
i
Dependability Assurance Framework for Safety-Sensitive Consumer Devices (SSCD) Specification

Date: Sep, 2015

Dependability Assurance Framework for Safety-Sensitive
Consumer Devices (SSCD) Specification

Version Beta 2

__
OMG Document Number: ptc/2015-08-01

Normative reference: http://www.omg.org/spec/DAF
Normative Machine Consumable files:
ptc/2015-08-03: SSCD DAC Template SACM xmi machine readable files
ptc/2015-08-04: SSCD DCM xmi file
ptc/2015-08-05: SSCD DPM.xmi file

Non-normative Machine Consumable files:
ptc/2015-08-06: SSCD DCM Astah UML file

Submitters:

National Institute of Advanced Industrial Science and Technology (AIST)

Fujitsu Limited

Information-technology Promotion Agency, Japan (IPA)

Toyota Motor Corporation

Supporter:

The University of Electro-Communications

ii
Dependability Assurance Framework for Safety-Sensitive Consumer Devices (SSCD) Specification

Copyright © 2013-2014, National Institute of Advanced Industrial Science and Technology
Copyright © 2013-2014, Fujitsu Limited
Copyright © 2013-2014, Information-technology Promotion Agency, Japan
Copyright © 2013-2014, Toyota Motor Corporation
Copyright © 2013-2014, The University of Electro-Communications
Copyright © 2015, Object Management Group, Inc.

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms,
conditions and notices set forth below. This document does not represent a commitment to implement any portion of this
specification in any company's products. The information contained in this document is subject to change without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free,
paid up, worldwide license to copy and distribute this document and to modify this document and distribute copies of the
modified version. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed
the copyright in the included material of any such copyright holder by reason of having used the specification set forth
herein or having conformed any computer software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant you a
fully-paid up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use this
specification to create and distribute software and special purpose specifications that are based upon this specification,
and to use, copy, and distribute this specification as provided under the Copyright Act; provided that: (1) both the
copyright notice identified above and this permission notice appear on any copies of this specification; (2) the use of the
specifications is for informational purposes and will not be copied or posted on any network computer or broadcast in
any media and will not be otherwise resold or transferred for commercial purposes; and (3) no modifications are made to
this specification. This limited permission automatically terminates without notice if you breach any of these terms or
conditions. Upon termination, you will destroy immediately any copies of the specifications in your possession or
control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may
require use of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a
license may be required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of
those patents that are brought to its attention. OMG specifications are prospective and advisory only. Prospective users
are responsible for protecting themselves against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications regulations
and statutes. This document contains information which is protected by copyright. All Rights Reserved. No part of this
work covered by copyright herein may be reproduced or used in any form or by any means--graphic, electronic, or
mechanical, including photocopying, recording, taping, or information storage and retrieval systems--without permission
of the copyright owner.

iii
Dependability Assurance Framework for Safety-Sensitive Consumer Devices (SSCD) Specification

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY CONTAIN
ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE
MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS PUBLICATION,
INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF
MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE. IN NO EVENT
SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE COMPANIES LISTED ABOVE BE LIABLE
FOR ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS, REVENUE, DATA OR
USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE FURNISHING,
PERFORMANCE, OR USE OF THIS MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you. This
disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1) (ii)
of The Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph (c)(1) and
(2) of the Commercial Computer Software - Restricted Rights Clauses at 48 C.F.R. 52.227-19 or as specified in 48 C.F.R.
227-7202-2 of the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of the Federal
Acquisition Regulations and its successors, as applicable. The specification copyright owners are as indicated above and
may be contacted through the Object Management Group, 109 Highland Avenue, Needham, MA 02494, U.S.A.

TRADEMARKS

IMM®, MDA®, Model Driven Architecture®, UML®, UML Cube logo®, OMG Logo®, CORBA® and XMI® are
registered trademarks of the Object Management Group, Inc., and Object Management Group™, OMG™ , Unified
Modeling Language™, Model Driven Architecture Logo™, Model Driven Architecture Diagram™, CORBA logos™,
XMI Logo™, CWM™, CWM Logo™, IIOP™ , OMG Interface Definition Language (IDL)™ , and OMG SysML™ are
trademarks of the Object Management Group. All other products or company names mentioned are used for identification
purposes only, and may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its
designees) is and shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer
software to use certification marks, trademarks or other special designations to indicate compliance with these materials.

Software developed under the terms of this license may claim compliance or conformance with this specification if and
only if the software compliance is of a nature fully matching the applicable compliance points as stated in the
specification. Software developed only partially matching the applicable compliance points may claim only that the
software was based on this specification, but may not claim compliance or conformance with this specification. In the
event that testing suites are implemented or approved by Object Management Group, Inc., software developed using this
specification may claim compliance or conformance with the specification only if the software satisfactorily completes
the testing suites.

iv
Dependability Assurance Framework for Safety-Sensitive Consumer Devices (SSCD) Specification

OMG’S ISSUE REPORTING PROCEDURE

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage readers
to report any ambiguities, inconsistencies, or inaccuracies they may find by completing the Issue Reporting Form listed
on the main web page http://www.omg.org, under Documents, Report a Bug/Issue
(http://www.omg.org/report_issue.htm.)

v
Dependability Assurance Framework for Safety-Sensitive Consumer Devices (SSCD) Specification

Table of Contents
Preface ... x

1 Scope .. 1

2 Conformance ... 1

3 Normative References ... 1

4 Terms and Definitions ... 2

5 Symbols and Abbreviated Terms... 2

6 Overview of the specification .. 2
6.1 Introduction..2
6.2 Key features ...3

6.2.1 Key Capabilities of DAF ...3
6.2.2 Procedure ...4
6.2.3 How to Read this Specifications ..4

7 Dependability Conceptual Model (DCM) .. 5
7.1 Architectural Concept ...6

7.1.1 System of Systems ..7
7.1.2 System ...7
7.1.3 Component ..7
7.1.4 Implementation...7
7.1.5 Service ...8
7.1.6 Development Category ...8

7.2 Dependability Assurance Concept ..9
7.2.1 Dependability Assurance Case Concept ..9

7.2.1.1 Dependability Claim ..10
7.2.1.2 Evidence ...10
7.2.1.3 Dependability Assurance Case ...10
7.2.1.4 Dependability Assurance Argument Structure ...10
7.2.1.5 Dependability Assurance Argument ... 11
7.2.1.6 Dependability Allocation Arguments ... 11
7.2.1.7 Standard Compliance Argument ..12
7.2.1.8 Lifecycle Argument ..12
7.2.1.9 Evolutionary Development Argument..12
7.2.1.10 Modification Argument ..12
7.2.1.11 Proven In Use Argument ...12
7.2.1.12 Proven In Use Criteria Argument ..13
7.2.1.13 Field and Development Record Argument ...13
7.2.1.14 Field Record Argument..13
7.2.1.15 Development Record Argument ..13
7.2.1.16 Integration Argument ..14
7.2.1.17 Static Analysis Argument..14
7.2.1.18 Dependability Analysis Argument ..14
7.2.1.19 Difference Analysis Argument ..14
7.2.1.20 Impact Analysis Argument..14
7.2.1.21 Dynamic Analysis Argument ..15
7.2.1.22 Use Case Argument ...15

vi
Dependability Assurance Framework for Safety-Sensitive Consumer Devices (SSCD) Specification

7.2.1.23 Simulation and Physical Testing Argument ..15
7.2.1.24 Simulation Argument ..15
7.2.1.25 Physical Testing Argument ...16

7.2.2 Dependability Concept ...16
7.2.2.1 Dependability ...16
7.2.2.2 Dependability Attribute ..17
7.2.2.3 User Defined System Attribute ..17

7.2.3 Dependability Assurance Level ...17
7.2.3.1 Assurance Level ...18
7.2.3.2 Dependability Assurance Level ..18
7.2.3.3 Dependability Attribute Assurance Level ..19

7.2.4 Error Model ...20
7.2.4.1 Threat ...21
7.2.4.2 Failure ..21
7.2.4.3 Random Hardware Failure ...22
7.2.4.4 Systematic Failure ...22
7.2.4.5 Error ...22
7.2.4.6 Fault ...22
7.2.4.7 Detection Method ...22

7.2.5 Assessment ..23
7.2.5.1 Confirmation Review ...23
7.2.5.2 Confirmation Measure...23

7.2.6 Proven In Use ..23
7.2.6.1 Modification ..24
7.2.6.2 Carry Over ..24
7.2.6.3 Proven In Use Candidate ..24
7.2.6.4 Proven In Use Criteria ..25
7.2.6.5 Field Record ...25
7.2.6.6 Development Record ..25

7.3 Dependability Process Concept...26
7.3.1 Conceptual Model for Dependability Process ...26
7.3.2 Activity ..26
7.3.3 Artifact ...27
7.3.4 BreakdownElement (from SPEM 2.0) ...27
7.3.5 Disposal ...28
7.3.6 Difference Analysis ...28
7.3.7 Dependability Analysis ...28
7.3.8 Dependability Argument Construction ...28
7.3.9 Dependability Requirements Definition ...28
7.3.10 Hardware Development ...29
7.3.11 Impact Analysis ..29
7.3.12 Lifecycle ...29
7.3.13 System Requirements Definition...29
7.3.14 System Architecture Design ...30
7.3.15 Software Development ...30
7.3.16 Operation ...30
7.3.17 System Architecture ...30
7.3.18 Verification & Validation ..30
7.3.19 WorkBreakdownElement (from SPEM 2.0) ..31
7.3.20 WorkSequence (from SPEM 2.0) ..31
7.3.21 WorkSequenceKind (from SPEM 2.0) ...31

7.4 Requirement Concept ..33
7.4.1 Assurance Requirement ...33
7.4.2 System Requirement ..33
7.4.3 Quality Requirement ..34

vii
Dependability Assurance Framework for Safety-Sensitive Consumer Devices (SSCD) Specification

7.4.4 Functional Requirement ..34
7.4.5 Dependability Requirement ...34
7.4.6 Dependability Assurance Requirement...34
7.4.7 Dependability Claim ...34

7.5 System Environment Concept ..36
7.5.1 Actor ...36
7.5.2 Environment ...36
7.5.3 Operational Environment ..36
7.5.4 Interface ..37

8 Dependability Assurance Case (DAC) Template .. 38
8.1 Introduction (Informative) ..38
8.2 Representation of DAC Template by SACM Instance Diagram ...38
8.3 Dependability Allocation Argument ...39
8.4 Lifecycle Argument ..40

8.4.1 Evolutionary Development Argument ..40
8.4.2 Top Structure ..41
8.4.3 Proven In Use Argument ..42
8.4.4 Modification Argument ...43
8.4.5 Top Structure of Integration Argument ..44

8.4.5.1 Static Dependability Analysis Argument ...44
8.4.5.2 Dynamic Dependability Analysis Argument ..45

8.5 Standard Compliance Argument ..46

9 Dependability Process Model .. 48
9.1 Overview of Iterative and Rapid Process ...48
9.2 Dependability Process ...49

9.2.1 Dependability Analysis ...50
9.2.2 Dependability Requirements Definition ...50
9.2.3 Dependability Argument Construction ...51

9.3 Systems Engineering Process ...51
9.3.1 System Requirements Definition...52
9.3.2 System Architecture Design ...52
9.3.3 Hardware Development ...53
9.3.4 Software Development ...53

9.3.4.1 Software Requirements Definition ...54
9.3.4.2 Control Design ...54
9.3.4.3 Control Modeling ...55
9.3.4.4 Auto Code Generation ...55
9.3.4.5 Simplification Optimization ..55
9.3.4.6 Code Generation ..55
9.3.4.7 Software Calibration & Verification & Validation...56
9.3.4.8 Rapid and Iterative Loops ...56

9.3.5 Verification & Validation ..56
9.4 Evolutionary Development Process ..57

9.4.1 Difference Analysis ...57
9.4.2 Impact Analysis ..57

9.5 Etcetera Process ...57
9.5.1 Operation ...57
9.5.2 Disposal ...58

viii
Dependability Assurance Framework for Safety-Sensitive Consumer Devices (SSCD) Specification

ix
Dependability Assurance Framework for Safety-Sensitive Consumer Devices (SSCD) Specification

List of Figures

Figure 6-1 – Dependability Assurance Framework ... 4
Figure 7-1 – Dependability Conceptual Model ... 5
Figure 7-2 –Dependability Conceptual Model package ... 6
Figure 7-3 – Architectural Concept ... 7
Figure 7-4 – Dependability Assurance Concept package .. 9
Figure 7-5 – Dependability Assurance Case Concept .. 10
Figure 7-6 – Dependability Assurance Argument Structure ... 11
Figure 7-7 – Dependability Concept package ... 16
Figure 7-8 – Sample extension of Dependability Attribute ... 17
Figure 7-9 – Dependability Assurance Level Package ... 18
Figure 7-10 – Sample of Dependability Attribute Assurance Levels .. 19
Figure 7-11 – Sample of SIL in IEC 61508 in SSCD specification.. 20
Figure 7-12 – Error Model ... 21
Figure 7-13 – Assessment package.. 23
Figure 7-14 – Proven In Use package ... 24
Figure 7-15 – Dependability Process Model ... 26
Figure 7-16 – Requirement Concept package ... 33
Figure 7-17 – System Environment Concept package ... 36
Figure 8-1 – DAC template for Dependability Allocation Argument .. 39
Figure 8-2 – Overview of Evolutionary Development Argument Template (Informative) 40
Figure 8-3 – An example of the use of DAC template for automobile (Informative) 41
Figure 8-4 – Top Structure of the DAC for Evolutionary Development Argument 42
Figure 8-5 – Proven In Use Argument part of the Evolutionary Development Argument Structure

 ... 43
Figure 8-6 – Modification Argument Part of the DAC template for Evolutionary Development

Argument Structure .. 44
Figure 8-7 – Top Structure of Integration Argument part of the DAC template for Evolutionary

Development Argument Structure ... 44
Figure 8-8 – Static Dependability Analysis Argument part of the DAC template for Evolutionary

Development Argument Structure ... 45
Figure 8-9 – Dynamic Dependability Analysis Argument part of the DAC template for Evolutionary

Development Argument Structure ... 46
Figure 8-10 – The DAC Template for Standard Compliance Argument Structure 47
Figure 9-1 – Example of Rapid Iterative Process ... 49
Figure 9-2 – BPMN for Dependability Process Model ... 50
Figure 9-3 – BPMN for Systems Engineering Process .. 52
Figure 9-4 – The Correct Control Software models ... 54

x
Dependability Assurance Framework for Safety-Sensitive Consumer Devices (SSCD) Specification

Preface

About the Object Management Group

OMG

Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer industry
standards consortium that produces and maintains computer industry specifications for interoperable, portable, and
reusable enterprise applications in distributed, heterogeneous environments. Membership includes Information
Technology vendors, end users, government agencies, and academia.

OMG member companies write, adopt, and maintain its specifications following a mature, open process. OMG’s
specifications implement the Model Driven Architecture® (MDA®), maximizing ROI through a full-lifecycle approach
to enterprise integration that covers multiple operating systems, programming languages, middleware and networking
infrastructures, and software development environments. OMG’s specifications include: UML® (Unified Modeling
Language™); CORBA® (Common Object Request Broker Architecture); CWM™ (Common Warehouse Metamodel);
and industry-specific standards for dozens of vertical markets.

More information on the OMG is available at http://www.omg.org/.

OMG Specifications
As noted, OMG specifications address middleware, modeling and vertical domain frameworks. All OMG Specifications
are available from the OMG website at:
http://www.omg.org/spec

Specifications are organized by the following categories:

Business Modeling Specifications

Middleware Specifications
• CORBA/IIOP

• Data Distribution Services

• Specialized CORBA

IDL/Language Mapping Specifications

Modeling and Metadata Specifications
• UML, MOF, CWM, XMI

• UML Profile

Modernization Specifications

Platform Independent Model (PIM), Platform Specific Model (PSM), Interface Specifications
• CORBAServices

• CORBAFacilities

xi
Dependability Assurance Framework for Safety-Sensitive Consumer Devices (SSCD) Specification

OMG Domain Specifications

CORBA Embedded Intelligence Specifications

CORBA Security Specifications

All of OMG’s formal specifications may be downloaded without charge from our website. (Products implementing OMG
specifications are available from individual suppliers.) Copies of specifications, available in PostScript and PDF format,
may be obtained from the Specifications Catalog cited above or by contacting the Object Management Group, Inc. at:

OMG Headquarters
109 Highland Ave
Needham, MA 02494
USA
Tel: +1-781-444-0404
Fax: +1-781-444-0320
Email: pubs@omg.org

Certain OMG specifications are also available as ISO standards. Please consult http://www.iso.org

Typographical Conventions
The type styles shown below are used in this document to distinguish programming statements from ordinary English.
However, these conventions are not used in tables or clause headings where no distinction is necessary.

Times/Times New Roman - 10 pt.: Standard body text

Helvetica/Arial - 10 pt. Bold: OMG Interface Definition Language (OMG IDL) and syntax elements.

Courier - 10 pt. Bold: Programming language elements.

Helvetica/Arial - 10 pt: Exceptions

NOTE: Terms that appear in italics are defined in the glossary. Italic text also represents the name of a document,
specification, or other publication.

Issues

The reader is encouraged to report any technical or editing issues/problems with this specification to
http://www.omg.org/report_issue.htm.

http://www.omg.org/report_issue.htm

1
Dependability Assurance Framework for Safety-Sensitive Consumer Devices (SSCD) Specification

1 Scope
The objective of this document is to provide a new system assurance methodology for the dependability argumentation
for consumer devices, which is achieved by integrating conventional system assurance approaches such as risk analysis
and assessments with a new way of approaching unique characteristics of consumer devices. The scope of this
specification supports the objectives of the integration, and includes the dependability case for argumentation, as well as
the dependability development process to be newly defined. The focus is to include the dependability argumentation
particularly for consumer devices. In the future, it may be desirable to introduce additional argumentation methodology
for other systems such as avionics or railways. However, they are outside of the scope for the current effort as the authors
are not experts in other systems rather than consumer devices.

2 Conformance
This specification is intended to be an umbrella specification, which allows several existing specifications/standards
either by OMG or other standardization bodies in a single framework.

For any specification/standard of a specific SSCD to be in conformance with the Dependability Conceptual Model
requires that the conceptual model of the standard/specification shall include all models in DCM. It shall extend DCM
specified in this specification to support new dependability, assurance and process concepts for that specific SSCD as
long as it will not cause any semantic inconsistency between DCM and the new conceptual model.

For conformance to Dependability Assurance Case, argumentation for SSCD dependability shall follow the argument
structure specified in clause 8. DAC shall conform to SACM.

For conformance to Dependability Process Model, the development process for SSCD shall follow the process defined in
clause 9.

Name of Model Clause Number Requirement for conformance
Dependability Conceptual
Model

Clause 7 Each class defined in composed of clause 7 shall be utilized to
form a specification or a standard that defines a dependability
conceptual model, dependability assurance case and dependability
process model for an application to design a SSCD.

Dependability Assurance Case Clause 8 Argumentation for SSCD dependability shall use the DAC
templates defined in clause 8.

Dependability Process Model Clause9 The development process for SSCD shall follow the process
defined in clause 9.

3 Normative References
The following normative documents contain provisions which, through reference in this text, constitute provisions of this
specification. For dated references, subsequent amendments to, or revisions of, any of these publications do not apply.

• Software Process Engineering Metamodel (SPEM), Version 2.0, OMG Document formal/2008-04-01,
(http://www.omg.org/spec/SPEM/2.0/)

• Business Process Model and Notation (BPMN), Version 2.0.2 ,OMG Document formal/2013-12-09,
(http://www.omg.org/spec/BPMN/2.0.2/)

• OMG Structured Assurance Case Metamodel, Version 1.0 , OMG Document formal/2013-02-01,
(http://www.omg.org/spec/SACM/1.0/)

• OMG Unified Modeling Language (OMG UML), Infrastructure, Version 2.4.1, OMG Document
formal/2011-08-05, (http://www.omg.org/spec/UML/2.4.1/Infrastructure/PDF/)

http://www.omg.org/spec/SPEM/2.0/
http://www.omg.org/spec/BPMN/2.0.2/
http://www.omg.org/spec/SACM/1.0
http://www.omg.org/spec/UML/2.4.1/Infrastructure/PDF/

2
Dependability Assurance Framework for Safety-Sensitive Consumer Devices (SSCD) Specification

4 Terms and Definitions
For the purposes of this document, the following terms and definitions apply.

Safety-Sensitive Consumer device (SSCD)
a category of industrial products used by consumer users, including automobiles, service robots, medical devices and
clinical systems, and smart houses. Preventing failures of the embedded software in SSCDs is going to be vital for
consumer safety.

5 Symbols and Abbreviated Terms
 DAC Dependability Assurance Case

DAF Dependability Assurance Framework
 DCM Dependability Conceptual Models
 DPM Dependability Process Models

SSCD Safety-Sensitive Consumer device

6 Overview of the specification

6.1 Introduction
Back in 2010, system quality caused serious problems in the automotive industry in the U.S. The electrical throttle
control system was questionable, which may have caused unintended accelerations because of software bugs or system
errors. The US government, NASA and TOYOTA worked together to find out where the issue lay in the electrical throttle
control system, disclosing all the documents and specifications that TOYOTA had for designing the system. The
investigation results are open at the NASA website and they have confirmed that the system had no issue in the end. The
reports concluded that the unintended acceleration might have been caused by floor mats which are, in general, piled up
on top of previous ones as the owner of car often purchased new ones, which may have caused the accelerator pedal to
become stuck between the floor mats.

NOTE: NASA is the National Aeronautics and Space Administration of USA, and TOYOTA is the Toyota Motor
Corporation

In such circumstances, can we really say that electronics systems are safe and that quality control procedures are in place
and that the system validation process is robust? Will they continue to be as safe as they have been?

Taking the future of electronics systems into consideration, each electronics system is going to be one of the terminals of
Internet of things and will be expected to play a significant role as a part of smart city. This consideration indicates that
the safety of electronics systems cannot be achieved alone, but have to be achieved together with other electrical and
electronic systems as a whole.

This series of questions sheds light on three aspects. One is that the customers’ perspective regarding the quality for
control systems has significantly changed and they would like to know how manufacturers ensure the quality of
“invisible” control systems. Manufacturers have to act more proactively and take responsibility for the accountability for
quality. Another is that a brand-new system assurance methodology will be required for System of Systems as a whole,
though we will still have different standards in place for the industries for each category of electronics systems,
respectively, such as automotive, medical devices, smart houses and service robots. Also, the safety is not the only
attribute to consider. The electronics systems have to achieve safety, reliability, availability and even integrity at the same
time. And the last is that use case scenarios for cars are quite difficult to capture, as the use case for the floor mats case
suggests. However, the use case of the floor mat issue cannot be regarded as “out of scope” even with any difficulties.
The “out of scope” is no longer “out of scope” and manufacturers will have to make the impossible possible and do
whatever it takes in order to enhance the quality of their products.

3
Dependability Assurance Framework for Safety-Sensitive Consumer Devices (SSCD) Specification

In this specification, the methodology to resolve the issues above is specified and named as the Dependability Assurance
Framework (DAF), with which a standard or a specification to assure the dependability of SSCD can be created. First, a
new concept of the system assurance is specified, defining a new notion of consumer devices as well as dependability.
Secondly, a parallel argumentation method with a Dependability-Case is introduced so that multi-standards as well as
multi-attributes can be adequately addressed at the same time as part of argument structure. Thirdly, a rapid and iterative
development process is defined, contrary to the V-process, in order to completely describe a common engineering process
in the automotive industry.

6.2 Key features
Dependability Assurance Framework (DAF) is a new approach for the system assurance of Safety-Sensitive Consumer
Devices (SSCD) which can provide a comprehensive methodology for the argumentation for SSCD. Historically, each
attribute of “Dependability” such as safety, security, integrity and so forth, have been separately discussed in different
way of assurance framework because of different existing standards. Now, given the fact that SSCD is a system to
implement certain function, which aggregates systems to individually implement certain different functions, DAF can
provide a model based system assurance methodology for each system and the entire system, also can provide a model
based dependability assurance methodology to construct argumentation for each attribute of “Dependability” and the
entire “Dependability”, simultaneously.

DAF, however, cannot provide each single method to build up the argumentation for “Dependability” because it would
be too huge to specify everything for aspects of system assurance in this specification, but can provide developers of
SSCD with how to build up their own dependability assurance standard, aggregating knowledge and experiences from
existing standards, in terms of what kind of technical terms to be incorporated into, what kind of process to develop
argumentation in and what kind of aspects to take into account for argumentation.

DAF consists of: Dependability Conceptual Model (DCM) that defines objects and relations which are required for the
SSCD dependability argumentation; Dependability Process model (DPM) that defines a differential development and a
rapid iterative development process as a part of the conventional V-process, and; Dependability Assurance Case (DAC)
which employs the SACM for SSCD dependability argumentation as well as the notion of Proven In Use with concrete
usage.

DAF with DCM, DPM and DAC can provide an efficient method for the argumentation regardless of any properties of
system assurance such as safety, reliability, availability and so forth. Additionally, DAF is expected to work as a
supplement to existing standards such as ISO26262, where any argumentations for both existing standards and whatever
standards are needed for specific systems.

This specification is an abstraction of existing standards related to dependability assurance such as ISO26262. This
specification can be referred to in terms of what aspects are required to consider for enhancing the dependability
assurance of SSCDs.

6.2.1 Key Capabilities of DAF
DAF provides the following capabilities to develop the dependability argumentation for consumer devices.

a) Dependability assurance methodology for Safety-Sensitive Consumer Devices: The DAF can provide a big picture
on how to establish the dependability assurance for SSCDs. With this methodology and the conceptual models,
developers can understand what kind of aspects they need to consider for full support of the dependability
construction. Also, the dependability argumentations for SSCDs can be discussed in parallel, evaluating the
consistency among them. This methodology also provides the parallel discussions for each attribute of the
dependability.

b) Template for dependability argumentation: A DAC template provides a way of argumentation particularly for
SSCDs which can guide developers to construct the dependability argumentation when developing their own
products. The template contains the notion of compositional assurance in which developers can discuss the
dependability assurance component by component based on the structured system of their products in line with the
system engineering approach. With this template, developers can not only make their argumentation for the
dependability of their products clearer but also make the scope of their discussion clearer. In addition, the template
can provide a way of reusability of the assurance for the development efficiency.

c) Dependability assurance process: DPM provides a process to develop the dependability assurance which can work
together with the conventional system development process. With this process, developers can create the

4
Dependability Assurance Framework for Safety-Sensitive Consumer Devices (SSCD) Specification

dependability case for their products while developing their own products at the same time.

6.2.2 Procedure
This clause describes the procedure to apply this specification for the dependability assurance for SSCDs.

a) Create your own DCM to define each dependability concept for your product, referring to Clause 7.
b) Create your own DPM to define your own dependability process for your product, referring to Clause 9.
c) Create your own DAC for the dependability argumentation for your product, referring to Clause 8

The relationship between the three models are illustrated in the following package in Figure 6-1, where Dependability
Conceptual Model are referenced by the other two models(Dependability Process Model, Dependability Assurance Case
Template) while Dependability Assurance Case Template depends on Dependability Process Model to come up with
argumentation for SSCD.

Defining the three models is a minimum set for creating a specification of Dependability Assurance for a SSCD. To
specify a complete set of the specification that you are going to create shall reference existing standards in terms of how
the concepts are utilized to build up argumentation for a SSCD according to the dependability process.

Figure 6-1 – Dependability Assurance Framework

6.2.3 How to Read this Specifications
Users who want to apply this specification to their own products may want to read the procedure in Clause 6.4 first.

If you want to understand the background of this specification, Clause 6.1 provides the background of this specification
for readers to understand a big picture of the specification. The rest of this document contains the technical content of this
specification, with which users can create their own dependability assurance for their own SSCD.

Clause 7 provides the Dependability Conceptual Model with which developers are going to develop their own
dependability assurance for their own products.

Clause 8 provides the Dependability Assurance Case template with which developers are going to develop their own
dependability argumentation according to the template of argumentation particularly for SSCDs.

Clause 9 provides the Dependability Process Model with which developers are going to develop their own dependability
assurance while engineering their own products.

5
Dependability Assurance Framework for Safety-Sensitive Consumer Devices (SSCD) Specification

7 Dependability Conceptual Model (DCM)
This clause specifies the semantic model of Dependability Conceptual Model (DCM). The main aim of the DCM is to lay
the foundations of this specification in which all the terminology/vocabulary used in this specification will be presented
as semantic models in UML class diagrams followed by narratives which specify the terms, definitions and abbreviated
terms in English. The semantic models in this specification are not meant to be implemented for any purposes but to
support assurance concept/activities/processes to ensure dependability of Safety Sensitive Consumer Devices (SSCDs). It
must be emphasized that this version of the DCM only constitutes the minimum core of dependability assurance
concepts, which supports other parts, i.e., Dependability Process Model (DPM) and Dependability Assurance Case
(DAC) in this version of SSCDs specification.

As the SSCD covers a broad product category including automobiles, service robots, and smart houses and so on, this
specification is intended to be an umbrella specification, which allows several existing specifications/standards either by
OMG or other standardization bodies in a single framework. We took special care as to how this can be realized. The
main idea of realizing this is to provide some room to plug in other specifications/standards to our semantic models
without any interference in terms of the underlying semantics with this core specification. In order to do so, our semantic
models are provided at an abstract level where several specifications/standards can be accommodated and harmonized.

DCM Top-level Package
The Dependability Conceptual Model package in Figure 7-1 is specified as the top-level package of all the other
packages for DCM.

Figure 7-1 – Dependability Conceptual Model

The whole structure of the DCM is grouped together under the UML package, which consists of the following
sub-packages:

1) Architectural Concept
2) Dependability Assurance Concept
3) Requirement Concept
4) Dependability Process Concept
5) System Environment Concept

The Architectural Concept package aims to specify what system concepts are used in this specification. The basic notions
in this package are based on conventional systems engineering concepts. The Dependability Assurance Concept provides
the conceptual model supporting dependability assurance in this specification. This is the core part of the DCM which
provides the basis for several substantial sub-packages. The Dependability Process Concept covers the concepts used in
the Dependability Process Model (DPM) in this specification. This part should be read with the process model in BPMN
in Clause 9. The Requirement Concept package specifies what kinds of requirements are dealt with in this specification.
The System Environment Concept package specifies how the system boundary is set in this specification.

6
Dependability Assurance Framework for Safety-Sensitive Consumer Devices (SSCD) Specification

Figure 7-2 –Dependability Conceptual Model package

The UML (Unified Modeling Language) class diagrams are used throughout in this specification. Concepts in the
Dependability Conceptual Model are modularized topically to separate concerns and to facilitate understanding by
developers. These packages are interrelated, but independently specified in this specification. A dashed line between
packages represents dependency between them. The detailed explanation of each package can be found in the
corresponding clauses that follow.

7.1 Architectural Concept
This Architectural Concept package provides the overall architecture and its elements of SSCD. Each element is
positioned sequentially in four levels, the System of Systems level, the System level (including Subsystem level), the
Component level, and the Implementation level. The System level (including Subsystem level), the Component level, and
the Implementation level identify the Development Category that is New Development or Modification.

The System of Systems level is not mandatory, and it is used as the uppermost layer when several systems are combined
and integrated.

Architectural Concept Dependability Assurance Concept

Dependability Process ConceptRequirement ConceptSystem Environment Concept

ServiceSystem of Systems

+ implemantation

+ component

1..*

1

+ component

+ system

*

1

+ service

+ system

1..*

1

+ subsystem

+ system

*

1

+ system

+ system of Systems

2..*

0..*

+ service+ system of Systems

1..*1

- developmentCategory : Development Category

Implementation

- developmentCategory : Development Category

System

- developmentCategory : Development Category

Component

- Modification : int
- NewDevelopment : int

<<enumeration>>
Development Category

7
Dependability Assurance Framework for Safety-Sensitive Consumer Devices (SSCD) Specification

Figure 7-3 – Architectural Concept

This package describes what is meant by Architecture in this specification. This specification faithfully follows the
standard notion of systems engineering (From " ISO/IEC15288: 2008"). It is broken down into detailed parts gradually
from an abstract concept.

7.1.1 System of Systems
Description
It is possible that System does not belong to any System of Systems. Also, it is possible that System belongs to System of
Systems.
Generalizations
No additional generalizations
Attributes
No additional attributes
Associations

system: System[2..*]
 System of Systems is composed of two or more systems.

service: Service[1..*]
 System of Systems can provide one or more services.

7.1.2 System
Description
A system is a collection of subsystems or components that are organized for a common purpose. If it is complex, it is
composed of subsystems. If subsystems are necessary, the System is composed of subsystems, and the subsystem is
composed of components.
Generalizations
No additional generalizations
Attributes
 developmentCategory: DevelopmentCategory
 It is distinguished by new development or modification.
Associations

subsystem: System[*]
The System (including subsystem) is composed of zero or more subsystems.

component: Component[*]
 The System (including subsystem) is composed of zero or more components.

service: Service[*]
 The System (not including subsystem) can provide one or more services.

7.1.3 Component
Description
Component is a very important part of System or Subsystem. It consists of Implementations that are Hardware and/or
Software. It consists of Implementations that are more than one Hardware and/or Software.
Generalizations
No additional generalizations
Attributes
No additional attributes
Associations

implementation: Implementation[1..*]
The Component is composed of one or more implementations.

7.1.4 Implementation
Description
Implementation is the smallest unit in Architecture. Component is decomposed into Implementation(s) that can contain
Hardware or Software. It is an implementation of hardware or Software composing the Component.
Generalizations
No additional generalizations

8
Dependability Assurance Framework for Safety-Sensitive Consumer Devices (SSCD) Specification

Attributes
No additional attributes
Associations
No additional associations

7.1.5 Service
Description
A System of Systems or a System provides one or more Services. A Service provides value, (satisfying a goal for
example) or an effect to an Actor.
Generalizations
No additional generalizations
Attributes
No additional attributes
Associations
No additional associations

7.1.6 Development Category
Description
The Development Category provides the distinction between new development of a system and modification of an
existing system. This notion defines an enumeration data type which has two separate values.
Generalizations
No additional generalizations
Attributes

NewDevelopment: int
 Designate a system to be newly developed.
Modification: int
 An existing system to be modified respectively.

Associations
No additional associations

NOTE: <<enumeration>> is used to indicate that this is a class for enumeration data type.

9
Dependability Assurance Framework for Safety-Sensitive Consumer Devices (SSCD) Specification

7.2 Dependability Assurance Concept
This package accommodates all the basic notions of system assurance in this specification. The concepts relevant to
ensuring dependability of target systems are specified in terms of a number of sub-packages, as shown in Figure 7-4,
providing coverage for the level of complexity and breadth required, as follows:

1) Dependability Assurance Case Concept
2) Dependability Concept
3) Dependability Assurance Level
4) Error Model
5) Assessment
6) Proven In Use

Figure 7-4 – Dependability Assurance Concept package

The Dependability Assurance Case Concept package specifies how dependability assurance cases are addressed in this
specification. The Dependability Assurance Level package defines the criteria for threat assessment in this specification.
The Error Model package specifies basic notions surrounding the classic notion of errors such as faults and failures, and
how they are incorporated into dependability. The Assessment package deals with how assessment is done in this
specification. Finally the Proven In Use package specifies how a modified system is assessed.

7.2.1 Dependability Assurance Case Concept
Description
This package contains the Dependability Assurance Case Concept. A Dependability Assurance Case Concept consists of
a Dependability Claim, Dependability Assurance Case, and Evidence.
Generalizations
No additional generalizations
Attributes
No additional attributes
Associations
No additional associations

10
Dependability Assurance Framework for Safety-Sensitive Consumer Devices (SSCD) Specification

Figure 7-5 – Dependability Assurance Case Concept

7.2.1.1 Dependability Claim
Description
The Dependability Claim is a proposition about the dependability of the target system or system of systems, which is to
be assured.
Generalizations
No additional generalizations
Attributes
No additional attributes
Associations
No additional associations

7.2.1.2 Evidence
Description
Evidence is the basis of the argument for the dependability claim.
Generalizations
No additional generalizations
Attributes
No additional attributes
Associations
No additional associations

7.2.1.3 Dependability Assurance Case
Description
A structured argument, supported by a body of evidence that provides a compelling, comprehensible and valid case that a
system of system, or a system is dependable for a given application in a given environment.
Generalizations
No additional generalizations
Attributes
No additional attributes
Associations

dependabilityClaim: Dependability Claim[1]
 evidence: Evidence[1]

7.2.1.4 Dependability Assurance Argument Structure
Description

Dependability Assurance Argument Structure

Dependability Assurance Case
+ evidence

+ dependability Assurance Case 1

1+ dependabilityClaim

+ dependability Assurance Case1

1

Dependability Claim Evidence

Dependability Conceptual Model::Dependability Process Concept::Artifact

11
Dependability Assurance Framework for Safety-Sensitive Consumer Devices (SSCD) Specification

This package contains Dependability Assurance Argument classes, which represent argument structures for assuring the
dependability of the target safety sensitive consumer devices.
Generalizations
No additional generalizations
Attributes
No additional attributes
Associations
No additional associations

Figure 7-6 – Dependability Assurance Argument Structure

7.2.1.5 Dependability Assurance Argument
Description
The Dependability Assurance Argument class represents the argument structure for assuring dependability of the target
architecture. The argument structure consists of three sub structures: Dependability Allocation Argument, Standard
Compliance Argument, and Lifecycle Argument.
Generalizations
No additional generalizations
Attributes
No additional attributes
Associations

dependabilityAllocationArgument: Dependability Allocation Argument[1]
 lifeCycleArgument: Life Cycle Argument[1]
 standardComplianceArgument: Standard Compliance Argument

7.2.1.6 Dependability Allocation Arguments
Description
The Dependability Allocation Argument Class represents the argument structure for assuring the adequacy of
dependability allocation to each sub-architecture(s) of the target architecture.
Generalizations
No additional generalizations
Attributes
No additional attributes

Proven In Use Argument

Field Record Argument

Physical Testing Argument

Dependability Assurance Argument

Static Analysis ArgumentField and Development Record Argument

+ dependabilityAssuranceArgument

+ dependability Assurance Case

1

1

+ provenInUseCriteriaArgument

+ proven In Use Argument

1

1

+ useCaseArgument

+ dynamic Analysis Argument

1

1

+ simulationArgument

+ simulation and Physical Testing Argument

1

1

+ dynamicAnalysisArgument

+ integration Argument

1

1

+ staticAnalysisArgument

+ integration Argument

1

1

+ integrationArgument
+ evolutionary Development Argument

1

1

+ developmentRecordArgument

+ field and Development Record Argument

1

1

+ modificationArgument
+ evolutionary Development Argument

1
1

+ provenInUseArgument

+ evolutionary Development Argument

1

1

+ evolutionaryDevelopmentArgument

+ Life Cycle Argument

1

1

+ dependabilityAllocationArgument

+ dependability Assurance Argument

1

1

+ simulationandPhysicalTestingArgument

+ dynamic Analysis Argument

1

1

+ dependabilityAnalysisArgument

+ static Analysis Argument

1

1

+ physicalTestingArgument

+ simulation and Physical Testing Argument

1

1

+ impactAnalysisArgument

+ static Analysis Argument

1

1

+ differenceAnalysisArgument

+ static Analysis Argument

1

1

+ lifeCycleArgument
+ dependability Assurance Argument

1

1 + standardComplianceArgument

+ dependability Assurance Argument

1
1

+ fieldRecordArgument

+ field and Development Record Argument

1
1

+ fieldandDevelopmentRecordArgument

+ proven In Use Argument

1

1

Standard Compliance Argument

 Life Cycle Argument

Difference Analysis Argument Impact Analysis Argument Simulation and Physical Testing ArgumentDependability Analysis Argument

Modification Argument

Dynamic Analysis Argument

Dependability Allocation Argument

Evolutionary Development Argument

Development Record Argument

Integration Argument

Simulation Argument

Use Case Argument

Proven In Use Criteria Argument

Dependability Assurance Case Concept::Dependability Assurance Case

12
Dependability Assurance Framework for Safety-Sensitive Consumer Devices (SSCD) Specification

Associations
No additional associations

7.2.1.7 Standard Compliance Argument
Description
The Standard Compliance Argument class represents the argument structure for assuring that the target architecture
complies with other standards which are not covered by this specification.
Generalizations
No additional generalizations
Attributes
No additional attributes
Associations
No additional associations

7.2.1.8 Lifecycle Argument
Description
The Lifecycle Argument class represents an argument structure for assuring that the target architecture has been
developed in a lifecycle complying with the DPM. It consists of an argument structure for assuring that the development
of the target architecture has adequately been developed. Safety-sensitive consumer devices should be developed
evolutionally. Therefore, the structure consists of an Evolutionary Development Argument structure.
Generalizations
No additional generalizations
Attributes
No additional attributes
Associations

evolutionaryDevelopmentArgument: Evolutionary Development Argument[1]

7.2.1.9 Evolutionary Development Argument
Description
The Evolutionary Development Argument class represents the argument structure for assuring that the development of
the target architecture has adequately been developed over the generations. Evolutionary Development Argument class
consists of a Proven In Use Argument, a Modification Argument, and an Integration Argument.
Generalizations
No additional generalizations
Attributes
No additional attributes
Associations

provenInUseArgument: Proven In Use Argument[1]
modificationArgument: Modification Argument[1]
integrationArgument: Integration Argument[1]
nextGenerationArgument: Next Generation Argument[1]

7.2.1.10 Modification Argument
Description
The Modification Argument class represents the argument structure for assuring that the modified and impacted (by the
modification) parts of the target architecture have adequately modified. Modification Argument consists of zero or more
development argument structures for the modified and impacted parts.
Generalizations
No additional generalizations
Attributes
No additional attributes
Associations
No additional associations

7.2.1.11 Proven In Use Argument
Description

13
Dependability Assurance Framework for Safety-Sensitive Consumer Devices (SSCD) Specification

The Proven In Use Argument class represents the argument structure for assuring that the unchanged and un-impacted
(by the modification) parts of the target architecture adequately satisfy the allocated dependability attributes by proven in
use. The structure consists of the Proven In Use Criteria Argument and Field and Development Record Argument.
Generalizations
No additional generalizations
Attributes
No additional attributes
Associations
 fieldandDevelopmentRecordArgument: Field and Development Record Argument[1]
 provenInUseCriteriaArgument: Proven In Use Criteria Argument[1]

7.2.1.12 Proven In Use Criteria Argument
Description
The Proven In Use Criteria Argument class represents the argument structure that the unchanged and un-impacted (by the
modification) parts satisfy the criteria to be assured by the proven in use argument.
Generalizations
No additional generalizations
Attributes
No additional attributes
Associations
No additional associations

7.2.1.13 Field and Development Record Argument
Description
The Field and Development Record Argument class represents the argument structure for assuring that the unchanged
and un-impacted (by the modification) parts of the target architecture adequately satisfy allocated dependability attributes
by the proven in use argument using a field and a development record. The structure consists of a Field Record Argument
and a Development Record Argument.
Generalizations
No additional generalizations
Attributes
No additional attributes
Associations

fieldRecordArgument: Field Record Argument[1]
developmentRecordArgument: Development Record Argument[1]

7.2.1.14 Field Record Argument
Description
The Field Record Argument class represents the argument structure for assuring that the field record of the unchanged
and un-impacted (by the modification) parts of the architectural constituent are adequate enough for the Proven In Use
argument in the operation.
Generalizations
No additional generalizations
Attributes
No additional attributes
Associations
No additional associations

7.2.1.15 Development Record Argument
Description
The Development Record Argument class represents the argument structure for assuring that the development record of
the unchanged and un-impacted (by the modification) parts of the architectures are adequate for the Proven In Use
Argument in the development.
Generalizations
No additional generalizations
Attributes
No additional attributes

14
Dependability Assurance Framework for Safety-Sensitive Consumer Devices (SSCD) Specification

Associations
No additional associations

7.2.1.16 Integration Argument
Description
The Integration Argument class represents the argument structure for assuring that the integrated architecture adequately
satisfies the allocated dependability attributes. The structure consists of a Static Analysis Argument and a Dynamic
Analysis Argument structures.
Generalizations
No additional generalizations
Attributes
No additional attributes
Associations

staticAnalysisArgument: Static Analysis Argument[1]
dynamicAnalysisArgument: Dynamic Analysis Argument[1]

7.2.1.17 Static Analysis Argument
Description
The Static Analysis Argument class represents the argument structure for assuring that the static analysis for the
integrated architecture has been adequately done. The structure consists of Dependability Analysis Argument, Difference
Argument, and Impact Analysis Argument.
Generalizations
No additional generalizations
Attributes
No additional attributes
Associations

dependabilityAnalysisArgument: Dependability Analysis Argument [1]
differenceAnalysisArgument: Difference Analysis Argument[1]
impactAnalysisArgument: Impact Analysis Argument[1]

7.2.1.18 Dependability Analysis Argument
Description
The Dependability Analysis Argument class represents the argument structure for assuring that the dependability analysis
for the identified threats in the integrated architecture has been adequately done.
Generalizations
No additional generalizations
Attributes
No additional attributes
Associations
No additional associations

7.2.1.19 Difference Analysis Argument
Description
The Difference Analysis Argument class represents the argument structure for assuring that the difference analysis for the
existing and to be developed architectural constituent has been adequately done.
Generalizations
No additional Generalizations
Attributes
No additional attributes
Associations
No additional associations

7.2.1.20 Impact Analysis Argument
Description
The Impact Analysis Argument class represents the argument structure for assuring that the impact analysis of the
modification in the integrated architecture has been adequately done.

15
Dependability Assurance Framework for Safety-Sensitive Consumer Devices (SSCD) Specification

Generalizations
No additional generalizations
Attributes
No additional attributes
Associations
No additional associations

7.2.1.21 Dynamic Analysis Argument
Description
The Dynamic Analysis Argument class represents the argument structure for assuring that the dynamic analysis for the
integrated architectures has been adequately done. The structure consists of Use Case and Simulation and Physical
Testing Argument structures.
Generalizations
No additional generalizations
Attributes
No additional attributes
Associations

useCaseArgument: Use Case Argument[1]
simulationandPhysicalTestingArgument: Simulation and Physical Testing Argument[1]

7.2.1.22 Use Case Argument
Description
The Use Case Argument class represents the argument structure for assuring that the use cases for dynamic analysis have
been adequately identified, and do not contain redundant use cases.
Generalizations
No additional generalizations
Attributes
No additional attributes
Associations
No additional associations

7.2.1.23 Simulation and Physical Testing Argument
Description
The Simulation and Physical Testing Argument class represents the argument structure for assuring that the simulation
and physical testing have been adequately done for the integrated architecture. The structure consists of a Simulation
Argument and Physical Testing Argument.
Generalizations
No additional generalizations
Attributes
No additional attributes
Associations

simulationArgument: Simulation Argument[1]
physicalTestingArgument: Physical Testing Argument[1]

Simulation Argument and Physical Testing Argument classes are associated.

7.2.1.24 Simulation Argument
Description
The Simulation Argument class represents the argument structure for assuring that the simulation has been adequately
done for the integrated architectural constituent.
Generalizations
No additional generalizations
Attributes
No additional attributes
Associations
No additional associations

16
Dependability Assurance Framework for Safety-Sensitive Consumer Devices (SSCD) Specification

7.2.1.25 Physical Testing Argument
The Physical Testing Argument class represents the argument structure for assuring that physical testing has been
adequately done for the integrated architectural constituent.
Generalizations
No additional generalizations
Attributes
No additional attributes
Associations
No additional associations

7.2.2 Dependability Concept
As given in Figure 7-7, the Dependability Concept package specifies the notion of dependability in this specification. In
the broadest sense, dependability is defined as a system state which enables the system to provide continuous,
uninterrupted provisioning of services. Compared with other system attributes such as safety and reliability, which have a
long tradition and their definitions being well understood, there has been far less consensus around the notion of
dependability to date. According to the seminal paper by Laprie, et. al [2], dependability is defined as an umbrella
concept which includes various system attributes such as availability, reliability, safety, integrity and maintainability. In
this specification, we neither advocate a new notion of nor adopt any existing notion of dependability. Rather, a
framework for specific dependability for a specific domain, product-line, product, or service is provided. The main
reason for this design decision is that SSCDs cover a wide range of industrial products that may have different notion of
dependability. For this reason, this specification does not force any subordinate specifications/standards to comply with a
single notion of dependability.

Figure 7-7 – Dependability Concept package

7.2.2.1 Dependability
Description
Dependability is the composite system attribute which consists of various kinds of system attributes.
Dependability ensures that services required by an actor are continuously provided.
Generalizations
No additional generalizations
Attributes
No additional attributes
Associations

service: Service[1]
Specifies that dependability ensures that services are continuously provided.

dependabilityAttribute: Dependability Attribute[1]
Specifies that the Dependability concept may have several Dependability attributes.

NOTE: Actor and Service are provided by the System Environment Concept package and the Architectural Concept
package respectively.

Dependability

User Defined System Attribute

Dependability Attribute

+ service

+ dependability

1

1

+ service

+ actor

1

1

+ userDefinedSystemAttribute

+ dependability Attribute

1

1

+ dependabilityAttribute

+ dependability

1

1

Dependability Conceptual Model::System Environment Concept::Actor

Dependability Conceptual Model::Architectural Concept::Service

+ actor

+ dependability 1
1

17
Dependability Assurance Framework for Safety-Sensitive Consumer Devices (SSCD) Specification

7.2.2.2 Dependability Attribute
Description
Dependability Attribute is an anchor point where any specific notion of dependability of a particular
specification/standard under this SSCD specification could be defined particularly specifying system attributes by which
the dependability in that specification/standard is defined.
Generalizations
No additional generalizations
Attributes
No additional attributes
Associations

userDefinedSystemAttribute: User Defined System Attribute[1]
Specifies that User Defined System Attribute is a part of Dependability attribute.

NOTE: We will show a sample figure in order to illustrate how this concept may be used. This class can accommodate
Laprie’s [2] definition of dependability as shown in the Figure 7-8 below where five system attributes; Availability,
Reliability Safety, Maintainability and Integrity are defined as essential constituents of the dependability attribute.

Figure 7-8 – Sample extension of Dependability Attribute (Informative)

7.2.2.3 User Defined System Attribute
Description
This concept specifies that any user may define system attributes which consist of the dependability attributes in a
particular specification/standard.
Generalizations
No additional generalizations
Attributes
No additional attributes
Associations
No additional associations

NOTE: User Defined System Attribute is a part of the Dependability Attribute.

7.2.3 Dependability Assurance Level
The package in Figure 7-9 accommodates all the notions as to how threat is assessed in the specification.

Dependability

User Defined System Attribute

Dependability Attribute

+ userDefinedSystemAttribute

+ dependability Attribute

1

1

+ dependabilityAttribute

+ dependability

1

1

Availability

Reliability

Safety

Maintainability

Integrity

+ availability

+ reliability

+ safety

+ maintainability

+ integrity

+ dependability Attribute

18
Dependability Assurance Framework for Safety-Sensitive Consumer Devices (SSCD) Specification

Figure 7-9 – Dependability Assurance Level Package

This package accommodates concepts associated with the assurance levels for threat assessment. The diagram above also
specifies relationships among some relevant notions in separate packages such as Threat in the Error Model package and
Operational Environment in the System Environment Concept, Dependability Requirements in the Requirement Concept
and Proven In Use Criteria in the Proven In Use Package.
Risk assessment in safety functional standards in several industrial domains is based on the integrity level. For instance,
risk assessment in IEC 61508 [3] for electrical/electronic/programmable devices is achieved using SIL (Safety Integrity
Level) and that in ISO 26262 [1] for automotive uses ASIL (Automotive Safety Integrity Level). In the security domain,
Common Criteria (ISO/IEC 15408 [4]) uses EAL (Evaluation Assurance Level) and a security standard for industrial
automation and control systems uses SAL (Security Assurance Level) [5]. It must be noted that the term integrity in the
integrity levels in some of those standards have nothing to do with the system attribute integrity. Historically the term is
used for the metrics for assessing risks involved in those industrial domains. We did not follow this tradition and use the
term Assurance Level instead.
Dependability Assurance Level in Figure 7-9 is the top concept for assessing threats in SSCDs (Please refer to the Error
Model Package in Figure 7-12 for the exact meaning of the Threat). Dependability Attribute Assurance Level
corresponds to any particular system attribute which composes the dependability concept of a target system. For instance,
safety assurance level in functional safety standards is a sub-notion of Dependability Attribute Assurance Level. The
basic norm behind this composition is that a target system is not assessed by the single dependability assurance level, but
assessed by a combination of assurance levels of each system attribute which consists of the notion of dependability.

The Dependability Attribute Assurance Level is allocated to the Dependability Requirement (in the Requirement Concept
package), which mitigates a Threat (in the Error Model package) together with an Operational Environment (in the
System Environment Concept package). Risk is assessed by combinations of Threat and Operational Environment.

7.2.3.1 Assurance Level
Description
This concept is the top-level concept, which accommodates all the relevant assurance levels of a particular system
attribute.
Generalizations
No additional generalizations
Attributes

name: String
Specifies the name of the Assurance Level.

description: String
Specifies the description of the Assurance Level.

Associations
No additional associations

7.2.3.2 Dependability Assurance Level
Description
Dependability Assurance Level specifies a particular dependability assurance level.
Generalizations

Assurance Level on the previous subsection.

Dependability Assurance Level

- description : String
- name : String

Assurance Level

+ dependabilityRequirement

+ dependability Attribute Assurance Level

1

1

+ threat

+ dependability Requirement1..*

1
+ threat

+ dependability Attribute Assurance Level

1..*

1

+ provenInUseCriteria
- dependability Assurance Level 1

1

+ operationalEnvironment

+ dependability Attribute Assurance Level 1

1

+ depandabilityAttributeAssuranceLevel

+ dependability Assurance Level

1..*

1

Dependability Attribute Assurance Level Dependability Conceptual Model::System Environment Concept::Operational Environment

Dependability Conceptual Model::Dependability Assurance Concept::Proven In Use::Proven In Use Criteria

Dependability Conceptual Model::Dependability Assurance Concept::Error Model::Threat Dependability Conceptual Model::Requirement Concept::Dependability Requirement

19
Dependability Assurance Framework for Safety-Sensitive Consumer Devices (SSCD) Specification

Attributes
No additional attributes
Associations

depandabilityAttributeAssuranceLevel: Dependability Assurance Level[1]
Specifies that Dependability Attribute Assurance Level is a part of Dependability Assurance Level.

provenInUseCriteria: Proven In Use Criteria[1]
Specifies that Dependability Assurance Level is assigned to Proven in Use Criterion.

7.2.3.3 Dependability Attribute Assurance Level
Description
As was previously mentioned, dependability is an umbrella concept which consists of several system attributes such as
safety, reliability and so on. Therefore this notion is provided in order to accommodate an assurance level for each system
attribute which consists of the notion of dependability.
Generalizations
No additional generalizations
Attributes
No additional attributes
Associations

threat: Threat[1..*]
Specifies that Dependability Attribute Assurance Level is assessed by Threat.

dependabilityRequirement: Dependability Requirement [1]
Specifies that Dependability Attribute Assurance Level is allocated to Dependability Requirement.

operationalEnvironment: Operational Environment[1]
Specifies that Dependability Attribute Assurance Level is assessed by Operational Environment.

NOTE: First of all, we will demonstrate how new assurance levels for dependability can be defined, which follows the
definition by Laprie [2], and introduce an assurance level for each dependability attribute.

Figure 7-10 – Sample of Dependability Attribute Assurance Levels (Informative)

Calculation of each assurance level depends on the specifics of the domain and product for a particular SSCD. For
example, for some systems, MTBF (Mean Time Between Failures) and MTTR (Mean Time To Repair) may be applicable
at the Availability Assurance Level. For those same or other systems, you might want to use SIL in IEC 61508 for the
Safety Assurance Level and so on. Domain- and product- specific requirements should be used to refine the definition of
dependability and related assurance level for a given implementation.
As an additional illustration, functional safety standards such as IEC 61508 can be supported using the DCM in Figure
7-11. IEC 61508 defines SIL (Safety Integrity Level) to assess the potential risk of electrical and/or electronic devices
based on the probability of failure and the severity of harm. One way of incorporating SIL into our specification is to
create Safety Integrity Level (SIL) class and to place it under the Dependability Attribute Assurance Level as a sub-class.
As Dependability Attribute Assurance Level is allocated to a dependability requirement, so is SIL to a safety requirement.

Dependability Assurance Level

- description : String
- name : String

Assurance Level

+ depandabilityAttributeAssuranceLevel

+ dependability Assurance Level

1..*

1

Dependability Attribute Assurance Level

Availability Assurance Level

Reliability Assurance Level

Safety Assurance Level

Maintainability Assurance Level

Integrity Assurance Level

+ availability Assurance Level

+ reliability Assurance Level

+ safety Assurance Level

+ maintainability Assurance Level

+ integrity Assurance Level

+ dependability Assurance Level

20
Dependability Assurance Framework for Safety-Sensitive Consumer Devices (SSCD) Specification

Figure 7-11 – Sample of SIL in IEC 61508 in SSCD specification (Informative)

7.2.4 Error Model
This Clause specifies the semantic model for the Error Model. This model in Figure 7-12 contains the basic
structural elements for defining the error on which the dependability argumentation is laid out. The model is
referenced with the conventional error model following the seminal work by Laprie[2] to provide consistency.

Assurance Level

Dependability Assurance Level

Dependability Attribute Assurance Level

+ dependabilityAttributeAssuranceLevel

+ dependability Assurance Level

1..*

1

Dependability Requirement

+ dependabilityRequirement

+ dependability Attribute Assurance Level

1..*

1

Safety Integrity Level

Safety Requirement

+ safetyRequirement

+ safety Integrity Level

1..*

1

21
Dependability Assurance Framework for Safety-Sensitive Consumer Devices (SSCD) Specification

Figure 7-12 – Error Model

7.2.4.1 Threat
Description
Threat is an abstracted notion of fault, error and failure that occurs in a Component or an Element.
Generalizations
No additional generalization
Attributes
No additional attributes
Associations

component
Specifies that threat happens in a component[1].

threat:Threat
Specifies that threat propagation occurs from one to other[1].

 detection Method:Detection Method
 Specifies that threat is detected by a detection Method [1].

7.2.4.2 Failure
Description
Failure is an event that occurs when the delivered service deviates from correct service. It is also described as a
transition from correct service to incorrect service.
Generalizations

Systematic Failure
Random Hardware Failure

Attributes
No additional attributes
Associations

error:Error
Specifies that failure is caused by an error[1].

Detection Method

Error

Threat

+ component

+ threat

1

*

+ fault

+ error 1

1+ error

+ failure 1

1

+ propagation

+ threat

1

1

+ threat

+ detection Method 1

1

Systematic Failure Random Hardware Failure

Failure Fault

- developmentCategory : Development Category

Dependability Conceptual Model::Architectural Concept::Component

22
Dependability Assurance Framework for Safety-Sensitive Consumer Devices (SSCD) Specification

7.2.4.3 Random Hardware Failure
Description
Random Hardware Failure is a failure that can occur unpredictably during the lifetime of a hardware element and
that follows a probability distribution.
Generalizations
No additional generalization
Attributes
No additional attributes
Associations
No additional associations

7.2.4.4 Systematic Failure
Description
Systematic Failure is a failure related in a deterministic way to a certain cause, which can only be eliminated by a
change of the design or of the manufacturing process, operational procedures, documentation or other relevant
factors.
Generalizations
No additional generalization
Attributes
No additional attributes
Associations
No additional associations

7.2.4.5 Error
Description
Error is a deviation from correct service, which defines one or more discrepancies between a computed, observed
or measured value or condition, and the true, specified or theoretically correct value or condition.
Generalizations
No additional generalization
Attributes
No additional attributes
Associations

fault: Fault
Specifies that error is caused by an fault[1].

7.2.4.6 Fault
Description
Fault is an abnormal condition that can cause a system or a component to fail.
Generalizations
No additional generalization
Attributes
No additional attributes
Associations
No additional associations

7.2.4.7 Detection Method
Description
Detection Method is a method to identify a Threat.
Generalizations
No additional generalization
Attributes
No additional attributes
Associations
No additional associations

23
Dependability Assurance Framework for Safety-Sensitive Consumer Devices (SSCD) Specification

7.2.5 Assessment
The Assessment package in Figure 7-13 accommodates all of the relevant notions of assessment in the SSCD
domains.
Dependability of a system is assessed based on relevant assurance requirements. The objects to be assessed are artifacts
produced through the dependability process.
An assessment should be done using a Confirmation Review, which is includes a Confirmation Measure to assess the
degree of dependability to be achieved.

Figure 7-13 – Assessment package

7.2.5.1 Confirmation Review
Description
Confirmation Review means to confirm whether artifacts produced during the development cycle satisfy the relevant
Assurance Requirements.
Generalizations

Confirmation Measure in the next subsection.
Attributes
No additional attributes
Associations

artifact: Artifact [1]
Specifies whether Artifact satisfies the Assurance Requirement.

assuranceRequirement: Assurance Requirement [1]
Specifies the Assurance Requirement is referenced by Confirmation Review.

7.2.5.2 Confirmation Measure
Description
A Confirmation Measure specifies how the degree of dependability is achieved.
Generalizations
No additional generalizations
Attributes
No additional attributes
Associations
No additional associations

7.2.6 Proven In Use
This package depicted in Figure 7-14 provides all the relevant notions related to the Proven In Use. Proven In Use is the
notion which describes that a certain part of the existing system is fit for purpose without any further assessment
provided that some certain conditions are met. Many industrial products have legacy parts with proven track records to
ensure their dependability so we regard this notion as a focal point for their dependability assurance.

Confirmation Measure

Confirmation Review + artifact+ confirmation Review

11

+ assuranceRequirement

+ confirmation Review

1

1

+ dependability

+ confirmation Measure

1

1

Dependability Conceptual Model::Dependability Assurance Concept::Dependability Concept::Dependability

Dependability Conceptual Model::Requirement Concept::Assurance Requirement

Dependability Conceptual Model::Dependability Process Concept::Artifact

24
Dependability Assurance Framework for Safety-Sensitive Consumer Devices (SSCD) Specification

Figure 7-14 – Proven In Use package

7.2.6.1 Modification
Description
Modification specifies any component of the system which has been modified.
Generalizations

Component in Architectural Concept package
Attributes
No additional attributes
Associations
No additional associations

NOTE: Modification may include program updates, design changes and so on.

7.2.6.2 Carry Over
Description
This notion specifies any component of the system which did not change in a new development cycle.
Generalizations

Component in the Architectural Concept package
Attributes
No additional attributes
Associations
No additional associations

7.2.6.3 Proven In Use Candidate
Description
This notion specifies what is assessed for proven in use. The proven in use candidate is a component of a system.
Generalizations
No additional generalizations
Attributes
No additional attributes
Associations

provenInUseCriteria: Proven in Use Criteria [1]
Specifies that Proven in Use Candidate of a component of the System is assessed by Proven In Use
Criteria.

developmentRecord: Development Record [0..*]
Specifies that Proven in Use Candidate is assessed using Development Record.

fieldRecord: Field Record [0..*]
Specifies that a Proven in Use Candidate may have a Field Record.

 component: Component [1]
 Specifies that Proven in Use Candidate is a component.

Proven In Use Criteria ModificationField Record Development Record Carry Over

Proven In Use Candidate + proven In Use Candidate

+ component1

1

+ carryOver

+ system

1

1

+ modification

+ system

1

1

+ proven In Use Candidate

+ provenInUseCriteria

1

1

+ proven In Use Candidate

+ developmentRecord

1

*

+ proven In Use Candidate

+ fieldRecord

1

*

- developmentCategory : Development Category

Dependability Conceptual Model::Architectural Concept::System

- developmentCategory : Development Category

Dependability Conceptual Model::Architectural Concept::Component

25
Dependability Assurance Framework for Safety-Sensitive Consumer Devices (SSCD) Specification

7.2.6.4 Proven In Use Criteria
Description
Proven In Use Criteria are those by which a system is proven to be safe based on a proven track record.
Generalizations
No additional generalizations
Attributes
No additional attributes
Associations
 proven In Use Candidate: Proven In Use Candidate [1]
 Specifies that Proven In Use Criteria is met to be a Proven In Use Candidate.

7.2.6.5 Field Record
Description
This class signifies any data recorded and any evidence produced while a proven in use candidate is in operation.
Generalizations
No additional generalizations
Attributes
No additional attributes
Associations
 proven In Use Candidate: Proven In Use Candidate [1]
 Specifies that Field Record is an evidence from field for a Proven In Use Candidate.

NOTE: Examples of Field Record include failure rates of any particular parts of the system and incident rates of the
system.

7.2.6.6 Development Record
Description
This class specifies any data recorded and evidence produced during the development of the system. This may include
Artifacts (defined in the Dependability Process Model) produced during the system development and any records of that
development.
Generalizations
No additional generalizations
Attributes
No additional attributes
Associations
 proven In Use Candidate: Proven In Use Candidate [1]
 Specifies that Development Record is an evidence during development for a Proven In Use

Candidate.

NOTE: Examples of the Development Record include fault rates of programs.

26
Dependability Assurance Framework for Safety-Sensitive Consumer Devices (SSCD) Specification

7.3 Dependability Process Concept
This clause specifies the semantic model for the Dependability Process Model. This model contains the basic structural
elements for defining the Dependability Process. The Dependability process is defined in iterations of each Dependability
specific process, that is, design systems, simulation and operation, etc. repeatedly. In the Dependability Process
meta-model, the process represents this nature. The iteration process is prescribed partially using the “Software &
Systems Process Engineering meta-model Specification version 2.0 (SPEM 2.0)” to represent the framework.

• Clause 7.3.1 indicates the conceptual model for the Dependability Process.

• The following Clause after Clause 7.3.1 illustrates each constituent element represented in the conceptual model.

7.3.1 Conceptual Model for Dependability Process
The Dependability Process Model is realized by iterative processes which are composed of dependability specific
activities. For establishing the iterative processes, SPEM 2.0 is introduced. BreakdownElement, WorkBreakDown
Element and Work Sequence are imported from SPEM 2.0. (For simplification of the model diagrams, these classes are
shown as if they were defined as part of this Dependability Process package). The Dependability specific elements are
prescribed in the framework. Each concrete dependability activity is represented as a leaf class. The meta-model for the
Dependability Process Model is shown in Figure 7-15 – Dependability Process Model.

Figure 7-15 – Dependability Process Model

7.3.2 Activity
Description
An Activity is a specialization of WorkBreakdownElement that constitutes the iterative process for the dependability
process. The Activity requires and/or produces some artifacts. Therefore, it has to possess Artifacts, that is, Activity has
an association to the Artifact.

Lifecycle+ activity

+ nestedBreakdownElement

0..1

* {ordered}

+ linkToPredecessor + successor
* 1

+ linkToSuccessor + predecessor
* 1

+ artifact + activity

* 1

+ ownedActivity + lifecycle
1..* 1

Artifact

+ isOptional : Boolean = false
+ hasMultipleOccurrences : Boolean = false

ProcessBehavior::BreakdownElement

+ linkKind : WorkSequenceKind = finishToStart

ProcessBehavior::WorkSequence

+ isEventDriven : Boolean = false
+ isOngoing : Boolean = false
+ isRepeatable : Boolean = false

ProcessBehavior::WorkBreakdownElement

+ <<enum constant>> startToFinish : WorkSequenceKind
+ <<enum constant>> startToStart : WorkSequenceKind
+ <<enum constant>> finishToFinish : WorkSequenceKind
+ <<enum constant>> finishToStart : WorkSequenceKind

<<enum>>
ProcessBehavior::WorkSequenceKind

Activity

Depdendablity Requirements Definition Difference AnalysisDependability Analysis

Verification & ValidationSystem Architecture Design

Dependability Argument Construction DisposalImpact Analysis

OperationHardware DevelopmentSystem Requirements Definition Software Development

Activity

27
Dependability Assurance Framework for Safety-Sensitive Consumer Devices (SSCD) Specification

Activity consists of iterative processes, which implies a dependability process. A BreakdownElement is a generalization
of Activity, that is, a specific action (for example, Difference Analysis, Dependability Analysis, Dependability
Requirement Definition, Dependability Argument Construction, System Requirement Definition, System Architecture
Design, etc.) An Activity can have an Artifact, which implies input and/or output of each concrete work. Therefore, the
Activity has a relationship to the Artifacts.

The Activity constitutes the Lifecycle, that is, the Activity is related to Lifecycle as an Aggregation.
In this document, the term Activity is used according to SPEM2.0, instead of the term Task to BPMN as the conceptioal
model of process follows SPEM2.0.
Generalizations

WorkBreakdownElement
Attributes
No additional attributes
Associations

Artifact: Artifact[*]
References the artifacts which are developed in each activity.

nestedElement: BreakdownElement[*]
References the BreakdownElement which constructs arbitrary structure of activity recursively.

lifecycle: Lifecycle[1]
References lifecycle which consists of each activity.

7.3.3 Artifact
Description
An Artifact implies a work product which is produced and/or referred by activities, that is, the Artifact is an
activity-specific occurrence of input/output materials. The Artifact needs to be related to a corresponding Activity (as a
specialized class). Furthermore, the identical Artifact can be referred to by multiple Activities. The Artifact can be
evidence of dependability processes. The BreakdownElement is a generalization of Artifact.

The Artifact instance is an activity-specific object and represents the occurrence of a real work product in the Activity.
Therefore, the Artifact has relationship to the Activity. The Artifact is a specialization of BreakdownElement.

An Artifact implies a work product which is produced and/or referred to by activities, that is, the Artifact is an
activity-specific occurrence of input/output materials. The Artifact needs to be related to a corresponding Activity (as a
specialized class). Furthermore, the identical Artifact can be referred to by multiple Activities. The Artifact can be
evidence of dependability processes. The BreakdownElement is a generalization of Artifact.

The Artifact instance is an activity-specific object and represents the occurrence of a real work product in the Activity.
Therefore, the Artifact has a relationship to the Activity.

The Artifact is a specialization of BreakdownElement.
Generalizations

BreakdownElement
Attributes
No additional attributes
Associations

activity: Activity[1]
References the activity which produces the artifacts.

7.3.4 BreakdownElement (from SPEM 2.0)
Description
BreakdownElement is an abstract generalization for any type of process element that is part of a breakdown structure. It
defines a set of properties available to all of its specialization. Any of its concrete subclass can be ‘placed inside’ an
Activity (via the nested BreakdownElement association) to become part of a breakdown of Activities. As Activities are
BreakdownElements themselves and therefore can be nested inside other activities, an n-level break structure is defined
by n nested Activities. In addition to Activity, other BreakdownElement can be nested inside Activities as leaf elements
of the breakdown
Generalizations
No additional generalizations

28
Dependability Assurance Framework for Safety-Sensitive Consumer Devices (SSCD) Specification

Attributes
No additional attributes
Associations

aggregateElement: Activity[0..1]
References activities are defined recursively.

7.3.5 Disposal
Description
A Decommission represents a work item for the dependability. The Decommission is a specialization of the Activity. The
Decommission implies work which disposes of the devices.
Generalizations

Activity
Attributes
No additional attributes
Associations
No additional associations

7.3.6 Difference Analysis
Description
A Difference Analysis represents a work item for the dependability process. The Difference Analysis is a specialization of
the Activity. The Difference Analysis implies the work which identifies differences in requirements from the previous
development
Generalizations

Activity
Attributes
No additional attributes
Associations
No additional associations

7.3.7 Dependability Analysis
Description
A Dependability Analysis represents a work item for dependability. The Dependability Analysis is a specialization of the
Activity. The Dependability Analysis implies the work which analyzes dependability factors.
Generalizations

Activity
Attributes
No additional attributes
Associations
No additional associations

7.3.8 Dependability Argument Construction
Description
A Dependability Argument Construction represents a work item for dependability. The Dependability Argument
Construction implies tasks which are required to build the argument structure of dependability. The Dependability
Argument Construction is a specialization of Activity.
Generalizations

Activity
Attributes
No additional attributes
Associations
No additional associations

7.3.9 Dependability Requirements Definition
Description

29
Dependability Assurance Framework for Safety-Sensitive Consumer Devices (SSCD) Specification

A Dependability Requirement Definition represents a work item for dependability. The Dependability Requirement
Definition is a specialization of Activity. The Dependability Requirement Definition implies work items which define the
requirements for dependability.
Generalizations

Activity
Attributes
No additional attributes
Associations
No additional associations

7.3.10 Hardware Development
Description
Hardware Development represents a work item for dependability. The Hardware Development is a specialization of
Activity. The Hardware Development implies work items which develop hardware.
Generalizations

Activity
Attributes
No additional attributes
Associations
No additional associations

7.3.11 Impact Analysis
Description
An Impact Analysis represents a work item for dependability. The Impact Analysis is a specialization of Activity. The
Impact Analysis implies work items which analyze influence on the changed systems in Prove In Use. Namely, it is to
detect defects which are caused by changes of Prove In Use.
Generalizations

Activity
Attributes
No additional attributes
Associations
No additional associations

7.3.12 Lifecycle
Description
A Lifecycle is a process, which implies entire development from dependability analysis to the decommissioning of a
system. The Lifecycle is shown as a sequence (combination) of concrete works. In general, the Lifecycle is realized as an
iterative process.

A Lifecycle designates the entire process. To indicate its circumstance, the Lifecycle is an aggregation of the Activity(s),
which implies an entire sequence of concrete activities.
Generalizations

Activity
Attributes
No additional attributes
Associations

ownedActivity: Activity[1..*]
References activities which are owned by this lifecycle.

7.3.13 System Requirements Definition
Description
A System Requirements Definition is a specialization of Activity, which represents a work item for dependability. The
System Requirements Definition implies work items which construct the dependability requirements.
Generalizations

Activity
Attributes

30
Dependability Assurance Framework for Safety-Sensitive Consumer Devices (SSCD) Specification

No additional attributes
Associations
No additional associations

7.3.14 System Architecture Design
Description
A System Architecture Design represents a work item for dependability. The System Architecture Design is a
specialization of Activity. The System Architecture Design implies work items which design system architecture for
dependability.
Generalizations

Activity
Attributes
No additional attributes
Associations
No additional associations

7.3.15 Software Development
Description
Software Development represents a work item for dependability. The Software Development is a specialization of
Activity. The Software Development implies a work item which implements software in accordance with system
requirements definition and system architecture design, etc.
Generalizations

Activity
Attributes
No additional attributes
Associations
No additional associations

7.3.16 Operation
Description
An Operation is a specialization of Activity, which represents a work item for dependability. The Operation implies work
items which make the system function.
Generalizations

Activity
Attributes
No additional attributes
Associations
No additional associations

7.3.17 System Architecture
Description
A System Architecture represents a work item for dependability. The System Architecture is a specialization of Activity.
The System Architecture implies work items which build the system architecture.
Generalizations

Activity
Attributes
No additional attributes
Associations
No additional associations

7.3.18 Verification & Validation
Description
Verification & Validation represents a work item for dependability. The Verification & Validation is a specialization of
Activity. The Verification & Validation implies work items which verify & validate the developing system in accordance
with the dependability concept.

31
Dependability Assurance Framework for Safety-Sensitive Consumer Devices (SSCD) Specification

Generalizations
Activity

Attributes
No additional attributes
Associations
No additional associations

7.3.19 WorkBreakdownElement (from SPEM 2.0)
Description
A Work Breakdown Element is a special Breakdown Element that provides specific properties for Breakdown Elements
that represent work. See Clause 9.10 in SPEM 2.0.
Generalizations

Activity
Attributes
No additional attributes
Associations

linkToPredecessor: WorkSequence[*]
This association links a WorkBreakdownElement to its predecessor. Every WorkBreakdownElement
can have predecessor information associated to it. This predecessor information is stored in
instances of the class WorkSequence that defines the kind of predecessor another
WorkBreakdownElement represents for another.

linkToSuccessor: WorkSequence[*]
This association links a WorkBreakdownElement to its successor. Every WorkBreakdownElement
can have successor information associated to it. This successor information is stored in instances of
the class WorkSequence that defines the kind of successor another WorkBreakdownElement
represents for another.

7.3.20 WorkSequence (from SPEM 2.0)
Description

Work Sequence is a Breakdown Element that represents a relationship between two Work Breakdown Elements in
which one Work Breakdown Elements depends on the start or finish of another Work Breakdown Elements in order to
begin or end. See Clause 9.13 in SPEM 2.0.
Generalizations
No additional generalizations
Attributes

linkKind: WorkSequenceKind
This attribute express the type of the Work Sequence relationship by assigning a value from the
Work Sequence Kind enumeration.

Associations
successor: WorkBreakdownElement[1]

This association links a WorkBreakdownElement to its successor. Every WorkBreakdownElement
can have successor information associated to it. This successor information is stored in instances of
the class WorkSequence that defines the kind of successor another WorkBreakdownElement
represents for another.

predecessor: WorkBreakdownElement[1]
This association links a WorkBreakdownElement to its predecessor. Every
WorkBreakdownElement can have predecessor information associated to it. This predecessor
information is stored in instances of the class WorkSequence that defines the kind of
predecessor another WorkBreakdownElement represents for another.

7.3.21 WorkSequenceKind (from SPEM 2.0)
Description
Work Sequence represents a relationship between two Work Breakdown Element in which one Work Breakdown
Element depends on the start or finish of another Work Breakdown Element in order to begin or end. This enumeration
defines the different kinds of Work Sequence relationships available in SPEM 2.0 and is used to provide values for Work
Order’s linkKind attribute. See Clause 9.14 in SPEM 2.0.
Generalizations

32
Dependability Assurance Framework for Safety-Sensitive Consumer Devices (SSCD) Specification

No additional generalizations
Attributes
No additional attributes
Associations
No additional associations
Enumeration Literals

finishTo Start a WorkBreakdownElement cannot start until another WorkBreakdownElement finish. For
example, if you have two WorkBreakdownElements, “Construct fence” and “Paint
fence”, “Paint fence” can’t start until “Construct fence” finishes. This is the most
common type of dependency and the default for a new WorkSequence instance.

finshToFinsish a WorkBreadownElement cannot finish until another WorkBreakdownElement finishes.
For example, if you have two WorkBreakdownElement, “Add wiring” and “Inspect
electrical”, “Inspect electrical” can’t finish until “Add wiring” finishes.

startToStart a BreakdownElement cannot start until another WorkBreakdownElement starts. For
example, if you have two WorkBreakdownElements, “Pour foundation” and “Level
concrete”, “Level concrete” can’t begin until “Pour foundation” begins.

startToFinish a BreakdownElement cannot finish until another WorkBreakdownElement starts. This
dependency type can be used for just-in-time scheduling up to a milestone or the project
finish date to minimize the risk of a WorkBreakdownElement finishing late if its
dependent WorkBreakdownElements slip. If a related WorkBreakdownElement needs to
finish before the milestone or project finish date, but if doesn’t matter exactly when and
you don’t want a late finish to affect the just-in-time WorkBreakdownElement, you can
create an the dependency between the WorkBreakdownElement you want scheduled just
in time (the predecessor) and its related WorkBreakdownElement (thesuccessor). Then, if
you update progress on the successor WorkBreakdownElement, it won’t affect the
scheduled dates of the predecessor WorkBreakdownElement.

33
Dependability Assurance Framework for Safety-Sensitive Consumer Devices (SSCD) Specification

7.4 Requirement Concept
This package defines classes related to requirements in general in this specification. Requirements are mainly divided
into Assurance Requirements and System Requirements. An Assurance Requirement is any requirement, which ensures
that some specific system attribute of a target system is realized. It may include mandatory requirements specifically
stated in a specification/standard. Assurance Requirements are to ensure the dependability of a target system and are
called Dependability Assurance Requirements. A Dependability Claim specified in a Dependability Assurance Case is
specified in this diagram in order to emphasize that the Dependability Claim is a part of a Dependability Assurance
Requirement. The relationship between the two explicitly signifies that any claim in a dependability assurance case may
be part of a Dependability Assurance Requirement.
A System Requirement is further divided into Quality Requirements and Functional Requirements. The detailed
explanation of these notions is included in the next paragraph.

Figure 7-16 – Requirement Concept package

7.4.1 Assurance Requirement
Description
The Assurance Requirement specifies requirements related to system assurance.
Generalizations
No additional generalizations
Attributes
No additional attributes
Associations

systemRequirement: System Requirement [1]
 Specifies that System Requirement is used in Assurance Requirement.

7.4.2 System Requirement
Description
The System Requirement is for specifying requirements related to system architecture.
Generalizations
No additional generalizations
Attributes
No additional attributes
Associations

functionalRequirement: Functiona Requirement[1]
 Specifies that Functional Requirement is a part of System Requirement.
 qualityRequirement: Quality Requirement[1]
 Specifies that Quality Requirement is a part of System Requirement
 dependabilityRequirement: Dependability Requirement [1]
 Specifies that Dependability Requirement is a part of System Requirement.

Dependability Requirement

Assurance Requirement

Dependability Assurance Requirement

+ dependabilityClaim

+ dependability Assurance Requirement

1

1

+ qualityRequirement

+ system Requirement

1

1

+ dependabilityRequirement

+ system Requirement

1

1

+ assurance Requirement

+ systemRequirement

1

1

+ functionalRequirement

+ system Requirement

1

1

Functional Requirement

System Requirement

Quality Requirement Dependability Claim

34
Dependability Assurance Framework for Safety-Sensitive Consumer Devices (SSCD) Specification

7.4.3 Quality Requirement
Description
The Quality Requirement describes the degree of a particular system attribute to be achieved. It is sometimes called a
non-functional requirement [6]. In this specification, some crucial non-functional requirements such as safety
requirements, reliability requirements, and maintainability requirements are included in Dependability Requirement. We
introduced Quality Requirement to signify non-functional requirements other than Dependability Requirement.
Generalizations
No additional generalizations
Attributes
No additional attributes
Associations
No additional associations

7.4.4 Functional Requirement
Description
The Functional Requirement signifies the functionality of a target system.
Generalizations
No additional generalizations
Attributes
No additional attributes
Associations
No additional associations

7.4.5 Dependability Requirement
Description
The Dependability Requirement is used to achieve the dependability of the target system.
Generalizations
No additional generalizations
Attributes
No additional attributes
Associations
No additional associations

NOTE: The definition of dependability must be defined in the Dependability Concept package.

7.4.6 Dependability Assurance Requirement
Description
A Dependability Assurance Requirement specifies assurance requirements for the target system’s dependability.
Generalizations

Assurance Requirement specified in 7.4.1.
Attributes
No additional attributes
Associations

dependbilityClaim: Dependability Claim[1]
 Specifies that Dependability Claim is a part of Dependability Assurance Requirement.

7.4.7 Dependability Claim
Description
A Dependability Claim states that the target architecture satisfies the Dependability Assurance Requirement.
Generalizations
No additional generalizations
Attributes
No additional attributes
Associations

dependability Assurance Requirement: Dependability Assurance Requirement[1]
 Specifies that Dependability Claim is a claim for Dependability Assurance

35
Dependability Assurance Framework for Safety-Sensitive Consumer Devices (SSCD) Specification

Requirement.

36
Dependability Assurance Framework for Safety-Sensitive Consumer Devices (SSCD) Specification

7.5 System Environment Concept
This package includes all of the relevant notions as to external entities and a relationship between the environment
surrounding the system and the system itself.

Figure 7-17 – System Environment Concept package

7.5.1 Actor
Description
The Actor may be a stakeholder or a user of the system.
Generalizations
No additional generalizations
Attributes
No additional attributes
Associations

environment: Environment[1]
Specifies that an Environment influences an Actor.

 system:System [1]
 Specifies that an Actor interacts with a System.

7.5.2 Environment
Description
The Environment represents anything outside of the system, which may interact with the system. The Environment
influences the Actors.
Generalizations
No additional generalizations
Attributes
No additional attributes
Associations

system: System[1]
Specifies that the Environment may have some influence on the System.

7.5.3 Operational Environment
Description
The Operational Environment is a specific environment in which the System is in operation.
Generalizations

Environment specified in 7.5.2.
Attributes

Interface

+ actor

+ environment

1

1
+ system

+ actor

1

1

+ system+ environment

11
Interface - developmentCategory : Development Category

Dependability Conceptual Model::Architectural Concept::SystemEnvironment

Actor

Operational Environment

37
Dependability Assurance Framework for Safety-Sensitive Consumer Devices (SSCD) Specification

No additional attributes
Associations
No additional associations

7.5.4 Interface
Description
The Interface represents a connection point between the surrounding environment of the system and the system itself.
Generalizations
No additional generalizations
Attributes
No additional attributes
Associations
No additional associations

38
Dependability Assurance Framework for Safety-Sensitive Consumer Devices (SSCD) Specification

8 Dependability Assurance Case (DAC) Template

8.1 Introduction (Informative)
This Clause introduces DAC (Dependability Assurance Case) templates. The DAC templates are used for writing
dependability assurance cases for the target SSCD architecture.

A definition of assurance case is as follows.

A structured argument, supported by a body of evidence that provides a compelling, comprehensible and valid case that a
system is safe for a given application in a given environment [1].

Assurance cases have been widely used for safety regulation in the UK and the EU. Safety cases (assurance cases for
safety of systems) are required to be submitted to certification bodies for developing and operating safety critical
systems, e. g., automotive, railway, defense, nuclear plants and sea oils. There are several standards such as
EUROCONTROL, Rail Yellow Book and MoD Defense Standard 00-56, which mandate the use of safety cases. In 2010,
the USA FDA (Food and Drug administration) requires safety cases for introducing infusion pump.

The structure of DAC templates is defined in Dependability Assurance Argument Structure of DCM in Clause 7.2.1
through 7.2.26. DAC templates are represented by instance diagrams of SACM 1.0 classes.

Dependability Claim in Clause 7.2.1.1 for the target safety-sensitive consumer device is about the dependability
requirements. In Clause 7.1, there are three kinds of requirements in System Requirement: Functional Requirement,
Quality Requirement, and Dependability Requirement. Although they may be interrelated, the main concern is about the
dependability requirements.

The Dependability Assurance Argument consists of three sub argument structures: Dependability Allocation Argument,
Lifecycle Argument, and Standard Compliance Argument. The rationale of these three arguments is as follows.

Dependability Allocation Argument: To assure that the target architecture is dependable, first we need to define the
dependability of the target architecture. As architecture may consist of one or more sub architectures, the dependability
attributes should be divided into sub dependability attributes to sub architectures. Therefore, the Dependability Allocation
Argument structure becomes recursive according to the structure of the target architecture.

Lifecycle Argument: To assure that architecture is dependable, this specification requires confirming to DPM
(Dependability Process Metamodel). This DAC template is used for that purpose: using this DAC template, the
stakeholders can write a dependability assurance case that the lifecycle process of the target architecture adequately
conforms to DPM.

Standard Compliance Argument: It is often the case that there are several other standards to which the target architecture
needs to comply with for each SSCD system domain, such as automobile, robotics, smart houses, etc. This DAC template
is provided for that purpose.

These three argument templates are developed based on the experiences on developing automobiles by the submitters of
this specification. This specification requires using these three DAC templates as normative. The user of this
specification may need more other structures of assurance cases depending on his/her system domain, and the user needs
to define his/her own argument structures. In such cases, the three argument structures, Dependability Allocation
Argument, Lifecycle Argument, and Standard Compliance Argument structures also must be used.

The DAC templates are based on DCM (Dependability Concept Model) in Clause 7 and DPM (Dependability Process
Model).

8.2 Representation of DAC Template by SACM Instance Diagram
The DAC templates are defined by SACM Instance Diagrams. The main SACM classes used in this specification are as
follows. For detail, please refer to the SACM 1.0 specification [SACM 1.0].

39
Dependability Assurance Framework for Safety-Sensitive Consumer Devices (SSCD) Specification

・ Claim class: Claims are used to record the propositions of any structured Argumentation. Propositions are instances
of statements that could be true or false, but cannot be true and false simultaneously [SACM 1.0].

・ AssertedInference class: The AssertedInference association class records the inference that a user declares to exist
between one or more Assertion (premises) and another Assertion (conclusion). It is important to note that such a
declaration is itself an assertion on behalf of the user [SACM 1.0].

・ AssertedContext: The AssertedContext association class declares that the information cited by an
InformationElement provides a context for the interpretation and definition of a Claim or ArgumentReasoning
element [SACM 1.0].

・ InformationElement class: The InformationElement Class enables the citation of a source that relates to the
structured argument. The citation is made by the InformationElement class. The declaration of relationship is made
by the AssertedRelationship class [SACM 1.0].

8.3 Dependability Allocation Argument

Figure 8-1 – DAC template for Dependability Allocation Argument

Figure 8-1 depicts DAC templates for Dependability Allocation Argument. The DAC template for Dependability
Allocation Argument represents that the allocation of dependability requirements of the target architecture is adequate.
This template is recursively used for each sub-architecture. The term architecture is used for represents either “System of
systems”, “System”, “Component”, or “Implementation” (see Architectural Concept in Clause 7.1). System S consists of
sub systems S1 and S2 (this template assume two sub systems, but the number can be modified according to the target
system), and the threat and environmental list for S is derived, and the dependability requirement is D (derived from
Dependability Requirements Analysis), then the top claim “C1 Dependability allocation of System S for each
system/component/implementation is adequate” is decomposed into the following three sub claims: “C3 Dependability
allocation of System S1 for each sub architecture is adequate”, “C4 Dependability allocation of System S2 for each sub
architecture is adequate”, and “C2 Allocation of D1 to S1, Allocation of D2 to S2 are adequate.” In this argument, the
dependability requirement D is divided into D1 and D2, and they are allocated to S1 and S2, respectively. C3 and C4 are
then decomposed into sub claims using this DAC template, according to the structure of S1 and S2, respectively. The
adequacy of the decomposition of D into D1 and D2 is assured in the argument of sub claim C2. Threat and environment
list is divided into T1 and T2. This division is derived as the result of Dependability Analysis of DPM. Note that the sum
of T1 and T2 is not necessarily equals to T: the sum may be less than T.
 The XMI file for the DAC template for Dependability Allocation Argument is DependabilityAllocationArgument.xmi
(normative).

40
Dependability Assurance Framework for Safety-Sensitive Consumer Devices (SSCD) Specification

8.4 Lifecycle Argument
In DAF, the lifecycle of the target architecture must be evolutional, i.e., the architecture is to be developed iteratively
over the generations. Therefore, the lifecycle argument structure shall be based on evolutional development of the
system, as defined in Dependability Process Model (DPM) in Clause 9.

8.4.1 Evolutionary Development Argument
Evolutionary Development Argument is a kind of Lifecycle Argument. Developing a system by evolutionary
development over generation is a main theme of DAF. The overview of the DAC template for Evolutionary Development
Argument is shown in Figure 8-2. The DAC template is divided into 4 sub parts: “Top Structure”, “Modification
Argument”, “Proven In Use Argument”, and “Integration Argument” parts.

Figure 8-2 – Overview of Evolutionary Development Argument Template (Informative)

 The DAC template represents system development based on systems engineering: each architecture is developed by
integrating its sub architectures. This corresponds to the Architectural Concept of DPM (Clause 7.1). A System of
Systems is developed by integrating its sub systems; a system is developed by integrating its sub systems or components,
and so on. For example, a vehicle is a System of Systems, which consists of engine, body, and chassis. They are systems.
An engine consists of intake, exhaust, and ECUs. They are components. This DAC template is intended to be recursively
used for each modified architecture in Modification argument. For example, consider a development of automobile
(Figure 8-3). Assume that the next generation of the automobile is developed by modifying the existing engine and body
parts of the automobile. Then the DAC template is used for writing the DAC of the new engine and body part of the next
generation, and they are used as sub trees of the DAC for the next generation of the automobile.

41
Dependability Assurance Framework for Safety-Sensitive Consumer Devices (SSCD) Specification

Figure 8-3 – An example of the use of DAC template for automobile (Informative)

Proven In Use argument aims to assure that unchanged part of the target architecture is dependable by existing field and
development records. The dependability of the modified parts of the architecture is separately assured using the DAC
template recursively.

Separately assuring the modified parts with proven in use argument is not enough for assuring the dependability of the
whole target architecture. We also need to assure that the whole architecture satisfies the required dependability attributes
by integration argument. This forms the three sub argument structures, and represents main motivations of the SSCD
standards: proven in use, systems engineering, and evolutionary development.

8.4.2 Top Structure
 Figure 8-4 shows Top Structure of the DAC for Evolutionary Development Argument. The top claim C1 states that the
target architecture satisfies given dependability attributes. Information Element IE1 states the specification of the
changed parts of the target architecture. Information Element IE2 states allocation of dependability attributes to the
architecture and its sub architectures. The dependability of the unchanged parts of the target is assured in proven in use
argument. The dependability of changed parts of the target architecture is assured in modification argument. Unchanged
and changed parts are together assured their dependability as the whole target architecture in integration argument.
{Architecture} and {DependabilityAttribute} are placeholders for the name of the target architecture and the
dependability attributes. {Architecture} may be replaced with the name of users system, such as “automobile”.
{DependabilityAttribute} is the name of the dependability attribute. Dependability attribute should correspond to the
definition in Clause 7.2.2.2.

42
Dependability Assurance Framework for Safety-Sensitive Consumer Devices (SSCD) Specification

Figure 8-4 – Top Structure of the DAC for Evolutionary Development Argument

The XMI file for the top structure of Evolutionary Development Argument is EvolutionaryDevelopmentArgument.xmi
(normative).

8.4.3 Proven In Use Argument
In DCM, Proven In Use Argument is defined in Clause 7.2.6. The Proven In Use Argument corresponds to the Proven In
Use package (Figure 7-14). In the package, a system is divided into modification and carry over parts, where they are sub
classes of Component class. Proven In Use Argument assures that the carry over part of the target component satisfies the
allocated dependability attributes. The carry over parts need to be met with Proven In Use Criteria. If so, then the
dependability of the carry over parts is assured using development and field record of the previous generation of the
target system.
The SACM instance diagram for Proven In Use Argument DAC template is shown in Figure 8-5. Given proven-in use
criteria in Information Element IE3, the argument is for assuring that carry over parts of the target architecture holds
allocated dependability attributes. In the left sub tree of Claim C3 is for assuring that the carry over parts satisfies
proven-in use criteria as a proven-in use candidate. Claim C3 is supported by Information Element IE4 Confirmation of
prove-in use candidate linked by the AsseretedEvidence link. The right sub tree of Claim C4 is for assuring that the carry
parts hold allocated dependability attributes using the development and field records. Argument Reasoning AR2 specifies
that the sub claims C5 and C6 are decomposed for previous development and operating conditions. Claim C5 is for
arguing that given Information Element IE6, which is the development record of the carry-over parts of the architecture,
the carry-over part of the architecture satisfies allocated dependability attributes. This argument is supported by
Information Element IE5: Artifacts of Development Record of previous architecture. IE5 is linked with C5 by the
AsseretedEvidence. Claim C6 is for arguing that given Information Element IE7, which is the field record of previous
architectures, the carry-over part of the architecture satisfies allocated dependability attributes. This argument is
supported by Information Element IE8: Field Record of carry-over parts of the architecture. Assuring the dependability of
the carry-over parts of the architecture by both development artifacts and field record strengthens confidence in the
dependability of the architecture.
 The structure terminates with five pieces of evidence: Information Elements IE4, IE5, and IE6, IE7, and IE8. Note
that instead of these evidence can be replaced with manually a written sub trees if necessary.

43
Dependability Assurance Framework for Safety-Sensitive Consumer Devices (SSCD) Specification

Figure 8-5 – Proven In Use Argument part of the Evolutionary Development Argument Structure

The XMI file for Proven In Use Argument part of the Evolutionary Development Argument Structure is
ProvenInUseArgument.xmi (normative).

8.4.4 Modification Argument
Figure 8-6 represents the SACM instance diagram for Modification Argument DAC template. Claim C7 states modified
and impacted parts of the target architecture satisfy each allocated dependability attribute. Information Element IE9
specifies modified and impacted parts of the target architecture. The information is derived from difference analysis and
impact analysis defined in DPM. Modification argument structure is for assuring the dependability of modified and
impacted parts. ArgumentReasoning AR4 requires the sub claims to be for each modified and impacted part of the
architecture. The sub trees are constructed by recursively using the evolutional development argument structure for each
sub modified and impacted parts of architectures.

44
Dependability Assurance Framework for Safety-Sensitive Consumer Devices (SSCD) Specification

Figure 8-6 – Modification Argument Part of the DAC template for Evolutionary Development Argument Structure

The XMI file for the Modification Argument is ModificationArgument.xmi (normative).

8.4.5 Top Structure of Integration Argument
Integration Argument consists of two sub parts: the static dependability analysis argument and the dynamic dependability
analysis argument. The top structure of the Integration Argument is defined in Figure 8-7. Claim C8 states that the
integrated target architecture satisfies the dependability attribute(s). In the DAC template, the dependability of the
integrated target architecture is assured by both static and dynamic dependability attribute analysis. Static dependability
analysis includes conventional difference and impact analysis, and threat analysis specified in the dependability analysis
phase of DPM. Dynamic dependability analysis consists of simulation and physical testing.

Figure 8-7 – Top Structure of Integration Argument part of the DAC template for Evolutionary Development
Argument Structure

The XMI file for the top structure of Integration Argument part is IntegrationArgument.xmi (normative).

8.4.5.1 Static Dependability Analysis Argument
In the Static Dependability Analysis Argument, the conventional system assurance is discussed. The part of the DAC
template is defined in Figure 8-8. The argument consists of about difference analysis, impact analysis, and dependability
analysis defined in DPM. The SACM instance diagram for Static Dependability Analysis Argument DAC template is
shown in Figure 8-8. InformationElement IE9 specifies Static Dependability Attribute analysis procedures defined in
DPM (Difference and Impact analysis and Dependability Analysis). Claims C10, C11, and C12 are for assuring that
Difference Analysis, Impact Analysis, and Dependability Analysis, respectively.

45
Dependability Assurance Framework for Safety-Sensitive Consumer Devices (SSCD) Specification

Figure 8-8 – Static Dependability Analysis Argument part of the DAC template for Evolutionary Development
Argument Structure

The XMI file for the Static Dependability Analysis Argument part is StaticDependabilityAnalysisArgument.xmi
(normative).

8.4.5.2 Dynamic Dependability Analysis Argument
The Dynamic Dependability Analysis Argument is a unique methodology for the dependability argumentation for
SSCDs, considering the characteristics of the products.

46
Dependability Assurance Framework for Safety-Sensitive Consumer Devices (SSCD) Specification

Figure 8-9 – Dynamic Dependability Analysis Argument part of the DAC template for Evolutionary Development
Argument Structure

Most of the dependability analysis can be done with the conventional system assurance methodology in the Static
Dependability Analysis Argument. In order to enhance the dependability, the Dynamic Dependability Analysis Argument
needs to be done with physical testing to emulate real use cases for system validation. Given the fact that all the use cases
cannot be fully identified because of the nature of SSCDs (Claim C19), the simulation and physical testing have to be
repeatedly run to identify as many use case as possible to validate the dependability requirements (Claims C21 and C22).

So, the argumentation structure in Figure 8-9 is necessary to confirm both the sufficiency of the scope of use cases and
the sufficiency of the simulation and physical testing.

The XMI file for Dynamic Dependability Analysis Argument part is DynamicDependabilityAnalysisArgument.xmi
(normative).

8.5 Standard Compliance Argument
The DAC template for Standard Compliance Argument (Figure 8-10) requires to list up all other standards st1 ,…, stN
needed to be complied in the system domain of the SSCD architecture (Information Element C1). For each standard sti (1
<= i <= N), a sub claim is stated as “System S adequately satisfies sti.” Note that in Figure 8-10, only two sub claims for
st1 and stN are shown. The number of sub claims is dependent on the number of standards needed to be complied.

47
Dependability Assurance Framework for Safety-Sensitive Consumer Devices (SSCD) Specification

Figure 8-10 – The DAC Template for Standard Compliance Argument Structure

The XMI file for the DAC template for Standard Compliance Argument Structure is StandardComplianceArgument.xmi
(normative).

48
Dependability Assurance Framework for Safety-Sensitive Consumer Devices (SSCD) Specification

9 Dependability Process Model
This clause specifies the Dependability Process Model (DPM) using the DPM conceptual-model of Clause 7.4. DPM
defines a process or Activities of dependability assurance for consumer devices based on the conventional Systems
Engineering processes with a notion of the iterative and rapid process. The dependability assurance is developed in
parallel with the normal product development process and cannot be discussed separately from the corresponding product
development process.

9.1 Overview of Iterative and Rapid Process
The V-model (a “V” shaped process model to describe the engineering process from the requirements definition phase,
specifications development phase, implementation phase, verification and validation phase) has been well known to
describe the engineering process for automotive as a part of systems engineering. The role of V-model is essential to
making our development process further efficient so that it is incorporated into the safety development process in
ISO26262. The automotive OEMs who follow the ISO26262 have to clearly define the safety process on their own for
ISO26262.

One of the challenges, though, to roll out the V-model into organizations is what level of granularity for each sub-process
in the V-model is expected to be defined. Obviously, the V-model illustrates only a fraction of the entire engineering
process where engineers repeatedly create and modify their products with a heuristic approach on a daily basis. It
indicates that small and large V-models need to be addressed at the same time if real engineering process are required to
be defined. However, it is not realistic to fully lay out all the V models all at once because of the size of processes for
SSCD development.

In order to balance the process definition between the top-down governance such as the V-model and the bottom-up
individual processes, our proposal is illustrated in the following Figure 9-1 – Example of Rapid Iterative Process.

Two circles are supplementary illustrated in Figure 9-1, which implicitly describe the concept of iteration. Also, the
iterations are quick and engineers run the iteration many times per development on their own. That is what we call rapid
iteration. For the left circle, engineers start off with the requirements engineering to gather requirements for a particular
system that they are going to develop. After that, specifications for the system are supposed to be created in line with the
requirements defined. After modeling or coding the specifications, they are going to be verified and validated with
simulation or testing with physical parts. If (or I should say every time) engineers find something wrong on their control
system, they go back to requirements to find out where the failure comes from. Spotting the cause of the failure,
engineers modify the corresponding specifications and control models for further calibration and V&V.

In the right circle for the implementation process, once the control models are well matured, engineers are going to find
out how efficiently it should be implemented into an ECU (Electronic Control Unit) within available ROM/RAM
resources. Engineers need to find a way to reduce the size of the model or code by simplifying or optimizing them.
Likewise, automated code generation, followed by the calibration and V&V process, is carried out to identify the most
efficient way of implementation by trial and error.

49
Dependability Assurance Framework for Safety-Sensitive Consumer Devices (SSCD) Specification

Figure 9-1 – Example of Rapid Iterative Process

This abstract process can be divided into a collection of Activities. In the following clauses, we define a three-layered
Activity model. It consists of processes, activities, and tasks. Processes are the Dependability Process, the System
Engineering Process, the Evolutionary Development Process, and the Etcetera Process, Each process is sub-divided into
activities, and, in turn, each activity is sub-divided into tasks.

9.2 Dependability Process
The Dependability Process is a collection of activities for system development that utilizes systems engineering
processes, and it contains following activities.

- Dependability Analysis
- Dependability Requirement Definition
- Construction of Dependability Assurance Cases through Dependability Argument Construction

These activities constitute the Dependability Process. The entire relationship of the related processes and activities are
shown in Figure 9-2 – BPMN for Dependability Process Model. As shown in Figure 9-2, the Systems Engineering
Processes in the middle of the Figure 9-2 are performed along with the Dependability Requirements Definition activity
and the Dependability Argument Construction activity. These activities defined here are a minimum set, and the set can
be applied with necessary extensions for various consumer device developments.

50
Dependability Assurance Framework for Safety-Sensitive Consumer Devices (SSCD) Specification

Figure 9-2 – BPMN for Dependability Process Model

9.2.1 Dependability Analysis
In the Dependability Analysis activity, threats and associated operational environments are identified. In this clause and
following clauses, the term threat is a general term to mean not only threats in security but also hazards in safety so that
the dependability analysis may include hazard identification (in safety analysis) as well as threat identification (in
security analysis). Once threats and associated operational environments are identified, their levels are assessed based on
dependability attribute assurance levels. This activity is very generic one and the minimum requirement which this
specification mandates. The requirements of this clause may be extended to meet more specific system properties
depending on the definition of dependability. The tasks mentioned above are a minimum set, and other tasks may be
added if necessary.

As examples of inputs, they are the following documents;
- Product Plan provided by upper level processes including Planning,
- Incident Reports from the Problem flow, and
- Development results from the Evolutionary Development Process consisting of the Difference Analysis activity and the

Impact Analysis activity.
These inputs are a minimum set, and the set can be applied combined with necessary extensions and/or modifications.

The output of this activity is
- Dependability Analysis Results including the results of Threat Analysis (Threat and operational environment List).
This output is a minimum set, and the set can be applied combined with necessary extensions and/or modifications.

9.2.2 Dependability Requirements Definition
Dependability Requirements are defined based on the results of the Dependability Analysis. Primary inputs are the Threat
and operational environment List and the Threat Assessment Results. Dependability Requirements are to mitigate each
Threat. They are composed of Reliability Requirements, Availability Requirements, Maintainability Requirements,

Systems Engineering Process

Operation

Dependability
Analysis

Dependability
Requirements

Definition

System
Architecture

Design
Software

Development

Dependability
Argument

Construction

System
Requirements

Definition

Disposal

Artifacts

Verification &
Validation

Difference
Analysis

Impact
Analysis

Artifacts

Artifacts

Dependability
Assurance
Case

Hardware
Development

Artifacts

Development complet e

Modif ica t ion

New Development

Problem

Problem or Modif ica t ion

Lifecycle end

Development cont inue

Problem or Modif ica t ion

51
Dependability Assurance Framework for Safety-Sensitive Consumer Devices (SSCD) Specification

Safety Requirements, Security Requirements, and other necessary requirements based on the utilized Dependability
concept. Various Requirements needed for the development will be selected and defined as a collection of Dependability
Requirements.

When the existing Dependability Analysis has been found as insufficient in the course of the Dependability Requirements
Definition, it is possible to rework the Dependability Analysis.

The Inputs of this activity are the outputs from the Dependability Analysis.

The Output of this activity are
- Dependability Requirements including Reliability Requirements, Availability Requirements, Maintainability

Requirements, Safety Requirements, Security Requirements, and other necessary additional requirements.

They shall be strictly managed including the additional requirements.

9.2.3 Dependability Argument Construction
In this activity, the Dependability Argument Construction based on the results of Dependability Analysis and
Dependability Requirements Definition, the following tasks shall be performed to assure that the system is dependable.

- Construction of Dependability Assurance Cases using templates
- Evaluation of artifacts on their validity of evidence

Also another task shall be performed to evaluate the validity of Dependability Assurance Cases. These are a minimum
task set, and the set can be extended if needed. When the existing Dependability Requirements Definition has been found
as insufficient in the course of Dependability Argument Construction, it is possible to rework the Dependability
Requirements Definition.

The inputs are
- Dependability Analysis Results
- Dependability Requirements including the Risk List, the Risk Mitigation Plan, and Dependability Requirements It shall

also include a rough System Architecture Model.
These inputs are a minimum set, and the set can be applied combined with necessary extensions and/or modifications.

The outputs are
- Dependability Assurance Cases, and
- The result of assurance, that is, the revaluation result of the Evidence.
These outputs are a minimum set, and the set can be applied combined with necessary extensions and/or modifications.

9.3 Systems Engineering Process
Basic activities of the Systems Engineering Process are a process to develop systems that are defined in this clause.
The Systems Engineering Process is located in the middle of DPM (Figure 9-2). Its outcome artifacts are used as
Evidence to assure dependability of the system in the Dependability Argument Construction. Figure 9-3 illustrates the
Systems Engineering Process diagram extracted from Figure 9-2.

In this process, the following activities are performed.
- System Requirements Definition
- System Architecture Design
- Concurrent Hardware Development and Software Development which has a sub-process to illustrate the control

software development process under it (Figure 9-3)
- Verification & Validation for the integrated outcome of the Hardware Development and the Software Development
The activities defined here are a minimum set, and the set can be applied combined with necessary extensions for various
consumer device developments.

This process may be performed iteratively to develop a system. Several iteration loops may be applied step-by-step to
develop the system. Problems found in the previous development loop may be solved in the next development loop.

52
Dependability Assurance Framework for Safety-Sensitive Consumer Devices (SSCD) Specification

Figure 9-3 – BPMN for Systems Engineering Process

There are a lot more activities in the systems engineering process, but not all are always necessary. These are the required
subset

9.3.1 System Requirements Definition
This activity is the first activity of the Systems Engineering Process. It shall define requirements for the system. This
activity corresponds to ‘Stakeholder Requirements Definition Process’ and ‘Requirements Analysis Process’ of
ISO15288.

Detailed tasks of the activity are as follows.
Basic requirements shall be clarified. In this task, Dependability Requirements shall be clarified for categories of
Reliability Requirements, Availability Requirements, Maintainability Requirements, Safety Requirements and Security
Requirements.

As the second task, Use Cases and their Scenarios of associated system behaviors shall be defined to realize the
requirements. These are a minimum task set, and the set can be extended if needed. When the existing Dependability
Requirements Definition has been found as insufficient in the course of System Requirements Definition, it is possible to
rework the Dependability Requirements Definition.

As examples of inputs, they are the following documents;
- Needs from upper layer processes,
- Development Plan, and
- Dependability Requirements.
These inputs are a minimum set, and the set can be applied combined with necessary extensions and/or modifications.

As examples of outputs, they are the following documents;
- Requirement Specifications, and
- Use Case Specifications (Use Cases and Use Case Scenarios).
These outputs are a minimum set, and the set can be applied with necessary extensions and/or modifications.

9.3.2 System Architecture Design
System Architecture shall be designed to realize requirements defined in the System Requirements Definition activity.
This activity corresponds to ‘Architectural Design’ Process of ISO15288.

This activity shall clarify the structure and behavior of the system and subsystems, and identification of components,
where subsystems compose the system and components compose the subsystems.
These are a minimum task set, and the set can be extended if needed.

As examples of inputs, they are the following documents;
- Outputs from the System Requirements Definition activity.
These inputs are a minimum set, and the set can be applied combined with necessary extensions and/or modifications

As examples of outputs, they are the following documents;

Systems Engineering Process

System
Architecture

Design
Software

Development

System
Requirements

Definition

Verification &
Validation

Hardware
Development

Development cont inue

Development complet e

53
Dependability Assurance Framework for Safety-Sensitive Consumer Devices (SSCD) Specification

- The System Architecture design including the structure and behavior of the system and subsystems, and identification
of components,

This output is a minimum set, and the set can be applied with necessary extensions and/or modifications.

9.3.3 Hardware Development
After the results of System Architecture Design, hardware will be developed. Basic tasks shall be design of the hardware,
simulation, hardware prototype production and test. This activity was referring to the part of the ‘5 Part of ISO26262:
Product development at the hardware level’.

Design of the hardware includes the mechanical design and the circuit design, and it clarifies the specification of the
hardware. Simulation verifies correctness of the design. Hardware prototypes are manufactured based on the verified
design, and they are tested.

These are a minimum task set, and the set can be extended if needed.

As examples of inputs, they are the following documents;
- System Architecture including components (Hardware candidates).
This input is a minimum set, and the set can be applied combined with necessary extensions and/or modifications.

As examples of outputs, they are the following documents;
- Hardware Specification,
- Hardware Prototype, and
- Test Results.
These outputs are a minimum set, and the set can be applied combined with necessary extensions and/or modifications.

9.3.4 Software Development
In this clause we use the terminology of Control Software Development process instead of Control Software
Development activity, and also use the terminology of activity instead of task and the terminology of task instead of
sub-task, for simplicity.

The process of Control Software Development is a part of the Systems Engineering Process. Control Software
Development process is divided into two parts component processes of Control Design Process and Implementation
Process.

The Software Development process is carried out in parallel with the Hardware Development process as illustrated in the
Figure 9-2. In addition, the Software Development process contains the Control Design Process composed of the
activities of Requirements Definition, Control Design, Control Modeling, Auto-Coding and Software Calibration &
V&V. It also contains the Implementation Process composed of the activities of Auto Coding, Simplification
Optimization, and Code Generation. It is necessary to perform rapidly and iteratively both the Control Design Process
and the Implementation Process, improving the accuracy and quality of the control strategy and, at the same time, solving
the problem of processing time and memory capacity. The entire Control Software Development process is illustrated in
the Figure 9-4 – Software Development Process.

54
Dependability Assurance Framework for Safety-Sensitive Consumer Devices (SSCD) Specification

Figure 9-4 – Software Development Process

9.3.4.1 Software Requirements Definition
Software Requirements Definition is an activity to clarify the control software requirement specification. It uses outputs
from the System Architecture Design activity.

As examples of inputs, they are the following documents;
- System Requirements, and
- Dependability Requirements.
These inputs are a minimum set, and the set can be applied combined with necessary extensions and/or modifications.

As examples of outputs, they are the following documents;
- Software Requirements.
These outputs are a minimum set, and the set can be applied combined with necessary extensions and/or modifications.

9.3.4.2 Control Design
Control Design is an activity to develop Control software Specifications or design. In this activity, details of Software
Requirements are analyzed and concrete Control Specifications are described. Primarily it designs functional features.

As examples of inputs, they are the following documents;
- Software Requirements.
These inputs are a minimum set, and the set can be applied combined with necessary extensions and/or modifications.

As examples of outputs, they are the following documents;
- Control Specifications.
These outputs are a minimum set, and the set can be applied combined with necessary extensions and/or modifications.

Software
Requirements

Definition

Control Design Control
Modeling

Software
Calibration &
Verification &

Validation

Auto Code
Generation

Code
Generation

Simplification
Optimization

Artifacts

Control
Modeling

Software
Calibration &
Verification &

Validation

Complet e

Cont inue

Cont inue

Complet e

55
Dependability Assurance Framework for Safety-Sensitive Consumer Devices (SSCD) Specification

9.3.4.3 Control Modeling
Control Modeling is an activity to develop a control model and to put it in a simulation-ready status. Control
Specifications that are outputs of Control Design are usually described in natural language, but it is necessary to perform
rapid and iterative development for improved control accuracy by utilizing MBD (Model Based Development)
simulation. Therefore, in this activity, specifications should be described using a modeling language or mathematical
models (e.g. Simulink).

As examples of inputs, they are the following documents;
- Control Specifications.
These inputs are a minimum set, and the set can be applied combined with necessary extensions and/or modifications.

As examples of outputs, they are the following documents;
- Control Software Models.
These outputs are a minimum set, and the set can be applied combined with necessary extensions and/or modifications.

9.3.4.4 Auto Code Generation
The Auto Code Generation activity is to generate implementation code using an automatic implementation code
generation system. Control models developed by the Control Modeling activity are converted into program code (C-code
for example) and also into executable code to be implemented (installed) in the target CPU and memory, using a software
build environment.

As examples of inputs, they are the following documents;
- Control Software Models.
These inputs are a minimum set, and the set can be applied combined with necessary extensions and/or modifications.

As examples of outputs, they are the following documents;
- Implementation Codes that is generated automatically.
These outputs are a minimum set, and the set can be applied combined with necessary extensions and/or modifications.

9.3.4.5 Simplification Optimization
The Simplification Optimization activity is to simplify and/or optimize the control logic and model of the Control
Software. The Control Model implemented in Auto Code Generation may be generated as a Control Model with
redundancy and functions containing constraints to be improved. Therefore, an implementation to achieve equivalent
quality of the control model is deployed with simplified and/or optimized approach for codes, considering constraints of
implementation size and cost. This activity is to achieve final implementable Control Models using mathematical
methods to tune simplicity and optimization.

As examples of inputs, they are the following documents;
- Control Software Models.
These inputs are a minimum set, and the set can be applied combined with necessary extensions and/or modifications.

As examples of outputs, they are the following documents;
- Simplified and /or optimized Control Software Models.
These outputs are a minimum set, and the set can be applied combined with necessary extensions and/or modifications.

9.3.4.6 Code Generation
The Code Generation activity is to generate Implementation Code. In this activity source code to be implemented in the
target CPU is generated. It generates actually implemented Code as opposed to Auto-Coding results which sometimes
cannot be flashed into the target CPU because CPU size constraints and poor failure mode implementation. The
auto-coded code is going to be further manually optimized for size or further manually enhanced with additional failure
mode implementation. It is necessary to equip dedicated compilers and/or build- environments appropriately and to
manage code quality and code size precisely for generating code conforming to the target CPU and memory
specification.

As examples of inputs, they are the following documents;
- Simplified and /or optimized Control Software Models.
These inputs are a minimum set, and the set can be applied combined with necessary extensions and/or modifications.

As examples of outputs, they are the following documents;

56
Dependability Assurance Framework for Safety-Sensitive Consumer Devices (SSCD) Specification

- Implementation Code based on simplified and /or optimized Control Software Models.
These outputs are a minimum set, and the set can be applied combined with necessary extensions and/or modifications.

9.3.4.7 Software Calibration & Verification & Validation
The Software Calibration & Verification & Validation activity is to tune up software parameters and to verify the
correctness of developed Control software.

The final Implementation Code, i.e. the combination of Control Software logic and tuned parameters, is verified in order
to achieve required control.

Problems and defects found in the course of the Calibration & V & V activity require cause analysis. If the cause exists in
the Control Requirements, The Requirements will be modified, and the Control Software Development process will be
performed again. Further, the Implementation sub-process will be performed again. Accuracy of the Implementation
Code is improved, and when the results of Verification are judged to be good, the Implementation Code becomes the final
Implementation Code.

As examples of inputs, they are the following documents;
- Implementation Code based on simplified and /or optimized Control Software Models.
These inputs are a minimum set, and the set can be applied combined with necessary extensions and/or modifications.

As examples of outputs, they are the following documents;
- Validated parameters,
- Verification results, and
- Final Implementation Code.
These inputs are a minimum set, and the set can be applied combined with necessary extensions and/or modifications.

9.3.4.8 Rapid and Iterative Loops
The entire Control Software Development process has three Loops. The first Loop is the Control Design Loop. The Loop
activities are Requirements Definition, Control Design, Control Modeling, Auto-Coding and Software Calibration &
V&V.

The second Loop is the Implementation Loop. The Loop activities are Auto Coding, Simplification Optimization, and
Code Generation.

The third and last Loop is the Entire Loop. The Loop activities are Software Requirements Definition, Control Design,
Control Modeling, Simplification Optimization, Code Generation and Software Calibration & Verification & Validation.

9.3.5 Verification & Validation
After the results of the Hardware Development and the Software Development, integration of Hardware items and
Software items, and the Verification and Validation activity shall be performed. This activity corresponds to ‘Integration
Process’, ‘Verification Process’, ‘Transition Process’, and ‘Validation Process’ of ISO15288.

Firstly, the integrated system will be verified if it meets with the system specification. Secondly, validity of the system is
evaluated apart from the fact that it is verified successfully. These verifications and validations shall be performed at the
component level, the subsystem level and the system level. This is a minimum task set, and the set can be extended if
needed.

As examples of inputs, they are the following documents;
- System Specification (System Architecture),
- Hardware products, and
- Software code.
These inputs are a minimum set, and the set can be applied combined with necessary extensions and/or modifications.

As examples of outputs, they are the following documents;
- Verification and Validation results for each level, and
- The system as the output of the corresponding development loop.

57
Dependability Assurance Framework for Safety-Sensitive Consumer Devices (SSCD) Specification

These outputs are a minimum set, and the set can be applied combined with necessary extensions and/or modifications.

9.4 Evolutionary Development Process
This clause defines activities corresponding to the derivational development or the Evolutionary Development Process.
When functions are added and/or modified for the system in the Operation phase after the initial development, these
activities shall be performed.

Firstly, the Difference Analysis activity shall be performed and secondly the Impact Analysis activity shall be performed.

9.4.1 Difference Analysis
This activity is to analyze what is to be changed. It contains tasks to clarify change requests, to identify subsystems
and/or components related to these change requests, and to define necessary system modifications.
This is a minimum task set, and the set can be extended if needed.

As examples of inputs, they are the following documents;
- Upper level plans such as the Product Plan.
These inputs are a minimum set, and the set can be applied combined with necessary extensions and/or modifications. An
example of such extensions may be a document describing abstract instructions for new functions and/or modifications.

As examples of outputs, they are the following documents;
- Difference Analysis Results describing subsystems and components to be modified.
These outputs are a minimum set, and the set can be applied combined with necessary extensions and/or modifications.

9.4.2 Impact Analysis
This activity is to analyze impacts of the planned changes. It shall contain tasks to clarify which subsystems and/or
components are impacted by the planned changes, and how they are impacted. This is a minimum task set, and the set
can be extended if needed.

As examples of inputs, they are the following documents;
- Difference Analysis Results.
These inputs are a minimum set, and the set can be applied combined with necessary extensions and/or modifications.

As examples of outputs, they are the following documents;
- Impact Analysis Results describing impact details and scope of affected subsystems and components.
These outputs are a minimum set, and the set can be applied combined with necessary extensions and/or modifications.

9.5 Etcetera Process
In this clause, activities which are not contained in the Dependability Process, the Systems Engineering Process and the
Evolutionary Development Process are defined as Etcetera Process activities. When the Systems Engineering Process has
been completed, the system shall go into the Operation phase, and when the Operation has been stopped and the lifecycle
of the product is to be closed, the system shall go into the Disposal phase (Figure 9-2).

9.5.1 Operation
When the system development has been completed, the system goes into the Operation phase. If system problems are
found in the Operation phase, they are reported and require necessary modification. Minor problems do not require
stoppage of the Operation of the system, and the modified system will continue its operation under the new conditions.
This activity corresponds to ‘Operation Process’ and ‘Maintenance Process’ of ISO15288. This is a minimum task set,
and the set can be extended if needed. When derivational development is applied and a new product model has been
developed, several product models may be operated concurrently before the closure of the lifecycle of the old product
model.

As examples of inputs, they are the following documents;

58
Dependability Assurance Framework for Safety-Sensitive Consumer Devices (SSCD) Specification

- Verification and Validation Results, and
- The system to be operated and maintained.
These inputs are a minimum set, and the set can be applied combined with necessary extensions and/or modifications.

As examples of outputs, they are the following documents;
- Incident Reports for found problems.
These outputs are a minimum set, and the set can be applied combined with necessary extensions and/or modifications.

9.5.2 Disposal
When the product lifecycle has been closed, the system will go into the Disposal phase. The legally required disposal
procedures shall be performed as defined legally. Reusable resources should be processed to be reused properly. This
activity corresponds to ‘Disposal Process’ of ISO15288. These are a minimum task set, and the set can be extended if
needed.

As examples of inputs, they are the following documents;
- The system for which the disposal has been planned
This input is a minimum set, and the set can be applied combined with necessary extensions and/or modifications.

As examples of outputs, they are the following documents;
- Reusable resources if they exist.
These outputs are a minimum set, and the set can be applied combined with necessary extensions and/or modifications.

59
Dependability Assurance Framework for Safety-Sensitive Consumer Devices (SSCD) Specification

Annex A
Bibliography

[1] ISO26262: Road vehicles-Functional safety-2011
[2] A. Avizienis, J.-C. Laprie, B. Randell and C. Landwehr. Basic Concepts and Taxonomy of Dependable and Secure

Computing, IEEE Transactions on Dependable and Secure Computing, vol. 1, pp. 11-33, 2004
[3] IEC 61508: Functional safety of electrical/electronic/programmable electronic safety-related systems - 2010
[4] ISO/IEC 15408: Common Criteria for Information Technology Security Evaluation 2012
[5] ISA-62443-3-3: Security for industrial automation and control systems, Part 3-3: System security requirements and

security levels Draft 4, Jan 2013
[6] SWEBOK: Guide to the Software Engineering Body of Knowledge, IEEE, 2004

60
Dependability Assurance Framework for Safety-Sensitive Consumer Devices (SSCD) Specification

Annex B
Acknowledgements

(Informative)

The following companies, organizations and people have contributed significantly to this specification either directly or
indirectly through discussions and feedback:

 Consumer Device Safety Standardization Working Group, Information-technology Promotion Agency,Japan

(IPA,Japan)
• Seiichi Shin, Chair, The University of Electro-Communications, SICE
• Masamichi Nakagawa, Panasonic Corporation
• Makoto Sekiya, HONDA
• Hiroo Kanamaru, Mitsubishi Electric
• Nobuyasu Kanekawa, Hitachi, Ltd.
• Yoshihito Sakamoto, IBM Japan
• Susumu Akiyama, DENSO
• Seigo Kotani, TCG
• Daisuke Soma, CAV Technologies, Ltd.
• Seiko Shirasaka, Keio University
• Kenji Hiranabe, Change Vision, Inc.
• Hitoshi Arima, dSPACE Japan

 Hiroshi Miyazaki, Fujitsu Limited
 Kenji Taguchi, AIST
 Geoffrey Biggs, AIST
 Tetsuo Kotoku, AIST
 Yoshihiro Nakabo, AIST
 Isashi Uchida, IPA,Japan
 Hiroyuki Haruyama, IPA,Japan
 Akira Ohata, TOYOTA Motor Corporation
 Naoya Ishizaki, TOYOTA Motor Corporation
 Satoru Watanabe, TOYOTA Motor Corporation
 Yutaka Matsuno, The University of Electro-Communications
 Djenana Campara, Nicholai Mansourov, KDM Analytics
 Safe Automotive soFtware architEcture Consortium (SAFE)

61
Dependability Assurance Framework for Safety-Sensitive Consumer Devices (SSCD) Specification

Annex C
Experiment of DAF

(Informative)

This annex is a brief report of an experiment for the applicability of the OMG DAF Standard. The experiment was
conducted, assuming to develop a ABS(Antilock Braking System) as a system, to see how the DAF Standard can
enhance existing dependability argumentations as well as how the construction of argumentation can be made effective.

In this scenario of experiment, the ABS is assumed to be modified according to new requirements based on a carry-over
ABS system which is already in markets. The new ABS was designed to add a function which enables a vehicle to turn at
a corner more safely. At the same time, the dependability argumentation of the new ABS was also constructed on the
course of the development according to the DPM in the DAF Standard.

In this sample, each attribute of Dependability was not discussed because of simplicity. Instead, the functional safety was
only discussed as an attribute of Dependability. The following is the procedure to apply the DAF Standard for the new
ABS development.

First, SysML models of the ABS system are created according to the Systems Engineering process in the DPM, during
which the enhancement of the ABS system is discussed based on the DAC to construct the Dependability argumentation
of the new ABS system. Then, both of the SysML models and the DAC are evaluated by experts in the functional safety
certification in terms of the validity of the Dependability argumentation. Finally, the assessment of applicability of the
DAF Standard is carried out to describe how the DAF is confirmed effective.

1. DCM
The DCM was utilized to define all the things to construct the argumentation. Each class in the DCM was tailored to
one suitable for the functional safety, instead of the Dependability in general. The DCM was found effective when
defining classes for the functional safety with a sense of mutual exclusiveness and collective exhaustiveness.

2. DAC
The DAC template was utilized to construct the argumentation of the functional safety of the new ABS system. Based
on the template, carry-over parts of the ABS system were firstly discussed to see if the notion of Proven-In-Use can be
applicable for argumentation of the functional safety. Then, newly designed parts of the ABS system were validated and
argued over to specify its validity for functional safety. Finally, the integration of the carry-over parts and the newly
designed parts as a whole was discussed in the course of comprehensive evaluations.

3. DPM
The DPM was referenced to develop the new ABS system as well as to construct the dependability argumentation. The
process was successfully applied to develop both SysML models and argumentation at the same time.

Assessment of Applicability for DAF Standard
The applicability of DAF Standard was qualitatively assessed in terms of the following two aspects to clarify the
benefits of DAF Standard.

 Robustness of Dependability argumentation (Functional Safety in this case)
Constructing the argumentation of the functional safety for the new ABS system with DAF became much easier than
without DAF because the following three reasons;
① DCM helped define aspects to consider to construct the argumentation.
② DAC enabled robustly argue over the development of new products by dividing the discussion in argumentation

into three pillars, Proven-In-Use, Modification and Integration.
③ DPM guided us to easily follow the process for argumentation as well as helped us understand that the DPM with

rapid iterative process can enhance the conventional V process in order to develop more dependable products.

 Efficiency in Argumentation construction
The efficiency in the argumentation construction became much higher than without DAF because of the following two
reasons;
① The DAC template worked well to quickly construct the argumentation. Also, the argumentation based on the

DAC template helped communicate with others for consistency in peer reviews of argumentation.
② The artifacts of the argumentation based on the DAC template were confirmed reusable for future reference or

even a basis for new development.

	Preface
	1 Scope
	2 Conformance
	3 Normative References
	4 Terms and Definitions
	5 Symbols and Abbreviated Terms
	6 Overview of the specification
	6.1 Introduction
	6.2 Key features
	6.2.1 Key Capabilities of DAF
	6.2.2 Procedure
	6.2.3 How to Read this Specifications

	7 Dependability Conceptual Model (DCM)
	7.1 Architectural Concept
	7.1.1 System of Systems
	7.1.2 System
	7.1.3 Component
	7.1.4 Implementation
	7.1.5 Service
	7.1.6 Development Category

	7.2 Dependability Assurance Concept
	7.2.1 Dependability Assurance Case Concept
	7.2.1.1 Dependability Claim
	7.2.1.2 Evidence
	7.2.1.3 Dependability Assurance Case
	7.2.1.4 Dependability Assurance Argument Structure
	7.2.1.5 Dependability Assurance Argument
	7.2.1.6 Dependability Allocation Arguments
	7.2.1.7 Standard Compliance Argument
	7.2.1.8 Lifecycle Argument
	7.2.1.9 Evolutionary Development Argument
	7.2.1.10 Modification Argument
	7.2.1.11 Proven In Use Argument
	7.2.1.12 Proven In Use Criteria Argument
	7.2.1.13 Field and Development Record Argument
	7.2.1.14 Field Record Argument
	7.2.1.15 Development Record Argument
	7.2.1.16 Integration Argument
	7.2.1.17 Static Analysis Argument
	7.2.1.18 Dependability Analysis Argument
	7.2.1.19 Difference Analysis Argument
	7.2.1.20 Impact Analysis Argument
	7.2.1.21 Dynamic Analysis Argument
	7.2.1.22 Use Case Argument
	7.2.1.23 Simulation and Physical Testing Argument
	7.2.1.24 Simulation Argument
	7.2.1.25 Physical Testing Argument

	7.2.2 Dependability Concept
	7.2.2.1 Dependability
	7.2.2.2 Dependability Attribute
	7.2.2.3 User Defined System Attribute

	7.2.3 Dependability Assurance Level
	7.2.3.1 Assurance Level
	7.2.3.2 Dependability Assurance Level
	7.2.3.3 Dependability Attribute Assurance Level

	7.2.4 Error Model
	7.2.4.1 Threat
	7.2.4.2 Failure
	7.2.4.3 Random Hardware Failure
	7.2.4.4 Systematic Failure
	7.2.4.5 Error
	7.2.4.6 Fault
	7.2.4.7 Detection Method

	7.2.5 Assessment
	7.2.5.1 Confirmation Review
	7.2.5.2 Confirmation Measure

	7.2.6 Proven In Use
	7.2.6.1 Modification
	7.2.6.2 Carry Over
	7.2.6.3 Proven In Use Candidate
	7.2.6.4 Proven In Use Criteria
	7.2.6.5 Field Record
	7.2.6.6 Development Record

	7.3 Dependability Process Concept
	7.3.1 Conceptual Model for Dependability Process
	7.3.2 Activity
	7.3.3 Artifact
	7.3.4 BreakdownElement (from SPEM 2.0)
	7.3.5 Disposal
	7.3.6 Difference Analysis
	7.3.7 Dependability Analysis
	7.3.8 Dependability Argument Construction
	7.3.9 Dependability Requirements Definition
	7.3.10 Hardware Development
	7.3.11 Impact Analysis
	7.3.12 Lifecycle
	7.3.13 System Requirements Definition
	7.3.14 System Architecture Design
	7.3.15 Software Development
	7.3.16 Operation
	7.3.17 System Architecture
	7.3.18 Verification & Validation
	7.3.19 WorkBreakdownElement (from SPEM 2.0)
	7.3.20 WorkSequence (from SPEM 2.0)
	7.3.21 WorkSequenceKind (from SPEM 2.0)

	7.4 Requirement Concept
	7.4.1 Assurance Requirement
	7.4.2 System Requirement
	7.4.3 Quality Requirement
	7.4.4 Functional Requirement
	7.4.5 Dependability Requirement
	7.4.6 Dependability Assurance Requirement
	7.4.7 Dependability Claim

	7.5 System Environment Concept
	7.5.1 Actor
	7.5.2 Environment
	7.5.3 Operational Environment
	7.5.4 Interface

	8 Dependability Assurance Case (DAC) Template
	8.1 Introduction (Informative)
	8.2 Representation of DAC Template by SACM Instance Diagram
	8.3 Dependability Allocation Argument
	8.4 Lifecycle Argument
	8.4.1 Evolutionary Development Argument
	8.4.2 Top Structure
	8.4.3 Proven In Use Argument
	8.4.4 Modification Argument
	8.4.5 Top Structure of Integration Argument
	8.4.5.1 Static Dependability Analysis Argument
	8.4.5.2 Dynamic Dependability Analysis Argument

	8.5 Standard Compliance Argument

	9 Dependability Process Model
	9.1 Overview of Iterative and Rapid Process
	9.2 Dependability Process
	9.2.1 Dependability Analysis
	9.2.2 Dependability Requirements Definition
	9.2.3 Dependability Argument Construction

	9.3 Systems Engineering Process
	9.3.1 System Requirements Definition
	9.3.2 System Architecture Design
	9.3.3 Hardware Development
	9.3.4 Software Development
	9.3.4.1 Software Requirements Definition
	9.3.4.2 Control Design
	9.3.4.3 Control Modeling
	9.3.4.4 Auto Code Generation
	9.3.4.5 Simplification Optimization
	9.3.4.6 Code Generation
	9.3.4.7 Software Calibration & Verification & Validation
	9.3.4.8 Rapid and Iterative Loops

	9.3.5 Verification & Validation

	9.4 Evolutionary Development Process
	9.4.1 Difference Analysis
	9.4.2 Impact Analysis

	9.5 Etcetera Process
	9.5.1 Operation
	9.5.2 Disposal

