
Date: June 2014

Common Terminology Services 2
Version 1.2

OMG Document Number*: ptc/2014-05-01
Standard document URL: http://www.omg.org/spec/cts2/1.2/
Machine Consumable Files:

Normative: http://www.omg.org/spec/cts2/130601/CTS2_PIM.xmi
Normative: ZIP file contents (ptc/2013-05-21)

http://www.omg.org/spec/cts2/130601/association/Association.xsd
http://www.omg.org/spec/cts2/130601/codesystem/CodeSystem.xsd
http://www.omg.org/spec/cts2/130601/codesystemversion/CodeSystemVersion.xsd
http://www.omg.org/spec/cts2/130601/conceptdomain/ConceptDomain.xsd
http://www.omg.org/spec/cts2/130601/conceptdomainbinding/ConceptDomainBinding.xsd
http://www.omg.org/spec/cts2/130601/core/Core.xsd
http://www.omg.org/spec/cts2/130601/entity/Entity.xsd
http://www.omg.org/spec/cts2/130601/map/Map.xsd
http://www.omg.org/spec/cts2/130601/mapversion/MapVersion.xsd
http://www.omg.org/spec/cts2/130601/updates/Updates.xsd
http://www.omg.org/spec/cts2/130601/valueset/ValueSet.xsd
http://www.omg.org/spec/cts2/130601/valuesetdefinition/ValueSetDefinition.xsd
http://www.omg.org/spec/cts2/130601/association/AssociationServices.xsd
http://www.omg.org/spec/cts2/130601/codesystem/CodeSystemServices.xsd
http://www.omg.org/spec/cts2/130601/codesystemversion/CodeSystemVersionServices.xsd
http://www.omg.org/spec/cts2/130601/conceptdomain/ConceptDomainServices.xsd
http://www.omg.org/spec/cts2/130601/core/CoreService.xsd
http://www.omg.org/spec/cts2/130601/entity/EntityDescriptionServices.xsd
http://www.omg.org/spec/cts2/130601/map/MapServices.xsd
http://www.omg.org/spec/cts2/130601/map/MapVersionServices.xsd
http://www.omg.org/spec/cts2/130601/valuesetdefinition/ValueSetDefinitionServices.xsd
http://www.omg.org/spec/cts2/130601/valueset/ValueSetServices.xsd
http://www.omg.org/spec/cts2/130601/cts2.wadl
http://www.omg.org/spec/cts2/130601/wsdl/AdvancedAssociationQueryService.wsdl
http://www.omg.org/spec/cts2/130601/wsdl/AssociationHistoryService.wsdl
http://www.omg.org/spec/cts2/130601/wsdl/AssociationMaintenanceService.wsdl

Harold Solbrig� 5/15/14 2:15 PM
Deleted: December
Harold Solbrig� 5/15/14 2:15 PM
Deleted: 2013

Harold Solbrig� 5/15/14 2:15 PM
Deleted: 4-x2ptc/2014-06-13

http://www.omg.org/spec/cts2/130601/wsdl/AssociationQueryService.wsdl
http://www.omg.org/spec/cts2/130601/wsdl/AssociationReadService.wsdl
http://www.omg.org/spec/cts2/130601/wsdl/AssociationTransformService.wsdl
http://www.omg.org/spec/cts2/130601/wsdl/BaseExportService.wsdl
http://www.omg.org/spec/cts2/130601/wsdl/BaseImportService.wsdl
http://www.omg.org/spec/cts2/130601/wsdl/CodeSystemCatalogHistoryService.wsdl
http://www.omg.org/spec/cts2/130601/wsdl/CodeSystemCatalogMaintenanceService.wsdl
http://www.omg.org/spec/cts2/130601/wsdl/CodeSystemCatalogQueryService.wsdl
http://www.omg.org/spec/cts2/130601/wsdl/CodeSystemCatalogReadService.wsdl
http://www.omg.org/spec/cts2/130601/wsdl/CodeSystemVersionCatalogHistoryService.wsdl
http://www.omg.org/spec/cts2/130601/wsdl/CodeSystemVersionCatalogMaintenanceService.wsdl
http://www.omg.org/spec/cts2/130601/wsdl/CodeSystemVersionCatalogQueryService.wsdl
http://www.omg.org/spec/cts2/130601/wsdl/CodeSystemVersionCatalogReadService.wsdl
http://www.omg.org/spec/cts2/130601/wsdl/ConceptDomainBindingMaintenanceService.wsdl
http://www.omg.org/spec/cts2/130601/wsdl/ConceptDomainBindingQueryService.wsdl
http://www.omg.org/spec/cts2/130601/wsdl/ConceptDomainBindingReadService.wsdl
http://www.omg.org/spec/cts2/130601/wsdl/ConceptDomainCatalogHistoryService.wsdl
http://www.omg.org/spec/cts2/130601/wsdl/ConceptDomainCatalogMaintenanceService.wsdl
http://www.omg.org/spec/cts2/130601/wsdl/ConceptDomainCatalogQueryService.wsdl
http://www.omg.org/spec/cts2/130601/wsdl/ConceptDomainCatalogReadService.wsdl
http://www.omg.org/spec/cts2/130601/wsdl/EntityDescriptionHistoryService.wsdl
http://www.omg.org/spec/cts2/130601/wsdl/EntityDescriptionMaintenanceService.wsdl
http://www.omg.org/spec/cts2/130601/wsdl/EntityDescriptionQueryService.wsdl
http://www.omg.org/spec/cts2/130601/wsdl/EntityDescriptionReadService.wsdl
http://www.omg.org/spec/cts2/130601/wsdl/EntityDescriptionTransformService.wsdl
http://www.omg.org/spec/cts2/130601/wsdl/MapCatalogHistoryService.wsdl
http://www.omg.org/spec/cts2/130601/wsdl/MapCatalogMaintenanceService.wsdl
http://www.omg.org/spec/cts2/130601/wsdl/MapCatalogQueryService.wsdl
http://www.omg.org/spec/cts2/130601/wsdl/MapCatalogReadService.wsdl
http://www.omg.org/spec/cts2/130601/wsdl/MapEntryHistoryService.wsdl
http://www.omg.org/spec/cts2/130601/wsdl/MapEntryMaintenanceService.wsdl
http://www.omg.org/spec/cts2/130601/wsdl/MapEntryQueryService.wsdl
http://www.omg.org/spec/cts2/130601/wsdl/MapEntryReadService.wsdl
http://www.omg.org/spec/cts2/130601/wsdl/MapResolutionService.wsdl
http://www.omg.org/spec/cts2/130601/wsdl/MapVersionHistoryService.wsdl
http://www.omg.org/spec/cts2/130601/wsdl/MapVersionMaintenanceService.wsdl
http://www.omg.org/spec/cts2/130601/wsdl/MapVersionQueryService.wsdl
http://www.omg.org/spec/cts2/130601/wsdl/MapVersionReadService.wsdl
http://www.omg.org/spec/cts2/130601/wsdl/ReasoningService.wsdl
http://www.omg.org/spec/cts2/130601/wsdl/ResolvedValueSetLoader.wsdl
http://www.omg.org/spec/cts2/130601/wsdl/ResolvedValueSetResolution.wsdl
http://www.omg.org/spec/cts2/130601/wsdl/ResolvedValueSetQueryService.wsdl
http://www.omg.org/spec/cts2/130601/wsdl/StatementHistoryService.wsdl
http://www.omg.org/spec/cts2/130601/wsdl/StatementQueryService.wsdl
http://www.omg.org/spec/cts2/130601/wsdl/StatementReadService.wsdl
http://www.omg.org/spec/cts2/130601/wsdl/UpdateService.wsdl
http://www.omg.org/spec/cts2/130601/wsdl/ValueSetCatalogHistoryService.wsdl
http://www.omg.org/spec/cts2/130601/wsdl/ValueSetCatalogMaintenanceService.wsdl
http://www.omg.org/spec/cts2/130601/wsdl/ValueSetCatalogQueryService.wsdl
http://www.omg.org/spec/cts2/130601/wsdl/ValueSetCatalogReadService.wsdl
http://www.omg.org/spec/cts2/130601/wsdl/ValueSetDefinitionHistoryService.wsdl

http://www.omg.org/spec/cts2/130601/wsdl/ValueSetDefinitionMaintenanceService.wsdl
http://www.omg.org/spec/cts2/130601/wsdl/ValueSetDefinitionQueryService.wsdl
http://www.omg.org/spec/cts2/130601/wsdl/ValueSetDefinitionReadService.wsdl
http://www.omg.org/spec/cts2/130601/wsdl/ValueSetDefinitionResolution.wsdl
http://www.omg.org/spec/cts2/130601/wsdl/AdvancedAssociationQueryServiceTypes.xsd
http://www.omg.org/spec/cts2/130601/wsdl/AssociationHistoryServiceTypes.xsd
http://www.omg.org/spec/cts2/130601/wsdl/AssociationMaintenanceServiceTypes.xsd
http://www.omg.org/spec/cts2/130601/wsdl/AssociationQueryServiceTypes.xsd
http://www.omg.org/spec/cts2/130601/wsdl/AssociationReadServiceTypes.xsd
http://www.omg.org/spec/cts2/130601/wsdl/AssociationTransformServiceTypes.xsd
http://www.omg.org/spec/cts2/130601/wsdl/BaseExportServiceTypes.xsd
http://www.omg.org/spec/cts2/130601/wsdl/BaseImportServiceTypes.xsd
http://www.omg.org/spec/cts2/130601/wsdl/CodeSystemCatalogHistoryServiceTypes.xsd
http://www.omg.org/spec/cts2/130601/wsdl/CodeSystemCatalogMaintenanceServiceTypes.xsd
http://www.omg.org/spec/cts2/130601/wsdl/CodeSystemCatalogQueryServiceTypes.xsd
http://www.omg.org/spec/cts2/130601/wsdl/CodeSystemCatalogReadServiceTypes.xsd
http://www.omg.org/spec/cts2/130601/wsdl/CodeSystemVersionCatalogHistoryServiceTypes.xsd
http://www.omg.org/spec/cts2/130601/wsdl/CodeSystemVersionCatalogMaintenance
ServiceTypes.xsd
http://www.omg.org/spec/cts2/130601/wsdl/CodeSystemVersionCatalogQueryServiceTypes.xsd
http://www.omg.org/spec/cts2/130601/wsdl/CodeSystemVersionCatalogReadServiceTypes.xsd
http://www.omg.org/spec/cts2/130601/wsdl/ConceptDomainBindingMaintenanceServiceTypes.xsd
http://www.omg.org/spec/cts2/130601/wsdl/ConceptDomainBindingQueryServiceTypes.xsd
http://www.omg.org/spec/cts2/130601/wsdl/ConceptDomainBindingReadServiceTypes.xsd
http://www.omg.org/spec/cts2/130601/wsdl/ConceptDomainCatalogHistoryServiceTypes.xsd
http://www.omg.org/spec/cts2/130601/wsdl/ConceptDomainCatalogMaintenanceServiceTypes.xsd
http://www.omg.org/spec/cts2/130601/wsdl/ConceptDomainCatalogQueryServiceTypes.xsd
http://www.omg.org/spec/cts2/130601/wsdl/ConceptDomainCatalogReadServiceTypes.xsd
http://www.omg.org/spec/cts2/130601/wsdl/EntityDescriptionHistoryServiceTypes.xsd
http://www.omg.org/spec/cts2/130601/wsdl/EntityDescriptionMaintenanceServiceTypes.xsd
http://www.omg.org/spec/cts2/130601/wsdl/EntityDescriptionQueryServiceTypes.xsd
http://www.omg.org/spec/cts2/130601/wsdl/EntityDescriptionReadServiceTypes.xsd
http://www.omg.org/spec/cts2/130601/wsdl/EntityDescriptionTransformServiceTypes.xsd
http://www.omg.org/spec/cts2/130601/wsdl/MapCatalogHistoryServiceTypes.xsd
http://www.omg.org/spec/cts2/130601/wsdl/MapCatalogMaintenanceServiceTypes.xsd
http://www.omg.org/spec/cts2/130601/wsdl/MapCatalogQueryServiceTypes.xsd
http://www.omg.org/spec/cts2/130601/wsdl/MapCatalogReadServiceTypes.xsd
http://www.omg.org/spec/cts2/130601/wsdl/MapEntryHistoryServiceTypes.xsd
http://www.omg.org/spec/cts2/130601/wsdl/MapEntryMaintenanceServiceTypes.xsd
http://www.omg.org/spec/cts2/130601/wsdl/MapEntryQueryServiceTypes.xsd
http://www.omg.org/spec/cts2/130601/wsdl/MapEntryReadServiceTypes.xsd
http://www.omg.org/spec/cts2/130601/wsdl/MapResolutionServiceTypes.xsd
http://www.omg.org/spec/cts2/130601/wsdl/MapVersionHistoryServiceTypes.xsd
http://www.omg.org/spec/cts2/130601/wsdl/MapVersionMaintenanceServiceTypes.xsd
http://www.omg.org/spec/cts2/130601/wsdl/MapVersionQueryServiceTypes.xsd
http://www.omg.org/spec/cts2/130601/wsdl/MapVersionReadServiceTypes.xsd
http://www.omg.org/spec/cts2/130601/wsdl/ReasoningServiceTypes.xsd
http://www.omg.org/spec/cts2/130601/wsdl/ResolvedValueSetLoaderTypes.xsd
http://www.omg.org/spec/cts2/130601/wsdl/ResolvedValueSetResolutionTypes.xsd
http://www.omg.org/spec/cts2/130601/wsdl/ResolvedValueSetQueryServiceTypes.xsd
http://www.omg.org/spec/cts2/130601/wsdl/StatementHistoryServiceTypes.xsd
http://www.omg.org/spec/cts2/130601/wsdl/StatementQueryServiceTypes.xsd
http://www.omg.org/spec/cts2/130601/wsdl/StatementReadServiceTypes.xsd
http://www.omg.org/spec/cts2/130601/wsdl/UpdateServiceTypes.xsd
http://www.omg.org/spec/cts2/130601/wsdl/ValueSetCatalogHistoryServiceTypes.xsd
http://www.omg.org/spec/cts2/130601/wsdl/ValueSetCatalogMaintenanceServiceTypes.xsd
http://www.omg.org/spec/cts2/130601/wsdl/ValueSetCatalogQueryServiceTypes.xsd
http://www.omg.org/spec/cts2/130601/wsdl/ValueSetCatalogReadServiceTypes.xsd

http://www.omg.org/spec/cts2/130601/wsdl/ValueSetDefinitionHistoryServiceTypes.xsd
http://www.omg.org/spec/cts2/130601/wsdl/ValueSetDefinitionMaintenanceServiceTypes.xsd
http://www.omg.org/spec/cts2/130601/wsdl/ValueSetDefinitionQueryServiceTypes.xsd
http://www.omg.org/spec/cts2/130601/wsdl/ValueSetDefinitionReadServiceTypes.xsd
http://www.omg.org/spec/cts2/130601/wsdl/ValueSetDefinitionResolutionTypes.xsd

Copyright © 2014, Mayo Clinic
Copyright © 2014, Object Management Group

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms, conditions
and notices set forth below. This document does not represent a commitment to implement any portion of this specification in
any company's products. The information contained in this document is subject to change without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free, paid
up, worldwide license to copy and distribute this document and to modify this document and distribute copies of the modified
version. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed the copyright
in the included material of any such copyright holder by reason of having used the specification set forth herein or having
conformed any computer software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant you a fully-
paid up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use this
specification to create and distribute software and special purpose specifications that are based upon this specification, and to
use, copy, and distribute this specification as provided under the Copyright Act; provided that: (1) both the copyright notice
identified above and this permission notice appear on any copies of this specification; (2) the use of the specifications is for
informational purposes and will not be copied or posted on any network computer or broadcast in any media and will not be
otherwise resold or transferred for commercial purposes; and (3) no modifications are made to this specification. This limited
permission automatically terminates without notice if you breach any of these terms or conditions. Upon termination, you
will destroy immediately any copies of the specifications in your possession or control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may require
use of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a license may be
required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of those patents that are
brought to its attention. OMG specifications are prospective and advisory only. Prospective users are responsible for
protecting themselves against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications regulations and
statutes. This document contains information which is protected by copyright. All Rights Reserved. No part of this work
covered by copyright herein may be reproduced or used in any form or by any means--graphic, electronic, or mechanical,
including photocopying, recording, taping, or information storage and retrieval systems--without permission of the copyright
owner.

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY CONTAIN
ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE
MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS PUBLICATION,
INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF
MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE.

IN NO EVENT SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE COMPANIES LISTED ABOVE BE
LIABLE FOR ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS, REVENUE, DATA OR USE,
INCURRED BY ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE FURNISHING, PERFORMANCE,
OR USE OF THIS MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you. This disclaimer
of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1) (ii) of The
Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph (c)(1) and (2) of the
Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified in 48 C.F.R. 227-7202-2 of
the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of the Federal Acquisition Regulations and its
successors, as applicable. The specification copyright owners are as indicated above and may be contacted through the Object
Management Group, 109 Highland Avenue, Needham, MA 02494, U.S.A.

TRADEMARKS

IMM®, MDA®, Model Driven Architecture®, UML®, UML Cube logo®, OMG Logo®, CORBA® and XMI® are registered
trademarks of the Object Management Group, Inc., and Object Management GroupTM, OMGTM, Unified Modeling LanguageTM,
Model Driven Architecture LogoTM, Model Driven Architecture DiagramTM, CORBA logosTM, XMI LogoTM, CWMTM, CWM
LogoTM, IIOPTM, MOFTM, OMG Interface Definition Language (OMG IDL)TM, and OMG Systems Modeling Language (OMG
SysML)TM are trademarks of the Object Management Group. All other products or company names mentioned are used for
identification purposes only, and may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its designees) is and
shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer software to use certification
marks, trademarks or other special designations to indicate compliance with these materials.

Software developed under the terms of this license may claim compliance or conformance with this specification if and only if
the software compliance is of a nature fully matching the applicable compliance points as stated in the specification. Software
developed only partially matching the applicable compliance points may claim only that the software was based on this
specification, but may not claim compliance or conformance with this specification. In the event that testing suites are
implemented or approved by Object Management Group, Inc., software developed using this specification may claim compliance
or conformance with the specification only if the software satisfactorily completes the testing suites.

Common Terminology Services 2, v1.2 i

Table of Contents

Preface .. iii
1. Scope .. 1
2. Conformance .. 1

2.1 Implementation Profiles ... 1

3. Normative References .. 4
4. Terms and Definitions ... 4
5. Symbols .. 5
6. Additional Information ... 5

6.1 Acknowledgements .. 5
6.2 Guide to Specification .. 6

6.3 How to Read This Specification ... 11
6.4 Existing Artifacts .. 12
6.5 Statement of Proof of Concept ... 12

Annex A - Description of Existing Work .. 15

ii Common Technology Services 2, v1.2

Common Terminology Services 2, v1.2 iii

Preface
About the Object Management Group

OMG

Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer industry
standards consortium that produces and maintains computer industry specifications for interoperable, portable and reusable
enterprise applications in distributed, heterogeneous environments. Membership includes Information Technology vendors,
end users, government agencies and academia.

OMG member companies write, adopt, and maintain its specifications following a mature, open process. OMG's
specifications implement the Model Driven Architecture® (MDA®), maximizing ROI through a full-lifecycle approach to
enterprise integration that covers multiple operating systems, programming languages, middleware and networking
infrastructures, and software development environments. OMG's specifications include: UML® (Unified Modeling
LanguageTM); CORBA® (Common Object Request Broker Architecture); CWMTM (Common Warehouse Metamodel);
and industry-specific standards for dozens of vertical markets.

More information on the OMG is available at http://www.omg.org/.

OMG Specifications
As noted, OMG specifications address middleware, modeling and vertical domain frameworks. All OMG Specifications are
available from this URL:

http://www.omg.org/spec

Specifications are organized by the following categories:

Business Modeling Specifications

Middleware Specifications
• CORBA/IIOP
• Data Distribution Services
• Specialized CORBA

IDL/Language Mapping Specifications

Modeling and Metadata Specifications
• UML, MOF, CWM, XMI
• UML Profile

Modernization Specifications

iv Common Terminology Services 2, v1.2

Platform Independent Model (PIM), Platform Specific Model (PSM), Interface Specifications
• CORBAServices
• CORBAFacilities

OMG Domain Specifications

CORBA Embedded Intelligence Specifications

CORBA Security Specifications

All of OMG’s formal specifications may be downloaded without charge from our website. (Products implementing OMG
specifications are available from individual suppliers.) Copies of specifications, available in PostScript and PDF format, may
be obtained from the Specifications Catalog cited above or by contacting the Object Management Group, Inc. at:

OMG Headquarters
109 Highland Avenue
Needham, MA 02494
USA
Tel: +1-781-444-0404
Fax: +1-781-444-0320
Email: pubs@omg.org

Certain OMG specifications are also available as ISO standards. Please consult http://www.iso.org

Typographical Conventions
The type styles shown below are used in this document to distinguish programming statements from ordinary English.
However, these conventions are not used in tables or section headings where no distinction is necessary.

Times/Times New Roman - 10 pt.: Standard body text

Helvetica/Arial - 10 pt. Bold: OMG Interface Definition Language (OMG IDL) and syntax elements.

Courier - 10 pt. Bold: Programming language elements.

Helvetica/Arial - 10 pt: Exceptions

Note – Terms that appear in italics are defined in the glossary. Italic text also represents the name of a document,
specification, or other publication.

Issues
The reader is encouraged to report any technical or editing issues/problems with this specification to http://www.omg.org/
report issue.htm.

Common Terminology Services 2, v1.2 1

1 S c o p e

Structured terminologies provide a foundation for information interoperability by improving the effectiveness of information
exchange. They provide a means for organizing information and serve to define the semantics of information using consistent
and computable mechanisms.

Terminologies are constructed to meet scope specific domain requirements. The domain specific nature of structured
vocabularies often leads to variation in design patterns across the available terminology space. The ability to provide
consistent representation and access to a broad set of terminologies enables multiple disparate terminology sources to be
available to a community, and helps to ensure consistency across the domain space of that community. Service interfaces to
structured terminologies should be flexible enough to accurately represent a wide variety of vocabularies and other lexically-
based resources.

The PIM specified in this document for CTS2 is intended to mediate among disparate terminology sources by providing a
standard service information and computational model. The Information Model specifies the structural definition,
attributes and associations of Resources common to structured terminologies such as Code Systems, Binding Domains and
Value Sets. The Computational Model specifies the service descriptions and interfaces needed to access and maintain
structured terminologies.

2 Conformance

This specification defines a PIM that specifies an Information Model as well as a Computational Model. Conformant
implementations of this PIM must provide an implementation that represents both the Information Model and Computational
Model. This base level implementation provides the foundation for providing data type specific profiles (i.e., ISO 21090 data
types, HL7 data types, etc.).

Conformant implementations must adhere to the profiles outlined in the Computation Model of this PIM, which are
derived from the CTS2 SFM.

2.1 Implementation Profiles
The CTS2 specification allows modular implementation. CTS2 service instances may choose to implement only the
components and functionality that are relevant to their specific needs and use cases. The intent of this modularity is twofold.
The first goal is that the specification provides what the NCI has been calling the “linear value proposition,” where relatively
simple things are easy to implement and the cost of the implementation increases in proportion to the desired complexity. As
an example, an organization that maintains a catalog of metadata about available ontologies could publish this catalog using
the CTS2 standard by implementing the CODE SYSTEM structural profile along with the READ and QUERY functional
profiles.

The second goal of the CTS2 modularity is to enable terminology resources to be distributed and federated. If, for instance,
an organization needed to maintain a small, specialized ontology that builds on a number of other already existing ontologies,
they might implement the ASSOCIATION and, possibly, the ENTITY structural profiles including the READ, QUERY, and
AUTHORING profiles and could link to the first organization’s code system catalog for additional information about the
ontologies that were imported.

This sub clause starts by defining the common elements that are shared by the different profiles. It defines a core set of
data types, several key structural components, and a number of abstractions that are reused throughout the rest of the
models.

2 Common Terminology Services 2, v1.2

It also defines the core functional components – characteristics that all CTS2 service implementations must possess as well
as characteristics that are common to each specific functional profile.

It then provides a section for each of the eleven possible structural profiles. Each section describes what the specific profile
is intended to represent, defines the structural components specific to the profile, and then defines the functional
characteristics each functional profile provides with respect to the target component.

The individual structural, functional, and implementation profile components are described briefly below. Readers are
encouraged to refer to the corresponding clauses for additional detail.

Figure 2.1 - Implementation Profiles

Class ProfileElement
ProfileElement appears in service implementations, once per structural profile that is supported by the implementation
instance. Each occurrence records the set of functional profiles that are supported for the specific structural profile.

Attributes

• structuralProfile – A structural profile that is supported by the service.

• functionalProfile – A functional profile that is supported for the particular structural profile.

Enum FunctionalProfile
An enumeration of the possible functional profiles, some or all of which can be implemented by a conformant CTS2 service.

Common Terminology Services 2, v1.2 3

Attributes

• FP_READ – The implementation supports direct read access for artifacts of the associated structural profile.

• FP_QUERY – The implementation supports search and enumerate access for artifacts of the associated structural
profile.

• FP_IMPORT – The implementation supports the ability to import resources from one or more external formats into
elements of the associated structural profiles.

• FP_EXPORT – The implementation supports the ability to export elements of the associated structural profiles in
one or more external formats.

• FP_UPDATE – The service supports the ability to apply incremental updates (ChangeSets) to the associated
resources.

• FP_MAINTENANCE – The service supports the ability to create ChangeSets.

• FP_TEMPORAL – The system supports the ability to read and query (as supported by the service) the service in
the context of a date and time different.

Enum ImplementationProfile
Indicates what PSM(s) are supported by the given service implementation.

Attributes

• IP_REST – The service supports the REST PSM.

• IP_SOAP – The system supports the SOAP implementation profile.

• IP_CRDF – The service supports the “Canonical RDF” PSM.

Enum StructuralProfile
The CTS2 specification defines eleven distinct structural profiles. CTS2 compliant implementations may elect to
implement any combination of these profiles to meet their individual requirements and use cases.

Attributes

• SP_CODE_SYSTEM – The CODE_SYSTEM profile provides a catalog of classification systems, code systems,
ontologies, thesauri, etc. known to the service and may also carry information about their publisher, release cycles,
purpose, etc.

• SP_CODE_SYSTEM_VERSION – The CODE_SYSTEM_VERSION profile carries information about the
various versions of a code system, including the release date, release format, contact information, etc.

• SP_ENTITY_DESCRIPTION – The ENTITY_DESCRIPTION profile provides a representation of a collection of
descriptions about classes, roles, or individuals along with links to the code system version(s) in which these
descriptions originate. An entity description provides the “lexical” or “non-semantic” components of a description,
while the ASSOCIATION profile provides the logic-based “semantic” counterpart.

• The service supports the EntityDescription structural model, which means that it can represent sets of
lexical assertions about classes, roles, and/or individuals as asserted by a specific code system version.

4 Common Terminology Services 2, v1.2

• SP_ASSOCIATION – The ASSOCIATION profile represents a collection of structured, “semantic” assertions
about classes, roles, and/or individuals along with links to the code system versions(s) that were the source of these
assertions. The service supports the Association structural model, which means that it can represent sets of semantic
assertions about classes, roles, and/or individuals as asserted by a specific code system version.

• SP_VALUE_SET – The VALUE_SET profile provides a catalog of value sets that are known to the service.

• SP_VALUE_SET_DEFINITION – The VALUE_SET_DEFINITION structural profile provides definitions that,
when interpreted using specified code system versions, result in a set of entity descriptions. Definitions are associated
with value sets and can vary and evolve over time.

• SP_VALUE_SET_RESOLUTION – The VALUE_SET_RESOLUTION profile describes rules for ordering
and associating additional properties with the result of interpreting a value set definition. VALUE SET
RESOLUTION allows resolved definitions to be rendered in a given language and context, sorted and filtered.

• SP_CONCEPT_DOMAIN – A CONCEPT_DOMAIN profile describes the equivalent of a 11179 Data
Element Concept. It identifies an abstract unit of information that can appear on a message form or database
along with metadata about its use, author, purpose, etc.

• SP_CONCEPT_DOMAIN_BINDING – A CONCEPT_DOMAIN_BINDING profile describes the equivalent of
the 11179 Data Element, associating a CONCEPT-DOMAIN with a value set and describing the context and rules
where the association applies.

• SP_MAP – The MAP profile defines collections of rules for transforming information represented using one code
system into information represented in a section. MAP describes abstract collections such as “The SNOMED-CT to
ICD-10 map,” along with the creators, intended use, code systems involved, etc.

• SP_MAP_VERSION – The MAP_VERSION profile represents the actual content of a MAP at a given point in
time. It carries the from and to components as well as a representation of the rules and process for the conversion.

2.2.1 CTS2 JSON
Implementations are CTS2 JSON compliant if they generate JSON based on the rules described in Annex B.

3 Normative References

The following normative documents contain provisions which, through reference in this text, constitute provisions of this
specification. For dated references, subsequent amendments to, or revisions of, any of these publications do not apply.

[ISO 11179] ISO/IEC 11179, Information technology – Specification and standardization of data elements

[ISO 21090] ISO 21090, Health informatics – Harmonized data types for information exchange

[HL7 Data Types] HL7 V3 – Data Types – Abstract Specification

 [XML 1.0] Documents associated with Extensible Markup Language (XML) 1.0 (Fifth Edition)
 W3C Recommendation 26 November, 2008
 http://www.w3.org/TR/2008/REC-xml-20081126/
 [ECMA 404] The JSON Data Interchange Format 1st Edition / October 2013.
 http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf

Harold Solbrig� 4/21/14 3:08 PM
Comment [1]: Issue# 19308. 3) Section	 3	
(Normative	 references),	 PDF	 page	 8.	 We	
definitely	 need	 a	 normative	 reference	 for	
JSON.

Common Terminology Services 2, v1.2 5

 [XML 1.1] Extensible Markup Language (XML) 1.1 (Second Edition) . W3C Recommendation 16 August 2006
 http://www.w3.org/TR/xml11/

4 Terms and Definitions
For the purposes of this specification, the following terms and definitions apply.

Computation Independent Model (CIM)

A computation independent model is a view of a system from the computation independent viewpoint. A CIM does not show
details of the structure of systems. A CIM is sometimes called a domain model, and a vocabulary that is familiar to the

JSON

JavaScript Object Notation is a lightweight data-interchange format.

http://json.org

Harold Solbrig� 4/21/14 3:08 PM
Comment [2]: Issue# 19301: The
documents referenced in Rule 12 should
appear in the normative references section

Common Terminology Services 2, v1.2 6

practitioners of the domain in question is used in its specification. Some ontologies are essentially CIMs from a
software engineering perspective.

HL7 Model Interchange Format (MIF)

A set of XML formats used to support the storage and exchange of HL7 version 3 artifacts as part of the HL7
Development Framework.

Platform Independent Model (PIM)

A model of a subsystem that contains no information specific to the platform, or the technology that is used to realize

it. Platform Specific Model (PSM)

A model of a subsystem that includes information about the specific technology that is used in the realization of it on a
specific platform, and hence possibly contains elements that are specific to the platform.

Unified Modeling Language (UML)

An OMG standard language for specifying the structure and behavior of systems. The standard defines an abstract syntax and
a graphical concrete syntax.

XML Metadata Interchange (XMI)

An OMG standard that facilitates interchange of models via XML documents.

5 Symbols

CIM Computation Independent Model

ISO/IEC International Organization for Standardization / International Electrotechnical Commission

OMG Object Management Group

PIM Platform Independent Model

PSM Platform Specific Model

UML Unified Modeling Language 2.0

URI Uniform Resource Identifier

XMI XML Metadata Interchange

XML Extensible Markup Language

7 Common Terminology Services 2, v1.2

6 Additional Information

6.1 Acknowledgements
This specification in response to the Common Terminology Services Release 2 (CTS2) RFP is made by the Mayo Clinic /
Foundation. This specification is supported in part by the National Cancer Institute, caBIG® initiative.

The following companies submitted this specification:

• Mayo Clinic / Foundation

The authors would like to thank the National Cancer Institute (NCI), caBIG® community for supporting the development of
CTS2 throughout the OMG standards adoption process, as well as the active members of the OMG’s Healthcare DTF,
Ontology PSIG, and the HL7 Vocabulary community for their help and support towards the preparation of this document.

The following companies and organizations support this specification:

• 3M Health Information Systems, Inc.

• Apelon, Inc.

• Everware-CBDI

• Hewlett-Packard Company

• Intermountain Healthcare

• International Health Terminology Standards Development Organisation (IHTSDO)

• Model Driven Solutions

• National Cancer Institute (NCI) Enterprise Vocabulary Services

• NoMagic, Inc.

• Sandpiper Software, Inc.

• Sparx Systems

• Tethers End

• University of Oxford, UK, Department of Computer Science

• Visumpoint

6.2 Guide to Specification
General

This specification represents a PIM and PSM for the Common Terminology Services – Release 2 (CTS2) terminology
service. It specifies a platform independent service interface to a broad set of structured terminology resources. The
requirements for the CTS2 were initially developed as a Service Functional Model (SFM) within a project sponsored by the
Vocabulary Work Group within the Health Level Seven (HL7) community. The HL7 SFM served as the basis for developing
the OMG RFP for CTS2, calling for responses to specify a PIM and PSM for CTS2.

Common Terminology Services 2, v1.2 8

Introduction to the Specification
The CTS2 specification is designed to address a broad range of requirements within the ontology and terminology
community. The use cases range for a need to be able to publish simple catalogs that identify what resources are available to
the ability to serve the content of multiple formal ontologies, performing online reasoning and classification. The CTS2
specification also recognizes that terminological services will not necessarily be centralized – one organization may publish
catalogs, a second content, and yet another may serve value sets, maps, and other resources based on these tools.

The goal of this specification includes the ability to provide distributed, federated terminology services, enabling replicated
service instances that periodically synchronize their content as well as service instances that reference the content in other
instances. Our goal in no small part is to provide the core infrastructure that allows terminology services to be coupled and
interlinked in much the same way that pages are interlinked today in the World Wide Web. Many of the design decisions that
went into this specification reflect this need.

Design Philosophy
The CTS2 specification is based on the RESTful Architectural Style as described by Ray Fielding. It identifies a number of
relatively fine-grained resources that have persistent identity and then describes how these resources are accessed through
generic create (PUT), read (GET), update (POST or PUT), and delete (REMOVE) operations. The specification adheres to
the idempotency rules laid out in Fielding’s document, while introducing an additional notion of a transactional (ChangeSet)
layer that allows the synchronization and exchange of collections of changes between service instances.

Linkage between CTS2 resources are loosely coupled and are based on Universal Resource Identifiers (URIs). This makes it
possible for one service implementation to implement a query service that references resources in many other services.
Similarly, a service may implement a map from one code system to another that depends on a second service to represent the
source codes, another to service the target codes, and yet another to represent the metadata such as languages and mime types
that are consumed by the implementation itself.

The goal of the CTS2 specification is to provide what has been called a “linear value proposition” – the idea that simple
requirements are simple to implement and the complexity of the implementation increases in direct proportion with the
complexity of the service requirements. We believe that we have achieved this goal, in that it has been demonstrated that it is
possible to implement any of the basic read or simple query modules of the CTS2 specification with nothing more than an
XML editor and a backing file system.

Identifiers and Linkage
The CTS2 specification requires that all of the resources represented in service implementations be represented by
Universal Resource Identifiers (URIs) that uniquely the name and, ideally, are permanent and persist across service
instances. The specification also recognizes that large collections of URIs are difficult to maintain and access without the
addition of some sort of a more succinct, human readable form. Where appropriate, the specification requires that
resources also be provided an additional local identifier that uniquely references the resource within the context of the
service implementation. This identifier model is analogous to the XML Namespace model, where the header of an XML
specification names the URIs that are used in the XML document and assigns surrogate identifiers that can be used in
place of the URI in the context of the containing document. As with XML documents, local service identifiers are not
transferable across service instances. Just as one XML document may use “xs” to represent the URI of XML Schema and
a second may use “xsd,” one CTS2 service may use “SCT” to represent the SNOMED-CT ontology while another
instance may use “SNOMED-CT” or some other identifier.

Entity (concept, class, predicate, individual) identifiers are a bit more complex. While not strictly required, code systems and
ontologies have arrived at various mechanisms for combining a scoping namespace and a code to form the complete URI. As
(a) this is not always the case – opaque GUIDs, Digital Object Identifies and other schemes are also used and (b) even when
the namespace URI and code are known it there is no standardized way of combining them into a URI, the

9 Common Terminology Services 2, v1.2

CTS2 specification remains silent on the relationship between namespaces, codes, and URIs. It does, however, require that
an entity be referenced by both a local identifier, in the form of a namespace/name tuple and by a URI. The namespace
itself is a service specific local identifier that is associated with a URI. As with RDF and XML, namespace identifiers are
service specific and may not be shared across service instances.

An additional nuance of entity identifiers is the name component. Debates continue to rage about the merits of
semantically opaque identifiers vs. recognizable language specific labels that risk becoming incorrect or dated as the
ontology evolves. CTS2 remains silent on this aspect of terminologies and simply states that every namespace/name tuple
must map to the official URI of the entity. Different service implementations may use different mechanisms to accomplish
this goal including assigning meaningful labels in the place of meaningless codes or even allowing more than one
namespace/name combination to reference the same resource.

Specification Structure

This specification is divided into a number of cleanly separable sections or “structural domains:”

Code System Catalog – Metadata about code systems (ontologies, code sets, thesauri, classification systems, etc.). A
service would implement this section to publish information about what sort of terminological resources are available,
who maintains them, what they are intended to be used for, how often they are released, what copyrights pertain to them,
etc.

Code System Version Catalog – Metadata about specific versions of code systems. A service would implement this section to
provide information about specific versions of code systems – when they were released, what format they are in, when they
were intended to become active, which version they replace, etc.

Entity Description – A set of entity (a.k.a. “class,” “category,” “concept,” “predicate,” “property,” “term,” “individual”)
identifiers known to the service along with information about which code system versions make assertions about these
identifiers and what they say. The entity description service focuses on the lexical aspect of entity identifiers – providing
access to the designations, definitions, descriptions, examples, usage notes, and other artifacts used to represent the meaning
of the entity to human consumers. Services would implement this section to publish information about the codes described in
various versions of code systems along with their intended meanings.

Association – Sets of “semantic” assertions about entity identifiers, in which the entity identifier may play the role of subject,
predicate (verb) or object in the assertions. This area represents the formal machine interpretable aspects of code systems, and
a service would implement this section to support classification, reasoning or other computational logic systems built on
terminological content.

Value Set Catalog – Metadata about sets of entity identifiers (value sets) that have been grouped for some purpose. A
service would implement this section if it wanted to publish information about these collections such as who created them,
who maintains them, what is their purpose, what code systems do they depend on, how they are updated, etc.

Value Set Definition - Information about how value sets are constructed. A value set definition can be a simple
enumeration of its elements or can contain instructions about how the elements are assembled from aspects of entity
descriptions and associations. Value set definitions may be coupled to specific versions of code system, or may be
defined in a way that they could be applied to different versions, potentially with different results. Services would
implement this section to publish the rules on the construction of value sets. The value set definition section includes an
optional subsection (Resolved Value Set) that enables the publication, loading, and use of the results of applying value
set definitions. Services would implement this section when they needed to consume and use value sets without having
access to the underlying code systems.

Common Terminology Services 2, v1.2 10

Concept Domain Catalog – A catalog of abstract “concept domains” that represent a collection of possible meanings.
Concept domains are intended to represent the intended meaning of a field on a form, a column in a database, a field in a
message, etc. The CTS2 specification focuses on enumerated concept domains – fields that represent discrete collections of
“meanings,” each of which is represented by a permissible value. A service would implement this section to provide a list of
generic fields that would be used in data interchange.

Concept Domain Binding – The coupling of a concept domain with a value set, where the value set provides a list of
possible meanings that can be used in a concept domain in a particular use case or context.

Map Catalog – A catalog of “maps” - collection of rules that allow human or machine assisted transformation between the
codes in one value set or code system and those in a second. A service would implement this section to publish information
about which rule sets are available, which code systems or value sets they map between, their intended purpose, how often
they are published, what formats they are in, etc.

Map Version – An instance of a map, including the specific value set definitions that and code systems that they are based
on and the actual rules. A service would implement this section if it wished to publish the content of maps. This document
includes an optional sub clause (Map Resolution) that provides access to the machine aided interpretation of map versions –
a service that does the actual map transformation.

Statement – A bridge between the information contained in the various sections described above and the actual assertions
made by the information providers. A service would implement this section when it needed to provide additional provenance
about assertions made in catalogs or resource versions including what was actually said, how it mapped to the CTS2 service
representation, the provenance of the assertion, etc. Statement is also intended to act as a bridge between the structured
CTS2 model and simple subject/predicate/target systems as represented by OWL and RDF.

This specification is also intended to support a number of functional areas including:

Read – Direct access to the contents of a resource via URI, local identifier or, where applicable, a combination of an
abstract resource identifier and version tag (e.g., SNOMED-CT / Current version).

Query – The ability to access, combine and filter lists of resources based on the resource content and user context.

Import and Export – The ability to import external content into the service and/or export the contents of the service in
different formats.

Update – The ability to validate load sets of changes into the service that updates its content.

History – The ability to determine what changes have occurred over stated periods of time.

Maintenance – The ability to create and commit sets of changes.

Temporal – The ability to ask questions about the state of the service at a given point in the past (or future).

Specialized – Service specific functions such as the association reasoning services, the map entry services and the
resolved value set services.

The Import, Export and Temporal functions are generic – There are no resource specific aspects to these services and, as
such, they are defined once in the Core Service Elements module. The remaining components have different signatures
depending on the structural domain to which they are applied.

The CTS2 specification is subdivided into the following documents:

11 Common Terminology Services 2, v1.2

Core Model Elements – Defines the data types, building blocks, and basic interfaces that are shared across more than one
structural or functional area. All of the remaining documents have dependencies on the Core - no dependencies between
any of the remaining documents that follow. Each of the remaining documents, when combined with the Core document,
can stand by itself.

Code System and Code System Version Catalog Services – Describes two independent modules: Code System Catalog
Services and Code System Version Catalog Services.

Entity Description Services – Describes two independent but closely related modules: Entity Description Services and
Association Services.

Value Set Services – Describes the Value Set Catalog and the Value Set Definition services.

Concept Domain and Concept Domain Binding Services - Describes the Concept Domain and Concept Domain
Binding services

Map Services – Describes the Map Catalog and Map Version services, which includes the Map Resolution service.

Statement Services – Describes the statement services

With the exception of the Core Model Elements, each of the modules described above is specified using the following
pattern:

1) Resource Information Model – The first section of the module describes the structure and content of the resource(s) used
in this module. This description includes what constitutes the identity of the particular resource, which elements must be
present, which are optional and which are computed by the service itself. Identifying and computed components are marked
as read only to make it clear what aspects of the resource can be modified.

2) Resource Directory and List Model – The query function returns lists of resources. There are two purposes for these
lists – the first is to summarize the set of resources that have passed the filter criteria and to provide links that can be used to
access the details of the resource directly. This type of list is referred to as a Directory. The second purpose of these lists is
to gather complete images of the actual resource for some secondary purpose. These sets of complete resource images are
referred to as Lists. Note that the modules will define both types of list (Directory and List) even when the summary consists
of the entire resource image.

3) Read Services – The methods that are available for direct access to the resources. These methods come in pairs – one for
testing existence of a resource and a second for actually retrieving it. All resources provide URI access. Note that the URI is
passed as a parameter to the function. The CTS2 specification makes a clear distinction between the HTTP URI that would
be used to access the query service and the URI of the resource itself. In no case is the CTS2 service URI to be used as the
identity of the resource itself.

4) Query Services – Query services all start with a general pattern. The service provides a URI of type DirectoryURI that
represents all of the instances of the particular resource that is known to the service. This URI represents both active and
inactive resources and, if the Temporal compliance profile is supported, represents all possible service states. The query
service then provides a number of generic and structural specific methods, each of which takes a DirectoryURI as input and
returns another DirectoryURI that, when resolved, returns the result of applying the filter to the input URI. Operations are
also available for the union, intersection, and difference of resource instances. The query services then provide two
additional methods, resolve and resolveAsList which respectively return Directories and Lists (as described above).

5) History Services – History services consist of several common methods to access and query change sets along with three
additional methods – one to return the earliest known state of a resource, a second to return the current state along, and the
third to return an ordered list of states. Resource states include historical information about what changed, who did it, when,
etc.

Common Terminology Services 2, v1.2 12

6) Maintenance services – Each module will have a method that allows the creation of the minimal valid resource (identity
and required fields) and a second that allows modification of a resource, which allows the addition and update of non-
identifying, non-computed content. The services also include generic methods for creating, querying, committing, and rolling
back change sets. The CTS2 specification requires the following sequence in order to make a change to the service state
through a maintenance service:

a. Create a new change set

b. Make one or more changes to one or more resources, providing the URI of the created change set

c. Update any additional provenance information on the change set

d. Commit the change set

URI Persistence

As stated above, the CTS2 specification is based on the RESTful Architectural Style. All resources defined in the CTS2
specification have identity that is expressed as one or more Universal Resource Identifiers (URIs). The specification
recognizes that while ideally each resource would have exactly one identifying URI, this is not practical in a loosely coupled
environment. Various communities have their own identification schemes and even when this isn’t the case, identifiers are
frequently duplicated because one group doesn’t know that an ID already exists. The CTS2 model requires that a service
implementation assign a single “preferred” URI to each resource that is valid in the service context, but the service should
resource retrieval via any valid identifying URI known to the service.

There are a couple of issues, however, that need further clarification. The first is that of DirectoryURIs – URIs that, when
resolved, represent the result of a partial or complete query. First, it should be noted that these URIs are service specific.
There is no assumption that a DirectoryURI that was created in one service instance will be applicable in a second. The
second issue involves URI persistence – (a) how long a URI is valid and (b) can URIs ever be reused. We address each of
these issues below.

DirectoryURI Validity
There CTS2 PIM does not require (a) that a given directory have a unique URI and (b) that DirectoryURIs remain valid
over an extended period of time. A query service may return a different DirectoryURI for the “allResources” directory
every time it is accessed. This also means that a service can determine that a previously supplied DirectoryURI at any
time subsequent to its issue. A service, however, cannot reuse a DirectoryURI unless the URI has an identical meaning.
A service may, for instance, return URI “A” in response to the allCodeSystems query. At some time in the future, it may
refuse to honor resolve requests on URI “A.” It may, however, return “A” again in a subsequent response to the same
query – even if, in the interim, additional code systems have been made known to it. It may not, however, return URI
“A” in response to any other query – either about code systems or other resources. Similarly, lists and directories involve
the notion of iteration – “pages” as it were. A service may return URI “B” representing page 2 of a specific query, may
invalidate “B,” may subsequently return “B” representing the same page of the same query, but it may never return “B”
to represent a different resource, query, or page within a query.

Note also that CTS2 PSMs and/or service implementations may choose to provide additional constraints with respect to URI
persistence. PSMs may be created that require that Directory URIs persist indefinitely and service instances may wish to
offer various guarantees about the minimum time of URI validity.

13 Common Terminology Services 2, v1.2

 6.3 How to Read This Specification
The initial six chapters of this specification are informative, pertaining to the document itself, providing a general
introduction and the purpose of common terminology services, identifying the submitter, outlining the business case for the
specification, and providing discussion related to how the specification addresses the RFP (this chapter).

Annex A describes the existing work. (informative)

To adequately and effectively represent the specification, separate PIM component documents (normative) are provided:

Core Model Elements Document describes data types, building blocks, abstract resources, and abstract service model.

Code System and Code System Version Catalog Services Document describes services for representing and
maintaining a catalog of code systems and/or code system versions.

Entity Description Services Document describes the model and set of services for representing collections of assertions
about classes, predicates (properties) and individuals.

Map Services Document describes services for representing and maintaining a catalog of maps between sets of entities as
well as the rules and content.

Value Set Services Document describes services for representing and maintaining a catalog of value sets, their
corresponding definitions and their resolution.

Concept Domain Catalog and Concept Domain Binding Services Document describes services for representing and
maintaining a catalog of concept domains (Data Element Concepts) and their associated bindings (Data Elements).

Statement Model and Services Document describes services for representing the minimal subject, predicate, and object
model used in RDF.

Included with this specification are the following PSM artifacts:

CTS2 REST PSM includes one XML schema per component and WADL to support REST.

• Functional Profile conformance points: Read, Query, Import, Update, Maintenance, Temporal.

• Structural Profile conformance points: Code System, Code System Version, Entity Description, Association, Value Set,
Value Set Definition, Value Set Resolution, Concept Domain, Concept Domain Binding, Map, Map Version, Statement.

CTS2 SOAP PSM includes same schema, but functionally is invoked via SOAP procedure calls.

• Functional Profile conformance points: Read, Query, Import, Update, Maintenance, Temporal.

• Structural Profile conformance points: Code System, Code System Version, Entity Description, Association, Value Set,
Value Set Definition, Value Set Resolution, Concept Domain, Concept Domain Binding, Map, Map Version, Statement.

 6.4 Existing Artifacts
The PIM described below is based on and generalized from existing work on terminology service interfaces that have been
actualized as a core piece of enterprise level vocabulary service infrastructure within the NCI caBIG®. Reference to this
existing work is included in Annex A. It is anticipated that this PIM and PSM will serve to evolve and provide a standards
based implementation for the continuing work at NCI caBIG®.

Common Terminology Services 2, v1.2 14

6.5 Statement of Proof of Concept
Mayo Clinic has been developing tools to support and validate portions of the specification:

• LexEVS is a collection of terminology service interfaces that provide users the ability to store, manipulate, and query
controlled terminologies and ontologies.

• Parts of the model presented in the specification were implemented in LexEVS.

15 Common Terminology Services 2, v1.2

Common Terminology Services 2, v1.2 16

Annex A Description of Existing Work

LexEVS has become a mission critical infrastructure for the National Cancer Institute (NCI) since it provides caBIG® and
CBIIT with runtime access of the base semantics that under lays all NCI data semantics. For the past five years the LexEVS
team at Mayo Clinic has been evolving LexGrid/LexBIG/LexEVS to meet the needs of the semantic community.

The LexGrid Model is Mayo Clinic’s proposal for standard storage of controlled vocabularies and ontologies. The
LexGrid Model defines how vocabularies should be formatted and represented programmatically, and is intended to be
flexible enough to accurately represent a wide variety of vocabularies and other lexically-based resources. The model
also defines several different server storage mechanisms. This model provides the core representation for all data
managed and retrieved through the service, and is now rich enough to represent vocabularies provided in numerous
source formats including:

• Open Biomedical Ontologies (OBO)

• Web Ontology Language (OWL), e.g., NCI Thesaurus

• Unified Medical Language System (UMLS) Rich Release Format (RRF), e.g., NCI MetaThesaurus

Once disparate vocabulary information can be represented in a standardized model, it becomes possible to build common
repositories to store vocabulary content and common programming interfaces and tools to access and manipulate that content.
The HL7 Common Terminology Services (CTS) and LexBIG API as developed for the Cancer Biomedical Informatics Grid
(caBIG®) initiative are two examples of APIs able to query information stored in the LexGrid Model.

LexEVS is the convergence of LexBIG and EVS services into a collection of programmable interfaces that provide users
with the ability to access controlled terminologies supplied by the NCI Enterprise Vocabulary Services (EVS) Project.

Annex B Common Terminology Services 2 (CTS2) XML to
JSON Transformation Rules

B1 Assumptions
Below is a list of assumptions about the XML to JSON transformation.

• The implementation does not need to support the transformation of JSON back to XML.
• The implementation is not aware of the underlying XML schema. As a result, it is not possible to determine types such

as dates, Booleans and numbers.
• The format of data during the XML to JSON transformation will not be altered. Data types will be treated as strings and

enclosed in double quotes.
• The client will be schema aware. It will know which objects contain integers, strings, dates, etc. and can cast them

appropriately.

B2 Transformation Patterns and Rules

This section specifies the transformation rules that must be followed when transforming XML to JSON for CTS2
implementations.

 Rule XML JSON
1 The root element

will shall become
the first JSONObject
member.

<root>
 <item>data</item>
</root>

{
 "root": {
 "item": "data"
 }
}

2 XML Elements
become
JSONObjects.

The JSONString of a
member should shall
be contained in
double quotes.

<root>
 <item1>data 1</item1>
 <item2>data 2</item2>
 <item3>data 3</item3>
</root>

{
 "root": {
 "item1": "data 1",
 "item2": "data 2",
 "item3": "data 3"
 }
}

3 Capitalization is
preserved.

<root>
 <ITEM1>DATA 1</ITEM1>
 <Item2>Data 2</Item2>
</root>

{
 "root": {
 "ITEM1": "DATA 1",
 "Item2": "Data 2"
 }
}

4 All data are
represented as
JSONString.

<root>
 <item1>0012</item1>
 <item2>-3.89123</item2>
 <item3>4.82 x 10^2</item3>
 <item4>Jul 10, 2013

{
 "root": {
 "item1": "0012",
 "item2": "-
3.89123",

Comment [HS3]: Issue #19308 6) Section
B2 (Transformation patterns and Rules). I'm
not an expert, but this all looks reasonable t
me. However, "shall" should be used to
express the rules instead of "will". For
example "Repeating XML attribute values sh
be treated as a single JSONValue.", "XML
comments and processing instructions shall
ignored.", "The following
JSONStringCharacters shall be escaped:" It's
just a style issue - the meaning is already cle
and not affected by the change.

Comment [HS4]: Issue #19308 6) Section
B2 (Transformation patterns and Rules). I'm
not an expert, but this all looks reasonable t
me. However, "shall" should be used to
express the rules instead of "will". For
example "Repeating XML attribute values sh
be treated as a single JSONValue.", "XML
comments and processing instructions shall
ignored.", "The following
JSONStringCharacters shall be escaped:" It's
just a style issue - the meaning is already cle
and not affected by the change.

CTS2 XML to JSON Transformation Rules, Version 1.10 1

1:43:18 PM</item4>
 <item5>2013-
0710T13:39:00.676-
05:00</item5>
</root>

 "item3": "4.82 x
10^2",
 "item4": "Jul 10,
2013 1:43:18 PM",
 "item5": "2013-
0710T13:39:00.676-
05:00"
 }
}

5 Each empty element
will shall become an
empty JSONString.

<root>
 <item1/>
 <item2></item2>
</root>

{
 "root": {
 "item1": "",
 "item2": ""
 }
}

6 Null is not a key
word. It is treated as
any other string.

<root>
 <item1></item1>
 <item2/>
 <item3>null</item3>
</root>

{
 "root": {
 "item1": "",
 "item2": "",
 "item3": "null"
 }
}

7 If more than one
sibling element has
the same name, all
siblings become a
JSONArray with the
common element
name.
.

XML arrays convert
to
JSONArray with the
same name.

Order will shall be
preserved within the
JSONArray, but not
in the JSONObject.

There is no
additional
JSON to indicate the
ordering (based on
the
XML).

<root>
 <item>1</item>
 <item>TRUE</item>
 <item>data 3</item>
 <item>text</item>
</root>

{
 "root": {
 "item": [
 "1",
 "TRUE",
 "data 3",
 {
 "b": "text"
 }
]
 }
}

<root>
 <item>1</item>
 <item>True</item>
 <a/>
 <item>data 3</item>
 <item>data 4</item>
</root>

{
 "root": {
 "item": [
 "1",
 "True",
 "data 3",
 "data 4"
],
 "a": ""
 }
}

Note that the following is also
valid.

{

Comment [HS5]: Issue #19308 6) Section
B2 (Transformation patterns and Rules). I'm
not an expert, but this all looks reasonable t
me. However, "shall" should be used to
express the rules instead of "will". For
example "Repeating XML attribute values sh
be treated as a single JSONValue.", "XML
comments and processing instructions shall
ignored.", "The following
JSONStringCharacters shall be escaped:" It's
just a style issue - the meaning is already cle
and not affected by the change.

Comment [HS6]: Issue# 19300: B2 rule 7:
I’m not aware of such a thing as an “XML
array”

Comment [HS7]: Issue #19308 6) Section
B2 (Transformation patterns and Rules). I'm
not an expert, but this all looks reasonable t
me. However, "shall" should be used to
express the rules instead of "will". For
example "Repeating XML attribute values sh
be treated as a single JSONValue.", "XML
comments and processing instructions shall
ignored.", "The following
JSONStringCharacters shall be escaped:" It's
just a style issue - the meaning is already cle
and not affected by the change.

 2 CTS2 XML to JSON Transformation Rules, Version 1.10

 "root": {
 "a": "",
 "item": [
 "1",
 "True",
 "data 3",
 "data 4"
]
 }
}

<root>
 <item1 />
 <item2>1</item2>
 <item2>2</item2>
 <item3 />
 <item4>3</item4>
 <item4>4</item4>
 <item5 />
</root>

{
 "root": {
 "item1": "",
 "item2": [
 "1",
 "2"
],
 "item3": "",
 "item4": [
 "3",
 "4"
],
 "item5": ""
 }
}

8 Attributes shall
become
JSONObjects.

<root>
 <item attr1="attribute 1"
attr2="attribute 2">
 <element>e</element>
 </item>
</root>

{
 "root": {
 "item": {
 "attr1":
"attribute 1",
 "attr2":
"attribute 2",
 "element": "e"
 }
 }
}

9 When an XML
element contains a
value and has
attributes, the
JSONObject
member will shall be
named “_content”
for that XML
element value.

<root>
 <item attr1="attribute 1"
attr2="attribute
2">data</item>
</root>

{
 "root": {
 "item": {
 "attr1":
"attribute 1",
 "attr2":
"attribute 2",
 "_content":
"data"
 }
 }
}

10 With the exception <root {

Comment [HS8]: Issue #19308 6) Section
B2 (Transformation patterns and Rules). I'm
not an expert, but this all looks reasonable t
me. However, "shall" should be used to
express the rules instead of "will". For
example "Repeating XML attribute values sh
be treated as a single JSONValue.", "XML
comments and processing instructions shall
ignored.", "The following
JSONStringCharacters shall be escaped:" It's
just a style issue - the meaning is already cle
and not affected by the change.

Comment [HS9]: Issue #19308 6) Section
B2 (Transformation patterns and Rules). I'm
not an expert, but this all looks reasonable t
me. However, "shall" should be used to
express the rules instead of "will". For
example "Repeating XML attribute values sh
be treated as a single JSONValue.", "XML
comments and processing instructions shall
ignored.", "The following
JSONStringCharacters shall be escaped:" It's
just a style issue - the meaning is already cle
and not affected by the change.

CTS2 XML to JSON Transformation Rules, Version 1.10 1

of elements having
the _CDATA
attribute tag and the
root namespace, all
XML namespaces
are removed in the
JSON.

All namespace
prefixes except the
prefix “xmlns” and
“xsi” are removed. .
In certain situations,
this may cause
issues for opaque
data.

http://www.w3.org/2
001/XMLSchema-
instance is always
represented as “xsi”.

This rule is specific
to the CTS2
specification. Other
OMG specifications
may choose the
option to keep the
namespace.

xmlns:xhtml="http://www.w3.or
g/1999/xhtml">

<xhtml:body>data</xhtml:body>
 <item xhtml:att="abc"/>
</root>

 "root": {
 "body": "data",
 "item": {
 "att": "abc"
 }
 }
}

<root
xmlns:xhtml="http://www.w3.or
g/1999/xhtml"
xmlns:xsi="http://www.w3.org/
2001/XMLSchema-instance">

<xhtml:body>data</xhtml:body>
 <item xhtml:att="abc"
xsi:nilnill="true"/>
</root>

{
 "root": {
 "body": "data",
 "item": {
 "att": "abc",
 "xsi:nilnill":
"true"
 }
 }
}

<root
xmlns:xhtml="http://www.w3.or
g/1999/xhtml"
xmlns:xsi2="http://www.w3.org
/2001/XMLSchema-instance">

<xhtml:body>data</xhtml:body>
 <item xhtml:att="abc"
xsi2:nilnill="true"/>
</root>

{
 "root": {
 "body": "data",
 "item": {
 "att": "abc",
 "xsi:nilnill":
"true"
 }
 }
}

11 If known, the root
namespace should
be represented as an
JSONMember in the
root JSONObject
using the
JSONString,
“_xmlns”

<root
xmlns="http://example.org/sch
ema/roots.xsd">
 <item1>data 1</item1>
 <item2>data 2</item2>
</root>

{
 "_xmlns":
"http://example.org/sch
ema/roots.xsd",
 "root": {
 "item1": "data 1",
 "item2": "data 2"
 }
}

12 The following
JSONStringCharact
ers are escaped:

" \ b f n r t

Note that the forward
slash is not escaped.

See
JSONEscapeCharacter
Section 9 String in in
section 15.12.1.1 The

<root>
 <item>A quotation
mark("), a back slash
(\), a forward slash
(/), a newline (
),
a carriage return (), a
horizontal tab ().
Other characters such as
&, <, > are left
alone.</item>
</root>

{
 "root": {
 "item": "A
quotation mark(\"), a
back slash (\\), a
forward slash (/), a
newline (\n), a
carriage return (\r), a
horizontal tab (\t).
Other characters such
as &, <, > are left
alone."

Comment [HS10]: Issue #19305: There
seems to be a conflict between rule 10 which
seems to state to strip all XML namespaces,
and rule 13 which says to retain them if they
are in _CDATA

Comment [HS11]: Issue #19302: Rule 10:
says to remove the “namespace prefixes” but
the examples show removal of complete
namespace declarations not just the prefix

Comment [HS12]: Issue #19303: The
following in rule 10 is very unclear “In certa
situations, this may cause issues for opaque
data”

Formatted: Font color: Blue

Formatted: Font color: Blue

Comment [HS13]: Issue #19304: Rule 10
does not cover the case where the removal of
namespaces causes names to be
indistinguishable (that’s the point of
namespaces after all). Do such now-identical
names then get treated as “arrays” per Rule 7
Or is this disallowed (similar to B3 rule 2)?
This needs clarifying

Comment [HS14]: Issue #19306: Issue #
19306: Rule 10 example uses xsi2:nill – I thi
this should be xsi2:nil (only one L)

Comment [HS15]: Issue #19306: Rule 10
example uses xsi2:nill – I think this should b
xsi2:nil (only one L)

Comment [HS16]: Issue #19306: Issue #
19306: Rule 10 example uses xsi2:nill – I thi
this should be xsi2:nil (only one L)

Comment [HS17]: Issue # 19306: Rule 10
example uses xsi2:nill – I think this should b
xsi2:nil (only one L)

 2 CTS2 XML to JSON Transformation Rules, Version 1.10

JSON Lexical
Grammar of document
http://www.ecma-
international.org/publi
cations/files/ECMA-
ST/ECMA-
404.pdfhttp://www.ec
ma-
international.org/publi
cations/files/ECMA-
ST/Ecma-262.pdf

Note that
the backspace and
form feed characters
are not valid in the
XML.
See http://www.w3.or
g/TR/xml11/#NT-
Char

 }
}

13 Mixed XML content
will shall be
represented as a
JSONArray in the
sequence that the
text and elements
appear.

_CDATA attribute
tag indicates no
conversion for the
item or its
descendants.

_CDATA values
must shall preserve
xml namespaces,
with namespace and
attribute quotes
escaped.

CTS2 Specific - Use
for OpaqueData xml
elements.

<root>
 <item>This is a
bold and <i>italic</i>
string.</item>
</root>

{
 "root": {
 "item": [
 "This is a ",
 {
 "b": "bold"
 },
 " and ",
 {
 "i": "italic"
 },
 " string."
]
 }
}

<root
xmlns:t="http://test.org">
 <item _CDATA="true">This
is a bold and <i
id="1">italic</i>
string.</item>
</root>

{
 "root": {
 "item": "This is a
bold and <i
id=\"1\">italic</i>
string."
 }
}

<root
xmlns:schema="http://schema.o
rg">
 <item
xmlns="http://www.w3.org/1999
/xhtml" _CDATA="true"><p>This
is a bold paragraph
with am
<schema:image>image</schema:i

{
 "root": {
 "item": "<p
xmlns=\"http://www.w3.o
rg/1999/xhtml\">This is
a bold paragraph
with am <image
xmlns=\"http://schema.o
rg\">image</image></p>"

Comment [HS18]: Issue #19308 6) Sectio
B2 (Transformation patterns and Rules). I'm
not an expert, but this all looks reasonable t
me. However, "shall" should be used to
express the rules instead of "will". For
example "Repeating XML attribute values sh
be treated as a single JSONValue.", "XML
comments and processing instructions shall
ignored.", "The following
JSONStringCharacters shall be escaped:" It's
just a style issue - the meaning is already cle
and not affected by the change.

Comment [HS19]: Issue #19308 6) Sectio
B2 (Transformation patterns and Rules). I'm
not an expert, but this all looks reasonable t
me. However, "shall" should be used to
express the rules instead of "will". For
example "Repeating XML attribute values sh
be treated as a single JSONValue.", "XML
comments and processing instructions shall
ignored.", "The following
JSONStringCharacters shall be escaped:" It's
just a style issue - the meaning is already cle
and not affected by the change.

CTS2 XML to JSON Transformation Rules, Version 1.10 1

mage></p></item>
</root>

 }
}

14 Repeating XML
attribute values will
shall be treated as a
single JSONValue.

<root>
 <item attr = "data1 data2
data3"/>
</root>

{
 "root": {
 "item": {
 "attr": "data1
data2 data3"
 }
 }
}

15 XML comments and
processing
instructions are
ignored.

<root>
 <!-- A sample comment -->
 <item
attr="data"><![CDATA[some
strange stuff "\]]></item>
 <?pins A processing
instruction?>
</root>

{
 "root": {
 "item": {
 "attr": "data",
 "_content": "some
strange stuff \"\\"
 }
 }
}

Comment [HS20]: Issue #19308 6) Sectio
B2 (Transformation patterns and Rules). I'm
not an expert, but this all looks reasonable t
me. However, "shall" should be used to
express the rules instead of "will". For
example "Repeating XML attribute values sh
be treated as a single JSONValue.", "XML
comments and processing instructions shall
ignored.", "The following
JSONStringCharacters shall be escaped:" It's
just a style issue - the meaning is already cle
and not affected by the change.

 2 CTS2 XML to JSON Transformation Rules, Version 1.10

B3 Limitations
TheB3 Known IssuesLimitations
Below are the known issuesThe following conditions must be true before this specification can be applied::.

1. Without knowing the schema, types such as dates, Booleans and numbers cannot be differentiated from other types. The
client needs to recognize each type and handle appropriately.

2. XML element and attribute names in the same sequence need to be different.

<root data=”test”>
 <data data="some data" attr1="attribute 1" attr2="attribute 2"/>
</root>

This is not allowed. The XML element and attribute have the same name "data".

3. Two elements with the same name but different namespaces may not appear in the same sequence:

<root>
 <ns1:data>text</data>
 <ns2:data>text</data>
</root>

Is not allowed.

Comment [HRS221]: Issue #19304. Add
this text

Formatted: Indent: Left: 0"

CTS2 XML to JSON Transformation Rules, Version 1.10 1

