

Date: November 2008

Common Object Request Broker Architecture
(CORBA) for embedded Specification

Version 1.0

OMG Document Number: formal/2008-11-06
Standard document URL: http://www.omg.org/spec/CORBAe/1.0
Associated File(s)*: http://www.omg.org/spec/CORBAe/20080201

Source document: ptc/2008-02-03

* original zip file is ptc/2008-02-04

NOTE: This is the core CORBA/e specification. Mappings to particular programming languages, and the
Common Object Services are documented in the other specifications that together comprise the complete
CORBA specification. Please visit the CORBA download page at http://www.omg.org/technology/documents/
corba_spec_catalog.htm to find the complete CORBA specification set.

Copyright © 1998, 1999, Alcatel
Copyright © 1997, 1998, 1999 BEA Systems, Inc.
Copyright © 1995, 1996 BNR Europe Ltd.
Copyright © 1998, Borland International
Copyright © 1998, Cooperative Research Centre for Distributed Systems Technology (DSTC Pty Ltd)
Copyright © 2001, Concept Five Technologies
Copyright © 1991, 1992, 1995, 1996, Digital Equipment Corporation
Copyright © 2001, Eternal Systems, Inc.
Copyright © 1995, 1996, 1998, Expersoft Corporation
Copyright © 1996, 1997 FUJITSU LIMITED
Copyright © 1996, Genesis Development Corporation
Copyright © 1989- 2001, Hewlett-Packard Company
Copyright © 2001, HighComm
Copyright © 1998, 1999, Highlander Communications, L.C.
Copyright © 1991, 1992, 1995, 1996 HyperDesk Corporation
Copyright © 1998, 1999, Inprise Corporation
Copyright © 1996 - 2001, International Business Machines Corporation
Copyright © 1995, 1996 ICL, plc
Copyright © 1998 - 2001, Inprise Corporation
Copyright © 1998, International Computers, Ltd.
Copyright © 1995 - 2001, IONA Technologies, Ltd.
Copyright © 1998 - 2001, Lockheed Martin Federal Systems, Inc.
Copyright © 1998, 1999, 2001, Lucent Technologies, Inc.
Copyright © 1996, 1997 Micro Focus Limited
Copyright © 1991, 1992, 1995, 1996 NCR Corporation
Copyright © 1998, NEC Corporation
Copyright © 1998, Netscape Communications Corporation
Copyright © 1998, 1999, Nortel Networks
Copyright © 1998, 1999, Northern Telecom Corporation
Copyright © 1995, 1996, 1998, Novell USG
Copyright © 1991, 1992, 1995, 1996 by Object Design, Inc.
Copyright © 2008, Object Management Group, Inc.
Copyright © 1998, 1999, 2001, Objective Interface Systems, Inc.
Copyright © 1998, 1999, Object-Oriented Concepts, Inc.
Copyright © 1998, 2001, Oracle Corporation
Copyright © 1998, PeerLogic, Inc.
Copyright © 1996, Siemens Nixdorf Informationssysteme AG
Copyright © 1991 - 2001, Sun Microsystems, Inc.
Copyright © 1995, 1996, SunSoft, Inc.
Copyright © 1996, Sybase, Inc.
Copyright © 1998, Telefónica Investigación y Desarrollo S.A. Unipersonal
Copyright © 1998, TIBCO, Inc.
Copyright © 1998, 1999, Tri-Pacific Software, Inc.
Copyright © 1996, Visual Edge Software, Ltd.

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms,
conditions and notices set forth below. This document does not represent a commitment to implement any portion of this
specification in any company's products. The information contained in this document is subject to change without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free,
paid up, worldwide license to copy and distribute this document and to modify this document and distribute copies of the
modified version. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed
the copyright in the included material of any such copyright holder by reason of having used the specification set forth
herein or having conformed any computer software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant you a fully-
paid up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use this
specification to create and distribute software and special purpose specifications that are based upon this specification,
and to use, copy, and distribute this specification as provided under the Copyright Act; provided that: (1) both the
copyright notice identified above and this permission notice appear on any copies of this specification; (2) the use of the
specifications is for informational purposes and will not be copied or posted on any network computer or broadcast in any
media and will not be otherwise resold or transferred for commercial purposes; and (3) no modifications are made to this
specification. This limited permission automatically terminates without notice if you breach any of these terms or
conditions. Upon termination, you will destroy immediately any copies of the specifications in your possession or control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may
require use of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a
license may be required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of
those patents that are brought to its attention. OMG specifications are prospective and advisory only. Prospective users are
responsible for protecting themselves against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications regulations
and statutes. This document contains information which is protected by copyright. All Rights Reserved. No part of this
work covered by copyright herein may be reproduced or used in any form or by any means--graphic, electronic, or
mechanical, including photocopying, recording, taping, or information storage and retrieval systems--without permission
of the copyright owner.

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY CONTAIN
ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE
MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS PUBLICATION,
INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF
MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE. IN NO EVENT
SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE COMPANIES LISTED ABOVE BE LIABLE
FOR ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL, CONSEQUENTIAL,
RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS, REVENUE, DATA OR USE, INCURRED
BY ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE FURNISHING, PERFORMANCE, OR USE
OF THIS MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you. This

disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1) (ii) of The
Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph (c)(1) and (2) of the
Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified in 48 C.F.R. 227-7202-2 of the
DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of the Federal Acquisition Regulations and its
successors, as applicable. The specification copyright owners are as indicated above and may be contacted through the Object
Management Group, 140 Kendrick Street, Needham, MA 02494, U.S.A.

TRADEMARKS

MDA®, Model Driven Architecture®, UML®, UML Cube logo®, OMG Logo®, CORBA® and XMI® are registered trademarks
of the Object Management Group, Inc., and Object Management Group™, OMG™ , Unified Modeling Language™, Model
Driven Architecture Logo™, Model Driven Architecture Diagram™, CORBA logos™, XMI Logo™, CWM™, CWM Logo™,
IIOP™ , MOF™ , OMG Interface Definition Language (IDL)™, and OMG SysML™ are trademarks of the Object Management
Group. All other products or company names mentioned are used for identification purposes only, and may be trademarks of their
respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its designees) is and
shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer software to use certification
marks, trademarks or other special designations to indicate compliance with these materials.

Software developed under the terms of this license may claim compliance or conformance with this specification if and only if the
software compliance is of a nature fully matching the applicable compliance points as stated in the specification. Software
developed only partially matching the applicable compliance points may claim only that the software was based on this
specification, but may not claim compliance or conformance with this specification. In the event that testing suites are
implemented or approved by Object Management Group, Inc., software developed using this specification may claim compliance
or conformance with the specification only if the software satisfactorily completes the testing suites.

OMG’s Issue Reporting Procedure

All OMG specifications are subject to continuous review and improvement. As part of this pro-
cess we encourage readers to report any ambiguities, inconsistencies, or inaccuracies they may
find by completing the Issue Reporting Form listed on the main web page http://www.omg.org,
under Documents, Report a Bug/Issue (http://www.omg.org/technology/agreement.htm).

Table of Contents

Preface.. xvii

1 Scope .. 1

2 Conformance and Compliance ... 1

2.1 Definition of CORBA/e Compliance ..1

2.2 Definition of Minimum CORBA Compliance ..1

3 Additional Information ... 2

3.1 Structure of Manual... 2

3.2 Acknowledgements ...3

4 CORBA Overview ... 5

4.1 Overview ...5

4.2 Structure of an Object Request Broker ...5
4.2.1 Object Request Broker .. 9
4.2.2 Clients ... 10
4.2.3 Object Implementations .. 10
4.2.4 Object References .. 10
4.2.5 OMG Interface Definition Language ... 11
4.2.6 Mapping of OMG IDL to Programming Languages .. 11
4.2.7 Client Stubs .. 11
4.2.8 Dynamic Invocation Interface ... 11
4.2.9 Implementation Skeleton .. 12
4.2.10 Dynamic Skeleton Interface .. 12
4.2.11 Object Adapters .. 12
4.2.12 ORB Interface ... 12
4.2.13 Interface Repository ... 13
4.2.14 Implementation Repository ... 13

4.3 Structure of a Client ..13

4.4 Structure of an Object Implementation ...14

4.5 Structure of an Object Adapter ...16

4.6 CORBA Required Object Adapter .. 17
4.6.1 Portable Object Adapter ... 17

4.7 The Integration of Foreign Object Systems ..17

4.8 Interoperability Model .. 18
CORBA for embedded, v1.0 i

4.8.1 Elements of Interoperability .. 18
4.8.2 ORB Interoperability Architecture ... 19
4.8.3 Inter-ORB Bridge Support .. 19
4.8.4 General Inter-ORB Protocol (GIOP) ... 19
4.8.5 Internet Inter-ORB Protocol (IIOP)® ... 20
4.8.6 Environment-Specific Inter-ORB Protocols (ESIOPs) .. 20
4.8.7 Relationship to Previous Versions of CORBA .. 21
4.8.8 Domains ... 21

4.9 Quality of Service Abstract Model ...21
4.9.1 Model Components .. 22
4.9.2 Component Relationships .. 22
4.9.3 Component Design ... 23

5 The Object Model ... 25

5.1 Overview ...25

5.2 Foundations of the Model ..26
5.2.1 Object ... 26
5.2.2 Request .. 26
5.2.3 Broker ... 26

5.3 Constituents of the Model ...26
5.3.1 Client .. 26
5.3.2 Object Reference .. 26
5.3.3 Request Terminations .. 27
5.3.4 Request Parameters ... 27
5.3.5 Object Lifecycle .. 27
5.3.6 Types .. 27

 5.3.6.1 Basic types ... 28
 5.3.6.2 Constructed types .. 28

5.3.7 Interface .. 29
5.3.8 Value Type ... 29
5.3.9 Abstract Interface ... 30
5.3.10 Operation .. 30
5.3.11 Operation Signature ... 30
5.3.12 Parameters ... 31
5.3.13 Return Result .. 31
5.3.14 Exceptions .. 31
5.3.15 Contexts ... 31
5.3.16 Execution Semantics .. 31
5.3.17 Attributes .. 31

5.4 Facets of the Model ...32
5.4.1 The Execution Model: Performing Services... 32
5.4.2 The Construction Model ... 32
5.4.3 The Interoperability Model ... 32

 5.4.3.1 General Inter-ORB Protocol (GIOP) ... 33
 5.4.3.2 Internet Inter-ORB Protocol (IIOP)® .. 33
 5.4.3.3 Environment-Specific Inter-ORB Protocols (ESIOPs) .. 34
ii CORBA for embedded, v1.0

 5.4.3.4 Domains ... 34
5.4.4 The Federation Model: Interworking ... 34

 5.4.4.1 Inter-ORB Bridges .. 34
 5.4.4.2 Integrating an ORB in a Gateway .. 35

5.4.5 Quality of Service ... 35
 5.4.5.1 QoS Abstract Model ... 35
 5.4.5.2 Model Components .. 36
 5.4.5.3 Component Relationships .. 36
 5.4.5.4 Design Issues ... 37

6 OMG IDL Syntax and Semantics .. 39

6.1 Overview ...39

6.2 Lexical Conventions ..40
6.2.1 Tokens .. 43
6.2.2 Comments .. 43
6.2.3 Identifiers .. 43

 6.2.3.1 Escaped Identifiers.. 44
6.2.4 Keywords... 45
6.2.5 Literals .. 45

 6.2.5.1 Integer Literals ... 46
 6.2.5.2 Character Literals ... 46
 6.2.5.3 Floating-point Literals ... 47
 6.2.5.4 String Literals ... 47
 6.2.5.5 Fixed-Point Literals .. 48

6.3 Preprocessing ...48

6.4 OMG IDL Grammar ...48

6.5 OMG IDL Specification ...53

6.6 Module Declaration ...54

6.7 Interface Declaration ...54
6.7.1 Interface Header ... 54
6.7.2 Interface Inheritance Specification ... 55
6.7.3 Interface Body ... 55
6.7.4 Forward Declaration .. 56
6.7.5 Interface Inheritance ... 56

 6.7.5.1 Abstract Interface ... 59
6.7.6 Local Interface .. 59

6.8 Value Declaration ...59
6.8.1 Regular Value Type .. 60

 6.8.1.1 Value Header ... 60
 6.8.1.2 Value Element .. 60
 6.8.1.3 Value Inheritance Specification .. 60
 6.8.1.4 State Members.. 60
 6.8.1.5 Initializers ... 61
 6.8.1.6 Value Type Example .. 61

6.8.2 Boxed Value Type .. 61
CORBA for embedded, v1.0 iii

6.8.3 Abstract Value Type ... 62
6.8.4 Value Forward Declaration ... 63
6.8.5 Valuetype Inheritance ... 63

6.9 Constant Declaration ...64
6.9.1 Syntax ... 64
6.9.2 Semantics ... 65

6.10 Type Declaration ...68
6.10.1 Basic Types .. 69

 6.10.1.1 Integer Types ... 70
 6.10.1.2 Floating-Point Types .. 70
 6.10.1.3 Char Type .. 70
 6.10.1.4 Wide Char Type ... 70
 6.10.1.5 Boolean Type ... 70
 6.10.1.6 Octet Type .. 71
 6.10.1.7 Any Type .. 71

6.10.2 Constructed Types ... 71
 6.10.2.1 Structures ... 71
 6.10.2.2 Discriminated Unions ... 71
 6.10.2.3 Constructed Recursive Types and IForward Declarations 73
 6.10.2.4 Enumerations ... 75

6.10.3 Template Types .. 75
 6.10.3.1 Sequences .. 75
 6.10.3.2 Strings .. 76
 6.10.3.3 Wstrings ... 76
 6.10.3.4 Fixed Type ... 76

6.10.4 Complex Declarator .. 76
 6.10.4.1 Arrays ... 76

6.10.5 Native Types ... 77
6.10.6 Deprecated Anonymous Types ... 78

6.11 Exception Declaration ...80

6.12 Operation Declaration ...80
6.12.1 Operation Attribute ... 81
6.12.2 Parameter Declarations .. 81
6.12.3 Raises Expressions .. 82

 6.12.3.1 Raises Expression ... 82
 6.12.3.2 getraises and setraises Expressions... 82

6.12.4 Context Expressions ... 83

6.13 Attribute Declaration ..83

6.14 Repository Identity Related Declarations ..84
6.14.1 Repository Identity Declaration ... 84
6.14.2 Repository Identifier Prefix Declaration ... 85
6.14.3 Repository Id Conflict ... 86

6.15 CORBA Module ...86

6.16 Names and Scoping ..87
iv CORBA for embedded, v1.0

6.16.1 Qualified Names ... 88
6.16.2 Scoping Rules and Name Resolution ... 89
6.16.3 Special Scoping Rules for Type Names ... 92

7 Repository IDs .. 95

7.1 Overview ...95

7.2 OMG IDL Format ..95

7.3 Pragma Directives for RepositoryId ...96
7.3.1 The ID Pragma .. 96
7.3.2 The Prefix Pragma .. 96
7.3.3 The Version Pragma ... 99
7.3.4 Generation of OMG IDL - Format IDs ... 100

7.4 RepositoryIDs for OMG-Specified Types ..101

7.5 Uniqueness Constraints on Repository IDs ..101

8 ORB Interface ... 103

8.1 Overview ...103

8.2 The ORB Operations .. 103
8.2.1 ORB Identity ... 106

 8.2.1.1 id .. 106
8.2.2 Converting Object References to Strings ... 106

 8.2.2.1 object_to_string .. 106
 8.2.2.2 string_to_object .. 106

8.2.3 Thread-Related Operations .. 107
 8.2.3.1 work_pending ... 107
 8.2.3.2 perform_work ... 107
 8.2.3.3 run .. 107
 8.2.3.4 shutdown .. 108
 8.2.3.5 destroy ... 109

8.3 ORB and OA Initialization and Initial References ...109
8.3.1 ORB Initialization .. 109

 8.3.1.1 Server ID .. 111
 8.3.1.2 Server Endpoint ... 111
 8.3.1.3 Starting Servers with No Proprietary Server Activation Support 111

8.3.2 Obtaining Initial Object References .. 111
 8.3.2.1 list_initial_services ... 112
 8.3.2.2 resolve_initial_references .. 112

8.3.3 Configuring Initial Service References ... 114
 8.3.3.1 register_initial_reference .. 114
 8.3.3.2 ORB-specific Configuration .. 115
 8.3.3.3 ORBInitRef ... 115
 8.3.3.4 ORBDefaultInitRef .. 115
 8.3.3.5 Configuration Effect on resolve_initial_references ... 116
 8.3.3.6 Configuration Effect on list_initial_services .. 117
CORBA for embedded, v1.0 v

8.4 Current Object ...117

8.5 TypeCodes ..117
8.5.1 The TypeCode Interface ... 118
8.5.2 TypeCode Constants .. 121

8.6 Exceptions ...122
8.6.1 Definition of Terms ... 122
8.6.2 System Exceptions ... 123
8.6.3 Standard System Exception Definitions ... 124

 8.6.3.1 UNKNOWN .. 126
 8.6.3.2 BAD_PARAM ... 126
 8.6.3.3 NO_MEMORY .. 126
 8.6.3.4 IMP_LIMIT .. 126
 8.6.3.5 COMM_FAILURE ... 127
 8.6.3.6 INV_OBJREF ... 127
 8.6.3.7 NO_PERMISSION .. 127
 8.6.3.8 INTERNAL ... 127
 8.6.3.9 MARSHAL .. 127
 8.6.3.10 INITIALIZE ... 127
 8.6.3.11 NO_IMPLEMENT ... 127
 8.6.3.12 BAD_TYPECODE .. 127
 8.6.3.13 BAD_OPERATION ... 128
 8.6.3.14 NO_RESOURCES ... 128
 8.6.3.15 NO_RESPONSE .. 128
 8.6.3.16 PERSIST_STORE ... 128
 8.6.3.17 BAD_INV_ORDER ... 128
 8.6.3.18 TRANSIENT ... 128
 8.6.3.19 FREE_MEM ... 128
 8.6.3.20 INV_IDENT .. 128
 8.6.3.21 INV_FLAG .. 128
 8.6.3.22 INTF_REPOS ... 129
 8.6.3.23 BAD_CONTEXT ... 129
 8.6.3.24 OBJ_ADAPTER ... 129
 8.6.3.25 DATA_CONVERSION ... 129
 8.6.3.26 OBJECT_NOT_EXIST ... 129
 8.6.3.27 TRANSACTION_REQUIRED .. 129
 8.6.3.28 TRANSACTION_ROLLEDBACK ... 129
 8.6.3.29 INVALID_TRANSACTION ... 129
 8.6.3.30 INV_POLICY .. 130
 8.6.3.31 CODESET_INCOMPATIBLE .. 130
 8.6.3.32 REBIND .. 130
 8.6.3.33 TIMEOUT ... 130
 8.6.3.34 TRANSACTION_UNAVAILABLE ... 130
 8.6.3.35 TRANSACTION_MODE ... 130
 8.6.3.36 BAD_QOS .. 130
 8.6.3.37 INVALID_ACTIVITY .. 130
 8.6.3.38 ACTIVITY_COMPLETED ... 130
 8.6.3.39 ACTIVITY_REQUIRED .. 131

8.6.4 Standard Minor Exception Codes ... 131
vi CORBA for embedded, v1.0

8.7 Consolidated IDL ..131

9 Object Interfaces .. 137

9.1 Overview ...137

9.2 Object (Reference) Interface ...137
9.2.1 Determining the Object Interface .. 138

 9.2.1.1 repository_id ... 138
9.2.2 Duplicating and Releasing Copies of Object References ... 138

 9.2.2.1 duplicate ... 138
 9.2.2.2 release ... 139

9.2.3 Nil Object References ... 139
 9.2.3.1 is_nil ... 139

9.2.4 Equivalence Checking Operation .. 139
 9.2.4.1 is_a .. 139

9.2.5 Probing for Object Non-Existence .. 140
 9.2.5.1 non_existent ... 140

9.2.6 Object Reference Identity ... 140
 9.2.6.1 Hashing Object Identifiers .. 140
 9.2.6.2 Equivalence Testing ... 141

9.2.7 Type Coercion Considerations ... 141
9.2.8 Getting Policy Associated with the Object .. 141

 9.2.8.1 get_policy ... 141
 9.2.8.2 get_client_policy ... 142
 9.2.8.3 get_policy_overrides .. 142

9.2.9 Overriding Associated Policies on an Object Reference .. 143
 9.2.9.1 set_policy_overrides ... 143

9.2.10 Validating Connection ... 144
 9.2.10.1 validate_connection ... 144

9.2.11 Getting the ORB ... 144
 9.2.11.1 get_orb ... 144

9.2.12 LocalObject Operations .. 144

9.3 Value Type Semantics ..145
9.3.1 Overview ... 145
9.3.2 Architecture .. 146

 9.3.2.1 Abstract Values .. 147
 9.3.2.2 Operations ... 147
 9.3.2.3 Value Type vs. Interfaces ... 147
 9.3.2.4 Parameter Passing ... 147
 9.3.2.5 Value Types as Members of Other Types .. 148
 9.3.2.6 Substitutability Issues ... 148
 9.3.2.7 Widening/Narrowing ... 149
 9.3.2.8 Value Base Type .. 149
 9.3.2.9 Life Cycle issues .. 150
 9.3.2.10 Security Considerations ... 150

9.3.3 Language Mappings ... 151
 9.3.3.1 General Requirements ... 151
 9.3.3.2 Language Specific Marshaling ... 151
 9.3.3.3 Language Specific Value Factory Requirements ... 151
CORBA for embedded, v1.0 vii

 9.3.3.4 Value Method Implementation ... 152

9.4 Consolidated IDL ...152

10 Policies .. 155

10.1 Overview ...155
10.1.1 Usages of Policy Objects .. 155
10.1.2 Policy Associated with the Execution Environment .. 155
10.1.3 Policy Associated with Message Interactions ... 156
10.1.4 Specification of New Policy Objects ... 156
10.1.5 Standard Policies .. 157

10.2 Policy Object ...157
10.2.1 Definition of Policy Object ... 157

 10.2.1.1 Copy ... 158
 10.2.1.2 Destroy ... 158
 10.2.1.3 Policy_type ... 159

10.2.2 Creation of Policy Objects .. 159
 10.2.2.1 PolicyErrorCode ... 159
 10.2.2.2 PolicyError .. 160
 10.2.2.3 Create_policy ... 160

10.3 Management of Policies ..160
10.3.1 Client Side Policy Management .. 160
10.3.2 Server Side Policy Management .. 161
10.3.3 Policy Management Interfaces ... 161

 10.3.3.1 interface PolicyManager ... 162
 10.3.3.2 interface PolicyCurrent ... 163

10.4 Messaging Quality of Service ..163
10.4.1 Rebind Support ... 165

 10.4.1.1 typedef short RebindMode ... 165
 10.4.1.2 interface RebindPolicy ... 165

10.4.2 Synchronization Scope ... 166
 10.4.2.1 typedef short SyncScope ... 166
 10.4.2.2 interface SyncScopePolicy ... 166

10.4.3 Request and Reply Timeout ... 167
 10.4.3.1 interface RequestEndTimePolicy ... 167
 10.4.3.2 interface ReplyEndTimePolicy ... 167
 10.4.3.3 interface RelativeRequestTimeoutPolicy ... 167
 10.4.3.4 interface RelativeRoundtripTimeoutPolicy ... 168

10.5 Consolidated IDL ...168
10.5.1 Messaging Module ... 168

11 The Portable Object Adapter ... 171

11.1 Overview ...171

11.2 Abstract Model Description ...171
11.2.1 Model Components .. 172
viii CORBA for embedded, v1.0

11.2.2 Model Architecture .. 173
11.2.3 POA Creation ... 174
11.2.4 Reference Creation .. 175
11.2.5 Object Activation States ... 175
11.2.6 Request Processing ... 176
11.2.7 Multi-threading... 176
11.2.8 Location Transparency ... 176
11.2.9 UML Description of PortableServer .. 177

11.3 Interfaces ..178
11.3.1 The Servant IDL Type .. 179
11.3.2 POAManager Interface ... 179

 11.3.2.1 Processing States .. 179
 11.3.2.2 activate ... 181
 11.3.2.3 get_state .. 181

11.3.3 POA Policy Objects .. 181
 11.3.3.1 CORBA/e Compact Profile ... 181
 11.3.3.2 CORBA/e Micro Profile .. 183

11.3.4 POA Interface ... 183
 11.3.4.1 create_POA ... 184
 11.3.4.2 find_POA .. 184
 11.3.4.3 destroy ... 184

11.3.5 Policy Creation Operations ... 185
 11.3.5.1 the_name ... 185
 11.3.5.2 the_parent .. 186
 11.3.5.3 the_POAManager .. 186
 11.3.5.4 activate_object ... 186
 11.3.5.5 activate_object_with_id .. 186
 11.3.5.6 deactivate_object ... 186
 11.3.5.7 servant_to_id ... 187
 11.3.5.8 servant_to_reference ... 187
 11.3.5.9 reference_to_servant ... 187
 11.3.5.10 reference_to_id .. 188
 11.3.5.11 id_to_servant ... 188
 11.3.5.12 id_to_reference .. 188
 11.3.5.13 id .. 188

11.3.6 Current Operations ... 189
 11.3.6.1 get_POA .. 189
 11.3.6.2 get_object_id .. 189
 11.3.6.3 get_reference ... 189
 11.3.6.4 get_servant .. 189

11.4 Consolidated IDL for PortableServer Module ...190
11.4.1 CORBA/e Compact Profile ... 190
11.4.2 CORBA/e Micro Profile ... 193

12 Real-time .. 197

12.1 Real-time Architecture ..197
12.1.1 Goals of the Specification ... 197
12.1.2 Approach to Real-time CORBA .. 197
CORBA for embedded, v1.0 ix

 12.1.2.1 The Nature of Real-time ... 197
 12.1.2.2 Meeting Real-time Requirements ... 198
 12.1.2.3 Distributable Thread ... 198
 12.1.2.4 End-to-End Predictability .. 198

12.1.3 Compatibility ... 199
 12.1.3.1 Interoperability .. 199
 12.1.3.2 Portability ... 199
 12.1.3.3 CORBA - Real-time CORBA Interworking ... 199

12.1.4 Real-time CORBA/e Architectural Overview ... 200
 12.1.4.1 Real-time CORBA Modules ... 200
 12.1.4.2 Thread Scheduling ... 201
 12.1.4.3 Real-time CORBA Priority .. 201
 12.1.4.4 Native Priority and PriorityMappings .. 201
 12.1.4.5 Real-time CORBA Current ... 201
 12.1.4.6 Priority Models ... 201
 12.1.4.7 Real-time CORBA Mutexes and Priority Inheritance 202
 12.1.4.8 Priority Banded Connections .. 202
 12.1.4.9 Invocation Timeouts ... 202

12.2 Real-time ORB ..202
12.2.1 Real-time ORB Initialization .. 203
12.2.2 Real-time CORBA System Exceptions ... 203

12.3 Native Thread Priorities ...203

12.4 CORBA Priority ...205

12.5 CORBA Priority Mappings ...205
12.5.1 C Language binding for PriorityMapping .. 206
12.5.2 C++ Language binding for PriorityMapping .. 206
12.5.3 Ada Language binding for PriorityMapping .. 206
12.5.4 Java Language binding for PriorityMapping ... 207
12.5.5 Semantics ... 207

12.6 Real-time Current ..208

12.7 Real-time CORBA Priority Models ..208
12.7.1 Scope of PriorityModelPolicy .. 209
12.7.2 Client Propagated Priority Model ... 209

12.8 Mutex Interface ...210

12.9 Implicit and Explicit Binding ...211

12.10 Priority Banded Connections ...211
12.10.1 Scope of PriorityBandedConnectionPolicy ... 213
12.10.2 Binding of Priority Banded Connection ... 213

12.11 Invocation Timeout ..214

12.12 Consolidated IDL ...214

13 Naming Service ... 217
x CORBA for embedded, v1.0

13.1 Overview ...217
13.1.1 Resolution of Compound Names .. 217

13.2 NamingContext Interface ..217
13.2.1 Structures ... 218

 13.2.1.1 NameComponent ... 218
 13.2.1.2 Name ... 218
 13.2.1.3 Binding ... 218

13.2.2 Exceptions .. 219
 13.2.2.1 NotFound ... 219
 13.2.2.2 CannotProceed .. 219
 13.2.2.3 InvalidName ... 219
 13.2.2.4 AlreadyBound ... 220
 13.2.2.5 NotEmpty ... 220

13.2.3 Binding Objects .. 220
 13.2.3.1 bind .. 220
 13.2.3.2 rebind ... 220
 13.2.3.3 bind_context ... 220
 13.2.3.4 rebind_context ... 221
 13.2.3.5 Usage ... 221

13.2.4 Resolving Names ... 221
13.2.5 Unbinding Names ... 221
13.2.6 Creating Naming Contexts ... 221

 13.2.6.1 new_context ... 222
 13.2.6.2 bind_new_context .. 222
 13.2.6.3 Usage ... 222

13.2.7 Deleting Contexts ... 222
13.2.8 Listing a Naming Context ... 222

13.3 The BindingIterator Interface ...223
13.3.1 Operations .. 223

 13.3.1.1 next_one .. 223
 13.3.1.2 next_n .. 223
 13.3.1.3 destroy ... 223

13.3.2 Garbage Collection of Iterators ... 224

13.4 Stringified Names .. 224
13.4.1 Basic Representation of Stringified Names ... 224
13.4.2 Escape Mechanism .. 225

 13.4.2.1 NameComponent Separators .. 225
 13.4.2.2 Id and kind Fields ... 225
 13.4.2.3 The Escape Character ... 225

13.5 URL Schemes ... 226
13.5.1 IOR ... 226
13.5.2 corbaloc .. 226
13.5.3 corbaname .. 226

 13.5.3.1 corbaname Examples ... 226
 13.5.3.2 corbaname Syntax ... 227
 13.5.3.3 corbaname Character Escapes .. 227
 13.5.3.4 corbaname Escape Mechanism ... 227
CORBA for embedded, v1.0 xi

 13.5.3.5 Examples ... 228
 13.5.3.6 corbaname Resolution .. 228

13.5.4 Converting between CosNames, Stringified Names, and URLs 228
 13.5.4.1 to_string ... 229
 13.5.4.2 to_name ... 229
 13.5.4.3 resolve_str .. 229
 13.5.4.4 to_url .. 229
 13.5.4.5 URL to Object Reference ... 229

13.6 Initial Reference to a NamingContextExt ..230

13.7 Consolidated IDL ...230

14 Event Service .. 233

14.1 Overview ...233
14.1.1 Event Communication .. 233
14.1.2 Example Scenario .. 234
14.1.3 Design Principles .. 235
14.1.4 Resolution of Technical Issues ... 235
14.1.5 Quality of Service ... 236
14.1.6 Generic Event Communication ... 237

 14.1.6.1 Push Model .. 237
 14.1.6.2 Pull Model .. 237

14.2 The CosEventComm Module ..238
14.2.1 The PushConsumer Interface ... 238
14.2.2 The PushSupplier Interface .. 239
14.2.3 The PullSupplier Interface .. 239
14.2.4 The PullConsumer Interface ... 240
14.2.5 Disconnection Behavior .. 240

14.3 Event Channels ...240
14.3.1 Push-Style Communication with an Event Channel ... 240
14.3.2 Pull-Style Communication with an Event Channel .. 241
14.3.3 Mixed Style Communication with an Event Channel .. 241
14.3.4 Multiple Consumers and Multiple Suppliers .. 242
14.3.5 Event Channel Administration ... 243

14.4 The CosEventChannelAdmin Module ...244
14.4.1 The EventChannel Interface ... 245
14.4.2 The ConsumerAdmin Interface ... 246
14.4.3 The SupplierAdmin Interface .. 246
14.4.4 The ProxyPushConsumer Interface ... 246
14.4.5 The ProxyPullSupplier Interface ... 247
14.4.6 The ProxyPullConsumer Interface .. 247
14.4.7 The ProxyPushSupplier Interface ... 247

14.5 Consolidated IDL ...248
14.5.1 CosEventComm ... 248
14.5.2 CosEventChannelAdmin .. 248
xii CORBA for embedded, v1.0

15 Lightweight Log Service ... 251

15.1 Overview ...251

15.2 Architecture ...251

15.3 Types and Data Structures ...253
15.3.1 InvalidParam Exception .. 253
15.3.2 LogLevel ... 253
15.3.3 OperationalState ... 253
15.3.4 AdministrativeState ... 253
15.3.5 LogFullAction .. 254
15.3.6 LogAvailabilityStatus ... 254
15.3.7 LogTime .. 254
15.3.8 ProducerLogRecord ... 254
15.3.9 RecordId ... 255

 15.3.9.1 Mapping from the Platform Independent Model ... 255
 15.3.9.2 Difference to the Telecom Log Service .. 255

15.3.10 LogRecord .. 255

15.4 Logging Interfaces ..256
15.4.1 Interface LogStatus .. 256

 15.4.1.1 get_max_size ... 256
 15.4.1.2 get_current_size ... 257
 15.4.1.3 get_n_records .. 257
 15.4.1.4 get_log_full_action ... 258
 15.4.1.5 get_availability_status .. 258
 15.4.1.6 get_administrative_state .. 259
 15.4.1.7 get_operational_state .. 259

15.4.2 Interface LogConsumer ... 259
 15.4.2.1 get_record_id_from_time ... 260
 15.4.2.2 retrieve_records ... 260
 15.4.2.3 retrieve_records_by_level .. 261
 15.4.2.4 retrieve_records_by_producer_id ... 262

15.4.3 Interface LogProducer .. 263
 15.4.3.1 write_records .. 264
 15.4.3.2 write_record .. 264

15.4.4 Interface LogAdministrator .. 265
 15.4.4.1 set_max_size ... 265
 15.4.4.2 set_log_full_action ... 266
 15.4.4.3 set_administrative_state .. 266
 15.4.4.4 clear_log .. 267
 15.4.4.5 destroy ... 267

15.5 Consolidated IDL .. 268
15.5.1 CosLwLog::LogStatus .. 268
15.5.2 CosLwLog::LogConsumer .. 269
15.5.3 CosLwLog::LogProducer .. 270
15.5.4 CosLwLog::LogAdministrator .. 271
15.5.5 CosLwLog::Log ... 271
CORBA for embedded, v1.0 xiii

16 General Inter-ORB Protocol ... 273

16.1 Overview ...273

16.2 Goals of the General Inter-ORB Protocol ..273

16.3 GIOP Overview ...273
16.3.1 Common Data Representation (CDR) .. 274
16.3.2 GIOP Message Overview ... 274
16.3.3 GIOP Message Transfer ... 275

16.4 GIOP Message Transport ...275
16.4.1 Connection Management ... 276

 16.4.1.1 Connection Closure .. 276
 16.4.1.2 Multiplexing Connections .. 277

16.4.2 Message Ordering .. 277

17 CDR Transfer Syntax .. 279

17.1 Overview ...279

17.2 Primitive Types ..279
17.2.1 Alignment .. 280
17.2.2 Integer Data Types ... 280
17.2.3 Floating Point Data Types .. 281
17.2.4 Octet ... 284
17.2.5 Boolean .. 284
17.2.6 Character Types ... 284

17.3 OMG IDL Constructed Types ..285
17.3.1 Alignment .. 285
17.3.2 Struct .. 285
17.3.3 Union .. 285
17.3.4 Array ... 285
17.3.5 Sequence ... 286
17.3.6 Enum .. 286
17.3.7 Strings and Wide Strings .. 286
17.3.8 Fixed-Point Decimal Type .. 286

17.4 Encapsulation ..287

17.5 Value Types ..288
17.5.1 Partial Type Information and Versioning .. 289
17.5.2 Example .. 290
17.5.3 Scope of the Indirections .. 291
17.5.4 Null Values ... 292
17.5.5 Other Encoding Information .. 292
17.5.6 Fragmentation .. 292
17.5.7 Notation .. 294
17.5.8 The Format ... 294

17.6 Pseudo-Object Types ..295
xiv CORBA for embedded, v1.0

17.6.1 TypeCode ... 296
 17.6.1.1 Basic TypeCode Encoding Framework .. 296
 17.6.1.2 TypeCode Parameter Notation .. 296

17.6.2 Any .. 301
17.6.3 Principal .. 301
17.6.4 Context ... 301
17.6.5 Exception .. 302

17.7 Object References .. 302

18 GIOP Messages ... 303

18.1 Overview ...303

18.2 GIOP Message Formats ...303
18.2.1 GIOP Message Header .. 304
18.2.2 Request Message ... 306

 18.2.2.1 Request Header ... 306
 18.2.2.2 Request Body .. 308

18.2.3 Reply Message ... 309
 18.2.3.1 Reply Header .. 309
 18.2.3.2 Reply Body ... 310

18.2.4 CancelRequest Message ... 312
 18.2.4.1 Cancel Request Header ... 312

18.2.5 LocateRequest Message .. 312
 18.2.5.1 LocateRequest Header. ... 313

18.2.6 LocateReply Message .. 314
 18.2.6.1 Locate Reply Header ... 314
 18.2.6.2 LocateReply Body .. 315

18.2.7 CloseConnection Message ... 315
18.2.8 MessageError Message ... 316
18.2.9 Fragment Message ... 316

18.3 Object Location ...317

18.4 Service Context... 318
18.4.1 Standard Service Contexts ... 319
18.4.2 Service Context Processing Rules ... 321

18.5 Propagation of Messaging QoS ..321
18.5.1 Structures ... 321
18.5.2 Messaging QoS Profile Component ... 321
18.5.3 Messaging QoS Service Context .. 322

18.6 Consolidated IDL .. 322

19 Internet Interoperability Protocol (IIOP) .. 327

19.1 Overview ...327

19.2 Internet Inter-ORB Protocol (IIOP) ..327
19.2.1 TCP/IP Connection Usage ... 328
19.2.2 IIOP IOR Profiles .. 328
CORBA for embedded, v1.0 xv

19.2.3 IIOP IOR Profile Components ... 330

19.3 An Information Model for Object References ..332
19.3.1 What Information Do Bridges Need? .. 332
19.3.2 Interoperable Object References: IORs ... 332
19.3.3 IOR Profiles .. 333
19.3.4 Standard IOR Profiles ... 335

 19.3.4.1 The TAG_INTERNET_IOP Profile ... 335
 19.3.4.2 The TAG_MULTIPLE_COMPONENTS Profile ... 335
 19.3.4.3 The TAG_SCCP_IOP Profile ... 335
 19.3.4.4 The TAG_UIPMC Profile .. 335

19.3.5 IOR Components .. 336
19.3.6 Standard IOR Components .. 336

 19.3.6.1 TAG_ORB_TYPE Component ... 337
 19.3.6.2 TAG_ALTERNATE_IIOP_ADDRESS Component .. 337
 19.3.6.3 Other Components ... 338

19.3.7 Profile and Component Composition in IORs ... 339
19.3.8 IOR Creation and Scope .. 339
19.3.9 Stringified Object References ... 340
19.3.10 Object URLs ... 341

 19.3.10.1 corbaloc URL ... 341
 19.3.10.2 corbaloc:rir URL ... 343
 19.3.10.3 corbaloc:iiop URL .. 343
 19.3.10.4 corbaloc Server Implementation .. 344
 19.3.10.5 corbaname URL ... 344
 19.3.10.6 Future corbaloc URL Protocols .. 344
 19.3.10.7 Future URL Schemes ... 344

19.4 IIOP IOR ..345
19.4.1 IIOP IOR Profiles .. 345
19.4.2 IIOP IOR Profile Components .. 347

19.5 Consolidated IDL ...348

OMG IDL Tags and Exceptions .. 349
Correspondence with “Full” CORBA ... 365
Index ... 387
xvi CORBA for embedded, v1.0

Preface

Context of CORBA

The key to understanding the structure of the CORBA architecture is the Reference Model, which consists of the
following components:

• Object Request Broker - enables objects to transparently make and receive requests and responses in a distributed
environment. It is the foundation for building applications from distributed objects and for interoperability between
applications in hetero- and homogeneous environments. The architecture and specifications of the Object Request
Broker are described in this manual.

• Object Services - a collection of services (interfaces and objects) that support basic functions for using and
implementing objects. Services are necessary to construct any distributed application and are always independent of
application domains. For example, the Life Cycle Service defines conventions for creating, deleting, copying, and
moving objects; it does not dictate how the objects are implemented in an application. Specifications for Object
Services are contained in CORBAservices: Common Object Services Specification.

• Common Facilities - a collection of services that many applications may share, but which are not as fundamental as
the Object Services. For instance, a system management or electronic mail facility could be classified as a common
facility. Information about Common Facilities will be contained in CORBAfacilities: Common Facilities Architecture.

• Application Objects - products of vendors or in-house development group(s) that control their interfaces.
Application Objects correspond to the traditional notion of applications, so they are not standardized by OMG.
Instead, Application Objects constitute the uppermost layer of the Reference Model.

The Object Request Broker, then, is the core of the Reference Model. It is like a telephone exchange, providing the basic
mechanism for making and receiving calls. Combined with the Object Services, it ensures meaningful communication
between CORBA-compliant applications.

CORBA Interoperability

The key to CORBA’s success is its interoperability, an attribute that extends the utility of CORBA across an immense
range of computing hardware infrastructures, operating systems, and computing languages while allowing very different
CORBA implementations suited to the local operating environment. Thus, CORBA is available for non-stop fault-tolerant
super-computers, enterprise tier servers, personal computers, and embedded systems such as hand-held radios.
Applications may be developed that benefit from all these computing regimes because the differently-targeted
implementation of CORBA are all interoperable.

Context of CORBA/e

Prior to 2005, CORBA Specifications were organized in a somewhat piece meal fashion that reflected their creation over
an extended period of time. Since CORBA 1.1, in 1991, each area of further standardization was either added as a new
chapter to the CORBA "book" or became a separate specification altogether.

This made the picture around conformance confused. Each chapter contained optional conformance points, conformance
points that spanned chapters were oblique and hard to locate. Between specifications that remained outside of the CORBA
book, there was no conformance relationship at all.
CORBA for embedded, v1.0 xvii

It also led to a slow deterioration in architectural coherence of CORBA, due to the misplacement of new prescriptions.
This was prone to inconsistencies, both in the mind of the reader and also across the specification itself.

The new packagings of the CORBA specifications address these problems. Optional conformance points are resolved.
Redundant prescriptions are removed, where this does not break the CORBA typing rules. The document has been re-
structured to reflect the architecture more faithfully.

The net result of these editorial changes is a document that is focused at a major use-case for CORBA. That is, solving
the problems inherent with integrating embedded distributed systems. With this in mind, this specification is the
"CORBA/e" specification, which can be read as “CORBA for embedded.” CORBA/e is the OMG’s umbrella term
representing a family of specifications: the CORBA/e Profiles. CORBA/e is targeted at developers of Distributed Real-
time Embedded (DRE) systems.

CORBA/e enables the implementation of middleware products that are open, mature, robust, and memory efficient (small
footprint); offering high performance and deterministic real-time behavior - key requirements of most DRE systems.
CORBA/e consolidates CORBA as the dominant standard for embedded middleware for the foreseeable future.

It is further recognized that there are a wide range of capabilities in today’s embedded systems. A key tenet of CORBA/e
is the support for “Profiling,” a process by which specific subsets of these CORBA specifications can be defined by
different end user communities and then standardized through the OMG. This will allow different end user communities
to choose the appropriate subset of CORBA features required by any standards that are developed within that working
group/task force and then for the vendors to produce highly optimized implementations based on the corresponding
CORBA/e specification (Profile).

Thus, two profiles of CORBA/e are defined. Middleware vendors are able to claim CORBA/e compliance by
implementing one or more of the CORBA/e Profiles:

• Compact Profile - The CORBA/e Compact Profile was formerly known as the Minimum CORBA specification is
targeted to applications or portions of applications that will be executing on an embedded processor with constrained
resources but at the same time requiring predictable real-time behavior. Assumed resources include those that are
typically available in a 32-bit micro-processor running any one of the available Real-Time Operating Systems
(RTOSes). Assumed application requirements are limited to statically defined interfaces, interactions, and scheduling.
While resource constrained, these systems typically have enough capability to support sophisticated embedded
applications, such as signal or image processing, with real-time predictability requirements.

• Micro Profile - The CORBA/e Micro Profile is targeted to applications executing on a “deeply embedded” processor
with severely constrained resources, e.g., those in a mobile device. Assumed resources are limited to those that are
typically available on a low-power microprocessor or high-end Digital Signal Processor (DSP). Assumed application
requirements are limited to statically defined interfaces, interactions, and scheduling.

The profiles presented in this book are a strict profile of previous CORBA specifications.

Applications that use implementations of these profiles retain interoperability, both between implementations that
conform to the different profiles and with CORBA implementations, such as those that conform to the CORBA/i
(CORBA for integration) specification.
xviii CORBA for embedded, v1.0

About the Object Management Group

OMG

Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer industry
standards consortium that produces and maintains computer industry specifications for interoperable, portable, and
reusable enterprise applications in distributed, heterogeneous environments. Membership includes Information
Technology vendors, end users, government agencies, and academia.

OMG member companies write, adopt, and maintain its specifications following a mature, open process. OMG’s
specifications implement the Model Driven Architecture® (MDA®), maximizing ROI through a full-lifecycle approach to
enterprise integration that covers multiple operating systems, programming languages, middleware and networking
infrastructures, and software development environments. OMG’s specifications include: UML® (Unified Modeling
Language™); CORBA® (Common Object Request Broker Architecture); CWM™ (Common Warehouse Metamodel);
and industry-specific standards for dozens of vertical markets.

More information on the OMG is available at http://www.omg.org/.

OMG Specifications

As noted, OMG specifications address middleware, modeling, and vertical domain frameworks. A catalog of all OMG
Specifications is available from the OMG website at:

http://www.omg.org/technology/documents/spec_catalog.htm

Specifications within the Catalog are organized by the following categories:

OMG Modeling Specifications

• UML

• MOF

• XMI

• CWM

• Profile specifications.

OMG Middleware Specifications

• CORBA/IIOP

• IDL/Language Mappings

• Specialized CORBA specifications

• CORBA Component Model (CCM).

Platform Specific Model and Interface Specifications

• CORBAservices

• CORBAfacilities

• OMG Domain specifications
CORBA for embedded, v1.0 xix

• OMG Embedded Intelligence specifications

• OMG Security specifications.

All of OMG’s formal specifications may be downloaded without charge from our website. (Products implementing OMG
specifications are available from individual suppliers.) Copies of specifications, available in PostScript and PDF format,
may be obtained from the Specifications Catalog cited above or by contacting the Object Management Group, Inc. at:

OMG Headquarters
140 Kendrick Street
Building A, Suite 300
Needham, MA 02494
USA
Tel: +1-781-444-0404
Fax: +1-781-444-0320
Email: pubs@omg.org

Certain OMG specifications are also available as ISO standards. Please consult http://www.iso.org

Typographical Conventions

The type styles shown below are used in this document to distinguish programming statements from ordinary English.
However, these conventions are not used in tables or section headings where no distinction is necessary.

Times/Times New Roman - 10 pt.: Standard body text

Helvetica/Arial - 10 pt. Bold: OMG Interface Definition Language (OMG IDL) and syntax elements.

Courier - 10 pt. Bold: Programming language elements.

Helvetica/Arial - 10 pt: Exceptions

Note – Terms that appear in italics are defined in the glossary, if applicable. Italic text also represents the name of a document,
specification, or other publication.

Issues

The reader is encouraged to report any technical or editing issues/problems with this specification to http://www.omg.org/
technology/agreement.htm.
xx CORBA for embedded, v1.0

1 Scope

This specification is targeted to applications or portions of applications that will be executing on an embedded processor
with constrained resources and/or that requires predictable real-time behavior.

1.1 Intended Audience

The architecture and specifications described in this manual are aimed at software designers and developers of Distributed
Real-Time Embedded (DRE) Systems who want to produce embedded applications that comply with OMG standards for
the Object Request Broker (ORB). The benefit of compliance is, in general, to be able to produce interoperable
applications that are based on distributed, interoperating objects. The ORB provides the mechanisms by which objects
transparently make requests and receive responses. Hence, the ORB provides interoperability between applications on
different machines in heterogeneous distributed environments and seamlessly interconnects multiple object systems.

2 Conformance and Compliance

2.1 Definition of CORBA/e Compliance

Compliance to CORBA/e means conformance with one or more of the profiles presented in this specification.

As with all OMG standards, this specification is inclusive, rather than proscriptive; it sets the minimum requirements for
a compliant implementation. Implementations may offer extensions, including extensions defined within other OMG
specifications, without affecting compliance.

Compliance to the CORBA/e Compact Profile means conformance with every prescription for the CORBA/e Compact
Profile contained within the conformance section of all chapters and conformance to at least one OMG-standardized
mapping of IDL to a programming language.

Compliance to the CORBA/e Micro Profile means conformance with every prescription for the CORBA/e Micro Profile
contained within the conformance section of all chapters and conformance to at least one OMG-standardized mapping of
IDL to a programming language.

2.2 Definition of Minimum CORBA Compliance

The CORBA/e Compact Profile replaces the Minimum CORBA standard. All statements of compliance to the Minimum
CORBA standard, unless specifically stated to be compliance to Minimum CORBA 1.0, are equivalent to and must meet
the requirements of compliance with the CORBA/e Compact Profile.
CORBA for embedded, v1.0 1

3 Additional Information

3.1 Structure of Manual

This manual is divided into the four parts of Object Model, Interchange Formats, Interfaces, and Interoperability. The
specification contains the following chapters:

Object Model

Chapter 4, CORBA Overview contains the overall structure of the ORB architecture and includes information about
CORBA interfaces and implementations.

Chapter 5, The Object Model describes the computation model that underlies the CORBA architecture.

Interchange Formats

Chapter 6, OMG IDL Syntax and Semantics details the OMG interface definition language (OMG IDL), which is the
language used to describe the interfaces that client objects call and object implementations provide.

Chapter 7, Repository IDs defines the string-based IDs that are generated to identify types defined in IDL and the
elements of IDL that control them.

Interfaces

Chapter 8, ORB Interface defines the interface to the ORB functions that do not depend on object adapters: these
operations are the same for all ORBs and object implementations.

Chapter 9, Object Interfaces explains the operations and other facilities provided for the object-oriented constructs
defined in OMG IDL, including interfaces and value types.

Chapter 10, Policies explains the use of policy objects that can be used to modify the behavior of the ORB or of objects.

Chapter 11, The Portable Object Adapter defines a group of interfaces that an implementation uses to access ORB
functions.

Chapter 12, Real-time defines the architecture and real-time features for CORBA/e.

Chapter 13, Naming Service defines the standard service of CORBA/e that provides for association of the names with
object references, e.g., for bootstrapping systems.

Chapter 14, Event Service defines the standard service of CORBA/e that provides for asynchronous multi-point to multi-
point delivery of information.

Chapter 15, Lightweight Log Service defines the standard service of CORBA/e that provides for maintenance of in-
memory logs of information.

Interoperability

Chapter 16, General Inter-ORB Protocol describes the general inter-ORB protocol (GIOP) and includes information about
the GIOP’s goals, transport, and object location.

Chapter 17, CDR Transfer Syntax describes the format in which the GIOP represents OMG IDL data types.
2 CORBA for embedded, v1.0

Chapter 18, GIOP Messages describes the messages used by GIOP.

Chapter 19, Internet Interoperability Protocol (IIOP) describes the use of GIOP over TCP/IP.

3.2 Acknowledgements

The following companies submitted and/or supported parts of the specifications that were approved by the Object
Management Group to become CORBA:

• Adiron, LLC

• Alcatel

• BEA Systems, Inc.

• BNR Europe Ltd.

• Borland International, Inc.

• Compaq Computer Corporation

• Concept Five Technologies

• Cooperative Research Centre for Distributed Systems Technology (DSTC)

• Defense Information Systems Agency

• Digital Equipment Corporation

• Ericsson

• Eternal Systems, Inc.

• Expersoft Corporation

• France Telecom

• FUJITSU LIMITED

• Genesis Development Corporation

• Gensym Corporation

• Hewlett-Packard Company

• HighComm

• Highlander Communications, L.C.

• Humboldt-University

• HyperDesk Corporation

• ICL, Plc.

• Inprise Corporation

• International Business Machines Corporation

• International Computers, Inc.

• IONA Technologies, Plc.

• Lockheed Martin Federal Systems, Inc.

• Lucent Technologies, Inc.

• Micro Focus Limited

• MITRE Corporation

• Motorola, Inc.

• NCR Corporation

• NEC Corporation
CORBA for embedded, v1.0 3

• Netscape Communications Corporation

• Nortel Networks

• Northern Telecom Corporation

• Novell, Inc.

• Object Design, Inc.

• Objective Interface Systems, Inc.

• Object-Oriented Concepts, Inc.

• OC Systems, Inc.

• Open Group - Open Software Foundation

• Oracle Corporation

• PeerLogic, Inc.

• Persistence Software, Inc.

• Promia, Inc.

• Siemens Nixdorf Informationssysteme AG

• SPAWAR Systems Center

• Sun Microsystems, Inc.

• SunSoft, Inc.

• Sybase, Inc.

• Telefónica Investigación y Desarrollo S.A. Unipersonal

• TIBCO, Inc.

• Tivoli Systems, Inc.

• Tri-Pacific Software, Inc.

• University of California, Santa Barbara

• University of Rhode Island

• Visual Edge Software, Ltd.

• Washington University
4 CORBA for embedded, v1.0

4 CORBA Overview

This chapter is non-normative introductory material. Furthermore, it describes a more general model of CORBA than is
embraced by the CORBA/e profiles. In particular, the dynamic features of CORBA are not generally useful in embedded
systems and are not included in the CORBA/e profiles.

4.1 Overview

The Common Object Request Broker Architecture (CORBA) is structured to allow integration of a wide variety of object
systems. The motivation for some of the features may not be apparent at first, but as we discuss the range of
implementations, policies, optimizations, and usages we expect to encompass, the value of the flexibility becomes more
clear.

4.2 Structure of an Object Request Broker

Figure 4.1 shows a request being sent by a client to an object implementation. The Client is the entity that wishes to
perform an operation on the object and the Object Implementation is the code and data that actually implements the
object.

Figure 4.1- A Request Being Sent Through the Object Request Broker

The ORB is responsible for all of the mechanisms required to find the object implementation for the request, to prepare
the object implementation to receive the request, and to communicate the data making up the request. The interface the
client sees is completely independent of where the object is located, what programming language it is implemented in, or
any other aspect that is not reflected in the object’s interface.

Client Object Implementation

ORB

Request
CORBA for embedded, v1.0 5

Figure 4.2 shows the structure of an individual Object Request Broker (ORB). The interfaces to the ORB are shown by
striped boxes, and the arrows indicate whether the ORB is called or performs an up-call across the interface.

Figure 4.2- The Structure of Object Request Interfaces

To make a request, the Client can use the Dynamic Invocation interface (the same interface independent of the target
object’s interface) or an OMG IDL stub (the specific stub depending on the interface of the target object). The Client can
also directly interact with the ORB for some functions.

The Object Implementation receives a request as an up-call either through the OMG IDL generated skeleton or through a
dynamic skeleton. The Object Implementation may call the Object Adapter and the ORB while processing a request or at
other times.

Definitions of the interfaces to objects can be defined in two ways. Interfaces can be defined statically in an interface
definition language, called the OMG Interface Definition Language (OMG IDL). This language defines the types of
objects according to the operations that may be performed on them and the parameters to those operations. Alternatively,
or in addition, interfaces can be added to an Interface Repository service; this service represents the components of an
interface as objects, permitting run-time access to these components. In any ORB implementation, the Interface Definition
Language (which may be extended beyond its definition in this document) and the Interface Repository have equivalent
expressive power.

Client Object Implementation

Dynamic

Invocation

IDL
Stubs

ORB
Interface

Dynamic
Skeleton

Object
Adapter

ORB Core

Interface identical for all ORB implementations

There may be multiple object adapters

There are stubs and a skeleton for each object type

ORB-dependent interface

Up-call interface

Normal call interface

Static IDL
Skeleton
6 CORBA for embedded, v1.0

The client performs a request by having access to an Object Reference for an object and knowing the type of the object
and the desired operation to be performed. The client initiates the request by calling stub routines that are specific to the
object or by constructing the request dynamically (see Figure 4.3).

Figure 4.3- A Client Using the Stub or Dynamic Invocation Interface

The dynamic and stub interface for invoking a request satisfy the same request semantics, and the receiver of the message
cannot tell how the request was invoked.

The ORB locates the appropriate implementation code, transmits parameters, and transfers control to the Object
Implementation through an IDL skeleton or a dynamic skeleton (see Figure 4.4). Skeletons are specific to the interface
and the object adapter. In performing the request, the object implementation may obtain some services from the ORB
through the Object Adapter. When the request is complete, control and output values are returned to the client.

Client

Dynamic

Invocation

IDL
Stubs

ORB Core

Interface identical for all ORB implementations

There are stubs and a skeleton for each object type

ORB-dependent interface

R
eq

u
est

R
eq

u
est
CORBA for embedded, v1.0 7

Figure 4.4- An Object Implementation Receiving a Request

The Object Implementation may choose which Object Adapter to use. This decision is based on what kind of services the
Object Implementation requires.

Figure 4.5 shows how interface and implementation information is made available to clients and object implementations.
The interface is defined in OMG IDL and/or in the Interface Repository; the definition is used to generate the client Stubs
and the object implementation Skeletons.

Object Implementation

Interface identical for all ORB implementations

There may be multiple object adapters

There are stubs and a skeleton for each object type

ORB-dependent interface

Up-call interface

Normal call interface

ORB
Interface

Dynamic
Skeleton

Object
Adapter

ORB Core

Static IDL
Skeleton
8 CORBA for embedded, v1.0

Figure 4.5- Interface and Implementation Repositories

The object implementation information is provided at installation time and is stored in the Implementation Repository for
use during request delivery.

4.2.1 Object Request Broker

In the architecture, the ORB is not required to be implemented as a single component, but rather it is defined by its
interfaces. Any ORB implementation that provides the appropriate interface is acceptable. The interface is organized into
three categories:

1. Operations that are the same for all ORB implementations.

2. Operations that are specific to particular types of objects.

3. Operations that are specific to particular styles of object implementations.

Different ORBs may make quite different implementation choices, and, together with the IDL compilers, repositories, and
various Object Adapters, provide a set of services to clients and implementations of objects that have different properties
and qualities.

There may be multiple ORB implementations (also described as multiple ORBs), which have different representations for
object references and different means of performing invocations. It may be possible for a client to simultaneously have
access to two object references managed by different ORB implementations. When two ORBs are intended to work
together, those ORBs must be able to distinguish their object references. It is not the responsibility of the client to do so.

Client Object Implementation

IDL
Definitions

Interface
Repository

Stubs Skeletons

Implementation
Installation

Implementation
Repository
CORBA for embedded, v1.0 9

The ORB Core is that part of the ORB that provides the basic representation of objects and communication of requests.
CORBA is designed to support different object mechanisms, and it does so by structuring the ORB with components
above the ORB Core, which provide interfaces that can mask the differences between ORB Cores.

4.2.2 Clients

A client of an object has access to an object reference for the object, and invokes operations on the object. A client knows
only the logical structure of the object according to its interface and experiences the behavior of the object through
invocations. Although we will generally consider a client to be a program or process initiating requests on an object, it is
important to recognize that something is a client relative to a particular object. For example, the implementation of one
object may be a client of other objects.

Clients generally see objects and ORB interfaces through the perspective of a language mapping, bringing the ORB right
up to the programmer’s level. Clients are maximally portable and should be able to work without source changes on any
ORB that supports the desired language mapping with any object instance that implements the desired interface. Clients
have no knowledge of the implementation of the object, which object adapter is used by the implementation, or which
ORB is used to access it.

4.2.3 Object Implementations

An object implementation provides the semantics of the object, usually by defining data for the object instance and code
for the object’s methods. Often the implementation will use other objects or additional software to implement the
behavior of the object. In some cases, the primary function of the object is to have side-effects on other things that are not
objects.

A variety of object implementations can be supported, including separate servers, libraries, a program per method, an
encapsulated application, an object-oriented database, etc. Through the use of additional object adapters, it is possible to
support virtually any style of object implementation.

Generally, object implementations do not depend on the ORB or how the client invokes the object. Object
implementations may select interfaces to ORB-dependent services by the choice of Object Adapter.

4.2.4 Object References

An Object Reference is the information needed to specify an object within an ORB. Both clients and object
implementations have an opaque notion of object references according to the language mapping, and thus are insulated
from the actual representation of them. Two ORB implementations may differ in their choice of Object Reference
representations.

The representation of an object reference handed to a client is only valid for the lifetime of that client.

All ORBs must provide the same language mapping to an object reference (usually referred to as an Object) for a
particular programming language. This permits a program written in a particular language to access object references
independent of the particular ORB. The language mapping may also provide additional ways to access object references
in a typed way for the convenience of the programmer.

There is a distinguished object reference, guaranteed to be different from all object references, that denotes no object.
10 CORBA for embedded, v1.0

4.2.5 OMG Interface Definition Language

The OMG Interface Definition Language (OMG IDL) defines the types of objects by specifying their interfaces. An
interface consists of a set of named operations and the parameters to those operations. Note that although IDL provides
the conceptual framework for describing the objects manipulated by the ORB, it is not necessary for there to be IDL
source code available for the ORB to work. As long as the equivalent information is available in the form of stub routines
or a run-time interface repository, a particular ORB may be able to function correctly.

IDL is the means by which a particular object implementation tells its potential clients what operations are available and
how they should be invoked. From the IDL definitions, it is possible to map CORBA objects into particular programming
languages or object systems.

4.2.6 Mapping of OMG IDL to Programming Languages

Different object-oriented or non-object-oriented programming languages may prefer to access CORBA objects in different
ways. For object-oriented languages, it may be desirable to see CORBA objects as programming language objects. Even
for non-object-oriented languages, it is a good idea to hide the exact ORB representation of the object reference, method
names, etc. A particular mapping of OMG IDL to a programming language should be the same for all ORB
implementations. Language mapping includes definition of the language-specific data types and procedure interfaces to
access objects through the ORB. It includes the structure of the client stub interface (not required for object-oriented
languages), the dynamic invocation interface, the implementation skeleton, the object adapters, and the direct ORB
interface.

A language mapping also defines the interaction between object invocations and the threads of control in the client or
implementation. The most common mappings provide synchronous calls, in that the routine returns when the object
operation completes. Additional mappings may be provided to allow a call to be initiated and control returned to the
program. In such cases, additional language-specific routines must be provided to synchronize the program’s threads of
control with the object invocation.

4.2.7 Client Stubs

Generally, the client stubs will present access to the OMG IDL-defined operations on an object in a way that is easy for
programmers to predict once they are familiar with OMG IDL and the language mapping for the particular programming
language. The stubs make calls on the rest of the ORB using interfaces that are private to, and presumably optimized for,
the particular ORB Core. If more than one ORB is available, there may be different stubs corresponding to the different
ORBs. In this case, it is necessary for the ORB and language mapping to cooperate to associate the correct stubs with the
particular object reference.

4.2.8 Dynamic Invocation Interface

An interface is also available that allows the dynamic construction of object invocations, that is, rather than calling a stub
routine that is specific to a particular operation on a particular object, a client may specify the object to be invoked, the
operation to be performed, and the set of parameters for the operation through a call or sequence of calls. The client code
must supply information about the operation to be performed and the types of the parameters being passed (perhaps
obtaining it from an Interface Repository or other run-time source). The nature of the dynamic invocation interface may
vary substantially from one programming language mapping to another.
CORBA for embedded, v1.0 11

4.2.9 Implementation Skeleton

For a particular language mapping, and possibly depending on the object adapter, there will be an interface to the methods
that implement each type of object. The interface will generally be an up-call interface, in that the object implementation
writes routines that conform to the interface and the ORB calls them through the skeleton.

The existence of a skeleton does not imply the existence of a corresponding client stub (clients can also make requests via
the dynamic invocation interface).

It is possible to write an object adapter that does not use skeletons to invoke implementation methods. For example, it
may be possible to create implementations dynamically for languages such as Smalltalk.

4.2.10 Dynamic Skeleton Interface

An interface is available, which allows dynamic handling of object invocations. That is, rather than being accessed
through a skeleton that is specific to a particular operation, an object’s implementation is reached through an interface that
provides access to the operation name and parameters in a manner analogous to the client side’s Dynamic Invocation
Interface. Purely static knowledge of those parameters may be used, or dynamic knowledge (perhaps determined through
an Interface Repository) may be also used, to determine the parameters.

The implementation code must provide descriptions of all the operation parameters to the ORB, and the ORB provides the
values of any input parameters for use in performing the operation. The implementation code provides the values of any
output parameters, or an exception, to the ORB after performing the operation. The nature of the dynamic skeleton
interface may vary substantially from one programming language mapping or object adapter to another, but will typically
be an up-call interface.

Dynamic skeletons may be invoked both through client stubs and through the dynamic invocation interface; either style of
client request construction interface provides identical results.

4.2.11 Object Adapters

An object adapter is the primary way that an object implementation accesses services provided by the ORB. There are
expected to be a few object adapters that will be widely available, with interfaces that are appropriate for specific kinds
of objects. Services provided by the ORB through an Object Adapter often include: generation and interpretation of object
references, method invocation, security of interactions, object and implementation activation and deactivation, mapping
object references to implementations, and registration of implementations.

The wide range of object granularities, lifetimes, policies, implementation styles, and other properties make it difficult for
the ORB Core to provide a single interface that is convenient and efficient for all objects. Thus, through Object Adapters,
it is possible for the ORB to target particular groups of object implementations that have similar requirements with
interfaces tailored to them.

4.2.12 ORB Interface

The ORB Interface is the interface that goes directly to the ORB, which is the same for all ORBs and does not depend on
the object’s interface or object adapter. Because most of the functionality of the ORB is provided through the object
adapter, stubs, skeleton, or dynamic invocation, there are only a few operations that are common across all objects. These
operations are useful to both clients and implementations of objects.
12 CORBA for embedded, v1.0

4.2.13 Interface Repository

The Interface Repository is a service that provides persistent objects that represent the IDL information in a form
available at run-time. The Interface Repository information may be used by the ORB to perform requests. Moreover,
using the information in the Interface Repository, it is possible for a program to encounter an object whose interface was
not known when the program was compiled, yet, be able to determine what operations are valid on the object and make
an invocation on it.

In addition to its role in the functioning of the ORB, the Interface Repository is a common place to store additional
information associated with interfaces to ORB objects. For example, debugging information, libraries of stubs or
skeletons, routines that can format or browse particular kinds of objects might be associated with the Interface Repository.

4.2.14 Implementation Repository

The Implementation Repository contains information that allows the ORB to locate and activate implementations of
objects. Although most of the information in the Implementation Repository is specific to an ORB or operating
environment, the Implementation Repository is the conventional place for recording such information. Ordinarily,
installation of implementations and control of policies related to the activation and execution of object implementations is
done through operations on the Implementation Repository.

In addition to its role in the functioning of the ORB, the Implementation Repository is a common place to store additional
information associated with implementations of ORB objects. For example, debugging information, administrative
control, resource allocation, security, etc., might be associated with the Implementation Repository.

4.3 Structure of a Client

A client of an object has an object reference that refers to that object. An object reference is a token that may be invoked
or passed as a parameter to an invocation on a different object. Invocation of an object involves specifying the object to
be invoked, the operation to be performed, and parameters to be given to the operation or returned from it.

The ORB manages the control transfer and data transfer to the object implementation and back to the client. In the event
that the ORB cannot complete the invocation, an exception response is provided. Ordinarily, a client calls a routine in its
program that performs the invocation and returns when the operation is complete.

Clients access object-type-specific stubs as library routines in their program (see Figure 4.6). The client program thus sees
routines callable in the normal way in its programming language. All implementations will provide a language-specific
data type to use to refer to objects, often an opaque pointer. The client then passes that object reference to the stub
routines to initiate an invocation. The stubs have access to the object reference representation and interact with the ORB
to perform the invocation. (See the C Language Mapping specification for additional, general information on language
mapping of object references.)
CORBA for embedded, v1.0 13

Figure 4.6- The Structure of a Typical Client

An alternative set of library code is available to perform invocations on objects, for example when the object was not
defined at compile time. In that case, the client program provides additional information to name the type of the object
and the method being invoked, and performs a sequence of calls to specify the parameters and initiate the invocation.

Clients most commonly obtain object references by receiving them as output parameters from invocations on other
objects for which they have references. When a client is also an implementation, it receives object references as input
parameters on invocations to objects it implements. An object reference can also be converted to a string that can be
stored in files or preserved or communicated by different means and subsequently turned back into an object reference by
the ORB that produced the string.

4.4 Structure of an Object Implementation

An object implementation provides the actual state and behavior of an object. The object implementation can be
structured in a variety of ways. Besides defining the methods for the operations themselves, an implementation will
usually define procedures for activating and deactivating objects and will use other objects or non-object facilities to
make the object state persistent, to control access to the object, as well as to implement the methods.

The object implementation (see Figure 4.7) interacts with the ORB in a variety of ways to establish its identity, to create
new objects, and to obtain ORB-dependent services. It primarily does this via access to an Object Adapter, which
provides an interface to ORB services that is convenient for a particular style of object implementation.

Client Program
Language-dependent object references

ORB object references

Dynamic Invocation
Interface

Stubs for
Interface A

Stubs for
Interface B
14 CORBA for embedded, v1.0

Figure 4.7- The Structure of a Typical Object Implementation

Because of the range of possible object implementations, it is difficult to be definitive about how an object
implementation is structured. See the chapter on the Portable Object Adapter.

When an invocation occurs, the ORB Core, object adapter, and skeleton arrange that a call is made to the appropriate
method of the implementation. A parameter to that method specifies the object being invoked, which the method can use
to locate the data for the object. Additional parameters are supplied according to the skeleton definition. When the method
is complete, it returns, causing output parameters or exception results to be transmitted back to the client.

When a new object is created, the ORB may be notified so that it knows where to find the implementation for that object.
Usually, the implementation also registers itself as implementing objects of a particular interface, and specifies how to
start up the implementation if it is not already running.

Most object implementations provide their behavior using facilities in addition to the ORB and object adapter. For
example, although the Portable Object Adapter provides some persistent data associated with an object (its OID or Object
ID), that relatively small amount of data is typically used as an identifier for the actual object data stored in a storage
service of the object implementation’s choosing. With this structure, it is not only possible for different object
implementations to use the same storage service, it is also possible for objects to choose the service that is most
appropriate for them.

Object Implementation

ORB object references

Methods for
Interface A

Library Routines

Object data

Skeleton for

Interface A
Object adapter

routines

U
p

-c
al

l t
o

M
et

ho
d

Dynamic

Skeleton

br
CORBA for embedded, v1.0 15

4.5 Structure of an Object Adapter

An object adapter (see Figure 4.8) is the primary means for an object implementation to access ORB services such as
object reference generation. An object adapter exports a public interface to the object implementation, and a private
interface to the skeleton. It is built on a private ORB-dependent interface.

Object adapters are responsible for the following functions:

• Generation and interpretation of object references

• Method invocation

• Security of interactions

• Object and implementation activation and deactivation

• Mapping object references to the corresponding object implementations

• Registration of implementations

These functions are performed using the ORB Core and any additional components necessary. Often, an object adapter
will maintain its own state to accomplish its tasks. It may be possible for a particular object adapter to delegate one or
more of its responsibilities to the Core upon which it is constructed.

Figure 4.8- The Structure of a Typical Object Adapter

As shown in Figure 4.8, the Object Adapter is implicitly involved in invocation of the methods, although the direct
interface is through the skeletons. For example, the Object Adapter may be involved in activating the implementation or
authenticating the request.

Object Implementation

ORB Core

Interface A
Methods

Interface B
Methods

Object
Adapter
Interface

Dynamic
Skeleton

Interface A
Skeleton

Interface B
Skeleton
16 CORBA for embedded, v1.0

The Object Adapter defines most of the services from the ORB that the Object Implementation can depend on. Different
ORBs will provide different levels of service and different operating environments may provide some properties
implicitly and require others to be added by the Object Adapter. For example, it is common for Object Implementations
to want to store certain values in the object reference for easy identification of the object on an invocation. If the Object
Adapter allows the implementation to specify such values when a new object is created, it may be able to store them in
the object reference for those ORBs that permit it. If the ORB Core does not provide this feature, the Object Adapter
would record the value in its own storage and provide it to the implementation on an invocation. With Object Adapters, it
is possible for an Object Implementation to have access to a service whether or not it is implemented in the ORB Core —
if the ORB Core provides it, the adapter simply provides an interface to it; if not, the adapter must implement it on top of
the ORB Core. Every instance of a particular adapter must provide the same interface and service for all the ORBs it is
implemented on.

It is also not necessary for all Object Adapters to provide the same interface or functionality. Some Object
Implementations have special requirements. For example, an object-oriented database system may wish to implicitly
register its many thousands of objects without doing individual calls to the Object Adapter. In such a case, it would be
impractical and unnecessary for the object adapter to maintain any per-object state. By using an object adapter interface
that is tuned towards such object implementations, it is possible to take advantage of particular ORB Core details to
provide the most effective access to the ORB.

4.6 CORBA Required Object Adapter

There are a variety of possible object adapters; however, since the object adapter interface is something that object
implementations depend on, it is desirable that there be as few as practical. Most object adapters are designed to cover a
range of object implementations, so only when an implementation requires radically different services or interfaces should
a new object adapter be considered. In this section, we briefly describe the object adapter defined in this specification.

4.6.1 Portable Object Adapter

This specification defines a Portable Object Adapter that can be used for most ORB objects with conventional
implementations. (See the Portable Object Adapter chapter for more information.) The intent of the POA, as its name
suggests, is to provide an Object Adapter that can be used with multiple ORBs with a minimum of rewriting needed to
deal with different vendors’ implementations.

This specification allows several ways of using servers but it does not deal with the administrative issues of starting server
programs. Once started, however, there can be a servant started and ended for a single method call, a separate servant for
each object, or a shared servant for all instances of the object type. It allows for groups of objects to be associated by means
of being registered with different instances of the POA object and allows implementations to specify their own activation
techniques. If the implementation is not active when an invocation is performed, the POA will start one. The POA is
specified in IDL, so its mapping to languages is largely automatic, following the language mapping rules. (The primary
task left for a language mapping is the definition of the Servant type.)

4.7 The Integration of Foreign Object Systems

The Common ORB Architecture is designed to allow interoperation with a wide range of object systems (see Figure 4.9).
Because there are many existing object systems, a common desire will be to allow the objects in those systems to be
accessible via the ORB. For those object systems that are ORBs themselves, they may be connected to other ORBs
through the mechanisms described throughout this manual.
CORBA for embedded, v1.0 17

Figure 4.9- Different Ways to Integrate Foreign Object Systems

For object systems that simply want to map their objects into ORB objects and receive invocations through the ORB, one
approach is to have those object systems appear to be implementations of the corresponding ORB objects. The object
system would register its objects with the ORB and handle incoming requests, and could act like a client and perform
outgoing requests.

In some cases, it will be impractical for another object system to act like a POA object implementation. An object adapter
could be designed for objects that are created in conjunction with the ORB and that are primarily invoked through the
ORB. Another object system may wish to create objects without consulting the ORB, and might expect most invocations
to occur within itself rather than through the ORB. In such a case, a more appropriate object adapter might allow objects
to be implicitly registered when they are passed through the ORB.

4.8 Interoperability Model

ORB interoperability specifies a comprehensive, flexible approach to supporting networks of objects that are distributed
across and managed by multiple, heterogeneous CORBA-compliant ORBs. The approach to “interORBability” is
universal, because its elements can be combined in many ways to satisfy a very broad range of needs.

4.8.1 Elements of Interoperability

The elements of interoperability are as follows:

• ORB interoperability architecture

• Inter-ORB bridge support

• General and Internet inter-ORB Protocols (GIOPs and IIOPs)

In addition, the architecture accommodates environment-specific inter-ORB protocols (ESIOPs) that are optimized for
particular environments such as DCE.

ORB Core

Gateway

Object system as
another ORB

interoperating via a
gateway

Portable Object
Adapter

Special-purpose
Adapter

Object system as
a POA object

implementation

Object system as
an implementation

with a special-purpose
object adapter
18 CORBA for embedded, v1.0

4.8.2 ORB Interoperability Architecture

The ORB Interoperability Architecture provides a conceptual framework for defining the elements of interoperability and
for identifying its compliance points. It also characterizes new mechanisms and specifies conventions necessary to
achieve interoperability between independently produced ORBs.

Specifically, the architecture introduces the concepts of immediate and mediated bridging of ORB domains. The Internet
Inter-ORB Protocol (IIOP) forms the common basis for broad-scope mediated bridging. The inter-ORB bridge support
can be used to implement both immediate bridges and to build “half-bridges” to mediated bridge domains.

By use of bridging techniques, ORBs can interoperate without knowing any details of that ORB’s implementation, such
as what particular IPC or protocols (such as ESIOPs) are used to implement the CORBA specification.

The IIOP may be used in bridging two or more ORBs by implementing “half bridges” that communicate using the IIOP.
This approach works for both stand-alone ORBs, and networked ones that use an ESIOP.

The IIOP may also be used to implement an ORB’s internal messaging, if desired. Since ORBs are not required to use the
IIOP internally, the goal of not requiring prior knowledge of each others’ implementation is fully satisfied.

4.8.3 Inter-ORB Bridge Support

The interoperability architecture clearly identifies the role of different kinds of domains for ORB-specific information.
Such domains can include object reference domains, type domains, security domains (e.g., the scope of a Principal
identifier), a transaction domain, and more.

Where two ORBs are in the same domain, they can communicate directly. In many cases, this is the preferable approach.
This is not always true, however, since organizations often need to establish local control domains.

When information in an invocation must leave its domain, the invocation must traverse a bridge. The role of a bridge is
to ensure that content and semantics are mapped from the form appropriate to one ORB to that of another, so that users of
any given ORB only see their appropriate content and semantics.

The inter-ORB bridge support element specifies ORB APIs and conventions to enable the easy construction of
interoperability bridges between ORB domains. Such bridge products could be developed by ORB vendors, Sieves,
system integrators, or other third-parties.

Because the extensions required to support Inter-ORB Bridges are largely general in nature, do not impact other ORB
operation, and can be used for many other purposes besides building bridges, they are appropriate for all ORBs to
support. Other applications include debugging, interposing of objects, implementing objects with interpreters and
scripting languages, and dynamically generating implementations.

The inter-ORB bridge support can also be used to provide interoperability with non-CORBA systems, such as Microsoft’s
Component Object Model (COM). The ease of doing this will depend on the extent to which those systems conform to the
CORBA Object Model.

4.8.4 General Inter-ORB Protocol (GIOP)

The General Inter-ORB Protocol (GIOP) element specifies a standard transfer syntax (low-level data representation) and
a set of message formats for communications between ORBs. The GIOP is specifically built for ORB to ORB interactions
and is designed to work directly over any connection-oriented transport protocol that meets a minimal set of assumptions.
CORBA for embedded, v1.0 19

It does not require or rely on the use of higher level RPC mechanisms. The protocol is simple, scalable, and relatively
easy to implement. It is designed to allow portable implementations with small memory footprints and reasonable
performance, with minimal dependencies on supporting software other than the underlying transport layer.

While versions of the GIOP running on different transports would not be directly interoperable, their commonality would
allow easy and efficient bridging between such networking domains.

4.8.5 Internet Inter-ORB Protocol (IIOP)®

The Internet Inter-ORB Protocol (IIOP)® element specifies how GIOP messages are exchanged using TCP/IP
connections. The IIOP specifies a standardized interoperability protocol for the Internet, providing “out of the box”
interoperation with other compatible ORBs based on the most popular product- and vendor-neutral transport layer. It can
also be used as the protocol between half-bridges (see below).

The protocol is designed to be suitable and appropriate for use by any ORB to interoperate in Internet Protocol domains
unless an alternative protocol is necessitated by the specific design center or intended operating environment of the ORB.
In that sense it represents the basic inter-ORB protocol for TCP/IP environments, a most pervasive transport layer.

The IIOP’s relationship to the GIOP is similar to that of a specific language mapping to OMG IDL; the GIOP may be
mapped onto a number of different transports, and specifies the protocol elements that are common to all such mappings.
The GIOP by itself, however, does not provide complete interoperability, just as IDL cannot be used to build complete
programs. The IIOP and other similar mappings to different transports are concrete realizations of the abstract GIOP
definitions as shown in Figure 4.10.

Figure 4.10- Inter-ORB Protocol Relationships

4.8.6 Environment-Specific Inter-ORB Protocols (ESIOPs)

This specification also makes provision for an open-ended set of Environment-Specific Inter-ORB Protocols (ESIOPs).
Such protocols would be used for “out of the box” interoperation at user sites where a particular networking or
distributing computing infrastructure is already in general use.

Because of the opportunity to leverage and build on facilities provided by the specific environment, ESIOPs might
support specialized capabilities such as those relating to security and administration.

While ESIOPs may be optimized for particular environments, all ESIOP specifications will be expected to conform to the
general ORB interoperability architecture conventions to enable easy bridging. The inter-ORB bridge support enables
bridges to be built between ORB domains that use the IIOP and ORB domains that use a particular ESIOP.

GIOP

IIOP

CORBA/IDL

ESIOPs

other GIOP
mappings...

Mandatory for CORBA
20 CORBA for embedded, v1.0

4.8.7 Relationship to Previous Versions of CORBA

The ORB Interoperability Architecture builds on Common Object Request Broker Architecture by adding the notion of
ORB Services and their domains. (ORB Services are described in 16.2, ’Goals of the General Inter-ORB Protocol’). The
architecture defines the problem of ORB interoperability in terms of bridging between those domains, and defines several
ways in which those bridges can be constructed. The bridges can be internal (in-line) and external (request-level) to
ORBs.

APIs included in the interoperability specifications include compatible extensions to previous versions of CORBA to
support request-level bridging:

• A Dynamic Skeleton Interface (DSI) is the basic support needed for building request-level bridges. It is the server-side
analogue of the Dynamic Invocation Interface and in the same way it has general applicability beyond bridging. For
information about the Dynamic Skeleton Interface, refer to the Dynamic Skeleton Interface chapter.

• APIs for managing object references have been defined, building on the support identified for the Relationship
Service. The APIs are defined in Object Reference Operations in the ORB Interface chapter of this book. The
Relationship Service is described in the Relationship Service specification; refer to the CosObjectIdentity Module
section of that specification.

4.8.8 Domains

The CORBA Object Model identifies various distribution transparencies that must be supported within a single ORB
environment, such as location transparency. Elements of ORB functionality often correspond directly to such
transparencies. Interoperability can be viewed as extending transparencies to span multiple ORBs.

In this architecture a domain is a distinct scope, within which certain common characteristics are exhibited and common
rules are observed over which a distribution transparency is preserved. Thus, interoperability is fundamentally involved
with transparently crossing such domain boundaries.

Domains tend to be either administrative or technological in nature, and need not correspond to the boundaries of an ORB
installation. Administrative domains include naming domains, trust groups, resource management domain, and other “run-
time” characteristics of a system. Technology domains identify common protocols, syntaxes, and similar “build-time”
characteristics. In many cases, the need for technology domains derives from basic requirements of administrative
domains.

Within a single ORB, most domains are likely to have similar scope to that of the ORB itself: common object references,
network addresses, security mechanisms, and more. However, it is possible for there to be multiple domains of the same
type supported by a given ORB: internal representation on different machine types, or security domains. Conversely, a
domain may span several ORBs: similar network addresses may be used by different ORBs, type identifiers may be
shared.

4.9 Quality of Service Abstract Model

This section describes each of the components in the Quality of Service (QoS) abstract model and their relationships. The
specification defines a framework within which current QoS levels are queried and overridden. This framework is
intended to be of use for CORBAServices specifiers, as well as for future revisions of CORBA. The Messaging-specific
QoS are defined in terms of this framework.
CORBA for embedded, v1.0 21

Note – The QoS definitions specified in this specification are applied to both synchronous as well as asynchronous
invocations.

4.9.1 Model Components

The QoS framework abstract model consists of the following components:

• Policy - The base interface from which all QoS objects derive.

• PolicyList - A sequence of Policy objects.

• PolicyManager - An interface with operations for querying and overriding QoS Policy settings.

• Mechanisms for obtaining Policy override management operations at each relevant application scope:

• The ORB’s PolicyManager is obtained through invoking ORB::resolve_initial_references with the
ObjectId “ORBPolicyManager.”

• A CORBA::PolicyCurrent derived from CORBA::Current is used for managing the thread’s QoS Policies. A
reference to this interface is obtained through an invocation of ORB::resolve_initial_references with the
ObjectId “PolicyCurrent.”

• Accessor operations on CORBA::Object allow querying and overriding of QoS at the object reference scope.

• The application of QoS on a Portable Object Adapter is done through the currently existing mechanism of passing
a PolicyList to the POA::create_POA operation.

• Mechanisms for transporting Policy values as part of interoperable object references and within requests:

• TAG_POLICIES - A Profile Component containing the sequence of QoS policies exported with the object
reference by an object adapter.

• INVOCATION_POLICIES - A Service Context containing a sequence of QoS policies in effect for the
invocation.

The Messaging QoS abstract model consists of a number of CORBA::Policy-derived interfaces:

• Client-side Policies are applied to control the behavior of requests and replies. These include Priority,
RequestEndTime, and Queueing QoS.

• Server-side Policies are applied to control the default behavior of invocations on a target. These include QueueOrder
and Transactionality QoS.

4.9.2 Component Relationships

Programmers set QoS at various levels of scope by creating a Policy-derived Messaging QoS Policy and selecting the
interface for the particular scope. It is anticipated that the following is the standard use-case scenario:

• A POA is created with a certain set of QoS. When object references are created by that POA, the required and
supported QoS are encoded in that object reference. Such an object reference is then exported for use by a client.

• Within a client, the ORB’s PolicyManager interface is obtained to set QoS for the entire ORB (for the entire process
when only one ORB is present) either programmatically, or administratively. The Policies set here are valid for all
invocations in the process. A programmer-constructed PolicyList is used with this interface to actually set the QoS.
22 CORBA for embedded, v1.0

• Within that same client, the CORBA::PolicyCurrent is obtained to set QoS for all invocations in the current thread.
This interface is derived from the PolicyManager interface, which can be used to change the QoS for each
invocation. A programmer-constructed PolicyList is used with this interface to actually set the QoS.

• Within that same client, the object reference is obtained and an invocation of its get_client_policy operation queries
the most specific QoS overrides. A programmer-constructed PolicyList may be passed to the Object’s
set_policy_overrides operation to obtain a new Object reference with revised QoS. Setting the QoS here applies to
all invocations using the new Object reference and supersedes (if possible) those set at the ORB and thread (Current)
scopes. The current set of overrides can be validated by calling the Object’s pseudo-operation
validate_connection, which will attempt to locate a target for the object reference if no target has yet been located.
At this time, any Policy overrides placed at the Object, Thread or ORB scope will be reconciled with the QoS Policies
established for that object reference when it was created by the POA. The current effective Policy can then be queried
by invoking get_policy, which returns the Policy value that is in effect.

• Unseen by the application, the ORB (including the protocol engine) modifies its internal behavior in order to realize
the quality of service indicated by the client through the first three steps.

4.9.3 Component Design

Design decisions were made with respect to the following components of the QoS framework:

• Each QoS is an interface derived from CORBA::Policy. The design trade-offs focused on ease of application
interface for setting specific QoS values, extensibility for new QoS types and values, and compactness so the QoS
values can be represented efficiently in Service Contexts and IOR Profile Components. Several alternatives were
considered as the basic type for each QoS entity before the decision was made to use the Policy interface:

• CORBA::NamedValue - A pair of string and any were considered mainly due to the flexibility afforded by
using an any to represent QoS values. This design was discounted due to the untyped nature of the any and the
application development and execution costs of inserting typed data into and extracting typed data from values of
type any. Furthermore, the presence of a full typecode within an any makes the size of such pairs too large for
inclusion in compact Service Contexts and Profile Components.

• Stateful CORBA valuetype - Although the valuetype does present a typed interface to the application program,
including valuetypes in Service Contexts and IOR Profile Components is too expensive due to the presence of
full repository identifier information when the valuetype is marshaled. Furthermore, there are issues associated
with potential truncation of such QoS valuetypes when passed as formal arguments of their base type.

• Interfaces derived from CORBA::Policy and compact representation. In the model chosen by this specification,
the QoS values are accessible through locality-constrained interfaces. Derivation from CORBA::Policy allows
reuse of existing interfaces and operations for policy management. When certain QoS values must be marshaled in
a Service Context or an IOR Profile Component, the most compact format was chosen. The type of QoS Policy
represented is indicated by a structure containing the integral PolicyType and a sequence of octet holding the
values for that policy.

• A generic factory for creating QoS Policies. In the POA specification within CORBA, each POA Policy is created
through an operation on the POA itself. Although this presents a convenient typed interface for the creation of Policy
objects, it causes serious problems when new POA Policies are introduced. To fit with the current model, operations
would have to be added to the POA interface for every new type of POA Policy. To address this potential
administrative nightmare, this specification introduces a new ORB operation create_policy. Rather than introducing
typed operations for creating all of the Messaging QoS Policies discussed in this specification, the generic factory
operation is used.

• A RebindPolicy client-side QoS Policy to ensure deterministic effective QoS. In CORBA, transparent rebinding of
an object reference may take place during any invocation. Rebinding is defined here to mean changing the client-
CORBA for embedded, v1.0 23

visible QoS as a result of replacing the IOR Profile used by a client’s object reference with a new IOR Profile.
Transparent rebinding is defined as when this happens without notice to the client application. Typically, this happens
within GIOP through the use of location forwarding. The default RebindPolicy (and the only CORBA behavior)
supports this transparent rebind. For an application with rigorous quality of service requirements, such transparent
rebinding can cause problems. For instance, unexpected errors may occur if the application sets its QoS Policies
appropriately for an object reference, and then the ORB transparently changes the application’s assumptions about that
reference by obtaining a new IOR. The RebindPolicy has been added so that applications can prevent the ORB from
silently changing the IOR Profile (and therefore the server-side QoS) that have been assumed. A more rigorous value
of this Policy even precludes the ORB from silently closing and opening connections (when IIOP is being used, for
example). The specific requirements demanded by an application dictate which level of RebindPolicy is necessary.

24 CORBA for embedded, v1.0

5 The Object Model

This chapter describes the concrete object model that underlies the CORBA architecture. The model is derived from the
abstract Core Object Model defined by the Object Management Group in the Object Management Architecture Guide.
(Information about the OMA Guide and other books in the CORBA documentation set is provided in this document’s
preface.)

Compliance

This chapter contains non-normative descriptive material.

5.1 Overview

The object model provides an organized presentation of object concepts and terminology. It defines a partial model for
computation that embodies the key characteristics of objects as realized by the conformant technologies. The OMG object
model is abstract in that it is not directly realized by any particular technology. The model described here is a concrete
object model. A concrete object model may differ from the abstract object model in several ways:

• It may elaborate the abstract object model by making it more specific; for example, by defining the form of request
parameters or the language used to specify types.

• It may populate the model by introducing specific instances of entities defined by the model; for example, specific
objects, specific operations, or specific types.

• It may restrict the model by eliminating entities or placing additional restrictions on their use.

An object system is a collection of objects that isolates the requestors of services (clients) from the providers of services
by a well-defined encapsulating interface. In particular, clients are isolated from the implementations of services as data
representations and executable code.

The object model first describes concepts that are meaningful to clients, including such concepts as object creation and
identity, requests and operations, types and signatures. It then describes concepts related to object implementations,
including such concepts as methods, execution engines, and activation.

The object model is most specific and prescriptive in defining concepts meaningful to clients. The discussion of object
implementation is more suggestive, with the intent of allowing maximal freedom for different object technologies to
provide different ways of implementing objects.

There are some other characteristics of object systems that are outside the scope of the object model. Some of these
concepts are aspects of application architecture, some are associated with specific domains to which object technology is
applied. Such concepts are more properly dealt with in an architectural reference model. Examples of excluded concepts
are compound objects, links, copying of objects, change management, and transactions. Also outside the scope of the
object model are the details of control structure: the object model does not say whether clients and/or servers are single-
threaded or multi-threaded, and does not specify how event loops are programmed nor how threads are created, destroyed,
or synchronized.
CORBA for embedded, v1.0 25

This object model is an example of a classical object model, where a client sends a message to an object. Conceptually,
the object interprets the message to decide what service to perform. In the classical model, a message identifies an object
and zero or more actual parameters. As in most classical object models, a distinguished first parameter is required, which
identifies the operation to be performed; the interpretation of the message by the object involves selecting a method based
on the specified operation. Operationally, of course, method selection could be performed either by the object or the ORB.

5.2 Foundations of the Model

An Object Request Broker is built from three foundational concepts.

5.2.1 Object

An object system includes entities known as objects. An object is an identifiable, encapsulated entity that provides one or
more services that can be requested by a client.

5.2.2 Request

Object interact when a clients request a service by issuing requests.

The term request is broadly used to refer to the entire sequence of causally related events that transpires between a client
initiating it and the last event causally associated with that initiation. For example:

• the client receives the final response associated with that request from the server,

• the server carries out the associated operation in case of a oneway request, or

• the sequence of events associated with the request terminates in a failure of some sort. The initiation of a Request is an
event.

The information associated with a request consists of an operation, a target object, zero or more (actual) parameters, and
an optional request context.

5.2.3 Broker

The broker is the infrastructure in place that enables a client to interact with, i.e., request a service of, an object. It is the
intermediary between client and (server) object.

5.3 Constituents of the Model

5.3.1 Client

An object system provides services to clients. A client of a service is any entity capable of requesting the service. Object
semantics are the concepts relevant to clients.
26 CORBA for embedded, v1.0

5.3.2 Object Reference

An object reference is a value that reliably denotes a particular object. Specifically, an object reference will identify the
same object each time the reference is used in a request (subject to certain pragmatic limits of space and time). An object
may be denoted by multiple, distinct object references.

5.3.3 Request Terminations

A request causes a service to be performed on behalf of the client. There are a number of possible outcomes of a request,
called terminations. One possible termination of performing a service is returning results to the client. If there are no
results defined for the request, then the termination represents synchronization between server and client.

If an abnormal condition occurs during the performance of a request, an exceptional termination occurs. The termination
may carry additional return parameters particular to that exception.

5.3.4 Request Parameters

A request may have parameters that are used to pass data to the target object; it may also have a request context that
provides additional information about the request. A request context is a mapping from strings to strings.

The request parameters are identified by position. A parameter may be an input parameter, an output parameter, or an
input-output parameter. A request may also return a single return result value, as well as the results stored into the output
and input-output parameters.

The following semantics hold for all requests:

• Any aliasing of parameter values is neither guaranteed removed nor guaranteed to be preserved.

• The order in which aliased output parameters are written is not guaranteed.

• The return result and the values stored into the output and input-output parameters are undefined if an exception is
returned.

A value is anything that may be a legitimate (actual) parameter in a request. More particularly, a value is an instance of
an OMG IDL data type. There are non-object values, as well as values that reference objects.

5.3.5 Object Lifecycle

Objects can be created and destroyed. From a client’s point of view, there is no special mechanism for creating or
destroying an object. Objects are created and destroyed as an outcome of issuing requests. The outcome of object creation
is revealed to the client in the form of an object reference that denotes the new object.

5.3.6 Types

A type is an identifiable entity with an associated predicate (a single-argument mathematical function with a boolean
result) defined over entities. An entity satisfies a type if the predicate is true for that entity. An entity that satisfies a type
is called a member of the type.

Types are used in signatures to restrict a possible parameter or to characterize a possible result.

The extension of a type is the set of entities that satisfy the type at any particular time.
CORBA for embedded, v1.0 27

An object type is a type whose members are object references. In other words, an object type is satisfied only by object
references.

Constraints on the data types in this model are shown in this section.

5.3.6.1 Basic types

• 16-bit, 32-bit, and 64-bit signed and unsigned 2’s complement integers.

• Single-precision (32-bit), double-precision (64-bit), and double-extended (a mantissa of at least 64 bits, a sign bit and
an exponent of at least 15 bits) IEEE floating point numbers.

• Fixed-point decimal numbers of up to 31 significant digits.

• Characters, as defined in ISO Latin-1 (8859.1) and other single- or multi-byte character sets.

• A boolean type taking the values TRUE and FALSE.

• An 8-bit opaque detectable, guaranteed to not undergo any conversion during transfer between systems.

• Enumerated types consisting of ordered sequences of identifiers.

• A string type, which consists of a variable-length array of characters; the length of the string is a non-negative integer,
and is available at run-time. The length may have a maximum bound defined.

• A wide character string type, which consists of a variable-length array of (fixed width) wide characters; the length of
the wide string is a non-negative integer, and is available at run-time. The length may have a maximum bound defined.

• A container type “any,” which can represent any possible basic or constructed type.

• Wide characters that may represent characters from any wide character set.

• Wide character strings, which consist of a length, available at runtime, and a variable-length array of (fixed width)
wide characters.

5.3.6.2 Constructed types

• A record type (called struct), which consists of an ordered set of (name,value) pairs.

• A discriminated union type, which consists of a discriminator (whose exact value is always available) followed by an
instance of a type appropriate to the discriminator value.

• A sequence type, which consists of a variable-length array of a single type; the length of the sequence is available at
run-time.

• An array type, which consists of a fixed-shape multidimensional array of a single type.

• An interface type, which specifies the set of operations that an instance of that type must support.

• A value type, which specifies state as well as a set of operations that an instance of that type must support.

Entities in a request are restricted to values that satisfy these type constraints. The legal entities are shown in Figure 5.1.
No particular representation for entities is defined.
28 CORBA for embedded, v1.0

Figure 5.1- Legal Values

5.3.7 Interface

An interface is a description of a set of possible operations that a client may request of an object, through that interface.
It provides a syntactic description of how a service provided by an object supporting this interface, is accessed via this set
of operations. An object satisfies an interface if it provides its service through the operations of the interface according to
the specification of the operations (see Section 5.3.10, “Operation,” on page 30).

The interface type for a given interface is an object type, such that an object reference will satisfy the type, if and only if
the referent object also satisfies the interface.

Interfaces are specified in OMG IDL. Interface inheritance provides the composition mechanism for permitting an object
to support multiple interfaces. The principal interface is simply the most-specific interface that the object supports, and
consists of all operations in the transitive closure of the interface inheritance graph.

Interfaces satisfy the Liskov substitution principle. If interface A is derived from interface B, then a reference to an object
that supports interface A can be used where the formal type of a parameter is declared to be B.

5.3.8 Value Type

A value type is an entity, which shares many of the characteristics of interfaces and structs. It is a description of both a set
of operations that a client may request and of state that is accessible to a client. Instances of a value type are always local
concrete implementations in some programming language.

A value type, in addition to the operations and state defined for itself, may also inherit from other value types, and
through multiple inheritance support other interfaces.

Value types are specified in OMG IDL.

An abstract value types describes a value type that is a “pure” bundle of operations with no state.

Short
Long

LongLong
UShort
Ulong

UlongLong
Float

Double
LongDouble

Fixed
Char

Wchar
String

Wstring
Boolean

Octet

Struct
Sequence

Union
Array

Basic ValueEntity

Constructed Values

Object Reference

Value Type

Abstract Interface
CORBA for embedded, v1.0 29

5.3.9 Abstract Interface

An abstract interface is an entity, which may at runtime represent either a regular interface or a value type. Like an
abstract value type, it is a pure bundle of operations with no state. Unlike an abstract value type, it does not imply pass-
by-value semantics, and unlike a regular interface type, it does not imply pass-by-reference semantics. Instead, the entity's
runtime type determines which of these semantics are used.

5.3.10 Operation

An operation is an identifiable entity that denotes the indivisible primitive of service provision that can be requested. The
act of requesting an operation is referred to as invoking the operation. An operation is identified by an operation
identifier.

An operation has a signature that describes the legitimate values of request parameters and returned results. In particular,
a signature consists of:

• A specification of the parameters required in requests for that operation.

• A specification of the result of the operation.

• An identification of the user exceptions that may be raised by an invocation of the operation.

• A specification of additional contextual information that may affect the invocation.

• An indication of the execution semantics the client should expect from an invocation of the operation.

Operations are (potentially) generic, meaning that a single operation can be uniformly invoked on objects with different
implementations, possibly resulting in observably different behavior. Genericity is achieved in this model via interface
inheritance in IDL and the total decoupling of implementation from interface specification.

5.3.11 Operation Signature

The general form for an operation signature is:

[oneway] <op_type_spec> <identifier> (param1, ..., paramL)
 [raises(except1,...,exceptN)] [context(name1, ..., nameM)]

where:

• The optional oneway keyword indicates that best-effort semantics are expected of requests for this operation; the
default semantics are exactly-once if the operation successfully returns results or at-most-once if an exception is
returned.

• The <op_type_spec> is the type of the return result.

• The <identifier> provides a name for the operation in the interface.

• The operation parameters needed for the operation; they are flagged with the modifiers in, out, or inout to indicate
the direction in which the information flows (with respect to the object performing the request).

• The optional raises expression indicates which user-defined exceptions can be signaled to terminate an invocation of
this operation; if such an expression is not provided, no user-defined exceptions will be signaled.
30 CORBA for embedded, v1.0

• The optional context expression indicates which request context information will be available to the object
implementation; no other contextual information is required to be transported with the request.

5.3.12 Parameters

A parameter is characterized by its mode and its type. The mode indicates whether the value should be passed from client
to server (in), from server to client (out), or both (inout). The parameter’s type constrains the possible value, which may
be passed in the directions dictated by the mode.

5.3.13 Return Result

The return result is a distinguished out parameter.

5.3.14 Exceptions

An exception is an indication that an operation request was not performed successfully. An exception may be
accompanied by additional, exception-specific information.

The additional, exception-specific information is a specialized form of record. As a record, it may consist of any of the
types described in Section 5.3.6, “Types,” on page 27.

All signatures implicitly include the system exceptions; the standard system exceptions are described in Section 8.6.2,
“System Exceptions,” on page 123.

5.3.15 Contexts

A request context provides additional, operation-specific information that may affect the performance of a request.

5.3.16 Execution Semantics

Two styles of execution semantics are defined by the object model:

• At-most-once: if an operation request returns successfully, it was performed exactly once; if it returns an exception
indication, it was performed at-most-once.

• Best-effort: a best-effort operation is a request-only operation (i.e., it cannot return any results and the requester never
synchronizes with the completion, if any, of the request).

The execution semantics to be expected is associated with an operation. This prevents a client and object implementation
from assuming different execution semantics.

Note that a client is able to invoke an at-most-once operation in a synchronous or deferred-synchronous manner.

5.3.17 Attributes

An interface may have attributes. An attribute is logically equivalent to declaring a pair of accessor functions: one to
retrieve the value of the attribute and one to set the value of the attribute.

An attribute may be read-only, in which case only the retrieval accessor function is defined.
CORBA for embedded, v1.0 31

5.4 Facets of the Model

This section defines the concepts associated with object implementation (i.e., the concepts relevant to realizing the
behavior of objects in a computational system).

The implementation of an object system carries out the computational activities needed to effect the behavior of requested
services. These activities may include computing the results of the request and updating the system state. In the process,
additional requests may be issued.

The implementation model consists of two parts: the execution model and the construction model. The execution model
describes how services are performed. The construction model describes how services are defined.

5.4.1 The Execution Model: Performing Services

A requested service is performed in a computational system by executing code that operates upon some data. The data
represents a component of the state of the computational system. The code performs the requested service, which may
change the state of the system.

Code that is executed to perform a service is called a method. A method is an immutable description of a computation that
can be interpreted by an execution engine. A method has an immutable attribute called a method format that defines the
set of execution engines that can interpret the method. An execution engine is an abstract machine (not a program) that
can interpret methods of certain formats, causing the described computations to be performed. An execution engine
defines a dynamic context for the execution of a method. The execution of a method is called a method activation.

When a client issues a request, a method of the target object is called. The input parameters passed by the requestor are
passed to the method and the output and input-output parameters and return result value (or exception and its parameters)
are passed back to the requestor.

Performing a requested service causes a method to execute that may operate upon an object’s persistent state. If the
persistent form of the method or state is not accessible to the execution engine, it may be necessary to first copy the
method or state into an execution context. This process is called activation; the reverse process is called deactivation.

5.4.2 The Construction Model

A computational object system must provide mechanisms for realizing behavior of requests. These mechanisms include
definitions of object state, definitions of methods, and definitions of how the object infrastructure is to select the methods
to execute and to select the relevant portions of object state to be made accessible to the methods. Mechanisms must also
be provided to describe the concrete actions associated with object creation, such as association of the new object with
appropriate methods.

An object implementation—or implementation, for short—is a definition that provides the information needed to create an
object and to allow the object to participate in providing an appropriate set of services. An implementation typically
includes, among other things, definitions of the methods that operate upon the state of an object. It also typically includes
information about the intended types of the object.

5.4.3 The Interoperability Model

ORB interoperability specifies a comprehensive, flexible approach to supporting networks of objects that are distributed
across and managed by multiple, heterogeneous CORBA-compliant ORBs. The approach to “interORBability” is
universal, because its elements can be combined in many ways to satisfy a very broad range of needs.
32 CORBA for embedded, v1.0

The ORB Interoperability Architecture provides a conceptual framework for defining the elements of interoperability and
for identifying its compliance points. It also characterizes new mechanisms and specifies conventions necessary to
achieve interoperability between independently produced ORBs.

5.4.3.1 General Inter-ORB Protocol (GIOP)

The General Inter-ORB Protocol (GIOP) element specifies a standard transfer syntax (low-level data representation) and
a set of message formats for communications between ORBs. The GIOP is specifically built for ORB to ORB interactions
and is designed to work directly over any connection-oriented transport protocol that meets a minimal set of assumptions.
It does not require or rely on the use of higher level RPC mechanisms. The protocol is simple, scalable and relatively easy
to implement. It is designed to allow portable implementations with small memory footprints and reasonable performance,
with minimal dependencies on supporting software other than the underlying transport layer.

While versions of the GIOP running on different transports would not be directly interoperable, their commonality would
allow easy and efficient bridging between such networking domains.

5.4.3.2 Internet Inter-ORB Protocol (IIOP)®

The Internet Inter-ORB Protocol (IIOP)® element specifies how GIOP messages are exchanged using TCP/IP
connections. The IIOP specifies a standardized interoperability protocol for the Internet, providing “out of the box”
interoperation with other compatible ORBs based on the most popular product- and vendor-neutral transport layer. It can
also be used as the protocol between half-bridges (see below).

The protocol is designed to be suitable and appropriate for use by any ORB to interoperate in Internet Protocol domains
unless an alternative protocol is necessitated by the specific design center or intended operating environment of the ORB.
In that sense it represents the basic inter-ORB protocol for TCP/IP environments, a most pervasive transport layer.

The IIOP’s relationship to the GIOP is similar to that of a specific language mapping to OMG IDL; the GIOP may be
mapped onto a number of different transports, and specifies the protocol elements that are common to all such mappings.
The GIOP by itself, however, does not provide complete interoperability, just as IDL cannot be used to build complete
programs. The IIOP and other similar mappings to different transports, are concrete realizations of the abstract GIOP
definitions, as shown in Figure 5.2.

Figure 5.2- Inter-ORB Protocol Relationships

GIOP

IIOP

CORBA/IDL

ESIOPs

other GIOP
mappings...

Mandatory for CORBA
CORBA for embedded, v1.0 33

5.4.3.3 Environment-Specific Inter-ORB Protocols (ESIOPs)

This specification also makes provision for an open-ended set of Environment-Specific Inter-ORB Protocols (ESIOPs).
Such protocols would be used for “out of the box” interoperation at user sites where a particular networking or
distributing computing infrastructure is already in general use.

Because of the opportunity to leverage and build on facilities provided by the specific environment, ESIOPs might
support specialized capabilities such as those relating to security and administration.

While ESIOPs may be optimized for particular environments, all ESIOP specifications will be expected to conform to the
general ORB interoperability architecture conventions to enable easy bridging. The inter-ORB bridge support enables
bridges to be built between ORB domains that use the IIOP and ORB domains that use a particular ESIOP.

5.4.3.4 Domains

The CORBA Object Model identifies various distribution transparencies that must be supported within a single ORB
environment, such as location transparency. Elements of ORB functionality often correspond directly to such
transparencies. Interoperability can be viewed as extending transparencies to span multiple ORBs.

In this architecture a domain is a distinct scope, within which certain common characteristics are exhibited and common
rules are observed over which a distribution transparency is preserved. Thus, interoperability is fundamentally involved
with transparently crossing such domain boundaries.

Domains tend to be either administrative or technological in nature, and need not correspond to the boundaries of an ORB
installation. Administrative domains include naming domains, trust groups, resource management domains, and other
“run-time” characteristics of a system. Technology domains identify common protocols, syntaxes, and similar “build-
time” characteristics. In many cases, the need for technology domains derives from basic requirements of administrative
domains.

5.4.4 The Federation Model: Interworking

The Federation Model provides a framework for specifying the interworking between disjoint object systems. If these
systems support GIOP but are not otherwise fully conformant with the CORBA architecture they can interwork by using
bridges or half-bridges. If the interaction protocol is itself different between two system, then a gateway must be
constructed.

5.4.4.1 Inter-ORB Bridges

The interoperability architecture clearly identifies the role of different kinds of domains for ORB-specific information.
Such domains can include object reference domains, type domains, security domains (e.g., the scope of a Principal
identifier), a transaction domain, and more.

Where two ORBs are in the same domain, they can communicate directly. In many cases, this is the preferable approach.
This is not always true, however, since organizations often need to establish local control domains.

When information in an invocation must leave its domain, the invocation must traverse a bridge. The role of a bridge is
to ensure that content and semantics are mapped from the form appropriate to one ORB to that of another, so that users of
any given ORB only see their appropriate content and semantics.

A bridging architecture can be used for other applications, including debugging, interposing of objects, implementing
objects with interpreters and scripting languages, and dynamically generating implementations.
34 CORBA for embedded, v1.0

The inter-ORB bridge support can also be used to provide interoperability with non-CORBA systems, such as Microsoft’s
Component Object Model (COM). The ease of doing this will depend on the extent to which those systems conform to the
CORBA Object Model.

5.4.4.2 Integrating an ORB in a Gateway

The Common ORB Architecture is designed to allow interoperation with a wide range of object systems (see Figure 5.3).
Because there are many existing object systems, a common desire will be to allow the objects in those systems to be
accessible via the ORB.

Figure 5.3- Different Ways to Integrate Foreign Object Systems

For object systems that simply want to map their objects into ORB objects and receive invocations through the ORB, one
approach is to have those object systems appear to be implementations of the corresponding ORB objects. The object
system would register its objects with the ORB and handle incoming requests, and could act like a client and perform
outgoing requests.

In some cases, it will be impractical for another object system to act like a POA object implementation. An object adapter
could be designed for objects that are created in conjunction with the ORB and that are primarily invoked through the
ORB. Another object system may wish to create objects without consulting the ORB, and might expect most invocations
to occur within itself rather than through the ORB. In such a case, a more appropriate object adapter might allow objects
to be implicitly registered when they are passed through the ORB.

5.4.5 Quality of Service

5.4.5.1 QoS Abstract Model

The abstract model describes the Quality of Service (QoS) components and their relationships. The specification defines
a framework within which current QoS levels are queried and overridden. This framework is intended to be of use for
CORBAServices specifiers, as well as for future revisions of CORBA.

ORB Core

Gateway

Object system as
another ORB

interoperating via a
gateway

Portable Object
Adapter

Special-purpose
Adapter

Object system as
a POA object

implementation

Object system as
an implementation

with a special-purpose
object adapter
CORBA for embedded, v1.0 35

5.4.5.2 Model Components

The QoS framework abstract model consists of the following components:

• Policy - The base interface from which all QoS objects derive.

• PolicyList - A sequence of Policy objects.

• PolicyManager - An interface with operations for querying and overriding QoS Policy settings.

• TAG_POLICIES - A sequence of QoS policy settings contained within an object reference.

• INVOCATION_POLICIES - A sequence of QoS policy settings propagated with, and in effect for, an interaction.

• Client-side Policies are applied to control the behavior of requests and replies. For example, Priority, RequestEndTime,
and Queueing QoS.

• Server-side Policies are applied to control the default behavior of invocations on a target. For example, QueueOrder
and Transactionality QoS.

5.4.5.3 Component Relationships

Programmers set QoS at various levels of scope by creating a Policy object for a particular QoS Policy and selecting the
interface for its scope of application. It is anticipated that the following is the standard use-case scenario:

• A POA is created with a certain set of QoS. When object references are created by that POA, the required and
supported QoS are encoded in that object reference. Such an object reference is then exported for use by a client.

• Within a client, the ORB’s PolicyManager interface is obtained to set QoS for the entire ORB (for the entire process
when only one ORB is present) either programmatically, or administratively. The Policies set here are valid for all
invocations in the process. A programmer-constructed PolicyList is used with this interface to actually set the QoS.

• Within that same client, the CORBA::PolicyCurrent is obtained to set QoS for all invocations in the current thread.
This interface is derived from the PolicyManager interface, which can be used to change the QoS for each
subsequent invocation performed by that thread. A programmer-constructed PolicyList is used with this interface to
actually set the QoS.

• Within that same client, the object reference is obtained and an invocation of its get_client_policy operation queries
the most specific QoS overrides. A programmer-constructed PolicyList may be passed to the Object’s
set_policy_overrides operation to obtain a new Object reference with revised QoS. Setting the QoS here applies to
all invocations using the new Object reference.

• The effective value for a given policy, the effective Policy, is determined by arbitrating the policy values for the
different scopes. The object reference scope policy supersedes any specified thread (Current) scope policy which, in
turn, supersedes any specified ORB scope policy. If no policy value is set at any scope, then the implementation’s
default behavior will apply.

• The current set of overrides can be validated by calling the Object’s pseudo-operation validate_connection, which
will attempt to locate a target for the object reference if no target has yet been located. At this time, any Policy
overrides placed at the Object, Thread, or ORB scope will be reconciled with the QoS Policies established for that
object reference when it was created by the POA. The current can then be queried by invoking get_policy, which
returns the Policy value that is in effect.

• Unseen by the application, the ORB (including the protocol engine) modifies its internal behavior in order to realize
the quality of service indicated by the client through the steps above.
36 CORBA for embedded, v1.0

5.4.5.4 Design Issues

Design decisions were made with respect to the following components of the QoS framework:

• Each QoS is an interface derived from CORBA::Policy. The design trade-offs focused on ease of use of application
interfaces for setting specific QoS values, extensibility for new QoS types and values, and compactness so the QoS
values can be represented efficiently in Service Contexts and IOR Profile Components. Derivation from
CORBA::Policy allows reuse of existing interfaces and operations for policy management. When certain QoS values
must be marshaled in a Service Context or an IOR Profile Component, the most compact format was chosen. The type
of QoS Policy represented is indicated by a structure containing the integral PolicyType and a sequence of octet
holding the values for that policy.

• A generic factory for creating QoS Policies. In the POA specification within CORBA, each POA Policy is created
through an operation on the POA itself. Although this presents a convenient typed interface for the creation of Policy
objects, it causes serious problems when new POA Policies are introduced. To fit with the current model, operations
would have to be added to the POA interface for every new type of POA Policy. To address this potential
administrative nightmare, this specification introduces a new ORB operation create_policy. Rather than introducing
typed operations for creating all of the Messaging QoS Policies discussed in this specification, the generic factory
operation is used.

• A RebindPolicy client-side QoS Policy to ensure deterministic effective QoS. In CORBA, transparent rebinding of
an object reference may take place during any invocation. Rebinding is defined here to mean changing the client-
visible QoS as a result of replacing the IOR Profile used by a client’s object reference with a new IOR Profile.
Transparent rebinding is defined as when this happens without notice to the client application. Typically, this happens
within GIOP through the use of location forwarding. The default RebindPolicy (and the only CORBA behavior)
supports this transparent rebind. For an application with rigorous quality of service requirements, such transparent
rebinding can cause problems. For instance, unexpected errors may occur if the application sets its QoS Policies
appropriately for an object reference, and then the ORB transparently changes the application’s assumptions about that
reference by obtaining a new IOR. The RebindPolicy has been added so that applications can prevent the ORB from
silently changing the IOR Profile (and therefore the server-side QoS) that have been assumed. A more rigorous value
of this Policy even precludes the ORB from silently closing and opening connections (when IIOP is being used, for
example). The specific requirements demanded by an application dictate which level of RebindPolicy is necessary.
CORBA for embedded, v1.0 37

38 CORBA for embedded, v1.0

6 OMG IDL Syntax and Semantics

This chapter describes OMG Interface Definition Language (IDL) semantics and gives the syntax for OMG IDL
grammatical constructs.

Compliance

Conformant implementations of the CORBA/e Compact Profile or CORBA/e Micro Profile must comply with all clauses
of this chapter; all legal IDL must be accepted. However, certain IDL constructs, even though they must be parsed, may
be otherwise ignored. The use of these constructs in the construction of other construction (e.g., as a parameter type for
an operation) is illegal and may be rejected by a conforming product. These constructs are enumerated in Table 6.1.

Additional legality restrictions are contained in later chapters.

6.1 Overview

The OMG Interface Definition Language (IDL) is the language used to describe the interfaces that client objects call and
object implementations provide. An interface definition written in OMG IDL completely defines the interface and fully
specifies each operation’s parameters. An OMG IDL interface provides the information needed to develop clients that use
the interface’s operations.

Clients are not written in OMG IDL, which is purely a descriptive language, but in languages for which mappings from
OMG IDL concepts have been defined. The mapping of an OMG IDL concept to a client language construct will depend
on the facilities available in the client language. For example, an OMG IDL exception might be mapped to a structure in
a language that has no notion of exception, or to an exception in a language that does.

Table 6.1- Constructs Ignored by CORBA/e Profiles

Profile Ignored Constructs Grammar Rule(s)

CORBA/e Compact abstract interfaces 6, 7

value boxes 15

custom valuetypes 18

value “supports” interface 19

context clauses 87, 94

import 100

CORBA/e Micro abstract interfaces 6, 7

values 13 through 26, 98

Any 67

context clauses 87, 94

import 100
CORBA for embedded, v1.0 39

The description of OMG IDL’s lexical conventions is presented in Section 6.2, “Lexical Conventions,” on page 40. A
description of OMG IDL preprocessing is presented in Section 6.3, “Preprocessing,” on page 48. The scope rules for
identifiers in an OMG IDL specification are described in Section 6.16, “Names and Scoping,” on page 87.

OMG IDL is a declarative language. The grammar is presented in Section 6.4, “OMG IDL Grammar,” on page 48 and
associated semantics is described in the rest of this chapter either in place or through references to other sections of this
standard.

OMG IDL-specific pragmas (those not defined for C++) may appear anywhere in a specification; the textual location of
these pragmas may be semantically constrained by a particular implementation.

A source file containing interface specifications written in OMG IDL must have an “.idl” extension.

The description of OMG IDL grammar uses a syntax notation that is similar to Extended Backus-Naur Format (EBNF).
Table 6.2 lists the symbols used in this format and their meaning.

6.2 Lexical Conventions

This section1 presents the lexical conventions of OMG IDL. It defines tokens in an OMG IDL specification and describes
comments, identifiers, keywords, and literals—integer, character, and floating point constants and string literals.

An OMG IDL specification logically consists of one or more files. A file is conceptually translated in several phases.

The first phase is preprocessing, which performs file inclusion and macro substitution. Preprocessing is controlled by
directives introduced by lines having # as the first character other than white space. The result of preprocessing is a
sequence of tokens. Such a sequence of tokens, that is, a file after preprocessing, is called a translation unit.

Table 6.2 - IDL EBNF

Symbol Meaning
::= Is defined to be

| Alternatively

<text> Nonterminal

“text” Literal

* The preceding syntactic unit can be repeated zero or more times.

+ The preceding syntactic unit can be repeated one or more times.

{} The enclosed syntactic units are grouped as a single syntactic unit.

[] The enclosed syntactic unit is optional—may occur zero or one
time.

1. This section is an adaptation of The Annotated C++ Reference Manual, Chapter 2; it differs in the list of legal keywords and
punctuation.
40 CORBA for embedded, v1.0

OMG IDL uses the ASCII character set, except for string literals and character literals, which use the ISO Latin-1
(8859.1) character set. The ISO Latin-1 character set is divided into alphabetic characters (letters) digits, graphic
characters, the space (blank) character, and formatting characters. Table 6.3 shows the ISO Latin-1 alphabetic characters;
upper and lower case equivalences are paired. The ASCII alphabetic characters are shown in the left-hand column of
Table 6.3.

Table 6.4 lists the decimal digit characters.

Table 6.3- The 114 Alphabetic Characters (Letters)

Char. Description Char. Description

Aa Upper/Lower-case A Àà Upper/Lower-case A with grave accent

Bb Upper/Lower-case B Áá Upper/Lower-case A with acute accent

Cc Upper/Lower-case C Ââ Upper/Lower-case A with circumflex accent

Dd Upper/Lower-case D Ãã Upper/Lower-case A with tilde

Ee Upper/Lower-case E Ää Upper/Lower-case A with diaeresis

Ff Upper/Lower-case F Åå Upper/Lower-case A with ring above

Gg Upper/Lower-case G Ææ Upper/Lower-case dipthong A with E

Hh Upper/Lower-case H Çç Upper/Lower-case C with cedilla

Ii Upper/Lower-case I Èè Upper/Lower-case E with grave accent

Jj Upper/Lower-case J Éé Upper/Lower-case E with acute accent

Kk Upper/Lower-case K Êê Upper/Lower-case E with circumflex accent

Ll Upper/Lower-case L Ëë Upper/Lower-case E with diaeresis

Mm Upper/Lower-case M Ìì Upper/Lower-case I with grave accent

Nn Upper/Lower-case N Íí Upper/Lower-case I with acute accent

Oo Upper/Lower-case O Îî Upper/Lower-case I with circumflex accent

Pp Upper/Lower-case P Ïï Upper/Lower-case I with diaeresis

Qq Upper/Lower-case Q Ññ Upper/Lower-case N with tilde

Rr Upper/Lower-case R Òò Upper/Lower-case O with grave accent

Ss Upper/Lower-case S Óó Upper/Lower-case O with acute accent

Tt Upper/Lower-case T Ôô Upper/Lower-case O with circumflex accent

Uu Upper/Lower-case U Õõ Upper/Lower-case O with tilde

Vv Upper/Lower-case V Öö Upper/Lower-case O with diaeresis

Ww Upper/Lower-case W Øø Upper/Lower-case O with oblique stroke

Xx Upper/Lower-case X Ùù Upper/Lower-case U with grave accent

Yy Upper/Lower-case Y Úú Upper/Lower-case U with acute accent

Zz Upper/Lower-case Z Ûû Upper/Lower-case U with circumflex accent

Üü Upper/Lower-case U with diaeresis

 ß Lower-case German sharp S

 ÿ Lower-case Y with diaeresis

Table 6.4- Decimal Digits
0 1 2 3 4 5 6 7 8 9
CORBA for embedded, v1.0 41

Table 6.5 shows the graphic characters.

Table 6.5- The 65 Graphic Characters

Char. Description Char. Description
! exclamation point ¡ inverted exclamation mark

" double quote ¢ cent sign

number sign £ pound sign

$ dollar sign ¤ currency sign

% percent sign ¥ yen sign

& ampersand broken bar

’ apostrophe § section/paragraph sign

(left parenthesis ¨ diaeresis

) right parenthesis © copyright sign

* asterisk ª feminine ordinal indicator

+ plus sign « left angle quotation mark

, comma ¬ not sign

- hyphen, minus sign soft hyphen

. period, full stop ® registered trade mark sign

/ solidus ¯ macron

: colon ° ring above, degree sign

; semicolon ± plus-minus sign

< less-than sign 2 superscript two

= equals sign 3 superscript three

> greater-than sign ´ acute

? question mark m micro

@ commercial at ¶ pilcrow

[left square bracket • middle dot

\ reverse solidus ¸ cedilla

] right square bracket 1 superscript one

^ circumflex º masculine ordinal indicator

_ low line, underscore » right angle quotation mark

‘ grave vulgar fraction 1/4

{ left curly bracket vulgar fraction 1/2

| vertical line vulgar fraction 3/4

} right curly bracket ¿ inverted question mark

~ tilde ¥ multiplication sign

³ division sign
42 CORBA for embedded, v1.0

The formatting characters are shown in Table 6.6.

6.2.1 Tokens

There are five kinds of tokens: identifiers, keywords, literals, operators, and other separators. Blanks, horizontal and
vertical tabs, newlines, formfeeds, and comments (collective, “white space”), as described below, are ignored except as
they serve to separate tokens. Some white space is required to separate otherwise adjacent identifiers, keywords, and
constants.

If the input stream has been parsed into tokens up to a given character, the next token is taken to be the longest string of
characters that could possibly constitute a token.

6.2.2 Comments

The characters /* start a comment, which terminates with the characters */. These comments do not nest. The characters
// start a comment, which terminates at the end of the line on which they occur. The comment characters //, /*, and */ have
no special meaning within a // comment and are treated just like other characters. Similarly, the comment characters // and
/* have no special meaning within a /* comment. Comments may contain alphabetic, digit, graphic, space, horizontal tab,
vertical tab, form feed, and newline characters.

6.2.3 Identifiers

An identifier is an arbitrarily long sequence of ASCII alphabetic, digit, and underscore (“_”) characters. The first
character must be an ASCII alphabetic character. All characters are significant.

When comparing two identifiers to see if they collide:

• Upper- and lower-case letters are treated as the same letter. Table 6.3 defines the equivalence mapping of upper- and
lower-case letters.

• All characters are significant.

Identifiers that differ only in case collide, and will yield a compilation error under certain circumstances. An identifier for
a given definition must be spelled identically (e.g., with respect to case) throughout a specification.

There is only one namespace for OMG IDL identifiers in each scope. Using the same identifier for a constant and an
interface, for example, produces a compilation error.

For example:

Table 6.6- The Formatting Characters

Description Abbreviation ISO 646 Octal Value
alert BEL 007

backspace BS 010

horizontal tab HT 011

newline NL, LF 012

vertical tab VT 013

form feed FF 014

carriage return CR 015
CORBA for embedded, v1.0 43

module M {
typedef long Foo;
const long thing = 1;
interface thing { // error: reuse of identifier

void doit (
in Foo foo // error: Foo and foo collide and refer to different things

);
readonly attribute long Attribute; // error: Attribute collides with keyword attribute

};
};

6.2.3.1 Escaped Identifiers

As IDL evolves, new keywords that are added to the IDL language may inadvertently collide with identifiers used in
existing IDL and programs that use that IDL. Fixing these collisions will require not only the IDL to be modified, but
programming language code that depends upon that IDL will have to change as well. The language mapping rules for the
renamed IDL identifiers will cause the mapped identifier names (e.g., method names) to be changed.

To minimize the amount of work, users may lexically “escape” identifiers by prepending an underscore (_) to an
identifier. This is a purely lexical convention that ONLY turns off keyword checking. The resulting identifier follows all
the other rules for identifier processing. For example, the identifier _AnIdentifier is treated as if it were AnIdentifier.

The following is a non-exclusive list of implications of these rules:

• The underscore does not appear in the Interface Repository.

• The underscore is not used in the DII and DSI.

• The underscore is not transmitted over “the wire.”

• Case sensitivity rules are applied to the identifier after stripping off the leading underscore.

For example:

module M {
interface thing {

attribute boolean abstract; // error: abstract collides with
// keyword abstract

attribute boolean _abstract; // ok: abstract is an identifier
};

};

To avoid unnecessary confusion for readers of IDL, it is recommended that interfaces only use the escaped form of
identifiers when the unescaped form clashes with a newly introduced IDL keyword. It is also recommended that interface
designers avoid defining new identifiers that are known to require escaping. Escaped literals are only recommended for
IDL that expresses legacy interface, or for IDL that is mechanically generated.
44 CORBA for embedded, v1.0

6.2.4 Keywords

The identifiers listed in Table 6.7 are reserved for use as keywords and may not be used otherwise, unless escaped with a
leading underscore.

Keywords must be written exactly as shown in the above list. Identifiers that collide with keywords (see Section 6.2.3,
“Identifiers,” on page 43) are illegal. For example, “boolean” is a valid keyword; “Boolean” and “BOOLEAN” are
illegal identifiers.

For example:

module M {
typedef Long Foo; // Error: keyword is long not Long
typedef boolean BOOLEAN; // Error: BOOLEAN collides with

// the keyword boolean;
};

OMG IDL specifications use the characters shown in Table 6.8 as punctuation.

In addition, the tokens listed in Table 6.9 are used by the preprocessor.

6.2.5 Literals

This section describes the following literals:

Table 6.7- Keywords
abstract exception inout provides truncatable

any emits interface public typedef

attribute enum local publishes typeid

boolean eventtype long raises typeprefix

case factory module readonly unsigned

char FALSE multiple setraises union

component finder native sequence uses

const fixed Object short ValueBase

consumes float octet string valuetype

context getraises oneway struct void

custom home out supports wchar

default import primarykey switch wstring

double in private TRUE

Table 6.8- Punctuation Characters
; { } : , = + - () < > []

' " \ | ^ & * / % ~

Table 6.9- Preprocessor Tokens
! || &&
CORBA for embedded, v1.0 45

• Integer

• Character

• Floating-point

• String

• Fixed-point

6.2.5.1 Integer Literals

An integer literal consisting of a sequence of digits is taken to be decimal (base ten) unless it begins with 0 (digit zero).
A sequence of digits starting with 0 is taken to be an octal integer (base eight). The digits 8 and 9 are not octal digits. A
sequence of digits preceded by 0x or 0X is taken to be a hexadecimal integer (base sixteen). The hexadecimal digits
include a or A through f or F with decimal values ten through fifteen, respectively. For example, the number twelve can
be written 12, 014, or 0XC.

6.2.5.2 Character Literals

A character literal is one or more characters enclosed in single quotes, as in ’x.’ Character literals have type char.

A character is an 8-bit quantity with a numerical value between 0 and 255 (decimal). The value of a space, alphabetic,
digit, or graphic character literal is the numerical value of the character as defined in the ISO Latin-1 (8859.1) character
set standard (see Table 6.3, Table 6.4, and Table 6.5). The value of a null is 0. The value of a formatting character literal
is the numerical value of the character as defined in the ISO 646 standard (see Table 6.6). The meaning of all other
characters is implementation-dependent.

Non-graphic characters must be represented using escape sequences as defined below in Table 6.10. Note that escape
sequences must be used to represent single quote and backslash characters in character literals.

Table 6.10- Escape Sequences

Description Escape Sequence
newline \n

horizontal tab \t

vertical tab \v

backspace \b

carriage return \r

form feed \f

alert \a

backslash \\

question mark \?

single quote \'

double quote \"

octal number \ooo

hexadecimal number \xhh

unicode character \uhhhh
46 CORBA for embedded, v1.0

If the character following a backslash is not one of those specified, the behavior is undefined. An escape sequence
specifies a single character.

The escape \ooo consists of the backslash followed by one, two, or three octal digits that are taken to specify the value of
the desired character. The escape \xhh consists of the backslash followed by x followed by one or two hexadecimal digits
that are taken to specify the value of the desired character.

The escape \uhhhh consists of a backslash followed by the character ‘u,’ followed by one, two, three, or four hexadecimal
digits. This represents a unicode character literal. Thus the literal “\u002E” represents the unicode period ‘.’ character and
the literal “\u3BC” represents the unicode greek small letter ‘mu.’ The \u escape is valid only with wchar and wstring
types. Because a wide string literal is defined as a sequence of wide character literals a sequence of \u literals can be used
to define a wide string literal. Attempts to set a char type to a \u defined literal or a string type to a sequence of \u literals
result in an error.

A sequence of octal or hexadecimal digits is terminated by the first character that is not an octal digit or a hexadecimal
digit, respectively. The value of a character constant is implementation dependent if it exceeds that of the largest char.

Wide character literals have an L prefix, for example:

const wchar C1 = L'X';

Attempts to assign a wide character literal to a non-wide character constant or to assign a non-wide character literal to a
wide character constant result in a compile-time diagnostic.

Both wide and non-wide character literals must be specified using characters from the ISO 8859-1 character set.

6.2.5.3 Floating-point Literals

A floating-point literal consists of an integer part, a decimal point, a fraction part, an e or E, and an optionally signed
integer exponent. The integer and fraction parts both consist of a sequence of decimal (base ten) digits. Either the integer
part or the fraction part (but not both) may be missing; either the decimal point or the letter e (or E) and the exponent (but
not both) may be missing.

6.2.5.4 String Literals

A string literal is a sequence of characters (as defined in Section 6.2.5.2, “Character Literals,” on page 46), with the
exception of the character with numeric value 0, surrounded by double quotes, as in “...”.

Adjacent string literals are concatenated. Characters in concatenated strings are kept distinct. For example,

"\xA" "B"

contains the two characters '\xA' and 'B' after concatenation (and not the single hexadecimal character '\xAB').

The size of a string literal is the number of character literals enclosed by the quotes, after concatenation. Within a string,
the double quote character " must be preceded by a \.

A string literal may not contain the character ‘\0.’

Wide string literals have an L prefix, for example:

const wstring S1 = L"Hello";
CORBA for embedded, v1.0 47

Attempts to assign a wide string literal to a non-wide string constant or to assign a non-wide string literal to a wide string
constant result in a compile-time diagnostic.

Both wide and non-wide string literals must be specified using characters from the ISO 8859-1 character set.

A wide string literal shall not contain the wide character with value zero.

6.2.5.5 Fixed-Point Literals

A fixed-point decimal literal consists of an integer part, a decimal point, a fraction part, and a d or D. The integer and
fraction parts both consist of a sequence of decimal (base 10) digits. Either the integer part or the fraction part (but not
both) may be missing; the decimal point (but not the letter d (or D)) may be missing.

6.3 Preprocessing

OMG IDL is preprocessed according to the specification of the preprocessor in “International Organization for
Standardization. 1998. ISO/IEC 14882 Standard for the C++ Programming Language. Geneva: International Organization
for Standardization.” The preprocessor may be implemented as a separate process or built into the IDL compiler.

Lines beginning with # (also called “directives”) communicate with this preprocessor. White space may appear before the
#. These lines have syntax independent of the rest of OMG IDL; they may appear anywhere and have effects that last
(independent of the OMG IDL scoping rules) until the end of the translation unit. The textual location of OMG IDL-
specific pragmas may be semantically constrained.

A preprocessing directive (or any line) may be continued on the next line in a source file by placing a backslash character
(“\”), immediately before the newline at the end of the line to be continued. The preprocessor effects the continuation by
deleting the backslash and the newline before the input sequence is divided into tokens. A backslash character may not be
the last character in a source file.

A preprocessing token is an OMG IDL token (see Section 6.2.1, “Tokens,” on page 43), a file name as in a #include
directive, or any single character other than white space that does not match another preprocessing token.

The primary use of the preprocessing facilities is to include definitions from other OMG IDL specifications. Text in files
included with a #include directive is treated as if it appeared in the including file, except that RepositoryId related
pragmas are handled in a special way. The special handling of these pragmas is described in Section 7.3, “Pragma
Directives for RepositoryId,” on page 96.

Note that whether a particular IDL compiler generates code for included files is an implementation-specific issue. To
support separate compilation, IDL compilers may not generate code for included files, or do so only if explicitly
instructed.

6.4 OMG IDL Grammar

(1) <specification> ::= <import>* <definition>+

(2) <definition> ::= <type_dcl> “;”
| <const_dcl> “;”
| <except_dcl> “;”
| <interface> “;”
| <module> “;”
| <value> “;”
48 CORBA for embedded, v1.0

| <type_id_dcl> “;”
| <type_prefix_dcl> “;”

(3) <module> ::= “module” <identifier> “{“ <definition>+ “}”
(4) <interface> ::= <interface_dcl>

| <forward_dcl>
(5) <interface_dcl> ::= <interface_header> “{” <interface_body> “}”
(6) <forward_dcl> ::= [“abstract” | “local”] “interface” <identifier>
(7) <interface_header> ::= [“abstract” | “local”] “interface” <identifier>

[<interface_inheritance_spec>]
(8) <interface_body> ::= <export>*

(9) <export> ::= <type_dcl> “;”
| <const_dcl> “;”
| <except_dcl> “;”
| <attr_dcl> “;”
| <op_dcl> “;”
| <type_id_dcl> “;”
| <type_prefix_dcl> “;”

(10)<interface_inheritance_spec>::=“:” <interface_name>
{ “,” <interface_name> }*

(11) <interface_name> ::= <scoped_name>
(12) <scoped_name> ::= <identifier>

| “::” <identifier>
| <scoped_name> “::” <identifier>

(13) <value> ::= (<value_dcl> | <value_abs_dcl> | <value_box_dcl> | <value_forward_dcl>)
(14) <value_forward_dcl> ::= [“abstract”] “valuetype” <identifier>
(15) <value_box_dcl> ::= “valuetype” <identifier> <type_spec>
(16) <value_abs_dcl> ::= “abstract” “valuetype” <identifier>

[<value_inheritance_spec>]
“{“ <export>* “}”

(17) <value_dcl> ::= <value_header> “{“ < value_element>* “}”
(18) <value_header> ::= [“custom”] “valuetype” <identifier>

[<value_inheritance_spec>]
(19)<value_inheritance_spec> ::=[“:” [“truncatable”] <value_name>

{ “,” <value_name> }*]
[“supports” <interface_name>
{ “,” <interface_name> }*]

(20) <value_name> ::= <scoped_name>
(21) <value_element> ::= <export> | < state_member> | <init_dcl>
(22) <state_member> ::= (“public” | “private”)

<type_spec> <declarators> “;”
(23) <init_dcl> ::= “factory” <identifier>

“(“ [<init_param_decls>] “)”
[<raises_expr>] “;”

(24) <init_param_decls> ::= <init_param_decl> { “,” <init_param_decl> }*
(25) <init_param_decl> ::= <init_param_attribute> <param_type_spec> <simple_declarator>
(26)<init_param_attribute> ::= “in”
CORBA for embedded, v1.0 49

(27) <const_dcl> ::= “const” <const_type>
<identifier> “=” <const_exp>

(28) <const_type> ::= <integer_type>
| <char_type>
| <wide_char_type>
| <boolean_type>
| <floating_pt_type>
| <string_type>
| <wide_string_type>
| <fixed_pt_const_type>
| <scoped_name>
| <octet_type>

(29) <const_exp> ::= <or_expr>
(30) <or_expr> ::= <xor_expr>

| <or_expr> “|” <xor_expr>
(31) <xor_expr> ::= <and_expr>

| <xor_expr> “^” <and_expr>
(32) <and_expr> ::= <shift_expr>

| <and_expr> “&” <shift_expr>
(33) <shift_expr> ::= <add_expr>

| <shift_expr> “>>” <add_expr>
| <shift_expr> “<<” <add_expr>

(34) <add_expr> ::= <mult_expr>
| <add_expr> “+” <mult_expr>
| <add_expr> “-” <mult_expr>

(35) <mult_expr> ::= <unary_expr>
| <mult_expr> “*” <unary_expr>
| <mult_expr> “/” <unary_expr>
| <mult_expr> “%” <unary_expr>

(36) <unary_expr> ::= <unary_operator> <primary_expr>
| <primary_expr>

(37) <unary_operator> ::= “-”
| “+”
| “~”

(38) <primary_expr> ::= <scoped_name>
| <literal>
| “(” <const_exp> “)”

(39) <literal> ::= <integer_literal>
| <string_literal>
| <wide_string_literal>
| <character_literal>
| <wide_character_literal>
| <fixed_pt_literal>
| <floating_pt_literal>
| <boolean_literal>

(40) <boolean_literal> ::= “TRUE”
| “FALSE”

(41)<positive_int_const> ::= <const_exp>
50 CORBA for embedded, v1.0

(42) <type_dcl> ::= “typedef” <type_declarator>
| <struct_type>
| <union_type>
| <enum_type>
| “native” <simple_declarator>
| <constr_forward_decl>

(43) <type_declarator> ::= <type_spec> <declarators>
(44) <type_spec> ::= <simple_type_spec>

| <constr_type_spec>
(45)<simple_type_spec> ::= <base_type_spec>

| <template_type_spec>
| <scoped_name>

(46) <base_type_spec> ::= <floating_pt_type>
| <integer_type>
| <char_type>
| <wide_char_type>
| <boolean_type>
| <octet_type>
| <any_type>
| <object_type>
| <value_base_type>

(47)<template_type_spec>::= <sequence_type>
| <string_type>
| <wide_string_type>
| <fixed_pt_type>

(48) <constr_type_spec> ::= <struct_type>
| <union_type>
| <enum_type>

(49) <declarators> ::= <declarator> { “,” <declarator> }∗

(50) <declarator> ::= <simple_declarator>
| <complex_declarator>

(51) <simple_declarator> ::= <identifier>
(52)<complex_declarator> ::= <array_declarator>
(53) <floating_pt_type> ::= “float”

| “double”
| “long” “double”

(54) <integer_type> ::= <signed_int>
| <unsigned_int>

(55) <signed_int> ::= <signed_short_int>
| <signed_long_int>
| <signed_longlong_int>

(56) <signed_short_int> ::= “short”
(57) <signed_long_int> ::= “long”
(58)<signed_longlong_int>::= “long” “long”
(59) <unsigned_int> ::= <unsigned_short_int>

| <unsigned_long_int>
| <unsigned_longlong_int>

(60)<unsigned_short_int> ::= “unsigned” “short”
CORBA for embedded, v1.0 51

(61)<unsigned_long_int> ::= “unsigned” “long”
(62)<unsigned_longlong_int>::=“unsigned” “long” “long”
(63) <char_type> ::= “char”
(64) <wide_char_type> ::= “wchar”
(65) <boolean_type> ::= “boolean”
(66) <octet_type> ::= “octet”
(67) <any_type> ::= “any”
(68) <object_type> ::= “Object”
(69) <struct_type> ::= “struct” <identifier> “{” <member_list> “}”
(70) <member_list> ::= <member>+

(71) <member> ::= <type_spec> <declarators> “;”
(72) <union_type> ::= “union” <identifier> “switch”

“(” <switch_type_spec> “)”
“{” <switch_body> “}”

(73) <switch_type_spec> ::= <integer_type>
| <char_type>
| <boolean_type>
| <enum_type>
| <scoped_name>

(74) <switch_body> ::= <case>+

(75) <case> ::= <case_label>+ <element_spec> “;”
(76) <case_label> ::= “case” <const_exp> “:”

| “default” “:”
(77) <element_spec> ::= <type_spec> <declarator>
(78) <enum_type> ::= “enum” <identifier>

“{” <enumerator> { “,” <enumerator> }∗ “}”
(79) <enumerator> ::= <identifier>
(80) <sequence_type> ::= “sequence” “<” <simple_type_spec> “,” <positive_int_const> “>”

| “sequence” “<” <simple_type_spec> “>”
(81) <string_type> ::= “string” “<” <positive_int_const> “>”

| “string”
(82) <wide_string_type> ::= “wstring” “<” <positive_int_const> “>”

| “wstring”
(83) <array_declarator> ::= <identifier> <fixed_array_size>+

(84) <fixed_array_size> ::= “[” <positive_int_const> “]”
(85) <attr_dcl> ::= <readonly_attr_spec>

| <attr_spec>
(86) <except_dcl> ::= “exception” <identifier> “{“ <member>* “}”
(87) <op_dcl> ::= [<op_attribute>] <op_type_spec>

<identifier> <parameter_dcls>
[<raises_expr>] [<context_expr>]

(88) <op_attribute> ::= “oneway”
(89) <op_type_spec> ::= <param_type_spec>

| “void”
(90) <parameter_dcls> ::= “(” <param_dcl> { “,” <param_dcl> }∗ “)”

| “(” “)”
52 CORBA for embedded, v1.0

(91) <param_dcl> ::= <param_attribute> <param_type_spec> <simple_declarator>
(92) <param_attribute> ::= “in”

| “out”
| “inout”

(93) <raises_expr> ::= “raises” “(” <scoped_name>
{ “,” <scoped_name> }∗ “)”

(94) <context_expr> ::= “context” “(” <string_literal>
{ “,” <string_literal> }∗ “)”

(95) <param_type_spec> ::= <base_type_spec>
| <string_type>
| <wide_string_type>
| <scoped_name>

(96) <fixed_pt_type> ::= “fixed” “<“ <positive_int_const> “,” <positive_int_const> “>”
(97)<fixed_pt_const_type>::= “fixed”
(98) <value_base_type> ::= “ValueBase”
(99)<constr_forward_decl>::= “struct” <identifier>

| “union” <identifier>
(100) <import> ::= “import” <imported_scope> “;”
(101) <imported_scope> ::= <scoped_name> | <string_literal>
(102) <type_id_dcl> ::= “typeid” <scoped_name> <string_literal>
(103) <type_prefix_dcl> ::= “typeprefix” <scoped_name> <string_literal>
(104)<readonly_attr_spec> ::= “readonly” “attribute” <param_type_spec> <readonly_attr_declarator>
(105)<readonly_attr_declarator>::= <simple_declarator> <raises_expr>

| <simple_declarator>
{ “,” <simple_declarator> }*

(106) <attr_spec> ::= “attribute” <param_type_spec> <attr_declarator>
(107) <attr_declarator> ::= <simple_declarator> <attr_raises_expr>

| <simple_declarator>
 { “,” <simple_declarator> }*

(108) <attr_raises_expr> ::= <get_excep_expr> [<set_excep_expr>]
| <set_excep_expr>

(109) <get_excep_expr> ::= “getraises” <exception_list>
(110) <set_excep_expr> ::= “setraises” <exception_list>
(111) <exception_list> ::= “(” <scoped_name>

 { “,” <scoped_name> } * “)”

6.5 OMG IDL Specification

An OMG IDL specification consists of one or more type definitions, constant definitions, exception definitions, or
module definitions. The syntax is:

(1) <specification> ::= <import>* <definition>+

(2) <definition> ::= <type_dcl> “;”
| <const_dcl> “;”
| <except_dcl> “;”
| <interface> “;”
| <module> “;”
CORBA for embedded, v1.0 53

| <value> “;”
| <type_id_dcl> “;”
| <type_prefix_dcl> “;”

See Section 6.6, “Module Declaration,” on page 54, for the specification of <module>.

See Section 6.7, “Interface Declaration,” on page 54, for the specification of <interface>.

See Section 6.8, “Value Declaration,” on page 59, for the specification of <value>.

See Section 6.9, “Constant Declaration,” on page 64, Section 6.10, “Type Declaration,” on page 68, and Section 6.11,
“Exception Declaration,” on page 80 respectively for specifications of <const_dcl>, <type_dcl>, and <except_dcl>.

See Section 6.14, “Repository Identity Related Declarations,” on page 84, for specification of Repository Identity
declarations which include <type_id_dcl> and <type_prefix_dcl>.

6.6 Module Declaration

A module definition satisfies the following syntax:

(3) <module> ::= “module” <identifier> “{“ <definition>+ “}”

The module construct is used to scope OMG IDL identifiers; see Section 6.15, “CORBA Module,” on page 86 for details.

6.7 Interface Declaration

An interface definition satisfies the following syntax:

(4) <interface> ::= <interface_dcl>
| <forward_dcl>

(5) <interface_dcl> ::= <interface_header> “{” <interface_body> “}”
(6) <forward_dcl> ::= [“abstract” | “local”] “interface” <identifier>
(7) <interface_header> ::= [“abstract” | “local”] “interface” <identifier>

[<interface_inheritance_spec>]
(8) <interface_body> ::= <export>*

(9) <export> ::= <type_dcl> “;”
| <const_dcl> “;”
| <except_dcl> “;”
| <attr_dcl> “;”
| <op_dcl> “;”
| <type_id_decl> “;”
| <type_prefix_decl> “;”

6.7.1 Interface Header

The interface header consists of three elements:

1. An optional modifier specifying if the interface is an abstract interface.

2. The interface name. The name must be preceded by the keyword interface, and consists of an identifier that names
the interface.
54 CORBA for embedded, v1.0

3. An optional inheritance specification. The inheritance specification is described in the next section.

The <identifier> that names an interface defines a legal type name. Such a type name may be used anywhere an
<identifier> is legal in the grammar, subject to semantic constraints as described in the following sections. Since one can
only hold references to an object, the meaning of a parameter or structure member, which is an interface type is as a
reference to an object supporting that interface. Each language binding describes how the programmer must represent
such interface references.

Abstract interfaces have slightly different rules and semantics from “regular” interfaces, as described in Section 6.7.5.1,
“Abstract Interface,” on page 59. They also follow different language mapping rules.

Local interfaces have slightly different rules and semantics from “regular” interfaces, as described in Section 6.7.6,
“Local Interface,” on page 59. They also follow different language mapping rules.

6.7.2 Interface Inheritance Specification

The syntax for inheritance is as follows:

(10) <interface_inheritance_spec>::=“:” <interface_name>
{ “,” <interface_name> }*

(11) <interface_name> ::= <scoped_name>
(12) <scoped_name> ::= <identifier>

| “::” <identifier>
| <scoped_name> “::” <identifier>

Each <scoped_name> in an <interface_inheritance_spec> must be the name of a previously defined interface or an
alias to a previously defined interface. See Section 6.7.5, “Interface Inheritance,” on page 56 for the description of
inheritance.

6.7.3 Interface Body

The interface body contains the following kinds of declarations:

• Constant declarations, which specify the constants that the interface exports; constant declaration syntax is described
in Section 6.9, “Constant Declaration,” on page 64.

• Type declarations, which specify the type definitions that the interface exports; type declaration syntax is described in
Section 6.10, “Type Declaration,” on page 68.

• Exception declarations, which specify the exception structures that the interface exports; exception declaration syntax
is described in Section 6.11, “Exception Declaration,” on page 80.

• Attribute declarations, which specify the associated attributes exported by the interface; attribute declaration syntax is
described in Section 6.13, “Attribute Declaration,” on page 83.

• Operation declarations, which specify the operations that the interface exports and the format of each, including
operation name, the type of data returned, the types of all parameters of an operation, legal exceptions that may be
returned as a result of an invocation, and contextual information that may affect method dispatch; operation declaration
syntax is described in Section 6.12, “Operation Declaration,” on page 80.

Empty interfaces are permitted (that is, those containing no declarations).

Some implementations may require interface-specific pragmas to precede the interface body.
CORBA for embedded, v1.0 55

6.7.4 Forward Declaration

A forward declaration declares the name of an interface without defining it. This permits the definition of interfaces that
refer to each other. The syntax is: optionally either the keyword abstract or the keyword local, followed by the keyword
interface, followed by an <identifier> that names the interface.

Multiple forward declarations of the same interface name are legal.

It is illegal to inherit from a forward-declared interface whose definition has not yet been seen:

module Example {
interface base; // Forward declaration

// ...

interface derived : base {}; // Error
interface base {}; // Define base
interface derived : base {}; // OK

};

6.7.5 Interface Inheritance

An interface can be derived from another interface, which is then called a base interface of the derived interface. A
derived interface, like all interfaces, may declare new elements (constants, types, attributes, exceptions, and operations).
In addition, unless redefined in the derived interface, the elements of a base interface can be referred to as if they were
elements of the derived interface. The name resolution operator (“::”) may be used to refer to a base element explicitly;
this permits reference to a name that has been redefined in the derived interface.

A derived interface may redefine any of the type, constant, and exception names that have been inherited; the scope rules
for such names are described in Section 6.16, “Names and Scoping,” on page 87.

An interface is called a direct base if it is mentioned in the <interface_inheritance_spec> and an indirect base if it is
not a direct base but is a base interface of one of the interfaces mentioned in the <interface_inheritance_spec>.

An interface may be derived from any number of base interfaces. Such use of more than one direct base interface is often
called multiple inheritance. The order of derivation is not significant.

An abstract interface may only inherit from other abstract interfaces.

An interface may not be specified as a direct base interface of a derived interface more than once; it may be an indirect
base interface more than once. Consider the following example:

interface A { ... }
interface B: A { ... }
interface C: A { ... }
interface D: B, C { ... }

interface E: A, B { ... }; // OK
56 CORBA for embedded, v1.0

The relationships between these interfaces is shown in Figure 6.1. This “diamond” shape is legal, as is the definition of E
on the right.

Figure 6.1- Legal Multiple Inheritance Example

References to base interface elements must be unambiguous. A Reference to a base interface element is ambiguous if the
name is declared as a constant, type, or exception in more than one base interface. Ambiguities can be resolved by
qualifying a name with its interface name (that is, using a <scoped_name>). It is illegal to inherit from two interfaces
with the same operation or attribute name, or to redefine an operation or attribute name in the derived interface.

So for example in:

interface A {
typedef long L1;
short opA(in L1 l_1);

};

interface B {
typedef short L1;
L1 opB(in long l);

};

interface C: B, A {
typedef L1 L2; // Error: L1 ambiguous
typedef A::L1 L3; // A::L1 is OK
B::L1 opC(in L3 l_3); // all OK no ambiguities

};

References to constants, types, and exceptions are bound to an interface when it is defined (i.e., replaced with the
equivalent global <scoped_name>s). This guarantees that the syntax and semantics of an interface are not changed
when the interface is a base interface for a derived interface. Consider the following example:

const long L = 3;

interface A {
typedef float coord[L]:
void f (in coord s); // s has three floats

};

A

B C

D

A

B C

D

E

CORBA for embedded, v1.0 57

interface B {
const long L = 4;

};

interface C: B, A { }; // what is C::f()’s signature?

The early binding of constants, types, and exceptions at interface definition guarantees that the signature of operation f in
interface C is

typedef float coord[3];
void f (in coord s);

which is identical to that in interface A. This rule also prevents redefinition of a constant, type, or exception in the
derived interface from affecting the operations and attributes inherited from a base interface.

Interface inheritance causes all identifiers defined in base interfaces, both direct and indirect, to be visible in the current
naming scope. A type name, constant name, enumeration value name, or exception name from an enclosing scope can be
redefined in the current scope. An attempt to use an ambiguous name without qualification produces a compilation error.
Thus in:

interface A {
typedef string<128> string_t;

};

interface B {
typedef string<256> string_t;

};

interface C: A, B {
attribute string_t Title; // Error: string_t ambiguous
attribute A::string_t Name; // OK
attribute B::string_t City; // OK

};

operation and attribute names are used at run-time by both the stub and dynamic interfaces. As a result, all operations and
attributes that might apply to a particular object must have unique names. This requirement prohibits redefining an
operation or attribute name in a derived interface, as well as inheriting two operations or attributes with the same name.

interface A {
void make_it_so();

};

interface B: A {
short make_it_so(in long times); // Error: redefinition of make_it_so

};

For a complete summary of allowable inheritance and supporting relationships among interfaces and valuetypes see
Table 6.11 on page 64.
58 CORBA for embedded, v1.0

6.7.5.1 Abstract Interface

An interface declaration containing the keyword abstract in its header, declares an abstract interface. The following
special rules apply to abstract interfaces:

• Abstract interfaces may only inherit from other abstract interfaces.

• Value types may support any number of abstract interfaces.

For a complete summary of allowable inheritance and supporting relationships among interfaces and valuetypes see
Table 6.11 on page 64.

6.7.6 Local Interface

An interface declaration containing the keyword local in its header, declares a local interface. An interface declaration
not containing the keyword local is referred to as an unconstrained interface. An object implementing a local interface is
referred to as a local object. The following special rules apply to local interfaces:

• A local interface may inherit from other local or unconstrained interfaces.

• An unconstrained interface may not inherit from a local interface. An interface derived from a local interface must be
explicitly declared local.

• A valuetype may support a local interface.

• Any IDL type, including an unconstrained interface, may appear as a parameter, attribute, return type, or exception
declaration of a local interface.

• A local interface is a local type, as is any non-interface type declaration constructed using a local interface or other
local type. For example, a struct, union, or exception with a member that is a local interface is also itself a local type.

• A local type may be used as a parameter, attribute, return type, or exception declaration of a local interface or of a
valuetype.

• A local type may not appear as a parameter, attribute, return type, or exception declaration of an unconstrained
interface.

For a complete summary of allowable inheritance and supporting relationships among interfaces and valuetypes see
Table 6.11 on page 64.

See Section 9.2.12, “LocalObject Operations,” on page 144 for CORBA implementation semantics associated with local
objects.

6.8 Value Declaration

There are several kinds of value type declarations: “regular” value types, boxed value types, abstract value types, and
forward declarations.

A value declaration satisfies the following syntax:

(13) <value> ::= (<value_dcl> | <value_abs_dcl> | <value_box_dcl> | <value_forward_dcl>)
CORBA for embedded, v1.0 59

6.8.1 Regular Value Type

A regular value type satisfies the following syntax:

(17) <value_dcl> ::= <value_header> “{“ < value_element>* “}”
(18) <value_header> ::= [“custom”] “valuetype” <identifier>

[<value_inheritance_spec>]
(21) <value_element> ::= <export>

| < state_member> |
| <init_dcl>

6.8.1.1 Value Header

The value header consists of two elements:

1. The value type’s name and optional modifier specifying whether the value type uses custom marshaling.

2. An optional value inheritance specification. The value inheritance specification is described in the next section.

6.8.1.2 Value Element

A value can contain all the elements that an interface can as well as the definition of state members, and initializers for
that state.

6.8.1.3 Value Inheritance Specification

(19)<value_inheritance_spec> ::=[“:” [“truncatable”] <value_name>
{ “,” <value_name> }*]
[“supports” <interface_name>
{ “,” <interface_name> }*]

(20) <value_name> ::= <scoped_name>

Each <value_name> in a <value_inheritance_spec> must be the name of a previously defined value type or an alias
to a previously defined value type. Each <interface_name> in a <value_inheritance_spec> must be the name of a
previously defined interface or an alias to a previously defined interface. See Section 6.8.5, “Valuetype Inheritance,” on
page 63 for the description of value type inheritance.

The truncatable modifier may not be used if the value type being defined is a custom value.

A valuetype that supports a local interface does not itself become local (i.e., unmarshalable) as a result of that support.

6.8.1.4 State Members

(22) <state_member> ::= (“public” | “private”)
<type_spec> <declarators> “;”

Each <state_member> defines an element of the state, which is marshaled and sent to the receiver when the value type
is passed as a parameter. A state member is either public or private. The annotation directs the language mapping to hide
or expose the different parts of the state to the clients of the value type. The private part of the state is only accessible to
the implementation code and the marshaling routines.
60 CORBA for embedded, v1.0

A valuetype that has a state member that is local (i.e., non-marshalable like a local interface), is itself rendered local. That
is, such valuetypes behave similar to local interfaces when an attempt is made to marshal them.

Note that certain programming languages may not have the built in facilities needed to distinguish between the public and
private members. In these cases, the language mapping specifies the rules that programmers are responsible for following.

6.8.1.5 Initializers

(23) <init_dcl> ::= “factory” <identifier>
“(“ [<init_param_decls>] “)”
[<raises_expr>] “;”

(24) <init_param_decls> ::= <init_param_decl> { “,” <init_param_decl> }*
(25) <init_param_decl> ::= <init_param_attribute> <param_type_spec> <simple_declarator>
(26)<init_param_attribute> ::= “in”

In order to ensure portability of value implementations, designers may also define the signatures of initializers (or
constructors) for non-abstract value types. Syntactically these look like local operation signatures except that they are
prefixed with the keyword factory, have no return type, and must use only in parameters. There may be any number of
factory declarations. The names of the initializers are part of the name scope of the value type. Initializers defined in a
valuetype are not inherited by derived valuetypes, and hence the names of the initializers are free to be reused in a derived
valuetype.

If no initializers are specified in IDL, the value type does not provide a portable way of creating a runtime instance of its
type. There is no default initializer. This allows the definition of IDL value types, which are not intended to be directly
instantiated by client code.

6.8.1.6 Value Type Example

interface Tree {
void print()

};

valuetype WeightedBinaryTree {
// state definition

private unsigned long weight;
private WeightedBinaryTree left;
private WeightedBinaryTree right;

// initializer
factory init(in unsigned long w);

// local operations
WeightSeq pre_order();
WeightSeq post_order();

};
valuetype WTree: WeightedBinaryTree supports Tree {};

6.8.2 Boxed Value Type

(15) <value_box_dcl> ::= “valuetype” <identifier> <type_spec>
CORBA for embedded, v1.0 61

It is often convenient to define a value type with no inheritance or operations and with a single state member. A shorthand
IDL notation is used to simplify the use of value types for this kind of simple containment, referred to as a “value box.”

Since a value box of a valuetype adds no additional properties to a valuetype, it is an error to box valuetypes.

Value box is particularly useful for strings and sequences. Basically one does not have to create what is in effect an
additional namespace that will contain only one name.

An example is the following IDL:

module Example {
interface Foo {

... /* anything */
};
valuetype FooSeq sequence<Foo>;
interface Bar {

void doIt (in FooSeq seq1);
};

};

The above IDL provides similar functionality to writing the following IDL. However the type identities (repository ID’s)
would be different.

module Example {
interface Foo {

... /* anything */
};
valuetype FooSeq {

public sequence<Foo> data;
};
interface Bar {

void doIt (in FooSeq seq);
};

};

The former is easier to manipulate after it is mapped to a concrete programming language.

Any IDL type may be used to declare a value box except for a valuetype.

The declaration of a boxed value type does not open a new scope. Thus a construction such as:

valuetype FooSeq sequence <FooSeq>;

is not legal IDL. The identifier being declared as a boxed value type cannot be used subsequent to its initial use and prior
to the completion of the boxed value declaration.

6.8.3 Abstract Value Type

(16) <value_abs_dcl> ::= “abstract” “valuetype” <identifier>
[<value_inheritance_spec>]
“{“ <export>* “}”
62 CORBA for embedded, v1.0

Value types may also be abstract. They are called abstract because an abstract value type may not be instantiated. No
<state_member> or <initializers> may be specified. However, local operations may be specified. Essentially they are a
bundle of operation signatures with a purely local implementation.

Note that a concrete value type with an empty state is not an abstract value type.

6.8.4 Value Forward Declaration

(14)<value_forward_dcl> ::= [“abstract”] “valuetype” <identifier>

A forward declaration declares the name of a value type without defining it. This permits the definition of value types that
refer to each other. The syntax consists simply of the keyword valuetype followed by an <identifier> that names the
value type.

Multiple forward declarations of the same value type name are legal.

Boxed value types cannot be forward declared; such a forward declaration would refer to a normal value type.

It is illegal to inherit from a forward-declared value type whose definition has not yet been seen.

It is illegal for a value type to support a forward-declared interface whose definition has not yet been seen.

6.8.5 Valuetype Inheritance

The terminology that is used to describe value type inheritance is directly analogous to that used to describe interface
inheritance (see Section 6.7.5, “Interface Inheritance,” on page 56).

The name scoping and name collision rules for valuetypes are identical to those for interfaces. In addition, no valuetype
may be specified as a direct abstract base of a derived valuetype more than once; it may be an indirect abstract base more
than once. See Section 6.7.5, “Interface Inheritance,” on page 56 for a detailed description of the analogous properties for
interfaces.

Values may be derived from other values and can support an interface and any number of abstract interfaces.

Once implementation (state) is specified at a particular point in the inheritance hierarchy, all derived value types (which
must of course implement the state) may only derive from a single (concrete) value type. They can however derive from
other additional abstract values and support an additional interface.

The single immediate base concrete value type, if present, must be the first element specified in the inheritance list of the
value declaration’s IDL. It may be followed by other abstract values from which it inherits. The interface and abstract
interfaces that it supports are listed following the supports keyword.

While a valuetype may only directly support one interface, it is possible for the valuetype to support other interfaces as
well through inheritance. In this case, the supported interface must be derived, directly or indirectly, from each interface
that the valuetype supports through inheritance. This rule does not apply to abstract interfaces that the valuetype supports.
For example:

interface I1 { };
interface I2 { };
interface I3: I1, I2 { };

abstract valuetype V1 supports I1 { };
abstract valuetype V2 supports I2 { };
CORBA for embedded, v1.0 63

valuetype V3: V1, V2 supports I3 { }; // legal
valuetype V4: V1 supports I2 { }; // illegal

A stateful value that derives from another stateful value may specify that it is truncatable. This means that it is to
“truncate” an instance to be an instance of any of its truncatable parent (stateful) value types under certain conditions.
Note that all the intervening types in the inheritance hierarchy must be truncatable in order for truncation to a particular
type to be allowed.

Because custom values require an exact type match between the sending and receiving context, truncatable may not be
specified for a custom value type.

Non-custom value types may not (transitively) inherit from custom value types.

Boxed value types may not be derived from, nor may they derive from anything else.

These rules are summarized in the following table:

6.9 Constant Declaration

This section describes the syntax for constant declarations.

6.9.1 Syntax

The syntax for a constant declaration is:

(27) <const_dcl> ::= “const” <const_type>
<identifier> “=” <const_exp>

(28) <const_type> ::= <integer_type>
| <char_type>
| <wide_char_type>
| <boolean_type>
| <floating_pt_type>
| <string_type>
| <wide_string_type>
| <fixed_pt_const_type>
| <scoped_name>
| <octet_type>

Table 6.11- Allowable Inheritance Relationships

May inherit
from:

Interface Abstract
Interface

Abstract
Value

Stateful Value Boxed
value

Interface multiple multiple no no no

Abstract
Interface

no multiple no no no

Abstract Value
supports single supports

multiple
multiple no no

Stateful Value
supports single supports

multiple
multiple single (may be truncatable) no

Boxed Value no no no no no
64 CORBA for embedded, v1.0

(29) <const_exp> ::= <or_expr>
(30) <or_expr> ::= <xor_expr>

| <or_expr> “|” <xor_expr>
(31) <xor_expr> ::= <and_expr>

| <xor_expr> “^” <and_expr>
(32) <and_expr> ::= <shift_expr>

| <and_expr> “&” <shift_expr>
(33) <shift_expr> ::= <add_expr>

| <shift_expr> “>>” <add_expr>
| <shift_expr> “<<” <add_expr>

(34) <add_expr> ::= <mult_expr>
| <add_expr> “+” <mult_expr>
| <add_expr> “-” <mult_expr>

(35) <mult_expr> ::= <unary_expr>
| <mult_expr> “*” <unary_expr>
| <mult_expr> “/” <unary_expr>
| <mult_expr> “%” <unary_expr>

(36) <unary_expr> ::= <unary_operator> <primary_expr>
| <primary_expr>

(37) <unary_operator> ::= “-”
| “+”
| “~”

(38) <primary_expr> ::= <scoped_name>
| <literal>
| “(” <const_exp> “)”

(39) <literal> ::= <integer_literal>
| <string_literal>
| <wide_string_literal>
| <character_literal>
| <wide_character_literal>
| <fixed_pt_literal>
| <floating_pt_literal>
| <boolean_literal>

(40) <boolean_literal> ::= “TRUE”
| “FALSE”

(41)<positive_int_const> ::= <const_exp>

6.9.2 Semantics

The <scoped_name> in the <const_type> production must be a previously defined name of an <integer_type>,
<char_type>, <wide_char_type>, <boolean_type>, <floating_pt_type>, <string_type>, <wide_string_type>,
<octet_type>, or <enum_type> constant.

Integer literals have positive integer values. Constant integer literals are considered unsigned long unless the value is
too large, then they are considered unsigned long long. Unary minus is considered an operator, not a part of an integer
literal. Only integer values can be assigned to integer type (short, long, long long) constants, and octet constants.
Only positive integer values can be assigned to unsigned integer type constants. If the value of the right hand side of an
integer constant declaration is too large to fit in the actual type of the constant on the left hand side, for example
CORBA for embedded, v1.0 65

const short s = 655592;

or is inappropriate for the actual type of the left hand side, for example

 const octet o = -54;

it shall be flagged as a compile time error.

Floating point literals have floating point values. Only floating point values can be assigned to floating point type (float,
double, long double) constants. Constant floating point literals are considered double unless the value is too large,
then they are considered long double. If the value of the right hand side is too large to fit in the actual type of the
constant to which it is being assigned, it shall be flagged as a compile time error. Truncation on the right for floating point
types is OK.

Fixed point literals have fixed point values. Only fixed point values can be assigned to fixed point type constants. If the
fixed point value in the expression on the right hand side is too large to fit in the actual fixed point type of the constant
on the left hand side, then it shall be flagged as a compile time error. Truncation on the right for fixed point types is OK.

An infix operator can combine two integer types, floating point types or fixed point types, but not mixtures of these. Infix
operators are applicable only to integer, floating point, and fixed point types.

Integer expressions are evaluated using the imputed type of each argument of a binary operator in turn. If either argument
is unsigned long long, use unsigned long long. If either argument is long long, use long long. If either argument
is unsigned long, use unsigned long (otherwise use long). The final result of an integer arithmetic expression must
fit in the range of the declared type of the constant, otherwise an error shall be flagged by the compiler. In addition to the
integer types, the final result of an integer arithmetic expression can be assigned to an octet constant, subject to it fitting
in the range for octet type.

Floating point expressions are evaluated using the imputed type of each argument of a binary operator in turn. If either
argument is long double, use long double (otherwise use double). The final result of a floating point arithmetic
expression must fit in the range of the declared type of the constant, otherwise an error shall be flagged by the compiler.

Fixed-point decimal constant expressions are evaluated as follows. A fixed-point literal has the apparent number of total
and fractional digits. For example, 0123.450d is considered to be fixed<7,3> and 3000.00d is fixed<6,2>. Prefix
operators do not affect the precision; a prefix + is optional, and does not change the result. The upper bounds on the
number of digits and scale of the result of an infix expression, fixed<d1,s1> op fixed<d2,s2>, are shown in the
following table.

A quotient may have an arbitrary number of decimal places, denoted by a scale of sinf. The computation proceeds
pairwise, with the usual rules for left-to-right association, operator precedence, and parentheses. All intermediate
computations shall be performed using double precision (i.e., 62 digit) arithmetic. If an individual computation between a
pair of fixed-point literals actually generates more than 31 significant digits, then a 31-digit result is retained as follows:

fixed<d,s> => fixed<31, 31-d+s>

Op Result: fixed<d,s>

+ fixed<max(d1-s1,d2-s2) + max(s1,s2) + 1, max(s1,s2)>

- fixed<max(d1-s1,d2-s2) + max(s1,s2) + 1, max(s1,s2)>

* fixed<d1+d2, s1+s2>

/ fixed<(d1-s1+s2) + sinf , sinf>
66 CORBA for embedded, v1.0

Leading and trailing zeros are not considered significant. The omitted digits are discarded; rounding is not performed. The
result of the individual computation then proceeds as one literal operand of the next pair of fixed-point literals to be
computed.

Unary (+ -) and binary (* / + -) operators are applicable in floating-point and fixed-point expressions. Unary (+ - ~) and
binary (* / % + - << >> & | ^) operators are applicable in integer expressions.

The “~” unary operator indicates that the bit-complement of the expression to which it is applied should be generated. For
the purposes of such expressions, the values are 2s complement numbers. As such, the complement can be generated as
follows:

The “%” binary operator yields the remainder from the division of the first expression by the second. If the second
operand of “%” is 0, the result is undefined; otherwise

(a/b)*b + a%b

is equal to a. If both operands are non-negative, then the remainder is non-negative; if not, the sign of the remainder is
implementation dependent.

The “<<”binary operator indicates that the value of the left operand should be shifted left the number of bits specified by
the right operand, with 0 fill for the vacated bits. The right operand must be in the range 0 <= right operand < 64.

The “>>” binary operator indicates that the value of the left operand should be shifted right the number of bits specified
by the right operand, with 0 fill for the vacated bits. The right operand must be in the range 0 <= right operand < 64.

The “&” binary operator indicates that the logical, bitwise AND of the left and right operands should be generated.

The “|” binary operator indicates that the logical, bitwise OR of the left and right operands should be generated.

The “^” binary operator indicates that the logical, bitwise EXCLUSIVE-OR of the left and right operands should be
generated.

<positive_int_const> must evaluate to a positive integer constant.

An enum constant can only be defined using a scoped name for the enumerator. The scoped name is resolved using the
normal scope resolution rules Section 6.16, “Names and Scoping,” on page 87. For example:

enum Color { red, green, blue };
const Color FAVORITE_COLOR = red;

module M {
enum Size { small, medium, large };

};
const M::Size MYSIZE = M::medium;

Integer Constant Expression Type Generated 2s Complement Numbers

long long -(value+1)

unsigned long unsigned long (2**32-1) - value

long long long long -(value+1)

unsigned long long unsigned long (2**64-1) - value
CORBA for embedded, v1.0 67

The constant name for the RHS of an enumerated constant definition must denote one of the enumerators defined for the
enumerated type of the constant. For example:

const Color col = red; // is OK but
const Color another = M::medium; // is an error

6.10 Type Declaration

OMG IDL provides constructs for naming data types; that is, it provides C language-like declarations that associate an
identifier with a type. OMG IDL uses the typedef keyword to associate a name with a data type; a name is also
associated with a data type via the struct, union, enum, and native declarations; the syntax is:

(42) <type_dcl> ::= “typedef” <type_declarator>
| <struct_type>
| <union_type>
| <enum_type>
| “native” <simple_declarator>
| <constr_forward_decl>

(43) <type_declarator> ::= <type_spec> <declarators>

For type declarations, OMG IDL defines a set of type specifiers to represent typed values. The syntax is as follows:

(44) <type_spec> ::= <simple_type_spec>
| <constr_type_spec>

(45) <simple_type_spec> ::= <base_type_spec>
| <template_type_spec>
| <scoped_name>

(46) <base_type_spec> ::= <floating_pt_type>
| <integer_type>
| <char_type>
| <wide_char_type>
| <boolean_type>
| <octet_type>
| <any_type>
| <object_type>
| <value_base_type>

(47)<template_type_spec>::= <sequence_type>
| <string_type>
| <wide_string_type>
| <fixed_pt_type>

(48) <constr_type_spec> ::= <struct_type>
| <union_type>
| <enum_type>

(49) <declarators> ::= <declarator> { “,” <declarator> }∗

(50) <declarator> ::= <simple_declarator>
| <complex_declarator>

(51) <simple_declarator> ::= <identifier>
(52)<complex_declarator> ::= <array_declarator>
68 CORBA for embedded, v1.0

The <scoped_name> in <simple_type_spec> must be a previously defined type introduced by an interface
declaration (<interface_dcl> - see 6.7, ’Interface Declaration’), a value declaration (<value_dcl>, <value_box_dcl>
or <abstract_value_dcl> - see 6.8, ’Value Declaration’) or a type declaration (<type_dcl> - see 6.10, ’Type
Declaration’). Note that exceptions are not considered types in this context.

As seen above, OMG IDL type specifiers consist of scalar data types and type constructors. OMG IDL type specifiers can
be used in operation declarations to assign data types to operation parameters. The next sections describe basic and
constructed type specifiers.

6.10.1 Basic Types

The syntax for the supported basic types is as follows:

(53) <floating_pt_type> ::= “float”
| “double”
| “long” “double”

(54) <integer_type> ::= <signed_int>
| <unsigned_int>

(55) <signed_int> ::= <signed_short_int>
| <signed_long_int>
| <signed_longlong_int>

(56) <signed_short_int> ::= “short”
(57) <signed_long_int> ::= “long”
(58)<signed_longlong_int>::= “long” “long”
(59) <unsigned_int> ::= <unsigned_short_int>

| <unsigned_long_int>
| <unsigned_longlong_int>

(60)<unsigned_short_int> ::= “unsigned” “short”
(61)<unsigned_long_int> ::= “unsigned” “long”
(62)<unsigned_longlong_int>::=“unsigned” “long” “long”
(63) <char_type> ::= “char”
(64) <wide_char_type> ::= “wchar”
(65) <boolean_type> ::= “boolean”
(66) <octet_type> ::= “octet”
(67) <any_type> ::= “any”

Each OMG IDL data type is mapped to a native data type via the appropriate language mapping. Conversion errors
between OMG IDL data types and the native types to which they are mapped can occur during the performance of an
operation invocation. The invocation mechanism (client stub, dynamic invocation engine, and skeletons) may signal an
exception condition to the client if an attempt is made to convert an illegal value. The standard system exceptions that are
to be raised in such situations are defined in Section 8.6, “Exceptions,” on page 122.
CORBA for embedded, v1.0 69

6.10.1.1 Integer Types

OMG IDL integer types are short, unsigned short, long, unsigned long, long long, and unsigned long long
representing integer values in the range indicated below in Table 6.12.

6.10.1.2 Floating-Point Types

OMG IDL floating-point types are float, double, and long double. The float type represents IEEE single-precision
floating point numbers; the double type represents IEEE double-precision floating point numbers.The long double data
type represents an IEEE double-extended floating-point number, which has an exponent of at least 15 bits in length and a
signed fraction of at least 64 bits. See IEEE Standard for Binary Floating-Point Arithmetic, ANSI/IEEE Standard 754-
1985, for a detailed specification.

6.10.1.3 Char Type

OMG IDL defines a char data type that is an 8-bit quantity that (1) encodes a single-byte character from any byte-
oriented code set, or (2) when used in an array, encodes a multi-byte character from a multi-byte code set. In other words,
an implementation is free to use any code set internally for encoding character data, though conversion to another form
may be required for transmission.

The ISO 8859-1 (Latin1) character set standard defines the meaning and representation of all possible graphic characters
used in OMG IDL (i.e., the space, alphabetic, digit, and graphic characters defined in Table 6.3, Table 6.4, and Table 6.5).
The meaning and representation of the null and formatting characters (see Table 6.6) is the numerical value of the
character as defined in the ASCII (ISO 646) standard. The meaning of all other characters is implementation-dependent.

During transmission, characters may be converted to other appropriate forms as required by a particular language binding.
Such conversions may change the representation of a character but maintain the character’s meaning. For example, a
character may be converted to and from the appropriate representation in international character sets.

6.10.1.4 Wide Char Type

OMG IDL defines a wchar data type that encodes wide characters from any character set. As with character data, an
implementation is free to use any code set internally for encoding wide characters, though, again, conversion to another
form may be required for transmission. The size of wchar is implementation-dependent.

6.10.1.5 Boolean Type

The boolean data type is used to denote a data item that can only take one of the values TRUE and FALSE.

Table 6.12- Range of integer types
short -215 .. 215 - 1

long -231 .. 231 - 1

long long -263 .. 263 - 1

unsigned short 0 .. 216 - 1

unsigned long 0 .. 232 - 1

unsigned long long 0 .. 264 - 1
70 CORBA for embedded, v1.0

6.10.1.6 Octet Type

The octet type is an 8-bit quantity that is guaranteed not to undergo any conversion when transmitted by the
communication system.

6.10.1.7 Any Type

The any type permits the specification of values that can express any OMG IDL type.

An any logically contains a TypeCode (see Section 8.5, “TypeCodes,” on page 117) and a value that is described by the
TypeCode. Each IDL language mapping provides operations that allow programers to insert and access the TypeCode
and value contained in an any.

6.10.2 Constructed Types

Structs, unions and enums are the constructed types. Their syntax is presented in this section:

(42) <type_dcl> ::= “typedef” <type_declarator>
| <struct_type>
| <union_type>
| <enum_type>
| “native” <simple_declarator>
| <constr_forward_decl>

(48) <constr_type_spec> ::= <struct_type>
| <union_type>
| <enum_type>

(99)<constr_forward_decl>::= “struct” <identifier>
| “union” <identifier>

6.10.2.1 Structures

The syntax for struct type is

(69) <struct_type> ::= “struct” <identifier> “{” <member_list> “}”
(70) <member_list> ::= <member>+

(71) <member> ::= <type_spec> <declarators> “;”

The <identifier> in <struct_type> defines a new legal type. Structure types may also be named using a typedef
declaration.

Name scoping rules require that the member declarators in a particular structure be unique. The value of a struct is the
value of all of its members.

6.10.2.2 Discriminated Unions

The discriminated union syntax is:

(72) <union_type> ::= “union” <identifier> “switch”
“(” <switch_type_spec> “)”
“{” <switch_body> “}”
CORBA for embedded, v1.0 71

(73) <switch_type_spec> ::= <integer_type>
| <char_type>
| <boolean_type>
| <enum_type>
| <scoped_name>

(74) <switch_body> ::= <case>+

(75) <case> ::= <case_label>+ <element_spec> “;”
(76) <case_label> ::= “case” <const_exp> “:”

| “default” “:”
(77) <element_spec> ::= <type_spec> <declarator>

OMG IDL unions are a cross between the C union and switch statements. IDL unions must be discriminated; that is,
the union header must specify a typed tag field that determines which union member to use for the current instance of a
call. The <identifier> following the union keyword defines a new legal type. Union types may also be named using a
typedef declaration. The <const_exp> in a <case_label> must be consistent with the <switch_type_spec>. A
default case can appear at most once. The <scoped_name> in the <switch_type_spec> production must be a
previously defined integer, char, boolean, or enum type.

Case labels must match or be automatically castable to the defined type of the discriminator. Name scoping rules require
that the element declarators in a particular union be unique. If the <switch_type_spec> is an <enum_type>, the
identifier for the enumeration is in the scope of the union; as a result, it must be distinct from the element declarators.

It is not required that all possible values of the union discriminator be listed in the <switch_body>. The value of a union
is the value of the discriminator together with one of the following:

• If the discriminator value was explicitly listed in a case statement, the value of the element associated with that case
statement.

• If a default case label was specified, the value of the element associated with the default case label.

• No additional value.

The values of the constant expressions for the case labels of a single union definition must be distinct. A union type can
contain a default label only where the values given in the non-default labels do not cover the entire range of the union’s
discriminant type.

Access to the discriminator and the related element is language-mapping dependent.

While any ISO Latin-1 (8859.1) IDL character literal may be used in a <case_label> in a union definition whose
discriminator type is char, not all of these characters are present in all transmission code sets that may be negotiated by
GIOP or in all native code sets that may be used by implementation language compilers and runtimes. When an attempt
is made to marshal to CDR a union whose discriminator value of char type is not available in the negotiated
transmission code set, or to demarshal from CDR a union whose discriminator value of char type is not available in the
native code set, a DATA_CONVERSION system exception is raised. Therefore, to ensure portability and interoperability,
care must be exercised when assigning the <case_label> for a union member whose discriminator type is char. Due to
these issues, use of char types as the discriminator type for unions is not recommended.
72 CORBA for embedded, v1.0

6.10.2.3 Constructed Recursive Types and IForward Declarations

The IDL syntax allows the generation of recursive structures and unions via members that have a sequence type. The
element type of a recursive sequence struct or union member must identify a struct, union, or valuetype. (A valuetype is
allowed to have a member of its own type either directly or indirectly through a member of a constructed type—see
Section 6.8.1.6, “Value Type Example,” on page 61.) For example, the following is legal:

struct Foo {
long value;
sequence<Foo> chain; // Deprecated (see Section 6.10.6)

}

See Section 6.10.3.1, “Sequences,” on page 75 for details of the sequence template type.

IDL supports recursive types via a forward declaration for structures and unions (as well as for valuetypes—see
Section 6.8.1.6, “Value Type Example,” on page 61). Because anonymous types are deprecated (see Section 6.10.6,
“Deprecated Anonymous Types,” on page 78), the previous example is better written as:

struct Foo; // Forward declaration
typedef sequence<Foo> FooSeq;
struct Foo {

long value;
FooSeq chain;

};

The forward declaration for the structure enables the definition of the sequence type FooSeq, which is used as the type
of the recursive member.

Forward declarations are legal for structures and unions.A structure or union type is termed incomplete until its full
definition is provided; that is, until the scope of the structure or union definition is closed by a terminating "}". For
example:

struct Foo; // Introduces Foo type name,
// Foo is incomplete now
// ...

struct Foo {
// ...

}; // Foo is complete at this point

If a structure or union is forward declared, a definition of that structure or union must follow the forward declaration in
the same source file. Compilers shall issue a diagnostic if this rule is violated. Multiple forward declarations of the same
structure or union are legal.

If a recursive structure or union member is used, sequence members that are recursive must refer to an incomplete type
currently under definition. For example:

struct Foo; // Forward declaration
typedef sequence<Foo> FooSeq;
struct Bar {

long value;
FooSeq chain; //Illegal, Foo is not an enclosing struct or union

};
CORBA for embedded, v1.0 73

Compilers shall issue a diagnostic if this rule is violated.

Recursive definitions can span multiple levels. For example:

union Bar; // Forward declaration
typedef sequence<Bar> BarSeq;

union Bar switch(long) { // Define incomplete union
case 0:

long l_mem;
case 1:

struct Foo {
double d_mem;
BarSeq nested; // OK, recurse on enclosing

// incomplete type
} s_mem;

};

An incomplete type can only appear as the element type of a sequence definition. A sequence with incomplete element
type is termed an incomplete sequence type:

struct Foo; // Forward declaration
typedef sequence<Foo> FooSeq; // incomplete

An incomplete sequence type can appear only as the element type of another sequence, or as the member type of a
structure or union definition. For example:

struct Foo; // Forward declaration
typedef sequence<Foo> FooSeq; // OK
typedef sequence<FooSeq> FooTree; // OK

interface I {
FooSeq op1(); // Illegal, FooSeq is incomplete
void op2(// Illegal, FooTree is incomplete

in FooTree t
);

};

struct Foo { // Provide definition of Foo
long l_mem;
FooSeq chain; // OK
FooTree tree; // OK

};

interface J {
FooSeq op1(); // OK, FooSeq is complete
void op2(

in FooTree t // OK, FooTree is complete
);

};

Compilers shall issue a diagnostic if this rule is violated.
74 CORBA for embedded, v1.0

6.10.2.4 Enumerations

Enumerated types consist of ordered lists of identifiers. The syntax is:

(78) <enum_type> ::= “enum” <identifier>
“{” <enumerator> { “,” <enumerator> }∗ “}”

(79) <enumerator> ::= <identifier>

A maximum of 232 identifiers may be specified in an enumeration; as such, the enumerated names must be mapped to a
native data type capable of representing a maximally-sized enumeration. The order in which the identifiers are named in
the specification of an enumeration defines the relative order of the identifiers. Any language mapping that permits two
enumerators to be compared or defines successor/predecessor functions on enumerators must conform to this ordering
relation. The <identifier> following the enum keyword defines a new legal type. Enumerated types may also be named
using a typedef declaration.

6.10.3 Template Types

The template types are:

(47)<template_type_spec>::= <sequence_type>
| <string_type>
| <wide_string_type>
| <fixed_pt_type>

6.10.3.1 Sequences

OMG IDL defines the sequence type sequence. A sequence is a one-dimensional array with two characteristics: a
maximum size (which is fixed at compile time) and a length (which is determined at run time).

The syntax is:

(80) <sequence_type> ::= “sequence” “<” <simple_type_spec> “,” <positive_int_const> “>”
| “sequence” “<” <simple_type_spec> “>”

The second parameter in a sequence declaration indicates the maximum size of the sequence. If a positive integer constant
is specified for the maximum size, the sequence is termed a bounded sequence. If no maximum size is specified, size of
the sequence is unspecified (unbounded).

Prior to passing a bounded or unbounded sequence as a function argument (or as a field in a structure or union), the length
of the sequence must be set in a language-mapping dependent manner. After receiving a sequence result from an
operation invocation, the length of the returned sequence will have been set; this value may be obtained in a language-
mapping dependent manner.

A sequence type may be used as the type parameter for another sequence type. For example, the following:

typedef sequence< sequence<long> > Fred;

declares Fred to be of type “unbounded sequence of unbounded sequence of long.” Note that for nested sequence
declarations, white space must be used to separate the two “>” tokens ending the declaration so they are not parsed as a
single “>>” token.
CORBA for embedded, v1.0 75

6.10.3.2 Strings

OMG IDL defines the string type string consisting of all possible 8-bit quantities except null. A string is similar to a
sequence of char. As with sequences of any type, prior to passing a string as a function argument (or as a field in a
structure or union), the length of the string must be set in a language-mapping dependent manner. The syntax is:

(81) <string_type> ::= “string” “<” <positive_int_const> “>”
| “string”

The argument to the string declaration is the maximum size of the string. If a positive integer maximum size is specified,
the string is termed a bounded string; if no maximum size is specified, the string is termed an unbounded string.

Strings are singled out as a separate type because many languages have special built-in functions or standard library
functions for string manipulation. A separate string type may permit substantial optimization in the handling of strings
compared to what can be done with sequences of general types.

6.10.3.3 Wstrings

The wstring data type represents a sequence of wchar, except the wide character null. The type wstring is similar to that
of type string, except that its element type is wchar instead of char. The actual length of a wstring is set at run-time and,
if the bounded form is used, must be less than or equal to the bound.

The syntax for defining a wstring is:

(82) <wide_string_type> ::= “wstring” “<” <positive_int_const> “>”
| “wstring”

6.10.3.4 Fixed Type

The fixed data type represents a fixed-point decimal number of up to 31 significant digits. The scale factor is a non-
negative integer less than or equal to the total number of digits (note that constants with effectively negative scale, such
as 10000, are always permitted).

The fixed data type will be mapped to the native fixed point capability of a programming language, if available. If there
is not a native fixed point type, then the IDL mapping for that language will provide a fixed point data type. Applications
that use the IDL fixed point type across multiple programming languages must take into account differences between the
languages in handling rounding, overflow, and arithmetic precision.

The syntax of fixed type is:

(96) <fixed_pt_type> ::=“fixed” “<“ <positive_int_const> “,” <positive_int_const> “>”
(97) <fixed_pt_const_type> ::=“fixed”

6.10.4 Complex Declarator

6.10.4.1 Arrays

OMG IDL defines multidimensional, fixed-size arrays. An array includes explicit sizes for each dimension.

The syntax for arrays is:
76 CORBA for embedded, v1.0

(83) <array_declarator> ::= <identifier> <fixed_array_size>+

(84) <fixed_array_size> ::= “[” <positive_int_const> “]”

The array size (in each dimension) is fixed at compile time. When an array is passed as a parameter in an operation
invocation, all elements of the array are transmitted.

The implementation of array indices is language mapping specific; passing an array index as a parameter may yield
incorrect results.

6.10.5 Native Types

OMG IDL provides a declaration for use by object adapters to define an opaque type whose representation is specified by
the language mapping for that object adapter.

The syntax is:

(42) <type_dcl> ::=“native” <simple_declarator>
(51) <simple_declarator>::=<identifier>

This declaration defines a new type with the specified name. A native type is similar to an IDL basic type. The possible
values of a native type are language-mapping dependent, as are the means for constructing them and manipulating them.
Any interface that defines a native type requires each language mapping to define how the native type is mapped into that
programming language.

A native type may be used only to define operation parameters, results, and exceptions. If a native type is used for an
exception, it must be mapped to a type in a programming language that can be used as an exception. Native type
parameters are permitted only in operations of local interfaces or valuetypes. Any attempt to transmit a value of a
native type in a remote invocation may raise the MARSHAL standard system exception.

It is recommended that native types be mapped to equivalent type names in each programming language, subject to the
normal mapping rules for type names in that language. For example, in a hypothetical Object Adapter IDL module:

module HypotheticalObjectAdapter {
native Servant;
interface HOA {

Object activate_object(in Servant x);
};

};

The IDL type Servant would map to HypotheticalObjectAdapter::Servant in C++ and the activate_object
operation would map to the following C++ member function signature:

CORBA::Object_ptr activate_object(
HypotheticalObjectAdapter::Servant x);

The definition of the C++ type HypotheticalObjectAdapter::Servant would be provided as part of the C++
mapping for the HypotheticalObjectAdapter module.
CORBA for embedded, v1.0 77

Note – The native type declaration is provided specifically for use in object adapter interfaces, which require parameters
whose values are concrete representations of object implementation instances. It is strongly recommended that it not be
used in service or application interfaces. The native type declaration allows object adapters to define new primitive types
without requiring changes to the OMG IDL language or to OMG IDL compiler.

6.10.6 Deprecated Anonymous Types

IDL currently permits the use of anonymous types in a number of places. For example:

struct Foo {
long value;
sequence<Foo> chain; // Legal (but deprecated)

}

Anonymous types cause a number of problems for language mappings and are therefore deprecated by this specification.
Anonymous types will be removed in a future version, so new IDL should avoid use of anonymous types and use a
typedef to name such types instead. Compilers need not issue a warning if a deprecated construct is encountered.

The following (non-exhaustive) examples illustrate deprecated uses of anonymous types.

Anonymous bounded string and bounded wide string types are deprecated. This rule affects constant definitions, attribute
declarations, return value and parameter type declarations, sequence and array element declarations, and structure, union,
exception, and valuetype member declarations. For example:

const string<5> GREETING = “Hello”; // Deprecated

interface Foo {
readonly attribute wstring<5> name; // Deprecated
wstring<5> op(in wstring<5> param); // Deprecated

};
typedef sequence<wstring<5> > WS5Seq; // Deprecated
typedef wstring<5> NameVector [10]; // Deprecated
struct A {

wstring<5> mem; // Deprecated
};
// Anonymous member type in unions, exceptions,
// and valuetypes are deprecated as well.

This is better written as:

typedef string<5> GreetingType;
const GreetingType GREETING = “Hello”;

typedef wstring<5> ShortWName;
interface Foo {

readonly attribute ShortWName name;
ShortWName op(in ShortWName param);

};
typedef sequence<ShortWName> NameSeq;
typedef ShortWName NameVector[10];
78 CORBA for embedded, v1.0

struct A {
GreetingType mem;

};

Anonymous fixed-point types are deprecated. This rule affects attribute declarations, return value and parameter type
declarations, sequence and array element declarations, and structure, union, exception, and valuetype member
declarations.

struct Foo {
fixed<10,5> member; // Deprecated

};

This is better written as:

typedef fixed<10,5> MyType;
struct Foo {

MyType member;
};

Anonymous member types in structures, unions, exceptions, and valuetypes are deprecated:

union U switch(long) {
case 1:

long array_mem[10]; // Deprecated
case 2:

sequence<long> seq_mem; // Deprecated
case 3:

string<5> bstring_mem;
};

This is better written as:

typedef long LongArray[10];
typedef sequence<long> LongSeq;
typedef string<5> ShortName;
union U switch (long) {

case 1:
LongArray array_mem;

case 2:
LongSeq seq_mem;

case 3:
ShortName bstring_mem;

};

Anonymous array and sequence elements are deprecated:

typedef sequence<sequence<long> > NumberTree; // Deprecated
typedef fixed<10,2> FixedArray[10];

This is better written as:

typedef sequence<long> ListOfNumbers;
CORBA for embedded, v1.0 79

typedef sequence<ListOfNumbers> NumberTree;
typedef fixed<10,2> Fixed_10_2;
typedef Fixed_10_2 FixedArray[10];

The preceding examples are not exhaustive. They simply illustrate the rule that, for a type to be used in the definition of
another type, constant, attribute, return value, parameter, or member, that type must have a name. Note that the following
example is not deprecated (even though stylistically poor):

struct Foo {
struct Bar {

long l_mem;
double d_mem;

} bar_mem_1; // OK, not anonymous
Bar bar_mem_2; // OK, not anonymous

};
typedef sequence<Foo::Bar> FooBarSeq; // Scoped names are OK

6.11 Exception Declaration

Exception declarations permit the declaration of struct-like data structures, which may be returned to indicate that an
exceptional condition has occurred during the performance of a request. The syntax is as follows:

(86) <except_dcl> ::= “exception” <identifier> “{“ <member>* “}”

Each exception is characterized by its OMG IDL identifier, an exception type identifier, and the type of the associated
return value (as specified by the <member> in its declaration). If an exception is returned as the outcome to a request,
then the value of the exception identifier is accessible to the programmer for determining which particular exception was
raised.

If an exception is declared with members, a programmer will be able to access the values of those members when an
exception is raised. If no members are specified, no additional information is accessible when an exception is raised.

An identifier declared to be an exception identifier may thereafter appear only in a raises clause of an operation
declaration, and nowhere else.

A set of standard system exceptions is defined corresponding to standard run-time errors, which may occur during the
execution of a request. These standard system exceptions are documented in Section 8.6, “Exceptions,” on page 122.

6.12 Operation Declaration

Operation declarations in OMG IDL are similar to C function declarations. The syntax is:

(87) <op_dcl> ::= [<op_attribute>] <op_type_spec>
<identifier> <parameter_dcls>
[<raises_expr>] [<context_expr>]

(88) <op_attribute> ::= “oneway”
(89) <op_type_spec> ::= <param_type_spec>

| “void”

An operation declaration consists of:
80 CORBA for embedded, v1.0

• An optional operation attribute that specifies which invocation semantics the communication system should provide
when the operation is invoked. Operation attributes are described in Section 6.12.1, “Operation Attribute,” on page 81.

• The type of the operation’s return result; the type may be any type that can be defined in OMG IDL. Operations that do
not return a result must specify the void type.

• An identifier that names the operation in the scope of the interface in which it is defined.

• A parameter list that specifies zero or more parameter declarations for the operation. Parameter declaration is
described in Section 6.12.2, “Parameter Declarations,” on page 81.

• An optional raises expression that indicates which exceptions may be raised as a result of an invocation of this
operation. Raises expressions are described in Section 6.12.3, “Raises Expressions,” on page 82.

• An optional context expression that indicates which elements of the request context may be consulted by the method
that implements the operation. Context expressions are described in Section 6.12.4, “Context Expressions,” on
page 83.

Some implementations and/or language mappings may require operation-specific pragmas to immediately precede the
affected operation declaration.

6.12.1 Operation Attribute

The operation attribute specifies which invocation semantics the communication service must provide for invocations of
a particular operation. An operation attribute is optional. The syntax for its specification is as follows:

(88) <op_attribute> ::= “oneway”

When a client invokes an operation with the oneway attribute, the invocation semantics are best-effort, which does not
guarantee delivery of the call; best-effort implies that the operation will be invoked at most once. An operation with the
oneway attribute must not contain any output parameters and must specify a void return type. An operation defined with
the oneway attribute may not include a raises expression; invocation of such an operation, however, may raise a standard
system exception.

If an <op_attribute> is not specified, the invocation semantics is at-most-once if an exception is raised; the semantics
are exactly-once if the operation invocation returns successfully.

6.12.2 Parameter Declarations

Parameter declarations in OMG IDL operation declarations have the following syntax:

(90) <parameter_dcls> ::= “(” <param_dcl> { “,” <param_dcl> }∗ “)”
| “(” “)”

(91) <param_dcl> ::= <param_attribute> <param_type_spec> <simple_declarator>
(92) <param_attribute> ::= “in”

| “out”
| “inout”

(95) <param_type_spec> ::= <base_type_spec>
| <string_type>
| <wide_string_type>
| <scoped_name>
CORBA for embedded, v1.0 81

A parameter declaration must have a directional attribute that informs the communication service in both the client and
the server of the direction in which the parameter is to be passed. The directional attributes are:

• in - the parameter is passed from client to server.

• out - the parameter is passed from server to client.

• inout - the parameter is passed in both directions.

It is expected that an implementation will not attempt to modify an in parameter. The ability to even attempt to do so is
language-mapping specific; the effect of such an action is undefined.

If an exception is raised as a result of an invocation, the values of the return result and any out and inout parameters are
undefined.

6.12.3 Raises Expressions

There are two kinds of raises expressions as described in this section.

6.12.3.1 Raises Expression

A raises expression specifies which exceptions may be raised as a result of an invocation of the operation or accessing
(invoking the _get operation of) a readonly attribute. The syntax for its specification is as follows:

(93) <raises_expr> ::= “raises” “(” <scoped_name>
{ “,” <scoped_name> }∗ “)”

The <scoped_name>s in the raises expression must be previously defined exceptions or native types. If a native type
is used as an exception for an operation, the operation must appear in either a local interface or a valuetype.

In addition to any operation-specific exceptions specified in the raises expression, there are a standard set of system
exceptions that may be signalled by the ORB. These standard system exceptions are described in Section 8.6.3, “Standard
System Exception Definitions,” on page 124. However, standard system exceptions may not be listed in a raises
expression.

The absence of a raises expression on an operation implies that there are no operation-specific exceptions. Invocations
of such an operation are still liable to receive one of the standard system exceptions.

6.12.3.2 getraises and setraises Expressions

getraises and setraises expressions specify which exceptions may be raised as a result of an invocation of the accessor
(_get) and a mutator (_set) functions of an attribute. The syntax for its specification is as follows:

(108) <attr_raises_expr> ::= <get_excep_expr> [<set_excep_expr>]
| <set_excep_expr>

(109) <get_excep_expr> ::= “getraises” <exception_list>
(110) <set_excep_expr> ::= “setraises” <exception_list>
(111) <exception_list ::= “(” <scoped_name>

 { “,” <scoped_name> } * “)”

The <scoped_name>s in the getraises and setraises expressions must be previously defined exceptions.
82 CORBA for embedded, v1.0

In addition to any attribute-specific exceptions specified in the getraises and setraises expressions, there are a standard
set of exceptions that may be signalled by the ORB. These standard exceptions are described in Section 8.6.3, “Standard
System Exception Definitions,” on page 124. However, standard exceptions may not be listed in a getraises or
setraises expression.

The absence of a getraises or setraises expression on an attribute implies that there are no accessor-specific or
mutator-exceptions respectively. Invocations of such an accessor or mutator are still liable to receive one of the standard
exceptions.

Note – The exceptions associated with the accessor operation corresponding to a readonly attribute is specified using
a simple raises expression as specified in Section 6.12.3.1, “Raises Expression,” on page 82. The getraises and
setraises expressions are used only in attributes that are not readonly.

6.12.4 Context Expressions

A context expression specifies which elements of the client’s context may affect the performance of a request by the
object. The syntax for its specification is as follows:

(94) <context_expr> ::= “context” “(” <string_literal>
{ “,” <string_literal> }∗ “)”

The run-time system guarantees to make the value (if any) associated with each <string_literal> in the client’s context
available to the object implementation when the request is delivered. The ORB and/or object is free to use information in
this request context during request resolution and performance.

The absence of a context expression indicates that there is no request context associated with requests for this operation.

Each string_literal is a non-empty string. If the character ‘*’ appears in a string_literal, it must appear only once, as
the last character of string_literal, and must be preceded by one or more characters other than ‘*’.

The mechanism by which a client associates values with the context identifiers.

6.13 Attribute Declaration

An interface can have attributes as well as operations; as such, attributes are defined as part of an interface. An attribute
definition is logically equivalent to declaring a pair of accessor functions; one to retrieve the value of the attribute and one
to set the value of the attribute.

The syntax for attribute declaration is:

(85) <attr_dcl> ::= <readonly_attr_spec>
| <attr_spec>

(104)<readonly_attr_spec> ::= “readonly” “attribute” <param_type_spec> <readonly_attr_declarator>
(105)<readonly_attr_declarator>::= <simple_declarator> <raises_expr>

| <simple_declarator>
{ “,” <simple_declarator> }*

(106) <attr_spec> ::= “attribute” <param_type_spec> <attr_declarator>
(107) <attr_declarator> ::= <simple_declarator> <attr_raises_expr>

| <simple_declarator>
 { “,” <simple_declarator> }*
CORBA for embedded, v1.0 83

The optional readonly keyword indicates that there is only a single accessor function—the retrieve value function.
Consider the following example:

interface foo {
enum material_t {rubber, glass};
struct position_t {

float x, y;
};

attribute float radius;
attribute material_t material;
readonly attribute position_t position;
• • •

};

The attribute declarations are equivalent to the following pseudo-specification fragment, assuming that one of the leading
‘_’s is removed by application of the Escaped Identifier rule described in Section 6.2.3.1, “Escaped Identifiers,” on
page 44:

• • •
float __get_radius ();
void __set_radius (in float r);
material_t __get_material ();
void __set_material (in material_t m);
position_t __get_position ();
• • •

The actual accessor function names are language-mapping specific. The attribute name is subject to OMG IDL’s name
scoping rules; the accessor function names are guaranteed not to collide with any legal operation names specifiable in
OMG IDL.

Attributes are inherited. An attribute name cannot be redefined to be a different type. See Section 6.15, “CORBA
Module,” on page 86 for more information on redefinition constraints and the handling of ambiguity.

6.14 Repository Identity Related Declarations

Two constructs that are provided for specifying information related to Repository Id are described in this section.

6.14.1 Repository Identity Declaration

The syntax of a repository identity declaration is as follows:

(102) <type_id_dcl> ::= “typeid” <scoped_name> <string_literal>

A repository identifier declaration includes the following elements:

• the keyword typeid

• a <scoped_name> that denotes the named IDL construct to which the repository identifier is assigned

• a string literal that must contain a valid repository identifier value
84 CORBA for embedded, v1.0

The <scoped_name> is resolved according to normal IDL name resolution rules, based on the scope in which the
declaration occurs. It must denote a previously-declared name of one of the following IDL constructs:

• module

• interface

• component

• home

• facet

• receptacle

• event sink

• event source

• finder

• factory

• event type

• value type

• value type member

• value box

• constant

• typedef

• exception

• attribute

• operation

• enum

• local

The value of the string literal is assigned as the repository identity of the specified type definition. This value will be
returned as the RepositoryId by the interface repository definition object corresponding to the specified type definition.
Language mapping constructs, such as Java helper classes, that return repository identifiers shall return the values
declared for their corresponding definitions.

At most one repository identity declaration may occur for any named type definition. An attempt to redefine the
repository identity for a type definition is illegal, regardless of the value of the redefinition.

If no explicit repository identity declaration exists for a type definition, the repository identifier for the type definition
shall be an IDL format repository identifier, as defined in Section 7.2, “OMG IDL Format,” on page 95.

6.14.2 Repository Identifier Prefix Declaration

The syntax of a repository identifier prefix declaration is as follows:

(103) <type_prefix_dcl> ::= “typeprefix” <scoped_name> <string_literal>

A repository identifier declaration includes the following elements:

• the keyword typeprefix
CORBA for embedded, v1.0 85

• a <scoped_name> that denotes an IDL name scope to which the prefix applies

• a string literal that must contain the string to be prefixed to repository identifiers in the specified name scope

The <scoped_name> is resolved according to normal IDL name resolution rules, based on the scope in which the
declaration occurs. It must denote a previously-declared name of one of the following IDL constructs:

• module

• interface (including abstract or local interface)

• value type (including abstract, custom, and box value types)

• event type (including abstract and custom value types)

• specification scope (::)

The specified string is prefixed to the body of all repository identifiers in the specified name scope, whose values are
assigned by default. The specified string shall be a list of one or more identifiers, separated by the “/” characters. These
identifiers are arbitrarily long sequences of alphabetic, digit, underscore (“_”), hyphen (“-”), and period (“.”) characters.
The string shall not contain a trailing slash ("/"), and it shall not begin with the characters underscore ("_"), hyphen ("-")
or period ("."). To elaborate:

By “prefixed to the body of a repository identifier,” we mean that the specified string is inserted into the default IDL
format repository identifier immediately after the format name and colon (“IDL:”) at the beginning of the identifier. A
forward slash (‘/’) character is inserted between the end of the specified string and the remaining body of the repository
identifier.

The prefix is only applied to repository identifiers whose values are not explicitly assigned by a typeid declaration. The
prefix is applied to all such repository identifiers in the specified name scope, including the identifier of the construct that
constitutes the name scope.

6.14.3 Repository Id Conflict

In IDL that contains both pragma prefix/ID declarations and typeprefix/typeid declarations if the repository id for an IDL
element computed by using pragmas and typeid/typeprefix are not identical, it is an error. Note that this rule applies only
when the repository id value computation uses explicitly declared values from declarations of both kinds. If the repository
id computed using explicitly declared values of one kind conflicts with one computed with implicit values of the other
kind, the repository id based on explicitly declared values shall prevail.

6.15 CORBA Module

Names defined by the CORBA specification are in a module named CORBA. In an OMG IDL specification, however,
OMG IDL keywords such as Object must not be preceded by a “CORBA::” prefix. Other interface names such as
TypeCode are not OMG IDL keywords, so they must be referred to by their fully scoped names (e.g.,
CORBA::TypeCode) within an OMG IDL specification.

For example in:

#include <orb.idl>
module M {

typedef CORBA::Object myObjRef; // Error: keyword Object scoped
typedef TypeCode myTypeCode; // Error: TypeCode undefined
86 CORBA for embedded, v1.0

typedef CORBA::TypeCode TypeCode;// OK
};

The file orb.idl contains the IDL definitions for the CORBA module. Except for CORBA::TypeCode, the file orb.idl
must be included in IDL files that use names defined in the CORBA module. IDL files that use CORBA::TypeCode
may obtain its definition by including either the file orb.idl or the file TypeCode.idl.

The exact contents of TypeCode.idl are implementation dependent. One possible implementation of TypeCode.idl may
be:

// PIDL
#ifndef _TYPECODE_IDL_
#define _TYPECODE_IDL_
#pragma prefix "omg.org"
module CORBA {

interface TypeCode;
};
#endif // _TYPECODE_IDL_

For IDL compilers that implicitly define CORBA::TypeCode, TypeCode.idl could consist entirely of a comment as
shown below:

// PIDL
// CORBA::TypeCode implicitly built into the IDL compiler
// Hence there are no declarations in this file

Because the compiler implicitly contains the required declaration, this file meets the requirement for compliance.

The version of CORBA specified in this release of the specification is version <x.y>, and this is reflected in the IDL for
the CORBA module by including the following pragma version (see Section 7.3.3, “The Version Pragma,” on page 99):

#pragma version CORBA <x.y>

as the first line immediately following the very first CORBA module introduction line, which in effect associates that
version number with the CORBA entry in the IR. The version number in that version pragma line must be changed
whenever any changes are made to any remotely accessible parts of the CORBA module in an officially released OMG
standard.

6.16 Names and Scoping

OMG IDL identifiers are case insensitive; that is, two identifiers that differ only in the case of their characters are
considered redefinitions of one another. However, all references to a definition must use the same case as the defining
occurrence. This allows natural mappings to case-sensitive languages. For example:

module M {
typedef long Long; // Error: Long clashes with keyword long
typedef long TheThing;
interface I {

typedef long MyLong;
CORBA for embedded, v1.0 87

myLong op1(// Error: inconsistent capitalization
in TheThing thething; // Error: TheThing clashes with thething

);
};

};

6.16.1 Qualified Names

A qualified name (one of the form <scoped-name>::<identifier>) is resolved by first resolving the qualifier <scoped-
name> to a scope S, and then locating the definition of <identifier> within S. The identifier must be directly defined in S
or (if S is an interface) inherited into S. The <identifier> is not searched for in enclosing scopes.

When a qualified name begins with “::”, the resolution process starts with the file scope and locates subsequent identifiers
in the qualified name by the rule described in the previous paragraph.

Every OMG IDL definition in a file has a global name within that file. The global name for a definition is constructed as
follows.

Prior to starting to scan a file containing an OMG IDL specification, the name of the current root is initially empty (“”)
and the name of the current scope is initially empty (“”). Whenever a module keyword is encountered, the string “::” and
the associated identifier are appended to the name of the current root; upon detection of the termination of the module,
the trailing “::” and identifier are deleted from the name of the current root. Whenever an interface, struct, union, or
exception keyword is encountered, the string “::” and the associated identifier are appended to the name of the current
scope; upon detection of the termination of the interface, struct, union, or exception, the trailing “::” and identifier
are deleted from the name of the current scope. Additionally, a new, unnamed, scope is entered when the parameters of an
operation declaration are processed; this allows the parameter names to duplicate other identifiers; when parameter
processing has completed, the unnamed scope is exited.

The global name of an OMG IDL definition is the concatenation of the current root, the current scope, a “::”, and the
<identifier>, which is the local name for that definition.

Note that the global name in an OMG IDL file corresponds to an absolute ScopedName in the Interface Repository.

Inheritance causes all identifiers defined in base interfaces, both direct and indirect, to be visible in derived interfaces.
Such identifiers are considered to be semantically the same as the original definition. Multiple paths to the same original
identifier (as results from the diamond shape in Figure 6.1) do not conflict with each other.

Inheritance introduces multiple global OMG IDL names for the inherited identifiers. Consider the following example:

interface A {
exception E {

long L;
};
void f() raises(E);

};

interface B: A {
void g() raises(E);

};

In this example, the exception is known by the global names ::A::E and ::B::E.
88 CORBA for embedded, v1.0

Ambiguity can arise in specifications due to the nested naming scopes. For example:

interface A {
typedef string<128> string_t;

};

interface B {
typedef string<256> string_t;

};

interface C: A, B {
attribute string_t Title; // Error: Ambiguous
attribute A::string_t Name; // OK
attribute B::string_t City; // OK

};

The declaration of attribute Title in interface C is ambiguous, since the compiler does not know which string_t is
desired. Ambiguous declarations yield compilation errors.

6.16.2 Scoping Rules and Name Resolution

Contents of an entire OMG IDL file, together with the contents of any files referenced by #include statements, forms a
naming scope. Definitions that do not appear inside a scope are part of the global scope. There is only a single global
scope, irrespective of the number of source files that form a specification.

The following kinds of definitions form scopes:

• module

• interface

• valuetype

• struct

• union

• operation

• exception

• eventtype

• component

• home

The scope for module, interface, valuetype, struct, exception, eventtype, component, and home begins immediately
following its opening ‘{‘ and ends immediately preceding its closing ‘}’. The scope of an operation begins immediately
following its ‘(‘ and ends immediately preceding its closing ‘)’. The scope of a union begins immediately following the
‘(‘ following the keyword switch, and ends immediately preceding its closing ‘}’. The appearance of the declaration of
any of these kinds in any scope, subject to semantic validity of such declaration, opens a nested scope associated with that
declaration.
CORBA for embedded, v1.0 89

An identifier can only be defined once in a scope. However, identifiers can be redefined in nested scopes. An identifier
declaring a module is considered to be defined by its first occurrence in a scope. Subsequent occurrences of a module
declaration with the same identifier within the same scope reopens the module and hence its scope, allowing additional
definitions to be added to it.

The name of an interface, value type, struct, union, exception, or a module may not be redefined within the immediate
scope of the interface, value type, struct, union, exception, or the module. For example:

module M {
typedef short M; // Error: M is the name of the module

 // in the scope of which the typedef is.
interface I {

void i (in short j); // Error: i clashes with the interface name I
};

};

An identifier from a surrounding scope is introduced into a scope if it is used in that scope. An identifier is not introduced
into a scope by merely being visible in that scope. The use of a scoped name introduces the identifier of the outermost
scope of the scoped name. For example in:

module M {
module Inner1 {

typedef string S1;
};

module Inner2 {
typedef string inner1; // OK

};
}

The declaration of Inner2::inner1 is OK because the identifier Inner1, while visible in module Inner2, has not been
introduced into module Inner2 by actual use of it. On the other hand, if module Inner2 were:

module Inner2{
typedef Inner1::S1 S2; // Inner1 introduced
typedef string inner1; // Error
typedef string S1; // OK

};

The definition of inner1 is now an error because the identifier Inner1 referring to the module Inner1 has been
introduced in the scope of module Inner2 in the first line of the module declaration. Also, the declaration of S1 in the
last line is OK since the identifier S1 was not introduced into the scope by the use of Inner1::S1 in the first line.

Only the first identifier in a qualified name is introduced into the current scope. This is illustrated by Inner1::S1 in the
example above, which introduces “Inner1” into the scope of “Inner2” but does not introduce “S1.” A qualified name of
the form “::X::Y::Z” does not cause “X” to be introduced, but a qualified name of the form “X::Y::Z” does.

Enumeration value names are introduced into the enclosing scope and then are treated like any other declaration in that
scope. For example:

interface A {
enum E { E1, E2, E3 }; // line 1
90 CORBA for embedded, v1.0

enum BadE { E3, E4, E5 }; // Error: E3 is already introduced
// into the A scope in line 1 above

};

interface C {
enum AnotherE { E1, E2, E3 };

};

interface D : C, A {
union U switch (E) {

case A::E1 : boolean b;// OK.
case E2 : long l; // Error: E2 is ambiguous (notwithstanding

// the switch type specification!!)
};

};

Type names defined in a scope are available for immediate use within that scope. In particular, see Section 6.10.2,
“Constructed Types,” on page 71 on cycles in type definitions.

A name can be used in an unqualified form within a particular scope; it will be resolved by successively searching farther
out in enclosing scopes, while taking into consideration inheritance relationships among interfaces. For example:

module M {
typedef long ArgType;
typedef ArgType AType; // line l1
interface B {

typedef string ArgType; // line l3
ArgType opb(in AType i); // line l2

};
};

module N {
typedef char ArgType; // line l4
interface Y : M::B {

void opy(in ArgType i); // line l5
};

};

The following scopes are searched for the declaration of ArgType used on line l5:

1. Scope of N::Y before the use of ArgType.

2. Scope of N::Y’s base interface M::B. (inherited scope)

3. Scope of module N before the definition of N::Y.

4. Global scope before the definition of N.

M::B::ArgType is found in step 2 in line l3, and that is the definition that is used in line l5, hence ArgType in line l5
is string. It should be noted that ArgType is not char in line l5. Now if line l3 were removed from the definition of
interface M::B, then ArgType on line l5 would be char from line l4, which is found in step 3.
CORBA for embedded, v1.0 91

Following analogous search steps for the types used in the operation M::B::opb on line l2, the type of AType used on
line l2 is long from the typedef in line l1 and the return type ArgType is string from line l3.

6.16.3 Special Scoping Rules for Type Names

Once a type has been defined anywhere within the scope of a module, interface, or valuetype it may not be redefined
except within the scope of a nested module, interface, or valuetype, or within the scope of a derived interface or
valuetype. For example:

typedef short TempType; // Scope of TempType begins here

module M {
typedef string ArgType; // Scope of ArgType begins here
struct S {

::M::ArgType a1; // Nothing introduced here
M::ArgType a2; // M introduced here
::TempType temp; // Nothing introduced here

}; // Scope of (introduced) M ends here
// ...

}; // Scope of ArgType ends here

// Scope of global TempType ends here (at end of file)

The scope of an introduced type name is from the point of introduction to the end of its enclosing scope.

However, if a type name is introduced into a scope that is nested in a non-module scope definition, its potential scope
extends over all its enclosing scopes out to the enclosing non-module scope. (For types that are defined outside an inon-
module scope, the scope and the potential scope are identical.) For example:

module M {
typedef long ArgType;
const long I = 10;
typedef short Y;

interface A {
struct S {

struct T {
ArgType x[I]; // ArgType and I introduced
long y; // a new y is defined, the existing Y

// is not used
} m;

};
typedef string ArgType; // Error: ArgType redefined
enum I { I1, I2 }; // Error: I redefined
typedef short Y; // OK

}; // Potential scope of ArgType and I ends here

interface B : A {
typedef long ArgType // OK, redefined in derived interface
struct S { // OK, redefined in derived interface

ArgType x; // x is a long
92 CORBA for embedded, v1.0

A::ArgType y; // y is a string
};

};
};

A type may not be redefined within its scope or potential scope, as shown in the preceding example. This rule prevents
type names from changing their meaning throughout a non-module scope definition, and ensures that reordering of
definitions in the presence of introduced types does not affect the semantics of a specification.

Note that, in the following, the definition of M::A::U::I is legal because it is outside the potential scope of the I
introduced in the definition of M::A::S::T::ArgType. However, the definition of M::A::I is still illegal because it is
within the potential scope of the I introduced in the definition of M::A::S::T::ArgType.

module M {
typedef long ArgType;
const long I = 10;

interface A {
struct S {

struct T {
ArgType x[I]; // ArgType and I introduced

} m;
};
struct U {

long I; // OK, I is not a type name
};
enum I { I1, I2 }; // Error: I redefined

}; // Potential scope of ArgType and I ends here
};

Note that redefinition of a type after use in a module is OK as in the example:

typedef long ArgType;
module M {

struct S {
ArgType x; // x is a long

};

typedef string ArgType; // OK!
struct T {

ArgType y; // Ugly but OK, y is a string
};

};
CORBA for embedded, v1.0 93

94 CORBA for embedded, v1.0

7 Repository IDs

Compliance

Conformant implementations of the CORBA/e Compact Profile must comply with all clauses of this chapter. Conformant
implementations of the CORBA/e Micro Profile must comply with all clauses of this chapter.

7.1 Overview

RepositoryIds are values that can be used to establish the identity of information in the repository. A RepositoryId is
represented as a string, allowing programs to store, copy, and compare them without regard to the structure of the value.
It does not matter what format is used for any particular RepositoryId. However, conventions are used to manage the
name space created by these IDs.

RepositoryIds may be associated with OMG IDL definitions in a variety of ways. Installation tools might generate them,
they might be defined with pragmas in OMG IDL source, or they might be supplied with the package to be installed.
Ensuring consistency of RepositoryIds with the IDL source or the IR contents is the responsibility of the programmer
allocating Repositoryids.

The format of the id is a short format name followed by a colon (“:”) followed by characters according to the format. This
specification requires support of the OMG IDL Format. Other CORBA specifications define four formats:

1. one derived from OMG IDL names,

2. one that uses Java class names and Java serialization version UIDs,

3. one that uses DCE UUIDs, and

4. another intended for short-term use, such as in a development environment.

Since new repository ID formats may be added from time to time, compliant IDL compilers must accept any string value
of the form

“<format>:<string>”

provided as the argument to the id pragma and use it as the repository ID. The OMG maintains a registry of allocated
format identifiers. The <format> part of the ID may not contain a colon (:) character.

The version and prefix pragmas only affect default repository IDs that are generated by the IDL compiler using the IDL
format.

7.2 OMG IDL Format

The OMG IDL format for RepositoryIds primarily uses OMG IDL scoped names to distinguish between definitions. It
also includes an optional unique prefix, and major and minor version numbers.

The RepositoryId consists of three components, separated by colons, (“:”)

1. The first component is the format name, “IDL.”

2. (".").The second component is a list of identifiers, separated by “/” characters. These identifiers are arbitrarily long
CORBA for embedded, v1.0 95

sequences of alphabetic, digit, underscore (“_”), hyphen (“-”), and period (“.”) characters. Typically, the first
identifier is a unique prefix, and the rest are the OMG IDL Identifiers that make up the scoped name of the definition.
The second component shall not contain a trailing slash ("/") and it shall not begin with the characters underscore
("_"), hyphen ("-") or period (".").

3. The third component is made up of major and minor version numbers, in decimal format, separated by a “.”. When
two interfaces have RepositoryIds differing only in minor version number it can be assumed that the definition with
the higher version number is upwardly compatible with (i.e., can be treated as derived from) the one with the lower
minor version number.

7.3 Pragma Directives for RepositoryId

Three pragma directives (id, prefix, and version), are specified to accommodate arbitrary RepositoryId formats and still
support the OMG IDL RepositoryId format with minimal annotation. The prefix and version pragma directives apply
only to the IDL format. An IDL compiler must interpret these annotations as specified. Conforming IDL compilers may
support additional non-standard pragmas, but must not refuse to compile IDL source containing non-standard pragmas
that are not understood by the compiler.

7.3.1 The ID Pragma

An OMG IDL pragma of the format

#pragma ID <name> “<id>”

associates an arbitrary RepositoryId string with a specific OMG IDL name. The <name> can be a fully or partially
scoped name or a simple identifier, interpreted according to the usual OMG IDL name lookup rules relative to the scope
within which the pragma is contained.The <id> must be a repository ID of the form described in Section 7.4,
“RepositoryIDs for OMG-Specified Types,” on page 101.

An attempt to assign a repository ID to the same IDL construct a second time shall be an error unless the repository ID
used in the attempt is identical to the previous one.

interface A {};
#pragma ID A “IDL:A:1.1”
#pragma ID A “IDL:X:1.1” // Compile-time error

interface B {};
#pragma ID B “IDL:BB:1.1”
#pragma ID B “IDL:BB:1.1” // OK, same ID

It is also an error to apply an ID to a forward-declared IDL construct (interface, valuetype, structure, and union) and then
later assign a different ID to that IDL construct.

7.3.2 The Prefix Pragma

An OMG IDL pragma is of the form:

#pragma prefix “<string>”
96 CORBA for embedded, v1.0

This sets the current prefix used in generating OMG IDL format RepositoryIds. For example, the RepositoryId for the
initial version of interface Printer defined on module Office by an organization known as “SoftCo” might be
“IDL:SoftCo/Office/Printer:1.0.”

Since the "prefix" pragma applies to Repository Ids of the IDL format, the <string> above shall be a list of one or more
identifiers, separated by the “/” characters. These identifiers are arbitrarily long sequences of alphabetic, digit, underscore
(“_”), hyphen (“-”), and period (“.”) characters. The string shall not contain a trailing slash ("/") and it shall not begin
with the characters underscore ("_"), hyphen ("-") or period (".").

This format makes it convenient to generate and manage a set of IDs for a collection of OMG IDL definitions. The person
creating the definitions sets a prefix (“SoftCo”), and the IDL compiler or other tool can synthesize all the needed IDs.

Because RepositoryIds may be used in many different computing environments and ORBs, as well as over a long period
of time, care must be taken in choosing them. Prefixes that are distinct, such as trademarked names, domain names,
UUIDs, and so forth, are preferable to generic names such as “document.”

The specified prefix applies to RepositoryIds generated after the pragma until the end of the current scope is reached or
another prefix pragma is encountered. An IDL file forms a scope for this purpose, so a prefix resets to the previous prefix
at the end of the scope of an included file:

// A.idl
#pragma prefix “A”
interface A {};

// B.idl
#pragma prefix “B”
#include “A.idl”
interface B {};

The repository IDs for interfaces A and B in this case are:

IDL:A/A:1.0
IDL:B/B:1.0

Similarly, a prefix in an including file does not affect the prefix of an included file:

// C.idl
interface C {};

// D.idl
#pragma prefix “D”
#include “C.idl”
interface D {};

The repository IDs for interface C and D in this case are:

IDL:C:1.0
IDL:D/D:1.0

If an included file does not contain a #pragma prefix, the current prefix implicitly resets to the empty prefix:

// E.idl
interface E {};
CORBA for embedded, v1.0 97

// F.idl
module M {

 #include <E.idl>
 };

The repository IDs for module M and interface E in this case are:

IDL:M:1.0
IDL:E:1.0

If a #include directive appears at non-global scope and the included file contains a prefix pragma, the included file’s
prefix takes precedence, for example:

// A.idl
#pragma prefix “A”
interface A {};

// B.idl
#pragma prefix “B”
module M {
#include “A.idl”
};

The repository ID for module M and interface A in this case are:

IDL:B/M:1.0
IDL:A/A:1.0

Forward-declared constructs (interfaces, value types, structures, and unions) must have the same prefix in effect wherever
they appear. Attempts to assign conflicting prefixes to a forward-declared construct result in a compile-time diagnostic.
For example:

#pragma prefix “A”
interface A; // Forward decl.

#pragma prefix “B”
interface A; // Compile-time error

#pragma prefix “C”
interface A { // Compile-time error

void op();
};

A prefix pragma of the form

#pragma prefix “”

resets the prefix to the empty string. For example:

#pragma prefix “X”
interface X {};
#pragma prefix “”
98 CORBA for embedded, v1.0

interface Y {};

The repository IDs for interface X and Y in this case are:

IDL:X/X:1.0
IDL:Y:1.0

If a specification contains both a prefix pragma and an ID or version pragma, the prefix pragma does not affect the
repository ID for an ID pragma, but does affect the repository ID for a version pragma:

#pragma prefix “A”
interface A {};
interface B {};
interface C {};
#pragma ID B “IDL:myB:1.0”
#pragma version C 9.9

The repository IDs for this specification are

IDL:A/A:1.0
IDL:myB:1.0
IDL:A/C:9.9

A #pragma prefix must appear before the beginning of an IDL definition. Placing a #pragma prefix elsewhere has
undefined behavior, for example:

interface Bar
#pragma prefix “foo” // Undefined behavior
{
// ...

};

7.3.3 The Version Pragma

An OMG IDL pragma of the format:

#pragma version <name> <major>.<minor>

provides the version specification used in generating an OMG IDL format RepositoryId for a specific OMG IDL name.
The <name> can be a fully or partially scoped name or a simple identifier, interpreted according to the usual OMG IDL
name lookup rules relative to the scope within which the pragma is contained. The <major> and <minor> components
are decimal unsigned shorts.

If no version pragma is supplied for a definition, version 1.0 is assumed.

If an attempt is made to change the version of a repository ID that was specified with an ID pragma, a compliant compiler
shall emit a diagnostic:

interface A {};
#pragma ID A “IDL:myA:1.1”
#pragma version A 9.9 // Compile-time error
CORBA for embedded, v1.0 99

An attempt to assign a version to the same IDL construct a second time shall be an error unless the version used in the
attempt is identical to the existing one.

interface A {};
#pragma version A 1.1
#pragma version A 1.1 // OK
#pragma version A 1.2 // Error

interface B {};
#pragma ID B “IDL:myB:1.2”
#pragma version B 1.2 // OK

7.3.4 Generation of OMG IDL - Format IDs

A definition is globally identified by an OMG IDL - format RepositoryId if no ID pragma is encountered for it.

The ID string shall be generated by starting with the string “IDL:”. Then, if the current prefix pragma is a non-empty
string, it is appended, followed by a “/” character. Next, the components of the scoped name of the definition, relative to
the scope in which any prefix that applies was encountered, are appended, separated by “/” characters. Finally, a “:” and
the version specification are appended.

For example, the following OMG IDL:

module M1 {
typedef long T1;
typedef long T2;
#pragma ID T2 “DCE:d62207a2-011e-11ce-88b4-0800090b5d3e:3”

};

#pragma prefix “P1”

module M2 {
module M3 {

#pragma prefix “P2”
typedef long T3;

};
typedef long T4;
#pragma version T4 2.4

};

specifies types with the following scoped names and RepositoryIds:
::M1::T1 IDL:M1/T1:1.0
::M1::T2 DCE:d62207a2-011e-11ce-88b4-0800090b5d3e:3
::M2::M3::T3 IDL:P2/T3:1.0
::M2::T4 IDL:P1/M2/T4:2.4

For this scheme to provide reliable global identity, the prefixes used must be unique. Two non-colliding options are
suggested: Internet domain names and DCE UUIDs.
100 CORBA for embedded, v1.0

Furthermore, in a distributed world where different entities independently evolve types, a convention must be followed to
avoid the same RepositoryId being used for two different types. Only the entity that created the prefix has authority to
create new IDs by simply incrementing the version number. Other entities must use a new prefix, even if they are only
making a minor change to an existing type.

Prefix pragmas can be used to preserve the existing IDs when a module or other container is renamed or moved.

module M4 {
#pragma prefix “P1/M2”

module M3 {
#pragma prefix “P2”

typedef long T3;
};
typedef long T4;

#pragma version T4 2.4
};

This OMG IDL declares types with the same global identities as those declared in module M2 above.

See Section 7.3.2, “The Prefix Pragma,” on page 96 for further details of the effects of various prefix pragma settings on
the generated RepositoryIds.

7.4 RepositoryIDs for OMG-Specified Types

Interoperability between implementations of official OMG specifications, including but not limited to CORBA, CORBA
Services, and CORBA Facilities, depends on unambiguous specification of RepositoryIds for all IDL-defined types in
such specifications.

All official OMG IDL files shall contain the following pragma prefix directive:

#pragma prefix “omg.org”

unless said file already contains a pragma prefix identifying the original source of the file (e.g., “w3c.org”).

Revisions to existing OMG specifications must not change the definition of an existing type in any way. Two types with
different repository Ids are considered different types, regardless of which part of the repository Id differs.

If an implementation must extend an OMG-specified interface, interoperability requires it to derive a new interface from
the standard interface, rather than modify the standard definition.

7.5 Uniqueness Constraints on Repository IDs

#pragma prefix "A"
module M {

// ...
};

#pragma prefix "B"
module M { // Error, inconsistent repository ID

 // ...
};
CORBA for embedded, v1.0 101

This definition attempts to use the same type name M with two different repository IDs in the same compilation unit.
Compilers shall issue a diagnostic for this error.

The same error can arise through inclusion of source files in the same compilation unit. For example:

// File1.idl
module M {

module N {
 // ...

};
#pragma ID N "abc"
};

// File2.idl
module M {

module N {
// ...

};
};

// File3.idl
#include "File1.idl
#include "File2.idl // Error, inconsistent repository ID
// File1.idl
 module M {

 // ...
 };

// File2.idl
#include File1.idl
#pragma prefix "X"
module M { // Error, inconsistent repository ID

 // ...
};

Such errors are detectable only if they occur in a single compilation unit (or in files included in a single compilation unit);
if, in different compilation units, different repository IDs are used for the same module, and these compilation units are
combined into a single executable, the behavior is undefined.
102 CORBA for embedded, v1.0

8 ORB Interface

Compliance

Conformant implementations of the CORBA/e Compact Profile must comply with all clauses of this chapter. Conformant
implementations of the CORBA/e Micro Profile must comply with all clauses of this chapter except 8.5, TypeCodes.

8.1 Overview

This chapter introduces the operations that are implemented by the ORB core, and describes some basic ones, while
providing reference to the description of the remaining operations that are described elsewhere. The ORB interface is the
interface to those ORB functions that do not depend on which object adapter is used. These operations are the same for
all ORBs and all object implementations, and can be performed either by clients of the objects or implementations.
Because the operations in this section are implemented by the ORB itself, they are not in fact operations on objects,
although they may be described that way and the language binding will, for consistency, make them appear that way.

8.2 The ORB Operations

The ORB interface contains the operations that are available to both clients and servers. These operations do not depend
on any specific object adapter or any specific object reference.

module CORBA {

#if ! defined(CORBA_E_MICRO)
interface TypeCode; // forward declaration

#endif

typedef short PolicyErrorCode;

// for the definition of consts see Section 10.2.2.1, “PolicyErrorCode,” on page 159

typedef unsigned long PolicyType;

exception PolicyError {PolicyErrorCode reason;};

typedef string RepositoryId;
typedef string Identifier;

typedef unsigned short ServiceType;
typedef unsigned long ServiceOption;
typedef unsigned long ServiceDetailType;
typedef CORBA::OctetSeq ServiceDetailData;
typedef sequence<ServiceOption> ServiceOptionSeq;

const ServiceType Security = 1;
struct ServiceDetail {

ServiceDetailType service_detail_type;
ServiceDetailData service_detail;
CORBA for embedded, v1.0 103

};

typedef sequence<ServiceDetail> ServiceDetailSeq;

struct ServiceInformation {
ServiceOptionSeq service_options;
ServiceDetailSeq service_details;

};

#if ! defined(CORBA_E_MICRO)
native ValueFactory;

#endif

typedef string ORBid;

interface ORB {

typedef string ObjectId;
typedef sequence <ObjectId> ObjectIdList;

exception InvalidName {};

ORBid id();

string object_to_string (
in Object obj

);

Object string_to_object (
in string str

);

// Service information operations

boolean get_service_information (
in ServiceType service_type,
out ServiceInformation service_information

);

ObjectIdList list_initial_services ();

// Initial reference operation

Object resolve_initial_references (
in ObjectId identifier

) raises (InvalidName);

// Thread related operations
boolean work_pending();
void perform_work();
104 CORBA for embedded, v1.0

void run();

void shutdown(
in boolean wait_for_completion

);

void destroy();

// Policy related operations

#if ! defined(CORBA_E_MICRO)
Policy create_policy(

in PolicyType type,
in any val

) raises (PolicyError);
#endif

#if ! defined(CORBA_E_MICRO)
// Value factory operations

ValueFactory register_value_factory(
in RepositoryId id,
in ValueFactory_factory

);

void unregister_value_factory(in RepositoryId id);

ValueFactory lookup_value_factory(in RepositoryId id);

void register_initial_reference(
in ObjectId id,
in Object obj

) raises (InvalidName);
};

#endif
};

All types defined in this chapter are part of the CORBA module. When referenced in OMG IDL, the type names must be
prefixed by “CORBA::”.

The operations object_to_string and string_to_object are described in “Converting Object References to Strings” on
page 106.

The list_intial_services and resolve_initial_references operations are described in Section 8.3.2, “Obtaining Initial
Object References,” on page 111.

The work_pending, perform_work, shutdown, destroy, and run operations are described in Section 8.2.3, “Thread-
Related Operations,” on page 107.

The create_policy operations is described in Section 10.2.2.3, “Create_policy,” on page 160.
CORBA for embedded, v1.0 105

The register_value_factory, unregister_value_factory and lookup_value_factory operations are described in
Section 9.3.3.3, “Language Specific Value Factory Requirements,” on page 151.

The register_initial_reference operation is described in Section 8.3.3.1, “register_initial_reference,” on page 114.

8.2.1 ORB Identity

8.2.1.1 id

ORBid id();

The id operation returns the identity of the ORB. The returned ORBid is the string that was passed to ORB_init (see
Section 8.3.1, “ORB Initialization,” on page 109) as the orb_identifier parameter when the ORB was created. If that was
the empty string, the returned string is the value associated with the -ORBid tag in the arg_list parameter. Calling id on
the default ORB returns the empty string.

8.2.2 Converting Object References to Strings

8.2.2.1 object_to_string

string object_to_string (
in Object obj

);

8.2.2.2 string_to_object

Object string_to_object (
in string str

);

Because an object reference is opaque and may differ from ORB to ORB, the object reference itself is not a convenient
value for storing references to objects in persistent storage or communicating references by means other than invocation.
Two problems must be solved: allowing an object reference to be turned into a value that a client can store in some other
medium, and ensuring that the value can subsequently be turned into the appropriate object reference.

An object reference may be translated into a string by the operation object_to_string. The value may be stored or
communicated in whatever ways strings may be manipulated. Subsequently, the string_to_object operation will accept
a string produced by object_to_string and return the corresponding object reference.

To guarantee that an ORB will understand the string form of an object reference, that ORB’s object_to_string operation
must be used to produce the string. For all conforming ORBs, if obj is a valid reference to an object, then
string_to_object(object_to_string(obj)) will return a valid reference to the same object, if the two operations are
performed on the same ORB. For all conforming ORB’s supporting IOP, this remains true even if the two operations are
performed on different ORBs.
106 CORBA for embedded, v1.0

8.2.3 Thread-Related Operations

To support single-threaded ORBs, as well as multi-threaded ORBs that run multi-thread-unaware code, several operations
are included in the ORB interface. These operations can be used by single-threaded and multi-threaded applications. An
application that is a pure ORB client would not need to use these operations. Both the ORB::run and ORB::shutdown
are useful in fully multi-threaded programs.

These operations are defined on the ORB rather than on an object adapter to allow the main thread to be used for all kinds
of asynchronous processing by the ORB. Defining these operations on the ORB also allows the ORB to support multiple
object adapters, without requiring the application main to know about all the object adapters. The interface between the
ORB and an object adapter is not standardized.

8.2.3.1 work_pending

boolean work_pending();

This operation returns an indication of whether the ORB needs the main thread to perform some work.

A result of TRUE indicates that the ORB needs the main thread to perform some work and a result of FALSE indicates that
the ORB does not need the main thread.

8.2.3.2 perform_work

void perform_work();

If called by the main thread, this operation performs an implementation-defined unit of work; otherwise, it does nothing.

It is platform-specific how the application and ORB arrange to use compatible threading primitives.

The work_pending() and perform_work() operations can be used to write a simple polling loop that multiplexes the
main thread among the ORB and other activities. Such a loop would most likely be needed in a single-threaded server. A
multi-threaded server would need a polling loop only if there were both ORB and other code that required use of the main
thread.

Here is an example of such a polling loop:

// C++
for (;;) {

if (orb->work_pending()) {
orb->perform_work();

};
// do other things
// sleep?

};

Once the ORB has shutdown, work_pending and perform_work will raise the BAD_INV_ORDER exception with
minor code 4. An application can detect this exception to determine when to terminate a polling loop.

8.2.3.3 run

void run();
CORBA for embedded, v1.0 107

This operation provides execution resources to the ORB so that it can perform its internal functions. Single threaded ORB
implementations, and some multi-threaded ORB implementations, need the use of the main thread in order to function
properly. For maximum portability, an application should call either run or perform_work on its main thread. run may
be called by multiple threads simultaneously.

This operation will block until the ORB has completed the shutdown process, initiated when some thread calls
shutdown.

8.2.3.4 shutdown

void shutdown(
in boolean wait_for_completion

);

This operation instructs the ORB to shut down, that is, to stop processing in preparation for destruction.

Shutting down the ORB causes all object adapters to be destroyed, since they cannot exist in the absence of an ORB.

In the case of the POA, all POAManagers are deactivated prior to destruction of all POAs. The deactivation that the
ORB performs should be the equivalent of calling deactivate with the value TRUE for etherealize_objects and with the
wait_for_completion parameter same as what shutdown was called with.

Shut down is complete when all ORB processing has completed and the object adapters have been destroyed. ORB
processing is defined as including request processing and object deactivation or other operations associated with object
adapters, and the forwarding of the responses from deferred synchronous invocations to their associated reply handlers. In
the case of the POA, this means that all object etherealizations have finished and root POA has been destroyed (implying
that all descendent POAs have also been destroyed).

If the wait_for_completion parameter is TRUE, this operation blocks until the shut down is complete. If an application
does this in a thread that is currently servicing an invocation, the ORB will not shutdown, and the BAD_INV_ORDER
system exception will be raised with the OMG minor code 3, and completion status COMPLETED_NO, since blocking
would result in a deadlock.

If the wait_for_completion parameter is FALSE, then shutdown may not have completed upon return. An ORB
implementation may require the application to call (or have a pending call to) run or perform_work after shutdown
has been called with its parameter set to FALSE, in order to complete the shutdown process.

Additionally in systems that have Portable Object Adapters (see Chapter 11) shutdown behaves as if POA::destroy is
called on the Root POA with its first parameter set to TRUE and the second parameter set to the value of the
wait_for_completion parameter that shutdown is invoked with.

While the ORB is in the process of shutting down, the ORB operates as normal, servicing incoming and outgoing requests
until all requests have been completed. An implementation may impose a time limit for requests to complete while a
shutdown is pending.

Once an ORB has shutdown, only object reference management operations (duplicate, release, and is_nil) may be
invoked on the ORB or any object reference obtained from it. An application may also invoke the destroy operation on
the ORB itself. Invoking any other operation will raise the BAD_INV_ORDER system exception with the OMG minor
code 4.
108 CORBA for embedded, v1.0

8.2.3.5 destroy

void destroy();

This operation destroys the ORB so that its resources can be reclaimed by the application. Any operation invoked on a
destroyed ORB reference will raise the OBJECT_NOT_EXIST exception. Once an ORB has been destroyed, another
call to ORB_init with the same ORBid will return a reference to a newly constructed ORB.

If destroy is called on an ORB that has not been shut down, it will start the shut down process and block until the ORB
has shut down before it destroys the ORB. The behavior is similar to that achieved by calling shutdown with the
wait_for_completion parameter set to TRUE. If an application calls destroy in a thread that is currently servicing an
invocation, the BAD_INV_ORDER system exception will be raised with the OMG minor code 3, since blocking would
result in a deadlock.

For maximum portability and to avoid resource leaks, an application should always call shutdown and destroy on all
ORB instances before exiting.

8.3 ORB and OA Initialization and Initial References

Before an application can enter the CORBA environment, it must first:

• Be initialized into the ORB and possibly the object adapter (POA) environments.

• Get references to ORB pseudo-object (for use in future ORB operations) and perhaps other objects (including the root
POA or some Object Adapter objects).

The following operations are provided to initialize applications and obtain the appropriate object references:

• Operations providing access to the ORB. These operations reside in the CORBA module, but not in the ORB interface
and are described in Section 8.3.1, “ORB Initialization,” on page 109.

• Operations providing access to Object Adapters, Interface Repository, Naming Service, and other Object Services.
These operations reside in the ORB interface and are described in Section 8.3.2, “Obtaining Initial Object References,”
on page 111.

8.3.1 ORB Initialization

When an application requires a CORBA environment it needs a mechanism to get the ORB pseudo-object reference and
possibly an OA object reference (such as the root POA). This serves two purposes. First, it initializes an application into
the ORB and OA environments. Second, it returns the ORB pseudo-object reference and the OA object reference to the
application for use in future ORB and OA operations.

The ORB and OA initialization operations must be ordered with ORB occurring before OA: an application cannot call
OA initialization routines until ORB initialization routines have been called for the given ORB. The operation to initialize
an application in the ORB and get its pseudo-object reference is not performed on an object. This is because applications
do not initially have an object on which to invoke operations. The ORB initialization operation is an application’s
bootstrap call into the CORBA world. The ORB_init call is part of the CORBA module but not part of the ORB
interface.

Applications can be initialized in one or more ORBs. When an ORB initialization is complete, its pseudo reference is
returned and can be used to obtain other references for that ORB.
CORBA for embedded, v1.0 109

In order to obtain an ORB pseudo-object reference, applications call the ORB_init operation. The parameters to the call
comprise an identifier for the ORB for which the pseudo-object reference is required, and an arg_list, which is used to
allow environment-specific data to be passed into the call. PIDL for the ORB initialization is as follows:

// PIDL
module CORBA {

typedef sequence <string> arg_list;

ORB ORB_init (inout arg_list argv, in ORBid orb_identifier);
};

The identifier for the ORB will be a name of type CORBA::ORBid. All ORBid strings other than the empty string are
allocated by ORB administrators and are not managed by the OMG. ORB administration is the responsibility of each ORB
supplier. ORB suppliers may optionally delegate this responsibility. ORBid strings other than the empty string are
intended to be used to uniquely identify each ORB used within the same address space in a multi-ORB application. These
special ORBid strings are specific to each ORB implementation and the ORB administrator is responsible for ensuring
that the names are unambiguous.

If an empty ORBid string is passed to ORB_init, then the arg_list arguments shall be examined to determine if they
indicate an ORB reference that should be returned. This is achieved by searching the arg_list parameters for one
preceded by “-ORBid” for example, “-ORBid example_orb” (the white space after the “-ORBid” tag is ignored) or “-
ORBidMyFavoriteORB” (with no white space following the “-ORBid” tag). Alternatively, two sequential parameters
with the first being the string “-ORBid” indicates that the second is to be treated as an ORBid parameter. If an empty
string is passed and no arg_list parameters indicate the ORB reference to be returned, the default ORB for the
environment will be returned.

Other parameters of significance to the ORB can also be identified in arg_list, for example, “Hostname,”
“SpawnedServer,” and so forth. To allow for other parameters to be specified without causing applications to be re-
written, it is necessary to specify the parameter format that ORB parameters may take. In general, parameters shall be
formatted as either one single arg_list parameter:

–ORB<suffix><optional white space> <value>

or as two sequential arg_list parameters:

-ORB<suffix>

<value>

Regardless of whether an empty or non-empty ORBid string is passed to ORB_init, the arg_list arguments are
examined to determine if any ORB parameters are given. If a non-empty ORBid string is passed to ORB_init, all ORBid
parameters in the arg_list are ignored. All other -ORB<suffix> parameters in the arg_list may be of significance
during the ORB initialization process.

Before ORB_init returns, it will remove from the arg_list parameter all strings that match the -ORB<suffix> pattern
described above and that are recognized by that ORB implementation, along with any associated sequential parameter
strings. If any strings in arg_list that match this pattern are not recognized by the ORB implementation, ORB_init will
raise the BAD_PARAM system exception instead.
110 CORBA for embedded, v1.0

The ORB_init operation may be called any number of times and shall return the same ORB reference when the same
ORBid string is passed, either explicitly as an argument to ORB_init or through the arg_list. All other -ORB<suffix>
parameters in the arg_list may be considered on subsequent calls to ORB_init.

Note – Whenever an ORB_init argument of the form -ORBxxx is specified, it is understood that the argument may be
represented in different ways in different languages. For example, in Java -ORBxxx is equivalent to a property named
org.omg.CORBA.ORBxxx.

8.3.1.1 Server ID

A Server ID must uniquely identify a server to an IMR. This specification only requires unique identification using a
string of some kind. We do not intend to make more specific requirements for the structure of a server ID.

The server ID may be specified by an ORB_init argument of the form

-ORBServerId

The value assigned to this property is a string. All templates created in this ORB will return this server ID in the
server_id attribute.

It is required that all ORBs in the same server share the same server ID. Specific environments may choose to implement
-ORBServerId in ways that automatically enforce this requirement.

For example, the org.omg.CORBA.ServerId system property may be set to the server ID in Java when a Java server is
activated. This system property is then picked up as part of the ORB_init call for every ORB created in the server.

8.3.1.2 Server Endpoint

The server endpoint information is passed into ORB_init by an argument of the form

-ORBListenEndpoints <endpoints>

The format of the <endpoints> argument is proprietary. All that is required by this specification is that each time
ORB_init is called with the same value for this argument, the resulting ORB will listen for requests on the same set of
endpoints, so that persistent object references for the ORB will continue to function correctly.

8.3.1.3 Starting Servers with No Proprietary Server Activation Support

Any server started with the flag:

-ORBNoProprietaryActivation

shall avoid the use of any proprietary activation framework.

8.3.2 Obtaining Initial Object References

Applications require a portable means by which to obtain their initial object references. References are required for the
root POA, POA Current, Interface Repository and various Object Services instances. (The POA is described in the
Portable Object Adapter chapter; the Interface Repository is described in the Interface Repository chapter; Object
Services are described in the individual service specifications.) The functionality required by the application is similar to
CORBA for embedded, v1.0 111

that provided by the Naming Service. However, the OMG does not want to mandate that the Naming Service be made
available to all applications in order that they may be portably initialized. Consequently, the operations shown in this
section provide a simplified, local version of the Naming Service that applications can use to obtain a small, defined set
of object references that are essential to its operation. Because only a small well-defined set of objects are expected with
this mechanism, the naming context can be flattened to be a single-level name space. This simplification results in only
two operations being defined to achieve the functionality required.

Initial references are not obtained via a new interface; instead two operations are provided in the ORB pseudo-object
interface, providing facilities to list and resolve initial object references.

8.3.2.1 list_initial_services

typedef string ObjectId;
typedef sequence <ObjectId> ObjectIdList;
ObjectIdList list_initial_services ();

8.3.2.2 resolve_initial_references

exception InvalidName {};

Object resolve_initial_references (
in ObjectId identifier

) raises (InvalidName);

The resolve_initial_references operation is an operation on the ORB rather than the Naming Service’s
NamingContext. The interface differs from the Naming Service’s resolve in that ObjectId (a string) replaces the more
complex Naming Service construct (a sequence of structures containing string pairs for the components of the name). This
simplification reduces the name space to one context.

ObjectIds are strings that identify the object whose reference is required. To maintain the simplicity of the interface for
obtaining initial references, only a limited set of objects are expected to have their references found via this route. Unlike
the ORB identifiers, the ObjectId name space requires careful management. To achieve this, the OMG may, in the future,
define which services are required by applications through this interface and specify names for those services.

resolve_initial_references never returns a nil reference. Instead, the non-availability of a particular reference is indicated
by throwing an InvalidName exception (even if a nil reference is explicitly configured for an ObjectId).
112 CORBA for embedded, v1.0

Currently, reserved ObjectIds are RootPOA, POACurrent, InterfaceRepository, NameService, TradingService,
SecurityCurrent, TransactionCurrent, DynAnyFactory, ORBPolicyManager, PolicyCurrent,
NotificationService, TypedNotificationService, CodecFactory, PICurrent, ComponentHomeFinder, and
PSS..

Table 8.1- ObjectIds for resolve_initial_references

ObjectId Type of Object Reference Reference

RootPOA PortableServer::POA Section 11.3.4, “POA Interface,” on
page 183

POACurrent PortableServer::Current Section 11.3.4, “POA Interface,” on
page 183

InterfaceRepository CORBA::Repository

CORBA::ComponentIR::Repository

Section 10.5.6, “Repository” on page
10-22 in formal/04-03-01.
Section 10.6.2,
“ComponentIR::Repository” on page
10-52 in formal/04-03-01.

NameService CosNaming::

NamingContext

Section 13.6, “Initial Reference to a
NamingContextExt,” on page 230.

TradingService CosTrading::Lookup Trading Object Service specification
(formal/00-06-27), the Functional
Interfaces section.

SecurityCurrent SecurityLevel1::Current or

SecurityLevel2::Current

Security Service specification (formal/
00-06-25), the Security Operations on
Current section.

TransactionCurrent CosTransaction::Current Transaction Service specification
(formal/00-06-28), the Transaction
Service Interfaces section.

DynAnyFactory DynamicAny::

DynAnyFactory

Section 9.2.1, “Creating a DynAny
Object” in formal 04-03-01.

ORBPolicyManager CORBA::PolicyManager Section 11.2.3, “Policy Management
Interfaces” in formal/04-03-01.

PolicyCurrent CORBA::PolicyCurrent Section 10.3.3, “Policy Management
Interfaces,” on page 161.

NotificationService CosNotifyChannelAdmin::

EventChannelFactory

Notification Service specification
(formal/00-06-20)

TypedNotificationService CosTypedNotifyChannelAdmin::TypedEvent
ChannelFactory

Notification Service specification
(formal/00-06-20)

CodecFactory IOP::CodecFactory Section 14.1.2, “Codec Factory” in
formal/04-03-01.
CORBA for embedded, v1.0 113

To allow an application to determine which objects have references available via the initial references mechanism, the
list_initial_services operation (also a call on the ORB) is provided. It returns an ObjectIdList, which is a sequence of
ObjectIds. ObjectIds are typed as strings. Each object, which may need to be made available at initialization time, is
allocated a string value to represent it. In addition to defining the id, the type of object being returned must be defined;
that is, “InterfaceRepository” returns an object of type Repository, or ComponentIR::Repository, which is derived
from Repository, depending on whether the ORB supports components or not, and “NameService” returns a
CosNaming::NamingContext object.

The application is responsible for narrowing the object reference returned from resolve_initial_references to the type
that was requested in the ObjectId. For example, for InterfaceRepository the object returned would be narrowed to
Repository type or ComponentIR::Repository type, depending on whether the ORB supports components.

Specifications for Object Services (see individual service specifications) state whether it is expected that a service’s initial
reference be made available via the resolve_initial_references operation or not; that is, whether the service is
necessary or desirable for bootstrap purposes.

8.3.3 Configuring Initial Service References

8.3.3.1 register_initial_reference

An operation is available in the ORB interface:

void register_initial_reference (in ObjectId id, in Object obj)
raises (InvalidName);

If this operation is called with an id, “Y”, and an object, YY, then a subsequent call to
ORB::resolve_initial_references (“Y”) will return object YY.

This operation can be used to replace the object reference corresponding to any of the OMG specified Ids. For example:

register_initial_reference ("NameService", Z)

will cause Z to be substituted as the object reference that will be used to get to the Name Service instead of the ORB
vendor supplied built in Name Service. This facility should be used with care since substitution of certain OMG specified
ids is unlikely to work at all.

Implementations are allowed to restrict substitutability of references corresponding to the following ObjectIds:

RootPOA, POACurrent, DynAnyFactory, ORBPolicyManager, PolicyCurrent, CodecFactory, and PICurrent.

PICurrent PortableInterceptors::Current Section 13.5.3, “Portable Interceptor
Current Interface” in formal/04-03-01.

ComponentHomeFinder Components::HomeFinder CORBA Components specification.

PSS CosPersistentState::

ConnectorRegistry

Persistent State Service specification
(formal/2002-09-06).

Table 8.1- ObjectIds for resolve_initial_references

ObjectId Type of Object Reference Reference
114 CORBA for embedded, v1.0

When substitutability is restricted it shall be clearly documented. InvalidName exception is raised when any of these
restricted ObjectIds are passed in as a parameter to resolve_initial_reference.

InvalidName is raised if this operation is called with an empty string id.

If the Object parameter is null, BAD_PARAM will be raised with a standard minor code of 27.

8.3.3.2 ORB-specific Configuration

It is required that an ORB can be administratively configured to return an arbitrary object reference from
CORBA::ORB::resolve_initial_references for non-locality-constrained objects.

In addition to this required implementation-specific configuration, two CORBA::ORB_init arguments are provided to
override the ORB initial reference configuration.

8.3.3.3 ORBInitRef

The ORB initial reference argument, -ORBInitRef, allows specification of an arbitrary object reference for an initial
service. The format is:

-ORBInitRef <ObjectID>=<ObjectURL>

Examples of use are:

-ORBInitRef NameService=IOR:00230021AB...

-ORBInitRef NotificationService=corbaloc::555objs.com/NotificationService

-ORBInitRef TradingService=corbaname::555objs.com#Dev/Trader

<ObjectID> represents the well-known ObjectID for a service defined in the CORBA specification, such as
NameService. This mechanism allows an ORB to be configured with new initial service Object IDs that were not
defined when the ORB was installed.

<ObjectURL> can be any of the URL schemes supported by CORBA::ORB::string_to_object, with the exception of
the corbaloc URL scheme with the rir protocol (i.e., corbaloc:rir...). If a URL is syntactically malformed or can be
determined to be invalid in an implementation defined manner, ORB_init raises a BAD_PARAM exception.

8.3.3.4 ORBDefaultInitRef

The ORB default initial reference argument, -ORBDefaultInitRef, assists in resolution of initial references not explicitly
specified with -ORBInitRef. -ORBDefaultInitRef requires a URL that, after appending a slash ‘/’ character and a
stringified object key, forms a new URL to identify an initial object reference. For example:

-ORBDefaultInitRef corbaloc::555objs.com

Parameters Description

id The ID by which the initial reference will be known.

obj The initial reference itself.
CORBA for embedded, v1.0 115

A call to resolve_initial_references (see the “NotificationService”) with this argument results in a new URL:

corbaloc::555objs.com/NotificationService

That URL is passed to CORBA::ORB::string_to_object to obtain the initial reference for the service.

Another example is:

-ORBDefaultInitRef \
corbaname::555ResolveRefs.com,:555Backup.com#Prod/Local

After calling resolve_initial_references(“NameService”), one of the corbaname URLs

corbaname::555ResolveRefs.com#Prod/Local/NameService

or

corbaname::555Backup411.com#Prod/Local/NameService

is used to obtain an object reference from string_to_object. (In this example, Prod/Local/NameService represents a
stringified CosNaming::Name).

The -ORBDefaultInitRef argument naturally extends to URL schemes that may be defined in the future, provided the
final part of the URL is an object key.

8.3.3.5 Configuration Effect on resolve_initial_references

Default Resolution Order

The default order for processing a call to CORBA::ORB::resolve_initial_references for a given <ObjectID> is:

1. Resolve with register_initial_reference entry if possible.

2. Resolve with -ORBInitRef for this <ObjectID> if possible

3. Resolve with pre-configured ORB settings if possible.

4. Resolve with an -ORBDefaultInitRef entry if possible.

ORB Configured Resolution Order

There are cases where the default resolution order may not be appropriate for all services and use of
-ORBDefaultInitRef may have unintended resolution side effects. For example, an ORB may use a proprietary service,
such as ImplementationRepository, for internal purposes and may want to prevent a client from unknowingly
diverting the ORB’s reference to an implementation repository from another vendor. To prevent this, an ORB is allowed
to ignore the -ORBDefaultInitRef argument for any or all <ObjectID>s for those services that are not OMG-specified
services with a well-known service name as accepted by resolve_initial_references. An ORB can only ignore the
-ORBDefaultInitRef argument but must always honor the -ORBInitRef argument.
116 CORBA for embedded, v1.0

8.3.3.6 Configuration Effect on list_initial_services

The <ObjectID>s of all -ORBInitRef arguments to ORB_init appear in the list of tokens returned by
list_initial_services as well as all ORB-configured <ObjectID>s. Any other tokens that may appear are
implementation-dependent.

The list of <ObjectID>s returned by list_initial_services can be a subset of the <ObjectID>s recognized as valid by
resolve_initial_references.

8.4 Current Object

ORB and CORBA services may wish to provide access to information (context) associated with the thread of execution
in which they are running. This information is accessed in a structured manner using interfaces derived from the Current
interface defined in the CORBA module.

Each ORB or CORBA service that needs its own context derives an interface from the CORBA module’s Current. Users
of the service can obtain an instance of the appropriate Current interface by invoking
ORB::resolve_initial_references. For example the Security service obtains the Current relevant to it by invoking

ORB::resolve_initial_references(“SecurityCurrent”)

A CORBA service does not have to use this method of keeping context but may choose to do so.

module CORBA {
// interface for the Current object
 local interface Current {
};

};

Operations on interfaces derived from Current access state associated with the thread in which they are invoked, not
state associated with the thread from which the Current was obtained. This prevents one thread from manipulating
another thread’s state, and avoids the need to obtain and narrow a new Current in each method’s thread context.

Current objects must not be exported to other processes, or externalized with ORB::object_to_string. If any attempt
is made to do so, the offending operation will raise a MARSHAL system exception. Currents are per-process singleton
objects, so no destroy operation is needed.

8.5 TypeCodes

TypeCodes are values that represent invocation argument types and attribute types. They can be obtained from IDL
compilers.

TypeCodes have a number of uses. They are crucial to the semantics of the any type.

Abstractly, TypeCodes consist of a “kind” field, and a set of parameters appropriate for that kind. For example, the
TypeCode describing OMG IDL type long has kind tk_long and no parameters. The TypeCode describing OMG IDL
type sequence<boolean,10> has kind tk_sequence and two parameters: 10 and boolean.
CORBA for embedded, v1.0 117

8.5.1 The TypeCode Interface

The PIDL interface for TypeCodes is as follows:

module CORBA {
enum TCKind {

tk_null, tk_void,
tk_short, tk_long, tk_ushort, tk_ulong,
tk_float, tk_double, tk_boolean, tk_char,
tk_octet, tk_any, tk_TypeCode, tk_Principal, tk_objref,
tk_struct, tk_union, tk_enum, tk_string,
tk_sequence, tk_array, tk_alias, tk_except,
tk_longlong, tk_ulonglong, tk_longdouble,
tk_wchar, tk_wstring, tk_fixed,
tk_value, tk_value_box,
tk_native,
tk_abstract_interface,
tk_local_interface
tk_component, tk_home,
tk_event

};

typedef short ValueModifier;
const ValueModifier VM_NONE = 0;
const ValueModifier VM_CUSTOM = 1;
const ValueModifier VM_ABSTRACT = 2;
const ValueModifier VM_TRUNCATABLE = 3;

interface TypeCode {
exception Bounds {};
exception BadKind {};

// for all TypeCode kinds
boolean equal (in TypeCode tc);

boolean equivalent(in TypeCode tc);
TypeCode get_compact_typecode();

TCKind kind ();
// for tk_objref, tk_struct, tk_union, tk_enum, tk_alias,
// tk_value, tk_value_box, tk_native, tk_abstract_interface
// tk_local_interface, tk_except
// tk_component, tk_home and tk_event
RepositoryId id () raises (BadKind);

// for tk_objref, tk_struct, tk_union, tk_enum, tk_alias,
// tk_value, tk_value_box, tk_native, tk_abstract_interface
// tk_local_interface, tk_except
// tk_component, tk_home and tk_event
Identifier name () raises (BadKind);
118 CORBA for embedded, v1.0

// for tk_struct, tk_union, tk_enum, tk_value,
// tk_except and tk_event
unsigned long member_count () raises (BadKind);
Identifier member_name (in unsigned long index)

raises(BadKind, Bounds);

// for tk_struct, tk_union, tk_value,
// tk_except and tk_event
TypeCode member_type (in unsigned long index)

raises (BadKind, Bounds);

// for tk_union
any member_label (in unsigned long index)

raises(BadKind, Bounds);
TypeCode discriminator_type () raises (BadKind);
long default_index () raises (BadKind);

// for tk_string, tk_wstring, tk_sequence, and tk_array
unsigned long length () raises (BadKind);

// for tk_sequence, tk_array, tk_value_box and tk_alias
TypeCode content_type () raises (BadKind);

// for tk_fixed
unsigned short fixed_digits() raises(BadKind);
short fixed_scale() raises(BadKind);

// for tk_value and tk_event
Visibility member_visibility(in unsigned long index)

raises(BadKind, Bounds);
ValueModifier type_modifier() raises(BadKind);
TypeCode concrete_base_type() raises(BadKind);

};
};

With the above operations, any TypeCode can be decomposed into its constituent parts. The BadKind exception is
raised if an operation is not appropriate for the TypeCode kind it invoked.

The equal operation can be invoked on any TypeCode. The equal operation returns TRUE if and only if for the target
TypeCode and the TypeCode passed through the parameter tc, the set of legal operations is the same and invoking any
operation from that set on the two TypeCodes return identical results.

The equivalent operation is used by the ORB when determining type equivalence for values stored in an IDL any.
TypeCodes are considered equivalent based on the following semantics:

• If the result of the kind operation on either TypeCode is tk_alias, recursively replace the TypeCode with the result
of calling content_type, until the kind is no longer tk_alias.

• If results of the kind operation on each typecode differ, equivalent returns false.

• If the id operation is valid for the TypeCode kind, equivalent returns TRUE if the results of id for both
TypeCodes are non-empty strings and both strings are equal. If both ids are non-empty but are not equal, then
CORBA for embedded, v1.0 119

equivalent returns FALSE. If either or both id is an empty string, or the TypeCode kind does not support the id
operation, equivalent will perform a structural comparison of the TypeCodes by comparing the results of the other
TypeCode operations in the following bullet items (ignoring aliases as described in the first bullet.). The structural
comparison only calls operations that are valid for the given TypeCode kind. If any of these operations do not return
equal results, then equivalent returns FALSE. If all comparisons are equal, equivalent returns true.

• The results of the name and member_name operations are ignored and not compared.

• The results of the member_count, default_index, length, digits, scale, and type_modifier operations are
compared.

• The results of the member_label operation for each member index of a union TypeCode are compared for
equality. Note that this means that unions whose members are not defined in the same order are not considered
structurally equivalent.

• The results of the discriminator_type, member_type, and concrete_base_type operation and for each
member index, and the result of the content_type operation are compared by recursively calling equivalent.

• The results of the member_visibility operation are compared for each member index.

Applications that need to distinguish between a type and different aliases of that type can supplement equivalent by
directly invoking the id operation and comparing the results.

The get_compact_typecode operation strips out all optional name and member name fields, but it leaves all alias
typecodes intact.

The kind operation can be invoked on any TypeCode. Its result determines what other operations can be invoked on the
TypeCode.

The id operation can be invoked on object reference, valuetype, boxed valuetype, abstract interface, local interface,
native, structure, union, enumeration, alias, exception, component, home, and event TypeCodes. It returns the
RepositoryId globally identifying the type. Object reference, valuetype, boxed valuetype, native, exception, component,
home, and event TypeCodes always have a RepositoryId. Structure, union, enumeration, and alias TypeCodes
obtained from the Interface Repository or the ORB::create_operation_list operation also always have a
RepositoryId. Otherwise, the id operation can return an empty string.

When the id operation is invoked on an object reference TypeCode that contains a base Object, the returned value is
IDL:omg.org/CORBA/Object:1.0.

When it is invoked on a valuetype TypeCode that contains a ValueBase, the returned value is IDL:omg.org/CORBA/
ValueBase:1.0.

The name operation can also be invoked on object reference, structure, union, enumeration, alias, abstract interface, local
interface, value type, boxed valuetype, native, and exception TypeCodes. It returns the simple name identifying the type
within its enclosing scope. Since names are local to a Repository, the name returned from a TypeCode may not match
the name of the type in any particular Repository, and may even be an empty string.

The order in which members are presented in the interface repository is the same as the order in which they appeared in
the IDL specification, and this ordering determines the index value for each member. The first member has index value 0.
For example for a structure definition:

struct example {
short member1;
short member2;
120 CORBA for embedded, v1.0

long member3;
};

In this example member1 has index = 0, member2 has index = 1, and member3 has index = 2. The value of
member_count in this case is 3.

The member_count and member_name operations can be invoked on structure, union, non-boxed valuetype, non-
boxed eventtype, exception, and enumeration TypeCodes. Member_count returns the number of members constituting
the type. Member_name returns the simple name of the member identified by index. Since names are local to a
Repository, the name returned from a TypeCode may not match the name of the member in any particular
Repository, and may even be an empty string.

The member_type operation can be invoked on structure, non-boxed valuetype, non-boxed eventtype, exception and
union TypeCodes. It returns the TypeCode describing the type of the member identified by index.

The member_label, discriminator_type, and default_index operations can only be invoked on union TypeCodes.
Member_label returns the label of the union member identified by index. For the default member, the label is the zero
octet. The discriminator_type operation returns the type of all non-default member labels. The default_index
operation returns the index of the default member, or -1 if there is no default member.

The member_visibility operation can only be invoked on non-boxed valuetype and non-boxed eventtype, TypeCodes.
It returns the Visibility of the valuetype/eventtype member identified by index.

The member_name, member_type, member_label, and member_visibility operations raise Bounds if the index
parameter is greater than or equal to the number of members constituting the type.

The content_type operation can be invoked on sequence, array, boxed valuetype and alias TypeCodes. For sequences
and arrays, it returns the element type. For aliases, it returns the original type. For boxed valuetype, it returns the boxed
type.

An array TypeCode only describes a single dimension of an OMG IDL array. Multi-dimensional arrays are represented
by nesting TypeCodes, one per dimension. The outermost tk_array Typecode describes the leftmost array index of the
array as defined in IDL. Its content_type describes the next index. The innermost nested tk_array TypeCode
describes the rightmost index and the array element type.

The type_modifier and concrete_base_type operations can be invoked on non-boxed valuetype and non-boxed
eventtypeTypeCodes. The type_modifier operation returns the ValueModifier that applies to the valuetype/eventtype
represented by the target TypeCode. If the valuetype/eventtype represented by the target TypeCode has a concrete base
valuetype/eventtype, the concrete_base_type operation returns a TypeCode for the concrete base, otherwise it returns
a nil TypeCode reference.

The length operation can be invoked on string, wide string, sequence, and array TypeCodes. For strings and sequences,
it returns the bound, with zero indicating an unbounded string or sequence. For arrays, it returns the number of elements
in the array. For wide strings, it returns the bound, or zero for unbounded wide strings.

8.5.2 TypeCode Constants

For IDL type declarations, the IDL compiler produces (if asked) a declaration of a TypeCode constant. See the language
mapping rules for more information about the names of the generated TypeCode constants. TypeCode constants include
tk_alias definitions wherever an IDL typedef is referenced. These constants can be used with the dynamic invocation
interface and other routines that require TypeCodes.

The predefined TypeCode constants, named according to the C language mapping, are:
CORBA for embedded, v1.0 121

TC_null
TC_void
TC_short
TC_long
TC_longlong
TC_ushort
TC_ulong
TC_ulonglong
TC_float
TC_double
TC_longdouble
TC_boolean
TC_char
TC_wchar
TC_octet
TC_any
TC_TypeCode
TC_Object = tk_objref {Object}
TC_string = tk_string {0} // unbounded
TC_wstring = tk_wstring{0} /// unbounded
TC_ValueBase = tk_value {ValueBase}
TC_Component = tk_component {CCMObject}
TC_Home = tk_home {CCMHome}
TC_EventBase = tk_event {EventBase}

For the TC_Object TypeCode constant, calling id returns “IDL:omg.org/CORBA/Object:1.0” and calling name
returns “Object.”

For the TC_ValueBase TypeCode constant, calling id returns “IDL:omg.org/CORBA/ValueBase:1.0,” calling
name returns “ValueBase,” calling member_count returns 0, calling type_modifier returns CORBA::VM_NONE,
and calling concrete_base_type returns a nil TypeCode.

For the TC_Component TypeCode constant, calling id returns “IDL:omg.org/Components/CCMObject:1.0” and
calling name returns “CCMObject.”

For the TC_Home TypeCode constant, calling id returns “IDL:omg.org/Components/CCMHome:1.0” and calling
name returns “CCMHome.”

For the TC_EventBase TypeCode constant, calling id returns “IDL:omg.org/Components/EventBase:1.0,”
calling name returns “EventBase,” calling member_count returns 0, calling type_modifier returns
CORBA::VM_NONE, and calling concrete_base_type returns a nil TypeCode.

8.6 Exceptions

The terms “system” and “user” exception are defined in this section. Further the terms “standard system exception” and
“standard user exception” are defined, and then a list of “standard system exceptions” is provided.

8.6.1 Definition of Terms

In general the following terms should be used consistently in all OMG standards documents to refer to exceptions:
122 CORBA for embedded, v1.0

Standard Exception: Any exception that is defined in an OMG Standard.

System Exception: Clients must be prepared to handle these exceptions even though they are not declared in a raises
clause. These exceptions cannot appear in a raises clause. These have the structure defined in section 3.17.2 “System
Exception,” and they are of type SYSTEM_EXCEPTION (see PIDL below).

Standard System Exception: A System Exception that is part of the CORBA Standard as enumerated in section 3.17.
(e.g., BAD_PARAM). These are enumerated in Section 3.17.2 “Standard System Exceptions.”

Non-Standard System Exceptions: System exceptions that are proprietary to a particular vendor/implementation.

User Exception: Exceptions that can be raised only by those operations that explicitly declare them in the raises clause
of their signature. These exceptions are of type USER_EXCEPTION (see IDL below).

Standard User Exception: Any User Exception that is defined in a published OMG standard (e.g., WrongTransaction).
These are documented in the documentation of individual interfaces.

Non-standard User Exception: User exceptions that are not defined in any published OMG specification.

8.6.2 System Exceptions

In order to bound the complexity in handling the standard exceptions, the set of standard exceptions should be kept to a
tractable size. This constraint forces the definition of equivalence classes of exceptions rather than enumerating many
similar exceptions. For example, an operation invocation can fail at many different points due to the inability to allocate
dynamic memory. Rather than enumerate several different exceptions corresponding to the different ways that memory
allocation failure causes the exception (during marshaling, unmarshaling, in the client, in the object implementation,
allocating network packets), a single exception corresponding to dynamic memory allocation failure is defined.

module CORBA {
 const unsigned long OMGVMCID = 0x4f4d0000;

#define ex_body {unsigned long minor; completion_status completed;}

enum completion_status {
COMPLETED_YES,
COMPLETED_NO,
COMPLETED_MAYBE

};

enum exception_type {
NO_EXCEPTION,
USER_EXCEPTION,
SYSTEM_EXCEPTION

};
};

Each system exception includes a minor code to designate the subcategory of the exception.

Minor exception codes are of type unsigned long and consist of a 20-bit “Vendor Minor Codeset ID”(VMCID), which
occupies the high order 20 bits, and the minor code that occupies the low order 12 bits.
CORBA for embedded, v1.0 123

The standard minor codes for the standard system exceptions are prefaced by the VMCID assigned to OMG, defined as the
unsigned long constant CORBA::OMGVMCID, which has the VMCID allocated to OMG occupying the high order 20
bits. The minor exception codes associated with the standard exceptions that are found in Annex A are or-ed with
OMGVMCID to get the minor code value that is returned in the ex_body structure (see Section 8.6.3, “Standard System
Exception Definitions,” on page 124 and Section 8.6.4, “Standard Minor Exception Codes,” on page 131).

Within a vendor assigned space, the assignment of values to minor codes is left to the vendor. Vendors may request
allocation of VMCIDs by sending email to tag-request@omg.org.

The VMCID 0 and 0xfffff are reserved for experimental use. The VMCID OMGVMCID (Section 8.6.3, “Standard System
Exception Definitions,” on page 124) and 1 through 0xf are reserved for OMG use.

Each standard system exception also includes a completion_status code that takes one of the values
{COMPLETED_YES, COMPLETED_NO, COMPLETED_MAYBE}. These have the following meanings:

Client applications must be prepared to handle system exceptions other than the standard system exception defined in
Section 8.6.3, “Standard System Exception Definitions,” on page 124, both because future versions of this specification
may define additional standard system exceptions, and because ORB implementations may raise non-standard system
exceptions.

Vendors may define non-standard system exceptions, but these exceptions are discouraged because they are non-portable.
A non-standard system exception, when passed to an ORB that does not recognize it, shall be presented by that ORB as
an UNKNOWN standard system exception. The completion status shall be preserved in the UNKNOWN exception, and
the minor code shall be set to standard value 2 for system exception and standard value 1 for user exception.

Non-standard system exceptions shall have the same structure as of standard system exceptions as specified in section
Section 8.6.3, “Standard System Exception Definitions,” on page 124 (i.e., they have the same ex_body). They also shall
follow the same language mappings as standard system exceptions. Although they are PIDL, vendors should ensure that
their names do not clash with any other names following the normal naming and scoping rules as they apply to regular
IDL exceptions.

8.6.3 Standard System Exception Definitions

The standard system exceptions are defined in this section.

module CORBA { // PIDL

exception UNKNOWN ex_body;
// the unknown exception

exception BAD_PARAM ex_body;
// an invalid parameter was passed

exception NO_MEMORY ex_body;
// dynamic memory allocation failure

exception IMP_LIMIT ex_body;
// violated implementation limit

COMPLETED_YES The object implementation has completed processing prior to the exception being raised.

COMPLETED_NO The object implementation was never initiated prior to the exception being raised.

COMPLETED_MAYBE The status of implementation completion is indeterminate.
124 CORBA for embedded, v1.0

exception COMM_FAILURE ex_body;
// communication failure

exception INV_OBJREF ex_body;
// invalid object reference

exception NO_PERMISSION ex_body;
// no permission for attempted op.

exception INTERNAL ex_body;
// ORB internal error

exception MARSHAL ex_body;
// error marshaling param/result

exception INITIALIZE ex_body;
// ORB initialization failure

exception NO_IMPLEMENT ex_body;
// operation implementation unavailable

exception BAD_TYPECODE ex_body;
// bad typecode

exception BAD_OPERATION ex_body;
// invalid operation

exception NO_RESOURCES ex_body;
// insufficient resources for req.

exception NO_RESPONSE ex_body;
// response to req. not yet available

exception PERSIST_STORE ex_body;
// persistent storage failure

exception BAD_INV_ORDER ex_body;
// routine invocations out of order

exception TRANSIENT ex_body;
// transient failure - reissue request

exception FREE_MEM ex_body;
// cannot free memory

exception INV_IDENT ex_body;
// invalid identifier syntax

exception INV_FLAG ex_body;
// invalid flag was specified

exception INTF_REPOS ex_body;
// error accessing interface repository

exception BAD_CONTEXT ex_body;
// error processing context object

exception OBJ_ADAPTER ex_body;
// failure detected by object adapter

exception DATA_CONVERSION ex_body;
// data conversion error

exception OBJECT_NOT_EXIST ex_body;
// non-existent object, delete reference

exception TRANSACTION_REQUIRED ex_body;
// transaction required

exception TRANSACTION_ROLLEDBACK x_body;
// transaction rolled back

exception INVALID_TRANSACTION ex_body;
// invalid transaction

exception INV_POLICY ex_body;
CORBA for embedded, v1.0 125

// invalid policy
exception CODESET_INCOMPATIBLE ex_body

// incompatible code set
exception REBIND ex_body;

// rebind needed
exception TIMEOUT ex_body;

// operation timed out
exception TRANSACTION_UNAVAILABLE ex_body;

// no transaction
exception TRANSACTION_MODE ex_body;

// invalid transaction mode
exception BAD_QOS ex_body;

// bad quality of service
exception INVALID_ACTIVITY ex_body;

// bad quality of service
exception ACTIVITY_COMPLETED ex_body;

// bad quality of service
exception ACTIVITY_REQUIRED ex_body;

// bad quality of service
};

8.6.3.1 UNKNOWN

This exception is raised if an operation implementation throws a non-CORBA exception (such as an exception specific to
the implementation's programming language), or if an operation raises a user exception that does not appear in the
operation’s raises expression. UNKNOWN is also raised if the server returns a system exception that is unknown to the
client. (This can happen if the server uses a later version of CORBA than the client and new system exceptions have been
added to the later version.)

8.6.3.2 BAD_PARAM

A parameter passed to a call is out of range or otherwise considered illegal. An ORB may raise this exception if null
values or null pointers are passed to an operation (for language mappings where the concept of null pointers or null values
applies). BAD_PARAM can also be raised as a result of client generating requests with incorrect parameters using the
DII.

8.6.3.3 NO_MEMORY

The ORB run time has run out of memory.

8.6.3.4 IMP_LIMIT

This exception indicates that an implementation limit was exceeded in the ORB run time. For example, an ORB may
reach the maximum number of references it can hold simultaneously in an address space, the size of a parameter may
have exceeded the allowed maximum, or an ORB may impose a maximum on the number of clients or servers that can
run simultaneously.
126 CORBA for embedded, v1.0

8.6.3.5 COMM_FAILURE

This exception is raised if communication is lost while an operation is in progress, after the request was sent by the client,
but before the reply from the server has been returned to the client.

8.6.3.6 INV_OBJREF

This exception indicates that an object reference is internally malformed. For example, the repository ID may have
incorrect syntax or the addressing information may be invalid.

An ORB may choose to detect calls via nil references (but is not obliged to detect them). INV_OBJREF is used to
indicate this.

If the client invokes an operation that results in an attempt by the client ORB to marshal wchar or wstring data for an in
parameter (or to unmarshal wchar or wstring data for an in/out parameter, out parameter, or the return value), and the
associated object reference does not contain a codeset component, the INV_OBJREF standard system exception is raised.

8.6.3.7 NO_PERMISSION

An invocation failed because the caller has insufficient privileges.

8.6.3.8 INTERNAL

This exception indicates an internal failure in an ORB, for example, if an ORB has detected corruption of its internal data
structures.

8.6.3.9 MARSHAL

A request or reply from the network is structurally invalid. This error typically indicates a bug in either the client-side or
server-side run time. For example, if a reply from the server indicates that the message contains 1000 bytes, but the actual
message is shorter or longer than 1000 bytes, the ORB raises this exception. MARSHAL can also be caused by using the
DII or DSI incorrectly, for example, if the type of the actual parameters sent does not agree with IDL signature of an
operation.

8.6.3.10 INITIALIZE

An ORB has encountered a failure during its initialization, such as failure to acquire networking resources or detecting a
configuration error.

8.6.3.11 NO_IMPLEMENT

This exception indicates that even though the operation that was invoked exists (it has an IDL definition), no
implementation for that operation exists. NO_IMPLEMENT can, for example, be raised by an ORB if a client asks for an
object's type definition from the interface repository, but no interface repository is provided by the ORB.

8.6.3.12 BAD_TYPECODE

The ORB has encountered a malformed type code (for example, a type code with an invalid TCKind value).
CORBA for embedded, v1.0 127

8.6.3.13 BAD_OPERATION

This indicates that an object reference denotes an existing object, but that the object does not support the operation that
was invoked.

8.6.3.14 NO_RESOURCES

The ORB has encountered some general resource limitation. For example, the run time may have reached the maximum
permissible number of open connections.

8.6.3.15 NO_RESPONSE

This exception is raised if a client attempts to retrieve the result of a deferred synchronous call, but the response for the
request is not yet available.

8.6.3.16 PERSIST_STORE

This exception indicates a persistent storage failure, for example, failure to establish a database connection or corruption
of a database.

8.6.3.17 BAD_INV_ORDER

This exception indicates that the caller has invoked operations in the wrong order. For example, it can be raised by an
ORB if an application makes an ORB-related call without having correctly initialized the ORB first.

8.6.3.18 TRANSIENT

TRANSIENT indicates that the ORB attempted to reach an object and failed. It is not an indication that an object does
not exist. Instead, it simply means that no further determination of an object’s status was possible because it could not be
reached. This exception is raised if an attempt to establish a connection fails, for example, because the server or the
implementation repository is down.

8.6.3.19 FREE_MEM

The ORB failed in an attempt to free dynamic memory, for example because of heap corruption or memory segments
being locked.

8.6.3.20 INV_IDENT

This exception indicates that an IDL identifier is syntactically invalid. It may be raised if, for example, an identifier
passed to the interface repository does not conform to IDL identifier syntax, or if an illegal operation name is used with
the DII.

8.6.3.21 INV_FLAG

An invalid flag was passed to an operation (for example, when creating a DII request).
128 CORBA for embedded, v1.0

8.6.3.22 INTF_REPOS

An ORB raises this exception if it cannot reach the interface repository, or some other failure relating to the interface
repository is detected.

8.6.3.23 BAD_CONTEXT

An operation may raise this exception if a client invokes the operation but the passed context does not contain the context
values required by the operation.

8.6.3.24 OBJ_ADAPTER

This exception typically indicates an administrative mismatch. For example, a server may have made an attempt to
register itself with an implementation repository under a name that is already in use, or is unknown to the repository.
OBJ_ADAPTER is also raised by the POA to indicate problems with application-supplied servant managers.

8.6.3.25 DATA_CONVERSION

This exception is raised if an ORB cannot convert the representation of data as marshaled into its native representation or
vice-versa. For example, DATA_CONVERSION can be raised if wide character codeset conversion fails, or if an ORB
cannot convert floating point values between different representations.

8.6.3.26 OBJECT_NOT_EXIST

The OBJECT_NOT_EXIST exception is raised whenever an invocation on a deleted object was performed. It is an
authoritative “hard” fault report. Anyone receiving it is allowed (even expected) to delete all copies of this object
reference and to perform other appropriate “final recovery” style procedures.

Bridges forward this exception to clients, also destroying any records they may hold (for example, proxy objects used in
reference translation). The clients could in turn purge any of their own data structures.

8.6.3.27 TRANSACTION_REQUIRED

The TRANSACTION_REQUIRED exception indicates that the request carried a null transaction context, but an active
transaction is required.

8.6.3.28 TRANSACTION_ROLLEDBACK

The TRANSACTION_ROLLEDBACK exception indicates that the transaction associated with the request has already
been rolled back or marked to roll back. Thus, the requested operation either could not be performed or was not
performed because further computation on behalf of the transaction would be fruitless.

8.6.3.29 INVALID_TRANSACTION

The INVALID_TRANSACTION indicates that the request carried an invalid transaction context. For example, this
exception could be raised if an error occurred when trying to register a resource.
CORBA for embedded, v1.0 129

8.6.3.30 INV_POLICY

INV_POLICY is raised when an invocation cannot be made due to an incompatibility between Policy overrides that apply
to the particular invocation.

8.6.3.31 CODESET_INCOMPATIBLE

This exception is raised whenever meaningful communication is not possible between client and server native code sets.
See Section 13.7.2.6, “Code Set Negotiation,” on page 13-34.

8.6.3.32 REBIND

REBIND is raised when there is a problem in carrying out a requested or implied attempt to rebind an object reference
(Section 10.4.1.2, “interface RebindPolicy,” on page 165).

8.6.3.33 TIMEOUT

TIMEOUT is raised when no delivery has been made and the specified time-to-live period has been exceeded. It is a
standard system exception because time-to-live QoS can be applied to any invocation.

8.6.3.34 TRANSACTION_UNAVAILABLE

TRANSACTION_UNAVAILABLE exception is raised by the ORB when it cannot process a transaction service context
because its connection to the Transaction Service has been abnormally terminated.

8.6.3.35 TRANSACTION_MODE

TRANSACTION_MODE exception is raised by the ORB when it detects a mismatch between the TransactionPolicy
in the IOR and the current transaction mode.

8.6.3.36 BAD_QOS

The BAD_QOS exception is raised whenever an object cannot support the quality of service required by an invocation
parameter that has a quality of service semantics associated with it.

8.6.3.37 INVALID_ACTIVITY

The INVALID_ACTIVITY system exception may be raised on the Activity or Transaction services’ resume methods if a
transaction or Activity is resumed in a context different to that from which it was suspended. It is also raised when an
attempted invocation is made that is incompatible with the Activity’s current state.

8.6.3.38 ACTIVITY_COMPLETED

The ACTIVITY_COMPLETED system exception may be raised on any method for which Activity context is accessed. It
indicates that the Activity context in which the method call was made has been completed due to a timeout of either the
Activity itself or a transaction that encompasses the Activity, or that the Activity completed in a manner other than that
originally requested.
130 CORBA for embedded, v1.0

8.6.3.39 ACTIVITY_REQUIRED

The ACTIVITY_REQUIRED system exception may be raised on any method for which an Activity context is required.
It indicates that an Activity context was necessary to perform the invoked operation, but one was not found associated
with the calling thread.

8.6.4 Standard Minor Exception Codes

Please refer to Annex A for a table that specifies standard minor exception codes that have been assigned for the standard
system exceptions.

8.7 Consolidated IDL

module CORBA {

#if ! defined(CORBA_E_MICRO)
interface TypeCode; // forward declaration

#endif

typedef short PolicyErrorCode;

typedef unsigned long PolicyType;

exception PolicyError {PolicyErrorCode reason;};

typedef string RepositoryId;
typedef string Identifier;

typedef unsigned short ServiceType;
typedef unsigned long ServiceOption;
typedef unsigned long ServiceDetailType;
typedef CORBA::OctetSeq ServiceDetailData;
typedef sequence<ServiceOption> ServiceOptionSeq;

struct ServiceDetail {
ServiceDetailType service_detail_type;
ServiceDetailData service_detail;

};

typedef sequence<ServiceDetail> ServiceDetailSeq;

struct ServiceInformation {
ServiceOptionSeq service_options;
ServiceDetailSeq service_details;

};

#if ! defined(CORBA_E_MICRO)
native ValueFactory;

#endif
CORBA for embedded, v1.0 131

typedef string ORBid;

interface ORB {

typedef string ObjectId;
typedef sequence <ObjectId> ObjectIdList;

exception InvalidName {};

ORBid id();

string object_to_string (
in Object obj

);

Object string_to_object (
in string str

);

// Service information operations

boolean get_service_information (
in ServiceType service_type,
out ServiceInformation service_information

);

ObjectIdList list_initial_services ();

// Initial reference operation

Object resolve_initial_references (
in ObjectId identifier

) raises (InvalidName);

// Thread related operations

boolean work_pending();

void perform_work();

void run();

void shutdown(
in boolean wait_for_completion

);

void destroy();

// Policy related operations

#if ! defined(CORBA_E_MICRO)
132 CORBA for embedded, v1.0

Policy create_policy(
in PolicyType type,
in any val

) raises (PolicyError);
#endif

#if ! defined(CORBA_E_MICRO)
// Value factory operations

ValueFactory register_value_factory(
in RepositoryId id,
in ValueFactory_factory

);

void unregister_value_factory(in RepositoryId id);

ValueFactory lookup_value_factory(in RepositoryId id);

void register_initial_reference(
in ObjectId id,
in Object obj

) raises (InvalidName);
};

#endif

enum TCKind {
tk_null, tk_void,
tk_short, tk_long, tk_ushort, tk_ulong,
tk_float, tk_double, tk_boolean, tk_char,
tk_octet, tk_any, tk_TypeCode, tk_Principal, tk_objref,
tk_struct, tk_union, tk_enum, tk_string,
tk_sequence, tk_array, tk_alias, tk_except,
tk_longlong, tk_ulonglong, tk_longdouble,
tk_wchar, tk_wstring, tk_fixed,
tk_value, tk_value_box,
tk_native,
tk_abstract_interface,
tk_local_interface
tk_component, tk_home,
tk_event

};

typedef short ValueModifier;
const ValueModifier VM_NONE = 0;
const ValueModifier VM_CUSTOM = 1;
const ValueModifier VM_ABSTRACT = 2;
const ValueModifier VM_TRUNCATABLE = 3;

#if ! defined(CORBA_E_MICRO)
interface TypeCode {

exception Bounds {};
CORBA for embedded, v1.0 133

exception BadKind {};

// for all TypeCode kinds
boolean equal (in TypeCode tc);

boolean equivalent(in TypeCode tc);
TypeCode get_compact_typecode();

TCKind kind ();

// for tk_objref, tk_struct, tk_union, tk_enum, tk_alias,
// tk_value, tk_value_box, tk_native, tk_abstract_interface
// tk_local_interface, tk_except
// tk_component, tk_home and tk_event
RepositoryId id () raises (BadKind);

// for tk_objref, tk_struct, tk_union, tk_enum, tk_alias,
// tk_value, tk_value_box, tk_native, tk_abstract_interface
// tk_local_interface, tk_except
// tk_component, tk_home and tk_event
Identifier name () raises (BadKind);

// for tk_struct, tk_union, tk_enum, tk_value,
// tk_except and tk_event
unsigned long member_count () raises (BadKind);
Identifier member_name (in unsigned long index)

raises(BadKind, Bounds);

// for tk_struct, tk_union, tk_value,
// tk_except and tk_event
TypeCode member_type (in unsigned long index)

raises (BadKind, Bounds);

// for tk_union
any member_label (in unsigned long index)

raises(BadKind, Bounds);
TypeCode discriminator_type () raises (BadKind);
long default_index () raises (BadKind);

// for tk_string, tk_wstring, tk_sequence, and tk_array
unsigned long length () raises (BadKind);

// for tk_sequence, tk_array, tk_value_box and tk_alias
TypeCode content_type () raises (BadKind);

// for tk_fixed
unsigned short fixed_digits() raises(BadKind);
short fixed_scale() raises(BadKind);

// for tk_value and tk_event
Visibility member_visibility(in unsigned long index)
134 CORBA for embedded, v1.0

raises(BadKind, Bounds);
ValueModifier type_modifier() raises(BadKind);
TypeCode concrete_base_type() raises(BadKind);

};
#endif

const unsigned long OMGVMCID = 0x4f4d0000;

#define ex_body {unsigned long minor; completion_status completed;}

enum completion_status {
COMPLETED_YES,
COMPLETED_NO,
COMPLETED_MAYBE

};

enum exception_type {
NO_EXCEPTION,
USER_EXCEPTION,
SYSTEM_EXCEPTION

};
};

exception UNKNOWN ex_body; // the unknown exception
exception BAD_PARAM ex_body; // an invalid parameter was passed
exception NO_MEMORY ex_body; // dynamic memory allocation failure
exception IMP_LIMIT ex_body; // violated implementation limit
exception COMM_FAILURE ex_body; // communication failure
exception INV_OBJREF ex_body; // invalid object reference
exception NO_PERMISSION ex_body; // no permission for attempted op.
exception INTERNAL ex_body; // ORB internal error
exception MARSHAL ex_body; // error marshaling param/result
exception INITIALIZE ex_body; // ORB initialization failure
exception NO_IMPLEMENT ex_body; // operation implementation unavailable
exception BAD_TYPECODE ex_body; // bad typecode
exception BAD_OPERATION ex_body; // invalid operation
exception NO_RESOURCES ex_body; // insufficient resources for req.
exception NO_RESPONSE ex_body; // response to req. not yet available
exception PERSIST_STORE ex_body; // persistent storage failure
exception BAD_INV_ORDER ex_body; // routine invocations out of order
exception TRANSIENT ex_body; // transient failure - reissue request
exception FREE_MEM ex_body; // cannot free memory
exception INV_IDENT ex_body; // invalid identifier syntax
exception INV_FLAG ex_body; // invalid flag was specified
exception INTF_REPOS ex_body; // error accessing interface repository
exception BAD_CONTEXT ex_body; // error processing context object
exception OBJ_ADAPTER ex_body; // failure detected by object adapter
exception DATA_CONVERSION ex_body; // data conversion error
exception OBJECT_NOT_EXIST ex_body; // non-existent object, delete reference
exception TRANSACTION_REQUIRED ex_body; // transaction required
exception TRANSACTION_ROLLEDBACK x_body; // transaction rolled back
exception INVALID_TRANSACTION ex_body; // invalid transaction
CORBA for embedded, v1.0 135

exception INV_POLICY ex_body; // invalid policy
exception CODESET_INCOMPATIBLE ex_body // incompatible code set
exception REBIND ex_body; // rebind needed
exception TIMEOUT ex_body; // operation timed out
exception TRANSACTION_UNAVAILABLE ex_body; // no transaction
exception TRANSACTION_MODE ex_body; // invalid transaction mode
exception BAD_QOS ex_body; // bad quality of service
exception INVALID_ACTIVITY ex_body; // bad quality of service
exception ACTIVITY_COMPLETED ex_body; // bad quality of service
exception ACTIVITY_REQUIRED ex_body; // bad quality of service

};
136 CORBA for embedded, v1.0

9 Object Interfaces

Compliance

Conformant implementations of the CORBA/e Compact Profile must comply with all clauses of this chapter. Conformant
implementations of the CORBA/e Micro Profile must comply with all clauses of this chapter except 9.3, ’Value Type
Semantics’.

9.1 Overview

This chapter introduces the operations and other facilities provided for the object-oriented constructs defined in OMG
IDL and described in the Object Model. These operations are implemented by the ORB. In particular, it describes the base
operations available for every instance of an interface and every instance of a value type.

9.2 Object (Reference) Interface

There are some operations that can be done on any object. These are not operations in the normal sense, in that they are
implemented directly by the ORB, not passed on to the object implementation. We will describe these as being operations
on the object reference, although the interfaces actually depend on the language binding. As above, where we used
interface Object to represent the object reference, we define an interface for Object:

module CORBA {

interface Policy; // forward declaration
typedef sequence <Policy> PolicyList;
typedef sequence<PolicyType> PolicyTypeSeq;
exception InvalidPolicies { UShortSeq indices; };

typedef string Identifier;
typedef unsigned long Flags;

enum SetOverrideType {SET_OVERRIDE, ADD_OVERRIDE};

interface ORB; // PIDL forward declaration

interface Object { // PIDL

boolean is_nil();

Object duplicate ();

void release ();

boolean is_a (
in RepositoryId logical_type_id

);

boolean non_existent();
CORBA for embedded, v1.0 137

boolean is_equivalent (
in Object other_object

);

unsigned long hash(
in unsigned long maximum

);

Policy get_policy (
in PolicyType policy_type

);

Object set_policy_overrides(
in PolicyList policies,
in SetOverrideType set_add

) raises (InvalidPolicies);

Policy get_client_policy(
in PolicyType type

);

PolicyList get_policy_overrides(
in PolicyTypeSeq types

);

boolean validate_connection(
out PolicyList inconsistent_policies

);

string respository_id();
ORB get_orb();

};
};

Unless otherwise stated below, the operations in the IDL above do not require access to remote information.

9.2.1 Determining the Object Interface

9.2.1.1 repository_id

repository_id returns the repository ID of an object. The implementation of this operation must contact the ORB that
implements the target object.

9.2.2 Duplicating and Releasing Copies of Object References

9.2.2.1 duplicate

Object duplicate();
138 CORBA for embedded, v1.0

9.2.2.2 release

void release();

Because object references are opaque and ORB-dependent, it is not possible for clients or implementations to allocate
storage for them. Therefore, there are operations defined to copy or release an object reference.

If more than one copy of an object reference is needed, the client may create a duplicate. Note that the object
implementation is not involved in creating the duplicate, and that the implementation cannot distinguish whether the
original or a duplicate was used in a particular request.

When an object reference is no longer needed by a program, its storage may be reclaimed by use of the release
operation. Note that the object implementation is not involved, and that neither the object itself nor any other references
to it are affected by the release operation.

9.2.3 Nil Object References

9.2.3.1 is_nil

boolean is_nil();

An object reference whose value is OBJECT_NIL denotes no object. An object reference can be tested for this value by
the is_nil operation. The object implementation is not involved in the nil test.

9.2.4 Equivalence Checking Operation

9.2.4.1 is_a

boolean is_a(
in RepositoryId logical_type_id

);

An operation is defined to facilitate maintaining type-safety for object references over the scope of an ORB.

The logical_type_id is a string denoting a shared type identifier (RepositoryId). The operation returns true if the
object is really an instance of that type, including if that type is an ancestor of the “most derived” type of that object.

Determining whether an object’s type is compatible with the logical_type_id may require contacting a remote ORB or
interface repository. Such an attempt may fail at either the local or the remote end. If is_a cannot make a reliable
determination of type compatibility due to failure, it raises an exception in the calling application code. This enables the
application to distinguish among the TRUE, FALSE, and indeterminate cases.

This operation exposes to application programmers functionality that must already exist in ORBs that support “type safe
narrow” and allows programmers working in environments that do not have compile time type checking to explicitly
maintain type safety.

This operation always returns TRUE for the logical_type_id IDL:omg.org/CORBA/Object:1.0
CORBA for embedded, v1.0 139

9.2.5 Probing for Object Non-Existence

9.2.5.1 non_existent

boolean non_existent ();

The non_existent operation may be used to test whether an object (e.g., a proxy object) has been destroyed. It does this
without invoking any application level operation on the object, and so will never affect the object itself. It returns true
(rather than raising CORBA::OBJECT_NOT_EXIST) if the ORB knows authoritatively that the object does not exist;
otherwise, it returns false.

Services that maintain state that includes object references, such as bridges, event channels, and base relationship
services, might use this operation in their “idle time” to sift through object tables for objects that no longer exist, deleting
them as they go, as a form of garbage collection. In the case of proxies, this kind of activity can cascade, such that
cleaning up one table allows others then to be cleaned up.

Probing for object non-existence may require contacting the ORB that implements the target object. Such an attempt may
fail at either the local or the remote end. If non-existent cannot make a reliable determination of object existence due to
failure, it raises an exception in the calling application code. This enables the application to distinguish among the true,
false, and indeterminate cases.

9.2.6 Object Reference Identity

In order to efficiently manage state that include large numbers of object references, services need to support a notion of
object reference identity. Such services include not just bridges, but relationship services and other layered facilities.

Two identity-related operations are provided. One maps object references into disjoint groups of potentially equivalent
references, and the other supports more expensive pairwise equivalence testing. Together, these operations support
efficient maintenance and search of tables keyed by object references.

9.2.6.1 Hashing Object Identifiers

hash

unsigned long hash(
in unsigned long maximum

);

Object references are associated with ORB-internal identifiers that may indirectly be accessed by applications using the
hash operation. The value of this identifier does not change during the lifetime of the object reference, and so neither
will any hash function of that identifier.

The value of this operation is not guaranteed to be unique; that is, another object reference may return the same hash
value. However, if two object references hash differently, applications can determine that the two object references are
identical.

The maximum parameter to the hash operation specifies an upper bound on the hash value returned by the ORB. The
lower bound of that value is zero. Since a typical use of this feature is to construct and access a collision chained hash
table of object references, the more randomly distributed the values are within that range, and the cheaper those values are
to compute, the better.
140 CORBA for embedded, v1.0

For bridge construction, note that proxy objects are themselves objects, so there could be many proxy objects representing
a given “real” object. Those proxies would not necessarily hash to the same value.

9.2.6.2 Equivalence Testing

is_equivalent

boolean is_equivalent(
in Object other_object

);

The is_equivalent operation is used to determine if two object references are equivalent, so far as the ORB can easily
determine. It returns TRUE if the target object reference is known to be equivalent to the other object reference passed as
its parameter, and FALSE otherwise.

If two object references are identical, they are equivalent. Two different object references that in fact refer to the same
object are also equivalent.

ORBs are allowed, but not required, to attempt determination of whether two distinct object references refer to the same
object. In general, the existence of reference translation and encapsulation, in the absence of an omniscient topology
service, can make such determination impractically expensive. This means that a FALSE return from is_equivalent
should be viewed as only indicating that the object references are distinct, and not necessarily an indication that the
references indicate distinct objects. Setting of local policies on the object reference is not taken into consideration for the
purposes of determining object reference equivalence.

A typical application use of this operation is to match object references in a hash table. Bridges could use it to shorten the
lengths of chains of proxy object references. Externalization services could use it to “flatten” graphs that represent
cyclical relationships between objects. Some might do this as they construct the table, others during idle time.

9.2.7 Type Coercion Considerations

Many programming languages map Object to programming constructs that support inheritance. Mappings to languages
(such as C++ and Java) typically provide a mechanism for narrowing (down-casting) an object reference from a base
interface to a more derived interface. To do such down-casting in a type safe way, knowledge of the full inheritance
hierarchy of the target interface may be required. The implementation of down-cast must either contact an interface
repository or the target itself, to determine whether or not it is safe to down-cast the client’s object reference. This
requirement is not acceptable when a client is expecting only asynchronous communication with the target. Therefore, for
the appropriate languages an unchecked down-cast operation (also referred to as unchecked narrow operation) shall be
provided in the mapping of Object. This unchecked narrow always returns a stub of the requested type without checking
that the target really implements that interface.

9.2.8 Getting Policy Associated with the Object

9.2.8.1 get_policy

The get_policy operation returns the policy object of the specified type (see Section 10.2, “Policy Object,” on
page 157), which applies to this object. It returns the effective Policy for the object reference. The effective Policy is the
one that would be used if a request were made.
CORBA for embedded, v1.0 141

This Policy is determined first by obtaining the effective override for the PolicyType as returned by
get_client_policy. The effective override is then compared with the Policy as specified in the IOR. The effective
Policy is determined by reconciling the effective override and the IOR-specified Policy (see Section 10.3.2, “Server Side
Policy Management,” on page 161). If the two policies cannot be reconciled, the standard system exception
INV_POLICY is raised with standard minor code 1. The absence of a Policy value in the IOR implies that any legal
value may be used.

Invoking non_existent on an object reference prior to get_policy ensures the accuracy of the returned effective
Policy. If get_policy is invoked prior to the object reference being bound, a compliant implementation shall attempt a
binding and then return the effective Policy. If the binding attempt fails it shall pass through the system exception
returned from the binding attempt. Note that if the effective Policy may change from invocation to invocation due to
transparent rebinding.

Policy get_policy (
in PolicyType policy_type

);

Parameter(s)

policy_type - The type of policy to be obtained.

Return Value

A Policy object of the type specified by the policy_type parameter.

Exception(s)

CORBA::INV_POLICY - raised when the value of policy type is not valid either because the specified type is not
supported by this ORB or because a policy object of that type is not associated with this Object.

The implementation of this operation may involve remote invocation of an operation (e.g.,
DomainManager::get_domain_policy for some security policies) for some policy types.

9.2.8.2 get_client_policy

Policy get_client_policy(
in PolicyType type

);

Returns the Policy for the object reference. The effective override is obtained by first checking for an override of the
given PolicyType at the Object scope, then at the Current scope, and finally at the ORB scope. If no override is
present for the requested PolicyType, a system-dependent default value for that Policy Type may be returned. A nil
Policy reference may also be returned to indicate that there is no default for the policy. Portable applications are expected
to set the desired “defaults” at the ORB scope since default Policy values are not specified.

9.2.8.3 get_policy_overrides

PolicyList get_policy_overrides(
in PolicyTypeSeq types

);
142 CORBA for embedded, v1.0

Returns the list of Policy overrides (of the specified policy types) set at the Object scope. If the specified sequence is
empty, all Policy overrides at this scope will be returned. If none of the requested PolicyTypes are overridden at the
Object scope, an empty sequence is returned.

9.2.9 Overriding Associated Policies on an Object Reference

9.2.9.1 set_policy_overrides

The set_policy_overrides operation returns a new object reference with the new policies associated with it. It takes
two input parameters. The first parameter policies is a sequence of references to Policy objects. The second parameter
set_add of type SetOverrideType indicates whether these policies should be added onto any other overrides that
already exist (ADD_OVERRIDE) in the object reference, or they should be added to a clean override free object
reference (SET_OVERRIDE). This operation associates the policies passed in the first parameter with a newly created
object reference that it returns. Only certain policies that pertain to the invocation of an operation at the client end can be
overridden using this operation. Attempts to override any other policy will result in the raising of the
CORBA::NO_PERMISSION exception.

enum SetOverrideType {SET_OVERRIDE, ADD_OVERRIDE};

Object set_policy_overrides(
in PolicyList policies,
in SetOverrideType set_add

) raises (InvalidPolicies);

Parameter(s)

policies - a sequence of Policy objects that are to be associated with the new copy of the object reference returned by
this operation. If the sequence contains two or more Policy objects with the same PolicyType value, the operation raises
the standard system exception BAD_PARAM with minor code 30.

set_add - whether the association is in addition to (ADD_OVERRIDE) or as a replacement of (SET_OVERRIDE) any
existing overrides already associated with the object reference. If the value of this parameter is SET_OVERRIDE, the
supplied policies completely replace all existing overrides associated with the object reference. If the value of this
parameter is ADD_OVERRIDE, the supplied policies are added to the existing overrides associated with the object
reference, except that if a supplied Policy object has the same PolicyType value as an existing override, the supplied
Policy object replaces the existing override.

Return Value

A copy of the object reference with the overrides from policies associated with it in accordance with the value of
set_add.

Exception(s)

InvalidPolicies - raised when an attempt is made to override any policy that cannot be overridden.
CORBA for embedded, v1.0 143

9.2.10 Validating Connection

9.2.10.1 validate_connection

boolean validate_connection(
out PolicyList inconsistent_policies

);

Returns the value TRUE if the current effective policies for the Object will allow an invocation to be made. If the object
reference is not yet bound, a binding will occur as part of this operation. If the object reference is already bound, but
current policy overrides have changed or for any other reason the binding is no longer valid, a rebind will be attempted
regardless of the setting of any RebindPolicy override. The validate_connection operation is the only way to force
such a rebind when implicit rebinds are disallowed by the current effective RebindPolicy. The attempt to bind or rebind
may involve processing GIOP LocateRequests by the ORB.

If the RoutingPolicy ROUTE_FORWARD or ROUTE_STORE_AND_FORWARD are in effect when
validate_connection is invoked, then the client ORB shall attempt to open a connection for the first hop to the first
target Router (applies to both Router and PersistentRequestRouter) as if it were the target Object and return
success or failure based on success or failure to establish this connection.

Returns the value FALSE if the current effective policies would cause an invocation to raise the standard system
exception INV_POLICY. If the current effective policies are incompatible, the out parameter inconsistent_policies
contains those policies causing the incompatibility. This returned list of policies is not guaranteed to be exhaustive. If the
binding fails due to some reason unrelated to policy overrides, the appropriate standard system exception is raised.

9.2.11 Getting the ORB

9.2.11.1 get_orb

ORB get_orb();

This operation returns the local ORB that is handling this particular Object Reference.

9.2.12 LocalObject Operations

Local interfaces are implemented by using CORBA::LocalObject, which derives from CORBA::Object and provides
implementations of Object pseudo operations and any other ORB specific support mechanisms that are appropriate for
such objects. Object implementation techniques are inherently language mapping specific. Therefore, the LocalObject
type is not defined in IDL, but is specified by each language mapping.

• The LocalObject type provides implementations of the following Object pseudo-operations that raise the
NO_IMPLEMENT system exception with standard minor code 8:

• get_policy

• get_client_policy

• set_policy_overrides

• get_policy_overrides

• validate_connection

• respository_id
144 CORBA for embedded, v1.0

• The LocalObject type provides implementations of the following pseudo-operations:

• non_existent - always returns false.

• hash - returns a hash value that is consistent for the lifetime of the object.

• is_equivalent - returns true if the references refer to the same LocalObject implementation.

• is_a - returns TRUE if the LocalObject derives from or is itself the type specified by the logical_type_id
argument.

• get_orb - The default behavior of this operation when invoked on a reference to a local object is to return the system
exception NO_IMPLEMENT with standard minor code 8. Certain local objects that have close association with an
ORB, like POAs, Current objects and certain portable interceptors related local objects override the default behavior
and return a reference to the ORB that they are associated with. These are documented in the sections where these local
objects are specified

• Attempting to use a LocalObject to create a DII request shall result in a NO_IMPLEMENT system exception with
standard minor code 4. Attempting to marshal or stringify a LocalObject shall result in a MARSHAL system exception
with standard minor code 4. Narrowing and widening of references to LocalObjects must work as for regular object
references.

• Local types cannot be marshaled and references to local objects cannot be converted to strings. Any attempt to marshal
a local object, such as via an unconstrained base interface, as an Object, or as the contents of an any, or to pass a local
object to ORB::object_to_string, shall result in a MARSHAL system exception with OMG minor code 4.

• The DII is not supported on local objects, nor are asynchronous invocation interfaces.

• Language mappings shall specify server side mechanisms, including base classes and/or skeletons if necessary, for
implementing local objects, so that invocation overhead is minimized.

• The usage of client side language mappings for local types shall be identical to those of equivalent unconstrained
types.

• Invocations on local objects are not ORB mediated. Specifically, parameter copy semantics are not honored,
interceptors are not invoked, and the execution context of a local object does not have ORB service Current object
contexts that are distinct from those of the caller. Implementations of local interfaces are responsible for providing the
parameter copy semantics expected by clients.

• Local objects have no inherent identities beyond their implementations’ identities as programming objects. The
lifecycle of the implementation is the same as the lifecycle of the reference.

• Instances of local objects defined as part of OMG specifications to be supplied by ORB products or object service
products shall be exposed through the ORB::resolve_initial_references operation or through some other local
object obtained from resolve_initial_references.

9.3 Value Type Semantics

9.3.1 Overview

Objects, more specifically, interface types that objects support, are defined by an IDL interface, allowing arbitrary
implementations. There is great value, which is described in great detail elsewhere, in having a distributed object system
that places almost no constraints on implementations.
CORBA for embedded, v1.0 145

However there are many occasions in which it is desirable to be able to pass an object by value, rather than by reference.
This may be particularly useful when an object’s primary “purpose” is to encapsulate data, or an application explicitly
wishes to make a “copy” of an object.

The semantics of passing an object by value are similar to that of standard programming languages. The receiving side of
a parameter passed by value receives a description of the “state” of the object. It then instantiates a new instance with that
state but having a separate identity from that of the sending side. Once the parameter passing operation is complete, no
relationship is assumed to exist between the two instances.

Because it is necessary for the receiving side to instantiate an instance, it must necessarily know something about the
object’s state and implementation.

Value types provide semantics that bridge between CORBA structs and CORBA interfaces:

• They support description of structured state

• Their instances are always local to the context in which they are used (because they are always copied when passed as
a parameter to a remote call)

• They support both public and private (to the implementation) data members.

• They support single inheritance (of valuetype)

• They may also be abstract.

The ValueBase interface contains operations that are implemented by the ORB and are accessed as implicit operations of
the ValueBase Reference.

9.3.2 Architecture

The basic notion is relatively simple. A value type is, in some sense, half way between a “regular” IDL interface type
and a struct. The use of a value type is a signal from the designer that some additional properties (state) and
implementation details be specified beyond that of an interface type. Specification of this information puts some
additional constraints on the implementation choices beyond that of interface types. This is reflected in both the semantics
specified herein, and in the language mappings.

An essential property of value types is that their implementations are always local. That is, the explicit use of value type
in a concrete programming language is always guaranteed to use a local implementation, and will not require a remote
call. They have no identity (their value is their identity) and they are not “registered” with the ORB.

There are two kinds of value types, concrete (or stateful) value types, and abstract (stateless) ones. As explained below
the essential characteristics of both are the same. The differences between them result from the differences in the way
they are mapped in the language mappings. In this specification the semantics of value types apply to both kinds, unless
specifically stated otherwise.

Concrete (stateful) values add to the expressive power of (IDL) structs by supporting:

• single derivation (from other value types)

• null value semantics
146 CORBA for embedded, v1.0

When an instance of such a type is passed as a parameter, the sending context marshals the state (data) and passes it to
the receiving context. The receiving context instantiates a new instance using the information in the GIOP request and
unmarshals the state. It is assumed that the receiving context has available to it an implementation that is consistent with
the sender’s (i.e., only needs the state information), or that it can somehow download a usable implementation.

It should be noted that it is possible to define a concrete value type with an empty state as a degenerate case.

9.3.2.1 Abstract Values

Value types may also be abstract. They are called abstract because an abstract value type may not be instantiated. Only
concrete types derived from them may be actually instantiated and implemented. Their implementation, of course, is still
local. However, because no state information may be specified (only local operations are allowed), abstract value types
are not subject to the single inheritance restrictions placed upon concrete value types. Essentially they are a bundle of
operation signatures with a purely local implementation. This distinction is made clear in the language mappings for
abstract values.

Note that a concrete value type with an empty state is not an abstract value type. They are considered to be stateful, may
be instantiated, marshaled, and passed as actual parameters. Consider them to be a degenerate case of stateful values.

9.3.2.2 Operations

Operations defined on a value type specify signatures whose implementation can only be local. Because these operations
are local, they must be directly implemented by a body of code in the language mapping (no proxy or indirection is
involved).

The language mappings of such operations require that instances of value types passed into and returned by such local
methods are passed by reference (programming language reference semantics, not CORBA object reference semantics)
and that a copy is not made. Note, such a (local) invocation is not a CORBA invocation. Hence it is not mediated by the
ORB, although the API to be used is specified in the language mapping.

The (copy) semantics for instances of value type are only guaranteed when instances of these value types are passed as a
parameter to an operation defined on a CORBA interface, and hence mediated by the ORB. If an instance of a value type
is passed as a parameter to a method of another value type in an invocation, then this call is a “normal” programming
language call. In this case both of the instances are local programming language constructs. No CORBA style copy
semantics are used and programming language reference semantics apply.

Operations on the value type are supported in order to guarantee the portability of the client code for these value types.
They have no representation on the wire and hence no impact on interoperability.

9.3.2.3 Value Type vs. Interfaces

By default value types are not CORBA Objects. In particular instances of value types do not inherit from
CORBA::Object and do not support normal object reference semantics. CORBA/e does not support the “supports”
clause for derivation of a valuetype from an interface.

9.3.2.4 Parameter Passing

This section describes semantics when a value instance is passed as parameter in a CORBA invocation. It does not deal
with the case of calling another non-CORBA (i.e., local) programming method, which happens to have a parameter of the
same type.
CORBA for embedded, v1.0 147

Value vs. Reference Semantics

Determination of whether a parameter is to be passed by value or reference is made by examining the parameter’s formal
type (i.e., the signature of the operation it is being passed to). If it is a value type, then it is passed by value. If it is an
ordinary interface, then it is passed by reference (the case today for all CORBA objects). This rule is simple and
consistent with the handling of the same situation in recursive state definitions or in structs.

Sharing Semantics

In order to be amenable to implementation on resource constrained systems, value types in the CORBA/e profiles do not
support sharing (see 9.3.2.5, ’Value Types as Members of Other Types’). They do support null semantics; i.e., an instance
can be null.

Identity Semantics

When an instance of the value type is passed as a parameter to an operation of a non-local interface, the effect in all cases
shall be as if an independent copy of the instance is instantiated in the receiving context. While certain implementation
optimizations are possible the net effect shall be as if the copy is a separate independent entity and there is no explicit or
implicit sharing of state. This applies to all valuetypes involved in the invocation, including those embedded in other IDL
datatypes or in an any. This notional copying occurs twice, once for in and inout parameters when the invocation is
initiated, and once again for inout, out, and return parameters when the invocation completes. Optimization techniques
such as copy on write, etc. must make sure that the semantics of copying as described above is preserved.

Any parameter type

When an instance of a value type is passed to an any, as with all cases of passing instances to an any, it is the
responsibility of the implementor to insert and extract the value according to the language mapping specification.

9.3.2.5 Value Types as Members of Other Types

Syntactically, instances of value types may be included as members of other value types or as members of any IDL
constructed type, e.g., structs and unions. At run-time, this capability, combined with the sharing semantics supported by
other CORBA profiles would allow the formation of polylithic instances of value types to represent trees, lists, and other
graphs.

Support of instances of graphs with arbitrary cyclic topology would require implementation of complex memory
management techniques, such as garbage collection. In order to alleviate this concern, the following constraint is placed
on value type definitions:

No set of IDL files shall introduce a member of a value type that contains an instance of any value type,
an instance of type Any, or contains any other constructed type that, either as a member or transitively as a
member of an included type, contains an instance of any value type or of type Any.

9.3.2.6 Substitutability Issues

The substitutability requirements for CORBA require the definition of what happens when an instance of a derived value
type is passed as a parameter that is declared to be a base value type.

If the receiving context currently has the appropriate implementation class, then there is no problem.
148 CORBA for embedded, v1.0

If the receiving context does not currently hold an implementation with which to reconstruct the original type, then the
following algorithm is used to find such an implementation:

1. Load - Attempt to load (locally in C/C++, possibly remotely in Java and other “portable” languages) the real type of
the object (with its methods). If this succeeds, OK.

2. Truncate - Truncate the type of the object to the base type (if specified as truncatable in the IDL). Truncation can
never lead to faulty programs because, from a structural point view base types structurally subsume a derived type
and an object created in the receiving context bears no relationship with the original one. However, it might be
semantically puzzling, as the derived type may completely re-interpret the meaning of the state of the base. For that
reason a derived value needs to indicate if it is safe to truncate to its immediate non-abstract parent.

3. Raise Exception - If none of these work or are possible, then raise the NO_IMPLEMENT exception with standard
minor code 1.

Truncatability is a transitive property.

Example

valuetype EmployeeRecord { // note this is not a CORBA::Object
// state definition
private string name;
private string email;
private string SSN;
// initializer
factory init(in string name, in string SSN);

};

valuetype ManagerRecord: truncatable EmployeeRecord {
// state definition
private sequence<EmployeeRecord> direct_reports;

};

9.3.2.7 Widening/Narrowing

As has been described above, value type instances may be widened/narrowed to other value types. Each language
mapping is responsible for specifying how these operations are made available to the programmer.

9.3.2.8 Value Base Type

All value types have a conventional base type called ValueBase. This is a type, which fulfills a role that is similar to that
played by Object. Conceptually it supports the common operations available on all value types. In each language
mapping ValueBase will be mapped to an appropriate base type that supports the marshaling/unmarshaling protocol.

The mapping for other operations, which all value types must support, such as getting meta information about the type,
may be found in the specifics for each language mapping.

Typically it is mapped to a concrete language type which serves as a base for all value types. Any operations that are
required to be supported for all values are conceptually defined on ValueBase, although in reality their actual mapping
depends upon the specifics of any particular language mapping.
CORBA for embedded, v1.0 149

Analogous to the definition of the Object interface for implicit operations of object references, the implicit operations of
ValueBase are defined on a pseudo-valuetype as follows:

module CORBA {
valuetype ValueBase{ PIDL

ValueDef get_value_def();
};

};

The get_value_def() operation returns a description of the value’s definition as described in the interface repository.

9.3.2.9 Life Cycle issues

Value type instances are always local to their creating context. For example, in a given language mapping an instance of
a value type is always created as a local “language” object with no POA semantics attached to it initially.

When passed using a CORBA invocation, a copy of the value is made in the receiving context and that copy starts its life
as a local programming language entity with no POA semantics attached to it.

Creation and Factories

When an instance of a value type is received by the ORB, it must be unmarshaled and an appropriate factory for its actual
type found in order for the new instance to be created. The type is encoded by the RepositoryID, which is passed over the
wire as part of an invocation. The mapping between the type (as specified by the RepositoryID) and the factory is
language specific. In certain languages it may be possible to specify default policies that are used to find the factory,
without requiring that specific routines be called. In others the runtime and/or generated code may have to explicitly
specify the mapping on a per type basis. In others a combination may be used. In any event the ORB implementation is
responsible for maintaining this mapping. See Section 9.3.3.3, “Language Specific Value Factory Requirements,” on
page 151 for more details on the requirements for each language mapping. Value box types do not need or use factories.

9.3.2.10 Security Considerations

The addition of value types has few impacts on the CORBA security model. In essence, the security implications in
defining and using value types are similar to those involved with the use of IDL structs. Instances of value types are
mapped to local, concrete programming language constructs. Except for providing the marshaling mechanisms, the ORB
is not directly involved with accessing value type implementations. This specification is mostly about two things: how
value types manifest themselves as concrete programming language constructs and how they are transmitted.

To see this consider how value types are actually used. The IDL definition of a value type in conjunction with a
programming language mapping is used to generate the concrete programming language definitions for that type.

Let us consider its life cycle. In order to use it, the programmer uses the mechanisms in the programming language to
instantiate an instance. This is instance is a local programming language construct. It is not “registered” with the ORB,
object adapter, etc. The programmer may manipulate this programming construct just like any other programming
language construct. So far there are no security implications. As long as no ORB-mediated invocations are made, the
programmer may manipulate the construct. Note, this includes making “local,” non ORB-mediated calls to any locally
implemented operations. Any assignments to the construct are the responsibility of the programmer and have no special
security implications.

Things get interesting when the program attempts to pass one of these constructs through an orb-mediated invocation (i.e.,
calls a stub that uses it as a parameter type).
150 CORBA for embedded, v1.0

The formal type of the parameter is a value. This case is no different from using any other kind of a value (long, string,
struct) in a CORBA invocation, with respect to security. The value (data) is marshaled and delivered to the receiving
context. On the receiving context, the knowledge of the type is used (at least implicitly) to find the factory to create the
correct local programming language construct. The data is then unmarshaled to fill in the newly created construct. This is
similar to using other values (longs, strings, structs) except that the knowledge of the factory is not “built-in” to the
ORB’s skeleton/DSI engine.

9.3.3 Language Mappings

9.3.3.1 General Requirements

A concrete value is mapped to a concrete usable “class” construct in each programming language, plus possibly some
helper classes where appropriate. In Java, C++, and Smalltalk this is a real concrete class. In C it is a struct.

An abstract value is mapped to some sort of an abstract construct--an interface in Java, and an abstract class with pure
virtual function members in C++.

Tools that implement the language mapping are free to “extend” the implementation classes with “extra” data members
and methods. When an instance of such a class is used as a parameter, only the portions that correspond directly to the
IDL declaration, are marshaled and delivered to the receiving context. This allows freedom of implementations while
preserving the notion of contract and type safety in IDL.

9.3.3.2 Language Specific Marshaling

Each language mapping defines an appropriate marshaling/unmarshaling API and the entry point for custom marshaling/
unmarshaling.

9.3.3.3 Language Specific Value Factory Requirements

Each language mapping specifies the algorithm and means by which RepositoryIDs are used to find the appropriate
factory for an instance of a value type so that it may be created as it is unmarshaled “off the wire.”

It is desirable, where it makes sense, to specify a “default” policy for automatically using RepositoryIDs that are in
common formats to find the appropriate factory. Such a policy can be thought of as an implicit registration.

Each language mapping specifies how and when the registration occurs, both explicit and implicit. The registration must
occur before an attempt is made to unmarshal an instance of a value type. If the ORB is unable to locate and use the
appropriate factory, then a MARSHAL exception with standard minor code 1 is raised.

Because the type of the factory is programming language specific and each programming language platform has different
policies, the factory type is specified as native. It is the responsibility of each language mapping to specify the actual
programming language type of the factory.

module CORBA {

// IDL
native ValueFactory;

};
CORBA for embedded, v1.0 151

9.3.3.4 Value Method Implementation

The mapped class must support method bodies (i.e., code) that implement the required IDL operations. The means by
which this association is accomplished is a language mapping “detail” in much the same way that an IDL compiler is.

9.4 Consolidated IDL

module CORBA {

interface Policy; // forward declaration
typedef sequence <Policy> PolicyList;
typedef sequence <PolicyType> PolicyTypeSeq;
exception InvalidPolicies { UShortSeq indices; };

typedef string Identifier;
typedef unsigned long Flags;

enum SetOverrideType {SET_OVERRIDE, ADD_OVERRIDE};

interface ORB; // PIDL forward declaration

interface Object { // PIDL

boolean is_nil();

Object duplicate ();

void release ();

boolean is_a (
in RepositoryId logical_type_id

);

boolean non_existent();

boolean is_equivalent (
in Object other_object

);

unsigned long hash(
in unsigned long maximum

);

Policy get_policy (
in PolicyType policy_type

);

Object set_policy_overrides(
in PolicyList policies,
152 CORBA for embedded, v1.0

in SetOverrideType set_add
) raises (InvalidPolicies);

Policy get_client_policy(
in PolicyType type

);

PolicyList get_policy_overrides(
in PolicyTypeSeq types

);

boolean validate_connection(
out PolicyList inconsistent_policies

);

string respository_id();
ORB get_orb();

};
};
CORBA for embedded, v1.0 153

154 CORBA for embedded, v1.0

10 Policies

Compliance

Conformant implementations of the CORBA/e Compact Profile must comply with all clauses of this chapter.

Conformant implementations of the CORBA/e Micro Profile must comply with all clauses of this chapter.

10.1 Overview

10.1.1 Usages of Policy Objects

Policy Objects are used in general to encapsulate information about a specific policy, with an interface derived from the
policy interface. The type of the Policy object determines how the policy information contained within it is used. Usually
a Policy object is associated with another object to associate the contained policy with that object.

Objects with which policy objects are typically associated are Domain Managers, POA, the execution environment, both
the process/capsule/ORB instance and thread of execution (Current object) and object references. Only certain types of
policy object can be meaningfully associated with each of these types of objects.

These relationships are documented in sections that pertain to these individual objects and their usages in various core
facilities and object services. The use of Policy Objects with the POA are discussed in the Portable Object Adapter
chapter. The use of Policy objects in the context of the Security services, involving their association with Domain
Managers as well as with the Execution Environment are discussed in the Security Service specification.

In the following section the association of Policy objects with the Execution Environment is discussed. In Section 10.3,
“Management of Policies,” on page 160 the use of Policy objects in association with Domain Managers is discussed.

10.1.2 Policy Associated with the Execution Environment

Certain policies that pertain to services like security (e.g., QOP, Mechanism, invocation credentials, etc.) are associated
by default with the process/capsule(RM-ODP)/ORB instance (hereinafter referred to as “capsule”) when the application is
instantiated together with the capsule. By default these policies are applicable whenever an invocation of an operation is
attempted by any code executing in the said capsule. The Security service provides operations for modulating these
policies on a per-execution thread basis using operations in the Current interface. Certain of these policies (e.g.,
invocation credentials, qop, mechanism, etc.) which pertain to the invocation of an operation through a specific object
reference can be further modulated at the client end, using the set_policy_overrides operation of the Object reference.
It associates a specified set of policies with a newly created object reference that it returns.

The association of these overridden policies with the object reference is a purely local phenomenon. These associations
are never passed on in any IOR or any other marshaled form of the object reference. the associations last until the object
reference in the capsule is destroyed or the capsule in which it exists is destroyed.

The policies thus overridden in this new object reference and all subsequent duplicates of this new object reference apply
to all invocations that are done through these object references. The overridden policies apply even when the default
policy associated with Current is changed. It is always possible that the effective policy on an object reference at any
given time will fail to be successfully applied, in which case the invocation attempt using that object reference will fail
CORBA for embedded, v1.0 155

and return a CORBA::NO_PERMISSION exception. Only certain policies that pertain to the invocation of an operation
at the client end can be overridden using this operation. These are listed in the Security specification. Attempts to override
any other policy will result in the raising of the CORBA::NO_PERMISSION exception.

In general the policy of a specific type that will be used in an invocation through a specific object reference using a
specific thread of execution is determined first by determining if that policy type has been overridden in that object
reference. if so then the overridden policy is used. if not then if the policy has been set in the thread of execution then that
policy is used. If not then the policy associated with the capsule is used. For policies that matter, the ORB ensures that
there is a default policy object of each type that matters associated with each capsule (ORB instance). Hence, in a
correctly implemented ORB there is no case when a required type policy is not available to use with an operation
invocation.

10.1.3 Policy Associated with Message Interactions

This section describes a standard Quality of Service (QoS) framework within which CORBA Services specifications
should define their service-specific qualities. In this framework, all QoS settings are interfaces derived from
CORBA::Policy.

The details of the Policy Management Framework are to be found in the ORB Interface chapter.

Messaging requires clients and servers to have the ability to set the required and supported qualities of service with
respect to requests. This specification provides generalized APIs through which such qualities are set in clients and
servers. In addition, the set of Messaging-related qualities and the rules for reconciling and using these qualities are
defined. Finally, the Messaging-specific IOR Profile Component and Service Context are defined for propagation of QoS
information.

10.1.4 Specification of New Policy Objects

When new PolicyTypes are added to CORBA specifications, the following details must be defined. It must be clearly
stated which particular uses of a new policy are legal and which are not:

• Specify the assigned CORBA::PolicyType and the policy's interface definition.

• If the Policy can be created through CORBA::ORB::create_policy, specify the allowable values for the any
argument 'val' and how they correspond to the initial state/behavior of that Policy (such as initial values of attributes).
For example, if a Policy has multiple attributes and operations, it is most likely that create_policy will receive some
complex data for the implementation to initialize the state of the specific policy:

//IDL
struct MyPolicyRange {

 long low;
 long high;

};

const CORBA::PolicyType MY_POLICY_TYPE = 666;
interface MyPolicy : Policy {

 readonly attribute long low;
 readonly attribute long high;

};
156 CORBA for embedded, v1.0

If this sample MyPolicy can be constructed via create_policy, the specification of MyPolicy will have a statement such
as: “When instances of MyPolicy are created, a value of type MyPolicyRange is passed to
CORBA::ORB::create_policy and the resulting MyPolicy’s attribute ‘low’ has the same value as the MyPolicyRange
member ‘low’ and attribute ‘high’ has the same value as the MyPolicyRange member ‘high.’

• If the Policy can be passed as an argument to POA::create_POA, specify the effects of the new policy on that POA.
Specifically define incompatibilities (or inter-dependencies) with other POA policies, effects on the behavior of
invocations on objects activated with the POA, and whether or not presence of the POA policy implies some IOR
profile/component contents for object references created with that POA. If the POA policy implies some addition/
modification to the object reference it is marked as “client-exposed” and the exact details are specified including which
profiles are affected and how the effects are represented.

• If the component that is used to carry this information can be set within a client to tune the client’s behavior, specify
the policy’s effects on the client specifically with respect to (a) establishment of connections and reconnections for an
object reference; (b) effects on marshaling of requests; (c) effects on insertion of service contexts into requests; (d)
effects upon receipt of service contexts in replies. In addition, incompatibilities (or inter-dependencies) with other
client-side policies are stated. For policies that cause service contexts to be added to requests, the exact details of this
addition are given.

• If the Policy can be used with POA creation to tune IOR contents and can also be specified (overridden) in the client,
specify how to reconcile the policy’s presence from both the client and server. It is strongly recommended to avoid this
case! As an exercise in completeness, most POA policies can probably be extended to have some meaning in the client
and vice versa, but this does not help make usable systems, it just makes them more complicated without adding really
useful features. There are very few cases where a policy is really appropriate to specify in both places, and for these
policies the interaction between the two must be described.

• Pure client-side policies are assumed to be immutable. This allows efficient processing by the runtime that can avoid
re-evaluating the policy upon every invocation and instead can perform updates only when new overrides are set (or
policies change due to rebind). If the newly specified policy is mutable, it must be clearly stated what happens if non-
readonly attributes are set or operations are invoked that have side-effects.

• For certain policy types, override operations may be disallowed. If this is the case, the policy specification must clearly
state what happens if such overrides are attempted.

10.1.5 Standard Policies

Note – See Annex A for a list of the standard policy types that are defined by various parts of CORBA and
CORBAservices in this version of CORBA.

10.2 Policy Object

10.2.1 Definition of Policy Object

An ORB or CORBA service may choose to allow access to certain choices that affect its operation. This information is
accessed in a structured manner using interfaces derived from the Policy interface defined in the CORBA module. A
CORBA service does not have to use this method of accessing operating options, but may choose to do so. The Security
Service in particular uses this technique for associating Security Policy with objects in the system.
CORBA for embedded, v1.0 157

module CORBA {
typedef unsigned long PolicyType;

// Basic IDL definition
interface Policy {

readonly attribute PolicyType policy_type;
Policy copy();
void destroy();

};

typedef sequence <Policy> PolicyList;
typedef sequence <PolicyType> PolicyTypeSeq;

};

PolicyType defines the type of Policy object. In general the constant values that are allocated are defined in conjunction
with the definition of the corresponding Policy object. The values of PolicyTypes for policies that are standardized by
OMG are allocated by OMG. Additionally, vendors may reserve blocks of 4096 PolicyType values identified by a 20 bit
Vendor PolicyType Valueset ID (VPVID) for their own use.

PolicyType which is an unsigned long consists of the 20-bit VPVID in the high order 20 bits, and the vendor assigned
policy value in the low order 12 bits. The VPVIDs 0 through \xf are reserved for OMG. All values for the standard
PolicyTypes are allocated within this range by OMG. Additionally, the VPVIDs \xfffff is reserved for experimental use
and OMGVMCID is reserved for OMG use. These will not be allocated to anybody. Vendors can request allocation of
VPVID by sending mail to tag-request@omg.org.

When a VMCID is allocated to a vendor automatically the same value of VPVID is reserved for the vendor and vice versa.
So once a vendor gets either a VMCID or a VPVID registered they can use that value for both their minor codes and their
policy types.

10.2.1.1 Copy

Policy copy();

Return Value

This operation copies the policy object. The copy does not retain any relationships that the policy had with any domain,
or object.

10.2.1.2 Destroy

void destroy();

This operation destroys the policy object. It is the responsibility of the policy object to determine whether it can be
destroyed.

Exception(s)

CORBA::NO_PERMISSION - raised when the policy object determines that it cannot be destroyed.
158 CORBA for embedded, v1.0

10.2.1.3 Policy_type

readonly attribute policy_type

Return Value

This readonly attribute returns the constant value of type PolicyType that corresponds to the type of the Policy object.

10.2.2 Creation of Policy Objects

A generic ORB operation for creating new instances of Policy objects is provided as described in this section.

module CORBA {

typedef short PolicyErrorCode;
const PolicyErrorCode BAD_POLICY = 0;
const PolicyErrorCode UNSUPPORTED_POLICY = 1;
const PolicyErrorCode BAD_POLICY_TYPE = 2;
const PolicyErrorCode BAD_POLICY_VALUE = 3;
const PolicyErrorCode UNSUPPORTED_POLICY_VALUE = 4;

exception PolicyError {PolicyErrorCode reason;};

interface ORB {

.....

Policy create_policy(
in PolicyType type,
in any val

) raises(PolicyError);
};

};

10.2.2.1 PolicyErrorCode

A request to create a Policy may be invalid for the following reasons:

BAD_POLICY - the requested Policy is not understood by the ORB.

UNSUPPORTED_POLICY - the requested Policy is understood to be valid by the ORB, but is not currently supported.

BAD_POLICY_TYPE - The type of the value requested for the Policy is not valid for that PolicyType.

BAD_POLICY_VALUE - The value requested for the Policy is of a valid type but is not within the valid range for that
type.

UNSUPPORTED_POLICY_VALUE - The value requested for the Policy is of a valid type and within the valid range
for that type, but this valid value is not currently supported.
CORBA for embedded, v1.0 159

10.2.2.2 PolicyError

exception PolicyError {PolicyErrorCode reason;};

PolicyError exception is raised to indicate problems with parameter values passed to the ORB::create_policy operation.
Possible reasons are described above.

10.2.2.3 Create_policy

The ORB operation create_policy can be invoked to create new instances of policy objects of a specific type with
specified initial state. If create_policy fails to instantiate a new Policy object due to its inability to interpret the
requested type and content of the policy, it raises the PolicyError exception with the appropriate reason as described in
Section 10.2.2.1, “PolicyErrorCode,” on page 159.

Policy create_policy(
in PolicyType type,
in any val

) raises(PolicyError);

Parameter(s)

type - the PolicyType of the policy object to be created.

val - the value that will be used to set the initial state of the Policy object that is created.

ReturnValue

Reference to a newly created Policy object of type specified by the type parameter and initialized to a state specified by
the val parameter.

Exception(s)

PolicyError - raised when the requested policy is not supported or a requested initial state for the policy is not supported.

When new policy types are added to CORBA or CORBA Services specification, it is expected that the IDL type and the
valid values that can be passed to create_policy also be specified.

10.3 Management of Policies

10.3.1 Client Side Policy Management

Client-side Policy management is performed through operations accessible in the following contexts:

• ORB-level Policies - A locality-constrained PolicyManager is accessible through the ORB interface. This
PolicyManager has operations through which a set of Policies can be applied and the current overriding Policy
settings can be obtained. Policies applied at the ORB level override any system defaults. The ORB’s PolicyManager
is obtained through an invocation of ORB::resolve_initial_references, specifying an identifier of
“ORBPolicyManager.”

• Thread-level Policies - A standard PolicyCurrent is defined with operations for the querying and applying of quality
of service values specific to a thread. Policies applied at the thread level override any system defaults or values set at
160 CORBA for embedded, v1.0

the ORB level. The locality-constrained PolicyCurrent is obtained through an invocation of
ORB::resolve_initial_references, specifying an identifier of “PolicyCurrent.” When accessed from a newly
spawned thread, the PolicyCurrent initially has no overridden policies. The PolicyCurrent also has no overridden
values when a POA with ThreadPolicy of ORB_CONTROL_MODEL dispatches an invocation to a servant. Each
time an invocation is dispatched through a SINGLE_THREAD_MODEL POA, the thread-level overrides are reset to
have no overridden values.

• Object-level Policies - Operations are defined on the base Object interface through which a set of Policies can be
applied. Policies applied at the Object level override any system defaults or values set at the ORB or Thread levels. In
addition, accessors are defined for querying the current overriding Policies set at the Object level, and for obtaining the
current effective client-side Policy of a given PolicyType. The effective client-side Policy is the value of a
PolicyType that would be in effect if a request were made. This is determined by checking for overrides at the Object
level, then at the Thread level, and finally at the ORB level. If no overriding policies are set at any level, the system-
dependent default value is returned. Portable applications are expected to override the ORB-level policies since default
values are not specified in most cases.

10.3.2 Server Side Policy Management

Server-side Policy management is handled by associating Policy objects with a POA. Since all policy objects are derived
from interface Policy, those that are applicable to server-side behavior can be passed as arguments to
POA::create_POA. Any such Policies that affect the behavior of requests (and therefore must be accessible to the ORB
at the client side) are exported within the Object references that the POA creates. It is clearly noted in a POA Policy
definition when that Policy is of interest to the Client. For those policies that can be exported within an Object reference,
the absence of a value for that policy type implies that the target supports any legal value of that PolicyType.

Most Policies are appropriate only for management at either the Server or Client, but not both. For those Policies that can
be established at the time of Object reference creation (through POA Policies) and overridden by the client (through
overrides set at the ORB, thread, or Object reference scopes), reconciliation is done on a per-Policy basis. Such Policies
are clearly noted in their definitions and describe the mechanism of reconciliation between the Policies that are set by the
POA and overridden in the client. Furthermore, obtaining the effective Policy of some PolicyTypes requires evaluating
the effective Policy of other types of Policies. Such hierarchical Policy definitions are also noted clearly when used.

At the Thread and ORB scopes, the common operations for querying the current set of policies and for overriding these
settings are encapsulated in the PolicyManager interface.

10.3.3 Policy Management Interfaces

module CORBA {

local interface PolicyManager {

PolicyList get_policy_overrides(in PolicyTypeSeq ts);

void set_policy_overrides(
in PolicyList policies,
in SetOverrideType set_add

) raises (InvalidPolicies);
};

local interface PolicyCurrent : PolicyManager, Current {
CORBA for embedded, v1.0 161

};
};

10.3.3.1 interface PolicyManager

The PolicyManager operations are used for setting and accessing Policy overrides at a particular scope. For example,
an instance of the PolicyCurrent is used for specifying Policy overrides that apply to invocations from that thread
(unless they are overridden at the Object scope as described in Section 10.3.1, “Client Side Policy Management,” on
page 160).

get_policy_overrides

PolicyList get_policy_overrides(in PolicyTypeSeq ts);

Parameter

ts

a sequence of overridden policy types identifying the policies that are to be retrieved.

Return Value

policy list

The list of overridden policies of the types specified by ts.

Exceptions

none

Returns a PolicyList containing the overridden Polices for the requested PolicyTypes. If the specified sequence is
empty, all Policy overrides at this scope will be returned. If none of the requested PolicyTypes are overridden at the
target PolicyManager, an empty sequence is returned. This accessor returns only those Policy overrides that have been
set at the specific scope corresponding to the target PolicyManager (no evaluation is done with respect to overrides at
other scopes).

set_policy_overrides

void set_policy_overrides(
in PolicyList policies,
in SetOverrideType set_add

) raises (InvalidPolicies);

Parameter

policies

A sequence of Policy objects that are to be associated with the PolicyManager object. If the sequence contains two or
more Policy objects with the same PolicyType value, the operation raises the standard system exception BAD_PARAM
with standard minor code 30.
162 CORBA for embedded, v1.0

set_add

Whether the association is in addition to (ADD_OVERRIDE) or as a replacement of (SET_OVERRIDE) any existing
overrides already associated with the PolicyManager object.

If the value of this parameter is SET_OVERRIDE, the supplied policies completely replace all existing overrides
associated with the PolicyManager object. If the value of this parameter is ADD_OVERRIDE, the supplied policies
are added to the existing overrides associated with the PolicyManager object, except that if a supplied Policy object has
the same PolicyType value as an existing override, the supplied Policy object replaces the existing override.

Return Value

none.

Exceptions

InvalidPolicies

A list of indices identifying the position in the input policies list that are occupied by invalid policies.

Modifies the current set of overrides with the requested list of Policy overrides. The first parameter policies is a
sequence of references to Policy objects. The second parameter set_add of type SetOverrideType indicates whether
these policies should be added onto any other overrides that already exist (ADD_OVERRIDE) in the PolicyManager,
or they should be added to a clean PolicyManager free of any other overrides (SET_OVERRIDE). Invoking
set_policy_overrides with an empty sequence of policies and a mode of SET_OVERRIDE removes all overrides from
a PolicyManager. Only certain policies that pertain to the invocation of an operation at the client end can be overridden
using this operation. Attempts to override any other policy will result in the raising of the CORBA::NO_PERMISSION
exception. If the request would put the set of overriding policies for the target PolicyManager in an inconsistent state,
no policies are changed or added, and the exception InvalidPolicies is raised. There is no evaluation of compatibility with
policies set within other PolicyManagers.

10.3.3.2 interface PolicyCurrent

This specific PolicyManager provides access to policies overridden at the Thread scope. A reference to a thread’s
PolicyCurrent is obtained through an invocation of CORBA::ORB::resolve_initial_references.

10.4 Messaging Quality of Service

The Messaging module contains the IDL that the programmer uses to define Qualities of Service specific to CORBA
messaging.

Note – Except where defaults are noted, this specification does not state required default values for the following
Qualities of Service. Application code must explicitly set its ORB-level Quality of Service to ensure portability across
ORB products.

module Messaging {

typedef short RebindMode;
const RebindMode TRANSPARENT = 0;
const RebindMode NO_REBIND = 1;
CORBA for embedded, v1.0 163

const RebindMode NO_RECONNECT = 2;

typedef short SyncScope;
const SyncScope SYNC_NONE = 0;
const SyncScope SYNC_WITH_TRANSPORT = 1;
const SyncScope SYNC_WITH_SERVER = 2;
const SyncScope SYNC_WITH_TARGET = 3;

// Rebind Policy (default = TRANSPARENT)
const CORBA::PolicyType REBIND_POLICY_TYPE = 23;
local interface RebindPolicy : CORBA::Policy {

readonly attribute RebindMode rebind_mode;
};

// Synchronization Policy (default = SYNC_WITH_TRANSPORT)
const CORBA::PolicyType SYNC_SCOPE_POLICY_TYPE = 24;

local interface SyncScopePolicy : CORBA::Policy {
readonly attribute SyncScope synchronization;

};

const CORBA::PolicyType REQUEST_PRIORITY_POLICY_TYPE = 25;

const CORBA::PolicyType REPLY_PRIORITY_POLICY_TYPE = 26;
// Timeout Policies
const CORBA::PolicyType

REQUEST_START_TIME_POLICY_TYPE = 27;

const CORBA::PolicyType REQUEST_END_TIME_POLICY_TYPE = 28;
local interface RequestEndTimePolicy : CORBA::Policy {

readonly attribute TimeBase::UtcT end_time;
};

const CORBA::PolicyType REPLY_START_TIME_POLICY_TYPE = 29;

const CORBA::PolicyType REPLY_END_TIME_POLICY_TYPE = 30;
local interface ReplyEndTimePolicy : CORBA::Policy {

readonly attribute TimeBase::UtcT end_time;
};

const CORBA::PolicyType
RELATIVE_REQ_TIMEOUT_POLICY_TYPE = 31;

local interface RelativeRequestTimeoutPolicy : CORBA::Policy {
readonly attribute TimeBase::TimeT relative_expiry;

};

const CORBA::PolicyType
RELATIVE_RT_TIMEOUT_POLICY_TYPE = 32;

local interface RelativeRoundtripTimeoutPolicy : CORBA::Policy {
readonly attribute TimeBase::TimeT relative_expiry;

};
164 CORBA for embedded, v1.0

const CORBA::PolicyType ROUTING_POLICY_TYPE = 33;
const CORBA::PolicyType MAX_HOPS_POLICY_TYPE = 34;
const CORBA::PolicyType QUEUE_ORDER_POLICY_TYPE = 35;

};

10.4.1 Rebind Support

Rebind support discussed in this section refers to the act of rebinding an object reference that has already been bound
once. The policies discussed here do not affect the initial binding of an object reference.

10.4.1.1 typedef short RebindMode

Describes the level of transparent rebinding that may occur during the course of an invocation on an Object. Values of
type RebindMode are used in conjunction with a RebindPolicy, as described in Section 10.4.1.2, “interface
RebindPolicy,” on page 165. All non-negative values are reserved for use in OMG specifications. Any negative value of
RebindMode is considered a vendor extension.

• TRANSPARENT - allows the ORB to silently handle object-forwarding and necessary reconnection during the
course of making a remote request. This is equivalent to the only defined CORBA ORB behavior.

• NO_REBIND - allows the ORB to silently handle reopening of closed connections while making a remote request,
but prevents any transparent object-forwarding that would cause a change in client-visible effective QoS policies.
When this policy is in effect, only explicit rebinding (through CORBA::Object::validate_connection) is allowed.

• NO_RECONNECT - prevents the ORB from silently handling object-forwards or the reopening of closed
connections. When this policy is in effect, only explicit rebinding and reconnection (through
CORBA::Object::validate_connection) is allowed.

10.4.1.2 interface RebindPolicy

This interface is a local object derived from CORBA::Policy. It is used to indicate whether the ORB may transparently
rebind once successfully bound to a target. For GIOP-based protocols an object reference is considered bound once it is
in a state where a LocateRequest message would result in a LocateReply message with status OBJECT_HERE. If
the effective Policy of this type has a rebind_mode value of TRANSPARENT (always the default and the only valid
value in CORBA), the ORB will silently handle any subsequent LocateReply messages with OBJECT_FORWARD
status or Reply messages with LOCATION_FORWARD status. The effective policies of other types for this object
reference may change from invocation to invocation. If the effective Policy of this type has a rebind_mode value of
NO_REBIND, the ORB will raise a REBIND system exception if any rebind handling would cause a client-visible
change in policies. This could happen under the following circumstances:

• The client receives a LocateReply message with an OBJECT_FORWARD status and a new IOR that has policy
requirements incompatible with the effective policies currently in use.

• The client receives a Reply message with LOCATION_FORWARD status and a new IOR that has policy
requirements incompatible with the effective policies currently in use.

If the effective Policy of this type has a rebind_mode value of NO_RECONNECT, the ORB will raise a REBIND
system exception if any rebind handling would cause a client-visible change in policies, or if a new connection must be
opened. This includes the reopening of previously closed connections as well as the opening of new connections if the
target address changes (for example, due to a LOCATION_FORWARD reply). For connectionless protocols, the
meaning of this effective policy must be specified, or it must be defined that NO_RECONNECT is an equivalent to
CORBA for embedded, v1.0 165

NO_REBIND. Regardless of the effective RebindPolicy, rebind or reconnect can always be explicitly requested
through an invocation of CORBA::Object::validate_connection. When instances of RebindPolicy are created, a
value of type RebindMode is passed to CORBA::ORB::create_policy. This policy is only applicable as a client-side
override. When an instance of RebindPolicy is propagated within a PolicyValue in an INVOCATION_POLICIES
Service Context, the ptype has value REBIND_POLICY_TYPE and the pvalue is a CDR encapsulation containing a
RebindMode.

10.4.2 Synchronization Scope

10.4.2.1 typedef short SyncScope

Describes the level of synchronization for a request with respect to the target. Values of type SyncScope are used in
conjunction with a SyncScopePolicy, as described in Section 10.4.2.2, “interface SyncScopePolicy,” on page 166, to
control the behavior of oneway operations. All non-negative values are reserved for use in OMG specifications. Any
negative value of SyncScope is considered a vendor extension.

• SYNC_NONE - equivalent to one allowable interpretation of CORBA oneway operations. The ORB returns control to
the client (e.g., returns from the method invocation) before passing the request message to the transport protocol. The
client is guaranteed not to block. Since no reply is returned from the server, no location-forwarding can be done with
this level of synchronization.

• SYNC_WITH_TRANSPORT - equivalent to one allowable interpretation of CORBA oneway operations. The ORB
returns control to the client only after the transport has accepted the request message. This in itself gives no guarantee
that the request will be delivered, but in conjunction with knowledge of the characteristics of the transport may provide
the client with a useful degree of assurance. For example, for a direct message over TCP,
SYNC_WITH_TRANSPORT is not a stronger guarantee than SYNC_NONE. However, for a store-and-forward
transport, this QoS provides a high level of reliability. Since no reply is returned from the server, no location-
forwarding can be done with this level of synchronization.

• SYNC_WITH_SERVER - the server-side ORB sends a reply before invoking the target implementation. If a reply of
NO_EXCEPTION is sent, any necessary location-forwarding has already occurred. Upon receipt of this reply, the
client-side ORB returns control to the client application. This form of guarantee is useful where the reliability of the
network is substantially lower than that of the server. The client blocks until all location-forwarding has been
completed. For a server using a POA, the reply would be sent after invoking any ServantManager, but before
delivering the request to the target Servant.

• SYNC_WITH_TARGET - equivalent to a synchronous, non-oneway operation in CORBA. The server-side ORB shall
only send the reply message after the target has completed the invoked operation. Note that any
LOCATION_FORWARD reply will already have been sent prior to invoking the target and that a
SYSTEM_EXCEPTION reply may be sent at anytime (depending on the semantics of the exception). Even though it
was declared oneway, the operation actually has the behavior of a synchronous operation. This form of
synchronization guarantees that the client knows that the target has seen and acted upon a request. As with CORBA,
only with this highest level of synchronization can the OTS be used. Any operations invoked with lesser
synchronization precludes the target from participating in the client’s current transaction.

10.4.2.2 interface SyncScopePolicy

This interface is a local object derived from CORBA::Policy. It is applied to oneway operations to indicate the
synchronization scope with respect to the target of that operation request. It is ignored when any non-oneway operation is
invoked. This policy is also applied when the DII is used with a flag of INV_NO_RESPONSE since the implementation
166 CORBA for embedded, v1.0

of the DII is not required to consult an interface definition to determine if an operation is declared oneway. The default
value of this Policy is not defined. Applications must explicitly set an ORB-level SyncScopePolicy to ensure
portability across ORB implementations. When instances of SyncScopePolicy are created, a value of type
Messaging::SyncScope is passed to CORBA::ORB::create_policy. This policy is only applicable as a client-side
override. The client’s SyncScopePolicy is propagated within a request in the RequestHeader’s response_flags as
described in GIOP Request Header.

10.4.3 Request and Reply Timeout

This specification describes the lifetime of requests and replies in terms of the structured type from the CORBA Time
Service Specification. This describes time as a 64-bit value, which is the number of 100 nano-seconds from 15 October
1582 00:00, along with inaccuracy and time zone information.

10.4.3.1 interface RequestEndTimePolicy

This interface is a local object derived from CORBA::Policy. It is used to indicate the time after which a request may
no longer be delivered to its target. This policy is applied to both synchronous and asynchronous invocations. When
instances of RequestEndTimePolicy are created, a value of type TimeBase::UtcT is containing an absolute time
passed to CORBA::ORB::create_policy. This policy is only applicable as a client-side override. When an instance of
RequestEndTimePolicy is propagated within a PolicyValue in an INVOCATION_POLICIES Service Context, the
ptype has value REQUEST_END_TIME_POLICY_TYPE and the pvalue is a CDR encapsulation containing a
TimeBase::UtcT.

The client ORB, all routers and the target ORB shall check to see if the end time specified in the
RequestEndTimePolicy associated with a request has expired and the request is yet to be delivered to the target. If so,
it shall the discard the request and return the system exception TIMEOUT with standard minor code 2.

10.4.3.2 interface ReplyEndTimePolicy

This interface is a local object derived from CORBA::Policy. It is used to indicate the time after which a reply may no
longer be obtained or returned to the client. This policy is applied to both synchronous and asynchronous invocations.
When instances of ReplyEndTimePolicy are created, a value of type TimeBase::UtcT containing an absolute time is
passed to CORBA::ORB::create_policy. This policy is only applicable as a client-side override. When an instance of
ReplyEndTimePolicy is propagated within a PolicyValue in an INVOCATION_POLICIES Service Context, the
ptype has value REPLY_END_TIME_POLICY_TYPE and the pvalue is a CDR encapsulation containing a
TimeBase::UtcT.

The client ORB, all routers and the target ORB shall check to see if the end time specified in the ReplyEndTimePolicy
associated with a request has expired and a reply has not yet been delivered to the client. If so, it shall the discard the
reply and return the system exception TIMEOUT with standard minor code 3.

10.4.3.3 interface RelativeRequestTimeoutPolicy

This interface is a local object derived from CORBA::Policy. It is used to indicate the relative amount of time for which
a Request may be delivered. After this amount of time the Request is cancelled. This policy is applied to both
synchronous and asynchronous invocations. If asynchronous invocation is used, this policy only limits the amount of time
during which the request may be processed. Assuming the request completes within the specified timeout, the reply will
never be discarded due to timeout. When instances of RelativeRequestTimeoutPolicy are created, a value of type
TimeBase::TimeT containing a relative time is passed to CORBA::ORB::create_policy. This policy is only
CORBA for embedded, v1.0 167

applicable as a client-side override. When an instance of RelativeRequestTimeoutPolicy is propagated within a
PolicyValue in an INVOCATION_POLICIES Service Context, the ptype has value
REQUEST_END_TIME_POLICY_TYPE and the pvalue is a CDR encapsulation containing the relative_expiry
converted into a TimeBase::UtcT end time (as in the case of RequestEndTimePolicy).

Since a RelativeRequestTimeoutPolicy is converted to a RequestEndTimePolicy before transmitting the request
to the target ORB, see section 10.4.3.1 for the required behavior of an ORB or router when the timeout expires.

10.4.3.4 interface RelativeRoundtripTimeoutPolicy

This interface is a local object derived from CORBA::Policy. It is used to indicate the relative amount of time for which
a Request or its corresponding Reply may be delivered. After this amount of time, the Request is cancelled (if a response
has not yet been received from the target) or the Reply is discarded (if the Request had already been delivered and a
Reply returned from the target). This policy is applied to both synchronous and asynchronous invocations.

When instances of RelativeRoundtripTimeoutPolicy are created, a value of type TimeBase::TimeT containing a
relative time is passed to CORBA::ORB::create_policy. This policy is only applicable as a client-side override. When
an instance of RelativeRoundtripTimeoutPolicy is propagated within a PolicyValue in an
INVOCATION_POLICIES Service Context, the ptype has value REPLY_END_TIME_POLICY_TYPE and the
pvalue is a CDR encapsulation containing the relative_expiry converted into a TimeBase::UtcT end time (as in the
case of ReplyEndTimePolicy).

Since a RelativeRoundtripTimeoutPolicy is converted to a ReplyEndTimePolicy before transmitting the request to
the target ORB, see section 10.4.3.2 for the required behavior of an ORB or router when the timeout expires.

10.5 Consolidated IDL

10.5.1 Messaging Module

The following module has been added by CORBA Messaging:

// IDL
// File: Messaging.idl
#ifndef _MESSAGING_IDL_
#define _MESSAGING_IDL_

import ::CORBA;
import ::IOP;
import ::TimeBase;
module Messaging {

typeprefix Messaging “omg.org”;
//
// Messaging Quality of Service
//

typedef short RebindMode;
const RebindMode TRANSPARENT = 0;
const RebindMode NO_REBIND = 1;
const RebindMode NO_RECONNECT = 2;
168 CORBA for embedded, v1.0

typedef short SyncScope;
const SyncScope SYNC_NONE = 0;
const SyncScope SYNC_WITH_TRANSPORT = 1;
const SyncScope SYNC_WITH_SERVER = 2;
const SyncScope SYNC_WITH_TARGET = 3;

//
// Locally-Constrained Policy Objects
//

// Rebind Policy (default = TRANSPARENT)
const CORBA::PolicyType REBIND_POLICY_TYPE = 23;
interface RebindPolicy : CORBA::Policy {

readonly attribute RebindMode rebind_mode;
};

// Synchronization Policy (default = SYNC_WITH_TRANSPORT)
const CORBA::PolicyType SYNC_SCOPE_POLICY_TYPE = 24;
interface SyncScopePolicy : CORBA::Policy {

readonly attribute SyncScope synchronization;
};
const CORBA::PolicyType REQUEST_PRIORITY_POLICY_TYPE = 25;
const CORBA::PolicyType REPLY_PRIORITY_POLICY_TYPE = 26;

// Timeout Policies
const CORBA::PolicyType

REQUEST_START_TIME_POLICY_TYPE = 27;
const CORBA::PolicyType REQUEST_END_TIME_POLICY_TYPE = 28;
interface RequestEndTimePolicy : CORBA::Policy {

readonly attribute TimeBase::UtcT end_time;
};

const CORBA::PolicyType REPLY_START_TIME_POLICY_TYPE = 29;
const CORBA::PolicyType REPLY_END_TIME_POLICY_TYPE = 30;
interface ReplyEndTimePolicy : CORBA::Policy {

readonly attribute TimeBase::UtcT end_time;
};

const CORBA::PolicyType
RELATIVE_REQ_TIMEOUT_POLICY_TYPE = 31;

interface RelativeRequestTimeoutPolicy : CORBA::Policy {
readonly attribute TimeBase::TimeT relative_expiry;

};

const CORBA::PolicyType
RELATIVE_RT_TIMEOUT_POLICY_TYPE = 32;

interface RelativeRoundtripTimeoutPolicy : CORBA::Policy {
readonly attribute TimeBase::TimeT relative_expiry;

};
};
CORBA for embedded, v1.0 169

module CORBA {
local interface PolicyManager {

PolicyList get_policy_overrides(in PolicyTypeSeq ts);

void set_policy_overrides(
in PolicyList policies,
in SetOverrideType set_add

) raises (InvalidPolicies);
};

local interface PolicyCurrent : PolicyManager, Current {};
170 CORBA for embedded, v1.0

11 The Portable Object Adapter

Compliance

Conformant implementations of the CORBA/e Compact Profile must comply with clauses 11.1, 11.2, 11.3 and 11.4.1 of
this chapter.

Conformant implementations of the CORBA/e Micro Profile must support a single root POA and must comply with
clauses 11.1, 11.2, 11.3 (except 11.3.4.1, 11.3.4.2, 11.3.5, and 11.3.5.5) and 11.4.2 of this chapter.

11.1 Overview

The POA is designed to meet the following goals:

• Allow programmers to construct object implementations that are portable between different ORB products.

• Provide support for objects with persistent identities. More precisely, the POA is designed to allow programmers to
build object implementations that can provide consistent service for objects whose lifetimes (from the perspective of a
client holding a reference for such an object) span multiple server lifetimes.

• Allow a single servant to support multiple object identities simultaneously.

• Allow multiple distinct instances of the POA to exist in a server.

• Provide support for transient objects with minimal programming effort and overhead.

• Allow object implementations to be maximally responsible for an object’s behavior. Specifically, an implementation
can control an object’s behavior by establishing the datum that defines an object’s identity, determining the
relationship between the object’s identity and the object’s state, managing the storage and retrieval of the object’s state,
providing the code that will be executed in response to requests, and determining whether or not the object exists at
any point in time.

• Avoid requiring the ORB to maintain persistent state describing individual objects, their identities, where their state is
stored, whether certain identity values have been previously used or not, whether an object has ceased to exist or not,
and so on.

• Provide an extensible mechanism for associating policy information with objects implemented in the POA.

• Allow programmers to construct object implementations that inherit from static skeleton classes, generated by OMG
IDL compilers/.

11.2 Abstract Model Description

The POA interfaces described in this chapter imply a particular abstract computational model. This section presents that
model and defines terminology and basic concepts that will be used in subsequent sections.

Note – The CORBA/e Profiles restrict themselves to the more static features; the following description is a subset of the
abstract model for the POA supported by other CORBA specifications.
CORBA for embedded, v1.0 171

This section provides the rationale for the POA design, describes some of its intended uses, and provides a background for
understanding the interface descriptions.

11.2.1 Model Components

The model supported by the POA is a specialization of the general object model described in the OMA guide. Most of the
elements of the CORBA object model are present in the model described here, but there are some new components, and
some of the names of existing components are defined more precisely than they are in the CORBA object model. The
abstract model supported by the POA has the following components:

• Client—A client is a computational context that makes requests on an object through one of its references.

• Server—A server is a computational context in which the implementation of an object exists. Generally, a server
corresponds to a process. Note that client and server are roles that programs play with respect to a given object. A
program that is a client for one object may be the server for another. The same process may be both client and server
for a single object.

• Object—In this discussion, we use object to indicate a CORBA object in the abstract sense, that is, a programming
entity with an identity, an interface, and an implementation. From a client’s perspective, the object’s identity is
encapsulated in the object’s reference. This specification defines the server’s view of object identity, which is
explicitly managed by object implementations through the POA interface.

• Servant—A servant is a programming language object or entity that implements requests on one or more objects.
Servants generally exist within the context of a server process. Requests made on an object’s references are mediated
by the ORB and transformed into invocations on a particular servant. In the course of an object’s lifetime it may be
associated with (that is, requests on its references will be targeted at) multiple servants.

• Object Id—An Object Id is a value that is used by the POA and by the user-supplied implementation to identify a
particular abstract CORBA object. Object Id values may be assigned and managed by the POA, or they may be
assigned and managed by the implementation. Object Id values are hidden from clients, encapsulated by references.
Object Ids have no standard form; they are managed by the POA as uninterpreted octet sequences.

• Note that the Object Id defined in this specification is a mechanical device used by an object implementation to
correlate incoming requests with references it has previously created and exposed to clients. It does not constitute a
unique logical identity for an object in any larger sense. The assignment and interpretation of Object Id values is
primarily the responsibility of the application developer, although the SYSTEM_ID policy enables the POA to
generate Object Id values for the application.

• Object Reference—An object reference in this model is the same as in the CORBA object model. This model implies,
however, that a reference specifically encapsulates an Object Id and a POA identity.

Note that a concrete reference in a specific ORB implementation will contain more information, such as the location
of the server and POA in question. For example, it might contain the full name of the POA (the names of all POAs
starting from the root and ending with the specific POA). The reference might not, in fact, actually contain the Object
Id, but instead contain more compact values managed by the ORB that can be mapped to the Object Id. This is a
description of the abstract information model implied by the POA. Whatever encoding is used to represent the POA
name and the Object Id must not restrict the ability to use any legal character in a POA name or any legal octet in an
Object Id.

• POA—A POA is an identifiable entity within the context of a server. Each POA provides a namespace for Object Ids
and a namespace for other (nested or child) POAs. Policies associated with a POA describe characteristics of the
objects implemented in that POA. Nested POAs form a hierarchical name space for objects within a server.
172 CORBA for embedded, v1.0

• Policy—A Policy is an object associated with a POA by an application in order to specify a characteristic shared by the
objects implemented in that POA. This specification defines policies controlling the POA’s threading model as well as
a variety of other options related to the management of objects. Other specifications may define other policies that
affect how an ORB processes requests on objects implemented in the POA.

• POA Manager—A POA manager is an object that encapsulates the processing state of one or more POAs. Using
operations on a POA manager, the developer can cause requests for the associated POAs to be queued or discarded.
The developer can also use the POA manager to deactivate the POAs.

11.2.2 Model Architecture

This section describes the architecture of the abstract model implied by the POA, and the interactions between various
components. The ORB is an abstraction visible to both the client and server. The POA is an object visible to the server.
User-supplied implementations are registered with the POA (this statement is a simplification; more detail is provided
below). Clients hold references upon which they can make requests. The ORB, POA, and implementation all cooperate to
determine which servant the operation should be invoked on, and to perform the invocation.

Figure 11.1 shows the detail of the relationship between the POA and the implementation. Ultimately, a POA deals with
an Object Id and an active servant. By active servant, we mean a programming object that exists in memory and has been
presented to the POA with one or more associated object identities.

Figure 11.1- Abstract POA Model

The POA maintains a map, labeled Active Object Map, that associates Object Ids with active servants, each association
constituting an active object.

In this specification, the term active is applied equally to servants, Object Ids, and objects. An object is active in a POA
if the POA’s Active Object Map contains an entry that associates an Object Id with an existing servant. When this
specification refers to active Object Ids and active servants, it means that the Object Id value or servant in question is part
of an entry in the Active Object Map. An Object Id can appear in a POA’s Active Object Map only once.

Client Server

Object Reference

User-supplied
servants

POA

POA

?

ORB

Object Id
CORBA for embedded, v1.0 173

Figure 11.2- POA Architecture

11.2.3 POA Creation

To implement an object using the POA requires that the server application obtain a POA object. A distinguished POA
object, called the root POA, is managed by the ORB and provided to the application using the ORB initialization interface
under the initial object name “RootPOA.” The application developer can create objects using the root POA if those
default policies are suitable. The root POA has the following policies.

• Thread Policy: ORB_CTRL_MODEL

• Lifespan Policy: TRANSIENT

• Object Id Uniqueness Policy: UNIQUE_ID

• Id Assignment Policy: SYSTEM_ID

• Servant Retention Policy: RETAIN

• Request Processing Policy: USE_ACTIVE_OBJECT_MAP_ONLY

Object Id

Object Id
Object Id
Object Id

POA A

POA B

POA C

User-supplied
servant

User-supplied
servant

User-supplied
servant

Object Id

Object Id
Object Id

Object Id

User-supplied
servant

User-supplied
servant

User-supplied
servant

Active Object Map

root
POA

User-supplied
servant

Object Id

Object reference
Servant pointer

P
O
A
M
a
n
a
g
e
r

174 CORBA for embedded, v1.0

• Implicit Activation Policy: NO_MPLICIT_ACTIVATION

The developer can also create new POAs. Creating a new POA allows the application developer to declare specific policy
choices for the new POA. Creating new POAs also allows the application developer to partition the name space of
objects, as Object Ids are interpreted relative to a POA.

A POA is created as a child of an existing POA using the create_POA operation on the parent POA. When a POA is
created, the POA is given a name that must be unique with respect to all other POAs with the same parent.

POA objects are not persistent. No POA state can be assumed to be saved by the ORB. It is the responsibility of the
server application to create and initialize the appropriate POA objects during server initialization.

Creating the appropriate POA objects is particularly important for persistent objects, objects whose existence can span
multiple server lifetimes. To support an object reference created in a previous server process, the application must recreate
the POA that created the object reference as well as all of its ancestor POAs. To ensure portability, each POA must be
created with the same name as the corresponding POA in the original server process and with the same policies. (It is the
user’s responsibility to create the POA with these conditions.)

A portable server application can presume that there is no conflict between its POA names and the POA names chosen by
other applications. It is the responsibility of the ORB implementation to provide a way to support this behavior.

Each distinct ORB created as the result of an ORB_init call in an application has its own separate root POA and POA
namespace.

11.2.4 Reference Creation

Object references are created in servers. Once they are created, they may be exported to clients.

From this model’s perspective, object references encapsulate object identity information and information required by the
ORB to identify and locate the server and POA with which the object is associated (that is, in whose scope the reference
was created.) References are created in the following ways:

• The server application may explicitly activate a servant, associating it with an object identity using the
activate_object or activate_object_with_id operations. Once a servant is activated, the server application can
map the servant to its corresponding reference using the servant_to_reference or id_to_reference operations.

Once a reference is created in the server, it can be made available to clients in a variety of ways. It can be advertised
through the OMG Naming and Trading Services. It can be converted to a string via ORB::object_to_string and
published in some way that allows the client to discover the string and convert it to a reference using
ORB::string_to_object. It can be returned as the result of an operation invocation.

Once a reference becomes available to a client, that reference constitutes the identity of the object from the client’s
perspective. As long as the client program holds and uses that reference, requests made on the reference should be sent to
the “same” object.

The states of servers and implementation objects are opaque to clients. This specification deals primarily with the view of
the ORB from the server’s perspective.

11.2.5 Object Activation States

At any point in time, a CORBA object may or may not be associated with an active servant.
CORBA for embedded, v1.0 175

The servant and its associated Object Id are entered into the Active Object Map of the appropriate POA. This type of
activation can be accomplished in one of the following ways.

• The server application itself explicitly activates individual objects (via the activate_object or
activate_object_with_id operations).

11.2.6 Request Processing

A request must be capable of conveying the Object Id of the target object as well as the identification of the POA that
created the target object reference. When a client issues a request, the ORB first locates an appropriate server (perhaps
starting one if needed) and then it locates the appropriate POA within that server.

Once the ORB has located the appropriate POA, it delivers the request to that POA. The POA looks in the Active Object
Map to find out if there is a servant associated with the Object Id value from the request. If such a servant exists, the POA
invokes the appropriate method on the servant.

If the POA didn't find a servant in the Active Object Map, the POA raises the OBJECT_NOT_EXIST system exception
with standard minor code 2.

11.2.7 Multi-threading

The POA does not require the use of threads and does not specify what support is needed from a threads package.

The POA in CORBA/e supports a single model of threading when used in conjunction with multi-threaded ORB
implementations; ORB controlled. The ORB controlled model of threading implies the ORB/POA controls the use of
threads in the manner provided by the ORB. This model can also be used in environments that do not support threads.

In this model, the ORB is responsible for the creation, management, and destruction of threads used with one or more
POAs.

There are no guarantees that the ORB and POA will do anything specific about dispatching requests across threads with
a single POA. Therefore, a server programmer who wants to use one or more POAs within multiple threads must take on
all of the serialization of access to objects within those threads.

There may be requests active for the same object being dispatched within multiple threads at the same time. The
programmer must be aware of this possibility and code with it in mind.

11.2.8 Location Transparency

The POA supports location transparency for objects implemented using the POA. Unless explicitly stated to the contrary,
all POA behavior described in this specification applies regardless of whether the client is local (same process) or remote.
For example, like a request from a remote client, a request from a local client may cause object activation if the object is
not active, block indefinitely if the target object’s POA is in the holding state, be rejected if the target object’s POA is in
the discarding or inactive states, or be delivered to a thread-unaware object implementation. The Object Id and POA of
the target object will also be available to the server via the Current object, regardless of whether the client is local or
remote.
176 CORBA for embedded, v1.0

Note – The implication of these requirements on the ORB implementation is to require the ORB to mediate all requests
to POA-based objects, even if the client is co-resident in the same process. This specification is not intended to change
CORBAServices specifications that allow for behaviors that are not location transparent. This specification does not
prohibit (nonstandard) POA extensions to support object behavior that is not location-transparent.

11.2.9 UML Description of PortableServer

The following diagrams were generated by an automated tool and then annotated with the cardinalities of the associations.
They are intended to be an aid in comprehension to those who enjoy such representations. They are not normative.

Figure 11.3- UML for main part of PortableServer

PortableServer::POAManager
(from Portable Server)

activate()

PortableServer::Servant
(from Portable Server)

PortableServer::Current
(from Portable Server)

PortableServer::ObjectId
(from Portable Server)

CORBA::Policy
(from CORBA Core)

PortableServer::POA
(from Portable Server)

CORBA::Current
(from CORBA Core)

get_POA()
get_object_id()

policy_type : CORBA::PolicyType

copy()

destroy()

the_name : string
the_parent : PortableServer::POA

the_POAmanager : PortableServer::POAManager

create_POA ()
find_POA()
destroy()
create_thread_policy()
create_lifespan_policy()
create_id_uniqueness_policy()
create_id_assignment_policy()
create_implicit_activation_policy()
create_servant_retention_policy()
create_request_processing_policy()
get_servant_manager()
set_servant_manager()
get_servant()
set_servant()
activate_object()
activate_object_with_id()
deactivate_object()
create_reference()
create_reference_with_id()
servant_to_id()
servant_to_reference()
reference_to_servant()
reference_to_id()
id_to_servant()
id_to_reference()

0..n 1

the_parent

1..1
the_POAmanager

1..n

get_state()

 the_children : PortableServer::POAList

7
enforces

*

id : CORBA::OctetSeq

CORBA for embedded, v1.0 177

Figure 11.4- UML for PortableServer Policies

11.3 Interfaces

The POA-related interfaces are defined in a module separate from the CORBA module, the PortableServer module. It
consists of these interfaces:

• POA

• POAManager

• ThreadPolicy

• LifespanPolicy

• IdUniquenessPolicy

• IdAssignmentPolicy

• Current

In addition, the POA defines the Servant native type.

All local objects specified in this chapter override the default behavior of the Object::get_orb operation and return the
ORB that is associated with the root POA local object.

IdAssignmentPolicy

value:IdAssignmentPolicyValue
IdUniquessPolicy

value:IdUniquenessPolicyValue

LifespanPolicy

value:LifespanPolicyValue

CORBA::Policy
(from CORBA core)

policy_type : CORBA::PolicyType

copy()
destroy()

= {UNIQUE_ID, MULTIPLE_ID}= {USER_ID, SYSTEM_ID}

= {TRANSIENT,
PERSISTENT}
178 CORBA for embedded, v1.0

11.3.1 The Servant IDL Type

This specification defines a native type PortableServer::Servant. Values of the type Servant are programming-
language-specific implementations of CORBA interfaces. Each language mapping must specify how Servant is mapped
to the programming language data type that corresponds to an object implementation. The Servant type has the
following characteristics and constraints.

• Values of type Servant are opaque from the perspective of CORBA application programmers. There are no
operations that can be performed directly on them by user programs. They can be passed as parameters to certain POA
operations. Some language mappings may allow Servant values to be implicitly converted to object references under
appropriate conditions.

• Values of type Servant support a language-specific programming interface that can be used by the ORB to obtain a
default POA for that servant. This interface is used only to support implicit activation. A language mapping may
provide a default implementation of this interface that returns the root POA of a default ORB.

• Values of type Servant provide default implementations of the standard object reference operations get_interface,
is_a, repository_id, and non_existent. These operations can be overridden by the programmer to provide
additional behavior needed by the object implementation. The default implementations of get_interface,
repository_id, and is_a operations use the most derived interface of a static servant or the most derived interface
retrieved from a dynamic servant to perform the operation. The default implementation of the non_existent
operation returns FALSE. These operations are invoked by the POA just like any other operation invocation, so the
PortableServer::Current interface and any language-mapping-provided method of accessing the invocation
context are available.

• Values of type Servant must be testable for identity.

• Values of type Servant have no meaning outside of the process context or address space in which they are
generated.

11.3.2 POAManager Interface

Each POA object has an associated POAManager object. A POA manager may be associated with one or more POA
objects. A POA manager encapsulates the processing state of the POAs it is associated with.

POAManager is a local interface.

11.3.2.1 Processing States

Note – The set of states and transitions supported by CORBA/e is deliberately restricted from those supported by other
CORBA specifications.

A POA manager has three possible processing states :inactive, active, and holding. The processing state determines the
capabilities of the associated POAs and the disposition of requests received by those POAs. Figure 11.5 on page 180
illustrates the processing states and the transitions between them. For simplicity of presentation, this specification
sometimes describes these states as POA states, referring to the POA or POAs that have been associated with a particular
POA manager. A POA manager is created in the holding state. The root POA is therefore initially in the holding state.
CORBA for embedded, v1.0 179

Figure 11.5- Processing States

Active State

When a POA manager is in the active state, the associated POAs will receive and start processing requests (assuming that
appropriate thread resources are available). Note that even in the active state, a POA may need to queue requests
depending upon the ORB implementation and resource limits. The number of requests that can be received and/or queued
is an implementation limit. If this limit is reached, the POA should return a TRANSIENT system exception, with
standard minor code 1, to indicate that the client should re-issue the request.

The POA enters the active state through the use of the activate operation when in the holding state.

Holding State

When a POA manager is in the holding state, the associated POAs will queue incoming requests. The number of requests
that can be queued is an implementation limit. If this limit is reached, the POAs may discard requests and return the
TRANSIENT system exception, with standard minor code 1, to the client to indicate that the client should reissue the
request. (Of course, an ORB may always reject a request for other reasons and raise some other system exception.)

A POA manager can legally transition from the holding state to the active state by calling the activate operation. A POA
manager is created in the holding state.

active

holding

create_POA

activate (corresponding POA manager)

inactive

destroy (POA)

shutdown (ORB)

activate
180 CORBA for embedded, v1.0

Inactive State

The inactive state is entered when the associated POAs are to be shut down. When a POA manager is in the inactive state,
the associated POAs will reject new requests. The rejection mechanism used is specific to the vendor. The GIOP location
forwarding mechanism and CloseConnection message are examples of mechanisms that could be used to indicate the
rejection. If the client is co-resident in the same process, the ORB could raise the OBJ_ADAPTER system exception, with
standard minor code 1, to indicate that the object implementation is unavailable.

11.3.2.2 activate

void activate()
raises (AdapterInactive);

This operation changes the state of the POA manager to active. If issued while the POA manager is in the inactive state,
the AdapterInactive exception is raised. Entering the active state enables the associated POAs to process requests.

11.3.2.3 get_state

enum State {HOLDING, ACTIVE, DISCARDING, INACTIVE};
State get_state();

This operation returns the state of the POA manager.

11.3.3 POA Policy Objects

Interfaces derived from CORBA::Policy are used with the POA::create_POA operation to specify policies that apply
to a POA. Policy objects are created using factory operations on any pre-existing POA, such as the root POA, or by a call
to ORB::create_policy. Policy objects are specified when a POA is created. Policies may not be changed on an existing
POA. Policies are not inherited from the parent POA. All Policy interfaces defined in this section are local interfaces.

Note – The behavior options represented by the POA policy values are subsetted from those available in other CORBA
specifications. This is reflected in this specification by omitting some policy objects, when policy values are fixed to one
value, or by restricting policy values, when appropriate.

11.3.3.1 CORBA/e Compact Profile

Thread Policy

CORBA/e supports the ORB_CTRL_MODEL behavior. The ORB is responsible for assigning requests for an ORB-
controlled POA to threads. In a multi-threaded environment, concurrent requests may be delivered using multiple threads.

Lifespan Policy

Objects with the LifespanPolicy interface are obtained using the POA::create_lifespan_policy operation and passed
to the POA::create_POA operation to specify the lifespan of the objects implemented in the created POA. The following
values can be supplied.

• TRANSIENT - The objects implemented in the POA cannot outlive the POA instance in which they are first created.
Once the POA’s POAManager enters the deactivated state, any requests received by this POA will cause the POA
to raise an OBJECT_NOT_EXIST system exception with standard minor code 4.
CORBA for embedded, v1.0 181

• PERSISTENT - The objects implemented in the POA can outlive the process in which they are first created.

• Persistent objects have a POA associated with them (the POA that created them). When the ORB receives a
request on a persistent object, it first searches for the matching POA, based on the names of the POA and all of its
ancestors.

• Administrative action beyond the scope of this specification may be necessary to inform the ORB’s location
service of the creation and eventual termination of existence of this POA, and optionally to arrange for on-demand
activation of a process implementing this POA.

• POA names must be unique within their enclosing scope (the parent POA). A portable program can assume that
POA names used in other processes will not conflict with its own POA names. A conforming CORBA
implementation will provide a method for ensuring this property.

If no LifespanPolicy object is passed to create_POA, the lifespan policy defaults to TRANSIENT.

Object Id Uniqueness Policy

Objects with the IdUniquenessPolicy interface are obtained using the POA::create_id_uniqueness_policy
operation and passed to the POA::create_POA operation to specify whether the servants activated in the created POA
must have unique object identities. The following values can be supplied.

• UNIQUE_ID - Servants activated with that POA support exactly one Object Id.

• MULTIPLE_ID - a servant activated with that POA may support one or more Object Ids.

If no IdUniquenessPolicy is specified at POA creation, the default is UNIQUE_ID.

Id Assignment Policy

Objects with the IdAssignmentPolicy interface are obtained using the POA::create_id_assignment_policy
operation and passed to the POA::create_POA operation to specify whether Object Ids in the created POA are
generated by the application or by the ORB. The following values can be supplied.

• USER_ID - Objects created with that POA are assigned Object Ids only by the application.

• SYSTEM_ID - Objects created with that POA are assigned Object Ids only by the POA. If the POA also has the
PERSISTENT policy, assigned Object Ids must be unique across all instantiations of the same POA.

If no IdAssignmentPolicy is specified at POA creation, the default is SYSTEM_ID.

Servant Retention Policy

CORBA/e supports the RETAIN behavior. The POA will retain active servants in its Active Object Map.

Request Processing Policy

CORBA/e supports the USE_ACTIVE_OBJECT_MAP_ONLY behavior. If the Object Id is not found in the Active
Object Map, an OBJECT_NOT_EXIST system exception with standard minor code 2 is returned to the client.

Implicit Activation Policy

CORBA/e supports the NO_IMPLICIT_ACTIVATION behavior. The POA will not support implicit activation of
servants.
182 CORBA for embedded, v1.0

11.3.3.2 CORBA/e Micro Profile

The CORBA/e Micro Profile supports the Root POA only. The policies for the root POA are:

Thread Policy

The CORBA/e Micro Profile root POA supports the ORB_CTRL_MODEL behavior. The ORB is responsible for
assigning requests for an ORB- controlled POA to threads. In a multi-threaded environment, concurrent requests may be
delivered using multiple threads.

Lifespan Policy

The CORBA/e Micro Profile root POA supports the TRANSIENT behavior. The objects implemented in the POA cannot
outlive the POA instance in which they are first created. Once the POA’s POAManager enters the deactivated state, any
requests received by this POA will cause the POA to raise an OBJECT_NOT_EXIST system exception with standard
minor code 4.

Object Id Uniqueness Policy

The CORBA/e Micro Profile root POA supports the UNIQUE_ID behavior. Servants activated with that POA support
exactly one Object Id.

Id Assignment Policy

The CORBA/e Micro Profile root POA supports the SYSTEM_ID behavior. Objects created with that POA are assigned
Object Ids only by the POA.

Servant Retention Policy

The CORBA/e Micro Profile root POA supports the RETAIN behavior. The POA will retain active servants in its Active
Object Map.

Request Processing Policy

The CORBA/e Micro Profile root POA supports the USE_ACTIVE_OBJECT_MAP_ONLY behavior. If the Object Id is
not found in the Active Object Map, an OBJECT_NOT_EXIST system exception with standard minor code 2 is returned
to the client.

Implicit Activation Policy

The CORBA/e Micro Profile root POA supports the NO_IMPLICIT_ACTIVATION behavior. The POA will not support
implicit activation of servants.

11.3.4 POA Interface

A POA object manages the implementation of a collection of objects. The POA supports a name space for the objects,
which are identified by Object Ids.

A POA also provides a name space for POAs. A POA is created as a child of an existing POA, which forms a hierarchy
starting with the root POA.

The POA interface is a local interface.
CORBA for embedded, v1.0 183

11.3.4.1 create_POA

POA create_POA(
in string adapter_name,
in POAManager a_POAManager,
in CORBA::PolicyList policies)
raises (AdapterAlreadyExists, InvalidPolicy

);

This operation creates a new POA as a child of the target POA. The specified name identifies the new POA with respect
to other POAs with the same parent POA. If the target POA already has a child POA with the specified name, the
AdapterAlreadyExists exception is raised.

If the a_POAManager parameter is null, a new POAManager object is created and associated with the new POA.
Otherwise, the specified POAManager object is associated with the new POA. The POAManager object can be
obtained using the attribute name the_POAManager.

The specified policy objects are associated with the POA and used to control its behavior. The policy objects are
effectively copied before this operation returns, so the application is free to destroy them while the POA is in use. Policies
are not inherited from the parent POA.

If any of the policy objects specified are not valid for the ORB implementation, if conflicting policy objects are specified,
or if any of the specified policy objects require prior administrative action that has not been performed, an InvalidPolicy
exception is raised containing the index in the policies parameter value of the first offending policy object.

Note – Creating a POA using a POA manager that is in the active state can lead to race conditions if the POA supports
pre-existing objects, because the new POA may receive a request before its adapter activator, servant manager, or default
servant have been initialized. These problems do not occur if the POA is created by an adapter activator registered with a
parent of the new POA, because requests are queued until the adapter activator returns.

11.3.4.2 find_POA

POA find_POA(
in string adapter_name,
in boolean activate_it)
raises (AdapterNonExistent

);

If the target POA is the parent of a child POA with the specified name (relative to the target POA), that child POA is
returned. If a child POA with the specified name does not exist, the AdapterNonExistent exception is raised.

11.3.4.3 destroy

void destroy(
in boolean etherealize_objects,
in boolean wait_for_completion

);
184 CORBA for embedded, v1.0

This operation destroys the POA and all descendant POAs. All descendant POAs are destroyed (recursively) before the
destruction of the containing POA. The POA so destroyed (that is, the POA with its name) may be re-created later in the
same process.

When destroy is called the POA behaves as follows:

• The POA assumes the discarding state. Any further changes to the POAManager’s state do not affect this POA.

• The POA disables the create_POA operation. Subsequent calls to create_POA will result in a
BAD_INV_ORDER system exception with standard minor code 17.

• The POA calls destroy on all of its immediate descendants.

• After all descendant POAs have been destroyed, the POA continues to process requests until there are no requests
executing in the POA. At this point, apparent destruction of the POA has occurred.

• After destruction has become apparent, the POA may be re-created via either an AdapterActivator or a call to
create_POA.

The wait_for_completion parameter is handled as follows:

• If wait_for_completion is TRUE and the current thread is not in an invocation context dispatched from some POA
belonging to the same ORB as this POA, the destroy operation returns only after all active requests have completed
and all invocations of etherealize have completed.

• If wait_for_completion is TRUE and the current thread is in an invocation context dispatched from some POA
belonging to the same ORB as this POA, the BAD_INV_ORDER system exception with standard minor code 3 is
raised and POA destruction does not occur.

• If wait_for_completion is FALSE, the destroy operation destroys the POA and its children but does not wait for
active requests to complete. The wait_for_completion parameter is handled as defined above for each individual
call (some callers may choose to block, while others may not).

11.3.5 Policy Creation Operations

LifespanPolicy create_lifespan_policy(
in LifespanPolicyValue value);

IdUniquenessPolicy create_id_uniqueness_policy(
in IdUniquenessPolicyValue value);

IdAssignmentPolicy create_id_assignment_policy(
in IdAssignmentPolicyValue value);

These operations each return a reference to a policy object with the specified value. The application is responsible for
calling the inherited destroy operation on the returned reference when it is no longer needed.

11.3.5.1 the_name

readonly attribute string the_name;

This attribute identifies the POA relative to its parent. This name is assigned when the POA is created. The name of the
root POA is system-dependent and should not be relied upon by the application. In order to work properly with Portable
Interceptors the name of the root POA must be the sequence containing only the string “RootPOA.”
CORBA for embedded, v1.0 185

11.3.5.2 the_parent

readonly attribute POA the_parent;

This attribute identifies the parent of the POA. The parent of the root POA is null.

11.3.5.3 the_POAManager

readonly attribute POAManager the_POAManager;

This attribute identifies the POA manager associated with the POA.

11.3.5.4 activate_object

ObjectId activate_object(
in Servant p_servant

) raises (ServantAlreadyActive, WrongPolicy);

This operation requires the SYSTEM_ID and RETAIN policy; if not present, the WrongPolicy exception is raised.

If the POA has the UNIQUE_ID policy and the specified servant is already in the Active Object Map, the
ServantAlreadyActive exception is raised. Otherwise, the activate_object operation generates an Object Id and enters
the Object Id and the specified servant in the Active Object Map. The Object Id is returned.

11.3.5.5 activate_object_with_id

void activate_object_with_id(
in ObjectId oid,
in Servant p_servant

) raises (ObjectAlreadyActive, ServantAlreadyActive, WrongPolicy);

This operation requires the RETAIN policy; if not present, the WrongPolicy exception is raised.

If the CORBA object denoted by the Object Id value is already active in this POA (there is a servant bound to it in the
Active Object Map), the ObjectAlreadyActive exception is raised. If the POA has the UNIQUE_ID policy and the
servant is already in the Active Object Map, the ServantAlreadyActive exception is raised. Otherwise, the
activate_object_with_id operation enters an association between the specified Object Id and the specified servant in the
Active Object Map.

If the POA has the SYSTEM_ID policy and it detects that the Object Id value was not generated by the system or for this
POA, the activate_object_with_id operation may raise the BAD_PARAM system exception. An ORB is not required
to detect all such invalid Object Id values, but a portable application must not invoke activate_object_with_id on a
POA that has the SYSTEM_ID policy with an Object Id value that was not previously generated by the system for that
POA, or, if the POA also has the PERSISTENT policy, for a previous instantiation of the same POA. A POA is not
required to raise the BAD_PARAM exception in this case because, in the general case, accurate rejection of an invalid
Object Id requires unbounded persistent memory of all previously generated Id values.

11.3.5.6 deactivate_object

void deactivate_object(
in ObjectId oid
186 CORBA for embedded, v1.0

) raises (ObjectNotActive, WrongPolicy);

This operation requires the RETAIN policy; if not present, the WrongPolicy exception is raised.

This operation causes the ObjectId specified in the oid parameter to be deactivated. An ObjectId that has been
deactivated continues to process requests until there are no active requests for that ObjectId. Active requests are those
requests that arrived before deactivate_object was called. A deactivated ObjectId is removed from the Active Object
Map when all requests executing for that ObjectId have completed. Once an ObjectId has been removed from the
Active Object Map, it may then be reactivated through the usual mechanisms.

The operation does not wait for requests to complete and always returns immediately after deactivating the ObjectId.

11.3.5.7 servant_to_id

ObjectId servant_to_id(
in Servant p_servant

) raises (ServantNotActive, WrongPolicy);

This operation requires a combination of the RETAIN policy and the UNIQUE_ID policies if invoked outside the context
of an operation dispatched by this POA. If this operation is not invoked in the context of executing a request on the
specified servant and the policies specified previously are not present, the WrongPolicy exception is raised.

This operation has two possible behaviors.

1. If the POA has both the RETAIN and the UNIQUE_ID policy and the specified servant is active, the Object Id
associated with that servant is returned.

2. Otherwise, the ServantNotActive exception is raised.

11.3.5.8 servant_to_reference

Object servant_to_reference (
in Servant p_servant

) raises (ServantNotActive, WrongPolicy);

This operation requires the RETAIN and the UNIQUE_ID policies if invoked outside the context of an operation
dispatched by this POA. If this operation is not invoked in the context of executing a request on the specified servant and
the policies specified previously are not present, the WrongPolicy exception is raised.

This operation has two possible behaviors.

1. If the POA has both the RETAIN and the UNIQUE_ID policy and the specified servant is active, an object reference
encapsulating the information used to activate the servant is returned.

2. Otherwise, the ServantNotActive exception is raised.

11.3.5.9 reference_to_servant

Servant reference_to_servant (
in Object reference

) raises (ObjectNotActive, WrongAdapter, WrongPolicy);
CORBA for embedded, v1.0 187

Table 11.1 summarizes the behavior of this operation based on the Object in question:

If the object reference was not created by this POA, the WrongAdapter exception is raised.

11.3.5.10 reference_to_id

ObjectId reference_to_id(
in Object reference

) raises (WrongAdapter, WrongPolicy);

The WrongPolicy exception is declared to allow future extensions.

This operation returns the Object Id value encapsulated by the specified reference. This operation is valid only if the
reference was created by the POA on which the operation is being performed. If the reference was not created by that
POA, a WrongAdapter exception is raised. The object denoted by the reference does not have to be active for this
operation to succeed.

11.3.5.11 id_to_servant

Servant id_to_servant(
in ObjectId oid

) raises (ObjectNotActive, WrongPolicy);

If the specified ObjectId is in the Active Object Map, this operation returns the servant associated with that object in the
Active Object Map. Otherwise the ObjectNotActive exception is raised.

11.3.5.12 id_to_reference

Object id_to_reference(
in ObjectId oid

) raises (ObjectNotActive, WrongPolicy);

If an object with the specified Object Id value is currently active, a reference encapsulating the information used to
activate the object is returned. If the Object Id value is not active in the POA, an ObjectNotActive exception is raised.

11.3.5.13 id

readonly attribute CORBA::OctetSeq id;

This returns the unique id of the POA in the process in which it is created.

This id is guaranteed unique for the life span of the POA in the process. For persistent POAs, this means that if a POA is
created in the same path with the same name as another POA, these POAs are identical and, therefore, have the same id.
For transient POAs, each POA is unique.

Table 11.1- Summary of reference_to_servant operation behavior

Object Action

In AOM Return Servant from AOM

Not in AOM Raise ObjectNotActive
188 CORBA for embedded, v1.0

11.3.6 Current Operations

The PortableServer::Current interface, derived from CORBA::Current, provides method implementations with
access to the identity of the object on which the method was invoked. The Current interface is provided to support
servants that implement multiple objects, but can be used within the context of POA-dispatched method invocations on
any servant. To provide location transparency, ORBs are required to support use of Current in the context of both locally
and remotely invoked operations.

An instance of Current can be obtained by the application by issuing the
CORBA::ORB::resolve_initial_references("POACurrent") operation. Thereafter, it can be used within the context
of a method dispatched by the POA to obtain the POA and ObjectId that identify the object on which that operation was
invoked.

PortableServer:Current is a local interface.

11.3.6.1 get_POA

POA get_POA()
raises (NoContext);

This operation returns a reference to the POA implementing the object in whose context it is called. If called outside the
context of a POA-dispatched operation, a NoContext exception is raised.

11.3.6.2 get_object_id

ObjectId get_object_id()
raises (NoContext);

This operation returns the ObjectId identifying the object in whose context it is called. If called outside the context of a
POA-dispatched operation, a NoContext exception is raised.

11.3.6.3 get_reference

Object get_reference()
raises(NoContext);

This operation returns a locally manufactured reference to the object in the context of which it is called. If called outside
the context of a POA dispatched operation, a NoContext exception is raised.

Note – This reference is not guaranteed to be identical to the original reference the client used to make the invocation,
and calling the Object::is_equivalent operation to compare the two references may not necessarily return true.

11.3.6.4 get_servant

Servant get_servant()
raises(NoContext);

This operation returns a reference to the servant that hosts the object in whose context it is called. If called outside the
context of a POA dispatched operation, a NoContext exception is raised.
CORBA for embedded, v1.0 189

11.4 Consolidated IDL for PortableServer Module

11.4.1 CORBA/e Compact Profile

// IDL
// File: PortableServer.idl
#ifndef _PORTABLE_SERVER_IDL_
#define _PORTABLE_SERVER_IDL_

import ::CORBA;
module PortableServer {

typeprefix PortableServer “org.omg”;
local interface POA; // forward declaration
typedef sequence<POA> POAList;

native Servant;

typedef CORBA::OctetSeq ObjectId;
const CORBA::PolicyType LIFESPAN_POLICY_ID = 17;
const CORBA::PolicyType ID_UNIQUENESS_POLICY_ID = 18;
const CORBA::PolicyType ID_ASSIGNMENT_POLICY_ID = 19;

enum LifespanPolicyValue {
TRANSIENT,
PERSISTENT

};

local interface LifespanPolicy : CORBA::Policy {
readonly attribute LifespanPolicyValue value;

};

enum IdUniquenessPolicyValue {
UNIQUE_ID,
MULTIPLE_ID

};

local interface IdUniquenessPolicy : CORBA::Policy {
readonly attribute IdUniquenessPolicyValue value;

};

enum IdAssignmentPolicyValue {
USER_ID,
SYSTEM_ID

};

local interface IdAssignmentPolicy : CORBA::Policy {
readonly attribute IdAssignmentPolicyValue value;

};

// POAManager interface
190 CORBA for embedded, v1.0

local interface POAManager {
exception AdapterInactive{};
enum State {HOLDING, ACTIVE, DISCARDING, INACTIVE};

void activate()
raises(AdapterInactive);

State get_state();
string get_id();

};

// POA interface

local interface POA {
exception AdapterAlreadyExists {};
exception AdapterNonExistent {};
exception InvalidPolicy {unsigned short index;};
exception ObjectAlreadyActive {};
exception ObjectNotActive {};
exception ServantAlreadyActive {};
exception ServantNotActive {};
exception WrongAdapter {};
exception WrongPolicy {};

// POA creation and destruction

POA create_POA(in string adapter_name,
in POAManager a_POAManager,
in CORBA::PolicyList policies)

raises (AdapterAlreadyExists, InvalidPolicy);

POA find_POA(in string adapter_name,
in boolean activate_it)

raises (AdapterNonExistent);

void destroy(
in boolean etherealize_objects,
in boolean wait_for_completion);

// Factories for Policy objects

LifespanPolicy
create_lifespan_policy(in LifespanPolicyValue value);

IdUniquenessPolicy create_id_uniqueness_policy(
in IdUniquenessPolicyValue value);

IdAssignmentPolicy create_id_assignment_policy(
in IdAssignmentPolicyValue value);

// POA attributes

readonly attribute string the_name;
CORBA for embedded, v1.0 191

readonly attribute POA the_parent;
readonly attribute POAManager the_POAManager;

// object activation and deactivation

ObjectId activate_object(
in Servant p_servant)

raises (ServantAlreadyActive, WrongPolicy);

void activate_object_with_id(in ObjectId id,
in Servant p_servant)

raises (ServantAlreadyActive,
 ObjectAlreadyActive,
 WrongPolicy);

void deactivate_object(
in ObjectId oid)

raises (ObjectNotActive, WrongPolicy);

// Identity mapping operations:

ObjectId servant_to_id(
in Servant p_servant)

raises (ServantNotActive, WrongPolicy);

Object servant_to_reference(
in Servant p_servant)

raises (ServantNotActive, WrongPolicy);

Servant reference_to_servant(
in Object reference)

raises(ObjectNotActive, WrongAdapter, WrongPolicy);

ObjectId reference_to_id(
in Object reference)

raises (WrongAdapter, WrongPolicy);

Servant id_to_servant(
in ObjectId oid)

raises (ObjectNotActive, WrongPolicy);

Object id_to_reference(in ObjectId oid)
raises (ObjectNotActive, WrongPolicy);

readonly attribute CORBA::OctetSeq id;
};

// Current interface

local interface Current : CORBA::Current {
exception NoContext { };
192 CORBA for embedded, v1.0

POA get_POA()
raises (NoContext);

ObjectId get_object_id()
raises (NoContext);

Object get_reference()
raises(NoContext);

Servant get_servant()
raises(NoContext);

};
};

11.4.2 CORBA/e Micro Profile

// IDL
// File: PortableServer.idl
#ifndef _PORTABLE_SERVER_IDL_
#define _PORTABLE_SERVER_IDL_

import ::CORBA;
module PortableServer {

typeprefix PortableServer “org.omg”;
local interface POA; // forward declaration
typedef sequence<POA> POAList;

native Servant;

typedef CORBA::OctetSeq ObjectId;

// POAManager interface

local interface POAManager {
exception AdapterInactive{};

enum State {HOLDING, ACTIVE, DISCARDING, INACTIVE};

void activate()
raises(AdapterInactive);

State get_state();
string get_id();

};

// POA interface
local interface POA {

exception ObjectNotActive {};
exception ServantAlreadyActive {};
exception ServantNotActive {};
CORBA for embedded, v1.0 193

exception WrongAdapter {};
exception WrongPolicy {};

void destroy(
in boolean etherealize_objects,
in boolean wait_for_completion);

// POA attributes

readonly attribute string the_name;
readonly attribute POA the_parent;
readonly attribute POAManager the_POAManager;

// object activation and deactivation

ObjectId activate_object(
in Servant p_servant)

raises (ServantAlreadyActive, WrongPolicy);

void activate_object_with_id(in ObjectId id,
in Servant p_servant)

raises (ServantAlreadyActive,
 ObjectAlreadyActive,
 WrongPolicy);

void deactivate_object(
in ObjectId oid)

raises (ObjectNotActive, WrongPolicy);

// Identity mapping operations:

ObjectId servant_to_id(
in Servant p_servant)

raises (ServantNotActive, WrongPolicy);

Object servant_to_reference(
in Servant p_servant)

raises (ServantNotActive, WrongPolicy);

Servant reference_to_servant(
in Object reference)

raises(ObjectNotActive, WrongAdapter, WrongPolicy);

ObjectId reference_to_id(
in Object reference)

raises (WrongAdapter, WrongPolicy);

Servant id_to_servant(
in ObjectId oid)

raises (ObjectNotActive, WrongPolicy);
194 CORBA for embedded, v1.0

Object id_to_reference(in ObjectId oid)
raises (ObjectNotActive, WrongPolicy);

readonly attribute CORBA::OctetSeq id;
};

// Current interface

local interface Current : CORBA::Current {
exception NoContext { };

POA get_POA()
raises (NoContext);

ObjectId get_object_id()
raises (NoContext);

Object get_reference()
raises(NoContext);

Servant get_servant()
raises(NoContext);

};
};
CORBA for embedded, v1.0 195

196 CORBA for embedded, v1.0

12 Real-time

Compliance

Conformant implementations of the CORBA/e Compact Profile must comply with all clauses of this chapter. Conformant
implementations of the CORBA/e Micro Profile must comply with clauses 12.1.2.4 and 12.8 of this chapter.

12.1 Real-time Architecture

12.1.1 Goals of the Specification

In any architecture, there is a tension between a general purpose solution and supporting specialist applications. Real-time
developers have to pay strict attention to the allocation of resources and to the predictability of system execution. By
providing the developer with handles on managing resources and on predictability, CORBA/e sacrifices some of the
general purpose nature of CORBA in order support the development of real-time systems.

Real-time development has further specialist areas: “hard” real-time and “soft” real-time; different resource contention
protocols and scheduling algorithms, etc. This specification provides a set of real-time CORBA profiles that is sufficiently
general to span these variations. The one restriction imposed by the specification is fixed priority scheduling. CORBA/e
does not currently address dynamic scheduling.

The goals of the specification are to support developers in meeting real-time requirements by facilitating the end-to-end
predictability of activities in the system and by providing support for the management of resources.

CORBA/e’s features brings to real-time system development the same benefits of implementation flexibility, portability,
and interoperability that CORBA brought to client-server development.

There is one important non-goal for this specification. It is not a goal to provide a portability layer for the real-time
operating system (RTOS) itself. The POSIX Real-time extensions already address this need. Real-time CORBA is
compatible with the POSIX Real-time Extensions but by not wrapping the RTOS the specification facilitates the use of
Real-time CORBA on operating systems that fall outside of the POSIX Real-time Extensions.

12.1.2 Approach to Real-time CORBA

12.1.2.1 The Nature of Real-time

There is a class of problems where some of the requirements relate the functionality of the system to Real-World time, be
it measured in minutes or in microseconds. For these systems, timeliness is as important as functionality.

A parcel delivery service that commits to next day delivery across the country is relating the functional requirement of
transporting a parcel from “A” to “B” to Real-world time; that is, “one day.” For the organization to meet this non-
functional requirement, it must analyze the system, identify the activities, and bound the time taken to perform them. It
must also decide what resources (people, planes, etc.) are allocated to the problem. the use of those resources in
performing particular activities must be coordinated so that one activity doesn’t prejudice the Real-World time
requirement of another activity. If the arrival rate of parcels and the isolation of resources from the outside world are
known, then the organization can (ignoring component failures) guarantee “next day” delivery. If the arrival pattern of
parcels is variable and the peak rate would suggest a large amount of resources (which would at other times be largely
idle), then the organization could fall back to statistical predictability: offering “next day delivery or your money back.”
CORBA for embedded, v1.0 197

Relating functional requirements to real-world time may take several forms. A response time requirement might say that
the occurrence of event “A” shall cause an event “B” within 24 hours. A throughput requirement might say that the
system shall cope with 1000 occurrences of an event per hour. A statistical requirement might say that 95% of the
occurrences of event “A” shall cause an event “B” within 24 hours. All these forms of requirement are real-time
requirements. A system that meets real-time requirements is a real-time system.

12.1.2.2 Meeting Real-time Requirements

Deterministic behavior of the components of a real-time system promotes the predictability of the overall system. In order
to decide a priori if a real-time requirement is met, the system must behave predictably. This can only happen if all the
parts of the system behave deterministically and if they “combine” predictably.

The real-time interfaces and mechanisms provided by CORBA/e facilitate a predictable combination of the ORB and the
application. The application manages the resources by using the real-time CORBA/e interfaces and the ORB’s
mechanisms coordinate the activities that comprise the application. The real-time ORB relies upon the RTOS to schedule
threads that represent activities being processed and to provide mutexes to handle resource contention.

12.1.2.3 Distributable Thread

This specification provides an abstraction for distributed real-time programming as an end-to-end schedulable entity
termed distributable thread. Such a distributed execution model is essential to support:

• the statically-scheduled Real-time CORBA Base Architecture described in this and the following chapter; and

• as a foundation for dynamically scheduled real-time CORBA systems described in other Real-Time CORBA
specifications.

This specification does not attempt to address more advanced issues such as fault tolerance, propagation of system
information and control along the path of a distributable thread, etc. These facilities may be provided in a subsequent
revision of this specification.

12.1.2.4 End-to-End Predictability

One goal of this specification is to provide a standard for CORBA ORB implementations that support end-to-end
predictability. For the purposes of this specification, “end-to-end predictability” of timeliness in a fixed priority CORBA
system is defined to mean:

• respecting thread priorities between client and server for resolving resource contention during the processing of
CORBA invocations;

• bounding the duration of thread priority inversions during end-to-end processing;

• bounding the latencies of operation invocations.

A real-time CORBA/e system will include the following four major components, each of which must be designed and
implemented in such a way as to support end-to-end predictability, if end-to-end predictability is to be achieved in the
system as a whole:

1. the scheduling mechanisms in the OS;

2. the real-time ORB;
198 CORBA for embedded, v1.0

3. the communication transport;

4. the application(s).

Real-time ORBs conformant to this specification are still reliant on the characteristics of the underlying operating system
and on the application if the overall system is to exhibit end-to-end predictability.

Note – An OS that implements the IEEE POSIX 1003.1-1996 Real-time Extensions has the necessary features to
facilitate end-to-end predictability. It is still possible for an OS that doesn’t implement some or all of the POSIX Real-
time Extensions specification to support end-to-end predictability. Real-time CORBA is not restricted to such OSs.

12.1.3 Compatibility

12.1.3.1 Interoperability

CORBA/e does not prescribe an RT-IOP as an ESIOP. There are a number of pragmatic reasons for this. There are many
specialized scenarios in which CORBA/e can be deployed. These different scenarios do not exhibit enough common
characteristics to allow a common interaction protocol to be defined. Secondly, each scenario will impose a different
transport protocol. Without agreeing on a common transport, interoperability isn’t possible.

Instead of specifying an RT-IOP, this specification uses the “standard extension” mechanisms provided by IIOP. These
mechanisms are GIOP ServiceContexts, IOR Profiles, and IOR Tagged Components. Using these it is possible for IIOP to
provide protocol support for the mechanisms prescribed in CORBA/e.

The benefit is that two CORBA/e implementations will interoperate. Interoperability may not be as important for a real-
time CORBA/e system as for a CORBA/i system because real-time dictates a measure of system-wide design control to
deliver predictability and therefore also some control over which ORB to deploy.

The second benefit is that the specified extensions define what features of a vendors own Real-time IOP can be mapped
onto IIOP. This allows vendors to bridge between different Real-time CORBA implementations.

12.1.3.2 Portability

Providing real-time applications with portability across real-time ORBs is a goal of this specification, providing a
portability layer for real-time operating systems is not a goal. Basing such an RTOS wrapper on say, POSIX Real-time
Extension would constrain the range of operating systems to which Real-time CORBA can add value.

Any real-time system will be carefully configured to meet its real-time requirements. This includes taking account of the
behavior and timings of the ORB itself. Porting an application to a different Real-time ORB will necessitate that the
application be reconfigured. Portability cannot be “write once run everywhere” for real-time CORBA/e. What it does do
is reduce the risk to a development of having to port.

12.1.3.3 CORBA - Real-time CORBA Interworking

In many systems, real-time CORBA/e components will have to interwork with CORBA components. The interfaces (in
particular IIOP extensions) are specified so that this is functionally possible. Clearly, in any given system, there will be
timing and predictability implications that need to be considered if the real-time component is not to be compromised.
CORBA for embedded, v1.0 199

CORBA applications can be ported to Real-time ORBs. They simply will not make use of the extra functions provided.
Porting a real-time application to a non-real-time ORB will sacrifice the predictability of that application but the two
platforms are functionally equivalent.

12.1.4 Real-time CORBA/e Architectural Overview

Real-time CORBA defines a set of extensions to CORBA. Figure 12.1 shows the key real-time CORBA/e entities that are
specified. The features that these relate to are described in overview in the following sections.

Figure 12.1- Real-time CORBA Extensions

12.1.4.1 Real-time CORBA Modules

All CORBA IDL specified by real-time extensions of CORBA/e is contained in new modules RTCORBA and
RTPortableServer (with the exception of new service contexts, which are additions to the IOP module).

IIOP

CORBA::
Current

RTCORBA::

RTCORBA::

Servant

POA

serverclient

ORB RTORB

RTCORBA::ESIOP (others)

Priority

Current

PriorityMapping(GIOP/TCP)

Real-time CORBA entity existing CORBA entity
200 CORBA for embedded, v1.0

12.1.4.2 Thread Scheduling

The real-time extensions of CORBA/e uses threads as a schedulable entity. Generally, a thread represents a sequence of
control flow within a single node. Threads for part of an activity. Activities are “scheduled” by coordination of the
scheduling of their constituent threads. Real-time CORBA/e specifies interfaces through which the characteristics of a
thread that are of interest can be manipulated. This interface is the Real-time CORBA Current interface.

Note – The Real-time CORBA view of a thread is compatible with the POSIX definition of a thread.

12.1.4.3 Real-time CORBA Priority

Real-time CORBA defines a universal, platform independent priority scheme called Real-time CORBA Priority. It is
introduced to overcome the heterogeneity of different Operating System provided priority schemes, and allows Real-time
CORBA applications to make prioritized CORBA invocations in a consistent fashion between nodes with different
priority schemes.

For consistency, Real-time CORBA applications always should use CORBA Priority to express the priorities in the
system, even if all nodes in a system use the same native thread priority scheme.

12.1.4.4 Native Priority and PriorityMappings

Real-time CORBA defines a NativePriority type to represent the priority scheme that is ‘native’ to a particular
Operating System.

Priority values specified in terms of the Real-time CORBA Priority scheme must be mapped into the native priority
scheme of a given scheduler before they can be applied to the underlying schedulable entities. On occasion, it is necessary
for the reverse mapping to be performed, to obtain a Real-time CORBA Priority to represent the present native priority of
a thread. The latter can occur, for example, when priority inheritance is in use, or when wishing to introduce an already
running thread into a Real-time CORBA system at its present (native) priority.

To allow the Real-time ORB and applications to do both of these things, Real-time CORBA defines a PriorityMapping
interface.

12.1.4.5 Real-time CORBA Current

Real-time CORBA defines a Real-time CORBA Current interface to provide access to the CORBA priority of a thread.

12.1.4.6 Priority Models

One goal of Real-time CORBA is to bound and to minimize priority inversion in CORBA invocations. One mechanism
that is employed to achieve this is propagation of the activity priority from the client to the server, with the requirement
that the server side ORB make the up-call at this priority (subject to any priority inheritance protocols that are in use).

CORBA/e supports a specific model for the priority at which a server handles requests from clients:

• Client Propagated Priority Model: in which the server honors the priority of the invocation, set by the client. The
invocation’s Real-time CORBA Priority is propagated to the server ORB and the server-side ORB maps this Real-time
CORBA Priority into its own native priority scheme using its PriorityMapping.
CORBA for embedded, v1.0 201

Requests from non-Real-time CORBA ORBs; that is, ORBs that do not propagate a Real-time CORBA Priority with the
invocation are handled at a priority specified by the server.

12.1.4.7 Real-time CORBA Mutexes and Priority Inheritance

The Mutex interface provides the mechanism for coordinating contention for system resources. Real-time CORBA/e
specifies an RTCORBA::Mutex locality constrained interface, so that applications can use the same mutex
implementation as the ORB.

A conforming CORBA/e implementation must provide an implementation of Mutex that implements some form of
priority inheritance protocol. This may include, but is not limited to, simple priority inheritance or a form of priority
ceiling protocol. The mutexes that Real-time CORBA makes available to the application must have the same priority
inheritance properties as those used by the ORB to protect resources. This allows a consistent priority inheritance scheme
to be delivered across the whole system.

12.1.4.8 Priority Banded Connections

To reduce priority inversion due to use of a non-priority respecting transport protocol, RT CORBA provides the facility
for a client to communicate with a server via multiple connections, with each connection handling invocations that are
made at a different CORBA priority or range of CORBA priorities. The selection of the appropriate connection is
transparent to the application, which uses a single object reference as normal.

12.1.4.9 Invocation Timeouts

Real-time CORBA applications may set a timeout on an invocation in order to bound the time that the client application
is blocked waiting for a reply. This can be used to improve the predictability of the system.

12.2 Real-time ORB

CORBA/e defines an extension to the CORBA::ORB interface, RTCORBA::RTORB. This interface is not derived from
CORBA::ORB as the latter is expressed in pseudo IDL, for which inheritance is not defined. Nevertheless, RTORB is
conceptually the extension of the ORB interface.

The RTORB interface provides operations to create and destroy other constituents of a Real-time ORB.

There is a single instance of RTCORBA::RTORB per instance of CORBA::ORB. The object reference for the RTORB
is obtained by calling ORB::resolve_initial_references with the ObjectId “RTORB”.

RTCORBA::RTORB is a local interface. The reference to the RTORB object may not be passed as a parameter of an
IDL operation nor may it be stringified. Any attempt to do so shall result in a MARSHAL system exception (with a
Standard Minor Exception Code of 4).

// IDL
module RTCORBA {

local interface RTORB {
...

};
};
202 CORBA for embedded, v1.0

12.2.1 Real-time ORB Initialization

Real-time ORB initialization occurs within the CORBA::ORB_init operation. That is a Real-time ORB’s implementation
of CORBA::ORB_init shall perform any actions necessary to initialize the real-time capability of the ORB.

In order to give the developer some control over a Real-time ORB’s use of priorities the ORB_init operation shall be
capable of handling an argv element of the form:

–ORBRTpriorityrange<optional-white-space><short>,<short>

Where <short> is a string encoding of an integer between 0 and 32767. The first integer should be smaller than the
second. If the argv element string does not conform to these constraints, then a BAD_PARAM system exception shall be
raised.

The two integers represent a range of CORBA Priorities available for use by ORB internal threads. Note that priority of
Real-time CORBA application threads is controlled by other mechanisms. If the ORB cannot map these integers onto the
native priority scheme, then it shall raise a DATA_CONVERSION system exception.

If the ORB deems the range of priorities to be too narrow for it to function properly, then it shall raise an INITIALIZE
system exception (with a Standard Minor Exception Code of 1). For example, an implementation may not be able to
function with less than, say, three distinct priorities without risking deadlock.

12.2.2 Real-time CORBA System Exceptions

CORBA/e provides a more constraining environment for an application than the environment provided by CORBA/i. This
is reflected in the additional circumstances in which system exceptions can be generated. These circumstances need to be
differentiated from the use of the same exception in CORBA.

Real-time CORBA/e uses many of the Standard System Exceptions with the same meaning as applies in CORBA. These
uses need no differentiation. Where the use of a CORBA Standard System Exception has a meaning particular to real-time
CORBA, Standard Minor Exception Codes are assigned.

12.3 Native Thread Priorities

A real-time operating system (RTOS) sufficient to use for implementing a Real-time ORB compliant with this
specification, will have some discrete representation of a thread priority. This representation typically specifies a range of
values and a direction for which values, higher or lower, represent the higher priority. The particular range and direction

Table 12.1- Standard Minor Exception Codes used for Real-time CORBA

SYSTEM EXCEPTION MINOR
CODE

EXPLANATION

MARSHAL 4 Attempt to marshal local object.

DATA_CONVERSION 2 Failure of PriorityMapping object.

INITIALIZE 1 Priority range too restricted for ORB.

BAD_INV_ORDER 18 Attempt to reassign priority.

NO_RESOURCES 2 No connection for request’s priority.
CORBA for embedded, v1.0 203

in this priority representation varies from RTOS to RTOS. This specification refers to the RTOS specific thread priority
representation as a native thread priority scheme. The priority values of this scheme are referred to as native thread
priorities.

Native thread priorities are used to designate the execution eligibility of threads. The ordering of native thread priorities
is such that a thread with higher native priority is executed at the exclusion of any threads in the system with lower native
priorities.

A native thread priority is an integer value that is the basis for resolving competing demands of threads for resources.
Whenever threads compete for processors or ORB implementation-defined resources, the resources are allocated to the
thread with the highest native thread priority value.

The base native thread priority of a thread is defined as the native priority with which it was created, or to which it was
later set explicitly. The initial value of a thread’s base native priority is dependent on the semantics of the specific
operating environment. Hence it is implementation specific.

At all times, a thread also has an active native thread priority, which is the result of considering its base native thread
priority together with any priorities it inherits from other sources; for example, threads or mutexes. An active native
thread priority is set implicitly as a result of some other action. Its value is only temporary, at some point it will return to
the base native thread priority.

Priority inheritance is the term used for the process by which the native thread priority of other threads is used in the
evaluation of a thread’s active native thread priority. A priority inheritance protocol must be used by a conforming Real-
time CORBA ORB to implement the execution semantics of threads and mutexes. It is an implementation issue as to
whether the Real-time ORB implements simple priority inheritance, immediate ceiling locking protocol, original ceiling
locking protocol, or some other priority inheritance protocol.

Whichever priority inheritance protocol is used, the native thread priority ceases to be inherited as soon as the condition
calling for the inheritance no longer exists. At the point when a thread stops inheriting a native thread priority from
another source, its active native thread priority is re-evaluated.

The thread’s active native priority is used when the thread competes for processors. Similarly, the thread’s active native
priority is used to determine the thread’s position in any queue; that is, dequeuing occurs in native thread priority order.

Native priorities have an IDL representation in Real-time CORBA, which is of type short:

// IDL
module RTCORBA {

typedef short NativePriority;
};

This means that native priorities must be integer values in the range -32768 to +32767. However, for a particular RTOS,
the valid range will be a sub-range of this range.

Real-time CORBA does not support the direct use of native priorities: instead, the application programmer uses CORBA
Priorities, which are defined in the next section. However, applications will still use native priorities where they make
direct use of RTOS features.
204 CORBA for embedded, v1.0

12.4 CORBA Priority

To overcome the heterogeneity of RTOSs, that is different RTOSs having different native thread priority schemes, Real-
time CORBA defines a CORBA Priority that has a uniform representation system-wide. CORBA Priority is represented
by the RTCORBA::Priority type:

//IDL
module RTCORBA {

 typedef short Priority;
 const Priority minPriority = 0;
 const Priority maxPriority = 32767;

};

A signed short is used in order to accommodate the Java language mapping. However, only values in the range 0
(minPriority) to 32767 (maxPriority) are valid. Numerically higher RTCORBA::Priority values are defined to be of
higher priority.

For each RTOS in a system, CORBA priority is mapped to the native thread priority scheme. CORBA priority thus
provides a common representation of priority across different RTOSs.

12.5 CORBA Priority Mappings

Real-time CORBA defines the concept of a PriorityMapping between CORBA priorities and native priorities. The
concept is defined as an IDL native type so that the mechanism by which priorities are mapped is exposed to the user.
Native is chosen rather than interface (even if locality constrained) because the full capability of the ORB; for example,
POA policies and CORBA exceptions are too heavyweight for this use. Furthermore, a CORBA interface would entail the
creation and registration of an object reference.

// IDL
module RTCORBA {

native PriorityMapping;

};

Language mapping for this IDL native are defined for C, C++, Ada, and Java later in this section.

A Real-time ORB shall provide a default mapping for each platform; that is, RTOS that the ORB supports. Furthermore,
a Real-time ORB shall provide a mechanism to allow users to override the default priority mapping with a priority
mapping of their own.

The PriorityMapping is a programming language object rather than a CORBA Object and therefore the normal
mechanism for coupling an implementation to the code that uses it (an object reference) doesn’t apply. This specification
does not prescribe a particular mechanism to achieve this coupling.

Note – Possible solutions include: recourse to build/link tools and provision of proprietary interfaces. Other solutions are
not precluded.
CORBA for embedded, v1.0 205

12.5.1 C Language binding for PriorityMapping

/* C */
CORBA_boolean RTCORBA_PriorityMapping_to_native (

RTCORBA_Priority corba_priority,
RTCORBA_NativePriority* native_priority);

CORBA_boolean RTCORBA_PriorityMapping_to_CORBA (

RTCORBA_NativePriority native_priority,
RTCORBA_Priority* corba_priority);

12.5.2 C++ Language binding for PriorityMapping

// C++
namespace RTCORBA {

class PriorityMapping {
public:

virtual CORBA::Boolean to_native (
RTCORBA::Priority corba_priority,
RTCORBA::NativePriority &native_priority);

virtual CORBA::Boolean to_CORBA (
RTCORBA::NativePriority native_priority,
RTCORBA::Priority &corba_priority);

};
};

12.5.3 Ada Language binding for PriorityMapping

-- Ada
package RTCORBA.PriorityMapping is

type Object is tagged private;

procedure To_Native (
Self : in Object ;
CORBA_Priority : in RTCORBA.Priority ;
Native_Priority : out RTCORBA.NativePriority ;
Returns : out CORBA.Boolean) ;

procedure To_CORBA (

Self : in Object ;
Native_Priority : in RTCORBA.NativePriority ;
CORBA_Priority : out RTCORBA.Priority ;
Returns : out CORBA.Boolean) ;

end RTCORBA.PriorityMapping ;
206 CORBA for embedded, v1.0

12.5.4 Java Language binding for PriorityMapping

// Java
package org.omg.RTCORBA;

public class PriorityMapping {

boolean to_native (
short corba_priority,
org.omg.CORBA.ShortHolder native_priority

);
boolean to_CORBA (

short native_priority,
org.omg.CORBA.ShortHolder corba_priority

);
}

12.5.5 Semantics

The priority mappings between native priority and CORBA priority are defined by the implementations of the to_native
and to_CORBA operations of a PriorityMapping object (note, not a CORBA Object). The to_native operation accepts a
CORBA Priority value as an in parameter and maps it to a native priority, which is given back as an out parameter.
Conversely, to_CORBA accepts a NativePriority value as an in parameter and maps it to a CORBA Priority value,
which is again given back as an out parameter.

As the mappings are used by the ORB, and may be used more than once in the normal execution of an invocation, their
implementations should be as efficient as possible. For this reason, the mapping operations may not raise any CORBA
exceptions, including system exceptions. The ORB is not restricted from making calls to the to_native and/or
to_CORBA operations from multiple threads simultaneously. Thus, the implementations should be re-entrant.

Rather than raising a CORBA exception upon failure, a boolean return value is used to indicate mapping failure or
success. If the priority passed in can be mapped to a priority in the target priority scheme, TRUE is returned and the value
is returned as the out parameter. If it cannot be mapped, FALSE is returned and the value of the out parameter is
undefined.

Both to_native and to_CORBA must return FALSE when passed a priority that is outside of the valid priority range of
the input priority scheme. For to_native this means when it is passed a short value outside of the CORBA Priority range,
0-32767; that is, a negative value. For to_CORBA this means when it is passed a short value outside of the native
priority range used on that RTOS. This range will be platform specific.

Neither to_native nor to_CORBA is obliged to map all valid values of the input priority scheme (the CORBA Priority
scheme or the native priority scheme, respectively). This allows mappings to be produced that do not use all values of the
native priority scheme of a particular scheduler and/or that do not use all values of the CORBA Priority scheme.

When the ORB receives a FALSE return value from a mapping operation that is called as part of the processing of a
CORBA invocation, processing of the invocation proceeds no further. A DATA_CONVERSION system exception (with
a Standard Minor Exception Code of 2) is raised to the application making the invocation. Note that it may not be
possible to raise an exception to the application if the failure occurs on a call to a mapping operation made on the server
side of a oneway invocation.
CORBA for embedded, v1.0 207

A Real-time ORB cannot assume that the priority mapping is idempotent. Users should be aware that a mapping that
produces different results for the same inputs will make the goal of a schedulable system harder to obtain. Users may
choose to implement a priority mapping that changes (through other, user specified interfaces). Users should however
note that post-initialization changes to the mapping may well compromise the ORB’s ability to deliver a consistently
schedulable system.

12.6 Real-time Current

The RTCORBA::Current interface, derived from CORBA::Current, provides access to the CORBA Priority (and
hence indirectly to the native priority also) of the current thread. The application can obtain an instance of Current by
invoking the CORBA::ORB::resolve_initial_references(“RTCurrent”) operation.

A Real-time CORBA Priority may be associated with the current thread, by setting the priority attribute of the
RTCORBA::Current object:

//IDL
module RTCORBA {

local interface Current : CORBA::Current {
attribute Priority base_priority;

};

};

A BAD_PARAM system exception shall be thrown if an attempt is made to set the priority to a value outside the range 0
to 32767.

When the attribute is set to a valid Real-time CORBA Priority value, the value is immediately used to set the base native
priority of the thread. The native priority value to use is determined by calling PriorityMapping::to_native on the
installed PriorityMapping. The native thread priority shall be set before the set attribute call returns.

If the to_native call returns FALSE or if the returned native thread priority is illegal for the particular underlying RTOS,
then a Real-time ORB shall raise a DATA_CONVERSION system exception (with a Standard Minor Exception Code of
2). In this case the priority attribute shall retain its value prior to the set attribute call.

Once a thread has a CORBA Priority value associated with it, the behavior when it makes an invocation upon a CORBA
Object depends on the value of the PriorityModelPolicy of that target object.

Retrieving the value of this attribute returns the last value that was set from the current thread. If this attribute has not
previously been set for the current thread, attempting to retrieve the value causes an INITIALIZE System Exception to be
raised.

12.7 Real-time CORBA Priority Models

Note – CORBA/e supports the Client-Propagated Priority Model policy only.
208 CORBA for embedded, v1.0

12.7.1 Scope of PriorityModelPolicy

The PriorityModelPolicy is applied to a Real-time POA at the time of POA creation. This is either through an ORB
level default having previously been set or by including it in the policies parameter to create_POA. An instance of the
PriorityModelPolicy is created with the create_priority_model_policy operation. The attributes of the policy are
initialized with the parameters of the same name.

//IDL
module RTCORBA {

local interface RTORB {
...
PriorityModelPolicy create_priority_model_policy (

in PriorityModel priority_model,
in Priority server_priority

);
};

};

The PriorityModelPolicy is a client-exposed policy; that is, propagated from the server to the client in IORs. It is
propagated in a PolicyValue in a TAG_POLICIES Profile Component, as specified by the CORBA QoS Policy
Framework.

When an instance of PriorityModelPolicy is propagated, the PolicyValue’s ptype has the value
PRIORITY_MODEL_POLICY_TYPE and the pvalue is a CDR encapsulation containing an RTCORBA::PriorityModel
and an RTCORBA::Priority.

Note – Client-exposed policies and the mechanism for their propagation are defined in the “Policies” chapter.

The PriorityModelPolicy is propagated so that the client ORB knows which Priority Model the target object is using.
This allows it to determine whether to send the Real-time CORBA priority with invocations on that object, and allows it
to select the band connection to invoke over based on the declared priority in the tagged component.

The client may not override the PriorityModelPolicy.

12.7.2 Client Propagated Priority Model

If the target object supports the CLIENT_PROPAGATED value of the PriorityModelPolicy, the CORBA Priority is
carried with the CORBA invocation and is used to ensure that all threads subsequently executing on behalf of the
invocation run at the appropriate priority. The propagated CORBA Priority becomes the CORBA Priority of any such
threads. These threads run at a native priority mapped from that CORBA Priority. The CORBA Priority is also passed
back from server to client, so that it can be used to control the processing of the reply by the client ORB.

The CORBA Priority is propagated from client to server, and back again, in a CORBA Priority service context, which is
passed in the invocation request and reply messages.

module IOP {
 const ServiceId RTCorbaPriority = 10;
};
CORBA for embedded, v1.0 209

The context_data contains the RTCORBA::Priority value as a CDR encapsulation of an IDL short type.

Note – The RTCorbaPriority const should be added to a future version of GIOP.

The thread that runs the servant code, initially has the CORBA Priority of the invoking thread. Therefore if, as part of the
processing of this request it makes CORBA invocations to other objects, these onward invocations will be made with the
same CORBA Priority. If the CORBA Priority of the thread running the servant code is changed by the application, any
subsequent onward invocations will be made with this new priority.

Note that priorities may be changed implicitly, by the platform (RT ORB + RTOS) while the servant code is executing
due to priority inheritance.

12.8 Mutex Interface

Real-time CORBA defines the following Mutex interface:

//IDL
module RTCORBA {

local interface Mutex {

void lock();
void unlock();
boolean try_lock(in TimeBase::TimeT max_wait);

// if max_wait = 0 then return immediately
};

local interface RTORB {

...
Mutex create_mutex();
void destroy_mutex(in Mutex the_mutex);
...

};
};

A new RTCORBA::Mutex object is obtained using the create_mutex() operation of RTCORBA::RTORB.

A Mutex object has two states: locked and unlocked. Mutex objects are created in the unlocked state. When the Mutex
object is in the unlocked state the first thread to call the lock() operation will cause the Mutex object to change to the
locked state. Subsequent threads that call the lock() operation while the Mutex object is still in the locked state will block
until the owner thread unlocks it by calling the unlock() operation.

Note – If a Real-time ORB is to run on a shared memory multi-processor, then the Mutex implementation must ensure
that the lock operations are atomic to all processors.

The try_lock() operation works like the lock() operation except that if it does not get the lock within max_wait time it
returns FALSE. If the try_lock() operation does get the lock within the max_wait time period, it returns TRUE.
210 CORBA for embedded, v1.0

The mutex returned by create_mutex must have the same priority inheritance properties as those used by the ORB to
protect resources. If a Real-time CORBA implementation offers a choice of priority inheritance protocols, or offers a
protocol that requires configuration, the selection or configuration will be controlled through an implementation specific
interface.

While a thread executes in a region protected by a mutex object, it can be pre-empted only by threads whose active native
thread priorities are higher than either the ceiling or inherited priority of the mutex object.

Note – The protocol implemented by the Mutex (which priority inheritance or priority ceiling protocol) is not prescribed.
Real-time CORBA is intended for a wide range of RTOSs and the choice of protocol will often be predicated on what the
RTOS does.

12.9 Implicit and Explicit Binding

Real-time CORBA makes use of the CORBA::Object::validate_connection operation to allow client applications to
control when a binding is made on an object reference.

Note – validate_connection and the definition of binding that it uses are defined in the Common Object Request
Broker Architecture (CORBA) specification, CORBA Messaging chapter.

Using validate_connection on a currently unbound object reference causes binding to occur. Real-time CORBA refers
to the use of validate_connection to force a binding to be made as ‘explicit binding.’ If an object reference is not
explicitly bound, binding will occur at an ORB specific time, which may be as late as the time of the first invocation upon
that object reference. This is referred to as ‘implicit binding,’ and is the default CORBA behavior unless an explicit bind
is performed.

Real-time applications may wish to use explicit binding to force any binding related overhead (including the passing of
messages between the client and server) to be incurred ahead of the first invocation on an object reference. This can
improve the performance and predictability of the first invocation, and hence the predictability of the application as a
whole. The explicit bind may, for example, be performed during system initialization.

Once an explicit binding has been set up, via validate_connection, it is possible that the underlying transport
connection (or other associated resources) may fail or may be reclaimed by the ORB. Rather than mandate that this shall
not happen, it is left as a Quality of Implementation issue as to what guarantees of enduring availability an explicit
binding provides.

The client-side applicable Real-time CORBA policies are applied to a binding in the same way as any other client-side
applicable CORBA policies: using the set_policy_overrides operations at the ORB, Current, or Object scope (as
defined in the CORBA QoS Policy Framework.)

The client-side applicable Real-time CORBA policies have the same effect whether they are applied to an implicit or
explicit bind.

12.10 Priority Banded Connections

Priority banded connections are administered through the use of the Real-time CORBA
PriorityBandedConnectionsPolicy Policy type:
CORBA for embedded, v1.0 211

// IDL
module RTCORBA {

struct PriorityBand {
Priority low;
Priority high;

};

typedef sequence <PriorityBand> PriorityBands;

// PriorityBandedConnectionPolicy
const CORBA::PolicyType

PRIORITY_BANDED_CONNECTION_POLICY_TYPE = 45;

local interface PriorityBandedConnectionPolicy : CORBA::Policy {

readonly attribute PriorityBands priority_bands;

};

local interface RTORB {
...
PriorityBandedConnectionPolicy

create_priority_banded_connection_policy (
in PriorityBands priority_bands

);
};

};

An instance of the PriorityBandedConnectionPolicy is created with the
create_priority_banded_connection_policy operation. The attribute of the policy is initialized with the parameter of
the same name.

The PriorityBands attribute of the policy may be assigned any number of PriorityBands. PriorityBands that cover a
single priority (by having the same priority for their low and high values) may be mixed with those covering ranges of
priorities. No priority may be covered more than once. The complete set of priorities covered by the bands do not have to
form one contiguous range, nor do they have to cover all CORBA Priorities. If no bands are provided, then a single
connection will be established.

Once the binding has been successfully made, an attempt to make an invocation with a Real-time CORBA Priority, which
is not covered by one of the bands will fail. The ORB shall raise a NO_RESOURCES system exception (with a
Standard Minor Exception Code of 2). Hence, a policy specifying only one band can be used to restrict a client’s
invocations to a range of priorities.

Note that the origin of the Real-time CORBA Priority value that is used to select which banded connection to use depends
on the Priority Model of the target object. When invoking on an Object that is using the Client Propagated Priority Model,
the client-set Real-time CORBA Priority is used to choose the band.
212 CORBA for embedded, v1.0

12.10.1 Scope of PriorityBandedConnectionPolicy

The PriorityBandedConnectionPolicy is applied on the client-side only, at the time of binding to a CORBA Object.
However, the policy may be set from the client or server side. On the server, it may be applied at the time of POA
creation, in which case the policy is client-exposed and is propagated from the server to the client in interoperable Object
References. It is propagated in a PolicyValue in a TAG_POLICIES Profile Component, as specified by the CORBA QoS
Policy Framework.

When an instance of PriorityBandedConnectionPolicy is propagated, the PolicyValue’s ptype has the value
PRIORITY_BANDED_CONNECTION_POLICY_TYPE and the pvalue is a CDR encapsulation containing an
RTCORBA::PriorityBands type, which is a sequence of instances of RTCORBA::PriorityBand. Each
RTCORBA::PriorityBand is in turn represented by a pair of RTCORBA::Priority values, which represent the low and
high values for that band.

If the PriorityBandedConnectionPolicy is set on both the server and client-side an attempt to bind will fail with an
INV_POLICY system exception. The client application may use validate_connection to establish that this was the
cause of binding failure and may set the value of its copy of the policy to an empty PriorityBands and attempt to rebind
using just the configuration from the server-provided copy of the policy.

12.10.2 Binding of Priority Banded Connection

Whether bands are configured from the client or server-side, the banded connection is always initiated from the client-
side.

In order to allow the server-side ORB to identify the priority band that each connection is associated with, information on
that connection’s band range is passed with first request on each banded connection. This is done by means of an
RTCorbaPriorityRange service context:

// IDL
module IOP {

const ServiceId RTCorbaPriorityRange = 11;

};

The context_data contains the CDR encapsulation of two RTCORBA::Priority values (two short types.) The first
indicates the lowest priority and the second the highest priority in the priority band handled by the connection.

Once a priority band has been associated with a connection it cannot be reconfigured during the life-time of the
connection. If an ORB receives a second, or subsequent, RTCorbaPriorityRange service context containing a different
priority band definition, then it shall raise a BAD_INV_ORDER system exception (with a Standard Minor Exception
Code of 18). If the priority band is the same as the connection’s configuration, then processing shall proceed.

In case of an explicit bind (via validate_connection), this service context is passed on a request message for a
‘_bind_priority_band’ implicit operation. This implicit operation is defined for Real-time CORBA only at this time. It
is possible that non-Real-time ORB might receive such a request message. If so it is anticipated (but not prescribed) that
it will reply with a BAD_OPERATION system exception with standard minor code 2. A future version of IIOP should
formalize Real-time CORBA’s use of the ‘_bind_priority_band’ operation name in a GIOP Request message. Note that
there is no API exposed for this implicit operation (unlike, for example, ‘_is_a’).
CORBA for embedded, v1.0 213

When sending a ‘_bind_priority_band’ request, a Real-time ORB shall marshall no parameters and the object key of
the object being bound to shall be used as the request ‘target.’ The request shall be handled by the ORB, no servant
implementation of this implicit operation will be invoked.

When a Real-time-ORB receives a _bind_priority_band Request it should allocate resources to the connection and
configure those resources appropriately to the priority band indicated in the ServiceContext. Having done this the ORB
shall send a "SUCCESS" Reply message. If the priority band passed is not well-formed; that is, it contains a negative
number or the first value is higher than the second, then the ORB shall raise a BAD_PARAM system exception. If either
of the priorities cannot be mapped onto native thread priorities; that is, to-native returns FALSE, then the ORB shall raise
a DATA_CONVERSION system exception (with a Standard Minor Exception Code of 2). If the priority band is
inconsistent with the ORB’s priority configuration, then the ORB shall raise an INV_POLICY system exception. If the
server-side ORB cannot configure resources to support a well-formed band specification, then a NO_RESOURCES
exception shall be returned.

A _bind_priority_band request message is sent on the connection for each band and must complete successfully; that
is, yield a SUCCESS Reply message for all connections, before validate_connection returns success. If any one
_bind_priority_band fails, then the entire banded connection binding fails. In this way, validate_connection sets up
all the banded connections at time of binding.

If the service context is omitted on a _bind_priority_band request message, then the ORB shall raise a BAD_PARAM
system exception.

A bind_priority_band is not performed in the case of an implicit bind, as it occurs at a time when a request is about to
be sent on the connection representing the priority band that covers the current invocation priority. There is no point
delaying the application request. Instead, the ‘RTCorbaPriorityRange’ service context is passed on this first invocation
request.

Thus, the implicit binding of a banded connection has the behavior that each band connection is only set up the first time
an invocation is made from the client with an invocation priority in that band. This behavior offers consistency: the first
invocation made on each band incurs any latency and predictability cost associated with binding. If no invocations are
ever made in the priority range of a given band, its connection will never be established.

12.11 Invocation Timeout

Real-time CORBA uses the existing CORBA timeout policy, Messaging::RelativeRoundtripTimeoutPolicy, to allow
a timeout to be set for the receipt of a reply to an invocation. The policy is used where it is set, to set a timeout in the
client ORB. If a timeout expires, the server is not informed. Real-time CORBA does not require the policy to be
propagated with the invocation, which the RelativeRoundtripTimeoutPolicy specification allows in support of
message routers.

Note – The RelativeRoundtripTimeoutPolicy is specified in Section 10.4.3.4, “interface
RelativeRoundtripTimeoutPolicy,” on page 168.

12.12 Consolidated IDL

// IDL
module IOP {

const ServiceId RTCorbaPriority = 10;
214 CORBA for embedded, v1.0

const ServiceId RTCorbaPriorityRange = 11;
};

//File: RTCORBA.idl
#ifndef _RT_CORBA_IDL_
#define _RT_CORBA_IDL_
#ifdef _PRE_3_0_COMPILER_
#pragma prefix "omg.org"

#include <orb.idl>
#include <iop.idl>
#include <TimeBase.idl>
#else
import ::CORBA;
import ::IOP;
import ::TimeBase;
#endif

// IDL
module RTCORBA {

typedef short NativePriority;

typedef short Priority;

const Priority minPriority = 0;
const Priority maxPriority = 32767;

native PriorityMapping;

// Priority Model Policy
const CORBA::PolicyType PRIORITY_MODEL_POLICY_TYPE = 40;

struct PriorityBand {

Priority low;
Priority high;

};

typedef sequence <PriorityBand> PriorityBands;

// PriorityBandedConnectionPolicy
const CORBA::PolicyType

PRIORITY_BANDED_CONNECTION_POLICY_TYPE = 45;

local interface PriorityBandedConnectionPolicy : CORBA::Policy {
readonly attribute PriorityBands priority_bands;

};

local interface Current : CORBA::Current {
attribute Priority the_priority;

};

CORBA for embedded, v1.0 215

local interface Mutex {

void lock();
void unlock();
boolean try_lock (in TimeBase::TimeT max_wait);
// if max_wait = 0 then return immediately

};

local interface RTORB {

Mutex create_mutex();
void destroy_mutex(in Mutex the_mutex);

PriorityModelPolicy create_priority_model_policy (

 in PriorityModel priority_model,
in Priority server_priority
);

PriorityBandedConnectionPolicy
create_priority_banded_connection_policy (

in PriorityBands priority_bands
);

}; // End interface RTORB

}; // End module RTCORBA
#endif // _RT_CORBA_IDL_
216 CORBA for embedded, v1.0

13 Naming Service

Compliance

Conformant implementations of the CORBA/e Compact Profile must comply with all clauses of this chapter. There are no
requirements for conformant implementations of the CORBA/e Micro Profile in this chapter.

13.1 Overview

The CosNaming module is a collection of interfaces that together define the Naming Service. This module contains
three interfaces:

• The NamingContext interface

• The BindingIterator interface

• The NamingContextExt interface

This section describes these interfaces and their operations in detail.

The CosNaming module is shown below.

Note – Istring was a “placeholder for a future IDL internationalized string data type” in the original specification. It is
maintained solely for compatibility reasons.

13.1.1 Resolution of Compound Names

In this specification operations that are performed on compound names recursively perform the equivalent of a resolve
operation on all but the last component of a name before performing the operation on the final name component. The
general form is defined as follows:

ctx->op(<c1; c2; ...; cn>) equiv

ctx->resolve(<c1>)->resolve(<c2; cn-1>)->op(<cn>)

where ctx is a naming context, <c1; ...; cn> a compound name, and op a naming context operation.

Note – The intermediate components, <c1: ...; cn> of the compound name must have been bound using bind_context
or rebind_context to take part in the resolve.

13.2 NamingContext Interface

The following sections describe the naming context data types and interface in detail.
CORBA for embedded, v1.0 217

13.2.1 Structures

13.2.1.1 NameComponent

struct NameComponent {
Istring Id;
Istring kind;

};

A name component consists of two attributes: the identifier attribute - id and the kind attribute - kind.

Both of these attributes are arbitrary-length strings of ISO Latin-1 characters, excluding the ASCII NUL character.

When comparing two NameComponents for equality both the id and the kind field must match in order for two
NameComponents to be considered identical. This applies for zero-length (empty) fields as well. Name comparisons
are case sensitive.

An implementation may place limitations on the characters that may be contained in a name component, as well as the
length of a name component. For example, an implementation may disallow certain characters, may not accept the empty
string as a legal name component, or may limit name components to some maximum length.

13.2.1.2 Name

A name is a sequence of NameComponents. The empty sequence is not a legal name. An implementation may limit the
length of the sequence to some maximum. When comparing Names for equality, each NameComponent in the first
name must match the corresponding NameComponent in the second Name for the names to be considered identical.

13.2.1.3 Binding

enum BindingType { nobject, ncontext };
struct Binding {

Name binding_name;
BindingType binding_type;

};
typedef sequence<Binding> BindingList;

This type is used by the NamingContext::list, BindingIterator::next_n, and BindingIterator::next_one
operations. A Binding contains a Name in the member binding_name, together with the BindingType of that Name
in the member binding_type.

Note – The binding_name member is incorrectly typed as a Name instead of a NameComponent. For compatibility
with the original CosNaming specification this incorrect definition has been retained. The binding_name is used as a
NameComponent and will always be a Name with length of 1.

The value of binding_type is ncontext if a Name denotes a binding created with one of the following operations:

• bind_context

• rebind_context

• bind_new_context
218 CORBA for embedded, v1.0

For bindings created with any other operation, the value of BindingType is nobject.

13.2.2 Exceptions

The Naming Service exceptions are defined below.

13.2.2.1 NotFound

exception NotFound {
NotFoundReason why;
Name rest_of_name;

};

This exception is raised by operations when a component of a name does not identify a binding or the type of the binding
is incorrect for the operation being performed. The why member explains the reason for the exception and the
rest_of_name member contains the remainder of the non-working name:

• missing_node

The first name component in rest_of_name denotes a binding that is not bound under that name within its parent
context.

• not_context

The first name component in rest_of_name denotes a binding with a type of nobject when the type ncontext was
required.

• not_object

The first name component in rest_of_name denotes a binding with a type of ncontext when the type nobject was
required.

13.2.2.2 CannotProceed

exception CannotProceed {
NamingContext cxt;

Name rest_of_name;
};

This exception is raised when an implementation has given up for some reason. The client, however, may be able to
continue the operation at the returned naming context.

The cxt member contains the context that the operation may be able to retry from.

The rest_of_name member contains the remainder of the non-working name.

13.2.2.3 InvalidName

exception InvalidName {};
CORBA for embedded, v1.0 219

This exception is raised if a Name is invalid. A name of length zero is invalid (containing no name components).
Implementations may place further limitations on what constitutes a legal name and raise this exception to indicate a
violation.

13.2.2.4 AlreadyBound

exception AlreadyBound {};

Indicates an object is already bound to the specified name. Only one object can be bound to a particular Name in a context.

13.2.2.5 NotEmpty

exception NotEmpty {};

This exception is raised by destroy if the NamingContext contains bindings. A NamingContext must be empty to be
destroyed.

13.2.3 Binding Objects

The binding operations name an object in a naming context. Once an object is bound, it can be found with the resolve
operation. The Naming Service supports four operations to create bindings: bind, rebind, bind_context, and
rebind_context. bind_new_context also creates a binding, see Section 13.2.6, “Creating Naming Contexts,” on
page 221.

void bind(in Name n, in Object obj)
raises(NotFound, CannotProceed, InvalidName, AlreadyBound);

void rebind(in Name n, in Object obj)
raises(NotFound, CannotProceed, InvalidName);

void bind_context(in Name n, in NamingContext nc)
raises(NotFound, CannotProceed, InvalidName, AlreadyBound);

void rebind_context(in Name n, in NamingContext nc)
raises(NotFound, CannotProceed, InvalidName);

13.2.3.1 bind

Creates an nobject binding in the naming context.

13.2.3.2 rebind

Creates an nobject binding in the naming context even if the name is already bound in the context.

If already bound, the previous binding must be of type nobject; otherwise, a NotFound exception with a why reason of
not_object is raised.

13.2.3.3 bind_context

Creates an ncontext binding in the parent naming context. Attempts to bind a nil context raise a BAD_PARAM
exception.
220 CORBA for embedded, v1.0

13.2.3.4 rebind_context

Creates an ncontext binding in the naming context even if the name is already bound in the context.

If already bound, the previous binding must be of type ncontext; otherwise, a NotFound exception with a why reason
of not_context will be raised.

13.2.3.5 Usage

If a binding with the specified name already exists, bind and bind_context raise an AlreadyBound exception.

If an implementation places limits on the number of bindings within a context, bind and bind_context raise the
IMP_LIMIT system exception if the new binding cannot be created.

Naming contexts bound using bind_context and rebind_context participate in name resolution when compound names
are passed to be resolved; naming contexts bound with bind and rebind do not.

Use of rebind_context may leave a potential orphaned context (one that is unreachable within an instance of the Name
Service). Policies and administration tools regarding potential orphan contexts are implementation-specific.

If rebind or rebind_context raise a NotFound exception because an already existing binding is of the wrong type, the
rest_of_name member of the exception has a sequence length of 1.

13.2.4 Resolving Names

The resolve operation is the process of retrieving an object bound to a name in a given context. The given name must
exactly match the bound name. The naming service does not return the type of the object. Clients are responsible for
“narrowing” the object to the appropriate type. That is, clients typically cast the returned object from Object to a more
specialized interface. The IDL definition of the resolve operation is:

Object resolve (in Name n)
raises (NotFound, CannotProceed, InvalidName);

Names can have multiple components; therefore, name resolution can traverse multiple contexts. These contexts can be
federated between different Naming Service instances.

13.2.5 Unbinding Names

The unbind operation removes a name binding from a context. The definition of the unbind operation is:

void unbind(in Name n)
raises (NotFound, CannotProceed, InvalidName);

13.2.6 Creating Naming Contexts

The Naming Service supports two operations to create new contexts: new_context and bind_new_context.

NamingContext new_context();
NamingContext bind_new_context(in Name n)

raises(NotFound, AlreadyBound, CannotProceed, InvalidName);
CORBA for embedded, v1.0 221

13.2.6.1 new_context

This operation returns a new naming context. The new context is not bound to any name.

13.2.6.2 bind_new_context

This operation creates a new context and creates an ncontext binding for it using the name supplied as an argument.

13.2.6.3 Usage

If an implementation places limits on the number of naming contexts, both new_context and bind_new_context can
raise the IMP_LIMIT system exception if the context cannot be created. bind_new_context can also raise IMP_LIMIT
if the bind would cause an implementation limit on the number of bindings in a context to be exceeded.

13.2.7 Deleting Contexts

The destroy operation deletes a naming context.

void destroy()
raises(NotEmpty);

This operation destroys its naming context. If there are bindings denoting the destroyed context, these bindings are not
removed. If the naming context contains bindings, the operation raises NotEmpty.

13.2.8 Listing a Naming Context

The list operation allows a client to iterate through a set of bindings in a naming context.

void list (in unsigned long how_many,
out BindingList bl, out BindingIterator bi);

};

list returns the bindings contained in a context in the parameter bl. The bl parameter is a sequence where each element is
a Binding containing a Name of length 1 representing a single NameComponent.

The how_many parameter determines the maximum number of bindings to return in the parameter bl, with any
remaining bindings to be accessed through the returned BindingIterator bi.

• A non-zero value of how_many guarantees that bl contains at most how_many elements. The implementation is
free to return fewer than the number of bindings requested by how_many. However, for a non-zero value of
how_many, it may not return a bl sequence with zero elements unless the context contains no bindings.

• If how_many is set to zero, the client is requesting to use only the BindingIterator bi to access the bindings and
list returns a zero length sequence in bl.

• The parameter bi returns a reference to an iterator object.

• If the bi parameter returns a non-nil reference, this indicates that the call to list may not have returned all of the
bindings in the context and that the remaining bindings (if any) must be retrieved using the iterator. This applies for all
values of how_many.
222 CORBA for embedded, v1.0

• If the bi parameter returns a nil reference, this indicates that the bl parameter contains all of the bindings in the
context. This applies for all values of how_many.

13.3 The BindingIterator Interface

The BindingIterator interface allows a client to iterate through the bindings using the next_one or next_n operations:

If a context is modified in between calls to list, next_one, or next_n, the behavior of further calls to next_one or
next_n is implementation-dependent.

interface BindingIterator {
boolean next_one(out Binding b);
boolean next_n(in unsigned long how_many,

out BindingList bl);
void destroy();

};

13.3.1 Operations

13.3.1.1 next_one

The next_one operation returns the next binding. It returns true if it is returning a binding, false if there are no more
bindings to retrieve. If next_one returns false, the returned Binding is indeterminate.

Further calls to next_one after it has returned false have undefined behavior.

13.3.1.2 next_n

next_n returns, in the parameter bl, bindings not yet retrieved with list or previous calls to next_n or next_one. It
returns true if bl is a non-zero length sequence; it returns false if there are no more bindings and bl is a zero-length
sequence.

The how_many parameter determines the maximum number of bindings to return in the parameter bl:

• A non-zero value of how_many guarantees that bl contains at most how_many elements. The implementation is
free to return fewer than the number of bindings requested by how_many. However, it may not return a bl sequence
with zero elements unless there are no bindings to retrieve.

• A zero value of how_many is illegal and raises a BAD_PARAM system exception.

next_n returns false with a bl parameter of length zero once all bindings have been retrieved. Further calls to next_n
after it has returned a zero-length sequence have undefined behavior.

13.3.1.3 destroy

The destroy operation destroys its iterator. If a client invokes any operation on an iterator after calling destroy, the
operation raises OBJECT_NOT_EXIST.
CORBA for embedded, v1.0 223

13.3.2 Garbage Collection of Iterators

Clients that create iterators but never call destroy can cause an implementation to permanently run out of resources. To
protect itself against this scenario, an implementation is free to destroy an iterator object at any time without warning,
using whatever algorithm it considers appropriate to choose iterators for destruction. In order to be robust in the presence
of garbage collection, clients should be written to expect OBJECT_NOT_EXIST from calls to an iterator and handle this
exception gracefully.

13.4 Stringified Names

Names are sequences of name components. This representation makes it difficult for applications to conveniently deal
with names for I/O purposes, human or otherwise. This specification defines a syntax for stringified names and provides
operations to convert a name in stringified form to its equivalent sequence form and vice-versa (see Section 13.5.4,
“Converting between CosNames, Stringified Names, and URLs,” on page 228).

A stringified name represents one and only one CosNaming::Name. If two names are equal, their stringified
representations are equal (and vice-versa).

The stringified name representation reserves use of the characters ‘/’, ‘.’, and ‘\’. The forward slash ‘/’ is a name
component separator; the dot ‘.’ separates id and kind fields. The backslash ‘\’ is an escape character (see Section 13.4.2,
“Escape Mechanism,” on page 225).

13.4.1 Basic Representation of Stringified Names

A stringified name consists of the name components of a name separated by a ‘/’ character. For example, a name
consisting of the components “a,” “b,” and “c” (in that order) is represented as

a/b/c

Stringified names use the ‘.’ character to separate id and kind fields in the stringified representation. For example, the
stringified name

a.b/c.d/.

represents the CosNaming::Name:

The single ‘.’ character is the only representation of a name component with empty id and kind fields.

If a name component in a stringified name does not contain a ‘.’ character, the entire component is interpreted as the id
field, and the kind field is empty. For example:

a/./c.d/.e

Index id kind

0 a b

1 c d

2 <empty> <empty>
224 CORBA for embedded, v1.0

corresponds to the CosNaming::Name:

If a name component has a non-empty id field and an empty kind field, the stringified representation consists only of the
id field. A trailing ‘.’ character is not permitted.

13.4.2 Escape Mechanism

The backslash ‘\’ character escapes the reserved meaning of ‘/’, ‘.’, and ‘\’ in a stringified name. The meaning of any
other character following a ‘\’ is reserved for future use.

13.4.2.1 NameComponent Separators

If a name component contains a ‘/’ slash character, the stringified representation uses the ‘\’ character as an escape. For
example, the stringified name

a/x\/y\/z/b

represents the name consisting of the name components “a,” “x/y/z,” and “b.”

13.4.2.2 Id and kind Fields

The backslash escape mechanism is also used for ‘.’, so id and kind fields can contain a literal ‘.’. To illustrate, the
stringified name

a\.b.c\.d/e.f

represents the CosNaming::Name:

13.4.2.3 The Escape Character

The escape character ‘\’ must be escaped if it appears in a name component. For example, the stringified name:

a/b\\/c

represents the name consisting of the components “a,” “b\,” and “c.”

Index id kind

0 a <empty>

1 <empty> <empty>

2 c d

3 <empty> e

Index id kind

0 a.b c.d

1 e f
CORBA for embedded, v1.0 225

13.5 URL Schemes

This section describes the Uniform Resource Locator (URL) schemes available to represent a CORBA object and a
CORBA object bound in a NamingContext.

13.5.1 IOR

The string form of an IOR (IOR:<hex_octets>) is a valid URL. The scheme name is IOR and the text after the ‘:’ is
defined in the CORBA 2.3 specification, Section 13.6.6. The IOR URL is robust and insulates the client from the
encapsulated transport information and object key used to reference the object. This URL format is independent of
Naming Service.

13.5.2 corbaloc

It is difficult for humans to exchange IORs through non-electronic means because of their length and the text encoding of
binary information. The corbaloc URL scheme provides URLs that are familiar to people and similar to ftp or http
URLs.

The corbaloc URL is described in the CORBA 2.3 Specification, Section 13.6.6. This URL format is independent of the
Naming Service.

13.5.3 corbaname

A corbaname URL is similar to a corbaloc URL. However a corbaname URL also contains a stringified name that
identifies a binding in a naming context.

13.5.3.1 corbaname Examples

corbaname::555xyz.com/dev/NContext1#a/b/c

This example denotes a naming context that can be contacted in the same manner as a corbaloc URL at 555xyz.com
with a key of “dev/NContext1”. The “#” character denotes the start of the stringified name, “a/b/c” . This name is
resolved against the context to yield the final object.

corbaname::555xyz.com#a/b/c

When an object key is not specified, as in the above example, the default key of “NameService” is used to contact the
naming context.

corbaname:rir:#a/b/c

This URL will resolve the stringified name “a/b/c” against the naming context returned by
resolve_initial_references(“NameService”).

corbaname:rir:

corbaname:rir:/NameService

The above URLs are equivalent to corbaloc:rir: and reference the naming context returned by
resolve_initial_references(“NameService”).
226 CORBA for embedded, v1.0

corbaname:atm:00033...#a/b/c

corbaname::55xyz.com,atm:00033.../dev/NCtext#a/b/c

These last URLs illustrate support of multiple protocols as allowed by corbaloc URLs. atm: is an example only and is
not a defined URL protocol at this time.

Note – Unlike stringified names, corbanames cannot be compared directly for equality as the address specification can
differ for corbaname URLs with the same meaning.

13.5.3.2 corbaname Syntax

 The full corbaname BNF is:

<corbaname> = “corbaname:”<corbaloc_obj>[“#”<string_name>]
<corbaloc_obj> = <obj_addr_list> [“/”<key_string>]
<obj_addr_list> = as defined in a corbaloc URL
<key_string> = as defined in a corbaloc URL
<string_name>= stringified Name | empty_string

Where:

corbaloc_obj: portion of a corbaname URL that identifies the naming context. The syntax is identical to its use in a
corbaloc URL.

obj_addr_list: as defined in a corbaloc URL.

key_string: as defined in a corbaloc URL.

string_name: a stringified Name with URL escapes as defined below.

13.5.3.3 corbaname Character Escapes

corbaname URLs use the escape mechanism described in the Internet Engineering Task Force (IETF) RFC 2396. These
escape rules insure that URLs can be transferred via a variety of transports without undergoing changes. The character
escape rules for the stringified name portion of a corbaname are:

US-ASCII alphanumeric characters are not escaped. Characters outside this range are escaped, except for the following:

“;” | “/” | “:” | “?” | “@” | “&” | “=” | “+” | “$” |

“,” | “-” | “_” | ”.” | “!” | “~” | “*” | “’” | “(“ | “)”

13.5.3.4 corbaname Escape Mechanism

The percent ‘%’ character is used as an escape. If a character that requires escaping is present in a name component it is
encoded as two hexadecimal digits following a “%” character to represent the octet. (The first hexadecimal character
represent the high-order nibble of the octet, the second hexadecimal character represents the low-order nibble.) If a ‘%’ is
not followed by two hex digits, the stringified name is syntactically invalid.
CORBA for embedded, v1.0 227

13.5.3.5 Examples

13.5.3.6 corbaname Resolution

corbaname resolution can be implemented as a simple extension to corbaloc URL processing. Given a corbaname:

corbaname:<corbaloc_obj>[“#” <string_name>]

The corbaname is resolved by:

1. First constructing a corbaloc URL of the form:
corbaloc:<corbaloc_obj>.

If the <corbaloc_obj> does not contain a key string, a default key of “NameService” is used.

2. This is converted to a naming context object reference with CORBA::ORB::string_to_object.

3. The <string_name> is converted to a CosNaming::Name.

4. The resulting name is passed to a resolve operation on the naming context.

5. The object reference returned by the resolve is the result.

Implementations are not required to use the method described and may make optimizations appropriate to their
environment.

13.5.4 Converting between CosNames, Stringified Names, and URLs

The NamingContextExt interface, derived from NamingContext, provides the operations required to use URLs and
stringified names.

module CosNaming {
// ...
interface NamingContextExt: NamingContext {

typedef string StringName;
typedef string Address;
typedef string URLString;

StringName to_string(in Name n) raises(InvalidName);
Name to_name(in StringName sn)

raises(InvalidName);

Stringified Name After URL Escapes Comment

a.b/c.d a.b/c.d URL form identical

<a>.b/c.d %3ca%3e.b/c.d Escaped “<“ and “>”

a.b/ c.d a.b/%20%20c.d Escaped two “ “ spaces

a%b/c%d a%25b/c%25d Escaped two “%” percents

a\\b/c.d a%5c%5cb/c.d Escaped “\” character, which is already escaped in the
stringified name
228 CORBA for embedded, v1.0

exception InvalidAddress {};

URLString to_url(in Address addr, in StringName sn)
raises(InvalidAddress, InvalidName);

Object resolve_str(in StringName sn)
raises(

NotFound, CannotProceed,
InvalidName

);
};

};

13.5.4.1 to_string

This operation accepts a Name and returns a stringified name. If the Name is invalid, an InvalidName exception is
raised.

13.5.4.2 to_name

This operation accepts a stringified name and returns a Name. If the stringified name is syntactically malformed or
violates an implementation limit, an InvalidName exception is raised.

13.5.4.3 resolve_str

This is a convenience operation that performs a resolve in the same manner as NamingContext::resolve. It accepts a
stringified name as an argument instead of a Name.

13.5.4.4 to_url

This operation takes a corbaloc URL <address> and <key_string> component such as

• :myhost.555xyz.com

• :myhost.555xyz.com/a/b/c

• atm:00002112...,:myhost.xyz.com/a/b/c

for the first parameter, and a stringified name for the second. It then performs any escapes necessary on the parameters
and returns a fully formed URL string. An exception is raised if either the corbaloc address and key parameter or name
parameter are malformed.

It is legal for the stringified_name to be empty. If the address is empty, an InvalidAddress exception is raised.

13.5.4.5 URL to Object Reference

Conversions from URLs to objects are handled by CORBA::ORB::string_to_object as described in the CORBA 2.3
Specification, Section 13.6.6.
CORBA for embedded, v1.0 229

13.6 Initial Reference to a NamingContextExt

An initial reference to an instance of this interface can be obtained by calling resolve_initial_references with an
ObjectID of NameService.

13.7 Consolidated IDL

// File: CosNaming.idl
#ifndef _COSNAMING_IDL_
#define _COSNAMING_IDL_

#pragma prefix "omg.org"

module CosNaming {
typedef string Istring;

struct NameComponent {
Istring id;
Istring kind;

};
typedef sequence<NameComponent> Name;

enum BindingType { nobject, ncontext };

struct Binding {
Name binding_name;
BindingType binding_type;

};

// Note: In struct Binding, binding_name is incorrectly defined
// as a Name instead of a NameComponent. This definition is
// unchanged for compatibility reasons.
typedef sequence <Binding> BindingList;

interface BindingIterator;

interface NamingContext {
enum NotFoundReason {

missing_node, not_context, not_object
};

exception NotFound {
NotFoundReason why;
Name rest_of_name;

};

exception CannotProceed {
NamingContext cxt;
Name rest_of_name;
230 CORBA for embedded, v1.0

};

exception InvalidName{};

exception AlreadyBound {};

exception NotEmpty{};

void bind(in Name n, in Object obj)
raises(

NotFound, CannotProceed,
InvalidName, AlreadyBound

);

void rebind(in Name n, in Object obj)
raises(NotFound, CannotProceed, InvalidName);

void bind_context(in Name n, in NamingContext nc)
raises(NotFound, CannotProceed,

 InvalidName, AlreadyBound
);

void rebind_context(in Name n, in NamingContext nc)
raises(NotFound, CannotProceed, InvalidName);

Object resolve (in Name n)
raises(NotFound, CannotProceed, InvalidName);

void unbind(in Name n)
raises(NotFound, CannotProceed, InvalidName);

NamingContext new_context();
NamingContext bind_new_context(in Name n)

raises(
NotFound, AlreadyBound,
CannotProceed, InvalidName

);

void destroy() raises(NotEmpty);

void list(
in unsigned long how_many,
out BindingList bl,
out BindingIterator bi

);

};

interface BindingIterator {
boolean next_one(out Binding b);
boolean next_n(in unsigned long, how_many, out BindingList bl);
CORBA for embedded, v1.0 231

void destroy();
};

interface NamingContextExt: NamingContext {
typedef string StringName;
typedef string Address;
typedef string URLString;

StringName to_string(in Name n) raises(InvalidName);
Name to_name(in StringName sn)

raises(InvalidName);

exception InvalidAddress {};

URLString to_url(in Address addr, in StringName sn)
raises(InvalidAddress, InvalidName);

Object resolve_str(in StringName sn)
raises(

NotFound, CannotProceed,
InvalidName
);

};
};
#endif // _COSNAMING_IDL_
232 CORBA for embedded, v1.0

14 Event Service

Compliance

Conformant implementations of the CORBA/e Compact Profile must comply with all clauses of this chapter. There are no
requirements for conformant implementations of the CORBA/e Micro Profile in this chapter.

14.1 Overview

A standard CORBA request results in the synchronous execution of an operation by an object. If the operation defines
parameters or return values, data is communicated between the client and the server. A request is directed to a particular
object. For the request to be successful, both the client and the server must be available. If a request fails because the
server is unavailable, the client receives an exception and must take some appropriate action.

In some scenarios, a more decoupled communication model between objects is required. For example:

• A system administration tool is interested in knowing if a disk runs out of space. The software managing a disk is
unaware of the existence of the system administration tool. The software simply reports that the disk is full. When a
disk runs out of space, the system administration tool opens a window to inform the user which disk has run out of
space.

• A property list object is associated with an application object. The property list object is physically separate from the
application object. The application object is interested in the changes made to its properties by a user. The properties
can be changed without involving the application object. That is, in order to have reasonable response time for the user,
changing a property does not activate the application object. However, when the application object is activated, it
needs to know about the changes to its properties.

• A CASE tool is interested in being notified when a source program has been modified. The source program simply
reports when it is modified. It is unaware of the existence of the CASE tool. In response to the notification, the CASE
tool invokes a compiler.

• Several documents are linked to a spreadsheet. The documents are interested in knowing when the value of certain
cells have changed. When the cell value changes, the documents update their presentations based on the spreadsheet.
Furthermore, if a document is unavailable because of a failure, it is still interested in any changes to the cells and wants
to be notified of those changes when it recovers.

14.1.1 Event Communication

The Event Service decouples the communication between objects. The Event Service defines two roles for objects: the
supplier role and the consumer role. Suppliers produce event data and consumers process event data. Event data are
communicated between suppliers and consumers by issuing standard CORBA requests.

There are two approaches to initiating event communication between suppliers and consumers, and two orthogonal
approaches to the form that the communication can take.

The two approaches to initiating event communication are called the push model and the pull model. The push model
allows a supplier of events to initiate the transfer of the event data to consumers. The pull model allows a consumer of
events to request the event data from a supplier. In the push model, the supplier is taking the initiative; in the pull model,
the consumer is taking the initiative.
CORBA for embedded, v1.0 233

The communication itself can be either generic or typed. In the generic case, all communication is by means of generic
push or pull operations that take a single parameter that packages all the event data. In the typed case, communication
is via operations defined in OMG IDL. Event data is passed by means of the parameters, which can be defined in any
manner desired.

An event channel is an intervening object that allows multiple suppliers to communicate with multiple consumers
asynchronously. An event channel is both a consumer and a supplier of events. Event channels are standard CORBA
objects and communication with an event channel is accomplished using standard CORBA requests.

14.1.2 Example Scenario

This section provides a general scenario that illustrates how the Event Service can be used.

The Event Service can be used to provide “change notification.” When an object is changed (its state is modified), an
event can be generated that is propagated to all interested parties. For example, when a spreadsheet cell object is
modified, all compound documents which contain a reference (link) to that cell can be notified (so the document can
redisplay the referenced cell, or recalculate values that depend on the cell). Similarly, when an engineering specification
object is modified, all engineers who have registered an interest in the specification can be notified that the specification
has changed.

In this scenario, objects that can be “changed” act as suppliers, parties interested in receiving notifications of changes act
as consumers, and one or more event channel objects are used as intermediaries between consumers and suppliers. Either
the push or the pull model can be used at either end.

If the push model is used by suppliers, objects that can be changed support the PushSupplier interface so that event
communication can be discontinued. Use the EventChannel, the SupplierAdmin, and the ProxyPushConsumer
interfaces to register as suppliers of events, and use the ProxyPushConsumer interface to push events to event
channels.

When a change occurs to an object, a changeable object invokes a push operation on the channel. It provides as an
argument to the push operation information that describes the event. This information is of data type any - it can be as
simple or as complex as is necessary. For example, the event information might identify the object reference of the object
that has been changed, it might identify the kind of change that has occurred, it might provide a new displayable image of
the changed object or it might identify one or more additional objects that describe the change that has been made.

If the pull model is used by consumers, all client objects that want to be notified of changes support the PullConsumer
interface so communication can be discontinued, using the EventChannel, ConsumerAdmin, and
ProxyPullSupplier interfaces to register as consumers of events, and using the ProxyPullSupplier interface to pull
events from event channels.

The consumer may use either a blocking or non-blocking mechanism for receiving notification of changes. Using the
try_pull operation, the consumer can periodically poll the channel for events. Alternatively, the consumer can use the
pull operation which will block the consumer’s execution thread until an event is generated by some supplier.

Event channels act as the intermediaries between the objects being changed and objects interested in knowing about
changes. The channels that provide change notification can be general purpose, well-known objects (e.g., “persistent
server-based objects” that are run as part of a workgroup-wide framework of objects that provide “desktop services”) or
specific-to-task objects (e.g., temporary objects that are created when needed). Objects that use event channels may locate
the channels by looking for them in a persistently available server (e.g., by looking for them in a naming service) or they
may be given references to these objects as part of a specific-to-task object protocol (e.g., when an “open” operation is
invoked on an object, the object may return the reference to an event channel which the caller should use until the object
is closed).
234 CORBA for embedded, v1.0

Event channels determine how changes are propagated between suppliers and consumers (i.e., the qualities of service).
For example, an event channel determines the persistence of an event. The channel may keep an event for a specified
period of time, passing it along to any consumer who registers with the channel during that period of time (e.g., it may
keep event notifications about changes to engineering specifications for a week). Alternatively, the channel may only pass
on events to consumers who are currently waiting for notification of changes (e.g., notifications of changes to a
spreadsheet cell may only be sent to consumers who are currently displaying that cell).

This scenario exemplifies one way the event service described here forms a basic building block used in providing higher-
level services specific to an application or common facilities framework of objects.

Instead of using the generic event channel, a typed event channel could also have been used.

14.1.3 Design Principles

The Event Service design satisfies the following principles:

• Events work in a distributed environment. The design does not depend on any global, critical, or centralized service.

• Event services allow multiple consumers of an event and multiple event suppliers.

• Consumers can either request events or be notified of events, whichever is more appropriate for application design and
performance.

• Consumers and suppliers of events support standard OMG IDL interfaces; no extensions to CORBA are necessary to
define these interfaces.

• A supplier can issue a single standard request to communicate event data to all consumers at once.

• Suppliers can generate events without knowing the identities of the consumers. Conversely, consumers can receive
events without knowing the identities of the suppliers.

• The Event Service interfaces allow multiple qualities of service, for example, for different levels of reliability. It also
allows for future interface extensions, such as for additional functionality.

• The Event Service interfaces are capable of being implemented and used in different operating environments, for
example, in environments that support threading and those that do not.

14.1.4 Resolution of Technical Issues

This specification addresses the issues identified for event services in the OMG Object Services Architecture1 document as
follows:

• Distributed environment: The interfaces are designed to allow consumers and suppliers of events to be disconnected
from time to time, and do not require centralized event identification, processing, routing, or other services that might
be a bottleneck or a single point of failure.

Events themselves are not objects because the CORBA distributed object model does not support passing objects by
value.

• Event generation: The specification describes how events are generated and delivered in a very general fashion, with

1. Object Services Architecture, Document Number 92-8-4, Object Management Group, Framingham, MA, 1992.
CORBA for embedded, v1.0 235

event channels as intermediate routing points. It does not require (or preclude) polling, nor does it require that an event
supplier directly notify every interested party.

• Events involving multiple objects: Complex events may be handled by constructing a notification tree of event
consumer/suppliers checking for successively more specific event predicates. The specification does not require a
general or global event predicate evaluation service as this may not be sufficiently reliable, efficient, or secure in a
distributed, heterogeneous (potentially decoupled) environment.

• Scoping, grouping, and filtering events: The specification takes advantage of CORBA’s distributed scoping and
grouping mechanisms for the identifier and type of events. Event filtering is easily achieved through event channels
that selectively deliver events from suppliers to consumers. Event channels can be composed; that is, one event
channel can consume events supplied by another. Typed event channels can provide filtering based on event type.

• Registration and generation of events: Consumers and suppliers register with event channels themselves. Event
channels are objects and they are found by any fashion that objects can be found. A global registration service is not
required; any object that conforms to the IDL interface may consume an event.

• Event parameters: The specification supports a parameter of type any that can be delivered with an event, used for
application-specific data.

• Forgery and secure events: Because event suppliers are objects, the specification leverages any ORB work on
security for object references and communication.

• Performance: The design is a minimalist one, and requires only one ORB call per event received. It supports both
push-style and pull-style notification to avoid inefficient event polling. Since event suppliers, consumers, and channels
are all ORB objects, the service directly benefits from a Library Object Adapter or any other ORB optimizations.

• Formalized Event Information: For specific application environments and frameworks it may be beneficial to
formalize the data associated with an event (defined in this specification as type any). This can be accomplished by
defining a typed structure for this information. Depending on the needs of the environment, the kinds of information
included might be a priority, timestamp, origin string, and confirmation indicator. This information might be solely for
the benefit of the event consumer or might also be interpreted by particular event channel implementations.

• Confirmation of Reception: Some applications may require that consumers of an event provide an explicit
confirmation of reception back to the supplier. This can be supported effectively using a “reverse” event channel
through which consumers send back confirmations as normal events. This obviates the need for any special
confirmation mechanism. However, strict atomic delivery between all suppliers and all consumers requires additional
interfaces.

14.1.5 Quality of Service

Application domains requiring event-style communication have diverse reliability requirements, from “at-most-once”
semantics (best effort) to guaranteed “exactly-once” semantics, availability requirements, throughput requirements,
performance requirements (i.e., how fast events are disseminated), and scalability requirements.

Clearly no single implementation of the Event Service can optimize such a diverse range of technical requirements.
Hence, multiple implementations of event services are to be expected, with different services targeted toward different
environments. As such, the event interfaces do not dictate qualities of service. Different implementations of the Event
Service interfaces can support different qualities of service to meet different application needs.

For example, an implementation that trades at most once delivery to a single consumer in favor of performance is useful
for some applications; an implementation that favors performance but cannot preclude duplicate delivery is useful for
other applications. Both are acceptable implementations of the interfaces described in this chapter.
236 CORBA for embedded, v1.0

Clearly, an implementation of an event channel that discards all events is not a useful implementation. Useful
implementations will at least support “best-effort” delivery of events.

Note that the interfaces defined in this chapter are incomplete for implementations that support strict notions of atomicity.
That is, additional interfaces are needed by an implementation to guarantee that either all consumers receive an event or
none of the consumers receive an event; and that all events are received in the same order by all consumers.

14.1.6 Generic Event Communication

There are two basic models for communicating event data between suppliers and consumers: the push model and the pull
model.

14.1.6.1 Push Model

In the push model, suppliers “push” event data to consumers; that is, suppliers communicate event data by invoking push
operations on the PushConsumer interface.

To set up a push-style communication, consumers and suppliers exchange PushConsumer and PushSupplier object
references. Event communication can be broken by invoking a disconnect_push_consumer operation on the
PushConsumer interface or by invoking a disconnect_push_supplier operation on the PushSupplier interface. If
the PushSupplier object reference is nil, the connection cannot be broken via the supplier.

Figure 14.1 illustrates push-style communication between a supplier and a consumer.

Figure 14.1- Push-style Communication Between a Supplier and a Consumer

14.1.6.2 Pull Model

In the pull model, consumers “pull” event data from suppliers; that is, consumers request event data by invoking pull
operations on the PullSupplier interface.

To set up a pull-style communication, consumers and suppliers must exchange PullConsumer and PullSupplier object
references. Event communication can be broken by invoking a disconnect_pull_consumer operation on the
PullConsumer interface or by invoking a disconnect_pull_supplier operation on the PullSupplier interface. If the
PullConsumer object reference is nil, the connection cannot be broken via the consumer.

Figure 14.2 illustrates pull-style communication between a supplier and a consumer.

PushSupplier

PushConsumer

supplierconsumer
CORBA for embedded, v1.0 237

Figure 14.2- Pull-style Communication Between a Supplier and a Consumer

14.2 The CosEventComm Module

The communication styles shown in Chapter 1 are both supported by four simple interfaces: PushConsumer,
PushSupplier, and PullSupplier, PullConsumer. These interfaces are defined in an OMG IDL module named
CosEventComm, as shown below.

module CosEventComm {

exception Disconnected{};

interface PushConsumer {
void push (in any data) raises(Disconnected);
void disconnect_push_consumer();

};

 interface PushSupplier {
void disconnect_push_supplier();

};

interface PullSupplier {
any pull () raises(Disconnected);
any try_pull (out boolean has_event)

raises(Disconnected);
void disconnect_pull_supplier();

};

interface PullConsumer {
void disconnect_pull_consumer();

};

};

14.2.1 The PushConsumer Interface

A push-style consumer supports the PushConsumer interface to receive event data.

PullConsumer

PullSupplier

supplierconsumer
238 CORBA for embedded, v1.0

interface PushConsumer {
void push (in any data) raises(Disconnected);
void disconnect_push_consumer();

};

A supplier communicates event data to the consumer by invoking the push operation and passing the event data as a
parameter.

The disconnect_push_consumer operation terminates the event communication; it releases resources used at the
consumer to support the event communication. The PushConsumer object reference is disposed. Calling
disconnect_push_consumer causes the implementation to call the disconnect_push_supplier operation on the
corresponding PushSupplier interface (if that interface is known).

14.2.2 The PushSupplier Interface

A push-style supplier supports the PushSupplier interface.

interface PushSupplier {
void disconnect_push_supplier();

};

The disconnect_push_supplier operation terminates the event communication; it releases resources used at the
supplier to support the event communication. The PushSupplier object reference is disposed. Calling
disconnect_push_supplier causes the implementation to call the disconnect_push_consumer operation on the
corresponding PushConsumer interface (if that interface is known).

14.2.3 The PullSupplier Interface

A pull-style supplier supports the PullSupplier interface to transmit event data.

interface PullSupplier {
any pull () raises(Disconnected);
any try_pull (out boolean has_event)

raises(Disconnected);
void disconnect_pull_supplier();

};

A consumer requests event data from the supplier by invoking either the pull operation or the try_pull operation on the
supplier.

• The pull operation blocks until the event data is available or an exception is raised.2 It returns the event data to the
consumer.

• The try_pull operation does not block: if the event data is available, it returns the event data and sets the has_event
parameter to true; if the event is not available, it sets the has_event parameter to false and the event data is returned
as long with an undefined value.

2. This, of course, may be a standard CORBA exception.
CORBA for embedded, v1.0 239

The disconnect_pull_supplier operation terminates the event communication; it releases resources used at the supplier
to support the event communication. The PullSupplier object reference is disposed. Calling
disconnect_pull_supplier causes the implementation to call the disconnect_pull_consumer operation on the
corresponding PullConsumer interface (if that interface is known).

14.2.4 The PullConsumer Interface

A pull-style consumer supports the PullConsumer interface.

interface PullConsumer {
void disconnect_pull_consumer();

};

The disconnect_pull_consumer operation terminates the event communication; it releases resources used at the
consumer to support the event communication.

The PullConsumer object reference is disposed. Calling disconnect_pull_consumer causes the implementation to
call the disconnect_pull_supplier operation on the corresponding PullSupplier interface (if that interface is known).

14.2.5 Disconnection Behavior

Calling a disconnect operation on a consumer or supplier interface may cause a call to the corresponding disconnect
operation on the connected supplier or consumer. Implementations must take care to avoid infinite recursive calls to these
disconnect operations. If a consumer or supplier has received a disconnect call and subsequently receives another
disconnect call, it shall raise a CORBA::OBJECT_NOT_EXIST exception.

14.3 Event Channels

The event channel is a service that decouples the communication between suppliers and consumers. The event channel is
itself both a consumer and a supplier of the event data.

An event channel can provide asynchronous communication of event data between suppliers and consumers. Although
consumers and suppliers communicate with the event channel using standard CORBA requests, the event channel does
not need to supply the event data to its consumer at the same time it consumes the data from its supplier.

14.3.1 Push-Style Communication with an Event Channel

The supplier pushes event data to the event channel; the event channel, in turn, pushes event data to the consumer.
Figure 14.3 illustrates a push-style communication between a supplier and the event channel, and a consumer and the
event channel.
240 CORBA for embedded, v1.0

Figure 14.3- Push-style Communication Between a Supplier and an Event Channel, and a
 Consumer and an Event Channel

14.3.2 Pull-Style Communication with an Event Channel

The consumer pulls event data from the event channel; the event channel, in turn, pulls event data from the supplier.
Figure 14.4 illustrates a pull-style communication between a supplier and the event channel, and a consumer and the event
channel.

Figure 14.4- Pull-style communication between a supplier and an event channel and a
 consumer and the event channel

14.3.3 Mixed Style Communication with an Event Channel

An event channel can communicate with a supplier using one style of communication, and communicate with a consumer
using a different style of communication.

Figure 14.5 illustrates a push-style communication between a supplier and an event channel, and a pull-style
communication between a consumer and the event channel. The consumer pulls the event data that the supplier has
pushed to the event channel.

event channel

supplierconsumer

PushConsumerPushConsumer

PushSupplier PushSupplier

event channel

supplierconsumer

PullConsumerPullConsumer

PullSupplier PullSupplier
CORBA for embedded, v1.0 241

Figure 14.5- Push-style Communication Between a Supplier and an Event Channel, and
 Pull-style Communication Between a Consumer and an Event Channel

14.3.4 Multiple Consumers and Multiple Suppliers

Figure 14.3, Figure 14.4, and Figure 14.5 illustrate event channels with a single supplier and a single consumer. An event
channel can also provide many-to-many communication. The channel consumes events from one or more suppliers, and
supplies events to one or more consumers. Subject to the quality of service of a particular implementation, an event
channel provides an event to all consumers.

Figure 14.6 illustrates an event channel with multiple push-style consumers and multiple push-style suppliers.

Figure 14.6- An Event Channel with Multiple Suppliers and Multiple Consumers

An event channel can support consumers and suppliers using different communication models.

If an event channel has pull suppliers, it continues to pull events from the suppliers, regardless of whether any consumers
are connected to the channel.

event channel

supplierconsumer

PushSupplier

PushConsumer

PullConsumer

PullSupplier

event channel

supplier

consumer

PushSupplier

PushConsumer

PushSupplier

PushConsumer

consumer

PushSupplier

PushConsumer

supplier

PushSupplier

PushConsumer
242 CORBA for embedded, v1.0

14.3.5 Event Channel Administration

The event channel is built up incrementally. When an event channel is created, no suppliers or consumers are connected
to the event channel. Upon creation of the channel, the factory returns an object reference that supports the
EventChannel interface, as illustrated in Figure 14.7.

Figure 14.7- A newly created event channel. The channel has no suppliers or consumers.

The EventChannel interface defines three administrative operations: an operation returning a ConsumerAdmin object
for adding consumers, an operation returning a SupplierAdmin object for adding suppliers, and an operation for
destroying the channel.

The operations for adding consumers return proxy suppliers. A proxy supplier is similar to a normal supplier (in fact, it
inherits the interface of a supplier), but includes an additional method for connecting a consumer to the proxy supplier.

The operations for adding suppliers return proxy consumers. A proxy consumer is similar to a normal consumer (in fact,
it inherits the interface of a consumer), but includes an additional method for connecting a supplier to the proxy
consumer.

Registration of a producer or consumer is a two step process. An event-generating application first obtains a proxy
consumer from a channel, then “connects” to the proxy consumer by providing it with a supplier. Similarly, an event-
receiving application first obtains a proxy supplier from a channel, then “connects” to the proxy supplier by providing it
with a consumer.

The reason for the two-step registration process is to support composing event channels by an external agent. Such an
agent would compose two channels by obtaining a proxy supplier from one and a proxy consumer from the other, and
passing each of them a reference to the other as part of their connect operation.

Proxies are in one of three states: disconnected, connected, or destroyed. Figure 14.8 gives a state diagram for a proxy. The
nodes of the diagram are the states and the edges are labeled with the operations that change the state of the proxy. Push/
pull operations are only valid in the connected state.

event channel

EventChannel
CORBA for embedded, v1.0 243

Figure 14.8- State diagram of a proxy

14.4 The CosEventChannelAdmin Module

The CosEventChannelAdmin module defines the interfaces for making connections between suppliers and consumers.
The CosEventChannelAdmin module is defined below.

#include “CosEventComm.idl”

module CosEventChannelAdmin {

 exception AlreadyConnected {};
exception TypeError {};

interface ProxyPushConsumer: CosEventComm::PushConsumer {
void connect_push_supplier(

in CosEventComm::PushSupplier push_supplier)
raises(AlreadyConnected);

};

interface ProxyPullSupplier: CosEventComm::PullSupplier {
void connect_pull_consumer(

in CosEventComm::PullConsumer pull_consumer)
raises(AlreadyConnected);

};

interface ProxyPullConsumer: CosEventComm::PullConsumer {
void connect_pull_supplier(

in CosEventComm::PullSupplier pull_supplier)
raises(AlreadyConnected,TypeError);

};

interface ProxyPushSupplier: CosEventComm::PushSupplier {
void connect_push_consumer(

in CosEventComm::PushConsumer push_consumer)
raises(AlreadyConnected, TypeError);

};

disconnected connected destroyed
obtain connect disconnect

event
communication
244 CORBA for embedded, v1.0

interface ConsumerAdmin {
ProxyPushSupplier obtain_push_supplier();
ProxyPullSupplier obtain_pull_supplier();

};

interface SupplierAdmin {
ProxyPushConsumer obtain_push_consumer();
ProxyPullConsumer obtain_pull_consumer();

};

interface EventChannel {
ConsumerAdmin for_consumers();
SupplierAdmin for_suppliers();
void destroy();

};

};

14.4.1 The EventChannel Interface

The EventChannel interface defines three administrative operations: adding consumers, adding suppliers, and
destroying the channel.

interface EventChannel {
ConsumerAdmin for_consumers();
SupplierAdmin for_suppliers();
void destroy();

};

Any object that possesses an object reference that supports the EventChannel interface can perform these operations:

• The ConsumerAdmin interface allows consumers to be connected to the event channel. The for_consumers
operation returns an object reference that supports the ConsumerAdmin interface.

• The SupplierAdmin interface allows suppliers to be connected to the event channel. The for_suppliers operation
returns an object reference that supports the SupplierAdmin interface.

• The destroy operation destroys the event channel. Destroying an event channel destroys all ConsumerAdmin and
SupplierAdmin objects that were created via that channel. Destruction of a ConsumerAdmin or SupplierAdmin
object causes the implementation to invoke the disconnect operation on all proxies that were created via that
ConsumerAdmin or SupplierAdmin object.

Consumer administration and supplier administration are defined as separate objects so that the creator of the channel can
control the addition of suppliers and consumers. For example, a creator might wish to be the sole supplier of event data
but allow many consumers to be connected to the channel. In such a case, the creator would simply export the
ConsumerAdmin object.
CORBA for embedded, v1.0 245

14.4.2 The ConsumerAdmin Interface

The ConsumerAdmin interface defines the first step for connecting consumers to the event channel; clients use it to
obtain proxy suppliers.

interface ConsumerAdmin {
ProxyPushSupplier obtain_push_supplier();
ProxyPullSupplier obtain_pull_supplier();

};

The obtain_push_supplier operation returns a ProxyPushSupplier object. The ProxyPushSupplier object is then
used to connect a push-style consumer.

The obtain_pull_supplier operation returns a ProxyPullSupplier object. The ProxyPullSupplier object is then used
to connect a pull-style consumer.

14.4.3 The SupplierAdmin Interface

The SupplierAdmin interface defines the first step for connecting suppliers to the event channel; clients use it to obtain
proxy consumers.

interface SupplierAdmin {
ProxyPushConsumer obtain_push_consumer();
ProxyPullConsumer obtain_pull_consumer();

};

The obtain_push_consumer operation returns a ProxyPushConsumer object. The ProxyPushConsumer object
is then used to connect a push-style supplier.

The obtain_pull_consumer operation returns a ProxyPullConsumer object. The ProxyPullConsumer object is
then used to connect a pull-style supplier.

14.4.4 The ProxyPushConsumer Interface

The ProxyPushConsumer interface defines the second step for connecting push suppliers to the event channel.

interface ProxyPushConsumer: CosEventComm::PushConsumer {
void connect_push_supplier(

in CosEventComm::PushSupplier push_supplier)
raises(AlreadyConnected);

};

A nil object reference may be passed to the connect_push_supplier operation; if so a channel cannot invoke the
disconnect_push_supplier operation on the supplier; the supplier may be disconnected from the channel without
being informed. If a non-nil reference is passed to connect_push_supplier, the implementation calls
disconnect_push_supplier via that reference when the ProxyPushConsumer is destroyed.

If the ProxyPushConsumer is already connected to a PushSupplier, then the AlreadyConnected exception is raised.
246 CORBA for embedded, v1.0

14.4.5 The ProxyPullSupplier Interface

The ProxyPullSupplier interface defines the second step for connecting pull consumers to the event channel.

interface ProxyPullSupplier: CosEventComm::PullSupplier {
void connect_pull_consumer(

in CosEventComm::PullConsumer pull_consumer)
raises(AlreadyConnected);

};

A nil object reference may be passed to the connect_pull_consumer operation; if so a channel cannot invoke a
disconnect_pull_consumer operation on the consumer; the consumer may be disconnected from the channel without
being informed. If a non-nil reference is passed to connect_pull_consumer, the implementation calls
disconnect_pull_consumer via that reference when the ProxyPullSupplier is destroyed.

If the ProxyPullSupplier is already connected to a PullConsumer, then the AlreadyConnected exception is raised.

14.4.6 The ProxyPullConsumer Interface

The ProxyPullConsumer interface defines the second step for connecting pull suppliers to the event channel.

interface ProxyPullConsumer: CosEventComm::PullConsumer {
void connect_pull_supplier(

in CosEventComm::PullSupplier pull_supplier)
raises(AlreadyConnected, TypeError);

};

The implementation calls disconnect_pull_supplier on the reference passed to connect_pull_supplier when the
ProxyPullConsumer is destroyed.

Implementations shall raise the CORBA standard BAD_PARAM exception if a nil object reference is passed to the
connect_pull_supplier operation.

If the ProxyPullConsumer is already connected to a PullSupplier, then the AlreadyConnected exception is raised.

An implementation of a ProxyPullConsumer may put additional requirements on the interface supported by the pull
supplier. If the pull supplier does not meet those requirements, the ProxyPullConsumer raises the TypeError exception.

14.4.7 The ProxyPushSupplier Interface

The ProxyPushSupplier interface defines the second step for connecting push consumers to the event channel.

interface ProxyPushSupplier: CosEventComm::PushSupplier {
void connect_push_consumer(

in CosEventComm::PushConsumer push_consumer)
raises(AlreadyConnected, TypeError);

};

The implementation calls disconnect_push_consumer on the reference passed to connect_push_consumer when
the ProxyPushSupplier is destroyed.
CORBA for embedded, v1.0 247

Implementations shall raise the CORBA standard BAD_PARAM exception if a nil object reference is passed to the
connect_push_consumer operation.

If the ProxyPushSupplier is already connected to a PushConsumer, then the AlreadyConnected exception is raised.

An implementation of a ProxyPushSupplier may put additional requirements on the interface supported by the push
consumer. If the push consumer does not meet those requirements, the ProxyPushSupplier raises the TypeError
exception.

14.5 Consolidated IDL

14.5.1 CosEventComm

//File: CosEventComm.idl
//Part of the Event Service

#ifndef _COS_EVENT_COMM_IDL_
#define _COS_EVENT_COMM_IDL_
#pragma prefix "omg.org"

#if defined(CORBA_E_COMPACT)

module CosEventComm
{
ifndef _PRE_3_0_COMPILER_
 typeprefix "omg.org";
endif // _PRE_3_0_COMPILER_

exception Disconnected{};

interface PushConsumer
{

void push (in any data) raises(Disconnected);
void disconnect_push_consumer();

};

 interface PushSupplier
{

void disconnect_push_supplier();
};

};
#endif /* defined(CORBA_E_COMPACT) */
#endif /* ifndef _COS_EVENT_COMM_IDL_ */

14.5.2 CosEventChannelAdmin

// File: CosEventChannelAdmin.idl
// IDL
#ifndef _COS_EVENT_CHANNEL_ADMIN_IDL_
248 CORBA for embedded, v1.0

#define _COS_EVENT_CHANNEL_ADMIN_IDL_

#if defined(CORBA_E_COMPACT)

#include <CosEventComm.idl>
#pragma prefix "omg.org"
module CosEventChannelAdmin {
ifndef _PRE_3_0_COMPILER_
 typeprefix "omg.org";
endif // _PRE_3_0_COMPILER_

 exception AlreadyConnected {};
exception TypeError {};

interface ProxyPushConsumer: CosEventComm::PushConsumer {
void connect_push_supplier(

in CosEventComm::PushSupplier push_supplier)
raises(AlreadyConnected);

};

interface ProxyPushSupplier: CosEventComm::PushSupplier {
void connect_push_consumer(

in CosEventComm::PushConsumer push_consumer)
raises(AlreadyConnected, TypeError);

};

interface ConsumerAdmin {
ProxyPushSupplier obtain_push_supplier();

};

interface SupplierAdmin {
ProxyPushConsumer obtain_push_consumer();

};

interface EventChannel {
ConsumerAdmin for_consumers();
SupplierAdmin for_suppliers();
void destroy();

};
};
#endif /* if defined(CORBA_E_COMPACT) */
#endif /* ifndef _COS_EVENT_CHANNEL_ADMIN_IDL_ */
CORBA for embedded, v1.0 249

250 CORBA for embedded, v1.0

15 Lightweight Log Service

Compliance

Conformant implementations of the CORBA/e Compact Profile must comply with all clauses of this chapter. There are no
requirements for conformant implementations of the CORBA/e Micro Profile in this chapter.

15.1 Overview

This specification defines a Lightweight Logging Service intended for use in resource-constraint systems like embedded
and/or real-time CORBA systems.

The Lightweight Logging Service specification contained in this document is primarily intended as an efficient, central
facility inside an embedded or real-time environment to accept and manage logging records. These records are emitted
from applications residing in the same environment and stored in a memory-only storage area owned and managed by the
Lightweight Logging Service. The service was designed to be a mostly compatible subset of the Telecom Log Service,
however, it differs in the way logging records are written to the log; or looked up and retrieved from the log.

This service has wide application. It will find its way into all areas of embedded systems, like machine control, onboard
vehicle systems, etc., but also into ubiquitous computing devices like pocket computer and electronic organizers. But also
“regular” application areas will benefit, if just a small, memory-only logging facility is required.

15.2 Architecture

In consideration of the resource constraints imposed by the embedded system environment, the Lightweight Logging
Service is a free-standing, self-contained service, and not connected to an event channel or similar infrastructure. The core
of the Lightweight Logging Service is represented by the class Log, which encapsulates the storage area for logging
records and provides the methods comprising the logging functionality. However, the class Log does not communicate
directly with the rest of the environment. Communication with the surrounding environment is handled through three
distinct interfaces.

The above three interfaces are derived from an abstract super interface LogStatus, which provides informational
functionality common to all three interfaces.

LogProducer This interface allows the insertion of new log records into the logging storage area
encapsulated by the Log class. In favor of preserving the overall operational integrity of the
system, no guarantee is made that a logging record is accepted and stored if the logging
service is unable to process and /or store it.

LogConsumer This interface allows the retrieval of logging records from the storage area encapsulated by
the Log class.

LogAdmin This interface provides the management functionality to operate and manage the logging
service.
CORBA for embedded, v1.0 251

Figure 15.1- Lightweight Logging Service PIM

As shown in Figure 15.1, the central piece of the Lightweight Logging Service is the class Log, which encapsulates the
storage area for logging records and provides all necessary operations to manage and operate the Lightweight Logging
Service. Note, however, that the operations should not be directly accessible to any clients of the logging service. Instead,
a set of interfaces is provided to give controlled access to each kind of clients. This is kind of a “poor man’s” protection
system, which provides sufficient protection against accidental misuse, while, at the same time, giving tribute to the
severe resource constraints common in embedded devices.

LogConsumer

getRecordIdFromTime()
retrieveRecords()
retrieveRecordsByLevel()
retrieveRecordsByProducerName()
retrieveRecordsByProducerId()

<<interface>>
LogProducer

writeRecords()
writeRecord()

<<interface>>

LogStatus

getMaxSize()
getCurrentSize()
getNumRecords()
getLogFullAction()
getAdministrativeState()
getAvailabilityStatus()
getOperationalState()

<<interface>>

LogAdministrator

setMaxSize()
setLogFullAction()
setAdministrativeState()
clearLog()
destroy()

<<interface>>

Log

LogRecord

id : RecordId
time : LogTime

0..*0..*

ProducerLogRecord

producerId : String
producerName : String
level : LogLevel
logData : StringLogTime

nanoseconds : long
seconds : long

RecordId
<<Integer>>

LogLevel
<<Integer>>

* Currently Assigned Log Levels *

SECURITY_ALARM = 1
FAILURE_ALARM = 2
DEGRADED_ALARM = 3
EXCEPTION_ERROR = 4
FLOW_CONTROL_ERROR = 5
RANGE_ERROR = 6
USAGE_ERROR = 7
ADMINISTRATIVE_EVENT = 8
STATISTIC_REPORT = 9

Level 0 is invalid and the 16 levels
from Level 10 to 26 are reserved
for use in program debugging.

The Log class
must ensure that
Record IDs are
unique within a
particular Log.
252 CORBA for embedded, v1.0

15.3 Types and Data Structures

15.3.1 InvalidParam Exception

exception InvalidParam { string details; };

The InvalidParam exception indicates that a provided parameter was invalid. Details about the cause for this exception
are delivered in the string attribute details.

15.3.2 LogLevel

Type LogLevel is an enumeration-like type that is utilized to identify log levels.

unsigned short LogLevel;

const unsigned short SECURITY_ALARM = 1;
const unsigned short FAILURE_ALARM = 2;
const unsigned short DEGRADED_ALARM =3;
const unsigned short EXCEPTION_ERROR =4;
const unsigned short FLOW_CONTROL_ERROR =5;
const unsigned short RANGE_ERROR =6;
const unsigned short USAGE_ERROR = 7;
const unsigned short ADMINISTRATIVE_EVENT = 8;
const unsigned short STATISTIC_REPORT = 9;
// Values ranging from 10 to 26 are reserved for
// 16 debugging levels.

The LogLevel allows a classification of the logging record. The value provided is recorded in the logging record and
provided to the consumer at retrieval, but it has no particular meaning or side effects during storage of the record in the
Log.

15.3.3 OperationalState

enum OperationalState {disabled, enabled};

The enumeration OperationalStateType defines the Log states of operation. When the Log is enabled it is fully
functional and is available for use by log producer and log consumer clients. A Log that is disabled has encountered a
runtime problem and is not available for use by log producers or log consumers. The internal error conditions that cause
the Log to set the operational state to enabled or disabled are implementation specific.

15.3.4 AdministrativeState

enum AdministrativeState {locked, unlocked};

The AdministrativeState type denotes the active logging state of an operational Log. When set to unlocked the Log
will accept records for storage, per its operational parameters. When set to locked the Log will not accept new log
records and records can be read or deleted only.
CORBA for embedded, v1.0 253

15.3.5 LogFullAction

enum LogFullAction {WRAP, HALT};

This type specifies the action that the Log should take when its internal buffers become full of data, leaving no room for
new records to be written. WRAP indicates that the Log will overwrite the oldest LogRecords with the newest records,
as they are written to the Log. The Log will overwrite as many of the oldest LogRecords as needed to accommodate the
newest records. HALT indicates that the Log will stop logging when full.

15.3.6 LogAvailabilityStatus

struct AvailabilityStatus{
 boolean off_duty;
 boolean log_full;
};

The AvailabilityStatus denotes whether or not the Log is available for use. When true, off_duty indicates the Log is
locked (administrative state) or disabled (operational state). When true, log_full indicates the Log storage is full.

15.3.7 LogTime

struct LogTime {
 long seconds;
 long nanoseconds;
};

This type provides the time format used by the Log to time stamp LogRecords. Each field is intended to directly map to
the POSIX timespec structure.

Note – An implementation should exclusively use UTC for time recording to support location transparency.

15.3.8 ProducerLogRecord

struct ProducerLogRecord {
 string producerId;
 string producerName;
 LogLevel level;
 string logData;
};
typedef sequence <ProducerLogRecord>
ProducerLogRecordSequence;

Struct member Description

off_duty Indicates that the log is unavailable, if true.

log_full Indicates that the log storage area is full, if true.
254 CORBA for embedded, v1.0

Log producers format log records as defined in the structure ProducerLogRecord.

This structure represents a logging record written by a log producer client to the Log via the LogProducer interface.
Upon reception, it is encapsulated by the LogRecord described in Section 15.3.2, “LogLevel,” on page 253.

15.3.9 RecordId

typedef unsigned long long RecordId;

This type provides the unique record ID that is assigned to a LogRecord by the Log.

15.3.9.1 Mapping from the Platform Independent Model

This IDL type is the result of a one-to-one mapping from the UML classifier RecordId. Defined as an unsigned long long
it is capable to hold a 64 bit integer value, as required by the PIM.

15.3.9.2 Difference to the Telecom Log Service

The type RecordId is identical to the type used in the Telecom Log Service for simple log records.

15.3.10 LogRecord

struct LogRecord {
 RecordId id;
 LogTime time;
 ProducerLogRecord info;
};

typedef sequence<LogRecord> LogRecordSequence;

The LogRecord type defines the format of the log records as stored in the Log. The ‘info’ field is the
ProducerLogRecord that is written by a producer client to the Log.

Struct member Description

producerId This field uniquely identifies the source of a log record. The value is the component’s
identifier and should be unique for each log record producing component within the Domain.

producerName This field identifies the producer of a log record in textual format. This field is assigned by the
log producer, thus is not unique within the Domain (e.g., multiple instances of an application
will assign the same name to the ProducerName field).

level The level field can be used to classify the log record according to the LogLevel type.

logData This field contains the informational message being logged.
CORBA for embedded, v1.0 255

The LogRecordSequence type defines an unbounded sequence of LogRecords..

15.4 Logging Interfaces

Operations on the Log object are separated into three distinct concrete interfaces. Each of these interfaces represents a
different access kind or privilege. This represents a lightweight method of protection for the underlying Log object,
without adding any additional code. For the typically severe resource constrained embedded environments this
Lightweight Logging Service is addressing, the code saving is important, and the protection functionality is considered
sufficient.

15.4.1 Interface LogStatus

interface LogStatus {
unsigned long long get_max_size();
unsigned long long get_current_size();
unsigned long long get_n_records();
LogFullAction get_log_full_action();
AvailabilityStatus get_availability_status();
AdministrativeState get_administrative_state();
OperationalState get_operational_state();

};

The purpose of this interface is to make common operations equally available in the three concrete interfaces inherited
from this interface. These operations provide a common and consistent way to query the actual state of a Log object. No
state changes are permitted or implied through the operations offered in this interface.

From a client’s perspective, this interface should be considered as abstract; its operations should be invoked only in the
context of the inherited interfaces.

15.4.1.1 get_max_size

Returns the size of the logging storage area.

Parameters and Return

Exceptions

This function raises no exceptions.

Struct member Description

Id This field uniquely identifies a log record in the Log.

Time This field holds the timestamp for the record.

Info This field contains the logging record supplied by the producer.

Parameter Type Description

<return> unsigned long long The maximum size of the log storage area in bytes.
256 CORBA for embedded, v1.0

Description

Logging records are stored in a storage area encapsulated by the Log class. The available space in this storage area is
finite. This operation returns the maximum capacity in bytes of the storage area.

15.4.1.2 get_current_size

Returns the amount of log storage area currently occupied by logging records.

Parameters and Return

Exceptions

This function raises no exceptions.

Description

Logging records are stored in a storage area encapsulated by the Log class. The get_current_size operation returns
the size in bytes of the log storage area currently occupied by logging records. This value is less or equal to the total
storage area size returned by the get_max_size operation.

15.4.1.3 get_n_records

Returns the number of records presently stored in the Log.

Parameters and Return

Exceptions

This operation raises no exceptions.

Description

Logging records are stored in a storage area encapsulated by the Log class. The get_n_records operation returns the
number of logging records currently stored in the log storage area.

15.4.1.4 get_log_full_action

Returns the action taken when the storage area becomes full.

Parameter Type Description

<return> unsigned long long The size of the currently used log storage area in bytes.

Parameter Type Description

<return> unsigned long long The number of logging records currently stored in the storage
area.
CORBA for embedded, v1.0 257

Parameters and Return

Exceptions

This operation raises no exceptions.

Description

Since the storage space of the Log storage area is finite, the Logging Service has to take special action when the free
space is depleted. The kind of action is described by the LogFullAction type. The get_log_full_action operation
returns the information about which action the Logging Service will take when the storage area becomes full. The
possible values are HALT, which means no further logging records are accepted and stored; or WRAP, which means the
Log continues by overwriting the oldest records in the storage area.

15.4.1.5 get_availability_status

Returns the availability status of the Log.

Parameters and Return

Exceptions

This operation raises no exceptions.

Description

The ability of the Log to accept and store logging records might become impaired. The get_availability_status
operation is used to check the availability status of the Log. The returned instance of the AvailabilityStatus type
contains two Boolean values: off_duty, which indicates the log is disabled when true; and log_full, which indicates that
all free space is depleted in the log storage area.

15.4.1.6 get_administrative_state

Returns the administrative state of the Log.

Parameter Type Description

<return> LogFullAction The actually selected alternative of the LogFullAction
enumeration.

Parameter Type Description

<return> AvailabilityStatus An instance of the AvailabilityStatus representing the actual
status of the log.
258 CORBA for embedded, v1.0

Parameters and Return

Exceptions

This operation raises no exceptions.

Description

The ability of the logging service to accept and store new logging records can be affected by administrative action. The
get_administrative_state is used to read the administrative state of the Log. The possible states are locked and
unlocked. If the state is locked, no new records are accepted. Reading of already stored records is not affected.

15.4.1.7 get_operational_state

Returns the operational state of the Log.

Parameters and Return

Exceptions

This operation raises no exceptions.

Description

The get_operational_state operation returns the actual operational state of the log. Possible values are enabled,
which means the log is fully functional and available to log producer and log consumer clients; or disabled, which
indicates the log has encountered a runtime problem and is not available for use by log producers or log consumers.

15.4.2 Interface LogConsumer

interface LogConsumer : LogStatus {
RecordId get_record_id_from_time (in LogTime fromTime);
LogRecordSequence retrieve_records(inout RecordId currentId,

inout unsigned long howMany);
LogRecordSequence retrieve_records_by_level(

inout RecordId currentId,
inout unsigned long howMany,
in LogLevelSequence valueList);

LogRecordSequence retrieve_records_by_producer_id(
inout RecordId currentId,

Parameter Type Description

<return> AdministrativeState The actually selected alternative of the AdministrativeState
enumeration.

Parameter Type Description

<return> OperationalState The actually selected alternative of the OperationalState
enumeration.
CORBA for embedded, v1.0 259

inout unsigned long howMany,
in StringSeq valueList);

LogRecordSequence retrieve_records_by_producer_name(
inout RecordId currentId,
inout unsigned long howMany,
in StringSeq valueList);

};

15.4.2.1 get_record_id_from_time

Identify a record in the log record based on its time stamp.

Parameters and Return

Exceptions

This operation raises no exceptions.

Description

The get_record_id_from_time operation returns the record Id of the first record in the Log with a time stamp that
is greater than, or equal to, the time specified in the fromTime parameter. If the Log does not contain a record that meets
the criteria provided, then the RecordId returned corresponds to the next record that will be recorded in the future. In this
way, if this “future” recordId is passed into a retrieval operation, an empty record will be returned unless records have
been recorded since the time specified. Note that if the time specified in the fromTime parameter is in the future, there
is no guarantee that the resulting records returned by a retrieval operation will have a time stamp after the fromTime
parameter if the returned recordId from this invocation of the get_record_id_from_time operation is
subsequently used as input to the retrieveById operation.

15.4.2.2 retrieve_records

Retrieves a specified number of records from the Log.

Parameter Type Description

fromTime LogTime The timestamp with which to start the search.

<return> RecordId Record ID of the first record matching the timestamp.
260 CORBA for embedded, v1.0

Parameters and Return

Exceptions

This operation raises no exceptions.

Description

The retrieve_records operation returns a LogRecordSequence that begins with the record specified by the
currentId parameter. The number of records in the LogRecordSequence returned by the retrieve_records
operation is equal to the number of records specified by the howMany parameter, or the number of records available if the
number of records specified by the howMany parameter cannot be met. The log will update howMany to indicate the
number of records returned and will set currentId to either the id of the record following the last examined record or
the next record that will be recorded in the future if there are no further records available. If the record specified by
currentId does not exist, but corresponds to the next record that will be recorded in the future, the
retrieve_records operation returns an empty list of LogRecords, sets howMany to zero, and leaves the value of
currentId unchanged. If the record specified by currentId does not exist and does not correspond to the next record
that will be recorded in the future, or if the Log is empty, the retrieve_records operation returns an empty list of
LogRecords, and sets both, currentId and howMany to zero. Note that this operation does not guarantee a return of
sequential records in Log and modifies the currentId value. Consequently, subsequent invocation of this operation
with the get_record_id_from_time operation may result in the Log consumer not being able to obtain some of the
records.

15.4.2.3 retrieve_records_by_level

Retrieves a specified number of records from the Log that correspond to the provided log levels.

Parameters and Return

Exceptions

This operation raises no exceptions.

Parameter Type Description

currentId RecordId The ID of the starting record.

howMany Unsigned long The number of records to retrieve.

<return> LogRecordSequence The sequence of retrieved records.

Parameter Type Description

currentId RecordId The ID of the starting record.

howMany Unsigned long The number of records to retrieve.

valueList LogLevelSequence The sequence of log levels that will be sought.

<return> LogRecordSequence The sequence of retrieved records.
CORBA for embedded, v1.0 261

Description

The retrieve_records_by_level operation returns a LogRecordSequence of records that correspond to the
supplied LogLevels. Candidate records for the LogRecordSequence begin with the record specified by the
currentId parameter. The number of records in the LogRecordSequence returned by the
retrieve_records_by_level operation is equal to the number of records specified by the howMany parameter, or
the number of records available if the number of records specified by the howMany parameter cannot be met. The log
will update howMany to indicate the number of records returned and will set currentId to either the id of the record
following the last examined record or the next record that will be recorded in the future if there are no further records
available. If the record specified by currentId does not exist, but corresponds to the next record that will be recorded
in the future, the retrieve_records_by_level operation returns an empty list of LogRecords, sets howMany to
zero, and leaves the value of currentId unchanged. If the record specified by currentId does not exist and does not
correspond to the next record that will be recorded in the future, or if the Log is empty, the
retrieve_records_by_level operation returns an empty list of LogRecords, and sets both, currentId and
howMany to zero. Note that this operation does not guarantee a return of sequential records in Log and modifies the
currentId value. Consequently, subsequent invocation of this operation with the get_record_id_from_time
operation may result in the Log consumer not being able to obtain some of the records.

15.4.2.4 retrieve_records_by_producer_id

Retrieves a specified number of records from the Log that correspond to the provided producer IDs.

Parameters and Return

Exceptions

This operation raises no exceptions.

Description

The retrieve_records_by_producer_id operation returns a LogRecordSequence of records that correspond
to the supplied producerIds. Candidate records for the LogRecordSequence begin with the record specified by the
currentId parameter. The number of records in the LogRecordSequence returned by the
retrieve_records_by_producer_id operation is equal to the number of records specified by the howMany
parameter, or the number of records available if the number of records specified by the howMany parameter cannot be
met. The log will update howMany to indicate the number of records returned and will set currentId to either the id
of the record following the last examined record or the next record that will be recorded in the future if there are no
further records available. If the record specified by currentId does not exist, but corresponds to the next record that
will be recorded in the future, the retrieve_records_by_producer_id operation returns an empty list of
LogRecords, sets howMany to zero, and leaves the value of currentId unchanged. If the record specified by
currentId does not exist and does not correspond to the next record that will be recorded in the future, or if the Log is

Parameter Type Description

currentId RecordId The ID of the starting record.

howMany Unsigned long The number of records to retrieve.

valueList StringSeq The sequence of producer ids that will be sought.

<return> LogRecordSequence The sequence of retrieved records.
262 CORBA for embedded, v1.0

empty, the retrieve_records_by_producer_id operation returns an empty list of LogRecords, and sets both,
currentId and howMany to zero. Note that this operation does not guarantee a return of sequential records in Log and
modifies the currentId value. Consequently, subsequent invocation of this operation with the
get_record_id_from_time operation may result in the Log consumer not being able to obtain some of the records.

retrieve_records_by_producer_name

Retrieves a specified number of records from the Log that correspond to the provided producer names.

Parameters and Return

Exceptions

This operation raises no exceptions.

Description

The retrieve_records_by_producer_name operation returns a LogRecordSequence of records that
correspond to the supplied producerNames. Candidate records for the LogRecordSequence begin with the record
specified by the currentId parameter. The number of records in the LogRecordSequence returned by the
retrieve_records_by_producer_name operation is equal to the number of records specified by the howMany
parameter, or the number of records available if the number of records specified by the howMany parameter cannot be
met. The log will update howMany to indicate the number of records returned and will set currentId to either the id
of the record following the last examined record or the next record that will be recorded in the future if there are no
further records available. If the record specified by currentId does not exist, but corresponds to the next record that
will be recorded in the future, the retrieve_records_by_producer_name operation returns an empty list of
LogRecords, sets howMany to zero, and leaves the value of currentId unchanged. If the record specified by
currentId does not exist and does not correspond to the next record that will be recorded in the future, or if the Log is
empty, the retrieve_records_by_producer_name operation returns an empty list of LogRecords, and sets
both, currentId and howMany to zero. Note that this operation does not guarantee a return of sequential records in
Log and modifies the currentId value. Consequently, subsequent invocation of this operation with the
get_record_id_from_time operation may result in the Log consumer not being able to obtain some of the records.

15.4.3 Interface LogProducer

interface LogProducer : LogStatus {
oneway void write_records(

in ProducerLogRecordSequence records);

oneway void write_record(
in ProducerLogRecord record);

Parameter Type Description

currentId RecordId The ID of the starting record.

howMany Unsigned long The number of records to retrieve.

valueList StringSeq The sequence of producer names that will be sought.

<return> LogRecordSequence The sequence of retrieved records.
CORBA for embedded, v1.0 263

};

This interface allows the insertion of new log records into the logging storage area encapsulated by the Log class. In favor
of preserving the overall operational integrity of the system, no guarantee is made that a logging record is accepted and
stored if the logging service is unable to process and /or store it.

15.4.3.1 write_records

Writes records to the Log.

Parameters and Return

Exceptions

This operation raises no exceptions.

Description

The write_records operation adds the log records supplied in the records parameter to the Log. When there is
insufficient storage to add one of the supplied log records to the Log, and the LogFullAction is set to HALT, the
write_records operation will set the availability status logFull state to true. For example, if 3 records are provided in
the records parameter, and while trying to write the second record to the log, the record will not fit, then the log is
considered to be full. Therefore, the second and third records will not be stored in the log but the first record would have
been successfully stored. When there is insufficient storage to add one of the supplied log records to the Log, and the
LogFullAction is set to WRAP, the write_records operation will overwrite the oldest LogRecords with the newest
records, as they are written to the Log, and leave the availability status logFull state unchanged.

The write_records operation inserts the current UTC time to the time field of each record written to the Log, and
assigns a unique record id to the id field of the LogRecord.

Log records accepted for storage by the write_records will be available for retrieval in the order received.

Note – The purpose of the oneway invocation is, within the limitations of embedded ORBs, to de-couple the log
producer from the logging service implementation, so that difficulties in the Log have no side-effects on the log producer
or its operation. However, since ORBs may legally discard oneway requests, implementers should take extra care that the
oneway invocations of write_records are not discarded without very substantial reason.

15.4.3.2 write_record

Writes a single record to the Log.

Parameter Type Description

records ProducerLogRecordSequence The records to be written to the log.

<return> void This operation provides no return.
264 CORBA for embedded, v1.0

Parameters and Return

Exceptions

This operation raises no exceptions.

Description

The write_record operation adds a log record supplied in the record parameter to the Log. When there is
insufficient storage to add the supplied log record to the Log, and the LogFullAction is set to HALT, the
write_record operation will set the availability status logFull state to true. When there is insufficient storage to add
the supplied log record to the Log, and the LogFullAction is set to WRAP, the write_record operation will
overwrite the oldest LogRecords with the new record, and leave the availability status logFull state unchanged.

The write_record operation inserts the current UTC time to the time field of each record written to the Log, and
assigns a unique record id to the id field of the LogRecord.

Log records accepted for storage by write_record will be available for retrieval in the order received.

Note – The purpose of the oneway invocation is, within the limitations of embedded ORBs, to de-couple the log
producer from the logging service implementation, so that difficulties in the Log have no side-effects on the log producer
or its operation. However, since ORBs may legally discard oneway requests, implementers should take extra care that the
oneway invocations of write_record are not discarded without very substantial reason.

15.4.4 Interface LogAdministrator

interface LogAdministrator : LogStatus {
void set_max_size(in unsigned long long size)

 raises (InvalidParam);
void set_log_full_action(in LogFullAction action);
void set_administrative_state(in AdministrativeState state);
void clear_log();
void destroy ();

};

This interface allows the retrieval of logging records from the storage area encapsulated by the Log class.

15.4.4.1 set_max_size

Sets the maximum size the Log storage area.

Parameter Type Description

record ProducerLogRecord The record to be written to the log.

<return> void This operation provides no return.
CORBA for embedded, v1.0 265

Parameters and Return

Exceptions

This operation raises the InvalidParam exception if the supplied parameter is invalid.

Description

Logging records are stored in a storage area encapsulated by the Log class. The available space in this storage area is
finite. This operation allows setting of the maximum capacity in bytes of the storage area. Note, however, that this
operation might be constrained by the underlying operation (you can’t assign more memory than is physically present), or
a platform specific implementation might decide to render this operation as a no-op and provide a fixed maximum size
instead.

15.4.4.2 set_log_full_action

Configure the action to be taken if the log storage area becomes full.

Parameters and Return

Exceptions

This operation raises no exceptions.

Description

Since the storage space of the Log storage area is finite, the Logging Service has to take special action when the free
space is depleted. The kind of action is described by the LogFullAction type. The set_log_full_action operation
allows the specification which action should be taken after all free space in the log storage area is depleted. The possible
values are HALT, which means no further logging records are accepted and stored; or WRAP, which means the Log
continues by overwriting the oldest records in the storage area. When the LogFullAction type is set to WRAP, the Log
will set the availability status logFull state to false.

15.4.4.3 set_administrative_state

The set_administrative_state operation provides write access to the administrative state value.

Parameter Type Description

size unsigned long long The desired size for the logging storage area in bytes.

<return> void This operation does not return a value.

Parameter Type Description

action LogFullAction Specify the desired selection from the LogFullAction enumeration
(either HALT or WRAP).

<return> void This operation does not return a value.
266 CORBA for embedded, v1.0

Parameters and Return

Exceptions

This operation raises no exceptions.

Description

This operation allows one to affect the ability of the logging service to accept and store new logging records by
administrative action. The possible states are locked and unlocked. If the state is locked, no new records are accepted.
Reading of already stored records is not affected. If the state is set to unlocked, the log operates normally.

15.4.4.4 clear_log

Purge the log storage area.

Parameters and Return

This operation has no parameters or returns.

Exceptions

This operation raises no exceptions.

Description

This operation purges all logging records from the log storage area; however, it does not alter the size of the storage area
in any way. The log will set the availability status logFull state to false.

15.4.4.5 destroy

Tear down an instantiated Log.

Parameters and Return

This operation has no parameters or returns.

Exceptions

This operation raises no exceptions.

Description

This operation will destroy the associated instance of the Log class. All existing records in the log storage area are
irrecoverably lost and the memory resources associated with the storage area are released.

Parameter Type Description

state unsigned long long Select the desired alternative from the AdministrativeState
enumeration. (Possible values are locked and unlocked).

<return> void This operation does not return a value.
CORBA for embedded, v1.0 267

15.5 Consolidated IDL

15.5.1 CosLwLog::LogStatus

#ifndef COS_LW_LOG_STATUS_IDL
#define COS_LW_LOG_STATUS_IDL

#ifdef _PRE_3_0_COMPILER_
#pragma prefix "omg.org"
#endif

#if defined(CORBA_E_COMPACT)

module CosLwLog {

#ifndef _PRE_3_0_COMPILER_
 typeprefix CosLwLog "omg.org";
#endif

 // The following constants are intended to identify
 // the nature of a logging record. The constants
 // represent the valid values for LogLevel
 // The list of constants may be expanded
 const unsigned short SECURITY_ALARM = 1;
 const unsigned short FAILURE_ALARM = 2;
 const unsigned short DEGRADED_ALARM =3;
 const unsigned short EXCEPTION_ERROR =4;
 const unsigned short FLOW_CONTROL_ERROR =5;
 const unsigned short RANGE_ERROR =6;
 const unsigned short USAGE_ERROR = 7;
 const unsigned short ADMINISTRATIVE_EVENT = 8;
 const unsigned short STATISTIC_REPORT = 9;
 // Values ranging from 10 to 26 are reserved for
 // 16 debugging levels.
 typedef unsigned short LogLevel;

 enum OperationalState {disabled, enabled};
 enum AdministrativeState {locked, unlocked};
 enum LogFullAction {WRAP, HALT};

 typedef unsigned long long RecordId;

 struct LogTime {
 long seconds;
 long nanoseconds;
 };

 struct AvailabilityStatus{
 boolean off_duty;
 boolean log_full;
268 CORBA for embedded, v1.0

 };

 struct ProducerLogRecord {
 string producerId;
 string producerName;
 LogLevel level;
 string logData;
 };

 struct LogRecord {
 RecordId id;
 LogTime time;
 ProducerLogRecord info;
 };

 typedef sequence<LogRecord> LogRecordSequence;
 typedef sequence<ProducerLogRecord> ProducerLogRecordSequence;
 typedef sequence<LogLevel> LogLevelSequence;
 typedef sequence<string> StringSeq;

 exception InvalidParam {
 string details;
 };

 interface LogStatus {
 unsigned long long get_max_size();
 unsigned long long get_current_size();
 unsigned long long get_n_records();
 LogFullAction get_log_full_action();
 AvailabilityStatus get_availability_status();
 AdministrativeState get_administrative_state();
 OperationalState get_operational_state();
 };

};

#endif // defined(CORBA_E_COMPACT)
#endif // COS_LW_LOG_STATUS_IDL

15.5.2 CosLwLog::LogConsumer

#ifndef COS_LW_LOG_CONSUMER_IDL
#define COS_LW_LOG_CONSUMER_IDL

#if defined(CORBA_E_COMPACT)

#include <CosLwLogStatus.idl>

#ifdef _PRE_3_0_COMPILER_
#pragma prefix "omg.org"
CORBA for embedded, v1.0 269

#endif

module CosLwLog {

 interface LogConsumer : LogStatus {
 RecordId get_record_id_from_time (in LogTime fromTime);
 LogRecordSequence retrieve_records(
 inout RecordId currentId,
 inout unsigned long howMany);
 LogRecordSequence retrieve_records_by_level(
 inout RecordId currentId,
 inout unsigned long howMany,
 in LogLevelSequence valueList);
 LogRecordSequence retrieve_records_by_producer_id(
 inout RecordId currentId,
 inout unsigned long howMany,
 in StringSeq valueList);
 LogRecordSequence retrieve_records_by_producer_name(
 inout RecordId currentId,
 inout unsigned long howMany,
 in StringSeq valueList);
 };

};

#endif // defined(CORBA_E_COMPACT)
#endif // COS_LW_LOG_CONSUMER_IDL

15.5.3 CosLwLog::LogProducer

#ifndef COS_LW_LOG_CONSUMER_IDL
#define COS_LW_LOG_CONSUMER_IDL

#if defined(CORBA_E_COMPACT)

#include <CosLwLogStatus.idl>

#ifdef _PRE_3_0_COMPILER_
#pragma prefix "omg.org"
#endif

module CosLwLog {

 interface LogConsumer : LogStatus {
 RecordId get_record_id_from_time (in LogTime fromTime);
 LogRecordSequence retrieve_records(
 inout RecordId currentId,
 inout unsigned long howMany);
 LogRecordSequence retrieve_records_by_level(
 inout RecordId currentId,
270 CORBA for embedded, v1.0

 inout unsigned long howMany,
 in LogLevelSequence valueList);
 LogRecordSequence retrieve_records_by_producer_id(
 inout RecordId currentId,
 inout unsigned long howMany,
 in StringSeq valueList);
 LogRecordSequence retrieve_records_by_producer_name(
 inout RecordId currentId,
 inout unsigned long howMany,
 in StringSeq valueList);
 };

};

#endif // defined(CORBA_E_COMPACT)
#endif // COS_LW_LOG_CONSUMER_IDL

15.5.4 CosLwLog::LogAdministrator

#ifndef COS_LW_LOG_ADMINISTRATOR_IDL
#define COS_LW_LOG_ADMINISTRATOR_IDL

#if defined(CORBA_E_COMPACT)

#include <CosLwLogStatus.idl>

#ifdef _PRE_3_0_COMPILER_
#pragma prefix "omg.org"
#endif

module CosLwLog {

 interface LogAdministrator : LogStatus {
 void set_max_size(in unsigned long long size) raises (InvalidParam);
 void set_log_full_action(in LogFullAction action);
 void set_administrative_state(in AdministrativeState state);
 void clear_log();
 void destroy ();
 };

};

#endif // defined(CORBA_E_COMPACT)
#endif // COS_LW_LOG_ADMINISTRATOR_IDL

15.5.5 CosLwLog::Log

#ifndef COS_LW_LOG_SERVICE_IDL
#define COS_LW_LOG_SERVICE_IDL
CORBA for embedded, v1.0 271

#if defined(CORBA_E_COMPACT)

#include <CosLwLogAdministrator.idl>
#include <CosLwLogConsumer.idl>
#include <CosLwLogProducer.idl>

#ifdef _PRE_3_0_COMPILER_
#pragma prefix "omg.org"
#endif

module CosLwLog
{
 interface Log : LogAdministrator, LogConsumer, LogProducer {};
};

#endif // defined(CORBA_E_COMPACT)
#endif // COS_LW_LOG_SERVICE_IDL
272 CORBA for embedded, v1.0

16 General Inter-ORB Protocol

Compliance

Conformant implementations of the CORBA/e Compact Profile must comply with all clauses of this chapter. Conformant
implementations of the CORBA/e Micro Profile must comply with all clauses of this chapter.

16.1 Overview

This chapter specifies a General Inter-ORB Protocol (GIOP) for ORB interoperability, which can be mapped onto any
connection-oriented transport protocol that meets a minimal set of assumptions.

16.2 Goals of the General Inter-ORB Protocol

The GIOP and IIOP support protocol-level ORB interoperability in a general, low-cost manner. The following objectives
were pursued vigorously in the GIOP design:

• Widest possible availability - The GIOP and IIOP are based on the most widely-used and flexible communications
transport mechanism available (TCP/IP), and defines the minimum additional protocol layers necessary to transfer
CORBA requests between ORBs.

• Simplicity - The GIOP is intended to be as simple as possible, while meeting other design goals. Simplicity is deemed
the best approach to ensure a variety of independent, compatible implementations.

• Scalability - The GIOP/IIOP protocol should support ORBs, and networks of bridged ORBs, to the size of today’s
Internet, and beyond.

• Low cost - Adding support for GIOP/IIOP to an existing or new ORB design should require small engineering
investment. Moreover, the run-time costs required to support IIOP in deployed ORBs should be minimal.

• Generality - While the IIOP is initially defined for TCP/IP, GIOP message formats are designed to be used with any
transport layer that meets a minimal set of assumptions; specifically, the GIOP is designed to be implemented on other
connection-oriented transport protocols.

• Architectural neutrality - The GIOP specification makes minimal assumptions about the architecture of agents that
will support it. The GIOP specification treats ORBs as opaque entities with unknown architectures.

The approach a particular ORB takes to providing support for the GIOP/IIOP is undefined. For example, an ORB could
choose to use the IIOP as its internal protocol, it could choose to externalize IIOP as much as possible by implementing
it in a half-bridge, or it could choose a strategy between these two extremes. All that is required of a conforming ORB is
that some entity or entities in, or associated with, the ORB be able to send and receive IIOP messages.

16.3 GIOP Overview

The GIOP specification consists of the following elements:

• The Common Data Representation (CDR) definition. CDR is a transfer syntax mapping OMG IDL data types into a
bicanonical low-level representation for “on-the-wire” transfer between ORBs and Inter-ORB bridges (agents).
CORBA for embedded, v1.0 273

• GIOP Message Formats. GIOP messages are exchanged between agents to facilitate object requests, locate object
implementations, and manage communication channels.

• GIOP Transport Assumptions. The GIOP specification describes general assumptions made concerning any network
transport layer that may be used to transfer GIOP messages. The specification also describes how connections may be
managed, and constraints on GIOP message ordering.

The IIOP specification adds the following element to the GIOP specification:

• Internet IOP Message Transport. The IIOP specification describes how agents open TCP/IP connections and use them
to transfer GIOP messages.

The IIOP is not a separate specification; it is a specialization, or mapping, of the GIOP to a specific transport (TCP/IP).
The GIOP specification (without the transport-specific IIOP element) may be considered as a separate conformance point
for future mappings to other transport layers.

The complete OMG IDL specifications for the GIOP and IIOP are shown in Section 18.6, “Consolidated IDL,” on
page 322 and Section 19.5, “Consolidated IDL,” on page 348. Fragments of the specification are used throughout this
chapter as necessary.

16.3.1 Common Data Representation (CDR)

CDR is a transfer syntax, mapping from data types defined in OMG IDL to a bicanonical, low-level representation for
transfer between agents. CDR has the following features:

• Variable byte ordering - Machines with a common byte order may exchange messages without byte swapping. When
communicating machines have different byte order, the message originator determines the message byte order, and the
receiver is responsible for swapping bytes to match its native ordering. Each GIOP message (and CDR encapsulation)
contains a flag that indicates the appropriate byte order.

• Aligned primitive types - Primitive OMG IDL data types are aligned on their natural boundaries within GIOP
messages, permitting data to be handled efficiently by architectures that enforce data alignment in memory.

• Complete OMG IDL Mapping - CDR describes representations for all OMG IDL data types, including transferable
pseudo-objects such as TypeCodes. Where necessary, CDR defines representations for data types whose
representations are undefined or implementation-dependent in the CORBA Core specifications.

16.3.2 GIOP Message Overview

The GIOP specifies formats for messages that are exchanged between inter-operating ORBs. GIOP message formats have
the following features:

• Few, simple messages. With only seven message formats, the GIOP supports full CORBA functionality between
ORBs, with extended capabilities supporting object location services, dynamic migration, and efficient management of
communication resources. GIOP semantics require no format or binding negotiations. In most cases, clients can send
requests to objects immediately upon opening a connection.

• Dynamic object location. Many ORBs’ architectures allow an object implementation to be activated at different
locations during its lifetime, and may allow objects to migrate dynamically. GIOP messages provide support for object
location and migration, without requiring ORBs to implement such mechanisms when unnecessary or inappropriate to
an ORB’s architecture.
274 CORBA for embedded, v1.0

• Full CORBA support - GIOP messages directly support all functions and behaviors required by CORBA, including
exception reporting, passing operation context, and remote object reference operations (such as
CORBA::Object::get_interface).

GIOP also supports passing service-specific context, such as the transaction context defined by the Transaction Service
(the Transaction Service is described in CORBAservices: Common Object Service Specifications). This mechanism is
designed to support any service that requires service related context to be implicitly passed with requests.

16.3.3 GIOP Message Transfer

The GIOP specification is designed to operate over any connection-oriented transport protocol that meets a minimal set of
assumptions (described in Section 16.4, “GIOP Message Transport,” on page 275). GIOP uses underlying transport
connections in the following ways:

• Asymmetrical connection usage - The GIOP defines two distinct roles with respect to connections, client, and server.
The client side of a connection originates the connection, and sends object requests over the connection. In GIOP
versions 1.0 and 1.1, the server side receives requests and sends replies. The server side of a connection may not send
object requests. This restriction, which was included to make GIOP 1.0 and 1.1 much simpler and avoid certain race
conditions, has been relaxed for GIOP version 1.2 and later, as specified in the BiDirectional GIOP specification.

• Request multiplexing - If desirable, multiple clients within an ORB may share a connection to send requests to a
particular ORB or server. Each request uniquely identifies its target object. Multiple independent requests for different
objects, or a single object, may be sent on the same connection.

• Overlapping requests - In general, GIOP message ordering constraints are minimal. GIOP is designed to allow
overlapping asynchronous requests; it does not dictate the relative ordering of requests or replies. Unique request/reply
identifiers provide proper correlation of related messages. Implementations are free to impose any internal message
ordering constraints required by their ORB architectures.

• Connection management - GIOP defines messages for request cancellation and orderly connection shutdown. These
features allow ORBs to reclaim and reuse idle connection resources.

• GIOP versions for requests and replies - The GIOP version of the message carrying a response to a request shall be
the same as the GIOP version of the message carrying the request. This rule does not apply when the server is
responding with a MessageError because it does not support the GIOP minor version in the request.

16.4 GIOP Message Transport

The GIOP is designed to be implementable on a wide range of transport protocols. The GIOP definition makes the
following assumptions regarding transport behavior:

• The transport is connection-oriented. GIOP uses connections to define the scope and extent of request IDs.

• The transport is reliable. Specifically, the transport guarantees that bytes are delivered in the order they are sent, at
most once, and that some positive acknowledgment of delivery is available.

• The transport can be viewed as a byte stream. No arbitrary message size limitations, fragmentation, or alignments are
enforced.

• The transport provides some reasonable notification of disorderly connection loss. If the peer process aborts, the peer
host crashes, or network connectivity is lost, a connection owner should receive some notification of this condition.
CORBA for embedded, v1.0 275

• The transport’s model for initiating connections can be mapped onto the general connection model of TCP/IP.
Specifically, an agent (described herein as a server) publishes a known network address in an IOR, which is used by
the client when initiating a connection.

The server does not actively initiate connections, but is prepared to accept requests to connect (i.e., it listens for
connections in TCP/IP terms). Another agent that knows the address (called a client) can attempt to initiate connections
by sending connect requests to the address. The listening server may accept the request, forming a new, unique connection
with the client, or it may reject the request (e.g., due to lack of resources). Once a connection is open, either side may
close the connection. (See Section 16.4.1, “Connection Management,” on page 276 for semantic issues related to
connection closure.) A candidate transport might not directly support this specific connection model; it is only necessary
that the transport’s model can be mapped onto this view.

16.4.1 Connection Management

For the purposes of this discussion, the roles client and server are defined as follows:

• A client initiates the connection, presumably using addressing information found in an object reference (IOR) for an
object to which it intends to send requests.

• A server accepts connections, but does not initiate them.

These terms only denote roles with respect to a connection. They do not have any implications for ORB or application
architectures.

In GIOP protocol versions 1.0 and 1.1, connections are not symmetrical. Only clients can send Request,
LocateRequest, and CancelRequest messages over a connection, in GIOP 1.0 and 1.1. In all GIOP versions, a server
can send Reply, LocateReply, and CloseConnection messages over a connection; however, in GIOP 1.2 and later the
client can send them as well. Either client or server can send MessageError messages, in GIOP 1.0 and 1.1.

If multiple GIOP versions are used on an underlying transport connection, the highest GIOP version used on the
connection can be used for handling the close. A CloseConnection message sent using any GIOP version applies to all
GIOP versions used on the connection (i.e., the underlying transport connection is closed for all GIOP versions). In
particular, if GIOP version 1.2 or higher has been used on the connection, the client can send the CloseConnection
message by using the highest GIOP version in use.

Only GIOP messages are sent over GIOP connections.

Request IDs must unambiguously associate replies with requests within the scope and lifetime of a connection. Request
IDs may be re-used if there is no possibility that the previous request using the ID may still have a pending reply. Note
that cancellation does not guarantee no reply will be sent. It is the responsibility of the client to generate and assign
request IDs. Request IDs must be unique among both Request and LocateRequest messages.

16.4.1.1 Connection Closure

Connections can be closed in two ways: orderly shutdown, or abortive disconnect.

For GIOP versions 1.0, and 1.1:

• Orderly shutdown is initiated by servers sending a CloseConnection message, or by clients just closing down a
connection.

• Orderly shutdown may be initiated by the client at any time.
276 CORBA for embedded, v1.0

• A server may not initiate shutdown if it has begun processing any requests for which it has not either received a
CancelRequest or sent a corresponding reply.

• If a client detects connection closure without receiving a CloseConnection message, it must assume an abortive
disconnect has occurred, and treat the condition as an error.

For GIOP Version 1.2 and later:

• Orderly shutdown is initiated by either the originating client ORB (connection initiator) or by the server ORB
(connection responder) sending a CloseConnection message

• If the ORB sending the CloseConnection is a server, or bidirectional GIOP is in use, the sending ORB must not
currently be processing any Requests from the other side.

• The ORB that sends the CloseConnection must not send any messages after the CloseConnection.

• If either ORB detects connection closure without receiving a CloseConnection message, it must assume an abortive
disconnect has occurred, and treat the condition as an error.

• If bidirectional GIOP is in use, the conditions of Bi-Directional GIOP apply.

For all uses of CloseConnection (for GIOP versions 1.0, 1.1, 1.2, and later):

• If there are any pending non-oneway requests, which were initiated on a connection by the ORB shutting down that
connection, the connection-peer ORB should consider them as canceled.

• If an ORB receives a CloseConnection message from its connection-peer ORB, it should assume that any
outstanding messages (i.e., without replies) were received after the connection-peer ORB sent the CloseConnection
message, were not processed, and may be safely re-sent on a new connection.

• After issuing a CloseConnection message, the issuing ORB may close the connection. Some transport protocols
(not including TCP) do not provide an “orderly disconnect” capability, guaranteeing reliable delivery of the last
message sent. When GIOP is used with such protocols, an additional handshake needs to be provided as part of the
mapping to that protocol’s connection mechanisms, to guarantee that both ends of the connection understand the
disposition of any outstanding GIOP requests.

16.4.1.2 Multiplexing Connections

A client, if it chooses, may send requests to multiple target objects over the same connection, provided that the
connection’s server side is capable of responding to requests for the objects. It is the responsibility of the client to
optimize resource usage by reusing connections, if it wishes. If not, the client may open a new connection for each active
object supported by the server, although this behavior should be avoided.

16.4.2 Message Ordering

Only the client (connection originator) may send Request, LocateRequest, and CancelRequest messages, if Bi-
Directional GIOP is not in use.

Clients may have multiple pending requests. A client need not wait for a reply from a previous request before sending
another request.

Servers may reply to pending requests in any order. Reply messages are not required to be in the same order as the
corresponding Requests.
CORBA for embedded, v1.0 277

The ordering restrictions regarding connection closure mentioned in Connection Management, above, are also noted here.
Servers may only issue CloseConnection messages when Reply messages have been sent in response to all received
Request messages that require replies.
278 CORBA for embedded, v1.0

17 CDR Transfer Syntax

This chapter specifies a General Inter-ORB Protocol (GIOP) for ORB interoperability, which can be mapped onto any
connection-oriented transport protocol that meets a minimal set of assumptions. This chapter also defines a specific
mapping of the GIOP, which runs directly over TCP/IP connections, called the Internet Inter-ORB Protocol (IIOP). The
IIOP must be supported by conforming networked ORB products regardless of other aspects of their implementation.
Such support does not require using it internally; conforming ORBs may also provide bridges to this protocol.

Compliance

Conformant implementations of the CORBA/e Compact Profile must comply with all clauses of this chapter except
Section 17.6.4, “Context,” on page 301.

Conformant implementations of the CORBA/e Micro Profile must comply with all clauses of this chapter except

• Section 17.5, “Value Types,” on page 288,

• Section 17.6.1, “TypeCode,” on page 296,

• Section 17.6.2, “Any,” on page 301, and

• Section 17.6.4, “Context,” on page 301.

17.1 Overview

The Common Data Representation (CDR) transfer syntax is the format in which the GIOP represents OMG IDL data
types in an octet stream.

An octet stream is an abstract notion that typically corresponds to a memory buffer that is to be sent to another process or
machine over some IPC mechanism or network transport. For the purposes of this discussion, an octet stream is an
arbitrarily long (but finite) sequence of eight-bit values (octets) with a well-defined beginning. The octets in the stream
are numbered from 0 to n-1, where n is the size of the stream. The numeric position of an octet in the stream is called its
index. Octet indices are used to calculate alignment boundaries, as described in Section 17.2.1, “Alignment,” on page 280.

GIOP defines two distinct kinds of octet streams:

• Message - an octet stream constituting the basic unit of information exchange in GIOP, described in detail in
Section 18.2, “GIOP Message Formats,” on page 303.

• Encapsulation - an octet stream into which OMG IDL data structures may be marshaled independently, apart from any
particular message context, described in detail in Section 17.4, “Encapsulation,” on page 287.

17.2 Primitive Types

Primitive data types are specified for both big-endian and little-endian orderings. The message formats (see Section 18.2,
“GIOP Message Formats,” on page 303) include tags in message headers that indicate the byte ordering in the message.
Encapsulations include an initial flag that indicates the byte ordering within the encapsulation, described in Section 17.4,
“Encapsulation,” on page 287. The byte ordering of any encapsulation may be different from the message or
encapsulation within which it is nested. It is the responsibility of the message recipient to translate byte ordering if
necessary. Primitive data types are encoded in multiples of octets. An octet is an 8-bit value.
CORBA for embedded, v1.0 279

17.2.1 Alignment

In order to allow primitive data to be moved into and out of octet streams with instructions specifically designed for those
primitive data types, in CDR all primitive data types must be aligned on their natural boundaries (i.e., the alignment
boundary of a primitive datum is equal to the size of the datum in octets). Any primitive of size n octets must start at an
octet stream index that is a multiple of n. In CDR, n is one of 1, 2, 4, or 8.

Where necessary, an alignment gap precedes the representation of a primitive datum. The value of octets in alignment
gaps is undefined. A gap must be the minimum size necessary to align the following primitive. Table 17.1 gives alignment
boundaries for CDR/OMG-IDL primitive types.

Alignment is defined above as being relative to the beginning of an octet stream. The first octet of the stream is octet
index zero (0); any data type may be stored starting at this index. Such octet streams begin at the start of a GIOP message
header (see Section 18.2.1, “GIOP Message Header,” on page 304) and at the beginning of an encapsulation, even if the
encapsulation itself is nested in another encapsulation. (See Section 17.4, “Encapsulation,” on page 287).

17.2.2 Integer Data Types

Figure 17.1 illustrates the representations for OMG IDL integer data types, including the following data types:

• short

• unsigned short

Table 17.1- Alignment requirements for OMG IDL primitive data types

TYPE OCTET ALIGNMENT

char 1

wchar 1, 2 or 4 for GIOP 1.1 |
1 for GIOP 1.2 and later

octet 1

short 2

unsigned short 2

long 4

unsigned long 4

long long 8

unsigned long long 8

float 4

double 8

long double 8

boolean 1

enum 4
280 CORBA for embedded, v1.0

• long

• unsigned long

• long long

• unsigned long long

Figure 17.1 illustrates bit ordering and size. Signed types (short, long, and long long) are represented as two’s
complement numbers; unsigned versions of these types are represented as unsigned binary numbers.

Figure 17.1Sizes and bit ordering in big-endian and little-endian encodings of OMG IDL integer data types,
 both signed and unsigned.

17.2.3 Floating Point Data Types

Figure 17.2 illustrates the representation of floating point numbers. These exactly follow the IEEE standard formats for
floating point numbers1, selected parts of which are abstracted here for explanatory purposes. The diagram shows three
different components for floating points numbers, the sign bit (s), the exponent (e) and the fractional part (f) of the
mantissa. The sign bit has values of 0 or 1, representing positive and negative numbers, respectively.

0
1

0
1
2
3

0
1

0
1
2
3

MSB
LSB

MSB

LSB

LSB

LSB

MSB

MSB
short

long

octet octet

Big-Endian Little-Endian

long long

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

MSB

LSB

LSB

MSB
CORBA for embedded, v1.0 281

For single-precision float values the exponent is 8 bits long, comprising e1 and e2 in the figure, where the 7 bits in e1 are
most significant. The exponent is represented as excess 127. The fractional mantissa (f1 - f3) is a 23-bit value f where 1.0
<= f < 2.0, f1 being most significant and f3 being least significant. The value of a normalized number is described by:

For double-precision values the exponent is 11 bits long, comprising e1 and e2 in the figure, where the 7 bits in e1 are
most significant. The exponent is represented as excess 1023. The fractional mantissa (f1 - f7) is a 52-bit value m where
1.0 <= m < 2.0, f1 being most significant and f7 being least significant. The value of a normalized number is described
by:

For double-extended floating-point values the exponent is 15 bits long, comprising e1 and e2 in the figure, where the 7
bits in e1 are the most significant. The fractional mantissa (f1 through f14) is 112 bits long, with f1 being the most
significant. The value of a long double is determined by:

1. “IEEE Standard for Binary Floating-Point Arithmetic,” ANSI/IEEE Standard 754-1985, Institute of Electrical and Electronics
Engineers, August 1985.

1
sign

2
exponent 127–()× 1 fraction+()×–

1
sign

2
exponent 1023–()× 1 fraction+()×–

1
sign

2
exponent 16383–()× 1 fraction+()×–
282 CORBA for embedded, v1.0

Figure 17.2- Sizes and bit ordering in big-endian and little-endian representations of OMG IDL single,
 double precision, and double extended floating point numbers.

s
e2

e1
f1
f2
f3s

e2
e1
f1
f2
f3

s e1
e2 f1

f2
f3
f4
f5
f6
f7

0
1
2
3

0
1
2
3
4
5
6
7

0
1
2
3

0
1
2
3
4
5
6
7

Big-Endian Little-Endian

float

double s e1
e2 f1

f2
f3
f4
f5
f6
f7

s e1

e2

f1

f2

f3

f4

f5

f6

f7

f8

f9

f10

f11

f12

f13

f14 s e1

e2

f1

f2

f3

f4

f5

f6

f7

f8

f9

f10

f11

f12

f13

f140

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

long double
CORBA for embedded, v1.0 283

17.2.4 Octet

Octets are uninterpreted 8-bit values whose contents are guaranteed not to undergo any conversion during transmission.
For the purposes of describing possible octet values in this specification, octets may be considered as unsigned 8-bit
integer values.

17.2.5 Boolean

Boolean values are encoded as single octets, where TRUE is the value 1, and FALSE as 0.

17.2.6 Character Types

An IDL character is represented as a single octet; the code set used for transmission of character data (e.g., TCS-C)
between a particular client and server ORBs is determined via the process described in. In the case of multi-byte
encodings of characters, a single instance of the char type may only hold one octet of any multi-byte character encoding.

Note – Full representation of multi-byte characters will require the use of an array of IDL char variables.

For GIOP version 1.1, the transfer syntax for an IDL wide character depends on whether the transmission code set (TCS-
W, which is determined via the process described in) is byte-oriented or non-byte-oriented:

• Byte-oriented (e.g., SJIS). Each wide character is represented as one or more octets, as defined by the selected TCS-W.

• Non-byte-oriented (e.g., Unicode UTF-16). Each wide character is represented as one or more codepoints. A codepoint
is the same as “Coded-Character data element,” or “CC data element” in ISO terminology. Each codepoint is encoded
using a fixed number of bits as determined by the selected TCS-W. The OSF Character and Code Set Registry may be
examined using the interfaces in to determine the maximum length (max_bytes) of any character codepoint.

For GIOP version 1.2, and later wchar is encoded as an unsigned binary octet value, followed by the elements of the
octet sequence representing the encoded value of the wchar. The initial octet contains a count of the number of elements
in the sequence, and the elements of the sequence of octets represent the wchar, using the negotiated wide character
encoding.

Note – The GIOP 1.2 and later encoding of wchar is similar to the encoding of an octet sequence, except for its use of
a single octet to encode the value of the length.

For GIOP versions prior to 1.2 and later, interoperability for wchar is limited to the use of two- octet fixed-length
encoding.

Wchar values in encapsulations are assumed to be encoded using GIOP version 1.2 and later CDR.

If UTF-16 is selected as the TCS-W the CDR encoding purposes can be big endian or little endian, but defaults to big
endian. By placing a BOM (byte order marker) at the front of the wstring or wchar encoding, it can be sent either big-
endian or little-endian. In particular, the CDR rules for endian-ness of UTF-16 encoded wstring or wchar values are as
follows:

• If the first two bytes (after the length indication) are FE, FF, it’s big-endian.

• If the first two bytes (after the length indication) are FF, FE, it’s little-endian.

• If the first two bytes (after the length indication) are neither, it’s big-endian.
284 CORBA for embedded, v1.0

If an ORB decides to use BOM to indicate endian-ness, it shall add the BOM to the beginning of wchar or wstring values
when encoding the value, since it is not present in wchar or wstring values passed by the user.

If a BOM is present at the beginning of a wchar or wstring received in a GIOP message, the ORB shall remove the BOM
before passing the value to the user.

If a client orb erroneously sends wchar or wstring data in a GIOP 1.0 message, the server shall generate a MARSHAL
standard system exception, with standard minor code 5.

If a server erroneously sends wchar data in a GIOP 1.0 response, the client ORB shall raise a MARSHAL exception to
the client application with standard minor code 6.

For GIOP 1.1, 1.2 and 1.3, UCS-2 and UCS-4 should be encoded using the endianess of the GIOP message, for backward
compatibility.

For GIOP 1.4, the byte order rules for UCS-2 and UCS-4 are the same as for UTF-16.

UTF-16LE and UTF-16BE, from IANA codeset registry, have their own endian-ness definition. Thus these should be
encoded using the endian-ness specified by their endian-ness definition.

17.3 OMG IDL Constructed Types

Constructed types are built from OMG IDL’s data types using facilities defined by the OMG IDL language.

17.3.1 Alignment

Constructed types have no alignment restrictions beyond those of their primitive components. The alignment of those
primitive types is not intended to support use of marshaling buffers as equivalent to the implementation of constructed
data types within any particular language environment. GIOP assumes that agents will usually construct structured data
types by copying primitive data between the marshaled buffer and the appropriate in-memory data structure layout for the
language mapping implementation involved.

17.3.2 Struct

The components of a structure are encoded in the order of their declaration in the structure. Each component is encoded
as defined for its data type.

17.3.3 Union

Unions are encoded as the discriminant tag of the type specified in the union declaration, followed by the representation
of any selected member, encoded as its type indicates.

17.3.4 Array

Arrays are encoded as the array elements in sequence. As the array length is fixed, no length values are encoded. Each
element is encoded as defined for the type of the array. In multidimensional arrays, the elements are ordered so the index
of the first dimension varies most slowly, and the index of the last dimension varies most quickly.
CORBA for embedded, v1.0 285

17.3.5 Sequence

Sequences are encoded as an unsigned long value, followed by the elements of the sequence. The initial unsigned long
contains the number of elements in the sequence. The elements of the sequence are encoded as specified for their type.

17.3.6 Enum

Enum values are encoded as unsigned longs. The numeric values associated with enum identifiers are determined by the
order in which the identifiers appear in the enum declaration. The first enum identifier has the numeric value zero (0).
Successive enum identifiers take ascending numeric values, in order of declaration from left to right.

17.3.7 Strings and Wide Strings

A string is encoded as an unsigned long indicating the length of the string in octets, followed by the string value in
single- or multi-byte form represented as a sequence of octets. The string contents include a single terminating null
character. The string length includes the null character, so an empty string has the length of the encoding of the null
character in the transmission character set.

For GIOP version 1.1, 1.2 and 1.3, when encoding a string, always encode the length as the total number of bytes used by
the encoding string, regardless of whether the encoding is byte-oriented or not.

For GIOP version 1.1, a wide string is encoded as an unsigned long indicating the length of the string in octets or
unsigned integers (determined by the transfer syntax for wchar) followed by the individual wide characters. The string
contents include a single terminating null character. The string length includes the null character. The terminating null
character for a wstring is also a wide character.

For GIOP version 1.2 and 1.3, when encoding a wstring, always encode the length as the total number of octets used by
the encoded value, regardless of whether the encoding is byte-oriented or not. For GIOP version 1.2 and 1.3 a wstring is
not terminated by a null character. In particular, in GIOP version 1.2 and 1.3 a length of 0 is legal for wstring.

Note – For GIOP versions prior to 1.2 and 1.3, interoperatility for wstring is limited to the use of two-octet fixed-length
encoding.

Wstring values in encapsulations are assumed to be encoded using GIOP version 1.2 and 1.3 CDR.

17.3.8 Fixed-Point Decimal Type

The IDL fixed type has no alignment restrictions, and is represented as shown in Figure 17.4. Each octet contains (up to)
two decimal digits. If the fixed type has an odd number of decimal digits, then the representation begins with the first
(most significant) digit — d0 in the figure. Otherwise, this first half-octet is all zero, and the first digit is in the second
half-octet — d1 in the figure. The sign configuration, in the last half-octet of the representation, is 0xD for negative
numbers and 0xC for positive and zero values.

The number of digits present must equal the number of significant digits specified in the IDL definition for the fixed type
being marshalled, with the exception of the inclusion of a leading 0x0 half octet when there are an even number of
significant digits.
286 CORBA for embedded, v1.0

Decimal digits are encoded as hexadecimal values in each half-octet as follows:

Figure 17.3- Decimal Digit Encoding for Fixed Type

Figure 17.4- IDL Fixed Type Representation

17.4 Encapsulation

Encapsulations are octet streams into which OMG IDL data structures may be marshaled independently, apart from any
particular message context. Once a data structure has been encapsulated, the octet stream can be represented as the OMG
IDL opaque data type sequence<octet>, which can be marshaled subsequently into a message or another encapsulation.
Encapsulations allow complex constants (such as TypeCodes) to be pre-marshaled; they also allow certain message
components to be handled without requiring full unmarshaling. Whenever encapsulations are used in CDR or the GIOP,
they are clearly noted.

The GIOP and IIOP explicitly use encapsulations in three places: TypeCodes (see Section 17.6.1, “TypeCode,” on
page 296), the IIOP protocol profile inside an IOR (see Section 17.7, “Object References,” on page 302), and in service-
specific context. In addition, some ORBs may choose to use an encapsulation to hold the object_key, or in other places
that a sequence<octet> data type is in use.

0

1

2
...

9

0x0

0x1

0x2

...

0x9

Decimal Digit Half-Octet Value

Big and Little-Endian octet

0

1

2

= =

n

d0 d1

d2 d3

d4 d5

dm s

fixed

MSD

LSD

=

CORBA for embedded, v1.0 287

When encapsulating OMG IDL data types, the first octet in the stream (index 0) contains a boolean value indicating the
byte ordering of the encapsulated data. If the value is FALSE (0), the encapsulated data is encoded in big-endian order;
if TRUE (1), the data is encoded in little-endian order, exactly like the byte order flag in GIOP message headers (see
Section 18.2, “GIOP Message Formats,” on page 303). This value is not part of the data being encapsulated, but is part of
the octet stream holding the encapsulation. Following the byte order flag, the data to be encapsulated is marshaled into the
buffer as defined by CDR encoding rules. Marshaled data are aligned relative to the beginning of the octet stream (the
first octet of which is occupied by the byte order flag).

When the encapsulation is encoded as type sequence<octet> for subsequent marshaling, an unsigned long value
containing the sequence length is prefixed to the octet stream, as prescribed for sequences (see Section 17.3.5,
“Sequence,” on page 286). The length value is not part of the encapsulation’s octet stream, and does not affect alignment
of data within the encapsulation.

Note that this guarantees a four-octet alignment of the start of all encapsulated data within GIOP messages and nested
encapsulations.2

Whenever the use of an encapsulation is specified, the GIOP version to use for encoding the encapsulation, if different
than GIOP version 1.0, shall be explicitly defined (i.e., the default is GIOP 1.0).

If a parameter with IDL char or string type is defined to be carried in an encapsulation using GIOP version greater than
1.0, the transmission Code Set for characters (TCS-C), to be used when encoding the encapsulation, shall also be
explicitly defined.

If a parameter with IDL wchar or wstring type is defined to be carried in an encapsulation using GIOP version greater
than 1.0, the transmission Code Set for wide characters (TCS-W), to be used when encoding the encapsulation shall also
be explicitly defined.

17.5 Value Types

Value types are built from OMG IDL’s value type definitions. Their representation and encoding is defined in this section.

Value types may be used to transmit and encode complex state. The general approach is to support the transmission of the
data (state) and type information encoded as RepositoryIDs.

The loading (and possible transmission) of code is outside of the scope of the GIOP definition, but enough information is
carried to support it, via the CodeBase object.

The format makes a provision for the support of custom marshaling (i.e., the encoding and transmission of state using
application-defined code). Consistency between custom encoders and decoders is not ensured by the protocol.

The encoding supports all of the features of value types as well as supporting the “chunking” of value types. It does so in
a compact way.

2. Accordingly, in cases where encapsulated data holds data with natural alignment of greater than four octets, some processors may
need to copy the octet data before removing it from the encapsulation. For example, an appropriate way to deal with long long dis-
criminator type in an encapsulation for a union TypeCode is to encode the body of the encapsulation as if it was aligned at the 8
byte boundary, and then copy the encoded value into the encapsulation. This may result in long long data values inside the encap-
sulation being aligned on only a 4 byte boundary when viewed from outside the encapsulation.
288 CORBA for embedded, v1.0

At a high level the format can be described as the linearization of a graph. The graph is the depth-first exploration of the
transitive closure that starts at the top-level value object and follows its “reference to value objects” fields (an ordinary
remote reference is just written as an IOR). It is a recursive encoding similar to the one used for TypeCodes. An
indirection is used to point to a value that has already been encoded.

The data members are written beginning with the highest possible base type to the most derived type in the order of their
declaration.

17.5.1 Partial Type Information and Versioning

The format provides support for partial type information and versioning issues in the receiving context. However the
encoding has been designed so that this information is only required when “advanced features” such as truncation are
used.

The presence (or absence) of type information and codebase URL information is indicated by flags within the
<value_tag>, which is a long in the range between 0x7fffff00 and 0x7fffffff inclusive. The last octet of this tag is
interpreted as follows:

• The least significant bit (<value_tag> & 0x00000001) is the value 1 if a <codebase_URL> is present. If this bit is 0,
no <codebase_URL> follows in the encoding. The <codebase_URL> is a blank-separated list of one or more URLs.

• The second and third least significant bits (<value_tag> & 0x00000006) are:

• the value 0 if no type information is present in the encoding. This indicates the actual parameter is the same type as
the formal argument.

• the value 2 if only a single repository id is present in the encoding, which indicates the most derived type of the
actual parameter (which may be either the same type as the formal argument or one of its derived types).

• the value 6 if the partial type information list of repository ids is present in the encoding as a list of repository ids.

When a list of RepositoryIDs is present, the encoding is a long specifying the number of RepositoryIDs, followed by
the RepositoryIDs. The first RepositoryID is the id for the most derived type of the value. If this type has any base
types, the sending context is responsible for listing the RepositoryIDs for all the base types to which it is safe to
truncate the value passed. These truncatable base types are listed in order, going up the derivation hierarchy. The sending
context may choose to (but need not) terminate the list at any point after it has sent a RepositoryID for a type well-
known to the receiving context. A well-known type is any of the following:

• a type that is a formal parameter, result of the method call, or exception, for which this GIOP message is being
marshaled

• a base type of a well-known type

• a member type of a well-known type

• an element type of a well known type

For value types that have an RMI: RepositoryId, ORBs must include at least the most derived RepositoryId, in the
value type encoding.

For value types marshaled as abstract interfaces, RepositoryId information must be included in the value type encoding.

If the receiving context needs more typing information than is contained in a GIOP message that contains a codebase
URL information, it can go back to the sending context and perform a lookup based on that RepositoryID to retrieve
more typing information (e.g., the type graph).
CORBA for embedded, v1.0 289

CORBA RepositoryIDs may contain standard version identification (major and minor version numbers or a hash code
information). The ORB run time may use this information to check whether the version of the value being transmitted is
compatible with the version expected. In the event of a version mismatch, the ORB may apply product-specific
truncation/conversion rules (with the help of a local interface repository or the SendingContext::RunTime service).
For example, the Java serialization model of truncation/conversion across versions can be supported. See the JDK 1.1
documentation for a detailed specification of this model.

17.5.2 Example

The following examples demonstrate legal combinations of truncatability, actual parameter types and GIOP encodings.
This is not intended to be an exhaustive list of legal possibilities.

The following example uses valuetypes animal and horse, where horse is derived from animal. The actual parameters
passed to the specified operations are an_animal of runtime type animal and a_horse of runtime type horse.

The following combinations of truncatability, actual parameter types and GIOP encodings are legal.

1. If there is a single operation:

 op1(in animal a);

a). If the type horse cannot be truncated to animal (i.e., horse is declared):

 valuetype horse: animal ...

then the encoding is as shown below:

Note that if the type horse is not available to the receiver, then the receiver throws a demarshaling exception.

b). If the type horse can be truncated to animal (i.e., horse is declared):

 valuetype horse: truncatable animal ...

then the encoding is as shown below

Note that if the type horse is not available to the receiver, then the receiver tries to truncate to animal.

c). Regardless of the truncation relationships, when the exact type of the formal argument is sent, then the encoding is
 as shown below:

Actual Invocation Legal Encoding

op1(a_horse) 2 horse

6 1 horse

Actual Invocation Legal Encoding

 op1(a_horse) 6 2 horse animal
290 CORBA for embedded, v1.0

2. Given the additional operation:

 op2(in horse h);

(i.e., the sender knows that both types horse and animal and their derivation relationship are known to the receiver)

a). If the type horse cannot be truncated to animal (i.e., horse is declared):

 valuetype horse: animal ...

then the encoding is as shown below:

Note that the demarshaling exception of case 1 will not occur, since horse is available to the receiver.

 b). If the type horse can be truncated to animal (i.e., horse is declared):

 valuetype horse: truncatable animal ...

then the encoding is as shown below:

Note that truncation will not occur, since horse is available to the receiver.

17.5.3 Scope of the Indirections

The special value 0xffffffff introduces an indirection (i.e., it directs the decoder to go somewhere else in the marshaling
buffer to find what it is looking for). This can be codebase URL information that has already been encoded, a
RepositoryID that has already been encoded, a list of repository IDs that has already been encoded, or another value

Actual Invocation Legal Encoding

 op1(an_animal) 0

2 animal

6 1 animal

Actual Invocation Legal Encoding

 op2(a_horse) 2 horse

6 1 horse

Actual Invocation Legal Encoding

op2 (a_horse) 2 horse

6 1 horse

6 2 horse animal
CORBA for embedded, v1.0 291

object that is shared in a graph. 0xffffffff is always followed by a long indicating where to go in the buffer. A
repositoryID or URL, which is the target of an indirection used for encoding a valuetype must have been introduced as the
type or codebase information for a valuetype.

It is not permissible for a repositoryID marshalled for some purpose other than as the type information of a valuetype to
use indirection to reference a previously marshaled value. The encoding used to indicate an indirection is the same as that
used for recursive TypeCodes (i.e., a 0xffffffff indirection marker followed by a long offset (in units of octets) from the
beginning of the long offset). As an example, this means that an offset of negative four (-4) is illegal, because it is self-
indirecting to its indirection marker. Indirections may refer to any preceding location in the GIOP message, including
previous fragments if fragmentation is used. This includes any previously marshaled parameters. Non-negative offsets are
reserved for future use. Indirections may not cross encapsulation boundaries.

Fragmentation support in GIOP versions 1.1, 1.2 and 1.3 introduces the possibility of a header for a FragmentMessage
being marshaled between the target of an indirection and the start of the encapsulation containing the indirection. The
octets occupied by any such headers are not included in the calculation of the offset value.

17.5.4 Null Values

All value types have a distinguished “null.” All null values are encoded by the <null_tag> (0x0). The CDR encoding of
null values includes no type information.

17.5.5 Other Encoding Information

A “new” value is coded as a value header followed by the value’s state. The header contains a tag and codebase URL
information if appropriate, followed by the RepositoryID and an octet flag of bits. Because the same RepositoryID
(and codebase URL information) could be repeated many times in a single request when sending a complex graph, they
are encoded as a regular string the first time they appear, and use an indirection for later occurrences.

17.5.6 Fragmentation

It is anticipated that value types may be rather large, particularly when a graph is being transmitted. Hence the encoding
supports the breaking up of the serialization into an arbitrary number of chunks in order to facilitate incremental
processing.

Values with truncatable base types need a length indication in case the receiver needs to truncate them to a base type.
Value types that are custom marshaled also need a length indication so that the ORB run time can know exactly where
they end in the stream without relying on user-defined code. This allows the ORB to maintain consistency and ensure the
integrity of the GIOP stream when the user-written custom marshaling and demarshaling does not marshal the entire value
state. For simplicity of encoding, we use a length indication for all values whether or not they have a truncatable base
type or use custom marshaling.

If limited space is available for marshaling, it may be necessary for the ORB to send the contents of a marshaling buffer
containing a partially marshaled value as a GIOP fragment. At that point in the marshaling, the length of the entire value
being marshaled may not be known. Calculating this length may require processing as costly as marshaling the entire
value. It is therefore desirable to allow the value to be encoded as multiple chunks, each with its own length. This allows
the portion of a value that occupies a marshaling buffer to be sent as a chunk of known length with no need for additional
length calculation processing.
292 CORBA for embedded, v1.0

The data may be split into multiple chunks at arbitrary points except within primitive CDR types, arrays of primitive
types, strings, and wstrings, or between the tag and offset of indirections. It is never necessary to end a chunk within one
of these types as the length of these types is known before starting to marshal them so they can be added to the length of
the currently open chunk. It is the responsibility of the CDR stream to hide the chunking from the marshaling code.

The presence (or absence) of chunking is indicated by flags within the <value_tag>. The fourth least significant bit
(<value_tag> & 0x00000008) is the value 1 if a chunked encoding is used for the value’s state. The chunked encoding is
required for custom marshaling and truncation. If this bit is 0, the state is encoded as <octets>.

Each chunk is preceded by a positive long, which specifies the number of octets in the chunk.

A chunked value is terminated by an end tag that is a non-positive long so the start of the next value can be differentiated
from the start of another chunk. In the case of values that contain other values (e.g., a linked list) the “nested” value is
started without there being an end tag. The absolute value of an end tag (when it finally appears) indicates the nesting
level of the value being terminated. A single end tag can be used to terminate multiple nested values. The detailed rules
are as follows:

• End tags, chunk size tags, and value tags are encoded using non-overlapping ranges so that the unmarshaling code can
tell after reading each chunk whether:

• another chunk follows (positive tag).

• one or multiple value types are ending at a given point in the stream (negative tag).

• a nested value follows (special large positive tag).

• The end tag is a negative long whose value is the negation of the absolute nesting depth of the value type ending at this
point in the CDR stream. Any value types that have not already been ended and whose nesting depth is greater than the
depth indicated by the end tag are also implicitly ended. The end tag value 0 is reserved for future use (e.g., supporting
a nesting depth of more than 2^31). The outermost value type will always be terminated by an end tag with a value of
-1. Enclosing non-chunked valuetypes are not considered when determining the nesting depth.

The following example describes how end tags may be used. Consider a valuetype declaration that contains two
member values:

// IDL
valuetype simpleNode{ ... };
valuetype node truncatable simpleNode {
public node node1;
public node node2;

};

When an instance of type ‘node’ is passed as a parameter of type ‘simpleNode’ a chunked encoding is used. In all
cases, the outermost value is terminated with an end tag with a value of -1. The nested value ‘node1’ is terminated
with an end tag with a value of -2 since only the second-level value ‘node1’ ends at that point. Since the nested
value ‘node2’ coterminates with the outermost value, either of the following end tag layouts is legal:

• A single end tag with a value of -1 marks the termination of the outermost value, implying the termination of the
nested value, ‘node2’as well. This is the most compact marshaling.

• An end tag with a value of -2 marks the termination of the nested value, ‘node2.’ This is then followed by an end
tag with a value of -1 to mark the termination of the outermost value.

Because data members are encoded in their declaration order, declaring a value type data member of a value type last
is likely to result in more compact encoding on the wire because it maximizes the number of values ending at the
same place and so allows a single end tag to be used for multiple values. The canonical example for that is a linked
list.
CORBA for embedded, v1.0 293

• For the purposes of chunking, values encoded as indirections or null are treated as non-value data.

• The scope of an encoded valuetype is a complete GIOP message or an encapsulation. Starting a new encapsulation
starts a new scope. Ending an encapsulation ends the current scope and restores the previous scope. Starting a new
scope starts a new count of end tag nesting (initially 0), chunking status (initially false) and chunk position (initially 0).

• Chunks in the same scope are never nested. When a value is nested within another value, the outer value's chunk ends
at the place in the stream where the inner value starts. If the outer value has non-value data to be marshaled following
the inner value, the end tag for the inner value is followed by a continuation chunk for the remainder of the outer value.

• Regardless of the above rules, any value nested within a chunked value in the same scope is always chunked.
Furthermore, any such nested value that is truncatable must encode its type information as a list of RepositoryIDs (see
Section 17.5.1, “Partial Type Information and Versioning,” on page 289).

Truncating a value type in the receiving context may require keeping track of unused nested values (only during
unmarshaling) in case further indirection tags point back to them. These values can be held in their “raw” GIOP form, as
fully unmarshaled value objects, or in any other product-specific form.

Value types that are custom marshaled are encoded as chunks in order to let the ORB run-time know exactly where they
end in the stream without relying on user-defined code.

17.5.7 Notation

The on-the-wire format is described by a BNF grammar with conventions similar to the ones used to define IDL syntax.
The terminals of the grammar are to be interpreted differently. We are describing a protocol format. Although the
terminals have the same names as IDL tokens they represent either:

• constant tags, or

• the GIOP CDR encoding of the corresponding IDL construct.

For example, long is a shorthand for the GIOP encoding of the IDL long data type -with all the GIOP alignment rules.
Similarly struct is a shorthand for the GIOP CDR encoding of a struct.

A (type) constant means that an instance of the given type having the given value is encoded according to the rules for
that type. So that (long) 0 means that a CDR encoding for a long having the value 0 appears at that location.

17.5.8 The Format

(1) <value> ::= <value_tag> [<codebase_URL>]
[<type_info>] <state>

| <value_ref>
(2) <value_ref> ::= <indirection_tag> <indirection> | <null_tag>
(3) <value_tag> ::= long // 0x7fffff00 <= value_tag <= 0x7fffffff
(4) <type_info> ::= <rep_ids> | <repository_id>
(5) <state> ::= <octets> |<value_data>* [<end_tag>]
(6) <value_data> ::= <value_chunk> | <value>
(7) <rep_ids> ::= long <repository_id>+
| <indirection_tag> <indirection>
(8) <repository_id> ::= string | <indirection_tag> <indirection>
(9) <value_chunk> ::= <chunk_size_tag> <octets>
294 CORBA for embedded, v1.0

(10) <null_tag> ::= (long) 0
(11) <indirection_tag> ::= (long) 0xffffffff
(12) <codebase_URL> ::= string | <indirection_tag> <indirection>
(13) <chunk_size_tag> ::= long

// 0 < chunk_size_tag < 2^31-256 (0x7fffff00)
(14) <end_tag> ::= long // -2^31 < end_tag < 0
(15) <indirection> ::= long // -2^31 < indirection < 0
(16) <octets> ::= octet | octet <octets>

The concatenated octets of consecutive value chunks within a value encode state
members for the value according to the following grammar:

(17) <state members> ::= <state_member>
| <state_member> <state members>
(18) <state_member> ::= <value_ref>

// All legal IDL types should be here
|octet
|boolean
|char
|short
|unsigned short
|long
|unsigned long
|float
|wchar
|wstring
|string
|struct
|union
|sequence
|array
|Object
|any
|long long
|unsigned long long
|double
|long double
|fixed

17.6 Pseudo-Object Types

CORBA defines some kinds of entities that are neither primitive types (integral or floating point) nor constructed ones.
CORBA for embedded, v1.0 295

17.6.1 TypeCode

In general, TypeCodes are encoded as the TCKind enum value, potentially followed by values that represent the
TypeCode parameters. Unfortunately, TypeCodes cannot be expressed simply in OMG IDL, since their definitions are
recursive. The basic TypeCode representations are given in Table 17.2. The integer value column of this table gives the
TCKind enum value corresponding to the given TypeCode, and lists the parameters associated with such a TypeCode.
The rest of this section presents the details of the encoding.

17.6.1.1 Basic TypeCode Encoding Framework

The encoding of a TypeCode is the TCKind enum value (encoded, like all enum values, using four octets), followed by
zero or more parameter values. The encodings of the parameter lists fall into three general categories, and differ in order
to conserve space and to support efficient traversal of the binary representation:

• Typecodes with an empty parameter list are encoded simply as the corresponding TCKind enum value.

• Typecodes with simple parameter lists are encoded as the TCKind enum value followed by the parameter value(s),
encoded as indicated in Table 17.2. A “simple” parameter list has a fixed number of fixed length entries, or a single
parameter that has its length encoded first.

• All other typecodes have complex parameter lists, which are encoded as the TCKind enum value followed by a CDR
encapsulation octet sequence (see Section 17.4, “Encapsulation,” on page 287) containing the encapsulated, marshaled
parameters. The order of these parameters is shown in the fourth column of Table 17.2.

The third column of Table 17.2 shows whether each parameter list is empty, simple, or complex. Also, note that an internal
indirection facility is needed to represent some kinds of typecodes; this is explained in “Indirection: Recursive and
Repeated TypeCodes” on page 300. This indirection does not need to be exposed to application programmers.

17.6.1.2 TypeCode Parameter Notation

TypeCode parameters are specified in the fourth column of Table 17.2. The ordering and meaning of parameters is a
superset of those given in Section 8.5, “TypeCodes,” on page 117; more information is needed by CDR’s representation in
order to provide the full semantics of TypeCodes as shown by the API.

• Each parameter is written in the form type (name), where type describes the parameter’s type, and name describes the
parameter’s meaning.

• The encoding of some parameter lists (specifically, tk_struct, tk_union, tk_enum, and tk_except) contain a
counted sequence of tuples.

Such counted tuple sequences are written in the form count {parameters}, where count is the number of tuples in the
encoded form, and the parameters enclosed in braces are available in each tuple instance. First the count, which is an
unsigned long, and then each parameter in each tuple (using the noted type), is encoded in the CDR representation of
the typecode. Each tuple is encoded, first parameter followed by second, before the next tuple is encoded (first, then
second, etc.).
296 CORBA for embedded, v1.0

Note that the tuples identifying struct, union, exception, and enum members must be in the order defined in the OMG
IDL definition text. Also, that the types of discriminant values in encoded tk_union TypeCodes are established by the
second encoded parameter (discriminant type), and cannot be specified except with reference to a specific OMG IDL
definition.3

Table 17.2- TypeCode enum values, parameter list types, and parameters

TCKind Integer
Value

Type Parameters

tk_null 0 empty – none –

tk_void 1 empty – none –

tk_short 2 empty – none –

tk_long 3 empty – none –

tk_ushort 4 empty – none –

tk_ulong 5 empty – none –

tk_float 6 empty – none –

tk_double 7 empty – none –

tk_boolean 8 empty – none –

tk_char 9 empty – none –

tk_octet 10 empty – none –

tk_any 11 empty – none –

tk_TypeCode 12 empty – none –

tk_Principal 13 empty – none –

tk_objref 14 complex string (repository ID), string(name)

tk_struct 15 complex string (repository ID),
string (name),
ulong (count)
{string (member name),
TypeCode (member type)}

tk_union 16 complex string (repository ID),
string(name),
TypeCode (discriminant type),
long (default used),
ulong (count)
{discriminant typea (label value),
string (member name),
TypeCode (member type)}
CORBA for embedded, v1.0 297

3. This means that, for example, two OMG IDL unions that are textually equivalent, except that one uses a “char” discriminant, and
the other uses a “long” one, would have different size encoded TypeCodes.

tk_enum 17 complex string (repository ID),
string (name),
ulong (count)
{string (member name)}

tk_string 18 simple ulong (max lengthb)

tk_sequence 19 complex TypeCode (element type),
ulong (max lengthc)

tk_array 20 complex TypeCode (element type),
ulong (length)

tk_alias 21 complex string (repository ID),
string (name),
TypeCode

tk_except 22 complex string (repository ID),
string (name),
ulong (count)
{string (member name),
TypeCode (member type)}

tk_longlong 23 empty – none –

tk_ulonglong 24 empty – none –

tk_longdouble 25 empty – none –

tk_wchar 26 empty – none –

tk_wstring 27 simple ulong(max length or zero if
unbounded)

tk_fixed 28 simple ushort(digits), short(scale)

Table 17.2- TypeCode enum values, parameter list types, and parameters

TCKind Integer
Value

Type Parameters
298 CORBA for embedded, v1.0

tk_value 29 complex string (repository ID),
string (name, may be empty),
short(ValueModifier),

TypeCode(of concrete base)d,
ulong (count),
{string (member name),
TypeCode (member type),
short(Visibility)}

tk_value_box 30 complex string (repository ID),
string(name),
TypeCode

tk_native 31 complex string (repository ID), string(name)

tk_abstract_interface 32 complex string(RepositoryId), string(name)

tk_local_interface 33 complex string(RepositoryId), string(name)

tk_component 34 complex string (repository ID), string(name)

tk_home 35 complex string (repository ID), string(name)

tk_event 36 complex string (repository ID),
string (name, may be empty),
short(ValueModifier),
TypeCode(of concrete base)e,
ulong (count),
{string (member name),
TypeCode (member type),
short(Visibility)}

– none – 0xffffffff simple long (indirectionf)

a.The type of union label values is determined by the second parameter, discriminant type.

b.For unbounded strings, this value is zero.

c.For unbounded sequences, this value is zero.

d.Should be tk_null if there is no concrete base.

e.Should be tk_null if there is no concrete base.

f. See “Indirection: Recursive and Repeated TypeCodes” on page 300.

Table 17.2- TypeCode enum values, parameter list types, and parameters

TCKind Integer
Value

Type Parameters
CORBA for embedded, v1.0 299

Encoded Identifiers and Names

The Repository ID parameters in tk_objref, tk_struct, tk_union, tk_enum, tk_alias, tk_except, tk_native,
tk_value, tk_value_box and tk_abstract_interface TypeCodes are Interface Repository RepositoryId values, whose
format is described in the specification of the Interface Repository.

For GIOP 1.2 onwards, repositoryID values are required to be sent, if known by the ORB4. For GIOP 1.2 and 1.3 an
empty repositoryID string is only allowed if a repositoryID value is not available to the ORB sending the type code.

For GIOP 1.0 and 1.1, RepositoryId values are required for tk_objref and tk_except TypeCodes; for tk_struct,
tk_union, tk_enum, and tk_alias TypeCodes RepositoryIds are optional and encoded as empty strings if omitted.

The name parameters in tk_objref, tk_struct, tk_union, tk_enum, tk_alias, tk_value, tk_value_box,
tk_abstract_interface, tk_native and tk_except TypeCodes and the member name parameters in tk_struct,
tk_union, tk_enum, tk_value and tk_except TypeCodes are not specified by (or significant in) GIOP. Agents should
not make assumptions about type equivalence based on these name values; only the structural information (including
RepositoryId values, if provided) is significant. If provided, the strings should be the simple, unscoped names supplied
in the OMG IDL definition text. If omitted, they are encoded as empty strings.

When a reference to a base Object is encoded, there are two allowed encodings for the Repository ID: either
"IDL:omg.org/CORBA/Object:1.0" or "" may be used.

Encoding the tk_union Default Case

In tk_union TypeCodes, the long default used value is used to indicate which tuple in the sequence describes the
union’s default case. If this value is less than zero, then the union contains no default case. Otherwise, the value contains
the zero-based index of the default case in the sequence of tuples describing union members.

The discriminant value used in the actual typecode parameter associated with the default member position in the list, may
be any valid value of the discriminant type, and has no semantic significance (i.e., it should be ignored and is only
included for syntactic completeness of union type code marshaling).

TypeCodes for Multi-Dimensional Arrays

The tk_array TypeCode only describes a single dimension of any array. TypeCodes for multi-dimensional arrays are
constructed by nesting tk_array TypeCodes within other tk_array TypeCodes, one per array dimension. The outermost
(or top-level) tk_array TypeCode describes the leftmost array index of the array as defined in IDL; the innermost nested
tk_array TypeCode describes the rightmost index.

Indirection: Recursive and Repeated TypeCodes

The typecode representation of OMG IDL data types that can indirectly contain instances of themselves (e.g., struct foo
{sequence <foo> bar;}) must also contain an indirection. Such an indirection is also useful to reduce the size of
encodings; for example, unions with many cases sharing the same value.

CDR provides a constrained indirection to resolve this problem:

• For GIOP 1.2 and below, the indirection applies only to TypeCodes nested within some “top-level” TypeCode.

4. A type code passed via a GIOP 1.2 connection shall contain non-empty repositoryID strings, unless a repositoryID value is not
available to the sending ORB for a specific type code. This situation can arise, for example, if an ORB receives a type code con-
taining empty repository IDs via a GIOP 1.0 or 1.1 connection and passes that type code on via a GIOP 1.2 connection).
300 CORBA for embedded, v1.0

Indirected TypeCodes are not “freestanding,” but only exist inside some other encoded TypeCode.

• For GIOP 1.3 and above, the indirection applies only to TypeCodes nested within some “top-level” TypeCode, or from
one top-level TypeCode to another. Indirected TypeCodes nested within a top-level TypeCode can only reference
TypeCodes that are part of the same top-level TypeCode, including the top-level TypeCode itself. Indirected top-level
TypeCodes can reference other top-level TypeCodes but cannot reference TypeCodes nested within some other top-
level TypeCode.

• Only the second (and subsequent) references to a TypeCode in that scope may use the indirection facility. The first
reference to that TypeCode must be encoded using the normal rules. In the case of a recursive TypeCode, this means
that the first instance will not have been fully encoded before a second one must be completely encoded.

The indirection is a numeric octet offset within the scope of the “top-level” TypeCode and points to the TCKind value
for the typecode. (Note that the byte order of the TCKind value can be determined by its encoded value.) This indirection
may well cross encapsulation boundaries, but this is not problematic because of the first constraint identified above.
Because of the second constraint, the value of the offset will always be negative.

Fragmentation support in GIOP versions 1.1, 1.2, and 1.3 introduces the possibility of a header for a FragmentMessage
being marshaled between the target of an indirection and the start of the encapsulation containing the indirection. The
octets occupied by any such headers are not included in the calculation of the offset value.

The encoding of such an indirection is as a TypeCode with a “TCKind value” that has the special value 232-1 (0xffffffff,
all ones). Such typecodes have a single (simple) parameter, which is the long offset (in units of octets) from the simple
parameter. (This means that an offset of negative four (-4) is illegal because it will be self-indirecting.)

17.6.2 Any

Any values are encoded as a TypeCode (encoded as described above) followed by the encoded value. For Any values
containing a tk_null or tk_void TypeCode, the encoded value shall have zero length (i.e., shall be absent).

17.6.3 Principal

Principal pseudo objects are encoded as sequence<octet>. In the absence of a Security service specification,
Principal values have no standard format or interpretation, beyond serving to identify callers (and potential callers). This
specification does not prescribe any usage of Principal values.

By representing Principal values as sequence<octet>, GIOP guarantees that ORBs may use domain-specific principal
identification schemes; such values undergo no translation or interpretation during transmission. This allows bridges to
translate or interpret these identifiers as needed when forwarding requests between different security domains.

17.6.4 Context

Context pseudo objects are encoded as sequence<string>. The strings occur in pairs. The first string in each pair is
the context property name, and the second string in each pair is the associated value. If an operation has an IDL context
clause but the client does not supply any properties matching the context clause at run time, an empty sequence is
marshaled.
CORBA for embedded, v1.0 301

17.6.5 Exception

Exceptions are encoded as a string followed by exception members, if any. The string contains the RepositoryId for the
exception, as defined in the Interface Repository chapter. Exception members (if any) are encoded in the same manner as
a struct.

If an ORB receives a non-standard system exception that it does not support, or a user exception that is not defined as part
of the operation's definition, the exception shall be mapped to UNKNOWN, with standard minor code set to 2 for a
system exception, or set to 1 for a user exception.

17.7 Object References

Object references are encoded in OMG IDL. IOR profiles contain transport-specific addressing information, so there is no
general-purpose IOR profile format defined for GIOP. Instead, this specification describes the general information model
for GIOP profiles and provides a specific format for the IIOP.

In general, GIOP profiles include at least these three elements:

1. The version number of the transport-specific protocol specification that the server supports.

2. The address of an endpoint for the transport protocol being used.

3. An opaque datum (an object_key, in the form of an octet sequence) used exclusively by the agent at the specified
endpoint address to identify the object.
302 CORBA for embedded, v1.0

18 GIOP Messages

Compliance

Conformant implementations of the CORBA/e Compact Profile must comply with all clauses of this chapter. Conformant
implementations of the CORBA/e Micro Profile must comply with all clauses of this chapter.

18.1 Overview

This chapter specifies the message formats and protocol used in the General Inter-ORB Protocol (GIOP) for ORB
interoperability.

18.2 GIOP Message Formats

GIOP has restriction on client and server roles with respect to initiating and receiving messages. For the purpose of GIOP
versions 1.0 and 1.1, a client is the agent that opens a connection (see more details in Section 16.4.1, “Connection
Management,” on page 276) and originates requests. Likewise, for GIOP versions 1.0 and 1.1, a server is an agent that
accepts connections and receives requests.When Bidirectional GIOP is in use for GIOP protocol version 1.2 and 1.3,
either side may originate messages.

GIOP message types are summarized in Table 18.1, which lists the message type names, whether the message is
originated by client, server, or both, and the value used to identify the message type in GIOP message headers.

Table 18.1- GIOP Message Types and Originators

Message Type Originator Value GIOP Versions

Request Client 0 1.0, 1.1, 1.2, 1.3

Request Both 0 1.2 with BiDir GIOP in use,
1.3 with BiDir GIOP in use

Reply Server 1 1.0, 1.1, 1.2, 1.3

Reply Both 1 1.2 with BiDir GIOP in use,
1.3 with BiDir GIOP in use

CancelRequest Client 2 1.0, 1.1, 1.2, 1.3

CancelRequest Both 2 1.2 with BiDir GIOP in use,
1.3 with BiDir GIOP in use

LocateRequest Client 3 1.0, 1.1, 1.2, 1.3

LocateRequest Both 3 1.2 with BiDir GIOP in use,
1.3 with BiDir GIOP in use

LocateReply Server 4 1.0, 1.1, 1.2, 1.3

LocateReply Both 4 1.2 with BiDir GIOP in use,
1.3 with BiDir GIOP in use
CORBA for embedded, v1.0 303

18.2.1 GIOP Message Header

All GIOP messages begin with the following header, defined in OMG IDL:

module GIOP { // IDL extended for version 1.1, 1.2, and 1.3
struct Version {

octet major;
octet minor;

};
#if MAX_GIOP_VERSION_NUMBER == 0

// GIOP 1.0
enum MsgType_1_0 { // Renamed from MsgType
 Request, Reply, CancelRequest,

LocateRequest, LocateReply,
CloseConnection, MessageError

};

#else
// GIOP 1.1
enum MsgType_1_1 {
 Request, Reply, CancelRequest,

LocateRequest, LocateReply,
CloseConnection, MessageError,
Fragment // GIOP 1.1 addition

};
#endif // MAX_GIOP_VERSION_NUMBER

// GIOP 1.0
typedef char Magicn[4]
struct MessageHeader_1_0 {// Renamed from MessageHeader

Magicn magic;
Version GIOP_version;
boolean byte_order;
octet message_type;
unsigned long message_size;

};

// GIOP 1.1
struct MessageHeader_1_1 {

Magicn magic;

CloseConnection Server 5 1.0, 1.1, 1.2, 1.3

CloseConnection Both 5 1.2, 1.3

MessageError Both 6 1.0, 1.1, 1.2, 1.3

Fragment Both 7 1.1, 1.2, 1.3

Table 18.1- GIOP Message Types and Originators

Message Type Originator Value GIOP Versions
304 CORBA for embedded, v1.0

Version GIOP_version;
octet flags; // GIOP 1.1 change
octet message_type;
unsigned long message_size;

};

// GIOP 1.2, 1.3
typedef MessageHeader_1_1 MessageHeader_1_2;
typedef MessageHeader_1_1 MessageHeader_1_3;

};

The message header clearly identifies GIOP messages and their byte-ordering. The header is independent of byte ordering
except for the field encoding message size.

• magic identifies GIOP messages. The value of this member is always the four (upper case) characters “GIOP,”
encoded in ISO Latin-1 (8859.1).

• GIOP_version contains the version number of the GIOP protocol being used in the message. The version number
applies to the transport-independent elements of this specification (i.e., the CDR and message formats) that constitute
the GIOP. This is not equivalent to the IIOP version number (as described in Section 17.7, “Object References,” on
page 302) though it has the same structure. The major GIOP version number of this specification is one (1); the minor
versions are zero (0), one (1), and two (2).

A server implementation supporting a minor GIOP protocol version 1.n (with n > 0 and n < 3), must also be able to
process GIOP messages having minor protocol version 1.m, with m less than n. A GIOP server, which receives a
request having a greater minor version number than it supports, should respond with an error message having the
highest minor version number that that server supports, and then close the connection.

A client should not send a GIOP message having a higher minor version number than that published by the server in
the tag Internet IIOP Profile body of an IOR.

• byte_order (in GIOP 1.0 only) indicates the byte ordering used in subsequent elements of the message (including
message_size). A value of FALSE (0) indicates big-endian byte ordering, and TRUE (1) indicates little-endian
byte ordering.

• flags (in GIOP 1.1, 1.2, and 1.3) is an 8-bit octet. The least significant bit indicates the byte ordering used in
subsequent elements of the message (including message_size). A value of FALSE (0) indicates big-endian byte
ordering, and TRUE (1) indicates little-endian byte ordering. The byte order for fragment messages must match the
byte order of the initial message that the fragment extends.

The second least significant bit indicates whether or not more fragments follow. A value of FALSE (0) indicates this
message is the last fragment, and TRUE (1) indicates more fragments follow this message.

The most significant 6 bits are reserved. These 6 bits must have value 0 for GIOP version 1.1, 1.2, and 1.3.

• message_type indicates the type of the message, according to Table 18.1; these correspond to enum values of type
MsgType.

• message_size contains the number of octets in the message following the message header, encoded using the byte
order specified in the byte order bit (the least significant bit) in the flags field (or using the byte_order field in GIOP
1.0). It refers to the size of the message body, not including the 12-byte message header. This count includes any
alignment gaps and must match the size of the actual request parameters (plus any final padding bytes that may
follow the parameters to have a fragment message terminate on an 8-byte boundary).
CORBA for embedded, v1.0 305

A MARSHAL exception with minor code 7 indicates that fewer bytes were present in a message than indicated by
the count. (This condition can arise if the sender sends a message in fragments, and the receiver detects that the final
fragment was received but contained insufficient data for all parameters to be unmarshaled.).

A MARSHAL exception with minor code 8 indicates that more bytes were present in a message than indicated by
the count. Depending on the ORB implementation, this condition may be reported for the current message or the
next message that is processed (when the receiver detects that the previous message is not immediately followed by
the GIOP magic number).

The use of a message size of 0 with a Request, LocateRequest, Reply, or LocateReply message is reserved for
future use.

For GIOP version 1.2, and 1.3, if the second least significant bit of Flags is 1, the sum of the message_size value and
12 must be evenly divisible by 8.

Messages with different GIOP minor versions may be mixed on the same underlying transport connection.

18.2.2 Request Message

Request messages encode CORBA object invocations, including attribute accessor operations, and CORBA::Object
operations. Requests flow from client to server.

Request messages have three elements, encoded in this order:

• A GIOP message header

• A Request Header

• The Request Body

18.2.2.1 Request Header

The request header is specified as follows:

module GIOP { // IDL extended for version 1.1, 1.2, and 1.3

// GIOP 1.0
struct RequestHeader_1_0 { // Renamed from RequestHeader

IOP::ServiceContextList service_context;
unsigned long request_id;
boolean response_expected;
IOP::ObjectKey object_key;
string operation;
CORBA::OctetSeq requesting_principal;

};
typedef octet RequestReserved[3];
struct RequestHeader_1_1 {

IOP::ServiceContextList service_context;
unsigned long request_id;
boolean response_expected;
RequestReserved reserved; // Added in GIOP 1.1
306 CORBA for embedded, v1.0

IOP::ObjectKey object_key;
string operation;
CORBA::OctetSeq requesting_principal;

};

// GIOP 1.2, 1.3
typedef short AddressingDisposition;
const short KeyAddr = 0;
const short ProfileAddr = 1;
const short ReferenceAddr = 2;

struct IORAddressingInfo {
unsigned long selected_profile_index;
IOP::IOR ior;

};

union TargetAddress switch (AddressingDisposition) {
case KeyAddr: IOP::ObjectKey object_key;
case ProfileAddr: IOP::TaggedProfile profile;
case ReferenceAddr: IORAddressingInfo ior;

};

struct RequestHeader_1_2 {
unsigned long request_id;
octet response_flags;

 RequestReserved reserved; // Added in GIOP 1.1
TargetAddress target;
string operation;
IOP::ServiceContextList service_context;
// requesting_principal not in GIOP 1.2 and 1.3

};
typedef RequestHeader_1_2 RequestHeader_1_3;

};

The members have the following definitions:

• request_id is used to associate reply messages with request messages (including LocateRequest messages). The
client (requester) is responsible for generating values so that ambiguity is eliminated; specifically, a client must not re-
use request_id values during a connection if: (a) the previous request containing that ID is still pending, or (b) if the
previous request containing that ID was canceled and no reply was received. (See the semantics of the Section 18.2.4,
“CancelRequest Message,” on page 312).

• response_flags is set to 0x0 for a SyncScope of NONE and WITH_TRANSPORT. The flag is set to 0x1 for a
SyncScope of WITH_SERVER. A non exception reply to a request message containing a response_flags value
of 0x1 should contain an empty body, i.e., the equivalent of a void operation with no out/inout parameters. The flag is
set to 0x3 for a SyncScope of WITH_TARGET. These values ensure interworking compatibility between this and
previous versions of GIOP.

For GIOP 1.0 and 1.1 a response_expected value of TRUE is treated like a response_flags value of \x03, and
a response_expected value of FALSE is treated like a response_flags value of \x00.

• reserved is always set to 0 in GIOP 1.1. These three octets are reserved for future use.
CORBA for embedded, v1.0 307

• For GIOP 1.0 and 1.1, object_key identifies the object that is the target of the invocation. It is the object_key field
from the transport-specific GIOP profile (e.g., from the encapsulated IIOP profile of the IOR for the target object).
This value is only meaningful to the server and is not interpreted or modified by the client.

• For GIOP 1.2, 1.3, target identifies the object that is the target of the invocation. The possible values of the union are:

• KeyAddr is the object_key field from the transport-specific GIOP profile (e.g., from the encapsulated IIOP
profile of the IOR for the target object). This value is only meaningful to the server and is not interpreted or
modified by the client.

• ProfileAddr is the transport-specific GIOP profile selected for the target’s IOR by the client ORB.

• IORAddressingInfo is the full IOR of the target object. The selected_profile_index indicates the transport-
specific GIOP profile that was selected by the client ORB. The first profile has an index of zero.

• operation is the IDL identifier naming, within the context of the interface (not a fully qualified scoped name), the
operation being invoked. In the case of attribute accessors, the names are _get_<attribute> and _set_<attribute>.
The case of the operation or attribute name must match the case of the operation name specified in the OMG IDL
source for the interface being used.

In the case of CORBA::Object operations that are defined in the CORBA Core and that correspond to GIOP request
messages, the operation names are _interface, _is_a, _non_existent, _domain_managers, _component
and _repository_id.

Note – The name _get_domain_managers is not used, to avoid conflict with a get operation invoked on a user
defined attribute with name domain_managers.

For GIOP 1.2 and later versions, only the operation name _non_existent shall be used.

The correct operation name to use for GIOP 1.0 and 1.1 is _non_existent. Due to a typographical error in CORBA 2.0,
2.1, and 2.2, some legacy implementations of GIOP 1.0 and 1.1 respond to the operation name _not_existent. For
maximum interoperability with such legacy implementations, new implementations of GIOP 1.0 and 1.1 may wish to
respond to both operation names, _non_existent and _not_existent.

• service_context contains ORB service data being passed from the client to the server.

• requesting_principal contains a value identifying the requesting principal. It is provided to support the
BOA::get_principal operation. The usage of the requesting_principal field is deprecated for GIOP versions 1.0
and 1.1. The field is not present in the request header for GIOP version 1.2, 1.3.

There is no padding after the request header when an unfragmented request message body is empty.

18.2.2.2 Request Body

In GIOP versions 1.0 and 1.1, request bodies are marshaled into the CDR encapsulation of the containing Message
immediately following the Request Header. In GIOP version 1.2 and 1.3, the Request Body is always aligned on an 8-
octet boundary. The fact that GIOP specifies the maximum alignment for any primitive type is 8 guarantees that the
Request Body will not require remarshaling if the Message or Request header are modified. The data for the request body
includes the following items encoded in this order:

• All in and inout parameters, in the order in which they are specified in the operation’s OMG IDL definition, from left
to right.
308 CORBA for embedded, v1.0

• An optional Context pseudo object. This item is only included if the operation’s OMG IDL definition includes a
context expression, and only includes context members as defined in that expression.

For example, the request body for the following OMG IDL operation

double example (in short m, out string str, inout long p);

would be equivalent to this structure:

struct example_body {
short m; // leftmost in or inout parameter
long p; // ... to the rightmost

};

18.2.3 Reply Message

Reply messages are sent in response to Request messages if and only if the response expected flag in the request is set
to TRUE. Replies include inout and out parameters, operation results, and may include exception values. In addition,
Reply messages may provide object location information. In GIOP versions 1.0 and 1.1, replies flow only from server to
client.

Reply messages have three elements, encoded in this order:

• A GIOP message header

• A ReplyHeader structure

• The reply body

18.2.3.1 Reply Header

The reply header is defined as follows:

module GIOP { // IDL extended for 1.2 and 1.3
#if MAX_GIOP_MINOR_VERSION < 2

// GIOP 1.0 and 1.1
enum ReplyStatusType_1_0 { // Renamed from ReplyStatusType

NO_EXCEPTION,
USER_EXCEPTION,
SYSTEM_EXCEPTION,
LOCATION_FORWARD

};

// GIOP 1.0
struct ReplyHeader_1_0 { // Renamed from ReplyHeader

IOP::ServiceContextList service_context;
unsigned long request_id;
ReplyStatusType_1_0 reply_status;

};

// GIOP 1.1
CORBA for embedded, v1.0 309

typedef ReplyHeader_1_0 ReplyHeader_1_1;
// Same Header contents for 1.0 and 1.1

#endif
#if MAX_GIOP_MINOR_VERSION >= 2

// GIOP 1.2, 1.3
enum ReplyStatusType_1_2 {

NO_EXCEPTION,
USER_EXCEPTION,
SYSTEM_EXCEPTION,
LOCATION_FORWARD,
LOCATION_FORWARD_PERM,// new value for 1.2
NEEDS_ADDRESSING_MODE // new value for 1.2

};

struct ReplyHeader_1_2 {
unsigned long request_id;
ReplyStatusType_1_2 reply_status;
IOP::ServiceContextList service_context;

};
typedef ReplyHeader_1_2 ReplyHeader_1_3;

#endif // MAX_GIOP_VERSION_NUMBER

};

The members have the following definitions:

• request_id is used to associate replies with requests. It contains the same request_id value as the corresponding
request.

• reply_status indicates the completion status of the associated request, and also determines part of the reply body
contents. If no exception occurred and the operation completed successfully, the value is NO_EXCEPTION and the
body contains return values. Otherwise the body

• contains an exception, or

• directs the client to reissue the request to an object at some other location, or

• directs the client to supply more addressing information.

• service_context contains ORB service data being passed from the server to the client, encoded as described in
Section 16.3.3, “GIOP Message Transfer,” on page 275.

There is no padding after the reply header when an unfragmented reply message body is empty.

18.2.3.2 Reply Body

In GIOP version 1.0 and 1.1, reply bodies are marshaled into the CDR encapsulation of the containing Message
immediately following the Reply Header. In GIOP version 1.2 and 1.3, the Reply Body is always aligned on an 8-octet
boundary. The fact that GIOP specifies the maximum alignment for any primitive type is 8 guarantees that the ReplyBody
will not require remarshaling if the Message or the Reply Header are modified. The data for the reply body is determined
by the value of reply_status. There are the following types of reply body:
310 CORBA for embedded, v1.0

• If the reply_status value is NO_EXCEPTION, the body is encoded as if it were a structure holding first any
operation return value, then any inout and out parameters in the order in which they appear in the operation’s OMG
IDL definition, from left to right. (That structure could be empty.)

• If the reply_status value is USER_EXCEPTION or SYSTEM_EXCEPTION, then the body contains the
exception that was raised by the operation. (Only the user-defined exceptions listed in the operation’s OMG IDL
definition may be raised.) When a GIOP Reply message contains a `reply_status' value of
SYSTEM_EXCEPTION, the body of the Reply message conforms to the following structure:

module GIOP { // IDL
struct SystemExceptionReplyBody {

string exception_id;
unsigned long minor_code_value;
unsigned long completion_status;
};

};

The high-order 20 bits of minor_code_value contain a 20-bit “Vendor Minor Codeset ID” (VMCID); the low-order 12
bits contain a minor code. A vendor (or group of vendors) wishing to define a specific set of system exception minor
codes should obtain a unique VMCID from the OMG, and then use those 4096 minor codes as they see fit; for example,
defining up to 4096 minor codes for each system exception. Any vendor may use the special VMCID of zero (0) without
previous reservation, but minor code assignments in this codeset may conflict with other vendor's assignments, and use of
the zero VMCID is officially deprecated.

Note – OMG standard minor codes are identified with the 20 bit VMCID \x4f4d0. This appears as the characters ‘O’
followed by the character ‘M’ on the wire, which is defined as a 32-bit constant called OMGVMCID \x4f4d0000 (see
Section 8.6.4, “Standard Minor Exception Codes,” on page 131) so that allocated minor code numbers can be or-ed with
it to obtain the minor_code_value.

• If the reply_status value is LOCATION_FORWARD, then the body contains an object reference (IOR) encoded as
described in Section 17.7, “Object References,” on page 302. The client ORB is responsible for re-sending the original
request to that (different) object. This resending is transparent to the client program making the request.

• The usage of the reply_status value LOCATION_FORWARD_PERM behaves like the usage of
LOCATION_FORWARD, but when used by a server it also provides an indication to the client that it may replace the
old IOR with the new IOR. Both the old IOR and the new IOR are valid, but the new IOR is preferred for future use.

• If the reply_status value is NEEDS_ADDRESSING_MODE then the body contains a
GIOP::AddressingDisposition. The client ORB is responsible for re-sending the original request using the
requested addressing mode. The resending is transparent to the client program making the request.

Note – Usage of LOCATATION_FORWARD_PERM is now deprecated, due to problems it causes with the semantics of
the Object::hash() operation. LOCATATION_FORWARD_PERM features could be removed from some future GIOP
versions if solutions to these problems are not provided.

For example, the reply body for a successful response (the value of reply_status is NO_EXCEPTION) to the Request
example shown on page -309 would be equivalent to the following structure:

struct example_reply {
double return_value; // return value
string str;
CORBA for embedded, v1.0 311

long p; // ...to the rightmost
};

Note that the object_key field in any specific GIOP profile is server-relative, not absolute. Specifically, when a new
object reference is received in a LOCATION_FORWARD Reply or in a LocateReply message, the object_key field
embedded in the new object reference’s GIOP profile may not have the same value as the object_key in the GIOP
profile of the original object reference. For details on location forwarding, see Section 18.3, “Object Location,” on
page 317.

18.2.4 CancelRequest Message

CancelRequest messages may be sent, in GIOP versions 1.0 and 1.1, only from clients to servers. CancelRequest
messages notify a server that the client is no longer expecting a reply for a specified pending Request or
LocateRequest message.

CancelRequest messages have two elements, encoded in this order:

• A GIOP message header

• A CancelRequestHeader

18.2.4.1 Cancel Request Header

The cancel request header is defined as follows:

module GIOP { // IDL
struct CancelRequestHeader {

unsigned long request_id;
};

};

The request_id member identifies the Request or LocateRequest message to which the cancel applies. This value is
the same as the request_id value specified in the original Request or LocateRequest message.

When a client issues a cancel request message, it serves in an advisory capacity only. The server is not required to
acknowledge the cancellation, and may subsequently send the corresponding reply. The client should have no expectation
about whether a reply (including an exceptional one) arrives.

18.2.5 LocateRequest Message

LocateRequest messages may be sent from a client to a server to determine the following regarding a specified object
reference:

• whether the current server is capable of directly receiving requests for the object reference, and if not,

• to what address requests for the object reference should be sent.

Note that this information is also provided through the Request message, but that some clients might prefer not to
support retransmission of potentially large messages that might be implied by a LOCATION_FORWARD status in a
Reply message. That is, client use of this represents a potential optimization.

LocateRequest messages have two elements, encoded in this order:
312 CORBA for embedded, v1.0

• A GIOP message header

• A LocateRequestHeader

18.2.5.1 LocateRequest Header.

The LocateRequest header is defined as follows:

module GIOP { // IDL extended for version 1.2 and 1.3

// GIOP 1.0
struct LocateRequestHeader_1_0 {

// Renamed LocationRequestHeader
unsigned long request_id;
IOP::ObjectKey object_key;

};

// GIOP 1.1
typedef LocateRequestHeader_1_0 LocateRequestHeader_1_1;
// Same Header contents for 1.0 and 1.1

// GIOP 1.2, 1.3
struct LocateRequestHeader_1_2 {

unsigned long request_id;
TargetAddress target;

};
typedef LocateRequestHeader_1_2 LocateRequestHeader_1_3;

};

The members are defined as follows:

• request_id is used to associate LocateReply messages with LocateRequest ones. The client (requester) is
responsible for generating values; see Section 18.2.2, “Request Message,” on page 306 for the applicable rules.

• For GIOP 1.0 and 1.1, object_key identifies the object being located. In an IIOP context, this value is obtained from
the object_key field from the encapsulated IIOP::ProfileBody in the IIOP profile of the IOR for the target object.
When GIOP is mapped to other transports, their IOR profiles must also contain an appropriate corresponding value.
This value is only meaningful to the server and is not interpreted or modified by the client.

• For GIOP 1.2, 1.3, target identifies the object being located. The possible values of this union are:

• KeyAddr is the object_key field from the transport-specific GIOP profile (e.g., from the encapsulated IIOP
profile of the IOR for the target object). This value is only meaningful to the server and is not interpreted or
modified by the client.

• ProfileAddr is the transport-specific GIOP profile selected for the target’s IOR by the client ORB.

• IORAddressingInfo is the full IOR of the target object. The selected_profile_index indicates the transport-
specific GIOP profile that was selected by the client ORB.

See Section 18.3, “Object Location,” on page 317 for details on the use of LocateRequest.
CORBA for embedded, v1.0 313

18.2.6 LocateReply Message

LocateReply messages are sent from servers to clients in response to LocateRequest messages. In GIOP versions 1.0
and 1.1 the LocateReply message is only sent from the server to the client.

A LocateReply message has three elements, encoded in this order:

1. A GIOP message header

2. A LocateReplyHeader

3. The locate reply body

18.2.6.1 Locate Reply Header

The locate reply header is defined as follows:

module GIOP { // IDL extended for GIOP 1.2 and 1.3

#if MAX_GIOP_MINOR_VERSION < 2
// GIOP 1.0 and 1.1
enum LocateStatusType_1_0 {// Renamed from LocateStatusType

UNKNOWN_OBJECT,
OBJECT_HERE,
OBJECT_FORWARD

};

// GIOP 1.0
struct LocateReplyHeader_1_0 {// Renamed from LocateReplyHeader

unsigned long request_id;
LocateStatusType_1_0 locate_status;

};

// GIOP 1.1
typedef LocateReplyHeader_1_0 LocateReplyHeader_1_1;
// same Header contents for 1.0 and 1.1

#else
// GIOP 1.2, 1.3
enum LocateStatusType_1_2 {

UNKNOWN_OBJECT,
OBJECT_HERE,
OBJECT_FORWARD,
OBJECT_FORWARD_PERM, // new value for GIOP 1.2
LOC_SYSTEM_EXCEPTION, // new value for GIOP 1.2
LOC_NEEDS_ADDRESSING_MODE // new value for GIOP 1.2

};

struct LocateReplyHeader_1_2 {
unsigned long request_id;
LocateStatusType_1_2 locate_status;

};
typedef LocateReplyHeader_1_2 LocateReplyHeader_1_3;
314 CORBA for embedded, v1.0

#endif // MAX_GIOP_VERSION_NUMBER
};

The members have the following definitions:

• request_id - is used to associate replies with requests. This member contains the same request_id value as the
corresponding LocateRequest message.

• locate_status - the value of this member is used to determine whether a LocateReply body exists. Values are:

• UNKNOWN_OBJECT - the object specified in the corresponding LocateRequest message is unknown to the
server; no body exists.

• OBJECT_HERE - this server (the originator of the LocateReply message) can directly receive requests for the
specified object; no body exists.

• OBJECT_FORWARD and OBJECT_FORWARD_PERM - a LocateReply body exists.

• LOC_SYSTEM_EXCEPTION - a LocateReply body exists.

• LOC_NEEDS_ADDRESSING_MODE - a LocateReply body exists.

18.2.6.2 LocateReply Body

The body is empty, except for the following cases:

• If the LocateStatus value is OBJECT_FORWARD or OBJECT_FORWARD_PERM, the body contains an
object reference (IOR) that may be used as the target for requests to the object specified in the LocateRequest
message. The usage of OBJECT_FORWARD_PERM behaves like the usage of OBJECT_FORWARD, but when
used by the server it also provides an indication to the client that it may replace the old IOR with the new IOR. When
using OBJECT_FORWARD_PERM, both the old IOR and the new IOR are valid, but the new IOR is preferred for
future use.

• If the LocateStatus value is LOC_SYSTEM_EXCEPTION, the body contains a marshaled
GIOP::SystemExceptionReplyBody.

• If the LocateStatus value is LOC_NEEDS_ADDRESSING_MODE, then the body contains a
GIOP::AddressingDisposition. The client ORB is responsible for re-sending the LocateRequest using the
requested addressing mode.

LocateReply bodies are marshaled immediately following the LocateReply header.

18.2.7 CloseConnection Message

CloseConnection messages are sent only by servers in GIOP protocol versions 1.0 and 1.1. They inform clients that the
server intends to close the connection and must not be expected to provide further responses. Moreover, clients know that
any requests for which they are awaiting replies will never be processed, and may safely be reissued (on another
connection). In GIOP version 1.2 or later both sides of the connection may send the CloseConnection message.

The CloseConnection message consists only of the GIOP message header, identifying the message type.

For details on the usage of CloseConnection messages, see Section 16.4.1, “Connection Management,” on page 276.
CORBA for embedded, v1.0 315

18.2.8 MessageError Message

The MessageError message is sent in response to any GIOP message whose version number or message type is
unknown to the recipient or any message received whose header is not properly formed (e.g., has the wrong magic value).
Error handling is context-specific.

The MessageError message consists only of the GIOP message header, identifying the message type.

18.2.9 Fragment Message

This message is added in GIOP 1.1.

The Fragment message is sent following a previous request or response message that has the more fragments bit set to
TRUE in the flags field.

All of the GIOP messages begin with a GIOP header. One of the fields of this header is the message_size field, a 32-
bit unsigned number giving the number of bytes in the message following the header. Unfortunately, when actually
constructing a GIOP Request or Reply message, it is sometimes impractical or undesirable to ascertain the total size of
the message at the stage of message construction where the message header has to be written. GIOP 1.1 provides an
alternative indication of the size of the message, for use in those cases.

In GIOP 1.1, a Request or Reply message can be broken into multiple fragments. In GIOP 1.2 and later, a Request,
Reply, LocateRequest, or LocateReply message can be broken into multiple fragment. The first fragment is a regular
message (e.g., Request or Reply) with the more fragments bit in the flags field set to TRUE. This initial fragment can
be followed by one or more messages using the fragment messages. The last fragment shall have the more fragment bit in
the flag field set to FALSE.

A CancelRequest message may be sent by the client before the final fragment of the message being sent. In this case,
the server should assume no more fragments will follow.

Note – A GIOP client that fragments the header of a Request message before sending the request ID may not send a
CancelRequest message pertaining to that request ID and may not send another Request message until after the
request ID is sent.

A primitive data type of 8 bytes or smaller should never be broken across two fragments.

In GIOP 1.1, the data in a fragment is marshaled with alignment relative to its position in the fragment, not relative to its
position in the whole unfragmented message.

For GIOP version 1.2 and later, the total length (including the message header) of a fragment other than the final fragment
of a fragmented message are required to be a multiple of 8 bytes in length, allowing bridges to defragment and/or
refragment messages without having to remarshal the encoded data to insert or remove padding.

For GIOP version 1.2 and later, a fragment header is included in the message, immediately after the GIOP message
header and before the fragment data. The request ID, in the fragment header, has the same value as that used in the
original message associated with the fragment.

The byte order and GIOP protocol version of a fragment shall be the same as that of the message it continues.

module GIOP {//IDL extension for GIOP 1.2 and later

struct FragmentHeader_1_2 {
316 CORBA for embedded, v1.0

unsigned long request_id;
};
typedef FragmentHeader_1_2 FragmentHeader_1_3;

};

18.3 Object Location

The GIOP is defined to support object migration and location services without dictating the existence of specific ORB
architectures or features. The protocol features are based on the following observations:

A given transport address does not necessarily correspond to any specific ORB architectural component (such as an object
adapter, object server process, Inter-ORB bridge, and so forth). It merely implies the existence of some agent with which
a connection may be opened, and to which requests may be sent.

The “agent” (owner of the server side of a connection) may have one of the following roles with respect to a particular
object reference:

• The agent may be able to accept object requests directly for the object and return replies. The agent may or may not
own the actual object implementation; it may be an Inter-ORB bridge that transforms the request and passes it on to
another process or ORB. From GIOP’s perspective, it is only important that requests can be sent directly to the agent.

• The agent may not be able to accept direct requests for any objects, but acts instead as a location service. Any
Request messages sent to the agent would result in either exceptions or replies with LOCATION_FORWARD
status, providing new addresses to which requests may be sent. Such agents would also respond to LocateRequest
messages with appropriate LocateReply messages.

• The agent may directly respond to some requests (for certain objects) and provide forwarding locations for other
objects.

• The agent may directly respond to requests for a particular object at one point in time, and provide a forwarding
location at a later time (perhaps during the same connection).

Agents are not required to implement location forwarding mechanisms. An agent can be implemented with the policy that
a connection either supports direct access to an object, or returns exceptions. Such an ORB (or inter-ORB bridge) always
return LocateReply messages with either OBJECT_HERE or UNKNOWN_OBJECT status, and never
OBJECT_FORWARD status.

Clients must, however, be able to accept and process Reply messages with LOCATION_FORWARD status, since any
ORB may choose to implement a location service. Whether a client chooses to send LocateRequest messages is at the
discretion of the client. For example, if the client routinely expected to see LOCATION_FORWARD replies when using
the address in an object reference, it might always send LocateRequest messages to objects for which it has no
recorded forwarding address. If a client sends LocateRequest messages, it should be prepared to accept LocateReply
messages.

A client shall not make any assumptions about the longevity of object addresses returned by LOCATION_FORWARD
(OBJECT_FORWARD) mechanisms. Once a connection based on location-forwarding information is closed, a client
can attempt to reuse the forwarding information it has, but, if that fails, it shall restart the location process using the
original address specified in the initial object reference.
CORBA for embedded, v1.0 317

For GIOP version 1.2 and later, the usage of LOCATION_FORWARD_PERM (OBJECT_FORWARD_PERM)
behaves like the usage of LOCATION_FORWARD (OBJECT_FORWARD), but when used by the server it also
provides an indication to the client that it may replace the old IOR with the new IOR. When using
LOCATION_FORWARD_PERM (OBJECT_FORWARD_PERM), both the old IOR and the new IOR are valid, but the
new IOR is preferred for future use.

Note – Usage of LOCATION_FORWARD_PERM and OBJECT_FORWARD_PERM is now deprecated, due to
problems it causes with the semantics of the Object::hash operation. LOCATION_FORWARD_PERM and
OBJECT_FORWARD_PERM features could be removed from some future GIOP versions if solutions to these
problems are not provided.

Even after performing successful invocations using an address, a client should be prepared to be forwarded. The only
object address that a client should expect to continue working reliably is the one in the initial object reference. If an
invocation using that address returns UNKNOWN_OBJECT, the object should be deemed non-existent.

In general, the implementation of location forwarding mechanisms is at the discretion of ORBs, available to be used for
optimization and to support flexible object location and migration behaviors.

18.4 Service Context

Emerging specifications for Object Services occasionally require service-specific context information to be passed
implicitly with requests and replies. The Interoperability specifications define a mechanism for identifying and passing
this service-specific context information as “hidden” parameters. The specification makes the following assumptions:

• Object Service specifications that need additional context passed will completely specify that context as an OMG IDL
data type.

• ORB APIs will be provided that will allow services to supply and consume context information at appropriate points in
the process of sending and receiving requests and replies.

• It is an ORB’s responsibility to determine when to send service-specific context information, and what to do with such
information in incoming messages. It may be possible, for example, for a server receiving a request to be unable to de-
encapsulate and use a certain element of service-specific context, but nevertheless still be able to successfully reply to
the message.

As shown in the following OMG IDL specification, the IOP module provides the mechanism for passing Object Service–
specific information. It does not describe any service-specific information. It only describes a mechanism for transmitting
it in the most general way possible. The mechanism is currently used by the DCE ESIOP and could also be used by the
Internet Inter-ORB protocol (IIOP) General Inter_ORB Protocol (GIOP).

Each Object Service requiring implicit service-specific context to be passed through GIOP will be allocated a unique
service context ID value by OMG. Service context ID values are of type unsigned long. Object service specifications
are responsible for describing their context information as single OMG IDL data types, one data type associated with each
service context ID.

The marshaling of Object Service data is described by the following OMG IDL:

module IOP { // IDL

typedef unsigned long ServiceId;
typedef CORBA::OctetSeq ContextData;
318 CORBA for embedded, v1.0

struct ServiceContext {
ServiceId context_id;
ContextData context_data;

};
typedef sequence <ServiceContext>ServiceContextList;

};

The context data for a particular service will be encoded as specified for its service-specific OMG IDL definition, and that
encoded representation will be encapsulated in the context_data member of IOP::ServiceContext. (See Section 17.4,
“Encapsulation,” on page 287). The context_id member contains the service ID value identifying the service and data
format. Context data is encapsulated in octet sequences to permit ORBs to handle context data without unmarshaling, and
to handle unknown context data types.

During request and reply marshaling, ORBs will collect all service context data associated with the Request or Reply in a
ServiceContextList, and include it in the generated messages. No ordering is specified for service context data within
the list. The list is placed at the beginning of those messages to support security policies that may need to apply to the
majority of the data in a request (including the message headers).

Each Object Service requiring implicit service-specific context to be passed through GIOP will be allocated a unique
service context ID value by the OMG. Service context ID values are of type unsigned long. Object service specifications
are responsible for describing their context information as single OMG IDL data types, one data type associated with each
service context ID.

The high-order 24 bits of a service context ID contain a 24-bit vendor service context codeset ID (VSCID); the low-order
8 bits contain the rest of the service context ID. A vendor (or group of vendors) who wishes to define a specific set of
service context IDs should obtain a unique VSCID from the OMG, and then define a specific set of service context IDs
using the VSCID for the high-order bits.

The VSCIDs of zero to 15 inclusive (0x000000 to 0x00000f) are reserved for use for OMG-defined standard service
context IDs (i.e., service context IDs in the range 0-4095 are reserved as OMG standard service contexts).

18.4.1 Standard Service Contexts

module IOP { // IDL
const ServiceId TransactionService = 0;
const ServiceId CodeSets = 1;
const ServiceId ChainBypassCheck = 2;
const ServiceId ChainBypassInfo = 3;
const ServiceId LogicalThreadId = 4;
const ServiceId BI_DIR_IIOP = 5;
const ServiceId SendingContextRunTime = 6;
const ServiceId INVOCATION_POLICIES = 7;
const ServiceId FORWARDED_IDENTITY = 8;
const ServiceId UnknownExceptionInfo = 9;
const ServiceId RTCorbaPriority = 10;
const ServiceId RTCorbaPriorityRange = 11;
const ServiceId FT_GROUP_VERSION = 12;
const ServiceId FT_REQUEST = 13;
const ServiceId ExceptionDetailMessage = 14;
const ServiceId SecurityAttributeService = 15;
const ServiceId ActivityService = 16;
CORBA for embedded, v1.0 319

const ServiceId RMICustomMaxStreamForma = 17;
const ServiceId ACCESS_SESSION_ID = 18;
const ServiceId SERVICE_SESSION_ID = 19;
const ServiceId FIREWALL_PATH = 20;
const ServiceId FIREWALL_PATH_RESP = 21;

};

The standard ServiceIds currently defined are:

• TransactionService identifies a CDR encapsulation of the CosTransactions::PropogationContext defined in
the Object Transaction Service specification (formal/00-06-28).

• CodeSets identifies a CDR encapsulation of the CONV_FRAME::CodeSetContext.

• DCOM-CORBA Interworking uses three service contexts as defined in “DCOM-CORBA Interworking” in the
“Interoperability with non-CORBA Systems”chapter. They are:

• ChainBypassCheck, which carries a CDR encapsulation of the struct CosBridging::ChainBypassCheck.
This is carried only in a Request message.

• ChainBypassInfo, which carries a CDR encapsulation of the struct CosBridging::ChainBypassInfo. This
is carried only in a Reply message.

• LogicalThreadId, which carries a CDR encapsulation of the struct CosBridging::LogicalThreadId.

• BI_DIR_IIOP identifies a CDR encapsulation of the IIOP::BiDirIIOPServiceContext.

• SendingContextRunTime identifies a CDR encapsulation of the IOR of the SendingContext::RunTime object.

• For information on INVOCATION_POLICIES refer to the CORBA Messaging
chapter.

• For information on FORWARDED_IDENTITY refer to the Firewall specification (orbos/98-05-04).

• UnknownExceptionInfo identifies a CDR encapsulation of a marshaled instance of a java.lang.throwable or one
of its subclasses as described in Java to IDL Language Mapping, “Mapping of UnknownExceptionInfo Service
Context,” section.

• For information on RTCorbaPriority refer to the Real-time CORBA specification.

• For information on RTCorbaPriorityRange refer to the Real-time CORBA specification.

• FT_GROUP_VERSION, FT_REQUEST - refer to the Fault Tolerant CORBA chapter.

• ExceptionDetailMessage identifies a CDR encapsulation of a wstring, encoded using GIOP 1.2 with a TCS-W
of UTF-16. This service context may be sent on Reply messages with a reply_status of SYSTEM_EXCEPTION
or USER_EXCEPTION. The usage of this service context is defined by language mappings.

• SecurityAttributeService - refer to the Secure Interoperability chapter.

• ActivityService - refer to the Additional Structuring Mechanisms for OTS specification (orbos/01-11-08).

• RMICustomMaxStreamFormat - refer to Java to IDL Language Mapping.

• ACCESS_SESSION_ID and SERVICE_SESSION_ID - refer to the TSAS Specification.

• FIREWALL_PATH and FIREWALL_PATH_RESP - refer to the Firewall Service v2.0 Specification.
320 CORBA for embedded, v1.0

18.4.2 Service Context Processing Rules

Service context IDs are associated with a specific version of GIOP, but will always be allocated in the OMG service
context range. This allows any ORB to recognize when it is receiving a standard service context, even if it has been
defined in a version of GIOP that it does not support.

The following are the rules for processing a received service context:

• The service context is in the OMG defined range:

• If it is valid for the supported GIOP version, then it must be processed correctly according to the rules associated
with it for that GIOP version level.

• If it is not valid for the GIOP version, then it may be ignored by the receiving ORB, however it must be passed on
through a bridge and must be made available to interceptors. No exception shall be raised.

• The service context is not in the OMG-defined range:

• The receiving ORB may choose to ignore it, or process it if it “understands” it, however the service context must be
passed on through a bridge and must made available to interceptors.

18.5 Propagation of Messaging QoS

This section defines the profile Component through which QoS requirements are expressed in an object reference, and the
Service Context through which QoS requirements are expressed as part of a GIOP request.

module Messaging {
typedef CORBA::OctetSeq PolicyData;
struct PolicyValue {

CORBA::PolicyType ptype;
PolicyData pvalue;

};
typedef sequence<PolicyValue> PolicyValueSeq;

const IOP::ComponentId TAG_POLICIES = 2;
const IOP::ServiceId INVOCATION_POLICIES = 7;

};

18.5.1 Structures

PolicyValue

This structure contains the value corresponding to a Policy of the PolicyType indicated by its ptype. This representation
allows the compact transmission of QoS policies within IORs and Service Contexts. The format of pvalue for each type
is given in the specification of that Policy.

18.5.2 Messaging QoS Profile Component

A new IOP::TaggedComponent is defined for transmission of QoS policies within interoperable Object References.
The body of this Component is a CDR encapsulation containing a Messaging::PolicyValueSeq. When creating Object
references, Portable Object Adapters may encode the relevant policies with which it was created in this
TaggedComponent. POA Policies that are exported in this way are clearly noted as client-exposed in their definitions.
CORBA for embedded, v1.0 321

These policies are reconciled with the effective client-side override when clients invokes operations on that reference. For
example, if a POA is created with a RequestPriorityPolicy with minimum value 0 and maximum value 10, all Object
references created by that POA will have that default RequestPriorityPolicy encoded in their IOR. Furthermore, if a
client sets an overriding RequestPriorityPolicy with both minimum and maximum of 5 (the client requires its requests
to have a priority of value 5), the ORB will reconcile the effective Policy for any invocations on this Object reference to
have a priority of 5 (since this value is within the range of priorities allowed by the target). On the other hand, if the client
set an override with minimum value of 11, any invocation attempts would raise the system exception INV_POLICY.

18.5.3 Messaging QoS Service Context

A new IOP::ServiceContext is defined for transmission of QoS policies within GIOP requests and replies. The body of
this Context is a CDR encapsulation containing a Messaging::PolicyValueSeq.

18.6 Consolidated IDL

module GIOP { // IDL extended for version 1.1, 1.2, and later

struct Version {
octet major;
octet minor;

};

#if MAX_GIOP_MINOR_VERSION == 0
// GIOP 1.0
enum MsgType_1_0{ // rename from MsgType

Request, Reply, CancelRequest,
LocateRequest, LocateReply,
CloseConnection, MessageError
};

#else
// GIOP 1.1
enum MsgType_1_1{

Request, Reply, CancelRequest,
LocateRequest, LocateReply,
CloseConnection, MessageError,
Fragment // GIOP 1.1 addition

};
#endif // MAX_GIOP_MINOR_VERSION

// GIOP 1.0
typedef char Magicn[4]
struct MessageHeader_1_0 {// Renamed from MessageHeader

Magicn magic;
Version GIOP_version;
boolean byte_order;
octet message_type;
unsigned long message_size;

};
322 CORBA for embedded, v1.0

// GIOP 1.1
struct MessageHeader_1_1 {

Magicn magic;
Version GIOP_version;
octet flags; // GIOP 1.1 change
octet message_type;
unsigned long message_size;

};

// GIOP 1.2 and later

typedef MessageHeader_1_1 MessageHeader_1_2;
typedef MessageHeader_1_1 MessageHeader_1_3;

// GIOP 1.0
struct RequestHeader _1_0 {

IOP::ServiceContextList service_context;
unsigned long request_id;
boolean response_expected;
IOP::ObjectKey object_key;
string operation;
CORBA::OctetSeq requesting_principal;

};

// GIOP 1.1
typedef octet RequestReserved[3];
struct RequestHeader_1_1 {

IOP::ServiceContextList service_context;
unsigned long request_id;
boolean response_expected;
IOP::ObjectKey object_key;
string operation;
CORBA::OctetSeq requesting_principal;

};

// GIOP 1.2, and later
typedef short AddressingDisposition;
const short KeyAddr = 0;
const short ProfileAddr = 1;
const short ReferenceAddr = 2;

struct IORAddressingInfo {
unsigned long selected_profile_index;
IOP::IOR ior;

};

union TargetAddress switch (AddressingDisposition) {
case KeyAddr: IOP::ObjectKey object_key;
case ProfileAddr: IOP::TaggedProfile profile;
case ReferenceAddr: IORAddressingInfo ior;

};
struct RequestHeader_1_2 {
CORBA for embedded, v1.0 323

unsigned long request_id;
octet response_flags;

 RequestReserved reserved; // Added in GIOP 1.1
TargetAddress target;
string operation;
// requesting_principal not in GIOP 1.2 and later

IOP::ServiceContextList service_context; // 1.2 change
};

#if MAX_GIOP_MINOR_VERSION < 2

// GIOP 1.0 and 1.1
enum ReplyStatusType_1_0 {// Renamed from ReplyStatusType

NO_EXCEPTION,
USER_EXCEPTION,
SYSTEM_EXCEPTION,
LOCATION_FORWARD

};

// GIOP 1.0
struct ReplyHeader_1_0 {// Renamed from ReplyHeader

IOP::ServiceContextList service_context;
unsigned long request_id;
ReplyStatusType_1_0 reply_status;

};

// GIOP 1.1
typedef ReplyHeader_1_0 ReplyHeader_1_1;
// Same Header contents for 1.0 and 1.1

#endif // MAX_GIOP_VERSION_NUMBER

#if MAX_GIOP_MINOR_VERSION >= 2

// GIOP 1.2, and later
enum ReplyStatusType_1_2 {

NO_EXCEPTION,
USER_EXCEPTION,
SYSTEM_EXCEPTION,
LOCATION_FORWARD,
LOCATION_FORWARD_PERM, // new value for 1.2
NEEDS_ADDRESSING_MODE // new value for 1.2

};

struct ReplyHeader_1_2 {
unsigned long request_id;
ReplyStatusType_1_2 reply_status;
IOP::ServiceContextList service_context; // 1.2 change

};
typedef ReplyHeader_1_2 ReplyHeader_1_3;

#endif // MAX_GIOP_VERSION_NUMBER
struct SystemExceptionReplyBody {
324 CORBA for embedded, v1.0

string exception_id;
unsigned long minor_code_value;
unsigned long completion_status;

};

struct CancelRequestHeader {
 unsigned long request_id;
};

// GIOP 1.0
struct LocateRequestHeader_1_0 {

// Renamed LocationRequestHeader
unsigned long request_id;
IOP::ObjectKey object_key;

};

// GIOP 1.1
typedef LocateRequestHeader_1_0 LocateRequestHeader_1_1;
// Same Header contents for 1.0 and 1.1

// GIOP 1.2 and later
struct LocateRequestHeader_1_2 {

unsigned long request_id;
TargetAddress target;

};
typedef LocateRequestHeader_1_2 LocateRequestHeader_1_3;

#if MAX_GIOP_MINOR_VERSION < 2

// GIOP 1.0 and 1.1
enum LocateStatusType_1_0 {// Renamed from LocateStatusType

UNKNOWN_OBJECT,
OBJECT_HERE,
OBJECT_FORWARD

};

// GIOP 1.0
struct LocateReplyHeader_1_0 {

// Renamed from LocateReplyHeader
unsigned long request_id;
LocateStatusType_1_0 locate_status;

};

// GIOP 1.1
typedef LocateReplyHeader_1_0 LocateReplyHeader_1_1;
// same Header contents for 1.0 and 1.1

#else
// GIOP 1.2, and later
enum LocateStatusType_1_2 {

UNKNOWN_OBJECT,
CORBA for embedded, v1.0 325

OBJECT_HERE,
OBJECT_FORWARD,
OBJECT_FORWARD_PERM, // new value for GIOP 1.2
LOC_SYSTEM_EXCEPTION, // new value for GIOP 1.2
LOC_NEEDS_ADDRESSING_MODE // new value for GIOP 1.2

};

struct LocateReplyHeader_1_2 {
unsigned long request_id;
LocateStatusType_1_2 locate_status;

};
typedef LocateReplyHeader_1_2 LocateReplyHeader_1_3;

#endif // MAX_GIOP_VERSION_NUMBER

// GIOP 1.2, and later
struct FragmentHeader_1_2 {

unsigned long request_id;
};
typedef FragmentHeader_1_2 FragmentHeader_1_3;

};

module Messaging {
//
// Propagation of QoS Policies
//

typedef CORBA::OctetSeq PolicyData;
struct PolicyValue {

CORBA::PolicyType ptype;
PolicyData pvalue;

};
typedef sequence<PolicyValue> PolicyValueSeq;

};
326 CORBA for embedded, v1.0

19 Internet Interoperability Protocol (IIOP)

Compliance

Conformant implementations of the CORBA/e Compact Profile must comply with all clauses of this chapter. Conformant
implementations of the CORBA/e Micro Profile must comply with all clauses of this chapter.

19.1 Overview

The original Interoperability RFP defines interoperability as the ability for a client on ORB A to invoke an OMG IDL-
defined operation on an object on ORB B, where ORB A and ORB B are independently developed. It further identifies
general requirements including in particular:

• Ability for two vendors’ ORBs to interoperate without prior knowledge of each other’s implementation.

• Support of all ORB functionality.

• Preservation of content and semantics of ORB-specific information across ORB boundaries (for example, security).

In effect, the requirement is for invocations between client and server objects to be independent of whether they are on
the same or different ORBs, and not to mandate fundamental modifications to existing ORB products.

19.2 Internet Inter-ORB Protocol (IIOP)

The baseline transport specified for GIOP is TCP/IP1. Specific APIs for libraries supporting TCP/IP may vary, so this
discussion is limited to an abstract view of TCP/IP and management of its connections. The mapping of GIOP message
transfer to TCP/IP connections is called the Internet Inter-ORB Protocol (IIOP).

IIOP 1.0 is based on GIOP 1.0.

IIOP 1.1 can be based on either GIOP 1.0 or 1.1. An IIOP 1.1 client must support GIOP 1.1, and may also support GIOP
1.0. An IIOP 1.1 server must support processing both GIOP 1.0 and GIOP 1.1 messages.

IIOP 1.2 can be based on any of the GIOP minor versions 1.0, 1.1, or 1.2. An IIOP 1.2 client must support GIOP 1.2, and
may also support lesser GIOP minor versions. An IIOP 1.2 server must also support processing messages with all lesser
GIOP versions.

IIOP 1.3 can be based on any of the GIOP minor versions 1.0, 1.1, 1.2, or 1.3. An IIOP 1.3 client must support GIOP 1.3,
and may also support lesser GIOP minor versions. An IIOP 1.3 server must also support processing messages with all
lesser GIOP versions.

IIOP 1.4 can be based on any of the GIOP minor versions 1.0, 1.1, 1.2, 1.3 or 1.4. An IIOP 1.4 client must support GIOP
1.4, and may also support lesser GIOP minor versions. An IIOP 1.4 server must also support processing messages with all
lesser GIOP versions.

1. Postel, J., “Transmission Control Protocol – DARPA Internet Program Protocol Specification,” RFC-793, Information Sciences
Institute, September 1981
CORBA for embedded, v1.0 327

Conformance to IIOP versions 1.1, 1.2, 1.3 and 1.4 requires support of Limited-Profile IOR conformance (see
Section 19.3.2, “Interoperable Object References: IORs,” on page 332), specifically for the IIOP IOR Profile. As of
CORBA 2.4, this limited IOR conformance is deprecated, and ORBs implementing IIOP are strongly recommended to
support Full IOR conformance. Some future IIOP versions could require support of Full IOR conformance.

19.2.1 TCP/IP Connection Usage

Agents that are capable of accepting object requests or providing locations for objects (i.e., servers) publish TCP/IP
addresses in IORs, as described in Section 19.4.1, “IIOP IOR Profiles,” on page 345. A TCP/IP address consists of an IP
host address, typically represented by a host name, and a TCP port number. Servers must listen for connection requests.

A client needing an object’s services must initiate a connection with the address specified in the IOR, with a connect
request.

The listening server may accept or reject the connection. In general, servers should accept connection requests if possible,
but ORBs are free to establish any desired policy for connection acceptance (e.g., to enforce fairness or optimize resource
usage).

Once a connection is accepted, the client may send Request, LocateRequest, or CancelRequest messages by
writing to the TCP/IP socket it owns for the connection. The server may send Reply, LocateReply, and
CloseConnection messages by writing to its TCP/IP connection. In GIOP 1.2, and later, the client may send the
CloseConnection message, and if BiDirectional GIOP is in use, the client may also send Reply and LocateReply
messages.

After receiving a CloseConnection message, an ORB must close the TCP/IP connection. After sending a
CloseConnection, an ORB may close the TCP/IP connection immediately, or may delay closing the connection until it
receives an indication that the other side has closed the connection. For maximum interoperability with ORBs using TCP
implementations that do not properly implement orderly shutdown, an ORB may wish to only shutdown the sending side
of the connection, and then read any incoming data until it receives an indication that the other side has also shutdown, at
which point the TCP connection can be closed completely.

Given TCP/IP’s flow control mechanism, it is possible to create deadlock situations between clients and servers if both
sides of a connection send large amounts of data on a connection (or two different connections between the same
processes) and do not read incoming data. Both processes may block on write operations, and never resume. It is the
responsibility of both clients and servers to avoid creating deadlock by reading incoming messages and avoiding blocking
when writing messages, by providing separate threads for reading and writing, or any other workable approach. ORBs are
free to adopt any desired implementation strategy, but should provide robust behavior.

19.2.2 IIOP IOR Profiles

IIOP profiles, identifying individual objects accessible through the Internet Inter-ORB Protocol, have the following form:

module IIOP { // IDL extended for version 1.1, 1.2, and later
struct Version {

octet major;
octet minor;

};

struct ProfileBody_1_0 {// renamed from ProfileBody
Version iiop_version;
string host;
328 CORBA for embedded, v1.0

unsigned short port;
IOP::ObjectKey object_key;

};

struct ProfileBody_1_1 {// also used for 1.2 and later
Version iiop_version;
string host;
unsigned short port;
IOP::ObjectKey object_key;

// Added in 1.1 unchanged for 1.2 and later
 IOP::TaggedComponentSeq components;
};

};

IIOP Profile version number:

• Indicates the IIOP protocol version.

• Major number can stay the same if the new changes are backward compatible.

• Clients with lower minor version can attempt to invoke objects with higher minor version number by using only the
information defined in the lower minor version protocol (ignore the extra information).

Profiles supporting only IIOP version 1.0 use the ProfileBody_1_0 structure, while those supporting IIOP version 1.1
or 1.2 or later use the ProfileBody_1_1 structure. An instance of one of these structure types is marshaled into an
encapsulation octet stream. This encapsulation (a sequence <octet>) becomes the profile_data member of the
IOP::TaggedProfile structure representing the IIOP profile in an IOR, and the tag has the value
TAG_INTERNET_IOP (as defined earlier).

The version number published in the Tag Internet IIOP Profile body signals the highest GIOP minor version number that
the server supports at the time of publication of the IOR.

If the major revision number is 1, and the minor revision number is greater than 0, then the length of the encapsulated
profile may exceed the total size of components defined in this specification for profiles with minor revision number 0.
ORBs that support only revision 1.0 IIOP profiles must ignore any data in the profile that occurs after the object_key. If
the revision of the profile is 1.0, there shall be no extra data in the profile (i.e., the length of the encapsulated profile must
agree with the total size of components defined for version 1.0).

For Version 1.2 and later of IIOP, no order of use is prescribed in the case where more than one TAG Internet IOP Profile
is present in an IOR.

The members of IIOP::ProfileBody_1_0 and IOP::ProfileBody_1_1 are defined as follows:

• iiop_version describes the version of IIOP that the agent at the specified address is prepared to receive. When an
agent generates IIOP profiles specifying a particular version, it must be able to accept messages complying with the
specified version or any previous minor version (i.e., any smaller version number). The major version number of this
specification is 1; the minor versions defined to date are 0, 1, and 2. Compliant ORBs must generate version 1.1
profiles, and must accept any profile with a major version of 1, regardless of the minor version number. If the minor
version number is 0, the encapsulation is fully described by the ProfileBody_1_0 structure. If the minor version
number is 1 or 2, the encapsulation is fully described by the ProfileBody_1_1 structure. If the minor version number
is greater than 2, then the length of the encapsulated profile may exceed the total size of components defined in this
specification for profiles with minor version number 1 or 2. ORBs that support only version 1.1 or 1.2 IIOP profiles
CORBA for embedded, v1.0 329

must ignore, but preserve, any data in the profile that occurs after the components member, for IIOP profiles with
minor version greater than 1.2.

Note – As of version 1.2 of GIOP and IIOP and minor versions beyond, the minor version in the TAG_INTERNET_IOP
profile signals the highest minor revision of GIOP supported by the server at the time of publication of the IOR.

• host identifies the Internet host to which GIOP messages for the specified object may be sent. In order to promote a
very large (Internet-wide) scope for the object reference, this will typically be the fully qualified domain name of the
host, rather than an unqualified (or partially qualified) name. However, per Internet standards, the host string may also
contain a host address expressed in standard “dotted decimal” form (e.g., “192.231.79.52”).

• port contains the TCP/IP port number (at the specified host) where the target agent is listening for connection
requests. The agent must be ready to process IIOP messages on connections accepted at this port.

• object_key is an opaque value supplied by the agent producing the IOR. This value will be used in request messages
to identify the object to which the request is directed. An agent that generates an object key value must be able to map
the value unambiguously onto the corresponding object when routing requests internally.

• components is a sequence of TaggedComponent, which contains additional information that may be used in
making invocations on the object described by this profile. TaggedComponents that apply to IIOP 1.2 are described
below in Section 19.4.2, “IIOP IOR Profile Components,” on page 347. Other components may be included to support
enhanced versions of IIOP, to support ORB services such as security, and to support other GIOPs, ESIOPs, and
proprietary protocols. If an implementation puts a non-standard component in an IOR, it cannot be assured that any or
all non-standard components will remain in the IOR.

The relationship between the IIOP protocol version and component support conformance requirements is as follows:

• Each IIOP version specifies a set of standard components and the conformance rules for that version. These rules
specify which components are mandatory and which are optional. A conformant implementation has to conform to
these rules, and is not required to conform to more than these rules.

• New components can be added, but they do not become part of the versions conformance rules.

• When there is a need to specify conformance rules that include the new components, there will be a need to create
a new IIOP version.

Note that host addresses are restricted in this version of IIOP to be Class A, B, or C Internet addresses. That is, Class D
(multi-cast) addresses are not allowed. Such addresses are reserved for use in future versions of IIOP.

Agents may freely choose TCP port numbers for communication; IIOP supports multiple agents per host.

19.2.3 IIOP IOR Profile Components

The following components are part of IIOP 1.1, 1.2, and later conformance. All these components are optional.

• TAG_ORB_TYPE

• TAG_CODE_SETS

• TAG_SEC_NAME

• TAG_ASSOCIATION_OPTIONS

• TAG_GENERIC_SEC_MECH
330 CORBA for embedded, v1.0

• TAG_SSL_SEC_TRANS

• TAG_SPKM_1_SEC_MECH

• TAG_SPKM_2_SEC_MECH

• TAG_KerberosV5_SEC_MECH

• TAG_CSI_ECMA_Secret_SEC_MECH

• TAG_CSI_ECMA_Hybrid_SEC_MECH

• TAG_SSL_SEC_TRANS

• TAG_CSI_ECMA_Public_SEC_MECH

• TAG_FIREWALL_TRANS

• TAG_JAVA_CODEBASE

• TAG_TRANSACTION_POLICY

• TAG_MESSAGE_ROUTERS

• TAG_INET_SEC_TRANS

The following components are part of IIOP 1.2 (and later) conformance. All these components are optional.

• TAG_ALTERNATE_IIOP_ADDRESS

• TAG_POLICIES

• TAG_DCE_STRING_BINDING

• TAG_DCE_BINDING_NAME

• TAG_DCE_NO_PIPES

• TAG_DCE_MECH

• TAG_COMPLETE_OBJECT_KEY

• TAG_ENDPOINT_ID_POSITION

• TAG_LOCATION_POLICY

• TAG_OTS_POLICY

• TAG_INV_POLICY

• TAG_CSI_SEC_MECH_LIST

• TAG_NULL_TAG

• TAG_SECIOP_SEC_TRANS

• TAG_TLS_SEC_TRANS

• TAG_ACTIVITY_POLICY
CORBA for embedded, v1.0 331

19.3 An Information Model for Object References

This section provides a simple, powerful information model for the information found in an object reference. That model
is intended to be used directly by developers of bridging technology, and is used in that role by the IIOP, described in the
General Inter-ORB Protocol chapter, Object References section.

19.3.1 What Information Do Bridges Need?

The following potential information about object references has been identified as critical for use in bridging
technologies:

• Is it null? Nulls only need to be transmitted and never support operation invocation.

• What type is it? Many ORBs require knowledge of an object’s type in order to efficiently preserve the integrity of their
type systems.

• What protocols are supported? Some ORBs support objrefs that in effect live in multiple referencing domains, to allow
clients the choice of the most efficient communications facilities available.

• What ORB Services are available? Several different ORB Services might be involved in an invocation. Providing
information about those services in a standardized way could in many cases reduce or eliminate negotiation overhead
in selecting them.

19.3.2 Interoperable Object References: IORs

To provide the information above, an “Interoperable Object Reference,” (IOR) data structure has been provided. This data
structure need not be used internally to any given ORB, and is not intended to be visible to application-level ORB
programmers. It should be used only when crossing object reference domain boundaries, within bridges.

This data structure is designed to be efficient in typical single-protocol configurations, while not penalizing multiprotocol
ones.

module IOP { // IDL

// Standard Protocol Profile tag values

typedef unsigned long ProfileId;

typedef CORBA::OctetSeq ProfileData;
struct TaggedProfile {

ProfileId tag;
ProfileData profile_data;

};
typedef sequence <TaggedProfile> TaggedProfileSeq ;

// an Interoperable Object Reference is a sequence of
// object-specific protocol profiles, plus a type ID.
332 CORBA for embedded, v1.0

struct IOR {
string type_id;
TaggedProfileSeq profiles;

};

// Standard way of representing multicomponent profiles.
// This would be encapsulated in a TaggedProfile.

typedef unsigned long ComponentId;
typedef CORBA::OctetSeq ComponentData;

struct TaggedComponent {
ComponentId tag;
ComponentData component_data;

};

typedef sequence<TaggedComponent> TaggedComponentSeq;
typedef sequence <TaggedComponent> MultipleComponentProfile;

typedef CORBA::OctetSeq ObjectKey;
};

19.3.3 IOR Profiles

Object references have at least one tagged profile. Each profile supports one or more protocols and encapsulates all the
basic information the protocols it supports need to identify an object. Any single profile holds enough information to
drive a complete invocation using any of the protocols it supports; the content and structure of those profile entries are
wholly specified by these protocols.

When a specific protocol is used to convey an object reference passed as a parameter in an IDL operation invocation (or
reply), an IOR which reflects, in its contained profiles, the full protocol understanding of the operation client (or server in
case of reply) may be sent. A receiving ORB which operates (based on topology and policy information available to it) on
profiles rather than the received IOR as a whole, to create a derived reference for use in its own domain of reference, is
placing itself as a bridge between reference domains. Interoperability inhibiting situations can arise when an orb sends an
IOR with multiple profiles (using one of its supported protocols) to a receiving orb, and that receiving orb later returns a
derived reference to that object, which has had profiles or profile component data removed or transformed from the
original IOR contents.

To assist in classifying behavior of ORBS in such bridging roles, two classes of IOR conformance may be associated with
the conformance requirements for a given ORB interoperability protocol:

• Full IOR conformance requires that an orb which receives an IOR for an object passed to it through that ORB
interoperability protocol, shall recover the original IOR, in its entirety, for passing as a reference to that object from
that orb through that same protocol

• Limited-Profile IOR conformance requires that an orb which receives an IOR passed to it through a given ORB
interoperability protocol, shall recover all of the standard information contained in the IOR profile for that protocol,
whenever passing a reference to that object, using that same protocol, to another ORB.
CORBA for embedded, v1.0 333

Note – Conformance to IIOP versions 1.0, 1.1 and 1.2 only requires support of limited-Profile IOR conformance,
specifically for the IIOP IOR profile. However, due to interoperability problems induced by Limited-Profile IOR
conformance, it is now deprecated by the CORBA 2.4 specification for an orb to not support Full IOR conformance.
Some future IIOP versions could require Full IOR conformance.

An ORB may be unable to use any of the profiles provided in an IOR for various reasons which may be broadly
categorized as transient ones like temporary network outage, and non-transient ones like unavailability of appropriate
protocol software in the ORB. The decision about the category of outage that causes an ORB to be unable to use any
profile from an IOR is left up to the ORB. At an appropriate point, when an ORB discovers that it is unable to use any
profile in an IOR, depending on whether it considers the reason transient or non-transient, it should raise the standard
system exception TRANSIENT with standard minor code 2, or IMP_LIMIT with the standard minor code 1.

Each profile has a unique numeric tag, assigned by the OMG. The ones defined here are for the IIOP (see Section 19.4.2,
“IIOP IOR Profile Components,” on page 347) and for use in “multiple component profiles.” Profile tags in the range
0x80000000 through 0xffffffff are reserved for future use, and are not currently available for assignment.

Null object references are indicated by an empty set of profiles, and by a “Null” type ID (a string which contains only a
single terminating character). Type IDs may only be “Null” in any message, requiring the client to use existing knowledge
or to consult the object, to determine interface types supported. The type ID is a Repository ID identifying the interface
type, and is provided to allow ORBs to preserve strong typing. This identifier is agreed on within the bridge and, for
reasons outside the scope of this interoperability specification, needs to have a much broader scope to address various
problems in system evolution and maintenance. Type IDs support detection of type equivalence, and in conjunction with
an Interface Repository, allow processes to reason about the relationship of the type of the object referred to and any other
type.

The type ID, if provided by the server, indicates the most derived type that the server wishes to publish, at the time the
reference is generated. The object’s actual most derived type may later change to a more derived type. Therefore, the type
ID in the IOR can only be interpreted by the client as a hint that the object supports at least the indicated interface. The
client can succeed in narrowing the reference to the indicated interface, or to one of its base interfaces, based solely on
the type ID in the IOR, but must not fail to narrow the reference without consulting the object via the “_is_a” or
“_get_interface” pseudo-operations.

ORBs claiming to support the Full-IOR conformance are required to preserve all the semantic content of any IOR
(including the ordering of each profile and its components), and may only apply transformations which preserve
semantics (e.g., changing Byte order for encapsulation).

For example, consider an echo operation for object references:

interface Echoer {Object echo(in Object o);};

Assume that the method body implementing this “echo” operation simply returns its argument. When a client application
invokes the echo operation and passes an arbitrary object reference, if both the client and server ORBs claim support to
Full IOR conformance, the reference returned by the operation is guaranteed to have not been semantically altered by
either client or server ORB. That is, all its profiles will remain intact and in the same order as they were present when the
reference was sent. This requirement for ORBs which claim support for Full-IOR conformance, ensures that, for
example, a client can safely store an object reference in a naming service and get that reference back again later without
losing information inside the reference.
334 CORBA for embedded, v1.0

19.3.4 Standard IOR Profiles

module IOP {
const ProfileId TAG_INTERNET_IOP = 0;
const ProfileId TAG_MULTIPLE_COMPONENTS = 1;
const ProfileId TAG_SCCP_IOP = 2;
const ProfileId TAG_UIPMC = 3;

};

19.3.4.1 The TAG_INTERNET_IOP Profile

The TAG_INTERNET_IOP tag identifies profiles that support the Internet Inter-ORB Protocol. The ProfileBody of this
profile, described in detail in Section 19.4.1, “IIOP IOR Profiles,” on page 345, contains a CDR encapsulation of a
structure containing addressing and object identification information used by IIOP. Version 1.1 of the
TAG_INTERNET_IOP profile also includes a sequence<TaggedComponent> that can contain additional
information supporting optional IIOP features, ORB services such as security, and future protocol extensions.

Protocols other than IIOP (such as ESIOPs and other GIOPs) can share profile information (such as object identity or
security information) with IIOP by encoding their additional profile information as components in the
TAG_INTERNET_IOP profile. All TAG_INTERNET_IOP profiles support IIOP, regardless of whether they also
support additional protocols. Interoperable ORBs are not required to create or understand any other profile, nor are they
required to create or understand any of the components defined for other protocols that might share the
TAG_INTERNET_IOP profile with IIOP.

The profile_data for the TAG_INTERNET_IOP profile is a CDR encapsulation of the IIOP::ProfileBody_1_1 type,
described in Section 19.4.1, “IIOP IOR Profiles,” on page 345.

19.3.4.2 The TAG_MULTIPLE_COMPONENTS Profile

The TAG_MULTIPLE_COMPONENTS tag indicates that the value encapsulated is of type
MultipleComponentProfile. In this case, the profile consists of a list of protocol components, the use of which must be
specified by the protocol using this profile. This profile may be used to carry IOR components, as specified in
Section 19.3.5, “IOR Components,” on page 336.

The profile_data for the TAG_MULTIPLE_COMPONENTS profile is a CDR encapsulation of the
MultipleComponentProfile type shown above.

19.3.4.3 The TAG_SCCP_IOP Profile

See the CORBA/IN Interworking specification (dtc/2000-02-02).

19.3.4.4 The TAG_UIPMC Profile

The TAG_UIPMC tag is used by MIOP.
CORBA for embedded, v1.0 335

19.3.5 IOR Components

TaggedComponents contained in TAG_INTERNET_IOP and TAG_MULTIPLE_COMPONENTS profiles are
identified by unique numeric tags using a namespace distinct form that is used for profile tags. Component tags are
assigned by the OMG.

Specifications of components must include the following information:

• Component ID: The compound tag that is obtained from OMG.

• Structure and encoding: The syntax of the component data and the encoding rules. If the component value is encoded
as a CDR encapsulation, the IDL type that is encapsulated and the GIOP version which is used for encoding the value,
if different than GIOP 1.0, must be specified as part of the component definition.

• Semantics: How the component data is intended to be used.

• Protocols: The protocol for which the component is defined, and whether it is intended that the component be usable
by other protocols.

• At most once: whether more than one instance of this component can be included in a profile.

Specifications of protocols must describe how the components affect the protocol. In addition, a protocol definition must
specify, for each TaggedComponent, whether inclusion of the component in profiles supporting the protocol is required
(MANDATORY PRESENCE) or not required (OPTIONAL PRESENCE). An ORB claiming to support Full-IOR
conformance shall not drop optional components, once they have been added to a profile.

19.3.6 Standard IOR Components

The following are standard IOR components that can be included in TAG_INTERNET_IOP and
TAG_MULTIPLE_COMPONENTS profiles, and may apply to IIOP, other GIOPs, ESIOPs, or other protocols. An ORB
must not drop these components from an existing IOR.

module IOP {
const ComponentId TAG_ORB_TYPE = 0;
const ComponentId TAG_CODE_SETS = 1;
const ComponentId TAG_POLICIES = 2;
const ComponentId TAG_ALTERNATE_IIOP_ADDRESS = 3;

const ComponentId TAG_ASSOCIATION_OPTIONS = 13;
const ComponentId TAG_SEC_NAME = 14;
const ComponentId TAG_SPKM_1_SEC_MECH = 15;
const ComponentId TAG_SPKM_2_SEC_MECH = 16;
const ComponentId TAG_KerberosV5_SEC_MECH = 17;
const ComponentId TAG_CSI_ECMA_Secret_SEC_MECH = 18;
const ComponentId TAG_CSI_ECMA_Hybrid_SEC_MECH = 19;
const ComponentId TAG_SSL_SEC_TRANS = 20;
const ComponentId TAG_CSI_ECMA_Public_SEC_MECH = 21;
const ComponentId TAG_ GENERIC_SEC_MECH = 22;
const ComponentId TAG_FIREWALL_TRANS = 23;
const ComponentId TAG_SCCP_CONTACT_INFO = 24;
const ComponentId TAG_JAVA_CODEBASE = 25;
const ComponentId TAG_TRANSACTION_POLICY = 26;
336 CORBA for embedded, v1.0

const ComponentId TAG_MESSAGE_ROUTERS = 30;
const ComponentId TAG_OTS_POLICY = 31;
const ComponentId TAG_INV_POLICY = 32;
const ComponentId TAG_CSI_SEC_MECH_LIST = 33;
const ComponentId TAG_NULL_TAG = 34;
const ComponentId TAG_SECIOP_SEC_TRANS = 35;
const ComponentId TAG_TLS_SEC_TRANS = 36;
const ComponentId TAG_ACTIVITY_POLICY = 37;
const ComponentId TAG_RMI_CUSTOM_MAX_STREAM_FORMAT = 38;
const ComponentId TAG_GROUP = 39;
const ComponentId TAG_GROUP_IIOP = 40;
const ComponentId TAG_PASSTHRU_TRANS = 41;
const ComponentId TAG_FIREWALL_PATH = 42;
const ComponentId TAG_IIOP_SEC_TRANS = 43;
const ComponentId TAG_INET_SEC_TRANS = 123;

};

The following additional components that can be used by other protocols are specified in the DCE ESIOP chapter of this
document and CORBAServices, Security Service, in the Security Service for DCE ESIOP section:

const ComponentId TAG_COMPLETE_OBJECT_KEY = 5;
const ComponentId TAG_ENDPOINT_ID_POSITION = 6;
const ComponentId TAG_LOCATION_POLICY = 12;
const ComponentId TAG_DCE_STRING_BINDING = 100;
const ComponentId TAG_DCE_BINDING_NAME = 101;
const ComponentId TAG_DCE_NO_PIPES = 102;
const ComponentId TAG_DCE_SEC_MECH = 103; // Security Service

19.3.6.1 TAG_ORB_TYPE Component

It is often useful in the real world to be able to identify the particular kind of ORB an object reference is coming from, to
work around problems with that particular ORB, or exploit shared efficiencies.

The TAG_ORB_TYPE component has an associated value of type unsigned long, encoded as a CDR encapsulation,
designating an ORB type ID allocated by the OMG for the ORB type of the originating ORB. Anyone may register any
ORB types by submitting a short (one-paragraph) description of the ORB type to the OMG, and will receive a new ORB
type ID in return. A list of ORB type descriptions and values will be made available on the OMG web server.

The TAG_ORB_TYPE component can appear at most once in any IOR profile. For profiles supporting IIOP 1.1 or
greater, it is optionally present.

19.3.6.2 TAG_ALTERNATE_IIOP_ADDRESS Component

In cases where the same object key is used for more than one internet location, the following standard IOR Component is
defined for support in IIOP version 1.2.

The TAG_ALTERNATE_IIOP_ADDRESS component has an associated value of type.
CORBA for embedded, v1.0 337

struct {
string HostID,
unsigned short Port

};

encoded as a CDR encapsulation.

Zero or more instances of the TAG_ALTERNATE_IIOP_ADDRESS component type may be included in a version 1.2
TAG_INTERNET_IOP Profile. Each of these alternative addresses may be used by the client orb, in addition to the host
and port address expressed in the body of the Profile. In cases where one or more TAG_ALTERNATE_IIOP_ADDRESS
components are present in a TAG_INTERNET_IOP Profile, no order of use is prescribed by Version 1.2 of IIOP.

19.3.6.3 Other Components

The following standard components are specified in various OMG specifications:

• TAG_CODE_SETS - See CORBA Core specification (formal/04-03-01).

• TAG_POLICIES - See CORBA Messaging.

• TAG_SEC_NAME - See the Security Service specification, Mechanism Tags section.

• TAG_ASSOCIATION_OPTIONS - See the Security Service specification, Tag Association Options section.

• TAG_SSL_SEC_TRANS - See the Security Service specification, Mechanism Tags section.

• TAG_GENERIC_SEC_MECH and all other tags with names in the form TAG_*_SEC_MECH - See the Security
Service specification, Mechanism Tags section.

• TAG_FIREWALL_SEC - See the Firewall specification (orbos/98-05-04).

• TAG_SCCP_CONTACT_INFO - See the CORBA/IN Interworking specification (telecom/98-10-03).

• TAG_JAVA_CODEBASE - See the Java to IDL Language Mapping specification (formal/99-07-59), Codebase
Transmission section.

• TAG_TRANSACTION_POLICY - See the Object Transaction Service specification (formal/00-06-28).

• TAG_MESSAGE_ROUTERS - See CORBA Messaging.

• TAG_OTS_POLICY - See the Object Transaction Service specification
(formal/00-06-28).

• TAG_INV_POLICY - See the Object Transaction Service specification
(formal/00-06-28).

• TAG_INET_SEC_TRANS - See the Security Service specification
(formal/00-06-25).

• TAG_CSI_SEC_MECH_LIST, TAG_NULL_TAG, TAG_SECIOP_SEC_TRANS, TAG_TLS_SEC_TRANS -
See the Secure Interoperability chapter.

• TAG_ACTIVITY_POLICY - See the Additional Structuring Mechanisms for OTS specification (orbos/01-11-08).

• TAG_RMI_CUSTOM_MAX_STREAM_FORMAT - See Java to IDL Language Mapping Specification (formal/03-
09-04).
338 CORBA for embedded, v1.0

• TAG_GROUP and TAG_GROUP_IIOP - Used in MIOP.

• TAG_IIOP_SEC_TRANS - Used in CSIv2. See CORBA Core specification (formal/04-03-01).

• TAG_COMPLETE_OBJECT_KEY - See CORBA Core specification (formal/04-03-01).

• TAG_ENDPOINT_ID_POSITION See CORBA Core specification (formal/04-03-01).

• TAG_LOCATION_POLICY - See CORBA Core specification (formal/04-03-01).

• TAG_DCE_STRING_BINDING - See CORBA Core specification (formal/04-03-01).

• TAG_DCE_BINDING_NAME - See CORBA Core specification (formal/04-03-01).

• TAG_DCE_NO_PIPES - See CORBA Core specification (formal/04-03-01).

19.3.7 Profile and Component Composition in IORs

The following rules augment the preceding discussion:

1. Profiles must be independent, complete, and self-contained. Their use shall not depend on information contained in
another profile.

2. Any invocation uses information from exactly one profile.

3. Information used to drive multiple inter-ORB protocols may coexist within a single profile, possibly with some infor-
mation (e.g., components) shared between the protocols, as specified by the specific protocols.

4. Unless otherwise specified in the definition of a particular profile, multiple profiles with the same profile tag may be
included in an IOR.

5. Unless otherwise specified in the definition of a particular component, multiple components with the same compo-
nent tag may be part of a given profile within an IOR.

6. A TAG_MULTIPLE_COMPONENTS profile may hold components shared between multiple protocols. Multiple
such profiles may exist in an IOR.

7. The definition of each protocol using a TAG_MULTIPLE_COMPONENTS profile must specify which components
it uses, and how it uses them.

8. Profile and component definitions can be either public or private. Public definitions are those whose tag and data for-
mat is specified in OMG documents. For private definitions, only the tag is registered with OMG.

9. Public component definitions shall state whether or not they are intended for use by protocols other than the one(s)
for which they were originally defined, and dependencies on other components.

The OMG is responsible for allocating and registering protocol and component tags. Neither allocation nor registration
indicates any “standard” status, only that the tag will not be confused with other tags. Requests to allocate tags should be
sent to tag_request@omg.org.

19.3.8 IOR Creation and Scope

IORs are created from object references when required to cross some kind of referencing domain boundary. ORBs will
implement object references in whatever form they find appropriate, including possibly using the IOR structure. Bridges
will normally use IORs to mediate transfers where that standard is appropriate.
CORBA for embedded, v1.0 339

19.3.9 Stringified Object References

Object references can be “stringified” (turned into an external string form) by the ORB::object_to_string operation,
and then “destringified” (turned back into a programming environment’s object reference representation) using the
ORB::string_to_object operation.

There can be a variety of reasons why being able to parse this string form might not help make an invocation on the
original object reference:

• Identifiers embedded in the string form can belong to a different domain than the ORB attempting to destringify the
object reference.

• The ORBs in question might not share a network protocol, or be connected.

• Security constraints may be placed on object reference destringification.

Nonetheless, there is utility in having a defined way for ORBs to generate and parse stringified IORs, so that in some
cases an object reference stringified by one ORB could be destringified by another.

To allow a stringified object reference to be internalized by what may be a different ORB, a stringified IOR representation
is specified. This representation instead establishes that ORBs could parse stringified object references using that format.
This helps address the problem of bootstrapping, allowing programs to obtain and use object references, even from
different ORBs.

The following is the representation of the stringified (externalized) IOR:

(1) <oref> ::= <prefix> <hex_Octets>
(2) <prefix> ::= <i><o><r>“:”
(3) <hex_Octets> ::= <hex_Octet> {<hex_Octet>}*
(4) <hex_Octet> ::= <hexDigit> <hexDigit>
(5) <hexDigit> ::= <digit> | <a> | | <c> | <d> | <e> | <f>
(6) <digit> ::= “0” | “1” | “2” | “3” | “4” | “5” |“6” | “7” | “8” | “9”
(7) <a> ::= “a” | “A”
(8) ::= “b” | “B”
(9) <c> ::= “c” | “C”
(10) <d> ::= “d” | “D”
(11) <e> ::= “e” | “E”
(12) <f> ::= “f” | “F”
(13) <i> :: = “i” | “I”
(14) <o> :: = “o” | “O”
(15) <r> :: = “r” | “R”

Note – The case for characters in a stringified IOR is not significant.

The hexadecimal strings are generated by first turning an object reference into an IOR, and then encapsulating the IOR
using the encoding rules of CDR, as specified in GIOP 1.0. The content of the encapsulated IOR is then turned into
hexadecimal digit pairs, starting with the first octet in the encapsulation and going until the end. The high four bits of
each octet are encoded as a hexadecimal digit, then the low four bits.
340 CORBA for embedded, v1.0

19.3.10 Object URLs

To address the problem of bootstrapping and allow for more convenient exchange of human-readable object references,
ORB::string_to_object allows URLs in the corbaloc and corbaname formats to be converted into object references.

If conversion fails, string_to_object raises a BAD_PARAM exception with one of following standard minor codes, as
appropriate:

• 7 - string_to_object conversion failed due to bad scheme name

• 8 - string_to_object conversion failed due to bad address

• 9 - string_to_object conversion failed due to bad schema specific part

• 10 - string_to_object conversion failed due to non specific reason

19.3.10.1 corbaloc URL

The corbaloc URL scheme provides stringified object references that are more easily manipulated by users than IOR
URLs. Currently, corbaloc URLs denote objects that can be contacted by IIOP or resolve_initial_references. Other
transport protocols can be explicitly specified when they become available. Examples of IIOP and
resolve_initial_references (rir:) based corbaloc URLs are:

corbaloc::555xyz.com/Prod/TradingService
corbaloc:iiop:1.1@555xyz.com/Prod/TradingService
corbaloc::555xyz.com,:556xyz.com:80/Dev/NameService
corbaloc:rir:/TradingService
corbaloc:rir:/NameService
corbaloc:iiop:192.168.14.25:555/NameService
corbaloc::[1080::8:800:200C:417A]:88/DefaultEventChannel

A corbaloc URL contains one or more:

• protocol identifiers

• protocol specific components such as address and protocol version information

When the rir protocol is used, no other protocols are allowed.

After the addressing information, a corbaloc URL ends with a single object key.

The full syntax is:

<corbaloc> = “corbaloc:”<obj_addr_list>[“/”<key_string>]
<obj_addr_list> = [<obj_addr> “,”]* <obj_addr>
<obj_addr> = <prot_addr> | <future_prot_addr>
<prot_addr> = <rir_prot_addr> | <iiop_prot_addr>

<rir_prot_addr> = <rir_prot_token>”:”
<rir_prot_token> = “rir”

<iiop_prot_addr> = <iiop_id><iiop_addr>
<iiop_id> = “:” | <iiop_prot_token>”:”
<iiop_prot_token> = “iiop”
CORBA for embedded, v1.0 341

<iiop_addr> = [<version> <host> [“:” <port>]]
<host> = DNS_style_host_name | IPv4_address

 | "[" IPv6_address "]"
<version> = <major> “.” <minor> “@” | empty_string
<port> = number
<major> = number
<minor> = number

<future_prot_addr> = <future_prot_id><future_prot_addr>
<future_prot_id> = <future_prot_token>”:”
<future_prot_token> = possible examples: “atm” | “dce”
<future_prot_addr> = protocol specific address

<key_string> = <string> | empty_string

Where:

obj_addr_list: comma-separated list of protocol id, version, and address information. This list is used in an
implementation-defined manner to address the object An object may be contacted by any of the addresses and protocols.

Note – If the rir protocol is used, no other protocols are allowed.

obj_addr: A protocol identifier, version tag, and a protocol specific address. The comma ‘,’ and ‘/’ characters are
specifically prohibited in this component of the URL.

rir_prot_addr: resolve_initial_references protocol identifier. This protocol does not have a version tag or address.
See 19.3.10.2, ’corbaloc:rir URL’.

iiop_prot_addr: iiop protocol identifier, version tag, and address containing a DNS-style host name or IP address. See
19.3.10.3, ’corbaloc:iiop URL’” for the iiop specific definitions.

future_prot_addr: a placeholder for future corbaloc protocols.

future_prot_id: token representing a protocol terminated with a “:”.

future_prot_token: token representing a protocol. Currently only “iiop” and “rir” are defined.

future_prot_addr: a protocol specific address and possibly protocol version information. An example of this for iiop is
“1.1@555xyz.com”.

key_string: a stringified object key.

The key_string corresponds to the octet sequence in the object_key member of a GIOP Request or LocateRequest
header as defined in section 15.4 of CORBA 2.3. The key_string uses the escape conventions described in RFC 2396 to
map away from octet values that cannot directly be part of a URL. US-ASCII alphanumeric characters are not escaped.
Characters outside this range are escaped, except for the following:

“;” | “/” | “:” | “?”| “:” | “@” | “&” | “=” | “+” | “$” |

“,” | “-” | “_” | “!” | “~” | “*” | “’” | “(“ | “)”

The key_string is not NUL-terminated.
342 CORBA for embedded, v1.0

19.3.10.2 corbaloc:rir URL

The corbaloc:rir URL is defined to allow access to the ORB’s configured initial references through a URL.

The protocol address syntax is:

<rir_prot_addr> = <rir_prot_token>”:”
<rir_prot_token> = “rir”

Where:

rir_prot_addr: resolve_initial_references protocol identifier. There is no version or address information when rir is
used.

rir_prot_token: The token “rir” identifies this protocol.

For a corbaloc:rir URL, the <key_string> is used as the argument to resolve_initial_references. An empty
<key_string> is interpreted as the default “NameService”.

The rir protocol can not be used with any other protocol in a URL.

19.3.10.3 corbaloc:iiop URL

The corbaloc:iiop URL is defined for use in TCP/IP- and DNS-centric environments The full protocol address syntax is:

<iiop_prot_addr> = <iiop_id><iiop_addr>
<iiop_id> = <iiop_default> | <iiop_prot_token>”:”
<iiop_default> = “:”
<iiop_prot_token> = “iiop”
<iiop_addr> = [<version> <host> [“:” <port>]]

<host> = DNS_style_host_name | IPv4_address
 | "[" IPv6_address "]"

<version> = <major> “.” <minor> “@” | empty_string
<port> = number
<major> = number
<minor> = number

Where:

iiop_prot_addr: iiop protocol identifier, version tag, and address containing a DNS-style host name or IP address.

iiop_id: tokens recognized to indicate an iiop protocol corbaloc.

iiop_default: default token indicating iiop protocol, “:”.

iiop_prot_token: iiop protocol token, “iiop”

iiop_address: a single address

host: DNS-style host name or IP address. If not present, the local host is assumed.

version: a major and minor version number, separated by ‘.’ and followed by ‘@’. If the version is absent, 1.0 is assumed.

IPv4_address: numeric IPv4 address (dotted decimal notation)
CORBA for embedded, v1.0 343

IPv6_address: numeric IPv6 address (colon separated hexadecimal or mixed hexadecimal/decimal notation as described
in RFC 2373)

port: port number the agent is listening on (see below). Default is 2809.

19.3.10.4 corbaloc Server Implementation

The only requirements on an object advertised by a corbaloc URL are that there must be a software agent listening on
the host and port specified by the URL. This agent must be capable of handling GIOP Request and LocateRequest
messages targeted at the object key specified in the URL.

A normal CORBA server meets these criteria. It is also possible to implement lightweight object location forwarding
agents that respond to GIOP Request messages with Reply messages with a LOCATION_FORWARD status, and
respond to GIOP LocateRequest messages with LocateReply messages.

19.3.10.5 corbaname URL

The corbaname URL scheme is described in the Naming Service specification. It extends the capabilities of the
corbaloc scheme to allow URLs to denote entries in a Naming Service. Resolving corbaname URLs does not require
a Naming Service implementation in the ORB core. Some examples are:

corbaname::555objs.com#a/string/path/to/obj

This URL specifies that at host 555objs.com, a object of type NamingContext (with an object key of NameService)
can be found, or alternatively, that an agent is running at that location which will return a reference to a
NamingContext. The (stringified) name a/string/path/to/obj is then used as the argument to a resolve operation on
that NamingContext. The URL denotes the object reference that results from that lookup.

corbaname:rir:#a/local/obj

This URL specifies that the stringified name a/local/obj is to be resolved relative to the naming context returned by
resolve_initial_references(“NameService”).

19.3.10.6 Future corbaloc URL Protocols

This specification only defines use of iiop with corbaloc. New protocols can be added to corbaloc as required. Each new
protocol must implement the <future_prot_addr> component of the URL and define a described in Section 19.3.10.1,
“corbaloc URL,” on page 341.”

A possible example of a future corbaloc URL that incorporates an ATM address is:

corbaloc:iiop:xyz.com,atm:E.164:358.400.1234567/dev/test/objectX

19.3.10.7 Future URL Schemes

Several currently defined non-CORBA URL scheme names are reserved. Implementations may choose to provide these or
other URL schemes to support additional ways of denoting objects with URLs.
344 CORBA for embedded, v1.0

Table 19.1 lists the required and some optional formats.

19.4 IIOP IOR

19.4.1 IIOP IOR Profiles

IIOP profiles, identifying individual objects accessible through the Internet Inter-ORB Protocol, have the following form:

module IIOP { // IDL extended for version 1.1, 1.2, and later
struct Version {

octet major;
octet minor;

};

struct ProfileBody_1_0 {// renamed from ProfileBody
Version iiop_version;
string host;
unsigned short port;
IOP::ObjectKey object_key;

};

struct ProfileBody_1_1 {// also used for 1.2 and later
Version iiop_version;
string host;
unsigned short port;
IOP::ObjectKey object_key;

// Added in 1.1 unchanged for 1.2 and later
 IOP::TaggedComponentSeq components;
};

};

IIOP Profile version number:

• Indicates the IIOP protocol version.

• Major number can stay the same if the new changes are backward compatible.

• Clients with lower minor version can attempt to invoke objects with higher minor version number by using only the
information defined in the lower minor version protocol (ignore the extra information).

Table 19.1 URL formats

Scheme Description Status

IOR: Standard stringified IOR format Required

corbaloc: Simple object reference. rir: must be supported. Required

corbaname: CosName URL Required

file:// Specifies a file containing a URL/IOR Optional

ftp:// Specifies a file containing a URL/IOR that is accessible via ftp protocol. Optional

http:// Specifies an HTTP URL that returns an object URL/IOR. Optional
CORBA for embedded, v1.0 345

Profiles supporting only IIOP version 1.0 use the ProfileBody_1_0 structure, while those supporting IIOP version 1.1
or 1.2 (or later) use the ProfileBody_1_1 structure. An instance of one of these structure types is marshaled into an
encapsulation octet stream. This encapsulation (a sequence <octet>) becomes the profile_data member of the
IOP::TaggedProfile structure representing the IIOP profile in an IOR, and the tag has the value
TAG_INTERNET_IOP (as defined earlier).

The version number published in the Tag Internet IIOP Profile body signals the highest GIOP minor version number that
the server supports at the time of publication of the IOR.

If the major revision number is 1, and the minor revision number is greater than 0, then the length of the encapsulated
profile may exceed the total size of components defined in this specification for profiles with minor revision number 0.
ORBs that support only revision 1.0 IIOP profiles must ignore any data in the profile that occurs after the object_key. If
the revision of the profile is 1.0, there shall be no extra data in the profile (i.e., the length of the encapsulated profile must
agree with the total size of components defined for version 1.0).

For Version 1.2 and later of IIOP, no order of use is prescribed in the case where more than one TAG Internet IOP Profile
is present in an IOR.

The members of IIOP::ProfileBody_1_0 and IOP::ProfileBody_1_1 are defined as follows:

• iiop_version describes the version of IIOP that the agent at the specified address is prepared to receive. When an
agent generates IIOP profiles specifying a particular version, it must be able to accept messages complying with the
specified version or any previous minor version (i.e., any smaller version number). The major version number of this
specification is 1; the minor versions defined to date are 0, 1, and 2. Compliant ORBs must generate version 1.1
profiles, and must accept any profile with a major version of 1, regardless of the minor version number. If the minor
version number is 0, the encapsulation is fully described by the ProfileBody_1_0 structure. If the minor version
number is 1 or 2, the encapsulation is fully described by the ProfileBody_1_1 structure. If the minor version number
is greater than 2, then the length of the encapsulated profile may exceed the total size of components defined in this
specification for profiles with minor version number 1 or 2. ORBs that support only version 1.1 or 1.2 IIOP profiles
must ignore, but preserve, any data in the profile that occurs after the components member, for IIOP profiles with
minor version greater than 1.2.

Note – As of version 1.2 of GIOP and IIOP and minor versions beyond, the minor version in the TAG_INTERNET_IOP
profile signals the highest minor revision of GIOP supported by the server at the time of publication of the IOR.

• host identifies the Internet host to which GIOP messages for the specified object may be sent. In order to promote a
very large (Internet-wide) scope for the object reference, this will typically be the fully qualified domain name of the
host, rather than an unqualified (or partially qualified) name. However, per Internet standards, the host string may also
contain a host address expressed in standard “dotted decimal” form (e.g., “192.231.79.52”).

• port contains the TCP/IP port number (at the specified host) where the target agent is listening for connection
requests. The agent must be ready to process IIOP messages on connections accepted at this port.

• object_key is an opaque value supplied by the agent producing the IOR. This value will be used in request messages
to identify the object to which the request is directed. An agent that generates an object key value must be able to map
the value unambiguously onto the corresponding object when routing requests internally.

• components is a sequence of TaggedComponent, which contains additional information that may be used in
making invocations on the object described by this profile. TaggedComponents that apply to IIOP 1.2 are described
below in Section 19.4.2, “IIOP IOR Profile Components,” on page 347. Other components may be included to support
enhanced versions of IIOP, to support ORB services such as security, and to support other GIOPs, ESIOPs, and
proprietary protocols. If an implementation puts a non-standard component in an IOR, it cannot be assured that any or
346 CORBA for embedded, v1.0

all non-standard components will remain in the IOR.

The relationship between the IIOP protocol version and component support conformance requirements is as follows:

• Each IIOP version specifies a set of standard components and the conformance rules for that version. These rules
specify which components are mandatory and which are optional. A conformant implementation has to conform to
these rules, and is not required to conform to more than these rules.

• New components can be added, but they do not become part of the versions conformance rules.

• When there is a need to specify conformance rules that include the new components, there will be a need to create a
new IIOP version.

Note that host addresses are restricted in this version of IIOP to be Class A, B, or C Internet addresses. That is, Class D
(multi-cast) addresses are not allowed. Such addresses are reserved for use in future versions of IIOP.

Agents may freely choose TCP port numbers for communication; IIOP supports multiple agents per host.

19.4.2 IIOP IOR Profile Components

The following components are part of IIOP 1.1, 1.2 (and later) conformance. All these components are optional.

• TAG_ORB_TYPE

• TAG_CODE_SETS

• TAG_SEC_NAME

• TAG_ASSOCIATION_OPTIONS

• TAG_GENERIC_SEC_MECH

• TAG_SSL_SEC_TRANS

• TAG_SPKM_1_SEC_MECH

• TAG_SPKM_2_SEC_MECH

• TAG_KerberosV5_SEC_MECH

• TAG_CSI_ECMA_Secret_SEC_MECH

• TAG_CSI_ECMA_Hybrid_SEC_MECH

• TAG_SSL_SEC_TRANS

• TAG_CSI_ECMA_Public_SEC_MECH

• TAG_FIREWALL_TRANS

• TAG_JAVA_CODEBASE

• TAG_TRANSACTION_POLICY

• TAG_MESSAGE_ROUTERS

• TAG_INET_SEC_TRANS

The following components are part of IIOP 1.2 (and later) conformance. All these components are optional.

• TAG_ALTERNATE_IIOP_ADDRESS

• TAG_POLICIES

• TAG_DCE_STRING_BINDING
CORBA for embedded, v1.0 347

• TAG_DCE_BINDING_NAME

• TAG_DCE_NO_PIPES

• TAG_DCE_MECH

• TAG_COMPLETE_OBJECT_KEY

• TAG_ENDPOINT_ID_POSITION

• TAG_LOCATION_POLICY

• TAG_OTS_POLICY

• TAG_INV_POLICY

• TAG_CSI_SEC_MECH_LIST

• TAG_NULL_TAG

• TAG_SECIOP_SEC_TRANS

• TAG_TLS_SEC_TRANS

• TAG_ACTIVITY_POLICY

19.5 Consolidated IDL

\module IIOP { // IDL extended for version 1.1, 1.2, and later
struct Version {

octet major;
octet minor;

};

struct ProfileBody_1_0 {// renamed from ProfileBody
Version iiop_version;
string host;
unsigned short port;
IOP::ObjectKey object_key;

};

struct ProfileBody_1_1 {// also used for 1.2, and later
Version iiop_version;
string host;
unsigned short port;
IOP::ObjectKey object_key;

// Added in 1.1 unchanged for 1.2, and later
 IOP::TaggedComponentSeq components;
};

struct ListenPoint {
string host;
unsigned short port;

};

typedef sequence<ListenPoint> ListenPointList;
};
348 CORBA for embedded, v1.0

Annex A OMG IDL Tags and Exceptions

(normative)

This annex lists the standardized profile, service, component, policy tags and exception codes described in the CORBA
documentation. Implementor-defined tags can also be registered in this manual. Requests to register tags with the OMG should
be sent to tag_request@omg.org.

A.1 Profile ID Tags

A.2 Service ID Tags

Tag Name Tag Value Described in

ProfileId TAG_INTERNET_IOP = 0 ORB Interoperability Architecture chapter: see
CORBA, v3.0.3: http://www.omg.org/cgi-bin/
doc?formal/04-03-01

ProfileId TAG_MULTIPLE_COMPONENTS = 1 ORB Interoperability Architecture chapter: see
CORBA, v3.0.3: http://www.omg.org/cgi-bin/
doc?formal/04-03-01

ProfileId TAG_SCCP_IOP = 2 CORBA/TC Interworking specification
http://www.omg.org/technology/documents/formal/
corba_tc_interworking_and_sccp_i.htm

ProfileId TAG_UIPMC = 3 Unreliable Multicast (orbos/01-03-01)

ProfileId TAG_MOBILE_TERMINAL_IOP = 4 Telecom Wireless specification -
http://www.omg.org/technology/documents/formal/
telecom_wireless.htm.

Tag Name Tag Value Described in

ServiceId TransactionService = 0 Object Transaction Service specification
http://www.omg.org/technology/documents/formal/
transaction_service.htm

ServiceId CodeSets = 1 ORB Interoperability Architecture chapter: see
CORBA, v3.0.3: http://www.omg.org/cgi-bin/
doc?formal/04-03-01

ServiceId ChainBypassCheck = 2 Interoperability with non-CORBA Systems chapter:
see CORBA, v3.0.3: http://www.omg.org/cgi-bin/
doc?formal/04-03-01

ServiceId ChainBypassInfo = 3 Interoperability with non-CORBA Systems chapter:
see CORBA, v3.0.3: http://www.omg.org/cgi-bin/
doc?formal/04-03-01

ServiceId LogicalThreadId = 4 Interoperability with non-CORBA Systems chapter:
see CORBA, v3.0.3: http://www.omg.org/cgi-bin/
doc?formal/04-03-01
CORBA for embedded, v1.0 349

ServiceId BI_DIR_IIOP = 5 General Inter-ORB Protocol chapter: see CORBA,
v3.0.3: http://www.omg.org/cgi-bin/doc?formal/04-
03-01

ServiceId SendingContextRunTime = 6 Value Type Semantics chapter: see CORBA, v3.0.3:
http://www.omg.org/cgi-bin/doc?formal/04-03-01

ServiceId INVOCATION_POLICIES = 7 CORBA Messaging chapter: see CORBA, v3.0.3:
http://www.omg.org/cgi-bin/doc?formal/04-03-01

ServiceId FORWARDED_IDENTITY = 8 Firewall Traversal specification (ptc/04-03-01)

ServiceId UnknownExceptionInfo = 9 Java to IDL Language Mapping specification:
http://www.omg.org/technology/documents/formal/
java_language_mapping_to_omg_idl.htm

ServiceId RTCorbaPriority = 10 Real-Time CORBA specification: see
http://www.omg.org/technology/documents/formal/
real-time_CORBA.htm

ServiceId RTCorbaPriorityRange = 11 Real-Time CORBA specification: see
http://www.omg.org/technology/documents/formal/
real-time_CORBA.htm

ServiceId FT_GROUP_VERSION = 12 Fault Tolerant CORBA chapter: see CORBA,
v3.0.3: http://www.omg.org/cgi-bin/doc?formal/04-
03-01

ServiceId FT_REQUEST= 13 Fault Tolerant CORBA chapter: see CORBA,
v3.0.3: http://www.omg.org/cgi-bin/doc?formal/04-
03-01

ServiceId ExceptionDetailMessage = 14 Interoperability Architecture chapter: see CORBA,
v3.0.3: http://www.omg.org/cgi-bin/doc?formal/04-
03-01

ServiceId SecurityAttributeService = 15 Secure Interoperability chapter: see CORBA,
v3.0.3: http://www.omg.org/cgi-bin/doc?formal/04-
03-01

ServiceId ActivityService = 16 Additional Structuring Mechanisms for the OTS:
http://www.omg.org/technology/documents/formal/
add_struct.htm

ServiceId RMICustomMaxStreamFormat = 17 Java to IDL Language Mapping specification:
http://www.omg.org/technology/documents/formal/
java_language_mapping_to_omg_idl.htm

ServiceId ACCESS_SESSION_ID = 18 Telecom Service Access Subscription (TSAS)
specification: http://www.omg.org/technology/
documents/formal/tsas.htm

ServiceId SERVICE_SESSION_ID = 19 Telecom Service Access Subscription (TSAS)
specification: http://www.omg.org/technology/
documents/formal/tsas.htm

ServiceId FIREWALL_PATH = 20 Firewall Traversal specification (ptc/04-03-01)

ServiceId FIREWALL_PATH_RESP = 21 Firewall Traversal specification (ptc/04-03-01)

Tag Name Tag Value Described in
350 CORBA for embedded, v1.0

A.3 Component ID Tags

Tag Name Tag Value Described in

ComponentId TAG_ORB_TYPE = 0 Interoperability Architecture chapter: see CORBA,
v3.0.3: http://www.omg.org/cgi-bin/doc?formal/04-
03-01

ComponentId TAG_CODE_SETS = 1 Interoperability Architecture chapter: see CORBA,
v3.0.3: http://www.omg.org/cgi-bin/doc?formal/04-
03-01

ComponentId TAG_POLICIES = 2 CORBA Messaging chapter: see CORBA, v3.0.3:
http://www.omg.org/cgi-bin/doc?formal/04-03-01

ComponentId TAG_ALTERNATE_IIOP_ADDRESS = 3 General Inter-ORB Protocol chapter: see CORBA,
v3.0.3: http://www.omg.org/cgi-bin/doc?formal/04-
03-01

ComponentId TAG_COMPLETE_OBJECT_KEY = 5 The DCE ESIOP chapter: see CORBA, v3.0.3:
http://www.omg.org/cgi-bin/doc?formal/04-03-01

ComponentId TAG_ENDPOINT_ID_POSITION = 6 The DCE ESIOP chapter: see CORBA, v3.0.3:
http://www.omg.org/cgi-bin/doc?formal/04-03-01

ComponentId TAG_LOCATION_POLICY = 12 The DCE ESIOP chapter: see CORBA, v3.0.3:
http://www.omg.org/cgi-bin/doc?formal/04-03-01

ComponentId TAG_ASSOCIATION_OPTIONS =13 Security Service specification: see
http://www.omg.org/technology/documents/formal/
security_service.htm

ComponentId TAG_SEC_NAME = 14

ComponentId TAG_SPKM_1_SEC_MECH = 15

ComponentId TAG_SPKM_2_SEC_MECH = 16

ComponentId TAG_KerberosV5_SEC_MECH = 17

ComponentId TAG_CSI_ECMA_Secret_SEC_MECH = 18

ComponentId TAG_CSI_ECMA_Hybrid_SEC_MECH = 19

ComponentId TAG_SSL_SEC_TRANS = 20

ComponentId TAG_CSI_ECMA_Public_SEC_MECH = 21

ComponentId TAG_GENERIC_SEC_MECH = 22

ComponentId TAG_FIREWALL_TRANS = 23 Firewall Traversal specification (ptc/04-03-01)

ComponentId TAG_SCCP_CONTACT_INFO = 24 CORBA/TC Interworking specification
http://www.omg.org/technology/documents/formal/
corba_tc_interworking_and_sccp_i.htm

ComponentId TAG_JAVA_CODEBASE = 25 Java to IDL Language Mapping specification:
http://www.omg.org/technology/documents/formal/
java_language_mapping_to_omg_idl.htm

ComponentId TAG_TRANSACTION_POLICY = 26 Object Transaction Service specification
http://www.omg.org/technology/documents/formal/
transaction_service.htm

ComponentId TAG_ FT_GROUP= 27 Fault Tolerant CORBA chapter: see CORBA,
v3.0.3: http://www.omg.org/cgi-bin/doc?formal/04-
03-01

ComponentId TAG_ FT_PRIMARY= 28 Fault Tolerant CORBA chapter: see CORBA,
v3.0.3: http://www.omg.org/cgi-bin/doc?formal/04-
03-01
CORBA for embedded, v1.0 351

ComponentId TAG_ FT_HEARTBEAT_ENABLED = 29 Fault Tolerant CORBA chapter: see CORBA,
v3.0.3: http://www.omg.org/cgi-bin/doc?formal/04-
03-01

ComponentId TAG_MESSAGE_ROUTERS = 30 CORBA Messaging chapter: see CORBA, v3.0.3:
http://www.omg.org/cgi-bin/doc?formal/04-03-01

ComponentId TAG_OTS_POLICY = 31 Object Transaction Service specification
http://www.omg.org/technology/documents/formal/
transaction_service.htm

ComponentId TAG_INV_POLICY = 32 Object Transaction Service specification
http://www.omg.org/technology/documents/formal/
transaction_service.htm

ComponentId TAG_CSI_SEC_MECH_LIST = 33 Secure Interoperability chapter: see CORBA,
v3.0.3: http://www.omg.org/cgi-bin/doc?formal/04-
03-01

ComponentId TAG_NULL_TAG = 34 Secure Interoperability chapter: see CORBA,
v3.0.3: http://www.omg.org/cgi-bin/doc?formal/04-
03-01

ComponentId TAG_SECIOP_SEC_TRANS = 35 Secure Interoperability chapter: see CORBA,
v3.0.3: http://www.omg.org/cgi-bin/doc?formal/04-
03-01

ComponentId TAG_TLS_SEC_TRANS = 36 Secure Interoperability chapter: see CORBA,
v3.0.3: http://www.omg.org/cgi-bin/doc?formal/04-
03-01

ComponentId TAG_ACTIVITY_POLICY = 37 Additional Structuring Mechanisms for the OTS:
http://www.omg.org/technology/documents/formal/
add_struct.htm

ComponentId TAG_RMI_CUSTOM_MAX_STREAM_FORMAT =
38

Java to IDL Language Mapping specification:
http://www.omg.org/technology/documents/formal/
java_language_mapping_to_omg_idl.htm

ComponentId TAG_GROUP = 39 Unreliable Multicast (Part 2): http://www.omg.org/
spec/CORBA/3.1/

ComponentId TAG_GROUP_IIOP = 40 Unreliable Multicast (Part 2): http://www.omg.org/
spec/CORBA/3.1/

ComponentId TAG_PASSTHRU_TRANS = 41 Firewall Traversal specification (ptc/04-03-01)

ComponentId TAG_FIREWALL_PATH = 42 Firewall Traversal specification (ptc/04-03-01)

ComponentId TAG_IIOP_SEC_TRANS = 43 Firewall Traversal specification (ptc/04-03-01)

ComponentId TAG_HOME_LOCATION_INFO = 44 Telecom Wireless specification: see
http://www.omg.org/technology/documents/formal/
telecom_wireless.htm.

ComponentId TAG_DCE_STRING_BINDING = 100 The DCE ESIOP chapter: see CORBA, v3.0.3:
http://www.omg.org/cgi-bin/doc?formal/04-03-01

ComponentId TAG_DCE_BINDING_NAME = 101 The DCE ESIOP chapter: see CORBA, v3.0.3:
http://www.omg.org/cgi-bin/doc?formal/04-03-01

ComponentId TAG_DCE_NO_PIPES = 102 The DCE ESIOP chapter: see CORBA, v3.0.3:
http://www.omg.org/cgi-bin/doc?formal/04-03-01

Tag Name Tag Value Described in
352 CORBA for embedded, v1.0

A.4 Policy Type Tags

The table below lists the standard policy types that are defined by various parts of CORBA and CORBA Services in this
version of CORBA/IIOP.

ComponentId TAG_DCE_SEC_MECH = 103 Security Service specification: see
http://www.omg.org/technology/documents/formal/
security_service.htm

ComponentId TAG_INET_SEC_TRANS = 123 Security Service specification: see
http://www.omg.org/technology/documents/formal/
security_service.htm

Policy Type Policy Interface Defined in Uses
create
_policy

SecClientInvocationAccess = 1 SecurityAdmin::AccessPolicy Security Service
specification: see
http://www.omg.org/
technology/
documents/formal/
security_service.htm

N

SecTargetInvocationAccess = 2 SecurityAdmin::AccessPolicy N

SecApplicationAccess = 3 SecurityAdmin::AccessPolicy N

SecClientInvocationAudit = 4 SecurityAdmin::AuditPolicy N

SecTargetInvocationAudit = 5 SecurityAdmin::AuditPolicy N

SecApplicationAudit = 6 SecurityAdmin::AuditPolicy N

SecDelegation = 7 SecurityAdmin::Delegation Policy N

SecClientSecureInvocation = 8 SecurityAdmin::SecureInvocation
Policy

N

SecTargetSecureInvocation = 9 SecurityAdmin::SecureInvocation
Policy

N

SecNonRepudiation = 10 NRService::NRPolicy N

SecConstruction = 11 CORBA::SecConstruction ORB Interface
chapter: see CORBA,
v3.0.3: http://
www.omg.org/cgi-
bin/doc?formal/04-
03-01

N

SecMechanismPolicy = 12 SecurityLevel2::MechanismPolicy Security Service
specification: see
http://www.omg.org/
technology/
documents/formal/
security_service.htm

Y

SecInvocationCredentialsPolicy = 13 SecurityLevel2::InvocationCredentials
Policy

Y

SecFeaturesPolicy = 14 SecurityLevel2::FeaturesPolicy Y

SecQOPPolicy = 15 SecurityLevel2::QOPPolicy Y

Tag Name Tag Value Described in
CORBA for embedded, v1.0 353

THREAD_POLICY_ID = 16 PortableServer::ThreadPolicy Object Adapter
chapter: see CORBA,
v3.0.3: http://
www.omg.org/cgi-
bin/doc?formal/04-
03-01

Y

LIFESPAN_POLICY_ID = 17 PortableServer::LifespanPolicy Y

ID_UNIQUENESS_POLICY_ID = 18 PortableServer::IdUniquenessPolicy Y

ID_ASSIGNMENT_POLICY_ID = 19 PortableServer::IdAssignmentPolicy Y

IMPLICIT_ACTIVATION_POLICY_ID = 20 PortableServer::ImplicitActivation
Policy

Y

SERVENT_RETENTION_POLICY_ID = 21 PortableServer::ServentRetention
Policy

Y

REQUEST_PROCESSING_POLICY_ID = 22 PortableServer::RequestProcessing
Policy

Y

REBIND_POLICY_TYPE = 23 Messaging::RebindPolicy Asynchronous
Messaging chapter:
see CORBA, v3.0.3:
http://www.omg.org/
cgi-bin/doc?formal/
04-03-01

Y

SYNC_SCOPE_POLICY_TYPE = 24 Messaging::SyncScopePolicy Y

REQUEST_PRIORITY_POLICY_TYPE = 25 Messaging::RequestPriorityPolicy Y

REPLY_PRIORITY_POLICY_TYPE = 26 Messaging::ReplyPriorityPolicy Y

REQUEST_START_TIME_POLICY_TYPE = 27 Messaging::RequestStartTimePolicy Y

REQUEST_END_TIME_POLICY_TYPE = 28 Messaging::RequestEndTimePolicy Y

REPLY_START_TIME_POLICY_TYPE = 29 Messaging::ReplyStartTimePolicy Y

REPLY_END_TIME_POLICY_TYPE = 30 Messaging::ReplyEndTimePolicy Y

RELATIVE_REQ_TIMEOUT_POLICY_TYPE = 31 Messaging::RelativeRequestTimeout
Policy

Y

RELATIVE_RT_TIMEOUT_POLICY_TYPE = 32 Messaging::RelativeRoundtripTimeout
Policy

Y

ROUTING_POLICY_TYPE = 33 Messaging::RoutingPolicy Y

MAX_HOPS_POLICY_TYPE =34 Messaging::MaxHopsPolicy Y

QUEUE_ORDER_POLICY_TYPE = 35 Messaging::QueueOrderPolicy Y

FIREWALL_POLICY_TYPE = 36 Firewall::FirewallPolicy Firewall Traversal
specification
(ptc/04-03-01)

Y

BIDIRECTIONAL_POLICY_TYPE = 37 BiDirPolicy::BidirectionalPolicy General Inter-ORB
Protocol chapter: see
CORBA, v3.0.3:
http://www.omg.org/
cgi-bin/doc?formal/
04-03-01

Y

Policy Type Policy Interface Defined in Uses
create
_policy
354 CORBA for embedded, v1.0

SecDelegationDirectivePolicy = 38 SecurityLevel2::DelegtionDirective
Policy

Security Service
specification: see
http://www.omg.org/
technology/
documents/formal/
security_service.htm

Y

SecEstablishTrustPolicy = 39 SecurityLevel2::EstablishTrustPolicy Y

PRIORITY_MODEL_POLICY_TYPE = 40 RTCORBA::PriorityModelPolicy Real-Time CORBA
specification:
http://www.omg.org/
technology/
documents/formal/
real-time_
CORBA.htm

Y

THREADPOOL_POLICY_TYPE = 41 RTCORBA::ThreadpoolPolicy Y

SERVER_PROTOCOL_POLICY_TYPE = 42 RTCORBA::ServerProtocolPolicy Y

CLIENT_PROTOCOL_POLICY_TYPE = 43 RTCORBA::ClientProtocolPolicy Y

PRIVATE_CONNECTION_POLICY_TYPE = 44 RTCORBA::PrivateConnectionpolicy Y

PRIORITY_BANDED_CONNECTION_POLICY_
TYPE = 45

RTCORBA::PriorityBanded
ConnectionPolicy

Y

TransactionPolicyType = 46 CosTransactions::TransactionPolicy Object Transaction
Service specification:
http://www.omg.org/
technology/
documents/formal/
transaction_service.
htm

Y

REQUEST_DURATION_POLICY_TYPE = 47 Fault Tolerant
CORBA: CORBA,
v3.0.3: http://
www.omg.org/cgi-
bin/doc?formal/04-
03-01.

HEARTBEAT_POLICY_TYPE = 48 Fault Tolerant
CORBA: CORBA,
v3.0.3: http://
www.omg.org/cgi-
bin/doc?formal/04-
03-01.

HEARTBEAT_ENABLED_POLICY_TYPE = 49

IMMEDIATE_SUSPEND_POLICY_TYPE = 50 valuetype MessageRouting::

ImmediateSuspend

Asynchronous
Messaging chapter:
CORBA, v3.0.3:
http://www.omg.org/
cgi-bin/doc?formal/
04-03-01

N

UNLIMITED_PING_POLICY_TYPE = 51 valuetype
MessageRouting::UnlimitedPing

N

LIMITED_PING_POLICY_TYPE = 52 valuetype
MessageRouting::LimitedPing

N

DECAY_POLICY_TYPE = 53 valuetype
MessageRouting::DecayPolicy

N

RESUME_POLICY_TYPE = 54 valuetype
MessageRouting::ResumePolicy

N

Policy Type Policy Interface Defined in Uses
create
_policy
CORBA for embedded, v1.0 355

A.5 Exception Codes

If an exception that is to be raised for an error condition does not explicitly specify a specific standard minor code for that error
condition, implementations can either use a minor code of zero, or use a vendor-specific minor code to convey more detail
about the error.

The following table specifies standard minor exception codes that have been assigned for the standard system exceptions. The
actual value that is to be found in the minor field of the ex_body structure is obtained by or-ing the values in this table with
the OMGVMCID constant. For example “Missing local value implementation” for the exception NO_IMPLEMENT would
be denoted by the minor value 0x4f4d0001.

.

INVOCATION_POLICY_TYPE = 55 CosTransactions::InvocationPolicy Object Transaction
Service specification:
http://www.omg.org/
technology/
documents/formal/
transaction_service.
htm

Y

OTS_POLICY_TYPE = 56 CosTransactions::OTSPolicy Y

NON_TX_TARGET_POLICY_TYPE = 57 CosTransactions::NonTxTargetPolicy Y

ActivityPolicyType = 58 CORBA::PolicyType Additional Structuring
Mechanisms for the
OTS:
http://www.omg.org/
technology/
documents/formal/
add_struct.htm

Y

OSA_MANAGER_POLICY = 59 Security Domain
Membership (orbos/
01-06-01)ODM_MANAGER_POLICY = 60

PATH_SELECTION_POLICY_TYPE = 61 Firewall Traversal
specification
(ptc/04-03-01)PATH_INSERTION_POLICY_TYPE = 62

PROCESSING_MODE_POLICY_TYPE = 63 Portable Interceptor
chapter: CORBA,
v3.0.3: http://
www.omg.org/cgi-
bin/doc?formal/04-
03-01

SYSTEM EXCEPTION MINOR
CODE

EXPLANATION

ACTIVITY_COMPLETED 1 Activity context completed through timeout or in some way other
than requested

ACTIVITY_REQUIRED 1 Calling thread lacks required activity context

Policy Type Policy Interface Defined in Uses
create
_policy
356 CORBA for embedded, v1.0

BAD_CONTEXT 1 IDL context not found

2 No matching IDL context property

BAD_INV_ORDER 1 Dependency exists in IFR preventing destruction of this object

2 Attempt to destroy indestructible objects in IFR

3 Operation would deadlock

4 ORB has shutdown

5 Attempt to invoke send or invoke operation of the same
Request object more than once

6 Attempt to set a servant manager after one has already been set

7 ServerRequest::arguments called more than once or after a
call to ServerRequest:: set_exception

8 ServerRequest::ctx called more than once or before
ServerRequest::arguments or after ServerRequest::ctx
ServerRequest::set_result or
ServerRequest::set_exception

9 ServerRequest::set_result called more than once or before
ServerRequest::arguments or after
ServerRequest::set_result or
ServerRequest::set_exception

10 Attempt to send a DII request after it was sent previously

11 Attempt to poll a DII request or to retrieve its result before the
request was sent

12 Attempt to poll a DII request or to retrieve its result after the result
was retrieved previously

13 Attempt to poll a synchronous DII request or to retrieve results
from a synchronous DII request

14 Invalid portable interceptor call

15 Service context add failed in portable interceptor because a service
context with the given id already exists

16 Registration of PolicyFactory failed because a factory already
exists for the given PolicyType

SYSTEM EXCEPTION MINOR
CODE

EXPLANATION
CORBA for embedded, v1.0 357

17 POA cannot create POAs while undergoing destruction

18 Attempt to reassign priority

19 An OTS/XA integration xa_start call returned
XAER_OUTSIDE

20 An OTS/XA integration xa_ call returned XAER_PROTO

21 Transaction context of request and client threads do not match in
interceptor

22 Poller has not returned any response yet

23 Registration of TaggedProfileFactory failed because a factory
already exists for the given id

24 Registration of TaggedComponentFactory failed because a
factory already exists for the given id

25 Iteration has no more elements

26 Invocation of this operation not allowed in post_init

27 Set_handle () has not been called previously on this listener
instance

BAD_OPERATION 1 ServantManager returned wrong servant type

2 Operation or attribute not known to target object

SYSTEM EXCEPTION MINOR
CODE

EXPLANATION
358 CORBA for embedded, v1.0

BAD_PARAM 1 Failure to register, unregister, or lookup value factory

2 RID already defined in IFR

3 Name already used in the context in IFR

4 Target is not a valid container

5 Name clash in inherited context

6 Incorrect type for abstract interface

7 string_to_object conversion failed due to bad scheme name

8 string_to_object conversion failed due to bad address

9 string_to_object conversion failed due to bad schema specific part

10 string_to_object conversion failed due to non-specific reason

11 Attempt to derive abstract interface from non-abstract base
interface in the Interface Repository

12 Attempt to let a ValueDef support more than one non-abstract
interface in the Interface Repository

13 Attempt to use an incomplete TypeCode as a parameter

14 Invalid object id passed to POA::create_reference_by_id

15 Bad name argument in TypeCode operation

16 Bad RepositoryId argument in TypeCode operation

17 Invalid member name in TypeCode operation

18 Duplicate label value in create_union_tc

19 Incompatible TypeCode of label and discriminator in
create_union_tc

20 Supplied discriminator type illegitimate in create_union_tc

21 Any passed to ServerRequest::set_exception does not
contain an exception

22 Unlisted user exception passed to
ServerRequest::set_exception

23 wchar transmission code set not in service context

24 Service context is not in OMG-defined range

25 Enum value out of range

26 Invalid service context Id in portable interceptor

27 Attempt to call register_initial_reference with a null Object

28 Invalid component Id in portable interceptor

29 Invalid profile Id in portable interceptor

SYSTEM EXCEPTION MINOR
CODE

EXPLANATION
CORBA for embedded, v1.0 359

30 Two or more Policy objects with the same PolicyType value
supplied to Object::set_policy_overrides or
PolicyManager::set_policy_overrides

31 Attempt to define a oneway operation with non-void result, out
or inout parameters or user exceptions

32 DII asked to create request for an implicit operation

33 An OTS/XA integration xa_ call returned XAER_INVAL

34 Union branch modifier called with bad case label discriminator

35 Illegal IDL context property name

36 Illegal IDL property search string

37 Illegal IDL context name

38 Non-empty IDL context

39 Unsupported RMI/IDL custom value type stream format

40 ORB output stream does not support ValueOutputStream interface

41 ORB input stream does not support ValueInputStream interface

42 Character support limited to ISO 8859-1 for this object reference

43 Attempt to add a Pollable to a second PollableSet

BAD_TYPECODE 1 Attempt to marshal incomplete TypeCode

2 Member type code illegitimate in TypeCode operation

3 Illegal parameter type

CODESET_INCOMPATIBLE 1 Codeset negotiation failed

2 Codeset delivered in CodeSetContext is not supported by server
as transmission codeset

DATA_CONVERSION 1 Character does not map to negotiated transmission code set

2 Failure of PriorityMapping object

IMP_LIMIT 1 Unable to use any profile in IOR

INITIALIZE 1 Priority range too restricted for ORB

INTERNAL 1 An OTS/XA integration xa_ call returned XAER_RMERR

2 An OTS/XA integration xa_ call returned XAER_RMFAIL

INTF_REPOS 1 Interface Repository not available

2 No entry for requested interface in Interface Repository

INVALID_ACTIVITY 1 Transaction or Activity resumed in wrong context, or invocation
incompatible with Activity’s current state

INV_OBJREF 1 wchar Code Set support not specified

2 Codeset component required for type using wchar or wstring
data

SYSTEM EXCEPTION MINOR
CODE

EXPLANATION
360 CORBA for embedded, v1.0

INV_POLICY 1 Unable to reconcile IOR specified policy with effective policy
override

2 Invalid PolicyType

3 No PolicyFactory has been registered for the given PolicyType

MARSHAL 1 Unable to locate value factory

2 ServerRequest::set_result called before
ServerRequest::ctx when the operation IDL contains a context
clause

3 NVList passed to ServerRequest::arguments does not
describe all parameters passed by client

4 Attempt to marshal Local object

5 wchar or wstring data erroneosly sent by client over GIOP 1.0
connection

6 wchar or wstring data erroneously returned by server over GIOP
1.0 connection

7 Unsupported RMI/IDL custom value type stream format

8 Custom data not compatible with ValueHandler read operation

9 Codeset service contexts with different values received on the
same connection

10 Custom data not compatible with ValueHandler 2.x read
operation

NO_IMPLEMENT 1 Missing local value implementation

2 Incompatible value implementation version

3 Unable to use any profile in IOR

4 Attempt to use DII on Local object

5 Biomolecular Sequence Analysis iterator cannot be reset

6 Biomolecular Sequence Analysis metadata is not available as
XML

7 Genomic Maps iterator cannot be rest

8 Operation not implemented in local object

9 Valuetypes not supported by CORBA-WSDL/SOAP
implementation

10 Valuetype sharing not supported by CORBA-WSDL/SOAP
implementation

NO_RESOURCES 1 Portable Interceptor operation not supported in this binding

2 No connection for request’s priority

NO_RESPONSE 1 Reply is not available immediately in a non-blocking call

SYSTEM EXCEPTION MINOR
CODE

EXPLANATION
CORBA for embedded, v1.0 361

A.6 Identity Tokens

The following identity tokens must be powers of two.

• ITTAbsent = 0;

• ITTAnonymous = 1;

OBJ_ADAPTER 1 System exception in AdapterActivator::unknown_adapter

2 Incorrect servant type returned by servant manager

3 No default servant available [POA policy]

4 No servant manager available [POA Policy]

5 Violation of POA policy by ServantActivator::incarnate

6 Exception in
PortableInterceptor::IORInterceptor.components_established

7 Null servant returned by servant manager

OBJECT_NOT_EXIST 1 Attempt to pass an unactivated (unregistered) value as an object
reference

2 Failed to create or locate Object Adapter

3 Biomolecular Sequence Analysis Service is no longer available

4 Object Adapter inactive

5 This Poller has already delivered a reply to some client

TIMEOUT 1 Reply is not available in the Poller by the timeout set for it

2 End time specified in RequestEndTimePolicy or
RelativeRequestTimeoutPolicy has expired

3 End time specified in ReplyEndTimePolicy or
RelativeReplyTimeoutPolicy has expired

TRANSACTION_ROLLEDBACK 1 An OTS/XA integration xa_ call returned XAER_RB

2 An OTS/XA integration xa_ call returned XAER_NOTA

3 OTS/XA integration end was called with success set to TRUE
while transaction rollback was deferred

4 Deferred transaction rolled back

TRANSIENT 1 Request discarded because of resource exhaustion in POA, or
because POA is in discarding state

2 No usable profile in IOR

3 Request cancelled

4 POA destroyed

UNKNOWN 1 Unlisted user exception received by client

2 Non-standard System Exception not supported

3 An unknown user exception received by a portable interceptor

SYSTEM EXCEPTION MINOR
CODE

EXPLANATION
362 CORBA for embedded, v1.0

• ITTPrincipalName = 2;

• ITTX509CertChain = 4;

• ITTDistinguishedName = 8;

• ITTCompoundToken = 16;
CORBA for embedded, v1.0 363

364 CORBA for embedded, v1.0

Annex B Correspondence with “Full” CORBA

(Non-normative)

The following tables show the correspondence between the full CORBA specifications, version 3.1, and the CORBA/e
profiles. Table B.1 shows the correspondence of sections in “Part I CORBA 3.1 Interfaces” (formal/2008-01-04) to each
of the profiles defined in this document. Part I of the CORBA 3.1 specification covers the user interface which ia covered
in Chapter 5 through 12 of this specification.

Table B.1- CORBA 3.1 Part I

 CORBA 3.1 Part I CORBA/e Compact
CORBA/e

Micro

Preface Preface Preface

1 Scope 1 1

2 Conformance and compliance 2 2

3 Normative references

4 Acknowledgements 3.2 3.2

5 The Object Model
5.1 Overview
5.2 Object Semantics
 5.2.1 Objects
 5.2.2 Requests
 5.2.3 Object Creation and Destruction
 5.2.4 Types
 5.2.5 Interfaces
 5.2.6 Value Types
 5.2.7 Abstract Interfaces
 5.2.8 Operations
 5.2.9 Attributes
5.3 Object Implementation
 5.3.1 The Execution Model: Performing Services
 5.3.2 The Construction Model

5 The Object Model
Reorganized and edited for clarity and simplicity.
Description of certain features excluded because not
part of either CORBA/e Profile.
CORBA for embedded, v1.0 365

http://doc.omg.org/formal/08-04-01
http://doc.omg.org/formal/08-04-01
http://doc.omg.org/formal/08-04-01

6 CORBA Overview
6.1 Structure of an Object Request Broker
 6.1.1 Object Request Broker
 6.1.2 Clients
 6.1.3 Object Implementations
 6.1.4 Object References
 6.1.5 OMG Interface Definition Language
 6.1.6 Mapping of OMG IDL to Programming Languages
 6.1.7 Client Stubs
 6.1.8 Dynamic Invocation Interface
 6.1.9 Implementation Skeleton
 6.1.10 Dynamic Skeleton Interface
 6.1.11 Object Adapters
 6.1.12 ORB Interface
 6.1.13 Interface Repository
 6.1.14 Implementation Repository
6.2 Example ORBs
 6.2.1 Client- and Implementation-resident ORB
 6.2.2 Server-based ORB
 6.2.3 System-based ORB
 6.2.4 Library-based ORB
6.3 Structure of a Client
6.4 Structure of an Object Implementation
6.5 Structure of an Object Adapter
6.6 CORBA Required Object Adapter
 6.6.1 Portable Object Adapter
6.7 The Integration of Foreign Object Systems

4 CORBA Overview
Sections 4.2 through 4.8 correspond to Sections 6.1
through 6.7 of CORBA 3.1. Editorial changes only.
Section 4.8 corresponds to parts of Section 6 and 7 in
Part II of CORBA 3.1.

7 OMG IDL Syntax and Semantics OMG IDL Syntax and Semantics is addressed in
Section 6 (with identical sub-sections). It is identical
except for the compliance statement in the
introduction. The compliance statement allows certain
IDL constructs to be ignored. These constructs are
noted below.

7.1 Overview 6.1 6.1

7.2 Lexical Conventions
 7.2.1 Tokens
 7.2.2 Comments
 7.2.3 Identifiers
 7.2.4 Keywords
 7.2.5 Literals

6.2
6.2.1
6.2.2
6.2.3
6.2.4
6.2.5

6.2
6.2.1
6.2.2
6.2.3
6.2.4
6.2.5

7.3 Preprocessing 6.3 6.3

7.4 OMG IDL Grammar 6.4 6.4

Table B.1- CORBA 3.1 Part I

 CORBA 3.1 Part I CORBA/e Compact
CORBA/e

Micro
366 CORBA for embedded, v1.0

7.5 OMG IDL Specification 6.5 6.5

7.6 Import Declaration May be ignored May be ignored

7.7 Module Declaration 6.6 6.6

7.8 Interface Declaration
 7.8.1 Interface Header
 7.8.2 Interface Inheritance Specification
 7.8.3 Interface Body
 7.8.4 Forward Declaration
 7.8.5 Interface Inheritance
 7.8.6 Abstract Interface
 7.8.7 Local Interface

6.7
6.7.1
6.7.2
6.7.3
6.7.4
6.7.5
May be ignored
6.7.7

6.7
6.7.1
6.7.2
6.7.3
6.7.4
6.7.5
May be ignored
6.7.6

7.9 Value Declaration
 7.9.1 Regular Value Type
 7.9.2 Boxed Value Type
 7.9.3 Abstract Value Type
 7.9.4 Value Forward Declaration
 7.9.5 Valuetype Inheritance

6.8
6.8.1
6.8.2 - May be ignored
6.8.3
6.8.4
6.8.5 - Inheritance of a
valuetype from an
interface may be ignored

May be ignored

7.10 Constant Declaration
 7.10.1 Syntax
 7.10.2 Semantics

6.9
6.9.1
6.9.2

6.9
6.9.1
6.9.2

7.11 Type Declaration 6.10 6.10

 7.11.1 Basic Types 6.10.1 6.10.1 - Type Any may
be ignored

 7.11.2 Constructed Types 6.10.2 6.10.2

 7.11.3 Template Types 6.10.3 6.10.3

 7.11.4 Complex Declarator 6.10.4 6.10.4

 7.11.5 Native Types 6.10.5 6.10.5

 7.11.6 Deprecated Anonymous Types 6.10.6 6.10.6

7.12 Exception Declaration 6.11 6.11

7.13 Operation Declaration
 7.13.1 Operation Attribute
 7.13.2 Parameter Declarations
 7.13.3 Raises Expressions
 7.13.4 Context Expressions

6.12
6.12.1
6.12.2
6.12.3
6.12.4 - May be ignored

6.12
6.12.1
6.12.2
6.12.3
6.12.4 - May be ignored

Table B.1- CORBA 3.1 Part I

 CORBA 3.1 Part I CORBA/e Compact
CORBA/e

Micro
CORBA for embedded, v1.0 367

7.14 Attribute Declaration 6.13 6.13

7.15 Repository Identity Related Declarations
 7.15.1 Repository Identity Declaration
 7.15.2 Repository Identifier Prefix Declaration
 7.15.3 Repository Id Conflict

6.14
6.14.1
6.14.2

6.14.3

6.14
6.14.1
6.14.2

6.14.3

7.16 Event Declaration
 7.16.1 Regular Event Type
 7.16.2 Abstract Event Type
 7.16.3 Event Forward Declaration
 7.16.4 Eventtype Inheritance

May be ignored May be ignored

7.17 Component Declaration
 7.17.1 Component
 7.17.2 Component Header
 7.17.3 Component Body
 7.17.4 Event Sourcesópublishers and emitters
 7.17.5 Event Sinks
 7.17.6 Basic and Extended Components

May be ignored May be ignored

7.18 Home Declaration
 7.18.1 Home
 7.18.2 Home Header
 7.18.3 Home Body

May be ignored May be ignored

7.19 CORBA Module 6.15 6.15

7.20 Names and Scoping
 7.20.1 Qualified Names
 7.20.2 Scoping Rules and Name Resolution
 7.20.3 Special Scoping Rules for Type Names

6.16
6.16.1
6.16.2
6.16.3

6.16
6.16.1
6.16.2
6.16.3

8 ORB Interface 8 8

8.1 Overview 8.1 8.1

8.2 The ORB Operations
 8.2.1 ORB Identity
 8.2.2 Converting Object References to Strings
 8.2.3 Getting Service Information
 8.2.4 Creating a New Context
 8.2.5 Thread-Related Operations

8.2
8.2.1
8.2.2

N/A
N/A
8.2.3

8.2
8.2.1
8.2.2

N/A
N/A
8.2.3

Table B.1- CORBA 3.1 Part I

 CORBA 3.1 Part I CORBA/e Compact
CORBA/e

Micro
368 CORBA for embedded, v1.0

8.3 Object Reference Operations
 8.3.1 Determining the Object Interface
 8.3.2 Duplicating and Releasing Copies of Object
References
 8.3.3 Nil Object References
 8.3.4 Equivalence Checking Operation
 8.3.5 Probing for Object Non-Existence
 8.3.6 Object Reference Identity
 8.3.7 Type Coercion Considerations
 8.3.8 Getting Policy Associated with the Object
 8.3.9 Overriding Associated Policies on an Object Reference
 8.3.10 Validating Connection
 8.3.11 Getting the Domain Managers Associated with the
Object
 8.3.12 Getting Component Associated with the Object
 8.3.13 Getting the ORB
 8.3.14 LocalObject Operations

9.2
9.2.1
9.2.2

9.2.3
9.2.4
9.2.5
9.2.6
9.2.7
9.2.8

9.2.9

9.2.10
N/A

N/A

9.2.11
9.2.12

9.2
9.2.1
9.2.2

9.2.3
9.2.4
9.2.5
9.2.6
9.2.7
9.2.8

9.2.9

9.2.10
N/A

N/A

9.2.11
9.2.12

8.4 ValueBase Operations N/A N/A

8.5 ORB and OA Initialization and Initial References
 8.5.1 ORB Initialization
 8.5.2 Obtaining Initial Object References
 8.5.3 Configuring Initial Service References

8.3

8.3.1
8.3.2
8.3.3

8.3

8.3.1
8.3.2
8.3.3

8.6 Context Object
 8.6.1 Introduction
 8.6.2 Context Object Operations

N/A N/A

8.7 Current Object 8.4 8.4

8.8 Policy Object
 8.8.1 Definition of Policy Object
 8.8.2 Creation of Policy Objects
 8.8.3 Usages of Policy Objects
 8.8.4 Policy Associated with the Execution Environment
 8.8.5 Specification of New Policy Objects
 8.8.6 Standard Policies

10.2
10.2.1
10.2.2
10.1.1
10.1.2

10.1.4
10.1.5

10.2
10.2.1
10.2.2
10.1.1
10.1.2

10.1.4
10.1.5

Table B.1- CORBA 3.1 Part I

 CORBA 3.1 Part I CORBA/e Compact
CORBA/e

Micro
CORBA for embedded, v1.0 369

8.9 Management of Policies
 8.9.1 Client Side Policy Management
 8.9.2 Server Side Policy Management
 8.9.3 Policy Management Interfaces

10.3
10.3.1
10.3.2
10.3.3

10.3
10.3.1
10.3.2
10.3.3

8.10 Management of Policy Domains
 8.10.1 Basic Concepts
 8.10.2 Domain Management Operations

N/A N/A

8.11 TypeCodes
 8.11.1 The TypeCode Interface
 8.11.2 TypeCode Constants
 8.11.3 Creating TypeCodes

8.5
8.5.1
8.5.2
N/A

N/A

8.12 Exceptions
 8.12.1 Definition of Terms
 8.12.2 System Exceptions
 8.12.3 Standard System Exception Definitions
 8.12.4 Standard Minor Exception Codes

8.6
8.6.1
8.6.2
8.6.3

8.6.4

8.6
8.6.1
8.6.2
8.6.3

8.6.4

9 Value Type Semantics 9.3 N/A

9.1 Overview 9.3.1

9.2 Architecture
 9.2.1 Abstract Values
 9.2.2 Operations
 9.2.3 Value Type vs. Interfaces
 9.2.4 Parameter Passing
 9.2.5 Substitutability Issues
 9.2.6 Widening/Narrowing
 9.2.7 Value Base Type
 9.2.8 Life Cycle issues
 9.2.9 Security Considerations

9.3.2

9.3 Standard Value Box Definitions N/A

9.4 Language Mappings
 9.4.1 General Requirements
 9.4.2 Language Specific Marshaling
 9.4.3 Language Specific Value Factory Requirements
 9.4.4 Value Method Implementation

9.3.3

9.5 Custom Marshaling
 9.5.1 Implementation of Custom Marshaling
 9.5.2 Marshaling Streams

N/A

9.6 Access to the Sending Context Run Time N/A

Table B.1- CORBA 3.1 Part I

 CORBA 3.1 Part I CORBA/e Compact
CORBA/e

Micro
370 CORBA for embedded, v1.0

10 Abstract Interface Semantics N/A N/A

10.1 Overview

10.2 Semantics of Abstract Interfaces

10.3 Usage Guidelines

10.4 Example

10.5 Security Considerations

 10.5.1 Passing Values to Trusted Domains

11 Dynamic Invocation Interface
11.1 Overview
 11.1.1 Common Data Structures
 11.1.2 Memory Usage
 11.1.3 Return Status and Exceptions
11.2 Request Operations
 11.2.1 create_request
 11.2.2 add_arg
 11.2.3 invoke
 11.2.4 delete
 11.2.5 send
 11.2.6 poll_response
 11.2.7 get_response
 11.2.8 sendp
 11.2.9 prepare
 11.2.10 sendc
11.3 ORB Operations
 11.3.1 send_multiple_requests
 11.3.2 get_next_response and poll_next_response
11.4 Polling
 11.4.1 Abstract Valuetype Pollable
 11.4.2 Abstract Valuetype DIIPollable
 11.4.3 interface PollableSet
11.5 List Operations
 11.5.1 create_list
 11.5.2 add_item
 11.5.3 free
 11.5.4 free_memory
 11.5.5 get_count
 11.5.6 create_operation_list

N/A N/A

Table B.1- CORBA 3.1 Part I

 CORBA 3.1 Part I CORBA/e Compact
CORBA/e

Micro
CORBA for embedded, v1.0 371

12 Dynamic Skeleton Interface
12.1 Introduction
12.2 Overview
12.3 ServerRequestPseudo-Object
 12.3.1 ExplicitRequest State: ServerRequestPseudo-Object
12.4 DSI: Language Mapping
 12.4.1 ServerRequestís Handling of Operation Parameters
 12.4.2 Registering Dynamic Implementation Routines

N/A N/A

13 Dynamic Management of Any Values
13.1 Overview
13.2 DynAny API
 13.2.1 Creating a DynAny Object
 13.2.2 The DynAny Interface
 13.2.3 The DynFixed Interface
 13.2.4 The DynEnum Interface
 13.2.5 The DynStruct Interface
 13.2.6 The DynUnion Interface
 13.2.7 The DynSequence Interface
 13.2.8 The DynArray Interface
 13.2.9 The DynValueCommon Interface
 13.2.10 The DynValue Interface
 13.2.11 The DynValueBox Interface
13.3 Usage in C++ Language
 13.3.1 Dynamic Creation of CORBA::Any values
 13.3.2 Dynamic Interpretation of CORBA::Any values

N/A N/A

14 The Interface Repository The Interface Repository is not required for CORBA/e
Compact or Micro profile. However, the definition of
RepositoryIds (14.7) is the basis for interoperability
and must be retained.

14.1 Overview N/A

14.2 Scope of an Interface Repository N/A

14.3 Implementation Dependencies
 14.3.1 Managing Interface Repositories

N/A

14.4 Basics
 14.4.1 Names and Identifiers
 14.4.2 Types and TypeCodes
 14.4.3 Interface Repository Objects
 14.4.4 Structure and Navigation of the Interface Repository

N/A

Table B.1- CORBA 3.1 Part I

 CORBA 3.1 Part I CORBA/e Compact
CORBA/e

Micro
372 CORBA for embedded, v1.0

14.5 Interface Repository Interfaces
 14.5.1 Supporting Type Definitions
 14.5.2 IRObject
 14.5.3 Contained
 14.5.4 Container
 14.5.5 IDLType
 14.5.6 Repository
 14.5.7 ModuleDef
 14.5.8 ConstantDef
 14.5.9 TypedefDef
 14.5.10 StructDef
 14.5.11 UnionDef
 14.5.12 EnumDef
 14.5.13 AliasDef
 14.5.14 PrimitiveDef
 14.5.15 StringDef
 14.5.16 WstringDef
 14.5.17 FixedDef
 14.5.18 SequenceDef
 14.5.19 ArrayDef
 14.5.20 ExceptionDef
 14.5.21 AttributeDef
 14.5.22 ExtAttributeDef
 14.5.23 OperationDef
 14.5.24 InterfaceDef
 14.5.25 ExtInterfaceDef
 14.5.26 AbstractInterfaceDef
 14.5.27 ExtAbstractInterfaceDef
 14.5.28 LocalInterfaceDef
 14.5.29 ExtLocalInterfaceDef
 14.5.30 ValueMemberDef
 14.5.31 ValueDef
 14.5.32 ExtValueDef
 14.5.33 ValueBoxDef
 14.5.34 NativeDef

N/A

Table B.1- CORBA 3.1 Part I

 CORBA 3.1 Part I CORBA/e Compact
CORBA/e

Micro
CORBA for embedded, v1.0 373

14.6 Component Interface Repository Interfaces
 14.6.1 ComponentIR::Container
 14.6.2 ComponentIR::Repository
 14.6.3 ComponentIR::ProvidesDef
 14.6.4 ComponentIR::UsesDef
 14.6.5 ComponentIR::EventDef
 14.6.6 ComponentIR::EventPortDef
 14.6.7 ComponentIR::EmitsDef
 14.6.8 ComponentIR::PublishesDef
 14.6.9 ComponentIR::ConsumesDef
 14.6.10 ComponentIR::ComponentDef
 14.6.11 ComponentIR::FactoryDef
 14.6.12 ComponentIR::FinderDef
 14.6.13 ComponentIR::HomeDef

N/A

14.7 RepositoryIds
 14.7.1 OMG IDL Format
 14.7.2 RMI Hashed Format
 14.7.3 DCE UUID Format
 14.7.4 LOCAL Format
 14.7.5 Pragma Directives for RepositoryId
 14.7.6 For More Information
 14.7.7 RepositoryIDs for OMG-Specified Types
 14.7.8 Uniqueness Constraints on Repository IDs

7
7.2
N/A
N/A
N/A
7.3
N/A
7.4

7.5

7
7.2
N/A
N/A
N/A
7.3
N/A
7.4

7.5

14.8 OMG IDL for Interface Repository N/A N/A

15 The Portable Object Adapter 11 11

15.1 Overview 11.1 11.1

15.2 Abstract Model Description
 15.2.1 Model Components
 15.2.2 Model Architecture
 15.2.3 POA Creation
 15.2.4 Reference Creation
 15.2.5 Object Activation States
 15.2.6 Request Processing
 15.2.7 Implicit Activation
 15.2.8 Multi-threading
 15.2.9 Dynamic Skeleton Interface
 15.2.10 Location Transparency

11.2
11.2.1
11.2.2
11.2.3
11.2.4
11.2.5
11.2.6
N/A
11.2.7
N/A
11.2.8

11.2
11.2.1
11.2.2
11.2.3
11.2.4
11.2.5
11.2.6
N/A
11.2.7
N/A
11.2.8

Table B.1- CORBA 3.1 Part I

 CORBA 3.1 Part I CORBA/e Compact
CORBA/e

Micro
374 CORBA for embedded, v1.0

15.3 Interfaces
 15.3.1 The Servant IDL Type
 15.3.2 POAManager Interface
 15.3.3 POAManagerFactory Interface
 15.3.4 AdapterActivator Interface
 15.3.5 ServantManager Interface
 15.3.6 ServantActivator Interface
 15.3.7 ServantLocator Interface
 15.3.8 POA Policy Objects
 15.3.9 POA Interface
 15.3.10 Current Operations

11.3
11.3.1
11.3.2
N/A
N/A
N/A
N/A
N/A
11.3.3
11.3.4
11.3.5

11.3
11.3.1
11.3.2
N/A
N/A
N/A
N/A
N/A
11.3.3
11.3.4
11.3.5

15.4 IDL for PortableServer Module 11.4.1 11.4.2

15.5 UML Description of PortableServer 11.2.9 11.2.9

15.6 Usage Scenarios
 15.6.1 Getting the Root POA
 15.6.2 Creating a POA
 15.6.3 Explicit Activation with POA-assigned Object Ids
 15.6.4 Explicit Activation with User-assigned Object Ids
 15.6.5 Creating References before Activation
 15.6.6 Servant Manager Definition and Creation
 15.6.7 Object Activation on Demand
 15.6.8 Persistent Objects with POA-assigned Ids
 15.6.9 Multiple Object Ids Mapping to a Single Servant
 15.6.10 One Servant for All Objects
 15.6.11 Single Servant, Many Objects and Types, Using DSI

N/A N/A

16 Portable Interceptors Implementation of Portable Interceptors is not
required in either the Compact or Micro profile

16.1 Introduction
 16.1.1 Object Creation
 16.1.2 Client Sends Request
 16.1.3 Server Receives Request
 16.1.4 Server Sends Reply
 16.1.5 Client Receives Reply

N/A

16.2 General Behavior of Local Objects

16.3 Interceptor Interface

Table B.1- CORBA 3.1 Part I

 CORBA 3.1 Part I CORBA/e Compact
CORBA/e

Micro
CORBA for embedded, v1.0 375

16.4 Request Interceptors
 16.4.1 Design Principles
 16.4.2 General Flow Rules
 16.4.3 The Flow Stack Visual Model
 16.4.4 The Request Interceptor Points
 16.4.5 Client-Side Interceptor
 16.4.6 Client-Side Interception Points
 16.4.7 Client-Side Interception Point Flow
 16.4.8 Server-Side Interceptor
 16.4.9 Server-Side Interception Points
 16.4.10 Server-Side Interception Point Flow
 16.4.11 Request Information
 16.4.12 RequestInfo Interface
 16.4.13 ClientRequestInfo Interface
 16.4.14 ServerRequestInfo Interface
 16.4.15 ForwardRequest Exception

N/A

16.5 Portable Interceptor Current
 16.5.1 Overview
 16.5.2 Obtaining the Portable Interceptor Current
 16.5.3 Portable Interceptor Current Interface
 16.5.4 Use of Portable Interceptor Current

16.6 IOR Interceptor
 16.6.1 Overview
 16.6.2 An Abstract Model for Object Adapters
 16.6.3 Object Reference Template
 16.6.4 IORInterceptor Interface
 16.6.5 IORInfo Interface

16.7 Interceptor Policy Objects
 16.7.1 ProcessingMode Policy

16.8 PolicyFactory
 16.8.1 PolicyFactory Interface

Table B.1- CORBA 3.1 Part I

 CORBA 3.1 Part I CORBA/e Compact
CORBA/e

Micro
376 CORBA for embedded, v1.0

16.9 Registering Interceptors
 16.9.1 ORBInitializer Interface 404
 16.9.2 ORBInitInfo Interface
 16.9.3 register_orb_initializer Operation
 16.9.4 Notes about Registering Interceptors

N/A

 16.10 Dynamic Initial References
 16.10.1 register_initial_reference

16.11 Module Dynamic
 16.11.1 NVList PIDL Represented by ParameterList IDL
 16.11.2 ContextList PIDL Represented by ContextList IDL
 16.11.3 ExceptionList PIDL Represented by ExceptionList
IDL
 16.11.4 Context PIDL Represented by RequestContext IDL

16.12 Consolidated IDL
 16.12.1 Dynamic
 16.12.2 Portions of IOP Relevant to Portable Interceptor
 16.12.3 PortableInterceptor

17 CORBA Messaging Support for CORBA Messaging is not required in
CORBA/e Compact or Micro profile, except for the
Messaging Quality of Service items called out below.

17.1 Section I - Introduction N/A N/A

17.2 Messaging Quality of Service
 17.2.1 Rebind Support
 17.2.2 Synchronization Scope
 17.2.3 Request and Reply Priority
 17.2.4 Request and Reply Timeout
 17.2.5 Routing
 17.2.6 Queue Ordering

10.4
10.4.1
10.4.2
N/A
10.4.3
N/A
N/A

10.4
10.4.1
10.4.2
N/A
10.4.3
N/A
N/A

17.3 Propagation of Messaging QoS
 17.3.1 Structures
 17.3.2 Messaging QoS Profile Component
 17.3.3 Messaging QoS Service Context

N/A N/A

17.4 Section II - Introduction N/A N/A

17.5 Running Example N/A N/A

17.6 Async Operation Mapping
 17.6.1 Callback Model Signatures (sendc)
 17.6.2 Polling Model Signatures (sendp)

N/A N/A

Table B.1- CORBA 3.1 Part I

 CORBA 3.1 Part I CORBA/e Compact
CORBA/e

Micro
CORBA for embedded, v1.0 377

17.7 Exception Delivery in the Callback Model
 17.7.1 Messaging::ExceptionHolder valuetype

N/A N/A

17.8 Type-Specific ReplyHandler Mapping
 17.8.1 ReplyHandler Operations for NO_EXCEPTION
Replies
 17.8.2 ReplyHandler Operations for Exceptional Replies
 17.8.3 Example

N/A N/A

17.9 Generic Poller Value
 17.9.1 operation_target
 17.9.2 operation_name
 17.9.3 associated_handler
 17.9.4 is_from_poller

N/A N/A

17.10 Type-Specific Poller Mapping
 17.10.1 Basic Type-Specific Poller
 17.10.2 Persistent Type-Specific Poller
 17.10.3 Example

N/A N/A

17.11 Example Programmer Usage
 17.11.1 Example Programmer Usage (Examples Mapped to
C++)
 17.11.2 Client-Side C++ Example for the Asynchronous
Method Signatures
 17.11.3 Client-Side C++ Example of the Callback Model
 17.11.4 Client-Side C++ Example of the Polling Model
 17.11.5 Server Side

N/A N/A

17.12 Section III - Introduction N/A N/A

17.13 Routing Object References N/A N/A

17.14 Message Routing N/A N/A

 17.14.1 Structures

 17.14.2 Interfaces

 17.14.3 Routing Protocol

17.15 Router Administration
 17.15.1 Constants
 17.15.2 Exceptions
 17.15.3 Valuetypes
 17.15.4 Interfaces

N/A N/A

Table B.1- CORBA 3.1 Part I

 CORBA 3.1 Part I CORBA/e Compact
CORBA/e

Micro
378 CORBA for embedded, v1.0

17.16 CORBA Messaging IDL
 17.16.1 Messaging Module
 17.16.2 MessageRouting Module

N/A N/A

17.17 QoS Abstract Model Design 4.9.1 4.9.1

17.18 Model Components
 17.18.1 Component Relationships
 17.18.2 Component Design

4.9.2
4.9.3
4.9.4

4.9.2
4.9.3
4.9.4

17.19 AMI/TII Abstract Model Design N/A N/A

 17.19.1 Asynchronous Method Invocation Components
 17.19.2 Time-Independent Invocation Components
 17.19.3 Component Relationships
 17.19.4 Callback Model Detailed Design
 17.19.5 Poller/PersistentRequest Detailed Design

17.20 Message Routing Abstract Model Design N/A N/A

 17.20.1 Model Components

 17.20.2 Component Relationships

 17.20.3 Router Administration Design

17.21 Conformance Issues N/A N/Q

17.22 Compatibility Issues
 17.22.1 Transaction Service
 17.22.2 Changes to Current OTS Behavior
 17.22.3 Security Service

N/A N/A

Annex A - OMG IDL Tags and Exceptions Annex A Annex A

Annex B - Legal Information N/A N/A

Index Index Index

Table B.1- CORBA 3.1 Part I

 CORBA 3.1 Part I CORBA/e Compact
CORBA/e

Micro
CORBA for embedded, v1.0 379

Table B.2 shows the correspondence of “Part II: CORBA 3.1 Interoperability” (formal/2008-01-06) to each of the profiles
defined in this document. Part II of the CORBA 3.1 specification covers the interoperability protocols which are covered
in Chapter 16 through 19 of this specification.

Table B.2- CORBA 3.2 PartII

CORBA 3.1 Part II CORBA/e Compact
CORBA/e

Micro

Introduction N/A

1 Scope

2 Conformance and compliance

3 Normative references

3.1 Identical Recommendations | International Standards

3.2 Other Specifications

4 Terms and definitions

4.1 Recommendations | International Standards

4.2 Terms defined in this standard
 4.2.1 adapter 3
 4.2.2 Attribute
 4.2.3 client
 4.2.4 data type 4
 4.2.5 domain
 4.2.6 dynamic invocation
 4.2.7 dynamic skeleton
 4.2.8 implementation
 4.2.9 interface repository 4
 4.2.10 ORB core
 4.2.11 repository 4
 4.2.12 request
 4.2.13 results
 4.2.14 server
 4.2.15 signature
 4.2.16 skeleton
 4.2.17 synchronous request
 4.2.18 interface type
 4.2.19 interoperability 5

N/A

 4.2.20 language binding or mapping
 4.2.21 method
 4.2.22 object adapter
 4.2.23 object implementation
 4.2.24 object reference
 4.2.25 objref
 4.2.26 value
5 Symbols (and abbreviated terms)

N/A
380 CORBA for embedded, v1.0

http://doc.omg.org/formal/2008-01-06
http://doc.omg.org/formal/2008-01-06

6 Interoperability Overview 4.8 4.8

6.1 Elements of Interoperability
 6.1.1 ORB Interoperability Architecture
 6.1.2 Inter-ORB Bridge Support
 6.1.3 General Inter-ORB Protocol (GIOP)
 6.1.4 Internet Inter-ORB Protocol (IIOP)Æ
 6.1.5 Environment-Specific Inter-ORB Protocols (ESIOPs)

4.8.1
4.8.2
4.8.3
4.8.4
4.8.5
4.8.6

4.8.1
4.8.2
4.8.3
4.8.4
4.8.5
4.8.

6.2 Relationship to Previous Versions of CORBA 4.8.7 4.8.7

6.3 Examples of Interoperability Solutions
 6.3.1 Example 1
 6.3.2 Example 2
 6.3.3 Example 3
 6.3.4 Interoperability Compliance

N/A

6.4 Motivating Factors
 6.4.1 ORB Implementation Diversity
 6.4.2 ORB Boundaries
 6.4.3 ORBs Vary in Scope, Distance, and Lifetime

N/A

6.5 Interoperability Design Goals
 6.5.1 Non-Goals

N/A

7 ORB Interoperability Architecture Generally, material that was not retained in
CORBA/e with the exception being the definition
of domains in 7.1.1.

7.1 Overview 17
 7.1.1 Domains
 7.1.2 Bridging Domains

N/A
4.8.8
N/A

N/A
4.8.8
N/A

7.2 ORBs and ORB Services
 7.2.1 The Nature of ORB Services
 7.2.2 ORB Services and Object Requests
 7.2.3 Selection of ORB Services

N/A

7.3 Domains
 7.3.1 Definition of a Domain
 7.3.2 Mapping Between Domains: Bridging

N/A

7.4 Interoperability Between ORBs
 7.4.1 ORB Services and Domains
 7.4.2 ORBs and Domains
 7.4.3 Interoperability Approaches
 7.4.4 Policy-Mediated Bridging
 7.4.5 Configurations of Bridges in Networks

N/A

Table B.2- CORBA 3.2 PartII

CORBA 3.1 Part II CORBA/e Compact
CORBA/e

Micro
CORBA for embedded, v1.0 381

7.5 Object Addressing
 7.5.1 Domain-relative Object Referencing
 7.5.2 Handling of Referencing Between Domains

N/A

7.6 An Information Model for Object References
 7.6.1 What Information Do Bridges Need?
 7.6.2 Interoperable Object References: IORs
 7.6.3 IOR Profiles
 7.6.4 Standard IOR Profiles
 7.6.5 IOR Components
 7.6.6 Standard IOR Components
 7.6.7 Profile and Component Composition in IORs
 7.6.8 IOR Creation and Scope
 7.6.9 Stringified Object References
 7.6.10 Object URLs

19.3

19.3.1
19.3.2
19.3.3
19.3.4
19.3.5
19.3.6
19.3.7

19.3.8
19.3.9
19.3.10

19.3

19.3.1
19.3.2
19.3.3
19.3.4
19.3.5
19.3.6
19.3.7

19.3.8
19.3.9
19.3.10

7.7 Service Context
 7.7.1 Standard Service Contexts
 7.7.2 Service Context Processing Rules

18.4
18.4.1
18.4.2

18.4
18.4.1
18.4.2

7.8 Coder/Decoder Interfaces
 7.8.1 Codec Interface
 7.8.2 Codec Factory

N/A

7.9 Feature Support and GIOP Versions
7.10 Code Set Conversion
 7.10.1 Character Processing Terminology
 7.10.2 Code Set Conversion Framework
 7.10.3 Mapping to Generic Character Environments
 7.10.4 Example of Generic Environment Mapping
 7.10.5 Relevant OSFM Registry Interfaces

N/A

8 Building Inter-ORB Bridges
8.1 Introduction
8.2 In-Line and Request-Level Bridging
 8.2.1 In-line Bridging
 8.2.2 Request-level Bridging
 8.2.3 Collocated ORBs
8.3 Proxy Creation and Management
8.4 Interface-specific Bridges and Generic Bridges
8.5 Building Generic Request-Level Bridges
8.6 Bridging Non-Referencing Domains
8.7 Bootstrapping Bridges

N/A

Table B.2- CORBA 3.2 PartII

CORBA 3.1 Part II CORBA/e Compact
CORBA/e

Micro
382 CORBA for embedded, v1.0

9 General Inter-ORB Protocol
9.1 Goals of the General Inter-ORB Protocol
9.2 GIOP Overview
 9.2.1 Common Data Representation (CDR)
 9.2.2 GIOP Message Overview
 9.2.3 GIOP Message Transfer

16.1
16.2
16.3
16.3.1
16.3.2
16.3.3

16.1
16.2
16.3
16.3.1
16.3.2
16.3.3

9.3 CDR Transfer Syntax
 9.3.1 Primitive Types
 9.3.2 OMG IDL Constructed Types
 9.3.3 Encapsulation
 9.3.4 Value Types
 9.3.5 Pseudo-Object Types
 9.3.6 Object References
 9.3.7 Abstract Interfaces

17.1
17.2
17.3
17.4
17.5
17.6
17.7
N/A

17.1
17.2
17.3
17.4
17.5
17.6
17.7
N/A

9.4 GIOP Message Formats
 9.4.1 GIOP Message Header
 9.4.2 Request Message
 9.4.3 Reply Message
 9.4.4 CancelRequest Message
 9.4.5 LocateRequest Message
 9.4.6 LocateReply Message
 9.4.7 CloseConnection Message
 9.4.8 MessageError Message
 9.4.9 Fragment Message

18.2
18.2.1
18.2.2
18.2.3
18.2.4
18.2.5
18.2.6
18.2.7
18.2.8
18.2.9

18.2
18.2.1
18.2.2
18.2.3
18.2.4
18.2.5
18.2.6
18.2.7
18.2.8
18.2.9

9.5 GIOP Message Transport
 9.5.1 Connection Management
 9.5.2 Message Ordering

16.4
16.4.1
16.4.2

16.4
16.4.1
16.4.2

9.6 Object Location 18.3 18.3

9.7 Internet Inter-ORB Protocol (IIOP)
 9.7.1 TCP/IP Connection Usage
 9.7.2 IIOP IOR Profiles
 9.7.3 IIOP IOR Profile Components

19.2
19.2.1
19.2.2
19.2.3

19.2
19.2.1
19.2.2
19.2.3

9.8 Bi-Directional GIOP
 9.8.1 Bi-Directional IIOP

N/A

9.9 Bi-directional GIOP policy N/A

9.10 OMG IDL

Table B.2- CORBA 3.2 PartII

CORBA 3.1 Part II CORBA/e Compact
CORBA/e

Micro
CORBA for embedded, v1.0 383

 9.10.1 GIOP Module
 9.10.2 IIOP Module
 9.10.3 BiDirPolicy Module

18.6
19.5
N/A

18.6
19.5
N/A

10 Secure Interoperability
10.1 Overview
 10.1.1 Assumptions
10.2 Protocol Message Definitions
 10.2.1 The Security Attribute Service Context Element
 10.2.2 SAS context_data Message Body Types
 10.2.3 Authorization Token Format
 10.2.4 Client Authentication Token Format
 10.2.5 Identity Token Format
 10.2.6 Principal Names and Distinguished Names
10.3 Security Attribute Service Protocol
 10.3.1 Compound Mechanisms
 10.3.2 Session Semantics

N/A

Table B.2- CORBA 3.2 PartII

CORBA 3.1 Part II CORBA/e Compact
CORBA/e

Micro
384 CORBA for embedded, v1.0

 10.3.3 TSS State Machine
 10.3.4 CSS State Machine
 10.3.5 ContextError Values and Exceptions
10.4 Transport Security Mechanisms
 10.4.1 Transport Layer Interoperability
 10.4.2 Transport Mechanism Configuration
10.5 Interoperable Object References
 10.5.1 Target Security Configuration
 10.5.2 Client-side Mechanism Selection
 10.5.3 Client-Side Requirements and Location Binding
 10.5.4 Server Side Consideration
10.6 Conformance Levels
 10.6.1 Conformance Level 0
 10.6.2 Conformance Level 1
 10.6.3 Conformance Level 2
 10.6.4 Stateful Conformance
10.7 Sample Message Flows and Scenarios
 10.7.1 Confidentiality, Trust in Server, and Trust in Client
Established in the Connection
 10.7.2 Confidentiality and Trust in Server Established in the
Connection - Stateless Trust in Client Established in Service
Context
 10.7.3 Confidentiality, Trust in Server, and Trust in Client
Established in the Connection Stateless Trust Association
Established in Service Context
 10.7.4 Confidentiality, Trust in Server, and Trust in Client
Established in the Connection - Stateless Forward Trust
Association Established in Service Context
10.8 References
10.9 IDL
 10.9.1 Module GSSUP - Username/Password GSSAPI Token
Formats
 10.9.2 Module CSI - Common Secure Interoperability
 10.9.3 Module CSIIOP - CSIv2 IOR Component Tag
Definitions

N/A

Table B.2- CORBA 3.2 PartII

CORBA 3.1 Part II CORBA/e Compact
CORBA/e

Micro
CORBA for embedded, v1.0 385

11 Unreliable Multicast Inter-ORB Protocol
11.1 Introduction
 11.1.1 Purpose
 11.1.2 MIOP Packet
 11.1.3 Packet Collection
 11.1.4 PacketHeader
 11.1.5 Joining an IP/Multicast Group
 11.1.6 Quality Of Service
 11.1.7 Delivery Requirements
11.2 MIOP Object Model
 11.2.1 Definition
 11.2.2 Unreliable IP/Multicast Profile Body
(UIPMC_ProfileBody)
 11.2.3 Group IOR
 11.2.4 Extending PortableServer::POA to include Group
Operations
 11.2.5 MIOP Gateway
 11.2.6 Multicast Group Manager
 11.2.7 MIOP URL
11.3 Request Issues
 11.3.1 GIOP Request Message Compatibility
 11.3.2 MIOP Request Efficiency
 11.3.3 Client Use Cases
 11.3.4 Server Use Cases
11.4 Consolidated IDL
 11.4.1 OMG IDL

N/A

Annex A - OMG IDL Tags and Exceptions

Annex B - Legal Information

Annex C - Acknowledgements

Index

Table B.2- CORBA 3.2 PartII

CORBA 3.1 Part II CORBA/e Compact
CORBA/e

Micro
386 CORBA for embedded, v1.0

INDEX

A
abstract interface 30
Abstract Model Description

Location Transparency 176
Model Architecture 173
Model Components 172
Multi-threading 176
Object Activation States 175
POA Creation 174
Reference Creation 175
Request Processing 176

abstract object model 25
activation 32
activities 198
Ada Language binding for PriorityMapping 206
AdministrativeState 253
Algorithms 197
alignment 285
any type 71, 301
application object xiii, 233
Architectural overview 200
array

syntax of 76
attribute

defined 31
Attribute Declaration 83

B
base interface 56
Basic types 28
big-endian 281
Binding 211
BindingIterator interface 223

next_n operation 223
next_one operation 223

boolean is_a operation
OMG PIDL for 139

boolean types 70, 284
bridge

inter-ORB 19, 34

C
C Language binding for PriorityMapping 206
C++ Language binding for PriorityMapping 206
CDR features 274
CDR Transfer Syntax 279

Alignment 280
Boolean 284
Character Types 284
Encapsulation 287
Floating Point Data Types 281
Integer Data Types 280

Object References 302
Octet 284
OMG IDL Constructed Types 285
Primitive Types 279
Pseudo-Object Types 295
Value Types 288

char type 70
clear_log 267
Client 10

Structure 13
Client Propagated Priority Model 209
Client propagated priority model 201
Client Stubs 11
client-side policies 22, 36
Common Data Representation

see CDR
Common Data Representation (CDR) 274
Common Facilities xiii
Compatibility 199
Complex Declarator

Arrays 76
Deprecated Anonymous Types 78

compliance 1
component

tags for 349
Component Design 23, 37
Component Relationships 22, 36
concrete object model 25
connect 247
Constant Declaration

Semantics 65
Syntax 64

constructed data types 285
Constructed Recursive Types 73
Constructed types 28
consumer 233
ConsumerAdmin interface 245, 246

for_consumers operation 245
obtain_pull_supplier operation 246
obtain_push_supplier operation 246

CORBA
contributors 3
interoperability 2
standard requests 233

CORBA - Real-Time CORBA Interworking 199
CORBA Module 86
CORBA priority 205
CORBA priority mappings 205
CORBA Required Object Adapter

Portable Object Adapter 17
CosEventChannelAdmin module

OMG IDL 244–245
CosEventComm module

OMG IDL 238
CosNaming module
CORBA for embedded, v1.0 387

OMG IDL 217
Current 189, 201

D
data type

basic OMG IDL 69–71
constructed OMG IDL 71–75
constructs for OMG IDL 68
native 69
OMG IDL template 75–76

DCE 18
DCE ESIOP 318
deactivation 32
derived interface 56
destroy 267
destroy operation 223
domain 21, 34
Dynamic Invocation Interface 7, 11
Dynamic Skeleton Interface 8, 12

E
encapsulation

defined 287
End-to-end predictability 198
enum 286
enumerated types 75
environment-specific inter_ORB protocol

see ESIOP
Environment-Specific Inter-ORB Protocols (ESIOPs) 18,

20, 34
event channel 236, 243

adding consumers 245
adding consumers to 246
adding pull consumers to 247
adding pull suppliers to 247
adding push consumers to 247
adding push suppliers to 246
adding suppliers 245
adding suppliers to 246
and CORBA requests 240
defined 234, 240

event communication
mixed 241
multiple 242
pull model 233, 237, 241
push model 233, 237, 240

event consumer 233, 237, 240
proxy 243

event service
and CORBA scoping 236
overview 233

event supplier 233, 237, 240
proxy 243

EventChannel interface 243, 245
exception 31
Exception Declaration 80

Exceptions 203
REBIND 130
TIMEOUT 130
TRANSACTION_UNAVAILABLE 130

expression
context 83
raises 82

F
floating point data type 281
floating point type 70
Foreign Object Systems

Integration of 17, 18, 34, 35
Forward Declarations 73

G
General Inter-ORB Protocol (GIOP) 19, 33, 318

alignment for primitive data types 280
and language mapping 285
and primitive data types 274, 279, 284
any type 301
array type 285
cancel request header, OMG IDL for 312
close connection message 315
connection management 276
constructed data types 285
context pseudo object 301
exception 302
floating point data type 281
goals of 273
implementation on various transport protocols 275
integer data types 280
locate reply header, OMG IDL for 315
locate request header, OMG IDL for 313
mapping to TCP/IP transport protocol 327
message header, OMG IDL for 305
message type 304
module 306, 313
overview 273
primitive data types 280
principal pseudo object 301
relationship to IIOP 20, 33
reply message, OMG IDL for 310
request header, OMG IDL for 307
TCKind 296
typecode 296

GIOP Message Formats 303
CancelRequest Message 312
CloseConnection Message 315
Fragment Message 316
GIOP Message Header 304
LocateReply Message 314
LocateRequest Message 312
MessageError Message 316
Message Ordering 277
Overview 274
388 CORBA for embedded, v1.0

Reply Message 309
Request Message 306
Transfer 275
Transport 275

global name 88
and inheritance 88

H
hard real-time 197
hash operation 140
hexadecimal string 340

I
IdAssignmentPolicy 182
identifier 55
IDL 214
IDL for PortableServer Module 190
IdUniquenessPolicy 182
Internet Inter-ORB Protocol (IIOP) 20, 33, 273, 318, 327,

334
components 330, 347
defined 327
host 330, 346
object key 330, 346
port 330, 346
profiles 328, 345
relationship to GIOP 20, 33
TCP/IP connection usage 328
version 329, 346

IIOP module 328, 336, 345, 348
IIOP profile

OMG IDL for 328, 345
implementation

defined 32
model for 32

Implementation Repository 13
overview of 13

Implementation Skeleton 12
integer data type 70, 280
Interface Declaration

Forward Declaration 56
Interface Body 55
Interface Header 54
Interface Inheritance 56
Interface Inheritance Specification 55

Interface Repository 8, 13
overview of 13
TypeCode interface, OMG IDL 118

interface type 29
Interfaces 29, 178

Current Operations 189
interface PolicyCurrent 163
interface PolicyManager 162
interface RelativeRequestTimeoutPolicy 167
interface RelativeRoundtripTimeoutPolicy 168
interface ReplyEndTimePolicy 167

interface ReplyStartTimePolicy 167
interface RequestEndTimePolicy 167
interface RequestStartTimePolicy 167
interfaceRebindPolicy 165
POA Interface 183
POA Policy Objects 181
POAManager Interface 179
Servant IDL Type 179
SyncScopePolicy 166

interoperability 199
architecture of 327
elements of 18
object service-specific information, passing 275, 318
overview of 19, 33
primitive data types 280
RFP for 327

Inter-ORB Bridge Support 19, 34
InvalidParam Exception 253
Invocation Timeout 214
Invocation timeouts 202
INVOCATION_POLICIES 22, 36
IOP module

and DCE ESIOP 318
and GIOP 318
and IIOP 318

Interoperable Object Reference (IOR) 333, 339
converting to object reference 340
externalized 340

is_equivalent operation 141
issues/problems xvi

J
Java Language binding for PriorityMapping 207

L
language mapping

overview 11
Lexical Conventions 40

Comments 43
Escaped Identifiers 44
Identifiers 43
Keywords 45
Tokens 43

LifespanPolicy 181
Literals

Character Literals 46
Fixed-Point Literals 48
Floating-point Literals 47
Integer Literals 46
String Literals 47

little endian 281
Local Interface 59
LocalObject 144
LogAdmin 251
LogAdministrator 265
LogAvailabilityStatus 254
CORBA for embedded, v1.0 389

LogConsumer 251, 259
LogFullAction 254
logical_type_id string 139
LogLevel 253
LogProducer 251, 263
LogRecord 255
LogStatus 251, 256
LogTime 254

M
magic 304, 322, 323
Mapping of OMG IDL to Programming Languages 11
Messaging module 163, 168, 321
Messaging QoS 321
Messaging QoS Profile Component 321
Messaging QoS Service Context 322
Messaging Quality of Service 163
method 32
mode 31
Model Components 22, 36
Models 208
Module Declaration 54
Modules 200

Messaging 163, 168, 321
multiple inheritance 56
Mutex interface 202, 210

N
name

binding operations 220
Names and Scoping

Qualified Names 88
Scoping Rules and Name Resolution 89
Special Scoping Rules for Type Names 92

naming context
deleting 222

naming service
and internationalization 217

NamingContext interface 217
bind operation 220
bind_context operation 220
bind_new_context operation 222
destroy operation 222
list operation 222
new_context operation 222
rebind operation 220
rebind_context operation 221
resolve operation 221
unbind operation 221

Native Priority 201
Native thread priorities 203
nature 197
NO_REBIND 165
NO_RECONNECT 165

O
object 26

implementation 10, 32
invocation 11, 12
reference 10
references, stringified 340

Object Adapter 8, 9, 12, 15, 16
Object Creation and Destruction

Abstract Interfaces 30
Attributes 31
Basic types 28
Constructed types 28
Interfaces 29
Operations 30
Types 27
Value Types 29

object duplicate operation
OMG PIDL for 139

object identifiers
and hash operation 140

Object Implementation
Structure 14
The Construction Model 32
The Execution Model 32

Object Implementations 10
Object interface

OMG PIDL for 137, 152
object key 302
Object Location 317
Object Management Group, Inc. (OMG) xv
Object model 25
object reference 26

testing for equivalence 141
Object References 10
Object Request Broker xiii, 9

explained 5
how implemented 9
interfaces to 5
sample implementations ??–14
Structure 5

Object Semantics
Objects 26
Requests 26

Object Services xiii
and GIOP module 308
and IOP module 318
Relationship 21
tags for 349

object system 25
object_to_string operation 106

OMG PIDL for 106
object-level policies 161
Objects 26
octet type 71, 279, 284
390 CORBA for embedded, v1.0

OMG IDL
overview of 11
explained 6, 11
syntax of 53

OMG IDL global name 88
OMG IDL Grammar 48
OMG IDL Specification 53
OMG IDL tags

requests to allocate 339, 349
OMG IDL-to-programming language mapping

overview 11
OMG specifications xv
opaque data type 287
operation 30

attribute,syntax of 81
declaration,syntax of 80
defined 30
signature of 30

Operation Declaration
Context Expressions 83
Operation Attribute 81
Parameter Declarations 81
Raises Expressions 82

OperationalState 253
ORB Initialization 203
ORB Interface 12

overview of 12
ORB interoperability 18, 32
ORB Interoperability Architecture 19
ORB-level policies 160

P
parameter

defined 31
parameter declaration

syntax of 81
POA

location transparency 176
POA Interface 183
POAManager Interface 179
POA-related interfaces 178
policies

object-level 161
thread-level 160

Policy 22, 36
PolicyCurrent interface 163
PolicyList 22, 36
PolicyManager 22, 36
PolicyManager interface 162
PolicyValue 321
Portability 199
Portable Object Adaptor

abstract model description 171
creating 184
creating object references 175

creation 174
destroying 184
finding 184
Implicit Activation policy 182, 183
interface 183
model architecture 173
model components 172
multi-threading 176
overview 171
policy objects 181
request processing 176

PortableServer
UML description of 177

POSIX Real-time extensions 197
Pragma 99
Pragma directive

and Interface Repository 96
id 96

Prefix Pragma 96
Preprocessing 48
principal 287
Priority 201, 205
Priority banded connections 202, 211
Priority inheritance 202
Priority mappings 205
Priority models 201
PriorityMappings 201
ProducerLogRecord 254
profile

tags for 349
property list 233
Protocols 197
ProxyPullConsumer interface 247

connect_pull_supplier operation 247
ProxyPullSupplier 247
ProxyPullSupplier interface 234, 247

connect_pull_consumer operation 247
ProxyPushConsumer interface 234, 246

connect_push_supplier operation 246
disconnect_push_supplier operation 246

ProxyPushSupplier interface 247
connect_push_consumer operation 248

PullConsumer interface 234, 240
disconnect_pull_consumer operation 237

PullSupplier interface 237, 239
disconnect_pull_supplier operation 237, 240
pull operation 239
try_pull operation 239

PushConsumer interface 237, 238
disconnect_push_consumer operation 239
push operation 239

PushSupplier interface 234, 239
disconnect_push_supplier operation 237, 239
CORBA for embedded, v1.0 391

Q
QoS Abstract Model Design 35
qualified name 88
Quality of Service (QoS) 156, 235, 236, 242

R
Real-Time 197
Real-Time CORBA Current 201
Real-Time CORBA Priority Models 208
Real-Time CORBA system exceptions 203
Real-Time Current 208
Real-Time ORB 202
Real-Time ORB initialization 203
Real-Time requirements 198
REBIND 130
Rebind Support 165

Interface RebindPolicy 165
Request and Reply Timeout 167
Synchronization Scope 166
typedefshortRebindMode 165

RebindMode 165
RebindPolicy interface 165
RecordId 255
reference model xiii
Relationship Service 21
RelativeRequestTimeoutPolicy interface 167
RelativeRoundtripTimeoutPolicy interface 168
release operation 139
ReplyEndTimePolicy interfaces 167
ReplyStartTimePolicy interfaces 167
RepositoryId

and pragma directive 96
format of 95
RepositoryIDs for OMG-Specified Types 101

request context 31
RequestEndTimePolicy 167
Requests 26
response_flags 307
result

defined 31
retrieve_records 260
retrieve_records_by_level 261
retrieve_records_by_producer_id 262
retrieve_records_by_producer_name 263

S
scoped name identifier 88
scoped_name 57
Semantics 207
sequence octet 288, 301
sequence type 73, 75, 286
server-side

policy management 161
server-side policies 22, 36
ServiceContext 319
ServiceID 320

set_administrative_state 266
set_log_full_action 266
set_max_size 265
set_policy_overrides 162
signature 30
soft real-time 197
string type 76
string_to_object operation 106

OMG PIDL for 106
struct type 285
stub interface 11
subject 84
supplier 233
SupplierAdmin interface 234, 245, 246

for_suppliers operation 245
obtain_pull_consumer operation 246
obtain_push_consumer operation 246

SYNC_NONE 166
SYNC_WITH_SERVER 166
SYNC_WITH_TARGET 166
SYNC_WITH_TRANSPORT 166
SyncScopePolicy interface 166
System exceptions 203

T
tag

component 339
protocol 339
requests to allocate 349

TAG_MULTIPLE_COMPONENTS tag 339
TAG_POLICIES 22, 36
TCKind 296
TCP/IP 276, 327
Thread scheduling 201
thread-level policies 160
TIMEOUT 130
TRANSACTION_MODE exception 130
TRANSACTION_UNAVAILABLE Exception 130
transfer syntax

between ORBs and inter-ORB bridges 274
transparency of location 21, 34
TRANSPARENT 165
type 27
Type Declaration

Any Type 71
Basic Types 69
Boolean Type 70
Char Type 70
Constructed Types 71
Floating-Point Types 70
Integer Types 70
Native Types 77
Octet Type 71
Template Types 75
Wide Char Type 70
392 CORBA for embedded, v1.0

type specifier
syntax of 68

TypeCode constants 121
TypeCode interface

OMG IDL for 118
TypeCodes

The TypeCode Interface 118
TypeCode Constants 121

types
any 28
basic 28
constructed 28
defined 27

typographical conventions xvi

U
UML Description of PortableServer 177
union type 71, 285

V
validate_connection 144
value 27
Value Declaration

Abstract Value Type 62
Boxed Value Type 61
Regular Value Type 60
Value Forward Declaration 63
Valuetype Inheritance 63

value type 29
Value types 146
Version Pragma 99

W
write_records 264
CORBA for embedded, v1.0 393

394 CORBA for embedded, v1.0

	1 Scope
	1.1 Intended Audience

	2 Conformance and Compliance
	2.1 Definition of CORBA/e Compliance
	2.2 Definition of Minimum CORBA Compliance

	3 Additional Information
	3.1 Structure of Manual
	3.2 Acknowledgements

	4 CORBA Overview
	4.1 Overview
	4.2 Structure of an Object Request Broker
	4.2.1 Object Request Broker
	4.2.2 Clients
	4.2.3 Object Implementations
	4.2.4 Object References
	4.2.5 OMG Interface Definition Language
	4.2.6 Mapping of OMG IDL to Programming Languages
	4.2.7 Client Stubs
	4.2.8 Dynamic Invocation Interface
	4.2.9 Implementation Skeleton
	4.2.10 Dynamic Skeleton Interface
	4.2.11 Object Adapters
	4.2.12 ORB Interface
	4.2.13 Interface Repository
	4.2.14 Implementation Repository

	4.3 Structure of a Client
	4.4 Structure of an Object Implementation
	4.5 Structure of an Object Adapter
	4.6 CORBA Required Object Adapter
	4.6.1 Portable Object Adapter

	4.7 The Integration of Foreign Object Systems
	4.8 Interoperability Model
	4.8.1 Elements of Interoperability
	4.8.2 ORB Interoperability Architecture
	4.8.3 Inter-ORB Bridge Support
	4.8.4 General Inter-ORB Protocol (GIOP)
	4.8.5 Internet Inter-ORB Protocol (IIOP)®
	4.8.6 Environment-Specific Inter-ORB Protocols (ESIOPs)
	4.8.7 Relationship to Previous Versions of CORBA
	4.8.8 Domains

	4.9 Quality of Service Abstract Model
	4.9.1 Model Components
	4.9.2 Component Relationships
	4.9.3 Component Design

	5 The Object Model
	5.1 Overview
	5.2 Foundations of the Model
	5.2.1 Object
	5.2.2 Request
	5.2.3 Broker

	5.3 Constituents of the Model
	5.3.1 Client
	5.3.2 Object Reference
	5.3.3 Request Terminations
	5.3.4 Request Parameters
	5.3.5 Object Lifecycle
	5.3.6 Types
	5.3.7 Interface
	5.3.8 Value Type
	5.3.9 Abstract Interface
	5.3.10 Operation
	5.3.11 Operation Signature
	5.3.12 Parameters
	5.3.13 Return Result
	5.3.14 Exceptions
	5.3.15 Contexts
	5.3.16 Execution Semantics
	5.3.17 Attributes

	5.4 Facets of the Model
	5.4.1 The Execution Model: Performing Services
	5.4.2 The Construction Model
	5.4.3 The Interoperability Model
	5.4.4 The Federation Model: Interworking
	5.4.5 Quality of Service

	6 OMG IDL Syntax and Semantics
	6.1 Overview
	6.2 Lexical Conventions
	6.2.1 Tokens
	6.2.2 Comments
	6.2.3 Identifiers
	6.2.4 Keywords
	6.2.5 Literals

	6.3 Preprocessing
	6.4 OMG IDL Grammar
	6.5 OMG IDL Specification
	6.6 Module Declaration
	6.7 Interface Declaration
	6.7.1 Interface Header
	6.7.2 Interface Inheritance Specification
	6.7.3 Interface Body
	6.7.4 Forward Declaration
	6.7.5 Interface Inheritance
	6.7.6 Local Interface

	6.8 Value Declaration
	6.8.1 Regular Value Type
	6.8.2 Boxed Value Type
	6.8.3 Abstract Value Type
	6.8.4 Value Forward Declaration
	6.8.5 Valuetype Inheritance

	6.9 Constant Declaration
	6.9.1 Syntax
	6.9.2 Semantics

	6.10 Type Declaration
	6.10.1 Basic Types
	6.10.2 Constructed Types
	6.10.3 Template Types
	6.10.4 Complex Declarator
	6.10.5 Native Types
	6.10.6 Deprecated Anonymous Types

	6.11 Exception Declaration
	6.12 Operation Declaration
	6.12.1 Operation Attribute
	6.12.2 Parameter Declarations
	6.12.3 Raises Expressions
	6.12.4 Context Expressions

	6.13 Attribute Declaration
	6.14 Repository Identity Related Declarations
	6.14.1 Repository Identity Declaration
	6.14.2 Repository Identifier Prefix Declaration
	6.14.3 Repository Id Conflict

	6.15 CORBA Module
	6.16 Names and Scoping
	6.16.1 Qualified Names
	6.16.2 Scoping Rules and Name Resolution
	6.16.3 Special Scoping Rules for Type Names

	7 Repository IDs
	7.1 Overview
	7.2 OMG IDL Format
	7.3 Pragma Directives for RepositoryId
	7.3.1 The ID Pragma
	7.3.2 The Prefix Pragma
	7.3.3 The Version Pragma
	7.3.4 Generation of OMG IDL - Format IDs

	7.4 RepositoryIDs for OMG-Specified Types
	7.5 Uniqueness Constraints on Repository IDs

	8 ORB Interface
	8.1 Overview
	8.2 The ORB Operations
	8.2.1 ORB Identity
	8.2.2 Converting Object References to Strings
	8.2.3 Thread-Related Operations

	8.3 ORB and OA Initialization and Initial References
	8.3.1 ORB Initialization
	8.3.2 Obtaining Initial Object References
	8.3.3 Configuring Initial Service References

	8.4 Current Object
	8.5 TypeCodes
	8.5.1 The TypeCode Interface
	8.5.2 TypeCode Constants

	8.6 Exceptions
	8.6.1 Definition of Terms
	8.6.2 System Exceptions
	8.6.3 Standard System Exception Definitions
	8.6.4 Standard Minor Exception Codes

	8.7 Consolidated IDL

	9 Object Interfaces
	9.1 Overview
	9.2 Object (Reference) Interface
	9.2.1 Determining the Object Interface
	9.2.2 Duplicating and Releasing Copies of Object References
	9.2.3 Nil Object References
	9.2.4 Equivalence Checking Operation
	9.2.5 Probing for Object Non-Existence
	9.2.6 Object Reference Identity
	9.2.7 Type Coercion Considerations
	9.2.8 Getting Policy Associated with the Object
	9.2.9 Overriding Associated Policies on an Object Reference
	9.2.10 Validating Connection
	9.2.11 Getting the ORB
	9.2.12 LocalObject Operations

	9.3 Value Type Semantics
	9.3.1 Overview
	9.3.2 Architecture
	9.3.3 Language Mappings

	9.4 Consolidated IDL

	10 Policies
	10.1 Overview
	10.1.1 Usages of Policy Objects
	10.1.2 Policy Associated with the Execution Environment
	10.1.3 Policy Associated with Message Interactions
	10.1.4 Specification of New Policy Objects
	10.1.5 Standard Policies

	10.2 Policy Object
	10.2.1 Definition of Policy Object
	10.2.2 Creation of Policy Objects

	10.3 Management of Policies
	10.3.1 Client Side Policy Management
	10.3.2 Server Side Policy Management
	10.3.3 Policy Management Interfaces

	10.4 Messaging Quality of Service
	10.4.1 Rebind Support
	10.4.2 Synchronization Scope
	10.4.3 Request and Reply Timeout

	10.5 Consolidated IDL
	10.5.1 Messaging Module

	11 The Portable Object Adapter
	11.1 Overview
	11.2 Abstract Model Description
	11.2.1 Model Components
	11.2.2 Model Architecture
	11.2.3 POA Creation
	11.2.4 Reference Creation
	11.2.5 Object Activation States
	11.2.6 Request Processing
	11.2.7 Multi-threading
	11.2.8 Location Transparency
	11.2.9 UML Description of PortableServer

	11.3 Interfaces
	11.3.1 The Servant IDL Type
	11.3.2 POAManager Interface
	11.3.3 POA Policy Objects
	11.3.4 POA Interface
	11.3.5 Policy Creation Operations
	11.3.6 Current Operations

	11.4 Consolidated IDL for PortableServer Module
	11.4.1 CORBA/e Compact Profile
	11.4.2 CORBA/e Micro Profile

	12 Real-time
	12.1 Real-time Architecture
	12.1.1 Goals of the Specification
	12.1.2 Approach to Real-time CORBA
	12.1.3 Compatibility
	12.1.4 Real-time CORBA/e Architectural Overview

	12.2 Real-time ORB
	12.2.1 Real-time ORB Initialization
	12.2.2 Real-time CORBA System Exceptions

	12.3 Native Thread Priorities
	12.4 CORBA Priority
	12.5 CORBA Priority Mappings
	12.5.1 C Language binding for PriorityMapping
	12.5.2 C++ Language binding for PriorityMapping
	12.5.3 Ada Language binding for PriorityMapping
	12.5.4 Java Language binding for PriorityMapping
	12.5.5 Semantics

	12.6 Real-time Current
	12.7 Real-time CORBA Priority Models
	12.7.1 Scope of PriorityModelPolicy
	12.7.2 Client Propagated Priority Model

	12.8 Mutex Interface
	12.9 Implicit and Explicit Binding
	12.10 Priority Banded Connections
	12.10.1 Scope of PriorityBandedConnectionPolicy
	12.10.2 Binding of Priority Banded Connection

	12.11 Invocation Timeout
	12.12 Consolidated IDL

	13 Naming Service
	13.1 Overview
	13.1.1 Resolution of Compound Names

	13.2 NamingContext Interface
	13.2.1 Structures
	13.2.2 Exceptions
	13.2.3 Binding Objects
	13.2.4 Resolving Names
	13.2.5 Unbinding Names
	13.2.6 Creating Naming Contexts
	13.2.7 Deleting Contexts
	13.2.8 Listing a Naming Context

	13.3 The BindingIterator Interface
	13.3.1 Operations
	13.3.2 Garbage Collection of Iterators

	13.4 Stringified Names
	13.4.1 Basic Representation of Stringified Names
	13.4.2 Escape Mechanism

	13.5 URL Schemes
	13.5.1 IOR
	13.5.2 corbaloc
	13.5.3 corbaname
	13.5.4 Converting between CosNames, Stringified Names, and URLs

	13.6 Initial Reference to a NamingContextExt
	13.7 Consolidated IDL

	14 Event Service
	14.1 Overview
	14.1.1 Event Communication
	14.1.2 Example Scenario
	14.1.3 Design Principles
	14.1.4 Resolution of Technical Issues
	14.1.5 Quality of Service
	14.1.6 Generic Event Communication

	14.2 The CosEventComm Module
	14.2.1 The PushConsumer Interface
	14.2.2 The PushSupplier Interface
	14.2.3 The PullSupplier Interface
	14.2.4 The PullConsumer Interface
	14.2.5 Disconnection Behavior

	14.3 Event Channels
	14.3.1 Push-Style Communication with an Event Channel
	14.3.2 Pull-Style Communication with an Event Channel
	14.3.3 Mixed Style Communication with an Event Channel
	14.3.4 Multiple Consumers and Multiple Suppliers
	14.3.5 Event Channel Administration

	14.4 The CosEventChannelAdmin Module
	14.4.1 The EventChannel Interface
	14.4.2 The ConsumerAdmin Interface
	14.4.3 The SupplierAdmin Interface
	14.4.4 The ProxyPushConsumer Interface
	14.4.5 The ProxyPullSupplier Interface
	14.4.6 The ProxyPullConsumer Interface
	14.4.7 The ProxyPushSupplier Interface

	14.5 Consolidated IDL
	14.5.1 CosEventComm
	14.5.2 CosEventChannelAdmin

	15 Lightweight Log Service
	15.1 Overview
	15.2 Architecture
	15.3 Types and Data Structures
	15.3.1 InvalidParam Exception
	15.3.2 LogLevel
	15.3.3 OperationalState
	15.3.4 AdministrativeState
	15.3.5 LogFullAction
	15.3.6 LogAvailabilityStatus
	15.3.7 LogTime
	15.3.8 ProducerLogRecord
	15.3.9 RecordId
	15.3.10 LogRecord

	15.4 Logging Interfaces
	15.4.1 Interface LogStatus
	15.4.2 Interface LogConsumer
	15.4.3 Interface LogProducer
	15.4.4 Interface LogAdministrator

	15.5 Consolidated IDL
	15.5.1 CosLwLog::LogStatus
	15.5.2 CosLwLog::LogConsumer
	15.5.3 CosLwLog::LogProducer
	15.5.4 CosLwLog::LogAdministrator
	15.5.5 CosLwLog::Log

	16 General Inter-ORB Protocol
	16.1 Overview
	16.2 Goals of the General Inter-ORB Protocol
	16.3 GIOP Overview
	16.3.1 Common Data Representation (CDR)
	16.3.2 GIOP Message Overview
	16.3.3 GIOP Message Transfer

	16.4 GIOP Message Transport
	16.4.1 Connection Management
	16.4.2 Message Ordering

	17 CDR Transfer Syntax
	17.1 Overview
	17.2 Primitive Types
	17.2.1 Alignment
	17.2.2 Integer Data Types
	17.2.3 Floating Point Data Types
	17.2.4 Octet
	17.2.5 Boolean
	17.2.6 Character Types

	17.3 OMG IDL Constructed Types
	17.3.1 Alignment
	17.3.2 Struct
	17.3.3 Union
	17.3.4 Array
	17.3.5 Sequence
	17.3.6 Enum
	17.3.7 Strings and Wide Strings
	17.3.8 Fixed-Point Decimal Type

	17.4 Encapsulation
	17.5 Value Types
	17.5.1 Partial Type Information and Versioning
	17.5.2 Example
	17.5.3 Scope of the Indirections
	17.5.4 Null Values
	17.5.5 Other Encoding Information
	17.5.6 Fragmentation
	17.5.7 Notation
	17.5.8 The Format

	17.6 Pseudo-Object Types
	17.6.1 TypeCode
	17.6.2 Any
	17.6.3 Principal
	17.6.4 Context
	17.6.5 Exception

	17.7 Object References

	18 GIOP Messages
	18.1 Overview
	18.2 GIOP Message Formats
	18.2.1 GIOP Message Header
	18.2.2 Request Message
	18.2.3 Reply Message
	18.2.4 CancelRequest Message
	18.2.5 LocateRequest Message
	18.2.6 LocateReply Message
	18.2.7 CloseConnection Message
	18.2.8 MessageError Message
	18.2.9 Fragment Message

	18.3 Object Location
	18.4 Service Context
	18.4.1 Standard Service Contexts
	18.4.2 Service Context Processing Rules

	18.5 Propagation of Messaging QoS
	18.5.1 Structures
	18.5.2 Messaging QoS Profile Component
	18.5.3 Messaging QoS Service Context

	18.6 Consolidated IDL

	19 Internet Interoperability Protocol (IIOP)
	19.1 Overview
	19.2 Internet Inter-ORB Protocol (IIOP)
	19.2.1 TCP/IP Connection Usage
	19.2.2 IIOP IOR Profiles
	19.2.3 IIOP IOR Profile Components

	19.3 An Information Model for Object References
	19.3.1 What Information Do Bridges Need?
	19.3.2 Interoperable Object References: IORs
	19.3.3 IOR Profiles
	19.3.4 Standard IOR Profiles
	19.3.5 IOR Components
	19.3.6 Standard IOR Components
	19.3.7 Profile and Component Composition in IORs
	19.3.8 IOR Creation and Scope
	19.3.9 Stringified Object References
	19.3.10 Object URLs

	19.4 IIOP IOR
	19.4.1 IIOP IOR Profiles
	19.4.2 IIOP IOR Profile Components

	19.5 Consolidated IDL

	Annex A OMG IDL Tags and Exceptions
	A.1 Profile ID Tags
	A.2 Service ID Tags
	A.3 Component ID Tags
	A.4 Policy Type Tags
	A.5 Exception Codes
	A.6 Identity Tokens

	Annex B Correspondence with “Full” CORBA

