interfaces, v3.4

27

7.11 Type Declaration

See [IDL4] sections 7.4.1.4.4 and 7.4.2.

7.12 Exception Declaration

See [IDL4] section 7.4.3.4.2.

7.13 Operation Declaration

See [IDL4] sections 7.4.34.3.3.1, 7.4.6.4.5, 7.4.6.4.6.

7.14 Attribute Declaration

See [IDL4] section 7.4.3.4.3.3.2.

7.15 Repository Identity Related Declarations

See [IDL4] section 7.4.6.4.1.

7.16 Event Declaration

See [IDL4] section 7.4.10.4.1.1.

7.17 Component Declaration

See [IDL4] sections 7.4.8 and 7.4.10.

7.18 Home Declaration

See [IDL4] section 7.4.9.

7.19 CORBA Module

See [IDL4] section 7.4.6.4.7.

7.20 Names and Scoping

See [IDL4] section 7.5.

28

CORBA - Part 1: Interfaces, v3.4

8 ORB Interface

8.1 Overview

This clause introduces the operations that are implemented by the ORB core, and describes some basic ones, while
providing reference to the description of the remaining operations that are described elsewhere. The ORB interface is the
interface to those ORB functions that do not depend on which object adapter is used. These operations are the same for
all ORBs and all object implementations, and can be performed either by clients of the objects or implementations. The
Object interface contains operations that are implemented by the ORB, and are accessed as implicit operations of the
Object Reference. The ValueBase interface contains operations that are implemented by the ORB, and are accessed as
implicit operations of the ValueBase Reference.

Because the operations in this sub clause are implemented by the ORB itself, they are not in fact operations on objects,
although they are described that way for the Object or ValueBase interface operations and the language binding will,
for consistency, make them appear that way.

8.2 The ORB Operations

The ORB interface contains the operations that are available to both clients and servers. These operations do not depend
on any specific object adapter or any specific object reference.

module CORBA {

interface NVList; Il forward declaration
interface OperationDef; // forward declaration
interface TypeCode; Il forward declaration

typedef short PolicyErrorCode;
I for the definition of consts see PolicyErrorCode on page 125
typedef unsigned long PolicyType;

interface Request; Il forward declaration
typedef sequence <Request> RequestSeq;

native AbstractBase;
exception PolicyError {PolicyErrorCode reason;};

typedef string Repositoryld;
typedef string Identifier;

Il StructMemberSeq defined in Chapter 10
/I UnionMemberSeq defined in Chapter 10
/I EnumMemberSeq defined in Chapter 10

typedef unsigned short ServiceType;

CORBA - Part 1: Interfaces, v3.4 93

94

typedef unsigned long ServiceOption;
typedef unsigned long ServiceDetailType;

typedef CORBA::OctetSeq ServiceDetailData;
typedef sequence<ServiceOption> ServiceOptionSeq;

const ServiceType Security = 1;

struct ServiceDetail {
ServiceDetailType service_detail_type;
ServiceDetailData service_detail;

};
typedef sequence<ServiceDetail> ServiceDetailSeq;

struct Servicelnformation {
ServiceOptionSeq service_options;
ServiceDetailSeq service_details;

b

native ValueFactory;
typedef string ORBid;
interface ORB {

typedef string Objectid;
typedef sequence <Objectld> ObjectldList;

exception InvalidName {};
ORBid id();

string object_to_string (
in Object obj
);

Object string_to_object (
in string str

);
/l Dynamic Invocation related operations

void create_list (
in long count,
out NVList new_list

);

void create_operation_list (
in OperationDef oper,

CORBA - Part 1: Interfaces, v3.4

out NVList new_list

);

void get_default_context (
out Context ctx

);

void send_multiple_requests_oneway(
in RequestSeq req

);

void send_multiple_requests_deferred(
in RequestSeq req

);
boolean poll_next_response();

void get_next_response(
out Request req
) raises (WrongTransaction);

Il Service information operations

boolean get_service_information (
in ServiceType service_type,
out Servicelnformation service_information

);
ObjectldList list_initial_services ();
I Initial reference operation

Object resolve_initial_references (
in Objectld identifier
) raises (InvalidName);

Il Type code creation operations

TypeCode create_struct_tc (
in Repositoryld id,
in Identifier name,
in StructMemberSeq members

);

TypeCode create_union_tc (
in Repositoryld id,
in Identifier name,
in TypeCode discriminator_type,
in UnionMemberSeq members

);

CORBA - Part 1: Interfaces, v3.4

95

96

TypeCode create_enum_tc (
in Repositoryld id,
in Identifier name,
in EnumMemberSeq members

);

TypeCode create_alias_tc (

in Repositoryld id,

in Identifier name,

in TypeCode original_type
);

TypeCode create_exception_tc (
in Repositoryld id,
in Identifier name,
in StructMemberSeq members

);

TypeCode create_interface_tc (
in Repositoryld id,
in Identifier name

);

TypeCode create_string_tc (
in unsigned long bound

);

TypeCode create_wstring_tc (
in unsigned long bound

);

TypeCode create_fixed_tc (
in unsigned short digits,
in short scale

);

TypeCode create_sequence_tc (
in unsigned long bound,
in TypeCode element type

);

TypeCode create_recursive_sequence_tc (// deprecated
in unsigned long bound,
in unsigned long offset

);

TypeCode create_array_tc (
in unsigned long length,
in TypeCode element_type

);

CORBA - Part 1: Interfaces, v3.4

TypeCode create_value_tc (

in Repositoryld id,

in Identifier name,

in ValueModifier type_modifier,
in TypeCode concrete_base,

in ValueMemberSeq members

);

TypeCode create_value_box_tc (

in Repositoryld id,
in Identifier name,
in TypeCode boxed_type

);

TypeCode create_native_tc (
in Repositoryld id,
in Identifier name

);

TypeCode create_recursive_tc(
in Repositoryld id
);

TypeCode create_abstract_interface_tc(
in Repositoryld id,
in Identifier name

);

TypeCode create_local_interface_tc(
in Repositoryld id,
in Identifier name

);

TypeCode create_component_tc (
in Repositoryld id,
in Identifier name

);

TypeCode create_home_tc (
in Repositoryld id,
in Identifier name

);

TypeCode create_event_tc (

in Repositoryld id,

in Identifier name,

in ValueModifier type_modifier,
in TypeCode concrete_base,

in ValueMemberSeq members

CORBA - Part 1: Interfaces, v3.4

97

b
b

I/l Thread related operations
boolean work_pending();
void perform_work();

void run();

void shutdown(
in boolean wait_for_completion

);
void destroy();
/I Policy related operations

Policy create_policy(
in PolicyType type,
in any val

) raises (PolicyError);

/l Dynamic Any related operations deprecated and removed
I/ from primary list of ORB operations

/I Value factory operations

ValueFactory register_value_factory(
in Repositoryld id,
in ValueFactory_factory

);

void unregister_value_factory(in Repositoryld id);
ValueFactory lookup_value_factory(in Repositoryld id);
void register_initial_reference(

in Objectld id,

in Object obj
) raises (InvalidName);

All types defined in this clause are part of the CORBA module. When referenced in IDL, the type names must be prefixed
by “CORBA::”.

The operations object_to_string and string_to_object are described in Converting Object References to Strings on

page 99.

98

CORBA - Part 1: Interfaces, v3.4

For a description of the create_list and create_operation_list operations, see Polling on page 184. The
get_default_context operation is described in get default context on page 100. The
send_multiple_requests_oneway and send_multiple_requests_deferred operations are described in
send_multiple requests on page 183. The poll_next_response and get_next_response operations are described in
get_next_response and poll next response on page 183.

The list_intial_services and resolve_initial_references operations are described in Obtaining Initial Object
References on page 115.

The Type code creation operations with names of the form create_<type>_tc are described in Creating TypeCodes on
page 141.

The work_pending, perform_work, shutdown, destroy and run operations are described in Thread-Related
Operations on page 100.

The create_policy operations is described in Create policy on page 126.

The register_value_factory, unregister_value_factory and lookup_value_factory operations are described in
Language Specific Value Factory Requirements on page 161.

The register_initial_reference operation is described in register_initial reference on page 407.

8.2.1 ORB Identity

8.21.1 id

ORBid id();

The id operation returns the identity of the ORB. The returned ORBid is the string that was passed to ORB_init (see
ORB Initialization on page 113) as the orb_identifier parameter when the ORB was created. If that was the empty string,
the returned string is the value associated with the -ORBId tag in the arg_list parameter. Calling id on the default ORB
returns the empty string.

8.2.2 Converting Object References to Strings

8.2.2.1 object_to_string

string object_to_string (
in Object obj
);

8.2.2.2 string_to_object

Object string_to_object (
in string str

);

Because an object reference is opaque and may differ from ORB to ORB, the object reference itself is not a convenient
value for storing references to objects in persistent storage or communicating references by means other than invocation.
Two problems must be solved: allowing an object reference to be turned into a value that a client can store in some other
medium, and ensuring that the value can subsequently be turned into the appropriate object reference.

CORBA - Part 1: Interfaces, v3.4 99

An object reference may be translated into a string by the operation object_to_string. The value may be stored or
communicated in whatever ways strings may be manipulated. Subsequently, the string_to_object operation will accept
a string produced by object_to_string and return the corresponding object reference.

To guarantee that an ORB will understand the string form of an object reference, that ORB’s object_to_string operation
must be used to produce the string. For all conforming ORBs, if obj is a valid reference to an object, then
string_to_object(object_to_string(obj)) will return a valid reference to the same object, if the two operations are
performed on the same ORB. For all conforming ORB’s supporting IOP, this remains true even if the two operations are
performed on different ORBs.

8.2.3 Getting Service Information

8.2.3.1 get_service_information

boolean get_service_information (
in ServiceType service_type;
out Servicelnformation service_information;

);

The get_service_information operation is used to obtain information about CORBA facilities and services that are
supported by this ORB. The service type for which information is being requested is passed in as the in parameter
service_type, the values defined by constants in the CORBA module. If service information is available for that type,
that is returned in the out parameter service_information, and the operation returns the value TRUE. If no information
for the requested services type is available, the operation returns FALSE (i.e., the service is not supported by this ORB).

8.2.4 Creating a New Context

8.2.4.1 get_default_context

void get_default_context(/I PIDL
out Context ctx Il context object

);

This operation creates a new empty Context object every time it is called. The operation is defined in the ORB interface.
8.2.5 Thread-Related Operations

To support single-threaded ORBs, as well as multi-threaded ORBs that run multi-thread-unaware code, several operations
are included in the ORB interface. These operations can be used by single-threaded and multi-threaded applications. An
application that is a pure ORB client would not need to use these operations. Both the ORB::run and ORB::shutdown
are useful in fully multi-threaded programs.

These operations are defined on the ORB rather than on an object adapter to allow the main thread to be used for all kinds
of asynchronous processing by the ORB. Defining these operations on the ORB also allows the ORB to support multiple
object adapters, without requiring the application main to know about all the object adapters. The interface between the
ORB and an object adapter is not standardized.

8.2.5.1 work_pending

boolean work_pending();

100 CORBA - Part 1: Interfaces, v3.4

This operation returns an indication of whether the ORB needs the main thread to perform some work.

A result of TRUE indicates that the ORB needs the main thread to perform some work and a result of FALSE indicates that
the ORB does not need the main thread.

8.2.5.2 perform_work

void perform_work();
If called by the main thread, this operation performs an implementation-defined unit of work; otherwise, it does nothing.
It is platform-specific how the application and ORB arrange to use compatible threading primitives.

The work_pending() and perform_work() operations can be used to write a simple polling loop that multiplexes the

main thread among the ORB and other activities. Such a loop would most likely be needed in a single-threaded server. A
multi-threaded server would need a polling loop only if there were both ORB and other code that required use of the main
thread.

Here is an example of such a polling loop:

// C++

for (;;) {

if (orb->work pending()) {
orb->perform work () ;

};
// do other things
// sleep?

};

Once the ORB has shutdown, work_pending and perform_work will raise the BAD_INV_ORDER exception with
minor code 4. An application can detect this exception to determine when to terminate a polling loop.

8.2.5.3 run

void run();

This operation provides execution resources to the ORB so that it can perform its internal functions. Single threaded ORB
implementations, and some multi-threaded ORB implementations, need the use of the main thread in order to function
properly. For maximum portability, an application should call either run or perform_work on its main thread. run may
be called by multiple threads simultaneously.

This operation will block until the ORB has completed the shutdown process, initiated when some thread calls
shutdown.

8.2.5.4 shutdown

void shutdown(
in boolean wait_for_completion

)i
This operation instructs the ORB to shut down, that is, to stop processing in preparation for destruction.

Shutting down the ORB causes all object adapters to be destroyed, since they cannot exist in the absence of an ORB.

CORBA - Part 1: Interfaces, v3.4 101

In the case of the POA, all POAManagers are deactivated prior to destruction of all POAs. The deactivation that the
ORB performs should be the equivalent of calling deactivate with the value TRUE for etherealize_objects and with the
wait_for_completion parameter same as what shutdown was called with.

Shut down is complete when all ORB processing (including request processing and object deactivation or other operations
associated with object adapters) has completed and the object adapters have been destroyed. In the case of the POA, this
means that all object etherealizations have finished and root POA has been destroyed (implying that all descendent POAs
have also been destroyed).

Shut down is complete when all ORB processing has completed and the object adapters have been destroyed. ORB
processing is defined as including request processing and object deactivation or other operations associated with object
adapters, and the forwarding of the responses from deferred synchronous invocations to their associated reply handlers. In
the case of the POA, this means that all object etherealizations have finished and root POA has been destroyed (implying
that all descendent POAs have also been destroyed)

If the wait_for_completion parameter is TRUE, this operation blocks until the shut down is complete. If an application
does this in a thread that is currently servicing an invocation, the ORB will not shutdown, and the BAD_INV_ORDER
system exception will be raised with the OMG minor code 3, and completion status COMPLETED NO, since blocking
would result in a deadlock.

If the wait_for_completion parameter is FALSE, then shutdown may not have completed upon return. An ORB
implementation may require the application to call (or have a pending call to) run or perform_work after shutdown
has been called with its parameter set to FALSE, in order to complete the shutdown process.

Additionally in systems that have Portable Object Adapters (see Clause 14) shutdown behaves as if POA::destroy is
called on the Root POA with its first parameter set to TRUE and the second parameter set to the value of the
wait_for_completion parameter that shutdown is invoked with.

While the ORB is in the process of shutting down, the ORB operates as normal, servicing incoming and outgoing requests
until all requests have been completed. An implementation may impose a time limit for requests to complete while a
shutdown is pending.

Once an ORB has shutdown, only object reference management operations(duplicate, release and is_nil) may be
invoked on the ORB or any object reference obtained from it. An application may also invoke the destroy operation on
the ORB itself. Invoking any other operation will raise the BAD_INV_ORDER system exception with the OMG minor
code 4.

8.2.5.5 destroy

void destroy();

This operation destroys the ORB so that its resources can be reclaimed by the application. Any operation invoked on a
destroyed ORB reference will raise the OBJECT_NOT_EXIST exception. Once an ORB has been destroyed, another call
to ORB_init with the same ORBId will return a reference to a newly constructed ORB.

If destroy is called on an ORB that has not been shut down, it will start the shut down process and block until the ORB
has shut down before it destroys the ORB. The behavior is similar to that achieved by calling shutdown with the
wait_for_completion parameter set to TRUE. If an application calls destroy in a thread that is currently servicing an
invocation, the BAD _INV_ORDER system exception will be raised with the OMG minor code 3, since blocking would
result in a deadlock.

For maximum portability and to avoid resource leaks, an application should always call shutdown and destroy on all
ORB instances before exiting.

102 CORBA - Part 1: Interfaces, v3.4

8.3 Object Reference Operations

There are some operations that can be done on any object. These are not operations in the normal sense, in that they are
implemented directly by the ORB, not passed on to the object implementation. We will describe these as being operations
on the object reference, although the interfaces actually depend on the language binding. As above, where we used
interface Object to represent the object reference, we define an interface for Object:

module CORBA {

interface DomainManager; Il forward declaration
typedef sequence <DomainManager> DomainManagersList;

interface Policy; Il forward declaration

typedef sequence <Policy> PolicyList;

typedef sequence<PolicyType> PolicyTypeSeq;

exception InvalidPolicies { sequence <unsigned short> indices; };
interface Context; I/l forward declaration

typedef string Identifier;

interface Request; I/l forward declaration
interface NVList; Il forward declaration
struct NamedValue{}; Il an implicitly well known type

typedef unsigned long Flags;
interface InterfaceDef;

enum SetOverrideType {SET_OVERRIDE, ADD_OVERRIDE};
interface ORB; /I PIDL forward declaration
interface Object { /I PIDL

InterfaceDef get_interface ();

boolean is_nil();

Object duplicate ();

void release ();

boolean is_a (

in Repositoryld logical_type_id
);
boolean non_existent();

boolean is_equivalent (
in Object other_object

);

CORBA - Part 1: Interfaces, v3.4 103

b

b

unsigned long hash(

in unsigned long maximum
);
void create_request (
in Context ctx
in Identifier operation,
in NVList arg_list,
inout NamedValue result,
out Request req,
in Flags req_flag
);
Policy get_policy (
in PolicyType policy_type
);

DomainManagersList get_domain_managers ();

Object set_policy_overrides(
in PolicyList policies,
in SetOverrideType set_add
) raises (InvalidPolicies);

Policy get_client_policy(
in PolicyType type
);

PolicyList get_policy_overrides(
in PolicyTypeSeq types

);
boolean validate_connection(

out PolicyList inconsistent_policies
);

Object get_component ();
string respository_id();

ORB get_orb();

The create_request operation is part of the Object interface because it creates a pseudo-object (a Request) for an object.

It is described with the other Request operations in Request Operations on page 177.

Unless otherwise stated below, the operations in the IDL above do not require access to remote information.

104

CORBA - Part 1: Interfaces, v3.4

8.3.1 Determining the Object Interface

8.3.1.1 get_interface

InterfaceDef get_interface();

get_interface, returns an object in the Interface Repository that describes the most derived type of the object addressed
by the reference. See the Interface Repository clause for a definition of operations on the Interface Repository. The
implementation of this operation may involve contacting the ORB that implements the target object.

If the interface repository is not available, get_interface raises INTF_REPOS with standard minor code 1. If the
interface repository does not contain an entry for the object's (most derived) interface, get_interface raises
INTF_REPOS with standard minor code 2.

8.3.1.2 repository_id

repository_id returns the repository ID of an object (see Component Interface Repository Interfaces on page 260 for details
of repository IDs). The implementation of this operation must contact the ORB that implements the target object.

8.3.2 Duplicating and Releasing Copies of Object References

8.3.2.1 duplicate

Object duplicate();

8.3.2.2 release

void release();

Because object references are opaque and ORB-dependent, it is not possible for clients or implementations to allocate
storage for them. Therefore, there are operations defined to copy or release an object reference.

If more than one copy of an object reference is needed, the client may create a duplicate. Note that the object
implementation is not involved in creating the duplicate, and that the implementation cannot distinguish whether the
original or a duplicate was used in a particular request.

When an object reference is no longer needed by a program, its storage may be reclaimed by use of the release
operation. Note that the object implementation is not involved, and that neither the object itself nor any other references
to it are affected by the release operation.

8.3.3 Nil Object References

8.3.3.1 is_nil

boolean is_nil();

An object reference whose value is OBJECT_NIL denotes no object. An object reference can be tested for this value by
the is_nil operation. The object implementation is not involved in the nil test.

CORBA - Part 1: Interfaces, v3.4 105

8.3.4 Equivalence Checking Operation

8.3.4.1is_a

boolean is_a(
in Repositoryld logical_type_id
);

An operation is defined to facilitate maintaining type-safety for object references over the scope of an ORB.

The logical_type_id is a string denoting a shared type identifier (Repositoryld). The operation returns true if the
object is really an instance of that type, including if that type is an ancestor of the “most derived” type of that object.

Determining whether an object’s type is compatible with the logical_type_id may require contacting a remote ORB or
interface repository. Such an attempt may fail at either the local or the remote end. If is_a cannot make a reliable
determination of type compatibility due to failure, it raises an exception in the calling application code. This enables the
application to distinguish among the TRUE, FALSE, and indeterminate cases.

This operation exposes to application programmers functionality that must already exist in ORBs that support “type safe
narrow” and allows programmers working in environments that do not have compile time type checking to explicitly
maintain type safety.

This operation always returns TRUE for the logical_type_id IDL:omg.org/CORBA/Object:1.0
8.3.5 Probing for Object Non-Existence

8.3.5.1 non_existent

boolean non_existent ();

The non_existent operation may be used to test whether an object (e.g., a proxy object) has been destroyed. It does this
without invoking any application level operation on the object, and so will never affect the object itself. It returns true
(rather than raising CORBA::OBJECT_NOT_EXIST) if the ORB knows authoritatively that the object does not exist;
otherwise, it returns false.

Services that maintain state that includes object references, such as bridges, event channels, and base relationship
services, might use this operation in their “idle time” to sift through object tables for objects that no longer exist, deleting
them as they go, as a form of garbage collection. In the case of proxies, this kind of activity can cascade, such that
cleaning up one table allows others then to be cleaned up.

Probing for object non-existence may require contacting the ORB that implements the target object. Such an attempt may
fail at either the local or the remote end. If non-existent cannot make a reliable determination of object existence due to
failure, it raises an exception in the calling application code. This enables the application to distinguish among the true,
false, and indeterminate cases.

8.3.6 Object Reference Identity

In order to efficiently manage state that include large numbers of object references, services need to support a notion of
object reference identity. Such services include not just bridges, but relationship services and other layered facilities.

106 CORBA - Part 1: Interfaces, v3.4

Two identity-related operations are provided. One maps object references into disjoint groups of potentially equivalent
references, and the other supports more expensive pairwise equivalence testing. Together, these operations support
efficient maintenance and search of tables keyed by object references.

8.3.6.1 Hashing Object Identifiers
hash

unsigned long hash(
in unsigned long maximum

);

Object references are associated with ORB-internal identifiers that may indirectly be accessed by applications using the
hash operation. The value of this identifier does not change during the lifetime of the object reference, and so neither
will any hash function of that identifier.

The value of this operation is not guaranteed to be unique; that is, another object reference may return the same hash
value. However, if two object references hash differently, applications can determine that the two object references are not
identical.

The maximum parameter to the hash operation specifies an upper bound on the hash value returned by the ORB. The
lower bound of that value is zero. Since a typical use of this feature is to construct and access a collision chained hash
table of object references, the more randomly distributed the values are within that range, and the cheaper those values are
to compute, the better.

For bridge construction, note that proxy objects are themselves objects, so there could be many proxy objects representing
a given “real” object. Those proxies would not necessarily hash to the same value.

8.3.6.2 Equivalence Testing

is_equivalent

boolean is_equivalent(
in Object other_object

);

The is_equivalent operation is used to determine if two object references are equivalent, so far as the ORB can easily
determine. It returns TRUE if the target object reference is known to be equivalent to the other object reference passed as
its parameter, and FALSE otherwise.

If two object references are identical, they are equivalent. Two different object references that in fact refer to the same
object are also equivalent.

ORBs are allowed, but not required, to attempt determination of whether two distinct object references refer to the same
object. In general, the existence of reference translation and encapsulation, in the absence of an omniscient topology
service, can make such determination impractically expensive. This means that a FALSE return from is_equivalent
should be viewed as only indicating that the object references are distinct, and not necessarily an indication that the
references indicate distinct objects. Setting of local policies on the object reference is not taken into consideration for the
purposes of determining object reference equivalence.

A typical application use of this operation is to match object references in a hash table. Bridges could use it to shorten the
lengths of chains of proxy object references. Externalization services could use it to “flatten” graphs that represent
cyclical relationships between objects. Some might do this as they construct the table, others during idle time.

CORBA - Part 1: Interfaces, v3.4 107

8.3.7 Type Coercion Considerations

Many programming languages map Object to programming constructs that support inheritance. Mappings to languages
(such as C++ and Java) typically provide a mechanism for narrowing (down-casting) an object reference from a base
interface to a more derived interface. To do such down-casting in a type safe way, knowledge of the full inheritance
hierarchy of the target interface may be required. The implementation of down-cast must either contact an interface
repository or the target itself, to determine whether or not it is safe to down-cast the client’s object reference. This
requirement is not acceptable when a client is expecting only asynchronous communication with the target. Therefore, for
the appropriate languages an unchecked down-cast operation (also referred to as unchecked narrow operation) shall be
provided in the mapping of Object. This unchecked narrow always returns a stub of the requested type without checking
that the target really implements that interface.

8.3.8 Getting Policy Associated with the Object

8.3.8.1 get_policy

The get_policy operation returns the policy object of the specified type (see Policy Object on page 124), which applies to
this object. It returns the effective Policy for the object reference. The effective Policy is the one that would be used if a
request were made.

This Policy is determined first by obtaining the effective override for the PolicyType as returned by
get_client_policy. The effective override is then compared with the Policy as specified in the IOR. The effective
Policy is determined by reconciling the effective override and the IOR-specified Policy (see Server Side Policy
Management on page 129). If the two policies cannot be reconciled, the standard system exception INV_POLICY is
raised with standard minor code 1. The absence of a Policy value in the IOR implies that any legal value may be used.

Invoking non_existent on an object reference prior to get_policy ensures the accuracy of the returned effective
Policy. If get_policy is invoked prior to the object reference being bound, a compliant implementation shall attempt a
binding and then return the effective Policy. If the binding attempt fails it shall pass through the system exception
returned from the binding attempt. Note that if the effective Policy may change from invocation to invocation due to
transparent rebinding.

Policy get_policy (
in PolicyType policy_type
);

Parameter(s)

* policy_type
The type of policy to be obtained.

Return Value
A Policy object of the type specified by the policy_type parameter.

Exception(s)

« CORBA:INV_POLICY
Raised when the value of policy type is not valid either because the specified type is not supported by this ORB
or because a policy object of that type is not associated with this Object.

108 CORBA - Part 1: Interfaces, v3.4

The implementation of this operation may involve remote invocation of an operation (e.g.,
DomainManager::get_domain_policy for some security policies) for some policy types.

8.3.8.2 get_client_policy

Policy get_client_policy(
in PolicyType type
)i

Returns the effective overriding Policy for the object reference. The effective override is obtained by first checking for an
override of the given PolicyType at the Object scope, then at the Current scope, and finally at the ORB scope. If no
override is present for the requested PolicyType, a system-dependent default value for that Policy Type may be returned.
A nil Policy reference may also be returned to indicate that there is no default for the policy. Portable applications are
expected to set the desired “defaults” at the ORB scope since default Policy values are not specified.

8.3.8.3 get_policy_overrides

PolicyList get_policy_overrides(
in PolicyTypeSeq types
);

Returns the list of Policy overrides (of the specified policy types) set at the Object scope. If the specified sequence is
empty, all Policy overrides at this scope will be returned. If none of the requested PolicyTypes are overridden at the
Object scope, an empty sequence is returned.

8.3.9 Overriding Associated Policies on an Object Reference

8.3.9.1 set_policy_overrides

The set_policy_overrides operation returns a new object reference with the new policies associated with it. It takes
two input parameters. The first parameter policies is a sequence of references to Policy objects. The second parameter
set_add of type SetOverrideType indicates whether these policies should be added onto any other overrides that
already exist (ADD_OVERRIDE) in the object reference, or they should be added to a clean override free object
reference (SET_OVERRIDE). This operation associates the policies passed in the first parameter with a newly created
object reference that it returns. Only certain policies that pertain to the invocation of an operation at the client end can be
overridden using this operation. Attempts to override any other policy will result in the raising of the

CORBA::NO_PERMISSION exception.
enum SetOverrideType {SET_OVERRIDE, ADD_OVERRIDE};

Object set_policy_overrides(

in PolicyList policies,
in SetOverrideType set_add
) raises (InvalidPolicies);
Parameter(s)
* policies

A sequence of Policy objects that are to be associated with the new copy of the object reference returned by this
operation. If the sequence contains two or more Policy objects with the same PolicyType value, the operation
raises the standard system exception BAD_PARAM with minor code 30.

CORBA - Part 1: Interfaces, v3.4 109

+ set_add
Whether the association is in addition to (ADD_OVERRIDE) or as a replacement of (SET_OVERRIDE) any
existing overrides already associated with the object reference. If the value of this parameter is SET_OVERRIDE,
the supplied policies completely replace all existing overrides associated with the object reference. If the value of
this parameter is ADD_OVERRIDE, the supplied policies are added to the existing overrides associated with the
object reference, except that if a supplied Policy object has the same PolicyType value as an existing override, the
supplied Policy object replaces the existing override.

Return Value

A copy of the object reference with the overrides from policies associated with it in accordance with the value of
set_add.

Exception(s)

+ InvalidPolicies
Raised when an attempt is made to override any policy that cannot be overridden.

8.3.10 Validating Connection

8.3.10.1 validate_connection

boolean validate_connection(
out PolicyList inconsistent_policies

);

Returns the value TRUE if the current effective policies for the Object will allow an invocation to be made. If the object
reference is not yet bound, a binding will occur as part of this operation. If the object reference is already bound, but
current policy overrides have changed or for any other reason the binding is no longer valid, a rebind will be attempted
regardless of the setting of any RebindPolicy override. The validate_connection operation is the only way to force such
a rebind when implicit rebinds are disallowed by the current effective RebindPolicy. The attempt to bind or rebind may
involve processing GIOP LocateRequests by the ORB.

If the RoutingPolicy ROUTE_FORWARD or ROUTE_STORE_AND_FORWARD are in effect when
validate_connection is invoked then the client ORB shall attempt to open a connection for the first hop to the first
target Router (applies to both Router and PersistentRequestRouter) as if it were the target Object and return
success or failure based on success or failure to establish this connection.

Returns the value FALSE if the current effective policies would cause an invocation to raise the standard system
exception INV_POLICY. If the current effective policies are incompatible, the out parameter inconsistent_policies
contains those policies causing the incompatibility. This returned list of policies is not guaranteed to be exhaustive. If the
binding fails due to some reason unrelated to policy overrides, the appropriate standard system exception is raised.

8.3.11 Getting the Domain Managers Associated with the Object

8.3.11.1 get_domain_managers

The get_domain_managers operation allows administration services (and applications) to retrieve the domain
managers (see Management of Policies on page 129), and hence the security and other policies applicable to individual
objects that are members of the domain.

110 CORBA - Part 1: Interfaces, v3.4

typedef sequence <DomainManager> DomainManagersList;

DomainManagersList get_domain_managers ();

Return Value

The list of immediately enclosing domain managers of this object. At least one domain manager is always returned in the
list since by default each object is associated with at least one domain manager at creation.

The implementation of this operation may involve contacting the ORB that implements the target object.
8.3.12 Getting Component Associated with the Object

8.3.12.1 get_component
Object get_component ();

If the target object reference is itself a component reference (i.e., it denotes the component itself), the get_component
operation returns the same reference (or another equivalent reference). If the target object reference is a facet reference
the get_component operation returns an object reference for the component. If the target reference is neither a
component reference nor a provided reference, get_component returns a nil reference.

8.3.13 Getting the ORB

8.3.13.1 get_orb

ORB get_orb();

This operation returns the local ORB that is handling this particular Object Reference.

8.3.14 LocalObject Operations

Local interfaces are implemented by using CORBA::LocalObject, which derives from CORBA::Object and provides
implementations of Object pseudo operations and any other ORB specific support mechanisms that are appropriate for
such objects. Object implementation techniques are inherently language mapping specific. Therefore, the LocalObject
type is not defined in IDL, but is specified by each language mapping.

» The LocalObject type provides implementations of the following Object pseudo-operations that raise the
NO_IMPLEMENT system exception with standard minor code 8:

* get_interface

* get_domain_managers
* get_policy
 get_client_policy

* set_policy_overrides

* get_policy_overrides

* validate_connection

* get_component

* respository_id

CORBA - Part 1: Interfaces, v3.4 111

* The LocalObject type provides implementations of the following pseudo-operations:
* non_existent - always returns false.
* hash - returns a hash value that is consistent for the lifetime of the object.
* is_equivalent - returns true if the references refer to the same LocalObject implementation.

«is_a - returns TRUE if the LocalObject derives from or is itself the type specified by the logical_type_id
argument.

 get_orb - The default behavior of this operation when invoked on a reference to a local object is to return the
system exception NO_IMPLEMENT with standard minor code 8. Certain local objects that have close association
with an ORB, like POAs, Current objects and certain portable interceptors related local objects override the default
behavior and return a reference to the ORB that they are associated with. These are documented in the sub clauses
where these local objects are specified

+ Attempting to use a LocalObject to create a DII request shall result in a NO_IMPLEMENT system exception with
standard minor code 4. Attempting to marshal or stringify a LocalObject shall result in a MARSHAL system exception
with standard minor code 4. Narrowing and widening of references to LocalObjects must work as for regular object
references.

» Local types cannot be marshaled and references to local objects cannot be converted to strings. Any attempt to marshal
a local object, such as via an unconstrained base interface, as an Object, or as the contents of an any, or to pass a local
object to ORB::0object_to_string, shall result in a MARSHAL system exception with OMG minor code 4.

The DII is not supported on local objects, nor are asynchronous invocation interfaces.

» Language mappings shall specify server side mechanisms, including base classes and/or skeletons if necessary, for
implementing local objects, so that invocation overhead is minimized.

» The usage of client side language mappings for local types shall be identical to those of equivalent unconstrained types.

 Invocations on local objects are not ORB mediated. Specifically, parameter copy semantics are not honored,
interceptors are not invoked, and the execution context of a local object does not have ORB service Current object
contexts that are distinct from those of the caller. Implementations of local interfaces are responsible for providing the
parameter copy semantics expected by clients.

* Local objects have no inherent identities beyond their implementations’ identities as programming objects. The
lifecycle of the implementation is the same as the lifecycle of the reference.

Instances of local objects defined as part of OMG specifications to be supplied by ORB products or object service
products shall be exposed through the ORB::resolve_initial_references operation or through some other local
object obtained from resolve_initial_references.

8.4 ValueBase Operations

ValueBase serves a similar role for value types that Object serves for interfaces. Its mapping is language-specific and
must be explicitly specified for each language.

Typically it is mapped to a concrete language type which serves as a base for all value types. Any operations that are
required to be supported for all values are conceptually defined on ValueBase, although in reality their actual mapping
depends upon the specifics of any particular language mapping.

Analogous to the definition of the Object interface for implicit operations of object references, the implicit operations of
ValueBase are defined on a pseudo-valuetype as follows:

module CORBA {

112 CORBA - Part 1: Interfaces, v3.4

valuetype ValueBase{ PIDL
ValueDef get_value_def();
b
b

The get_value_def() operation returns a description of the value’s definition as described in the interface repository
(ValueDef on page 255).

8.5 ORB and OA Initialization and Initial References

Before an application can enter the CORBA environment, it must first:
» Be initialized into the ORB and possibly the object adapter (POA) environments.

* Get references to ORB pseudo-object (for use in future ORB operations) and perhaps other objects (including the root
POA or some Object Adapter objects).

The following operations are provided to initialize applications and obtain the appropriate object references:

» Operations providing access to the ORB. These operations reside in the CORBA module, but not in the ORB interface
and are described in ORB Initialization on page 113.

» Operations providing access to Object Adapters, Interface Repository, Naming Service, and other Object Services.
These operations reside in the ORB interface and are described in Obtaining Initial Object References on page 115.

8.5.1 ORB Initialization

When an application requires a CORBA environment it needs a mechanism to get the ORB pseudo-object reference and
possibly an OA object reference (such as the root POA). This serves two purposes. First, it initializes an application into
the ORB and OA environments. Second, it returns the ORB pseudo-object reference and the OA object reference to the
application for use in future ORB and OA operations.

The ORB and OA initialization operations must be ordered with ORB occurring before OA: an application cannot call
OA initialization routines until ORB initialization routines have been called for the given ORB. The operation to initialize
an application in the ORB and get its pseudo-object reference is not performed on an object. This is because applications
do not initially have an object on which to invoke operations. The ORB initialization operation is an application’s
bootstrap call into the CORBA world. The ORB_init call is part of the CORBA module but not part of the ORB
interface.

Applications can be initialized in one or more ORBs. When an ORB initialization is complete, its pseudo reference is
returned and can be used to obtain other references for that ORB.

In order to obtain an ORB pseudo-object reference, applications call the ORB_init operation. The parameters to the call
comprise an identifier for the ORB for which the pseudo-object reference is required, and an arg_list, which is used to
allow environment-specific data to be passed into the call. PIDL for the ORB initialization is as follows:

/I PIDL
module CORBA {

typedef sequence <string> arg_list;

ORB ORB._init (inout arg_list argv, in ORBid orb_identifier);
5

CORBA - Part 1: Interfaces, v3.4 113

The identifier for the ORB will be a name of type CORBA::ORBid. All ORBid strings other than the empty string are
allocated by ORB administrators and are not managed by the OMG. ORB administration is the responsibility of each ORB
supplier. ORB suppliers may optionally delegate this responsibility. ORBid strings other than the empty string are
intended to be used to uniquely identify each ORB used within the same address space in a multi-ORB application. These
special ORBId strings are specific to each ORB implementation and the ORB administrator is responsible for ensuring
that the names are unambiguous.

If an empty ORBid string is passed to ORB_init, then the arg_list arguments shall be examined to determine if they
indicate an ORB reference that should be returned. This is achieved by searching the arg_list parameters for one
preceded by “~-ORBid” for example, “~-ORBid example_orb” (the white space after the “~-ORBid” tag is ignored) or “-
ORBidMyFavoriteORB” (with no white space following the “~-ORBIid” tag). Alternatively, two sequential parameters
with the first being the string “~-ORBid” indicates that the second is to be treated as an ORBid parameter. If an empty
string is passed and no arg_list parameters indicate the ORB reference to be returned, the default ORB for the
environment will be returned.

Other parameters of significance to the ORB can also be identified in arg_list, for example, “Hostname,”
“SpawnedServer,” and so forth. To allow for other parameters to be specified without causing applications to be re-
written, it is necessary to specify the parameter format that ORB parameters may take. In general, parameters shall be
formatted as either one single arg_list parameter:

—ORB-<suffix><optional white space> <value>

or as two sequential arg_list parameters:
-ORB<suffix>

<value>

Regardless of whether an empty or non-empty ORBId string is passed to ORB_init, the arg_list arguments are
examined to determine if any ORB parameters are given. If a non-empty ORBid string is passed to ORB_init, all ORBid
parameters in the arg_list are ignored. All other -ORB<suffix> parameters in the arg_list may be of significance
during the ORB initialization process.

Before ORB_init returns, it will remove from the arg_list parameter all strings that match the -ORB<suffix> pattern
described above and that are recognized by that ORB implementation, along with any associated sequential parameter
strings. If any strings in arg_list that match this pattern are not recognized by the ORB implementation, ORB_init will
raise the BAD_PARAM system exception instead.

The ORB_init operation may be called any number of times and shall return the same ORB reference when the same
ORBid string is passed, either explicitly as an argument to ORB_init or through the arg_list. All other -ORB<suffix>
parameters in the arg_list may be considered on subsequent calls to ORB_init.

NOTE: Whenever an ORB_init argument of the form -ORBXxxXx is specified, it is understood that the argument may be
represented in different ways in different languages. For example, in Java -ORBxxx is equivalent to a property named
org.omg.CORBA.ORBxxx.

8.5.1.1 ServerlID

A Server ID must uniquely identify a server to an IMR. This specification only requires unique identification using a
string of some kind. We do not intend to make more specific requirements for the structure of a server ID.

The server ID may be specified by an ORB_init argument of the form

114 CORBA - Part 1: Interfaces, v3.4

-ORBServerld

The value assigned to this property is a string. All templates created in this ORB will return this server ID in the
server_id attribute.

It is required that all ORBs in the same server share the same server ID. Specific environments may choose to implement
-ORBServerld in ways that automatically enforce this requirement.

For example, the org.omg.CORBA.Serverld system property may be set to the server ID in Java when a Java server is
activated. This system property is then picked up as part of the ORB_init call for every ORB created in the server.

8.5.1.2 Server Endpoint

The server endpoint information is passed into ORB_init by an argument of the form

-ORBListenEndpoints <endpoints>

The format of the <endpoints> argument is proprietary. All that is required by this specification is that each time
ORB_init is called with the same value for this argument, the resulting ORB will listen for requests on the same set of
endpoints, so that persistent object references for the ORB will continue to function correctly.

8.5.1.3 Starting Servers with No Proprietary Server Activation Support

Any server started with the flag:

-ORBNoProprietaryActivation

shall avoid the use of any proprietary activation framework.
8.5.2 Obtaining Initial Object References

Applications require a portable means by which to obtain their initial object references. References are required for the
root POA, POA Current, Interface Repository and various Object Services instances. (The POA is described in the
Portable Object Adapter clause; the Interface Repository is described in the Interface Repository clause; Object Services
are described in the individual service specifications.) The functionality required by the application is similar to that
provided by the Naming Service. However, the OMG does not want to mandate that the Naming Service be made
available to all applications in order that they may be portably initialized. Consequently, the operations shown in this sub
clause provide a simplified, local version of the Naming Service that applications can use to obtain a small, defined set of
object references that are essential to its operation. Because only a small well-defined set of objects are expected with this
mechanism, the naming context can be flattened to be a single-level name space. This simplification results in only two
operations being defined to achieve the functionality required.

Initial references are not obtained via a new interface; instead two operations are provided in the ORB pseudo-object
interface, providing facilities to list and resolve initial object references.

list_initial_services
typedef string Objectld;

typedef sequence <Objectld> ObjectldList;
ObjectldList list_initial_services ();

CORBA - Part 1: Interfaces, v3.4 115

resolve_initial_references

exception InvalidName {};

Object resolve_initial_references (

in Objectld identifier
) raises (InvalidName);

The resolve_initial_references operation is an operation on the ORB rather than the Naming Service’s

NamingContext. The interface differs from the Naming Service’s resolve in that Objectld (a string) replaces the more
complex Naming Service construct (a sequence of structures containing string pairs for the components of the name). This
simplification reduces the name space to one context.

Objectlds are strings that identify the object whose reference is required. To maintain the simplicity of the interface for
obtaining initial references, only a limited set of objects are expected to have their references found via this route. Unlike
the ORB identifiers, the Objectld name space requires careful management. To achieve this, the OMG may, in the future,
define which services are required by applications through this interface and specify names for those services.

resolve_initial_references never returns a nil reference. Instead, the non-availability of a particular reference is indicated
by throwing an InvalidName exception (even if a nil reference is explicitly configured for an Objectld).

Currently, reserved Objectlds are RootPOA, POACurrent, InterfaceRepository, NameService, TradingService,
SecurityCurrent, TransactionCurrent, DynAnyFactory, ORBPolicyManager, PolicyCurrent,
NotificationService, TypedNotificationService, CodecFactory, PICurrent, ComponentHomeFinder and PSS.

Table 8.1- Objectlds for resolve_initial_references

Objectld Type of Object Reference Reference
RootPOA PortableServer::POA POA Interface on page 326.
POACurrent PortableServer::Current POA Interface on page 326.
InterfaceRepository CORBA::Repository Repository on page 236 and
CORBA::ComponentIR::Repository ComponentIR::Repository on
page 262.
NameService CosNaming:: Naming Service specification

NamingContext

(formal/00-06-19), the CosNaming
Module sub clause.

TradingService

CosTrading::Lookup

Trading Object Service specification
(formal/00-06-27), the Functional
Interfaces sub clause.

SecurityCurrent SecurityLevel1::Current or Security Service specification
SecurityLevel2::Current (formal/00-06-25), the Security
Operations on Current sub clause.
TransactionCurrent CosTransaction::Current Transaction Service specification

(formal/00-06-28), the Transaction
Service Interfaces sub clause.

116

CORBA - Part 1: Interfaces, v3.4

Table 8.1- Objectlds for resolve_initial_references

Objectld Type of Object Reference Reference
DynAnyFactory DynamicAny:: Creating a DynAny Object on
DynAnyFactory page 202.

ORBPolicyManager

CORBA::PolicyManager

Policy Management Interfaces on
page 130.

PolicyCurrent

CORBA::PolicyCurrent

Policy Management Interfaces on
page 130.

NotificationService

CosNotifyChannelAdmin::
EventChannelFactory

Notification Service specification
(formal/00-06-20)

TypedNotificationService CosTypedNotifyChannelAdmin::Typed Notification Service specification
EventChannelFactory (formal/00-06-20)
CodecFactory IOP::CodecFactory See Part 2 of this International
Standard, Architecture clause.
PICurrent Portablelnterceptors::Current Portable Interceptor Current

Interface on page 385.

ComponentHomeFinder Components::HomeFinder Components specification

(formal/02-06-65).

PSS CosPersistentState::ConnectorRegistry Persistent State specification
(formal/02-09-06).

To allow an application to determine which objects have references available via the initial references mechanism, the
list_initial_services operation (also a call on the ORB) is provided. It returns an ObjectldList, which is a sequence of
Objectlds. Objectlds are typed as strings. Each object, which may need to be made available at initialization time, is
allocated a string value to represent it.

In addition to defining the id, the type of object being returned must be defined; that is, “InterfaceRepository” returns
an object of type Repository, or ComponentIR::Repository, which is derived from Repository, depending on whether
the ORB supports components or not, and “NameService” returns a CosNaming::NamingContext object.

The application is responsible for narrowing the object reference returned from resolve_initial_references to the type
that was requested in the Objectld. For example, for InterfaceRepository the object returned would be narrowed to
Repository type or ComponentIR::Repository type, depending on whether the ORB supports components.

Specifications for Object Services (see individual service specifications) state whether it is expected that a service’s initial
reference be made available via the resolve_initial_references operation or not; that is, whether the service is
necessary or desirable for bootstrap purposes.

8.5.3 Configuring Initial Service References

8.5.3.1 ORB-specific Configuration

It is required that an ORB can be administratively configured to return an arbitrary object reference from
CORBA::ORB::resolve_initial_references for non-locality-constrained objects.

CORBA - Part 1: Interfaces, v3.4 117

In addition to this required implementation-specific configuration, two CORBA::ORB_init arguments are provided to
override the ORB initial reference configuration.

8.5.3.2 ORBInitRef

The ORB initial reference argument, -ORBInitRef, allows specification of an arbitrary object reference for an initial
service. The format is:

-ORBInitRef <ObjectiD>=<ObjectURL>

Examples of use are:
-ORBInitRef NameService=IOR:00230021AB...
-ORBInitRef NotificationService=corbaloc::5550bjs.com/NotificationService

-ORBInitRef TradingService=corbaname::5550bjs.com#Dev/Trader

<ObjectID> represents the well-known ObjectID for a service defined in the CORBA specification, such as
NameService. This mechanism allows an ORB to be configured with new initial service Object IDs that were not
defined when the ORB was installed.

<ObjectURL> can be any of the URL schemes supported by CORBA::ORB::string_to_object (ISO/IEC 19500-2 ,
Clause 7, ORB Interoperability Architecture - 7.6.1, Object URLs), with the exception of the corbaloc URL scheme with
the rir protocol (i.e., corbaloc:rir...). If a URL is syntactically malformed or can be determined to be invalid in an
implementation defined manner, ORB_init raises a BAD_PARAM exception.

8.5.3.3 ORBDefaultlnitRef

The ORB default initial reference argument, -ORBDefaultInitRef, assists in resolution of initial references not explicitly
specified with -ORBInitRef. -ORBDefaultlnitRef requires a URL that, after appending a slash ¢/* character and a
stringified object key, forms a new URL to identify an initial object reference. For example:

-ORBDefaultInitRef corbaloc::5550bjs.com

A call to resolve_initial_references (see the “NotificationService”) with this argument results in a new URL:

corbaloc::5550bjs.com/NotificationService
That URL is passed to CORBA::ORB::string_to_object to obtain the initial reference for the service.

Another example is:

-ORBDefaultinitRef \
corbaname::555ResolveRefs.com,:555Backup.com#Prod/Local

After calling resolve_initial_references(“NameService”), one of the corbaname URLs

corbaname::555ResolveRefs.com#Prod/Local/NameService

or

corbaname::555Backup411.com#Prod/Local/NameService

118 CORBA - Part 1: Interfaces, v3.4

is used to obtain an object reference from string_to_object. (In this example, Prod/Local/NameService represents a
stringified CosNaming::Name).

See Part 2 of this International Standard for details of the corbaloc and corbaname URL schemes. The
-ORBDefaultInitRef argument naturally extends to URL schemes that may be defined in the future, provided the final
part of the URL is an object key.

8.5.3.4 Configuration Effect on resolve_initial_references

Default Resolution Order
The default order for processing a call to CORBA::ORB::resolve_initial_references for a given <ObjectIlD> is:
1. Resolve with register_initial_reference entry if possible.
2. Resolve with -ORBInitRef for this <ObjectlD> if possible
3. Resolve with pre-configured ORB settings if possible.
4. Resolve with an -ORBDefaultInitRef entry if possible.

ORB Configured Resolution Order

There are cases where the default resolution order may not be appropriate for all services and use of
-ORBDefaultInitRef may have unintended resolution side effects). For example, an ORB may use a proprietary service,
such as ImplementationRepository, for internal purposes and may want to prevent a client from unknowingly
diverting the ORB’s reference to an implementation repository from another vendor. To prevent this, an ORB is allowed
to ignore the -ORBDefaultInitRef argument for any or all <ObjectID>s for those services that are not OMG-specified
services with a well-known service name as accepted by resolve_initial_references. An ORB can only ignore the
-ORBDefaultInitRef argument but must always honor the -ORBInitRef argument.

8.5.3.5 Configuration Effect on list_initial_services

The <ObjectID>s of all -ORBInitRef arguments to ORB_init appear in the list of tokens returned by
list_initial_services as well as all ORB-configured <ObjectlD>s. Any other tokens that may appear are
implementation-dependent.

The list of <ObjectlD>s returned by list_initial_services can be a subset of the <ObjectlD>s recognized as valid by
resolve_initial_references.

8.6 Context Object

8.6.1 Introduction

A context object contains a list of properties, each consisting of a name and a string value associated with that name. By
convention, context properties represent information about the client, environment, or circumstances of a request that are
passed as a single parameter representing that collection of information.

Context properties represent a portion of a client's or application’s environment that is meant to be propagated to (and
made available to) a server’s environment (for example, a window identifier, or user preference information). Once an
operation has been invoked in the server, the operation implementation may query its context object for these properties.

CORBA - Part 1: Interfaces, v3.4 119

An operation definition may contain a context clause that specifies the context properties that may be of interest to a
particular operation. These context properties (if present for the actual call) are propagated to the server. A client-side
ORB may choose to pass more properties than are specified by an operation's context clause. An example of an operation
with a context clause is

interface Example {
void op() context("USER", "X*");
b

This context clause specifies that the “USER” property is to be made available to the server, as well as all properties with
names beginning with “X.” Note that there is no obligation on the client to actually pass values for these properties at run
time; if the client omits one or more properties, the call proceeds normally and the operation implementation simply will
not be able to retrieve the corresponding property values.

Property names are non-empty strings that cannot contain the character ‘*’ - there are no other syntactic restrictions on
property names. Property names that differ only in case are distinct names, so the following is a legal context clause that
transmits two distinct properties:

interface Example2 {
void op() context("FOO", "foo");

B
Context property values are strings. An empty string is a legal property value.

Property values are modified and accessed via the Context interface. A Context object represents a collection of property
values. Context objects may be connected into hierarchies; properties defined in child Context objects lower in the
hierarchy override properties in parent Context objects higher in the hierarchy.

8.6.2 Context Object Operations

Properties are represented as named value lists.

module CORBA {
interface Context { /I PIDL
void set_one_value(
in Identifier prop_name, // property name to set

in string value Il property value to set
);
void set_values(

in NVList values Il property values to set
);

void get_values(
in Identifier = start_scope, // search scope

in Flags op_flags, I/ operation flags
in Identifie prop_name, // name of property(s) to retrieve
out NVList values Il requested property(s)
);
void delete_values(
in Identifie prop_name // name of property(s) to delete
);

void create_child(

120 CORBA - Part 1: Interfaces, v3.4

in Identifier ctx_name, Il name of context object

out Context child_ctx /I newly created context object
);
void delete(

in Flags del_flags Il flags controlling deletion
);

5
5

8.6.2.1 set_one_value

void set_one_value(
in Identifier prop_name, // property name to set
in string value Il property value to set

);
This operation sets a single context object property. If prop_name is the empty string or contains the character ‘*,” the

operation raises BAD_PARAM with minor code 35.

8.6.2.2 set_values

void set_values(
in NVList values Il property values to set

);

This operation sets one or more property values in its context object. If a property name appears more than once in the
NVList, the value with higher index (later in the list) overwrites the value with lower index.

The flags field of each passed NVList element must be zero. A non-zero flag in any of the NVList elements raises
INV_FLAGS.

The property name of each NVList element must be a non-empty string not containing the character ‘*’. Otherwise the
operation raises BAD PARAM with minor code 35.

The value of each property of the passed NVList must be a (possibly empty) unbounded string. Property values other than
unbounded strings raise BAD_TYPECODE with minor code 3.

8.6.2.3 get_values

void get_values(
in Identifie start_scope, /I search scope

in Flags op_flags, Il operation flags
in Identifier prop_name, // name of property(s) to retrieve
out NVList values Il requested property(s)

);

This operation returns an NVList with those properties that match the prop_name parameter. Legal values for
prop_name are:

* A non-empty string that does not contain the character ‘*.’

In this case, the values parameter returns the property with the name specified by prop_name.

CORBA - Part 1: Interfaces, v3.4 121

* A string beginning with one or more characters other than *,” followed by a single ‘*’ at the end, such as “XYZ*.”
In this case, the values parameter contains the properties that have names beginning with “XYZ” (such as
“XYZABC” or “XYZ”).

If prop_name is the empty string, the string “*,” contains more than one ‘*’ character, or contains a ‘*’ anywhere but at
the end of the string, the operation raises BAD_PARAM with minor code 36.

The start_scope parameter controls the context object level at which to initiate the search for the specified properties as
follows:

» The start_scope parameter specifies the name of the context object in which the search for properties is to start.

 Ifthe context object on which get_values is invoked has a name equal to start_scope, that context object becomes
the starting context object for the search.

» If start_scope is “” the context object on which get_values is invoked becomes the starting context object for the
search.

« If the context object on which get_values is invoked does not have a name equal to start_scope (and
start_scope is not “”), the parent context object is retrieved and its name compared to start_scope; this process
repeats until either a starting context object whose name equals start_scope is found, or the search terminates
because it runs out of parent objects.

The name of the root context object created by get_default_context is “RootContext.”

If no starting context object can be found, the operation raises BAD_CONTEXT with minor code 1.
* Once a starting context object is found, get_values searches for properties in the matching context object.

» If op_flags is CORBA::CTX_RESTRICT_SCOPE, get_values scarches only the starting context object for
properties that match prop_name. (The value of CTX_RESTRICT_SCOPE is 15.)

» Ifop_flags is zero, get_values searches the starting context and its parent contexts for properties that match
prop_name. The property values that are returned are taken from the first context object in which they are found, so
properties in child contexts override the values of properties in parent contexts.

In either case, if no property matches prop_name, the operation raises BAD_CONTEXT with minor code 2.

8.6.2.4 delete_values

void delete_values(
in Identifier prop_name // name of property(s) to delete

);

This operation deletes the properties that match prop_name. prop_name may have a trailing “*’ character, in which case
all properties whose name matches the specified prefix are deleted.

If prop_name is the empty string, the string "*", contains more than one ‘*’ character, or contains a ‘*’ anywhere but at
the end of the string, the operation raises BAD_PARAM with minor code 36. The operation only affects the context
object on which it is invoked (that is, parent contexts are never affected by delete_values).

If no property name matches prop_name, the operation raises BAD_CONTEXT with minor code 2.

122 CORBA - Part 1: Interfaces, v3.4

8.6.2.5 create_child

void create_child(
in Identifier ctx_name, /I name of context object
out Context child_ctx Il newly created context object

);

This operation creates an empty child context object. The child context has the name ctx_name. ctx_name may not be
the empty string or “RootContext;” otherwise, the operation raises BAD_PARAM with minor code 37. Calling
create_child more than once with the same name on the same parent context is legal and results in the creation of a
new, empty child context for each call.

8.6.2.6 delete

void delete(
in Flags del_flags Il flags controlling deletion

);
This operation deletes the context object on which it is invoked:

» Ifdel_flags is zero, the context object is deleted only if it has no child contexts; otherwise, if del_flags is zero and the
context object has child contexts, the operation raises BAD_PARAM with minor code 38.

» Ifdel_flags is CORBA::CTX_DELETE_DESCENDANTS, the context object on which delete is invoked is destroyed,
together with (recursively) its child contexts. The value of CTX_DELETE_DESCENDANTS is 1.

If del_flags has a value other than zero or CTX_DELETE_DESCENDANTS, the operation raises INV_FLAGS.

8.7 Current Object

ORB and CORBA services may wish to provide a