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Preface

About the Object Management Group

OMG

Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer industry 
standards consortium that produces and maintains computer industry specifications for interoperable, portable and 
reusable enterprise applications in distributed, heterogeneous environments. Membership includes Information 
Technology vendors, end users, government agencies and academia. 

OMG member companies write, adopt, and maintain its specifications following a mature, open process. OMG's 
specifications implement the Model Driven Architecture® (MDA®), maximizing ROI through a full-lifecycle approach to 
enterprise integration that covers multiple operating systems, programming languages, middleware and networking 
infrastructures, and software development environments. OMG's specifications include: UML® (Unified Modeling 
Language™); CORBA® (Common Object Request Broker Architecture); CWM™ (Common Warehouse Metamodel); 
and industry-specific standards for dozens of vertical markets.

More information on the OMG is available at http://www.omg.org/.

OMG Specifications

As noted, OMG specifications address middleware, modeling and vertical domain frameworks. All OMG Specifications 
are available from this URL: 

http://www.omg.org/spec

Specifications are organized by the following categories:

Business Modeling Specifications

Middleware Specifications

• CORBA/IIOP

• Data Distribution Services

• Specialized CORBA

IDL/Language Mapping Specifications

Modeling and Metadata Specifications

• UML, MOF, CWM, XMI

• UML Profile

Modernization Specifications
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Platform Independent Model (PIM), Platform Specific Model (PSM), Interface Specifications

• CORBAServices

• CORBAFacilities

OMG Domain Specifications

CORBA Embedded Intelligence Specifications

CORBA Security Specifications

Signal and Image Processing

All of OMG’s formal specifications may be downloaded without charge from our website. (Products implementing OMG 
specifications are available from individual suppliers.) Copies of specifications, available in PostScript and PDF format, 
may be obtained from the Specifications Catalog cited above or by contacting the Object Management Group, Inc. at:

OMG Headquarters
109 Highland Avenue
Needham, MA 02494
USA
Tel: +1-781-444-0404
Fax: +1-781-444-0320
Email: pubs@omg.org

Certain OMG specifications are also available as ISO standards. Please consult http://www.iso.org

Typographical Conventions

The type styles shown below are used in this document to distinguish programming statements from ordinary English. 
However, these conventions are not used in tables or section headings where no distinction is necessary.

Times/Times New Roman - 10 pt.:  Standard body text

Helvetica/Arial - 10 pt. Bold: OMG Interface Definition Language (OMG IDL) and syntax elements.

Courier - 10 pt. Bold:  Programming language elements.

Helvetica/Arial - 10 pt: Exceptions

Note – Terms that appear in italics are defined in the glossary. Italic text also represents the name of a document, specification, 
or other publication.

Issues

The reader is encouraged to report any technical or editing issues/problems with this specification to  
http://www.omg.org/report_issue.htm.
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1 Scope

Structured terminologies provide a foundation for information interoperability by improving the effectiveness of 
information exchange. They provide a means for organizing information and serve to define the semantics of information 
using consistent and computable mechanisms.

Terminologies are constructed to meet scope specific domain requirements. The domain specific nature of structured 
vocabularies often leads to variation in design patterns across the available terminology space. The ability to provide 
consistent representation and access to a broad set of terminologies enables multiple disparate terminology sources to be 
available to a community, and helps to ensure consistency across the domain space of that community. Service interfaces 
to structured terminologies should be flexible enough to accurately represent a wide variety of vocabularies and other 
lexically-based resources.

The PIM specified in this document for CTS2 is intended to mediate among disparate terminology sources by providing 
a standard service information and computational model. The Information Model specifies the structural definition, 
attributes and associations of Resources common to structured terminologies such as Code Systems, Binding Domains 
and Value Sets. The Computational Model specifies the service descriptions and interfaces needed to access and maintain 
structured terminologies.

2 Conformance

This specification defines a PIM that specifies an Information Model as well as a Computational Model. Conformant 
implementations of this PIM must provide an implementation that represents both the Information Model and 
Computational Model. This base level implementation provides the foundation for providing data type specific profiles 
(i.e., ISO 21090 data types, HL7 data types, etc.).

Conformant implementations must adhere to the profiles outlined in the Computation Model of this PIM, which are 
derived from the CTS2 SFM.

2.1 Implementation Profiles 

The CTS2 specification allows modular implementation. CTS2 service instances may choose to implement only the 
components and functionality that are relevant to their specific needs and use cases. The intent of this modularity is two-
fold. The first goal is that the specification provides what the NCI has been calling the “linear value proposition,” where 
relatively simple things are easy to implement and the cost of the implementation increases in proportion to the desired 
complexity. As an example, an organization that maintains a catalog of metadata about available ontologies could publish 
this catalog using the CTS2 standard by implementing the CODE SYSTEM structural profile along with the READ and 
QUERY functional profiles. 

The second goal of the CTS2 modularity is to enable terminology resources to be distributed and federated. If, for 
instance, an organization needed to maintain a small, specialized ontology that builds on a number of other already 
existing ontologies, they might implement the ASSOCIATION and, possibly, the ENTITY structural profiles including the 
READ, QUERY, and AUTHORING profiles and could link to the first organization’s code system catalog for additional 
information about the ontologies that were imported. 

This sub clause starts by defining the common elements that are shared by the different profiles. It defines a core set of 
data types, several key structural components, and a number of abstractions that are reused throughout the rest of the 
models. 
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It also defines the core functional components – characteristics that all CTS2 service implementations must possess as 
well as characteristics that are common to each specific functional profile.

It then provides a section for each of the eleven possible structural profiles. Each section describes what the specific 
profile is intended to represent, defines the structural components specific to the profile, and then defines the functional 
characteristics each functional profile provides with respect to the target component.

The individual structural, functional, and implementation profile components are described briefly below. Readers are 
encouraged to refer to the corresponding clauses for additional detail.

Figure 2.1 -  Implementation Profiles

2.1.1 Class ProfileElement

ProfileElement appears in service implementations, once per structural profile that is supported by the implementation 

instance. Each occurrence records the set of functional profiles that are supported for the specific structural profile.

Attributes

• structuralProfile – A structural profile that is supported by the service.

• functionalProfile – A functional profile that is supported for the particular structural profile.

2.1.2 Enum FunctionalProfile

An enumeration of the possible functional profiles, some or all of which can be implemented by a conformant CTS2 service.
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Attributes

• FP_READ – The implementation supports direct read access for artifacts of the associated structural profile.

• FP_QUERY – The implementation supports search and enumerate access for artifacts of the associated structural 
profile.

• FP_IMPORT – The implementation supports the ability to import resources from one or more external formats into 
elements of the associated structural profiles.

• FP_EXPORT – The implementation supports the ability to export elements of the associated structural profiles in one 
or more external formats.

• FP_UPDATE – The service supports the ability to apply incremental updates (ChangeSets) to the associated 
resources.

• FP_MAINTENANCE – The service supports the ability to create ChangeSets.

• FP_TEMPORAL – The system supports the ability to read and query (as supported by the service) the service in the 
context of a date and time different.

2.1.3 Enum ImplementationProfile

Indicates what PSM(s) are supported by the given service implementation.

Attributes

• IP_REST – The service supports the REST PSM.

• IP_SOAP – The system supports the SOAP implementation profile.

• IP_CRDF – The service supports the “Canonical RDF” PSM.

2.1.4 Enum StructuralProfile

The CTS2 specification defines eleven distinct structural profiles. CTS2 compliant implementations may elect to implement 
any combination of these profiles to meet their individual requirements and use cases.

Attributes

• SP_CODE_SYSTEM – The CODE_SYSTEM profile provides a catalog of classification systems, code systems, 
ontologies, thesauri, etc. known to the service and may also carry information about their publisher, release cycles, 
purpose, etc.

• SP_CODE_SYSTEM_VERSION – The CODE_SYSTEM_VERSION profile carries information about the various 
versions of a code system, including the release date, release format, contact information, etc.

• SP_ENTITY_DESCRIPTION – The ENTITY_DESCRIPTION profile provides a representation of a collection of 
descriptions about classes, roles, or individuals along with links to the code system version(s) in which these 
descriptions originate. An entity description provides the “lexical” or “non-semantic” components of a description, 
while the ASSOCIATION profile provides the logic-based “semantic” counterpart.

• The service supports the EntityDescription structural model, which means that it can represent sets of lexical 
assertions about classes, roles, and/or individuals as asserted by a specific code system version.  
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• SP_ASSOCIATION – The ASSOCIATION profile represents a collection of structured, “semantic” assertions about 
classes, roles, and/or individuals along with links to the code system versions(s) that were the source of these 
assertions. The service supports the Association structural model, which means that it can represent sets of semantic 
assertions about classes, roles, and/or individuals as asserted by a specific code system version.

• SP_VALUE_SET – The VALUE_SET profile provides a catalog of value sets that are known to the service.

• SP_VALUE_SET_DEFINITION – The VALUE_SET_DEFINITION structural profile provides definitions that, 
when interpreted using specified code system versions, result in a set of entity descriptions. Definitions are associated 
with value sets and can vary and evolve over time.

• SP_VALUE_SET_RESOLUTION – The VALUE_SET_RESOLUTION profile describes rules for ordering and 
associating additional properties with the result of interpreting a value set definition. VALUE SET RESOLUTION 
allows resolved definitions to be rendered in a given language and context, sorted and filtered. 

• SP_CONCEPT_DOMAIN – A CONCEPT_DOMAIN profile describes the equivalent of a 11179 Data Element 
Concept. It identifies an abstract unit of information that can appear on a message form or database along with 
metadata about its use, author, purpose, etc.

• SP_CONCEPT_DOMAIN_BINDING – A CONCEPT_DOMAIN_BINDING profile describes the equivalent of the 
11179 Data Element, associating a CONCEPT-DOMAIN with a value set and describing the context and rules where 
the association applies.

• SP_MAP – The MAP profile defines collections of rules for transforming information represented using one code 
system into information represented in a section. MAP describes abstract collections such as “The SNOMED-CT to 
ICD-10 map,” along with the creators, intended use, code systems involved, etc.

• SP_MAP_VERSION – The MAP_VERSION profile represents the actual content of a MAP at a given point in time. 
It carries the from and to components as well as a representation of the rules and process for the conversion.

2.1.5 CTS2 JSON

Implementations are CTS2 JSON compliant if they generate JSON based on the rules described in Annex B.

3 Normative References

The following normative documents contain provisions which, through reference in this text, constitute provisions of this 
specification. For dated references, subsequent amendments to, or revisions of, any of these publications do not apply.

[ISO 11179] ISO/IEC 11179, Information technology – Specification and standardization of data elements

[ISO 21090] ISO 21090, Health informatics – Harmonized data types for information exchange

[HL7 Data Types] HL7 V3 – Data Types – Abstract Specification

[XML 1.0] Documents associated with Extensible Markup Language (XML) 1.0 (Fifth Edition) 
W3C Recommendation 26 November, 2008 
http://www.w3.org/TR/2008/REC-xml-20081126/

[IECMA 404] The JSON Data Interchange Formal 1st Edition/October 2013. 
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
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[XML 1.1] Extensible Markup Language (XML) 1.1 (Second Edition). W3C Recommentation 16  
August 2006 
http://www.w3.org/TR/xml11

4 Terms and Definitions

For the purposes of this specification, the following terms and definitions apply. 

Computation Independent Model (CIM)

A computation independent model is a view of a system from the computation independent viewpoint. A CIM does not show 
details of the structure of systems. A CIM is sometimes called a domain model, and a vocabulary that is familiar to the 
practitioners of the domain in question is used in its specification. Some ontologies are essentially CIMs from a software 
engineering perspective.

HL7 Model Interchange Format (MIF)

A set of XML formats used to support the storage and exchange of HL7 version 3 artifacts as part of the HL7 Development 
Framework.

JSON

JavaScript Object Notation is a lightweight date-interchange format.  
http://json.org

Platform Independent Model (PIM)

A model of a subsystem that contains no information specific to the platform, or the technology that is used to realize it.

Platform Specific Model (PSM)

A model of a subsystem that includes information about the specific technology that is used in the realization of it on a specific 
platform, and hence possibly contains elements that are specific to the platform.

Unified Modeling Language (UML)

An OMG standard language for specifying the structure and behavior of systems. The standard defines an abstract syntax and 
a graphical concrete syntax.

XML Metadata Interchange (XMI)

An OMG standard that facilitates interchange of models via XML documents.
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5 Symbols

6 Additional Information 

6.1 Acknowledgements

This specification in response to the Common Terminology Services Release 2 (CTS2) RFP is made by the Mayo Clinic / 
Foundation. This specification is supported in part by the National Cancer Institute, caBIG® initiative.

The following companies submitted this specification:

• Mayo Clinic / Foundation

The authors would like to thank the National Cancer Institute (NCI), caBIG® community for supporting the development 
of CTS2 throughout the OMG standards adoption process, as well as the active members of the OMG’s Healthcare DTF, 
Ontology PSIG, and the HL7 Vocabulary community for their help and support towards the preparation of this document.

The following companies and organizations support this specification:

• 3M Health Information Systems, Inc.

• Apelon, Inc.

• Everware-CBDI

• Hewlett-Packard Company

• Intermountain Healthcare

• International Health Terminology Standards Development Organisation (IHTSDO)

• Model Driven Solutions

• National Cancer Institute (NCI) Enterprise Vocabulary Services 

• NoMagic, Inc.

• Sandpiper Software, Inc.

CIM Computation Independent Model

ISO/IEC International Organization for Standardization / International Electrotechnical Commission

OMG Object Management Group

PIM Platform Independent Model

PSM Platform Specific Model

UML Unified Modeling Language 2.0

URI Uniform Resource Identifier

XMI XML Metadata Interchange

XML Extensible Markup Language
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• Sparx Systems

• Tethers End

• University of Oxford, UK, Department of Computer Science

• Visumpoint

6.2 Guide to Specification

6.2.1 General

This specification represents a PIM and PSM for the Common Terminology Services – Release 2 (CTS2) terminology 
service. It specifies a platform independent service interface to a broad set of structured terminology resources. The 
requirements for the CTS2 were initially developed as a Service Functional Model (SFM) within a project sponsored by 
the Vocabulary Work Group within the Health Level Seven (HL7) community. The HL7 SFM served as the basis for 
developing the OMG RFP for CTS2, calling for responses to specify a PIM and PSM for CTS2.

6.2.2 Introduction to the Specification

The CTS2 specification is designed to address a broad range of requirements within the ontology and terminology 
community. The use cases range for a need to be able to publish simple catalogs that identify what resources are available 
to the ability to serve the content of multiple formal ontologies, performing online reasoning and classification. The CTS2 
specification also recognizes that terminological services will not necessarily be centralized – one organization may 
publish catalogs, a second content, and yet another may serve value sets, maps, and other resources based on these tools.

The goal of this specification includes the ability to provide distributed, federated terminology services, enabling 
replicated service instances that periodically synchronize their content as well as service instances that reference the 
content in other instances. Our goal in no small part is to provide the core infrastructure that allows terminology services 
to be coupled and interlinked in much the same way that pages are interlinked today in the World Wide Web. Many of the 
design decisions that went into this specification reflect this need. 

6.2.3 Design Philosophy

The CTS2 specification is based on the RESTful Architectural Style as described by Ray Fielding. It identifies a number 
of relatively fine-grained resources that have persistent identity and then describes how these resources are accessed 
through generic create (PUT), read (GET), update (POST or PUT), and delete (REMOVE) operations. The specification 
adheres to the idempotency rules laid out in Fielding’s document, while introducing an additional notion of a transactional 
(ChangeSet) layer that allows the synchronization and exchange of collections of changes between service instances. 

Linkage between CTS2 resources are loosely coupled and are based on Universal Resource Identifiers (URIs). This makes 
it possible for one service implementation to implement a query service that references resources in many other services. 
Similarly, a service may implement a map from one code system to another that depends on a second service to represent 
the source codes, another to service the target codes, and yet another to represent the metadata such as languages and 
mime types that are consumed by the implementation itself. 

The goal of the CTS2 specification is to provide what has been called a “linear value proposition” – the idea that simple 
requirements are simple to implement and the complexity of the implementation increases in direct proportion with the 
complexity of the service requirements. We believe that we have achieved this goal, in that it has been demonstrated that 
it is possible to implement any of the basic read or simple query modules of the CTS2 specification with nothing more 
than an XML editor and a backing file system. 
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6.2.4 Identifiers and Linkage 

The CTS2 specification requires that all of the resources represented in service implementations be represented by 
Universal Resource Identifiers (URIs) that uniquely the name and, ideally, are permanent and persist across service 
instances. The specification also recognizes that large collections of URIs are difficult to maintain and access without the 
addition of some sort of a more succinct, human readable form. Where appropriate, the specification requires that 
resources also be provided an additional local identifier that uniquely references the resource within the context of the 
service implementation. This identifier model is analogous to the XML Namespace model, where the header of an XML 
specification names the URIs that are used in the XML document and assigns surrogate identifiers that can be used in 
place of the URI in the context of the containing document. As with XML documents, local service identifiers are not 
transferable across service instances. Just as one XML document may use “xs” to represent the URI of XML Schema and 
a second may use “xsd,” one CTS2 service may use “SCT” to represent the SNOMED-CT ontology while another 
instance may use “SNOMED-CT” or some other identifier. 

Entity (concept, class, predicate, individual) identifiers are a bit more complex. While not strictly required, code systems 
and ontologies have arrived at various mechanisms for combining a scoping namespace and a code to form the complete 
URI. As (a) this is not always the case – opaque GUIDs, Digital Object Identifies and other schemes are also used and (b) 
even when the namespace URI and code are known it there is no standardized way of combining them into a URI, the 
CTS2 specification remains silent on the relationship between namespaces, codes, and URIs. It does, however, require 
that an entity be referenced by both a local identifier, in the form of a namespace/name tuple and by a URI. The 
namespace itself is a service specific local identifier that is associated with a URI. As with RDF and XML, namespace 
identifiers are service specific and may not be shared across service instances. 

An additional nuance of entity identifiers is the name component. Debates continue to rage about the merits of 
semantically opaque identifiers vs. recognizable language specific labels that risk becoming incorrect or dated as the 
ontology evolves. CTS2 remains silent on this aspect of terminologies and simply states that every namespace/name tuple 
must map to the official URI of the entity. Different service implementations may use different mechanisms to accomplish 
this goal including assigning meaningful labels in the place of meaningless codes or even allowing more than one 
namespace/name combination to reference the same resource. 

6.2.5 Specification Structure 

This specification is divided into a number of cleanly separable sections or “structural domains:” 

Code System Catalog – Metadata about code systems (ontologies, code sets, thesauri, classification systems, etc.). A 
service would implement this section to publish information about what sort of terminological resources are available, 
who maintains them, what they are intended to be used for, how often they are released, what copyrights pertain to them, 
etc. 

Code System Version Catalog – Metadata about specific versions of code systems. A service would implement this 
section to provide information about specific versions of code systems – when they were released, what format they are 
in, when they were intended to become active, which version they replace, etc. 

Entity Description – A set of entity (a.k.a. “class,” “category,” “concept,” “predicate,” “property,” “term,” “individual”) 
identifiers known to the service along with information about which code system versions make assertions about these 
identifiers and what they say. The entity description service focuses on the lexical aspect of entity identifiers – providing 
access to the designations, definitions, descriptions, examples, usage notes, and other artifacts used to represent the 
meaning of the entity to human consumers. Services would implement this section to publish information about the codes 
described in various versions of code systems along with their intended meanings. 
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Association – Sets of “semantic” assertions about entity identifiers, in which the entity identifier may play the role of 
subject, predicate (verb) or object in the assertions. This area represents the formal machine interpretable aspects of code 
systems, and a service would implement this section to support classification, reasoning or other computational logic 
systems built on terminological content. 

Value Set Catalog – Metadata about sets of entity identifiers (value sets) that have been grouped for some purpose. A 
service would implement this section if it wanted to publish information about these collections such as who created 
them, who maintains them, what is their purpose, what code systems do they depend on, how they are updated, etc. 

Value Set Definition - Information about how value sets are constructed. A value set definition can be a simple 
enumeration of its elements or can contain instructions about how the elements are assembled from aspects of entity 
descriptions and associations. Value set definitions may be coupled to specific versions of code system, or may be defined 
in a way that they could be applied to different versions, potentially with different results. Services would implement this 
section to publish the rules on the construction of value sets. The value set definition section includes an optional sub-
section (Resolved Value Set) that enables the publication, loading, and use of the results of applying value set definitions. 
Services would implement this section when they needed to consume and use value sets without having access to the 
underlying code systems. 

Concept Domain Catalog – A catalog of abstract “concept domains” that represent a collection of possible meanings. 
Concept domains are intended to represent the intended meaning of a field on a form, a column in a database, a field in a 
message, etc. The CTS2 specification focuses on enumerated concept domains – fields that represent discrete collections 
of “meanings,” each of which is represented by a permissible value. A service would implement this section to provide a 
list of generic fields that would be used in data interchange. 

Concept Domain Binding – The coupling of a concept domain with a value set, where the value set provides a list of 
possible meanings that can be used in a concept domain in a particular use case or context. 

Map Catalog – A catalog of “maps” - collection of rules that allow human or machine assisted transformation between 
the codes in one value set or code system and those in a second. A service would implement this section to publish 
information about which rule sets are available, which code systems or value sets they map between, their intended 
purpose, how often they are published, what formats they are in, etc. 

Map Version – An instance of a map, including the specific value set definitions that and code systems that they are 
based on and the actual rules. A service would implement this section if it wished to publish the content of maps. This 
document includes an optional sub clause (Map Resolution) that provides access to the machine aided interpretation of 
map versions – a service that does the actual map transformation. 

Statement – A bridge between the information contained in the various sections described above and the actual assertions 
made by the information providers. A service would implement this section when it needed to provide additional 
provenance about assertions made in catalogs or resource versions including what was actually said, how it mapped to the 
CTS2 service representation, the provenance of the assertion, etc. Statement is also intended to act as a bridge between 
the structured CTS2 model and simple subject/predicate/target systems as represented by OWL and RDF. 

This specification is also intended to support a number of functional areas including: 

Read – Direct access to the contents of a resource via URI, local identifier or, where applicable, a combination of an 
abstract resource identifier and version tag (e.g., SNOMED-CT / Current version). 

Query – The ability to access, combine and filter lists of resources based on the resource content and user context. 

Import and Export – The ability to import external content into the service and/or export the contents of the service in 
different formats. 
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Update – The ability to validate load sets of changes into the service that updates its content. 

History – The ability to determine what changes have occurred over stated periods of time. 

Maintenance – The ability to create and commit sets of changes. 

Temporal – The ability to ask questions about the state of the service at a given point in the past (or future). 

Specialized – Service specific functions such as the association reasoning services, the map entry services and the 
resolved value set services. 

The Import, Export and Temporal functions are generic – There are no resource specific aspects to these services and, 
as such, they are defined once in the Core Service Elements module. The remaining components have different 
signatures depending on the structural domain to which they are applied. 

The CTS2 specification is subdivided into the following documents:

Core Model Elements – Defines the data types, building blocks, and basic interfaces that are shared across more than 
one structural or functional area. All of the remaining documents have dependencies on the Core - no dependencies 
between any of the remaining documents that follow. Each of the remaining documents, when combined with the Core 
document, can stand by itself.

Code System and Code System Version Catalog Services – Describes two independent modules: Code System Catalog 
Services and Code System Version Catalog Services. 

Entity Description Services – Describes two independent but closely related modules: Entity Description Services and 
Association Services. 

Value Set Services – Describes the Value Set Catalog and the Value Set Definition services. 

Concept Domain and Concept Domain Binding Services - Describes the Concept Domain and Concept Domain 
Binding services 

Map Services – Describes the Map Catalog and Map Version services, which includes the Map Resolution service. 

Statement Services – Describes the statement services 

With the exception of the Core Model Elements, each of the modules described above is specified using the following 
pattern:

1) Resource Information Model – The first section of the module describes the structure and content of the resource(s) 
used in this module. This description includes what constitutes the identity of the particular resource, which elements 
must be present, which are optional and which are computed by the service itself. Identifying and computed components 
are marked as read only to make it clear what aspects of the resource can be modified. 

2) Resource Directory and List Model – The query function returns lists of resources. There are two purposes for these 
lists – the first is to summarize the set of resources that have passed the filter criteria and to provide links that can be used 
to access the details of the resource directly. This type of list is referred to as a Directory. The second purpose of these 
lists is to gather complete images of the actual resource for some secondary purpose. These sets of complete resource 
images are referred to as Lists. Note that the modules will define both types of list (Directory and List) even when the 
summary consists of the entire resource image. 
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3) Read Services – The methods that are available for direct access to the resources. These methods come in pairs – one 
for testing existence of a resource and a second for actually retrieving it. All resources provide URI access. Note that the 
URI is passed as a parameter to the function. The CTS2 specification makes a clear distinction between the HTTP URI 
that would be used to access the query service and the URI of the resource itself. In no case is the CTS2 service URI to 
be used as the identity of the resource itself. 

4) Query Services – Query services all start with a general pattern. The service provides a URI of type DirectoryURI that 
represents all of the instances of the particular resource that is known to the service. This URI represents both active and 
inactive resources and, if the Temporal compliance profile is supported, represents all possible service states. The query 
service then provides a number of generic and structural specific methods, each of which takes a DirectoryURI as input 
and returns another DirectoryURI that, when resolved, returns the result of applying the filter to the input URI. Operations 
are also available for the union, intersection, and difference of resource instances. The query services then provide two 
additional methods, resolve and resolveAsList which respectively return Directories and Lists (as described above). 

5) History Services – History services consist of several common methods to access and query change sets along with 
three additional methods – one to return the earliest known state of a resource, a second to return the current state along, 
and the third to return an ordered list of states. Resource states include historical information about what changed, who 
did it, when, etc. 

6) Maintenance services – Each module will have a method that allows the creation of the minimal valid resource 
(identity and required fields) and a second that allows modification of a resource, which allows the addition and update of 
non-identifying, non-computed content. The services also include generic methods for creating, querying, committing, 
and rolling back change sets. The CTS2 specification requires the following sequence in order to make a change to the 
service state through a maintenance service: 

a. Create a new change set 

b. Make one or more changes to one or more resources, providing the URI of the created change set 

c. Update any additional provenance information on the change set 

d. Commit the change set 

6.2.6 URI Persistence 

As stated above, the CTS2 specification is based on the RESTful Architectural Style. All resources defined in the CTS2 
specification have identity that is expressed as one or more Universal Resource Identifiers (URIs). The specification 
recognizes that while ideally each resource would have exactly one identifying URI, this is not practical in a loosely 
coupled environment. Various communities have their own identification schemes and even when this isn’t the case, 
identifiers are frequently duplicated because one group doesn’t know that an ID already exists. The CTS2 model requires 
that a service implementation assign a single “preferred” URI to each resource that is valid in the service context, but the 
service should resource retrieval via any valid identifying URI known to the service. 

There are a couple of issues, however, that need further clarification. The first is that of DirectoryURIs – URIs that, when 
resolved, represent the result of a partial or complete query. First, it should be noted that these URIs are service specific. 
There is no assumption that a DirectoryURI that was created in one service instance will be applicable in a second. The 
second issue involves URI persistence – (a) how long a URI is valid and (b) can URIs ever be reused. We address each 
of these issues below.
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6.2.7 DirectoryURI Validity 

There CTS2 PIM does not require (a) that a given directory have a unique URI and (b) that DirectoryURIs remain valid 
over an extended period of time. A query service may return a different DirectoryURI for the “allResources” directory 
every time it is accessed. This also means that a service can determine that a previously supplied DirectoryURI at any 
time subsequent to its issue. A service, however, cannot reuse a DirectoryURI unless the URI has an identical meaning. 
A service may, for instance, return URI “A” in response to the allCodeSystems query. At some time in the future, it may 
refuse to honor resolve requests on URI “A.” It may, however, return “A” again in a subsequent response to the same 
query – even if, in the interim, additional code systems have been made known to it. It may not, however, return URI “A” 
in response to any other query – either about code systems or other resources. Similarly, lists and directories involve the 
notion of iteration – “pages” as it were. A service may return URI “B” representing page 2 of a specific query, may 
invalidate “B,” may subsequently return “B” representing the same page of the same query, but it may never return “B” 
to represent a different resource, query, or page within a query. 

Note also that CTS2 PSMs and/or service implementations may choose to provide additional constraints with respect to 
URI persistence. PSMs may be created that require that Directory URIs persist indefinitely and service instances may 
wish to offer various guarantees about the minimum time of URI validity.

6.3 How to Read This Specification

The initial six clauses of this specification are informative, pertaining to the document itself, providing a general 
introduction and the purpose of common terminology services, identifying the submitter, outlining the business case for 
the specification, and providing discussion related to how the specification addresses the RFP (this clause).

Annex A describes the existing work. (informative) 

Annex B describes the CTS2 XML to JSON Transformation Rules.

To adequately and effectively represent the specification, separate PIM component documents (normative) are provided:

Core Model Elements Document describes data types, building blocks, abstract resources, and abstract service model.

Code System and Code System Version Catalog Services Document describes services for representing and 
maintaining a catalog of code systems and/or code system versions.

Entity Description Services Document describes the model and set of services for representing collections of assertions 
about classes, predicates (properties) and individuals.

Map Services Document describes services for representing and maintaining a catalog of maps between sets of entities 
as well as the rules and content.

Value Set Services Document describes services for representing and maintaining a catalog of value sets, their 
corresponding definitions and their resolution.

Concept Domain Catalog and Concept Domain Binding Services Document describes services for representing and 
maintaining a catalog of concept domains (Data Element Concepts) and their associated bindings (Data Elements).

Statement Model and Services Document describes services for representing the minimal subject, predicate, and object 
model used in RDF.

Included with this specification are the following PSM artifacts:

CTS2 REST PSM includes one XML schema per component and WADL to support REST.
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• Functional Profile conformance points: Read, Query, Import, Update, Maintenance, Temporal.

• Structural Profile conformance points: Code System, Code System Version, Entity Description, Association, Value Set, 
Value Set Definition, Value Set Resolution, Concept Domain, Concept Domain Binding, Map, Map Version, Statement.

CTS2 SOAP PSM includes same schema, but functionally is invoked via SOAP procedure calls.

• Functional Profile conformance points: Read, Query, Import, Update, Maintenance, Temporal.

• Structural Profile conformance points: Code System, Code System Version, Entity Description, Association, Value Set, 
Value Set Definition, Value Set Resolution, Concept Domain, Concept Domain Binding, Map, Map Version, Statement.

6.4 Existing Artifacts

The PIM described below is based on and generalized from existing work on terminology service interfaces that have 
been actualized as a core piece of enterprise level vocabulary service infrastructure within the NCI caBIG®. Reference to 
this existing work is included in Annex A. It is anticipated that this PIM and PSM will serve to evolve and provide a 
standards based implementation for the continuing work at NCI caBIG®.

6.5 Statement of Proof of Concept

Mayo Clinic has been developing tools to support and validate portions of the specification:

• LexEVS is a collection of terminology service interfaces that provide users the ability to store, manipulate, and query 
controlled terminologies and ontologies.  

• Parts of the model presented in the specification were implemented in LexEVS.
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A Description of Existing Work

LexEVS has become a mission critical infrastructure for the National Cancer Institute (NCI) since it provides caBIG® 
and CBIIT with runtime access of the base semantics that under lays all NCI data semantics. For the past five years the 
LexEVS team at Mayo Clinic has been evolving LexGrid/LexBIG/LexEVS to meet the needs of the semantic community. 

The LexGrid Model is Mayo Clinic’s proposal for standard storage of controlled vocabularies and ontologies. The 
LexGrid Model defines how vocabularies should be formatted and represented programmatically, and is intended to be 
flexible enough to accurately represent a wide variety of vocabularies and other lexically-based resources. The model also 
defines several different server storage mechanisms. This model provides the core representation for all data managed and 
retrieved through the service, and is now rich enough to represent vocabularies provided in numerous source formats 
including:

• Open Biomedical Ontologies (OBO) 

• Web Ontology Language (OWL), e.g., NCI Thesaurus

• Unified Medical Language System (UMLS) Rich Release Format (RRF), e.g., NCI MetaThesaurus

Once disparate vocabulary information can be represented in a standardized model, it becomes possible to build common 
repositories to store vocabulary content and common programming interfaces and tools to access and manipulate that 
content. The HL7 Common Terminology Services (CTS) and LexBIG API as developed for the Cancer Biomedical 
Informatics Grid (caBIG®) initiative are two examples of APIs able to query information stored in the LexGrid Model.

LexEVS is the convergence of LexBIG and EVS services into a collection of programmable interfaces that provide users 
with the ability to access controlled terminologies supplied by the NCI Enterprise Vocabulary Services (EVS) Project. 
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B Common Terminology Services 2 (CTS2) XML to JSON 
Transformation Rules

B.1 Assumptions

Below is a list of assumptions about the XML to JSON transformation.

• The implementation does not need to support the transformation of JSON back to XML.

• The implementation is not aware of the underlying XML schema.  As a result, it is not possible to determine types such 
as dates, Booleans and numbers.  

• The format of data during the XML to JSON transformation will not be altered.  Data types will be treated as strings 
and enclosed in double quotes.  

• The client will be schema aware.  It will know which objects contain integers, strings, dates, etc. and can cast them 
appropriately.

B.2 Transformation Patterns and Rules

This sub clause specifies the transformation rules that must be followed when transforming XML to JSON for CTS2 
implementations. 

Rule XML JSON
1 The root element shall 

become the first 
JSONObject member. 

<root> 

   <item>data</item> 

</root>

{

  "root": {

    "item": "data"

  }

}

2 XML Elements 
become JSONObjects.

The JSONString of a 
member shall be 
contained in double 
quotes.

<root> 

   <item1>data 1</item1> 

   <item2>data 2</item2>           

   <item3>data 3</item3>

</root>

{

  "root": {

    "item1": "data 1",

    "item2": "data 2",

    "item3": "data 3"

  }

}
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3 Capitalization is 
preserved.

<root> 

   <ITEM1>DATA 1</ITEM1> 

   <Item2>Data 2</Item2>  

</root>

{

  "root": {

    "ITEM1": "DATA 1",

    "Item2": "Data 2"

  }

}

4 All data are 
represented as 
JSONString.

<root> 

   <item1>0012</item1> 

   <item2>-3.89123</item2>

   <item3>4.82 x 10^2</item3>

   <item4>Jul 10, 2013 1:43:18 
PM</item4>

   <item5>2013-
0710T13:39:00.676-05:00</
item5>

</root>

{

  "root": {

    "item1": "0012",

    "item2": "-3.89123",

    "item3": "4.82 x 
10^2",

    "item4": "Jul 10, 2013 
1:43:18 PM",

    "item5": "2013-
0710T13:39:00.676-05:00"

  }

}

5 Each empty element 
shall become an empty 
JSONString. 

<root> 

   <item1/>

   <item2></item2> 

</root>

{

  "root": {

    "item1": "",

    "item2": ""

  }

}

6 Null is not a key word.  
It is treated as any 
other string.

<root> 

   <item1></item1> 

   <item2/>

   <item3>null</item3> 

</root>

{

  "root": {

    "item1": "",

    "item2": "",

    "item3": "null"

  }

}
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7 If more than one 
sibling element has the 
same name, all siblings 
become a JSONArray 
with the common 
element name.

Order shall be 
preserved within the 
JSONArray, but not in 
the JSONObject.

There is no additional
JSON to indicate the 
ordering (based on the
XML)

<root> 

   <item>1</item> 

   <item>TRUE</item>           

   <item>data 3</item>

   <item><b>text</b></item>

</root>

{

  "root": {

    "item": [

      "1",

      "TRUE",

      "data 3",

      {

        "b": "text"

      }

    ]

  }

}

<root> 

   <item>1</item> 

   <item>True</item> 

   <a/>

   <item>data 3</item>

   <item>data 4</item>

</root>

{

  "root": {

    "item": [

      "1",

      "True",

      "data 3",

      "data 4"

    ],

    "a": ""

  }

}

Note that the following is also valid.

{

  "root": {

    "a": "",

    "item": [

      "1",

      "True",

      "data 3",

      "data 4"

    ]

  }

}
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Rule XML JSON
7 <root>

   <item1 />

   <item2>1</item2>

   <item2>2</item2>

   <item3 />

   <item4>3</item4>

   <item4>4</item4>

   <item5 />

</root>

{

  "root": {

    "item1": "",

    "item2": [

      "1",

      "2"

    ],

    "item3": "",

    "item4": [

      "3",

      "4"

    ],

    "item5": ""

  }

}

8 Attributes shall 
become
JSONObjects.

<root>

   <item attr1="attribute 1" 
attr2="attribute 2">

      <element>e</element>

   </item>

</root>

{

  "root": {

    "item": {

      "attr1": "attribute 
1",

      "attr2": "attribute 
2",

      "element": "e"

    }

  }

}
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9 When an XML 
element contains a 
value and has 
attributes, the 
JSONObject member 
shall be named 
“_content” for that 
XML element value.

<root>

   <item attr1="attribute 1"

attr2="attribute 2">data</item>

</root>

{

  "root": {

    "item": {

      "attr1": "attribute 
1",

      "attr2": "attribute 
2",

      "_content": "data"

    }

  }

}
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10 With the exception of 
elements having the 
_CDATA attribute tag 
and the root 
namespace, all XML 
namespaces are 
removed in the JSON.

All namespace 
prefixes except the 
prefix “xmlns” and 
“xsi” are removed.  

http://www.w3.org/
2001/XMLSchema-
instance
 is always represented 
as “xsi”.

<root xmlns:xhtml="http://
www.w3.org/1999/xhtml">

   <xhtml:body>data</
xhtml:body>

   <item xhtml:att="abc"/>

</root>

{

  "root": {

    "body": "data",

    "item": {

      "att": "abc"

    }

  }

}

<root xmlns:xhtml="http://
www.w3.org/1999/xhtml" 
xmlns:xsi="http://www.w3.org/
2001/XMLSchema-instance">

   <xhtml:body>data</
xhtml:body>

   <item xhtml:att="abc" 
xsi:nil="true"/>

</root>

{

  "root": {

    "body": "data",

    "item": {

      "att": "abc",

      "xsi:nil": "true"

    }

  }

}

<root xmlns:xhtml="http://
www.w3.org/1999/xhtml" 
xmlns:xsi2="http://www.w3.org/
2001/XMLSchema-instance">

   <xhtml:body>data</
xhtml:body>

   <item xhtml:att="abc" 
xsi2:nil="true"/>

</root>

{

  "root": {

    "body": "data",

    "item": {

      "att": "abc",

      "xsi:nil": "true"

    }

  }

}

11 If known, the root 
namespace should be 
represented as a 
JSONMember in the 
root JSONObject 
using the JSONString, 
“_xmlns”

<root xmlns="http://
example.org/schema/roots.xsd"> 

   <item1>data 1</item1> 

   <item2>data 2</item2>  

</root>

{

  "_xmlns": "http://
example.org/schema/
roots.xsd",

  "root": {

    "item1": "data 1",

    "item2": "data 2"

  }

}
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12 The following 
JSONString 
Characters are 
escaped:

"  \ b f n r t

Note that the forward 
slash is not escaped.

See Section 9 String in 
http://www.ecma-
international.org/
publications/files/
ECMA-ST/ECMA-
404.pdf

Note that the 
backspace and form 
feed characters are not 
valid in the XML.  See 
http://www.w3.org/
TR/xml11/#NT-Char

<root>

   <item>A quotation 
mark(&#x22;), a back slash 
(&#x5c;), a forward slash 
(&#x2f;), a newline (&#xA;), a 
carriage return (&#xD;), a 
horizontal tab (&#x9;).  Other 
characters such as &amp;, &lt;, 
> are left alone.</item>

</root>

{

  "root": {

    "item": "A quotation 
mark(\"), a back slash 
(\\), a forward slash (/), 
a newline (\n), a carriage 
return (\r), a horizontal 
tab (\t).  Other 
characters such as &, <, > 
are left alone."

  }

}
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13 Mixed XML content 
shall be represented as 
a JSONArray in the 
sequence that the text 
and elements appear.

_CDATA attribute tag 
indicates no 
conversion for the item 
or its descendants.

_CDATA values shall 
preserve xml 
namespaces, with 
namespace and 
attribute quotes 
escaped.

CTS2 Specific - Use 
for OpaqueData xml 
elements.

<root>

   <item>This is a <b>bold</b> 
and <i>italic</i> string.</
item>

</root>

{

  "root": {

    "item": [

      "This is a ",

      {

        "b": "bold"

      },

      " and ",

      {

        "i": "italic"

      },

      " string."

    ]

  }

}

<root xmlns:t="http://
test.org">

   <item _CDATA="true">This is 
a <b>bold</b> and <i 
id="1">italic</i> string.</
item>

</root>

{

  "root": {

    "item": "This is a 
<b>bold</b> and <i 
id=\"1\">italic</i> 
string."

  }

}

<root xmlns:schema="http://
schema.org"> 
    <item xmlns="http://
www.w3.org/1999/xhtml" 
_CDATA="true"><p>This is a 
<b>bold</b> paragraph with am 
<schema:image>image</
schema:image></p></item> 
</root>

{

  "root": {

    "item": "<p 
xmlns=\"http://www.w3.org/
1999/xhtml\">This is a 
<b>bold</b> paragraph with 
am <image xmlns=\"http://
schema.org\">image</
image></p>"

  }

}
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B.3 Limitations

The following conditions must be true before this specification can be applied:

1. Without knowing the schema, types such as dates, Booleans and numbers cannot be differentiated from other types. 
 The client needs to recognize each type and handle appropriately.

2. XML element and attribute names in the same sequence need to be different.  

<root data=”test”> 
   <data data="some data" attr1="attribute 1" attr2="attribute 2"/> 
</root>

This is not allowed.  The XML element and attribute have the same name "data".

3. Two elements with the same name but different namespaces may not appear in the same sequence:

<root>
   <ns1:data>text</data>
   <ns2:data>text</data>
</root>

Is not allowed.   

14 Repeating XML 
attribute values shall 
be treated as a single 
JSONValue. 

<root>

   <item attr = "data1  data2  
data3"/>

</root>

{

  "root": {

    "item": {

      "attr": "data1  
data2  data3"

    }

  }

}

15 XML comments and 
processing instructions 
are ignored.

<root>

   <!-- A sample comment -->

   <item 
attr="data"><![CDATA[some 
strange stuff "\]]></item>

   <?pins A processing 
instruction?>

</root>

{

  "root": {

    "item": {

      "attr": "data",

      "_content": "some 
strange stuff \"\\"

    }

  }

}
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