Chemical Structure Accessand
Representation Specification

This OMG document replaces the draft adopted specification (dtc/06-02-03). It is an OMG Final
Adopted Specification, which has been approved by the OMG board and technical plenaries, and is
currently in the finalization phase. Comments on the content of this document are welcomed, and
should be directed to issues@omg.org by June 2, 2006.

You may view the pending issues for this specification from the OMG revision issues web page
http://www.omg.org/issues/; however, at the time of this writing there were no pending issues.

The FTF Recommendation and Report for this specification will be published on November 18,
2006. If you are reading this after that date, please download the available specification from the
OMG Specifications Catalog.

OMG Final Adopted Specification
April 2006
dtc/06-04-01

Date: April 2006

Chemical Structure Access & Representation
OMG Adopted Specification

dtc/06-04-01

Copyright © 2005, Intelligent Solutions
Copyright © 2005, Object Management Group

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms, conditions and
notices set forth below. This document does not represent a commitment to implement any portion of this specification in any
company's products. The information contained in this document is subject to change without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free, paid up,
worldwide license to copy and distribute this document and to modify this document and distribute copies of the modified version.
Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed the copyright in the
included material of any such copyright holder by reason of having used the specification set forth herein or having conformed any
computer software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant you a fully-paid up,
non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use this specification to create and
distribute software and special purpose specifications that are based upon this specification, and to use, copy, and distribute this
specification as provided under the Copyright Act; provided that: (1) both the copyright notice identified above and this permission
notice appear on any copies of this specification; (2) the use of the specifications is for informational purposes and will not be
copied or posted on any network computer or broadcast in any media and will not be otherwise resold or transferred for
commercial purposes; and (3) no modifications are made to this specification. This limited permission automatically terminates
without notice if you breach any of these terms or conditions. Upon termination, you will destroy immediately any copies of the
specifications in your possession or control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may require use of
an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a license may be required by
any OMG specification, or for conducting legal inquiries into the legal validity or scope of those patents that are brought to its
attention. OMG specifications are prospective and advisory only. Prospective users are responsible for protecting themselves
against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications regulations and
statutes. This document contains information which is protected by copyright. All Rights Reserved. No part of this work covered
by copyright herein may be reproduced or used in any form or by any means--graphic, electronic, or mechanical, including
photocopying, recording, taping, or information storage and retrieval systems--without permission of the copyright owner.

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY CONTAIN ERRORS
OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE MAKE NO

WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS PUBLICATION, INCLUDING BUT
NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF MERCHANTABILITY
OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE. IN NO EVENT SHALL THE OBJECT
MANAGEMENT GROUP OR ANY OF THE COMPANIES LISTED ABOVE BE LIABLE FOR ERRORS CONTAINED
HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL, CONSEQUENTIAL, RELIANCE OR COVER
DAMAGES, INCLUDING LOSS OF PROFITS, REVENUE, DATA OR USE, INCURRED BY ANY USER OR ANY
THIRD PARTY IN CONNECTION WITH THE FURNISHING, PERFORMANCE, OR USE OF THIS MATERIAL, EVEN
IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you. This
disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1) (ii) of The
Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph (c)(1) and (2) of the
Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified in 48 C.F.R. 227-7202-2 of
the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of the Federal Acquisition Regulations and
its successors, as applicable. The specification copyright owners are as indicated above and may be contacted through the
Object Management Group, 250 First Avenue, Needham, MA 02494, U.S.A.

TRADEMARKS

The OMG Object Management Group Logo®, CORBA®, CORBA Academy®, The Information Brokerage®, XMI® and
IIOP® are registered trademarks of the Object Management Group. OMG™, Object Management Group™, CORBA logos™,
OMG Interface Definition Language (IDL)™, The Architecture of Choice for a Changing World™, CORBAservices™,
CORBAfacilities™, CORBAmMed™, CORBAnet™, Integrate 2002™, Middleware That's Everywhere™, UML™, Unified
Modeling Language™, The UML Cube logo™, MOF™, CWM™, The CWM Logo™, Model Driven Architecture™, Model
Driven Architecture Logos™, MDA™, OMG Model Driven Architecture™, OMG MDA™ and the XMI Logo™ are
trademarks of the Object Management Group. All other products or company names mentioned are used for identification
purposes only, and may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its designees) is
and shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer software to use
certification marks, trademarks or other special designations to indicate compliance with these materials.

Software developed under the terms of this license may claim compliance or conformance with this specification if and only if
the software compliance is of a nature fully matching the applicable compliance points as stated in the specification. Software
developed only partially matching the applicable compliance points may claim only that the software was based on this
specification, but may not claim compliance or conformance with this specification. In the event that testing suites are
implemented or approved by Object Management Group, Inc., software developed using this specification may claim
compliance or conformance with the specification only if the software satisfactorily completes the testing suites.

OMG?’s Issue Reporting Procedure

All OMG specifications are subject to continuous review and improvement. As part of this pro-
cess we encourage readers to report any ambiguities, inconsistencies, or inaccuracies they may
find by completing the Issue Reporting Form listed on the main web page http://www.omg.org,
under Documents, Report a Bug/Issue (http://www.omg.org/technology/agreement.htm).

Table of Contents

(=] = (o1 =TT Y
Y o 0 o1 P 1
2 CONfOIMANCE ...eeiiii e 1
N R O Y A = 1

A O | I o] = PP PPPRPPT 1

3 Normative REfEIENCESieeeiiei e 1
4 Terms and DefiNitiONScoviieiiiiii e 2
5 SYMDOIS ... 2
6 Additional INformationoeiieiiiiii i 2
6.1 Relationship to Other OMG SpecifiCatioNSeeeeeiiiiiiiiieieiiiiiiiiins 2

6.2 DOCUMENT STIUCTUIE ...cvniitiiei e et e e e et e et e e e e e eaeeannnes 2

6.3 ACKNOWIEAQEMENTSeiiiiii i e e e e 3

6.4 REQUEBST ...ttt aaa 5

6.5 Sample WOIKIIOWcooiiiiiii e 6

6.6 The Chemical Exchange Problemcccooooiiiii 9

6.6.1 Approaches that dont WOrk Wellovveiieiiiiiii e 10

6.7 Chemical Markup Language within the Context of CSARccccceeeivieinnennn. 10

(ST R T 10 To |1 o1 1o o N PO PPRPRRR 10

6.8 CML AN CSAR .ot e e e e e e e e e e eaaaas 13

6.9 Processing Classes INVOIVEAouvviiiiiiiiiiie e 14

6.10 [Chemical] Elements Within CSARuuuiiiiiiiie e 17

6.11 CML MOAUIE ...coviiiiieeeeee et e e e e e e e e e araans 19

L 00 I T 1Y] o][19

L0 I 2 |V o | =T ol U =Y = Tox o 24

L0t I T 31V o] Yo][| 24

B.11.4 ALOM ...ttt ettt e ettt eteee et et e s et et e ae et et e et et et ter e e tere et eteas 25

(OIS AN (o] 1 1 = Tod (o Y USRS 29

LS00 I S AN 1 0 > 1] Y/ 29

Lo 0 = e o Vo OO 31

L0 I I = T T 5] (=] (=Y T 33

L0t I T I = =T o4 1 o o 34

L0 o O I T (0] o [T ST PSPPI 35

Chemical Structure Access & Representation Adopted Specification i

6.11.11 ISOLOPEFACIONY ..evuuiiiiiiiiiiie e a e 36

L0 I O 2 AN (0] 0] = Tod (| Y TSP SPPPPT 37
(00 I I G T = o T oo | = o (] Y 38
6.11.14 NUMENCAIOMPAIILYcccee i e e e e e e e aaees 39
6.11.15 StrNGALOMPAIILYccceiiiieecee e 40
6.11.16 COOrINAIEZoeeiiiiiiiiiie it e e s e e e s 42
6.11.17 COOrdiNAE3oeeiiiiiiieiie ettt 43
6.11.18 ADSIACLANGIEo aaa e 43
B.11.19 FOMMUIA ...oeeiieiiiiieie ettt e e e e e e s 44
6.11.20 FOrmMUIAEIEMENT........eieiiiei et 48
B.11.21 CrYSTAl..cceeeeiee ittt 49
6.12 MOIULI MOAUIE ...t e e e e e e e e e e e eeeeeeees 51
6.12.1 ChemiCalEIEMENT ... e 52
6.12.2 ChemicalEIeMENtFACIONYc.coiiiiiiiiie e 55
6.12.3 ISOIOPESEL ... e e e e e e e e e e et et e e e e e n bbb s 55
6.12.4 1SOLOPESELFACIONY ...t e e e e e e e e e e e e et e et e bbb e e e e eeas 56
6.12.5 PeriodiCTabIecoooiiiee e 57
6.12.6 PeriodiCTabIEFACIONYcoiiiiiiiiaiiiiiee et 58
6.13 Search COMPONENT........uiiiiiiiiiie e 59
6.13.1 ChemSearchENGINEMANAGETccoiiii it 61
B.13.2 RESUILSEL ...ttt e e e e e st e e e e e e e e e e e s annbeeeees 62
6.13.3 ACCUraCyQUAIITIEI ...t 64
6.13.4 ChemSEArChENGINEuueiiiiiiiiiii ettt e e e e e e e e e e e e s e ennneees 66
6.13.5 COMPAIISONOPEIALONeuieitieeiieiaaaee ettt eeeaaaa e e e s e s aabanbesreeeeaaaaaaaeesaaannnnnees 67
6.13.6 LOGICAIOPEIALON. ...ciiii ittt et e e e e e e e s et e e e e e e e e e e e e e anenes 68
oI R T o (0] 1= ¢ YU PP PP PT TP 69
6.13.8 SEArCNCHIEIAGIOUDeetttieieeeiieae e ettt e e e e e e e e et e e e e e e e e e e s e e aannnbeeeeees 70
6.13.9 SEArCNCHIEIION .ottt e e e e e e e e e e e e e abeeeeees 70
6.13.10 SearcheablePrOPEITY ... 72
6.13.11 SelECtPrOPEITYGIOUP ...veeeeiiiiaiee ittt e e e e e e e e e bbbt e e e e e e e e e e e e e e annenbeeeeees 72
6.13.12 SeleCtPrOPEITYGIOUP ...veeeeiiiieiee ettt ettt et e e e e e e e e e e e e e e e e e e e anenbeeeeees 73
I I o 0] o1 1 PP TPPPPTPPPI 74
6.14.1 MeasuriNnQUNITPIEIXeuiiiiiiiiie i 74
LI B AN o1 1 - Tod V-1 [[76
B.14.3 BLOB ..ottt 76
6.14.4 CIHEARETEIENCE ..coeiiie et e e e e ae e e e e e annannes 76
B.14.5 CIEAVAIUE ...eeeeeiiiiee ettt e e e e e e e e e e e e e e e e e e e s e s nensrnrnees 78
B.14.6 MALNXVAIUEooiiiieeeiiiiiietiiee ettt e et e e e e e e s e s s ettt e e e eeaeeeeeeeasannnnnne 78
6.14.7 MEASUINNGUNITeeiiiiiiiiiiiee ittt e st e s snnne s 79
B.14.8 SCAIAIVAIUEcoiiiieeee ettt e e e e e e s e s e e e e e e e e e e e e ann 81
B.14.9 TENSOIVAIUE ...coieeieieiie ittt et e e e e e e e s e s sttt e e eeeeaeeeeesaanannrnne 81
L O = Tox (0 V2= LU= PR 81
6.15 Search General FUNCHONANILYuuueiiiiiiiiieeeeeee e 81
6.16 Legacy MOAUIEcoooiiiii e 83
B.16.1 FIlEMAP ..ottt 83
6.16.2 INFOrMALIONLOSS.eiiiiiiiiiiii ettt 84
6.16.3 ColleCtion MOUIE.........eiiiiie e 85

Chemical Structure Access & Representation Adopted Specification

ANNEX A = UML USE CaASES ..oniieieieieee et 95

Annex B - Use Cases for Chemistryccooovvvviiiiiiiiiiiie e 101
Annex C - UML Related Interface Documentationcc.c.cceeeuven.. 105
Annex D - Java Code Segmentsccccieiieiiiiiiiieeeiie e 107
ANNEX E - The XMI ..o 109

Chemical Structure Access & Representation Adopted Specification iii

Chemical Structure Access & Representation Adopted Specification

Preface

About the Object Management Group

OMG

Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer industry
standards consortium that produces and maintains computer industry specifications for interoperable, portable and
reusable enterprise applications in distributed, heterogeneous environments. Membership includes Information
Technology vendors, end users, government agencies and academia.

OMG member companies write, adopt, and maintain its specifications following a mature, open process. OMG's
specifications implement the Model Driven Architecture® (MDA®), maximizing ROI through a full-lifecycle approach to
enterprise integration that covers multiple operating systems, programming languages, middleware and networking
infrastructures, and software development environments. OMG's specifications include: UML® (Unified Modeling
Language™); CORBA® (Common Object Request Broker Architecture); CWM™ (Common Warehouse Metamodel);
and industry-specific standards for dozens of vertical markets.

More information on the OMG is available at http://www.omg.org/.

OMG Specifications

As noted, OMG specifications address middleware, modeling and vertical domain frameworks. A catalog of all OMG
Specifications Catalog is available from the OMG website at:

http://www.omg.org/technology/documents/spec_catalog.htm

Specifications within the Catalog are organized by the following categories:

OMG Modeling Specifications

. UML
. MOF
. XMl

. CWM

. Profile specifications.

OMG Middleware Specifications
. CORBA/IIOP
. IDL/Language Mappings
e Specialized CORBA specifications
e CORBA Component Model (CCM).

Platform Specific Model and Interface Specifications
. CORBAservices

. CORBAfacilities

. OMG Domain specifications

. OMG Embedded Intelligence specifications
. OMG Security specifications.

All of OMG’s formal specifications may be downloaded without charge from our website. (Products implementing OMG
specifications are available from individual suppliers.) Copies of specifications, available in PostScript and PDF format,
may be obtained from the Specifications Catalog cited above or by contacting the Object Management Group, Inc. at:

OMG Headquarters
140 Kendrick Street
Building A - Suite 300
Needham, MA 02494
USA

Tel: +1-781-444-0404
Fax: +1-781-444-0320

Email: pubs@omg.org

Certain OMG specifications are also available as 1SO standards. Please consult http://www.iso.0rg

Typographical Conventions

The type styles shown below are used in this document to distinguish programming statements from ordinary English.
However, these conventions are not used in tables or section headings where no distinction is necessary.

Times/Times New Roman - 10 pt.: Standard body text
Helvetica/Arial - 10 pt. Bold: OMG Interface Definition Language (OMG IDL) and syntax elements.
Courier - 10 pt. Bold: Programming language elements.

Helvetica/Arial - 10 pt: Exceptions

Note — Terms that appear in italics are defined in the glossary. Italic text also represents the name of a document, specification,
or other publication.

Issues

The reader is encouraged to report any technical or editing issues/problems with this specification to http://www.omg.org/
technology/agreement.htm.

Vi

1 Scope

A set of specifications describing the management of molecular information, chemical structure access, and retrieval
processes is provided herein. The specification is based in the Chemical Markup Language (CML) as described at http:/
Iwww.xml-cml.org/ and http://wwmm.ch.cam.ac.uk/moin/CmlCore The Chemical Structure Access and Representation
CSAR makes use of the representational and translational capabilities offered by CML and complement them with classes
that facilitate searches and allow the creation of collections. Situations that are not described explicitly can be addressed
by extending the types and using the conventions described in this document. The standard was developed starting from
the practical need to represent complex bodies of data in a natural way. Existing practice and terminology is used
wherever this was available and practical.

2 Conformance

Since the CSAR specification makes use or extends the conversion interfaces provided by CML, there are two points of
compliance for this specification. One explicit which is the interface described in the CSAR specification and the second
one implicit which is the conversion interface described in the CML specification. The compliance points are described
below.

21 CSAR

The CSAR specification describes interfaces to:
« Transform legacy file formats into CML representations that make use of CML's Jumbo interfaces,
« Validate the CML representation that makes use of the CMLDOM interface.
< Search, create (register), replace, update, and delete chemical components.
« Estimate the loss of information when searching different proprietary (legacy) databases

CSAR is a mandatory conformance point.

2.2 CML Core

CoreCML is a subset of CML which has a tighter specification and is designed for representing “small molecules.” It is
completely consistent with full CML V1.0 but its strictness encourages interoperability. By writing CoreCML you will be
writing CML, but taking advantage of many conventions described below which will help the development of conforming
software.

Implicitly CoreCML is a mandatory conformance point.

3 Normative References

NOTE: Please include any normative references here.

Chemical Structure Access & Representation Adopted Specification 1

4

None

5

None

6.1

6.2

Terms and Definitions

Symbols

Additional Information

Relationship to Other OMG Specifications

Model Driven Architecture. While the model provides only the data structures needed for the interchange and
manipulation of Chemical Representation data and specifies no services, it does share the MDA approach of using the
UML model as the basis of generating the DTD from the XMI. Given this model it is now possible to generate data
structures that meet different language standards.

XML Metadata Interchange. The model is submitted in XMI format, v1.1, generated from Rational Rose Enterprise
Edition 2001 using the Unisys Rose XML Tools Version 1.3.2 add-in.

Query Service. The Query service was not used; instead the submitters suggest that it is possible to implement a Query
Service for Chemical Representation data using Xdb. Xdb is an XML document repository providing structured
storage of XML data, at present using a Relational Database Management System (RDBMS) mapping over
PostgreSQL. XDB provides a fast and scalable XML database framework with support for both XML Path Language
(XPath) and XML Query Language (XQL), and the ability to store XML documents and SAX APIs.

Bibliographic Query Service. Although the BQS specification is not directly incorporated, the attributes and
annotation from associations of the Bibliographic Reference can be used in queries to data sources that support the
interfaces in the BQS specification.

Collection Service. The Collection Service is not used. Instead, the W3C DOM and XML-DEV SAX parsers provide
similar capabilities for XML data as the Collection Service for IDL data. The DOM parser is ideal for smaller XML
data and provides full navigation backwards and forwards. The SAX parser provides a forward only traversal of the
data, which is ideal for parsing large XML documents.

Document Structure

The document is structured as follows: 7 Scope provides a synopsis of the data model and data types; 8 CSAR presents
the CSAR standard; 9 Glossary provides a list of terms used throughout this document; Annex A contains the UML use
cases; Annex B lists the use cases for chemistry; Annex C contains the UML related interface documentation for the
model; Annex D contains the Java code segments, and Annex E provides the complete XMl of the specification.

Chemical Structure Access & Representation Adopted Specification

6.3 Acknowledgements

The following company submitted this specification:

. Intelligent Solutions

Chemical Structure Access & Representation Adopted Specification

Chemical Structure Access & Representation Adopted Specification

7 Introduction

Several code segments have been developed to test the use case scenarios presented below.

The general functionality is summarized in Figure 7.1 and described below. The types of requests are outlined below and
a sample work flow is provided.

Request

Information
Loss

Evaluation
CSAR

CSAR

Output
Format

Converter

Legacy Legacy Legacy Legacy
Database Database Database Database

Figure 7.1 - General Functionality

7.1 Request

1. Search Chemical Structure (against legacy database)
Create CML molecule from a legacy format.
Select the values for use as parameters in a query.
Construct a query using interfaces in Search and DB modules.
Transport resulting query to server.

Chemical Structure Access & Representation Adopted Specification

Vendor Implementation translates the query into the legacy format.
Vendor Implementation performs the search from the database.

Vendor Implementation translates the result into the CML object model.
Transport the result back to client.

Transform the result into a legacy format.

2. Search Chemical Structure (within collection of CML molecules)
Create CML molecule from a legacy format.
Select the values for use as parameters in a query.
Construct a query using interfaces in Search and Collection modules.
Search -the collection using the query built above.
Transform the result into a legacy format.

3. Add Chemical Structure (Register)
Create CML molecule.
Transport the new molecule to server.
Vendor Implementation translates the insert query into the legacy format.
Vendor Implementation performs the insert into the database.
Vendor Implementation translates the status of the insert into standard format.
Transport the result back to client.

4. Update Chemical Structure
Search the database for the chemical structure to be updated.
Replace the corresponding CML molecule with a newly constructed CML molecule.
Transport the update query along with the new molecule to server.
Vendor Implementation translates the query into the legacy format.
Vendor Implementation performs the update to the database.
Vendor Implementation translates the status of the update into standard format.
Transport the result back to client.

5. Delete Chemical Structure
Search the database for the chemical structure to be deleted.
Delete the corresponding CML molecule. [Actual deletion is performed by Vendor Implementation]
Transport the delete query to server.
Vendor Implementation translates the query into the legacy format.
Vendor Implementation performs the delete to the database.
Vendor Implementation translates the status of the delete into standard format.
Transport the result back to client.

6. Translate Chemical Structures between Representations
Forward transformation will create a CML representation from a legacy representation. Reverse transformation
will create a legacy representation from a CML representation.

7. Manipulate Associated Intrinsic Properties
Given a legacy representation of a molecule or result set, create CML molecule. Then gain access to its
corresponding intrinsic properties - including atoms, bond types, connectivity, molecular weight, and molecular
formula.

7.2 Sample Workflow

Figure 7.2 illustrates the general workflow that is followed when making use of CSAR.

6 Chemical Structure Access & Representation Adopted Specification

ad Activity Diagram

y Process Request ~

——————

Initial Request

Format Conv ersion

Figure 7.2 - General Workflow

The workflow is outlined below.

1. A chemist could issue an initial request to the system, for instance a search for a given compound. The request will
be accompanied with a source chemical table file (source format) and a destination format. For example, the source
format could be an MDL MOL file and the destination a Daylight database containing files in its proprietary
format named SMILES.

2. The source file will be converted to CML. For instance, Figure 7.3 shows an example of a Mol file and its
corresponding conversion into CML.

MOL File: caffeine.mol The corresponding CML for the MOL file for caffeine is
partially show below

2425000000000 <?xml version="1.0"?>

<l--<Pxml-stylesheet type="text/xsl" href="generic.xsl" ?>-->

2.8709 -1.0499 0.1718C 00 0 0 0
29099 02747 0.1062N 00 0 0 0
18026 0.9662 -0.1184C 00 0 0 0 e e ol karne - 18/4/00
<I-- CN -ex - c - >
20.6411 02954 -0.2316C 00 0 0 0 ocument - examp e_mot - karne
<!I-- file converted from: MDIL. .mol -->
0.6549 -1.0889 -0.1279C 0 0 0 0 0 el it
117352 -1.7187 0.0624N 0 0 0 0 0

<document>

example_mol" id="cml_example_mol_karne">

<molecule title="example_mol" id="mol_example_mol_karne">

0.6052 0.7432 -0.4434N 00000 <list title="atoms">

1.2863 -0.4175 -0.4514C 00 00 O <atom id="example_mol_karne_a_1">
0.5994 -1.5633 -0.2698N 0 0 0 0 O <integer builtin="atomId">1</integer>
1.0875 2.0867 -0.6139C 00000 <float builtin="x3" units="A">-2.8709</float>
21.8349 21699 -0.22050 000 0 0 <float builtin="y3" units="A">-1.0499</float>

Chemical Structure Access & Representation Adopted Specification 7

-4.2178 0.9810 0.2003C 0000 0 <float builtin="23" units="A">0.1718</float>
-3.8944 -1.6746 0.33230 0000 0 <string builtin="elementType">C</string>
-1.6764 -3.1997 0.1458C 00 0 0 0 </atom>
23776 -0.4481 -0.6036H 000 0 0 <atom id="example_mol_karne_a_2">
21902 2.0944 -07699H 00 0 0 0 <integer builtin="atomId">2</integer>
<float builtin="x3" units="A">-2.9099</float>
06074 25547 -1.5032H 0.0 0.0 0 <float builtin="y3" units="A">0.2747</float>
0.8606 2.6915 0.2934H 00000 <float builtin="23" units="A">0.1062</float>
-4.0942 2.0097 0.6091H 00000 <stting builtin="elementType">N</string>
-4.6699 1.0338 -0.8167H 0000 O </atom>
-49101 0.4518 0.8943H 0 0 0 0 0O atom id="example_mol_karne_a_3">
-2.3049 -3.6334 -0.6659H 00000 <integer builtin="atomId">3</integer>
20.6444 -3.6030 0.0359H 0000 0O <float builtin="x3" units="A">-1.8026</float>
20682 -35218 1.1381H 00 0 0 0 <float builtin="y3" units="A">0.9662</float>
121000 <float builtin="23" units="A">-0.1184</float>
161000 <string builtin="elementType">C</string>
</atom>
1132000 <atom id="example_mol_karne_a_4">
231000 <integer builtin="atomId">4</integer>
2121000 <float builtin="x3" units="A">-0.6411</float>
341000 <float builtin="y3" units="A">0.2954</float>
3112000 <float builtin="23" units="A">-0.2316</float>
452000 <string builtin="elementType">C</string>
471000 </atom>
561000
591000 ti "MDL">1</int >
convention="M nteger
6141000 </bond>
781000 <bond id="example_mol_karne_b_24">
7101000 <integer title="bondId">24</integer>
892000 <integer builtin="atomRef">14</integer>
8151000 <integer builtin="atomRef">23</integer>
1016 1 0 0 0O <integer builtin="order" convention="MDL">1</integer>
1017100 0 </bond>
1018 1 0 0 0 <bond id="example_mol_karne_b_25">
1219100 0 <integer title="bondId">25</integer>
12201 0 0 0 <integer builtin="atomRef">14</integer>
12211000 <integer builtin="atomRef">24</integer>
<integer builtin="order" convention="MDL">1</integer>
14221000 </bond>
14231000 </list>
14241000 </molecule>
M END </cml>
</document>

Figure 7.3 - MOL file for Caffeine and corresponding CML representation
3. A validity check of the data in the source file will be conducted.

e Current molecular "file formats™ and database entries normally choose a subset of available information that can
be captured. Many older formats are based on fixed length records (often 80 characters) and a restricted order for
those records; this limits or completely denies extensibility. In general, two different formats have different
ontologies and cover a different subset of chemical information space.

8 Chemical Structure Access & Representation Adopted Specification

« Every piece of chemical software uses its own ontology, usually implicitly. The relevant information has to be
supplied in the input files but, because the implementation of ontologies is very expensive, the program is
usually built to accept a small number of file types. When chemical information is passed from one program to
another, ontological conversion is necessary. However, only the concepts present in both ontologies can be
passed, and this normally leads to information loss. For example, a PDB file does not explicitly hold bond orders,
while an MDL-molfile does not hold occupancies. Both these concepts are therefore lost in an interconversion.
There is also often an ontological loss since the meaning of a common concept (e.g., bond order) may be
different in both.

See example below:

MOL file representation for ethane SMILES file representation for ethane:

SMI2MOL CC
210000000 0999 V2000

205100 1.5300 0.0000C 0 00000000000
0.5100 1.5300 0.0000C 0 00000000000
1210000

M END

e CML has been designed to allow conversion from legacy files to CML without information loss. In some cases,
this is because the information can be represented in an abstract, convention-free form. In other cases, however,
this is essentially a syntactic conversion with annotation of the original convention (i.e., ontology) used. While
we do not believe a single ontology is possible for chemistry, the use of CML may highlight agreement on some
ontological subsets. We continue to emphasize that conversion from CML to other formats will probably involve
information loss. The use of CML as input to programs should make it easier to identify chemical information in
files, and to convert when possible.

4. The CML file is then used to generate a query against the chemical repository.
The following section provides:
e The problem definition

¢ Problem solution via CSAR

7.3 The Chemical Exchange Problem

Storing chemical information in a computer is not a trivial task. Many different approaches and formats have been used.
Most that worked at all are still with us. For instance, there are between 30-40 important chemical formats—managing
them is a formidable and expensive task.

A small part of the problem is that arbitrary methods are used for encoding data, e.g., double bonds can be represented as
the integer 2, the real bond order 2.0, the symbol "=", the enumeration DOUBLE, and as repeated connections.

A bigger part of the problem is that most chemical file formats contain information which is meaningless except in terms
of a specific program, e.g., "tautomeric," "ring-double,” "exo-double,”" and "fragment double™" bonds.

The biggest part of the problem is that different programs that process chemical information use different underlying
models, e.g., in ab initio or M.O. programs, the idea of "bond" isn’t a particularly useful concept. To be useful, we must
provide an accurate method for representing the underlying data model.

Chemical Structure Access & Representation Adopted Specification 9

7.3.1 Approaches that don't work wellt

Various attempts have been made to solve the problem created by the plethora of chemical file formats. Experience has
shown that the two most common approaches don't work well. They haven't solved the practical problem and they keep
being rewritten.

7.3.1.1 Comprehensive file format converters

Software is provided which converts files from one format to another. This is usually implemented by creating "readers"
and "writers" which share a common data structure or format. However, most of the big players in this industry make use
of proprietary formats that make conversion of files a very hard problem that might require reverse engineering of the
files.

This approach works well for encoding problems only, i.e., where representational issues don’t exist. Such systems are
inevitably reactive (must be modified as formats evolve) and usually either inaccurate (there is no central authority) or
LCD (lowest common denominator).

7.3.1.2 "Kitchen sink" formats
An all-encompassing format is proposed which purports to represent every possible kind of chemical information entity.

This approach has all the failings of the previous approach, plus it complicates the problem by introducing yet another
format. Furthermore, the new format is so complex that a comprehensive reader/writer can’t provide a universal interface
because it is prohibitively expensive in size, complexity, and support.

Therefore, a common representation that provides a base functionality for atomic, molecular, and crystallographic
information and allows extensibility for other chemical applications was sought after. As a result, the Chemical Markup
Language (CML)—an application of XML, the eXtensible Markup Language--was developed for containing chemical
information components within documents. Its design supports interoperability with the XML family of tools and
protocolsz. Legacy files can be imported into CML with limited information loss and can carry any desired chemical
ontology“.

7.4 Chemical Markup Language within the Context of CSAR

7.4.1 Introduction®

Peter Murray-Rust and Henry Rzepa state that there are a number of problems when trying to capture the contextual
meaning of chemistry that impede the use of this information. For instance, the following extract* from a typical molecule
science journal illustrates not only how precisely data and information must be represented, but also how much human
perception is required to translate this information as presented in this (linear) form into e.g., a reproducible experiment
or a mechanistic interpretation;

1. Ideas taken from “Computer Representation of Chemical Information™ http://www.ccl.net/cca/documents/molecular-modeling/
node2.shtml

2. “The CML ontology is the theory underlying the CML language. It defines the basic concepts, such as model-fragment and time-
dependent-relation, that are assumed in the language. It gives axiomatic semantics for the notion of time and change inherent in CML.
The CML ontology is built upon the Engineering Math ontologies, extending the unary-scalar-functions and standard-units theories.”,
Theory CML, http://www.ksl.stanford.edu/htw/dme/thermal-kb-tour/cml.html

3. Many ideas, concepts and descriptions in this section are taken (some times verbatim some times modified by the authors) from P. Mur-
ray-Rust and H. Repka, “Chemical Markup, XML and the World-Wide Web. Part I11: Information Objects and the CMLDOM”

4. D. H. Peapus, H. J. Chiu and N. Campobasso, Biochemistry, 2001, 40, 10103-10114.

10 Chemical Structure Access & Representation Adopted Specification

"Thiamin phosphate synthase catalyzes the formation of thiamin phosphate from 4-amino-5- (hydroxymethyl)-2-
methylpyrimidine pyrophosphate and 5-(hydroxyethyl)-4-methylthiazole phosphate. The reaction involves... dissociative
mechanism...carbenium ion intermediate...and pyrimidine iminemethide observed in the crystal..."

NOTE: The profusion of chemical structure information, concepts and terms, which only a trained human chemist could
easily process. Quantitative concepts and units are also ubiquitous;

"A 500 ul aliquot of 0.8 uM TP synthase in 50 mM Tris-HCI (pH 7.5) and 6 mM MgCl, incubated at room temper-
ature with 50uM CF3HMP-PP."

An even greater degree of human perception is required when handling graphical chemical representations which may
contain many, often fuzzy and dangerous, human-only semantics (e.g., 2D representations of 3D properties, relative
stereochemistry, aromaticity, hydrogen and other "weak" bonding, use of generic and "R" groups, reaction arrows and
mechanisms, etc). The challenge therefore is to develop an infrastructure which can be routinely used to capture, store,
and appropriately filter and display such information. Moreover, each discovery informatics company makes use of
proprietary formats to describe chemical objects. For instance, MDL Information Systems Inc., the largest chemical
informatics company, supports a number of file formats for representation and communication of chemical information
group under the generic name of MDL’s Chemical Table files (CTfiles), see Figure 7.4. These file formats are:

1. Molfiles, RGfiles, SDfiles, Rxnfiles, RDfiles
2. Code names: mol, mol:V3, mol:V3ec, mol:V3ea, rgf, sdf, rxn, rxn:V3, rdf
3. file extensions: .mol, .sdf, .rxn, .rdf

Table 7.1 provides a description of each file format shown in Figure 7.4.

Chemical Structure Access & Representation Adopted Specification 11

RGfile

molfile

rxnfile

molfile

molfile

SDfile Ty

molfile

oo]

RDfile

"— RDfile ——

£

molfile

o][

rxnfile

molfile

Common
Descriptive and
Manipulative
Representation

Vi

Figure 7.4 - The representation problem °

Table 7.1 - Chemical Table File Types?

Chemical Table File Type

Description

Molecule files (molfiles)

Each molfile describes a single molecular structure which can contain disjoint
fragments.

Rgroup files (RGfiles)

An RGfile describes a single molecular query with Rgroups. Each RGfile is a
combination of Ctabs defining the root molecule and each member of each

Rgroup in the query.

5.

12

The picture has been taken from MDL Information Systems manual., CTL File Formats and modified by the authors to explain the
common descriptive and manipulation representation.

Chemical Structure Access & Representation Adopted Specification

Table 7.1 - Chemical Table File Types?

Reaction files (rxnfiles)

Each rxnfile contains the structural information for the reactants and products of a
single reaction. MDL currently supports only the REACCS type of rxnfile. The
CPSS type of rxnfile written by CPSS programs is no longer supported and is not
described in this document.

Structure-data files (SDfiles)

An SDfile contains structures and data for any number of molecules. Together
with RDfiles, SDfiles are the primary format for large-scale data transfer between
MDL databases.

Reaction-data files (RDfiles)

Similar to SDfiles in concept, the RDfile is a more general format that can include
reactions as well as molecules, together with their associated data. Although
RDfiles are used primarily by I1SIS and REACCS, MACCS-II can also read and
write RDfiles except for the reaction structure information (indicated by the
square brackets in the MDL Program table).

XML-data files (XDfiles)

XML-based data format for transferring recordsets of structure or reaction
information with associated data. An XDfile can contain structures or reactions
that use any of the CTfile formats, Chime strings, or SMILES strings. (Chime is
an encrypted format that is used to render structures and reactions on a Web page.
SMILES is a line notation format that uses character strings and SMILES,
Simplified Molecule Input Line Entry System, syntax to represent a structure.)

a. MDL Systems CTL formats.

In addition, to MDL systems there are a number of companies which support additional file formats, such as, Day Light’s

SMILES and others.

7.5 CML and CSAR

The goal of the model described in this specification is to make use and/or extend the representational and translational
capabilities offered by CML and in addition complement them with classes that facilitate transactional operations such as
searches and creation of collections (see Figure 7.5).

Chemical Structure Access & Representation Adopted Specification

13

MDL
Chemical Properties
Repository

CSAR
Module
Transactional Py
i ay Lig
Render Results Operations Chemical Properties
Repository

CML
Module
Translational and

Representational
Operations

Any Other
Chemical Properties
Repository

Figure 7.5 - Integrated CML and CSAR
7.6 Processing Classes Involved

Figure 7.6 provides an overview of the CSAR's elements.

pd csarJune2005

pim_chem Legacy

Collection

+cml =] + FileMap .
. - =2 m + Collection
moluti g + InformationLoss

search

M= + AccuracyQualifier
+ ChemSearchEngine

™ + ComparisonOp erator

™ + LogicalOperator

+ Property

™ + SearchCriteriaGroup

ME* + SearchCriterion

+ SearcheableProperty
¥ + SelectPropertyGroup

W™ + SelectProperty Group

|] + property

Figure 7.6 CSAR Elements Overview

14 Chemical Structure Access & Representation Adopted Specification

« Legacy Module-Provides interfaces to convert legacy database formats to CML and in between them. It also provides
the basic file mappings.

« PIM_CHEM Module-Provides the classes that provide the representational capabilities of the standard and a number
of utility classes.

« Search Module¥Holds interfaces that are used to search against legacy databases as well as collections.

¢ Collection Module¥Provides a common repository of chemical information.

Chemical Structure Access & Representation Adopted Specification 15

16

Chemical Structure Access & Representation Adopted Specification

8 CSAR

Basically the CSAR standard provides the following capabilities:
» Interfaces and/or classes to represent chemical information elements.
 Interfaces and/or classes to facilitate searches.
« Interfaces and/or classes to facilitate searches for properties.
« Interfaces and/or classes for Cartesian coordinates as well as classes for Polar coordinates.

« Interfaces and/or classes to calculate the information loss when working with different legacy formats.

8.1 [Chemical] Elements within CSAR

The following [chemical] elements of the CSAR specification recast (or extend) elements (with similar names) included
in the CML specification to satisfy the functional requirements of CSAR. Figure 7.1 in the previous chapter provides an
overview of the elements.

Figure 8.1 provides an overview of the components of the pim_chem module.

pd csarJune2005

pim_chem l

+cml
+ molutil

Figure 8.1 - pim_chem Module

The pim_chem module provides representational interfaces or classes for chemical information. Figure 8.2 provides a
more detailed perspective of these components.

Chemical Structure Access & Representation Adopted Specification 17

cd pim_chem

cml

+ AbstractAngle
+ AbstractAngle
+ AngleUnits

+ AngleUnits

+ Atom

+ Atom

+ Atom Parity

+ Bond

+ Bond

+ BondAngle

+ BondStereo

+ CML Exception
+ CML Exception
+ Coordinate2

+ Coordinate2

+ Coordinate3

+ Coordinate3

+ Crystal

+ Crystal

- Formula
-Fomula

+ Isoto pe

+ Isoto pe

+ NumericAtom Parity
+ StringAtomParity
+ TorsionAngle
+ Units

+ Units

=]
=]
=
=]
=
=]
=
=]
==
=]
=
=]
=]
=]
=
=]
=
=]
=
=]
==
=]
=
=]
=
=]
=
=]
=
=]
=
=]
=]
=]
=
=]
=
=]
=
=]
==
=]
=
=]
=
=]
=
=]
=
=]
=
=]
=]
=]
=
=]
-

1 + AtomFactory

BondFactory

1+ Electron

1+ Electron

1 - FormulaElement
FomulaElement
Isoto peFactory

+ Molecule

1 + MoleculeFactory
M1 + MoleculeUtil

Figure 8.2 - pim_chem components detailed view

molutil

+ ChemicalEleme nt

4 + Chemical ElementFactory
M= + IsotopeSet

M + isotopeSetFactory

1 + PeriodicTable

1 + PeriodicTableFactory

The purpose of this module is to provide means to represent the chemical elements of the model. For instance, the
components provide representational interfaces or classes for Atom, Molecule, Bond, Electrons, Formulas, and others.

18

Chemical Structure Access & Representation Adopted Specification

8.2 CML Module

8.2.1 Molecule

At the heart of our model is the Molecule entity which represents a chemically substance, see Figure 8.3. One Molecule
contains zero or more sub-Molecules (no limit on the depth with which Molecules can be nested.), zero or more Atoms,
and zero or more Bonds. Molecules nested within a Molecule give our model the ability to accommodate sets of
tautomers, conformers, residues, mixtures (not required for this specification, but definitely useful in chemistry), and
other complex chemical entities.

x5 BodSereo

+ bondQrdess: Sting () + BONDSTERED OIS javalang Sting="0S'
+ bondlength: double i B .

. . + BONDSTERED TRANS: javalang Sting="TRANS'
+ Topdogy. javalangSting + BONDSTERED Z javalang Sting ="Z"
+ BOND CROER SINGLE: javalang Siing ="SNGLE” - FOTSTIE e
+ BOND OROER DOLBLE: javalang Sring="TOLBLE" - ES s e T ED
+ BOND CROER TRALE javalang Sing =" TRPLE” R - . A
+ BOND CROER ANY: jmalargSig="aY" -~ + BONDSTERED HATGH Ja\glengSnrgf }-iATCH
+ BOND CROER FESONANT: javalang Siing ="RESCNANT™ + BONSTEROL fanmlarg Sig =
+ BOND CROER AROMATIC: java lang Sing ="AROVATIC -

+ equalsChjed) : bodean

+ GACTBYIDSng): fim dhemat. Aam + VA jaalng Sing

+ getOtherAlom(Atom) : pim chemeni Atom
AstractAnge + containgAtom) : bodlean
+ agle double
ParentViol
L]
V\\ +
\\ +
\ sbMdeale |
\
B +
”df?‘ffff’\"s + dildRde. Siing
\
AosracAgle - \\ + addtontolledion): bodlean
TorsionAnge N, |+ addAl@lledion): bodean
BondAnge N+ dear@llecion): void
Moleade] + oontaing(Atom Golledtion) : boolean
Aom + coniainsAll(@lledion, Gdllecion) : boolean
A . + egualg(Qolledtion, Golledion) : bodean
! TSN + ocoupancy. double - immedateParentvid eade: + has@or(Colledtion) : int
i e + formalQages int) STTTemmsemsssse-3y 4 jsEnpiy(@dllecion) : bodean
e \‘——\\ + hydogenQounts int () + iterator(Qollection) : iteratoindex
---------- ey \ + nonHydogenQounis: int () + renoveAtonfAtom lledion) : boolean
N \ + aomD javalang.Sing + retainAl(@lledion) : boolean
\\ rieciaB Agles + SJEI[LﬁUﬂln.Z Ja\alatg?}nrg + renoveAll(Qollection) : boolean
Qystal \ N + hydogenCount javalangSting + dze(Qdledion): int
- N N + ringViembership: javalang Sting + toAray(Colledtion) : Collection
+ ACHL !n:O N N + aometidty. bodean + fronAnay(Anay) : Qlledion
+ BCAL !rt=1 ~ \ + theChemical Bemert: ChemicalBenent () + getPosition(Atom Colledtion) : int
+ QHL |‘rt:2 \\ \n\ + deleteAon{Aom Cdllection) : void
: ﬁﬂﬂr_lrt_ﬂ \ \ + addLigand(Aom) : aid + getANB/ID(ledion, atoniD) : Aom
0= N o\ + getligand{Sring) : Ao + addBond(BondCullection, Bond) : bodlean
: mfn:fe molealaTasons \\ + gethonHycragenLigand() : Aon] + deleteBondBondCullection, Bond): void
e :17_ \\ | + getBondBornd, Bondledio) : Bond
Z NI _ \ N + addBondAngle(BondAngle, BondColl edtion) : boc
+ SPACEGROP. int=8 ‘\\ ‘\ DlecaAOTS + deleteBorAnge(BondAngle, Bondledtion) : £
- \ \ e+ adiTOmONANg e(TorsonAngle, Gilledtion): bool
+ setGaiLengths(double, double, double) : void| N \ + deleteTosonAng e(TorsonAngle, Qolledtion) : b
+ getGallLengths) : doublef] N N\ + addH edron(Hectron, Golledtion) : bodlean
+ getCelAnged): doubie]]) \\ \ + deleteHection(Eecron, Qolledtion) : bodlean
+ sacmmge(dwe da#edmﬂe):wd - \ \‘ + addvblealie(Vbleaue, Galledtion) : bodean
+ ssspeceguqm_rg):md ‘ «nterface> N + deleteMieaieVdleade, Qolledtion) : boolean
+ getSpacegraup() : javalang Sring Hectron AN + getAonint, Qollection) : Aom
+ s&ncegumnmﬂm:ﬁd + has@oard netes(vbl eaule, Qolledtion) : Qoordinate
+ gaaﬂﬁgumntaﬂnﬂil_ﬂ_ moleaiaBledrons + getNorHdrogenAtors{Atom Qollection) : Atom
i mﬁ@mm%i% e\,qd + getCaculatedVblecularVess(floet, Moleadle) : dot
+ addSymmenyperatoVoleade): vid ruieaiadysd
+ getSymety(pertas) : double]]
+ getQthogoralisationVetrix() : double

Figure 8.3 - Molecule and interrelated classes/interfaces

Chemical Structure Access & Representation Adopted Specification 19

Molecules have the following properties.

8.2.1.1 Properties

Molecule Attributes

Attribute

Details

public static int
UNKNOWN

Initial: -1

Notes: Basically is a flag to identify those molecules
that are not registered yet in the database
and consequently they are unknown to the
system.

public static int
COORD2

Initial: 2
Notes: It contains a 2-dimensional coordinates

public static int
COORDS3

Initial: 3
Notes: Contains a tri-dimensional set of coordinates

public static boolean
fuzzy

Notes: when true, this molecule is only intended to
query databases and probably does not
reflect a real chemical substance that a
researcher would make or isolate and then
store in a database.

public static String
childRole

Notes: string; when this Molecule is associated with
another Molecule, childRole contains a
description of the relationship.

8.2.1.2 Associations

We use Associations to record the relationship between Molecule and other entities:

- Dependency link from class [cml].Atom A pointer to the set of Atoms that belong to this Molecule

- Dependency link from class [cml].Bond A pointer to the set of Bonds that belong to this Molecule

- Association link from interface [cmlI].Molecule Identifies the next Molecule up in the hierarcgy

- Association link from interface [cmlI].Molecule Identifies the set of sub-Molecules under this molecule
- Dependency link from class [cml].Atom ldentifiues the Molecule immediate above the set of Atoms

" Dependency link to class [cml].BondAngle
- Dependency link to class [cml].TorsionAngle

A pointer to the set of BondAngles that belong to Molecule

A pointer to the set of TorsionAngles that belong to this Molecule

" Dependency link to class [cml].Crystal A pointer to a Crystal unit, defining the crystal structure of this molecule
- Dependency link to interface [cml].Electron A pointer to the set of Electrons that belong to this Molecule

8.2.1.3 Operations

The following operations define the behavior of Molecule.

20 Chemical Structure Access & Representation Adopted Specification

Molecule Methods

Operation Details
public Sequential
addAtom(

Collection atoms):boolean

Notes: Appends an Atom to the set indicated by
the Collection of atoms.

public
addAll(
Collection atoms):boolean

Sequential
Notes: Appends an entire Collection of atoms.

public
clear(
Collection atoms):void

Sequential
Notes: Clears the Collection container

public
contains(
Atom atom,
Collection atoms):boolean

Sequential

Notes: Determines if a given Atom is present
within the Collection

public

containsAll(
Collection searchatoms,
Collection atoms):boolean

Sequential

Notes: Determines if a given Collection is part of
another Collection

public

equals(
Collection atomsTwo,
Collection atomsOne):boolean

Sequential
Notes: Determines if both Collections are equal

public Sequential

hasCoord(. Notes: Indicates where this Molecule has
Collection atoms):int coordinates of a specified type (either 2D

or 3D)

public Sequential

isEmpty (Notes: Determines if the Collection is empty
Collection atoms):boolean

public Sequential

iterator(

Collection atoms):iteratorindex

Notes: Iterates over the given Collection

public

removeAtom(
Atom givenAtom,
Collection atoms):boolean

Sequential
Notes: Removes a given Atom from a Collection.

public
retainAll(
Collection atoms):boolean

Sequential
Notes: Asserts the Collection is correct

public
removeAll(
Collection atoms):boolean

Sequential

Notes: Remove all elements of a given Collection
or sub collection

Chemical Structure Access & Representation Adopted Specification

21

22

public
size(
Collection atoms):int

Sequential
Notes: Determines the size of the Collection

public
toArray(
Collection atoms):Collection

Sequential

Notes: Transfer the contents of a given Collection
into an array of the same name.

public
fromArray/(
Array arrayofAtoms):Collection

Sequential

Notes: Populates a Collection from a given array
given th eCollection the same name as the
original array.

public

getPosition(
Atom satom,
Collection atoms):int

Sequential

Notes: Provides the position of a given Atom within
the Collection

public

deleteAtom(
Atom datom,
Collection atom):void

Sequential
Notes: Deletes a given Atom from a Collection

public

getAtomByID(
Collection atoms,
atomlID atom):Atom

Sequential

Notes: A convenience method for locating an Atom
given an (alphanumeric) ID.

public

addBond(
BondCollection molecularBonds,
Bond bond):boolean

Sequential

Notes: Appends a Bond to the set indicated by
molecularBonds

public

deleteBond(
BondCollection molecularBonds,
Bond bond):void

Sequential

Notes: Removes a Bond from the set indicated by
molecularBonds

public Sequential

getBond(Notes: Get a given Bond from a given Collection of
Bond sbond, Bonds
BondCollection bond):Bond

public Sequential

addBondAngle(
BondAngle bondAngle,
BondCollection
molecularBondAngle):boolean

Notes: Appends a BondAngle to the set indicated by
molecularBondAngles.

public

deleteBondAngle(
BondAngle bondangle,
BondCollection

dbondAngle):boolean

Sequential
Notes: Deletes a BondAngle from a Collection

Chemical Structure Access & Representation Adopted Specification

public Sequential

addTorsionAngle(Notes: Appends a TorsionAngle to the set indicated
T—q_orsmr?An le torsionangle, by molecularTorsionAngles
Collection

molecularTorsionAngles):boolean

public Sequential

deleteTorsionAngle(Notes: Removes a TorsionAngleAngle from the set
TorsionAngle torsionangle, indicated by molecularTorsionAngleAngles.
Collection

molecularTorsionAngleAngles):boolean

public Sequential

addElectron(Notes: Appends an Electron to the set indicated by
Electron electron, molecularElectrons.
Collection

molecularElectrons):boolean

public Sequential

deleteElectron(Notes: Removes an Electron from the set indicated
Electron electron, by molecularElectrons
Collection

molecularElectrons):boolean

public Sequential

addMolecule(Notes: Appends a sub-Molecule to the set indicated

Molecule molecule, by subMolecules.
Collection subMolecules):boolean

public Sequential
deleteMolecule(Notes: Removes a Molecule from the set indicated
Molecule molecule, by subMolecules

Collection subMolecules):boolean

public Sequential
getAtom(Notes: Given an integer, n, return the nth Atom in
int num, this Molecule’s molecularAtoms.

Collection atoms):Atom

public Sequential

hasCoordinates(Notes: Indicates where this Molecule has
Molecule molecule,) coordinates of a specified type (either 2D or
Collection atoms):Coordinate2 3D)

public Sequential

getNonHydrogenAtoms(Notes: Returns an array of Atoms associated with
Atom nonhydro, this Molecule (molecularAtoms), omitting
Collection atoms):Atom hydrogens.

public Sequential

Notes: Returns the molecular weight of this

getCalculatedMolecularMass(Molecule by summing the weights of

float weight, constituent Atoms.

Molecule molecule):double

Chemical Structure Access & Representation Adopted Specification

8.2.2 MoleculeFactory

MoleculeFactory is an interface that defines the behavior of a factory that creates Molecules. Figure 8.4 and Table 8.2
provide more detailed information.

cdcml

«interface»
MoleculeFactory

+ createMolecule(Atom, Bond) : pim_chemcm.Molecule
+ getAtonmFactory() : pim _chemcm.AtonFactory
+ getBondFactory() : pim_chemcm .BondFactory

Figure 8.4 - Molecule Factory

Table 8.2 - Molecule Factory Methods

Operation Details
public Sequential
createMolecule(Notes: return pim_chem.cml.Molecule

Atom atoms,
Bond bonds):pim_chem.cml.Molecule

public Sequential
getAtomFactory():pim_chem.cml.AtomFactory | Notes: return pim_chem.cml.AtomFactory

public Sequential
getBondFactory():pim_chem.cml.BondFactory | pNotes: return pim_chem.cml.BondFactory

8.2.3 MoleculeUtil

The interface MoleculeUtil defines the behavior of something that calculates properties for a given Molecule. Figure 8.5
and Table 8.3 provide detailed information.

cdcml

«interface»
MoleculeUtil

+ getCalculatedFormula (Molecule) : pim_chem cnl.Formula
+ getMolecularWeight(Molecule) : double

Figure 8.5 - MoleculeUtil Interface

24 Chemical Structure Access & Representation Adopted Specification

Table 8.3 - MoleculeUtil Interface

structure):pim_chem.cml.Formula

Operation Details

public Sequential

getCalculatedFormula(Notes: return pim_chem.cml.Formula
Molecule

public
getMolecularWeight(
Molecule structure):double

Sequential
Notes: return double

8.2.4 Atom

Atom represents a location within a molecule, generally a chemical atom (see glossary). Figure 8.6 shows the CSAR

Atom and interrelated classes and interfaces.

A set of properties is defined. Properties listed as arrays, are generally single-valued for registerable structures (see

glossary) but may have zero to many values for query structures. Table 8.4 provides detailed description of the properties

and methods.

Chemical Structure Access & Representation Adopted Specification

25

Table 8.4 - Atom attributes and methods

Attribute Details
public double whether the position occupied in coordinate space by
occupancy this Atom actually has a chemical atom within it.
public int a value or set of values for this Atom indicating
formalCharges whether it has gained (<0) or lost (=0) electrons
relative to the uncombined form of the [chemical]
element.
public int a value or set of values indicating the number of
hydrogenCounts hydrogen atoms attached to this Atom. These
hydrogen atoms may be used for substructure querying
or display.
public int the number or allowed numbers of heavy Atoms
nonHydrogenCounts attached to this Atom.
public java.lang.String string identifier attached to this Atom.
atomlID
public java.lang.String a query property of this Atom, used exclusively in
substitutionCount database queries, indicating the number of heavy atoms
attached. It can take non-negative integral values, plus
*’ to indicate ‘as drawn.’
public java.lang.String this is a string property, distinct from the array of
hydrogenCount integers hydrogenCounts that corresponds to the MDL
molfile field indicating the number of hydrogens that
must be present. It can take non-negative integral
values, plus “*’ to indicate ‘as drawn.’
public java.lang.String a query property indicating the number of rings in which
ringMembership this Atom participates. It can take non-negative
integral values, plus “*’ to indicate ‘as drawn.’

26 Chemical Structure Access & Representation Adopted Specification

Atom Methods

Operation Details
public Sequential
addLigand(Tags: throws=CMLException

Atom ligand):void - .
appends a new Atom to this Atom’s list of

attachments
public Sequential
getLigands() Notes: @return Atom[]
String atomID):Atom @roseuid 4280B2C800DE

returns an array of bonded Atoms

public Sequential
getNonHydrogenLigands():Atom Notes: @return Atom[]
@roseuid 4280B2C800E8

convenience method to provide a list of bonded heavy
Atoms

8.2.4.1 Associations
» Dependency link to interface [cml].Molecule — A pointer to the set of Atoms that belong to this Molecule.
¢ Dependency link to interface [cmli].Molecule — Identifiues the Molecule immediate above the set of Atoms.

« Dependency link to class [cmI].NumericAtomParity — Defines the chirality (if any) of this Atom.

< Dependency link to class [cml].Coordinate3 — Relates the Atom to a set of 3D coordinates specifying location in space.

« Dependency link to class [cml].Coordinate? — Relates the Atom to a set of 2D screen coordinates for display.

« Dependency link from class [cml].Atom — Defines a set of Atoms that are bonded to this Atom.

» Dependency link to interface [cml].FormulaElement — Defines that Atom type by relating it to a ChemicalElement in
a periodic table.

« Dependency link to class [cml].Crystal — Relates the Atom to a set of fractional crystal coordinates.

Chemical Structure Access & Representation Adopted Specification 27

cdem
«interface»
FormulaElement
+ ElementType: pim_chemmolutil. Cherrical Element
+ Count double
A
I
'
'
'
/
i
1
II
Numeri cAtomParity H
I
+ numericPaity: double !
+ STEREO_PARITY_UNKNOWN: int=0 M
+ STEREO_PARTY_UNSPECIHED: int=-1 K
+ STEREO_PARITY_EVEN: int=2 H
+ STEREO_PARTY_ODD: int=1 /
|
I
+ NumericAomPaiity() elemeirlType
o ! ParentMol >
\\s ; «interface»
N K Molecule
N
. /
“atonParities / +
3 3 \ ! lecul
CQoordinate2 Coordinate3 \ / subMpleale
\) [—
+ x double + x double \ !
+ y. double + y. double < Y /
e ") i
+ z double < Y "?a.'_‘lds / + addAton{Qollection) : boolean
\ v .', + addAll(Collection) : boolean
\ LY K + clear(ollection) : vid
Molecule| ,” + contains(Atom Collection) : boolean
fET 4 + containsAll(Collection, Collection) : boolean
+ equals(Collection, Collection) : boolean

+ hasCoord(Collection) int
+ isEnpty(Collection) : boolean

+ iterator(Collection) : iteratorindex

+ removeAtor{Atom Collection) : boolean
+ retainAll(Collection) : boolean

+ removeAll(Collection) : boolean

+ size(Collection): int

+ toAray(Collection) : ®lleciion

+ occupancy: double

+ formalCharges int ()

+ hydrogenCounts: int [])

+ nonHydrogenCounts: int ([])

+ atomiD: javalang.Sting

1+ subsitutionCount: java.lang.Stiing
+ hydogenCount: javalang.Sting

Qystal
+ ringMembership: java.lang.String
+ aromalidity: boolean + fronfray(Array) : Collection
+ theChemicalElenent: CherricalHement () + getPosition(Atom Collection) : int
+ deleteAtorAtom Collection) : void
+ addLigand(Atom) : void + getAtonByD(Collection, atomiD) : Atom
+ getligandgString) : Atom[] + addBond(BondCollection, Bond) : boolean
¥ GRS (=6 + getNonHydrogenLigands) : Aton{] + deleteBond(Bondlleciion, Bond) : void
+ Z_FALOAT: int=6 + getBond(Bond, BondCollection) : Bond
+ addBondAngle(BondAngle, BondCollection) : boolean
+ deleteBondAngle(BondAngle, BondCollection) : boolean

+ ZINT: int=7

+ SPACEGROLP: int=8
+ addTorsionAngle(TorsionAngle, Colledtion) : boolean

+ deleteTorsionAngle(TorsionAngle, Collection) : boolean
+ addElectron(El ecron, Collection) : boolean
+ deleteElectron(El ectron, Collection) : boolean

XyzFrac

+ setCellLengths(double, double, double) : void

+ getCellLengths) : doublef]
+ getCallAngles)) : double]
+ setCell Angles(double, double, double) : void
+ setSpacegoup(Sting) : void

+ getSpacegroup() : javalang.Sting
+ setSpacegoupNunrber(nt) : void
+ getSpacegoupNumber(nt) : int
+ setMoleculesPerCall double) : void
+ getMoleculesPerCell() : double

nolecularQystal

+ addMblecule(Violecule, Collection) : boolean

+ deleteVolecul e(\Vblecule, Collection) : boolean

+ getAtonfnt, Collection) : Aom

+ hasCoordinates(vol ecule, Collection) : ordinate2
+ getNonHydrogenAtons(Atom Collection) : Atom

+ getCalculatedVol eculaViss(float, Mblecule) : double

+ addSymmetryOperator(Moleaule) : void
+ getSymmetryOperators) : double]
+ getOrthogonalisationMatrix() : double

Figure 8.6 - Atom and interrelated classes/interfaces

28

Chemical Structure Access & Representation Adopted Specification

8.2.5 AtomFactory

The AtomFactory interface specifies the behavior of things that create Atoms.

cdcml

«interface»

AtomFactory

+ createAton{) : pim _chemcm.Atom

Figure 8.7 - Atom factory

8.2.5.1 Properties

None.

8.2.5.2 Associations
None.
8.2.5.3 Operations

createAtom — instantiates a new Atom.

8.2.6 AtomParity

The AtomParity interface defines a generalized pattern of behavior for definitions of atom-level chirality. Atom-level
chirality means that the atom has some ‘handedness’ as a tetrahedral atom with 4 unlike groups around it. The setting for
this chirality — returned by the getStereoCenter method — can be either numeric (as in MDL software) or a string (as in
Daylight software).

Atom parity is optional in some systems; molecular chirality may be fully specified using bond markings.

The AtomParity interface is realized by two classes: NumericAtomParity and StringAtomParity, which store the parity
as a double-precision real and a string, respectively (see Figure 8.8).

8.2.6.1 Properties
None.

8.2.6.2 Associations
« Association link from class [cml].Atom

* Realization <<realize>> link from class [cml].NumericAtomParity

* Realization <<realize>> link from class [cml].StringAtomParity

Chemical Structure Access & Representation Adopted Specification 29

8.2.6.3 Operations

30

Operation

Details

public
AtomParity():AtomParity

Sequential

Notes: The AtomParity interface defines a generalized
pattern of behavior for definitions of atom-
level chirality. Atom-level chirality means that
the atom has some ‘handedness’ as a
tetrahedral atom with 4 unlike groups around
it. The setting for this chirality — returned by
the getStereoCenter method — can be either
numeric (as in MDL software) or a string (as in
Daylight software).

public
equals(
Object obj):boolean

Sequential

Notes: compares two different AtomParities which
may be in different formats

public
isChiral():boolean

Sequential

Notes: returns true if the Atom has defined
assymmetry, for example, as a tetrahedral
atom with 4 different substituents .

public
isSpecified():boolean

Sequential

Notes: returns true when isChiral returns true AND a
specific parity is set.

public
getStereoCenter():String

Sequential
Notes: returns the actual value for this stereocenter

Chemical Structure Access & Representation Adopted Specification

cdeml

AtomParity

AtomParity()

equals(Object) : boolean

isChiral() : boolean

isSpecified() : boolean
getStereoCenter() : java.lang.Sting

{ DY

! \
/ K

+ o+ o+ o+ o+

I \
«realize» N
l, \\
. «leaJAi%e»
StringAtomParity N
\
+ SMILESSting: javalang.Sting \\
+ STEREO_PARITY_L: javalang.Stiing ="L" \\
+ STEREO_PARITY_R: java.lang.Stiing = ‘\
+ STEREO_PARITY_at: java.lang.String = "@" ‘\
+ STEREO_PARITY_ atat: java.lang.String ="@@" \\
+ STEREO_PARITY_S: java.lang.Sting ="S" \\
+ STEREO_PARITY_D: java.lang.Sting ="D" =
+ STEREO_PARITY_UNKNOWN: java.lang.Sting ="UNK" NumericAtomParity
+ STEREO_PARITY_UNSPECIFIED: java.lang.String = "UNS"
+ numericParity: double
+ AtomPaiy) + STEREO_PARITY_UNKNOWN: int=0
+ StingAtomParity() + STEREO_PARITY_UNSPECIFIED: int= -1
+ STEREO_PARITY_EVEN: int=2
+ STEREO_PARITY_ODD: int=1
+ AtomParity()
+ NumericAtomParity()

Figure 8.8 - Atom parity

8.2.7 Bond

Bond represents a chemical linkage between two Atoms. Properties listed as arrays are generally single-valued for
registerable structures (see glossary) but may have zero to many values for query structures.

cdcml
Bond
+ bondOrders String (])
+ bondLength: double
+ Topology: java.lang.String
+ BOND_ORDER_SINGLE: java.lang.String = "SINGLE"
+ BOND_ORDER _DOUBLE: java.ang.Stiing ="DOUBLE"
+ BOND_ORDER_TRIPLE: java.lang.Sting = "TRIPLE"
+ BOND_ORDER_ANY: javalang.String ="ANY"
+ BOND_ORDER_RESONANT: java.lang.String = "RESONANT"
+ BOND_ORDER_AROMATIC: java.ang.Sting ="AROMATIC"

4

getAtomByID(String) : pim_chem.cml.Atom
getOtherAtom(Atom) : pim_chem.cml.Atom
+ containgAtom) : boolean

4

Figure 8.9 - Bond

Chemical Structure Access & Representation Adopted Specification

8.2.7.1 Properties

Attribute Details
public String Notes: an indication of the strength of the Bond.
bondOrders Common values include SINGLE, DOUBLE,
TRIPLE, AROMATIC, RESONANT, ANY.
public double Notes: the distance between the atoms on either side
bondLength of the Bond. This only has meaning for 3D

structures.

public java.lang.String
Topology

Notes: a query property that indicates whether the

Bond is part of a ring, excluded from ring
membership or unspecified.

public java.lang.String Initial: "SINGLE"
BOND_ORDER_SINGLE

public java.lang.String Initial: "DOUBLE"
BOND_ORDER_DOUBLE

public java.lang.String Initial: "TRIPLE"
BOND_ORDER_TRIPLE

public java.lang.String Initial: "ANY"
BOND_ORDER_ANY

public java.lang.String Initial: "RESONANT"
BOND_ORDER_RESONANT

public java.lang.String Initial: "AROMATIC"

BOND_ORDER_AROMATIC

8.2.7.2 Associations

32

Dependency link to interface [cml].Molecule — A pointer to the set of Bonds that belong to this Molecule

Dependency link from class [cml].BondStereo
Association link to class [cml].Atom — Relates the Bond to its constituent (pair of) Atoms.

Chemical Structure Access & Representation Adopted Specification

8.2.7.3 Operations

Operation Details

public Sequential

getAtomByID(Notes: returns the constituent Atom of this Bond
String having the specified ID.

atomlID):pim_chem.cml.Atom

public Sequential

geAttOtherAtom(Notes: given one Atom, return the second Atom

om

thisAtom):pim_chem.cml.Atom

constituent of this Bond.

public
contains(
Atom thisAtom):boolean

Sequential

Notes: returns true if the specified Atom is part of this
Bond.

8.2.8

BondStereo

Interface BondStereo defines the behavior of classes that define a Bond’s stereochemistry.

cdcml

BondStereo

+ o+ o+ o+ o+ o+

BONDSTEREO_CIS: java.lang.Stiing = "CIS"
BONDSTEREO TRANS: java.lang.String = "TRANS"

BONDSTEREQ_Z: java.lang.String = "Z"
BONDSTEREOQ _E: javalang.String ="E"

BONDSTEREO WEDGE: java.lang.String = "WEDGE"
BONDSTEREO HATCH: java.lang.Stiing = "HATCH"
BONDSTEREO_UNKNOWN: java.lang.String ="UNKNOWN"

s

equals(Object) : boolean
getValue() : java.lang.Stiing

Figure 8.10 - BondStereo

8.2.8.1 Associations

Association link from class [cml].Bond
Dependency link to class [cml].Bond

Chemical Structure Access & Representation Adopted Specification

33

8.2.8.2 Operations

Object obj):boolean

Operation Details
public Sequential
equals(Notes: return boolean

public
getValue():java.lang.String

Sequential
Notes: return java.lang.String

8.2.9 Electron

Electron is reserved future use.

8.2.9.1 Properties

None.

8.2.9.2 Associations

None.

8.2.9.3 Operations

None.

34

Chemical Structure Access & Representation Adopted Specification

cdeml

occupancy: double

formalCharges: int ([])

hydrogenCounts: int ([])

nonHydrog enCounts: int ([])

atom|ID: java.lang.String

substitutionCount: java.lang.String
hydrogenCount: java.lang.String
ringMembership: java.lang.String
aromaticity: boolean
theChemicalElement: ChemicalElement ((])

+ o+ F o+ o+ o+ o+

+

addLigand (Atom) : void
+ getlLigandg(String) : Atom[]
+ getNonHydrogenLigands() : Atom[]

diateParentMolecule

R

R I T T T T T T T T T S T S S S S

+

o+ o+ o+ o+ o+ 4

Bond
+ bondOrders String (])
+ bondLength: double
. . BondStereo
+ Topology: java.lang.String
+ BOND_ORDER_SINGLE: java.lang.String = "SINGLE" + BONDSTEREO_CIS: java.lang.String = "CIS"
+ BOND_ORDER_DOUBLE: java.lang.Sting ="DOUBLE" + BONDSTEREO_TRANS: java.lang.Sting = "TRANS"
+ BOND_ORDER_TRIPLE: java.lang.Stiing = "TRIPLE" + BONDSTEREO_Z: javalang.String = "Z"
+ BOND_ORDER_ANY: java.lang.String ="ANY" + BONDSTEREO_E: java.lang.String ="E"
+ BOND_ORDER_RESONANT: java.lang.String = "RESONANT" e - - o e e e + BONDSTEREO_WEDGE: java.ang.String = "WEDGE"
+ BOND_ORDER_AROMATIC: java.lang.Sting ="AROMATIC" + BONDSTEREO_HATCH: java.lang.String = "HATCH"
+ BONDSTEREO_UNKNOWN: java.ang.String ="UNKNOWN"
+ getAtomByID(String) : pim_chem.cml.Atom
+ getOtherAtom(Atom): pim_chem.cml|.Atom + equals(©Object) : boolean
+ contains(Atom) : boolean + getvalue(): java.lang.Stiing
ParentMolecul -
«interface»
Molecule
\\\\ + UNKNOWN: int=-1
~ + COORD2: int=2
“\ subMolecule] COO0ORD3 ni— 2
\ + COORD3: int=3
\ T —
bondAtoms ‘moleculaBonds * M
N \ + childRole: String
. - > °
. \
“flirllds \\\ addAtom(Collection) : boolean
[N N addAll(Collection) : boolean
' V AN clear(Collection) : void
Molecule contains(Atom, Collection) : boolean
Atom containsAll(Collection, Collection) : boolean

equals(Collection, Collection) : boolean
hasCoord(Collection) : int

isEmpty(Collection) : boolean

iterator(Collection) : iteratorindex

removeAtom(Atom, Collection) : boolean
retainAll(Collection) : boolean

removeAll(Collection) : boolean

size(Collection) : int

toAmray(Collection) : Collection

fromArray(Array) : Collection

getPosition(Atom, Collection) : int

deleteAtom(Atom, Collection) : void

getAtomBy D(Collection, atomID) : Atom
addBondBondCollection, Bond) : boolean
deleteBond(Bond Collection, Bond) : void
getBond(Bond, BondCollection) : Bond
addBondAngle(BondAngle, BondCollection) : boolean
deleteBondAngle (BondAngle, BondCollection) : boolean
addTorsionAngle(TorsionAngle, Collection) : boolean
deleteTorsionAngle(TorsionAngle, Collection) : boolean
addElectron(Electron, Collection) : boolean
deleteElectron(Electron, Collection) : boolean
addMolecule(Molecule, Collection) : boolean
deleteMolecule(Molecule, Collection) : boolean
getAtom(nt, Collection) : Atom
hasCoordinates(Molecule, Collection) : Coordinate 2
getNonHydrogenAtoms(Atom, Collection) : Atom
getCalculatedMolecularMass(float, Molecule) : double

Figure 8.11 - Bond and interrelated classes/interfaces

8.2.10 Isotope

Isotope represents one possible configuration of an atom of a given [chemical] element, defined by its mass. (Isotopes of
a given [chemical] element differ from one another because of the number of neutrons.)

Chemical Structure Access & Representation Adopted Specification 35

cdcml

Isotope

+ mass double
+ abundance: double
+ thelotopeSet: IsotopeSet (])

Figure 8.12 - Isotope

8.2.10.1 Properties

Attribute Details

public double Notes: inertial property of the atom
mass

public double Notes: fraction of the [chemical] containing this
abundance

public IsotopeSet
thelsotopeSet

Notes: set of isotopes

8.2.10.2 Associations

None.
8.2.10.3 Operations

None.

8.2.11 IsotopeFactory

IsotopeFactory provides a uniform interface for things that create Istopes.

cdcml

«interface»
Isotope Factory

+ createlsotope(double, double) : pim chemcml.Isotope

Figure 8.13 - IsotopeFactory

36

Chemical Structure Access & Representation Adopted Specification

8.2.11.1 Properties

None.

8.2.11.2 Associations

None.

8.2.11.3 Operations

Operation

Details

public
createlsotope(

double mass,

double
abundance):pim_chem.cml.lsotope

Sequential
Notes: instantiates an Isotope object.

8.2.12 AtomFactory

AtomFactory provides a uniform interface for things that create Atoms.

cdceml

«interface»
AtomFactory

+ createAton() : pim_chemcml.Atom

Figure 8.14 - AtomFactory
8.2.12.1 Properties
None.

8.2.12.2 Associations

None.

Chemical Structure Access & Representation Adopted Specification

37

8.2.12.3 Operations

Operation Details

public Sequential
createAtom():pim_chem.cml.Atom | Ngtes: instantiates an Atom object.

8.2.13 BondFactory

BondFactory provides a uniform interface for things that create Bonds

cdcm

«interface»
BondFactory

+ createBond() : pim chemcni.Bond
+ createBondForAtons(Aton) : pim chemam.Bond

Figure 8.15 - BondFactory
8.2.13.1 Properties
None.

8.2.13.2 Associations

None.

8.2.13.3 Operations

Operation Details
public Sequential
createBond():pim_chem.cml.Bond Notes: instantiates an empty Bond object.
public Sequential
createBondForAtoms(Tags: throws=CMLException
Atom atm):pim_chem.cml.Bond
Notes: instantiates a Bond given a pair of Atoms.

38 Chemical Structure Access & Representation Adopted Specification

8.2.14 NumericAtomParity

NumericAtomParity is a realization of the AtomParity interface that uses numbers to hold the parity information.

cdcml

Numeric AtomParity

numericParity: double
STEREO_PARITY_UNKNOWN: int=0
STEREO_PARITY_UNSPECIFIED: int=-1
STEREO_PARITY_EVEN: int=2
STEREO_PARITY_ODD: int=1

+ o+ o+ o+ o+

a5

AtomParity()
+ NumericAtomParity()

Figure 8.16 - NumericAtomParity

8.2.14.1 Properties

Attribute

Details

public double
numericParity

Notes:

the value of the current Atom’s stereochemical
parity.

public int
STEREO_PARITY_UNKNOWN

Initial: O
Notes:

an indication that no information is available
about the current Atom’s stereochemical
parity, probably because of a lack of
experimental data.

public int
STEREO_PARITY_UNSPECIFIED

Initial: -1

Notes:

an indication that no information has been
provided about the current Atom’s
stereochemical parity, probably because the
property has not been given a value.

public int
STEREO_PARITY_EVEN

Initial: 2
Notes:

an indication that the mathematical function
describing the current Atom'’s stereochemical
parity gives a value divisible by 2.

public int
STEREO_PARITY_ODD

Initial: 1
Notes:

an indication that the mathematical function
describing the current Atom’s stereochemical
parity gives a value not evenly divisible by 2.

8.2.14.2 Associations

None.

Chemical Structure Access & Representation Adopted Specification

39

8.2.14.3 Operations

Operation Details

public Sequential

AtomParity(): Notes: The AtomParity interface defines a generalized

pattern of behavior for definitions of atom-
level chirality. Atom-level chirality means that
the atom has some ‘handedness’ as a
tetrahedral atom with 4 unlike groups around
it. The setting for this chirality — returned by
the getStereoCenter method — can be either
numeric (as in MDL software) or a string (as in
Daylight software).

public Sequential

NumericAtomParity(): Notes: constructor

8.2.15 StringAtomParity

StringAtomParity is a realization of AtomParity interface that uses text to hold the parity information.

cdcml
StringAtom Parity
+ SMILESString: java.ang.String
+ STEREO_PARITY_L: java.lang.String ="L"
+ STEREO_PARITY_R: java.lang.String ="R"
+ STEREO_PARITY_at: java.lang.String ="@"
+ STEREO_PARITY_atat: java.ang.String ="@@"
+ STEREO_PARITY_S: java.lang.String ="S"
+ STEREO_PARITY_D: java.lang.String ="D"
+ STEREO_PARITY_UNKNOWN: java.lang.String ="UNK"
+ STEREO_PARITY_UNSPECIFIED: java.lang.String = "UNS"
+ AtomParity()
+ StringAtomParity()

Figure 8.17 - StringAtomParity

40 Chemical Structure Access & Representation Adopted Specification

8.2.15.1 Properties

Attribute

Details

public java.lang.String
SMILESString

Notes: the value of the current Atom’s stereochemical
parity.

public java.lang.String
STEREO_PARITY_L

Initial: "L"

Notes: an indication that the current Atom’s
stereochemical configuration resembles a
standard ‘L’ Atom.

public java.lang.String
STEREO_PARITY_R

Initial: "R"

Notes: an indication that the current Atom’s
stereochemical configuration is classified as ‘R’
according to the Cahn-Ingold-Prelog rules.

public java.lang.String
STEREO_PARITY_at

Initial: "@"

Notes: an indication that current Atom has
substituents arranged in an ‘anticlockwise’
fashion.

public java.lang.String
STEREO_PARITY_atat

Initial: "@@"

Notes: an indication that current Atom has
substituents arranged in a ‘clockwise’ fashion.

public java.lang.String
STEREO_PARITY_S

Initial: "S"

Notes: an indication that the current Atom’s
stereochemical parity is classified as ‘S’
according to the Cahn-Ingold-Prelog rules.

public java.lang.String
STEREO_PARITY_D

Initial: "D"

Notes: an indication that the current Atom’s
stereochemical parity resembles a standard ‘D’
Atom.

public java.lang.String
STEREO_PARITY_UNKNOWN

Initial: "UNK"

Notes: an indication that no information is available
about the current Atom’s stereochemical
parity, probably because of experimental
limitations.

public java.lang.String
STEREO_PARITY_UNSPECIFIED

Initial: "UNS"

Notes: an indication that no information has been
provided about the current Atom’s
stereochemical parity, possibly because the
property has not been given a value.

8.2.15.2 Associations

Chemical Structure Access & Representation Adopted Specification

41

8.2.15.3 Operations

Operation

Details

public
AtomParity():

Sequential

Notes: The AtomParity interface defines a generalized
pattern of behavior for definitions of atom-
level chirality. Atom-level chirality means that
the atom has some ‘handedness’ as a
tetrahedral atom with 4 unlike groups around
it. The setting for this chirality — returned by
the getStereoCenter method — can be either
numeric (as in MDL software) or a string (as in
Daylight software).

public
StringAtomParity():

Sequential
Notes: constructor

8.2.16 Coordinate2

Coordinate2 represents a set of X, y coordinates which specify the placement of an atom on a 2D display grid.

cdcml
Coordinate2
+ Xx: double
+ y: double

Figure 8.18 - Coordinate2

8.2.16.1 Properties

42

Attribute Details

public double Notes: the abscissa of this coordinate set.
X

public double Notes: the ordinate of this coordinate set.
Yy

Chemical Structure Access & Representation Adopted Specification

8.2.16.2 Associations
« Dependency link from class [cml].Atom — Relates the Atom to a set of 2D screen coordinates for display.
8.2.16.3 Operations

None.

8.2.17 Coordinate3

Coordinate3 represents a set of x, y, z coordinates which specify the placement of an atom on a 2D display grid.

cdcml

Coordinate3

+ x: double
+ y: double
+ z: double

Figure 8.19 - Coordinate3

8.2.17.1 Properties

Attribute Details

public double Notes: the abscissa of this coordinate set.
X

public double Notes: the ordinate of this coordinate set
Yy

public double Notes: the depth coordinate of this set.
z

8.2.17.2 Associations
« Dependency link from class [cml].Atom — Relates the Atom to a set of 3D coordinates specifying location in space.
8.2.17.3 Operations

None.

8.2.18 AbstractAngle

A generalization of the behavior of bond (or 3-center) angles and torsional (or 4-center) angles. Realizations: BondAngle
and TorsionAngle.

Chemical Structure Access & Representation Adopted Specification 43

8.2.18.1 Properties

Attribute Details

public double
angle

8.2.18.2 Associations
« Association link to class [cmlI].AngleUnits
» Generalization link from class [cml].BondAngle

* Generalization link from class [cml].TorsionAngle

8.2.18.3 Operations

None.

8.2.19 Formula

Formula represents a listing of the atoms and quantities within a Molecule. It is built of formulaElements (g.v.) blocks.
Since there are multiple ways of calculating the molecular formula for a given molecule, (depending on, for example,
counting salt fragments that are not explicitly included in the structure), there may be more than one Formula for a given
Molecule and therefore, Formulas may contain sub-Formulas.

44

Chemical Structure Access & Representation Adopted Specification

«nterface»

FormulaElement

formulaFomulaBE ements

Formula

+ overallCount int

+ EementType: pim_chem.mol util. Chemical Element

+ Count: double

'
'
'
'
'
.
.
|
)
1
1
|
1
]
|
‘.
.
'
‘.
’
.

i
,
Il
I
l
elementType
i

]
|
i
I
.
'
.
.
'
1
1
1
1
1
1
1
1
I
’
.
.
'

ligands

<<

Moleaule| ,

Aom

+ occupancy: double
+ formelChages int ()

+ hydogenCounts: int ([)

+ nonHydrogenCounts: int ([])

+ atomiD: javalang.String

+ subditutionCount: java.lang.String
+ hydiogenCount: javalang. String
+ ringMembership: java.lang.String

+ amomatidty: boolean
+ theChemicalElement: Cherical Element (])

+ addLigand(Atom) : void

+ getligandgString) : Atom[]
+ getNonHydrogenLigandsy) : AtonT]

Figure 8.20 - Formula Elements

Chemical Structure Access & Representation Adopted Specification

+ formal Charge: double
+ name: javalang.String
+ theFormulaElement FomulaElement ([])

+ ceateFromSting(String, Stiing) : void
+ addElement(String, double) : void
+ getElementTypes) : java.lang.Sting
+ getElementCounts) : doublef]

+ addFormula(Formula) : boolean

+ getFormulaAtoms() : Atom[]

+ deleteAllFormulag) : void

+ deleteFormulafFomula) : boolean
+ getCal culatedMol eculaiMass() : double
+ getFormattedString (String, String, boolean) : java.lang.Sting

+ getFormalCharge() : charge

+ setFomal Charge() : boolean
+ getFormattedString () : String

45

8.2.19.1 Properties

Attribute

Details

public int
overallCount

Notes: total number of atoms in this formula.

public double
formalCharge

public java.lang.String
name

public FormulaElement
theFormulaElement

8.2.19.2 Associations

46

Dependency link to interface [cml].FormulaElement — Relates the Formula to the constituent formulaElements.

Chemical Structure Access & Representation Adopted Specification

8.2.19.3 Operations

Operation

Details

public
createFromString(
String formulaString,
String formulaConvention):void

Sequential
Tags: throws=CMLException

Notes: initializes a Formula from text
input

public

addElement(
String elementType,
double count):void

Sequential

Notes: append a [chemical] element
(including a count) to the Formula

public

getElementTypes():java.lang.String

Sequential

Notes: returns an array representing the
types of atoms present

public
getElementCounts():double

Sequential

Notes: returns an array of numbers
representing the number of times
each type of atom (from the array
returned by getElementTypes)
occurs in the Formula.

public
addFormula(
Formula form):boolean

Sequential

Notes: appends a Formula representation
to this Formula.

public
getFormulaAtoms():Atom

Sequential

Notes: returns an array of Atoms
represented herein.

public
deleteAllFormulas():void

Sequential

Notes: remove all sub-Formulas from this
Formula.

public
deleteFormula(
Formula form):boolean

Sequential

Notes: remove one sub-Formula from this
Formula.

Chemical Structure Access & Representation Adopted Specification

47

public Sequential
getCalculatedMolecularMass():double Tags: throws=CMLException

Notes: @return double

public Sequential
getFormattedString(
String convention,

String sort, Notes: @return java.lang.String
boolean omitCount):java.lang.String @roseuid 4280B2C90016
public Sequential

getFormalCharge():charge

Notes: return the surfeit or deficit of
electrons in this Formula

public Sequential
setFormalCharge():boolean

Notes: change the surfeit or deficit of
electrons in this Formula.

public Sequential
getCalculatedMolecularMass():molecularmass

Notes: returns the weight generated for
this Formula.

public Sequential
getFormattedString():String

Notes: generate a printable text
representation of Formula, given a
display mode.

8.2.20 FormulaElement

It refers to a combination of atom type ([chemical] element) and count. It is used in defining molecular formulas.

48 Chemical Structure Access & Representation Adopted Specification

8.2.20.1 Properties

Attribute Details
public pointer to an entry in a periodic table defining a kind of
pim_chem.molutil.ChemicalElement atom
ElementType
public double the number of times an ElementType occurs in a
Count formula unit.

8.2.20.2 Associations

< Dependency link from class [cml].Atom — Defines that Atom type by relating it to a ChemicalElement in a periodic

table.

¢ Dependency link from class [cml].Formula — Relates the Formula to the constituent formulaElements.

8.2.20.3 Operations

None.

8.2.21 Crystal

Crystal A homogenous solid formed by a repeating, three-dimensional pattern of atoms, ions, or molecules and having

fixed distances between constituent parts.

cdcml

Crystal

ACELL: int=0
BCELL: int=1
CCELL: int=2
ALPHA: int=3

BETA: int= 4
GAMMA: int =5
Z_FLOAT: int=6
Z_INT: int=7
SPACEGROUP: int=38

S i

getCellLengths() : double[]
getCellAngles() : double[]

setSpacegroup(String) : void
getSpacegroup(): java.lang.String
setSpacegroupNumber(int): void
getSpacegroupNumber(@nt):int
setM oleculesPerCell(double): void
getMoleculesPerCell() : double

getSymmetryOperators() : double[]
getOrthogonalisationM atrix() : dou ble

I It T T T

setCellLengths(double, double, double) : void

setCellAngles(double, double, double) : void

addSymm etryOperator(Molecule) : void

Figure 8.21 - Crystal

Chemical Structure Access & Representation Adopted Specification

49

8.2.21.1 Properties

8.2.21.2 Associations

Attribute Details

public const int Initial: O
ACELL

public const int Initial: 1
BCELL

public const int Initial: 2
CCELL

public const int Initial: 3
ALPHA

public const int Initial: 4
BETA

public const int Initial: 5
GAMMA

public const int Initial: 6
Z_FLOAT

public const int Initial: 7
Z_INT

public const int Initial: 8

SPACEGROUP

8.2.21.3 Operations

None.

50

Dependency link from interface [cml].Molecule — A pointer to a Crystal unit, defining the crystal structure of this
molecule.

Dependency link from class [cmlI].Atom — Relates the Atom to a set of fractional crystal coordinates.

Chemical Structure Access & Representation Adopted Specification

cdcml

«interface»
Isotope Factory

+ createlsotope(double, double) : pim_chem.cml.Isotope

Z_FLOAT: int=6
Z_INT: int=7
SPACEGROUP: int=8

Crystal
+ ACELL: int=0
Isotope + BCELL: int=1
+ CCELL: int=2
v MEES Coule + ALPHA: int =3
+ abundance: double + BETA: int=4
+ thelsotopeSet: IsotopeSet ([]) + GAMMA: int=5
+
+
+

<tCellLengths(double, double, double) : void
getCellLengths() : double[]

getCellAngley) : double]]
stCellAngles(double, double, double) : void
stSpacegroup(String) : void

getSpace group() : java.lang.String
stSpacegroupNumber(int) : void

getSpace groupNumber(int) : int
stMoleculesPerCell(double) : void
getMoleculesPerCell() : double
addSymmetryOperator(Molecule) : void
getSymmetryOperators() : double[]
getOrthogonalisationMatrix() : double

«interface»
Electron

+ + + + o+ + A+ + o+

Figure 8.22 - CSAR Crystal and Others

8.3 Molutil Module

Before we describe this module, general information regarding [Chemical] elements is provided here.

Periodic Table of Elements This table gives information about the chemical elements. Elements are grouped into eight
classes according to their properties.

Elements: Each element has a fixed number of positively charged protons in its nucleus and an equal number of electrons
orbiting the nucleus. For example, hydrogen (H) has one proton and one electron, but lead (Pb) has 82 protons and 82
electrons. There are about 115 known elements of which 82 are naturally abundant.

Isotopes: The nucleus contains both protons and neutrons. An element has a fixed number of protons but may exist with
various numbers of neutrons. The sum of the protons and neutrons is the mass number. For example, helium exists as
3He(2 protons and one neutron) or as 4He (2 protons and 2 neutrons). The two forms of helium are called isotopes of
helium. Isotopes of an element have the same chemical properties but different weights. Some elements have many
isomers. Tin (Sn) has about 38 known isotopes.

The MOLUtI module, see Figure 8.23, contains a number of interfaces whose main function is to provide utility
functionality. For example, there are the PeriodicTableFactory and PeriodicTable interfaces that are used to construct
periodic tables. In addition this module provides the ChemicalElementFactory and the ChemicalEelement interfaces used
to manufacture chemical elements. Moreover since each chemical element may appear as an isotope, an
isotopeSetFactory, isotopeSet, and isotope classes/interfaces are provided.

Chemical Structure Access & Representation Adopted Specification 51

cd molutil

«interface»
PeriodicTableFactory

«interface»

Che micalElementFactory

+ createPeriodicTable () : pim_chem.molutil .PeriodicTable

+ createChemicalElement(int) : pim_chem.no lutil.Chemical Element
+ createlostopicallyLabele dChemical Element(int, sotope Set) : pim_chem.molutil.Chemical Element

«interface»
PeriodicTable

+ getElement(String) : pim_che mmolutil.ChemicalElement
+ getElementByAtomicNumber(int) : pim_chem.molutil.ChemicalElement
+ getSymbol(int) : java.lang.String

«interface»
isotopeSetFactory

+ createksotopeSet(lsotopeSet) : Isotope Set

Figure 8.23 - MOLUtil Module

8.3.1 ChemicalElement

ChemicalElement provides a way of describing the properties of a category of Atoms, related by having the same

number of protons in the nucleus.

52

«interface»

IsotopeSet

+ getMostCommonikotope() : pim_chem.cml.lsotope
+ getlsotopeAbundance (Isotope) : double
+ getAveragedWeight() : double

ChemicalElement

- atomicNumber: int

- atomicWeight: double

- covalentRadius double

- symbol: String
VDWRadius: double

- valencxeElectrons: int

«property get» getatomicNumber() : int
«property get» getatomicWeight() : double
«property get» getcovalentRadius() : double
«property get» getsymbol() : Sting

«property get» getvalencxeElectrons() : int
«property get» getVDWRadiug() : double
«property set» setatomicNumber(int) : void
«property set» setatomicWeight(double) : void
«property set» setcovalentRadius(double) : void
«property set» setsymbol(String) : void
«property set» setvalencxeElectrong(int) : void
«property set» setVDWRadius(d ouble) : void

B T T T S S SR S

Chemical Structure Access & Representation Adopted Specification

cd molutil

ChemicalElement

atomicNumber: int
atomicWeight: double
covalentRadius double
symbol: String
VDWRadius double
valencxeElectrons: int

«property get» getatomicNumber() : int
«property get» getatomicWeight() : double
«property get» getcovalentRadiug() : double
«property get» getsymbol() : String

«property get» getvalencxeElectrons() : int
«property get» getVDWRadius() : double
«property set» setatomicNumber(int) : void
«property set» setatomicWeight(double) : void
«property set» setcovalentRadius(double) : void
«property set» setsymbol(String) : void
«property set» setvalencxeElectrons(int) : void
«property set» setVDWRadiug(double) : void

+ o+ o+ o+ o+ o+ o+ o+ o+ o+ o+ +

Figure 8.24 - Chemical Element

8.3.1.1 Properties

Attribute Details
private int Notes: an integer that identifies this [chemical]
atomicNumber element, equal to the number of protons in the
nucleus
private double Notes: the gravitational mass of the [chemical]

atomicWeight element relative to carbon (a standard). This

number is generally a weighted average of the
Isotopes that make up the [chemical] element.

private double

i Notes: one half of the distance between two singly-
covalentRadius

bonded atoms of the [chemical] element.

private String Notes: 1-3 letters that are used to represent the
symbol [chemical] element

private dOU_b|e Notes: the closest a non-bonded atom can approach
VDWRadius

without incurring very strong repulsive forces.

private int
valencxeElectrons

Notes: number of electrons in the outermost shell of
an atom of this [chemical] element.

Chemical Structure Access & Representation Adopted Specification

8.3.1.2 Associations

» Association link to interface [molutil].lsotopeSet

8.3.1.3 Operations

Operation

Details

public
getatomicNumber():int

<<property get>>
Tags: attribute_name=atomicNumber

public
getatomicWeight():double

<<property get>>
Tags: attribute_name=atomicWeight

public
getcovalentRadius():double

<<property get>>
Tags: attribute_name=covalentRadius

public
getsymbol():String

<<property get>>
Tags: attribute_name=symbol

public
getvalencxeElectrons():int

<<property get>>
Tags: attribute_name=valencxeElectrons

public
getVDWRadius():double

<<property get>>
Tags: attribute_name=VDWRadius

public
setatomicNumber(
int newVal):void

<<property set>>
Tags: attribute_name=atomicNumber

public
setatomicWeight(
double newVal):void

<<property set>>
Tags: attribute_name=atomicWeight

public
setcovalentRadius(
double newVal):void

<<property set>>
Tags: attribute_name=covalentRadius

public
setsymbol(
String newVal):void

<<property set>>
Tags: attribute_name=symbol

public
setvalencxeElectrons(
int newVal):void

<<property set>>
Tags: attribute_name=valencxeElectrons

public
setVDWRadius(
double newVal):void

<<property set>>
Tags: attribute_name=VDWRadius

Chemical Structure Access & Representation Adopted Specification

8.3.2 ChemicalElementFactory

ChemicalElementFactory provides a uniform interface for things that create ChemicalElements.

cd molutil

«interface»
ChemicalElementFac tory

+ createChenicalElerment(int) : pim _chemmnolutil.Chenical Elerment

+ createlostopical lyLabeledChenicalElenent(int, IsotopeSet) : pim chemnolutil.Che mcal Elemrent

Figure 8.25 - ChemicalElementFactory
8.3.2.1 Properties

None.

8.3.2.2 Associations

None.

8.3.2.3 Operations

atomicNumber): pim_chem.molutil.ChemicalElement

Operation Details
public Sequential
createChemicalElement(

int

Notes: instantiates a ChemicalElement
having a specified atomic
number.

public
createlostopicallyLabeledChemicalElement(
int atomicNumber,
IsotopeSet
isotopes):pim_chem.molutil.ChemicalElement

Sequential

Notes: instantiates a ChemicalElement
having a specified atomic
number and a given set of
Isotopes.

8.3.3 IsotopeSet

An IsotopeSet is a grouping of Isotopes that define the composition of a sample of the [chemical] element.

Chemical Structure Access & Representation Adopted Specification

55

cd molutil

«interface»
IsotopeSet

+ getMostCommonkotope() : pim_chem.cml.kotope
+ getlsotopeAbundance (Isotope) : double
+ getAveragedWeight() : double

Figure 8.26 - IsotopeSet

8.3.3.1 Properties

None.

8.3.3.2 Associations

« Association link from class [cml].Isotope
« Association link to class [cml].Isotope
« Association link to class [cml].Isotope

« Association link from class [molutil].ChemicalElement

8.3.3.3 Operations

Operation Details

public Sequential

getMostCommonlsotope():pim_chem.cml.Isotope | Notes: returns the most prominent

Isotope of the current
[chemical] element.

public Sequential

getlsotopeAbundance(Notes: returns the fraction of a given
Isotope isotope):double Isotope within the set.

public Sequential

getAveragedWeight():double Notes: returns the mean of the

weights of the Isotopes
making up the set

8.3.4 IsotopeSetFactory

IsotopeSetFactory provides a uniform interface for things that create IstopeSets.

56

Chemical Structure Access & Representation Adopted Specification

cd molutil

«interface»
isotopeSetFactory

+ createlsotopeSet(sotope Set) : IsotopeSet

Figure 8.27 - IsotopeSetFactory
8.3.4.1 Properties

None.

8.3.4.2 Associations
None.

8.3.4.3 Operations

Operation

Details

public
createlsotopeSet(
IsotopeSet isotopes):lsotopeSet

Sequential
Notes: instantiates an IsotopeSet

8.3.5 PeriodicTable

A grouping of Chemical Elements that provides a complete representation of all the atom types used in some chemical

system.

cd molutil

«interface»
PeriodicTable

+ getSymbol (int) : java.lang. String

+ getElement(String) : pim chemnolutil. ChemcalElerrent
+ getElementByAtonmicNumber(int) : pim _chemnol util.ChenricalElement

Figure 8.28 - Periodic Table

8.3.5.1 Properties

None.

Chemical Structure Access & Representation Adopted Specification

57

8.3.5.2 Associations

None.

8.3.5.3 Operations

Operation Details

public Sequential

getE!ement(Notes: given an atomic symbol, return
Siig the corresponding

symbol):pim_chem.molutil.ChemicalElement

ChemicalElement.

public Sequential

getElementByAtomicNumber(Notes: given a number, return the
mt. . . . ChemicalElement with that

atomicNumber):pim_chem.molutil.ChemicalElement many protons.

public Sequential

getSymbol(Notes: given a number, return the

int atomicNumber):java.lang.String

atomic symbol for the
ChemicalElement with that
many protons.

8.3.6 PeriodicTableFactory

PeriodicTableFactory provides a uniform interface for things that create PeriodicTables.

cd molutil

«interface»

PeriodicTableFactory

4

createPeriodicTable() : pim_chem.molutil.PeriodicTable

Figure 8.29 PeriodicTable Factory

8.3.6.1 Properties

None.

8.3.6.2 Associations

None.

58

Chemical Structure Access & Representation Adopted Specification

8.3.6.3 Operations

Operation Details

public Sequential
createPeriodicTable():pim_chem.molutil.PeriodicTable Notes: instantiates an empty
PeriodicTable

8.4 Search Component

Search is one of the more important transactional operations. It is required for every type of processing such as registering
components, comparing elements, and others. For example, a typical interaction will begin as follows: using ISIS/Draw to
sketch a molecule for a substructure search of a Daylight database.

Figure 8.30 - Substructure search

Another typical search will use both intrinsic and extrinsic properties. In this particular case, the intrinsic properties are
stored in proprietary databases and the extrinsic are stored in relational databases, in most cases Oracle. This specification
only deals with the search of intrinsic properties. Figure 8.31 and Figure 8.32 illustrate the UML description of this
component.

Chemical Structure Access & Representation Adopted Specification 59

cd search

«interface»
SearchCriterion::AccuracyQualifier
EXACT: String
LIKE: String
SIMILAR: String
SUBSTRUCTURE: String
MARKUSH: String
RGROUP: String

TAUTOME String

«interface»
SearchCriterion
+ theComparisonOp: SearchCriteriaGroup.Comp arisonOp
+ theAccuracyQualifier: SearchCriterion.AccuracyQualifier

+ setAccuracyQualifier(SearchCriterion.AccuracyQualifier) : void

+ setSearchableProperty(SearchableProperty) : void <>\
+ setComparisonOp() : Void

ok ko b+ 4

«property get» getEXACT() : String
«property get» getLIKE() : String

«property get» getMARKUSH() : String
«property get» getRGROUP() : String
«property get» getSMILAR() : String
«property get» getSUBSTRUCTURE() : String
«property get» getTAUTOMER() : String
«property set» setEXACT(String) : void
«property set» setLIKE(String) : void

«interface»

ComparisonOperator

+ LT:. sting «property set» setMARKUSH(String) : void
+ EQ. String «property set» setRGROUP (String) : void

+ LE: Sting «property set» setSIMLAR(String) : void

+ GE: String «property set» setSUBSTRUCTURE(String) : void
+ GT: String «property set» setTAUTOMER(String) : void

+

«interface»
LogicalOperator
- AND: StringAto mParity

- OR: Stiing
- XOR: Stiing
«interface» - NOT: String

SelectPropertyGroup
+ SelectPropertyGroup: SelectPropertyGroup ([])

+ «property get» getSelectPropertyGroup() : SelectPropertyGroup
+ «property set» setSelectPropertyGroup(SelectPropertyGroup) : void

«interface»
SearchCriteriaGroup

+ addSearchCriterion() : SearchCriterion
+ removeSearchCriterion(SearchCriterion) : boolean

«interface» property
Property + MeasuringUnitPrefix

+ Description: String + AbstractValue
+ guid:. swing + BLOB
@ Domes S0, + CitedReference
+ Searcheable: boolean iy

UG IUe A, + CitedValue
+ «property get» getDescription() : String + MatrixValue
+ «property get» getguid() : String + MeasuringUnit
+ «property get» getName() : String + Scalavalue
+ «property get» getSelectPropertyGroup() : SelectPropertyGroup
+ «property get» isSearcheable() : boolean + Tensorvalue
+ «property set» setDescription(String) : void + Vectorvalue
+ «property set» setguid(String) : void
+ «property set» setName(String) : void
+ «property set» setSearcheable(boolean): void
+ «property set» setSelectPropertyGroup(SelectPropertyGroup) : void T e

Chem SearchEngine

addSearchCriteriaGroup() : SearchCriteriaGroup
removeSearchCriteriaGroup(SearchCriteriaGroup) : boolean
searchChemicalElements() : Collection
splitQuery(Collection, Collection) : boolean
addSelectedPropertyGroup() : Property
removeSelectedProperty(Property) : boolean

ResultSet

o E o+ o+

- resultSET: ResultSet ————T

+ close(ResultSet): boolean

+ deleteRow(ResultSet, int) : boolean ShemSearEhEEIen ey

+ next(ResultSet) :int

+ previous(ResultSet) : int + searchEngine: ChemSearchEngine

+ updateRow(int) : void

+ getFieldMolecule(): Molecule + «property get» getsearch Engine(): Chem SearchEngine

+ getFieldProperty(): object + «property set» setsearchEngine(Chem SearchEngine) : void

Figure 8.31 - Search Module

60 Chemical Structure Access & Representation Adopted Specification

cdsearch

«interface»
SearchCriterion::AccuracyQualifier
+ MeasuringUnitPrefix + EXACT: Stiing
+ AbstractValue + LIKE: String
+ BLOB + SIMILAR: String
’ + SUBSTRUCTUR String
+ CitedReference + MARKUS String
+ CitedValue + RGROUP: String
+ MatrixValue + TAUTOMER: Stiing
+ MeasuringUnit
RpS—— + «property get» getEXACT() : String
+ «property get» getLKE() : String
+ TensorValue + «property get» getMARKUSH() : String
+ VectorValue + «property get» getRGROUP() : String
+ «property get» getSMILAR() : String
+ «property get» getSUBSTRUCTURE() : String
+ «property get» getTAUT OMER() : String
+ «property set» sSetEXACT(Stiing) : void
+ «property set» setLIKE(String) : void
+ «property set» setMARKUSH(String) : void
+ «property set» setRGROUP(String) : void
+ «property set» setSIMILAR(String) : void
«interfa ce» . + «property set» setSUBSTRUCTURE(String) : void
O EHCOTE ey «interface> + «property set> setTAUTOMER(String) : void

LT: Stiing Searc hCriterion
+ theComparisonOp: SearchCriteriaGroup.ComparisonOp

<+ theAccuracyQualifier. Search Criterion.AccuracyQualifier

+

setAccuracyQualifier(SearchCriterion.AccuracyQualifier) : void
setSearchableProperty(SearchableProperty) : void
setComparison Op() : Void

P

+

«interface»

+

LogicalOp erator
-~ AND: StringAtomParity

- OR: String
- XOR: String
- NOT: String
«inteface»
SelectPropertyGroup - :
+ SelectPropertyGroup: SelectPropertyGroup (]) «interface>
SearchCriteriaGroup
+ «property get» getSelectPropertyGroup() : SelectPropertyGroup + addSearchCriterion() : SearchCriterion
+ «property set» setSelectPropertyGroup(SelectPrope tyGroup) : void + removeSearchCriterion(SearchCriterion) : boolean

«interface»
Property

«interface»

ChemSearchEngine

«property get» getDescription() : String

«property get» getguid() : String

«property get» getName() : String

«property get» getSelectPropertyGroup () : SelectPropertyGroup

+ addSearchCriteriaGroup() : Search CriteriaGroup
+

+

+

+ «property get» isSearcheable() : boolean

+

+

+

+

+

remove Se archCriteriaGroup(SearchCriteriaGroup) : boolean
searchChemicalElements() : Collection
splitQuery(Collection, Collection) : boolean
addSelectedPropertyGroup() : Property

remove Se lectedPro perty(Property) : boolean

T

«property set» setDescription(String) : void

«property set» setguid(String) : void

«property set» setName(String) : void

«property set» setSearcheable(boolean) : void

«property set» setSelectPropertyGroup(SelectProperty Group) : void

Figure 8.32 - Search Module (Properties Classes)

The following sections describe the modules in detail.

8.4.1 ChemSearchEngineManager

The ChemSearchEngineManager interface acts like a factory creating a given ChemSearchEngine.

Chemical Structure Access & Representation Adopted Specification

Connections
- Dependency link to interface [search].ChemSearchEngine

ChemSearchEngineMananger Attributes

Attribute Details

public ChemSearchEngine
searchEngine

ChemSearchEngineMananger Methods

Operation Details

public <<property get>>
getsearchEngine():ChemSearchEngine Tags: attribute_name=searchEngine

public <<property set>>

setsearchEngine() Tags: attribute_name=searchEngine
ChemSearchEngine newVal):void

8.4.2 ResultSet

The ResultSet is a class that instantiates the result of executing the query against the proprietary databases. As any typical
result set, the set is composes of one or more rows for each molecule and property pair. Methods are provided to close()
the result set and to navigate the result set such as move next() and previous() and to manipulate the result set such as
updateRow() and deleteRow().

62 Chemical Structure Access & Representation Adopted Specification

Connections

" Dependency link from interface [search].ChemSearchEngine

ResultSet Attributes

Attribute

Details

private ResultSet
resultSET

Notes: Containier

ResultSet Methods

ResultSet set):boolean

Operation Details
public Sequential
close(Notes: Closes the set

ResultSet set):int

public Sequential

deleteRow(Notes: Deletes one row of the given set returns true
ResultSet set, if done
int row):boolean

public Sequential

next(Notes: iterates over the set

public
previous(
ResultSet set):int

Sequential
Notes: Moves to previous record

public
updateRow(
int row):void

Sequential
Notes: Updates a row in the set

getFieldProperty():object

public Sequential
getFieldMolecule():Molecule
public Sequential

Chemical Structure Access & Representation Adopted Specification

63

8.4.3 AccuracyQualifier

64

Connections

Aggregation link to interface [search].SearchCriterion

AccuracyQualifier Attributes

Attribute

Details

public static String
EXACT

public static String
LIKE

public static String
SIMILAR

public static String
SUBSTRUCTURE

public static String
MARKUSH

public static String
RGROUP

public static String
TAUTOMER

Chemical Structure Access & Representation Adopted Specification

AccuracyQualifier Methods

Operation

Details

public
getEXACT():String

<<property get>>
Tags: attribute_name=EXACT

public
getLIKE():String

<<property get>>
Tags: attribute_name=LIKE

public
getMARKUSH():String

<<property get>>
Tags: attribute_name=MARKUSH

public
getRGROUP():String

<<property get>>
Tags: attribute_name=RGROUP

public
getSIMILAR():String

<<property get>>
Tags: attribute_name=SIMILAR

public
getSUBSTRUCTURE():String

<<property get>>
Tags: attribute_name=SUBSTRUCTURE

public
getTAUTOMER():String

<<property get>>
Tags: attribute_name=TAUTOMER

public
SsetEXACT(
String newVal):void

<<property set>>
Tags: attribute_name=EXACT

public
setLIKE(
String newVal):void

<<property set>>
Tags: attribute_name=LIKE

public
setMARKUSH(
String newVal):void

<<property set>>
Tags: attribute_name=MARKUSH

public
setRGROUP(
String newVal):void

<<property set>>
Tags: attribute_name=RGROUP

public
setSIMILAR(
String newVal):void

<<property set>>
Tags: attribute_name=SIMILAR

public
setSUBSTRUCTURE(
String newVal):void

<<property set>>
Tags: attribute_name=SUBSTRUCTURE

public
setTAUTOMER(
String newVal):void

<<property set>>
Tags: attribute_name=TAUTOMER

Chemical Structure Access & Representation Adopted Specification

65

8.4.4 ChemSearchEngine

66

Connections

Association link to interface [search].SearchCriteriaGroup

Association link from interface [search].SelectPropertyGroup

Dependency link to class [search].ResultSet

Dependency link from class [search].ChemSearchEngineMananger

ChemSearchEngine Methods

Operation

Details

public

addSearchCriteriaGroup():SearchCriteriaGroup

Sequential

public
removeSearchCriteriaGroup(

SearchCriteriaGroup criteriaGroup):boolean

Sequential

public
searchChemicalElements():Collection

Sequential

public

splitQuery(
Collection chemicalPropertiesOracle,
Collection atoms):boolean

Sequential

public
addSelectedPropertyGroup():Property

Sequential

public
removeSelectedProperty/(
Property property):boolean

Sequential

Chemical Structure Access & Representation Adopted Specification

8.4.5 ComparisonOperator

Connections

- Aggregation link to interface [search].SearchCriterion

ComparisonOperator Attributes

Attribute Details

public static String
LT

public static String
EQ

public static String
LE

public static String
GE

public static String
GT

public static String
NE

Chemical Structure Access & Representation Adopted Specification

8.4.6 LogicalOperator

68

Connections

- Association link to interface [search].SearchCriteriaGroup

LogicalOperator Attributes

Attribute

Details

private static StringAtomParity
AND

private static String
OR

private static String
XOR

private static String
NOT

Chemical Structure Access & Representation Adopted Specification

8.4.7 Property

Connections

- Aggregation link to interface [search].SelectPropertyGroup

Property Attributes

Attribute Details

public static String
Description

public static String
guid

public static String
Name

public static boolean
Searcheable

Property Methods

Operation

Details

public
getDescription():String

<<property get>>
Tags: attribute_name=Description

public
getguid():String

<<property get>>
Tags: attribute_name=guid

public
getName():String

<<property get>>
Tags: attribute_name=Name

public
getSelectPropertyGroup():SelectPropertyGroup

<<property get>>
Tags: attribute_name=SelectPropertyGroup

public
isSearcheable():boolean

<<property get>>
Tags: attribute_name=Searcheable

public
setDescription(
String newVal):void

<<property set>>
Tags: attribute_name=Description

public
setguid(
String newVal):void

<<property set>>
Tags: attribute_name=guid

Chemical Structure Access & Representation Adopted Specification

69

public <<property set>>

setN_ame(. Tags: attribute_name=Name
String newVal):void

public <<property set>>
setSearcheable(

. Tags: attribute_name=Searcheable
boolean newVal):void

public <<property set>>
setSelectPropertyGroup(

= Tags: attribute_name=SelectPropertyGroup
SelectPropertyGroup newVal):void

8.4.8 SearchCriteriaGroup

Connections
u Aggregation link from interface [search].SearchCriterion
- Association link from interface [search].LogicalOperator
- Dependency link from interface [search].SearchCriteriaGroup
- Association link from interface [search].ChemSearchEngine

SearchCriteriaGroup Methods

Operation Details

public Sequential
addSearchCriterion():SearchCriterion

public Sequential
removeSearchCriterion(
SearchCriterion criterion):boolean

8.4.9 SearchCriterion

Search criterion. Consists of various properties the searchable structure should
possess to.

Connections
= Aggregation link from interface [search].AccuracyQualifier
- Aggregation link from interface [search].SelectPropertyGroup
= Aggregation link from interface [search].ComparisonOperator
. Aggregation link to interface [search].SearchCriteriaGroup

70 Chemical Structure Access & Representation Adopted Specification

SearchCriterion Attributes

Attribute Details

public
SearchCriteriaGroup.ComparisonOp
theComparisonOp

public
SearchCriterion.AccuracyQualifier
theAccuracyQualifier

SearchCriterion Methods

Operation Details

public Sequential
setAccuracyQualifier(

SearchCriterion.AccuracyQualifier
arg0):void

public Sequential
setSearchableProperty(
SearchableProperty arg0):void

public Sequential
setComparisonOp():Void Notes: return Void

Chemical Structure Access & Representation Adopted Specification

8.4.10 SearcheableProperty

SearcheableProperty Attributes

Attribute Details

private static String
Description

public static String
guid

public static String
Name

SearcheableProperty Methods

Operation Details

public <<property get>>
getDescription():String Tags: attribute_name=Description
public <<property get>>
getguid():String Tags: attribute_name=guid
public <<property get>>
getName():String Tags: attribute_name=Name
public <<property set>>
setDescription(Tags: attribute_name=Description

String newVal):void

public <<property set>>

setguid() Tags: attribute_name=guid
String newVal):void

public <<property set>>
setName(

¢ . Tags: attribute_name=Name
String newVal):void

8.4.11 SelectPropertyGroup

Connections

u Aggregation link from interface [search].Property
" Aggregation link to interface [search].SearchCriterion
- Association link to interface [search].ChemSearchEngine

72 Chemical Structure Access & Representation Adopted Specification

SelectPropertyGroup Attributes

Attribute

Details

public static SelectPropertyGroup
SelectPropertyGroup

SelectPropertyGroup Methods

Operation

Details

public

getSelectPropertyGroup():SelectPropertyGroup

<<property get>>
Tags: attribute_name=SelectPropertyGroup

public
setSelectPropertyGroup(

SelectPropertyGroup newVal):void

<<property set>>
Tags: attribute_name=SelectPropertyGroup

8.4.12 SelectPropertyGroup

This is abstract property which could be used in search through chemical collections.

Connections

- Aggregation link from interface [search].Property

" Aggregation link to interface [search].SearchCriterion

" Association link to interface [search].ChemSearchEngine

SelectPropertyGroup Attributes

Attribute

Details

public static SelectPropertyGroup
SelectPropertyGroup

Chemical Structure Access & Representation Adopted Specification

73

SelectPropertyGroup Methods

Operation Details

public <<property get>>
getSelectPropertyGroup():SelectPropertyGroup Tags: attribute_name=SelectPropertyGroup

public <<property set>>

setSelectPropertyGroup() Tags: attribute_name=SelectPropertyGroup
SelectPropertyGroup newVal):void

8.5 Property

8.5.1 MeasuringUnitPrefix

Connections
- Aggregation link to interface [property].AbstractValue

MeasuringUnitPrefix Attributes

Attribute Details

public java.lang.String Initial: KILO
MEASURING_UNIT_PREFIX_KILO

public java.lang.String Initial: MEGA
MEASURING_UNIT_PREFIX_MEGA

public java.lang.String Initial: GIGA
MEASURING_UNIT_PREFIX_GIGA

public java.lang.String Initial: TERA
MEASURING_UNIT_PREFIX_TERA

public java.lang.String Initial: MILLI
MEASURING_UNIT_PREFIX_MILLI

public java.lang.String Initial: MICRO
MEASURING_UNIT_PREFIX_MICRO

public java.lang.String Initial: NANO
MEASURING_UNIT_PREFIX_NANO

public java.lang.String Initial: PICO
MEASURING_UNIT_PREFIX_PICO

74 Chemical Structure Access & Representation Adopted Specification

Attribute Details

public java.lang.String Initial: KILO
MEASURING_UNIT_PREFIX_KILO

public java.lang.String Initial: MEGA
MEASURING_UNIT_PREFIX_MEGA

public java.lang.String Initial: GIGA
MEASURING_UNIT_PREFIX_GIGA

public java.lang.String Initial: TERA
MEASURING_UNIT_PREFIX_TERA

public java.lang.String Initial: MILLI
MEASURING_UNIT_PREFIX_MILLI

public java.lang.String Initial: MICRO
MEASURING_UNIT_PREFIX_MICRO

public java.lang.String Initial: NANO
MEASURING_UNIT_PREFIX_NANO

public java.lang.String Initial: PICO
MEASURING_UNIT_PREFIX_PICO

public java.lang.String Initial: FEMTO
MEASURING_UNIT_PREFIX_FEMTO

public java.lang.String Initial: ATTO
MEASURING_UNIT_PREFIX_ATTO

public java.lang.String Initial: PETA
MEASURING_UNIT_PREFIX_ PETA

public java.lang.String Initial: EXA
MEASURING_UNIT_PREFIX_EXA

public java.lang.String
prefix

public java.lang.String
description

MeasuringUnitPrefix Methods

Operation Details
public Sequential
MeasuringUnitPrefix(): Notes:

Chemical Structure Access & Representation Adopted Specification

8.5.2 AbstractValue

Connections
u Aggregation link from interface [property].MeasuringUnit
- Aggregation link from class [property].MeasuringUnitPrefix
- Aggregation link from interface [property].VectorValue
" Aggregation link from interface [property].TensorValue
" Aggregation link from interface [property].ScalarValue
u Aggregation link from interface [property].MatrixValue
- Aggregation link from interface [property].BLOB
- Aggregation link from interface [property].CitedValue

8.5.3 BLOB

Connections
- Aggregation link to interface [property].AbstractValue

8.5.4 CitedReference

Represents general style reference

Connections
" Aggregation link to interface [property].CitedValue

CitedReference Attributes

Attribute Details
private static wstring Notes: It could be reference to journal, conference,
source
pg"i‘te static String Notes: Vaule obtained date
ate

CitedReference Methods

Operation Details
public <<property get>>
getdate():String Tags: attribute_name=date

Notes: Vaule obtained date

76 Chemical Structure Access & Representation Adopted Specification

public
getsource():wstring

<<property get>>
Tags: attribute_name=source

Notes: It could be reference to journal, conference, ...

public
setdate(
String newVal):void

<<property set>>
Tags: attribute_name=date

Notes: Vaule obtained date

public
setsource(
wstring newVal):void

<<property set>>
Tags: attribute_name=source

Notes: It could be reference to journal, conference, ...

Chemical Structure Access & Representation Adopted Specification

7

8.5.5 CitedValue

Connections

" Aggregation link from interface [property].CitedReference
" Aggregation link to interface [property].AbstractValue

CitedValue Attributes

Attribute Details

public static String
property

public static CitedReference
reference

CitedValue Methods

Operation Details

public <<property get>>

getproperty():String Tags: attribute_name=property

public <<property get>>

getrefernce():CitedReference Tags: attribute_name=refernce

public <<property set>>

setproperty() Tags: attribute_name=property
String newVal):void

public <<property set>>

setrefernce() Tags: attribute_name=refernce
CitedReference newVal):void

8.5.6 MatrixValue

Connections
- Aggregation link to interface [property].AbstractValue

78 Chemical Structure Access & Representation Adopted Specification

8.5.7 MeasuringUnit

Connections
- Aggregation link to interface [property].AbstractValue

MeasuringUnit Attributes

Attribute Details

public java.lang.String Initial: METRE
MEASURING_UNIT__ METRE

public java.lang.String Initial: LITRE
MEASURING_UNIT_LITRE

public java.lang.String Initial: GRAM
MEASUREING_UNIT_GRAM

public java.lang.String Initial: SECOND
MEASURING_UNIT_SECOND

public java.lang.String Initial: AMPERE
MEASURING_UNIT_AMPERE

public java.lang.String Initial: KELVIN
MEASURING_ UNIT_KELVIN

public java.lang.String Initial: MOLE
MEASURING_UNIT_MOLE

public java.lang.String Initial: CANDELLA
MEASURING_UNIT_CANDELLA

public java.lang.String Initial: RADIAN
MEASURING_UNIT_RADIAN

public java.lang.String Initial: STERADIAN
MEASURING_UNIT_STERADIAN

public java.lang.String Initial: HERTZ
MEASURING_UNIT_HERTZ

public java.lang.String Initial: NEWTON
MEASURING_UNIT_NEWTON

public java.lang.String Initial: PASCAL
MEASURING_UNIT_PASCAL

public java.lang.String Initial: JOULE
MEASURING_UNIT_JOULE

Chemical Structure Access & Representation Adopted Specification

public java.lang.String Initial: WATT
MEASURING_UNIT_WATT

public java.lang.String Initial: COULOMB
MEASURING_UNIT_COULOMB

public java.lang.String Initial: VOLT
MEASURING_UNIT_VOLT

public java.lang.String Initial: FARAD
MEASURING_UNIT_FARAD

public java.lang.String Initial: OHM
MEASURING_UNIT_OHM

public java.lang.String Initial: SIEMENS
MEASURING_UNIT_SIEMENS

public java.lang.String Initial: WEBER
MEASURING_UNIT_WEBER

public java.lang.String Initial: TESLA
MEASURING_UNIT_TESLA

public java.lang.String Initial: HENRY
MEASURING_UNIT_HENRY

public java.lang.String Initial: CELCIUS_DEGREE
MEASURING_UNIT_CELCIUS_DEGREE

public java.lang.String Initial: LUMEN
MEASURING_UNIT_LUMEN

public java.lang.String Initial: LUX
MEASURING_UNIT_LUX

public java.lang.String Initial: BECQUEREL
MEASURING_UNIT_BECQUEREL

public java.lang.String
description

public java.lang.String
name

public java.lang.String Initial: ZIEVERT
MEASURING_UNIT_ZIEVERT

public java.lang.String Initial: GRAY
MEASURING_UNIT_GRAY

public java.lang.String
reference

Chemical Structure Access & Representation Adopted Specification

8.5.8 ScalarValue

Connections
- Aggregation link to interface [property].AbstractValue

8.5.9 TensorValue

Connections
u Aggregation link to interface [property].AbstractValue

8.5.10 VectorValue

Connections
- Aggregation link to interface [property].AbstractValue

8.6 Search General Functionality

The interfaces shown above allow you to create a query using the CML representation of the item being searched on by
selecting properties and creating a search criterion.

[Chemical] compounds have a number of [Chemical] properties. Some of these [Chemical] properties are searchable (that
is, the [Chemical] property and is corresponding value has been measured and they are kept in proprietary databases) and
some are not. Each SearchableProperty consists of SelectedPropertyGroup and a SearchCriterion. Each
SearchCriterion is formed by one or more SearchCriteriaGroups associated via Logicaloperators, an
AccuracyQualiTfier, and a ComparisonOperator. [Chemical] properties have MeasuringUnits (such as AMPERE)
and MeasuringUnitPrefixes (such as PICO) and could be Scalarvalues, BLOB values, VectorVvalues,
MatrixValues, and TensorValues. Moreover, sometimes the [Chemical] properties have also a CitedValue and a
CitedReference (as in 34.56 PICOFARADs Journal Of Chemistry, Vol. 9, pp 37-49, March 7, 1999) that will need to
also be searched..

The central class of this module is the ChemSearchEngine which drives the entire functionality of this module. This
interface provides methods to add or remove criteria groups, and add or remove property groups which are components of
a given search string. In addition this interface provides functionality to perform the search, to insert new search criteria
and to close the criteria search. A method is also provided for future use; that is, the split() method will allow the split
of a request into two main search strings, one for the intrinsic properties and one for the extrinsic properties. The code
segments are shown below.

public interface ChemSearchEngine

{
public SelectPropertyGroup theSelectPropertyGroup[];

public SearchCriteriaGroup theSearchCriteriaGroupSCCSE;

Chemical Structure Access & Representation Adopted Specification 81

/**
* @param group
* @return boolean
* @throws Chem::InvalidCriterion
* @throws Chem::InvalidCriteriaCombination
*/
public boolean addSearchCriteriaGroup(in Chem::SearchCriteriaGroup group) throws
Chem::InvalidCriterion, Chem::InvalidCriteriaCombination;

/**
* @param group
* @return boolean
* @throws Chem::InvalidCriterion
*/
public boolean removeSearchCriteriaGroup(in Chem::SearchCriteriaGroup group) throws
Chem::InvalidCriterion;

/**
*/
public void searchQ);

/**

* @param argO

* @return boolean

*/

public boolean insert(Moleculelmpl argO);

/**
* @return boolean
*/
public boolean split();

public void close();

/**

* @param argO

* @return boolean

*/

public boolean addSelectPropertyGroup(SelectPropertyGroup arg0);

/*-k
* @param argO
* @return boolean
*/
public boolean removeSelectPropertyGroup(SelectPropertyGroup arg0);

82 Chemical Structure Access & Representation Adopted Specification

8.7 Legacy Module

The Legacy module contains classes to determine the source and destination file formats (inherited from the CML Jumbo

classes), a file map that stores the information loss between the different file formats, and a class to calculate that
information loss. Figure 8.33 shows the legacy module classes and interfaces. This module holds interfaces to interact

with legacy databases.

pd csarJune2005

Legacy [

= + FileMap
=] + InformationLoss
=1

Figure 8.33 - Legacy Module

8.7.1 FileMap

This class contains all possible chemical information files and their corresponding mappings.

FileMap Attributes

Attribute

Details

public List
MDL_ICHI_IL

public List
MDL_SMILES-IL

public List
MDL_SDF_IL

public List
MDL_MOPACINC-IL

public List
MDL_CIF-IL

public List
SMILES_ICHI-IL

public List
SMILES_SDF-IL

public List
SMILES_MOPACINC-IL

public List
SMILES_CIF-IL

Chemical Structure Access & Representation Adopted Specification

83

8.7.2

public
setSMILES_ICHI-1L(
List newVal):void

<<property set>>
Tags: attribute_name=SMILES_ICHI-IL

public
setSMILES_MOPACINC-IL(
List newVal):void

<<property set>>
Tags: attribute_name=SMILES_MOPACINC-IL

public
setSMILES_SDF-IL(
List newVal):void

<<property set>>
Tags: attribute_name=SMILES_ SDF-IL

public Sequential
getFileMap():FileMap
public Sequential
setFileMap():FileMap
public Sequential
addFileMap(

FileMap Map):boolean
public Sequential
deleteMap(

FileMap Map):boolean

InformationLoss

This class contains methods to estimate the information loss when converting between different formats. Please refer to
previous sections for detailed descriptions of the conversion process and results.

InformationLoss Attributes

84

Attribute

Details

public FileMap
inputFileType

Notes: Enter the file type for the input

public FileMap
outputFileType

Notes: Gets the output file format

public BLOB
Lossoflnformation

Notes: Computes information loss

Chemical Structure Access & Representation Adopted Specification

InformationLoss Methods

Operation

Details

public
getinputFileType():FileMap

Sequential <<property get>>
Tags: attribute_name=inputFileType

Notes: Returns the input file type

public
getLossoflnformation():BLOB

Sequential <<property get>>
Tags: attribute_name=Lossoflnformation

Notes: Computes and reports the Ikoss of
information

public
getoutputFileType():FileMap

Sequential <<property get>>
Tags: attribute_name=outputFileType

Notes: Gets output file type

public
setinputFileType(
FileMap newVal):void

Sequential <<property set>>
Tags: attribute_name=inputFileType

Notes: Set input file type

public
setLossofInformation(
BLOB newVal):void

Sequential <<property set>>
Tags: attribute_name=Lossoflnformation

Notes: Set loss of information

public
setoutputFileType(
FileMap newVal):void

Sequential <<property set>>
Tags: attribute_name=outputFileType

Notes: Set output file type

public
getSourceFileType():FileMap

Sequential
Notes: return CSAR.Legacy.FileMap

public

getDestinationFileType():FileMap

Sequential
Notes: return CSAR.Legacy.FileMap

8.7.3 Collection Module

The collection module, see Figure 40, extends the Java API public class Collections which extends Object. This class
consists exclusively of static methods that operate on or return collections of Molecules. It contains polymorphic

algorithms that operate on collections, "wrappers," which return a new collection backed by a specified collection, and a

few other odds and ends. This module could be replaced when and if the LSR Collection standard is accepted.

Chemical Structure Access & Representation Adopted Specification

85

cd Collection

«interface»
Collection

+ o+ o+ o+ o+ o+ o+ o+ o+ o+ A+ + o+

addEelement() : void

addAll(Collection, Collection) : void
clear(Collection) : void

contains(Collection, Collection) : boolean
containsAll(Collection, Collection) : boolean
equals(Collection, Collection) : boolean
hashSet() : hashSet

isEmpty(Collection) : boolean
iterator(Collection) : int
removeElement(Collection, Collection) : boolean
removeAll() : boolean

size (Collection) : int

toArray(Collection, Array): Object
fromArray(Collection, Array) : Collection
getPosition(Collection, Collection) : int

Figure 8.34 - Collection Module

The functionality is described in the table below.

86

Chemical Structure Access & Representation Adopted Specification

Operation Details

public Sequential

addEelement():void Notes: Add given element to the appropriate
collection

public Sequential

addAll(

Collection collection,
Collection gSet):void

Notes: Adds all the elements in the specified
Collection to the target Collection.

public
clear(
Collection collection):void

Sequential
Notes: Removes all elements from the Collection.

public Sequential

contains() Notes: Returns true if the Collection contaisn the
Collect!on collection, element
Collection element):boolean

public Sequential

containsAll(
Collection collection2,
Collection collectionl):boolean

Notes: Returns true if the target Collection contains
all of the elements in the specified Collection.

public

equals(
Collection collection2,
Collection collectionl):boolean

Sequential
Notes: Returns True if the two collections are equal.

public
hashSet():hashSet

Sequential

Notes: Set interface, backed by a hash table (actually
a HashMap instance). It makes no guarantees
as to the iteration order of the set; in
particular, it does not guarantee that the order
will remain constant over time. This class
permits the null element.

public
iISEmpty/(
Collection colelction):boolean

Sequential
Notes: Returns True if the collection is empty

public
iterator(
Collection collection):int

Sequential
Notes: Iterates over th ecollection

public

removeElement(
Collection collection,
Collection element):boolean

Sequential
Notes: Removes a given element from the Collection

public
removeAll():boolean

Sequential

Notes: Removes from the target Collection all its
elements that are also contained in the
specified Collection.

Chemical Structure Access & Representation Adopted Specification

87

88

public
size(
Collection collection):int

Sequential
Notes: Returns the size of the given Collection

public

toArray(
Collection collection,
Array array):Object

Sequential

Notes: The toArray methods are provided as a bridge
between collections and older APIs that expect
arrays on input.

public

fromArray/(
Collection collection,
Array array):Collection

Sequential
Notes: The fromArray methods are provided as a

bridge between collections and older APIs that
provide arrays as input.

public

getPosition(
Collection collection,
Collection element):int

Sequential

Notes: Get the position of a given element in a
Collection

Chemical Structure Access & Representation Adopted Specification

9 Glossary

Aromaticity

This is a quality possessed by many, many common compounds, from benzene to phenylalanine in which multiple double
bonds, ‘conjugate,” sharing electrons. This sharing produces a structure of lower energy than one in which the double
bonds are isolated. (The above is very simple explanation of a common phenomenon. For more information, see any
basic text on organic chemistry.)

Different software systems define aromaticity differently. The biggest differences are whether aromaticity is specified in
atom types or in bonds or perceived from the arrangement of bonds. Daylight’s SMILES notation generally specifies
aromatic atoms using lower-case letters. For example, benzene (an aromatic ring of 6 carbon atoms) is defined as
‘clcccecl’. Because the atoms are denoted with lower-case letters, they are distinguished from cyclohexane (a non-
aromatic or 'aliphatic' ring of carbon atoms (C1CCCCC1).

MDL’s molfile, on the other hand, defines aromatics from an arrangement of alternating single and double bonds within a
ring of appropriate size.

Still other systems explicitly define aromaticity using explicitly designated aromatic bonds.

To make matters even more complicated, MDL supports an aromatic bond type that can be used for bonds within a
molfile that can be used to query a database but not registered.

Atom

The smallest particle of an [chemical] element that can exist either alone or in combination, retaining any properties of
the [chemical] element. We extend this definition to include points in space (that can be used to define the position of
other points); 'superatoms' or atoms that represent a collection of other atoms.

Bit string

A contiguous set of characters consisting entirely of 1s and 0s. A bit string can be used to encode a good deal of
information in a compact way.

Bond

A chemical link between two atoms. Bonds are classified as ionic (transfer of electrons from one atom to another);
covalent (sharing of electrons, generally an equal number from each atom); dative (sharing of two electrons from a single
atom); or hydrogen (attraction of electron-starved hydrogen atom to electron rich heavy atom.)

Charge

A deficiency or excess of electrons on a particular object, giving rise to a positive or negative charge, respectively.
(www.allwords.com) Molecules can carry charges, which are often attributed to specific atoms.

Chiral
Adjective applied to a molecule that cannot be superimposed on its mirror image. (‘Chirality’ is the corresponding noun.)

An example of a chiral structure for 2-chloro-2-iodo-butane is shown below:

Chemical Structure Access & Representation Adopted Specification 89

Ol,,///
d

Cl

The compound has a mirror image that cannot be superimposed and is therefore termed its enantiomer.

Connection table

A means of representing the atoms contained within a molecule and the bonds that hold them together.

Counterion

A set of one or more bonded atoms, with opposite charge and generally smaller size, that accompanies another charged
set of bonded atoms.

Cyclic, acyclic bonds

When chemical bonds occur within a ring, they are termed “cyclic.” ‘Acyclic bonds’ by contrast, occur in open chain
structures.

Electrons (0 or pi)

Molecules containing double or triple bonds typically have electrons that project outside the line between the atoms in the
bond. When more than one double or triple bond are in close proximity, the electrons in the pi bonds interact and spread
out over all the atoms involved.

Fingerprints

Fingerprints are bit strings that are based on features of a chemical structure. In this regard, they are similar to Structural
keys (g.v.) Fingerprints are different from keys in that the bits they contain are typically ‘folded over’ or combined (using
a logical OR) with one another to reduce the size of the string.

Heteroatoms

Atoms that are neither carbon nor hydrogen are considered ‘heteroatoms’ and are often handled differently by software
systems.

90 Chemical Structure Access & Representation Adopted Specification

Markush structure

It is common to represent chemical structures as a common core containing marked substitution sites, plus a set of
possible structures for each substitution point. These Markush structures can be used in several ways:

« To represent a set of compounds analyzed in order to determine the effect of varying substituents on compound activity
(SAR, short of 'Structure Activity Relationships).

« To represent a set of compound produced using combinatorial techniques (synthesized by serially attaching different
chemical groups to a common core).

e To produce a fine-tuned substructure query.

In this document, we use one Assembly to represent the core, (atoms of type 'R’ designate the substitution points), plus
one additional Assembly for each R-Group.

Molecule

The smallest particle into which an [chemical] element or a compound can be divided without changing its chemical and
physical properties; a group of like or different atoms held together by chemical forces (www.allwords.com); generally,
composed of atoms held together by bonds.

A molecule can represent:
1. An entire chemical entity.
2. One portion of a complex chemical entity (such as a mixture, set of tautomers or conformers).

3. A collection of other molecules as defined in 2) above.

Orbital

A subdivision of a nuclear shell containing zero, one, or two electrons (m-w.com)

Query structure

Most chemical software systems require structures to meet certain requirements in order to be entered into a database or
used for calculation. A structure that meets these criteria is classified as 'registerable.’ (Generally, atom types must
correspond to entities in the periodic table and bond types must be well defined.)

Additionally, the software will allow a chemist to draw structures that do not meet the criteria for registration but can be
used to retrieve molecules out of a database using substructure searching (see below). An example of a structure that is
valid for query but not registration is one with a just one bond designated as aromatic.

O

0 OH o)
HaC O/\CH3 ch)\)ko/\m3

Chemical Structure Access & Representation Adopted Specification 91

Radical

An atom or a group of atoms with at least one unpaired electron (www.allwords.com).
« singlet — a radical with two unpaired electrons whose spins are opposite
» doublet - a radical with a single unpaired electron

 triplet — a radical with two unpaired electrons whose spins are aligned

Registerable structure

A chemical structure that meets the criteria for inclusion in a repository. (Compare with ‘Query structure’ above).

Similarity Search

A chemical data query in which a user seeks compounds that resemble a given structure without necessarily having a
substructure (g.v.) match. The resemblance is often intuitive to a chemist but has a mathematical basis in terms of
common features or properties. Similarity searches typically include a cutoff value X so the user sees only structures
having X% or more similarity to the query structure.

The mathematics of similarity searching require:

1. A means of evaluating individual chemical structures. Generally, this involves computing keys (q.v.) or
fingerprints (g.v.).

2. A metric for comparing keys or fingerprints from two structures. The most common of these is the Tanimoto
coefficient (g.v.).

At search time, a user-supplied query structure is compared with every other structure in the database and those with a
similarity metric greater than the cutoff are considered ‘hits.” (Bit operations are typically fast enough to make large
number of comparisons practicable.)

Spin state

A way of characterizing the angular momentum of electrons. Individual electrons may spin ‘up’ or ‘down.” Two or more
electrons may have their spins parallel or antiparallel.

Stereochemistry

Studying the effect of configuration of atoms around assymetric atoms and bonds.

Structural keys

When compounds are registered into most chemical search software systems, the structures are scanned for the presence
of predefined features, such as heteroatoms (q.v.) or 6-membered rings. Each key sets a bit within a string that may be
hundreds of characters long. These keys are used for substructure and similarity searching.

Substructure

One chemical structure is said to be a substructure of another if the first structure can be located within the second. (The
second is said to be the superstructure of the first.) All structures are substructures of themselves.

A substructure search scans a database for all substructural matches.

Tanimoto coefficient

92 Chemical Structure Access & Representation Adopted Specification

Mathematical formula for evaluating the similarity of two structures
Sag=c/la+b-c]
Where

Sag = ‘similarity of structures A and B’

¢ = number of features in common between the given property in the two structures. (In the case of structure keys
or fingerprints, this means the number of ON bits when the two bit strings are ANDed.)

a = number of features ON in structure A
b = number of features ON in structure B
[From J. Chem. Inf. Comput. Sci. 1998, 38, 983-996]

Tautomer

‘One of two or more structural isomers that exist in equilibrium and are readily converted from one isomeric form to
another.” From http://www.bartleby.com/65/ta/tautomer.html. An illustration of the tautomers of ethyl acetoacetate is
shown:

Valence

The number of bonds an atom has to other atoms.

Chemical Structure Access & Representation Adopted Specification 93

94

Chemical Structure Access & Representation Adopted Specification

Annex A
(normative)

UML Use Cases

Actor Catalogue

Actor Definition
Client This is a logical client that represents any given system that will interface with the
provided API.

Master Use Case

extends

extends

extends

extends

extend
Client

000006

* Search can be
performed against a
legacy database or a
collection.

Figure A.1 - General Use Case Scenario

Chemical Structure Access & Representation Adopted Specification 95

Detailed Use Case Scenarios

Add Chemical Structure

Desired Outcome: A chemical structure is inserted into database.
Entered When: Actor invokes the insert function.
Finished When: A chemical structure is inserted into database and a confirmation is

returned to the actor.

Description: The purpose of this function is to insert a chemical structure into
database. A chemical structure can be specified using CML.

Data Elements

Name Description

Chemical structure A chemical structure to be inserted into database.

Add Chemical Structure — Add Unique Chemical Structure

Desired Outcome: A chemical structure is inserted into database only if it will not be a
duplicate.

Entered When: Actor invokes the insert_if_not_duplicate function.

Finished When: A chemical structure is inserted into database and a confirmation is

returned to the actor. A collection of duplicated chemical structures is
returned if any duplicate is found.

Description: The purpose of this function is to insert an unique chemical structure
into database. An exact match search will be performed to ensure a
uniqueness of the input chemical structure. A chemical structure can be
specified using CML.

Data Elements

Name Description

Chemical structure A chemical structure to be inserted into database.

96 Chemical Structure Access & Representation Adopted Specification

Update Chemical Structure

Desired Outcome:

Entered When:
Finished When:

Description:

Data Elements

An existing chemical structure data in database is updated.
Actor invokes the update function.

An existing chemical structure data in database is updated and a
confirmation is returned to the actor.

The purpose of this function is to update an existing chemical structure
data in database. A chemical structure can be specified using CML.

Name

Description

Chemical structure

A chemical structure to replace an existing data.

Delete Chemical Structure

Desired Outcome:

Entered When:
Finished When:

An existing chemical structure in database is removed.
Actor invokes the delete function.

An existing chemical structure in database is removed and a
confirmation is returned to the actor.

Description: The purpose of this function is to delete an existing chemical structure
in database. A chemical structure to be deleted can be specified using
CML/ID.
Data Elements
Name Description

Chemical structure/ID

Identifier of chemical structure to be deleted.

Search Chemical Structure

Desired Outcome:

Entered When:
Finished When:

Description:

Collection of structures meeting the search criteria is returned.
Actor invokes the search function.

A collection of structures is returned. An empty collection is
returned if no structure meets the specified criteria.

The purpose of this function is to identify a collection of structures
meeting the specified criteria. Search criteria can be specified by a
query string and/or structure (CML). A returned collection is in
CML, which can be transformed into another format such as
SMILES, MOL, SLN.

Chemical Structure Access & Representation Adopted Specification

Data Elements

Name Description
Query string Specifies the search criteria.
Comments

The following are sample query strings used in the MDL ISIS/Host:
molstructure = [{mjk38smasd903kqglads90rmlw9masksoaskdoq}]
molstructure tautomer [{mjk38smasd903kglads90rmlw9masksoaskdoqg}]
pdnum = *0123456-0000°
pdnum like ‘0123456-%’
mol.weight < 500
The following are sample query strings used in the Daylight DayCard (Daylight Chemistry Cartridge for Oracle).
http://www.daylight.com/meetings/mug2000/Delany/cartridge.html

select * from medium where exact(smiles, '‘O=clccoccl’) = 1

select count(smiles) from large where contains(smiles, >>0=c1c(C)coccl’) = 1;

Exact Match

molstructure = [{mjk38smasd903kglads90rmlw9masksoaskdoq}]

select * from medium where exact(smiles, '‘O=clccoccl’) = 1
Similarity

molstructure = [{mjk38smasd903kqlads90rmlw9masksoaskdoq}] and factor = 0.7
Substructure

molstructure sss [{mjk38smasd903kaglads90rmlw9masksoaskdoq}]

select * from medium where contains(smiles, 'O=clccoccl’) = 1

Tautomer
molstructure tautomer [{mjk38smasd903kqlads90rmliw9masksoaskdoq}]

select * from medium where tautomer(smiles, 'O=clccoccl’) = 1

Comments:
(from Tripos’ RFI) There are potentially different methods of working with tautomers, either recognizing the
potential for rearrangement at registration into the chemical database with flags that highlight the areas where
tautomerism can take place. An alternative method would be to register the tautomers as different compounds and
then flag their tautomeric relatives. The latter is what PD does.

98 Chemical Structure Access & Representation Adopted Specification

Generic

Comments:

i.e., Markush, R-group, etc.

Intrinsic Properties

mol.weight < 500

Combination

molstructure sss [{mjk38smasd903kqglads90rmlw9masksoaskdoq}] and mol.weight < 500

Get Intrinsic Properties

Desired Outcome:
Entered When:
Finished When:

Description:

Data Elements

An intrinsic property of a chemical structure is returned.
Actor invokes the access (get) function.
An intrinsic property of a chemical structure is returned to the actor.

The purpose of this function is to query an intrinsic property of a
chemical structure.

Name

Description

Intrinsic property

Name of an intrinsic property to be queried.

Translate Chemical Structure from One to Another

Desired Outcomse:

Entered When:
Finished When:

Description:

Data Elements:

A type of chemical structure representation is transformed into
another type.

Actor invokes the translate function.
A type of chemical structure representation is transformed into
another type, which is then returned to the actor.

The purpose of this function is to transform the representation of one
chemical structure into another representation.

Name

Description

Structure representation type

Source representation.

Structure representation

Chemical structure to be translated.

Structure representation type

Destination representation.

Chemical Structure Access & Representation Adopted Specification

99

100 Chemical Structure Access & Representation Adopted Specification

Annex B
(normative)

Use Cases for Chemistry

1. Structure search
A. using ISIS/Draw to sketch a molecule for a substructure search of a Daylight database

. simple structure (e.g., biphenyl)

II. more complicated structure (disconnected fragments; atom lists; substitution counts; charges, etc.)

a. two fragments (twofrag.mol)
b. two fragments + atom list (tfraglist.mol)
c. two fragments + atom list + substitution counts (tfsub.mol)

CC(s*)
= C(s»)
CE S
[CI,Br,I] CEn_=
[CI,Br,1]

1. R Group Query

Chemical Structure Access & Representation Adopted Specification 101

COOH
R1 R1

N
R1 R1 R1= #
R1

IV. S-Group data
axial

W

Om

B. using the Ertl Java editor to generate a SMILES to search an MDL database
C. browsing the hits

. Browsing regular structures
Il. Browsing structures with polymeric constructs
I11. Browsing structures to which user does not have rights

2. Use ChemSymphony to search Web-based Available Chemical Directory (ACD) system for suppliers of a given set
of structures.

A. superstructures of aromatic acid chlorides — very simple substructure to find a large class of compounds
(aromacchlor.mol)

B. p-nitrobenzoic acid — search for a specific compound (pnitrobenz.mol)

3. Looking for similar compounds
A. ISIS/Draw front-end to Unity (or RS3) database back end

B. ChemSymphony front-end to MDL database

4. Registration

A. using ISIS/Draw to generate a molfile for registration into Daylight (convert to SMILES for direct chemical
registration, as well as saving the molfile to an Oracle field).

102 Chemical Structure Access & Representation Adopted Specification

. Simple structure; everything in molfile translates to SMILES
Il. Complex structure (charges, valence) but properties do translate
I11. Parts of the structure (brackets, S-Group data) do not translate to SMILES
B. using ChemSymphony to generate structures for registration to a Unity database
5. Registration correction
A. database is MDL; need to locate molecule by ID, replace structure. Drawing tool is ChemSymphony

. simple structure — no loss of information
Il. more complicated structure — all information can be translated

I11. very complicated structure — some information does not map

Chemical Structure Access & Representation Adopted Specification 103

104 Chemical Structure Access & Representation Adopted Specification

Annex C
(normative)

UML Related Interface Documentation

Submitted separately in a zip file. See OMG document: lifesci/05-08-02.

Chemical Structure Access & Representation Adopted Specification 105

106 Chemical Structure Access & Representation Adopted Specification

Annex D
(normative)

Java Code Segments

The Java code is included in a separate zip file. See OMG document: lifesci/05-08-03.

Chemical Structure Access & Representation Adopted Specification 107

108 Chemical Structure Access & Representation Adopted Specification

Annex E
(normative)

The XMI

The XMl is included in a separate file. See OMG document: lifesci/05-08-04.

Chemical Structure Access & Representation Adopted Specification 109

110 Chemical Structure Access & Representation Adopted Specification

	Preface
	1 Scope
	2 Conformance
	2.1 CSAR
	2.2 CML Core

	3 Normative References
	4 Terms and Definitions
	5 Symbols
	6 Additional Information
	6.1 Relationship to Other OMG Specifications
	6.2 Document Structure
	6.3 Acknowledgements

	7 Introduction
	7.1 Request
	7.2 Sample Workflow
	7.3 The Chemical Exchange Problem
	7.3.1 Approaches that don't work well
	7.3.1.1 Comprehensive file format converters
	7.3.1.2 "Kitchen sink" formats

	7.4 Chemical Markup Language within the Context of CSAR
	7.4.1 Introduction

	7.5 CML and CSAR
	7.6 Processing Classes Involved

	8 CSAR
	8.1 [Chemical] Elements within CSAR
	8.2 CML Module
	8.2.1 Molecule
	8.2.1.1 Properties
	8.2.1.2 Associations
	8.2.1.3 Operations

	8.2.2 MoleculeFactory
	8.2.3 MoleculeUtil
	8.2.4 Atom
	8.2.4.1 Associations

	8.2.5 AtomFactory
	8.2.5.1 Properties
	8.2.5.2 Associations
	8.2.5.3 Operations

	8.2.6 AtomParity
	8.2.6.1 Properties
	8.2.6.2 Associations
	8.2.6.3 Operations

	8.2.7 Bond
	8.2.7.1 Properties
	8.2.7.2 Associations
	8.2.7.3 Operations

	8.2.8 BondStereo
	8.2.8.1 Associations
	8.2.8.2 Operations

	8.2.9 Electron
	8.2.9.1 Properties
	8.2.9.2 Associations
	8.2.9.3 Operations

	8.2.10 Isotope
	8.2.10.1 Properties
	8.2.10.2 Associations
	8.2.10.3 Operations

	8.2.11 IsotopeFactory
	8.2.11.1 Properties
	8.2.11.2 Associations
	8.2.11.3 Operations

	8.2.12 AtomFactory
	8.2.12.1 Properties
	8.2.12.2 Associations
	8.2.12.3 Operations

	8.2.13 BondFactory
	8.2.13.1 Properties
	8.2.13.2 Associations
	8.2.13.3 Operations

	8.2.14 NumericAtomParity
	8.2.14.1 Properties
	8.2.14.2 Associations
	8.2.14.3 Operations

	8.2.15 StringAtomParity
	8.2.15.1 Properties
	8.2.15.2 Associations
	8.2.15.3 Operations

	8.2.16 Coordinate2
	8.2.16.1 Properties
	8.2.16.2 Associations
	8.2.16.3 Operations

	8.2.17 Coordinate3
	8.2.17.1 Properties
	8.2.17.2 Associations
	8.2.17.3 Operations

	8.2.18 AbstractAngle
	8.2.18.1 Properties
	8.2.18.2 Associations
	8.2.18.3 Operations

	8.2.19 Formula
	8.2.19.1 Properties
	8.2.19.2 Associations
	8.2.19.3 Operations

	8.2.20 FormulaElement
	8.2.20.1 Properties
	8.2.20.2 Associations
	8.2.20.3 Operations

	8.2.21 Crystal
	8.2.21.1 Properties
	8.2.21.2 Associations
	8.2.21.3 Operations

	8.3 Molutil Module
	8.3.1 ChemicalElement
	8.3.1.1 Properties
	8.3.1.2 Associations
	8.3.1.3 Operations

	8.3.2 ChemicalElementFactory
	8.3.2.1 Properties
	8.3.2.2 Associations
	8.3.2.3 Operations

	8.3.3 IsotopeSet
	8.3.3.1 Properties
	8.3.3.2 Associations
	8.3.3.3 Operations

	8.3.4 IsotopeSetFactory
	8.3.4.1 Properties
	8.3.4.2 Associations
	8.3.4.3 Operations

	8.3.5 PeriodicTable
	8.3.5.1 Properties
	8.3.5.2 Associations
	8.3.5.3 Operations

	8.3.6 PeriodicTableFactory
	8.3.6.1 Properties
	8.3.6.2 Associations
	8.3.6.3 Operations

	8.4 Search Component
	8.4.1 ChemSearchEngineManager
	8.4.2 ResultSet
	8.4.3 AccuracyQualifier
	8.4.4 ChemSearchEngine
	8.4.5 ComparisonOperator
	8.4.6 LogicalOperator
	8.4.7 Property
	8.4.8 SearchCriteriaGroup
	8.4.9 SearchCriterion
	8.4.10 SearcheableProperty
	8.4.11 SelectPropertyGroup
	8.4.12 SelectPropertyGroup

	8.5 Property
	8.5.1 MeasuringUnitPrefix
	8.5.2 AbstractValue
	8.5.3 BLOB
	8.5.4 CitedReference
	8.5.5 CitedValue
	8.5.6 MatrixValue
	8.5.7 MeasuringUnit
	8.5.8 ScalarValue
	8.5.9 TensorValue
	8.5.10 VectorValue

	8.6 Search General Functionality
	8.7 Legacy Module
	8.7.1 FileMap
	8.7.2 InformationLoss
	8.7.3 Collection Module

	9 Glossary
	A - UML Use Cases
	Actor Catalogue
	Master Use Case
	Detailed Use Case Scenarios

	B - Use Cases for Chemistry
	C - UML Related Interface Documentation
	D - Java Code Segments
	E - The XMI

