
C++ Language Mapping Specification

June 2003
Version 1.1

formal/03-06-03

An Adopted Specification of the Object Management Group, Inc.

Copyright © 1991, 1992, 1995, 1996, Digital Equipment Corporation
Copyright © 1995, 1996, Expersoft Corporation
Copyright © 1989 through 1999, Hewlett-Packard Company
Copyright © 1996, 1997, IBM Corporation
Copyright © 1995, 1996, IONA Technologies, Ltd.
Copyright © 1995, 1996, Novell USG
Copyright © 2003, Object Management Group, Inc.
Copyright © 1995, 1996, SunSoft, Inc.

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms, conditions and
notices set forth below. This document does not represent a commitment to implement any portion of this specification in any
company's products. The information contained in this document is subject to change without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free, paid up,
worldwide license to copy and distribute this document and to modify this document and distribute copies of the modified
version. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed the copyright
in the included material of any such copyright holder by reason of having used the specification set forth herein or having
conformed any computer software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant you a fully-paid
up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use this specification to
create and distribute software and special purpose specifications that are based upon this specification, and to use, copy, and
distribute this specification as provided under the Copyright Act; provided that: (1) both the copyright notice identified above
and this permission notice appear on any copies of this specification; (2) the use of the specifications is for informational
purposes and will not be copied or posted on any network computer or broadcast in any media and will not be otherwise resold
or transferred for commercial purposes; and (3) no modifications are made to this specification. This limited permission
automatically terminates without notice if you breach any of these terms or conditions. Upon termination, you will destroy
immediately any copies of the specifications in your possession or control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may require use
of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a license may be
required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of those patents that are
brought to its attention. OMG specifications are prospective and advisory only. Prospective users are responsible for protecting
themselves against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications regulations and
statutes. This document contains information which is protected by copyright. All Rights Reserved. No part of this work
covered by copyright herein may be reproduced or used in any form or by any means--graphic, electronic, or mechanical,
including photocopying, recording, taping, or information storage and retrieval systems--without permission of the copyright
owner.

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY CONTAIN
ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE MAKE
NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS PUBLICATION, INCLUDING
BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF
MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE.
IN NO EVENT SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE COMPANIES LISTED ABOVE BE
LIABLE FOR ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS, REVENUE, DATA OR
USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE FURNISHING,
PERFORMANCE, OR USE OF THIS MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you. This
disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1) (ii) of The
Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph (c)(1) and (2) of the
Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified in 48 C.F.R. 227-7202-2 of
the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of the Federal Acquisition Regulations and
its successors, as applicable. The specification copyright owners are as indicated above and may be contacted through the
Object Management Group, 250 First Avenue, Needham, MA 02494, U.S.A.

TRADEMARKS

The OMG Object Management Group Logo®, CORBA®, CORBA Academy®, The Information Brokerage®, XMI® and
IIOP® are registered trademarks of the Object Management Group. OMG™, Object Management Group™, CORBA logos™,
OMG Interface Definition Language (IDL)™, The Architecture of Choice for a Changing World™, CORBAservices™,
CORBAfacilities™, CORBAmed™, CORBAnet™, Integrate 2002™, Middleware That's Everywhere™, UML™, Unified
Modeling Language™, The UML Cube logo™, MOF™, CWM™, The CWM Logo™, Model Driven Architecture™, Model
Driven Architecture Logos™, MDA™, OMG Model Driven Architecture™, OMG MDA™ and the XMI Logo™ are
trademarks of the Object Management Group. All other products or company names mentioned are used for identification
purposes only, and may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its designees) is
and shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer software to use
certification marks, trademarks or other special designations to indicate compliance with these materials.

Software developed under the terms of this license may claim compliance or conformance with this specification if and only if
the software compliance is of a nature fully matching the applicable compliance points as stated in the specification. Software
developed only partially matching the applicable compliance points may claim only that the software was based on this
specification, but may not claim compliance or conformance with this specification. In the event that testing suites are
implemented or approved by Object Management Group, Inc., software developed using this specification may claim
compliance or conformance with the specification only if the software satisfactorily completes the testing suites.

ISSUE REPORTING

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage readers to
report any ambiguities, inconsistencies, or inaccuracies they may find by completing the Issue Reporting Form listed on the
main web page http://www.omg.org, under Documents & Specifications, Report a Bug/Issue.

Contents
Preface . vii

1. C++Language Mapping . 1-1
1.1 Preliminary Information . 1-3

1.1.1 Overview . 1-3
1.1.2 Scoped Names . 1-4
1.1.3 C++ Type Size Requirements 1-5
1.1.4 CORBA Module . 1-5

1.2 Mapping for Modules. 1-5
1.3 Mapping for Interfaces . 1-6

1.3.1 Object Reference Types 1-7
1.3.2 Widening Object References 1-7
1.3.3 Object Reference Operations 1-8
1.3.4 Narrowing Object References. 1-9
1.3.5 Nil Object Reference . 1-10
1.3.6 Object Reference Out Parameter 1-10
1.3.7 Interface Mapping Example 1-11

1.4 Mapping for Constants . 1-13
1.4.1 Wide Character and Wide String Constants . . . 1-14
1.4.2 Fixed Point Constants . 1-15

1.5 Mapping for Basic Data Types . 1-15
1.6 Mapping for Enums . 1-17
1.7 Mapping for String Types. 1-17
1.8 Mapping for Wide String Types . 1-20
1.9 Mapping for Structured Types . 1-21
June 2003 C++ Language Mapping, v1.1 i

Contents
1.9.1 T_var Types . 1-22
1.9.2 T_out Types . 1-27

1.10 Mapping for Struct Types. 1-28
1.11 Mapping for Fixed Types . 1-31

1.11.1 Fixed T_var and T_out Types 1-34
1.12 Mapping for Union Types . 1-34
1.13 Mapping for Sequence Types . 1-39

1.13.1 Sequence Example . 1-44
1.13.2 Using the “release” Constructor Parameter . . . 1-45
1.13.3 Additional Memory Management Functions . . 1-46
1.13.4 Sequence T_var and T_out Types. 1-47

1.14 Mapping For Array Types . 1-48
1.15 Mapping For Typedefs . 1-50
1.16 Mapping for the Any Type . 1-52

1.16.1 Handling Typed Values. 1-52
1.16.2 Insertion into any . 1-53
1.16.3 Extraction from any . 1-56
1.16.4 Distinguishing boolean, octet, char, wchar, bounded

string, and bounded wstring 1-59
1.16.5 Widening to Object. 1-62
1.16.6 Widening to Abstract Interface 1-63
1.16.7 Widening to ValueBase. 1-63
1.16.8 TypeCode Replacement 1-64
1.16.9 Any Constructors, Destructor, Assignment

Operator . 1-65
1.16.10 The Any Class . 1-65
1.16.11 The Any_var and Any_out Classes. 1-65

1.17 Mapping for Valuetypes . 1-66
1.17.1 Valuetype Data Members 1-66
1.17.2 Constructors, Assignment Operators, and

Destructors . 1-68
1.17.3 Valuetype Operations . 1-69
1.17.4 Valuetype Example . 1-70
1.17.5 ValueBase and Reference Counting 1-71
1.17.6 Reference Counting Mix-in Classes 1-74
1.17.7 Value Boxes . 1-75
1.17.8 Abstract Valuetypes . 1-84
1.17.9 Valuetype Inheritance . 1-84
1.17.10 Valuetype Factories . 1-85
1.17.11 Custom Marshaling . 1-91
ii C++ Language Mapping, v1.1 June 2003

Contents
1.17.12 Another Valuetype Example 1-91
1.17.13 Valuetype Members of Structs 1-92

1.18 Mapping for Abstract Interfaces. 1-93
1.18.1 Abstract Interface Base. 1-93
1.18.2 Client Side Mapping. 1-94

1.19 Mapping for Exception Types . 1-95
1.19.1 ostream Inserters. 1-99
1.19.2 UnknownUserException. 1-100
1.19.3 Any Insertion and Extraction for Exceptions . . 1-100

1.20 Mapping For Operations and Attributes 1-101
1.21 Implicit Arguments to Operations 1-102
1.22 Argument Passing Considerations 1-102

1.22.1 Operation Parameters and Signatures 1-105
1.23 Mapping of Pseudo Objects to C++ 1-109
1.24 Usage . 1-109
1.25 Mapping Rules . 1-110
1.26 Relation to the C PIDL Mapping . 1-111
1.27 Environment. 1-111

1.27.1 Environment Interface 1-112
1.27.2 Environment C++ Class 1-112
1.27.3 Differences from C-PIDL 1-112
1.27.4 Memory Management. 1-113

1.28 NamedValue . 1-113
1.28.1 NamedValue Interface 1-113
1.28.2 NamedValue C++ Class 1-113
1.28.3 Differences from C-PIDL 1-113
1.28.4 Memory Management. 1-114

1.29 NVList . 1-114
1.29.1 NVList Interface. 1-114
1.29.2 NVList C++ Class . 1-115
1.29.3 Differences from C-PIDL 1-115
1.29.4 Memory Management. 1-115

1.30 Request. 1-116
1.30.1 Request Interface . 1-118
1.30.2 Request C++ Class . 1-119
1.30.3 Differences from C-PIDL 1-120
1.30.4 Memory Management. 1-120

1.31 Context. 1-120
1.31.1 Context Interface . 1-121
June 2003 C++ Language Mapping, v1.1 iii

Contents
1.31.2 Context C++ Class . 1-121
1.31.3 Differences from C-PIDL 1-121
1.31.4 Memory Management. 1-122

1.32 TypeCode . 1-122
1.32.1 TypeCode Interface . 1-122
1.32.2 TypeCode C++ Class . 1-122
1.32.3 Differences from C-PIDL 1-123
1.32.4 Memory Management. 1-123

1.33 ORB . 1-123
1.33.1 ORB Interface. 1-123
1.33.2 ORB C++ Class . 1-125
1.33.3 Differences from C-PIDL 1-126
1.33.4 Mapping of ORB Initialization Operations. . . . 1-126

1.34 Object. 1-127
1.34.1 Object Interface . 1-127
1.34.2 Object C++ Class . 1-128

1.35 Server-Side Mapping . 1-129
1.36 Implementing Interfaces. 1-129

1.36.1 Mapping of PortableServer::Servant 1-130
1.36.2 Servant Reference Counting Mix-In 1-132
1.36.3 Servant Memory Management Considerations . 1-132
1.36.4 ServantBase_var Class 1-134
1.36.5 Skeleton Operations . 1-136
1.36.6 Inheritance-Based Interface Implementation . . 1-138
1.36.7 Delegation-Based Interface Implementation . . 1-140

1.37 Implementing Operations . 1-145
1.37.1 Skeleton Derivation From Object 1-146

1.38 Mapping of DSI to C++ . 1-147
1.38.1 Mapping of ServerRequest to C++ 1-147
1.38.2 Handling Operation Parameters and Results . . 1-147
1.38.3 Mapping of PortableServer Dynamic Implementation

Routine . 1-148
1.39 PortableServer Functions . 1-149
1.40 Mapping for PortableServer::ServantManager 1-149

1.40.1 Mapping for Cookie . 1-149
1.40.2 ServantManagers and AdapterActivators 1-150
1.40.3 Server Side Mapping for Abstract Interfaces . . 1-150

1.41 C++ Definitions for CORBA . 1-150
1.41.1 Primitive Types. 1-150
iv C++ Language Mapping, v1.1 June 2003

Contents
1.41.2 String_var and String_out Class 1-151
1.41.3 WString_var and WString_out 1-152
1.41.4 Fixed Class . 1-152
1.41.5 Any Class . 1-153
1.41.6 Any_var Class . 1-157
1.41.7 Exception Class . 1-157
1.41.8 SystemException Class. 1-158
1.41.9 UserException Class. 1-158
1.41.10 UnknownUserException Class 1-159
1.41.11 release and is_nil . 1-159
1.41.12 Object Class . 1-160
1.41.13 Environment Class . 1-161
1.41.14 NamedValue Class . 1-161
1.41.15 NVList Class . 1-161
1.41.16 ExceptionList Class . 1-162
1.41.17 ContextList Class . 1-162
1.41.18 Request Class . 1-162
1.41.19 Context Class . 1-163
1.41.20 TypeCode Class . 1-164
1.41.21 ORB Class . 1-165
1.41.22 ORB Initialization . 1-166
1.41.23 General T_out Types . 1-166

1.42 Alternative Mappings For C++ Dialects 1-167
1.42.1 Without Namespaces . 1-167
1.42.2 Without Exception Handling 1-167

1.43 C++ Keywords . 1-169
June 2003 C++ Language Mapping, v1.1 v

Contents
vi C++ Language Mapping, v1.1 June 2003

Preface
About This Document
Under the terms of the collaboration between OMG and The Open Group, this
document is a candidate for adoption by The Open Group, as an Open Group Technical
Standard. The collaboration between OMG and The Open Group ensures joint review
and cohesive support for emerging object-based specifications.

Object Management Group
The Object Management Group, Inc. (OMG) is an international organization supported
by over 600 members, including information system vendors, software developers and
users. Founded in 1989, the OMG promotes the theory and practice of object-oriented
technology in software development. The organization's charter includes the
establishment of industry guidelines and object management specifications to provide a
common framework for application development. Primary goals are the reusability,
portability, and interoperability of object-based software in distributed, heterogeneous
environments. Conformance to these specifications will make it possible to develop a
heterogeneous applications environment across all major hardware platforms and
operating systems.

OMG’s objectives are to foster the growth of object technology and influence its
direction by establishing the Object Management Architecture (OMA). The OMA
provides the conceptual infrastructure upon which all OMG specifications are based.
More information is available at http://www.omg.org/.

The Open Group
The Open Group, a vendor and technology-neutral consortium, is committed to
delivering greater business efficiency by bringing together buyers and suppliers of
information technology to lower the time, cost, and risks associated with integrating
new technology across the enterprise.
June 2003 C++ Language Mapping, v1.1 vii

The mission of The Open Group is to drive the creation of boundaryless information
flow achieved by:

• Working with customers to capture, understand and address current and emerging
requirements, establish policies, and share best practices;

• Working with suppliers, consortia and standards bodies to develop consensus and
facilitate interoperability, to evolve and integrate specifications and open source
technologies;

• Offering a comprehensive set of services to enhance the operational efficiency of
consortia; and

• Developing and operating the industry’s premier certification service and
encouraging procurement of certified products.

The Open Group has over 15 years experience in developing and operating
certification programs and has extensive experience developing and facilitating
industry adoption of test suites used to validate conformance to an open standard or
specification. The Open Group portfolio of test suites includes tests for CORBA, the
Single UNIX Specification, CDE, Motif, Linux, LDAP, POSIX.1, POSIX.2, POSIX
Realtime, Sockets, UNIX, XPG4, XNFS, XTI, and X11. The Open Group test tools are
essential for proper development and maintenance of standards-based products,
ensuring conformance of products to industry-standard APIs, applications portability,
and interoperability. In-depth testing identifies defects at the earliest possible point in
the development cycle, saving costs in development and quality assurance.

More information is available at http://www.opengroup.org/ .

About CORBA Language Mapping Specifications
The CORBA Language Mapping specifications contain language mapping information
for the several languages. Each language is described in a separate stand-alone volume.

Alignment with CORBA
This language mapping is aligned with CORBA, v2.5.

OMG Documents
The OMG collects information for each book in the documentation set by issuing
Requests for Information, Requests for Proposals, and Requests for Comment and, with its
membership, evaluating the responses. Specifications are adopted as standards only when
representatives of the OMG membership accept them as such by vote.

Formal documents are available in PostScript and PDF format. You will find our docu-
ments in the OMG Specifications Catalog, which is available from the OMG website at:

http://www.omg.org/technology/documents/spec_catalog.htm

The documentation is organized as follows:
viii C++ Language Mapping, v1.1 June 2003

OMG Modeling Specifications
Includes the UML, MOF, XMI, and CWM specifications.

OMG Middleware Specifications
Includes CORBA/IIOP, IDL/Language Mappings, Specialized CORBA specifications,
and CORBA Component Model (CCM).

Platform Specific Model and Interface Specifications
Includes CORBAservices, CORBAfacilities, OMG Domain specifications, OMG
Embedded Intelligence specifications, and OMG Security specifications.

OMG collects information for each book in the documentation set by issuing Requests
for Information, Requests for Proposals, and Requests for Comment and, with its
membership, evaluating the responses. Specifications are adopted as standards only
when representatives of the OMG membership accept them as such by vote.

You can download the OMG formal documents free-of-charge from our web site in
PostScript and PDF format. Please note the OMG address and telephone numbers
below:

OMG Headquarters

250 First Avenue

Needham, MA 02494

USA

Tel: +1-781-444-0404

Fax: +1-781-444-0320

pubs@omg.org

http://www.omg.org

Definition of CORBA Compliance
The minimum required for a CORBA-compliant system is adherence to the specifications
in CORBA Core and one mapping. Each additional language mapping is a separate,
optional compliance point. Optional means users aren’t required to implement these points
if they are unnecessary at their site, but if implemented, they must adhere to the CORBA
specifications to be called CORBA-compliant. For instance, if a vendor supports C++,
their ORB must comply with the OMG IDL to C++ binding specified in this manual.

Interoperability and Interworking are separate compliance points. For detailed information
about Interworking compliance, refer to the CORBA/IIOP Specification (The Common
Object Request Broker: Architecture and Specification), Interworking Architecture
chapter.

As described in the OMA Guide, the OMG’s Core Object Model consists of a core and
components. Likewise, the body of CORBA specifications is divided into core and
June 2003 C++ Language Mapping: Definition of CORBA Compliance ix

component-like specifications. The CORBA specifications are divided into these volumes:

1. The CORBA/IIOP Specification (Common Object Request Broker Architecture),
which includes the following chapters:
• CORBA Core, as specified in Chapters 1-11
• CORBA Interoperability, as specified in Chapters 12-16
• CORBA Interworking, as specified in Chapters 17-21
• CORBA Quality of Service, as specified in Chapters 22-24

2. The Language Mapping Specifications, which are organized into the following
stand-alone volumes:
• Ada Mapping to OMG IDL
• C Mapping to OMG IDL
• C++ Mapping to OMG IDL
• COBOL Mapping to OMG IDL
• IDL Script Mapping
• IDL to Java Mapping
• Java Mapping to OMG IDL
• Lisp Mapping to OMG IDL
• Python Mapping to OMG IDL
• Smalltalk Mapping to OMG IDL

Typographical Conventions
The type styles shown below are used in this document to distinguish programming
statements from ordinary English. However, these conventions are not used in tables or
section headings where no distinction is necessary.

Helvetica bold - OMG Interface Definition Language (OMG IDL) and syntax
elements.

Courier bold - Programming language elements.

Helvetica - Exceptions

Terms that appear in italics are defined in the glossary. Italic text also represents the
name of a document, specification, or other publication.

Acknowledgements
The following companies submitted the specification that was approved by the Object
Management Group to become the C++ Language Mapping specification:

• Digital Equipment Corporation
• Expersoft Corporation
• Hewlett-Packard Company
• IBM Corporation
• IONA Technologies, Ltd.
x C++ Language Mapping, v1.1 June 2003

• Novell USG
• SunSoft, Inc.
June 2003 C++ Language Mapping: Acknowledgements xi

xii C++ Language Mapping, v1.1 June 2003

C++Language Mapping 1
Note – Numbers beside change bars refer to the corresponding issue number at
http://cgi.omg.org/issues/cxx_revision.html.

Note – The C++ Language Mapping specification is aligned with CORBA version 2.5.

This chapter explains how OMG IDL constructs are mapped to the constructs of the
C++ programming language. It provides mapping information for:

• Interfaces

• Constants

• Basic data types

• Enums

• Types (string, struct, union, fixed, sequence, array, typedefs, any, valuetype, abstract
interface, exception)

• Operations and attributes

• Arguments
June 2003 C++ Language Mapping, v1.1 1-1

1

Contents

This chapter contains the following sections.

Section Title Page

“Preliminary Information” 1-3

“Mapping for Modules” 1-5

“Mapping for Interfaces” 1-6

“Mapping for Constants” 1-13

“Mapping for Basic Data Types” 1-15

“Mapping for Enums” 1-17

“Mapping for String Types” 1-17

“Mapping for Wide String Types” 1-20

“Mapping for Structured Types” 1-21

“Mapping for Struct Types” 1-29

“Mapping for Fixed Types” 1-31

“Mapping for Union Types” 1-35

“Mapping for Sequence Types” 1-40

“Mapping For Array Types” 1-48

“Mapping For Typedefs” 1-51

“Mapping for the Any Type” 1-52

“Mapping for Valuetypes” 1-66

“Mapping for Abstract Interfaces” 1-93

“Mapping for Exception Types” 1-96

“Mapping For Operations and Attributes” 1-102

“Implicit Arguments to Operations” 1-102

“Argument Passing Considerations” 1-103

“Mapping of Pseudo Objects to C++” 1-109

“Usage” 1-110

“Mapping Rules” 1-110

“Relation to the C PIDL Mapping” 1-111

“Environment” 1-112

“NamedValue” 1-113

“NVList” 1-114
1-2 C++ Language Mapping, v1.1 June 2003

1

1.1 Preliminary Information

1.1.1 Overview

1.1.1.1 Key Design Decisions
The design of the C++ mapping was driven by a number of considerations, including a
design that achieves reasonable performance, portability, efficiency, and usability for
OMG IDL-to-C++ implementations. Several other considerations are outlined in this
section.

1.1.1.2 Compliance
The C++ mapping tries to avoid limiting the implementation freedoms of ORB
developers. For each OMG IDL and CORBA construct, the C++ mapping explains the
syntax and semantics of using the construct from C++. A client or server program
conforms to this mapping (is CORBA-C++ compliant) if it uses the constructs as
described in the C++ mapping chapters. An implementation conforms to this mapping
if it correctly executes any conforming client or server program. A conforming client
or server program is therefore portable across all conforming implementations.

“Request” 1-116

“Context” 1-121

“TypeCode” 1-122

“ORB” 1-124

“Object” 1-128

“Local Object” 1-130

“Implementing Interfaces” 1-131

“Implementing Operations” 1-148

“Mapping of DSI to C++” 1-150

“PortableServer Functions” 1-152

“Mapping for PortableServer::ServantManager” 1-152

“C++ Definitions for CORBA” 1-153

“Alternative Mappings For C++ Dialects” 1-170

“C++ Keywords” 1-172

Section Title Page
June 2003 C++ Mapping: Preliminary Information 1-3

1

1.1.1.3 C++ Implementation Requirements
The mapping described here assumes that the target C++ environment supports all the
features described in The Annotated C++ Reference Manual (ARM) by Ellis and
Stroustrup as adopted by the ANSI/ISO C++ standardization committees, including
exception handling. In addition, it assumes that the C++ environment supports the
namespace construct, but it does provide work-arounds for C++ compilers that do
not support namespace.

Comment: Issue 4243

1.1.1.4 No Implementation Descriptions
This mapping does not contain implementation descriptions. It avoids details that
would constrain implementations, but still allows clients to be fully source-compatible
with any compliant implementation. Some examples show possible implementations,
but these are not required implementations.

1.1.2 Scoped Names
Scoped names in OMG IDL are specified by C++ scopes:

• OMG IDL modules are mapped to C++ namespaces.
• OMG IDL interfaces are mapped to C++ classes (as described in Section 1.3,

“Mapping for Interfaces,” on page 1-6).
• All OMG IDL constructs scoped to an interface are accessed via C++ scoped

names. For example, if a type mode were defined in interface printer, then the
type would be referred to as printer::mode.

These mappings allow the corresponding mechanisms in OMG IDL and C++ to be
used to build scoped names. For instance:

// IDL
module M
{

struct E {
long L;

};
};

is mapped into:

// C++
namespace M
{

struct E {
Long L;

};
}

1-4 C++ Language Mapping, v1.1 June 2003

1

and E can be referred outside of M as M::E. Alternatively, a C++ using statement
for namespace M can be used so that E can be referred to simply as E:

// C++
using namespace M;
E e;
e.L = 3;

Another alternative is to employ a using statement only for M::E:

// C++
using M::E;
E e;
e.L = 3;

To avoid C++ compilation problems, every use in OMG IDL of a C++ keyword as an
identifier is mapped into the same name preceded by the prefix “_cxx_.” For example,
an IDL interface named “try” would be named “_cxx_try” when its name is mapped
into C++. For consistency, this rule also applies to identifiers that are derived from
IDL identifiers. For example, an IDL interface “try” generates the names
“_cxx_try_var” and “cxx_try_ptr,” that is, the IDL compiler behaves as if the interface
were named “cxx_try” and then applies the normal mapping rules.

The complete list of C++ keywords can be found in Section 1.44, “C++ Keywords,” on
page 1-172.

1.1.3 C++ Type Size Requirements
The sizes of the C++ types used to represent OMG IDL types are implementation-
dependent. That is, this mapping makes no requirements as to the sizeof(T) for
anything except basic types (see Section 1.5, “Mapping for Basic Data Types,” on
page 1-15) and string (see Section 1.7, “Mapping for String Types,” on page 1-17).

1.1.4 CORBA Module
The mapping relies on some predefined types, classes, and functions that are logically
defined in a module named CORBA. The module is automatically accessible from a
C++ compilation unit that includes a header file generated from an OMG IDL
specification. In the examples presented in this document, CORBA definitions are
referenced without explicit qualification for simplicity. In practice, fully scoped names
or C++ using statements for the CORBA namespace would be required in the
application source. See the Common Object Request Broker Architecture (CORBA),
Appendix A for standard OMG IDL tags.

1.2 Mapping for Modules
As shown in Section 1.1.2, “Scoped Names,” on page 1-4, a module defines a scope,
and as such is mapped to a C++ namespace with the same name:
June 2003 C++ Mapping: Mapping for Modules 1-5

1

// IDL
module M
{

// definitions
};

// C++
namespace M
{

// definitions
}

Because namespaces were only recently added to the C++ language, few C++
compilers currently support them. Alternative mappings for OMG IDL modules that do
not require C++ namespaces are in Section 1.43, “Alternative Mappings For C++
Dialects,” on page 1-170.

1.3 Mapping for Interfaces
An interface is mapped to a C++ class that contains public definitions of the types,
constants, operations, and exceptions defined in the interface.

A CORBA–C++–compliant program cannot
• create or hold an instance of an interface class, or
• use a pointer (A*) or a reference (A&) to an interface class.

The reason for these restrictions is to allow a wide variety of implementations. For
example, interface classes could not be implemented as abstract base classes if
programs were allowed to create or hold instances of them. In a sense, the generated
class is like a namespace that one cannot enter via a using statement. This example
shows the behavior of the mapping of an interface:

// IDL
interface A
{

struct S { short field; };
};

// C++
// Conformant uses
A::S s; // declare a struct variable
s.field = 3; // field access

// Non-conformant uses:
// one cannot declare an instance of an interface class...
A a;
// ...nor declare a pointer to an interface class...
A *p;
// ...nor declare a reference to an interface class.
void f(A &r);
1-6 C++ Language Mapping, v1.1 June 2003

1

1.3.1 Object Reference Types

Comment: Issue 4325

The use of an interface type in OMG IDL denotes an object reference. Because of the
different ways an object reference can be used and the different possible
implementations in C++, an object reference maps to two C++ types. For an interface
A, these types are named A_var and A_ptr. To facilitate template-based
programming, typedefs for the A_ptr and A_var types are also provided in the
interface class (see Section 1.3.7, “Interface Mapping Example,” on page 1-11). The
typedef for A_ptr is named A::_ptr_type and the typedef for A_var is named
A::_var_type.

An operation can be performed on an object by using an arrow (“->”) on a reference
to the object. For example, if an interface defines an operation op with no parameters
and obj is a reference to the interface type, then a call would be written obj->op().
The arrow operator is used to invoke operations on both the _ptr and _var object
reference types.

Client code frequently will use the object reference variable type (A_var) because a
variable will automatically release its object reference when it is deallocated or when
assigned a new object reference. The pointer type (A_ptr) provides a more primitive
object reference, which has similar semantics to a C++ pointer. Indeed, an
implementation may choose to define A_ptr as A*, but is not required to. Unlike C++
pointers, however, conversion to void*, arithmetic operations, and relational
operations, including test for equality, are all non-compliant. A compliant
implementation need not detect these incorrect uses because requiring detection is not
practical.

For many operations, mixing data of type A_var and A_ptr is possible without any
explicit operations or casts. However, one needs to be careful in doing so because of
the implicit release performed when the variable is deallocated. For example, the
assignment statement in the code below will result in the object reference held by p to
be released at the end of the block containing the declaration of a.

// C++
A_var a;
A_ptr p = // ...somehow obtain an objref...
a = p;

1.3.2 Widening Object References
OMG IDL interface inheritance does not require that the corresponding C++ classes
are related, though that is certainly one possible implementation. However, if interface
B inherits from interface A, the following implicit widening operations for B must be
supported by a compliant implementation:

• B_ptr to A_ptr
• B_ptr to Object_ptr
June 2003 C++ Mapping: Mapping for Interfaces 1-7

1

• B_var to A_ptr
• B_var to Object_ptr

Implicit widening from a B_var to A_var or Object_var is not supported; instead,
widening between _var types for object references requires a call to _duplicate
(described in Section 1.3.3, “Object Reference Operations,” on page 1-8).1 An attempt
to implicitly widen from one _var type to another must cause a compile-time error.2
Assignment between two _var objects of the same type is supported, but widening
assignments are not and must cause a compile-time error. Widening assignments may
be done using _duplicate. The same rules apply for object reference types that are
nested in a complex type, such as a structure or sequence.

// C++
B_ptr bp = ...
A_ptr ap = bp; // implicit widening
Object_ptr objp = bp; // implicit widening
objp = ap; // implicit widening

B_var bv = bp; // bv assumes ownership of bp
ap = bv; // implicit widening, bv retains

// ownership of bp
obp = bv; // implicit widening, bv retains

// ownership of bp

A_var av = bv; // illegal, compile-time error
A_var av = B::_duplicate(bv);// av, bv both refer to bp
B_var bv2 = bv; // implicit _duplicate
A_var av2;
av2 = av; // implicit _duplicate

1.3.3 Object Reference Operations
Conceptually, the Object class in the CORBA module is the base interface type for all
CORBA objects; therefore, any object reference can be widened to the type
Object_ptr. As with other interfaces, the CORBA namespace also defines the type
Object_var.

CORBA defines three operations on any object reference: duplicate, release, and
is_nil. Note that these are operations on the object reference, not the object
implementation. Because the mapping does not require that object references to

1. When T_ptr is mapped to T*, it is impossible in C++ to provide implicit widening
between T_var types while also providing the necessary duplication semantics for
T_ptr types.

2. This can be achieved by deriving all T_var types for object references from a base _var
class, then making the assignment operator for _var private within each T_var type.
1-8 C++ Language Mapping, v1.1 June 2003

1

themselves be C++ objects, the “->” syntax cannot be employed to express the usage
of these operations. Also, for convenience these operations are allowed to be
performed on a nil object reference.

The release and is_nil operations depend only on type Object, so they can be
expressed as regular functions within the CORBA namespace as follows:

// C++
void release(Object_ptr obj);
Boolean is_nil(Object_ptr obj);

The release operation indicates that the caller will no longer access the reference so
that associated resources may be deallocated. If the given object reference is nil,
release does nothing. The is_nil operation returns TRUE if the object reference
contains the special value for a nil object reference as defined by the ORB. Neither the
release operation nor the is_nil operation may throw CORBA exceptions.

The duplicate operation returns a new object reference with the same static type as
the given reference. The mapping for an interface therefore includes a static member
function named _duplicate in the generated class. For example:

// IDL
interface A { };

// C++
class A
{

public:
static A_ptr _duplicate(A_ptr obj);

};

If the given object reference is nil, _duplicate will return a nil object reference.
The _duplicate operation can throw CORBA system exceptions.

1.3.4 Narrowing Object References
The mapping for an interface defines a static member function named _narrow that
returns a new object reference given an existing reference. Like _duplicate, the
_narrow function returns a nil object reference if the given reference is nil. Unlike
_duplicate, the parameter to _narrow is a reference of an object of any interface
type (Object_ptr). If the actual (runtime) type of the parameter object can be
widened to the requested interface’s type, then _narrow will return a valid object
reference; otherwise, _narrow will return a nil object reference. For example,
suppose A, B, C, and D are interface types, and D inherits from C, which inherits from
B, which in turn inherits from A. If an object reference to a C object is widened to an
A_ptr variable called ap, then:

• A::_narrow(ap) returns a valid object reference
• B::_narrow(ap) returns a valid object reference
• C::_narrow(ap) returns a valid object reference
June 2003 C++ Mapping: Mapping for Interfaces 1-9

1

• D::_narrow(ap) returns a nil object reference

Narrowing to A, B, and C all succeed because the object supports all those interfaces.
The D::_narrow returns a nil object reference because the object does not support
the D interface.

For another example, suppose A, B, C, and D are interface types. C inherits from B,
and both B and D inherit from A. Now suppose that an object of type C is passed to a
function as an A. If the function calls B::_narrow or C::_narrow, a new object
reference will be returned. A call to D::_narrow will fail and return nil.

If successful, the _narrow function creates a new object reference and does not
consume the given object reference, so the caller is responsible for releasing both the
original and new references.

The _narrow operation can throw CORBA system exceptions.

1.3.5 Nil Object Reference
The mapping for an interface defines a static member function named _nil that
returns a nil object reference of that interface type. For each interface A, the following
call is guaranteed to return TRUE:

// C++
Boolean true_result = is_nil(A::_nil());

A compliant application need not call release on the object reference returned from
the _nil function.

As described in Section 1.3.1, “Object Reference Types,” on page 1-7, object
references may not be compared using operator==; therefore, is_nil is the only
compliant way an object reference can be checked to see if it is nil.

The _nil function may not throw any CORBA exceptions.

A compliant program cannot attempt to invoke an operation through a nil object
reference, since a valid C++ implementation of a nil object reference is a null pointer.

1.3.6 Object Reference Out Parameter
When a _var is passed as an out parameter, any previous value it refers to must be
implicitly released. To give C++ mapping implementations enough hooks to meet this
requirement, each object reference type results in the generation of an _out type that
is used solely as the out parameter type. For example, interface A results in the object
reference type A_ptr, the helper type A_var, and the out parameter type A_out.
The general form for object reference _out types is shown below.
1-10 C++ Language Mapping, v1.1 June 2003

1

// C++
class A_out
{

public:
A_out(A_ptr& p) : ptr_(p) { ptr_ = A::_nil(); }
A_out(A_var& p) : ptr_(p.ptr_) {

release(ptr_); ptr_ = A::_nil();
}
A_out(const A_out& a) : ptr_(a.ptr_) {}
A_out& operator=(const A_out& a) {

ptr_ = a.ptr_; return *this;
}
A_out& operator=(const A_var& a) {

ptr_ = A::_duplicate(A_ptr(a)); return *this;
}
A_out& operator=(A_ptr p) { ptr_ = p; return *this; }
operator A_ptr&() { return ptr_; }
A_ptr& ptr() { return ptr_; }
A_ptr operator->() { return ptr_; }

private:
A_ptr& ptr_;

};

The first constructor binds the reference data member with the A_ptr& argument. The
second constructor binds the reference data member with the A_ptr object reference
held by the A_var argument, and then calls release() on the object reference. The
third constructor, the copy constructor, binds the reference data member to the same
A_ptr object reference bound to the data member of its argument. Assignment from
another A_out copies the A_ptr referenced by the argument A_out to the data
member. The overloaded assignment operator for A_ptr simply assigns the A_ptr
object reference argument to the data member. The overloaded assignment operator for
A_var duplicates the A_ptr held by the A_var before assigning it to the data
member. Note that assignment does not cause any previously-held object reference
value to be released; in this regard, the A_out type behaves exactly as an A_ptr. The
A_ptr& conversion operator returns the data member. The ptr() member function,
which can be used to avoid having to rely on implicit conversion, also returns the data
member. The overloaded arrow operator (operator->()) returns the data member
to allow operations to be invoked on the underlying object reference after it has been
properly initialized by assignment.

1.3.7 Interface Mapping Example
The example below shows one possible mapping for an interface. Other mappings are
also possible, but they must provide the same semantics and usage as this example.
June 2003 C++ Mapping: Mapping for Interfaces 1-11

1

// IDL
interface A
{

A op(in A arg1, out A arg2);
};

// C++
class A;
typedef A *A_ptr;
class A_var;
class A : public virtual Object
{

public:
typedef A_ptr _ptr_type;
typedef A_var _var_type;

static A_ptr _duplicate(A_ptr obj);
static A_ptr _narrow(Object_ptr obj);
static A_ptr _nil();

virtual A_ptr op(A_ptr arg1, A_out arg2) = 0;

protected:
A();
virtual ~A();

private:
A(const A&);
void operator=(const A&);

};

class A_var : public _var
{

public:
A_var() : ptr_(A::_nil()) {}
A_var(A_ptr p) : ptr_(p) {}
A_var(const A_var &a) : ptr_(A::_duplicate(A_ptr(a){}
~A_var() { free(); }

A_var &operator=(A_ptr p) {
reset(p); return *this;

}
A_var &operator=(const A_var& a) {

if (this != &a) {
free();
ptr_ = A::_duplicate(A_ptr(a));

}
return *this;

}
A_ptr in() const { return ptr_; }
A_ptr& inout() { return ptr_; }
1-12 C++ Language Mapping, v1.1 June 2003

1

A_ptr& out() {
reset(A::_nil());
return ptr_;

}
A_ptr _retn() {

// yield ownership of managed object reference
A_ptr val = ptr_;
ptr_ = A::_nil();
return val;

}

operator const A_ptr&() const { return ptr_; }
operator A_ptr&() { return ptr_; }
A_ptr operator->() const { return ptr_; }

protected:
A_ptr ptr_;
void free() { release(ptr_); }
void reset(A_ptr p) { free(); ptr_ = p; }

private:
// hidden assignment operators for var types
void operator=(const _var &);

};

The definition for the A_out type is the same as the one shown in Section 1.3.6,
“Object Reference Out Parameter,” on page 1-10.

1.4 Mapping for Constants
OMG IDL constants are mapped directly to a C++ constant definition that may or may
not define storage depending on the scope of the declaration. In the following example,
a top-level IDL constant maps to a file-scope C++ constant whereas a nested constant
maps to a class-scope C++ constant. This inconsistency occurs because C++ file-scope
constants may not require storage (or the storage may be replicated in each compilation
unit), while class-scope constants always take storage. As a side effect, this difference
means that the generated C++ header file might not contain values for constants
defined in the OMG IDL file.

// IDL
const string name = "testing";

interface A
{

const float pi = 3.14159;
};
June 2003 C++ Mapping: Mapping for Constants 1-13

1

// C++
static const char *const name = "testing";

class A
{

public:
static const Float pi;

};

In certain situations, use of a constant in OMG IDL must generate the constant’s value
instead of the constant’s name.3 For example,

// IDL
interface A
{

const long n = 10;
typedef long V[n];

};

// C++
class A
{

public:
static const long n;
typedef long V[10];

};

1.4.1 Wide Character and Wide String Constants
The mappings for wide character and wide string constants is identical to character and
string constants, except that IDL literals are preceded by L in C++. For example, IDL
constant:

const wstring ws = “Hello World”;

would map to

static const WChar *const ws = L”Hello World”;

in C++.

3. A recent change made to the C++ language by the ANSI/ISO C++ standardization commit-
tees allows static integer constants to be initialized within the class declaration, so for some
C++ compilers, the code generation issues described here may not be a problem.
1-14 C++ Language Mapping, v1.1 June 2003

1

1.4.2 Fixed Point Constants
Because C++ does not have a native fixed point type, IDL fixed point literals are
mapped to C++ strings without the trailing ‘d’ or ‘D’ in order to guarantee that there is
no loss of precision. For example:

// IDL
const fixed F = 123.456D;

// C++
const Fixed F = "123.456";

1.5 Mapping for Basic Data Types
The basic data types have the mappings shown in Table 1-14. Note that the mapping of
the OMG IDL boolean type defines only the values 1 (TRUE) and 0 (FALSE); other
values produce undefined behavior.

4.This mapping assumes that CORBA::LongLong, CORBA::ULongLong, and
CORBA::LongDouble are mapped directly to native numeric C++ types (e.g.,
CORBA::LongLong to a 64-bit integer type) that support the required IDL semantics and
can be manipulated via built-in operators. An alternate mapping to C++ classes that provides
appropriate creation, conversion, and manipulation operators will be provided in a future
version of this specification.

Table 1-1 Basic Data Type Mappings
OMG IDL C++ C++ Out Type
short CORBA::Short CORBA::Short_out

long CORBA::Long CORBA::Long_out

long long CORBA::LongLong CORBA::LongLong_out

unsigned short CORBA::UShort CORBA::UShort_out

unsigned long CORBA::ULong CORBA::ULong_out

unsigned long long CORBA::ULongLong CORBA::ULongLong_out

float CORBA::Float CORBA::Float_out

double CORBA::Double CORBA::Double_out

long double CORBA::LongDouble CORBA::LongDouble_out

char CORBA::Char CORBA::Char_out

wchar CORBA::WChar CORBA::WChar_out

boolean CORBA::Boolean CORBA::Boolean_out

octet CORBA::Octet CORBA::Octet_out
June 2003 C++ Mapping: Mapping for Basic Data Types 1-15

1

Each OMG IDL basic type is mapped to a typedef in the CORBA module. This is
because some types, such as short and long, may have different representations on
different platforms, and the CORBA definitions will reflect the appropriate
representation. For example, on a 64-bit machine where a long integer is 64 bits, the
definition of CORBA::Long would still refer to a 32-bit integer. Requirements for the
sizes of basic types are shown in the Common Object Request Broker Architecture
(CORBA), OMG IDL Syntax and Semantics chapter, Basic Types section.

Types boolean, char, and octet may all map to the same underlying C++ type. This
means that these types may not be distinguishable for the purposes of overloading.

Type wchar maps to wchar_t in standard C++ environments or, for nonstandard
C++ environments, may also map to one of the integer types. This means that wchar
may not be distinguishable from integer types for purposes of overloading.

All other mappings for basic types are distinguishable for the purposes of overloading.
That is, one can safely write overloaded C++ functions for Short, UShort, Long,
ULong, LongLong, ULongLong, Float, Double, and LongDouble.

The _out types for the basic types are used to type out parameters within operation
signatures, as described in Section 1.22, “Argument Passing Considerations,” on
page 1-103. For the basic types, each _out type is a typedef to a reference to the
corresponding C++ type. For example, the Short_out is defined in the CORBA
namespace as follows:

// C++
typedef Short& Short_out;

The _out types for the basic types are provided for consistency with other out
parameter types.

Programmers concerned with portability should use the CORBA types. However, some
may feel that using these types with the CORBA qualification impairs readability. If
the CORBA module is mapped to a namespace, a C++ using statement may help this
problem. On platforms where the C++ data type is guaranteed to be identical to the
OMG IDL data type, a compliant implementation may generate the native C++ type.

For the Boolean type, only the values 1 (representing TRUE) and 0 (representing
FALSE) are defined; other values produce undefined behavior. Since many existing
C++ software packages and libraries already provide their own preprocessor macro
definitions of TRUE and FALSE, this mapping does not require that such definitions be
provided by a compliant implementation. Requiring definitions for TRUE and FALSE
could cause compilation problems for CORBA applications that make use of such
packages and libraries. Instead, we recommend that compliant applications simply use
the values 1 and 0 directly5.

5. Examples and descriptions in this specification still use TRUE and FALSE for purposes of
clarity.
1-16 C++ Language Mapping, v1.1 June 2003

1

Alternatively, for those C++ compilers that support the bool type, the keywords true
and false may be used.

IDL type boolean may be mapped to C++ signed, unsigned, or plain char. This
mapping is legal for both classic and ANSI C++ environments. In addition, in an ANSI
C++ environment, IDL boolean can be mapped to C++ bool. Mappings to C++
types other than a character type or bool are illegal.

1.6 Mapping for Enums
An OMG IDL enum maps directly to the corresponding C++ type definition. The only
difference is that the generated C++ type may need an additional constant that is large
enough to force the C++ compiler to use exactly 32 bits for values declared to be of
the enumerated type.

// IDL
enum Color { red, green, blue };

// C++
enum Color { red, green, blue };

In addition, an _out type used to type out parameters within operation signatures is
generated for each enumerated type. For enum Color shown above, the Color_out
type is defined in the same scope as follows:

// C++
typedef Color& Color_out;

The _out types for enumerated types are generated for consistency with other out
parameter types.

1.7 Mapping for String Types

Comment: Issue 4243

The OMG IDL string type, whether bounded or unbounded, is mapped to char*.
String data is NUL-terminated. In addition, the CORBA module defines a class
String_var that contains a char* value and automatically frees the pointer when a
String_var object is deallocated. When a String_var is constructed or assigned
from a char*, the char* is consumed and thus the string data may no longer be
accessed through it by the caller. Assignment or construction from a const char* or
from another String_var causes a copy. The String_var class also provides
operations to convert to and from char* values, as well as subscripting operations to
access characters within the string. The full definition of the String_var interface is
given in Section 1.42.2, “String_var and String_out Class,” on page 1-154. Calling the
out or _retn functions of a String_var has the side effect of setting its internal
pointer back to null. An application may also explicitly assign a null pointer to the
String_var.
June 2003 C++ Mapping: Mapping for Enums 1-17

1

C++ does not have a built-in type that would provide a “close match” for IDL-bounded
strings. As a result, the programmer is responsible for enforcing the bound of bounded
strings at run time. Implementations of the mapping are under no obligation to prevent
assignment of a string value to a bounded string type if the string value exceeds the
bound. Implementations may choose to (at run time) detect attempts to pass a string
value that exceeds the bound as a parameter across an interface. If an implementation
chooses to detect this error, it must raise a BAD_PARAM system exception to signal
the error.

Because its mapping is char*, the OMG IDL string type is the only non-basic type
for which this mapping makes size requirements. For dynamic allocation of strings,
compliant programs must use the following functions from the CORBA namespace:

// C++
namespace CORBA {

char *string_alloc(ULong len);
char *string_dup(const char*);
void string_free(char *);
...

}

The string_alloc function dynamically allocates a string, or returns a null pointer
if it cannot perform the allocation. It allocates len+1 characters so that the resulting
string has enough space to hold a trailing NUL character. The string_dup function
dynamically allocates enough space to hold a copy of its string argument, including the
NUL character, copies its string argument into that memory, and returns a pointer to
the new string. If allocation fails, a null pointer is returned. The string_free
function deallocates a string that was allocated with string_alloc or
string_dup. Passing a null pointer to string_free is acceptable and results in no
action being performed. These functions allow ORB implementations to use special
memory management mechanisms for strings if necessary, without forcing them to
replace global operator new and operator new[].

The string_alloc, string_dup, and string_free functions may not throw
exceptions.

Note that a static array of char in C++ decays to a char*6, so care must be taken
when assigning one to a String_var, since the String_var will assume the
pointer points to data allocated via string_alloc and thus will eventually attempt
to string_free it:

// C++
// The following is an error, since the char* should point to
// data allocated via string_alloc so it can be consumed
String_var s = "static string";// error

6. This has changed in ANSI/ISO C++, where string literals are const char*, not char*. How-
ever, since most C++ compilers do not yet implement this change, portable programs must
heed the advice given here.
1-18 C++ Language Mapping, v1.1 June 2003

1

// The following are OK, since const char* are copied,
// not consumed
const char* sp = "static string";
s = sp;
s = (const char*)"static string too";

When a String_var is passed as an out parameter, any previous value it refers to
must be implicitly freed. To give C++ mapping implementations enough hooks to meet
this requirement, the string type also results in the generation of a String_out type
in the CORBA namespace, which is used solely as the string out parameter type. The
general form for the String_out type is shown below.

// C++
class String_out
{

public:
String_out(char*& p) : ptr_(p) { ptr_ = 0; }
String_out(String_var& p) : ptr_(p.ptr_) {

string_free(ptr_); ptr_ = 0;
}
String_out(const String_out& s) : ptr_(s.ptr_) {}
String_out& operator=(const String_out& s) {

ptr_ = s.ptr_; return *this;
}
String_out& operator=(char* p) {

ptr_ = p; return *this;
}
String_out& operator=(const char* p) {

ptr_ = string_dup(p); return *this;
}
operator char*&() { return ptr_; }
char*& ptr() { return ptr_; }

private:
char*& ptr_;

// assignment from String_var disallowed
void operator=(const String_var&);

};

The first constructor binds the reference data member with the char*& argument. The
second constructor binds the reference data member with the char* held by the
String_var argument, and then calls string_free() on the string. The third
constructor, the copy constructor, binds the reference data member to the same char*
bound to the data member of its argument. Assignment from another String_out
copies the char* referenced by the argument String_out to the char* referenced
by the data member. The overloaded assignment operator for char* simply assigns
the char* argument to the data member. The overloaded assignment operator for
const char* duplicates the argument and assigns the result to the data member.
Note that assignment does not cause any previously-held string to be freed; in this
June 2003 C++ Mapping: Mapping for String Types 1-19

1

regard, the String_out type behaves exactly as a char*. The char*& conversion
operator returns the data member. The ptr() member function, which can be used to
avoid having to rely on implicit conversion, also returns the data member.

Assignment from String_var to a String_out is disallowed because of the
memory management ambiguities involved. Specifically, it is not possible to determine
whether the string owned by the String_var should be taken over by the
String_out without copying, or if it should be copied. Disallowing assignment from
String_var forces the application developer to make the choice explicitly:

// C++
void
A::op(String_out arg)
{

String_var s = string_dup("some string");
...
arg = s; // disallowed; either
arg = string_dup(s); // 1: copy, or
arg = s._retn(); // 2: adopt

}

On the line marked with the comment “1,” the application writer is explicitly copying
the string held by the String_var and assigning the result to the arg argument.
Alternatively, the application writer could use the technique shown on the line marked
with the comment “2” in order to force the String_var to give up its ownership of
the string it holds so that it may be returned in the arg argument without incurring
memory management errors.

A compliant mapping implementation shall provide overloaded operator<<
(insertion) and operator>> (extraction) operators for using String_var and
String_out directly with C++ iostreams. The operator>> extraction operator has
the same semantics as the underlying standard C++ operator>> for extracting
strings from an input stream (extracting until whitespace or end of file). Space to store
the extracted characters are allocated by calling string_alloc, and the previous
contents of the String_var are released by calling string_free.

1.8 Mapping for Wide String Types
Both bounded and unbounded wide string types are mapped to CORBA::WChar* in
C++. In addition, the CORBA module defines WString_var and WString_out
classes. Each of these classes provides the same member functions with the same
semantics as their string counterparts, except of course they deal with wide strings and
wide characters.

Dynamic allocation and deallocation of wide strings must be performed via the
following functions:

// C++
namespace CORBA {
1-20 C++ Language Mapping, v1.1 June 2003

1

// ...
WChar *wstring_alloc(ULong len);

WChar *wstring_dup(const WChar* ws);
void wstring_free(WChar*);

};

These functions have the same semantics as the same functions for the string type,
except they operate on wide strings.

A compliant mapping implementation provides overloaded operator<< (insertion)
and operator>> (extraction) operators for using WString_var and
WString_out directly with C++ iostreams. The operator>> extraction operator
has the same semantics as the underlying standard C++ operator>> for extracting
wide strings from an input stream (extracting until whitespace or end of file). Space to
store the extracted characters are allocated by calling wstring_alloc, and the
previous contents of the WString_var are released by calling wstring_free.

1.9 Mapping for Structured Types
The mapping for struct, union, and sequence is a C++ struct or class with a default
constructor, a copy constructor, an assignment operator, and a destructor. The default
constructor initializes object reference members to appropriately-typed nil object
references, and string members and wide string members to the empty string ("" and
L"", respectively). All other members are initialized via their default constructors. The
copy constructor performs a deep-copy from the existing structure to create a new
structure, including calling _duplicate on all object reference members and
performing the necessary heap allocations for all string members and wide string
members. The assignment operator first releases all object reference members and
frees all string members and wide string members, and then performs a deep-copy to
create a new structure. The destructor releases all object reference members and frees
all string members and wide string members.

The mapping for OMG IDL structured types (structs, unions, arrays, and sequences)
can vary slightly depending on whether the data structure is fixed-length or variable-
length. A type is variable-length if it is one of the following types:

• The type any.
• A bounded or unbounded string or wide string.
• A bounded or unbounded sequence.
• An object reference or reference to a transmissible pseudo-object.
• A valuetype.
• A struct or union that contains a member whose type is variable-length.
• An array with a variable-length element type.
• A typedef to a variable-length type.

The reason for treating fixed- and variable-length data structures differently is to allow
more flexibility in the allocation of out parameters and return values from an
operation. This flexibility allows a client-side stub for an operation that returns a
sequence of strings (for example, to allocate all the string storage in one area that is
deallocated in a single call).
June 2003 C++ Mapping: Mapping for Structured Types 1-21

1

As a convenience for managing pointers to variable-length data types, the mapping
also provides a managing helper class for each variable-length type. This type, which
is named by adding the suffix “_var” to the original type’s name, automatically deletes
the pointer when an instance is destroyed. An object of type T_var behaves similarly
to the structured type T, except that members must be accessed indirectly. For a struct,
this means using an arrow (“->”) instead of a dot (“.”).

// IDL
struct S { string name; float age; };
void f(out S p);

// C++
S a;
S_var b;
f(b);
a = b; // deep-copy
cout << "names " << a.name << ", " << b->name << endl;

To facilitate template-based programming, all struct, union, and sequence
classes contain nested public typedefs for their associated T_var types. For example,
for an IDL sequence named Seq, the mapped sequence class Seq contains a
_var_type typedef as follows:

// C++
class Seq_var;
class Seq
{

public:
typedef Seq_var _var_type;
// ...

};

1.9.1 T_var Types
The general form of the T_var types is shown below.

// C++
class T_var
{

public:
T_var();
T_var(T *);
T_var(const T_var &);
~T_var();

T_var &operator=(T *);
T_var &operator=(const T_var &);

T* operator->();
const T* operator->() const;
1-22 C++ Language Mapping, v1.1 June 2003

1

/* in parameter type */ in() const;
/* inout parameter type */ inout();
/* out parameter type */ out();
/* return type */ _retn();

// other conversion operators to support
// parameter passing

};

The default constructor creates a T_var containing a null T*. Compliant applications
may not attempt to convert a T_var created with the default constructor into a T* nor
use its overloaded operator-> without first assigning to it a valid T* or another
valid T_var. Due to the difficulty of doing so, compliant implementations are not
required to detect this error. Conversion of a null T_var to a T_out is allowed,
however, so that a T_var can legally be passed as an out parameter. Conversion of a
null T_var to a T*& is also allowed so as to be compatible with earlier versions of
this specification.

Comment: Issue 3534

The T* constructor creates a T_var that, when destroyed, will delete the storage
pointed to by the T* parameter. It is legal to initialize a T_var with a null pointer.

The copy constructor deep-copies any data pointed to by the T_var constructor
parameter. This copy will be destroyed when the T_var is destroyed or when a new
value is assigned to it. Compliant implementations may, but are not required to, utilize
some form of reference counting to avoid such copies.

The destructor uses delete to deallocate any data pointed to by the T_var, except
for strings and array types, which are deallocated using the string_free and
T_free (for array type T) deallocation functions, respectively.

The T* assignment operator results in the deallocation of any old data pointed to by
the T_var before assuming ownership of the T* parameter.

Comment: Issue 3534

The normal assignment operator deep-copies any data pointed to by the T_var
assignment parameter. This copy will be destroyed when the T_var is destroyed or
when a new value is assigned to it. Assigning a null pointer to a T_var is legal and
results in deallocation of the data pointed to by the T_var.

The overloaded operator-> returns the T* held by the T_var, but retains
ownership of it. Compliant applications may not call this function unless the T_var
has been initialized with a valid non-null T* or T_var.

In addition to the member functions described above, the T_var types must support
conversion functions that allow them to fully support the parameter passing modes
shown in “Basic Argument and Result Passing” on page 1-106. The form of these
June 2003 C++ Mapping: Mapping for Structured Types 1-23

1

conversion functions is not specified so as to allow different implementations, but the
conversions must be automatic (i.e., they must require no explicit application code to
invoke them).

Because implicit conversions can sometimes cause problems with some C++ compilers
and with code readability, the T_var types also support member functions that allow
them to be explicitly converted for purposes of parameter passing.

To obtain a return value from the T_var, an application can call the _retn()
function.7

For each T_var type, the return types of each of these functions match the types
shown in version 2.3 of the Common Object Request Broker Architecture (CORBA),
Mapping: OLE Automation and CORBA chapter, Mapping of Automation Types to
OMG IDL Types table for the in, inout, out and return modes for underlying type T
respectively.

For T_var types that return T*& from the out() member function, the out()
member function calls delete on the T* owned by the T_var, sets it equal to the
null pointer, and then returns a reference to it. This is to allow for proper management
of the T* owned by a T_var when passed as an out parameter, as described in
Section 1.22, “Argument Passing Considerations,” on page 1-103. An example
implementation of such an out() function is shown below:

// C++
T*& T_var::out()
{

// assume ptr_ is the T* data member of the T_var
delete ptr_;
ptr_ = 0;
return ptr_;

}

Similarly, for T_var types whose corresponding type T is returned from IDL
operations as T* (see “Basic Argument and Result Passing” on page 1-106), the
_retn() function stores the value of the T* owned by the T_var into a temporary
pointer, sets the T* to the null pointer value, and then returns the temporary. The

To pass a T_var as an: an application can call the ...

in parameter in() member function of the T_var

inout parameter inout() member function

out parameter out() member function

7. A leading underscore is needed on the _retn() function to keep it from clashing with
user-defined member names of constructed types, but leading underscores are not needed
for the in(), inout(), and out() functions because their names are IDL keywords,
so users can’t define members with those names.
1-24 C++ Language Mapping, v1.1 June 2003

1

T_var thus yields ownership of its T* to the caller of _retn() without calling
delete on it, and the caller becomes responsible for eventually deleting the returned
T*. An example implementation of such a _retn() function is shown below:

// C++
T* T_var::_retn()
{

// assume ptr_ is the T* data member of the T_var
T* tmp = ptr_;
ptr_ = 0;
return tmp;

}

This allows, for example, a method implementation to store a T* as a potential return
value in a T_var so that it will be deleted if an exception is thrown, and yet be able to
acquire control of the T* to be able to return it properly:

// C++
T_var t = new T;// t owns pointer to T
if (exceptional_condition) {

// t owns the pointer and will delete it
// as the stack is unwound due to throw
throw AnException();

}
...
return t._retn(); // _retn() takes ownership of

// pointer from t

After _retn() is invoked on a T_var instance, its internal T* pointer is null, so
invoking either of its overloaded operator-> functions without first assigning a
valid non-null T* to the T_var will attempt to de-reference the null pointer, which is
illegal in C++.

For reasons of consistency, the T_var types are also produced for fixed-length
structured types. These types have the same semantics as T_var types for variable-
length types. This allows applications to be coded in terms of T_var types regardless
of whether the underlying types are fixed- or variable-length. T_var types for fixed-
length structured types have the following general form:

// C++
class T_var {

public:
T_var() : m_ptr(0) {}
T_var(T *t) : m_ptr(t) {}
T_var(const T& t) : m_ptr(new T(t)) {}
T_var(const T_var &t) : m_ptr(0) {

if (t.m_ptr != 0)
m_ptr = new T(*t.m_ptr);

}
~T_var() { delete m_ptr; }
T_var &operator=(T *t) {
June 2003 C++ Mapping: Mapping for Structured Types 1-25

1

if (t != m_ptr) {
delete m_ptr;
m_ptr = t;

}
return *this;

}
T_var &operator=(const T& t) {

if (&t != m_ptr) {
T* old_m_ptr = m_ptr;
m_ptr = new T(t);
delete old_m_ptr;

}
return *this;

}
T_var &operator=(const T_var &t) {

if (this != &t) {
T* old_m_ptr = m_ptr;
if (t.m_ptr != 0)

m_ptr = new T(*t.m_ptr);
else

m_ptr = 0;
delete old_m_ptr;

}
return *this;

}
T* operator->() { return m_ptr; }
const T* operator->() const { return m_ptr; }
const T& in() const { return *m_ptr; }
T& inout() { return *m_ptr; }
T& out() {

if (m_ptr == 0)
m_ptr = new T;

return *m_ptr;
}
T _retn() { return *m_ptr; }

private:
T* m_ptr;

};

Each T_var type must be defined at the same level of nesting as its T type.

T_var types do not work with a pointer to constant T, since they provide no
constructor nor operator= taking a const T* parameter. Since C++ does not
allow delete to be called on a const T*8, the T_var object would normally have

8.This too has changed in ANSI/ISO C++, but it not yet widely implemented by C++ compilers.
1-26 C++ Language Mapping, v1.1 June 2003

1

to copy the const object; instead, the absence of the const T* constructor and
assignment operators will result in a compile-time error if such an initialization or
assignment is attempted. This allows the application developer to decide if a copy is
really wanted or not. Explicit copying of const T* objects into T_var types can be
achieved via the copy constructor for T:

// C++
const T *t = ...;
T_var tv = new T(*t);

1.9.2 T_out Types
When a T_var is passed as an out parameter, any previous value it referred to must
be implicitly deleted. To give C++ mapping implementations enough hooks to meet
this requirement, each T_var type has a corresponding T_out type, which is used
solely as the out parameter type. The general form for T_out types for variable-
length types is shown below.

// C++
class T_out
{

public:
T_out(T*& p) : ptr_(p) { ptr_ = 0; }
T_out(T_var& p) : ptr_(p.ptr_) {
delete ptr_;
ptr_ = 0;

}
T_out(const T_out& p) : ptr_(p.ptr_) {}
T_out& operator=(const T_out& p) {

ptr_ = p.ptr_;
return *this;

}
T_out& operator=(T* p) { ptr_ = p; return *this; }

operator T*&() { return ptr_; }
T*& ptr() { return ptr_; }

T* operator->() { return ptr_; }

private:
T*& ptr_;

// assignment from T_var not allowed
void operator=(const T_var&):

};

The first constructor binds the reference data member with the T*& argument and sets
the pointer to the null pointer value. The second constructor binds the reference data
member with the pointer held by the T_var argument, and then calls delete on the
June 2003 C++ Mapping: Mapping for Structured Types 1-27

1

pointer (or string_free() in the case of the String_out type or T_free() in
the case of a T_var for an array type T). The third constructor, the copy constructor,
binds the reference data member to the same pointer referenced by the data member of
the constructor argument. Assignment from another T_out copies the T* referenced
by the T_out argument to the data member. The overloaded assignment operator for
T* simply assigns the pointer argument to the data member. Note that assignment does
not cause any previously-held pointer to be deleted; in this regard, the T_out type
behaves exactly as a T*. The T*& conversion operator returns the data member. The
ptr() member function, which can be used to avoid having to rely on implicit
conversion, also returns the data member. The overloaded arrow operator
(operator->()) allows access to members of the data structure pointed to by the T*
data member. Compliant applications may not call the overloaded operator->()
unless the T_out has been initialized with a valid non-null T*.

Assignment to a T_out from instances of the corresponding T_var type is disallowed
because there is no way to determine whether the application developer wants a copy
to be performed, or whether the T_var should yield ownership of its managed pointer
so it can be assigned to the T_out. To perform a copy of a T_var to a T_out, the
application should use new:

// C++
T_var t = ...;
my_out = new T(t.in());// heap-allocate a copy

The in() function called on t typically returns a const T&, suitable for invoking the
copy constructor of the newly-allocated T instance.

Alternatively, to make the T_var yield ownership of its managed pointer so it can be
returned in a T_out parameter, the application should use the T_var::_retn()
function:

// C++
T_var t = ...;
my_out = t._retn();// t yields ownership, no copy

Comment: Issue 1519

For fixed-length underlying types, no memory management issues arise; however, a
compliant mapping must provide the following type definition in the scope of T:

typedef T &T_out;

Note that the T_out types are not intended to serve as general-purpose data types to
be created and destroyed by applications; they are used only as types within operation
signatures to allow necessary memory management side-effects to occur properly.
1-28 C++ Language Mapping, v1.1 June 2003

1

1.10 Mapping for Struct Types

Comment: Issue 4340

An OMG IDL struct maps to C++ struct, with each OMG IDL struct member mapped
to a corresponding member of the C++ struct. The C++ structure members appear in
the same order as the corresponding IDL structure members. This mapping allows
simple field access as well as aggregate initialization of most fixed-length structs. To
facilitate such initialization, C++ structs must not have user-defined constructors,
assignment operators, or destructors, and each struct member must be of self-managed
type. With the exception of strings and object references, the type of a C++ struct
member is the normal mapping of the OMG IDL member’s type.

For a string, wide string, or object reference member, the name of the C++ member’s
type is not specified by the mapping; therefore, a compliant program cannot create an

Comment: Issue 4243

object of that type. The behavior of the type is the same as the normal mapping
(char* for string, WChar* for wide string, and A_ptr for an interface A) except the
type’s copy constructor copies the member’s storage and its assignment operator
releases the member’s old storage. These types must also provide the in(),
inout(), out(), and _retn() functions that their corresponding T_var types
provide to allow them to support the parameter passing modes specified in Table 1-3
on page 1-106. A compliant mapping implementation also provides overloaded
operator<< (insertion) and operator>> (extraction) operators for using string
members and wide string members directly with C++ iostreams.

For anonymous sequence members (required for recursive structures), a type name is
required for the member. This name is generated by prepending an underscore to the
member name, and appending “_seq”. For example:

// IDL
struct node {

long value;
sequence<node, 2> operand;

};

This results in the following C++ code:

// C++
struct node {

typedef ... _operand_seq;
Long value;
_operand_seq operand;

};

In the C++ code shown above, the “...” in the _operand_seq typedef refers to an
implementation-specific sequence type. The name of this type is not standardized.
June 2003 C++ Mapping: Mapping for Struct Types 1-29

1

Assignment between a string, wide string, or object reference member and a
corresponding T_var type (String_var, WString_var, or A_var) always results
in copying the data, while assignment with a pointer does not. The one exception to the
rule for assignment is when a const char* or const WChar* is assigned to a
member, in which case the storage is copied.

When the old storage must not be freed (for example, it is part of the function’s
activation record), one can access the member directly as a pointer using the _ptr
field accessor. This usage is dangerous and generally should be avoided.

// IDL
struct FixedLen { float x, y, z; };

// C++
FixedLen x1 = {1.2, 2.4, 3.6};
FixedLen_var x2 = new FixedLen;
x2->y = x1.z;

The example above shows usage of the T and T_var types for a fixed-length struct.
When it goes out of scope, x2 will automatically free the heap-allocated FixedLen
object using delete.

The following examples illustrate mixed usage of T and T_var types for variable-
length types, using the following OMG IDL definition:

// IDL
interface A;
struct Variable { string name; };

// C++
Variable str1; // str1.name is initially empty
Variable_var str2 = new Variable;// str2->name is

// initially empty

char *non_const;
const char *const2;
String_var string_var;
const char *const3 = "string 1";
const char *const4 = "string 2";

str1.name = const3; // 1: free old storage, copy
str2->name = const4; // 2: free old storage, copy

In the example above, the name components of variables str1 and str2 both start
out as empty strings. On the line marked 1, const3 is assigned to the name
component of str1. This results in the previous str1.name being freed, and since
const3 points to const data, the contents of const3 being copied. In this case,
str1.name started out as an empty string, so it must be freed before the copying of
const3 takes place. Line 2 is similar to line 1, except that str2 is a T_var type.
1-30 C++ Language Mapping, v1.1 June 2003

1

Continuing with the example:

// C++
non_const = str1.name; // 3: no free, no copy
const2 = str2->name; // 4: no free, no copy

On the line marked 3, str1.name is assigned to non_const. Since non_const is
a pointer type (char*), str1.name is not freed, nor are the data it points to copied.
After the assignment, str1.name and non_const effectively point to the same
storage, with str1.name retaining ownership of that storage. Line 4 is identical to
line 3, even though const2 is a pointer to const char; str2->name is neither freed
nor copied because const2 is a pointer type.

// C++
str1.name = non_const; // 5: free, no copy
str1.name = const2; // 6: free old storage, copy

Line 5 involves assignment of a char* to str1.name, which results in the old
str1.name being freed and the value of the non_const pointer, but not the data it
points to, being copied. In other words, after the assignment str1.name points to the
same storage as non_const points to. Line 6 is the same as line 5 except that because
const2 is a const char*, the data it points to are copied.

// C++
str2->name = str1.name; // 7: free old storage, copy
str1.name = string_var; // 8: free old storage, copy
string_var = str2->name; // 9: free old storage,copy

On line 7, assignment is performed to a member from another member, so the original
value is of the left-hand member is freed and the new value is copied. Similarly, lines
8 and 9 involve assignment to or from a String_var, so in both cases the original
value of the left-hand side is freed and the new value is copied.

// C++
str1.name._ptr = str2.name; // 10: no free, no copy

Finally, line 10 uses the _ptr field accessor, so no freeing or copying takes place.
Such usage is dangerous and generally should be avoided.

Comment: Issue 4243

Compliant programs use new to dynamically allocate structs and delete to free
them.

1.11 Mapping for Fixed Types
The C++ mapping for fixed is defined by the following class:

// C++
class Fixed
June 2003 C++ Mapping: Mapping for Fixed Types 1-31

1

{
public:

// Constructors
Fixed(int val = 0);
Fixed(unsigned val);
Fixed(Long val);
Fixed(ULong val);
Fixed(LongLong val);
Fixed(ULongLong val);
Fixed(Double val);
Fixed(LongDouble val);
Fixed(const Fixed& val);
Fixed(const char*);
~Fixed();

// Conversions
operator LongLong() const;
operator LongDouble() const;
Fixed round(UShort scale) const;
Fixed truncate(UShort scale) const;

Comment: Issue 3944

char *to_string() const;
// Operators
Fixed& operator=(const Fixed& val);
Fixed& operator+=(const Fixed& val);
Fixed& operator-=(const Fixed& val);
Fixed& operator*=(const Fixed& val);
Fixed& operator/=(const Fixed& val);

Fixed& operator++();
Fixed operator++(int);
Fixed& operator--();
Fixed operator--(int);
Fixed operator+() const;
Fixed operator-() const;
Boolean operator!() const;

// Other member functions
UShort fixed_digits() const;
UShort fixed_scale() const;

};

istream& operator>>(istream& is, Fixed& val);
ostream& operator<<(ostream& os, const Fixed& val);

Fixed operator + (const Fixed& val1, const Fixed& val2);
Fixed operator - (const Fixed& val1, const Fixed& val2);
Fixed operator * (const Fixed& val1, const Fixed& val2);
Fixed operator / (const Fixed& val1, const Fixed& val2);
1-32 C++ Language Mapping, v1.1 June 2003

1

Boolean operator > (const Fixed& val1, const Fixed& val2);
Boolean operator < (const Fixed& val1, const Fixed& val2);
Boolean operator >= (const Fixed& val1, const Fixed& val2);
Boolean operator <= (const Fixed& val1, const Fixed& val2);
Boolean operator == (const Fixed& val1, const Fixed& val2);
Boolean operator != (const Fixed& val1, const Fixed& val2);

The Fixed class is used directly by the C++ mapping for IDL fixed-point constant
values and for all intermediate results of arithmetic operations on fixed-point values.
For fixed-point parameters of IDL operations or members of IDL structured datatypes,
the implementation may use the Fixed type directly, or alternatively, may use a
different type, with an effectively constant digits and scale, that provides the same C++
interface and can be implicitly converted from/to the Fixed class. The name(s) of this
alternative class is not defined by this mapping. Since fixed-point types used as
parameters of IDL operations must be named via an IDL typedef declaration, the
mapping must use the typedef to define the type of the operation parameter to make
sure that server-side operation signatures are portable. Here is an example of the
mapping:

// IDL
typedef fixed<5,2> F;

interface A
{

void op(in F arg);
};

// C++
typedef Implementation_Defined_Class F;

class A
{

public:
...
void op(const F& arg);
...

};

The Fixed class has a number of constructors to guarantee that a fixed value can be
constructed from any of the IDL standard integer and floating point types. The
Fixed(char*) constructor converts a string representation of a fixed-point literal,
with an optional leading sign (+ or -) and an optional trailing ‘d’ or ‘D,’ into a real
fixed-point value. The Fixed class also provides conversion operators back to the
LongLong and LongDouble types. For conversion to integral types, digits to the
right of the decimal point are truncated. If the magnitude of the fixed-point value does
not fit in the target conversion type, then the DATA_CONVERSION system
exception is thrown.
June 2003 C++ Mapping: Mapping for Fixed Types 1-33

1

The round and truncate functions convert a fixed value to a new value with the
specified scale. If the new scale requires the value to lose precision on the right, the
round function will round away from zero values that are halfway or more to the next
absolute value for the new fixed precision. The truncate function always truncates
the value towards zero. If the value currently has fewer digits on the right than the new
scale, round and truncate return the argument unmodified. For example:

// C++
Fixed f1 = "0.1";
Fixed f2 = "0.05";
Fixed f3 = "-0.005;

In this example, f1.round(0) and f1.truncate(0) both return 0,
f2.round(1) returns 0.1, f2.truncate(1) returns 0.0, f3.round(2) returns
-0.01 and f3.truncate(2) returns 0.00.

Comment: Issue 3944

to_string() converts a fixed value to a string. Leading zeros are dropped, but
trailing fractional zeros are preserved. (For example, a fixed<4,2> with the
value 1.1 is converted “1.10”.) The caller of Fixed::to_string() must deallocate
the return value by calling CORBA::string_free() or assigning the return value
to a String_var.

The fixed_digits and fixed_scale functions return the smallest digits and
scale value that can hold the complete fixed-point value. If the implementation uses
alternative classes for operation parameters and structured type members, then
fixed_digits and fixed_scale return the constant digits and scale values
defined by the source IDL fixed-point type.

Arithmetic operations on the Fixed class must calculate the result exactly, using an
effective double precision (62 digit) temporary value. The results are then truncated at
run time to fit in a maximum of 31 digits using the method defined in version 2.3 of
the Common Object Request Broker Architecture (CORBA), OMG IDL Syntax and
Semantics chapter, Semantics section to determine the new digits and scale. If the
result of any arithmetic operation produces more than 31 digits to the left of the
decimal point, the DATA_CONVERSION exception will be thrown. If a fixed-point
value, used as an actual operation parameter or assigned to a member of an IDL
structured datatype, exceeds the maximum absolute value implied by the digits and
scale, the DATA_CONVERSION exception will be thrown.

The stream insertion and extraction operators << and >> convert a fixed-point value
to/from a stream. The exact definition of these operators may vary depending on the
level of standardization of the C++ environment. These operators insert and extract
fixed-point values into the stream using the same format as for C++ floating point
types. In particular, the trailing ‘d’ or ‘D’ from the IDL fixed-point literal
representation is not inserted or extracted from the stream. These operators use all
format controls appropriate to floating point defined by the stream classes except that
they never use the scientific format.
1-34 C++ Language Mapping, v1.1 June 2003

1

1.11.1 Fixed T_var and T_out Types
Because fixed-point types are always passed by reference as operation parameters and
returned by value, there is no need for a _var type for a fixed-point type. For each
IDL fixed-point typedef a corresponding _out type is defined as a reference to the
fixed-point type:

// IDL
typedef fixed<5,2> F;

// C++
typedef Implementation_Defined_Name F;
typedef F& F_out;

1.12 Mapping for Union Types
Unions map to C++ classes with access functions for the union members and
discriminant. Some member functions only provide read access to a member. Such
functions are called “accessor functions” or “accessors” for short. For example:

// C++
Long x() const;

Here, x() is an accessor that returns the value of the member x of a union (of type
Long in this example).

Other member functions only provide write access to a union member. Such functions
are called “modifier functions” or “modifiers” for short. For example:

// C++
void x(Long val);

Here, x() is a modifier that sets the value of the member x of a union (of type Long
in this example).

Still other union member functions provide read-write access to a union member by
returning a reference to that member. Such functions are called “reference functions”
or “referents” for short. For example:

// C++
S& w();

Here, w() is a referent to the member w (of type S) of a union.

The default union constructor performs no application-visible initialization of the
union. It does not initialize the discriminator, nor does it initialize any union members
to a state useful to an application. (The implementation of the default constructor can
do whatever type of initialization it wants to, but such initialization is implementation-
dependent. No compliant application can count on a union ever being properly
initialized by the default constructor alone.) Assigning, copying, and the destruction of
June 2003 C++ Mapping: Mapping for Union Types 1-35

1

default-constructed unions are safe. Assignment from or copying a default-constructed
union results in the target of the assignment or copy being initialized the same as a
default-constructed union.

It is therefore an error for an application to access the union before setting it, but ORB
implementations are not required to detect this error due to the difficulty of doing so.
The copy constructor and assignment operator both perform a deep-copy of their
parameters, with the assignment operator releasing old storage if necessary. The
destructor releases all storage owned by the union.

The union discriminant accessor and modifier functions have the name _d to both be
brief and to avoid name conflicts with the union members. The _d discriminator
modifier can only be used to set the discriminant to a value within the same union
member. In addition to the _d accessor and modifier, a union with an implicit default
member provides a _default() modifier function that sets the discriminant to a
legal default value. A union has an implicit default member if it does not have a
default case and not all permissible values of the union discriminant are listed.
Assigning, copying, and the destruction of a union immediately after calling
_default() are safe. Assignment from or copying of such a union results in the
target of the assignment or copy having the same safe state as it would if its
_default() function were invoked.

Setting the union value through a modifier function automatically sets the discriminant
and may release the storage associated with the previous value. Attempting to get a
value through an accessor that does not match the current discriminant results in
undefined behavior. If a modifier for a union member with multiple legal discriminant
values is used to set the value of the discriminant, the union implementation is free to
set the discriminant to any one of the legal values for that member. The actual
discriminant value chosen under these circumstances is implementation-dependent.
Calling a referent for a member that does not match the current discriminant results in
undefined behavior.

The following example helps illustrate the mapping for union types:

// IDL
typedef octet Bytes[64];
struct S { long len; };
interface A;
valuetype Val;
union U switch (long) {

case 1: long x;
case 2: Bytes y;
case 3: string z;
case 4:
case 5: S w;
case 6: Val v;
default: A obj;

};

// C++
typedef Octet Bytes[64];
1-36 C++ Language Mapping, v1.1 June 2003

1

typedef Octet Bytes_slice;
class Bytes_forany { ... };
struct S { Long len; };
typedef ... A_ptr;
class Val ... ;
class U
{

public:
U();
U(const U&);
~U();
U &operator=(const U&);

void _d(Long);
Long _d() const;

void x(Long);
Long x() const;

void y(Bytes);
Bytes_slice *y() const;

void z(char*); // free old storage, no copy
void z(const char*); // free old storage,
void z(const String_var &);// free old storage, copy
const char *z() const;

void w(const S &); // deep copy
const S &w() const; // read-only access
S &w(); // read-write access

void v(Val*); // _remove_ref old valuetype,
// _add_ref argument

Val* v() const; // no _add_ref of return value

void obj(A_ptr); // release old objref,
// duplicate

A_ptr obj() const; // no duplicate
};

Accessor and modifier functions for union members provide semantics similar to that
of struct data members. Modifier functions perform the equivalent of a deep-copy of
their parameters, and their parameters should be passed by value (for small types) or
by reference to const (for larger types). Referents can be used for read-write access,
but are only provided for the following types: struct, union, sequence, any, and
fixed.

The reference returned from a reference function continues to denote that member only
for as long as the member is active. If the active member of the union is subsequently
changed, the reference becomes invalid, and attempts to read or write the member via
the reference result in undefined behavior.
June 2003 C++ Mapping: Mapping for Union Types 1-37

1

For an array union member, the accessor returns a pointer to the array slice, where the
slice is an array with all dimensions of the original except the first (array slices are
described in detail in Section 1.14, “Mapping For Array Types,” on page 1-48). The
array slice return type allows for read-write access for array members via regular
subscript operators. For members of an anonymous array type, supporting typedefs for
the array must be generated directly into the union. For example:

// IDL
union U switch (long) {

default: long array[20][20];
};

// C++
class U
{

public:
// ...
void array(long arg[20][20]);
typedef long _array_slice[20];
_array_slice * array();
// ...

};

The name of the supporting array slice typedef is created by prepending an underscore
and appending “_slice” to the union member name. In the example above, the array
member named “array” results in an array slice typedef called “_array_slice” nested in
the union class.

For string union members, the char* modifier results in the freeing of old storage
before ownership of the pointer parameter is assumed, while the const char*
modifier and the String_var modifier9 both result in the freeing of old storage
before the parameter’s storage is copied. The accessor for a string member returns a
const char* to allow examination but not modification of the string storage.10 The
union will also provide modifier functions that take the unnamed string struct member,
array member, and sequence member types as a parameter, with the same semantics as
the String_var modifier.

For object reference union members, object reference parameters to modifier functions
are duplicated after the old object reference is released. An object reference return
value from an accessor function is not duplicated because the union retains ownership
of the object reference.

9. A separate modifier for String_var is needed because it can automatically convert to
both a char* and a const char*; since unions provide modifiers for both of these
types, an attempt to set a string member of a union from a String_var would otherwise
result in an ambiguity error at compile time.

10.A return type of char* allowing read-write access could mistakenly be assigned to a
String_var, resulting in the String_var and the union both assuming ownership for
the string’s storage.
1-38 C++ Language Mapping, v1.1 June 2003

1

For anonymous sequence union members (required for recursive unions), a type name
is required. This name is generated by prepending an underscore to the member name,
and appending “_seq”. For example:

// IDL
union node switch (long) {

case 0: long value;
case 1: sequence<node, 2> operand;

};

This results in the following C++:

// C++
class node {

public:
typedef ... _operand_seq;
...
// Member functions dealing with the operand
// member use _operand_seq for its type.
...

};

In the C++ code shown above, the “...” in the _operand_seq typedef refers to an
implementation-specific sequence type. The name of this type is not standardized.

The restrictions for using the _d discriminator modifier function are shown by the
following examples, based on the definition of the union U shown above:

// C++
S s = {10};
U u;
u.w(s); // member w selected
u._d(4); // OK, member w selected
u._d(5); // OK, member w selected
u._d(1); // error, different member selected
A_ptr a = ...;
u.obj(a); // member obj selected
u._d(7); // OK, member obj selected
u._d(1); // error, different member selected
s = u.w(); // error, member w not active

As shown here, neither the _d modifier function nor the w referent can be used to
implicitly switch between different union members. The following shows an example
of how the _default() member function is used:

// IDL
union Z switch(boolean) {

case TRUE: short s;
};
June 2003 C++ Mapping: Mapping for Union Types 1-39

1

// C++
Z z;
z._default(); // implicit default member selected
Boolean disc = z._d(); // disc == FALSE
U u; // union U from previous example
u._default(); // error, no _default() provided

For union Z, calling the _default() modifier function causes the union’s value to
be composed solely of the discriminator value of FALSE, since there is no explicit
default member. For union U, calling _default() causes a compilation error
because U has an explicitly declared default case and thus no _default() member
function. A _default() member function is only generated for unions with implicit
default members.

Comment: Issue 4243

Compliant programs use new to dynamically allocate unions and delete to free
them.

1.13 Mapping for Sequence Types
A sequence is mapped to a C++ class that behaves like an array with a current length
and a maximum length. For a bounded sequence, the maximum length is implicit in the
sequence’s type and cannot be explicitly controlled by the programmer. For an
unbounded sequence, the initial value of the maximum length can be specified in the
sequence constructor to allow control over the size of the initial buffer allocation. The
length of a sequence never changes without an explicit call to the length() member
function.

For an unbounded sequence, setting the length to a larger value than the current length
may reallocate the sequence data. Reallocation is conceptually equivalent to creating a
new sequence of the desired new length, copying the old sequence elements zero
through length-1 into the new sequence, and then assigning the old sequence to be the
same as the new sequence. Setting the length to a smaller value than the current length
does not affect how the storage associated with the sequence is manipulated. Note,
however, that the elements orphaned by this reduction are no longer accessible and that
their values cannot be recovered by increasing the sequence length to its original value.

For a bounded sequence, attempting to set the current length to a value larger than the
maximum length given in the OMG IDL specification produces undefined behavior.

For each different typedef naming an anonymous sequence type, a compliant mapping
implementation provides a separate C++ sequence type. For example:

// IDL
typedef sequence<long> LongSeq;
typedef sequence<LongSeq, 3> LongSeqSeq;
1-40 C++ Language Mapping, v1.1 June 2003

1

// C++
class LongSeq // unbounded sequence
{

public:
LongSeq(); // default constructor
LongSeq(ULong max); // maximum constructor
LongSeq(// T *data constructor

ULong max,
ULong length,

Long *value,
Boolean release = FALSE

);
LongSeq(const LongSeq&);
~LongSeq();
...

};

class LongSeqSeq // bounded sequence
{

public:
LongSeqSeq(); // default constructor
LongSeqSeq(// T *data constructor

ULong length,
LongSeq *value,
Boolean release = FALSE

);
LongSeqSeq(const LongSeqSeq&);
~LongSeqSeq();
...

};

For both bounded and unbounded sequences, the default constructor (as shown in the
example above) sets the sequence length equal to 0. For bounded sequences, the
maximum length is part of the type and cannot be set or modified, while for
unbounded sequences, the default constructor also sets the maximum length to 0.
Default constructors for bounded and unbounded sequences need not allocate buffers
immediately.

Unbounded sequences provide a constructor that allows only the initial value of the
maximum length to be set (the “maximum constructor” shown in the example above).
This allows applications to control how much buffer space is initially allocated by the
sequence. This constructor also sets the length to 0 and the release flag to TRUE.

The “T *data” constructor (as shown in the example above) allows the length and
contents of a bounded or unbounded sequence to be set. For unbounded sequences, it
also allows the initial value of the maximum length to be set. For this constructor,
ownership of the buffer is determined by the release parameter—FALSE means the
caller owns the storage for the buffer and its elements, while TRUE means that the
sequence assumes ownership of the storage for the buffer and its elements. If
release is TRUE, the buffer is assumed to have been allocated using the sequence
June 2003 C++ Mapping: Mapping for Sequence Types 1-41

1

allocbuf function, and the sequence will pass it to freebuf when finished with it.
The allocbuf and freebuf functions are described on Section 1.13.3, “Additional
Memory Management Functions,” on page 1-47.

The copy constructor creates a new sequence with the same maximum and length as
the given sequence, copies each of its current elements (items zero through length–1),
and sets the release flag to TRUE.

The assignment operator deep-copies its parameter, releasing old storage if necessary.
It behaves as if the original sequence is destroyed via its destructor and then the source
sequence copied using the copy constructor.

If release=TRUE, the destructor destroys each of the current elements (items zero
through length–1), and destroys the underlying sequence buffer.

For an unbounded sequence, if a reallocation is necessary due to a change in the length
and the sequence was created using the release=TRUE parameter in its constructor,
the sequence will deallocate the old storage for all elements and the buffer. If
release is FALSE under these circumstances, old storage will not be freed for either
the elements or for the buffer before the reallocation is performed. After reallocation,
the release flag is always set to TRUE.

For an unbounded sequence, the maximum() accessor function returns the total
number of sequence elements that can be stored in the current sequence buffer. This
allows applications to know how many items they can insert into an unbounded
sequence without causing a reallocation to occur. For a bounded sequence,
maximum() always returns the bound of the sequence as given in its OMG IDL type
declaration.

The length() functions can be used to access and modify the length of the
sequence. Increasing the length of a sequence adds new elements at the tail. The
newly-added elements behave as if they are default-constructed when the sequence
length is increased. However, a sequence implementation may delay actual default
construction until a newly-added element is first accessed. For sequences of strings and
wide strings, default element construction requires initialization of each element to the
empty string or wide string. For sequences of object references, default element
construction requires initialization of each element to a suitably-typed nil reference.
For sequences of valuetypes, default element construction requires initialization of
each element to a null pointer. The elements of sequences of other complex types, such
as structs and sequences, are initialized by their default constructors. Union sequences
elements do not have any application-visible initialization; in particular, a default-
constructed union element is not safe for marshaling or access. Sequence elements of a
basic type, such as ULong, have undefined default values.

The overloaded subscript operators (operator[]) return the item at the given index.
The non-const version must return something that can serve as an lvalue (i.e.,
something that allows assignment into the item at the given index), while the const
version must allow read-only access to the item at the given index.
1-42 C++ Language Mapping, v1.1 June 2003

1

The overloaded subscript operators may not be used to access or modify any element
beyond the current sequence length. Before either form of operator[] is used on a
sequence, the length of the sequence must first be set using the length(ULong)
modifier function, unless the sequence was constructed using the T *data constructor.

For strings, wide strings, and object references, operator[] for a sequence must
return a type with the same semantics as the types used for string, wide string, and
object reference members of structs and arrays, so that assignment to the string, wide
string, or object reference sequence member via operator=() will release old
storage when appropriate. Note that whatever these special return types are, they must
honor the setting of the release parameter in the T *data constructor with respect
to releasing old storage. A compliant mapping implementation also provides
overloaded operator<< (insertion) and operator>> (extraction) operators for
using string sequence elements and wide string sequence elements directly with C++
iostreams.

The release() accessor function returns the state of the sequence release flag.

The overloaded get_buffer() accessor and reference functions allow direct access
to the buffer underlying a sequence. This can be very useful when sending large blocks
of data as sequences, such as sending image data as a sequence of octet, and the per-
element access provided by the overloaded subscript operators is not sufficient.

The non-const get_buffer() reference function allows read-write access to the
underlying buffer. If its orphan argument is FALSE (the default), the sequence
returns a pointer to its buffer, allocating one if it has not yet done so. The size of the
buffer can be determined using the maximum() accessor. For bounded sequences, the
size of the returned buffer is equal to the sequence bound. The number of elements in
the buffer can be determined from the sequence length() accessor. The sequence
maintains ownership of the underlying buffer. Elements in the returned buffer may be
directly replaced by the caller. For sequences of strings, wide strings, and object
references, the caller must use the sequence release() accessor to determine
whether elements should be freed (using string_free, wstring_free, or
CORBA::release for string, wide strings, and object references, respectively) before
being directly assigned to. Because the sequence maintains a notion of the length and
size of the buffer, the caller of get_buffer() shall not lengthen or shorten the
sequence by directly adding elements to the buffer or directly removing elements from
the buffer. Changing the length of the sequence shall be performed only by invoking
the sequence length() modifier function.

Alternatively, if the orphan argument to get_buffer() is TRUE, the sequence
yields ownership of the buffer to the caller. If orphan is TRUE and the sequence does
not own its buffer (i.e., its release flag is FALSE), the return value is a null pointer.
If the buffer is taken from the sequence using this form of get_buffer(), the
sequence reverts to the same state it would have if constructed using its default
constructor. The caller becomes responsible for eventually freeing each element of the
returned buffer (for strings, wide string, and object references), and then freeing the
returned buffer itself using freebuf.
June 2003 C++ Mapping: Mapping for Sequence Types 1-43

1

The const get_buffer() accessor function allows read-only access to the sequence
buffer. The sequence returns its buffer, allocating one if one has not yet been allocated.
No direct modification of the returned buffer by the caller is permitted.

For the non-const get_buffer() reference function with an orphan argument of
FALSE, and for the const get_buffer() accessor function, the return value remains
valid until another non-const member function of the sequence is invoked, or until the
sequence is destroyed, whichever occurs first.

The replace() function allows the buffer underlying a sequence to be replaced. The
parameters to replace() are identical in type, order, and purpose to those for the T
*data constructor for the sequence.

Access to the underlying sequences buffers seems to imply that a sequence
implementation must use contiguous memory to hold the elements, but this need not be
the case. A compliant sequence implementation could keep its elements in several
separate memory buffers and relocate them to a single buffer only if the application
called the get_buffer() accessors. In fact, for applications that never invoke these
accessors, such an implementation would very likely be better suited to handling large
sequences than one using a large single contiguous buffer.

For the T *data sequence constructor and for the buffer parameter of the
replace() function, the type of T for strings, wide strings, and object references is
char*, CORBA::WChar*, and T_ptr, respectively. In other words, string buffers
are passed as char**, wide string buffers as CORBA::WChar**, and object
reference buffers as T_ptr*. The return type of the non-const get_buffer()
reference function for sequences of strings is char**, CORBA::WChar** for
sequences of wide strings, and T_ptr* for sequences of object references. The return
type of the const get_buffer() accessor function for sequences of strings is const
char* const*, const CORBA::WChar* const* for sequences of wide strings,
and const T_ptr* for sequences of object reference.

1.13.1 Sequence Example
The example below shows full declarations for both a bounded and an unbounded
sequence.

// IDL
typedef sequence<T> V1; // unbounded sequence
typedef sequence<T, 2> V2; // bounded sequence
1-44 C++ Language Mapping, v1.1 June 2003

1

// C++
class V1 // unbounded sequence
{

public:
V1();
V1(ULong max);
V1(ULong max, ULong length, T *data,

Boolean release = FALSE);
V1(const V1&);
~V1();
V1 &operator=(const V1&);

ULong maximum() const;

void length(ULong);
ULong length() const;

T &operator[](ULong index);
const T &operator[](ULong index) const;

Boolean release() const;

void replace(ULong max, ULong length, T *data,
Boolean release = FALSE);

T* get_buffer(Boolean orphan = FALSE);
const T* get_buffer() const;

};

class V2 // bounded sequence
{

public:
V2();
V2(ULong length, T *data, Boolean release = FALSE);
V2(const V2&);
~V2();
V2 &operator=(const V2&);

ULong maximum() const;

void length(ULong);
ULong length() const;

T &operator[](ULong index);
const T &operator[](ULong index) const;

Boolean release() const;

void replace(ULong length, T *data,
Boolean release = FALSE);
June 2003 C++ Mapping: Mapping for Sequence Types 1-45

1

T* get_buffer(Boolean orphan = FALSE);
const T* get_buffer() const;

};

1.13.2 Using the “release” Constructor Parameter
Consider the following example:

// IDL
typedef sequence<string, 3> StringSeq;

// C++
char *static_arr[] = {"one", "two", "three"};
char **dyn_arr = StringSeq::allocbuf();
dyn_arr[0] = string_dup("one");
dyn_arr[1] = string_dup("two");
dyn_arr[2] = string_dup("three");

StringSeq seq1(3, static_arr);
StringSeq seq2(3, dyn_arr, TRUE);

seq1[1] = "2"; // no free, no copy
char *str = string_dup("2");
seq2[1] = str; // free old storage, no copy

In this example, both seq1 and seq2 are constructed using user-specified data, but
only seq2 is told to assume management of the user memory (because of the
release=TRUE parameter in its constructor). When assignment occurs into
seq1[1], the right-hand side is not copied, nor is anything freed because the
sequence does not manage the user memory. When assignment occurs into seq2[1],
however, the old user data must be freed before ownership of the right-hand side can
be assumed, since seq2 manages the user memory. When seq2 goes out of scope, it
will call string_free for each of its elements and then call freebuf on the buffer
given to it in its constructor.

When the release flag is set to TRUE and the sequence element type is either a
string or an object reference type, the sequence will individually release each element
before releasing the contents buffer. It will release strings using string_free, and it
will release object references using the release function from the CORBA
namespace.

In general, assignment should never take place into a sequence element via
operator[] unless release=TRUE due to the possibility for memory management
errors. In particular, a sequence constructed with release=FALSE should never be
passed as an inout parameter because previous versions of this specification provided
no means for the callee to determine the setting of the sequence release flag, and
thus the callee always had to assume that release was set to TRUE. Code that
creates a sequence with release=FALSE and then knowingly and correctly
manipulates it in that state, as shown with seq1 in the example above, is compliant,
but care should always be taken to avoid memory leaks under these circumstances.
1-46 C++ Language Mapping, v1.1 June 2003

1

Comment: Issue 4244

For a sequence passed to an operation as an in parameter, the operation must not
assign to the sequence if its release flag is FALSE and the sequence has variable-length
elements.

For a sequence passed to a client as an out parameter or return value, the client must
not assign to the sequence if its release flag is FALSE and the sequence has variable-
length elements.

When a sequence is constructed with release=TRUE, a compliant application should
make no assumptions about the continued lifetime of the data buffer passed to the
constructor, since a compliant sequence implementation is free to copy the buffer and
immediately free the original pointer.

1.13.3 Additional Memory Management Functions

Comment: Issue 4243

Compliant programs use new to dynamically allocate sequences and delete to free
them.

Sequences also provide additional memory management functions for their buffers. For
an unbounded sequence of type T, the following static member functions are provided
in the sequence class public interface:

// C++
static T *allocbuf(ULong nelems);
static void freebuf(T *);

The allocbuf function allocates a vector of T elements that can be passed to the T
*data constructor and to the replace() member function. The length of the vector
is given by the nelems function argument. The allocbuf function initializes each
element using its default constructor, except for strings and wide strings, which are
initialized to pointers to empty string, and object references, which are initialized to
suitably-typed nil object references. A null pointer is returned if for some reason
allocbuf cannot allocate the requested vector.

For bounded sequences, the following static member functions are provided in the
sequence class public interface:

// C++
static T *allocbuf();
static T *allocbuf(ULong nelems); // Deprecated
static void freebuf(T *);

For bounded sequences, the first (zero parameter) version of allocbuf allocates a
buffer of maximum() elements. A null pointer is returned if the function cannot
allocate the requested vector.
June 2003 C++ Mapping: Mapping for Sequence Types 1-47

1

Note that the version of allocbuf that accepts an element count is deprecated for
bounded sequences and will be removed in a future version of the mapping. Calls to
the deprecated version with an argument value other than the sequence maximum have
implementation-dependent behavior.

Vectors allocated by allocbuf must be freed using the freebuf function. The
freebuf function ensures that the destructor for each element is called before the
buffer is destroyed, except for string and wide string elements, which are freed using
string_free() and wstring_free(), respectively, and object reference
elements, which are freed using CORBA::release(). The freebuf function will
ignore null pointers passed to it. Neither allocbuf nor freebuf may throw
CORBA exceptions.

A call to allocbuf with a zero-value argument causes allocbuf to allocate a zero-
length buffer and return a pointer to it. Like any buffer returned from allocbuf, this
buffer must be freed using the corresponding freebuf function.

1.13.4 Sequence T_var and T_out Types
In addition to the regular operations defined for T_var and T_out types, the T_var
and T_out for a sequence type also supports an overloaded operator[] that
forwards requests to the operator[] of the underlying sequence.11 This subscript
operator should have the same return type as that of the corresponding operator on the
underlying sequence type.

1.14 Mapping For Array Types
Arrays are mapped to the corresponding C++ array definition, which allows the
definition of statically-initialized data using the array. If the array element is a string,
wide string, or an object reference, then the mapping uses the same type as for
structure members. That is, the default constructor for string elements and wide string
elements initializes them to the empty string ("" and L"", respectively), and
assignment to an array element that is a string, wide string, or object reference will
release the storage associated with the old value.

// IDL
typedef float F[10];
typedef string V[10];
typedef string M[1][2][3];
void op(out F p1, out V p2, out M p3);

11.Note that since T_var and T_out types do not handle const T*, there is no need to pro-
vide the const version of operator[] for Sequence_var and Sequence_out types.
1-48 C++ Language Mapping, v1.1 June 2003

1

// C++
typedef Float F[10];
typedef ... V[10]; // underlying type not shown
because
typedef ... M[1][2][3]; // it is implementation-dependent
F f1; F_var f2;
V v1; V_var v2;
M m1; M_var m2;
f(f2, v2, m2);
f1[0] = f2[1];
v1[1] = v2[1]; // free old storage, copy
m1[0][1][2] = m2[0][1][2]; // free old storage, copy

In the above example, the last two assignments result in the storage associated with the
old value of the left-hand side being automatically released before the value from the
right-hand side is copied.

As shown in Table 1-3 on page 1-106, out and return arrays are handled via pointer to
array slice, where a slice is an array with all the dimensions of the original specified
except the first one. As a convenience for application declaration of slice types, the
mapping also provides a typedef for each array slice type. The name of the slice
typedef consists of the name of the array type followed by the suffix “_slice”. For
example:

// IDL
typedef long LongArray[4][5];

// C++
typedef Long LongArray[4][5];
typedef Long LongArray_slice[5];

Both the T_var type and the T_out type for an array should overload operator[]
instead of operator->. The use of array slices also means that the T_var type and
the T_out type for an array should have a constructor and assignment operator that
each take a pointer to array slice as a parameter, rather than T*. The T_var for the
previous example would be:

// C++
class LongArray_var
{

public:
LongArray_var();
LongArray_var(LongArray_slice*);
LongArray_var(const LongArray_var &);
~LongArray_var();
LongArray_var &operator=(LongArray_slice*);
LongArray_var &operator=(const LongArray_var &);

LongArray_slice &operator[](ULong index);
const LongArray_slice &operator[](Ulong index) const;
June 2003 C++ Mapping: Mapping For Array Types 1-49

1

const LongArray_slice* in() const;
LongArray_slice* inout();
LongArray_slice* out();
LongArray_slice* _retn();

// other conversion operators to support
// parameter passing

};

Because arrays are mapped into regular C++ arrays, they present special problems for
the type-safe any mapping described in “Mapping for the Any Type” on page 1-52. To
facilitate their use with the any mapping, a compliant implementation must also
provide for each array type a distinct C++ type whose name consists of the array name
followed by the suffix _forany. These types must be distinct so as to allow functions
to be overloaded on them. Like Array_var types, Array_forany types allow
access to the underlying array type, but unlike Array_var, the Array_forany type
does not delete the storage of the underlying array upon its own destruction. This is
because the Any mapping retains storage ownership, as described in Section 1.16.3,
“Extraction from any,” on page 1-57.

The interface of the Array_forany type is identical to that of the Array_var type,
but it may not be implemented as a typedef to the Array_var type by a compliant
implementation since it must be distinguishable from other types for purposes of
function overloading. Also, the Array_forany constructor taking an
Array_slice* parameter also takes a Boolean nocopy parameter, which defaults
to FALSE:

// C++
class Array_forany
{

public:
Array_forany(Array_slice*, Boolean nocopy = FALSE);

...
};

The nocopy flag allows for a non-copying insertion of an Array_slice* into an
Any.

Each Array_forany type must be defined at the same level of nesting as its Array
type.

For dynamic allocation of arrays, compliant programs must use special functions
defined at the same scope as the array type. For array T, the following functions will be
available to a compliant program:

// C++
T_slice *T_alloc();
T_slice *T_dup(const T_slice*);
void T_copy(T_slice* to, const T_slice* from);
void T_free(T_slice *);
1-50 C++ Language Mapping, v1.1 June 2003

1

The T_alloc function dynamically allocates an array, or returns a null pointer if it
cannot perform the allocation. The T_dup function dynamically allocates a new array
with the same size as its array argument, copies each element of the argument array
into the new array, and returns a pointer to the new array. If allocation fails, a null
pointer is returned. The T_copy function copies the contents of the from array to the
to array. If either argument is a null pointer, T_copy does not attempt a copy and
results in no action being performed. The T_free function deallocates an array that
was allocated with T_alloc or T_dup. Passing a null pointer to T_free is
acceptable and results in no action being performed. The T_alloc, T_dup, and
T_free functions allow ORB implementations to utilize special memory management
mechanisms for array types if necessary, without forcing them to replace global
operator new and operator new[].

The T_alloc, T_dup, T_copy, and T_free functions may not throw CORBA
exceptions.

1.15 Mapping For Typedefs
A typedef creates an alias for a type. If the original type maps to several types in C++,
then the typedef creates the corresponding alias for each type. The example below
illustrates the mapping.

// IDL
typedef long T;
interface A1;
typedef A1 A2;
typedef sequence<long> S1;
typedef S1 S2;

// C++
typedef Long T;

// ...definitions for A1...

typedef A1 A2;
typedef A1_ptr A2_ptr;
typedef A1_var A2_var;

// ...definitions for S1...
class S1 { ... };

typedef S1 S2;
typedef S1_var S2_var;

For a typedef of an IDL type that maps to multiple C++ types, such as arrays, the
typedef maps to all of the same C++ types and functions that its base type requires. For
example:
June 2003 C++ Mapping: Mapping For Typedefs 1-51

1

// IDL
typedef long array[10];
typedef array another_array;

// C++
// ...C++ code for array not shown...
typedef array another_array;
typedef array_var another_array_var;
typedef array_slice another_array_slice;
typedef array_forany another_array_forany;

inline another_array_slice *another_array_alloc() {
return array_alloc();

}

inline another_array_slice*
another_array_dup(another_array_slice *a) {

return array_dup(a);
}

inline void
another_array_copy(another_array_slice* to,

const another_array_slice* from)
{

array_copy(to, from);
}

inline void another_array_free(another_array_slice *a) {
array_free(a);

}

1.16 Mapping for the Any Type
A C++ mapping for the OMG IDL type any must fulfill two different requirements:

• Handling C++ types in a type-safe manner.

• Handling values whose types are not known at implementation compile time.

The first item covers most normal usage of the any type—the conversion of typed
values into and out of an any. The second item covers situations such as those
involving the reception of a request or response containing an any that holds data of a
type unknown to the receiver when it was created with a C++ compiler.

1.16.1 Handling Typed Values
To decrease the chances of creating an any with a mismatched TypeCode and value,
the C++ function overloading facility is utilized. Specifically, for each distinct type in
an OMG IDL specification, overloaded functions to insert and extract values of that
type are provided by each ORB implementation. Overloaded operators are used for
1-52 C++ Language Mapping, v1.1 June 2003

1

these functions so as to completely avoid any name space pollution. The nature of
these functions, which are described in detail below, is that the appropriate TypeCode
is implied by the C++ type of the value being inserted into or extracted from the any.

Since the type-safe any interface described below is based upon C++ function
overloading, it requires C++ types generated from OMG IDL specifications to be
distinct. However, there are special cases in which this requirement is not met:

• As noted in Section 1.5, “Mapping for Basic Data Types,” on page 1-15, the
boolean, octet, char, and wchar OMG IDL types are not required to map to
distinct C++ types, which means that a separate means of distinguishing them
from each other for the purpose of function overloading is necessary. The means
of distinguishing these types from each other is described in Section 1.16.4,
“Distinguishing boolean, octet, char, wchar, bounded string, and bounded
wstring,” on page 1-59.

• Since all strings and wide strings are mapped to char* and WChar*,
respectively, regardless of whether they are bounded or unbounded, another
means of creating or setting an any with a bounded string or wide string value is
necessary. This is described in Section 1.16.4, “Distinguishing boolean, octet,
char, wchar, bounded string, and bounded wstring,” on page 1-59.

• In C++, arrays within a function argument list decay into pointers to their first
elements. This means that function overloading cannot be used to distinguish
between arrays of different sizes. The means for creating or setting an any when
dealing with arrays is described below and in Section 1.14, “Mapping For Array
Types,” on page 1-48.

1.16.2 Insertion into any
To allow a value to be set in an any in a type-safe fashion, an ORB implementation
must provide the following overloaded operator function for each separate OMG IDL
type T.

// C++
void operator<<=(Any&, T);

This function signature suffices for types that are normally passed by value:

• Short, UShort, Long, ULong, LongLong, ULongLong, Float, Double,
LongDouble

• Enumerations

• Unbounded strings and wide strings (char* and WChar* passed by value)

• Object references (T_ptr)

• Pointers to valuetypes (T*)

For values of type T that are too large to be passed by value efficiently, such as structs,
unions, sequences, Any, and exceptions, two forms of the insertion function are
provided.
June 2003 C++ Mapping: Mapping for the Any Type 1-53

1

// C++
void operator<<=(Any&, const T&);// copying form
void operator<<=(Any&, T*); // non-copying form

Note that the copying form is largely equivalent to the first form shown, as far as the
caller is concerned.

These “left-shift-assign” operators are used to insert a typed value into an any as
follows.

// C++
Long value = 42;
Any a;
a <<= value;

In this case, the version of operator<<= overloaded for type Long must be able to
set both the value and the TypeCode properly for the any variable.

Setting a value in an any using operator<<= means that:

• For the copying version of operator<<=, the lifetime of the value in the any is
independent of the lifetime of the value passed to operator<<=. The
implementation of the any may not store its value as a reference or pointer to the
value passed to operator<<=.

• For the noncopying version of operator<<=, the inserted T* is consumed by the
any. The caller may not use the T* to access the pointed-to data after insertion,
since the any assumes ownership of it, and it may immediately copy the pointed-to
data and destroy the original.

• With both the copying and non-copying versions of operator<<=, any previous
value held by the Any is properly deallocated. For example, if the
Any(TypeCode_ptr,void*,TRUE) constructor was called to create the Any,
the Any is responsible for de-allocating the memory pointed to by the void*
before copying the new value.

Copying insertion of a string type or wide string type causes one of the following
functions to be invoked:

// C++
void operator<<=(Any&, const char*);
void operator<<=(Any&, const WChar*);

Since all string types are mapped to char*, and all wide string types are mapped to
WChar*, these insertion functions assume that the values being inserted are
unbounded. Section 1.16.4, “Distinguishing boolean, octet, char, wchar, bounded
string, and bounded wstring,” on page 1-59 describes how bounded strings and
bounded wide strings may be correctly inserted into an Any. Note that insertion of
wide strings in this manner depends on standard C++, in which wchar_t is a distinct
type. Code that must be portable across standard and older C++ compilers must use the
Any::from_wstring helper. Noncopying insertion of both bounded and unbounded
strings can be achieved using the Any::from_string helper type. Similarly,
noncopying insertion of bounded and unbounded wide strings can be achieved using
1-54 C++ Language Mapping, v1.1 June 2003

1

the Any::from_wstring helper type. Both of these helper types are described in
Section 1.16.4, “Distinguishing boolean, octet, char, wchar, bounded string, and
bounded wstring,” on page 1-59.

Note that the following code has undefined behavior in nonstandard C++
environments:

// C++
Any a = ...;
WChar wc;
a >>= wc; // undefined behavior

This code may erroneously extract an integer type in environments where wchar_t is
not a distinct type.

Because valuetypes may be represented legally using null pointers, a conforming
application may insert a null valuetype pointer into an Any.

Type-safe insertion of arrays uses the Array_forany types described in
Section 1.14, “Mapping For Array Types,” on page 1-48. Compliant implementations
must provide a version of operator<<= overloaded for each Array_forany type.
For example:

// IDL
typedef long LongArray[4][5];

// C++
typedef Long LongArray[4][5];
typedef Long LongArray_slice[5];
class LongArray_forany { ... };

void operator<<=(Any &, const LongArray_forany &);

The Array_forany types are always passed to operator<<= by reference to
const. The nocopy flag in the Array_forany constructor is used to control whether
the inserted value is copied (nocopy == FALSE) or consumed (nocopy == TRUE).
Because the nocopy flag defaults to FALSE, copying insertion is the default.

Because of the type ambiguity between an array of T and a T*, it is highly
recommended that portable code explicitly12 use the appropriate Array_forany type
when inserting an array into an any:

// IDL
struct S {... };
typedef S SA[5];

12.A mapping implementor may use the new C++ keyword “explicit” to prevent implicit con-
versions through the Array_forany constructor, but this feature is not yet widely available
in current C++ compilers.
June 2003 C++ Mapping: Mapping for the Any Type 1-55

1

// C++
struct S { ... };
typedef S SA[5];
typedef S SA_slice;
class SA_forany { ... };

SA s;
// ...initialize s...
Any a;
a <<= s; // line 1
a <<= SA_forany(s); // line 2

Line 1 results in the invocation of the noncopying operator<<=(Any&, S*) due
to the decay of the SA array type into a pointer to its first element, rather than the
invocation of the copying SA_forany insertion operator. Line 2 explicitly constructs
the SA_forany type and thus results in the desired insertion operator being invoked.

The noncopying version of operator<<= for object references takes the address of
the T_ptr type.

// IDL
interface T { ... };

// C++
void operator<<=(Any&, T_ptr); // copying
void operator<<=(Any&, T_ptr*); // non-copying

The noncopying object reference insertion consumes the object reference pointed to by
T_ptr*; therefore after insertion the caller may not access the object referred to by
T_ptr since the any may have duplicated and then immediately released the original
object reference. The caller maintains ownership of the storage for the T_ptr itself.

The noncopying version of operator<<= for valuetypes takes the address of the
T* pointer type.

// IDL
valuetype T { ... };

// C++
void operator<<=(Any&, T*); // copying
void operator<<=(Any&, T**); // non-copying

The noncopying valuetype insertion consumes the valuetype pointed to by the
pointer that T** points to. After insertion, the caller may not access the valuetype
instance pointed to by the pointer that T* points to. The caller maintains ownership of
the storage for the pointed-to T* itself.

In general, the copying versions of operator<<= are also supported on the
Any_var type. Note that due to the conversion operators that convert Any_var to
Any& for parameter passing, only those operator<<= functions defined as member
functions of any need to be explicitly defined for Any_var.
1-56 C++ Language Mapping, v1.1 June 2003

1

1.16.3 Extraction from any
To allow type-safe retrieval of a value from an any, the mapping provides the
following operators for each OMG IDL type T:

// C++
Boolean operator>>=(const Any&, T&);

This function signature suffices for primitive types that are normally passed by value.
For values of type T that are too large to be passed by value efficiently (such as structs,
unions, sequences, Any, valuetypes, and exceptions) this function may be prototyped
as follows:

// C++
Boolean operator>>=(const Any&, T*&); // deprecated
Boolean operator>>=(const Any&, const T*&);

The non-constant version of the operator will be deprecated in a future version of the
mapping and should not be used.

The first form of this function is used only for the following types:

• Short, UShort, Long, ULong, LongLong, ULongLong, Float, Double,
LongDouble

• Enumerations

• Unbounded strings and wide strings (const char* and const WChar* passed
by reference (i.e., const char*& and const WChar*&)13

• Object references (T_ptr)

For all other types, the second form of the function is used.

All versions of operator>>= implemented as member functions of class Any, such
as those for primitive types, should be marked as const.

This “right-shift-assign” operator is used to extract a typed value from an any as
follows:

// C++
Long value;
Any a;
a <<= Long(42);
if (a >>= value) {

// ... use the value ...
}

13.Note that extraction of wide strings in this manner depends on standard C++, in which
wchar_t is a distinct type. Code that must be portable across standard and older C++ com-
pilers must use the to_wstring helper type.
June 2003 C++ Mapping: Mapping for the Any Type 1-57

1

In this case, the version of operator>>= for type Long must be able to determine
whether the Any truly does contain a value of type Long and, if so, copy its value into
the reference variable provided by the caller and return TRUE. If the Any does not
contain a value of type Long, the value of the caller’s reference variable is not
changed, and operator>>= returns FALSE.

For non-primitive types, such as struct, union, sequence, exception, and Any,
extraction is done by pointer to const (valuetypes are extracted by pointer to non-
const because valuetype operations do not support const). For example, consider
the following IDL struct:

// IDL
struct MyStruct {

long lmem;
short smem;

};

Such a struct could be extracted from an any as follows:

// C++
Any a;
// ... a is somehow given a value of type MyStruct ...
const MyStruct *struct_ptr;
if (a >>= struct_ptr) {
// ... use the value ...
}

If the extraction is successful, the caller’s pointer will point to storage managed by the
any, and operator>>= will return TRUE. The caller must not try to delete or
otherwise release this storage. The caller also should not use the storage after the
contents of the any variable are replaced via assignment, insertion, or the replace
function, or after the any variable is destroyed. An attempt to extract to a T_var type
is non-conforming and must cause a compile-time error.

If the extraction is not successful, the value of the caller’s pointer is set equal to the
null pointer, and operator>>= returns FALSE. Note that because valuetypes may
legally be represented as null pointers, however, a pointer to T extracted from an Any,
where T is a valuetype, may be null even when extraction is successful if the Any
holds a null valuetype pointer.

Correct extraction of array types relies on the Array_forany types described in
Section 1.14, “Mapping For Array Types,” on page 1-48.

// IDL
typedef long A[20];
typedef A B[30][40][50];

// C++
typedef Long A[20];
1-58 C++ Language Mapping, v1.1 June 2003

1

typedef Long A_slice;
class A_forany { ... };
typedef A B[30][40][50];
typedef A B_slice[40][50];
class B_forany { ... };

Boolean operator>>=(const Any &, A_forany&);// for type A
Boolean operator>>=(const Any &, B_forany&); // for
type B

The Array_forany types are always passed to operator>>= by reference.

For strings, wide strings, and arrays, applications are responsible for checking the
TypeCode of the any to be sure that they do not overstep the bounds of the array,
string, or wide string object when using the extracted value.

The operator>>= is also supported on the Any_var type. Note that due to the
conversion operators that convert Any_var to const Any& for parameter passing,
only those operator>>= functions defined as member functions of any need to be
explicitly defined for Any_var.

1.16.4 Distinguishing boolean, octet, char, wchar, bounded string, and
bounded wstring

Since the boolean, octet, char, and wchar OMG IDL types are not required to map
to distinct C++ types, another means of distinguishing them from each other is
necessary so that they can be used with the type-safe any interface. Similarly, since
both bounded and unbounded strings map to char*, both bounded and unbounded
wide strings map to WChar*, and all fixed-point types map to the Fixed class,
another means of distinguishing them must be provided. This is done by introducing
several new helper types nested in the any class interface. For example, this can be
accomplished as shown next.

// C++
class Any
{

public:
// special helper types needed for boolean, octet,

char,
// and bounded string insertion
struct from_boolean {

from_boolean(Boolean b) : val(b) {}
Boolean val;

};
struct from_octet {

from_octet(Octet o) : val(o) {}
Octet val;

};
struct from_char {

from_char(Char c) : val(c) {}
June 2003 C++ Mapping: Mapping for the Any Type 1-59

1

Char val;
};
struct from_wchar {

from_wchar(WChar wc) : val(wc) {}
WChar val;

};
struct from_string {

from_string(char* s, ULong b,
Boolean n = FALSE) :

val(s), bound(b), nocopy(n) {}
from_string(const char* s, ULong b) :

val (const_cast<char*>(s)), bound(b),
nocopy (0) {}

char *val;
ULong bound;
Boolean nocopy;

};
struct from_wstring {

from_wstring(WChar* s, ULong b,
Boolean n = FALSE) :

val(s), bound(b), nocopy(n) {}
from_wstring(const WChar* s, ULong b) :

val(const_cast<WChar*>(s)), bound(b),
nocopy(0) {}

WChar *val;
ULong bound;
Boolean nocopy;

};
struct from_fixed {

from_fixed(const Fixed& f, UShort d, UShort s)
: val(f), digits(d), scale(s) {}

const Fixed& val;
UShort digits;
UShort scale;

};

void operator<<=(from_boolean);
void operator<<=(from_char);
void operator<<=(from_wchar);
void operator<<=(from_octet);
void operator<<=(from_string);
void operator<<=(from_wstring);
void operator<<=(from_fixed);
1-60 C++ Language Mapping, v1.1 June 2003

1

// special helper types needed for boolean, octet,
// char, and bounded string extraction
struct to_boolean {

to_boolean(Boolean &b) : ref(b) {}
Boolean &ref;

};
struct to_char {

to_char(Char &c) : ref(c) {}
Char &ref;

};
struct to_wchar {

to_wchar(WChar &wc) : ref(wc) {}
WChar &ref;

};
struct to_octet {

to_octet(Octet &o) : ref(o) {}
Octet &ref;

};
struct to_string {

to_string(const char *&s, ULong b)
: val(s), bound(b) {}
const char *&val;
ULong bound;

// the following constructor is deprecated
to_string(char *&s, ULong b) : val(s), bound(b) {}

};
struct to_wstring {

to_wstring(const WChar *&s, ULong b)
: val(s), bound(b) {}

const WChar *&val;
ULong bound;

// the following constructor is deprecated
to_wstring(WChar *&s, ULong b)

:val(s), bound(b) {}
};
struct to_fixed {

to_fixed(Fixed& f, UShort d, UShort s)
: val(f), digits(d), scale(s) {}

Fixed& val;
UShort digits;
UShort scale;

};

Boolean operator>>=(to_boolean) const;
Boolean operator>>=(to_char) const;
Boolean operator>>=(to_wchar) const;
Boolean operator>>=(to_octet) const;
Boolean operator>>=(to_string) const;
Boolean operator>>=(to_wstring) const;
June 2003 C++ Mapping: Mapping for the Any Type 1-61

1

Boolean operator>>=(to_fixed) const;

// other public Any details omitted

private:
// these functions are private and not implemented
// hiding these causes compile-time errors for
// unsigned char
void operator<<=(unsigned char);
Boolean operator>>=(unsigned char &) const;

};

An ORB implementation provides the overloaded operator<<= and operator>>=
functions for these special helper types. These helper types are used as shown next.

// C++
Boolean b = TRUE;
Any any;
any <<= Any::from_boolean(b);
// ...
if (any >>= Any::to_boolean(b)) {

// ...any contained a Boolean...
}

const char* p = "bounded";
any <<= Any::from_string(p, 8);
// ...
if (any >>= Any::to_string(p, 8)) {

// ...any contained a string<8>...
}

A bound value of zero passed to the appropriate helper type indicates an unbounded
string or wide string.

For noncopying insertion of a bounded or unbounded string into an any, the nocopy
flag on the from_string constructor should be set to TRUE.

// C++
char* p = string_alloc(8);
// ...initialize string p...
any <<= Any::from_string(p, 8, 1); // any consumes p

The same rules apply for bounded and unbounded wide strings and the
from_wstring helper type. Note that the non-constant versions of the to_string
and to_wstring constructors will be removed in a future version of the mapping
and should not be used.

Assuming that boolean, char, and octet all map the C++ type unsigned char,
the private and unimplemented operator<<= and operator>>= functions for
unsigned char will cause a compile-time error if straight insertion or extraction of
any of the boolean, char, or octet types is attempted.
1-62 C++ Language Mapping, v1.1 June 2003

1

// C++
Octet oct = 040;
Any any;
any <<= oct; // this line will not compile
any <<= Any::from_octet(oct);// but this one will

It is important to note that the previous example is only one possible implementation
for these helpers, not a mandated one. Other compliant implementations are possible,
such as providing them via in-lined static any member functions if boolean, char,
and octet are in fact mapped to distinct C++ types. All compliant C++ mapping
implementations must provide these helpers, however, for purposes of portability.

In standard C++ environments, the mapping implementation must declare the
constructors of the from_ and to_ helper classes as explicit. This prevents
undesirable conversions via temporaries.

1.16.5 Widening to Object
Sometimes it is desirable to extract an object reference from an Any as the base
Object type. This can be accomplished using a helper type similar to those required
for extracting Boolean, Char, and Octet:

// C++
class Any
{

public:
...
struct to_object {

to_object(Object_out obj) : ref(obj) {}
Object_ptr &ref;

};
Boolean operator>>=(to_object) const;
...

};

The to_object helper type is used to extract an object reference from an Any as the
base Object type. If the Any contains a value of an object reference type as indicated
by its TypeCode, the extraction function operator>>=(to_object) explicitly
widens its contained object reference to Object and returns true, otherwise it returns
false. This is the only object reference extraction function that performs widening on
the extracted object reference. Unlike for regular object reference extraction, the
lifetime of an object reference extracted using to_object is independent of that of
the Any that it is extracted from, and so the responsibility for invoking release on it
becomes that of the caller.
June 2003 C++ Mapping: Mapping for the Any Type 1-63

1

1.16.6 Widening to Abstract Interface
The CORBA::Any::to_abstract_base type allows the contents of an Any to be
extracted as an AbstractBase if the entity stored in the Any is an object reference
type or a valuetype directly or indirectly derived from the AbstractBase base
class. The to_abstract_base type is shown below:

// C++
class Any {

public:
...
struct to_abstract_base {

to_abstract_base(AbstractBase_ptr& base)
: ref(base) {}

AbstractBase_ptr& ref;
};
Boolean operator>>=(to_abstract_base val) const;
...

};

The caller is responsible for releasing the returned AbstractBase_ptr.

See Section 1.18.1, “Abstract Interface Base,” on page 1-93 for a description of
AbstractBase.

1.16.7 Widening to ValueBase
The CORBA::Any::to_value type allows the contents of an Any to be extracted as
a ValueBase* if the entity stored in the Any is a valuetype. The to_value type
is shown below:

// C++
class Any {

public:
...
struct to_value {

to_value(ValueBase*& base) : ref(base) {}
ValueBase*& ref;

};
Boolean operator>>=(to_value val) const;
...

};

The caller is responsible for calling _remove_ref on the returned ValueBase
pointer.

See Section 1.17.5, “ValueBase and Reference Counting,” on page 1-72 for a
description of ValueBase.
1-64 C++ Language Mapping, v1.1 June 2003

1

Comment: Issue 1700

1.16.8 TypeCode Replacement
The type accessor function returns a TypeCode_ptr pseudo-object reference to the
TypeCode associated with the Any. Like all object reference return values, the caller
must release the reference when it is no longer needed, or assign it to a
TypeCode_var variable for automatic management.

TypeCode_ptr type() const;

Because C++ typedefs are only aliases and do not define distinct types, inserting a
type with a tk_alias TypeCode into an Any while preserving that TypeCode is
not possible. For example:

// IDL
typedef long LongType;

// C++
Any any;
LongType val = 1234;
any <<= val;
TypeCode_var tc = any.type();
assert(tc->kind() == tk_alias); // assertion failure!
assert(tc->kind() == tk_long); // assertion OK

In this code, the LongType is an alias for CORBA::Long. Therefore, when the value
is inserted, standard C++ overloading mechanisms cause the insertion operator for
CORBA::Long to be invoked. In fact, because LongType is an alias for
CORBA::Long, an overloaded operator<<= for LongType cannot be generated
anyway.

In cases where the TypeCode in the Any must be preserved as a tk_alias
TypeCode, the application can use the type modifier function on the Any to replace
its TypeCode with an equivalent one.

Comment: Issue 1700

void type(TypeCode_ptr);

Revising the previous example:

// C++
Any any;
LongType val = 1234;
any <<= val;
any.type(_tc_LongType); // replace TypeCode
TypeCode_var tc = any.type();
June 2003 C++ Mapping: Mapping for the Any Type 1-65

1

assert(tc->kind() == tk_alias); // assertion OK

The type modifier function invokes the TypeCode::equivalent operation on the
TypeCode in the target Any, passing the TypeCode it received as an argument. If
TypeCode::equivalent returns true, the type modifier function replaces the
original TypeCode in the Any with its argument TypeCode. If the two TypeCodes
are not equivalent, the type modifier function raises the BAD_TYPECODE
exception.

1.16.9 Any Constructors, Destructor, Assignment Operator
The default constructor creates an Any with a TypeCode of type tk_null and no
value. The copy constructor calls _duplicate on the TypeCode_ptr of its Any
parameter and deep-copies the parameter’s value. The assignment operator releases its
own TypeCode_ptr and deallocates storage for the current value if necessary, then
duplicates the TypeCode_ptr of its Any parameter and deep-copies the parameter’s
value. The destructor calls release on the TypeCode_ptr and deallocates storage
for the value, if necessary.

Comment: Issue 4243

Compliant programs use new to dynamically allocate anys and delete to free them.

1.16.10 The Any Class
The full definition of the Any class can be found in “Any Class” on page 1-156.

1.16.11 The Any_var and Any_out Classes
Because Anys are returned via pointer as out and return parameters (see Table 1-3 on
page 1-106), there exists an Any_var class similar to the T_var classes for object
references. Any_var obeys the rules for T_var classes described in Section 1.9,
“Mapping for Structured Types,” on page 1-21, calling delete on its Any* when it
goes out of scope or is otherwise destroyed. The full interface of the Any_var class is
shown in Section 1.42.6, “Any_var Class,” on page 1-160. An Any_out class is also
available that is similar in form to the T_out class described in Section 1.9.2, “T_out
Types,” on page 1-27.

1.17 Mapping for Valuetypes
The IDL valuetype has features that make its C++ mapping unlike that of any other
IDL type. Specifically, from an application perspective all other IDL types comprise
either pure state or pure interface, but a valuetype may include both. Because of this,
the C++ mapping for the valuetype is necessarily more restrictive in terms of
implementation than other parts of the C++ mapping.
1-66 C++ Language Mapping, v1.1 June 2003

1

An IDL valuetype is mapped to a C++ class with the same name as the IDL
valuetype. This class is an abstract base class (ABC), with pure virtual accessor and
modifier functions corresponding to the state members of the valuetype, and pure
virtual functions corresponding to the operations of the valuetype.

A C++ class whose name is formed by prepending the string “OBV_” to the fully-
scoped name of the valuetype provides default implementations for the accessors and
modifiers of the ABC base class. The application developer then overrides the pure
virtual functions corresponding to valuetype operations in a concrete class derived
directly or indirectly from the OBV_ base class.

Applications are responsible for the creation of valuetype instances, and after
creation, they deal with those instances only via C++ pointers. Unlike object
references, which map to C++ _ptr types that may be implemented either as actual
C++ pointers or as C++ pointer-like objects, “handles” to C++ valuetype instances
are actual C++ pointers. This helps to distinguish them from object references.

Because valuetype supports the sharing of instances within other constructed types
(such as graphs), the lifetimes of C++ valuetype instances are managed via reference
counting. Unlike the semantics of object reference counting, where neither duplicate
nor release actually affect the object implementation, reference counting operations
for C++ valuetype instances are directly implemented by those instances. Reference
counting mix-in classes are provided by ORB implementations for use by valuetype
implementors (see Section 1.17.6, “Reference Counting Mix-in Classes,” on
page 1-74).

As for most other types in the C++ mapping, each valuetype also has an associated
C++ _var type that automates its reference counting.

All init initializers declared for a valuetype are mapped to pure virtual functions on a
separate abstract C++ factory class. The class is named by appending “_init” to the
name of the valuetype (e.g., type A has a factory class named A_init).

1.17.1 Valuetype Data Members
The C++ mapping for valuetype data members follows the same rules as the C++
mapping for unions, except that the accessors and modifiers are pure virtual. Public
state members are mapped to public pure virtual accessor and modifier functions of the
C++ valuetype base class, and private state members are mapped to protected pure
virtual accessor and modifier functions (so that derived concrete classes may access
them). Portable applications that use OBV_ classes, including derived value type
classes, shall not access the actual data members of OBV_ classes, and ORB
implementations are free to make such members private. The only requirement on the
actual data members in a concrete or partially-concrete class such as an OBV_ class is
that they be self-managing so that derived classes can correctly implement copying
without needing direct access to them.
June 2003 C++ Mapping: Mapping for Valuetypes 1-67

1

Like C++ unions, the accessor and modifier functions for valuetype state members do
not follow the regular C++ parameter passing rules. This is because they allow local
program access to the state stored inside the valuetype instance. Modifier functions
perform the equivalent of a deep-copy of their parameters, and accessors that return a
reference or pointer to a state member can be used for read-write access. For example:

// IDL
typedef octet Bytes[64];
struct S { ... };
interface A { ... };

valuetype Val {
public Val t;
private long v;
public Bytes w;
public string x;
private S y;
private A z;

};

// C++
typedef Octet Bytes[64];
typedef Octet Bytes_slice;
...
struct S { ... };

typedef ... A_ptr;

class Val : public virtual ValueBase {
public:

...
virtual Val* t() const = 0;
virtual void t(Val*) = 0;

virtual const Bytes_slice* w() const = 0;
virtual Bytes_slice* w() = 0;
virtual void w(const Bytes) = 0;

virtual const char* x() const = 0;
virtual void x(char*) = 0;
virtual void x(const char*) = 0;
virtual void x(const String_var&) = 0;

protected:
virtual Long v() const = 0;
virtual void v(Long) = 0;

virtual const S& y() const = 0;
virtual S& y() = 0;
virtual void y(const S&) = 0;
1-68 C++ Language Mapping, v1.1 June 2003

1

virtual A_ptr z() const = 0;
virtual void z(A_ptr) = 0;
...

};

The following rules apply to the accessor and modifier functions shown in the above
example:

• The t accessor function does not increment the reference count of the returned
valuetype. This implies that the caller of t does not adopt the return value.

• The t modifier function increments the reference count of its argument, then
decrements the reference count of the t member it is replacing before returning.

• The x(char*) modifier function frees the old string member and adopts its
argument.

• The x(const char*) modifier function frees the old string member and copies
its argument.

• The x(const String_var&) modifier function frees the old string member and
copies its argument.

• By returning a reference to a const S, the first y accessor function provides read-
only access to the y member.

• By returning a reference to an S, the second y accessor function provides read-write
access to the y member.

• The y modifier function deep-copies its S argument.

• The z accessor function does not invoke _duplicate on the object reference it
returns. This implies that the caller of z is not responsible for invoking release
on the return value.

• The z modifier function releases its old object reference corresponding to the z
member, then duplicates its argument before returning.

These rules correspond directly to the parameter passing rules for union accessors and
modifiers as explained in Section 1.12, “Mapping for Union Types,” on page 1-35.

State members of anonymous array and sequence types require the same supporting
C++ typedefs as required for union members of anonymous array and sequence types;
see Section 1.12, “Mapping for Union Types,” on page 1-35 for more details.

1.17.2 Constructors, Assignment Operators, and Destructors
A C++ valuetype class defines a protected default constructor and a protected
virtual destructor. The default constructor is protected to allow only derived class
instances to invoke it, while the destructor is protected to prevent applications from
invoking delete on pointers to value instances instead of using reference counting
operations. The destructor is virtual to provide for proper destruction of derived value
class instances when their reference counts drop to zero.
June 2003 C++ Mapping: Mapping for Valuetypes 1-69

1

Comment: Issue 3298

For the same reasons, a C++ OBV_ class defines a protected default constructor, a
protected constructor that takes an initializer for each valuetype data member, and a
protected destructor. The parameters of the constructor that takes an initializer for each
member appear in the same order as the data members appear, top to bottom, in the
IDL valuetype definition, regardless of whether they are public or private. If the
valuetype inherits from a concrete valuetype, then parameters for the data members of
the inherited valuetype appear first. All parameters for the member initializer
constructor follow the C++ mapping parameter passing rules for in arguments of their
respective types. For valuetypes that have no operations other than factory
initializers, the same constructors and destructors are generated, but with public access
so that they can be called directly by application code.

Portable applications shall not invoke a valuetype class copy constructor or default
assignment operator. Due to the required value reference counting, the default
assignment operator for a valuetype class shall be private and preferably
unimplemented to completely disallow assignment of valuetype instances.

1.17.3 Valuetype Operations
Operations declared on a valuetype are mapped to public pure virtual member
functions in the corresponding valuetype C++ class. (Note that state member
accessor and modifier functions are not considered to be operations—they have
different parameter passing rules than operations and so they are always referred to as
accessor and modifier functions.) None of the pure virtual member functions
corresponding to operations shall be declared const because unlike C++, IDL
provides no way to distinguish between operations that change the state of an object
and those that merely access that state. This choice, similar to the choice made for the
C++ mapping for operations declared in IDL interface types, has an impact on
parameter passing rules, as described in Section 1.22, “Argument Passing
Considerations,” on page 1-103. The alternative, declaring all pure virtual member
functions as const, is less desirable because it would not allow member functions
inherited from interface classes to be invoked on const value instances, since all
such member functions are already mapped as non-const.

The C++ signatures and memory management rules for valuetype operations (but
not state member accessor and modifier functions) are identical to those described in
Section 1.22, “Argument Passing Considerations,” on page 1-103 for client-side
interface operations.

A static _downcast function is provided by each valuetype class to provide a
portable way for applications to cast down the C++ inheritance hierarchy. This is
especially required after an invocation of the _copy_value function (see
Section 1.17.5, “ValueBase and Reference Counting,” on page 1-72). If a null pointer
is passed to _downcast, it returns a null pointer. Otherwise, if the valuetype
instance pointed to by the argument is an instance of the valuetype class being
1-70 C++ Language Mapping, v1.1 June 2003

1

downcast to, a pointer to the downcast-to class type is returned. If the valuetype
instance pointed to by the argument is not an instance of the valuetype class being
downcast to, a null pointer is returned.

1.17.4 Valuetype Example
For example, consider the following IDL valuetype:

// IDL
valuetype Example {

short op1();
long op2(in Example x);
private short val1;
public long val2;

private string val3;
private float val4;
private Example val5;

};

The C++ mapping for this valuetype is:

// C++
class Example : public virtual ValueBase {

public:
virtual Short op1() = 0;
virtual Long op2(Example*) = 0;

virtual Long val2() const = 0;
virtual void val2(Long) = 0;

static Example* _downcast(ValueBase*);

protected:
Example();
virtual ~Example();

virtual Short val1() const = 0;
virtual void val1(Short) = 0;

virtual const char* val3() const = 0;
virtual void val3(char*) = 0;
virtual void val3(const char*) = 0;
virtual void val3(const String_var&) = 0;

virtual Float val4() const = 0;
virtual void val4(Float) = 0;

virtual Example* val5() const = 0;
June 2003 C++ Mapping: Mapping for Valuetypes 1-71

1

virtual void val5(Example*) = 0;

private:
// private and unimplemented
void operator=(const Example&);

};

class OBV_Example : public virtual Example {
public:

virtual Long val2() const;
virtual void val2(Long);

protected:
OBV_Example();
OBV_Example(Short init_val1, Long init_val2,

const char* init_val3, Float init_val4,
Example* init_val5);

virtual ~OBV_Example();

virtual Short val1() const;
virtual void val1(Short);

virtual const char* val3() const;
virtual void val3(char*);
virtual void val3(const char*);
virtual void val3(const String_var&);

virtual Float val4() const;
virtual void val4(Float);

virtual Example* val5() const;
virtual void val5(Example*);

// ...
};

1.17.5 ValueBase and Reference Counting
The C++ mapping for the ValueBase IDL type serves as an abstract base class for all
C++ valuetype classes. ValueBase provides several pure virtual reference
counting functions inherited by all valuetype classes:

// C++
namespace CORBA {

class ValueBase {
public:

virtual ValueBase* _add_ref() = 0;
virtual void _remove_ref() = 0;
virtual ValueBase* _copy_value() = 0;
virtual ULong _refcount_value() = 0;
1-72 C++ Language Mapping, v1.1 June 2003

1

static ValueBase* _downcast(ValueBase*);

protected:
ValueBase();
ValueBase(const ValueBase&);
virtual ~ValueBase();

private:
void operator=(const ValueBase&);

};

}

The names of these operations begin with underscore to keep them from clashing with
user-defined operations in derived valuetype classes.

Table 1-2 Operation Descriptions

Operation Description

_add_ref Used to increment the reference count of a valuetype
instance.

_remove_ref Used to decrement the reference count of a valuetype
instance and delete the instance when the reference count
drops to zero. Note that the use of delete to destroy
instances requires that all valuetype instances be allocated
using new.

_copy_value Used to make a deep copy of the valuetype instance. The
copy has no connections with the original instance and has
a lifetime independent of that of the original. Since C++
supports covariant return types, derived classes can
override the _copy_value function to return a pointer to
the derived class rather than ValueBase*, but since
covariant return types are still not commonly supported by
commercial C++ compilers, the return value of
_copy_value can also be ValueBase*, even for
derived classes.

A compliant ORB implementation may use either approach.
For now, portable applications will not rely on covariant
return types and will instead use downcasting1 to regain the
most derived type of a copied valuetype.

1. The C++ dynamic_cast<> operator may also be used to cast down the value hierarchy, but it
too is still not available in all C++ compilers and thus its use is still not portable at this time.

_refcount_value Returns the value of the reference count for the valuetype
instance on which it is invoked.
June 2003 C++ Mapping: Mapping for Valuetypes 1-73

1

ValueBase also provides a protected default constructor, a protected copy
constructor, and a protected virtual destructor. The copy constructor is protected to
disallow copy construction of derived valuetype instances except from within derived
class functions, and the destructor is protected to prevent direct deletion of instances of
classes derived from ValueBase.

With respect to reference counting, ValueBase is intended to introduce only the
reference counting interface. Depending upon the inheritance hierarchy of a
valuetype class, its instances may require different reference counting mechanisms.
For example, the reference counting mechanisms needed for a valuetype class that
supports an interface are likely to be different from those needed for a regular
concrete valuetype class, since the former has object adapter issues to consider.
Therefore, ValueBase normally serves as a virtual base class multiply inherited into
a valuetype class. One inheritance path is through the IDL inheritance hierarchy for
the valuetype, since all valuetypes inherit from ValueBase, which provides the
reference counting interface. The other inheritance path is through the reference
counting implementation mix-in base class (see Section 1.17.6, “Reference Counting
Mix-in Classes,” on page 1-74), which itself also inherits from ValueBase.

1.17.5.1 CORBA Module Additions
The C++ mapping also adds two additional reference counting functions to the CORBA
namespace, as shown below:

// C++
namespace CORBA {

void add_ref(ValueBase* vb)
{

if (vb != 0) vb->_add_ref();
}

void remove_ref(ValueBase* vb)
{

if (vb != 0) vb->_remove_ref();
}

// ...
}

These functions are provided for consistency with object reference reference counting
functions. They are similar in that unlike the _add_ref and _remove_ref member
functions, they can be called with null valuetype pointers. The CORBA::add_ref
function increments the reference count of the valuetype instance pointed to by the
function argument if non-null, or does nothing if the argument is a null pointer. The
CORBA::remove_ref function behaves the same except it decrements the reference
count. (The implementations shown above are intended to specify the required
semantics of the functions, not to imply that conforming implementations must inline
the functions.)
1-74 C++ Language Mapping, v1.1 June 2003

1

1.17.6 Reference Counting Mix-in Classes
The C++ mapping provides two standard reference counting implementation mix-in
base classes:

• CORBA::DefaultValueRefCountBase, which can serve as a base class for
any application-provided concrete valuetype class whose corresponding IDL value
type does not derive from any IDL interfaces. For these types of valuetype
classes, applications are also free to use their own reference-counting
implementation mix-ins as long as they fulfill the ValueBase reference counting
interface.

• PortableServer::ValueRefCountBase, which must serve as a base class
for any application-provided concrete valuetype class whose corresponding IDL
valuetype does derive from one or more IDL interfaces, and whose instances will
be registered with the POA as servants. If IDL interface inheritance is present, but
instances of the application-provided concrete valuetype class will not be
registered with the POA, the CORBA::DefaultValueRefCountBase or an
application-specific reference counting implementation mix-in may be used as a
base class instead.

Each of these classes shall be fully concrete and shall completely fulfill the
ValueBase reference counting interface, except that since they provide
implementation, not interface, they shall not provide support for downcasting. In
addition, each of these classes shall provide a protected default constructor that sets the
reference count of the instance to one, a protected virtual destructor, and a protected
copy constructor that sets the reference count of the newly-constructed instance to one.
Just as with the ValueBase base class, the default assignment operator should be
private and preferably unimplemented to completely disallow assignment.

Note that it is the application-supplied concrete valuetype classes that must derive
from these mix-in classes, not the valuetype classes generated by the IDL compiler.
This is to avoid the need to inherit these mix-ins as virtual bases, or to avoid inheriting
multiple copies of the mix-ins (and thus multiple reference counts) if virtual bases are
not employed. Also, only the final implementor of a valuetype knows whether it will
ever be used as a POA servant or not, and thus the implementor must specify the
desired reference counting mix-in.

1.17.7 Value Boxes
A value box class essentially provides a reference-counted version of its underlying
type. Unlike normal valuetype classes, C++ classes for value boxes can be concrete
since value boxes do not support methods, inheritance, or interfaces. Value box classes
differ depending upon their underlying types.

To fulfill the ValueBase interface, all value box classes are derived from
CORBA::DefaultValueRefCountBase.
June 2003 C++ Mapping: Mapping for Valuetypes 1-75

1

1.17.7.1 Parameter Passing for Underlying Boxed Type
All value box classes provide _boxed_in, _boxed_inout, and _boxed_out
member functions that allow the underlying boxed value to be passed to functions
taking parameters of the underlying boxed type. The signatures of these functions
depend on the parameter passing modes of the underlying boxed type. The return
values of the _boxed_inout and _boxed_out functions shall be such that the
boxed value is referenced directly, allowing it to be replaced or set to a new value. For
example, invoking _boxed_out on a boxed string allows the actual string owned by
the value box to be replaced:

// IDL
valuetype StringValue string;
interface X {

void op(out string s);
};

// C++
StringValue* sval = new StringValue("string val");
X_var x = ...
x->op(sval->_boxed_out()); // boxed string is replaced

// by op() invocation

Assume the implementation of op is as follows:

// C++
void MyXImpl::op(String_out s)
{

s = string_dup("new string val");
}

The return value of the _boxed_out function shall be such that the string value
boxed in the instance pointed to by sval is set to "new string val" after op
returns, with the instance pointed to by sval maintaining ownership of the string.

1.17.7.2 Basic Types, Enums, and Object References
For all the signed and unsigned integer types except for the fixed type, and for
boolean, octet, char, wchar, float, double, long double, and enumerated types,
and for typedefs of all of these, value box classes provide:

• A public default constructor. Note that except for the object reference case, the
value of the underlying boxed value will be indeterminate after this constructor runs
(i.e., the default constructor does not initialize the boxed value to a given value).
This is because the built-in constructors for each of the basic types and
enumerations do not initialize instances of their types to particular values, either.
For boxed object references, this constructor sets the underlying boxed object
reference to nil.

• A public constructor that takes one argument of the underlying type. This argument
is used to initialize the value of the underlying boxed type.
1-76 C++ Language Mapping, v1.1 June 2003

1

• A public assignment operator that takes one argument of the underlying type. This
argument is used to replace the value of the underlying boxed type.

• Public accessor and modifier functions for the boxed value. The accessor and
modifier functions are always named _value. For boxed object references, the
return value of the accessor is not a duplicate.

• Explicit conversion functions that allow the boxed value to be passed where its
underlying type is called for. These functions are named _boxed_in,
_boxed_inout, and _boxed_out, and their return types match the in, inout,
and out parameter passing modes, respectively, of the underlying boxed type.
Implicit conversions to the underlying type are not provided because values are
normally handled by pointer.

• A public copy constructor.

• A public static _downcast function.

• A protected destructor.

• A private and preferably unimplemented default assignment operator.

Comment: Issue 3224

Value box classes for object references maintain a private managed copy of the object
reference. The constructor, assignment operator, and _value modifier methods for
these classes call _duplicate on the object reference argument; the destructor calls
CORBA::release on the boxed reference.

An example value box class for an enumerated type is shown below:

// IDL
enum Color { red, green, blue };
valuetype ColorValue Color;

// C++
class ColorValue : public DefaultValueRefCountBase {

public:
ColorValue();
ColorValue(Color val);
ColorValue(const ColorValue& val);

ColorValue& operator=(Color val);

Color _value() const;// accessor
void _value(Color val);// modifier

// explicit conversion functions for
// underlying boxed type
//
Color _boxed_in() const;
Color& _boxed_inout();
Color& _boxed_out();
June 2003 C++ Mapping: Mapping for Valuetypes 1-77

1

static ColorValue* _downcast(ValueBase* base);

protected:
~ColorValue();

private:
void operator=(const ColorValue& val);

};

1.17.7.3 Struct Types
Value box classes for struct types map to classes that provide accessor and modifier
functions for each struct member. Specifically, the classes provide:

• A public default constructor. The underlying boxed struct type is initialized as it
would be by its own default constructor.

• A public constructor that takes a single argument of type const T&, where T is the
underlying boxed struct type.

• A public assignment operator that takes a single argument of type const T&,
where T is the underlying boxed struct type.

• Public accessor and modifier functions, all named _value, for the underlying
boxed struct type. Two accessors are provided: one a const member function
returning const T&, and the other a non-const member function returning a T&.
The modifier function takes a single argument of type const T&.

• The _boxed_in, _boxed_inout, and _boxed_out functions that allow access
to the boxed value to pass it in signatures expecting the underlying boxed struct
type. The return values of these functions correspond to the in, inout, and out
parameter passing modes for the underlying boxed struct type, respectively.

• For each struct member, a set of accessor and modifier functions. These functions
have the same signatures as accessor and modifier functions for union members.

• A public copy constructor.

• A public static _downcast function.

• A protected destructor.

• A private and preferably unimplemented default assignment operator.

As with other value box classes, no implicit conversions to the underlying boxed type
are provided since values are normally handled by pointer.

For example:

// IDL
struct S {

string str;
long len;

};
1-78 C++ Language Mapping, v1.1 June 2003

1

valuetype BoxedS S;

// C++
class BoxedS : public DefaultValueRefCountBase {

public:
BoxedS();
BoxedS(const S& val);
BoxedS(const BoxedS& val);

BoxedS& operator=(const S& val);

const S& _value() const;
S& _value();
void _value(const S& val);

const S& _boxed_in() const;
S& _boxed_inout();
S*& _boxed_out();

static BoxedS* _downcast(ValueBase* base);

const char* str() const;
void str(char* val);
void str(const char* val);
void str(const String_var& val);

Long len() const;
void len(Long val);

protected:
~BoxedS();

private:
void operator=(const BoxedS& val);

};

1.17.7.4 String and WString Types
In order to allow boxed strings to be treated as normal strings where appropriate, value
box classes for strings provide largely the same interface as the String_var class.
The only differences from the interface of the String_var class are:

• The value box class interface does not provide the in, inout, out, and _retn
functions that String_var provides. Rather, the value box class provides
replacements for these functions called _boxed_in, _boxed_inout, and
_boxed_out. They have mostly the same semantics and signatures as their
String_var counterparts, but their names have been changed to make it clear
that they provide access to the underlying string, not to the value box itself.

• There are no overloaded operators for implicit conversion to the underlying string
type because values are normally handled by pointer.
June 2003 C++ Mapping: Mapping for Valuetypes 1-79

1

In addition to most of the String_var interface, value box classes for strings
provide:

• Public accessor and modifier functions for the boxed string value. These functions
are all named _value. The single accessor function takes no arguments and returns
a const char*. There are three modifier functions, each taking a single
argument. One takes a char* argument which is adopted by the value box class,
one takes a const char* argument which is copied, and one takes a const
String_var& from which the underlying string value is copied.

• A public default constructor that initializes the underlying string to an empty string.

• Three public constructors that take string arguments. One takes a char* argument
that is adopted, one takes a const char* that is copied, and one takes a const
String_var& from which the underlying string value is copied. If the
String_var holds no string, the boxed string value is initialized to the empty
string.

• Three public assignment operators: one that takes a parameter of type char* that is
adopted, one that takes a parameter of type const char* that is copied, and one
that takes a parameter of type const String_var& from which the underlying
string value is copied. Each returns a reference to the object being assigned to. If
the String_var holds no string, the boxed string value is set equal to the empty
string.

• A public copy constructor.

• A public static _downcast function.

• A protected destructor.

• A private and preferably unimplemented default assignment operator.

An example of a value box class for a string is shown below:

// IDL
valuetype StringValue string;

// C++
class StringValue : public DefaultValueRefCountBase {

public:
// constructors
//
StringValue();
StringValue(const StringValue& val);
StringValue(char* str);
StringValue(const char* str);
StringValue(const String_var& var);

// assignment operators
//
StringValue& operator=(char* str);
StringValue& operator=(const char* str);
StringValue& operator=(const String_var& var);
1-80 C++ Language Mapping, v1.1 June 2003

1

// accessor
//
const char* _value() const;

// modifiers
//
void _value(char* str);
void _value(const char* str);
void _value(const String_var& var);

// explicit argument passing conversions for
// the underlying string
//
const char* _boxed_in() const;
char*& _boxed_inout();
char*& _boxed_out();

// ...other String_var functions such as overloaded
// subscript operators, etc....

static StringValue* _downcast(ValueBase* base);

protected:
~StringValue();

private:
void operator=(const StringValue& val);

};

Note that even though value box classes for strings provide overloaded subscript
operators, the fact that values are normally handled by pointer means that they must be
dereferenced before the subscript operators can be used.

1.17.7.5 Union, Sequence, Fixed, and Any Types
Value boxes for these types map to classes that have exactly the same public interfaces
as the underlying boxed types, except that each has:

• In addition to the constructors provided by the class for the underlying boxed type,
a public constructor that takes a single argument of type const T&, where T is the
underlying boxed type.

• An assignment operator that takes a single argument of type const T&, where T
is the underlying boxed type.

• Accessor and modifier functions for the underlying boxed value. All such functions
are named _value. There are two accessor functions, one a const member function
returning a const T&, and the other a non-const member function returning T&.
The modifier function takes a single argument of type const T&.
June 2003 C++ Mapping: Mapping for Valuetypes 1-81

1

• The _boxed_in, _boxed_inout, and _boxed_out functions that allow access
to the boxed value to pass it in signatures expecting the underlying boxed value
type. The return values of these functions correspond to the in, inout, and out
parameter passing modes for the underlying boxed type, respectively.

• A protected destructor.

• A private and preferably unimplemented default assignment operator.

As with other value box classes, no implicit conversions to the underlying boxed type
are provided since values are normally handled by pointer.

Note that the value box class for sequence types provides overloaded subscript
operators (operator[]) just as a sequence class does. However, since values are
normally handled by pointer, the value instance must be dereferenced before the
overloaded subscript operator can be applied to it.

Value box instances for the any type can be passed to the overloaded operators for
insertion and extraction by invoking the appropriate explicit conversion function:

// C++
AnyValueBox* val = ...
val->_boxed_inout() <<= something;
if (val->_boxed_in() >>= something_else) ...

Below is an example value box along with its corresponding C++ class:

// IDL
typedef sequence<long> LongSeq;
valuetype LongSeqValue LongSeq;

// C++
class LongSeqValue : public DefaultValueRefCountBase {

public:
LongSeqValue();
LongSeqValue(ULong max);
LongSeqValue(ULong max,

ULong length,
Long* buf,
Boolean release = 0);

LongSeqValue(const LongSeq& init);
LongSeqValue(const LongSeqValue& val);

LongSeqValue& operator=(const LongSeq& val);

const LongSeq& _value() const;
LongSeq& _value();
void _value(const LongSeq&);

const LongSeq& _boxed_in() const;
LongSeq& _boxed_inout();
LongSeq*& _boxed_out();
1-82 C++ Language Mapping, v1.1 June 2003

1

static LongSeqValue* _downcast(ValueBase*);

ULong maximum() const;
ULong length() const;
void length(ULong len);

Long& operator[](ULong index);
Long operator[](ULong index) const;

protected:
~LongSeqValue();

private:
void operator=(const LongSeqValue&);

};

1.17.7.6 Array Types
In order to allow boxed arrays to be treated as normal arrays where appropriate, value
box classes for arrays provide largely the same interface as the corresponding array
_var class. The only differences from the interface of the _var class are:

• The value box class interface does not provide the in, inout, out, and _retn
functions that _var provides. Rather, the value box class provides replacements for
these functions called _boxed_in, _boxed_inout, and _boxed_out. They
have mostly the same semantics and signatures as their _var counterparts, but their
names have been changed to make it clear that they provide access to the
underlying array, not to the value box itself.

• There are no overloaded operators for implicit conversion to the underlying array
type because values are normally handled by pointer.

In addition to most of the _var interface, value box classes for arrays provide:

• Public accessor and modifier functions for the boxed array value. These functions
are named _value. The single accessor function takes no arguments and returns a
pointer to array slice. The modifier function takes a single argument of type const
array.

• A public default constructor.

• A public constructor that takes a const array argument.

• A public assignment operator that takes a const array argument.

• A public copy constructor.

• A public static _downcast function.

• A protected destructor.

• A private and preferably unimplemented default assignment operator.

An example of a value box class for an array is shown below:
June 2003 C++ Mapping: Mapping for Valuetypes 1-83

1

// IDL
typedef long LongArray[3][4];
valuetype ArrayValue LongArray;

// C++
typedef Long LongArray[3][4];
typedef Long LongArray_slice[4];
class ArrayValue : public DefaultValueRefCountBase {

public:
ArrayValue();
ArrayValue(const ArrayValue& val);
ArrayValue(const LongArray val);

ArrayValue& operator=(const LongArray val);

const LongArray_slice* _value() const;
LongArray_slice* _value();

void _value(const LongArray val);

// explicit argument passing conversions for
// the underlying array
//
const LongArray_slice* _boxed_in() const;
LongArray_slice* _boxed_inout();
LongArray_slice* _boxed_out();

// ...overloaded subscript operators...

static ArrayValue* _downcast(ValueBase* base);

protected:
~ArrayValue();

private:
void operator=(const ArrayValue& val);

};

Note that even though value box classes for arrays provide overloaded subscript
operators, the fact that values are normally handled by pointer means that they must be
dereferenced before the subscript operators can be used.

1.17.8 Abstract Valuetypes
Abstract IDL valuetypes follow the same C++ mapping rules as concrete IDL
valuetypes, except that because they have no data members, the IDL compiler does
not generate OBV_ classes for them.
1-84 C++ Language Mapping, v1.1 June 2003

1

1.17.9 Valuetype Inheritance
For an IDL valuetype derived from other valuetypes or that supports interface
types, several C++ inheritance scenarios are possible:

• Concrete value base classes are inherited as public virtual bases to allow for “ladder
style” implementation inheritance.

• Abstract value base classes are inherited as public virtual base classes, since they
may be multiply inherited in IDL.

Comment: Issue 3328

• Interface classes supported by the IDL valuetype are not inherited. Instead, the
operations on the interface (and base interfaces, if any) are mapped to pure virtual
functions in the generated C++ base value class. In addition to this abstract base
value class and the OBV_ class, the IDL compiler generates a POA skeleton for this
value type; the name of this skeleton is formed by prepending the string "POA_" to
the fully-scoped name of the valuetype. The base value class and the POA
skeleton of the interface type are public virtual base classes of this skeleton. No tie
skeleton class is generated for the valuetype because the tie for the supported class
can be used instead.

The reason that interface classes are not inherited is that valuetype instances, like
POA servants, are themselves not object references. Providing this inheritance would
allow for error-prone code that implicitly widened pointers to valuetype instances to
C++ object references for the supported interfaces, but without first obtaining valid
object references for those valuetype instances from the POA. When such an
application attempted to use an invalid object reference obtained in this manner, it
would encounter errors that could be difficult to track back to the implicit widening of
the pointer to valuetype to object reference. The C++ language provides no hooks
into the implicit pointer-to-class widening mechanism by which an application might
guard against this type of error.

Avoiding the derivation of valuetype classes from interface classes also separates
the lifetimes of valuetype instances from the lifetimes of object reference instances. It
would be surprising to an application if a valid object reference that had not yet been
released unexpectedly became invalid because another part of the program had
decremented the valuetype part of the object reference instance to zero. This scenario
could be solved by the provision of an appropriate reference counting mix-in class.
However, given that such an approach breaks local/remote transparency by having
object reference release operations affect the servant, and given the associated
problems described in the preceding paragraphs, deriving valuetype classes from
interface classes is best avoided.

An example of the mapping for a valuetype that supports an interface is shown
below.

// IDL
interface A {

void op();
June 2003 C++ Mapping: Mapping for Valuetypes 1-85

1

};

valuetype B supports A {
public short data;

};

// C++
class B : public virtual ValueBase {

public:

Comment: Issue 4265

virtual void op();

virtual Short data() const = 0;
virtual void data(Short) = 0;

// ...
};

class POA_B : public virtual POA_A, public virtual B {
public:

virtual void op();
// ...

};

Comment: Issue 4265

1.17.10 Valuetype Factories
Because concrete valuetype classes are provided by the application developer, the
creation of values is problematic under certain circumstances. These circumstances
include:

• Unmarshaling. The ORB cannot know a priori about all potential concrete value
classes supplied by the application, and so the ORB unmarshaling mechanisms do
not possess the capability to directly create instances of those classes.

• Component Libraries. Portions of an application, such as parts of a framework, may
be limited to only manipulating valuetype instances while leaving creation of
those instances to other parts of the application.

1.17.10.1 ValueFactoryBase Class
Just as they provide concrete C++ valuetype classes, applications must also provide
factories for those concrete classes. The base of all value factory classes is the C++
CORBA::ValueFactoryBase class:
1-86 C++ Language Mapping, v1.1 June 2003

1

// C++
namespace CORBA {

class ValueFactoryBase;
typedef ValueFactoryBase* ValueFactory;

class ValueFactoryBase
{
public:

virtual ~ValueFactoryBase();

virtual void _add_ref();
virtual void _remove_ref();

static ValueFactory _downcast(ValueFactory vf);

protected:
ValueFactoryBase();

private:
virtual ValueBase* create_for_unmarshal() = 0;

};
// ...

}

The C++ mapping for the IDL CORBA::ValueFactory native type is a pointer to a
ValueFactoryBase class, as shown above. Applications derive concrete factory
classes from ValueFactoryBase, and register instances of those factory classes
with the ORB via the ORB::register_value_factory function. If a factory is
registered for a given value type and no previous factory was registered for that type,
the register_value_factory function returns a null pointer.

When unmarshaling value instances, the ORB needs to be able to call up to the
application to ask it to create those instances. Value instances are normally created via
their type-specific value factories (see Section 1.17.10, “Valuetype Factories,” on
page 1-86) so as to preserve any invariants they might have for their state. However,
creation for unmarshaling is different because the ORB has no knowledge of
application-specific factories, and in fact in most cases may not even have the
necessary arguments to provide to the type-specific factories.

To allow the ORB to create value instances required during unmarshaling, the
ValueFactoryBase class provides the create_for_unmarshal pure virtual
function. The function is private so that only the ORB, through implementation-
specific means (e.g., via a friend class), can invoke it. Applications are not expected to
invoke the create_for_unmarshal function. Derived classes shall override the
create_for_unmarshal function and shall implement it such that it creates a new
value instance and returns a pointer to it. The caller assumes ownership of the returned
instance and shall ensure that _remove_ref is eventually invoked on it. Since the
create_for_unmarshal function returns a pointer to ValueBase, the caller may
use the downcasting functions supplied by value types to downcast the pointer back to
a pointer to a derived value type.
June 2003 C++ Mapping: Mapping for Valuetypes 1-87

1

Once the ORB has created a value instance via the create_for_unmarshal
function, it can use the value data member modifier functions to set the state of the
new value instance from the unmarshaled data. How the ORB accesses the protected
value data member modifiers of the value is implementation-specific and does not
affect application portability.

The ValueFactoryBase uses reference counting to prevent itself from being
destroyed while still in use by the application. A ValueFactoryBase initially has a
reference count of one. Invoking _add_ref on a ValueFactoryBase increases its
reference count by one. Invoking _remove_ref on a ValueFactoryBase
decrements its reference count by one, and if the resulting reference count equals zero,
_remove_ref invokes delete on its this pointer in order to destroy the factory.
For ORBs that operate in multi-threaded environments, the implementations of
ValueFactoryBase::_add_ref and ValueFactoryBase::_remove_ref
are thread-safe.

When a valuetype factory is registered with the ORB, the ORB invokes _add_ref
once on the factory before returning from register_value_factory. When the ORB is
done using that factory, the reference count is decremented once. This can occur in any
of the following circumstances:

• If the factory is explicitly unregistered via unregister_value_factory the ORB
invokes _remove_ref once on the factory.

• If the factory is implicitly unregistered due to ORB::shutdown, the ORB is
responsible for invoking _remove_ref once on each registered factory.

• If the factory is replaced with a new invocation of register_value_factory, the
previously registered factory is returned to the caller who assumes ownership of one
reference to that factory. When the caller is done with the factory, it invokes
_remove_ref once on that factory.

The caller of lookup_value_factory assumes ownership of one reference to the
factory. When the caller is done with the factory, it invokes _remove_ref once on
that factory.

The _downcast function on the factory allows the return type of the
ORB::lookup_value_factory function to be downcast to a pointer to a type-
specific factory (see Section 1.17.10, “Valuetype Factories,” on page 1-86). It is
important to note that the return value of the factory _downcast does not become the
memory management responsibility of the caller, and thus _remove_ref is not
called on it.

1.17.10.2 ValueFactoryBase_var Class
For the convenience of automatically managing valuetype factory reference counts,
the CORBA namespace provides the ValueFactoryBase_var class. This class
behaves similarly to the PortableServer::ServantBase_var class for servant
memory management (see Section 1.37.4, “ServantBase_var Class,” on page 1-137).

// C++
namespace CORBA
1-88 C++ Language Mapping, v1.1 June 2003

1

{
class ValueFactoryBase_var
{
public:

ValueFactoryBase_var() :_ptr(0) {}
ValueFactoryBase_var(ValueFactoryBase* p)

: _ptr(p) {}
ValueFactoryBase_var(const ValueFactoryBase_var& b)

: _ptr(b._ptr)
{

if (_ptr != 0) _ptr->_add_ref();
}
~ValueFactoryBase_var()
{

if (_ptr != 0) _ptr->_remove_ref();
}
ValueFactoryBase_var&
operator=(ValueFactoryBase* p)
{

if (_ptr != 0) _ptr->_remove_ref();
_ptr = p;

return *this;
}
ValueFactoryBase_var&
operator=(const ValueFactoryBase_var& b)
{

if (_ptr != b._ptr) {
if (_ptr != 0) _ptr->_remove_ref();
if ((_ptr = b._ptr) != 0)

_ptr->_add_ref();
}
return *this;

}
ValueFactoryBase* operator->() const {return _ptr;}
ValueFactoryBase* in() const { return _ptr; }
ValueFactoryBase*& inout() { return _ptr; }
ValueFactoryBase*& out()
{

if (_ptr != 0) _ptr->_remove_ref();
_ptr = 0;
return _ptr;

}
ValueFactoryBase* _retn()
{

ValueFactoryBase* retval = _ptr;
_ptr = 0;
return retval;

}

private:
ValueFactoryBase* _ptr;
June 2003 C++ Mapping: Mapping for Valuetypes 1-89

1

};
// ...

}

The implementation shown above for the ValueFactoryBase_var is intended
only as an example that conveys required semantics. Variations of this implementation
are conforming as long as they provide the same semantics as the implementation
shown here.

1.17.10.3 Type-Specific Value Factories
All valuetypes that have initializer operations declared for them also have type-
specific C++ value factory classes generated for them. For a valuetype A, the name of
the factory class, which is generated at the same scope as the value class, shall be
A_init. Each initializer operation maps to a pure virtual function in the factory class,
and each of these initializers defined in IDL is mapped to an initializer function of the
same name. Base valuetype initializers are not inherited, and so do not appear in the
factory class. The initializer parameters are mapped using normal C++ parameter
passing rules for in parameters. The return type of each initializer function is a pointer
to the created valuetype.

For example, consider the following valuetype:

// IDL
valuetype V {

factory create_bool(boolean b);
factory create_(char c);
factory create_(octet o);
factory create_(short s, string p);
...

};

The factory class for the example given above will be generated as follows:

// C++
class V_init : public ValueFactoryBase {

public:
virtual ~V_init();

virtual V*
create_bool(Boolean val) = 0;

virtual V* create_char(Char val) =0;
virtual V* create_octet(Octet val)=0;
virtual V* create_other(Short s, const char* p) = 0;

static V_init* _downcast(ValueFactory vf);

protected:
V_init();

};
1-90 C++ Language Mapping, v1.1 June 2003

1

Each generated factory class has a public virtual destructor, a protected default
constructor, and a public _downcast function allowing downcasting from a pointer to
the base ValueFactoryBase class. Each also supplies a public pure virtual
create function corresponding to each initializer. Applications derive concrete
factory classes from these classes and register them with the ORB. Note that since each
generated value factory derives from the base ValueFactoryBase, all derived
concrete factory classes shall also override the private pure virtual
create_for_unmarshal function inherited from ValueFactoryBase.

For valuetypes that have no operations or initializers, a concrete type-specific factory
class is generated whose implementation of the create_for_unmarshal function
simply constructs an instance of the OBV_ class for the valuetype using new and the
default constructor. The constructor for a concrete factory is public, not protected.

For valuetypes that have operations, but no initializers, there are no type-specific
abstract factory classes, but applications must still supply concrete factory classes.
These classes, which are derived directly from ValueFactoryBase, need not
supply _downcast functions14, and only need to override the
create_for_unmarshal function.

1.17.10.4 Unmarshaling Issues
When the ORB unmarshals a valuetype for a request handled via C++ static stubs or
skeletons, it tries to find a factory for the valuetype via the
ORB::lookup_value_factory operation. If the factory lookup fails, the client
application receives a CORBA::MARSHAL exception. Thus, applications utilizing
static stubs or skeletons must ensure that a valuetype factory is registered for every
valuetype it expects to receive via static invocation mechanisms.

Because of their dynamic nature, applications using the DII or DSI are not expected to
have compile-time information for all the valuetypes they might receive. For these
applications, valuetype instances are represented as CORBA::Any, and so value
factories are not required to be registered with the ORB to allow such valuetypes to
be unmarshaled. However, value factories must be registered with the ORB and
available for lookup if the application attempts extraction of the valuetypes via the
statically-typed Any extraction functions. See “Extraction from any” on page 1-57 for
more details.

1.17.11 Custom Marshaling
The C++ mappings for the IDL CORBA::CustomerMarshal,
CORBA::DataOutputStream, and CORBA::DataInputStream types follow
normal C++ valuetype mapping rules.

14. Since the factory class hierarchy has virtual functions in it, a C++ dynamic_cast can
always be used to traverse the factory inheritance hierarchy, but it is not portable since all
C++ compilers do not yet support it.
June 2003 C++ Mapping: Mapping for Valuetypes 1-91

1

1.17.12 Another Valuetype Example

// IDL
valuetype Node {

public long data;
public Node next;
void print();

Node change(in Node inval,
inout Node ioval,
out Node outval);

};

// C++
class Node : public virtual ValueBase
{

public:
virtual Long data() const = 0;
virtual void data(Long) = 0;

virtual Node* next() const = 0;
virtual void next(Node*) = 0;

virtual void print() = 0;
virtual Node* change(Node* inval,

Node*& ioval,
Node_out outval) = 0;

static Node* _downcast(ValueBase*);

protected:
Node();
virtual ~Node();

private:
// private and unimplemented
void operator=(const Node&);

};

class OBV_Node : public virtual Node
{

public:
virtual Long data() const;
virtual void data(Long);

virtual Node* next() const;
virtual void next(Node*);

protected:
OBV_Node();
1-92 C++ Language Mapping, v1.1 June 2003

1

OBV_Node(Long data_init, Node* next_init);
virtual ~OBV_Node();

private:
// private and unimplemented
void operator=(const OBV_Node&);

};

1.17.13 Valuetype Members of Structs
As described in Section 1.9, “Mapping for Structured Types,” on page 1-21, struct
members are required to be self-managing. This results in the need for manager types
for both strings and object references. Since valuetypes are handled by pointer,
similar to the way strings and object references are handled, they too require manager
types to represent them when they are used as struct members.

The valuetype instance manager types have semantics similar to that of the manager
types for object references:

• Any assignment to a managed valuetype member causes that member to
decrement the reference count of the valuetype it is managing, if any.

• A valuetype pointer assigned to a managed valuetype member is adopted by the
member.

• A valuetype _var assigned to a managed valuetype member results in the
reference count of the instance being incremented. The _var types and valuetype
member manager types follow the same rules for widening assignment that those
for object references do.

• If the constructed type holding the managed valuetype member is assigned to
another constructed type (for example, an instance of a struct with a valuetype
member is assigned to another instance of the same struct), the reference count of
the managed valuetype instance in the struct on the right-hand side of the
assignment is incremented, while the reference count of the managed instance on
the left-hand side is decremented. As usual in C++, assignment to self must be
guarded against to avoid any mishandling of the reference count.

• When it is destroyed, the managed valuetype member decrements the reference
count of the managed valuetype instance.

The semantics of valuetype managers described here provide for sharing of
valuetype instances across constructed types by default. Each C++ valuetype also
provides an explicit copy function that can be used to avoid sharing when desired.

1.18 Mapping for Abstract Interfaces
The C++ mapping for abstract interfaces is almost identical to the mapping for regular
interfaces. Rather than defining a complete C++ mapping for abstract interfaces, which
would only duplicate much of the specification of the mapping for regular interfaces
June 2003 C++ Mapping: Mapping for Abstract Interfaces 1-93

1

found in Section 1.3, “Mapping for Interfaces,” on page 1-6, only the ways in which
the abstract interface mapping differs from the regular interface mapping are described
here.

1.18.1 Abstract Interface Base
C++ classes for abstract interfaces are not derived from the CORBA::Object C++
class. In IDL, abstract interfaces have no common base. However, to facilitate
narrowing from an abstract interface base class down to derived abstract interfaces,
derived interfaces, and derived valuetype types, all abstract interface base classes that
have no other base abstract interfaces derive directly from CORBA::AbstractBase.
This base class provides the following:

• A protected default constructor.

• A protected copy constructor.

• A protected pure virtual destructor.

• A public static _duplicate function.

• A public static _narrow function.

• A public static _nil function.

The AbstractBase class is shown below:

// C++
class AbstractBase;
typedef ... AbstractBase_ptr;// either pointer or class

class AbstractBase {
public:

static AbstractBase_ptr _duplicate(AbstractBase_ptr);
static AbstractBase_ptr _narrow(AbstractBase_ptr);
static AbstractBase_ptr _nil();

Object_ptr _to_object();
ValueBase* _to_value();

protected:
AbstractBase();
AbstractBase(const AbstractBase& val);
virtual ~AbstractBase() = 0;

};

The _duplicate function operates polymorphically over both object references and
valuetype types. If an AbstractBase_ptr that actually refers to an object
reference is passed to the _duplicate function, the object reference is duplicated
and a duplicate object reference is returned. Otherwise, the argument refers to a
valuetype instance, so the _add_ref function is called on the valuetype and the
argument is returned. If the argument is a nil AbstractBase_ptr, the return value
is nil.
1-94 C++ Language Mapping, v1.1 June 2003

1

The implementation of AbstractBase::_narrow merely passes its argument to
_duplicate and uses the value it returns as its own return value. Strictly speaking,
the _narrow function is not needed in the AbstractBase interface because it is of
little use to narrow an AbstractBase to its own type, but it is required by all
conforming implementations to make writing C++ templates that deal with abstract
interfaces easier (AbstractBase does not present a special case).

As with regular object references, the _nil function returns a typed AbstractBase
nil reference.

Both the is_nil and release functions in the CORBA namespace are overloaded to
handle abstract interface references:

// C++
namespace CORBA {

Boolean is_nil(AbstractBase_ptr);
void release(AbstractBase_ptr);

}

These behave the same as their object reference counterparts. Note that release is
expected to operate polymorphically over both valuetype types and object reference
types. If its argument is nil, it does nothing. If its argument refers to a valuetype
instance, it invokes _remove_ref on that instance. Otherwise, its argument refers to
an object reference, on which it invokes CORBA::release for object references.

If the concrete type of an abstract interface instance is a normal object reference, the
_to_object function returns a reference to that object, otherwise it returns a nil
reference. If the concrete type is a valuetype, _to_value returns a pointer to that
valuetype, otherwise it returns a null pointer. The caller of _to_object or
_to_value is responsible for properly releasing the returned reference or pointer.

1.18.2 Client Side Mapping
The client side mapping for abstract interfaces is almost identical to the mapping for
object references, except:

• C++ classes for abstract interfaces derive from CORBA::AbstractBase, not
CORBA::Object.

• Because abstract interface classes can serve as base classes for application-supplied
concrete valuetype classes, they shall provide a protected default constructor, a
protected copy constructor, and a protected destructor (which is virtual by virtue of
inheritance from AbstractBase).

• The mapping for object reference classes does not specify the type of inheritance
used for base object reference classes. However, because abstract interfaces can
serve as base classes for application-supplied concrete valuetype classes, which
themselves can be derived from regular interface classes, abstract interface classes
shall always be inherited as public virtual base classes.
June 2003 C++ Mapping: Mapping for Abstract Interfaces 1-95

1

• Normal Any insertion and extraction operators are generated for abstract interfaces.
The Any::to_object, Any::to_abstract_base and Any::to_value
types can be used to extract the contents of an Any as a generic object reference,
abstract object reference, or valuetype respectively.

Other than that, the mapping for abstract interfaces is identical to that for regular
interfaces, including the provision of _var types, _out types, manager types for
struct, sequence, and array members, identical memory management, and identical
C++ signatures for operations.

Both interfaces that are derived from one or more abstract interfaces, and valuetypes
that support one or more abstract interfaces support implicit widening to the _ptr
type for each abstract interface base class. Specifically, the T* for valuetype T and
the T_ptr type for interface type T support implicit widening to the Base_ptr type
for abstract interface type Base. The only exception to this rule is for valuetypes that

Comment: Issue 3080

only support an abstract interface indirectly via support for a regular interface type (see
Section 1.17.9, “Valuetype Inheritance,” on page 1-84). In this case, it is the object
reference for the valuetype, not the pointer to the valuetype, that supports widening
to the abstract interface base. If a valuetype supports an abstract interface directly (or
inherits that support via derivation from another valuetype) and at the same time
supports a normal interface that inherits from the same abstract interface, then either
the valuetype pointer or the object reference may be widened to the abstract interface.

1.19 Mapping for Exception Types
An OMG IDL exception is mapped to a C++ class that derives from the standard
UserException class defined in the CORBA module (see Section 1.1.4, “CORBA
Module,” on page 1-5). The generated class is like a variable-length struct, regardless
of whether or not the exception holds any variable-length members. Just as for
variable-length structs, each exception member must be self-managing with respect to
its storage. String and wide string exception members must be initialized to the empty
string ("" and L"", respectively) by the default constructor for the exception.

The copy constructor, assignment operator, and destructor automatically copy or free
the storage associated with the exception. For convenience, the mapping also defines a
constructor with one parameter for each exception member—this constructor initializes
the exception members to the given values. For exception types that have a string
member, this constructor should take a const char* parameter, since the
constructor must copy the string argument. Similarly, constructors for exception types
that have an object reference member must call _duplicate on the corresponding
object reference constructor parameter. The default constructor performs no explicit
member initialization.

// C++
class Exception
{

1-96 C++ Language Mapping, v1.1 June 2003

1

public:
virtual ~Exception();
virtual void _raise() const = 0;
virtual const char * _name() const;
virtual const char * _rep_id() const;

Comment: Issue 2897

protected:
Exception();
Exception(const Exception &);
Exception &operator=(const Exception &);

};

The Exception base class is abstract and may not be instantiated except as part of an
instance of a derived class. It supplies one pure virtual function to the exception
hierarchy: the _raise() function. This function can be used to tell an exception
instance to throw itself so that a catch clause can catch it by a more derived type.
Each class derived from Exception implements _raise() as follows:

// C++
void SomeDerivedException::_raise() const
{

throw *this;
}

For environments that do not support exception handling, please refer to
Section 1.43.2, “Without Exception Handling,” on page 1-170 for information about
the _raise() function.

Comment: Issue 3381

The _name() function returns the unqualified (unscoped) name of the exception. The
_rep_id() function returns the repository ID of the exception. The return value from
_name() and _rep_id() must not be deallocated.

The UserException class is derived from a base Exception class, which is also
defined in the CORBA module.

All standard exceptions are derived from a SystemException class, also defined in
the CORBA module. Like UserException, SystemException is derived from
the base Exception class. The SystemException class interface is shown below.

// C++
enum CompletionStatus {

COMPLETED_YES,
COMPLETED_NO,
COMPLETED_MAYBE

};

class SystemException : public Exception
June 2003 C++ Mapping: Mapping for Exception Types 1-97

1

{

Comment: Issue 2897

public:
~SystemException();

ULong minor() const;
void minor(ULong);

virtual void _raise() const = 0;

CompletionStatus completed() const;
void completed(CompletionStatus);

protected:
SystemException();
SystemException(const SystemException &);
SystemException(ULong minor, CompletionStatus status);
SystemException &operator=(const SystemException &);

};

The default constructor for SystemException causes minor() to return 0 and
completed() to return COMPLETED_NO.

Each specific system exception is derived from SystemException:

// C++
class UNKNOWN : public SystemException { ... };
class BAD_PARAM : public SystemException { ... };
// etc.

All specific system exceptions are defined within the CORBA module.

This exception hierarchy allows any exception to be caught by simply catching the
Exception type:

// C++
try {

...
} catch (const Exception &exc) {

...
}

Alternatively, all user exceptions can be caught by catching the UserException
type, and all system exceptions can be caught by catching the SystemException
type:

// C++
try {

...
} catch (const UserException &ue) {

...
1-98 C++ Language Mapping, v1.1 June 2003

1

} catch (const SystemException &se) {
...

}

Naturally, more specific types can also appear in catch clauses.

Exceptions are normally thrown by value and caught by reference. This approach lets
the exception destructor release storage automatically.

The Exception class provides for downcasting within the exception hierarchy:

// C++
class UserException : public Exception
{

public:
static UserException *_downcast(Exception *);
static const UserException *_downcast(

const Exception *
);

virtual void _raise() const = 0;

// ...
};

class SystemException : public Exception
{

public:
static SystemException *_downcast(Exception *);
static const SystemException *_downcast(

const Exception *
);

virtual void _raise() const = 0;

// ...
};

Each exception class supports an overloaded static member function named
_downcast. The parameter to the _downcast calls is a pointer to a const or non-
const instance of the base class Exception. If the parameter is a null pointer, the
return type of _downcast is a null pointer. If the actual (run time) type of the
parameter exception can be widened to the requested exception’s type, then
_downcast will return a valid pointer to the parameter Exception. Otherwise,
_downcast will return a null pointer. The version of _downcast overloaded to take
a pointer to a const Exception returns a pointer to const in order to preserve
const-correctness.

Unlike the _narrow operation on object references, the _downcast operation on
exceptions is equivalent to the C++ dynamic_cast operator in that it returns a
suitably-typed pointer to the same exception parameter, not a pointer to a new
exception. If the original exception goes out of scope or is otherwise destroyed, the
June 2003 C++ Mapping: Mapping for Exception Types 1-99

1

pointer returned by _downcast is no longer valid. The semantics for _downcast
are thus the same as for valuetype as described in Section 1.17.3, “Valuetype
Operations,” on page 1-70.

For application portability, conforming C++ mapping implementations built using C++
compilers that support the standard C++ Run Time Type Information (RTTI)
mechanisms still need to support downcasting for the Exception hierarchy. RTTI
supports, among other things, determination of the run-time type of a C++ object. In
particular, the dynamic_cast<T*> operator15 allows for downcasting from a base
pointer to a more derived pointer if the object pointed to really is of the more derived
type. This operator is not useful for narrowing object references, since it cannot
determine the actual type of remote objects, but it can be used by the C++ mapping
implementation to downcast within the exception hierarchy.

Previous versions of this mapping provided support for downcasting via a static
member function called _narrow, which had exactly the same semantics as
_downcast. Due to confusion over memory management differences between object
reference _narrow functions and exception _narrow functions, the exception
_narrow function is now deprecated in favor of _downcast. Portable applications
shall use _downcast for exception downcasting, not _narrow. ORB
implementations that provide _narrow functions for exceptions for purposes of
backwards compatibility shall provide overloaded _narrow functions for both const
and non-const Exception*, same as for _downcast.

1.19.1 ostream Inserters
Conforming implementations shall provide ostream inserters with the following
signatures:

// C++
ostream& operator<<(ostream &, const CORBA::Exception &);
ostream& operator<<(ostream &, const CORBA::Exception *);

These inserters print information about an exception on an ostream. The format and
amount of detail of the printed information is implementation dependent. To guarantee
that applications can control formatting of exceptions by providing custom overloaded
inserters for more derived exception types, a conforming implementation must never
provide overloaded inserters for SystemException, UserException or other
more derived exception types.

15.It is unlikely that a compiler would support RTTI without supporting exceptions, since much
of a C++ exception handling implementation is based on RTTI mechanisms.
1-100 C++ Language Mapping, v1.1 June 2003

1

1.19.2 UnknownUserException
Request invocations made through the DII may result in user-defined exceptions that
cannot be fully represented in the calling program because the specific exception type
was not known at compile-time. The mapping provides the
UnknownUserException so that such exceptions can be represented in the calling
process:

// C++
class UnknownUserException : public UserException
{

public:
Any &exception();

};

As shown here, UnknownUserException is derived from UserException. It
provides the exception() accessor that returns an Any holding the actual
exception. Ownership of the returned Any is maintained by the
UnknownUserException—the Any merely allows access to the exception data.
Conforming applications should never explicitly throw exceptions of type
UnknownUserException—it is intended for use with the DII.

1.19.3 Any Insertion and Extraction for Exceptions
Conforming implementations shall generate Any insertion and extraction operators
(operator<<= and operator>>=, respectively) that allow all system and user
exceptions to be correctly inserted into and extracted from Any. Both copying and non-
copying forms of the Any insertion operator shall be provided for all system and user
exceptions.

In addition, conforming mapping implementations must support Any insertion (but not
extraction) for CORBA::Exception. This is required to allow DSI-based
applications to catch exceptions as CORBA::Exception& and store them into a
ServerRequest:

// C++
try {

// ...
} catch (Exception& exc) {

Any any;
any <<= exc;
server_request->set_exception(any);

}

Note that this shall result in both the TypeCode and value for the actual derived
exception type being stored into the Any. Both copying and non-copying forms of Any
insertion for CORBA::Exception shall be provided:

// C++
void operator<<=(Any&, const Exception&);
June 2003 C++ Mapping: Mapping for Exception Types 1-101

1

void operator<<=(Any&, const Exception*);

For applications using the DII or portable interceptors, it is useful to be able to extract
system exceptions generically. The mapping provides the following operator to do this:

// C++
Boolean operator>>=(const SystemException*& se) const;

The operator returns true if the Any on which it is invoked contains a system exception
and the ORB has static type information for the actual system exception contained in
the Any. In that case, se points at the base part of the actual exception after the
operator returns. If the ORB does not have static type information for the system
exception, the operator returns true and se points at an instance of
CORBA::UNKNOWN. Otherwise, the operator returns false and the value of se is
unchanged.

1.20 Mapping For Operations and Attributes
An operation maps to a C++ function with the same name as the operation. Each read-
write attribute maps to a pair of overloaded C++ functions (both with the same name),
one to set the attribute’s value and one to get the attribute’s value. The set function
takes an in parameter with the same type as the attribute, while the get function takes
no parameters and returns the same type as the attribute. An attribute marked
“readonly” maps to only one C++ function, to get the attribute’s value. Parameters
and return types for attribute functions obey the same parameter passing rules as for
regular operations.

OMG IDL oneway operations are mapped the same as other operations; that is, there
is no way to know by looking at the C++ whether an operation is oneway or not.

Comment: Issue 4265

Operation and attribute signatures do not have exception specifications.

// IDL
interface A
{

void f();
oneway void g();
attribute long x;

};

// C++
A_var a;
a->f();
a->g();
1-102 C++ Language Mapping, v1.1 June 2003

1

Long n = a->x();
a->x(n + 1);

Comment: Issue 4243

C++ operations do not require an additional Environment parameter for passing
exception information—real C++ exceptions are used for this purpose. See
Section 1.19, “Mapping for Exception Types,” on page 1-96 for more details.

1.21 Implicit Arguments to Operations
If an operation in an OMG IDL specification has a context specification, then a
Context_ptr input parameter (see Section 1.31, “Context,” on page 1-121) follows
all operation-specific arguments. In an implementation that does not support real C++
exceptions, an output Environment parameter is the last argument following all
operation-specific arguments, and following the context argument if present. The
parameter passing mode for Environment is described in Section 1.43.2, “Without
Exception Handling,” on page 1-170.

1.22 Argument Passing Considerations
The mapping of parameter passing modes attempts to balance the need for both
efficiency and simplicity. For primitive types, enumerations, and object references, the
modes are straightforward, passing the type P for primitives and enumerations and the
type A_ptr for an interface type A.

Aggregate types are complicated by the question of when and how parameter memory
is allocated and deallocated. Mapping in parameters is straightforward because the
parameter storage is caller-allocated and read-only. The mapping for out and inout
parameters is more problematic. For variable-length types, the callee must allocate
some if not all of the storage. For fixed-length types, such as a Point type represented
as a struct containing three floating point members, caller allocation is preferable (to
allow stack allocation).

To accommodate both kinds of allocation, avoid the potential confusion of split
allocation, and eliminate confusion with respect to when copying occurs, the mapping
is T& for a fixed-length aggregate T and T*& for a variable-length T. This approach
has the unfortunate consequence that usage for structs depends on whether the struct is
fixed- or variable-length; however, the mapping is consistently T_var& if the caller
uses the managed type T_var.

The mapping for out and inout parameters additionally requires support for
deallocating any previous variable-length data in the parameter when a T_var is
passed. Even though their initial values are not sent to the operation, we include out
parameters because the parameter could contain the result from a previous call. There
are many ways to implement this support. The mapping does not require a specific
implementation, but a compliant implementation must free the inaccessible storage
associated with a parameter passed as a T_var managed type. The provision of the
June 2003 C++ Mapping: Implicit Arguments to Operations 1-103

1

T_out types is intended to give implementations the hooks necessary to free the
inaccessible storage while converting from the T_var types. The following examples
demonstrate the compliant behavior:

// IDL
struct S { string name; float age; };
void f(out S p);

// C++
S_var s;
f(s);
// use s
f(s); // first result will be freed

S *sp; // need not initialize before passing to out
f(sp);
// use sp
delete sp; // cannot assume next call will free old value
f(sp);

Note that implicit deallocation of previous values for out and inout parameters works
only with T_var types, not with other types:

// IDL
void q(out string s);

// C++
char *s;
for (int i = 0; i < 10; i++)

q(s); // memory leak!

Each call to the q function in the loop results in a memory leak because the caller is
not invoking string_free on the out result. There are two ways to fix this, as
shown below:

// C++
char *s;
String_var svar;
for (int i = 0 ; i < 10; i++) {

q(s);
string_free(s);// explicit deallocation
// OR:
q(svar); // implicit deallocation

}

Using a plain char* for the out parameter means that the caller must explicitly
deallocate its memory before each reuse of the variable as an out parameter, while
using a String_var means that any deallocation is performed implicitly upon each
use of the variable as an out parameter.
1-104 C++ Language Mapping, v1.1 June 2003

1

If strings or wide strings are passed as inout parameters, the callee may modify the
contents of the string or wide string in place. However, if the new string or wide string
is longer than the initial string or wide string, reallocation becomes necessary. For a
new string or wide string that is shorter than the original string or wide string,
reallocation may also be used to conserve memory. However, shortening the string or
wide string by replacing a character that is part of the initial string or wide string with
the appropriate NUL character is also legal.

For inout object references, reallocation is necessary whenever the callee needs to
change the initial value of the reference. The example below illustrates this.

For in valuetypes, the callee shall receive a copy of each valuetype argument passed
to it even if the caller and callee are collocated in the same process. The callee is
allowed to invoke operations and modifier functions that modify the state of the
valuetype instance, but the state of the caller’s copy of that valuetype instance shall
not be affected by the callee’s state changes. This is required to preserve location
transparency for interface operations.

For inout valuetypes, the callee may either modify the incoming valuetype
instance, or may replace the incoming pointer with a pointer to a different valuetype
instance. The callee shall invoke _remove_ref on the valuetype instance passed in
before replacing it with a valuetype instance to be passed back out. The caller shall
eventually invoke _remove_ref on the valuetype instance it receives back as either
an inout, out, or return value.

The example below illustrates the replacement of inout arguments. For the operation f,
s1 is an inout string that is modified in place and whose length is not changed by the
callee, s2 is an inout string that is grown by the callee, obj is an inout object
reference that is changed by the callee, val1 is an inout valuetype that is changed in
place by the callee, and val2 is an inout valuetype that is replaced by the callee. The
example code uses local T_var variables to ensure automatic deallocation, but explicit
calls to CORBA::string_free and CORBA::release could have been used
instead.

// IDL
valuetype V { public long state; };
interface A {

void f(inout string s1, inout string s2, inout A obj,
inout V val1, inout V val2);

};

// C++
void Aimpl::f(char *&s1, char *&s2, A_ptr &obj,

V *&val1, V *&val2)
{

// Convert s1 to uppercase in place
while (*s1 != ‘\0’) to upper(*s1++);

// Return a different string value for s2
String_var s2_tmp = s2;
s2 = string_dup("new s2");
June 2003 C++ Mapping: Argument Passing Considerations 1-105

1

// Assign new value to obj
A_ptr newobj = ...
A_var obj_tmp = obj;
obj = A::_duplicate(newobj);

// Change value of val1 in place
if (val1 != 0) val1->state(42);

// Replace val2 entirely
CORBA::remove_ref(val2);
val2 = new MyVImpl(1234);

}

For parameters that are passed or returned as a pointer (T*) or reference to pointer
(T*&), except for valuetypes, a compliant program is not allowed to pass or return a
null pointer; the result of doing so is undefined. In particular, a caller may not pass a
null pointer under any of the following circumstances:

• in and inout string
• in and inout array (pointer to first element)

A caller may pass a reference to a pointer with a null value for out parameters,
however, since the callee does not examine the value but rather just overwrites it.
Furthermore, conforming applications may also pass and return null pointers for all
valuetype parameters and return types, and may embed null valuetype pointers
within constructed types that are passed as parameters or return values, such as structs,
unions, arrays, sequences, Any, and other valuetypes. A callee may not return a null
pointer under any of the following circumstances:

• out and return variable-length struct
• out and return variable-length union
• out and return string
• out and return sequence
• out and return variable-length array, return fixed-length array
• out and return any

Since OMG IDL has no concept of pointers in general or null pointers in particular,
except for valuetypes, allowing the passage of null pointers to or from an operation
would project C++ semantics onto OMG IDL operations.16 A compliant
implementation is allowed but not required to raise a BAD_PARAM exception if it
detects such an error.

16.When real C++ exceptions are not available, however, it is important that null pointers are
returned whenever an Environment containing an exception is returned; see
Section 1.43.2, “Without Exception Handling,” on page 1-170 for more details.
1-106 C++ Language Mapping, v1.1 June 2003

1

1.22.1 Operation Parameters and Signatures
Table 1-3 displays the mapping for the basic OMG IDL parameter passing modes and
return type according to the type being passed or returned, while Table 1-4 on
page 1-107 displays the same information for T_var types. “T_var Argument and
Result Passing” is merely for informational purposes; it is expected that operation
signatures for both clients and servers will be written in terms of the parameter passing
modes shown in “Basic Argument and Result Passing”, with the exception that the
T_out types will be used as the actual parameter types for all out parameters. It is
also expected that T_var types will support the necessary conversion operators to
allow them to be passed directly. Callers should always pass instances of either T_var
types or the base types shown in “Basic Argument and Result Passing”, and callees
should treat their T_out parameters as if they were actually the corresponding
underlying types shown in Table 1-3.

In Table 1-3, fixed-length arrays are the only case where the type of an out parameter
differs from a return value, which is necessary because C++ does not allow a function
to return an array. The mapping returns a pointer to a slice of the array, where a slice
is an array with all the dimensions of the original specified except the first one.

A caller is responsible for providing storage for all arguments passed as in arguments.

Table 1-3 Basic Argument and Result Passing
Data Type In Inout Out Return
short Short Short& Short& Short

long Long Long& Long& Long

long long LongLong LongLong& LongLong& LongLong

unsigned short UShort UShort& UShort& UShort

unsigned long ULong ULong& ULong& ULong

unsigned long long ULongLong ULongLong& ULongLong& ULongLong

float Float Float& Float& Float

double Double Double& Double& Double

long double LongDouble LongDouble& LongDouble& LongDouble

boolean Boolean Boolean& Boolean& Boolean

char Char Char& Char& Char

wchar WChar WChar& WChar& WChar

octet Octet Octet& Octet& Octet

enum enum enum& enum& enum

object reference ptr1 objref_ptr objref_ptr& objref_ptr& objref_ptr

struct, fixed const struct& struct& struct& struct

struct, variable const struct& struct& struct*& struct*

union, fixed const union& union& union& union

union, variable const union& union& union*& union*

string const char* char*& char*& char*

wstring const WChar* WChar*& WChar*& WChar*
June 2003 C++ Mapping: Argument Passing Considerations 1-107

1

“Caller Argument Storage Responsibilities” on page 1-108 and “Argument Passing
Cases” on page 1-109 describe the caller’s responsibility for storage associated with
inout and out parameters and for return results.

sequence const sequence& sequence& sequence*& sequence*

array, fixed const array array array array slice*2

array, variable const array array array slice*&2 array slice*2

any const any& any& any*& any*

fixed const fixed& fixed& fixed& fixed

valuetype3 valuetype* valuetype*& valuetype*& valuetype*

1. Including pseudo-object references.
2. A slice is an array with all the dimensions of the original except the first one.
3. Including value boxes.

Table 1-4 T_var Argument and Result Passing1

Data Type In Inout Out Return
object reference var2 const objref_var& objref_var& objref_var& objref_var

struct_var const struct_var& struct_var& struct_var& struct_var

union_var const union_var& union_var& union_var& union_var

string_var const string_var& string_var& string_var& string_var

sequence_var const sequence_var& sequence_var& sequence_var& sequence_var

array_var const array_var& array_var& array_var& array_var

any_var const any_var& any_var& any_var& any_var

valuetype_var3 const valuetype_var& valuetype_var& valuetype_var& valuetype_var

1. Fixed types have no corresponding_var type and are therefore not shown in this table.
2. Including pseudo-object references.
3. Including value boxes.

Table 1-5 Caller Argument Storage Responsibilities

Type
Inout
Param

Out
Param

Return
Result

short 1 1 1

long 1 1 1

long long 1 1 1

unsigned short 1 1 1

unsigned long 1 1 1

unsigned long long 1 1 1

float 1 1 1

double 1 1 1

long double 1 1 1

boolean 1 1 1

Table 1-3 Basic Argument and Result Passing (Continued)
Data Type In Inout Out Return
1-108 C++ Language Mapping, v1.1 June 2003

1

.

char 1 1 1

wchar 1 1 1

octet 1 1 1

enum 1 1 1

object reference ptr 2 2 2

struct, fixed 1 1 1

struct, variable 1 3 3

union, fixed 1 1 1

union, variable 1 3 3

string 4 3 3

wstring 4 3 3

sequence 5 3 3

array, fixed 1 1 6

array, variable 1 6 6

any 5 3 3

fixed 1 1 1

valuetype 7 7 7

Table 1-6 Argument Passing Cases

Case
1 Caller allocates all necessary storage, except that which may be encapsulated and managed within the

parameter itself. For inout parameters, the caller provides the initial value, and the callee may change that
value. For out parameters, the caller allocates the storage but need not initialize it, and the callee sets the
value. Function returns are by value.

2 Caller allocates storage for the object reference. For inout parameters, the caller provides an initial value; if
the callee wants to reassign the inout parameter, it will first call CORBA::release on the original input value.
To continue to use an object reference passed in as an inout, the caller must first duplicate the reference. The
caller is responsible for the release of all out and return object references. Release of all object references
embedded in other structures is performed automatically by the structures themselves.

3 For out parameters, the caller allocates a pointer and passes it by reference to the callee. The callee sets the
pointer to point to a valid instance of the parameter’s type. For returns, the callee returns a similar pointer. The
callee is not allowed to return a null pointer in either case. In both cases, the caller is responsible for releasing
the returned storage. To maintain local/remote transparency, the caller must always release the returned
storage, regardless of whether the callee is located in the same address space as the caller or is located in a
different address space.

4 For inout strings, the caller provides storage for both the input string and the char* or wchar* pointing to
it. Since the callee may deallocate the input string and reassign the char* or wchar* to point to new storage
to hold the output value, the caller should allocate the input string using string_alloc() or
wstring_alloc(). The size of the out string is therefore not limited by the size of the in string. The caller
is responsible for deleting the storage for the out using string_free() or wstring_free(). The callee
is not allowed to return a null pointer for an inout, out, or return value.

Table 1-5 Caller Argument Storage Responsibilities (Continued)

Type
Inout
Param

Out
Param

Return
Result
June 2003 C++ Mapping: Argument Passing Considerations 1-109

1

1.23 Mapping of Pseudo Objects to C++
CORBA pseudo objects may be implemented either as normal CORBA objects or as
serverless objects. In the CORBA specification, the fundamental differences between
these strategies are:

• Serverless object types do not inherit from CORBA::Object
• Individual serverless objects are not registered with any ORB
• Serverless objects do not necessarily follow the same memory management rules

as for regular IDL types.

References to serverless objects are not necessarily valid across computational
contexts; for example, address spaces. Instead, references to serverless objects that are
passed as parameters may result in the construction of independent functionally-
identical copies of objects used by receivers of these references. To support this, the
otherwise hidden representational properties (such as data layout) of serverless objects
are made known to the ORB. Specifications for achieving this are not contained in this
chapter. Making serverless objects known to the ORB is an implementation detail.

This section provides a standard mapping algorithm for all pseudo object types. This
avoids the need for piecemeal mappings for each of the nine CORBA pseudo object
types, and accommodates any pseudo object types that may be proposed in future

Comment: Issue 4243

revisions of CORBA.

5 For inout sequences and anys, assignment or modification of the sequence or any may cause deallocation of
owned storage before any reallocation occurs, depending upon the state of the Boolean release parameter with
which the sequence or any was constructed.

6 For out parameters, the caller allocates a pointer to an array slice, which has all the same dimensions of the
original array except the first, and passes the pointer by reference to the callee. The callee sets the pointer to
point to a valid instance of the array. For returns, the callee returns a similar pointer. The callee is not allowed
to return a null pointer in either case. In both cases, the caller is responsible for releasing the returned storage.
To maintain local/remote transparency, the caller must always release the returned storage, regardless of
whether the callee is located in the same address space as the caller or is located in a different address space.

7 Caller allocates storage for the valuetype instance. For inout parameters, the caller provides an initial value; if
the callee wants to reassign the inout pointer value to point to a different valuetype instance, it will first call
_remove_ref on the original input valuetype. To continue to use a valuetype instance passed in as an inout
after the invoked operation returns, the caller must first invoke _add_ref on the valuetype instance. The caller
is responsible for invoking _remove_ref on all out and return valuetype instances. The reduction of reference
counts via _remove_ref for all valuetype instances embedded in other structures is performed automatically by
the structures themselves.

Table 1-6 Argument Passing Cases (Continued)

Case
1-110 C++ Language Mapping, v1.1 June 2003

1

1.24 Usage
Rather than C-PIDL, this mapping uses an augmented form of full OMG IDL to
describe serverless object types. Interfaces for pseudo object types follow the exact
same rules as normal OMG IDL interfaces, with the following exceptions:

• They are prefaced by the keyword pseudo.
• Their declarations may refer to other17 serverless object types that are not

otherwise necessarily allowed in OMG IDL.

As explained in Section 1.23, “Mapping of Pseudo Objects to C++,” on page 1-109,
the pseudo prefix means that the interface may be implemented in either a normal or
serverless fashion. That is, apply either the rules described in the following sections or
the normal mapping rules described in this chapter.

1.25 Mapping Rules
Serverless objects are mapped in the same way as normal interfaces, except for the
differences outlined in this section.

Classes representing serverless object types are not subclasses of CORBA::Object,
and are not necessarily subclasses of any other C++ class. Thus, they do not
necessarily support, for example, the Object::create_request operation.

For each class representing a serverless object type T, overloaded versions of the
following functions are provided in the CORBA namespace:

// C++
void release(T_ptr);
Boolean is_nil(T_ptr p);

The mapped C++ classes are not guaranteed to be usefully subclassable by users,
although subclasses can be provided by implementations. Implementations are allowed
to make assumptions about internal representations and transport formats that may not
apply to subclasses.

The member functions of classes representing serverless object types do not
necessarily obey the normal memory management rules. This is due to the fact that
some serverless objects, such as CORBA::NVList, are essentially just containers for
several levels of other serverless objects. Requiring callers to explicitly free the values
returned from accessor functions for the contained serverless objects would be counter
to their intended usage.

All other elements of the mapping are the same. In particular:

17.In particular, exception used as a data type and a function name.
June 2003 C++ Mapping: Usage 1-111

1

1. The types of references to serverless objects, T_ptr, may or may not simply be a
typedef of T*.

2. Each mapped class supports the following static member functions:

// C++
static T_ptr _duplicate(T_ptr p);
static T_ptr _nil();

Legal implementations of _duplicate include simply returning the argument
or constructing references to a new instance. Individual implementations may
provide stronger guarantees about behavior.

1. The corresponding C++ classes may or may not be directly instantiable or have
other instantiation constraints. For portability, users should invoke the appropriate
constructive operations.

2. As with normal interfaces, assignment operators are not supported.

3. Although they can transparently employ “copy-style” rather than “reference-style”
mechanics, parameter passing signatures and rules as well as memory management
rules are identical to those for normal objects, unless otherwise noted.

1.26 Relation to the C PIDL Mapping

Comment: Issue 4243

All serverless object interfaces and declarations that rely on them have direct analogs
in the C mapping. Differences between the pseudo object specifications for C-PIDL
and C++ PIDL are as follows:

• C++-PIDL calls for removal of representation dependencies through the use of
interfaces rather than structs and typedefs.

• C++-PIDL calls for placement of operations on pseudo objects in their interfaces,
including a few cases of redesignated functionality as noted.

• In C++-PIDL, the release performs the role of the associated free and
delete operations in the C mapping, unless otherwise noted.

Brief descriptions and listings of each pseudo-interface and its C++ mapping are
provided in the following sections. Further details, including definitions of types
referenced but not defined below, may be found in the relevant sections of this
specification.

Some of the pseudo-interfaces shown in this chapter rely on a user-defined exception
supplied in the CORBA module by ORB implementations. This exception is called
Bounds and is defined as follows:

// IDL
module CORBA
{

exception Bounds {};
1-112 C++ Language Mapping, v1.1 June 2003

1

// ...
};

Note that this exception is not the same as the CORBA::TypeCode::Bounds
exception.

1.27 Environment
Environment provides a vehicle for dealing with exceptions in those cases where true
exception mechanics are unavailable or undesirable (for example in the DII). They
may be set and inspected using the exception attribute.

As with normal OMG IDL attributes, the exception attribute is mapped into a pair of
C++ functions used to set and get the exception. The semantics of the set and get
functions, however, are somewhat different than those for normal OMG IDL attributes.
The set C++ function assumes ownership of the Exception pointer passed to it.
The Environment will eventually call delete on this pointer, so the Exception
it points to must be dynamically allocated by the caller. The get function returns a
pointer to the Exception, just as an attribute for a variable-length struct would, but
the pointer refers to memory owned by the Environment. Once the Environment
is destroyed, the pointer is no longer valid. The caller must not call delete on the
Exception pointer returned by the get function. The Environment is responsible
for deallocating any Exception it holds when it is itself destroyed. If the
Environment holds no exception, the get function returns a null pointer.

The clear() function causes the Environment to delete any Exception it is
holding. It is not an error to call clear() on an Environment holding no
exception. Passing a null pointer to the set exception function is equivalent to calling
clear(). If an Environment contains exception information, the caller is
responsible for calling clear() on it before passing it to an operation.

1.27.1 Environment Interface

// IDL
pseudo interface Environment
{

attribute exception exception;
void clear();

};
June 2003 C++ Mapping: Environment 1-113

1

1.27.2 Environment C++ Class
// C++
class Environment
{

public:
void exception(Exception*);
Exception *exception() const;
void clear();

};

1.27.3 Differences from C-PIDL
The C++-PIDL specification differs from the C-PIDL specification as follows:

• Defines an interface rather than a struct.
• Supports an attribute allowing operations on exception values as a whole rather

than on major numbers and/or identification strings.
• Supports a clear() function that is used to destroy any Exception the
Environment may be holding.

• Supports a default constructor that initializes it to hold no exception information.

1.27.4 Memory Management
Environment has the following special memory management rules:

• The void exception(Exception*) member function adopts the
Exception* given to it.

• Ownership of the return value of the Exception *exception() member
function is maintained by the Environment; this return value must not be freed
by the caller.

1.28 NamedValue
NamedValue is used only as an element of NVList and for return values in the
CORBA::Object::create_request operation. NamedValue maintains an (optional)
name, an any value, and labelling flags. Legal flag values are ARG_IN, ARG_OUT,
and ARG_INOUT.

The value in a NamedValue may be manipulated via standard operations on any.
1-114 C++ Language Mapping, v1.1 June 2003

1

1.28.1 NamedValue Interface
// IDL
pseudo interface NamedValue
{

readonly attribute Identifier name;
readonly attribute any value;
readonly attribute Flags flags;

};

1.28.2 NamedValue C++ Class
// C++
class NamedValue
{

public:
const char *name() const;
Any *value() const;
Flags flags() const;

};

1.28.3 Differences from C-PIDL
The C++-PIDL specification differs from the C-PIDL specification as follows:

• Defines an interface rather than a struct.
• Provides no analog of the len field.

1.28.4 Memory Management
NamedValue has the following special memory management rules:

• Ownership of the return values of the name() and value() functions is
maintained by the NamedValue; these return values must not be freed by the
caller.

1.29 NVList
NVList is a list of NamedValues. A new NVList is constructed using the
ORB::create_list operation (see Section 1.33, “ORB,” on page 1-124). New
NamedValues may be constructed as part of an NVList, in any of three ways:

• add—creates an unnamed value, initializing only the flags.
• add_item—initializes name and flags.
• add_value—initializes name, value, and flags.
• add_item_consume—initializes name and flags, taking over memory

management responsibilities for the char* name parameter.
June 2003 C++ Mapping: NVList 1-115

1

• add_value_consume—initializes name, value, and flags, taking over memory
management responsibilities for both the char* name parameter and the Any*
value parameter. Each of these operations returns the new item.

Elements may be accessed and deleted via zero-based indexing. The add, add_item,
add_value, add_item_consume, and add_value_consume functions lengthen
the NVList to hold the new element each time they are called. The item function can
be used to access existing elements.

1.29.1 NVList Interface

// IDL
pseudo interface NVList
{

readonly attribute unsigned long count;
NamedValue add(in Flags flags);
NamedValue add_item(in Identifier item_name, in Flags flags);
NamedValue add_value(

in Identifier item_name,
in any val,
in Flags flags

);
NamedValue item(in unsigned long index) raises(Bounds);
void remove(in unsigned long index) raises(Bounds);

};

1.29.2 NVList C++ Class
// C++
class NVList
{

public:
ULong count() const;
NamedValue_ptr add(Flags);
NamedValue_ptr add_item(const char*, Flags);
NamedValue_ptr add_value(

const char*,
const Any&,
Flags

);
NamedValue_ptr add_item_consume(

char*,
Flags

);
1-116 C++ Language Mapping, v1.1 June 2003

1

NamedValue_ptr add_value_consume(
char*,
Any *,
Flags

);
NamedValue_ptr item(ULong);
void remove(ULong);

};

1.29.3 Differences from C-PIDL
The C++-PIDL specification differs from the C-PIDL specification as follows:

• Defines an interface rather than a typedef.
• Provides different signatures for operations that add items in order to avoid

representation dependencies.
• Provides indexed access methods.

1.29.4 Memory Management
NVList has the following special memory management rules:

• Ownership of the return values of the add, add_item, add_value,
add_item_consume, add_value_consume, and item functions is maintained
by the NVList; these return values must not be freed by the caller.

• The char* parameters to the add_item_consume and add_value_consume
functions and the Any* parameter to the add_value_consume function are
consumed by the NVList. The caller may not access these data after they have
been passed to these functions because the NVList may copy them and destroy the
originals immediately. The caller should use the NamedValue::value()
operation in order to modify the value attribute of the underlying NamedValue,
if desired.

• The remove function also calls CORBA::release on the removed
NamedValue.

1.30 Request
Request provides the primary support for DII. A new request on a particular target
object may be constructed using the short version of the request creation operation
shown in Section 1.34, “Object,” on page 1-128:

// C++
Request_ptr Object::_request(Identifier operation);

Arguments and contexts may be added after construction via the corresponding
attributes in the Request interface. Results, output arguments, and exceptions are
similarly obtained after invocation. The following C++ code illustrates usage:
June 2003 C++ Mapping: Request 1-117

1

// C++
Request_ptr req = anObj->_request("anOp");
*(req->arguments()->add(ARG_IN)->value()) <<= anArg;
// ...
req->invoke();
if (req->env()->exception() == 0) {

*(req->result()->value()) >>= aResult;
}

While this example shows the semantics of the attribute-based accessor functions, the
following example shows that it is much easier and preferable to use the equivalent
argument manipulation helper functions:

// C++
Request_ptr req = anObj->_request("anOp");
req->add_in_arg() <<= anArg;
// ...
req->invoke();
if (req->env()->exception() == 0) {

req->return_value() >>= aResult;
}

Alternatively, requests can be constructed using one of the long forms of the creation
operation shown in the Object interface in Section 1.34, “Object,” on page 1-128:

// C++
void Object::_create_request(

Context_ptr ctx,
const char *operation,
NVList_ptr arg_list,
NamedValue_ptr result,
Request_out request,
Flags req_flags

);
void Object::_create_request(

Context_ptr ctx,
const char *operation,
NVList_ptr arg_list,
NamedValue_ptr result,
ExceptionList_ptr,
ContextList_ptr,
Request_out request,
Flags req_flags

);

Usage is the same as for the short form except that all invocation parameters are
established on construction. Note that the OUT_LIST_MEMORY and
IN_COPY_VALUE flags can be set as flags in the req_flags parameter, but they are
meaningless and thus ignored because argument insertion and extraction are done via
the Any type.
1-118 C++ Language Mapping, v1.1 June 2003

1

Request also allows the application to supply all information necessary for it to be
invoked without requiring the ORB to utilize the Interface Repository. In order to
deliver a request and return the response, the ORB requires:

• A target object reference.

• An operation name.

• A list of arguments (optional).

• A place to put the result (optional).

• A place to put any returned exceptions.

• A Context (optional)

• A list of the user-defined exceptions that can be thrown (optional).

• A list of Context strings that must be sent with the operation (optional).

Since the Object::create_request operation allows all of these except the last
two to be specified, an ORB may have to utilize the Interface Repository in order to
discover them. Some applications, however, may not want the ORB performing
potentially expensive Interface Repository lookups during a request invocation, so two
new serverless objects have been added to allow the application to specify this
information instead:

• ExceptionList: allows an application to provide a list of TypeCodes for all
user-defined exceptions that may result when the Request is invoke.

• ContextList: allows an application to provide a list of Context strings that
must be supplied with the Request invocation.

The ContextList differs from the Context in that the former supplies only the
context strings whose values are to be looked up and sent with the request invocation
(if applicable), while the latter is where those values are obtained.

The IDL descriptions for ExceptionList, ContextList, and Request are shown
below.

1.30.1 Request Interface

// IDL
pseudo interface ExceptionList
{

readonly attribute unsigned long count;
void add(in TypeCode exc);
TypeCode item(in unsigned long index) raises(Bounds);
void remove(in unsigned long index) raises(Bounds);

};

pseudo interface ContextList
{

readonly attribute unsigned long count;
void add(in string ctxt);
June 2003 C++ Mapping: Request 1-119

1

string item(in unsigned long index) raises(Bounds);
void remove(in unsigned long index) raises(Bounds);

};

pseudo interface Request
{

readonly attribute Object target;
readonly attribute Identifier operation;
readonly attribute NVList arguments;
readonly attribute NamedValue result;
readonly attribute Environment env;
readonly attribute ExceptionList exceptions;
readonly attribute ContextList contexts;

attribute context ctx;

void invoke();
void send_oneway();
void send_deferred();
void get_response();
boolean poll_response();

};

1.30.2 Request C++ Class
// C++
class ExceptionList
{

public:
ULong count();
void add(TypeCode_ptr tc);
void add_consume(TypeCode_ptr tc);
TypeCode_ptr item(ULong index);
void remove(ULong index);

};

class ContextList
{

public:
ULong count();
void add(const char* ctxt);
void add_consume(char* ctxt);
const char* item(ULong index);
void remove(ULong index);

};
1-120 C++ Language Mapping, v1.1 June 2003

1

class Request
{

public:
Object_ptr target() const;
const char *operation() const;
NVList_ptr arguments();
NamedValue_ptr result();
Environment_ptr env();
ExceptionList_ptr exceptions();
ContextList_ptr contexts();

void ctx(Context_ptr);
Context_ptr ctx() const;

// argument manipulation helper functions
Any &add_in_arg();
Any &add_in_arg(const char* name);
Any &add_inout_arg();
Any &add_inout_arg(const char* name);
Any &add_out_arg();
Any &add_out_arg(const char* name);
void set_return_type(TypeCode_ptr tc);
Any &return_value();
void invoke();
void send_oneway();
void send_deferred();
void get_response();
Boolean poll_response();

};

1.30.3 Differences from C-PIDL
The C++-PIDL specification differs from the C-PIDL specification as follows:

• Replacement of add_argument, and so forth, with attribute-based accessors.
• Use of env attribute to access exceptions raised in DII calls.
• The invoke operation does not take a flag argument, since there are no flag

values that are listed as legal in CORBA.
• The send_oneway and send_deferred operations replace the single send

operation with flag values, in order to clarify usage.
• The get_response operation does not take a flag argument. If invoked before

the request has completed, get_response blocks until the request completes; if
invoked after the request has completed, get_response returns immediately.
The poll_response operation returns immediately. A true return value
indicates that the request has completed. A false return value indicates that the
reply for the request is still outstanding.

• The add_*_arg, set_return_type, and return_value member
functions are added as shortcuts for using the attribute-based accessors.
June 2003 C++ Mapping: Request 1-121

1

1.30.4 Memory Management
Request has the following special memory management rules:

• Ownership of the return values of the target, operation, arguments,
result, env, exceptions, contexts, and ctx functions is maintained by the
Request; these return values must not be freed by the caller.

ExceptionList has the following special memory management rules:

• The add_consume function consumes its TypeCode_ptr argument. The caller
may not access the object referred to by the TypeCode_ptr after it has been
passed in because the add_consume function may copy it and release the original
immediately.

• Ownership of the return value of the item function is maintained by the
ExceptionList; this return value must not be released by the caller.

ContextList has the following special memory management rules:

• The add_consume function consumes its char* argument. The caller may not
access the memory referred to by the char* after it has been passed in because the
add_consume function may copy it and free the original immediately.

• Ownership of the return value of the item function is maintained by the
ContextList; this return value must not be released by the caller.

1.31 Context
A Context supplies optional context information associated with a method invocation.

1.31.1 Context Interface

// IDL
pseudo interface Context
{

readonly attribute Identifier context_name;
readonly attribute context parent;

void create_child(in Identifier child_ctx_name, out Context child_ctx);

void set_one_value(in Identifier propname, in any propvalue);
void set_values(in NVList values);
void delete_values(in Identifier propname);
void get_values(

in Identifier start_scope,
in Flags op_flags,
in Identifier pattern,
out NVList values

);
};
1-122 C++ Language Mapping, v1.1 June 2003

1

1.31.2 Context C++ Class
// C++
class Context
{

public:
const char *context_name() const;
Context_ptr parent() const;

void create_child(const char *, Context_out);

void set_one_value(const char *, const Any &);
void set_values(NVList_ptr);
void delete_values(const char *);
void get_values(

const char*,
Flags,
const char*,
NVList_out

);
};

1.31.3 Differences from C-PIDL
The C++-PIDL specification differs from the C-PIDL specification as follows:

• Introduction of attributes for context name and parent.
• The signatures for values are uniformly set to any.
• In the C mapping, set_one_value used strings, while others used
NamedValues containing any. Even though implementations need only support
strings as values, the signatures now uniformly allow alternatives.

• The release operation frees child contexts.

1.31.4 Memory Management
Context has the following special memory management rules:

• Ownership of the return values of the context_name and parent functions is
maintained by the Context; these return values must not be freed by the caller.

1.32 TypeCode
A TypeCode represents OMG IDL type information.

No constructors for TypeCodes are defined. However, in addition to the mapped
interface, for each basic and defined OMG IDL type, an implementation provides
access to a TypeCode pseudo object reference (TypeCode_ptr) of the form
tc<type> that may be used to set types in Any, as arguments for equal, and so
June 2003 C++ Mapping: TypeCode 1-123

1

on. In the names of these TypeCode reference constants, <type> refer to the local
name of the type within its defining scope. Each C++ _tc_<type> constant must be
defined at the same scoping level as its matching type.

Comment: Issue 4243

In all C++ TypeCode pseudo object reference constants, the prefix “_tc_” should be
used instead of the “TC_” prefix prescribed in “TypeCode” on page 1-122.

Like all other serverless objects, the C++ mapping for TypeCode provides a _nil()
operation that returns a nil object reference for a TypeCode. This operation can be
used to initialize TypeCode references embedded within constructed types. However,
a nil TypeCode reference may never be passed as an argument to an operation, since
TypeCodes are effectively passed as values, not as object references.

1.32.1 TypeCode Interface
The TypeCode IDL interface is fully defined in version 2.3 of the Common Object
Request Broker Architecture (CORBA), Interface Repository chapter, The TypeCode
Interface section and is thus not duplicated here.

1.32.2 TypeCode C++ Class

// C++
class TypeCode
{

public:
class Bounds : public UserException { ... };
class BadKind : public UserException { ... };

Boolean equal(TypeCode_ptr) const;
Boolean equivalent(TypeCode_ptr) const;
TCKind kind() const;

TypeCode_ptr get_compact_typecode() const;

const char* id() const;
const char* name() const;

ULong member_count() const;
const char* member_name(ULong index) const;

TypeCode_ptr member_type(ULong index) const;

Any *member_label(ULong index) const;
TypeCode_ptr discriminator_type() const;
Long default_index() const;
1-124 C++ Language Mapping, v1.1 June 2003

1

ULong length() const;

TypeCode_ptr content_type() const;

UShort fixed_digits() const;
Short fixed_scale() const;

Visibility member_visibility(ULong index) const;
ValueModifier type_modifier() const;
TypeCode_ptr concrete_base_type() const;

};

1.32.3 Differences from C-PIDL
For C++, use of prefix “_tc_” instead of “TC_” for constants.

1.32.4 Memory Management
TypeCode has the following special memory management rules:

• Ownership of the return values of the id, name, and member_name functions is
maintained by the TypeCode; these return values must not be freed by the caller.

1.33 ORB
An ORB is the programmer interface to the Object Request Broker.

1.33.1 ORB Interface

// IDL
pseudo interface ORB
{

typedef sequence<Request> RequestSeq;
string object_to_string(in Object obj);
Object string_to_object(in string str);

void create_list(in long count, out NVList new_list);
void create_operation_list(in OperationDef oper, out NVList

new_list);
June 2003 C++ Mapping: ORB 1-125

1

void create_named_value(out NamedValue nmval);
void create_exception_list(out ExceptionList exclist);
void create_context_list(out ContextList ctxtlist);

void get_default_context(out Context ctx);
void create_environment(out Environment new_env);

void send_multiple_requests_oneway(in RequestSeq req);
void send_multiple_requests_deferred(in RequestSeq req);
boolean poll_next_response();
void get_next_response(out Request req);

Boolean work_pending();
void perform_work();
void shutdown(in Boolean wait_for_completion);
void run();

Boolean get_service_information (
in ServiceType service_type,
out ServiceInformation service_information

);

typedef string ObjectId;
typedef sequence<ObjectId> ObjectIdList;
Object resolve_initial_references(

in ObjectId id
) raises(InvalidName);
ObjectIdList list_initial_services();

Policy create_policy(in PolicyType type, in any val)
raises(PolicyError);

};

1.33.2 ORB C++ Class
// C++
class ORB
{

public:
class RequestSeq {...};
char *object_to_string(Object_ptr);
Object_ptr string_to_object(const char *);
void create_list(Long, NVList_out);
void create_operation_list(

OperationDef_ptr,
NVList_out

);
1-126 C++ Language Mapping, v1.1 June 2003

1

void create_named_value(NamedValue_out);
void create_exception_list(ExceptionList_out);
void create_context_list(ContextList_out);

void get_default_context(Context_out);
void create_environment(Environment_out);

void send_multiple_requests_oneway(
const RequestSeq&

);

void send_multiple_requests_deferred(
const RequestSeq &

);
Boolean poll_next_response();
void get_next_response(Request_out);

Boolean work_pending();
void perform_work();
void shutdown(Boolean wait_for_completion);
void run();

Boolean get_service_information(
ServiceType svc_type,
ServiceInformation_out svc_info

);

typedef char* ObjectId;
class ObjectIdList { ... };
Object_ptr resolve_initial_references(const char* id);
ObjectIdList* list_initial_services();

Policy_ptr create_policy(
PolicyType type,
const Any& val

);
};

1.33.3 Differences from C-PIDL
• Added create_environment. Unlike the struct version, Environment requires

a construction operation. (Since this is overly constraining for implementations
that do not support real C++ exceptions, these implementations may allow
Environment to be declared on the stack. See Section 1.43.2, “Without Exception
Handling,” on page 1-170 for details.)

• Assigned multiple request support to ORB, made usage symmetrical with that in
Request, and used a sequence type rather than otherwise illegal unbounded
arrays in signatures.
June 2003 C++ Mapping: ORB 1-127

1

• Added create_named_value, which is required for creating NamedValue
objects to be used as return value parameters for the Object::create_request
operation.

• Added create_exception_list and create_context_list (see Section 1.30,
“Request,” on page 1-116 for more details).

1.33.4 Mapping of ORB Initialization Operations
The following PIDL specifies initialization operations for an ORB; this PIDL is part of
the CORBA module (not the ORB interface) and is described in version 2.3 of the
Common Object Request Broker Architecture (CORBA), ORB Interface chapter, ORB
Initialization section.

// PIDL
module CORBA {

typedef string ORBid;
typedef sequence <string> arg_list;
ORB ORB_init (inout arg_list argv, in ORBid orb_identifier);

};

The mapping of the preceding PIDL operations to C++ is as follows:

// C++
namespace CORBA {

typedef char* ORBid;
static ORB_ptr ORB_init(

int& argc,
 char** argv,

const char* orb_identifier = ""
);

}

The C++ mapping for ORB_init deviates from the OMG IDL PIDL in its handling of
the arg_list parameter. This is intended to provide a meaningful PIDL definition of
the initialization interface, which has a natural C++ binding. To this end, the
arg_list structure is replaced with argv and argc parameters.

The argv parameter is defined as an unbound array of strings (char **) and the
number of strings in the array is passed in the argc (int &) parameter.

If an empty ORBid string is used then argc arguments can be used to determine which
ORB should be returned. This is achieved by searching the argv parameters for one
tagged ORBid, e.g., -ORBid "ORBid_example." If an empty ORBid string is used and
no ORB is indicated by the argv parameters, the default ORB is returned.

Regardless of whether an empty or non-empty ORBid string is passed to ORB_init,
the argv arguments are examined to determine if any ORB parameters are given. If a
non-empty ORBid string is passed to ORB_init, all -ORBid parameters in the argv
are ignored. All other -ORB<suffix> parameters may be of significance during the
ORB initialization process.
1-128 C++ Language Mapping, v1.1 June 2003

1

For C++, the order of consumption of argv parameters may be significant to an
application. In order to ensure that applications are not required to handle argv
parameters they do not recognize the ORB initialization function must be called before
the remainder of the parameters is consumed. Therefore, after the ORB_init call the
argv and argc parameters will have been modified to remove the ORB understood
arguments. It is important to note that the ORB_init call can only reorder or remove
references to parameters from the argv list, this restriction is made in order to avoid
potential memory management problems caused by trying to free parts of the argv list
or extending the argv list of parameters. This is why argv is passed as a char** and
not a char**&.

1.34 Object
The rules in this section apply to OMG IDL interface Object, the base of the OMG
IDL interface hierarchy. Interface Object defines a normal CORBA object, not a
pseudo object. However, it is included here because it references other pseudo objects.

1.34.1 Object Interface

// IDL
interface Object
{

boolean is_nil();
Object duplicate();
void release();
ImplementationDef get_implementation();
InterfaceDef get_interface();
boolean is_a(in string logical_type_id);
boolean non_existent();
boolean is_equivalent(in Object other_object);
unsigned long hash(in unsigned long maximum);
void create_request(

in Context ctx,
in Identifier operation,
in NVList arg_list,

in NamedValue result,
out Request request,
in Flags req_flags

);
June 2003 C++ Mapping: Object 1-129

1

void create_request2(
in Context ctx,
in Identifier operation,
in NVList arg_list,
in NamedValue result,
in ExceptionList exclist,
in ContextList ctxtlist,
out Request request,
in Flags req_flags

);
Policy_ptr get_policy(in PolicyType policy_type);
DomainManagerList get_domain_managers();
Object set_policy_overrides(in PolicyList policies,

in SetOverrideType set_or_add);
};

1.34.2 Object C++ Class
In addition to other rules, all operation names in interface Object have leading
underscores in the mapped C++ class. Also, the mapping for create_request is
split into three forms, corresponding to the usage styles described in Section 1.30,
“Request,” on page 1-116 of this specification. The is_nil and release functions
are provided in the CORBA namespace, as described in Section 1.3.3, “Object
Reference Operations,” on page 1-8.

// C++
class Object
{

public:
static Object_ptr _duplicate(Object_ptr obj);
static Object_ptr _nil();
ImplementationDef_ptr _get_implementation();
InterfaceDef_ptr _get_interface();
Boolean _is_a(const char* logical_type_id);
Boolean _non_existent();
Boolean _is_equivalent(Object_ptr other_object);
ULong _hash(ULong maximum);
void _create_request(

Context_ptr ctx,
const char *operation,

NVList_ptr arg_list,
NamedValue_ptr result,
Request_out request,
Flags req_flags
1-130 C++ Language Mapping, v1.1 June 2003

1

void _create_request(
Context_ptr ctx,
const char *operation,
NVList_ptr arg_list,
NamedValue_ptr result,
ExceptionList_ptr,
ContextList_ptr,
Request_out request,
Flags req_flags

);
Request_ptr _request(const char* operation);
Policy_ptr _get_policy(PolicyType policy_type);
DomainManagerList* _get_domain_managers();
Object_ptr _set_policy_overrides(

const PolicyList&,
SetOverrideType

);
};

1.35 Local Object
The C++ mapping of Local Object is a class derived from CORBA::Object that
is used as a base class for locality constrained object implementations. A locality
constrained object is implemented by a class derived both from the class mapping the
interface and from CORBA::LocalObject.

namespace CORBA
{

class LocalObject : public virtual Object
{
public:

virtual void _add_ref() {}
virtual void _remove_ref() {}

// ...other pseudo ops not shown...

protected:
LocalObject();
~LocalObject();

};
};

Member functions and any data members needed to implement the Object pseudo-
operations and any other ORB support functions shall also be supplied but are not
shown.
June 2003 C++ Mapping: Local Object 1-131

1

_add_ref

The _add_ref member function is called when the reference is duplicated. A default
implementation is provided that does nothing. A derived implementation may use this
operation to maintain a reference count.

_remove_ref

The _remove_ref member function is called when the reference is released. A
default implementation is provided that does nothing. A derived implementation may
use this operation to maintain a reference count, and delete the object when the count
becomes zero.

1.36 Server-Side Mapping
Server-side mapping refers to the portability constraints for an object implementation
written in C++. The term server is not meant to restrict implementations to situations
in which method invocations cross address space or machine boundaries. This mapping
addresses any implementation of an OMG IDL interface.

1.37 Implementing Interfaces
To define an implementation in C++, one defines a C++ class with any valid C++
name. For each operation in the interface, the class defines a non-static member
function with the mapped name of the operation (the mapped name is the same as the
OMG IDL identifier except when the identifier is a C++ keyword, in which case the
string “_cxx_” is prepended to the identifier, as noted in Section 1.1, “Preliminary
Information,” on page 1-3). Note that the ORB implementation may allow one
implementation class to derive from another, so the statement “the class defines a
member function” does not mean the class must explicitly define the member
function—it could inherit the function.

The mapping specifies two alternative relationships between the application-supplied
implementation class and the generated class or classes for the interface. Specifically,
the mapping requires support for both inheritance-based relationships and delegation-
based relationships. CORBA-compliant ORB implementations are required to provide
both of these alternatives. Conforming applications may use either or both of these
alternatives.

1.37.1 Mapping of PortableServer::Servant
The PortableServer module for the Portable Object Adapter (POA) defines the
native Servant type. The C++ mapping for Servant is as follows:

// C++
namespace PortableServer
{

class ServantBase
{

1-132 C++ Language Mapping, v1.1 June 2003

1

public:
virtual ~ServantBase();

virtual POA_ptr _default_POA();

virtual InterfaceDef_ptr

Comment: Issue 4265

_get_interface();

virtual Boolean
_is_a(const char* logical_type_id);

virtual Boolean
_non_existent();

virtual void _add_ref();
virtual void _remove_ref();

Comment: Issues 2441, 4114

virtual ULong _refcount_value();

protected:
ServantBase() : _ref_count(1) {}
ServantBase(const ServantBase &) : _ref_count(1) {}
ServantBase& operator=(const ServantBase&);
// ...all other constructors...

private:
ULong _ref_count;

};
typedef ServantBase* Servant;

}

The ServantBase destructor is public and virtual to ensure that skeleton classes
derived from it can be properly destroyed. The default constructor, along with other
implementation-specific constructors, must be protected so that instances of
ServantBase cannot be created except as sub-objects of instances of derived
classes. A default constructor (a constructor that either takes no arguments or takes
only arguments with default values) must be provided so that derived servants can be
constructed portably. Both copy construction and a protected default assignment
operator must be supported so that application-specific servants can be copied if
necessary. Note that copying a servant that is already registered with the object
adapter, either by assignment or by construction, does not mean that the target of the
assignment or copy is also registered with the object adapter. Similarly, assigning to a
ServantBase or a class derived from it that is already registered with the object
adapter does not in any way change its registration.
June 2003 C++ Mapping: Implementing Interfaces 1-133

1

The default implementation of the _default_POA function provided by
ServantBase returns an object reference to the root POA of the default ORB in this
process—the same as the return value of an invocation of
ORB::resolve_initial_references("RootPOA") on the default ORB.
Classes derived from ServantBase can override this definition to return the POA of
their choice, if desired.

ServantBase provides default implementations of the _get_interface, _is_a,
and _non_existent object reference operations that can be overridden by derived
servants if the default behavior is not adequate. The POA invokes these just like
normal skeleton operations, thus allowing overriding definitions in derived servant
classes to use _this and the PortableServer::Current interface within their
function bodies.

For static skeletons, the default implementation of the _get_interface and _is_a
functions provided by ServantBase use the interface associated with the skeleton
class to determine their respective return values. For dynamic skeletons
(seeSection 1.39, “Mapping of DSI to C++,” on page 1-150), these functions use the
_primary_interface function to determine their return values.

The default implementation of _non_existent simply returns false.

Comment: Issues 2441, 4114

Servant instances implement reference counting to prevent themselves from being
destroyed while the application is still using them. The constructor and copy
constructor initialize the _ref_count member to one. The assignment operator
returns *this and does not affect the reference count. _refcount_value returns
the current value of the _ref_count member. _add_ref increments the
_ref_count member by one. _remove_ref decrements the _ref_count
member by one; if the resulting reference count equals zero, _remove_ref invokes
delete on its this pointer in order to destroy the servant. For ORBs that operate in
multi-threaded environments, the implementations of _refcount_value,
_add_ref, and _remove_ref shall be thread-safe.

// C++
void PortableServer::ServantBase::_add_ref()
{

Comment: Issues 2441, 4114

++_ref_count;
}

void PortableServer::ServantBase::_remove_ref()
{

if (--_ref_count == 0)
delete this;

}
ULong PortableServer::ServantBase:: _refcount_value()
1-134 C++ Language Mapping, v1.1 June 2003

1

{
return _ref_count;

}

Servants can be allocated on the stack even though they are reference-counted: because
the constructor sets the initial reference count to one, and the ORB makes an equal
number of calls to _add_ref and _remove_ref, when the servant is popped off the
stack, the destructor simply destroys a servant with a reference count of one (that is,
the reference count never drops to zero).

Note that reference counting can be disabled completely by providing no-op
implementations of _add_ref and _remove_ref in the derived servant
implementation.

1.37.2 Servant Reference Counting Mix-In

Comment: Issues 2441, 4114

The PortableServer namespace provides a RefCountServantBase class. This
class exists for backward compatibility reasons; its use is deprecated and the class will
be removed in a future revision of the C++ mapping. The RefCountServantBase
class is defined as follows:

// C++
namespace PortableServer
{

struct RefCountServantBase {};
}

1.37.3 Servant Memory Management Considerations
Portable memory management of servants requires an exact specification of when and
how a servant may be deleted:

Comment: Issues 2441, 4114

• The POA ensures that a servant will not be deleted while invocations are currently
outstanding on that servant by maintaining a reference to the servant until the
invocations have completed. For example, the POA may increment the reference
count of the servant before invoking the implementation (but after preinvoke)
and decrement the reference count after the invocation (but before postinvoke).

• Beware that explicit deletion of a servant will cause memory access violations if
that servant is still in use by some other part of the application. For example, if the
same servant instance was obtained from POA::reference_to_servant or
POA::id_to_servant (perhaps in another thread), the caller that obtained the
servant instance may still be using it. Also, explicit deletion may cause problems if
the same servant instance is registered in multiple POAs.
June 2003 C++ Mapping: Implementing Interfaces 1-135

1

For each POA, ServantActivator, or ServantLocator operation that either
passes a Servant as a parameter or returns a Servant, the following rules described
caller and callee memory management responsibilities:

• ServantActivator::incarnate—returns a Servant. The POA may use
this Servant until it is passed to etherealize.

• ServantActivator::etherealize—has an in Servant argument. The
POA assumes that etherealize consumes the Servant argument, and does not
access a Servant in any way after it has been passed to etherealize. A
conforming implementation of etherealize may invoke _remove_ref on the
Servant.

• ServantLocator::preinvoke—returns a Servant. The POA may use this
Servant until it is passed to postinvoke.

• ServantLocator::postinvoke—has an in Servant argument. The POA
assumes that postinvoke consumes the Servant argument, and does not access
a Servant in any way after it has been passed to postinvoke. A conforming
implementation invoke _remove_ref on the Servant.

• POA::get_servant—returns a Servant. The POA invokes _add_ref once
on the Servant before returning it; the caller of get_servant is responsible for
invoking _remove_ref once on the returned Servant when it is finished with it.

• POA::set_servant—has an in Servant argument. The implementation of
set_servant will invoke _add_ref at least once on the Servant argument
before returning. When the POA no longer needs the Servant, it will invoke
_remove_ref on it the same number of times.

• POA::activate_object—has an in Servant argument. The implementation
of activate_object will invoke _add_ref at least once on the Servant
argument before returning. When the POA no longer needs the Servant, it will
invoke _remove_ref on it the same number of times.

• POA::activate_object_with_id—has an in Servant argument. The
implementation of activate_object_with_id will invoke _add_ref at
least once on the Servant argument before returning. When the POA no longer
needs the Servant, it will invoke _remove_ref on it the same number of times.

• POA::servant_to_id—has an in Servant argument. If this operation causes
the object to be activated, _add_ref is invoked at least once on the Servant
argument before returning. Otherwise, the POA does not increment or decrement
the reference count of the Servant passed to this function.

• POA::servant_to_reference—has an in Servant argument. If this
operation causes the object to be activated, _add_ref is invoked at least once on
the Servant argument before returning. Otherwise, the POA does not increment
or decrement the reference count of the Servant passed to this function.

• POA::reference_to_servant—returns a Servant. The POA invokes
_add_ref once on the Servant before returning it; the caller of
reference_to_servant is responsible for invoking _remove_ref once on
the returned Servant when it is finished with it.
1-136 C++ Language Mapping, v1.1 June 2003

1

• POA::id_to_servant—returns a Servant. The POA invokes _add_ref
once on the Servant before returning it; the caller of id_to_servant is
responsible for invoking _remove_ref once on the returned Servant when it is
finished with it.

The following operations do not receive or return Servants in their signatures, but
have behavior that may require invocations of _add_ref or _remove_ref:

• _this—invoked on a Servant to obtain an object reference for an object
implemented by that Servant. If this operation causes the object to be activated,
_add_ref is invoked at least once on the Servant argument before returning.
Otherwise, the POA does not increment or decrement the reference count of the
Servant passed to this function.

• POA::deactivate_object—upon activation, _add_ref is invoked on the
Servant. Therefore, the act of deactivation must cause _remove_ref to be
invoked. If the POA has no ServantActivator associated with it, the POA
implementation calls _remove_ref when all operation invocations have
completed. If there is a ServantActivator, the Servant is consumed by the call
to ServantActivator::etherealize instead.

• POA::destroy—upon activation of a servant or registration of a default servant,
_add_ref is invoked on the Servant. Therefore, the destruction of a POA must
cause _remove_ref to be invoked. The POA implementation invokes
_remove_ref on any default servant. If the POA has no ServantActivator
associated with it, the POA implementation calls _remove_ref on each
Servant in the Active Object Map when all operation invocations have
completed. If there is a ServantActivator, each Servant is consumed by the
call to ServantActivator::etherealize instead.

• POAManager::deactivate—upon activation of a servant or registration of a
default servant, _add_ref is invoked on the Servant. Therefore, the destruction
of a POA must cause _remove_ref to be invoked. If etherealize_objects
is true the POA implementation invokes _remove_ref on any default servant. If
etherealize_objects is true and a managed POA does not have a
ServantActivator associated with it, the POA implementation invokes
_remove_ref on each Servant in that POA's Active Object Map after all
dispatched operations have completed. If there is a ServantActivator, each
Servant is consumed by the call to ServantActivator::etherealize
instead.

Note that in those cases where the caller becomes responsible for invoking
_remove_ref on a Servant returned to it, the caller can assign the return value to
a ServantBase_var instance for automatic reference count management.
June 2003 C++ Mapping: Implementing Interfaces 1-137

1

1.37.4 ServantBase_var Class
For the convenience of automatically managing servant reference counts, the
PortableServer namespace also provides the ServantBase_var class. This
class behaves similarly to _var classes for object references (seeSection 1.3.1, “Object
Reference Types,” on page 1-7). Class ServantBase_var is a type definition of the
Servant_var template for type ServantBase:

Comment: Issue 2445

// C++
namespace PortableServer
{

class ServantBase { /* ... */ };
typedef Servant_var<ServantBase> ServantBase_var;

}

The definition of the Servant_var template is as follows:

// C++
namespace PortableServer
{

template<typename Servant>
class Servant_var
{

Comment: Issues 2445, 4210

protected:
void swap(Servant* lhs, Servant* rhs)
{

Servant *tmp = lhs;
lhs = rhs;
rhs = tmp;

}

public:
Servant_var() : _ptr(0) {}

Servant_var(Servant* p) : _ptr(p) {}
Servant_var(const Servant_var& b)

: _ptr(b._ptr)
{

if (_ptr != 0) _ptr->_add_ref();
}

Comment: Issue 2445

~Servant_var()
{

1-138 C++ Language Mapping, v1.1 June 2003

1

Comment: Issue 4210

if (_ptr != 0) {
try {

_ptr->_remove_ref();
} catch (...) {

// swallow exceptions
}

}
}

Comment: Issue 2445

Servant_var& operator=(Servant* p)
{

Comment: Issues 2445, 4210

if (_ptr != p) {
Servant_var<Servant> tmp = p;
swap(_ptr, p);

}
return *this;

}

Comment: Issue 2445

Servant_var&
operator=(const Servant_var& b)
{

Comment: Issues 2445, 4210

if (_ptr != b._ptr) {
Servant_var<Servant> tmp = b;
swap(_ptr, b._ptr);

}
return *this;

}

Comment: Issue 2445

Servant* operator->() const { return _ptr; }

Servant* in() const { return _ptr; }
Servant*& inout() { return _ptr; }
Servant*& out()
{

June 2003 C++ Mapping: Implementing Interfaces 1-139

1

Comment: Issues 2445, 4210

if (_ptr != 0) {
Servant_var<Servant> tmp;
swap(_ptr, tmp._ptr);

}
return _ptr;

}

Comment: Issue 2445

Servant* _retn()
{

Servant* retval = _ptr;
_ptr = 0;
return retval;

}

private:
Servant* _ptr;

};
}

The implementation shown above for the ServantBase_var is intended only as an
example that conveys required semantics. Variations of this implementation are
possible as long as they provide the same semantics as the implementation shown here.

Comment: Issue 2445

The Servant_var template can be used to write exception-safe and type-safe code
for heap-allocated servants. For example:

void some_function(/*...*/)
{

Servant_var<Foo_impl> foo_servant = new Foo_impl;
foo_servant->do_something(); // might throw...
some_poa->activate_object_with_id(...);
return foo_servant->this;

}

1.37.5 Skeleton Operations
All skeleton classes provide a _this() member function. This member function has
three purposes:
1-140 C++ Language Mapping, v1.1 June 2003

1

1. Within the context of a request invocation on the target object represented by the
servant, it allows the servant to obtain the object reference for the target CORBA
object it is incarnating for that request. This is true even if the servant incarnates
multiple CORBA objects. In this context, _this() can be called regardless of the
policies used to create the dispatching POA.

2. Outside the context of a request invocation on the target object represented by the
servant, it allows a servant to be implicitly activated if its POA allows implicit
activation. This requires the activating POA to have been created with the
IMPLICIT_ACTIVATION policy. If the POA was not created with the
IMPLICIT_ACTIVATION policy, the PortableServer::WrongPolicy exception is
thrown. The POA used for implicit activation is gotten by invoking
_default_POA() on the servant.

3. Outside the context of a request invocation on the target object represented by the
servant, it will return the object reference for a servant that has already been
activated, as long as the servant is not incarnating multiple CORBA objects. This
requires the POA with which the servant was activated to have been created with
the UNIQUE_ID and RETAIN policies. If the POA was created with the
MULTIPLE_ID or NON_RETAIN policies, the PortableServer::WrongPolicy
exception is thrown. The POA is gotten by invoking _default_POA() on the
servant.

For example, for interface A defined as follows:

// IDL
interface A
{

short op1();
void op2(in long val);

};

The return value of _this() is a typed object reference for the interface type
corresponding to the skeleton class. For example, the _this() function for the
skeleton for interface A would be defined as follows:

// C++
class POA_A : public virtual ServantBase
{

public:
A_ptr _this();
...

};

The _this() function follows the normal C++ mapping rules for returned object
references, so the caller assumes ownership of the returned object reference and must
eventually call CORBA::release() on it.

The _this() function can be virtual if the C++ environment supports covariant
return types, otherwise the function must be non-virtual so the return type can be
correctly specified without compiler errors. Applications use _this() the same way
regardless of which of these implementation approaches is taken.
June 2003 C++ Mapping: Implementing Interfaces 1-141

1

Assuming A_impl is a class derived from POA_A that implements the A interface,
and assuming that the servant’s POA was created with the appropriate policies, a
servant of type A_impl can be created and implicitly activated as follows:

// C++
A_impl my_a;
A_var a = my_a._this();

1.37.6 Inheritance-Based Interface Implementation
Implementation classes can be derived from a generated base class based on the OMG
IDL interface definition. The generated base classes are known as skeleton classes, and
the derived classes are known as implementation classes. Each operation of the
interface has a corresponding virtual member function declared in the skeleton class.
The signature of the member function is identical to that of the generated client stub
class. The implementation class provides implementations for these member functions.
The object adapter typically invokes the methods via calls to the virtual functions of
the skeleton class.

Assume that IDL interface A is defined as follows:

// IDL
interface A
{

short op1();
void op2(in long val);

};

For IDL interface A as shown above, the IDL compiler generates an interface class A.
This class contains the C++ definitions for the typedefs, constants, exceptions,
attributes, and operations in the OMG IDL interface. It has a form similar to the
following:

// C++
class A : public virtual Object
{

public:
virtual Short op1() = 0;
virtual void op2(Long val) = 0;
...

};

Some ORB implementations might not use public virtual inheritance from
CORBA::Object, and might not make the operations pure virtual, but the signatures
of the operations will be the same.

On the server side, a skeleton class is generated. This class is partially opaque to the
programmer, though it will contain a member function corresponding to each operation
in the interface. For the POA, the name of the skeleton class is formed by prepending
the string “POA_” to the fully-scoped name of the corresponding interface, and the
class is either directly or indirectly derived from the servant base class
1-142 C++ Language Mapping, v1.1 June 2003

1

PortableServer::ServantBase. The PortableServer::ServantBase
class must be a virtual base class of the skeleton to allow portable implementations to
multiply inherit from both skeleton classes and implementation classes for other base
interfaces without error or ambiguity.

The skeleton class for interface A shown above would appear as follows:

// C++
class POA_A : public virtual PortableServer::ServantBase
{

public:
// ...server-side implementation-specific detail
// goes here...

Comment: Issue 4265

virtual Short op1();
virtual void op2(Long val);
...

};

If interface A were defined within a module rather than at global scope, e.g., Mod::A,
the name of its skeleton class would be POA_Mod::A. This helps to separate server-
side skeleton declarations and definitions from C++ code generated for the client.

To implement this interface using inheritance, a programmer must derive from this
skeleton class and implement each of the operations in the OMG IDL interface. An
implementation class declaration for interface A would take the form:

// C++
class A_impl : public POA_A
{

public:

Comment: Issue 4265

Short op1();
void op2(Long val);
...

};

Note that the presence of the _this() function implies that C++ servants must only
be derived directly from a single skeleton class. Direct derivation from multiple
skeleton classes could result in ambiguity errors due to multiple definitions of
_this(). This should not be a limitation, since CORBA objects have only a single
most-derived interface. Servants that are intended to support multiple interface types
can utilize the delegation-based interface implementation approach, described below in
“Delegation-Based Interface Implementation”, or can be registered as DSI-based
servants, as described in Section 1.39, “Mapping of DSI to C++,” on page 1-150.

For interfaces which inherit from one or more base interfaces, the generated POA
skeleton class uses virtual inheritance:
June 2003 C++ Mapping: Implementing Interfaces 1-143

1

// IDL
interface A { ... };
interface B : A { ... };
interface C : A { ... };
interface D : B, C { ... };

// C++
class POA_A : public virtual PortableServer::ServantBase
{ ... };
class POA_B : public virtual POA_A { ... };
class POA_C : public virtual POA_A { ... };
class POA_D : public virtual POA_B, public virtual POA_C
{ ... };

This guarantees that the POA skeleton class inherits only one version of each
operation, and also allows optional inheritance of implementations. In this example,
the implementation of interface B reuses the implementation of interface A:

// C++
class A_impl: public virtual POA_A { ... };
class B_impl: public virtual POA_B, public virtual A_impl
{};

For interfaces which inherit from an abstract interface, the POA skeleton class is also
virtually derived directly from the abstract interface class, but with protected access:

// IDL
abstract interface A { ... };
interface B : A { ... };

// C++
class A { ... };
class POA_B : public virtual PortableServer::ServantBase,

protected virtual A { ... };

The abstract interface is inherited with protected access to prevent accidental
conversion of the POA skeleton pointer to an abstract interface reference, for ORBs
that implement object references as pointers. This also allows implementation classes
and valuetypes to share an implementation of the abstract interface:

// IDL
valuetype V : supports A { ... };

// C++
class MyA : virtual A { ... };
class MyB : public virtual POA_B, protected virtual MyA
{ ... };
class MyV : public virtual V, public virtual MyA { ... };
1-144 C++ Language Mapping, v1.1 June 2003

1

1.37.7 Delegation-Based Interface Implementation
Inheritance is not always the best solution for implementing servants. Using
inheritance from the OMG IDL–generated classes forces a C++ inheritance hierarchy
into the application. Sometimes, the overhead of such inheritance is too high, or it may
be impossible to compile correctly due to defects in the C++ compiler. For example,
implementing objects using existing legacy code might be impossible if inheritance
from some global class were required, due to the invasive nature of the inheritance.

In some cases delegation can be used to solve this problem. Rather than inheriting
from a skeleton class, the implementation can be coded as required for the application,
and a wrapper object will delegate upcalls to that implementation. This section
describes how this can be achieved in a type-safe manner using C++ templates.

For the examples in this section, the OMG IDL interface from Section 1.37.6,
“Inheritance-Based Interface Implementation,” on page 1-141 will again be used:

// IDL
interface A
{

short op1();void op2(in long val);
};

In addition to generating a skeleton class, the IDL compiler generates a delegating
class called a tie. This class is partially opaque to the application programmer, though
like the skeleton, it provides a method corresponding to each OMG IDL operation. The
name of the generated tie class is the same as the generated skeleton class with the
addition that the string “_tie” is appended to the end of the name. For example:

// C++
template<class T>
class POA_A_tie : public POA_A
{

public:
...

};

An instance of this template class performs the task of delegation. When the template
is instantiated with a class type that provides the operations of A, then the POA_A_tie
class will delegate all operations to an instance of that implementation class. A
reference or pointer to the actual implementation object is passed to the appropriate tie
constructor when an instance of the tie class is created. When a request is invoked on
it, the tie servant will just delegate the request by calling the corresponding method in
the implementation object.

// C++
template<class T>
class POA_A_tie : public POA_A
{

public:
POA_A_tie(T& t)
June 2003 C++ Mapping: Implementing Interfaces 1-145

1

: _ptr(&t), _poa(POA::_nil()), _rel(0) {}
POA_A_tie(T& t, POA_ptr poa)

: _ptr(&t),
_poa(POA::_duplicate(poa)), _rel(0) {}

POA_A_tie(T* tp, Boolean release = 1)
: _ptr(tp), _poa(POA::_nil()), _rel(release) {}

POA_A_tie(T* tp, POA_ptr poa,
Boolean release = 1)

: _ptr(tp), _poa(POA::_duplicate(poa)),
_rel(release) {}

~POA_A_tie()
{

CORBA::release(_poa);
if (_rel) delete _ptr;

}

// tie-specific functions
T* _tied_object() { return _ptr; }
void _tied_object(T& obj)
{

if (_rel) delete _ptr;
_ptr = &obj;
_rel = 0;

}
void _tied_object(T* obj, Boolean release = 1)
{

if (_rel) delete _ptr;
_ptr = obj;
_rel = release;

}
Boolean _is_owner() { return _rel; }
void _is_owner(Boolean b) { _rel = b; }

// IDL operations

Comment: Issue 4265

Short op1()
{

return _ptr->op1();
}

Comment: Issue 4265

void op2(Long val)
{

_ptr->op2(val);
}

// override ServantBase operations
POA_ptr _default_POA()
1-146 C++ Language Mapping, v1.1 June 2003

1

{
if (!CORBA::is_nil(_poa)) {

return PortableServer::POA::_duplicate(_poa);
} else {

// return root POA
}

}

private:
T* _ptr;
POA_ptr _poa;
Boolean _rel;

// copy and assignment not allowed
POA_A_tie(const POA_A_tie&);
void operator=(const POA_A_tie&);

};

It is important to note that the tie example shown above contains sample
implementations for all of the required functions. A conforming implementation is free
to implement these operations as it sees fit, as long as they conform to the semantics in
the paragraphs described below. A conforming implementation is also allowed to
include additional implementation-specific functions if it wishes.

The T& constructors cause the tie servant to delegate all calls to the C++ object bound
to reference t. Ownership for the object referred to by t does not become the
responsibility of the tie servant.

The T* constructors cause the tie servant to delegate all calls to the C++ object pointed
to by tp. The release parameter dictates whether the tie takes on ownership of the
C++ object pointed to by tp; if release is TRUE, the tie adopts the C++ object,
otherwise it does not. If the tie adopts the C++ object being delegated to, it will
delete it when its own destructor is invoked, as shown above in the
~POA_A_tie() destructor.

The _tied_object() accessor function allows callers to access the C++ object
being delegated to. If the tie was constructed to take ownership of the C++ object
(release was TRUE in the T* constructor), the caller of _tied_object() should
never delete the return value.

The first _tied_object() modifier function calls delete on the current tied
object if the tie’s release flag is TRUE, and then points to the new tie object passed in.
The tie’s release flag is set to FALSE. The second _tied_object() modifier
function does the same, except that the final state of the tie’s release flag is determined
by the value of the release argument.

The _is_owner() accessor function returns TRUE if the tie owns the C++ object it
is delegating to, or FALSE if it does not. The _is_owner() modifier function allows
the state of the tie’s release flag to be changed. This is useful for ensuring that memory
leaks do not occur when transferring ownership of tied objects from one tie to another,
or when changing the tied object a tie delegates to.
June 2003 C++ Mapping: Implementing Interfaces 1-147

1

For delegation-based implementations it is important to note that the servant is the tie
object, not the C++ object being delegated to by the tie object. This means that the tie
servant is used as the argument to those POA operations that require a Servant
argument. This also means that any operations that the POA calls on the servant, such
as ServantBase::_default_POA(), are provided by the tie servant, as shown by
the example above. The value returned by _default_POA() is supplied to the tie
constructor.

It is also important to note that by default, a delegation-based implementation (the
“tied” C++ instance) has no access to the _this() function, which is available only
on the tie. One way for this access to be provided is by informing the delegation object
of its associated tie object. This way, the tie holds a pointer to the delegation object,
and vice-versa. However, this approach only works if the tie and the delegation object
have a one-to-one relationship. For a delegation object tied into multiple tie objects,
the object reference by which it was invoked can be obtained within the context of a
request invocation by calling
PortableServer::Current::get_object_id(), passing its return value to
PortableServer::POA::id_to_reference(), and then narrowing the
returned object reference appropriately.

In the tie class shown above, all the operations are shown as being inline. In practice,
it is likely that they will be defined out of line, especially for those functions that
override inherited virtual functions. Either approach is allowed by conforming
implementations.

The use of templates for tie classes allows the application developer to provide
specializations for some or all of the template’s member functions for a given
instantiation of the template. This allows the application to control how the tied object
is invoked. For example, the POA_A_tie<T>::op2() operation is normally defined
as follows:

// C++
template<class T>
void

Comment: Issue 4265

POA_A_tie<T>::op2(Long val)
{

_ptr->op2(val);
}

This implementation assumes that the tied object supports an op2() operation with
the same signature. However, if the application wants to use legacy classes for tied
object types, it is unlikely they will support these capabilities. In that case, the
application can provide its own specialization. For example, if the application already
has a class named Foo that supports a log_value() function, the tie class op2()
function can be made to call it if the following specialization is provided:

// C++
void
1-148 C++ Language Mapping, v1.1 June 2003

1

POA_A_tie<Foo>::op2(Long val)
{

_tied_object()->log_value(val);
}

Portable specializations like the one shown above should not access tie class data
members directly, since the names of those data members are not standardized.

For C++ implementations that do not support namespaces or the definition of template
classes inside other classes, tie template classes must be defined at global scope. For
these environments, the names of tie template classes shall be formed by “flattening”
the normal tie name, i.e., replacing all occurrences of “::” with “_”. For example, in
such an environment the name of the tie template class for interface A::B::C would be
POA_A_B_C_tie.

1.38 Implementing Operations

Comment: Issue 4265

The signature of an implementation member function is the mapped signature of the
OMG IDL operation. For example:

// IDL
interface A
{

exception B {};
void f() raises(B);

};

// C++
class MyA : public virtual POA_A
{

public:
void f();
...

};

Within a member function, the “this” pointer refers to the implementation object’s data
as defined by the class. In addition to accessing the data, a member function may
implicitly call another member function defined by the same class. For example:

// IDL
interface A
{

void f();
void g();

};
June 2003 C++ Mapping: Implementing Operations 1-149

1

// C++
class MyA : public virtual POA_A
{

public:

Comment: Issue 4265

void f();
void g();

private:
long x_;

};

void

MyA::f()
{

this->x_ = 3;
this->g();

}

However, when a servant member function is invoked in this manner, it is being called
simply as a C++ member function, not as the implementation of an operation on a
CORBA object. In such a context, any information available via the POA_Current
object refers to the CORBA request invocation that performed the C++ member
function invocation, not to the member function invocation itself.

1.38.1 Skeleton Derivation From Object
In several existing ORB implementations, each skeleton class derives from the
corresponding interface class. For example, for interface Mod::A, the skeleton class
POA_Mod::A is derived from class Mod::A. These systems therefore allow an object
reference for a servant to be implicitly obtained via normal C++ derived-to-base
conversion rules:

// C++
MyImplOfA my_a; // declare impl of A
A_ptr a = &my_a; // obtain its object reference

// by C++ derived-to-base
// conversion

Such code can be supported by a conforming ORB implementation, but it is not
required, and is thus not portable. The equivalent portable code invokes _this() on
the implementation object in order to implicitly register it if it has not yet been
registered, and to get its object reference:

// C++
MyImplOfA my_a; // declare impl of A
1-150 C++ Language Mapping, v1.1 June 2003

1

A_ptr a = my_a._this(); // obtain its object
// reference

1.39 Mapping of DSI to C++
The Common Object Request Broker Architecture (CORBA), Dynamic Skeleton
Interface chapter, DSI: Language Mapping section contains general information about
mapping the Dynamic Skeleton Interface to programming languages.

This section contains the following information:

• Mapping of the Dynamic Skeleton Interface’s ServerRequest to C++
• Mapping of the Portable Object Adapter’s Dynamic Implementation Routine to C++

1.39.1 Mapping of ServerRequest to C++
The ServerRequest pseudo object maps to a C++ class in the CORBA namespace
that supports the following operations and signatures:

// C++
class ServerRequest
{

public:
const char* operation() const;
void arguments(NVList_ptr& parameters);
Context_ptr ctx();
void set_result(const Any& value);
void set_exception(const Any& value);

};

Note that, as with the rest of the C++ mapping, ORB implementations are free to make
such operations virtual and modify the inheritance as needed.

All of these operations follow the normal memory management rules for data passed
into skeletons by the ORB. That is, the DIR is not allowed to modify or change the
string returned by operation(), in parameters in the NVList returned from
arguments(), or the Context returned by ctx(). Similarly, data allocated by the
DIR and handed to the ORB (the NVList parameters) are freed by the ORB rather
than by the DIR.

1.39.2 Handling Operation Parameters and Results
The ServerRequest provides parameter values when the DIR invokes the
arguments() operation. The NVList provided by the DIR to the ORB includes the
TypeCodes and direction Flags (inside NamedValues) for all parameters,
including out ones for the operation. This allows the ORB to verify that the correct
parameter types have been provided before filling their values in, but does not require
it to do so. It also relieves the ORB of all responsibility to consult an Interface
Repository, promoting high-performance implementations.
June 2003 C++ Mapping: Mapping of DSI to C++ 1-151

1

The NVList provided to the ORB then becomes owned by the ORB. It becomes
deallocated after the DIR returns. This allows the DIR to pass the out values,
including the return side of inout values, to the ORB by modifying the NVList after
arguments() has been called. Therefore, if the DIR stores the NVList_ptr into an
NVList_var, it should pass it to the arguments() function by invoking the
_retn() function on it, in order to force it to release ownership of its internal
NVList_ptr to the ORB.

1.39.3 Mapping of PortableServer Dynamic Implementation Routine
In C++, DSI servants inherit from the standard DynamicImplementation class.
This class inherits from the ServantBase class and is also defined in the
PortableServer namespace. The Dynamic Skeleton Interface (DSI) is
implemented through servants that are members of classes that inherit from dynamic
skeleton classes.

// C++
namespace PortableServer
{

class DynamicImplementation : public virtual ServantBase
{

public:
Object_ptr _this();
virtual void invoke(

ServerRequest_ptr request
) = 0;

virtual RepositoryId
_primary_interface(

const ObjectId& oid,
POA_ptr poa

) = 0;
};

}

The _this() function returns a CORBA::Object_ptr for the target object. Unlike
_this() for static skeletons, its return type is not interface-specific because a DSI
servant may very well incarnate multiple CORBA objects of different types. If
DynamicImplementation::_this() is invoked outside of the context of a
request invocation on a target object being served by the DSI servant, it raises the
PortableServer::WrongPolicy exception.

The invoke() method receives requests issued to any CORBA object incarnated by
the DSI servant and performs the processing necessary to execute the request. Requests
for the standard object operations (_get_interface, _is_a, and
_non_existent) do not call invoke(), but call the corresponding functions
defined in ServantBase instead.

The _primary_interface() method receives an ObjectId value and a
POA_ptr as input parameters and returns a valid RepositoryId representing the
most-derived interface for that oid.
1-152 C++ Language Mapping, v1.1 June 2003

1

It is expected that the invoke() and _primary_interface() methods will be
invoked only by the POA in the context of serving a CORBA request. Invoking this
method in other circumstances may lead to unpredictable results.

1.40 PortableServer Functions
Objects registered with POAs use sequences of octet, specifically the
PortableServer::POA::ObjectId type, as object identifiers. However, because C++
programmers will often want to use strings as object identifiers, the C++ mapping
provides several conversion functions that convert strings to ObjectId and vice-
versa:

// C++
namespace PortableServer
{

char* ObjectId_to_string(const ObjectId&);
WChar* ObjectId_to_wstring(const ObjectId&);

ObjectId* string_to_ObjectId(const char*);
ObjectId* wstring_to_ObjectId(const WChar*);

}

These functions follow the normal C++ mapping rules for parameter passing and
memory management.

If conversion of an ObjectId to a string would result in illegal characters in the
string (such as a NUL), the first two functions throw the CORBA::BAD_PARAM
exception.

1.41 Mapping for PortableServer::ServantManager

1.41.1 Mapping for Cookie
Since PortableServer::ServantLocator::Cookie is an IDL native type, its type
must be specified by each language mapping. In C++, Cookie maps to void*:

// C++
namespace PortableServer
{

class ServantLocator {
...
typedef void* Cookie;

};
}

For the C++ mapping of the PortableServer::ServantLocator::preinvoke()
operation, the Cookie parameter maps to a Cookie&, while for the postinvoke()
operation, it is passed as a Cookie.
June 2003 C++ Mapping: PortableServer Functions 1-153

1

1.41.2 ServantManagers and AdapterActivators
Portable servants that implement the PortableServer::AdapterActivator,
the PortableServer::ServantActivator, or
PortableServer::ServantLocator interfaces are implemented just like any
other servant. They may use either the inheritance-based approach or the tie approach.

1.41.3 Server Side Mapping for Abstract Interfaces
The only circumstances under which an IDL compiler should generate C++ code for
abstract interfaces for the server side are when either an interface is derived from an
abstract interface, or when a valuetype supports an abstract interface indirectly
through one or more intermediate regular interface types. Abstract interfaces by
themselves cannot be directly implemented or instantiated by portable applications.

Comment: Issue 3239

Because of this, standard C++ skeleton classes for abstract interfaces are not necessary.

1.42 C++ Definitions for CORBA
This section provides a partial set of C++ definitions for the CORBA module. The
definitions appear within the C++ namespace named CORBA.

// C++
namespace CORBA { ... }

Any implementations shown here are merely sample implementations: they are not the
required definitions for these types. Furthermore, in some cases these types do not
define the complete interfaces of their IDL counterparts; if any type is missing one or
more operations, those operations are assumed to follow normal C++ mapping rules
for their signatures, parameter passing rules, memory management rules, etc.

1.42.1 Primitive Types
typedef unsigned char Boolean;
typedef unsigned char Char;
typedef wchar_t WChar;
typedef unsigned char Octet;
typedef short Short;
typedef unsigned short UShort;
typedef long Long;
typedef ... LongLong;
typedef unsigned long ULong;
typedef ... ULongLong;
typedef float Float;
typedef double Double;
typedef long double LongDouble;
1-154 C++ Language Mapping, v1.1 June 2003

1

typedef Boolean& Boolean_out;
typedef Char& Char_out;
typedef WChar& WChar_out;
typedef Octet& Octet_out;
typedef Short& Short_out;
typedef UShort& UShort_out;
typedef Long& Long_out;
typedef LongLong& LongLong_out;
typedef ULong& ULong_out;
typedef ULongLong& ULongLong_out;
typedef Float& Float_out;
typedef Double& Double_out;
typedef LongDouble& LongDouble_out;

1.42.2 String_var and String_out Class
class String_var
{

public:
String_var();
String_var(char *p);
String_var(const char *p);
String_var(const String_var &s);
~String_var();

String_var &operator=(char *p);
String_var &operator=(const char *p);
String_var &operator=(const String_var &s);

Comment: Issues 3796, 3797

operator char*&();
operator const char*() const;
const char* in() const;
char*& inout();
char*& out();
char* _retn();

char &operator[](ULong index);
char operator[](ULong index) const;

};

class String_out
{

public:
String_out(char*& p);
String_out(String_var& p);
String_out(const String_out& s);
String_out& operator=(const String_out& s);
June 2003 C++ Mapping: C++ Definitions for CORBA 1-155

1

String_out& operator=(char* p);
String_out& operator=(const char* p)

operator char*&();
char*& ptr();

private:
// assignment from String_var disallowed
void operator=(const String_var&);

};

1.42.3 WString_var and WString_out
The WString_var and WString_out types are identical to String_var and
String_out, respectively, except that they operate on wide string and wide character
types.

1.42.4 Fixed Class
class Fixed
{

public:
// Constructors
Fixed(int val = 0);
Fixed(unsigned val);
Fixed(Long val);
Fixed(ULong val);
Fixed(LongLong val);
Fixed(ULongLong val);
Fixed(Double val);
Fixed(LongDouble val);
Fixed(const Fixed& val);
Fixed(const char *);
~Fixed();

// Conversions
operator LongLong() const;
operator LongDouble() const;
Fixed round(UShort scale) const;
Fixed truncate(UShort scale) const;

Comment: Issue 3944

char *to_string() const;

// Operators
Fixed& operator=(const Fixed& val);
Fixed& operator+=(const Fixed& val);
Fixed& operator-=(const Fixed& val);
Fixed& operator*=(const Fixed& val);
1-156 C++ Language Mapping, v1.1 June 2003

1

Fixed& operator/=(const Fixed& val);

Fixed& operator++();
Fixed operator++(int);
Fixed& operator--();
Fixed operator--(int);
Fixed operator+() const;
Fixed operator-() const;
Boolean operator!() const;

// Other member functions
UShort fixed_digits() const;
UShort fixed_scale() const;

};

istream& operator>>(istream& is, Fixed& val);
ostream& operator<<(ostream& os, const Fixed& val);

Fixed operator + (const Fixed& val1, const Fixed& val2);
Fixed operator - (const Fixed& val1, const Fixed& val2);
Fixed operator * (const Fixed& val1, const Fixed& val2);
Fixed operator / (const Fixed& val1, const Fixed& val2);

Boolean operator > (const Fixed& val1, const Fixed& val2);
Boolean operator < (const Fixed& val1, const Fixed& val2);
Boolean operator >= (const Fixed& val1, const Fixed& val2);
Boolean operator <= (const Fixed& val1, const Fixed& val2);
Boolean operator == (const Fixed& val1, const Fixed& val2);
Boolean operator != (const Fixed& val1, const Fixed& val2);

1.42.5 Any Class
class Any
{

public:
Any();

Comment: Issue 1700

Any(const Any&);
~Any();

Any &operator=(const Any&);

// special types needed for boolean, octet, char,
// and bounded string insertion
// these are suggested implementations only
struct from_boolean {

from_boolean(Boolean b) : val(b) {}
Boolean val;
June 2003 C++ Mapping: C++ Definitions for CORBA 1-157

1

};
struct from_octet {

from_octet(Octet o) : val(o) {}
Octet val;

};

struct from_char {
from_char(Char c) : val(c) {}
Char val;

};
struct from_wchar {

from_char(WChar c) : val(c) {}

WChar val;
};
struct from_string {

from_string(char* s, ULong b,
Boolean n = FALSE) :

val(s), bound(b), nocopy(n) {}
from_string(const char* s, ULong b) :

val(const_cast<char*>(s)), bound(b),
nocopy(0) {}

char *val;
ULong bound;
Boolean nocopy;

};
struct from_wstring {

from_wstring(WChar* s, ULong b,
Boolean n = FALSE) :

val(s), bound(b), nocopy(n) {}
from_wstring(const WChar*, ULong b) :

val(const_cast<WChar*>(s)), bound(b),
nocopy(0) {}

WChar *val;
ULong bound;
Boolean nocopy;

};
struct from_fixed {

from_fixed(const Fixed& f, UShort d, UShort s)
: val(f), digits(d), scale(s) {}

const Fixed& val;
UShort digits;
UShort scale;

};

void operator<<=(from_boolean);
void operator<<=(from_char);
void operator<<=(from_wchar);
void operator<<=(from_octet);
void operator<<=(from_string);
void operator<<=(from_wstring);
1-158 C++ Language Mapping, v1.1 June 2003

1

void operator<<=(from_fixed);

// special types needed for boolean, octet,
// char extraction
// these are suggested implementations only
struct to_boolean {

to_boolean(Boolean &b) : ref(b) {}
Boolean &ref;

};
struct to_char {

to_char(Char &c) : ref(c) {}
Char &ref;

};
struct to_wchar {

to_wchar(WChar &c) : ref(c) {}
WChar &ref;

};

struct to_octet {
to_octet(Octet &o) : ref(o) {}
Octet &ref;

};
struct to_object {

to_object(Object_out obj) : ref(obj) {}
Object_ptr &ref;

};
struct to_string {

to_string(const char *&s, ULong b)
: val(s), bound(b) {}

const char *&val;
ULong bound;

// the following constructor is deprecated
to_string(char *&s, ULong b) : val(s), bound(b) {}

};
struct to_wstring {

to_wstring(const WChar *&s, ULong b)
: val(s), bound(b) {}

const WChar *&val;
ULong bound;

// the following constructor is deprecated
to_wstring(WChar *&s, ULong b)

: val(s), bound(b) {}
};
struct to_fixed {

to_fixed(Fixed& f, UShort d, UShort s)
: val(f), digits(d), scale(s) {}

Fixed& val;
UShort digits;
UShort scale;
June 2003 C++ Mapping: C++ Definitions for CORBA 1-159

1

};
struct to_abstract_base {

to_abstract_base(AbstractBase_ptr& base)
: ref(base) {}
AbstractBase_ptr& ref;

};
struct to_value {

to_value(ValueBase*& base) : ref(base) {}
ValueBase*& ref;

};

Boolean operator>>=(to_boolean) const;
Boolean operator>>=(to_char) const;
Boolean operator>>=(to_wchar) const;
Boolean operator>>=(to_octet) const;
Boolean operator>>=(to_object) const;
Boolean operator>>=(to_string) const;
Boolean operator>>=(to_wstring) const;
Boolean operator>>=(to_fixed) const;
Boolean operator>>=(to_abstract_base) const;
Boolean operator>>=(to_value) const;

Comment: Issue 1700

TypeCode_ptr type() const;
void type(TypeCode_ptr);

private:
// these are hidden and should not be implemented
// so as to catch erroneous attempts to insert
// or extract multiple IDL types mapped to unsigned

char
void operator<<=(unsigned char);
Boolean operator>>=(unsigned char&) const;

};

void operator<<=(Any&, Short);
void operator<<=(Any&, UShort);
void operator<<=(Any&, Long);
void operator<<=(Any&, ULong);
void operator<<=(Any&, Float);
void operator<<=(Any&, Double);
void operator<<=(Any&, LongLong);
void operator<<=(Any&, ULongLong);
void operator<<=(Any&, LongDouble);
void operator<<=(Any&, const Any&); // copying
void operator<<=(Any&, Any*); // non-copying
void operator<<=(Any&, const char*);
1-160 C++ Language Mapping, v1.1 June 2003

1

void operator<<=(Any&, const WChar*);

Boolean operator>>=(const Any&, Short&);
Boolean operator>>=(const Any&, UShort&);
Boolean operator>>=(const Any&, Long&);
Boolean operator>>=(const Any&, ULong&);
Boolean operator>>=(const Any&, Float&);
Boolean operator>>=(const Any&, Double&);
Boolean operator>>=(const Any&, LongLong&);
Boolean operator>>=(const Any&, ULongLong&);
Boolean operator>>=(const Any&, LongDouble&);
Boolean operator>>=(const Any&, const Any*&);
Boolean operator>>=(const Any&, const char*&);
Boolean operator>>=(const Any&, const WChar*&);

1.42.6 Any_var Class
class Any_var
{

public:
Any_var();
Any_var(Any *a);
Any_var(const Any_var &a);
~Any_var();

Any_var &operator=(Any *a);
Any_var &operator=(const Any_var &a);

Any *operator->();

const Any& in() const;
Any& inout();
Any*& out();
Any* _retn();

// other conversion operators for parameter passing
};

1.42.7 Exception Class
// C++
class Exception
{

public:
Exception(const Exception &);
virtual ~Exception();
Exception &operator=(const Exception &);

virtual void _raise() const = 0;
June 2003 C++ Mapping: C++ Definitions for CORBA 1-161

1

Comment: Issue 3381

virtual const char * _name() const;
virtual const char * _rep_id() const;

protected:
Exception();

};

1.42.8 SystemException Class
// C++
enum CompletionStatus { COMPLETED_YES, COMPLETED_NO,

COMPLETED_MAYBE };
class SystemException : public Exception
{

Comment: Issue 2897

public:
~SystemException();

ULong minor() const;
void minor(ULong);

CompletionStatus completed() const;
void completed(CompletionStatus);

virtual void _raise() const = 0;

static SystemException* _downcast(Exception*);
static const SystemException* _downcast(

const Exception*
);

protected:
SystemException();
SystemException(const SystemException &);
SystemException(ULong minor, CompletionStatus status);
SystemException &operator=(const SystemException &);

};

1.42.9 UserException Class
// C++
class UserException : public Exception
{

Comment: Issue 2897
1-162 C++ Language Mapping, v1.1 June 2003

1

public:
~UserException();

virtual void _raise() const = 0;

static UserException* _downcast(Exception*);
static const UserException* _downcast(

const Exception*
);

protected:
UserException();
UserException(const UserException &);
UserException &operator=(const UserException &);

};

1.42.10 UnknownUserException Class
// C++
class UnknownUserException : public UserException
{

public:
Any &exception();

static UnknownUserException* _downcast(Exception*);
static const UnknownUserException* _downcast(

const Exception*
);
virtual void raise();

};
June 2003 C++ Mapping: C++ Definitions for CORBA 1-163

1

1.42.11 release and is_nil
// C++
namespace CORBA {

void release(Object_ptr);
void release(Environment_ptr);
void release(NamedValue_ptr);
void release(NVList_ptr);
void release(Request_ptr);
void release(Context_ptr);
void release(TypeCode_ptr);
void release(POA_ptr);
void release(ORB_ptr);

Boolean is_nil(Object_ptr);
Boolean is_nil(Environment_ptr);
Boolean is_nil(NamedValue_ptr);
Boolean is_nil(NVList_ptr);
Boolean is_nil(Request_ptr);
Boolean is_nil(Context_ptr);
Boolean is_nil(TypeCode_ptr);
Boolean is_nil(POA_ptr);
Boolean is_nil(ORB_ptr);
...

}

1.42.12 Object Class
// C++
class Object
{

public:
static Object_ptr _duplicate(Object_ptr obj);
static Object_ptr _nil();
InterfaceDef_ptr _get_interface();
Boolean _is_a(const char* logical_type_id);
Boolean _non_existent();
Boolean _is_equivalent(Object_ptr other_object);
ULong _hash(ULong maximum);
void _create_request(

Context_ptr ctx,
const char *operation,
NVList_ptr arg_list,
NamedValue_ptr result,
Request_out request,
Flags req_flags

);
1-164 C++ Language Mapping, v1.1 June 2003

1

void _create_request(
Context_ptr ctx,
const char *operation,
NVList_ptr arg_list,
NamedValue_ptr result,
ExceptionList_ptr,
ContextList_ptr,
Request_out request,
Flags req_flags

);
Request_ptr _request(const char* operation);
Policy_ptr _get_policy(PolicyType policy_type);
DomainManagerList* _get_domain_managers();
Object_ptr _set_policy_overrides(
const PolicyList& policies,
SetOverrideType set_or_add

);
};

1.42.13 Environment Class
// C++
class Environment
{

public:
void exception(Exception*);
Exception *exception() const;
void clear();

static Environment_ptr _duplicate(Environment_ptr ev);
static Environment_ptr _nil();

};

1.42.14 NamedValue Class
// C++
class NamedValue
{

public:
const char *name() const;
Any *value() const;
Flags flags() const;

static NamedValue_ptr _duplicate(NamedValue_ptr nv);
static NamedValue_ptr _nil();

};
June 2003 C++ Mapping: C++ Definitions for CORBA 1-165

1

1.42.15 NVList Class
// C++
class NVList
{

public:
ULong count() const;
NamedValue_ptr add(Flags);
NamedValue_ptr add_item(const char*, Flags);
NamedValue_ptr add_value(const char*, const Any&,

Flags);
NamedValue_ptr add_item_consume(

char*,
Flags

);
NamedValue_ptr add_value_consume(

char*,
Any *,
Flags

);
NamedValue_ptr item(ULong);
void remove(ULong);

static NVList_ptr _duplicate(NVList_ptr nv);
static NVList_ptr _nil();

};

1.42.16 ExceptionList Class
// C++
class ExceptionList
{

public:
ULong count();
void add(TypeCode_ptr tc);
void add_consume(TypeCode_ptr tc);
TypeCode_ptr item(ULong index);
void remove(ULong index);

};
1-166 C++ Language Mapping, v1.1 June 2003

1

1.42.17 ContextList Class
class ContextList
{

public:
ULong count();
void add(const char* ctxt);
void add_consume(char* ctxt);
const char* item(ULong index);
void remove(ULong index);

};

1.42.18 Request Class
// C++
class Request
{

public:
Object_ptr target() const;
const char *operation() const;
NVList_ptr arguments();
NamedValue_ptr result();
Environment_ptr env();
ExceptionList_ptr exceptions();
ContextList_ptr contexts();

void ctx(Context_ptr);
Context_ptr ctx() const;

Any& add_in_arg();
Any& add_in_arg(const char* name);
Any& add_inout_arg();
Any& add_inout_arg(const char* name);
Any& add_out_arg();
Any& add_out_arg(const char* name);
void set_return_type(TypeCode_ptr tc);
Any& return_value();

void invoke();
void send_oneway();
void send_deferred();
void get_response();
Boolean poll_response();

static Request_ptr _duplicate(Request_ptr req);
static Request_ptr _nil();

};
June 2003 C++ Mapping: C++ Definitions for CORBA 1-167

1

1.42.19 Context Class
// C++
class Context
{

public:
const char *context_name() const;
Context_ptr parent() const;

void create_child(const char*, Context_out);
void set_one_value(const char*, const Any&);
void set_values(NVList_ptr);

void delete_values(const char*);
void get_values(const char*, Flags, const char*,

NVList_out);

static Context_ptr _duplicate(Context_ptr ctx);
static Context_ptr _nil();

};

1.42.20 TypeCode Class
// C++
class TypeCode
{

public:
class Bounds : public UserException { ... };
class BadKind : public UserException { ... };

TCKind kind() const;
Boolean equal(TypeCode_ptr) const;
Boolean equivalent(TypeCode_ptr) const;
TypeCode_ptr get_compact_typecode() const;

const char* id() const;
const char* name() const;

ULong member_count() const;
const char* member_name(ULong index) const;

TypeCode_ptr member_type(ULong index) const;

Any *member_label(ULong index) const;
TypeCode_ptr discriminator_type() const;
Long default_index() const;

ULong length() const;

TypeCode_ptr content_type() const;
1-168 C++ Language Mapping, v1.1 June 2003

1

UShort fixed_digits() const;
Short fixed_scale() const;

Visibility member_visibility(ULong index) const;
ValuetypeModifier type_modifier() const;
TypeCode_ptr concrete_base_type() const;

static TypeCode_ptr _duplicate(TypeCode_ptr tc);
static TypeCode_ptr _nil();

};

1.42.21 ORB Class
// C++
class ORB
{

public:
typedef sequence<Request_ptr> RequestSeq;
char *object_to_string(Object_ptr);
Object_ptr string_to_object(const char*);
void create_list(Long, NVList_out);
void create_operation_list(OperationDef_ptr,

NVList_out);
void create_named_value(NamedValue_out);
void create_exception_list(ExceptionList_out);
void create_context_list(ContextList_out);
void get_default_context(Context_out);
void create_environment(Environment_out);
void send_multiple_requests_oneway(

const RequestSeq&
);

void send_multiple_requests_deferred(
const RequestSeq&

);
Boolean poll_next_response();

void get_next_response(Request_out);

// Obtaining initial object references
typedef char* ObjectId;
class ObjectIdList {...};
class InvalidName : public UserException {...};
ObjectIdList *list_initial_services();
Object_ptr resolve_initial_references(

const char *identifier
);
June 2003 C++ Mapping: C++ Definitions for CORBA 1-169

1

Boolean work_pending();
void perform_work();
void shutdown(Boolean wait_for_completion);
void run();

Boolean get_service_information(
ServiceType svc_type,
ServiceInformation_out svc_info

);

typedef char* ObjectId;
class ObjectIdList { ... };
Object_ptr resolve_initial_references(const char* id);
ObjectIdList* list_initial_services();

Policy_ptr create_policy(
PolicyType type,
const Any& val

);

static ORB_ptr _duplicate(ORB_ptr orb);
static ORB_ptr _nil();

};

1.42.22 ORB Initialization
// C++
typedef char* ORBid;
static ORB_ptr ORB_init(

int& argc,
char** argv,

const char* orb_identifier = ""
);

1.42.23 General T_out Types
// C++
class T_out
{

public:
T_out(T*& p) : ptr_(p) { ptr_ = 0; }
T_out(T_var& p) : ptr_(p.ptr_) {

delete ptr_;
ptr_ = 0;

}

1-170 C++ Language Mapping, v1.1 June 2003

1

T_out(T_out& p) : ptr_(p.ptr_) {}
T_out& operator=(T_out& p) {

ptr_ = p.ptr_;
return *this;

}
T_out& operator=(T* p) { ptr_ = p; return *this; }

operator T*&() { return ptr_; }
T*& ptr() { return ptr_; }

T* operator->() { return ptr_; }

private:
T*& ptr_;

// assignment from T_var not allowed
void operator=(const T_var&):

};

1.43 Alternative Mappings For C++ Dialects

1.43.1 Without Namespaces
If the target environment does not support the namespace construct but does support
nested classes, then a module should be mapped to a C++ class. If the environment does
not support nested classes, then the mapping for modules should be the same as for the
CORBA C mapping (concatenating identifiers using an underscore (“_”) character as the
separator). Note that module constants map to file-scope constants on systems that support
namespaces and class-scope constants on systems that map modules to classes.

1.43.2 Without Exception Handling
For those C++ environments that do not support real C++ exception handling, referred to
here as non-exception handling (non-EH) C++ environments, an Environment param-
eter passed to each operation is used to convey exception information to the caller.

As shown in Section 1.27, “Environment,” on page 1-112, the Environment class sup-
ports the ability to access and modify the Exception it holds.

As shown in Section 1.19, “Mapping for Exception Types,” on page 1-96, both user-
defined and system exceptions form an inheritance hierarchy that normally allow types to
be caught either by their actual type or by a more general base type. When used in a non-
EH C++ environment, the narrowing functions provided by this hierarchy allow for exam-
ination and manipulation of exceptions:

// IDL
interface A
{

exception Broken { ... };
June 2003 C++ Mapping: Alternative Mappings For C++ Dialects 1-171

1

void op() raises(Broken);
};

// C++
Environment ev;
A_ptr obj = ...
obj->op(ev);
if (Exception *exc = ev.exception()) {

if (A::Broken *b = A::Broken::_narrow(exc)) {
// deal with user exception

} else {
// must have been a system exception
SystemException *se = SystemException::_narrow(exc);
...

}
}

Section 1.33, “ORB,” on page 1-124 specifies that Environment must be created using
ORB::create_environment, but this is overly constraining for implementations
requiring an Environment to be passed as an argument to each method invocation. For
implementations that do not support real C++ exceptions, Environment may be allo-
cated as a static, automatic, or heap variable. For example, all of the following are legal
declarations on a non-EH C++ environment:

// C++
Environment global_env; // global
static Environment static_env; // file static

class MyClass
{

public:
...

private:
static Environment class_env; // class static

};

void func()
{

Environment auto_env; // auto
Environment *new_env = new Environment;// heap
...

}

For ease of use, Environment parameters are passed by reference in non-EH environ-
ments:

// IDL
interface A
{

exception Broken { ... };
void op() raises(Broken);
1-172 C++ Language Mapping, v1.1 June 2003

1

};
// C++
class A ...
{

public:
void op(Environment &);
...

};

For additional ease of use in non-EH environments, Environment should support copy
construction and assignment from other Environment objects. These additional fea-
tures are helpful for propagating exceptions from one Environment to another under
non-EH circumstances.

When an exception is “thrown” in a non-EH environment, object implementors and ORB
runtimes must ensure that all out and return pointers are returned to the caller as null
pointers. If non-initialized or “garbage” pointer values are returned, client application
code could experience runtime errors due to the assignment of bad pointers to T_var
types. When a T_var goes out of scope, it attempts to delete the T* given to it; if this
pointer value is garbage, a runtime error will almost certainly occur. Exceptions in non-
EH environments need not support the virtual _raise() function, since the only useful
implementation of it in such an environment would be to abort the program.

1.44 C++ Keywords
Table 1-7 lists all C++ keywords from the 2 December 1996 Working Paper of the
ANSI (X3J16) C++ Language Standardization Committee.

Table 1-7 C++ Keywords
and and_eq asm auto bitand bitor

bool break case catch char class

compl const const_cast continue default delete

do double dynamic_cast else enum explicit

export extern false float for friend

goto if inline int long mutable

namespace new not not_eq operator or

or_eq private protected public register reinterpret_cast

return short signed sizeof static static_cast

struct switch template this throw true

try typedef typeid typename union unsigned

using virtual void volatile wchar_t while

xor xor_eq
June 2003 C++ Mapping: C++ Keywords 1-173

1

1-174 C++ Language Mapping, v1.1 June 2003

Index
Symbols
_duplicate 1-8, 1-9
_narrow 1-9, 1-98
_nil 1-10
_ptr field accessor 1-29
_tie_A class 1-141
_var 1-8
‘release’ Constructor Parameter 1-45

A
A_ptr 1-7, 1-167
A_var 1-7
abstract base class 1-6
Abstract Interfaces 1-93
Abstract Valuetypes 1-84
access function 1-35
aggregate type 1-102
alias 1-50
ANSI/ISO C++ standardization committees 1-4, 1-169
Any 1-81
Any Class 1-65

helper types 1-59
any class 1-153
Any Type 1-52

conversion of typed values into 1-52
Any_var 1-65
Any_var Class 1-65
Argument 1-102
array slice 1-37
Array Types 1-48, 1-82
Array_forany 1-49
Array_var 1-49
assignment operator 1-21, 1-35, 1-65, 1-68
Attributes 1-101

B
BAD_PARAM exception 1-105
base exception class 1-96
base interface type 1-8
basic data types

and different platforms 1-16
mapped from OMG IDL to C++ 1-15

basic object adapter 1-138
Basic types 1-76
boolean 1-59
boolean type 1-15, 1-16
bounded string 1-59
bounded wstring 1-59

C
C++ 1-101

_duplicate 1-8, 1-9
_narrow 1-9, 1-98
_nil 1-10
_ptr field accessor 1-29
_tie_A class 1-141
_var 1-8
A* 1-7
A_ptr 1-7, 1-167
A_var 1-7
abstract base class 1-6

aggregate types 1-102
alias 1-50
and struct 1-28
Any class interface 1-59
Any_var 1-65
arglist 1-126
arithmetic operations 1-7
array 1-48
array slice 1-37
Array_forany 1-49
Array_var 1-49
assignment operator 1-35
basic data type mapping 1-15
boolean type 1-16
catch clause 1-98
char type 1-16
char* 1-17
CompletionStatus 1-96
constant 1-13
Context interface, OMG PIDL for 1-121
conversion to void* 1-7
CORBA

Object 1-109
CORBA Boolean 1-15
CORBA Char 1-15
CORBA Double 1-15
CORBA Float 1-15
CORBA long 1-15
CORBA namespace 1-150
CORBA Octet 1-15
CORBA Short 1-15
CORBA ULong 1-15
CORBA UShort 1-15
delete 1-23
discriminant 1-34
Double 1-16
duplicate 1-8
dynamic_cast<T*> 1-99
enumeration type 1-17
Environment 1-167
Environment interface, OMG PIDL for 1-111
Float 1-16
function overloading 1-52
generated class 1-6
implicit release 1-7
implicit widening 1-7
insertion of a string type 1-54
insertion of arrays,type-safe 1-54
is_nil operation 1-8
keywords 1-5, 1-169
left-shift-assign operator 1-53
Long 1-16
mapped for non-exception handling environments 1-167
mapped for non-namespace environments 1-167
mapped to ORB initialization operations 1-126
modifier function 1-37
NamedValue interface, OMG PIDL for 1-113
namespace 1-4, 1-5
nested constant 1-13
NVList interface, OMG PIDL for 1-114
NVList type 1-147
June 2003 C++ Language Mapping, v1.1 Index-1

Index
Object interface, OMG PIDL for 1-127
object reference variable type 1-7
Object_ptr 1-8
Object_var 1-8
octet type 1-16
oneway 1-101
operation-specific arguments 1-102
operator< 1-53
operator-> 1-23
operator>>= 1-57
operator[] 1-42
ORB interface, OMG PIDL for 1-123
ORB_init operation 1-126, 1-127
overloaded subscript operator 1-42
parameter passing 1-102
pointer type 1-7
portability of implementations 1-16
primitive type 1-150
read-write access 1-37
relational operations 1-7
release operation 1-8
release parameter 1-41
Request interface, OMG PIDL for 1-118
returning or passing null pointers 1-105
right-shift-operator 1-57
run time type information 1-99
sample interface mapping 1-11
sequence types 1-39
server 1-129
set function 1-101
setting union value 1-35
sizeof(T) 1-5
skeleton class 1-139
slice 1-48
split allocation 1-102
string union members 1-38
String_var 1-17
structured types 1-21
SystemException 1-96
T *data constructor 1-41
T_ptr* 1-43
T_var 1-22, 1-168
template 1-141
tie class 1-141
type function 1-64
TypeCode 1-52
TypeCode and value, mismatched 1-52
TypeCode_ptr 1-65, 1-122
typedef 1-50
ULong 1-16
underscore 1-129
union members 1-34
UserException 1-95
UShort 1-16
using statement 1-4, 1-5

C++ definitions 1-150
C++ Type Size Requirements 1-5
catch clause 1-98
caught 1-98
char 1-59
char type 1-15, 1-16

char* 1-17
char** 1-43
Client Side Mapping 1-94
CompletionStatus 1-96
constant 1-14
Constructors 1-65, 1-68
Context 1-120
Context interface

OMG PIDL for 1-121
Cookie 1-149
copy constructor 1-21, 1-65
CORBA

namespace 1-150
Object 1-109

CORBA module
C++ definitions for 1-150
object class 1-8

Custom Marshaling 1-91

D
default constructor 1-65
Destructors 1-68
discriminant 1-34
double type 1-15
DSI 1-147
duplicate 1-9
duplicate operation 1-8
Dynamic Skeleton interface

mapped to C++ 1-147
dynamic_cast<T*> 1-99

E
enumeration type 1-1
Enums 1-17, 1-76
Environment interface

OMG PIDL for 1-111
Exception Types 1-95
Extraction from any 1-56

F
Fixed 1-81
Fixed Point Constants 1-15
Fixed T_var and T_out Types 1-34
Fixed Types 1-31
float type 1-15

G
generated class 1-6
get function 1-101

I
Insertion into any 1-53
interface inheritance 1-7
is 1-9
is_nil operation 1-8

L
left-shift-assign operator 1-53
long type 1-15

M
Mapping for Abstract Interfaces 1-93
Index-2 C++ Language Mapping, v1.1 June 2003

Index
Mapping for Array Types 1-48
Mapping for Basic Data Types 1-15
Mapping for Constants 1-13
Mapping for Cookie 1-149
Mapping for Enums 1-17
Mapping for Exception Types 1-95
Mapping for Fixed Types 1-31
Mapping for Interfaces 1-6
Mapping for Modules 1-5
Mapping For Operations and Attributes 1-101
Mapping for PortableServer

ServantManager 1-149
Mapping for Sequence Types 1-39
Mapping for String Types 1-17
Mapping for Struct Types 1-28
Mapping for Structured Types 1-21
Mapping for the Any Type 1-52
Mapping For Typedefs 1-50
Mapping for Union Types 1-34
Mapping for Valuetypes 1-66
Mapping for Wide String Types 1-20
Mapping of DSI to C++ 1-147
Mapping of Pseudo Objects to C++ 1-109
Memory Management 1-46
Mix-in Classes 1-74
modifier function 1-37

N
NamedValue interface

OMG PIDL for 1-113
namespace 1-4, 1-167
nil object reference 1-10
null pointer 1-58, 1-105
NVList 1-114
NVList type 1-147

O
Object 1-127
object class 1-8
Object interface

OMG PIDL for 1-127
object reference 1-7

union members 1-38
Object Reference Operations 1-8
object reference variable type 1-7
Object References 1-9, 1-76
Object_ptr 1-8
Object_var 1-8
octet 1-59
octet type 1-15, 1-16
OMG IDL struct

mapping to C++ 1-28
oneway 1-101
operation 1-7
Operation Parameters and Signatures 1-105
Operations 1-101
operator 1-53
operator< 1-53
operator-> 1-23
operator>>= 1-57
operator[] 1-42

ORB 1-123
ORB interface

OMG PIDL for 1-123
ORB_init operation 1-127

mapped to C++ 1-126
ostream Inserters 1-99
Out Parameter 1-10

P
pointer type 1-7
PortableServer

ServantManager 1-149
PortableServer Functions 1-149
Primitive Types 1-150
pseudo keyword 1-109
Pseudo Objects 1-109

R
readonly 1-101
Reference counting 1-71, 1-74
release operation 1-8, 1-9
release parameter 1-41
Request 1-116
Request interface

OMG PIDL for 1-118
right-shift-operator 1-57
RTTI 1-99
Run time type information

see RTTI

S
scoping

and C++ mapping 1-4
Sequence 1-81
Sequence T_var and T_out Types 1-47
sequence type 1-39
ServantBase_var class 1-134
server 1-129
ServerRequest

mapped to C++ 1-147
Server-Side Mapping 1-129
set function 1-101
Short 1-16
short type 1-15
Signatures 1-105
sizeof(T) 1-5
skeleton class 1-138, 1-139
Skeleton Derivation From Object 1-146
Skeleton Operations 1-136
slice 1-48, 1-106
split allocation

avoiding errors with 1-102
statically-initialized 1-48
String 1-79
string type 1-17
string union members 1-38
String_var 1-17
Struct Types 1-28, 1-77
Structured Types 1-21
SystemException 1-96
June 2003 C++ Language Mapping, v1.1 Index-3

Index
T
T *data constructor 1-41
T_out Types 1-27
T_ptr* 1-43
T_var 1-22, 1-168
T_var Types 1-22
template 1-141
this pointer 1-145
throw exception 1-98
tie class 1-141
top 1-13
type 1-56
type function 1-64
type unknown to the receiver 1-52
TypeCode 1-52, 1-122
TypeCode Replacement 1-64
TypeCode_ptr 1-65, 1-122
Typed Values 1-52
typedef 1-50
type-safe 1-52
Type-Specific Value Factories 1-89

U
unbounded sequence 1-21
unbounded string 1-21
Union 1-81
union member 1-34

Union Types 1-34
UnknownUserException 1-100
Unmarshaling 1-90
unsigned long type 1-15
unsigned short type 1-15
UserException 1-95

V
Value Boxes 1-75
ValueBase 1-71
ValueFactoryBase Class 1-86
ValueFactoryBase_var Class 1-88
Valuetype Data Members 1-66
Valuetype Factories 1-85
Valuetype Inheritance 1-84
Valuetype Members of Structs 1-92
Valuetype Operations 1-69
Valuetypes 1-66

W
wchar 1-59
Wide Character 1-14
Wide String 1-14
Wide String Types 1-20
Widening to Abstract Interface 1-63
Widening to Object 1-62
WString 1-79
Index-4 C++ Language Mapping, v1.1 June 2003

C++ Language Mapping, v1.1
Reference Sheet

This is version 1.1 of the C++ Language Mapping specification. It includes the adopted CCM
LocalObject text from orbos/99-07-01, section 11.1.3. This text is also available as ptc/02-08-06.

OMG documents used to create this version:

• Updated specification: ptc/02-01-26

• Updated specification: ptc/02-08-08
July 13, 2005 1

2 July 13, 2005

	C++Language Mapping
	1.1 Preliminary Information
	1.1.1 Overview
	1.1.2 Scoped Names
	1.1.3 C++ Type Size Requirements
	1.1.4 CORBA Module

	1.2 Mapping for Modules
	1.3 Mapping for Interfaces
	1.3.1 Object Reference Types
	1.3.2 Widening Object References
	1.3.3 Object Reference Operations
	1.3.4 Narrowing Object References
	1.3.5 Nil Object Reference
	1.3.6 Object Reference Out Parameter
	1.3.7 Interface Mapping Example

	1.4 Mapping for Constants
	1.4.1 Wide Character and Wide String Constants
	1.4.2 Fixed Point Constants

	1.5 Mapping for Basic Data Types
	1.6 Mapping for Enums
	1.7 Mapping for String Types
	1.8 Mapping for Wide String Types
	1.9 Mapping for Structured Types
	1.9.1 T_var Types
	1.9.2 T_out Types

	1.10 Mapping for Struct Types
	1.11 Mapping for Fixed Types
	1.11.1 Fixed T_var and T_out Types

	1.12 Mapping for Union Types
	1.13 Mapping for Sequence Types
	1.13.1 Sequence Example
	1.13.2 Using the “release” Constructor Parameter
	1.13.3 Additional Memory Management Functions
	1.13.4 Sequence T_var and T_out Types

	1.14 Mapping For Array Types
	1.15 Mapping For Typedefs
	1.16 Mapping for the Any Type
	1.16.1 Handling Typed Values
	1.16.2 Insertion into any
	1.16.3 Extraction from any
	1.16.4 Distinguishing boolean, octet, char, wchar, bounded string, and bounded wstring
	1.16.5 Widening to Object
	1.16.6 Widening to Abstract Interface
	1.16.7 Widening to ValueBase
	1.16.8 TypeCode Replacement
	1.16.9 Any Constructors, Destructor, Assignment Operator
	1.16.10 The Any Class
	1.16.11 The Any_var and Any_out Classes

	1.17 Mapping for Valuetypes
	1.17.1 Valuetype Data Members
	1.17.2 Constructors, Assignment Operators, and Destructors
	1.17.3 Valuetype Operations
	1.17.4 Valuetype Example
	1.17.5 ValueBase and Reference Counting
	1.17.6 Reference Counting Mix-in Classes
	1.17.7 Value Boxes
	1.17.8 Abstract Valuetypes
	1.17.9 Valuetype Inheritance
	1.17.10 Valuetype Factories
	1.17.11 Custom Marshaling
	1.17.12 Another Valuetype Example
	1.17.13 Valuetype Members of Structs

	1.18 Mapping for Abstract Interfaces
	1.18.1 Abstract Interface Base
	1.18.2 Client Side Mapping

	1.19 Mapping for Exception Types
	1.19.1 ostream Inserters
	1.19.2 UnknownUserException
	1.19.3 Any Insertion and Extraction for Exceptions

	1.20 Mapping For Operations and Attributes
	1.21 Implicit Arguments to Operations
	1.22 Argument Passing Considerations
	1.22.1 Operation Parameters and Signatures

	1.23 Mapping of Pseudo Objects to C++
	1.24 Usage
	1.25 Mapping Rules
	1.26 Relation to the C PIDL Mapping
	1.27 Environment
	1.27.1 Environment Interface
	1.27.2 Environment C++ Class
	1.27.3 Differences from C-PIDL
	1.27.4 Memory Management

	1.28 NamedValue
	1.28.1 NamedValue Interface
	1.28.2 NamedValue C++ Class
	1.28.3 Differences from C-PIDL
	1.28.4 Memory Management

	1.29 NVList
	1.29.1 NVList Interface
	1.29.2 NVList C++ Class
	1.29.3 Differences from C-PIDL
	1.29.4 Memory Management

	1.30 Request
	1.30.1 Request Interface
	1.30.2 Request C++ Class
	1.30.3 Differences from C-PIDL
	1.30.4 Memory Management

	1.31 Context
	1.31.1 Context Interface
	1.31.2 Context C++ Class
	1.31.3 Differences from C-PIDL
	1.31.4 Memory Management

	1.32 TypeCode
	1.32.1 TypeCode Interface
	1.32.2 TypeCode C++ Class
	1.32.3 Differences from C-PIDL
	1.32.4 Memory Management

	1.33 ORB
	1.33.1 ORB Interface
	1.33.2 ORB C++ Class
	1.33.3 Differences from C-PIDL
	1.33.4 Mapping of ORB Initialization Operations

	1.34 Object
	1.34.1 Object Interface
	1.34.2 Object C++ Class

	1.35 Local Object
	1.36 Server-Side Mapping
	1.37 Implementing Interfaces
	1.37.1 Mapping of PortableServer::Servant
	1.37.2 Servant Reference Counting Mix-In
	1.37.3 Servant Memory Management Considerations
	1.37.4 ServantBase_var Class
	1.37.5 Skeleton Operations
	1.37.6 Inheritance-Based Interface Implementation
	1.37.7 Delegation-Based Interface Implementation

	1.38 Implementing Operations
	1.38.1 Skeleton Derivation From Object

	1.39 Mapping of DSI to C++
	1.39.1 Mapping of ServerRequest to C++
	1.39.2 Handling Operation Parameters and Results
	1.39.3 Mapping of PortableServer Dynamic Implementation Routine

	1.40 PortableServer Functions
	1.41 Mapping for PortableServer::ServantManager
	1.41.1 Mapping for Cookie
	1.41.2 ServantManagers and AdapterActivators
	1.41.3 Server Side Mapping for Abstract Interfaces

	1.42 C++ Definitions for CORBA
	1.42.1 Primitive Types
	1.42.2 String_var and String_out Class
	1.42.3 WString_var and WString_out
	1.42.4 Fixed Class
	1.42.5 Any Class
	1.42.6 Any_var Class
	1.42.7 Exception Class
	1.42.8 SystemException Class
	1.42.9 UserException Class
	1.42.10 UnknownUserException Class
	1.42.11 release and is_nil
	1.42.12 Object Class
	1.42.13 Environment Class
	1.42.14 NamedValue Class
	1.42.15 NVList Class
	1.42.16 ExceptionList Class
	1.42.17 ContextList Class
	1.42.18 Request Class
	1.42.19 Context Class
	1.42.20 TypeCode Class
	1.42.21 ORB Class
	1.42.22 ORB Initialization
	1.42.23 General T_out Types

	1.43 Alternative Mappings For C++ Dialects
	1.43.1 Without Namespaces
	1.43.2 Without Exception Handling

	1.44 C++ Keywords

