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Preface

About the Object Management Group

OMG

Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer industry 
standards consortium that produces and maintains computer industry specifications for interoperable, portable and 
reusable enterprise applications in distributed, heterogeneous environments. Membership includes Information 
Technology vendors, end users, government agencies, and academia. 

OMG member companies write, adopt, and maintain its specifications following a mature, open process. OMG's 
specifications implement the Model Driven Architecture® (MDA®), maximizing ROI through a full-lifecycle approach to 
enterprise integration that covers multiple operating systems, programming languages, middleware and networking 
infrastructures, and software development environments. OMG's specifications include: UML® (Unified Modeling 
Language™); CORBA® (Common Object Request Broker Architecture); CWM™ (Common Warehouse Metamodel); 
and industry-specific standards for dozens of vertical markets.

More information on the OMG is available at http://www.omg.org/.

OMG Specifications

As noted, OMG specifications address middleware, modeling and vertical domain frameworks. A catalog of all OMG 
specifications is available from the OMG website at:

http://www.omg.org/technology/documents/spec_catalog.htm

Specifications within the Catalog are organized by the following categories:

Business Modeling Specifications

Middleware Specifications

• CORBA/IIOP

• Data Distribution Services

• Specialized CORBA

IDL/Language Mapping Specifications

Modeling and Metadata Specifications

• UML, MOF, CWM, XMI

• UML Profile

Modernization Specifications

Platform Independent Model (PIM), Platform Specific Model (PSM), Interface Specifications

• CORBAServices

• CORBAFacilities
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OMG Domain Specifications

CORBA Embedded Intelligence Specifications

CORBA Security Specifications

All of OMG’s formal specifications may be downloaded without charge from our website. (Products implementing OMG 
specifications are available from individual suppliers.) Copies of specifications, available in PostScript and PDF format, 
may be obtained from the Specifications Catalog cited above or by contacting the Object Management Group, Inc. at:

OMG Headquarters
140 Kendrick Street
Building A, Suite 300
Needham, MA 02494
USA
Tel: +1-781-444-0404
Fax: +1-781-444-0320
Email: pubs@omg.org

Certain OMG specifications are also available as ISO standards. Please consult http://www.iso.org

Typographical Conventions

The type styles shown below are used in this document to distinguish programming statements from ordinary English. 
However, these conventions are not used in tables or section headings where no distinction is necessary.

Times/Times New Roman - 10 pt.:  Standard body text

Helvetica/Arial - 10 pt. Bold: OMG Interface Definition Language (OMG IDL) and syntax elements.

Courier - 10 pt. Bold:  Programming language elements.

Helvetica/Arial - 10 pt: Exceptions

Note – Terms that appear in italics are defined in the glossary. Italic text also represents the name of a document, specification, 
or other publication.

Issues

The reader is encouraged to report any technical or editing issues/problems with this specification to http://www.omg.org/
technology/agreement.htm.
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1 Scope

The IDL Language Mapping specifications contain language mapping information for several languages. Each language 
is described in a separate stand-alone volume. This particular specification explains how OMG IDL constructs are 
mapped to the constructs of the C++11 programming language.

2   Conformance

The C++11 mapping tries to avoid limiting the implementation freedoms of ORB developers. For each OMG IDL 
construct, the C++11 mapping explains the syntax and semantics of using the construct from C++11. A client or server 
program conforms to this mapping (is C++11 compliant) if it uses the constructs as described in the C++11 mapping 
chapters.

2.1 C++ Implementation Requirements

The mapping proposed here assumes that the target C++11 environment supports all the features described in C++11 as 
specified by the ISO/IEC 14822:2011 C++ 

2.2 No Implementation Descriptions

This mapping does not contain implementation descriptions. It avoids details that would constrain implementations. Some 
examples show possible implementations, but these are not required implementations.

3 Normative References

The following normative documents contain provisions which, through reference in this text, constitute provisions of this 
specification. For dated references, subsequent amendments to, or revisions of, any of these publications do not apply.

• OMG CORBA 3.2 Part 1 Interfaces specification (formal/2011-11-01): http://www.omg.org/spec/CORBA/3.2/

4 Symbols (and abbreviated terms)

List of symbols/abbreviations.

• ORB - Object Request Broker

• CORBA - Common Object Request Broker Architecture
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5 Additional Information

5.1 Changes to Adopted OMG Specifications

None in this specification.

5.2 Acknowledgements

The following companies submitted this revised submission to the Object Management Group:

• Remedy IT
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6 C++11 Language Mapping Specification

6.1 Anonymous IDL types

Anonymous IDL types are deprecated by the IDL specification and are not supported in the IDL to C++11 language 
mapping specification. The IDL compiler that implements this mapping must throw an error when it detects an 
anonymous type.

6.2 Scoped Names

Scoped names in OMG IDL are specified by C++ scopes. These mappings allow the corresponding mechanisms in OMG 
IDL and C++11 to be used to build scoped names. For instance:

// IDL
module M 
{

struct E {
long L;

};
};

is mapped into:

// C++
namespace M
{

class E final {
public:

   void L (int32_t _L);
int32_t L () const;
int32_t& L();
// Other methods not shown

};
};

and E can be referred outside of M as M::E. Alternatively, a C++ using statement for namespace M can be used so that 
E can be referred to simply as E:

// C++
using namespace M;
E e;
e.L (3);

Another alternative is to employ a using statement only for M::E:

// C++
using M::E;
C++11 Language Mapping        5



E e;
e.L (3);

To avoid C++ compilation problems, every use in OMG IDL of a C++11 keyword as an identifier is mapped into the 
same name preceded by the prefix “_cxx_”. For example, an IDL interface named “try” would be named “_cxx_try” when 
its name is mapped into C++11. For consistency, this rule also applies to identifiers that are derived from IDL identifiers. 
The complete list of C++11 keywords can be found in “C++11 Keywords” on page 50.

6.3 C++ Type Size Requirements

The sizes of the C++ types used to represent OMG IDL types are implementation-dependent. That is, this mapping makes 
no requirements as to the sizeof(T) for anything except basic types (see “Mapping for Basic Data Types” on page 6).

6.4 Mapping for Modules

As shown in “Scoped Names” on page 5, a module defines a scope, and as such is mapped to a C++ namespace with 
the same name:

// IDL
module M
{

// definitions
};

// C++
namespace M
{

// definitions
};

6.5 Mapping for Basic Data Types

The basic data types have the mappings shown in Table 6.1. 

Table 6.1 - Basic Data Type Mappings 

OMG IDL C++ Default value

short int16_t 0

long int32_t 0

long long int64_t 0

unsigned short uint16_t 0

unsigned long uint32_t 0

unsigned long long uint64_t 0

float float 0.0

double double 0.0

long double long double 0.0

char char 0
6                 C++11 Language Mapping



Each OMG IDL basic type is mapped to a basic C++11 type.

6.6 Mapping for Interfaces

An interface is mapped to a C++ class that gives access to the types, constants, operations, and exceptions defined in the 
interface. This example shows the behavior of the mapping of an interface:

// IDL
interface A
{

struct S { short field; };
void op (in S data);

};

// C++
// Conformant uses
A::S s; // declare a struct variable
s.field(3); // field access
IDL::traits<A>::ref_type p (...); // ...somehow obtain an objref...
p->op (s);

6.6.1 Reference Types

Several OMG IDL types are mapped to so called reference types. A reference points to a valid object or a nil object. The 
reference types are available as final C++ templates directly or through their related type traits. Strong reference types are 
available as ref_type trait and have the semantics of a std::shared_ptr. The reference must have a protected 
destructor preventing the user to directly delete an object reference instead of using the std::shared_ptr semantics. 
It is illegal for compliant application code to create specializations of the reference types.

Related to the strong reference type a weak reference trait weak_ref_type has to be delivered which must behave as a 
std::weak_ptr. From a strong reference a weak reference can be obtained using the weak_reference() operation. 
This weak reference must be convertable to a regular reference using the lock() operation.

Conversions of references to void*, assigning pointers to references, retrieving pointers from references, arithmetic 
operations, and relational operations, including test for equality, are all non-compliant. It is allowed to compare a 
reference with the C++11 keyword nullptr or to use it through a bool conversion operator. Any other comparison 
should lead to a compile error. 

A reference can only be created from a nullptr, another reference, or using the CORBA::make_reference<> 
template which must deliver std::make_shared semantics using perfect forwarding. Any other creation of a 
reference type is not allowed and should lead to a compile error. Declaring a reference and initializing it with its default 
constructor will result in a nil reference.

wchar wchar_t 0

boolean bool false

octet uint8_t 0

Table 6.1 - Basic Data Type Mappings (Continued)

OMG IDL C++ Default value
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The strong and weak reference types are grouped together into a reference type trait. The strong and weak reference types 
also provide this trait as their traits_type traits

For all reference types a specialization of std::swap<> must be provided to exchange the values of two references in 
an efficient matter.

6.6.2 Object Reference Types

The use of an interface type in OMG IDL denotes an object reference that has the semantics as described in “Reference 
Types” on page 7. For an interface A, the reference type trait IDL::traits<A> is available. Its strong reference type is 
known as the IDL::traits<A>::ref_type trait (aka A::_ref_type trait). The object reference type trait itself is 
also known as IDL::traits<A>::traits_type (aka A::_traits_type).

An operation can be performed on an object reference by using an arrow (“->”) on the reference. For example, if an 
interface defines an operation op with no parameters and obj is a reference to the interface type, then a call would be 
written obj->op().

The weak object reference has to be available as IDL::traits<A>::weak_ref_type (aka  
A::_weak_ref_type). 

// C++
IDL::traits<A>::ref_type a;
IDL::traits<A>::ref_type p (...); // ...somehow obtain an objref...
a = p;
IDL::traits<A>::weak_ref_type w = a.weak_reference();
if (p == nullptr) // legal comparison
if (p != nullptr ) // legal comparison
if (p) // legal usage, true if p != nullptr
if (!p)  // legal usage, true if p == nullptr
if (p == 0) // illegal comparison, should result in a compile error
if (p != 0) // illegal comparison, should result in a compile error
if (a == p) // illegal comparison, should result in a compile error
if (a != p) // illegal comparison, should result in a compile error
delete a; // illegal delete, should result in a compile error

6.6.3 Widening Object References

OMG IDL interface inheritance does not require that the corresponding C++ classes are related, though that is certainly 
one possible implementation. However, if interface B inherits from interface A, the following implicit widening 
operations for B must be supported by a compliant implementation:

• B to A

• B to Object
8                 C++11 Language Mapping



// C++
IDL::traits<B>::ref_type bp = ...
IDL::traits<A>::ref_type ap = bp; // implicit widening
IDL::traits<Object>::ref_type objp = bp; // implicit widening
objp = ap; // implicit widening

6.6.4 Object Reference Operations

Conceptually, the Object class in the CORBA module is the base interface type for all objects; therefore, any object 
reference can be widened to the type IDL::traits<Object>::ref_type.

6.6.5 Nil Object Reference

The mapping defines that a nil object reference is defined by nullptr. For any nil object reference A, the following call 
is guaranteed to return true:

// C++
bool true_result = (A == nullptr);

Any attempt to invoke an operation through a nil object reference should result in an INV_OBJREF exception.

6.6.6 Narrowing Object References

The object traits for type T define the method IDL::traits<T>::narrow (aka T::_narrow) to narrow an object 
reference. These methods return a new object reference given an existing reference. The narrow methods returns a nil 
object reference if the given reference is nil. The parameter to the narrow methods accepts a reference of an object of any 
interface type (IDL::traits<Object>::ref_type). If the actual (runtime) type of the parameter object can be 
narrowed to the requested interface’s type, then the operation will return a valid object reference; otherwise, the operation 
will return a nil object reference. For example, suppose A, B, C, and D are interface types, and D inherits from C, which 
inherits from B, which in turn inherits from A. If an object reference to a C object is widened to an A variable called ap, 
then:

• IDL::traits<A>::narrow(ap) returns a valid object reference

• IDL::traits<B>::narrow(ap) returns a valid object reference

• IDL::traits<C>::narrow(ap) returns a valid object reference

• IDL::traits<D>::narrow(ap) returns a nil object reference

Narrowing to A, B, and C all succeed because the object supports all those interfaces. The  
IDL::traits<D>::narrow returns a nil object reference because the object does not support the D interface.

For another example, suppose A, B, C, and D are interface types. C inherits from B, and both B and D inherit from A. 
Now suppose that an object of type C is passed to a function as an A. If the function calls IDL::traits<B>::narrow 
or IDL::traits<C>::narrow, a new object reference will be returned. A call to IDL::traits<D>::narrow will 
return a nil reference.

If successful, the narrow methods creates a new object reference and does not change the given object reference. The 
narrow operations can throw system exceptions.
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6.6.7 Mapping for Operations and Attributes

An operation maps to a non-const virtual C++ function with the same name as the operation. Each read-write attribute 
maps to a pair of overloaded C++ virtual functions (both with the same name), one to set the attribute’s value and one to 
get the attribute’s value. The set function takes an in parameter with the same type as the attribute, while the get function 
takes no parameters and returns the same type as the attribute. An attribute marked “readonly” maps to only one C++ 
function, to get the attribute’s value. Parameters and return types for attribute functions obey the same parameter passing 
rules as for regular operations.

OMG IDL oneway operations are mapped the same as other operations with a return type of void; that is, there is no 
way to know by looking at the C++ signature whether an operation is oneway or not.

Operation and attribute signatures do not have exception specifications.

// IDL
interface A
{

void f();
oneway void g();
attribute long x;

};

// C++
IDL::traits<A>::ref_type a (...); // retrieve the reference from somewhere
a->f();
a->g();
int32_t const n = a->x();
a->x(n + 1);

6.6.8 Argument Passing Considerations

The mapping of parameter passing modes is focused at simplicity and ease of use. For all primitive types, enums, and 
reference types, an in argument A of type P, that argument is passed as P. For all other types an in argument A of type 
P is passed as const P&. For an inout and out argument it is passed as P&. If we return a type of P, it is returned as 
P.

The following examples demonstrate the compliant behavior:

// IDL
struct S { string name; float age; };
interface A {
  void f(out S p);
};

// C++
IDL::traits<A>::ref_type ARef = ... // Retrieve object reference
S s;
ARef->f(s);
// use s
ARef->f(s); // first result will be overwritten
10                 C++11 Language Mapping



// IDL
interface B {

void a(out string s);
void b(in string s);
void c(inout string s);

};

// C++
IDL::traits<B>::ref_type BRef (...); // Retrieve object reference
std::string s;
for (int8_t i = 0; i < 10; i++)
{

BRef->a(s);
BRef->b(s);
BRef->c(s);

}

6.7 Mapping for Constants

OMG IDL constants are mapped directly to a C++11 constant definitions.

// IDL
const string name = "testing";

interface A
{

const float pi = 3.14159;
};

// C++
const std::string name = "testing";

class A
{

public:
static constexpr float pi = 3.14159;

};

The mappings for wide character and wide string constants is identical to character and string constants, except that IDL 
literals are preceded by L in C++. For example, IDL constant:

const wstring ws = “Hello World”;

would map to

const std::wstring ws = L”Hello World”;

in C++11.
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6.8 Mapping for Enums

An OMG IDL enum maps directly to the corresponding C++11 type definition. When an enum is used in a structured 
type, its default value is the first enum value specified.

// IDL
enum Color { red, green, blue };

// C++
enum class Color : uint32_t { red, green, blue };

6.9 Mapping for String Types

The OMG IDL string type, whether bounded or unbounded, is mapped to std::string.

C++11 does not have a built-in type that would provide a “close match” for IDL-bounded strings. As a result, the 
programmer is responsible for enforcing the bound of bounded strings at run time. Implementations of the mapping are 
under no obligation to prevent assignment of a string value to a bounded string type if the string value exceeds the bound. 
Implementations must (at run time) detect attempts to pass a string value that exceeds the bound as a parameter across an 
interface. It must raise a BAD_PARAM system exception to signal the error.

6.10 Mapping for Wide String Types

Both bounded and unbounded wide string types are mapped to std::wstring in C++11. 

C++11 does not have a built-in type that would provide a “close match” for IDL-bounded wstrings. As a result, the 
programmer is responsible for enforcing the bound of bounded wstrings at run time. Implementations of the mapping are 
under no obligation to prevent assignment of a string value to a bounded wstring type if the wstring value exceeds the 
bound. Implementations must (at run time) detect attempts to pass a wstring value that exceeds the bound as a parameter 
across an interface. It must raise a BAD_PARAM system exception to signal the error.

6.11 Mapping for Sequence Types

A sequence is mapped to a C++ std::vector. C++11 does not have a built-in type that would provide a “close match” 
for IDL-bounded sequence. As a result, the programmer is responsible for enforcing the bound of bounded sequences at 
run time. Implementations of the mapping are under no obligation to prevent assignment of a sequence to a bounded 
sequence type if the sequence exceeds the bound. Implementations must at run time detect attempts to pass a sequence 
that exceeds the bound as a parameter across an interface. When an implementation detects this error, it must raise a 
BAD_PARAM system exception to signal the error.

Additionally the C++ std::vector can have a size that is larger than a maximum size of a IDL sequence that is limited 
in length to the maximum of ULong. When this happens the implementation must raise a BAD_PARAM system 
exception to signal the error.

 // IDL
typedef sequence<long> LongSeq;
typedef sequence<LongSeq, 3> LongSeqSeq;
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// C++
typedef std::vector <int32_t> LongSeq;
typedef std::vector <LongSeq> LongSeqSeq;

The example below shows full declarations for both a bounded and an unbounded sequence.

// IDL
typedef sequence<T> V1; // unbounded sequence
typedef sequence<T, 2> V2; // bounded sequence
typedef sequence<V1> V3; // sequence of sequences

// C++
typedef std::vector <T> V1;
typedef std::vector <T> V2;
typedef std::vector <V1> V3;

6.12 Mapping for Array Types

Arrays are mapped to the corresponding C++ std::array<> definition, which allows the definition of statically-
initialized data using the array. 

// IDL
typedef float F[10];
typedef string V[10];
typedef string M[1][2][3];
interface Foo 
{

void op(out F p1, out V p2, out M p3);
}

// C++
typedef std::array <float, 10> F;
typedef std::array <std::string, 10> V;
typedef std::array <std::array <std::array <std::string, 3>, 2>, 1> M;
F f1; F f2;
V v1; V v2;
M m1; M m2;
IDL::traits<Foo>::ref_type ref (..); // obtain an object reference
ref->op(f2, v2, m2);
f1[0] = f2[1];
v1[1] = v2[1];
m1[0][1][2] = m2[0][1][2];

6.13 Mapping for Structured Types

The mapping for structured types is a final C++ class with a default constructor, a copy constructor, a move constructor, 
an assignment copy operator, an assignment move operator, and a destructor. The default constructor initializes object 
reference members to appropriately-typed nil object references, basic datatypes to their default value as listed in 
Table 6.1, and enums to their first value. All other members are initialized using their default constructors. The copy 
constructor performs a deep-copy from the existing structure to create a new structure. The move constructor moves all 
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arguments to their members. The copy assignment operator performs a deep-copy to create a new structure with strong 
exception safety, the move assignment operator performs a move of all members to the existing structure with strong 
exception safety. The destructor releases all members.

For each member a set of accessors must be provided. If we have a member A of type T in case T is a:

• short, long, long long, unsigned short, unsigned long, unsigned long long, float, double, long double, char, wchar, 
boolean, octet

• Enumeration

• Object reference (IDL::traits<T>::ref_type)

• Valuetype reference (IDL::traits<T>::ref_type)

• Typecode reference (IDL::traits<CORBA::TypeCode>::ref_type)

• Abstract base reference (IDL::traits<T>::ref_type)

The following set of accessors must be provided:

void A (T);
T A (void) const;
T& A (void);

In all other cases the following set of accessors has to be provided for T.

    void A (const T&);
    void A (T&&);
    const T& A (void) const;
    T& A (void);

First an accessor to set the value which accepts a const T&. Secondly an accessor that performs a move by accepting 
T&&. Thirdly an accessor that returns the member as const T& and as last an accessor that provides write access by 
returning the member as T&.

// IDL
struct S { 

string name; 
float age; 

};
interface Foo {

void f(out S p);
};

// C++
IDL::traits<Foo>::ref_type f_ref (...); // obtain a reference
S b;
f_ref->f(b);
S a = b; // deep-copy
cout << "names " << a.name() << ", " << b.name() << endl;
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6.13.1 Mapping for Struct Types

An OMG IDL struct maps to a final C++ class, with each OMG IDL struct member mapped to a set of corresponding 
member methods. Additionally to the methods as described in “Mapping for Structured Types” on page 13 an explicit 
constructor accepting values for struct each member by value in the order they are specified in IDL. 

The following examples illustrate usage of a struct, using the following OMG IDL definition:

// IDL
struct Variable { 

string name; 
};

// C++
class Variable final
{
public:

Variable (void);
~Variable (void);
Variable (const Variable&);
Variable (Variable&&);
Variable& operator= (const Variable& x);
Variable& operator= (Variable&& x);
explicit Variable (std::string name);

void name (const std::string& _name);
void name (std::string&& _name);
const std::string& name (void) const;
std::string& name (void);

};

namespace std {
  template <>
  void swap (Variable& m1, Variable& m2);
};

A specialization of std::swap<> must be provided to exchange the values of two structs in an efficient matter.

6.13.2 Mapping for Union Types

A union maps to a final C++ class with accessor functions for the union members and discriminant. For each member a set 
of accessors must be provided as described in “Mapping for Structured Types” on page 13.

The default union constructor initializes the union. If there is a default case specified, the union is initialized to this 
default case. In case the union has an implicit default member it is initialized to that case. In all other cases it is initialized 
as empty. Assigning, copying, moving, and the destruction of default-constructed unions are safe. Assignment from or 
copying a default-constructed union results in the target of the assignment or copy being initialized the same as a default-
constructed union.The copy constructor and copy assignment operator perform a deep-copy of their parameters. The move 
constructor and move assignment operator perform a move of their parameters. The destructor releases all storage owned 
by the union.
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The union discriminant accessor and modifier functions have the name _d to both be brief and to avoid name conflicts 
with the union members. The _d discriminator modifier can only be used to set the discriminant to a value within the 
same union member. In addition to the _d accessor and modifier, a union with an implicit default member provides a 
_default() modifier function that sets the discriminant to a legal default value. A union has an implicit default 
member if it does not have a default case and not all permissible values of the union discriminant are listed. Assigning, 
copying, moving, and the destruction of a union immediately after calling _default() are safe. Assignment from or 
copying of such a union results in the target of the assignment or copy having the same safe state as it would if its 
_default() function were invoked.

Setting the union value through a modifier function automatically sets the discriminant and may release the storage 
associated with the previous value with strong exception safety. Attempting to get a value through an accessor that does 
not match the current discriminant results in a BAD_PARAM exception. If a modifier for a union member with multiple 
legal discriminant values is used to set the value of the discriminant, the union implementation will take the first 
discriminant specified in IDL. Calling a referent for a member that does not match the current discriminant results in a 
BAD_PARAM exception. The following example helps illustrate the mapping for union types:

// IDL
struct S { long len; };
interface A;
union U switch (long) {

case 1: long x;
case 2: string z;
case 3:
case 4: S w;
default: A obj;

};

// C++
class S final { ... };
class U final
{
public:

U();
U(const U&);
U(U&&)
~U();
U &operator=(const U&);
U &operator=(U&&);

void _d(int32_t);
int32_t _d() const;

void x(inst32_t);
int32_t x() const;
int32_t& x();

void z(const std::string&);
void z(std::string&&);
const std::string& () z const;
std::string& z();
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void w(const S &);
void w(S &&);
const S &w() const;
S &w();

void obj(IDL::traits<A>::ref_type);
IDL::traits<A>::ref_type obj() const;
IDL::traits<A>::ref_type& obj();

};

namespace std {
  template <>
  void swap (U& m1, U& m2);
};

Accessor and modifier functions for union members provide semantics similar to that of struct data members. Modifier 
functions perform the equivalent of a deep-copy or move of their parameters. Referents can be used for read-write access.

The reference returned from a reference function continues to denote that member only for as long as the member is 
active. If the active member of the union is subsequently changed, the reference becomes invalid, and attempts to read or 
write the member via the reference result in undefined behavior.

The restrictions for using the _d discriminator modifier function are shown by the following examples, based on the 
definition of the union U shown above:

// C++
S s = {10};
U u;
u.w(s); // member w selected
u._d(3); // OK, member w selected
u._d(4); // OK, member w selected
u._d(1); // error, different member selected, results in BAD_PARAM
A a = ...;
u.obj(a); // member obj selected
u._d(7); // OK, member obj selected
u._d(1); // error, different member selected, results in BAD_PARAM
s = u.w(); // error, member w not active, results in BAD_PARAM

As shown here, neither the _d modifier function nor the w referent can be used to implicitly switch between different 
union members. The following shows an example of how the _default() member function is used:

// IDL
union Z switch(boolean) {

case TRUE: short s;
};

// C++
Z z;
z._default(); // implicit default member selected
bool disc = z._d(); // disc == false
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U u; // union U from previous example
u._default(); // error, no _default() provided

For union Z, calling the _default() modifier function causes the union’s value to be composed solely of the 
discriminator value of false, since there is no explicit default member. For union U, calling _default() causes a 
compilation error because U has an explicitly declared default case and thus no _default() member function. A 
_default() member function is only generated for unions with implicit default members.

A specialization of std::swap<> must be provided to exchange the values of two unions in an efficient matter.

6.14 Mapping for Fixed Types

The C++11 mapping for fixed is defined by the following C++ template in the IDL namespace:

// C++
template <uint16_t digits, uint16_t scale>
class Fixed final
{
public:

// Constructors
explicit Fixed(int16_t = 0);
explicit Fixed(uint16_t);
explicit Fixed(int32_t);
explicit Fixed(uint32_t);
explicit Fixed(int64_t);
explicit Fixed(uint64_t);
explicit Fixed(double);
explicit Fixed(long double);
explicit Fixed(const std::string&);
Fixed(const Fixed&);
Fixed(Fixed&& val);
~Fixed();

// Conversions
operator int64_t () const;
operator long double() const;
Fixed round(uint16_t) const;
Fixed truncate(uint16_t) const;
std::string to_string() const;

// Operators
Fixed& operator=(const Fixed&);
Fixed& operator=(Fixed&&);
Fixed& operator+=(const Fixed&);
Fixed& operator-=(const Fixed&);
Fixed& operator*=(const Fixed&);
Fixed& operator/=(const Fixed&);
Fixed& operator++();
Fixed operator++(int);
Fixed& operator--();
Fixed operator--(int);
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Fixed operator+() const;
Fixed operator-() const;
bool operator!() const;

// Other member functions
uint16_t fixed_digits() const;
uint16_t fixed_scale() const;

}; 

The Fixed template is never used directly by the user. The C++ mapping will create a C++ template instantiation for 
each typedef of fixed. Here is an example of the mapping:

// IDL
typedef fixed<5,2>F;
interface A
{

void op(in F arg);
};

// C++
typedef IDL::Fixed<5,2> F;
class A
{
public:

...
virtual void op(const F& arg);
...

};

The Fixed template has a number of constructors to guarantee that a fixed value can be constructed from any of the IDL 
standard integer and floating point types. The Fixed(std::string&) constructor and Fixed operator “ ” 
converts a string representation of a fixed-point literal, with an optional leading sign (+ or -) into a real fixed-point value.  
The Fixed template also provides conversion operators back to the int64_t and long double types. For 
conversion to integral types, digits to the right of the decimal point are truncated. If the magnitude of the fixed-point 
value does not fit in the target conversion type, then the DATA_CONVERSION system exception is thrown. 

The round and truncate functions convert a fixed value to a new value with the specified scale. If the new scale 
requires the value to lose precision on the right, the round function will round away from zero values that are halfway 
or more to the next absolute value for the new fixed precision. The truncate function always truncates the value 
towards zero. If the value currently has fewer digits on the right than the new scale, round and truncate return the 
argument unmodified. For example: 

// C++
F f1 = 0.1_fixed;
F f2 = 0.05_fixed;
F f3 = -0.005_fixed;

In this example, f1.round(0) and f1.truncate(0) both return 0, f2.round(1) returns 0.1, f2.truncate(1) 
returns 0.0, f3.round(2) returns -0.01 and f3.truncate(2) returns 0.00.
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to_string() converts a fixed value to a string. Leading zeros are dropped, but trailing fractional zeros are preserved. 
(For example, a fixed<4,2> with the value 1.1 is converted “1.10”). The fixed_digits and fixed_scale functions 
return the smallest digits and scale value that can hold the complete fixed-point value. 

Arithmetic operations on the Fixed template must calculate the result exactly, using an effective double precision (62 
digit) temporary value. The results are then truncated at run time to fit in a maximum of 31 digits using the method 
defined in version 3.2 of the Common Object Request Broker Architecture (CORBA), OMG IDL Syntax and Semantics 
clause, Semantics sub clause to determine the new digits and scale. If the result of any arithmetic operation produces 
more than 31 digits to the left of the decimal point, the DATA_CONVERSION exception will be thrown. If a fixed-point 
value, used as an actual operation parameter or assigned to a member of an IDL structured datatype, exceeds the 
maximum absolute value implied by the digits and scale, the DATA_CONVERSION exception will be thrown. 

6.15 Mapping for Typedefs

A typedef creates an alias for a type. The example below illustrates the mapping.

// IDL
typedef long T;
interface A1;
typedef A1 A2;
typedef sequence<long> S1;
typedef S1 S2;

// C++
typedef int32_t T;
// ...definitions for A1...

typedef A1 A2;

// ...definitions for S1...
typedef std::vector <int32_t> S1;

typedef S1 S2;

6.16 Mapping for the Any Type

The IDL any type is mapped to the CORBA::Any class. A C++ mapping for the OMG IDL type any must fulfill two 
different requirements:

• Handling C++ types in a type-safe manner.

• Handling values whose types are not known at compile time.

The first item covers most normal usage of the any type—the conversion of typed values into and out of an any. The 
second item covers situations such as those involving the reception of a request or response containing an any that holds 
data of a type unknown to the receiver when it was created with a C++ compiler.
20                 C++11 Language Mapping



6.16.1 Handling Typed Values

To decrease the chances of creating an any with a mismatched TypeCode and value, the C++ function overloading 
facility is utilized. Specifically, for each distinct type in an OMG IDL specification, overloaded functions to insert and 
extract values of that type have to be provided. Overloaded operators are used for these functions so as to completely 
avoid any name space pollution. The nature of these functions, which are described in detail below, is that the appropriate 
TypeCode (see “TypeCode” on page 38) is implied by the C++ type of the value being inserted into or extracted from 
the any.

Since the type-safe any interface described below is based upon C++ function overloading, it requires C++ types 
generated from OMG IDL specifications to be distinct.

6.16.2 Insertion into an any

To allow a value to be set in an any in a type-safe fashion, an implementation must provide the following overloaded 
operator function for each separate OMG IDL type T.

// C++
void operator<<=(Any&, T);

This function signature suffices for types that are normally passed by value:

• short, long, long long, unsigned short, unsigned long, unsigned long long, float, double, long double, char, wchar, 
boolean, octet

• Enumeration

• Object reference (IDL::traits<T>::ref_type)

• Valuetype reference (IDL::traits<T>::ref_type)

• Typecode reference (IDL::traits<CORBA::TypeCode>::ref_type)

• Abstract base reference (IDL::traits<T>::ref_type)

For values of type T that are too large to be passed by value efficiently, such as array, string, wstring, struct, union, 
sequence, Any, and exception, the following functions are provided.

// C++
void operator<<=(CORBA::Any&, const T&);  // copying insert
void operator<<=(CORBA::Any&, T&&);       // move insert

These “left-shift-assign” operators are used to insert a typed value into an any as follows.

// C++
int32_t value = 42;
Any a;
a <<= value;

In this case, the version of operator<<= overloaded for type int32_t must be able to set both the value and the 
TypeCode properly for the any variable.
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6.16.3 Extraction from any

To allow type-safe retrieval of a value from an any, the mapping provides the following operators for each OMG IDL 
type T:

// C++
bool operator>>=(const CORBA::Any&, T&);

This “right-shift-assign” operator is used to extract a typed value from an any as follows:

// C++
int32_t value;
CORBA::Any a;
a <<= int32_t(42);
if (a >>= value) {
// ... use the value ...
}

In this case, the version of operator>>= for type int32_t must be able to determine whether the Any truly does 
contain a value of type int32_t and, if so, copy its value into the reference variable provided by the caller and return 
true. If the Any does not contain a value of type int32_t, the value of the caller’s reference variable is not changed, 
and operator>>= returns false.

For example, consider the following IDL struct:

// IDL
struct MyStruct {

long lmem;
short smem;

};

Such a struct could be extracted from an any as follows:

// C++
Any a;
// ... a is somehow given a value of type MyStruct ...
MyStruct struct;
if (a >>= struct) {
// ... use the value ...
}

If the extraction is successful the caller variable will contain the value that was stored by the any, and operator>>= 
will return true. If the extraction is not successful, the operator>>= returns false.

For strings, wide strings, and sequences, applications are responsible for checking the TypeCode of the any to be sure 
that they do not overstep the bounds of the sequence, string, or wide string object when using the extracted value.

6.16.4 TypeCode Replacement

The type accessor function returns a TypeCode reference to the TypeCode associated with the Any. 
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IDL::traits<CORBA::TypeCode>::ref_type type() const;

Because C++ typedefs are only aliases and do not define distinct types, inserting a type with a tk_alias TypeCode 
into an Any while preserving that TypeCode is not possible. For example:

// IDL
typedef long LongType;

// C++
Any any;
LongType val = 1234;
any <<= val;
IDL::traits<CORBA::TypeCode>::ref_type tc = any.type();
assert(tc->kind() == tk_alias); // assertion failure!
assert(tc->kind() == tk_long); // assertion OK

In this code, the LongType is an alias for int32_t. Therefore, when the value is inserted, standard C++ overloading 
mechanisms cause the insertion operator for int32_t to be invoked. In fact, because LongType is an alias for 
int32_t, an overloaded operator<<= for LongType cannot be generated anyway.

In cases where the TypeCode in the Any must be preserved as a tk_alias TypeCode, the application can use the type 
modifier function on the Any to replace its TypeCode with an equivalent one.

void type(IDL::traits<CORBA::TypeCode>::ref_type);

Revising the previous example:

// C++
Any any;
LongType val = 1234;
any <<= val;
any.type(_tc_LongType); // replace TypeCode
IDL::traits<CORBA::TypeCode>::ref_type tc = any.type();
assert(tc->kind() == tk_alias); // assertion OK

The type modifier function invokes the TypeCode::equivalent operation on the TypeCode in the target Any, passing 
the TypeCode it received as an argument. If TypeCode::equivalent returns true, the type modifier function replaces 
the original TypeCode in the Any with its argument TypeCode. If the two TypeCodes are not equivalent, the type 
modifier function raises the BAD_TYPECODE exception.

6.17 Mapping for Valuetypes

The IDL valuetype has features that make its C++11 mapping unlike that of any other IDL type. Specifically, from an 
application perspective all other IDL types comprise either pure state or pure interface, but a valuetype may include 
both.

An IDL valuetype is mapped to the C++ trait IDL::traits<>::base_type. This trait relates to an abstract base 
class (ABC), with pure virtual accessor and modifier functions corresponding to the state members of the valuetype, and 
pure virtual functions corresponding to the operations of the valuetype. 
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The C++ IDL::traits<>::obv_type trait is provided for referring to the OBV class that provides default 
implementations for the accessors and modifiers of the ABC base class. The application developer then overrides the pure 
virtual functions corresponding to valuetype operations in a concrete class derived directly or indirectly from the OBV 
trait.

In C++11 valuetypes map to so called valuetype references that behave as reference type as described in “Reference 
Types” on page 7. The reference type trait IDL::traits<> is available for each valuetype. The strong reference is 
delivered as IDL::traits<>::ref_type trait and the weak reference as IDL::traits<>::weak_ref_type 
trait. 

All init initializers declared for a valuetype are mapped to pure virtual functions on a separate abstract C++ factory 
class. This class is available through the IDL::traits<>::factory_type trait.

6.17.1 Valuetype Data Members

The C++ mapping for valuetype data members follows the same rules as the C++ mapping for structured types as 
described in “Mapping for Structured Types” on page 13, except that the accessors and modifiers are pure virtual. Public 
state members are mapped to public pure virtual accessor and modifier functions of the C++ valuetype base class, and 
private state members are mapped to protected pure virtual accessor and modifier functions (so that derived concrete 
classes may access them). The actual data members of the OBV classes will be declared private. 

For example:

// IDL
typedef octet Bytes[64];
struct S { ... };
interface A { ... };

valuetype Val {
public Val t;
private long v;
public Bytes w;
public string x;
private S y;
private A z;

};

// C++
typedef std::array <uint8_t, 64> Bytes;
class S final {
public:
  ... 
};
class Val : public virtual ValueBase {

public:
...
virtual IDL::traits <Val>::ref_type t() const = 0;
virtual IDL::traits <Val>::ref_type& t() = 0;
virtual void t(IDL::traits <Val>::ref_type) = 0;

virtual const Bytes& w() const = 0;
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virtual Bytes& w() = 0;
virtual void w(const Bytes&) = 0;
virtual void w(Bytes&&) = 0;

virtual const std::string& x() const = 0;
virtual std::string& x() = 0;
virtual void x(const std::string&) = 0;
virtual void x(std::string&&) = 0;

protected:
virtual int32_t v() const = 0;
virtual int32_t& v() = 0;
virtual void v(int32_t) = 0;

virtual const S& y() const = 0;
virtual S& y() = 0;
virtual void y(S&&) = 0;
virtual void y(const S&) = 0;

virtual IDL::traits<A>::ref_type z() const = 0;
virtual IDL::traits<A>::ref_type& z() = 0;
virtual void z(IDL::traits<A>::ref_type) = 0;
...

};

These rules for the accessors correspond directly to the parameter passing rules for structured types as explained in 
“Mapping for Structured Types” on page 13.

6.17.2 Constructors, Assignment Operators, and Destructors

A C++ valuetype class defines a protected default constructor, protected copy constructor, protected move constructor,  
and a protected virtual destructor. The default constructor is protected to allow only derived class instances to invoke it, 
while the destructor is protected to prevent applications from deleting value instances directly instead of using the 
reference type. The destructor is virtual to provide for proper destruction of derived value class instances.

For the same reasons, the generated OBV classes define a protected default constructor, protected copy constructor, 
protected move constructor, a protected explicit constructor that takes an initializer for each valuetype data member, 
and a protected destructor. The parameters of the explicit constructor that takes an initializer for each member appear in 
the same order as the data members appear, top to bottom, in the IDL valuetype definition, regardless of whether they 
are public or private. If the valuetype inherits from a concrete valuetype, then parameters for the data members of the 
inherited valuetype appear first. All parameters for the member initializer constructor are passed by value.

6.17.3 Valuetype Operations

Operations declared on a valuetype are mapped to public pure virtual member functions in the corresponding 
valuetype C++ class. (Note that state member accessor and modifier functions are not considered to be operations —
they are always referred to as accessor and modifier functions.) None of the pure virtual member functions corresponding 
to operations shall be declared const because unlike C++, IDL provides no way to distinguish between operations that 
change the state of an object and those that merely access that state. 
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The C++ signatures and memory management rules for valuetype operations are identical to those described in 
“Argument Passing Considerations” on page 10 for client-side interface operations.

As part of the valuetype traits IDL::traits<>::downcast is provided. This method is also provided as a static 
_downcast function by each valuetype class. These methods provide a portable way for applications to cast down the 
C++ inheritance hierarchy. If a nil reference is passed to one of these operations, it returns a nil reference. Otherwise, if 
the valuetype instance referenced to by the argument is an instance of the valuetype class being downcast to, a 
reference to the downcast-to class type is returned. If the valuetype instance pointed to by the argument is not an 
instance of the valuetype class being downcast to, a nil reference is returned.

6.17.4 Valuetype Example

For example, consider the following IDL valuetype:

// IDL
valuetype Example {

short op1();
long op2(in Example x);
private short val1;
public long val2;
private string val3;
private Example val5;

};

The C++ mapping for this valuetype is:

// C++
class Example : public virtual ValueBase {
public:

virtual int16_t op1() = 0;
virtual int32_t op2(IDL::traits<Example>::ref_type) = 0;
virtual int32_t val2() const = 0;
virtual int32_t& val2() = ); 
virtual void val2(int32_t) = 0;
static IDL::traits<Example>::ref_type _downcast

(IDL::traits<ValueBase>::ref_type);
protected:

Example();
Example (const Example&);
Example (Example&&); 
virtual ~Example();
virtual int16_t val1() const = 0;

   virtual int16_6& val1() = 0;
virtual void val1(int16_t) = 0;
virtual const std::string& val3() const = 0;
virtual std::string& val3() = 0;
virtual void val3(const std::string&) = 0;
virtual void val3(std::string&&) = 0;
virtual IDL::traits<Example>::ref_type val5() const = 0;
virtual IDL::traits<Example>::ref_type& val5() = 0;
26                 C++11 Language Mapping



virtual void val5(IDL::traits<Example>::ref_type) = 0;
private:

Example& operator=(const Example&) = delete;
Example& operator=(Example&&) = delete;

};

class OBV_Example : public virtual Example {
public:

virtual void val2 (int32_t);
virtual int32_t val2 (void) const;
virtual int32_t& val2 (void);

protected:
OBV_Example();
Example (const Example&);
Example (Example&&);
explicit OBV_Example (int16_t, int32_t, std::string, IDL::traits

<Example>::ref_type;
virtual ~OBV_Example();
virtual int16_t val1() const override;

   virtual int16_t& val1() override;
   virtual void val1(int16_t) override;

virtual const std::string& val3() const override;
virtual std::string& val3() override;
virtual void val3(const std::string&) override;
virtual void val3(std::string&&) override;
virtual IDL::traits<Example>::ref_type val5() const override;
virtual IDL::traits<Example>::ref_type& val5() override;
virtual void val5(IDL::traits<Example>::ref_type) override;
// ...

};

6.17.5 ValueBase default methods

The C++ mapping for the ValueBase IDL type serves as an abstract base class for all C++ valuetype classes. 
ValueBase provides several virtual functions inherited by all valuetype classes:

// C++
class ValueBase {
public:

virtual IDL::traits<ValueBase>::ref_type _copy_value();
static IDL::traits<ValueBase>::ref_type

_downcast(IDL::traits<ValueBase>::ref_type);
protected:

ValueBase();
ValueBase(&&);
ValueBase(const ValueBase&);
virtual ~ValueBase();

private:
ValueBase operator=(ValueBase&&) = delete;
ValueBase operator=(const ValueBase&) = delete;
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};

The names of these operations begin with underscore to keep them from clashing with user-defined operations in derived 
valuetype classes. The copy_value operation returns by default a nil valuetype reference. The user can override this 
method to allow the copy of a valuetype reference using its base reference. 

ValueBase also provides a protected default constructor, a protected copy constructor, a protected move constructor, and 
a protected virtual destructor. The copy and move constructors are protected to disallow construction of derived 
valuetype instances except from within derived class functions, and the destructor is protected to prevent direct deletion 
of instances of classes derived from ValueBase.

6.17.6 Value Boxes

A value box class essentially provides a shared version of its underlying type. Unlike normal valuetype classes, C++ 
classes for value boxes can be concrete since value boxes do not support methods, inheritance, or interfaces. Value box 
classes differ depending upon their underlying types. To fulfill the ValueBase interface, all value box classes are derived 
from ValueBase. Unlike valuetypes no Valuetype factory has to be provided by the user. 

6.17.6.1 Parameter Passing for Underlying Boxed Type

All value box classes provide _value member functions that allow the underlying boxed value to be passed to functions 
taking parameters of the underlying boxed type. For example, invoking _value on a boxed string allows the actual string 
owned by the value box to be replaced:

// IDL
valuetype StringValue string;
interface X {

void op(out string s);
};

// C++
IDL::traits<StringValue>::ref_type sval = 

CORBA::make_reference <StringValue>("string val");
X x (...)
x->op(sval->_value()); // boxed string is replaced

// by op() invocation

Assume the implementation of op is as follows:

// C++
void op(std::string& s)
{

s = "new string val";
}

The return value of the _value function shall be such that the string value boxed in the instance pointed to by sval is 
set to "new string val" after op returns.
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6.17.6.2 Provided signature

Value box classes follow the rules of structured types as explained in “Mapping for Structured Types” on page 13. 
Additionally to these rules valueboxes also have:

• A public static _downcast function.

• Accessors are always named _value. 

• A protected destructor and protected constructors

An example value box class for an enumerated type is shown below:

// IDL
enum Color { red, green, blue };
valuetype ColorValue Color;

// C++
class ColorValue : public ValueBase {
public:

Color _value() const;
Color& _value();
void _value(Color val);

static IDL::traits<ColorValue>::ref_type 
_downcast(IDL::traits<ValueBase>::ref_type base);

protected:
ColorValue();
explicit ColorValue(Color val);
ColorValue(ColorValue&& val);
ColorValue(const ColorValue& val);
ColorValue& operator=(Color val);
virtual ~ColorValue();

};

6.17.7 Abstract Valuetypes

Abstract IDL valuetypes follow the same C++ mapping rules as concrete IDL valuetypes, except that because they 
have no data members, the IDL compiler does not generate the OBV traits for them.

6.17.8 Valuetype Inheritance

For an IDL valuetype derived from other valuetypes or that supports interface types, several C++ inheritance 
scenarios are possible:

• Concrete value base classes are inherited as public virtual bases to allow for “ladder style” implementation 
inheritance.

• Abstract value base classes are inherited as public virtual base classes, since they may be multiply inherited in IDL.

• Interface classes supported by the IDL valuetype are not inherited (except for abstract interfaces because here the 
valuetype class has to support implicit widening; see Section 6.18.2).
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• Instead, the operations on the interface (and base interfaces, if any) are mapped to pure virtual functions in the 
generated C++ base value class. In addition to this abstract base value class and the OBV_ class, the IDL compiler 
generates a skeleton for this value type; this skeleton is available through the 
CORBA::servant_traits<>::base_type trait with the fully-scoped name of the valuetype. The base value 
class and the POA skeleton of the interface type are public virtual base classes of this skeleton.

An example of the mapping for a valuetype that supports an interface is shown below.

// IDL
interface A {

void op();
};

valuetype B supports A {
public short data;

};

// C++
class B : public virtual ValueBase {
public:

virtual void op() = 0;     

virtual int16_t data() const = 0;
virtual int16_t& data() = 0;
virtual void data(int16_t) = 0;

// ...
};

class B_impl : 
public virtual CORBA::servant_traits<A>::base_type, 
public virtual IDL::traits<B>::base_type 

{
public:

virtual void op() override;
// ...

};

6.17.9 Valuetype Factories

Because concrete valuetype classes are provided by the application developer, the creation of values is problematic 
under certain circumstances. These circumstances include:

• Unmarshaling. The implementation cannot know a priori about all potential concrete value classes supplied by the 
application, and so the implementation unmarshaling mechanisms do not possess the capability to directly create 
instances of those classes.

• Component Libraries. Portions of an application, such as parts of a framework, may be limited to only manipulating 
valuetype instances while leaving creation of those instances to other parts of the application.
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6.17.9.1 ValueFactoryBase Class

Just as they provide concrete C++ valuetype classes, applications must also provide factories for those concrete classes. 
The base of all value factory classes is the C++ ValueFactoryBase class:

// C++
class ValueFactoryBase : public virtual CORBA::LocalObject
{
public:

static IDL::traits<ValueFactory>::ref_type _narrow(
IDL::traits<ValueFactory>::ref_type& vf);

protected:
virtual ~ValueFactoryBase();
ValueFactoryBase();

private:
virtual IDL::traits<ValueBase>::ref_type create_for_unmarshal() = 0;

};

The C++ mapping for the IDL CORBA::ValueFactory native type is a reference to the local ValueFactoryBase 
class, as shown above. Applications derive concrete factory classes from ValueFactoryBase, and register instances of 
those factory classes with the ORB via the ORB::register_value_factory function. If a factory is registered for 
a given value type and no previous factory was registered for that type, the register_value_factory function 
returns a nil reference.

When unmarshaling value instances, the implementation needs to be able to call up to the application to ask it to create 
those instances. Value instances are normally created via their type-specific value factories (see “Valuetype Factories” on 
page 30) so as to preserve any invariants they might have for their state. However, creation for unmarshaling is different 
because the implementation has no knowledge of application-specific factories, and in fact in most cases may not even 
have the necessary arguments to provide to the type-specific factories.

To allow the implementation to create value instances required during unmarshaling, the ValueFactoryBase class 
provides the create_for_unmarshal pure virtual function. The function is private so that only the implementation, 
through implementation-specific means (e.g., via a friend class), can invoke it. Applications are not expected to invoke 
the create_for_unmarshal function. Derived classes shall override the create_for_unmarshal function and 
shall implement it such that it creates a new value instance and returns a reference to it. Since the 
create_for_unmarshal function returns a reference to ValueBase, the caller may use the downcasting functions 
supplied by value types to downcast the reference back to a reference to a derived value type.

Once the implementation has created a value instance via the create_for_unmarshal function, it can use the value 
data member modifier functions to set the state of the new value instance from the unmarshaled data. How the 
implementation accesses the protected value data member modifiers of the value is implementation-specific and does not 
affect application portability.

The _narrow function on the factory allows the return type of the ORB::lookup_value_factory function to be 
narrowed to a reference to a type-specific factory (see “Valuetype Factories” on page 30).
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6.17.9.2 Type-Specific Value Factories

All valuetypes that have initializer operations declared for them also have type-specific C++ value factory classes 
generated for them. For a valuetype A, the factory class can be retrieved using the 
IDL::traits<A>::factory_type trait. Each initializer operation maps to a pure virtual function in the factory 
class, and each of these initializers defined in IDL is mapped to an initializer function of the same name. Base valuetype 
initializers are not inherited, and so do not appear in the factory class. The initializer parameters are mapped using normal 
C++ parameter passing rules for in parameters. The return type of each initializer function is a reference to the 
created valuetype.

For example, consider the following valuetype:

// IDL
valuetype V {

factory create_bool(in_boolean b); 
factory create_char(in_char c);
factory create_octet(in octet o);
factory create_other(in short s, in string p);

...
};

The factory class for the example given above will be generated as follows:

// C++
class V_factory : public ValueFactoryBase {
public:

virtual IDL::traits<V>::ref_type create_bool(bool val) = 0;
virtual IDL::traits<V>::ref_type create_char(char val) = 0;
virtual IDL::traits<V>::ref_type create_octet(uint8_t val)= 0;
virtual IDL::traits<V>::ref_type create_other(

uint16_t s, const std::string& p) = 0;

static IDL::traits<V>::ref_type
_narrow(IDL::traits<ValueFactoryBase>::ref_type vf);

protected:
virtual ~V_factory();
V_factory();

};

Each generated factory class has a protected virtual destructor, a protected default constructor, and a public _narrow 
function allowing downcasting from a reference to the base ValueFactoryBase class. Each also supplies a public pure 
virtual function corresponding to each initializer. Applications derive concrete factory classes from these classes and 
register them with the implementation. Note that since each generated value factory derives from the base 
ValueFactoryBase, all derived concrete factory classes shall also override the private pure virtual 
create_for_unmarshal function inherited from ValueFactoryBase.

For valuetypes that have no operations or initializers, a concrete type-specific factory class is generated whose 
implementation of the create_for_unmarshal function simply constructs an instance of the OBV_ class for the 
valuetype using the CORBA::make_reference<>.
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For valuetypes that have operations, but no initializers, there are no type-specific abstract factory classes, but 
applications must still supply concrete factory classes. These classes, which are derived directly from 
ValueFactoryBase, need not supply _narrow functions, and only need to override the create_for_unmarshal 
function.

6.17.9.3 Unmarshaling Issues

When the implementation unmarshals a valuetype for a request handled via C++ static stubs or skeletons, it tries to find 
a factory for the valuetype via the ORB::lookup_value_factory operation. If the factory lookup fails, the client 
application receives a MARSHAL exception. Thus, applications utilizing static stubs or skeletons must ensure that a 
valuetype factory is registered for every valuetype it expects to receive via static invocation mechanisms.

Because of their dynamic nature, applications using the DII or DSI are not expected to have compile-time information for 
all the valuetypes they might receive. For these applications, valuetype instances are represented as Any, and so value 
factories are not required to be registered with the implementation to allow such valuetypes to be unmarshaled. 
However, value factories must be registered with the implementation and available for lookup if the application attempts 
extraction of the valuetypes via the statically-typed Any extraction functions. See “Extraction from any” on page 22 for 
more details.

6.17.10 Custom Marshaling

The C++ mappings for the IDL CORBA::CustomerMarshal, CORBA::DataOutputStream, and 
CORBA::DataInputStream types follow normal C++ valuetype mapping rules.

6.18 Mapping for Abstract Interfaces

The C++ mapping for abstract interfaces is almost identical to the mapping for regular interfaces. Rather than defining a 
complete C++ mapping for abstract interfaces, which would only duplicate much of the specification of the mapping for 
regular interfaces found in “Mapping for Interfaces” on page 7, only the ways in which the abstract interface mapping 
differs from the regular interface mapping are described here.

6.18.1 Abstract Interface Base

For abstract interfaces the IDL::traits<> trait must be provided. This trait delivers a strong reference type as 
IDL::traits<>::ref_type and a weak reference type as IDL::traits<>::weak_ref_type.

C++ classes for abstract interfaces are not derived from the CORBA::Object C++ class. In IDL, abstract interfaces have 
no common base. However, to facilitate narrowing from an abstract interface base class down to derived abstract 
interfaces, derived interfaces, and derived valuetype types, all abstract interface base classes that have no other base 
abstract interfaces derive directly from CORBA::AbstractBase. This base class provides the following:

• a protected default constructor

• a protected copy constructor

• a protected pure virtual destructor

• a _to_object and a _to_value operation

The AbstractBase class is shown below:
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// C++
class AbstractBase {

public:
virtual IDL::traits<Object>::ref_type _to_object();
virtual IDL::traits<ValueBase>::ref_type _to_value();

protected:
AbstractBase();
AbstractBase(const AbstractBase& val);
AbstractBase(AbstractBase&& val);
virtual ~AbstractBase();

};

If the concrete type of an abstract interface instance is a normal object reference, the _to_object function returns a 
reference to that object, otherwise it returns a nil reference. If the concrete type is a valuetype, _to_value returns a 
reference to that valuetype, otherwise it returns a nil reference.

6.18.2 Client Side Mapping

The client side mapping for abstract interfaces is almost identical to the mapping for object references, except:

• C++ classes for abstract interfaces derive from CORBA::AbstractBase, not CORBA::Object.

• Because abstract interface classes can serve as base classes for application-supplied concrete valuetype classes, they 
shall provide a protected default constructor, a protected copy constructor, and a protected destructor (which is virtual 
by virtue of inheritance from AbstractBase).

• The mapping for object reference classes does not specify the type of inheritance used for base object reference 
classes. However, because abstract interfaces can serve as base classes for application-supplied concrete valuetype 
classes, which themselves can be derived from regular valuetype classes, abstract interface classes shall always be 
inherited as public virtual base classes.

• Normal Any insertion and extraction operators are generated for abstract interfaces.

Both interfaces that are derived from one or more abstract interfaces, and valuetypes that support one or more abstract 
interfaces support implicit widening to the reference for each abstract interface base class.

6.19 Mapping for Exception Types
• An OMG IDL exception is mapped to a C++ class that derives from the standard UserException class. All 

exception members must be initialized to their default value by the default constructor for the exception.

• The copy constructor, move constructor, assignment operator, move operator, and destructor automatically copy, 
move, or free the storage associated with the exception. For convenience, the mapping also defines an explicit 
constructor with one parameter for each exception member—this constructor initializes the exception members to the 
given values.The default constructor initialized all members to their default values as described in “Mapping for 
Structured Types” on page 13.

// C++
class Exception : public std::exception
{
public:

virtual ~Exception();
virtual void raise() const = 0;
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virtual const std::string& _name() const;
virtual const std::string& _rep_id() const;
virtual const char* what() const throw() override;

protected:
Exception(void);
Exception(const Exception &);
Exception(Exception &&);
Exception &operator=(const Exception &);
Exception &operator=(Exception &&);

};

The Exception base class is abstract and may not be instantiated except as part of an instance of a derived class. It 
supplies one pure virtual function to the exception hierarchy: the raise() function. This function can be used to tell an 
exception instance to throw itself so that a catch clause can catch it by a more derived type. Each class derived from 
Exception implements raise() as follows:

// C++
void SomeDerivedException::raise() const
{

throw *this;
}

The _name() function returns the unqualified (unscoped) name of the exception. The _rep_id() function returns the 
repository ID of the exception.

Each Exception class has to override what() which must return a null terminated character sequence containing a 
generic description of the exception. Both the wording of such description and the character width are implementation-
defined.

The UserException class is derived from a base Exception class.

All standard exceptions are derived from a SystemException class. Like UserException, SystemException is 
derived from the base Exception class. The SystemException class interface is shown below.

// C++
enum class CompletionStatus : uint32_t {

COMPLETED_YES,
COMPLETED_NO,
COMPLETED_MAYBE

};

class SystemException : public Exception
{
public:

virtual ~SystemException();

const int32_t& minor() const;
void minor(const int32_t&);

virtual void raise() const = 0;
virtual const char* what() const throw() override;
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const CompletionStatus completed() const;
void completed(CompletionStatus);

protected:
SystemException();
SystemException(const SystemException &);
SystemException(SystemException &&);
explicit SystemException(int32_t minor, CompletionStatus status);
SystemException &operator=(const SystemException &);
SystemException &operator=(SystemException &&);

};

The default constructor for SystemException causes minor() to return 0 and completed() to return 
COMPLETED_NO.

Each specific system exception is derived from SystemException:

// C++
class UNKNOWN final : public SystemException { ... };

class BAD_PARAM final : public SystemException { ... };
// etc.

This exception hierarchy allows any exception to be caught by simply catching the Exception type:

// C++
try 
{

...
} 
catch (const Exception &exc) 
{

...
}

Alternatively, all user exceptions can be caught by catching the UserException type, and all system exceptions can be 
caught by catching the SystemException type:

// C++
try 
{

...
} 
catch (const UserException &ue) 
{

...
} 
catch (const SystemException &se) 
{

...
}
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Naturally, more specific types can also appear in catch clauses. Also the exceptions can be caught as 
std::exception.

6.19.1 UnknownUserException

Request invocations made through the DII may result in user-defined exceptions that cannot be fully represented in the 
calling program because the specific exception type was not known at compile-time. The mapping provides the 
UnknownUserException so that such exceptions can be represented in the calling process:

// C++
class UnknownUserException final : public UserException
{

public:
const Any& exception() const;

};

As shown here, UnknownUserException is derived from UserException. It provides the exception() accessor 
that returns an Any holding the actual exception. Ownership of the returned Any is maintained by the 
UnknownUserException—the Any merely allows access to the exception data. Conforming applications should never 
explicitly throw exceptions of type UnknownUserException—it is intended for use with the DII.

6.19.2 Any Insertion and Extraction for Exceptions

Conforming implementations shall generate Any insertion and extraction operators (operator<<= and operator>>=, 
respectively) that allow all system and user exceptions to be correctly inserted into and extracted from Any. Both copying 
and moving forms of the Any insertion operator shall be provided for all system and user exceptions.

In addition, conforming mapping implementations must support Any insertion (but not extraction) for Exception. This 
is required to allow DSI-based applications to catch exceptions as Exception& and store them into a 
ServerRequest:

// C++
try 
{

// ...
} 
catch (const Exception& exc) 
{

Any any;
any <<= exc;
server_request->set_exception(any);

}

Note that this shall result in both the TypeCode and value for the actual derived exception type being stored into the 
Any. The following Any insertion for Exception shall be provided:

// C++
void operator<<=(Any&, const Exception&);
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For applications using the DII or portable interceptors, it is useful to be able to extract system exceptions generically. The 
mapping provides the following operator to do this:

// C++
bool operator>>=(const Any&, SystemException& se);

The operator returns true if the Any on which it is invoked contains a system exception and the implementation has static 
type information for the actual system exception contained in the Any. In that case, se points at the base part of the actual 
exception after the operator returns. If the implementation does not have static type information for the system exception, 
the operator returns true and se points to an instance of UNKNOWN. Otherwise, the operator returns false and the value of 
se is unchanged.

6.20 Mapping of Pseudo Objects to C++

IDL pseudo objects must be mapped to IDL local interfaces. These local interfaces must be implemented following the 
regular mapping for local objects.

6.21 TypeCode

A TypeCode represents OMG IDL type information. Typecodes are handled as reference type as described in “Reference 
Types” on page 7. For typecodes the IDL::traits trait is provided. For the strong reference the mapping will provide 
the trait IDL::traits<CORBA::TypeCode>::ref_type .

No public constructors for TypeCodes are defined. However, in addition to the mapped interface, for each basic and 
defined OMG IDL type, an implementation provides access to a TypeCode reference 
(IDL::traits<CORBA::TypeCode>::ref_type) of the form _tc_<type> that may be used to set types in Any, 
as arguments for equal, and so on. In the names of these TypeCode reference constants, <type> refer to the local name 
of the type within its defining scope. Each C++ _tc_<type> constant must be defined at the same scoping level as its 
matching type.

6.21.1 TypeCode Interface

The TypeCode IDL interface is fully defined in version 3.2 of Common Object Request Broker Architecture (CORBA), 
Interface Repository clause, The TypeCode Interface sub clause and is thus not duplicated here.

6.21.2 TypeCode C++ Class

// C++
class TypeCode
{

public:
class Bounds final : public UserException { ... };
class BadKind final : public UserException { ... };

bool equal(IDL::traits<CORBA::TypeCode>::ref_type) const;
bool equivalent(IDL::traits<CORBA::TypeCode>::ref_type) const;
TCKind kind() const;

IDL::traits<CORBA::TypeCode>::ref_type get_compact_typecode() const;
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const std::string& id() const;
const std::string& name() const;

uint32_t member_count() const;
const std::string& member_name(uint32_t index) const;

IDL::traits<CORBA::TypeCode>::ref_type member_type(uint32_t index) const;

const Any& member_label(uint32_t index) const;
IDL::traits<CORBA::TypeCode>::ref_type discriminator_type() const;
int32_t default_index() const;

uint32_t length() const;

IDL::traits<CORBA::TypeCode>::ref_type content_type() const;

uint16_t fixed_digits() const;
int16_t fixed_scale() const;

Visibility member_visibility(uin32_t index) const;
ValueModifier type_modifier() const;
IDL::traits<CORBA::TypeCode>::ref_type concrete_base_type() const;

};

6.22 ORB

An ORB is the programmer interface to the Object Request Broker. This pseudo interface has to be implemented as a 
regular local interface.

6.22.1 Mapping of ORB Initialization Operations 

The following PIDL specifies initialization operations for an ORB; this PIDL is part of the CORBA module (not the ORB 
interface) and is described in version 3.2 of Common Object Request Broker Architecture (CORBA), ORB Interface 
clause, ORB Initialization sub clause.

// PIDL 
module CORBA {

typedef string ORBid;
typedef sequence <string> arg_list;
ORB ORB_init (inout arg_list argv, in ORBid orb_identifier);

};

The mapping of the preceding PIDL operations to C++ is as follows:

// C++
namespace CORBA {

typedef std::string ORBid;
static IDL::traits<ORB>::ref_type ORB_init(

int& argc,
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 char** argv,
const std::string& orb_identifier = std::string ()

);
};

The C++ mapping for ORB_init deviates from the regular C++11 mapping in its handling of the arg_list parameter. 
This is intended to provide a meaningful C++11 definition of the initialization interface, which has a natural C++ binding 
matching the main of an application. The arg_list sequence is replaced with argv and argc parameters. 

The argv parameter is defined as an unbound array of strings (char **) and the number of strings in the array is 
passed in the argc (int &) parameter.

If an empty ORBid string is used then argv arguments can be used to determine which ORB should be returned. This is 
achieved by searching the argv parameters for one tagged ORBid, e.g., -ORBid "ORBid_example." If an empty ORBid 
string is used and no ORB is indicated by the argv parameters, the default ORB is returned.

Regardless of whether an empty or non-empty ORBid string is passed to ORB_init, the argv arguments are examined 
to determine if any ORB parameters are given. If a non-empty ORBid string is passed to ORB_init, all -ORBid 
parameters in the argv are ignored. All other -ORB<suffix> parameters may be of significance during the ORB 
initialization process.

For C++, the order of consumption of argv parameters may be significant to an application. In order to ensure that 
applications are not required to handle argv parameters they do not recognize, the ORB initialization function must be 
called before the remainder of the parameters is consumed. Therefore, after the ORB_init call the argv and argc 
parameters will have been modified to remove the ORB understood arguments. It is important to note that the ORB_init 
call can only reorder or remove references to parameters from the argv list. This restriction is made in order to avoid 
potential memory management problems caused by trying to free parts of the argv list or extending the argv list of 
parameters. This is why argv is passed as a char** and not a char**&.

6.23 Object

The rules in this section apply to OMG IDL interface Object, the base of the OMG IDL interface hierarchy. Interface 
Object defines a normal CORBA object and is mapped as defined in this specification. In addition to these rules, all 
operation names in interface Object have leading underscores in the corresponding C++ class.

6.24 Local Object

The C++ mapping of LocalObject is a class derived from Object that is used as a base class for locality constrained 
object implementations. The class mapping the interface should be (indirectly) derived from LocalObject and have the 
same name as the interface. An object reference referring to a local object must be created using the 
CORBA::make_reference<> factory method as described in “Reference Types” on page 7. Here is an example of how 
to implement a local interface: 

// IDL 
local interface LocalIF { 

void an_op(in long an_arg); 
}; 

// C++
class MyLocalIF : public LocalIF { 
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public: 
MyLocalIF (); 
virtual ~MyLocalIF(); 

void an_op(int32_t an_arg) override; 
};

IDL::traits<LocalIF>::ref_type myref = 
CORBA::make_reference <MyLocalIF> ();

6.25 Server-Side Mapping

Server-side mapping refers to the portability constraints for an object implementation written in C++. The term server is 
not meant to restrict implementations to situations in which method invocations cross address space or machine 
boundaries. This mapping addresses any implementation of an OMG IDL interface.

6.25.1 Implementing Interfaces

To define an implementation in C++, one defines a C++ class with any valid C++ name. For each operation in the 
interface, the class defines a non-static member function with the mapped name of the operation (the mapped name is the 
same as the OMG IDL identifier except when the identifier is a C++ keyword, in which case the string “_cxx_” is 
prepended to the identifier). Note that the implementation may allow one implementation class to derive from another, so 
the statement “the class defines a member function” does not mean the class must explicitly define the member 
function—it could inherit the function.

The mapping specifies an inheritance-based mapping for the application-supplied implementation class and the generated 
class or classes for the interface.

6.25.2 Mapping of PortableServer::Servant

The PortableServer module for the Portable Object Adapter (POA) defines the native Servant type. The C++ mapping 
for Servant is as follows:

// C++
namespace PortableServer
{

class Servant
{
public:

virtual IDL::traits<PortableServer::POA>::ref_type _default_POA();
virtual IDL::traits<CORBA::InterfaceDef>::ref_type _get_interface();
virtual bool _is_a(const std::string& logical_type_id);
virtual bool _non_existent();

protected:
virtual ~Servant();
ServantBase();
ServantBase(const ServantBase &);
ServantBase(ServantBase &&);
ServantBase& operator=(const ServantBase &);
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ServantBase& operator=(ServantBase &&);
};

};

The ServantBase destructor is protected and virtual to ensure that skeleton classes derived from it can be properly 
destroyed but never be deleted directly. The default constructor, along with other implementation-specific constructors, 
must be protected so that instances of ServantBase cannot be created except as sub-objects of instances of derived 
classes. A default constructor (a constructor that either takes no arguments or takes only arguments with default values) 
must be provided so that derived servants can be constructed portably. Both a copy constructor and a protected default 
assignment operator must be supported so that application-specific servants can be copied if necessary. Note that copying 
a servant that is already registered with the object adapter, either by assignment or by construction, does not mean that the 
target of the assignment or copy is also registered with the object adapter. Similarly, assigning to a Servant or a class 
derived from it that is already registered with the object adapter does not in any way change its registration.

The default implementation of the _default_POA function provided by Servant returns an object reference to the 
root POA of the default ORB in this process — the same as the return value of an invocation of 
ORB::resolve_initial_references("RootPOA") on the default ORB. Classes derived from Servant can 
override this definition to return the POA of their choice, if desired.

Servant provides default implementations of the _get_interface, _is_a, and _non_existent object reference 
operations that can be overridden by derived servants if the default behavior is not adequate. The POA invokes these 
operations just like normal skeleton operations, thus allowing overriding definitions in derived servant classes to use 
_this and the PortableServer::Current interface within their function bodies.

The default implementation of _non_existent simply returns false.

6.25.3 Servant references

Given an interface Foo the mapping will provide a CORBA::servant_traits<Foo> trait. The strong reference type 
is provided as CORBA::servant_traits<Foo>::ref_type trait (aka  CORBA::servant_reference<>) that 
can be used to store or pass a reference to the servant of type Foo. Also a weak reference 
CORBA::servant_traits<Foo>::weak_ref_type trait (aks CORBA::weak_servant_reference<>) has 
to be provided. These servant reference types behaves as references type as described in “Reference Types” on page 7.

This trait together with the CORBA::make_reference<> factory method must be used to write exception-safe and 
type-safe code for heap-allocated servants (a C++11 program is not allowed to use new/delete to allocate servants). For 
example if we have an interface Test::Hello that is implemented by Foo_impl:

CORBA::servant_traits<Test::Hello>::ref_type
Foo some_function()
{

CORBA::servant_traits<Test::Hello>::ref_type foo_servant = 
CORBA::make_reference <Foo_impl> ();

foo_servant->do_something(); // might throw...

some_poa->activate_object_with_id(...);
return foo_servant->_this ();

}
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6.25.4 Servant argument passing

The POA will maintain servants as servant references with the semantics as described in “Reference Types” on page 7. 
For each POA, the ServantActivator and ServantLocator provide operations that either passes a Servant as a 
parameter or returns a Servant a CORBA::servant_traits<T>::ref_type will be passed.

6.25.5 Skeleton Operations

All skeleton classes provide a _this() member function. This member function has three purposes:

1. Within the context of a request invocation on the target object represented by the servant, it allows the servant to 
obtain the object reference for the target CORBA object it is incarnating for that request. This is true even if the 
servant incarnates multiple CORBA objects. In this context, _this() can be called regardless of the policies used 
to create the dispatching POA.

2. Outside the context of a request invocation on the target object represented by the servant, it allows a servant to be 
implicitly activated if its POA allows implicit activation. This requires the activating POA to have been created with 
the IMPLICIT_ACTIVATION policy. If the POA was not created with the IMPLICIT_ACTIVATION policy, the 
PortableServer::WrongPolicy exception is thrown. The POA used for implicit activation is acquired by invoking 
_default_POA() on the servant.

3. Outside the context of a request invocation on the target object represented by the servant, it will return the object 
reference for a servant that has already been activated, as long as the servant is not incarnating multiple CORBA 
objects. This requires the POA with which the servant was activated to have been created with the UNIQUE_ID and 
RETAIN policies. If the POA was created with the MULTIPLE_ID or NON_RETAIN policies, the 
PortableServer::WrongPolicy exception is thrown. The POA is acquired by invoking _default_POA() on the 
servant.

For example, for interface A defined as follows:

// IDL
interface A
{

short op1();
void op2(in long val);

};

The return value of _this() is a typed object reference for the interface type corresponding to the skeleton class. For 
example, the _this() function for the skeleton for interface A would be defined as follows:

// C++
class A_impl : public virtual CORBA::servant_traits<A>::base_type {
public:

IDL::traits<A>::ref_type _this() override;
...

};

Assuming A_impl is a class derived from CORBA::servant_traits<A>::base_type that implements the A 
interface, and assuming that the servant’s POA was created with the appropriate policies, a servant of type A_impl can 
be created and implicitly activated as follows:
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// C++
CORBA::servant_traits<A>::ref_type my_a = 

CORBA::make_reference<A_impl> ();
IDL::traits<A>::ref_type a = my_a->_this();

6.25.6 Inheritance-Based Interface Implementation

Implementation must be derived from a generated base class based on the OMG IDL interface definition. The generated 
base classes are known as skeleton classes, and the derived classes are known as implementation classes. Each operation 
of the interface has a corresponding virtual member function declared in the skeleton class. The signature of the member 
function is identical to that of the generated client stub class. The implementation class provides implementations for 
these member functions. The object adapter typically invokes the methods via calls to the virtual functions of the skeleton 
class.

Assume that IDL interface A is defined as follows:

// IDL
interface A
{

short op1();
void op2(in long val);

};

For IDL interface A as shown above, the IDL compiler generates an interface class A. This class contains the C++ 
definitions for the typedefs, constants, exceptions, attributes, and operations in the OMG IDL interface. It has a form 
similar to the following:

// C++
class A : public virtual ....
{
public:

virtual int16_t op1();
virtual void op2(const int32_t& val);
...

};

On the server side, a skeleton class is generated. This class is opaque to the programmer, though it will contain a member 
function corresponding to each operation in the interface. The type of the skeleton class is defined by the 
CORBA::servant_traits<T>::base_type trait related to the corresponding interface T. The type the traits refers 
to has to be either directly or indirectly derived from the servant base class PortableServer::Servant. The 
PortableServer::Servant class must be a virtual base class of the type related to the trait to allow portable 
implementations to multiply inherit from both skeleton classes and implementation classes for other base interfaces 
without error or ambiguity.

The PortableServer::Servant must have a protected destructor preventing the user to directly delete a servant 
instead of using the reference semantics.

The skeleton class for interface A shown above would appear as follows:
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// C++
class A_skel : public virtual ...
{
public:

// ...server-side implementation-specific detail
// goes here...
virtual int16_t op1() = 0;
virtual void op2(const int32_t& val) = 0;
...

protected:
A_skel ();

   virtual ~... ();
};

If interface A were defined within a module rather than at global scope, e.g., Mod::A, the trait for this skeleton class 
would be CORBA::servant_traits<Mod::A>::base_type. 

To implement this interface using inheritance, a programmer must derive from this trait and implement each of the 
operations in the OMG IDL interface. An implementation class declaration for interface A would take the form:

// C++
class A_impl : public virtual CORBA::servant_traits<A>::base_type
{
public:

virtual int16_t op1() override;
virtual void op2(const int32_t val) override;
...

protected:
virtual ~A_impl ();

};

Note that the presence of the _this() function implies that C++ servants must only be derived directly from a single 
skeleton class. Direct derivation from multiple skeleton classes could result in ambiguity errors due to multiple definitions 
of _this(). This should not be a limitation, since CORBA objects have only a single most-derived interface. Servants 
that are intended to support multiple interface types can be registered as DSI-based servants, as described in “Mapping of 
DSI to C++” on page 47.

For interfaces which inherit from one or more base interfaces, the generated POA skeleton class uses virtual inheritance:

// IDL
interface A { ... };
interface B : A { ... };
interface C : A { ... };
interface D : B, C { ... };

// C++
class A_skel : public virtual CORBA::servant_traits<A>::base_type { ... };
class B_skel : public virtual CORBA::servant_traits<B>::base_type { ... };
class D_skel : public virtual CORBA::servant_traits<B>::base_type, public 
CORBA::servant_traits<C>::base_type
{ ... };
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This guarantees that the POA skeleton class inherits only one version of each operation, and also allows optional 
inheritance of implementations. In this example, the implementation of interface B reuses the implementation of interface 
A:

// C++
class A_impl: public virtual CORBA::servant_traits<A>::base_type { ... };
class B_impl: public virtual CORBA::servant_traits<B>::base_type, 

  public virtual A_impl
{};

For interfaces that inherit from an abstract interface, the POA skeleton class is also virtually derived directly from the 
abstract interface class, but with protected access:

// IDL
abstract interface A { ... };
interface B : A { ... };

// C++
class A { ... };
class POA_B : public virtual PortableServer::ServantBase,

protected virtual A { ... };

The abstract interface is inherited with protected access to prevent accidental conversion of the skeleton reference to an 
abstract interface reference. This also allows implementation classes and valuetypes to share an implementation of the 
abstract interface:

// IDL
valuetype V supports A { ... };

// C++
class MyA : virtual CORBA::servant_traits<A>::base_type { ... };
class MyB : public virtual CORBA::servant_traits<B>::base_type, 

protected virtual MyA
{ ... };
class MyV : public virtual V, public virtual MyA { ... };

6.25.7 Implementing Operations

The signature of an implementation member function is the mapped signature of the OMG IDL operation. For example:

// IDL
interface A
{

exception B {};
void f() raises(B);

};

// C++
class MyA : public virtual CORBA::servant_traits<A>::base_type
{
public:
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virtual void f() override;
...

};

Within a member function, the “this” pointer refers to the implementation object’s data as defined by the class. In addition 
to accessing the data, a member function may implicitly call another member function defined by the same class. For 
example:

// IDL
interface A
{

void f();
void g();

};

// C++
class MyA : public virtual CORBA::servant_traits<A>::base_type
{
public:

virtual void f() override;
virtual void g() override;

private:
int32_t x_;

};

void
MyA::f()
{

this->x_ = 3;
this->g();

}

However, when a servant member function is invoked in this manner, it is being called simply as a C++ member function, 
not as the implementation of an operation on a CORBA object. In such a context, any information available via the 
POA_Current object refers to the CORBA request invocation that performed the C++ member function invocation, not 
to the member function invocation itself.

When the application code needs a CORBA::servant_reference<> within the a member function it can retrieve a 
servant reference to this using this->_lock () which returns a reference to this. This reference than can be passed to 
other operations which require a CORBA::servant_reference<>.

6.26 Mapping of DSI to C++

The Common Object Request Broker Architecture (CORBA) specification, Dynamic Skeleton Interface clause, DSI: 
Language Mapping sub clause contains general information about mapping the Dynamic Skeleton Interface to 
programming languages. 

This sub clause contains the following information:

• Mapping of the Dynamic Skeleton Interface’s ServerRequest to C++

• Mapping of the Portable Object Adapter’s Dynamic Implementation Routine to C++
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6.26.1 Mapping of ServerRequest to C++

The ServerRequest pseudo object maps to a C++ class which follows the local interface mapping.

6.26.2 Mapping of PortableServer Dynamic Implementation Routine

In C++, DSI servants inherit from the standard DynamicImplementation class. This class inherits from the 
Servant class and is also defined in the PortableServer namespace. The Dynamic Skeleton Interface (DSI) is 
implemented through servants that are members of classes that inherit from dynamic skeleton classes.

// C++
namespace PortableServer
{

class DynamicImplementation : public virtual Servant
{
public:

IDL::traits<Object>::ref_type _this();
virtual void invoke(IDL::traits<ServerRequest>::ref_type request)= 0;
virtual RepositoryId _primary_interface(const ObjectId& oid,

IDL::traits<POA>::ref_type poa) = 0;
};

};

The _this() function returns a IDL::traits<Object>::ref_type for the target object. Unlike _this() for 
static skeletons, its return type is not interface-specific because a DSI servant may very well incarnate multiple CORBA 
objects of different types. If DynamicImplementation::_this() is invoked outside of the context of a request 
invocation on a target object being served by the DSI servant, it raises the PortableServer::WrongPolicy exception.

The invoke() method receives requests issued to any CORBA object incarnated by the DSI servant and performs the 
processing necessary to execute the request. Requests for the standard object operations (_get_interface, _is_a, 
and _non_existent) do not call invoke(), but call the corresponding functions defined in Servant instead. 

The _primary_interface() method receives an ObjectId value and a POA as input parameters and returns a valid 
RepositoryId representing the most-derived interface for that oid.

It is expected that the invoke() and _primary_interface() methods will be invoked only by the POA in the 
context of serving a CORBA request. Invoking this method in other circumstances may lead to unpredictable results.

6.27 PortableServer Functions

Objects registered with POAs use sequences of octet, specifically the PortableServer::POA::ObjectId type, as object 
identifiers. However, because C++ programmers will often want to use strings as object identifiers, the C++11 mapping 
provides several conversion functions that convert strings to ObjectId and vice-versa:

// C++
namespace PortableServer
{

std::string ObjectId_to_string(const ObjectId&);
std::wstring ObjectId_to_wstring(const ObjectId&);


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ObjectId string_to_ObjectId(const std::string&);
ObjectId wstring_to_ObjectId(const std::wstring&);

};

If conversion of an ObjectId to a string would result in illegal characters in the string, the first two functions throw the 
BAD_PARAM exception.

6.28 Mapping for PortableServer::ServantManager

6.28.1 Mapping for Cookie

Since PortableServer::ServantLocator::Cookie is an IDL native type, its type must be specified by each language 
mapping. In C++, Cookie maps to void*:

// C++
namespace PortableServer
{

class ServantLocator {
...
typedef void* Cookie;

};
};

For the C++ mapping of the PortableServer::ServantLocator::preinvoke() operation, the Cookie parameter maps to 
a Cookie&, while for the postinvoke() operation, it is passed as a Cookie.

6.28.2 ServantManagers and AdapterActivators

Portable servants that implement the PortableServer::AdapterActivator, the 
PortableServer::ServantActivator, or PortableServer::ServantLocator interfaces are implemented 
just like any other servant using the inheritance-based approach.

6.28.3 Server Side Mapping for Abstract Interfaces

The only circumstances under which an IDL compiler should generate C++ code for abstract interfaces for the server side 
are when either an interface is derived from an abstract interface, or when a valuetype supports an abstract interface 
indirectly through one or more intermediate regular interface types. Abstract interfaces by themselves cannot be directly 
implemented or instantiated by portable applications. Because of this, standard C++ skeleton classes for abstract 
interfaces are not necessary.

6.29 std::ostream insertion

For each IDL type (T) of type:

• Enumeration

• Object reference (IDL::traits<T>::ref_type)

• Valuetype reference (IDL::traits<T>::ref_type)

• Typecode reference (IDL::traits<CORBA::TypeCode>::ref_type)
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• Abstract base reference (IDL::traits<T>::ref_type)

an ostream inserter with the following signature will be provided:

// C++
std::ostream& operator<<(std::ostream &, T);

For all other types an ostream inserter with the following signature will be provided:

// C++
std::ostream& operator<<(std::ostream &, const T&);

This inserter prints information about IDL type onto an ostream. The format and amount of detail of the printed 
information is implementation dependent.

6.30 C++11 Keywords

Table 6.2 lists all C++11 keywords from the C++11 specification (ISO/IEC 14882:011) dated September 2011.

Table 6.2 - C++ Keywords

and and_eq asm auto bitand bitor

bool break case catch char class

compl const const_cast continue default delete

do double dynamic_cast else enum explicit

export extern false float for friend

goto if inline int long mutable

namespace new not not_eq operator or

or_eq private protected public register reinterpret_cast

return short signed sizeof static static_cast

struct switch template this throw true

thread_local int16_t int32_t int64_t uint16_t uint32_t

try typedef typeid typename union unsigned

uint64_t uint8_t

using virtual void volatile wchar_t while

xor xor_eq alinas alineof constrexpr decltype
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