

Date: December 2010

Diagram Definition

Version 1.0 - FTF Beta 1

OMG Document Number: ptc/2010-12-18
Standard document URL: http://www.omg.org/spec/DD/1.0
Associated Schema Files*: http://www.omg.org/spec/DD/20100501
 http://www.omg.org/spec/DD/20100502
 http://www.omg.org/spec/DD/20100503

* original file(s): ad/2010-05-02 (CMOF), ad2010-05-03 (XMI), ad/2010-05-04 (XMI)

This OMG document replaces the submission document (ad/2010-05-01, Alpha). It is an OMG Adopted
Beta Specification and is currently in the finalization phase. Comments on the content of this document
are welcome, and should be directed to issues@omg.org by March 21, 2011.

You may view the pending issues for this specification from the OMG revision issues web page
http://www.omg.org/issues/.

The FTF Recommendation and Report for this specification will be published on May 23, 2011. If you
are reading this after that date, please download the available specification from the OMG Specifications
Catalog.

Copyright © 2010, Adaptive
Copyright © 2010, Deere & Company
Copyright © 2010, Fujitsu
Copyright © 2010, International Business Machines
Copyright © 2010, Model Driven Solutions
Copyright © 2010, Object Management Group, Inc.
Copyright © 2010, Sparx Systems
Copyright © 2010, Trisotech

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms, conditions and
notices set forth below. This document does not represent a commitment to implement any portion of this specification in any
company's products. The information contained in this document is subject to change without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free, paid up,
worldwide license to copy and distribute this document and to modify this document and distribute copies of the modified version.
Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed the copyright in the
included material of any such copyright holder by reason of having used the specification set forth herein or having conformed any
computer software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant you a fully-paid up,
non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use this specification to create and
distribute software and special purpose specifications that are based upon this specification, and to use, copy, and distribute this
specification as provided under the Copyright Act; provided that: (1) both the copyright notice identified above and this permission
notice appear on any copies of this specification; (2) the use of the specifications is for informational purposes and will not be
copied or posted on any network computer or broadcast in any media and will not be otherwise resold or transferred for
commercial purposes; and (3) no modifications are made to this specification. This limited permission automatically terminates
without notice if you breach any of these terms or conditions. Upon termination, you will destroy immediately any copies of the
specifications in your possession or control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may require use of
an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a license may be required by
any OMG specification, or for conducting legal inquiries into the legal validity or scope of those patents that are brought to its
attention. OMG specifications are prospective and advisory only. Prospective users are responsible for protecting themselves
against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications regulations and
statutes. This document contains information which is protected by copyright. All Rights Reserved. No part of this work covered

by copyright herein may be reproduced or used in any form or by any means--graphic, electronic, or mechanical, including
photocopying, recording, taping, or information storage and retrieval systems--without permission of the copyright owner.

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY CONTAIN
ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE MAKE
NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS PUBLICATION, INCLUDING
BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF
MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE.
IN NO EVENT SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE COMPANIES LISTED ABOVE BE
LIABLE FOR ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS, REVENUE, DATA OR
USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE FURNISHING,
PERFORMANCE, OR USE OF THIS MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you. This
disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1) (ii) of The
Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph (c)(1) and (2) of the
Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified in 48 C.F.R. 227-7202-2 of
the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of the Federal Acquisition Regulations and
its successors, as applicable. The specification copyright owners are as indicated above and may be contacted through the
Object Management Group, 140 Kendrick Street, Needham, MA 02494, U.S.A.

TRADEMARKS

MDA®, Model Driven Architecture®, UML®, UML Cube logo®, OMG Logo®, CORBA® and XMI® are registered
trademarks of the Object Management Group, Inc., and Object Management Group™, OMG™ , Unified Modeling
Language™, Model Driven Architecture Logo™, Model Driven Architecture Diagram™, CORBA logos™, XMI Logo™,
CWM™, CWM Logo™, IIOP™ , IMM™, MOF™ , OMG Interface Definition Language (IDL)™ , and OMG SysML™ are
trademarks of the Object Management Group. All other products or company names mentioned are used for identification
purposes only, and may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its designees) is
and shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer software to use
certification marks, trademarks or other special designations to indicate compliance with these materials.

Software developed under the terms of this license may claim compliance or conformance with this specification if and only if
the software compliance is of a nature fully matching the applicable compliance points as stated in the specification. Software
developed only partially matching the applicable compliance points may claim only that the software was based on this
specification, but may not claim compliance or conformance with this specification. In the event that testing suites are
implemented or approved by Object Management Group, Inc., software developed using this specification may claim
compliance or conformance with the specification only if the software satisfactorily completes the testing suites.

OMG’s Issue Reporting Procedure

All OMG specifications are subject to continuous review and improvement. As part of this
process we encourage readers to report any ambiguities, inconsistencies, or inaccuracies they
may find by completing the Issue Reporting Form listed on the main web page http://
www.omg.org, under Documents, Report a Bug/Issue (http://www.omg.org/technology/agree-
ment.htm).

Table of Contents

Preface...

1. Scope . 1

2. Conformance Criteria . 1

3. References . 1

3.1 Normative References .1

3.2 Informative References .1

4. Terms and Definitions . 2

5. Symbols . 2

6. Additional Information . 2

6.1 How to Read this Specification .2

6.2 Changes or extensions to OMG specifications .2

6.3 Acknowledgements .2

7. Architecture . 3

8. Diagram Common . 7

8.1 Overview .7
8.1.1 Measurement Unit ... 7
8.1.2 Coordinate System ... 7
8.1.3 Z-Order .. 7
8.1.4 Rotation .. 8

8.2 Abstract Syntax. 8

8.3 Classifier Descriptions .9
8.3.1 AlignmentKind [Enumeration] ... 9
8.3.2 Boolean [PrimitiveType] .. 9
8.3.3 Bounds [DataType] ... 9
8.3.4 Color [DataType] ... 10
8.3.5 Dimension [DataType] .. 10
8.3.6 Integer [PrimitiveType] .. 11
8.3.7 KnownColor [Enumeration] ... 11
8.3.8 Point [DataType] ... 12
8.3.9 Real [PrimitiveType] .. 12
8.3.10 String [PrimitiveType] .. 13

9. Diagram Interchange . 15

9.1 Overview .15
Diagram Definition, v1.0 i

9.2 Abstract Syntax .15

9.3 Classifier Descriptions .18
9.3.1 Diagram [Class] .. 18
9.3.2 DiagramCollection [Class] .. 18
9.3.3 DiagramElement [Abstract Class] ... 19
9.3.4 Edge [Abstract Class] ... 20
9.3.5 Label [Abstract Class] ... 21
9.3.6 Plane [Abstract Class] .. 21
9.3.7 PlaneElement [Abstract Class] ... 22
9.3.8 Shape [Abstract Class] ... 23
9.3.9 Style [Abstract Class] .. 23

10.Diagram Graphics . 25

10.1 Overview .25

10.2 Abstract Syntax .25

10.3 Classifier Descriptions .29
10.3.1 Canvas [Class] .. 29
10.3.2 Circle [Class] ... 30
10.3.3 ClipPath [Class] .. 30
10.3.4 ClosePath [DataType] ... 31
10.3.5 CubicCurveTo [DataType] .. 32
10.3.6 Ellipse [Class] ... 32
10.3.7 EllipticalArcTo [DataType] .. 33
10.3.8 Fill [Abstract Class] ... 34
10.3.9 GradientStop [DataType] .. 35
10.3.10 GraphicalElement [Abstract Class] ... 36
10.3.11 Group [Class] .. 37
10.3.12 Image [Class] ... 38
10.3.13 Line [Class] ... 38
10.3.14 LineTo [DataType] .. 39
10.3.15 LinearGradient [Class] .. 39
10.3.16 MarkedElement [Class] ... 40
10.3.17 Marker [Class] ... 41
10.3.18 Matrix [DataType] .. 42
10.3.19 MoveTo [DataType] .. 43
10.3.20 Path [Class] .. 43
10.3.21 PathCommand [Abstract DataType] ... 44
10.3.22 Pattern [Class] .. 44
10.3.23 Polygon [Class] ... 45
10.3.24 Polyline [Class] ... 45
10.3.25 QuadraticCurveTo [DataType] .. 46
10.3.26 RadialGradient [Class]... 47
10.3.27 Rectangle [Class] .. 48
10.3.28 Rotate [DataType] ... 48
10.3.29 Scale [DataType] .. 49
10.3.30 Skew [DataType] .. 49
10.3.31 Style [Class] .. 50
10.3.32 Text [Class] ... 51
ii Diagram Definition, v1.0

10.3.33 Transform [Abstract DataType] ... 52
10.3.34 Translate [DataType] .. 52

Annex A - UML Diagram Definition Example ... 55

Annex B - DG to SBV Mapping .. 67
Diagram Definition, v1.0 iii

iv Diagram Definition, v1.0

Preface

About the Object Management Group

OMG

Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer industry
standards consortium that produces and maintains computer industry specifications for interoperable, portable, and
reusable enterprise applications in distributed, heterogeneous environments. Membership includes Information
Technology vendors, end users, government agencies, and academia.

OMG member companies write, adopt, and maintain its specifications following a mature, open process. OMG’s
specifications implement the Model Driven Architecture® (MDA®), maximizing ROI through a full-lifecycle approach to
enterprise integration that covers multiple operating systems, programming languages, middleware and networking
infrastructures, and software development environments. OMG’s specifications include: UML® (Unified Modeling
Language™); CORBA® (Common Object Request Broker Architecture); CWM™ (Common Warehouse Metamodel);
and industry-specific standards for dozens of vertical markets.

More information on the OMG is available at http://www.omg.org/.

OMG Specifications

As noted, OMG specifications address middleware, modeling and vertical domain frameworks. A Specifications Catalog
is available from the OMG website at:

http://www.omg.org/technology/documents/spec_catalog.htm

Specifications within the Catalog are organized by the following categories:

OMG Modeling Specifications
• UML

• MOF

• XMI

• CWM

• Profile specifications

OMG Middleware Specifications
• CORBA/IIOP

• IDL/Language Mappings

• Specialized CORBA specifications

• CORBA Component Model (CCM)
Diagram Definition, v1.0 v

Platform Specific Model and Interface Specifications
• CORBAservices

• CORBAfacilities

• OMG Domain specifications

• OMG Embedded Intelligence specifications

• OMG Security specifications

All of OMG’s formal specifications may be downloaded without charge from our website. (Products implementing OMG
specifications are available from individual suppliers.) Copies of specifications, available in PostScript and PDF format,
may be obtained from the Specifications Catalog cited above or by contacting the Object Management Group, Inc. at:

OMG Headquarters
140 Kendrick Street
Building A, Suite 300
Needham, MA 02494
USA
Tel: +1-781-444-0404
Fax: +1-781-444-0320
Email: pubs@omg.org

Certain OMG specifications are also available as ISO standards. Please consult http://www.iso.org

Typographical Conventions

The type styles shown below are used in this document to distinguish programming statements from ordinary English.
However, these conventions are not used in tables or section headings where no distinction is necessary.

Times/Times New Roman - 10 pt.: Standard body text

Helvetica/Arial - 10 pt. Bold: OMG Interface Definition Language (OMG IDL) and syntax elements.

Courier - 10 pt. Bold: Programming language elements.

Helvetica/Arial - 10 pt: Exceptions

Note – Terms that appear in italics are defined in the glossary. Italic text also represents the name of a document, specification,
or other publication.

Issues

The reader is encouraged to report any technical or editing issues/problems with this specification to http://www.omg.org/
technology/agreement.htm.
vi Diagram Definition, v1.0

1 Scope

The Diagram Definition (DD) specification provides a basis for modeling and interchanging graphical notations,
specifically node and arc style diagrams as found in UML, SysML, and BPMN, for example, where the notations are tied
to abstract language syntaxes defined with MOF. The specification addresses the requirements in the Diagram Definition
RFP (ad/2007-09-02). It replaces OMG's current Diagram Interchange (DI) specification (formal/2006-04-04).

2 Conformance Criteria

The DD specification provides a framework for other modeling language specifications to define their diagrams.
Therefore, the DD specification does not have conformance criteria to vendors and tools directly, but rather to the
modeling language specifications using it. DD enables: a) definition of language-specific diagram interchange
metamodels as extensions of the DI package and b) mapping instances of these language-specific DI metamodels to
graphics, as defined by the DG package. Modeling language specifications can conform to DD in two levels by
supporting either (a) only, or (a) and (b), where (a) is called Diagram Information Interchange Conformance and (b) is
called Diagram Graphics Conformance. Diagram Information Interchange Conformance enables the interchange of
diagram information through import/export between tools of a particular modeling language. Diagram Graphics
Conformance enables consistent rendering of this diagram information to graphics. DD does not have conformance
criteria for the mapping language used in Diagram Graphics Conformance. DD does not restrict conformance criteria of
modeling language standards using it.

3 References

3.1 Normative References

The following normative documents contain provisions which, through reference in this text, constitute provisions of this
specification. For dated references, subsequent amendments to, or revisions of, any of these publications do not apply:

• MOF 2.0 Specification (http://www.omg.org/spec/MOF/2.0/)

• OCL 2.2 Specification (http://www.omg.org/spec/OCL/2.2/)

3.2 Informative References

The following informative documents are referenced through out this text:

• QVT 2.0 Specification (http://www.omg.org/spec/QVT/1.1/Beta2/)

• SVG 1.1 Specification (http://www.w3.org/TR/SVG11/)

• CSS 2.0 Specification (http://www.w3.org/TR/CSS2/)

• ODF 1.1 Specification (http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=office)
Diagram Definition, v1.0 1

4 Terms and Definitions

There are no specific terms and definitions associated with this specification.

5 Symbols

There are no specific symbols associated with this specification.

6 Additional Information

6.1 How to Read this Specification

The rest of this document contains the technical content of this specification. Section 7 gives an overview of the DD
architecture and describes the common assumptions made throughout the specification. Section 8 discusses the details of
the Diagram Common (DC) package. The Diagram Interchange (DI) package is described in section 9. Finally, section 10
covers the Diagram Graphics (DG) package.Although the sections are organized in a logical manner and can be read
sequentially, this is a reference specification and is intended to be read in a non-sequential manner. Consequently,
extensive cross-references are provided to facilitate browsing and search.

6.2 Changes or extensions to OMG specifications

This specification replaces the following specification:

• Diagram Interchange v1.0 specification (formal/06-04-04)

6.3 Acknowledgements

The following companies submitted this specification:

• Adaptive

• Deere & Company

• Fujitsu

• International Business Machines

• Model Driven Solutions

• Sparx Systems

The following companies supported this specification:

• Trisotech

• U.S. National Institute of Standards and Technology
2 Diagram Definition, v1.0

7 Architecture

The DD architecture distinguishes two kinds of graphical information, depending on whether language users have control
over it. Graphics that users have control over, such as position of nodes and line routing points, are captured for
interchange between tools. Graphics that users do not have control over, such as shape and line styles defined by language
standards, are not interchanged, because they are the same in all diagrams conforming to the language. The DD
architecture has two models to enable specification of these two kinds of graphical information, Diagram Interchange (DI)
and Diagram Graphics (DG). Both models share common elements from a Diagram Common (DC) model. The DI and
DG models are shown in Figure 7.1 by bold outlined boxes on the left and right, respectively.The DD architecture expects
language specifications to define mappings between interchanged and non-interchanged graphical information, but does
not restrict how it is done. This is shown in Figure 7.1 by a shaded box labeled "CS Mapping Specification" in the middle
section.

The DD specification gives examples of mappings in QVT, but does not define or recommend any particular mapping
language. The overall architecture resembles typical model-view-controllers, which separate visual rendering from
underlying models, and provide a way to keep visuals and models consistent.

The first few parts of using the DD architecture are:

• An abstract language syntax is defined separately from DD by instantiating MOF (abstract syntaxes are sometimes
called "metamodels"). This is shown in Figure 7.1 by a shaded box labeled "AS" at the far middle left (the "M" levels in
the figure are described in the UML 2 Infrastructure formal/2009-02-04).

• Language users model their applications by instantiating elements of abstract syntax, usually through tooling for the
language. This is shown in Figure 7.1 by the dashed arrow on the far lower left from a box labeled "Model."

• Users typically see graphical depictions of their models in tools. This is shown in Figure 7.1 by a box on the lower right
labeled "Graphics."

Users expect their graphics to appear again in other tools after models are interchanged. The DD architecture enables this
in two parts, one for graphical information that is interchanged, and another for graphical information that is not. The
interchanged information is captured in the next few steps:

• The non-normative aspects of graphics that a specification choose to give its users control over is captured for
interchange, such as node position and line routing points (tools may optionally give their users control over more such
non-normative aspects like color or fill). This is shown in Figure 7.1 by a box labeled "Diagram" on the lower left. This
information is linked to user models (instances of abstract syntax), as shown by the arrow from the Diagram to the
Model.

• User diagram interchange information is instantiated from a model defined along with the abstract syntax. This model
is shown in Figure 7.1 by a shaded box labeled "AS DI" on the left. Elements in it are linked to elements of abstract
syntax, specifying which diagram information to interchange for which model element, as shown by the arrow between
AS DI and AS. AS DI models are typically defined by the same community that defines the abstract syntax, as part of
the overall language specification.

• Elements of language-specific diagram interchange models (AS DI) specialize elements of the diagram interchange
(DI), which is a model provided by this specification for typically needed diagram interchange information, such as
node position and line routing points. This is shown in Figure 7.1 by the bold box labeled "DI" on the left, where
specialization (using MOF generalization and property subsetting/redefinition where DI has the general elements, and
AS DI has the specific elements) is shown with a hollow headed arrow. DI elements cannot be instantiated to capture

Diagram Definition, v1.0 3

diagram interchange information by themselves; they are almost entirely abstract. This enables DI to capture common
diagramming patterns abstractly while giving AS DI the choice to concretely specialize those patterns or not when
defining its elements. This specification provides normative CMOF artifacts for DI.

The final part of using the DD architecture captures graphical information that is not interchanged:

• Language specifications specify mappings from their diagram interchange models (instances of AS DI) to instances of
Diagram Graphics (DG), which is a model provided by this specification for typically needed graphical information,
such as shape and line styles. This is shown in Figure 7.1 by the box labeled "DG" on the right, and by the box labeled
"CS Mapping Specification" in the middle section. The arrow at the bottom of the middle section illustrates mappings
being carried out according to the specification above it, producing a model of diagram graphics that can be rendered
on displays. Languages specifying this mapping reduce ambiguity and nonuniformity in how their syntax appears
visually. The DG model is not expected to be specialized, enabling implementations to render instances of DG elements
for all applications of the DD architecture. This specification provides normative CMOF artifacts for DG.

Figure 7.1 - Diagram Definition Architecture

An example of realizing the DD architecture for the UML language is shown in Figure 7.2. In this figure, the UML
language specification would provide three normative artifacts at M2 (shown with shaded boxes): the abstract syntax
model (UML), the UML diagram interchange model (UML DI), and the mapping specification between the UML DI and
the graphics model (UML Mapping Specification). At M1, to the far left, the figure shows an instance of UML::Usecase
as a model element. Next to it on the right, the figure shows an instance of UMLDI::UMLShape with a given bounds
referencing the usecase element. This indicates that the usecase is depicted as a shape with the given bounds on the
diagram. The shape also contains an instance of UMLDI::UMLLabel with a given bounds representing the bounds of the
textual label of the usecase on the diagram. To the far right of M1, the figure shows an instance of DG::Group containing
instances of DG::Ellipse and DG::Text with property values derived from the UML element and its referencing UML DI
elements. This derivation results from executing the mapping specification, in the middle, between UML DI and DG.
4 Diagram Definition, v1.0

Figure 7.2 - Example of Diagram Definition Architecture For UML

The DD architecture is designed to enable language specifications to choose the level of detail and formality in diagram
definition. Some areas of flexibility are:

• Mappings to Diagram Graphics: Language specifications might choose to follow the above architecture completely,
including mappings from diagram interchange to graphics expressed in an executable mapping language. Or they might
choose to describe this informally in natural language, or even more informally in tables of graphical symbols.

• Specialization of Diagram Interchange: Language specifications might choose to minimize redundancy of diagram
elements and user models to reduce interchange file size. For example, a standard might choose to eliminate separate
shape classes corresponding to abstract syntax elements, with all diagram properties provided in a single top level
diagram element class, and all other information derived from referenced user model elements. Or standards might
choose to decouple diagram elements from user models by duplicating some of all the user model information in
diagram elements, enabling purely graphical tools to operate on interchanged information.

• Other areas: Language specifications can choose whether the same user model element is shown by multiple diagram
elements, and how much formatting and styling is interchanged.

The DD architecture is also designed to avoid defining new languages where existing ones are available. In particular,
rather than introducing a new model for specifying classification, specialization, and properties, DD reuses MOF. And
rather than mandate a mapping language for transformation from diagram interchange to diagram graphics, DD leaves this
to applications of the architecture, assuming compatibility with MOF.
Diagram Definition, v1.0 5

6 Diagram Definition, v1.0

8 Diagram Common

The Diagram Common (DC) package contains abstractions shared by the Diagram Interchange and the Diagram Graphics
packages.

8.1 Overview

The Diagram Common (DC) package contains a number of common primitive types as well as structured data types that
are used by the other DD packages, namely the Diagram Graphics(DI) package (section 9) and the Diagram
Interchange(DG) package (section 10). The DC package itself does not depend on other packages.The following
subsections discuss common assumptions that are made by DC and the other DD packages.

8.1.1 Measurement Unit

All coordinates and lengths defined by the DD packages are assumed to be in user units. A user unit is a value in the user
coordinate system, which initially (before any transformation is applied) aligns with the device's coordinate system (for
example, a pixel grid of a display). A user unit, therefore, represents a logical rather than physical measurement unit.
Since some applications might specify a physical dimension for a diagram as well (mainly for printing purposes), a
mapping from a user unit to a physical unit can be specified as a diagram's resolution (Inch is chosen in this specification
to avoid variability but tools can easily convert from/to other preferred physical units). Resolution specifies how many
user units fit within one physical unit (for example, a resolution of 300 specifies that 300 user units fit within 1 inch on
the device).

8.1.2 Coordinate System

This specification assumes a two-dimensional x-y coordinate system that has its origin at coordinate x=0, y=0. The x-axis
is horizontal and its coordinate values increases to the right with negative coordinates allowed. Similarly, the y-axis is
vertical and its coordinate values increases to the bottom with negative coordinates allowed.

8.1.3 Z-Order

Diagram (or graphical) elements may overlap in some situations (their renderings may intersect), in which case it is
important to determine which ones appear below or more hidden (have lower z-order) and which ones appear above or
more visible (have higher z-order). The general rules for determining the relative z-order are:

• Owned elements are higher in z-order than their owning elements.

• Elements that appear higher in the same "ordered" composition collection have higher z-order than those that appear
lower in the same collection.

• The relative z-order between different composition collections of elements in the same owning element cannot be
specified directly in the metamodel but needs to be specified in the description of the owning element (for example,
labels and compartments are separate collection of children of a UML Class shape, but labels are always higher in z-
order than compartments).
Diagram Definition, v1.0 7

8.1.4 Rotation

Rotations specified throughout this specification are made in degrees and can be positive (clock-wise) or negative
(counter-clock-wise).

8.2 Abstract Syntax

Figure 8.1 - The primitive types

Figure 8.2 - The layout data types

Figure 8.3 - The color data type
8 Diagram Definition, v1.0

8.3 Classifier Descriptions

8.3.1 AlignmentKind [Enumeration]

AlignmentKind enumerates the possible options for alignment for layout purposes.

Description

AlignmentKind enumerates the possible kinds for alignment for layout purposes (e.g. for text alignment within a
bounding box).

Abstract Syntax

• Figure 8.2 (Layout Types)

Literals

• start - an alignment to the start of a given length.

• end - an alignment to the end of a given length

• center - an alignment to the center of a given length

8.3.2 Boolean [PrimitiveType]

Boolean is a primitive data type having one of two values: true or false, intended to represent the truth value of logical
expressions.

Description

Boolean is used as a type for typed elements that represent logical expressions. There are only two possible values for
Boolean:

• true - The Boolean expression is satisfied.

• false - The Boolean expression is not satisfied.

This primitive type is mapped to the XSD type "http://www.w3.org/2001/XMLSchema#boolean" for XML interchange
purposes.

Abstract Syntax

• Figure 8.1 (Primitive Types)

8.3.3 Bounds [DataType]

Bounds specifies a rectangular area in some x-y coordinate system that is defined by a location (x and y) and a size (width
and height).

Description

Bounds is used to specify a rectangular area in some x-y coordinate system. The area is specified with a (x, y) location,
representing the distance of the area's top-left corner from the origin, and a size (width and height) along the x-y axes.
Diagram Definition, v1.0 9

Abstract Syntax

• Figure 8.2 (Layout Types)

Attributes

• + x : Real [1] = 0 - a real number (>=0 or <=0) that represents the x-coordinate of the bounds

• + y : Real [1] = 0 - a real number (>=0 or <=0) that represents the y-coordinate of the bounds

• + width : Real [1] - a real number (>=0) that represents the width of the bounds

• + height : Real [1] - a real number (>=0) that represents the height of the bounds

Constraints

• non_negative_size: the width and height of bounds cannot be negative [OCL] width >= 0 and height >=0

8.3.4 Color [DataType]

Color is a data type that represents a color value in the RGB format.

Description

Color is used as a type for attributes that represent color. The color value is encoded using the RGB format as three
separate integers in the range (0...255) representing the red, green and blue components of the color. For example the
color yellow is (red=255, green=255, blue=0).

Abstract Syntax

• Figure 8.3 (Color Type)

Attributes

• + red : Integer [1] - the red component of the color in the range (0..255).

• + green : Integer [1] - the red component of the color in the range (0..255).

• + blue : Integer [1] - the red component of the color in the range (0..255).

Constraints

• valid_rgb: the red, green and blue components of the color must be in the range (0...255).
[OCL] red >= 0 and red <=255 and green >= 0 and green <=255 and blue >= 0 and blue <=255

8.3.5 Dimension [DataType]

Dimension specifies two lengths (width and height) along the x and y axes in some x-y coordinate system.

Description

Dimension is used to specify two lengths, a width along the x-axis and a height along the y-axis, in a x-y coordinate
system.
10 Diagram Definition, v1.0

Abstract Syntax

• Figure 8.2 (Layout Types)

Attributes

• + width : Real [1] - a real number (>=0) that represents a length along the x-axis.

• + height : Real [1] - a real number (>=0) that represents a length along the y-axis.

Constraints

• non_negative_dimension: the width and height of a dimension cannot be negative
[OCL] width >= 0 and height >=0

8.3.6 Integer [PrimitiveType]

Integer is a primitive data type used to represent the mathematical concept of integer.

Description

Integer is used as a type for typed elements whose values are in the infinite set of integer numbers.This primitive type is
mapped to the XSD type "http://www.w3.org/2001/XMLSchema#integer" for XML interchange purposes.

Abstract Syntax

• Figure 8.1 (Primitive Types)

8.3.7 KnownColor [Enumeration]

KnownColor is an enumeration of 17 known colors.

Description

KnownColor enumerates 17 known colors, defined by the CSS specification, which are: aqua, black, blue, fuchsia, gray,
green, lime, maroon, navy, olive, orange, purple, red, silver, teal, white, and yellow.

Abstract Syntax

• Figure 8.3 (Color Type)

Literals

• maroon - a color with a value of #800000

• red - a color with a value of #FF0000

• orange - a color with a value of #FFA500

• yellow - a color with a value of #FFFF00

• olive - a color with a value of #808000

• purple - a color with a value of #800080

• fuchsia - a color with a value of #FF00FF
Diagram Definition, v1.0 11

• white - a color with a value of #FFFFFF

• lime - a color with a value of #00FF00

• green - a color with a value of #008000

• navy - a color with a value of #000080

• blue - a color with a value of #0000FF

• aqua - a color with a value of #00FFFF

• teal - a color with a value of #008080

• black - a color with a value of #000000

• silver - a color with a value of #C0C0C0

• gray - a color with a value of #808080

8.3.8 Point [DataType]

A Point specifies an location in some x-y coordinate system.

Description

Point is used to specify a coordinate that is at a given distance (along the x and y axes) from the origin of some x-y
coordinate system. The point (0, 0) is considered to be at the origin of that coordinate system. Coordinates increase
towards the right of the x-axes and towards the bottom of the y-axis.

Abstract Syntax

• Figure 8.2 (Layout Types)

Attributes

• + x : Real [1] = 0 - a real number (<= 0 or >= 0) that represents the x-coordinate of the point.

• + y : Real [1] = 0 - a real number (<= 0 or >= 0) that represents the y-coordinate of the point.

8.3.9 Real [PrimitiveType]

Real is a primitive data type used to represent the mathematical concept of real.

Description

Real is used as a type for typed elements whose values are in the infinite set of real numbers. Note that integer values (see
section 8.3.6) are also considered real values and as such can be assigned to real-typed elements.This primitive type is
mapped to the XSD type "http://www.w3.org/2001/XMLSchema#double" for XML interchange purposes.

Abstract Syntax

• Figure 8.1 (Primitive Types)
12 Diagram Definition, v1.0

8.3.10 String [PrimitiveType]

String is a primitive data type used to represent a sequence of characters in some suitable character set.

Description

String is used as a type for typed elements in the metamodel that have their values represented as a sequence of zero or
more characters (including binary data like for a GIF image) in some character set like ASCII, Unicode, etc. The allowed
values for the string depends on the semantics of the typed element.This primitive type is mapped to the XSD type "http:/
/www.w3.org/2001/XMLSchema#string" for XML interchange purposes.

Abstract Syntax

• Figure 8.1 (Primitive Types)
Diagram Definition, v1.0 13

14 Diagram Definition, v1.0

9 Diagram Interchange

The Diagram Interchange (DI) package enables interchange of graphical information that language users have control
over, such as position of nodes and line routing points. Language specifications specialize elements of DI to define
diagram interchange elements for a language.

9.1 Overview

The Diagram Interchange(DI) package contains a number of types used in the definition of diagram interchange models.
The package imports the Diagram Common package (section 8), as shown in Figure 9.1, that contains various relevant
data types. The DI package contains many abstract types for extension and refinement by concrete types in domain-
specific DI packages. DI is a framework meant for extension rather than a component ready to be used out of the box. It
provides typically needed diagram interchange information for customized DI models in specific graphical domains.

9.2 Abstract Syntax

Figure 9.1 - Dependencies of the DI package
Diagram Definition, v1.0 15

Figure 9.2 - Diagram Element

Figure 9.3 - Diagram
16 Diagram Definition, v1.0

Figure 9.4 - Plane

Figure 9.5 - Edge

Figure 9.6 - Shape
Diagram Definition, v1.0 17

9.3 Classifier Descriptions

9.3.1 Diagram [Class]

Diagram is a container of a graph of diagram elements that is rooted with a plane.

Description

Diagram represents a top-level container for a graph of diagram elements rooted with a plane element (see section 9.3.6).

A diagram typically represents a depiction of all of part of a MOF-based abstract syntax model. It can be persisted in the
same resource as the abstract syntax model or in a different resource. It can also be owned by elements of the abstract
syntax model, by a DiagramCollection element (see section 9.3.2) or by no element at all (like being the root of the
resource).

A diagram can have a name and a description. This information is not shown as part of the rendering of the diagram itself
but can be used in an application to label a diagram (e.g. "DI Package Diagram") in a browser and show its intent (e.g. "A
diagram that shows the classes of the DI package").

A diagram also specifies a resolution expressed in units per inch. The resolution specifies the conversion ratio between
the logical units used by the diagram and a unit of physical measurement (an inch in this case). For example, a resolution
value of 300 specifies that every 300 user unit of length map to an inch. The resolution value is mainly used when
printing diagrams or when rendering diagrams on display in their physical size.

A diagram can own a collection of styles that are referenced (shared) by its diagram elements. Styles contain
combinations of style property values used by different elements across the diagram. This allows a large number of
diagram elements to reference a small number of styles, which would dramatically reduce a diagram's footprint.

Abstract Syntax

• Figure 9.3 (Diagram)

Attributes

• + name : String [1] - the name of the diagram.

• + documentation : String [1] - the documentation of the diagram.

• + resolution : Real [1] = 300 - the resolution of the diagram expressed in user units per inch.

Associations

• ? + plane : Plane [1] - a reference to an owned plane, which is the root of containment for all diagram elements in the
diagram.

• ? + style : Style [*] - a collection of styles owned by the diagram and referenced by its nested diagram elements.

9.3.2 DiagramCollection [Class]

DiagramCollection is a container for an ordered collection of related diagrams.
18 Diagram Definition, v1.0

Description

DiagramCollection represents an ordered collection of related diagrams. It also owns a collection of styles that can be
shared by diagrams elements nested by its diagrams. This can dramatically reduce the footprint of diagrams with similar
styles.A diagram collection can be used as a root of a diagram resource containing several diagrams. It can also be owned
by elements of an abstract syntax model representing diagrams in those elements' namespaces.

Abstract Syntax

• Figure 9.3 (Diagram)

Associations

• ? + diagram : Diagram [*] {ordered} - an ordered collection of related diagrams

• ? + style : Style [*] - a collection of styles owned by the diagram collection and referenced by its nested diagram
elements.

9.3.3 DiagramElement [Abstract Class]

DiagramElement is the abstract super type of all elements that can be nested in a diagram.

Description

DiagramElement specifies an element that is nested in a diagram and represents a part of it. It is an abstract class and the
super class of more specialized diagram elements.

A diagram element can be useful on its own (i.e. purely notational) or more commonly used as a depiction of another
MOF-based element from an abstract syntax model (like a UML model). In the latter case, the diagram element references
the depicted model element and defines notational properties for that element. An example of a depicting diagram element
is a Class shape on a UML diagram that specifies the bounds of the class, its colors its compartments...etc. An example
of a purely notational diagram element is a Note shape on a UML diagram that provides a textual description of part of
the diagram. The diagram element's reference to model element is defined abstractly as derived union to allow language-
specific extensions of DI to refine it further to suit their purposes (like specializing its type).

A diagram element can own other diagram elements in a graph-like hierarchy. The collection of owned elements is
defined abstractly as a derived union to allow language-specific extensions of DI to define the allowed topologies for their
diagram elements (e.g. a UML class shape can own UML compartments). This collection is also specialized in subclasses
of diagram element in the DI package.

More specialized diagram element types define properties that characterize their nature. However, a subset of those
properties is stylistic in nature and tends to have similar values across many diagram elements. Examples of such
properties are fill properties, stroke properties and font properties. To minimize the footprint of diagram interchange
models, those stylistic properties are not defined on diagram elements directly but are rather defined on Style elements
that can be owned and/or shared by diagram elements. Shared style elements are owned at a higher level, like on a
diagram or even a diagram collection level and referenced by diagram elements. Style property values are calculated
based on a well-defined algorithm given in section 9.3.9.

Other properties of diagram elements that tools need to interchange but are not defined in the metamodel can be
interchanged using the extensibility mechanism that is native to the used interchange format. For example, in an XMI-
based interchange, extended data can be placed on diagram elements within <xmi:extension> tags.
Diagram Definition, v1.0 19

Abstract Syntax

• Figure 9.2 (Diagram Element)

• Figure 9.4 (Plane)

Specializations

• Label

• Plane

• PlaneElement

Associations

• + /modelElement : Element [0..1] {readOnly, union} - a reference to a depicted model element, which can be any
MOF-based element

• + /owningElement : DiagramElement [0..1] {readOnly, union} - a reference to the diagram element that directly owns
this diagram element. The reference is set for all elements except Plane, which is the root diagram element.

• ? + /ownedElement : DiagramElement [*] {readOnly, union} - a collection of diagram elements that are directly owned
by this diagram element.

• ? + localStyle : Style [0..1] - a reference to an optional locally-owned style for this diagram element.

• + sharedStyle : Style [0..1] - a reference to an optional shared style element for this diagram element.

9.3.4 Edge [Abstract Class]

Edge is a plane element that renders as a polyline, connecting a source plane element to a target plane element, and is
positioned relative to the origin of the plane.

Description

Edge represents a plane element defined with a sequence of two or more connected waypoints forming a polyline that
connects two plane elements: a source element and a target element (could be the same as the source as in self
connection). The waypoints are positioned relative to the origin of the nesting plane as follows: the first waypoint is
positioned at the source element, the last waypoint is positioned at the target element and the waypoints in between
specify a route for the polyline on the plane.

An edge can be purely notational, i.e. does not reference any model element. An example is the line attaching a comment
to a UML element. On the other hand, an edge can be a depiction of a relational element from an abstract syntax model.
Examples include UML generalization edge or a BPMN message flow edge. In that case, the edge's source and target
reference plane elements depicting the relationship's source and target elements (or its two related elements if the
relationship is not directed) respectively. The edge's source and target references are defined abstractly as derived unions.
In an extending language-specific DI metamodel, these references need to be refined. In case the source and target
references can be derived unambiguously from the model element, the properties can be redefined with that derivation
logic. Otherwise, the properties can be specialized with concrete settable properties.

Abstract Syntax

• Figure 9.5 (Edge)
20 Diagram Definition, v1.0

Generalizations

• PlaneElement

Attributes

• + waypoint : Point [2..*] {ordered, nonunique} - a list of two or more points relative to the origin of the nesting plane
that specifies the connected line segments of the edge.

Associations

• + /source : PlaneElement [1] {readOnly, union} - the edge's source plane element, i.e. where the edge starts from.

• + /target : PlaneElement [1] {readOnly, union} - the edge's target plane element, i.e. where the edge ends at.

9.3.5 Label [Abstract Class]

Label is a diagram element that is owned by a plane element and is positioned with separate bounds that are relative to
the origin of that plane.

Description

Label represents a diagram element, with given bounds, which is owned by a plane element. A label depicts some
(usually textual) aspect of its owning element. An example is a name label for a UML class shape or a role multiplicity
label of a UML association edge. A label is laid out separately from its owner using its own bounds that are relative to the
origin of the nesting plane. The label bounds are optional, and when not specified, the label is laid out in a default
position.

A label does not typically reference its own model element especially when it can be unambiguously derived from its
owning plane element (e.g. a UML class shape would reference the class element, which is the same for its name label).
When it cannot be derived, a label would reference its own separate model element (e.g. a UML association edge would
reference an association element while its end labels would reference the association's member ends).

Abstract Syntax

• Figure 9.4 (Plane)

Generalizations

• DiagramElement

Attributes

• + bounds : Bounds [0..1] - the bounds (x, y, width and height) of the label relative to the origin of its containing plane.

9.3.6 Plane [Abstract Class]

Plane is a diagram element with an origin point and infinite bounds in the x-y coordinate system. It owns a collection of
plane elements that are laid out relative to its origin point.
Diagram Definition, v1.0 21

Description

Plane represents a two dimensional x-y coordinate system that is used to layout a collection of nested and inter-connected
plane elements. A plane has an origin point (0, 0) and an infinite size along the x and y axes. The coordinate system of a
plane increases along the x-axis from left to right and along the y-axis from top to bottom. A plane is the root of
containment of diagram elements in a diagram. All the nested diagram elements are laid out relative to their nesting
plane's origin.

As a kind of diagram element, a plane may reference a model element from an abstract syntax model, in which case the
whole plane is considered a depiction of that element (e.g. an activity plane is a depiction of a UML activity).
Alternatively, a plane without such a reference is simply a layout container for its plane elements (e.g. a class diagram is
a container for UML class shapes and edges).

The collection of nested plane elements in a plane is ordered and the order specifies the z-order of these plane elements
relative to each other. The higher the z-order, the more to the front (i.e. the more visible) the plane element is.

Abstract Syntax

• Figure 9.3 (Diagram)

• Figure 9.4 (Plane)

Generalizations

• DiagramElement

Associations

• ? + planeElement : PlaneElement [*] {ordered, subsets ownedElement} - an ordered collection of plane elements
owned by this plane with the order defining the z-order of the plane element relative to each other.

• + diagram : Diagram [0..1] - a reference to the diagram that directly owns this plane.

9.3.7 PlaneElement [Abstract Class]

PlaneElement is an element that is laid out relative to its nesting plane's origin.

Description

PlaneElement is an abstract class that represents a diagram element that is laid out relative to its nesting plane's origin.
The z-order of a plane element within its owning collection is defined by its order in that collection. The higher the
collection order, the higher the z-order. In addition, the z-order of a nested plane element is higher than the z-order of its
nesting element.

A planeElement can own a collection of labels (section 9.3.5) that depict some (usually textual) aspects of it. An example
is the name label of a UML class shape or the role label of an UML association edge. The existence of a label in this
collection specifies that it is visible. Conversely, the non-existence of a label in this collection specifies that it is invisible.
The collection is defined abstractly as derived union to allow extending language-specific DI metamodels to refine it to
specify what labels can be owned by what plane elements.

Abstract Syntax

• Figure 9.4 (Plane)
22 Diagram Definition, v1.0

• Figure 9.5 (Edge)

• Figure 9.6 (Shape)

Generalizations

• DiagramElement

Specializations

• Shape

• Edge

Associations

• ? + /ownedLabel : Label [*] {readOnly, union, subsets ownedElement} - the collection of labels owned by this plane
element.

9.3.8 Shape [Abstract Class]

Shape is a plane element with given bounds that is laid out relative to the origin of the plane.

Description

Shape represents a plane element defined with a given bounds that is laid out relative to a plane's (section 9.3.6) origin. It
is an abstract class that is expected to be further sub classed in a language-specific DI metamodel.

A shape can be purely notational, i.e. does not reference any model element. Examples include a note shape on a UML
class diagram with some text describing the diagram and an overlay shape with some semi-transparent fill enclosing a
bunch of shapes on the diagram to make them stand out. On the other hand, a shape can be a depiction of a component
(non-relational) element from an abstract syntax model. Examples include a UML class shape and a BPMN activity
shape.

Abstract Syntax

• Figure 9.6 (Shape)

Generalizations

• PlaneElement

Attributes

• + bounds : Bounds [1] - the bounds of the shape relative to the origin of its nesting plane.

9.3.9 Style [Abstract Class]

Style contains formatting properties that affect the appearance or style of diagram elements.
Diagram Definition, v1.0 23

Description

Style represents a bag of properties (e.g. fontName, fillColor or strokeWidth) that affect the appearance or style of
diagram elements rather than their intrinsic semantics. Style is defined as an abstract class without prescribing any style
properties to leave it up to language-specific DI extensions to define concrete style classes that are applicable to their
diagram element types.

A style element can either be local to (owned by) a diagram element or shared between (referenced by) several diagram
elements, in which case it is owned at a higher level like a diagram or a diagram collection. A value set to a local style
property in a diagram element overrides one that is set to the same property on a shared style referenced by the same
diagram element.

Style properties are typically defined as optional to allow the state of "unset" to be legal. This is needed to implement
style inheritance, where an unset style property in one diagram element inherits its value from the closest diagram
element in its owning element chain that has a value set for that property.

The above semantics effectively specify that a value for a style property is based on the following mechanisms (in order
of precedence): oif there is a cascading value (set on a local style or a shared style with the local value taking
precedence), use it.

• Otherwise, if a cascading value is available from a diagram element in the owning element chain, use it from the closest
owning element.

• Otherwise, use the style property's default value.

Abstract Syntax

• Figure 9.2 (Diagram Element)

• Figure 9.3 (Diagram)
24 Diagram Definition, v1.0

10 Diagram Graphics

The Diagram Graphics (DG) package contains a model of graphical primitives that can be instantiated when mapping
from a language abstract syntax models and diagram interchange (DI) models to visual presentations. The mapping
effectively defines the concrete syntax of a language. This specification does not restrict how the mappings are done, or
what languages are used to define them.

10.1 Overview

The Diagram Graphics (DG) package provides a technology and platform independent model of two-dimensional
graphical information that can be instantiated in a mapping from abstract syntax models and diagram interchange (DI)
models of a given modeling language, effectively defining the concrete graphical syntax of the language. This
specification does not restrict how mappings are done or what mapping languages are used to define them (QVT is one
such mapping language).

In addition to mapping information contained in the interchanged models (abstract syntax and DI models) that users have
control over, the mapping can also specify the aspects of the concrete syntax that users do not have a control over, such
as specific geometric shapes and line styles that are fixed (made normative) by language specifications. This information
is not interchanged, because it is the same in all diagrams conforming to the language.

The design of the DG package borrows to a good degree from the Scalable Vector Graphics (SVG) specification and other
relevant specifications. This is done to ease the mapping of DG to existing industry standard graphical packages. DG
imports the Diagram Common package (section 8), as shown in Figure 10.1, that contains relevant data types used by DG.

10.2 Abstract Syntax

Figure 10.1 - Dependencies of the DG package
Diagram Definition, v1.0 25

Figure 10.2 - Graphical Element

Figure 10.3 - Primitive Elements
26 Diagram Definition, v1.0

Figure 10.4 - Group Elements

Figure 10.5 - Style
Diagram Definition, v1.0 27

Figure 10.6 - Fills

Figure 10.7 - Transforms
28 Diagram Definition, v1.0

Figure 10.8 - Path Commands

10.3 Classifier Descriptions

10.3.1 Canvas [Class]

Canvas is a kind of group that represents the root of containment for all graphical elements that render one diagram.

Description

Canvas is a kind of group that is used as a root container of a hierarchy of graphical elements used to render the same
diagram. A canvas has a two-dimensional x-y coordinate system with a (x=0, y=0) origin point and an infinite size. The
coordinate system increases along the x-axis from left to right and along the y-axis from top to bottom, with negative
coordinates allowed. The coordinates of graphical elements nested in the canvas member hierarchy are relative to the
origin of the canvas. Unlike a group, a canvas has a visual manifestation in the form of a background that can be filled
separately from its member elements.

Abstract Syntax

• Figure 10.10 (Group Elements)

Generalizations

• Group

Attributes

• + backgroundColor : Color [0..1] - a color that is used to paint the background of the canvas itself. A backgroundColor
value is exclusive with a backgroundFill value. If both are specified, the backgroundFill value is used. If none is
specified, no fill is applied (i.e. the canvas becomes see-through).
Diagram Definition, v1.0 29

Associations

• + backgroundFill : Fill [0..1] - a reference to a fill that is used to paint the background of the canvas itself. A
backgroundFill value is exclusive with a backgroundColor value. If both are specified, the backgroundFill value is
used. If none is specified, no fill is applied (i.e. the canvas becomes see-through).

• ? + fill : Fill [*] - a collection of fills owned by the canvas and referenced by graphical eements in the canvas.

• ? + marker : Marker [*] - A collection of markers owned by the canvas and referenced by marked elements in the
canvas.

• ? + style : Style [*] - a collection of styles owned by the canvas and referenced by various graphical elements as their
shared style.

10.3.2 Circle [Class]

Circle is a graphical element that defines a circular shape with a given center point and a radius.

Description

Circle is a graphical element that renders as a circle shape with a given center point and a radius in the x-y coordinate
system.

Abstract Syntax

• Figure 10.9 (Primitive Elements)

Generalizations

• GraphicalElement

Attributes

• + center : Point [1] - the center point of the circle in the x-y coordinate system.

• + radius : Real [1] - a real number (>=0) that represents the radius of the circle.

Constraints

• non_negative_radius: the radius cannot be negative - [OCL] radius >= 0

10.3.3 ClipPath [Class]

ClipPath is a kind of group whose members collectively define a painting mask for its referencing graphical elements.

Description

ClipPath represents a special kind of group element that is owned by a graphical element to define its clipping mask (or
stencil). A clip path does not render as a normal graphical element but is only used to specify the regions that can be
painted in its owning element.
30 Diagram Definition, v1.0

The raw geometry of each member element (exclusive of its style) of a clip path conceptually defines a 1-bit mask, which
represents the silhouette of the graphics associated with that element. Anything outside the outline of the element is
masked out. When the clip path contains multiple member elements, their silhouettes are logically OR'ed together to
create a single silhouette which is then used to restrict the region onto which paint can be applied. Thus, a point is inside
a clip path if it is inside any of the member elements of the clip path.

The following are more rules that affect the calculation of the final clipping path of a graphical element:

• For a given graphical element, the final clipping path is defined by intersecting its owned clip path, if any, with any clip
paths owned by any elements in its group chain.

• If a clip path owns itself another clip path element, the resulting clipping path is the intersection of the two.

• If any member element of the clip path owns another clip path, the given member is clipped by its own clip path first
before OR'ing its silhouette with the silhouettes of the other members.

The coordinate system of the clip path is the same as the one used by its owner (e.g. if the coordinates of the owner is
relative to the canvas, the coordinates of its clip path is also relative to the canvas). In addition, any transforms that are
defined on the graphical element are also applied to the clip path.

Abstract Syntax

• Figure 10.8 (Graphical Element)

• Figure 10.10 (Group Elements)

Generalizations

• Group

Associations

• + clippedElement : GraphicalElement [1] - a reference to the owning element that is clipped by this clip path.

10.3.4 ClosePath [DataType]

ClosePath is a kind of path command that ends the current subpath and causes an automatic straight line to be drawn from
the current point to the initial point of the current subpath.

Description

ClosePath is a kind of path command that ends the current subpath and causes an automatic straight line to be drawn from
the current point to the initial point of the current subpath. If a ClosePath command is followed immediately by a MoveTo
command, then the MoveTo identifies the start point of the next subpath. If a ClosePath is followed immediately by any
other command, then the next subpath starts at the same initial point as the current subpath.

Abstract Syntax

• Figure 10.14 (Path Commands)

Generalizations

• PathCommand
Diagram Definition, v1.0 31

10.3.5 CubicCurveTo [DataType]

CubicCurveTo is a kind of path command that draws a cubic bézier curve from the current point to a new point using a
start and an end control points.

Description

CubicCurveTo is a kind of path command that draws a cubic bézier curve from the current point to a new point using two
control points: startControl and endControl. Multiple CubicCurveTo commands may be specified in a row to draw a
polybézier. At the end of the command, the provided point becomes the new current point in the coordinate system.
Examples of cubic bézier curves are shown in Figure 10.15.

Figure 10.9 - Examples of cubic bézier curves

Abstract Syntax

• Figure 10.14 (Path Commands)

Generalizations

• PathCommand

Attributes

• + point : Point [1] - a point to draw a cubic bézier curve to from the current point in the coordinate system.

• + startControl : Point [1] - the start control point of the cubic bézier curve.

• + endControl : Point [1] - the end control point of the cubic bézier curve.

10.3.6 Ellipse [Class]

Ellipse is a graphical element that defines an elliptical shape with a given center point and two radii on the x and y axes.
32 Diagram Definition, v1.0

Description

Ellipse is a graphical element that renders as an ellipse shape with a given center point and two radii in the x-y coordinate
system.

Abstract Syntax

• Figure 10.9 (Primitive Elements)

Generalizations

• GraphicalElement

Attributes

• + center : Point [1] - the center point of the ellipse in the x-y coordinate system.

• + radii : Dimension [1] - a dimension that specifies the two radii of the ellipse (a width along the x-axis and a height
along the y-axis)

10.3.7 EllipticalArcTo [DataType]

EllipticalArcTo is a kind of path command that draws an elliptical arc from the current point to a new point in the
coordinate system.

Description

EllipticalArcTo is a kind of path command that draws an elliptical arc from the current point to a new point in the
coordinate system. The EllipticalArcTo command is also specified two radii, a rotation and two flags (isLargeArc flag and
isSweep). The rotation is used to rotate the ellipse that the arc is created from. This rotation maintains (does not move)
the start and end points, as shown in Figure 10.16.

Figure 10.10 - Elliptical arc rotation

The two flags control which part (sweep) of the ellipse is used to cut the arc, as shown in Figure 10.17. These are needed
because there are four possible arcs, based on the arc sweep angle and direction, that can be specified between the same
start and end points.
Diagram Definition, v1.0 33

Figure 10.11 - Elliptical arc sweeps

Abstract Syntax

• Figure 10.14 (Path Commands)

Generalizations

• PathCommand

Attributes

• + point : Point [1] - a point to draw an elliptical arc to from the current point in the coordinate system.

• + radii : Dimension [1] - the two radii of the ellipse from which the arc is created.

• + rotation : Real [1] - a real number representing a rotation (in degrees) of the ellipse from which the arc is created.

• + isLargeArc : Boolean [1] - whether the arc sweep is equal to or greater than 180 degrees (the large arc).

• + isSweep : Boolean [1] - whether the arc is drawn in a positive-angle direction

10.3.8 Fill [Abstract Class]

Fill is the abstract super class of all kinds of fills that are used to paint the interior of graphical elements.

Description

Fill defines a paint that can be used to fill enclosed areas of graphical elements. A fill is owned by a canvas and is
referenced by graphical elements in the canvas. A fill can also be transformed (translated, scaled, rotated or skewed) with
a sequence of transforms (see section 10.3.34 for more details).

Abstract Syntax

• Figure 10.10 (Group Elements)

• Figure 10.11 (Style)

• Figure 10.12 (Fills)

Specializations

• Pattern

• Gradient
34 Diagram Definition, v1.0

Attributes

• + transform : Transform [*] {ordered, nonunique} - a list of zero or more transforms to apply to this fill.

Associations

• + canvas : Canvas [1] - a reference to the canvas that owns this fill.

11.3.9 Gradient [Abstract Class]

Gradient is a kind of fill that paints a continuously smooth color transition along the gradient range from one color to the
next.

Description

Gradient is the abstract super class of kinds of fill that paint a continuously smooth color transition from one color to
another, possibly followed by additional transitions to other colors. The range of colors to use on a gradient is defined by
GradientStop (see 10.3.10) that are nested by the gradient. Every stop defines a main color transition, its offset and
opacity. The exact semantics of the stop offset is defined by the gradient sub classes.

Abstract Syntax

• Figure 10.12 (Fills)

Generalizations

• Fill

Specializations

• RadialGradient

• LinearGradient

Attributes

• + stop : GradientStop [2..*] - a list of two or more gradient stops defining the color transitions of the gradient.

10.3.9 GradientStop [DataType]

GradientStop defines a color transition along the distance from a gradient's start to its end offsets.

Description

GradientStop represents a color transition for a gradient. Two or more stops are owned by a gradient. Each gradient stop
defines a color, an opacity and an offset. The offset is a ratio that indicates where the gradient stop is placed. For linear
gradients, the offset represents a ratio along the gradient vector. For radial gradients, it represents a ratio from the focus
point (0%) to the edge of the largest (outermost) circle (100%).

Abstract Syntax

• Figure 10.12 (Fills)
Diagram Definition, v1.0 35

Attributes

• + color : Color [1] - the color to use at this gradient stop.

• + offset : Real [1] - a real number (>=0 and<=1) representing the offset of this gradient stop as a ratio of the distance
between the start and end positions of the gradient.

• + opacity : Real [1] = 1 - a real number (>=0 and<=1) representing the opacity of the color at the stop. A value of 0
means totally transparent, while a value of 1 means totally opaque.

Constraints

• valid_offset: the offset must be between 0 and 1.
[OCL] offset>=0 and offset<=1

• valid_opacity: the opacity must be between 0 and 1.
[OCL] opacity>=0 and opacity<=1

10.3.10 GraphicalElement [Abstract Class]

GraphicalElement is the abstract superclass of all graphical elements that can be nested in a canvas.

Description

GraphicalElement represents a unit of graphical information that is used to build the concrete graphical syntax of
modeling languages. It is the abstract super class of all graphical elements and can be nested by (a member of) a Group
element and organized in a hierarchy rooted with a Canvas element (a special kind of Group).

A graphical element can reference a local and/or a shared style that defines how the element is styled (formatted). When
a style property is not set by either a local (higher precedence) or a shared (lower precedence) style, it gets inherited from
the closest group element that provides a value for this style property (see section 10.3.32 for more details).

The geometry of a graphical element can optionally be transformed using a sequence of transforms (see section 10.3.34).
Those transforms apply on top of other transforms defined on elements in the group chain of the element. The result of
applying those transforms, in sequence, defines the final state of geometry for a graphical element.

A graphical element can optionally own a clip path element to restrict its regular painting with a mask defined by the clip
path. A clip path is a group of graphical elements, whose collective geometry define a mask to restrict the painting of
graphical elements. Refer to section 10.3.33 for more details.

Abstract Syntax

• Figure 10.8 (Graphical Element)

• Figure 10.9 (Primitive Elements)

• Figure 10.10 (Group Elements)

• Figure 10.12 (Fills)

Specializations

• MarkedElement

• Circle
36 Diagram Definition, v1.0

• Ellipse

• Image

• Rectangle

• Group

• Text

Attributes

• + transform : Transform [*] {ordered, nonunique} - a list of zero or more transforms to apply to this graphical element.

Associations

• + group : Group [0..1] - the group element that owns this graphical element.

• ? + localStyle : Style [0..1] - a reference to an optional locally-owned style for this graphical element.

• + sharedStyle : Style [0..1] - a reference to an optional shared style element for this graphical element.

• ? + clipPath : ClipPath [0..1] - an optional reference to a clip path element that masks the painting of this graphical
element.

10.3.11 Group [Class]

Group defines a group of graphical elements that can be styled, clipped and/or transformed together.

Description

Group is a graphical element that does not have a visual manifestation itself but is rather used to group a collection of
member graphical elements in order to apply common styles, transforms and/or clip paths to them. The styles defined
(owned or referenced) on a group element are inherited by its member elements (see section 10.3.32 for more details).
Similarly, the transforms defined on a group element are applied to its member elements (see section 10.3.34 for more
details). Additionally, a clip path defined on a group element applies to its member elements (see section 10.3.33 for more
details).

Abstract Syntax

• Figure 10.10 (Group Elements)

Generalizations

• GraphicalElement

Specializations

• ClipPath

• Marker

• Canvas
Diagram Definition, v1.0 37

Associations

• ? + member : GraphicalElement [*] {ordered} - the list of graphical elements that are members of (owned by) this
group.

10.3.12 Image [Class]

Image is a graphical element that defines a shape that paints an image with a given URL within given bounds.

Description

Image is a graphical element that renders a referenced image file (with a given URL) within a given bounding box in the
x-y coordinate system. Image can refer to a raster image file (e.g. a PNG or a JPEG file) or to a SVG file (i.e. one with
MIME type of "image/svg+xml"). The original size of a raster image is defined by the image data, while the original size
of a SVG image is given by the 'viewBox' attribute on the outermost SVG element.

When an image is rendered, the top-left of the image is aligned with the top-left of the bounding box. When the original
size of the image matches the size of the bounding box, the image is rendered with that original size. When the two sizes
are different, the image is scaled as large as possible to fit within the bounding box. The scale factors for the width and
height depend on the value of the isAspectRatioPreserved flag. When the flag is set to true, the scale factors for both
width and height of the image are the same. Otherwise, the scale factors may be calculated differently such that the
bottom-right of the image exactly aligns with bottom-right of the bounding box. If the image's original size cannot be
retrieved (e.g. if the 'viewBox' attribute is not set in the SVG file), the isAspectRatioPreserved flag is assumed to be false.

Abstract Syntax

• Figure 10.9 (Primitive Elements)

Generalizations

• GraphicalElement

Attributes

• + source : String [1] - the URL of a referenced image file.

• + bounds : Bounds [1] - the bounds within which the image is rendered.

• + isAspectRatioPreserved : Boolean [1] - whether to preserve the aspect ratio of the image upon scaling, i.e. the same
scale factor for width and height.

10.3.13 Line [Class]

Line is a marked element that defines a shape consisting of one straight line between two points.

Description

Line is a marked element that renders as a straight line between two points, a start and an end, in the x-y coordinate
system.

Abstract Syntax

• Figure 10.9 (Primitive Elements)
38 Diagram Definition, v1.0

Generalizations

• MarkedElement

Attributes

• + start : Point [1] - the starting point of the line in the x-y coordinate system.

• + end : Point [1] - the ending point of the line in the x-y coordinate system.

10.3.14 LineTo [DataType]

LineTo is a kind of path command that draw a straight line from the current point to a new point.

Description

LineTo is a kind of path command that draws a straight line from the current point to a new point. The effect is as if a pen
was pressed and moved to a new location in a straight line. Multiple LineTo commands can be specified in a row to draw
a polyline. At the end of the command, the provided point becomes the new current point in the coordinate system.

Abstract Syntax

• Figure 10.14 (Path Commands)

Generalizations

• PathCommand

Attributes

• + point : Point [1] - a point to draw a straight line to from the current point in the coordinate system.

10.3.15 LinearGradient [Class]

LinearGradient is a kind of gradient that fills a graphical element by smoothly changing color values along a vector.

Description

LinearGradient is a kind of gradient that fills a graphical element by smoothly changing color values between gradient
stops along a vector. The vector is defined by start and end positions expressed as ratios (x1, x2) of the width of the
element and start and end positions expressed as ratios (y1, y2) of the height of the element.Linear gradients can be
defined as horizontal, vertical or angular gradients:

• Horizontal gradients are created when y1 and y2 are equal and x1 and x2 differ

• Vertical gradients are created when x1 and x2 are equal and y1 and y2 differ

• Angular gradients are created when x1 and x2 differ and y1 and y2 differ

Abstract Syntax

• Figure 10.12 (Fills)
Diagram Definition, v1.0 39

Generalizations

• Gradient

Attributes

• + x1 : Real [1] = 0 - a real number (>=0 and >=1) representing a ratio of the graphical element's width that is the x start
point of the gradient.

• + x2 : Real [1] = 1 - a real number (>=0 and >=1) representing a ratio of the graphical element's width that is the x end
point of the gradient.

• + y1 : Real [1] = 0 - a real number (>=0 and >=1) representing a ratio of the graphical element's height that is the y start
point of the gradient.

• + y2 : Real [1] = 1 - a real number (>=0 and >=1) representing a ratio of the graphical element's height that is the y end
point of the gradient.

Constraints

• valid_gradient_vector: all the components of the gradient vector must be between 0 and 1.
[OCL] x1>=0 and x1<=1 and x2>=0 and x2<=1 and y1>=0 and y1<=1 and y2>=0 and y2<=1

10.3.16 MarkedElement [Class]

MarkedElement is a graphic element that can be decorated at its vertices with markers (e.g. arrowheads).

Description

MarkedElement represents a graphical element that can optionally be decorated with markers (e.g. arrowheads) at its
vertices (points of line intersection). It is an abstract super class of all graphical elements whose vertices are explicitly
specified and ordered. A start marker decorates the first vertex, an end marker decorates the last vertex and a mid marker
decorates every other vertex in between. A marker has a higher z-order than its marked element.

Abstract Syntax

• Figure 10.9 (Primitive Elements)

Generalizations

• GraphicalElement

Specializations

• Polyline

• Path

• Polygon

• Line
40 Diagram Definition, v1.0

Associations

• + startMarker : Marker [0..1] - an optional start marker that aligns with the first vertex of the marked element.

• + endMarker : Marker [0..1] - an optional end marker that aligns with the last vertex of the marked element.

• + midMarker : Marker [0..1] - an optional mid marker that aligns with all vertices of the marked element except the
first and the last.

10.3.17 Marker [Class]

Marker is a kind of group that is used as a decoration (e.g. an arrowhead) for the vertices of a marked graphical element.

Description

Marker is a kind of group that decorates a given vertex (a point of line intersection) of a marked element. A marker has
its own private coordinate system whose origin is at point (x=0, y=0) and whose size is specified. The origin and the size
define a clipping rectangle for the marker's member elements, which are laid out relative to the origin of the marker's
coordinate system.

Additionally, a marker specifies a reference point within its bounds that is used to position the marker such that this point
aligns exactly with the marked vertex. When the marker is positioned at a vertex, it also gets oriented (the axes of its
coordinate system get rotated) to match the slope of the line at the vertex. For example, an arrow head marker can have a
size of 10,10 (Figure 10.18 a) and a reference point of 10,5 (the small circle). When the marker is applied to the end
vertex of a polyline (Figure 10.18 b), it gets aligned exactly with the end vertex and rotated to match the slope of the line
at that vertex.

A marker does not render as a normal graphical element but is only used to decorate the vertices of its referencing marked
elements. A marker is owned by the canvas and can be referenced by marked elements in three possible ways: as a start
marker, an end marker or a mid marker (see section 10.3.17 for more details). Even though referencing marked elements
are not in the group chain of a marker, it inherits their styles in the context of every reference. A marker can still define
its own style overrides.

Figure 10.12 - Marker example: a) an arrowhead marker with its reference point in red b) the marker positioned at the
end vertex of a polyline and rotated to match the rotation at that vertex

Abstract Syntax

• Figure 10.9 (Primitive Elements)

• Figure 10.10 (Group Elements)

Generalizations

• Group
Diagram Definition, v1.0 41

Attributes

• + size : Dimension [1] - the size of the marker

• + reference : Point [1] - a point within the bounds of the marker that aligns exactly with the marked element's vertex.

Associations

• + canvas : Canvas [1] - a reference to the canvas that owns this marker.

10.3.18 Matrix [DataType]

Matrix is a kind of transform that represents any transform operation with a 3x3 transformation matrix.

Description

Matrix is a kind of transform that represents any transform operation with a 3x3 transformation matrix of the form shown
in Figure 10.19. Since only six values are used in this 3x3 matrix, a matrix is also expressed as a vector [a b c d e f].

Figure 10.13 - Transform Matrix

Transformation matrix map coordinates and lengths from a new coordinate system into a previous coordinate system, as
shown in Figure 10.20.

Figure 10.14 - Transform Matrix Multiplication

Abstract Syntax

• Figure 10.13 (Transforms)

Generalizations

• Transform

Attributes

• + a : Real [1] - the a value of the transform matrix.

• + b : Real [1] - the b value of the transform matrix.

• + c : Real [1] - the c value of the transform matrix.
42 Diagram Definition, v1.0

• + d : Real [1] - the d value of the transform matrix.

• + e : Real [1] - the e value of the transform matrix.

• + f : Real [1] - the f value of the transform matrix.

10.3.19 MoveTo [DataType]

MoveTo is a kind of path command that establishes a new current point in the coordinate system.

Description

MoveTo is a kind of path command that establishes a new current point. The effect is as if a pen was lifted and moved to
a new location. A MoveTo command is always the first command in a path (in which case the new point s considered
absolute regardless of the value of the isRelative flag). Subsequent MoveTo commands (i.e., when it is not the first
command) represent the start of new subpaths (e.g. a doughnut shape consists of two subpaths, one for the outer circle
and one for the inner circle).

Abstract Syntax

• Figure 10.14 (Path Commands)

Generalizations

• PathCommand

Attributes

• + point : Point [1] - a point to move to in the coordinate system

10.3.20 Path [Class]

Path is a marked element that defines a custom shape whose geometry is specified with a sequence of path commands.

Description

Path is a marked element that renders as a custom shape whose geometry is specified with a sequence of path commands.
A path command is an instruction to manipulate (move or press) a drawing pen on the canvas in a specific way. The
sequence of pen instructions builds the outline of the custom shape and always starts with a MoveTo command to position
the drawing pen at the start position. Multiple MoveTo commands may appear in the sequence effectively defining
subpaths.

An example of a path element that draws a triangle is:

• MoveTo (50, 0) LineTo (0, 50)

• LineTo (100, 50)

• ClosePath

Abstract Syntax

• Figure 10.9 (Primitive Elements)
Diagram Definition, v1.0 43

Generalizations

• MarkedElement

Attributes

• + command : PathCommand [*] {ordered, nonunique} - a list of path commands that define the geometry of the custom
shape.

10.3.21 PathCommand [Abstract DataType]

PathCommand is the abstract super type of all commands that participate in specifying a path element.

Description

PathCommand represents a command that participates in defining the geometry of a path element. It is the abstract super
class of all path commands. The coordinates specified by a path command are either relative to the current point before
the command or absolute (relative to the origin point of the coordinate system) based on the truth value of the isRelative
flag.

Abstract Syntax

• Figure 10.14 (Path Commands)

Specializations

• ClosePath

• EllipticalArcTo

• MoveTo

• CubicCurveTo

• QuadraticCurveTo

• LineTo

Attributes

• + isRelative : Boolean [1] = false
whether the coordinates specified by the command are relative to the current point (when true) or to the origin point of
the coordinate system (when false).

10.3.22 Pattern [Class]

Pattern is a kind of fill that paints a graphical element (a tile) repeatedly at fixed intervals in x and y axes to cover the
areas to be filled.
44 Diagram Definition, v1.0

Description

Pattern is a kind of fill that paints a graphical element (a tile) repeatedly inside a filled area at a fixed internal along the
x and y axes. The interval is defined by the bounds of the pattern, which establishes its own private coordinate system for
the pattern's tile to be relative to. The bounds of the pattern also define a rectangular clipping region for the tile restricting
it from painting outside.A pattern's tile does not render on its own as a normal graphical element but is only painted
repeatedly within the pattern to fill enclosed areas of graphical elements. Even though referencing graphical elements
filled with patterns are not in the group chain of the pattern's tile, the tile inherits their styles in the context of every
reference. A tile can still define its own style overrides.

Abstract Syntax

• Figure 10.12 (Fills)

Generalizations

• Fill

Attributes

• + bounds : Bounds [1] - the bounds of the pattern that define a private coordinate system for the pattern's tile.

Associations

• ? + tile : GraphicalElement [1] - a reference to a graphical element, owned by the pattern, that works as a tile to be
painted repeatedly at a fixed interval to fill an closed area.

10.3.23 Polygon [Class]

Polygon is a marked element that defines a closed shape consisting of a sequence of connected straight line segments.

Description

Polygon is a marked element that renders a closed shape consisting of a sequence of straight line segments defined by a
list of three or more points in the x-y coordinate system. The sequence results in a closed shape as a last line is
automatically defined from the last point to the first point.

Abstract Syntax

• Figure 10.9 (Primitive Elements)

Generalizations

• MarkedElement

Attributes

• + point : Point [3..*] {ordered, nonunique} - a list of 3 or more points making up the polygon.

10.3.24 Polyline [Class]

Polyline is a marked element that defines a shape consisting of a sequence of connected straight line segments.
Diagram Definition, v1.0 45

Description

Polyline is a marked element that renders a shape consisting of a sequence of straight line segments defined by a list of
two or more points in the x-y coordinate system.

Abstract Syntax

• Figure 10.9 (Primitive Elements)

Generalizations

• MarkedElement

Attributes

• + point : Point [2..*] {ordered, nonunique} - a list of 2 or more points making up the polyline.

10.3.25 QuadraticCurveTo [DataType]

QuadraticCurveTo is a kind of path command that draws a quadratic bézier curve from the current point to a new point
using a single control point.

Description

QuadraticCurveTo is a kind of path command that draws a quadratic bézier curve from the current point to a new point
using a single control point. Multiple QuadraticCurveTo commands may be specified in a row to draw a polybézier. At
the end of the command, the provided point becomes the new current point in the coordinate system. An example of a
quadratic bézier curve is shown in Figure 10.21.

Figure 10.15 - Example of quadratic bézier curve

Abstract Syntax

• Figure 10.14 (Path Commands)

Generalizations

• PathCommand
46 Diagram Definition, v1.0

Attributes

• + point : Point [1] - a point to draw a quadratic bézier curve to from the current point in the coordinate system.

• + control : Point [1] - the control point of the quadratic bézier curve.

10.3.26 RadialGradient [Class]

RadialGradient is a kind of gradient that fills a graphical element by smoothly changing color values in a circle.

Description

RadialGradient is a kind of gradient that fills a graphical element by smoothly changing color values between gradient
stops in a circle. The change occurs from a focus point in the circle (which does not have to be at the center) to its outside
radius. The center point of the circle and its radius define the largest (outer most) circle for the gradient, while the focus
point define the smallest (inner most) circle.The center point and focus point are expressed with a ratio, centerX and
focusX, of the width of the graphical element and a ratio, centerY and focusY, of the height of the graphical element. The
radius is expressed as a ratio of the size (width and height) or the graphical element.

Abstract Syntax

• Figure 10.12 (Fills)

Generalizations

• Gradient

Attributes

• + centerX : Real [1] = 0.5 - a real number (>=0 and >=1) representing a ratio of the graphical element's width that is the
x center point of the gradient.

• + centerY : Real [1] = 0.5 - a real number (>=0 and >=1) representing a ratio of the graphical element's width that is the
y center point of the gradient.

• + radius : Real [1] = 0.5 - a real number (>=0 and >=1) representing a ratio of the graphical element's size that is the
radius of the gradient.

• + focusX : Real [1] = 0.5 - a real number (>=0 and >=1) representing a ratio of the graphical element's width that is the
x focus point of the gradient.

• + focusY : Real [1] = 0.5 - a real number (>=0 and >=1) representing a ratio of the graphical element's width that is the
y focus point of the gradient.

Constraints

• valid_center_point: the center point coordinates must be between 0 and 1
[OCL] centerX>=0 and centerX<=1 and centerY>=0 and centerY<=1

• valid_focus_point: the focus point coordinates must be between 0 and 1
[OCL] focusX>=0 and focusX<=1 and focusY>=0 and focusY<=1

• valid_radius: the radius must be between 0 and 1
[OCL] radius>=0 and radius<=1
Diagram Definition, v1.0 47

10.3.27 Rectangle [Class]

Rectangle is a graphical element that defines a rectangular shape with given bounds. A rectangle may be given rounded
corners by setting its corner radius.

Description

Rectangle is a graphical element that renders as a rectangle shape with given bounds in the x-y coordinate system. A
rectangle may have rounded corners by specifying a radius for its corners. A radius of 0 specifies a regular rectangle with
sharp corners.

Abstract Syntax

• Figure 10.9 (Primitive Elements)

Generalizations

• GraphicalElement

Attributes

• + bounds : Bounds [1] - the bounds of the rectangle in the x-y coordinate system.

• + cornerRadius : Real [1] = 0 - a radius for the rectangle's rounded corners. When the radius is 0, the rectangle is drawn
with sharp corners.

10.3.28 Rotate [DataType]

Rotate is a kind of transform that rotates a graphical element by a given angle about a given center point in the x-y
coordinate system.

Description

Rotate is a kind of transform that rotates a graphical element by a given angle (in degrees) about a given center point in
the x-y coordinate system. The center point is optional and when not specified, it is considered to be the origin (0,0) point
of the x-y coordinate system. Rotate is equivalent to the Matrix transform [cos(angle) sin(angle) -sin(angle) cos(angle) 0
0] around the origin (see section 10.3.19).

Abstract Syntax

• Figure 10.13 (Transforms)

Generalizations

• Transform

Attributes

• + angle : Real [1] - a real number representing the angle (in degrees) of rotation. Both positive (clock-wise) and
negative (counter-clock-wise) values are allowed.

• + center : Point [0..1] - a point in the x-y coordinate system about which the rotation is performed. If the point is not
specified, it is assumed to be the origin of the x-y coordinate system.
48 Diagram Definition, v1.0

10.3.29 Scale [DataType]

Scale is a kind of transform that scales (resizes) a graphical element by a given factor in the x-y coordinate system.

Description

Scale is a kind of transform that resizes a graphical element by a given scaling factor along the x and y axes. Scale is
equivalent to the Matrix transform [factorX 0 0 factorY 0 0] (see section 10.3.19).

Abstract Syntax

• Figure 10.13 (Transforms)

Generalizations

• Transform

Attributes

• + factorX : Real [1] - a real number (>=0) representing a scale factor along the x-axis.

• + factorY : Real [1] - a real number(>=0) representing a scale factor along the y-axis.

Constraints

• non-negative-scale: scale factors cannot be negative.
[OCL] factorX>=0 and factorY>=0

10.3.30 Skew [DataType]

Skew is a kind of transform that skews (deforms) a graphical element by given angles in the x-y coordinate system.

Description

Skew is a kind of transform that skews a graphical element by two angles (in degrees) along the x axis and the y axis.
Skew is equivalent to the Matrix transform [1 tan(angleY) tax(angleX) 1 0 0] (see section 10.3.19).

Abstract Syntax

• Figure 10.13 (Transforms)

Generalizations

• Transform

Attributes

• + angleX : Real [1] - a real number representing the angle (in degrees) of skew along the x-axis. Both positive (clock-
wise) and negative (counter-clock-wise) values are allowed.

• + angleY : Real [1] - a real number representing the angle (in degrees) of skew along the y-axis. Both positive (clock-
wise) and negative (counter-clock-wise) values are allowed.
Diagram Definition, v1.0 49

10.3.31 Style [Class]

Style contains formatting properties that affect the appearance or style of graphical elements.

Description

Style represents a bag of properties (e.g. fontName, fillColor or strokeWidth) that affect the appearance or style of
graphical elements rather than their geometry. A style can either be local to (owned by) a graphical element or shared
between (referenced by) several graphical elements (e.g. all UML dependency connectors have dashed lines), in which
case it is owned by the canvas. Shared styles help reduce the footprint of graphical models. A value set to a local style
property overrides one that is set to the same property on a shared style referenced by the same graphical element.Style
properties are typically defined as optional to allow the state of "unset" to be legal. This is needed to implement style
inheritance, where an unset style property in one graphical element inherits its value from the closest graphical element in
its group chain that has a value set for that property.

The above semantics effectively specify that a value for a style property is based on the following mechanisms (in order
of precedence):

• if there is a cascading value (set on a local style or a shared style with the local value taking precedence), use it.

• Otherwise, if a cascading value is available from a graphical element in the group chain, use it from the closest group.

• Otherwise, use the style property's default value.

Abstract Syntax

• Figure 10.8 (Graphical Element)

• Figure 10.10 (Group Elements)

• Figure 10.11 (Style)

Attributes

• + fillColor : Color [0..1] - a color that is used to paint the enclosed regions of graphical element. A fillColor value is
exclusive with a fill value. If both are specified, the fill value is used. If none is specified, no fill is applied (i.e. the
element becomes see-through).

• + fillOpacity : Real [0..1] - a real number (>=0 and <=1) representing the opacity of the fill or fillColor used to paint a
graphical element. A value of 0 means totally transparent, while a value of 1 means totally opaque. The default is 1.

• + strokeWidth : Real [0..1] - a real number (>=0) representing the width of the stroke used to paint the outline of a
graphical element. A value of 0 specifies no stroke is painted. The default is 1.

• + strokeOpacity : Real [0..1] - a real number (>=0 and <=1) representing the opacity of the stroke used for a graphical
element. A value of 0 means totally transparent, while a value of 1 means totally opaque. The default is 1.

• + strokeColor : Color [0..1] - the color of the stroke used to paint the outline of a graphical element. The default is black
(red=0, green=0, blue=0).

• + strokeDashLength : Real [*] {ordered, nonunique} - a list of real numbers specifying a pattern of alternating dash and
gap lengths used in stroking the outline of a graphical element with the first one specifying a dash length. The size of
the list is expected to be even. If the list is empty, the stroke is drawn solid. The default is empty list.
50 Diagram Definition, v1.0

• + fontSize : Real [0..1] - a real number (>=0) representing the size (in unit of length) of the font used to render a text
element. The default is 10.

• + fontName : String [0..1] - the name of the font used to render a text element (e.g. "Times New Roman", "Arial" or
"Helvetica"). The default is "Arial".

• + fontColor : Color [0..1] - the color of the font used to render a text element. The default is black (red=0, green=0,
blue=0).

• + fontItalic : Boolean [0..1] - whether the font used to render a text element has an italic style. The default is false.

• + fontBold : Boolean [0..1] - whether the font used to render a text element has a bold style. The default is false.

• + fontUnderline : Boolean [0..1] - whether the font used to render a text element has an underline style. The default is
false.

• + fontStrikeThrough : Boolean [0..1] - whether the font used to render a text element has a strike-through style. The
default is false.

Associations

• + fill : Fill [0..1] - a reference to a fill that is used to paint the enclosed regions of a graphical element. A fill value is
exclusive with a fillColor value. If both are specified, the fill value is used. If none is specified, no fill is applied (i.e.
the element becomes see-through).

Constraints

• valid_font_size: the font size is non-negative
[OCL] fontSize >= 0

• valid_fill_opacity: the stroke width is non-negative
[OCL] fillOpacity >= 0 and fillOpacity <=1

• valid_stroke_width: the stroke width is non-negative
[OCL] strokeWidth >= 0

• valid_dash_length_size: the size of the stroke dash length list must be even.
[OCL] strokeDashLength->size().mod(2) = 0

• valid_stroke_opacity: the opacity of the fill is non-negative
[OCL] strokeOpacity >= 0 and strokeOpacity <=1

10.3.32 Text [Class]

Text is a graphical element that defines a shape that renders a character string within a bounding box.

Description

Text is a graphical element that renders a given sequence of characters within a bounding box. This means the text could
be wrapped into multiple lines (at the edges of the box) and/or, if there is no extra room in the box, the remaining text is
summarized with ellipses (...) at the end.The text lines are rendered along the width (x-axis) of the bounding box
according to the chosen alignment option, as follows:

• Alignment::start: the text lines' start edges are aligned with the start edge of the bounding box

• Alignment::end: the text lines' end edges are aligned with the end edge of the bounding box
Diagram Definition, v1.0 51

• Alignment::center: the text lines' centers are aligned with the center of the bounding box

Abstract Syntax

• Figure 10.9 (Primitive Elements)

Generalizations

• GraphicalElement

Attributes

• + data : String [1] - the text as a string of characters.

• + bounds : Bounds [1] - the bounds inside which the text is rendered (possibly wrapped into multiple lines)

• + alignment : AlignmentKind [1] - the text alignment when wrapped into multiple lines.

10.3.33 Transform [Abstract DataType]

Transform defines an operation that changes the geometry of a graphical element in a specific way.

Description

Transform is an operation that changes the geometry of a graphical element in a specific way. When a transform is
applied to a non-group element, it changes the coordinates and lengths defined on that element. When it is applied to a
group element, the transform is applied to each member of the group.

Abstract Syntax

• Figure 10.13 (Transforms)

Specializations

• Matrix

• Rotate

• Skew

• Translate

• Scale

10.3.34 Translate [DataType]

Translate is a kind of transform that translates (moves) a graphical element by a given delta along the x-y coordinate
system.

Description

Translate is a kind of transform that moves a graphical element by a given delta (deltaX, deltaY) along the x- y axes.
Translate is equivalent to the Matrix transform [1 0 0 1 deltaX deltaY] (see section 10.3.19).
52 Diagram Definition, v1.0

Abstract Syntax

• Figure 10.13 (Transforms)

Generalizations

• Transform

Attributes

• + deltaX : Real [1] - a real number representing a translate delta along the x-axis. Both positive and negative values are
allowed.

• + deltaY : Real [1] - a real number representing a translate delta along the y-axis. Both positive and negative values are
allowed.
Diagram Definition, v1.0 53

54 Diagram Definition, v1.0

Annex A - UML Diagram Definition Example

(Informative)

This annex gives an example of using the DD specification to specify the diagram definition of a small subset of UML.
Subsection A.1 gives the UML DI as an extension of DI. Subsection A.2 gives the mapping from this UML DI to DG.

A.1 UML DI

Figure A.1 - UML Plane

Figure A.2 - UML Shape
Diagram Definition, v1.0 55

Figure A.3 - UML Edge

Figure A.4 - UML DiagramElement

Figure A.5 - UML Compartment
56 Diagram Definition, v1.0

Figure A.6 - UML Label

Figure A.7 - UML Style

A.2 Mapping UML DI to DG using QVTo

modeltype DC uses 'http://www.omg.org/spec/DD/20100525/DC';

modeltype DI uses 'http://www.omg.org/spec/DD/20100525/DI';

modeltype DG uses 'http://www.omg.org/spec/DD/20100525/DG';

modeltype UMLDI uses 'http://www.omg.org/spec/UML/20100525/DI';

modeltype UML uses 'http://www.eclipse.org/uml2/3.0.0/UML';

transformation umldi2dg(in umldi : UMLDI, out DG) {

 property interfaceRealizationStyle = object DG::Style {

 strokeDashLength := Sequence {2, 2};

 };

 property interfaceRealizationMarker = object DG::Marker {

 size := object DC::Dimension {width := 10; height := 10};
Diagram Definition, v1.0 57

 reference := object DC::Point {x := 10; y := 5};

 member += object DG::Path {

 command += object DG::MoveTo { point := object DC::Point{ x:=0; y:=0 } };

 command += object DG::LineTo { point := object DC::Point{ x:=10; y:=5 } };

 command += object DG::LineTo { point := object DC::Point{ x:=0; y:=10 } };

 };

 };

 main() {

 umldi.objectsOfType(UMLDI::UMLPlane)->map planeToGraphicalElement();

 }

 mapping UMLDI::UMLPlane::planeToGraphicalElement() : DG::Canvas

 inherits DI::DiagramElement::diagramElementToGraphicalElement

 {

 member += self.planeElement->map planeElementToGraphicalElement();

 marker += interfaceRealizationMarker;

 style += interfaceRealizationStyle;

 }

 mapping DI::PlaneElement::planeElementToGraphicalElement() : DG::Group

 disjuncts UMLDI::UMLShape::shapeToGraphicalElement, UMLDI::UMLEdge::edgeToGraphicalElement {}

 mapping UMLDI::UMLShape::shapeToGraphicalElement() : DG::Group

 inherits DI::DiagramElement::diagramElementToGraphicalElement

 {

 member += self.umlElement.map shapeToGraphicalElement(self);

 member += self.label.map labelToGraphicalElement();

 member += self.compartment->map compartmentToGraphicalElement();

 }

 mapping UMLDI::UMLEdge::edgeToGraphicalElement() : DG::Group

 inherits DI::DiagramElement::diagramElementToGraphicalElement

 {
58 Diagram Definition, v1.0

 member += self.umlElement.map edgeToPolyline(self);

 member += self.label.map labelToGraphicalElement();

 }

 mapping UMLDI::UMLCompartment::compartmentToGraphicalElement() : DG::Group

 inherits DI::DiagramElement::diagramElementToGraphicalElement

 {

 member := object DG::Rectangle { bounds := newBounds(self.bounds) };

 member += self.label.map labelToGraphicalElement();

 member += self.planeElement->map planeElementToGraphicalElement();

 }

 mapping UMLDI::UMLLabel::labelToGraphicalElement() : DG::Text

 disjuncts

 UMLDI::UMLLabel::labelToGraphicalElement$1,

 UMLDI::UMLLabel::labelToGraphicalElement$2,

 UMLDI::UMLLabel::labelToGraphicalElement$3,

 UMLDI::UMLLabel::labelToGraphicalElement$4,

 UMLDI::UMLLabel::labelToGraphicalElement$5,

 UMLDI::UMLLabel::labelToGraphicalElement$6

 {}

 mapping UMLDI::UMLLabel::labelToGraphicalElement$1() : DG::Text

 inherits DI::DiagramElement::diagramElementToGraphicalElement

 when { self.kind = UMLDI::UMLLabelKind::title }{

 bounds := newBounds(self.bounds);

 var compartment = self.owningElement.oclAsType(UMLDI::UMLCompartment);

 data := compartment.title();

 alignment := DC::AlignmentKind::center;

 }

 mapping UMLDI::UMLLabel::labelToGraphicalElement$2() : DG::Text

 inherits DI::DiagramElement::diagramElementToGraphicalElement
Diagram Definition, v1.0 59

 when { self.kind = UMLDI::UMLLabelKind::name }{

 var diagramElement = self.owningElement.oclAsType(UMLDI::UMLDiagramElement);

 var namedElement = diagramElement.umlElement.oclAsType(UML::NamedElement);

 data := namedElement.name(diagramElement);

 alignment := DC::AlignmentKind::center;

 }

 mapping UMLDI::UMLLabel::labelToGraphicalElement$3() : DG::Text

 inherits DI::DiagramElement::diagramElementToGraphicalElement

 when { self.kind = UMLDI::UMLLabelKind::sourceRole }

 {

 var association = self.owningElement.modelElement.oclAsType(UML::Association);

 data := association.memberEnd->at(1).role();

 }

 mapping UMLDI::UMLLabel::labelToGraphicalElement$4() : DG::Text

 inherits DI::DiagramElement::diagramElementToGraphicalElement

 when { self.kind = UMLDI::UMLLabelKind::targetRole }{

 var association = self.owningElement.modelElement.oclAsType(UML::Association);

 data := association.memberEnd->at(2).role();

 }

 mapping UMLDI::UMLLabel::labelToGraphicalElement$5() : DG::Text

 inherits DI::DiagramElement::diagramElementToGraphicalElement

 when { self.kind = UMLDI::UMLLabelKind::sourceMultiplicity }{

 var association = self.owningElement.modelElement.oclAsType(UML::Association);

 data := association.memberEnd->at(1).multiplicity();

 }

 mapping UMLDI::UMLLabel::labelToGraphicalElement$6() : DG::Text

 inherits DI::DiagramElement::diagramElementToGraphicalElement

 when { self.kind = UMLDI::UMLLabelKind::targetMultiplicity }{

 var association = self.owningElement.modelElement.oclAsType(UML::Association);

 data := association.memberEnd->at(2).multiplicity();
60 Diagram Definition, v1.0

 }

 abstract mapping DI::DiagramElement::diagramElementToGraphicalElement() : DG::GraphicalElement {

 var s : DG::Style;

 if self.localStyle->notEmpty() then

 s := self.map styleToDGStyle(self.localStyle.oclAsType(UMLDI::UMLStyle), s)

 endif;

 if self.sharedStyle->notEmpty() then

 s := self.map styleToDGStyle(self.sharedStyle.oclAsType(UMLDI::UMLStyle), s)

 endif;

 localStyle := s;

 }

 mapping DI::DiagramElement::styleToDGStyle (ds : UMLDI::UMLStyle, gs : DG::Style) : DG::Style {

 init { result := gs }

 if not ds.fontName.oclIsUndefined() then fontName := ds.fontName endif;

 if not ds.fontSize.oclIsUndefined() then fontSize := ds.fontSize endif;

 }

 mapping UML::Element::edgeToPolyline(edge:UMLDI::UMLEdge) : DG::Polyline {

 point := edge.waypoint->collect(p|newPoint(p));

 }

 mapping UML::InterfaceRealization::edgeToPolyline(edge:UMLDI::UMLEdge) : DG::Polyline

 inherits UML::Element::edgeToPolyline {

 sharedStyle := interfaceRealizationStyle;

 endMarker := interfaceRealizationMarker;

 }

 mapping UML::Association::edgeToPolyline(edge:UMLDI::UMLEdge) : DG::Polyline

 inherits UML::Element::edgeToPolyline {

 }

 mapping UML::Element::shapeToGraphicalElement(shape:UMLDI::UMLShape) : DG::GraphicalElement {
Diagram Definition, v1.0 61

 init {}

 }

 mapping UML::Classifier::shapeToGraphicalElement(shape:UMLDI::UMLShape) : DG::GraphicalElement {

 init {

 result := object DG::Rectangle { bounds := newBounds(shape.bounds) };

 }

 }

 mapping UML::Property::shapeToGraphicalElement(shape:UMLDI::UMLShape) : DG::GraphicalElement {

 init {

 result := object DG::Text {

 bounds := newBounds(shape.bounds);

 alignment = DC::AlignmentKind::start;

 data := self.name(shape)

 };

 }

 }

 mapping UML::Operation::shapeToGraphicalElement(shape:UMLDI::UMLShape) : DG::GraphicalElement {

 init {

 result := object DG::Text {

 bounds := newBounds(shape.bounds);

 alignment = DC::AlignmentKind::start;

 data := self.name(shape)

 };

 }

 }

 query UMLDI::UMLCompartment::title() : String {

 return switch {

 case (self.kind = UMLDI::UMLCompartmentKind::attribute)

 'Attributes';

 case (self.kind = UMLDI::UMLCompartmentKind::operation)
62 Diagram Definition, v1.0

 'Operations';

 };

 }

 query UML::NamedElement::name(de : UMLDI::UMLDiagramElement) : String {

 return self.name(de.isQualifiedName)

 }

 query UML::Property::name(de : UMLDI::UMLDiagramElement) : String {

 return self.visibility() + self.derived_() + self.name(de.isQualifiedName) + self.type(de.isQualifiedName)

 }

 query UML::Operation::name(de : UMLDI::UMLDiagramElement) : String {

 return self.visibility() + self.name(de.isQualifiedName) + '()' + self.type(de.isQualifiedName)

 }

 query UML::NamedElement::name(qualified : Boolean) : String {

 return if qualified then self.qualifiedName else self.name endif

 }

 query UML::NamedElement::visibility() : String {

 return switch {

 case (self.visibility = UML::VisibilityKind::public) '+';

 case (self.visibility = UML::VisibilityKind::private) '-';

 case (self.visibility = UML::VisibilityKind::private) '#';

 else '';

 }

 }

 query UML::Property::derived_() : String {

 return if self.isDerived then '/' else '' endif

 }

 query UML::Association::sourceRole() : String {
Diagram Definition, v1.0 63

 return self.memberEnd->at(1).role();

 }

 query UML::Association::targetRole() : String {

 return self.memberEnd->at(2).role();

 }

 query UML::Association::sourceMultiplicity() : String {

 return self.memberEnd->at(1).multiplicity();

 }

 query UML::Association::targetMultiplicity() : String {

 return self.memberEnd->at(2).multiplicity();

 }

 query UML::Property::multiplicity() : String {

 return '[' + self.lower.toString() + '..' + self.upper.toString() + ']'

 }

 query UML::Property::role() : String {

 return self.visibility() +

 self.derived_() +

 self.name(false)

 }

 query UML::TypedElement::type(qualified : Boolean) : String {

 return if self.type->notEmpty() then ' : ' + self.type.name(qualified) else '' endif

 }

 query UML::Operation::type(qualified : Boolean) : String {

 var p : UML::TypedElement = self.getReturnResult();

 return if p->notEmpty() then p.type(qualified) else '' endif

 }

64 Diagram Definition, v1.0

 helper newPoint(p : DC::Point) : DC::Point {

 return p.clone().oclAsType(DC::Point)

 }

 helper newBounds(b : DC::Bounds) : DC::Bounds {

 return b.clone().oclAsType(DC::Bounds)

 }

}

Diagram Definition, v1.0 65

66 Diagram Definition, v1.0

Annex B - DG to SBV Mapping

(Informative)

This annex, expected to be completed by the FTF, will give a mapping from the Diagram Graphics (DG) package to the
Scalable Vector Graphics (SVG) package.
Diagram Definition, v1.0 67

68 Diagram Definition, v1.0

	1 Scope
	2 Conformance Criteria
	3 References
	3.1 Normative References
	3.2 Informative References

	4 Terms and Definitions
	5 Symbols
	6 Additional Information
	6.1 How to Read this Specification
	6.2 Changes or extensions to OMG specifications
	6.3 Acknowledgements

	7 Architecture
	8 Diagram Common
	8.1 Overview
	8.1.1 Measurement Unit
	8.1.2 Coordinate System
	8.1.3 Z-Order
	8.1.4 Rotation

	8.2 Abstract Syntax
	8.3 Classifier Descriptions
	8.3.1 AlignmentKind [Enumeration]
	8.3.2 Boolean [PrimitiveType]
	8.3.3 Bounds [DataType]
	8.3.4 Color [DataType]
	8.3.5 Dimension [DataType]
	8.3.6 Integer [PrimitiveType]
	8.3.7 KnownColor [Enumeration]
	8.3.8 Point [DataType]
	8.3.9 Real [PrimitiveType]
	8.3.10 String [PrimitiveType]

	9 Diagram Interchange
	9.1 Overview
	9.2 Abstract Syntax
	9.3 Classifier Descriptions
	9.3.1 Diagram [Class]
	9.3.2 DiagramCollection [Class]
	9.3.3 DiagramElement [Abstract Class]
	9.3.4 Edge [Abstract Class]
	9.3.5 Label [Abstract Class]
	9.3.6 Plane [Abstract Class]
	9.3.7 PlaneElement [Abstract Class]
	9.3.8 Shape [Abstract Class]
	9.3.9 Style [Abstract Class]

	10 Diagram Graphics
	10.1 Overview
	10.2 Abstract Syntax
	10.3 Classifier Descriptions
	10.3.1 Canvas [Class]
	10.3.2 Circle [Class]
	10.3.3 ClipPath [Class]
	10.3.4 ClosePath [DataType]
	10.3.5 CubicCurveTo [DataType]
	10.3.6 Ellipse [Class]
	10.3.7 EllipticalArcTo [DataType]
	10.3.8 Fill [Abstract Class]
	10.3.9 GradientStop [DataType]
	10.3.10 GraphicalElement [Abstract Class]
	10.3.11 Group [Class]
	10.3.12 Image [Class]
	10.3.13 Line [Class]
	10.3.14 LineTo [DataType]
	10.3.15 LinearGradient [Class]
	10.3.16 MarkedElement [Class]
	10.3.17 Marker [Class]
	10.3.18 Matrix [DataType]
	10.3.19 MoveTo [DataType]
	10.3.20 Path [Class]
	10.3.21 PathCommand [Abstract DataType]
	10.3.22 Pattern [Class]
	10.3.23 Polygon [Class]
	10.3.24 Polyline [Class]
	10.3.25 QuadraticCurveTo [DataType]
	10.3.26 RadialGradient [Class]
	10.3.27 Rectangle [Class]
	10.3.28 Rotate [DataType]
	10.3.29 Scale [DataType]
	10.3.30 Skew [DataType]
	10.3.31 Style [Class]
	10.3.32 Text [Class]
	10.3.33 Transform [Abstract DataType]
	10.3.34 Translate [DataType]

	A.1 UML DI
	A.2 Mapping UML DI to DG using QVTo

	Annex A - UML Diagram Definition Example
	Annex B - DG to SBV Mapping

