

Date: January 2009

CORBA Binding for WSDL

FTF Beta 1

 OMG Document Number: ptc/2009-01-04
 Standard document URL: http://www.omg.org/spec/CORBABINDING/1.0/

This OMG document replaces the submission document (mars/08-09-15, Alpha). It is an OMG Adopted
Beta Specification and is currently in the finalization phase. Comments on the content of this document
are welcome, and should be directed to issues@omg.org by March 31, 2009.

You may view the pending issues for this specification from the OMG revision issues web page
http://www.omg.org/issues/.

The FTF Recommendation and Report for this specification will be published on July 10, 2009. If you are
reading this after that date, please download the available specification from the OMG Specifications
Catalog.

Copyright © 1997-2009, Object Management Group.

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms, conditions and
notices set forth below. This document does not represent a commitment to implement any portion of this specification in any
company's products. The information contained in this document is subject to change without notice.

LICENSES

IONA Technologies, PLC

The companies listed above have granted to the Object Management Group, Inc. (OMG) a non-exclusive, royalty-free, paid up,
worldwide license to copy and distribute this document and to modify this document and distribute copies of the modified version.
Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed the copyright in the
included material of any such copyright holder by reason of having used the specification set forth herein or having conformed any
computer software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant you a fully-pad up,
non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use this specification to create and
distribute software and special purpose specifications that are based upon this specification, and to use, copy, and distribute this
specification as provided under the Copyright Act; provided that: (1) both the copyright notice identified above and this permission
notice appear on any copies of this specification; (2) the use of the specifications is for informational purposes and will not be
copied or posted on any network computer or broadcast in any media and will not be otherwise resold or transferred for
commercial purposes; and (3) no modifications are made to this specification. This limited permission automatically terminates
without notice if you breach any of these terms or conditions. Upon termination, you will destroy immediately any copies of the
specifications in your possession or control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may require use of
an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a license may be required by
any OMG specification, or for conducting legal inquiries into the legal validity or scope of those patents that are brought to its
attention. OMG specifications are prospective and advisory only. Prospective users are responsible for protecting themselves
against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications regulations and
statutes. This document contains information which is protected by copyright. All Rights Reserved. No part of this work covered
by copyright herein may be reproduced or used in any form or by any means--graphic, electronic, or mechanical, including
photocopying, recording, taping, or information storage and retrieval systems--without permission of the copyright owner.

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY CONTAIN
ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE MAKE
NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS PUBLICATION, INCLUDING
BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF
MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE. IN NO EVENT
SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE COMPANIES LISTED ABOVE BE LIABLE FOR
ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL, CONSEQUENTIAL,
RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS, REVENUE, DATA OR USE, INCURRED BY
ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE FURNISHING, PERFORMANCE, OR USE OF
THIS MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you. This
disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1) (ii) of The
Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph (c)(1) and (2) of the
Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified in 48 C.F.R. 227-7202-2 of
the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of the Federal Acquisition Regulations and
its successors, as applicable. The specification copyright owners are as indicated above and may be contacted through the
Object Management Group, 250 First Avenue, Needham, MA 02494, U.S.A.

TRADEMARKS

MDA®, Model Driven Architecture®, UML®, UML Cube logo®, OMG Logo®, CORBA® and XMI® are registered
trademarks of the Object Management Group, Inc., and Object Management Group™, OMG™ , Unified Modeling
Language™, Model Driven Architecture Logo™, Model Driven Architecture Diagram™, CORBA logos™, XMI Logo™,
CWM™, CWM Logo™, IIOP™ , MOF™ , OMG Interface Definition Language (IDL)™, and SysML™ are trademarks of
the Object Management Group. All other products or company names mentioned are used for identification purposes only, and
may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its designees) is
and shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer software to use
certification marks, trademarks or other special designations to indicate compliance with these materials.

Software developed under the terms of this license may claim compliance or conformance with this specification if and only if
the software compliance is of a nature fully matching the applicable compliance points as stated in the specification. Software
developed only partially matching the applicable compliance points may claim only that the software was based on this
specification, but may not claim compliance or conformance with this specification. In the event that testing suites are
implemented or approved by Object Management Group, Inc., software developed using this specification may claim
compliance or conformance with the specification only if the software satisfactorily completes the testing suites.

OMG’s Issue Reporting Procedure

All OMG specifications are subject to continuous review and improvement. As part of this pro-
cess we encourage readers to report any ambiguities, inconsistencies, or inaccuracies they may
find by completing the Issue Reporting Form listed on the main web page http://www.omg.org,
under Documents, Report a Bug/Issue (http://www.omg.org/technology/agreement.htm).

Table of Contents

Preface ... v

1 Scope ... 1

2 Conformance .. 1

3 Normative References ... 1

4 Terms and Definitions .. 2

5 Symbols ... 2

6 Additional Information .. 2
6.1 Changes to Adopted OMG Specifications ..2

6.2 How to Read this Specification ..2

6.3 Acknowledgements ...3

6.4 Proof of Concept ...3

7 CORBA Binding for WSDL ... 5
7.1 Overview ...5

7.2 Namespace ...5

7.3 Mapping IDL to XML Schema ..5

7.4 CORBA Type Map ..6

 7.4.1 Primitives ... 6
 7.4.2 Constant .. 7
 7.4.3 Enum ... 7
 7.4.4 Struct ... 8
 7.4.5 Exception .. 9
 7.4.6 Fixed ... 10
 7.4.7 Union ... 11
 7.4.8 Typedef ... 12
 7.4.9 Bounded/Unbounded Strings.. 13
 7.4.10 Array ... 13
 7.4.11 Sequence .. 14
 7.4.12 Anonymous types .. 15
 7.4.13 String ... 15
 7.4.14 Fixed ... 15
 7.4.15 Sequence .. 16
 7.4.16 Array ... 16
 7.4.17 Object References .. 17
CORBA Binding for WSDL, Beta 1 i

7.5 CORBA Binding ..18

 7.5.1 Binding Element .. 18

7.6 CORBA Services ...20

7.7 CORBA Types Not Supported ..21

A - Translation from IDL to WSDL/XMLSchema 23
ii CORBA Binding for WSDL, Beta 1

Preface

About the Object Management Group

OMG

Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer industry
standards consortium that produces and maintains computer industry specifications for interoperable, portable and
reusable enterprise applications in distributed, heterogeneous environments. Membership includes Information
Technology vendors, end users, government agencies and academia.

OMG member companies write, adopt, and maintain its specifications following a mature, open process. OMG's
specifications implement the Model Driven Architecture® (MDA®), maximizing ROI through a full-lifecycle approach to
enterprise integration that covers multiple operating systems, programming languages, middleware and networking
infrastructures, and software development environments. OMG's specifications include: UML® (Unified Modeling
Language™); CORBA® (Common Object Request Broker Architecture); CWM™ (Common Warehouse Metamodel);
and industry-specific standards for dozens of vertical markets.

More information on the OMG is available at http://www.omg.org/.

OMG Specifications

As noted, OMG specifications address middleware, modeling and vertical domain frameworks. A catalog of all OMG
Specifications is available from the OMG website at:

http://www.omg.org/technology/documents/spec_catalog.htm

Specifications within the Catalog are organized by the following categories:

OMG Modeling Specifications

• UML

• MOF

• XMI

• CWM

• Profile specifications.

OMG Middleware Specifications

• CORBA/IIOP

• IDL/Language Mappings

• Specialized CORBA specifications

• CORBA Component Model (CCM).

Platform Specific Model and Interface Specifications

• CORBAservices
CORBA Binding for WSDL, Beta 1 v

• CORBAfacilities

• OMG Domain specifications

• OMG Embedded Intelligence specifications

• OMG Security specifications.

All of OMG’s formal specifications may be downloaded without charge from our website. (Products implementing OMG
specifications are available from individual suppliers.) Copies of specifications, available in PostScript and PDF format,
may be obtained from the Specifications Catalog cited above or by contacting the Object Management Group, Inc. (as of
January 16, 2006) at:

OMG Headquarters
140 Kendrick Street
Building A, Suite 300
Needham, MA 02494
USA
Tel: +1-781-444-0404
Fax: +1-781-444-0320
Email: pubs@omg.org

Certain OMG specifications are also available as ISO standards. Please consult http://www.iso.org

Typographical Conventions

The type styles shown below are used in this document to distinguish programming statements from ordinary English.
However, these conventions are not used in tables or section headings where no distinction is necessary.

Times/Times New Roman - 10 pt.: Standard body text

Helvetica/Arial - 10 pt. Bold: OMG Interface Definition Language (OMG IDL) and syntax elements.

Courier - 10 pt. Bold: Programming language elements.

Helvetica/Arial - 10 pt: Exceptions

Note – Terms that appear in italics are defined in the glossary. Italic text also represents the name of a document, specification,
or other publication.

Issues

The reader is encouraged to report any technical or editing issues/problems with this specification to http://www.omg.org/
technology/agreement.htm.
vi CORBA Binding for WSDL, Beta 1

1 Scope

This specification defines a CORBA binding for WSDL to allow CORBA services to be described using WSDL, and to
allow native CORBA communication mechanisms to be specified in WSDL.

To achieve an unambiguous, bijective mapping between CORBA and WSDL/XMLSchema, this specification defines:

• A mapping of IDL types to XML Schema types, based on the “CORBA to WSDL/SOAP Interworking Specification”
(formal/06-11-01), with the exceptions detailed in section 7.3 of this specification.

• An extension to the Web Service Description Language (WSDL) definitions element that defines a CORBA type
map element. The purpose of the CORBA type map is to retain the information lost in translation from IDL definitions
to WSDL/XMLSchema definitions (see “Annex A” on page 23).

• Extensions to the Web Service Description Language (WSDL) physical elements binding and service, to define
CORBA binding and CORBA service elements.

Compliance to this specification will enable:

• Existing CORBA endpoints to be exposed as Web services, enabling Web service applications to access to existing
CORBA services.

• Existing Web services to respond to existing CORBA clients invocations by simply adding a CORBA typemap ele-
ment, a CORBA binding element, and a CORBA service element in their WSDL contracts.

• Existing Web services clients and servers to use CORBA IIOP as an underlying transport by simply modifying their
WSDL contracts.

2 Conformance

Implementations must support the entire mapping, specifically those outlined in Chapter 7.

3 Normative References

• WSDL 1.1: “Web Services Description Language (WSDL) 1.1” http://www.w3.org/TR/wsdl

• XML Schema 1.0: “XML Schema Part 1: Structures” http://www.w3.org/TR/xmlschema-1/, “XML Schema Part 2:
Datatypes” http://www.w3.org/TR/xmlschema-2/

• XML Schema 1.1: “XML Schema 1.1 Part 1: Structures” (Working Draft) http://www.w3.org/TR/2004/WD-
xmlschema11-1-20040716/, “XML Schema 1.1 Part 2: Datatypes” (Working Draft) http://www.w3.org/TR/2004/WD-
xmlschema11-2-20040716/

• Xpath 1.0: “XML Path Language (XPath) Version 1.0” http://www.w3.org/TR/xpath

• WSI-BP 1.0: “Web Services Interoperability Basic Profile Version 1.0” http://www.ws-i.org/Profiles/BasicProfile-
1.0- 2004-04-16.html
CORBA Binding for WSDL, Beta 1 1

http://www.ws-i.org/Profiles/BasicProfile-1.0- 2004-04-16.html
http://www.ws-i.org/Profiles/BasicProfile-1.0- 2004-04-16.html
http://www.w3.org/TR/wsdl
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/TR/2004/WD-xmlschema11-1-20040716/
http://www.w3.org/TR/2004/WD-xmlschema11-2-20040716/
http://www.w3.org/TR/2004/WD-xmlschema11-2-20040716/
http://www.w3.org/TR/xpath

• OMG IDL Syntax and Semantics defined in CORBA 2.6 Specification (formal/01-12-35) http://www.omg.org/cgi-
bin/doc?formal/01-12-35

• CORBA to WSDL/SOAP Interworking 1.2.1 (formal/2008-08-03) http://www.omg.org/cgi-bin/doc?formal/2008-08-
03

• Web Services Addressing (WS-Addressing) http://www.w3.org/Submission/2004/SUBM-ws-addressing-20040810/

4 Terms and Definitions

This specification defines no new terms other than those defined by those documents listed in the Normative References
section (3).

5 Symbols

List of symbols/abbreviations.

IDL—Interface Definition Language

WSDL—Web Services Description Language

CORBA—Common Object Request Broker Architecture

SOAP—Simple Object Access Protocol

6 Additional Information

6.1 Changes to Adopted OMG Specifications

The changes made by this CORBA Binding for WSDL document in section 7.3 to the existing CORBA to WSDL/SOAP
interworking specification need to be reflected in a new version of CORBA to WSDL/SOAP interworking specification.

This new version also needs to include the specification of a new version number to include in the mapping version
indicator schema definition.

6.2 How to Read this Specification

The rest of this document contains the technical content of this specification. This document provides a specification for
the mapping of IDL to WSDL, and with a few exceptions, which are noted in the specification itself, is complete. In
addition, the mapping, as described in this specification, is already available to the market as a product.
2 CORBA Binding for WSDL, Beta 1

http://www.omg.org/cgi-bin/doc?formal/01-12-35
http://www.omg.org/cgi-bin/doc?formal/01-12-35
http://www.omg.org/cgi-bin/doc?formal/2008-08-03
http://www.omg.org/cgi-bin/doc?formal/2008-08-03
http://www.w3.org/Submission/2004/SUBM-ws-addressing-20040810/

6.3 Acknowledgements

The following companies submitted and/or supported parts of this specification:

• IONA Technologies
The IONA Building
Shelbourne Road
Ballsbridge
Dublin 4, Ireland
Contact: Matteo Vescovi (matteo.vescovi@iona.com)

• Fujitsu Software Corp. (supporter)
tel: +1 732-801-5744
Fax: +1 732-774-5133
Contact: Tom Rutt (trutt@us.fujitsu.com)

6.4 Proof of Concept

IONA Technologies PLC has completed a product in the market, which is the basis of this specification. This product is
part of a suite of middleware interoperability design and implementation tools known collectively as Artix™. IONA
Technologies PLC is also involved in the Apache CXF open source project to build a robust open source services
framework and part of its runtime and tooling components are based on this specification.
CORBA Binding for WSDL, Beta 1 3

4 CORBA Binding for WSDL, Beta 1

7 CORBA Binding for WSDL

7.1 Overview

Describing a CORBA object in WSDL essentially requires recasting both its IDL definition and its communication details
as WSDL definitions. Specifically, this requires:

1. Mapping IDL types used by the CORBA object’s interface to XML schema types.

2. Defining the operation and attribute details of the object’s interface as WSDL portType and binding elements.

3. Defining a WSDL service that combines the type and interface information defined in the prior steps with the
communication details from the object’s reference.

This specification, which targets CORBA 2.6 and WSDL 1.1, details an approach for fulfilling these fundamental
requirements.

This specification details an approach for fulfilling the following requirements. The specification supports CORBA 2.6
with the exception of types specified in section 7.7 and supports WSDL 1.1.

Text in files included with a #include directive are treated as if it appeared in the including file.

7.2 Namespace

CORBA bindings require the use of the corba namespace, defined as follows:

xmlns:corba="TO_BE_ASSIGNED_BY_OMG"

7.3 Mapping IDL to XML Schema

This specification follows the IDL to XML Schema mapping defined in the “CORBA to WSDL/SOAP Interworking
Specification” (formal/06-11-01), except for the following differences (note that XML Schema types in the following list
use the common namespace prefix “xs” to distinguish them from IDL types):

• IDL any maps to xs:anyType. While the IDL type comprises a TypeCode and a value, what matters in most
applications is just the value, given that TypeCode does not map well into non-CORBA applications.

• IDL sequence<octet> maps to either xs:base64Binary or xs:hexBinary.

• IDL sequence<octet,n> maps to a restricted xs:simpleType based on either xs:base64Binary or
xs:hexBinary. The xs:maxLength facet’s value is n.

typedef sequence<octet,10> OctetSeq;

<xs:simpleType name="OctetSeq">
 <xs:restriction base="xs:base64Binary">
 <xs:maxLength value="10"/>
 <xs:restriction>
<xs:simpleType>
CORBA Binding for WSDL, Beta 1 5

• IDL octet[n] maps to a restricted xs:simpleType based on either xs:base64Binary or xs:hexBinary.
The xs:length facet’s value is n.

In this specification, the original mapping of modules is preserved (i.e., they are mapped as prefixes separated by '.'
characters, e.g., module M containing definition A results in the name M.A for that definition).

7.4 CORBA Type Map

Because of the impedance mismatch between XML Schema and IDL, it is impossible to fully recover the original
definition of a CORBA type from just its mapped XML Schema type alone. This specification therefore specifies a
WSDL extension called a “CORBA type map.” The type map specifies CORBA type definitions that are used within
CORBA bindings to accurately specify constants, parameter types, return types, and exception types.

The CORBA type map is specified in a WSDL element that appears as a child of the WSDL definitions element. Because
IDL types are not globally unique, the CORBA type map element requires a targetNamespace attribute that should be
unique and is represented by a URI. Namespaces should conform to the specification at: http://www.w3.org/TR/1999/
REC-xml-names-19990114/.

For example:

<corba:typeMapping targetNamespace="http://example.com/idl/example/typemap">
</corba:typeMapping>

Examples in this specification that refer to the CORBA type map namespace use the namespace prefix corbatm.

7.4.1 Primitives

The primitive mappings are shown in the table below.

typedef octet[10] OctetArray;

<xs:simpleType name="OctetArray">
 <xs:restriction base="xs:base64Binary">
 <xs:length value="10"/>
 <xs:restriction>
<xs:simpleType>

Table 7.1 - Schema mapping for CORBA primitive types

IDL type CORBA type XML Schema type

long corba:long xs:int

unsigned Long corba:ulong xs:unsignedInt

long long corba:longlong xs:long

unsigned long long corba:ulonglong xs:unsignedLong

short corba:short xs:short

unsigned short corba:ushort xs:unsignedShort

float corba:float xs:float
6 CORBA Binding for WSDL, Beta 1

7.4.2 Constant

An IDL constant is specified by a corba:const element. It has four required attributes:

1. name: the fully-qualified name of the constant

2. value: the value of the constant

3. idltype: the IDL type of the constant

4. type: the Schema type of the constant

For example, the following IDL constant definition:

results in the following type map definition:

7.4.3 Enum

An IDL enum is defined by a corba:enum element. This element has three required attributes, as listed below, and has
one child corba:enumerator element for each enumerator. A corba:enumerator element has a single attribute,
the value of the enumerator.

1. name: fully-scoped name of the enum type

2. repositoryID: the repository ID of the enum type

3. type: the Schema type of the enum type

double corba:double xs:double

long double corba:longdouble xs:double

char corba:char xs:byte

wchar corba:wchar xs:string

boolean corba:boolean xs:boolean

Octet corba:octet xs:unsignedByte

string corba:string xs:string

wstring corba:wstring xs:string

any corba:any xs:anyType

// IDL
const short Length = 5;

<corba:typeMapping targetNamespace="http://mycompany.com/myidl">
<corba:const name="Length" value="5" idltype="corba:short" type="xs:short"/>

</corba:typeMapping>

Table 7.1 - Schema mapping for CORBA primitive types

IDL type CORBA type XML Schema type
CORBA Binding for WSDL, Beta 1 7

For example, the following enum definition:

results in the following type map definition:

7.4.4 Struct

An IDL struct is specified by a corba:struct element. This element has three required attributes, as listed below,
and has one child corba:member element for each struct member. A corba:member element requires two
attributes, the name of the member and its idltype.

1. name: the fully-qualified name of the struct type

2. repositoryID: the repository ID of the struct type

3. type: the Schema type of the struct type

For example, the following struct definition:

results in the following XMLSchema definition, in accordance with the “CORBA to WSDL/SOAP Interworking
Specification” - formal/06-11-01 (this example is defined in a namespace identified by the xsd1 prefix):

// IDL
module M {
 enum Color { RED, BLUE, GRAY };
};

<corba:typeMapping targetNamespace="http://mycompany.com/myidl">
<corba:enum name="M.Color" repositoryID="IDL:M/Color:1.0" type="xsd1:M.Colour">
 <corba:enumeration value="RED"/>

 <corba:enumeration value="BLUE"/>
 <corba:enumeration value="GRAY"/>

 </corba:enum>
</corba:typeMapping>

// IDL
struct Employee {
 string name;
 long id;
};

<xs:complexType name="Employee">
 <xs:sequence>
 <xs:element name="name" type="xs:string">
 </xs:element>
 <xs:element name="id" type="xs:int">
 </xs:element>
 </xs:sequence>
</xs:complexType>
8 CORBA Binding for WSDL, Beta 1

and results in the following type map definition:

And the following struct definition, which reuses previously defined struct Employee type:

results in the following type map definition:

7.4.5 Exception

Both a User or a System IDL exception is specified by a corba:exception element, which is identical to the
corba:struct element except that it can be empty, i.e., it can hold zero or more corba:member child elements.

This element has three required attributes, as listed below, and if members exist it will have one child corba:member
element for each struct member. A corba:member element requires two attributes, the name of the member and its
idltype.

1. name: the fully-qualified name of the struct type

2. repositoryID: the repository ID of the struct type

3. type: the Schema type of the struct type

For example, the following exception definition with no members:

results in the following type map definition:

<corba:struct repositoryID="IDL:Employee:1.0" type="xsd1:Employee" name="Employee">
 <corba:member name="name" idltype="corba:string" />
 <corba:member name="id" idltype="corba:long" />
</corba:struct>

// IDL
struct EmployeeDepartment {
 Employee emp;
 string dept;
};

<corba:struct repositoryID="IDL:EmployeeDepartment:1.0" type="xsd1:EmployeeDepartment"
 name="EmployeeDepartment">
 <corba:member name="emp" idltype="corbatm:Employee" />
 <corba:member name="dept" idltype="corba:string" />
</corba:struct>

// IDL
Exception NotFound {};

<corba:exception name="NotFound" repositoryID="IDL:NotFound:1.0" type="xsd1:NotFound">
</corba:exception>
CORBA Binding for WSDL, Beta 1 9

And, the following exception definition with members:

results in the following type map definition:

And the following exception definition, which reuses the previously defined struct Employee type:

results in the following type map definition:

7.4.6 Fixed

An IDL fixed-point type is specified by a corba:fixed element. This element has five required attributes:

1. name: the name of the fixed-point type

2. repositoryID: the repository ID of the fixed-point type

3. digits: the number of digits specified for the fixed-point type

4. scale: the scale of the fixed-point type

5. type: the Schema type of the fixed-point type

// IDL
exception NotFound {
 string reason;
 string type;
};

<corba:exception name="NotFound" repositoryID="IDL:NotFound:1.0" type="xsd1:NotFound">
 <corba:member name="reason" idltype="corba:string"/>
 <corba:member name="type" idltype="corba:string"/>
</corba:exception>

// IDL
exception NotFound {
 Employee emp;
 string reason;
};

<corba:exception repositoryID="IDL:Foo/NotFound:1.0" type="xsd1:NotFound" name="NotFound">
 <corba:member name="emp" idltype="corbatm:Employee" />
 <corba:member name="reason" idltype="corba:string" />
</corba:exception>
10 CORBA Binding for WSDL, Beta 1

For example, the following fixed-point type definition:

results in the following type map definition:

7.4.7 Union

An IDL union type is specified by a corba:union element. This element has four required attributes and one optional
attribute, as listed below, and has one child corba:unionbranch element for each union member. A
corba:unionbranch element requires two attributes, the name of the union member and its idltype. It also
contains one child corba:case element for each discriminator value that corresponds to this union member. The
discriminator value is specified by the label attribute.

1. name: the name of the union type

2. repositoryID: the repository ID of the union type

3. discriminator: the type of the discriminator of the union type

4. default: this optional boolean attribute, which defaults to false, is set to true for the default branch of the
union, if any

5. type: the Schema type of the union type

For example, the following union definition:

// IDL
typedef fixed<4,2> MyFixed;

<corba:fixed name="MyFixed" repositoryID="IDL:MyFixed:1.0" digits="4" scale="2"
 type="xsd:decimal"/>

// IDL
union MyUnion switch(short) {
 case 0:
 string case0;
 case 1:
 case 2:
 float case12;
 case 3:
 Employee case3;
 default:
 long case_def;
};
CORBA Binding for WSDL, Beta 1 11

results in the following type map definition:

7.4.8 Typedef

An IDL typedef is specified by a corba:alias element. This element has four required attributes:

1. name: the name of the typedef

2. repositoryID: the repository ID of the typedef

3. basetype: the IDL base type

4. type: the Schema type

For example, the following typedef definition:

results in the following type map definition:

And the following typedef definition:

results in the following type map definition:

<corba:union name="MyUnion" repositoryID="IDL:MyUnion:1.0" discriminator="corba:short"
 type="xsd1:MyUnion">
 <corba:unionbranch name="case0" idltype="corba:string">

 <corba:case label="0"/>
 </corba:unionbranch>
 <corba:unionbranch name="case12" idltype="corba:float">

 <corba:case label="1"/>
 <corba:case label="2"/>
 </corba:unionbranch>
 <corba:unionbranch name="case3" idltype="corbatm:Employee">
 <corba:case label="3"/>
 </corba:unionbranch>
 <corba:unionbranch name="case_def" idltype="corba:long" default="true"/>
</corba:union>

// IDL
typedef long MyLong;

<corba:alias name="MyLong" repositoryID="IDL:MyLong:1.0" basetype="corba:long"
 type="xsd:int"/>

// IDL
typedef Employee MyEmployee;

<corba:alias basetype="corbatm:Employee" repositoryID="IDL:MyEmployee:1.0"
name="MyEmployee" />
12 CORBA Binding for WSDL, Beta 1

7.4.9 Bounded/Unbounded Strings

An IDL unbounded string maps to a primitive xsd:string as previously indicated.

An IDL bounded string is specified by a corba:anonstring.

The corba:anonstring has three required attributes:

1. name: the name of the string

2. bound: the bound of the string

3. type: the Schema type

For example:

results in the following type map definition:

7.4.10 Array

An IDL array is specified by a corba:array element. This element has five required attributes:

1. name: the name of the array

2. repositoryID: the repository ID of the array type

3. elemtype: the element type of the array

4. bound: the size of the array

5. type: the Schema type of the array

For example, the following array definition:

results in the following type map definition:

// IDL
typedef string <10> myString;

<corba:anonstring bound="10" name="_1_myString" type="xsd1:myString"/>
<corba:alias basetype="corbatm:_1_myString" name="mystring" repositoryID="IDL:myString:1.0"
 type="xsd1:myString"/>

// IDL
typedef long MyArray[5];

<corba:array name="MyArray" repositoryID="IDL:MyArray:1.0" elemtype="corba:long"
 bound="5" type="xds1:MyArray"/>
CORBA Binding for WSDL, Beta 1 13

And the following array definition:

results in the following type map definition:

7.4.11 Sequence

An IDL sequence is specified by a corba:sequence element. This element has five required attributes:

1. name: the name of the sequence

2. repositoryID: the repository ID of the sequence type

3. elemtype: the element type of the sequence type

4. bound: the maximum size of the sequence type. An unbounded sequence has a bound value of zero.

5. type: the Schema type of the sequence type

For example, the following sequence definitions:

result in the following type map definition:

And the following sequence definitions:

// IDL
typedef Employee MyEmployees[10];

<corba:array elemtype="corbatm:Employee" elemname="item" bound="10"
 repositoryID="IDL:MyEmployees:1.0" type="xsd1:MyEmployees" name="MyEmployees" />

// IDL
typedef sequence<long> MySeq;
typedef sequence<string, 10> MyBStringSeq;

<corba:sequence name="MySeq" repositoryID="IDL:MySeq:1.0" elemtype="corba:long"
 bound="0" type="xsd1:MySeq"/>
<corba:sequence name="MyBStringSeq" repositoryID="IDL:MyBStringSeq:1.0"
 elemtype="corba:string" bound="10" type="xsd1:MyBStringSeq"/>

// IDL
typedef sequence<Employee> MyEmpSeq;
typedef sequence<Employee, 20> MyBoundedEmpSeq;
14 CORBA Binding for WSDL, Beta 1

result in the following type map definition:

7.4.12 Anonymous types

Though their use is now deprecated, some older IDL definitions still use anonymous types. In such cases, special
elements are used in the CORBA type map to specify the anonymous types. All anonymous type elements have at least
the following required attribute:

• name: name of the anonymous type. This name is used only to refer to the type within the type map, so while the
precise form of the name is not standardized, it must be guaranteed to be unique within the type map.

Specific anonymous type elements may require additional attributes or child elements as well.

7.4.12.1 String

The corba:anonstring and corba:anonwstring elements are used to specify anonymous string and
wstring types, respectively. Each element requires three attributes: name as described above, and bound, which
specifies the bound of the string. Unbounded strings have a bound of zero. The type attribute specifies the schema type.

7.4.12.2 Fixed

The corba:anonfixed element is used to specify anonymous fixed-point types. This element requires four attributes:
name as described above, as well as digits, which specifies the number of digits for the fixed-point type, and scale,
which defines the scale of the fixed-point type. The type attribute specifies the schema type.

For example, the following struct definition containing an anonymous string and anonymous fixed-point type:

results in the following type map:

<corba:sequence elemtype="corbatm:Employee" elemname="item" bound="0"
 repositoryID="IDL:MyEmpSeq:1.0" type="xsd1:MyEmpSeq" name="MyEmpSeq" />
<corba:sequence elemtype="corbatm:Employee" elemname="item" bound="20"
 repositoryID="IDL:MyBoundedEmpSeq:1.0" type="xsd1:MyBoundedEmpSeq"
 name="MyBoundedEmpSeq" />

// IDL
struct S {
 string<4> str;
 fixed<5,3> fx;
};

<corba:anonstring name="_1_S" bound="4" type="xsd1:_1_S"/>
<corba:anonfixed name="_2_S" digits="5" scale="3" type="xsd:decimal"/>
<corba:struct name="S" repositoryID="IDL:S:1.0" type="xsd1:s">
 <corba:member name="str" idltype="corbatm:_1_S"/>
 <corba:member name="fx" idltype="corbatm:_2_S"/>
</corba:struct>
CORBA Binding for WSDL, Beta 1 15

7.4.12.3 Sequence

The corba:anonsequence is deprecated since Corba 2.6. The corba:anonsequence element is used to specify
anonymous sequences. This element requires four attributes: name as described above, as well as elemtype, which
defines the type of the sequence element type, and bound, which specifies the maximum size of the sequence. The
type attribute specifies the schema type.

For example, the following sequence definition:

results in the following type map:

7.4.12.4 Array

The corba:anonarray element is used to specify anonymous arrays. This element requires four attributes: name as
described above, as well as elemtype, which defines the type of the array element type, and bound, which specifies the
size of the array. The type attribute specifies the schema type.

For example, the following multidimensional array definition:

results in the following type map definition:

The corba:anonarray element is also used for cases in which array members of constructed types, such as structs, are
defined using anonymous array types.

// IDL
typedef sequence<sequence<long> > SeqSeqLong;

<corba:anonsequence name="-2-SeqSeqLong" elemtype="corba:long" bound="0"
 type="xsd1:_2_SeqSeq:Long"/>
<corba:sequence name="SeqSeqLong" repositoryID="IDL:SeqSeqLong:1.0"
 elemtype="corbatm:_2_SeqSeqLong" bound="0" type="xsd1:SeqSeqLong"/>

// IDL
typedef long MyArray[5][10];

<corba:anonarray name="-1-MyArray" elemtype="corba:long" bound="5"
 type="xsd1:_1_MyArray"/>
<corba:array name="MyArray" repositoryID="IDL:MyArray:1.0"
 elemtype="corbatm:_1_MyArray" bound="10" type="xsd1:MyArray"/>
16 CORBA Binding for WSDL, Beta 1

7.4.13 Object References

Object references in IDL can be passed as a parameter or a return value of an operation.

An IDL Object Reference is specified by a corba:object element. The corba:object represents either a
generic object reference of the built in type “Object” or a type specific object reference where the IDL type is a custom
specific type.

This element has four required attributes:

1. name: the name of type.

2. repositoryID: the repository ID of the Object Reference type.

3. binding: the name of the WSDL binding element associated to the CORBA binding of the type, as defined in sec-
tion 7.5. For the generic object reference case this will be left blank.

4. type: wsa:EndpointReferenceType

The IDL built-in type Object maps to the wsa:EndpointReferenceType in WSDL. It is defined by the WS-
Addressing Standard. So the following will need to be added to definitions section in the WSDL contract:

where WSAddressingURL can either be the path to an .xsd file on your local file system or a URL to retrieve the
schema from a remote location.

Example: Built in type Object

In order to declare the endpoint reference type as the return value from the create_account operation, the operation's
request and reply messages should be as follows:

This results in the following generic object reference in the type map definition:

<import namespace="http://www.w3.org/2005/08/addressing" schemaLocation="WSAddressingURL">

// IDL
interface Bank {
 Object create_account(in string account_name);
};

<message name="create_account">
 <part name="account_name" type="xsd:string"/>
</message>
<message name="create_accountResponse">
 <part name="return" type="wsa:EndpointReferenceType"/>
</message>

<corba:object binding="" name="CORBA.Object" repositoryID="IDL:omg.org/CORBA/Object/1.0"
 type="wsa:EndpointReferenceType"/>
CORBA Binding for WSDL, Beta 1 17

Example: An operation returns a reference to a specific type. The return value is defined to be of Account type.

The operation's request and reply message should be as follows.

This results in the following type-specific object reference in the type map definition:

7.5 CORBA Binding

This specification extends WSDL with a CORBA-specific binding. Such a binding pertains to a specific IDL interface,
which we refer to as the primary interface below.

Examples in this section that specify WSDL entities use the common namespace prefix “wsdl” where appropriate to
distinguish them from CORBA definitions.

7.5.1 Binding Element

A corba:binding element appears within a WSDL binding element. It has one required attribute named
repositoryID. This attribute specifies the repository ID of the primary interface. It also has an optional attribute
named bases that specifies the repository IDs of the base interfaces of the primary interface. The bases attribute can
be used to look up operations and attributes inherited by the primary interface.

For example, the corba:binding element for interface Foo with bases Base1 and Base2, assuming default
repository IDs for all three interfaces, is specified as follows:

// IDL
interface Account {
 float get_balance();
};

interface Bank {
 ::Account create_account(in string account_name);
};

<message name="create_account">
 <part name="account_name" type="xsd:string"/>
</message>
<message name="create_accountResponse">
 <part name="return" type="wsa:EndpointReferenceType"/>
</message>

<corba:object binding="AccountCORBABinding" name="Account"
 repositoryID="IDL:Account:1.0" type="wsa:EndpointReferenceType"/>

<wsdl:binding name="FooCORBABinding" type="tns:Foo">
 <corba:binding repositoryID="IDL:Foo:1.0" bases="IDL:Base1:1.0 IDL:Base2:1.0"/>
</wsdl:binding>
18 CORBA Binding for WSDL, Beta 1

A corba:operation element, which appears within a WSDL operation element, defines an IDL operation. It has
one required attribute named name, which specified the operation name. A corba:operation element holds zero or
more corba:param elements, which are used to specify the operation’s parameters. Operations with a non-void return
value also specify a corba:return element, which specifies the operation's return type and name. The name attribute
of a corba:param element specifies the parameter name. Its mode attribute specifies the direction of the parameter, and
must be one of “in,” “inout,” or “out.” Its idltype attribute specifies the IDL type of the parameter. The
corba:return element also has an idltype attribute, which specifies the return type of the operation.

For example, given the Foo interface used in the previous example:

The corba:binding for Foo, including its operation definition, is specified as follows:

IDL attributes are treated as two operations, named by preceding the attribute name with _get_ to define the read
operation and _set_ to define the write operation. Readonly attributes have only the _get_ operation.

All exceptions appearing within an operation’s raises clause are specified using the corba:raises element. This
element has one required attribute, exception, which specifies the exception type from the CORBA type map. A separate
corba:raises element appears for each exception in the raises clause.

For example, adding an exception to the Foo interface used in the previous example:

// IDL
interface Foo : Base1, Base2
{
 string lookup(in string x);
};

<wsdl:binding name="FooCORBABinding" type="ns:Foo">
 <corba:binding repositoryID="IDL:Foo:1.0" bases="IDL:Base1:1.0 IDL:Base2:1.0"/>
 <wsdl:operation name="lookup">
 <corba:operation name="lookup">
 <corba:param name="x" mode="in" idltype="corba:string"/>
 <corba:return idltype="corba:string" name="return"/>
 </corba:operation>
 <wsdl:input/>
 <wsdl:output/>
 </wsdl:operation>
</wsdl:binding>

// IDL
interface Foo : Base1, Base2
{
 exception NotFound {};
 string lookup(in string x) raises(NotFound);
};
CORBA Binding for WSDL, Beta 1 19

The corba:binding for Foo is specified as follows:

Note that in the example above, the type of the exception in the corba:raises clause refers to the Foo.NotFound
definition specified in the accompanying CORBA type map (not shown) and also maps to the wsdl:fault element
within the binding.

7.6 CORBA Services

Defining a WSDL service with a CORBA binding requires specifying the CORBA binding as the service binding, and
supplying the location of a CORBA object that can fulfill that binding.

A CORBA object location is specified as the value of the location attribute of a corba:address element. The location
can be defined in the following ways:

• A file URL that refers to a file containing a stringified object reference.

• A corbaname URL specifying an object reference within a CORBA Naming service instance o a stringified object
reference.

• A corbaloc URL.

• A placeholder IOR, specified by the string “IOR:,” which allows the actual object reference to be specified by an
application at runtime.

For example, given the FooCORBABinding as defined in the previous section, you can specify the filename /tmp/
myobject.ior in URL form to indicate that it contains the CORBA object reference for the service:

<wsdl:binding name="FooCORBABinding" type="ns:Foo">
 <corba:binding repositoryID="IDL:Foo:1.0" bases="IDL:Base1:1.0 IDL:Base2:1.0"/>
 <wsdl:operation name="lookup">
 <corba:operation name="lookup">
 <corba:param name="x" mode="in" idltype="corba:string"/>
 <corba:return idltype="corba:string"/>
 <corba:raises exception="corbatm:Foo.NotFound"/>
 </corba:operation>
 <wsdl:input/>
 <wsdl:output/>
 <wsdl:fault name="Foo.NotFound"/>
 </wsdl:operation>
</wsdl:binding>

<wsdl:service name="FooCORBAService">
 <wsdl:port name="FooCORBAPort" binding="tns:FooCORBABinding">

 <corba:address location="file:///tmp/myobject.ior"/>
 </wsdl:port>
</wsdl:service>
20 CORBA Binding for WSDL, Beta 1

7.7 CORBA Types Not Supported

The following types are not supported in this specification.

Tools mapping these IDL types to WSDL should output a WARNING Message indicating that they are not supported and
continue to map the remaining IDL types.

• Value types—difficult to implement and not widely (or properly) supported by many ORBs.

• Boxed values—difficult to implement and not widely (or properly) supported by many ORBs.

• Local interfaces—they are not remotely accessible.

• Abstract interfaces—difficult to implement and not widely (or properly) supported by many ORBs.
CORBA Binding for WSDL, Beta 1 21

22 CORBA Binding for WSDL, Beta 1

Annex A

Translation from IDL to WSDL/XMLSchema

The purpose of the CORBA type map is to retain the information lost in translation from IDL definitions to WSDL/
XMLSchema definitions. For example, the “CORBA to WSDL/SOAP Interworking Specification” defines that for the
following CORBA IDL type:

struct maps to the following XML Schema type:

The following CORBA IDL type:

typedef string MyType[1];

also maps to the following XML Schema type:

As illustrated, two distinct IDL types (a struct containing a string and an array of string of size one) are
mapped to the same XML Schema type (a complexType containing a sequence containing an element of type
string).

This means that the remote end of the connection cannot determine which CORBA IDL type was sent just by looking at
the information provided by the XML Schema type definitions, but requires the data encoded in the CORBA type map
element.

struct MyType {
 string MyString;
};

<xs:complexType name="MyType">
 <xs:sequence>
 <xs:element name="MyString" type="xs:string">
 </xs:element>
 </xs:sequence>
</xs:complexType>

<xs:complexType name="MyType">
 <xs:sequence>
 <xs:element name="item" type="xs:string">
 </xs:element>
 </xs:sequence>
</xs:complexType>
CORBA Binding for WSDL, Beta 1 23

24 CORBA Binding for WSDL, Beta 1

	Preface
	1 Scope
	2 Conformance
	3 Normative References
	4 Terms and Definitions
	5 Symbols
	6 Additional Information
	6.1 Changes to Adopted OMG Specifications
	6.2 How to Read this Specification
	6.3 Acknowledgements
	6.4 Proof of Concept

	7 CORBA Binding for WSDL
	7.1 Overview
	7.2 Namespace
	7.3 Mapping IDL to XML Schema
	7.4 CORBA Type Map
	7.4.1 Primitives
	7.4.2 Constant
	7.4.3 Enum
	7.4.4 Struct
	7.4.5 Exception
	7.4.6 Fixed
	7.4.7 Union
	7.4.8 Typedef
	7.4.9 Bounded/Unbounded Strings
	7.4.10 Array
	7.4.11 Sequence
	7.4.12 Anonymous types
	7.4.13 Object References

	7.5 CORBA Binding
	7.5.1 Binding Element

	7.6 CORBA Services
	7.7 CORBA Types Not Supported

	A - Translation from IDL to WSDL/XMLSchema

