
DDS Data Local Reconstruction Layer
(DLRL)

This OMG document accompanies the the RTF4 Recommendation and Report for this
specification. The base document for the revised specification is formal/07-01-01.
This document is the result of applying to the adopted specification the issues resolved by the
RTF4.

Note: All changes in this document relative to the base document are the result of applying the
resolution of issue 19366.

OMG Revised Specification (RTF4)
ptc/14-02-??DDS Data Local Reconstruction Layer (DLRL), v1.4

Contents
Contents i

Preface 1-iii

1. Overview 1-1

1.1 Introduction 1-1

1.2 Purpose 1-2

2. Data Local Reconstruction Layer (DLRL) 3-1

2.1 Platform Independent Model (PIM) 3-1
2.1.1 Overview and Design Rationale 3-1
2.1.2 DLRL Description 3-2
2.1.3 What Can Be Modeled with DLRL 3-2
2.1.4 Structural Mapping 3-6
2.1.5 Operational Mapping 3-13
2.1.6 Functional Mapping 3-13

2.2 OMG IDL Platform Specific Model (PSM) 3-45
2.2.1 Run-time Entities 3-45
2.2.2 Generation Process 3-62
2.2.3 Example 3-69

 Compliance Points 1

 Syntax for DLRL Queries and Filters 1
June 2014 DDS Data Local Reconstruction Layer (DLRL), v1.4 i

ii DDS Data Local Reconstruction Layer (DLRL), v1.4 June 2014

Preface
Object Management Group

Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership,
not-for-profit computer industry standards consortium that produces and maintains
computer industry specifications for interoperable, portable and reusable enterprise
applications in distributed, heterogeneous environments. Membership includes
Information Technology vendors, end users, government agencies, and academia.

OMG member companies write, adopt, and maintain its specifications following a
mature, open process. OMG's specifications implement the Model Driven
Architecture® (MDA®), maximizing ROI through a full-lifecycle approach to
enterprise integration that covers multiple operating systems, programming languages,
middleware and networking infrastructures, and software development environments.
OMG's specifications include: UML® (Unified Modeling Language™); CORBA®
(Common Object Request Broker Architecture); CWM™ (Common Warehouse
Metamodel); and industry-specific standards for dozens of vertical markets.

More information on the OMG is available at http://www.omg.org/.

OMG Specifications

As noted, OMG specifications address middleware, modeling, and vertical domain
frameworks. A catalog of all OMG Specifications Catalog is available from the OMG
website at:

http://www.omg.org/technology/documents/spec_catalog.htm

Specifications within the Catalog are organized by the following categories:

OMG Modeling Specifications
• UML
June 2014 DDS Data Local Reconstruction Layer (DLRL), v1.4 iii

• MOF

• XMI

• CWM

• Profile specifications.

OMG Middleware Specifications
• CORBA/IIOP

• IDL/Language Mappings

• Specialized CORBA specifications

• CORBA Component Model (CCM).

Platform Specific Model and Interface Specifications
• CORBAservices

• CORBAfacilities

• OMG Domain specifications

• OMG Embedded Intelligence specifications

• OMG Security specifications.

All of OMG’s formal specifications may be downloaded without charge from our
website. (Products implementing OMG specifications are available from individual
suppliers.) Copies of specifications, available in PostScript and PDF format, may be
obtained from the Specifications Catalog cited above or by contacting the Object
Management Group, Inc. at:

OMG Headquarters
250 First Avenue
Suite 100
Needham, MA 02494
USA
Tel: +1-781-444-0404
Fax: +1-781-444-0320
Email: pubs@omg.org

Certain OMG specifications are also available as ISO standards. Please consult
http://www.iso.org

Typographical Conventions

The type styles shown below are used in this document to distinguish programming
statements from ordinary English. However, these conventions are not used in tables or
section headings where no distinction is necessary.
iv DDS Data Local Reconstruction Layer (DLRL), v1.4 June 2014

Helvetica bold - OMG Interface Definition Language (OMG IDL) and syntax
elements.

Courier bold - Programming language elements.

Helvetica - Exceptions

Terms that appear in italics are defined in the glossary. Italic text also represents the
name of a document, specification, or other publication.

Acknowledgments

The following companies submitted and/or supported parts of this specification:

• Objective Interface Systems, Inc.

• Real-Time Innovations, Inc.

• THALES

• The Mitre Corporation

• University of Toronto
June 2014 DDS Data Local Reconstruction Layer (DLRL), v1.4 v

vi DDS Data Local Reconstruction Layer (DLRL), v1.4 June 2014

Overview 1
Contents

This chapter contains the following sections.

1.1 Introduction

This specification describes a levels of interfaces:

• A lower DCPS (Data-Centric Publish-Subscribe) level that is targeted towards the
efficient delivery of the proper information to the proper recipients.

• An optional higher DLRL (Data Local Reconstruction Layer) level, which allows
for a simple integration of the Service into the application layer.

This specification describes a high-level Data Local Reconstruction Layer (DLRL)
interface to DDS that allows a simple integration of the DDS Service into the application
layer.

The expected application domains require DCPS to be high-performance and predictable
as well as efficient in its use of resources. To meet these requirements it is important that
the interfaces are designed in such a way that they:

• allow the middleware to pre-allocate resources so that dynamic resource allocation
can be reduced to the minimum,

• avoid properties that may require the use of unbounded or hard-to-predict resources,
and

Section Title Page

“Introduction” 1-1

“Purpose” 1-2
June 2014 DDS Data Local Reconstruction Layer (DLRL), v1.4 1-1

1

• minimize the need to make copies of the data.

Even at the DCPS level, DLRL uses typed interfaces. Ttyped interfaces, (i.e., interfaces
that take into account the actual data types), are preferred to the extent possible. Typed
interfaces offer the following advantages:

• They are simpler to use: the programmer directly manipulates constructs that
naturally represent the data.

• They are safer to use: verifications can be performed at compile time.

• They can be more efficient: the execution code can rely on the knowledge of the
exact data type it has in advance, to e.g., pre-allocate resources.

It should be noted that the decision to use typed interfaces implies the need for a
generation tool to translate type descriptions into appropriate interfaces and
implementations that fill the gap between the typed interfaces and the generic
middleware.

QoS (Quality of Service) is a general concept that is used to specify the behavior of a
service. Programming service behavior by means of QoS settings offers the advantage
that the application developer only indicates ‘what’ is wanted rather than ‘how’ this QoS
should be achieved. Generally speaking, QoS is comprised of several QoS policies. Each
QoS policy is then an independent description that associates a name with a value.
Describing QoS by means of a list of independent QoS policies gives rise to more
flexibility.

This specification is designed to allow a clear separation between the publish and the
subscribe sides, so that an application process that only participates as a publisher can
embed just what strictly relates to publication. Similarly, an application process that
participates only as a subscriber can embed only what strictly relates to subscription.

1.2 Purpose

Many real-time applications have a requirement to model some of their communication
patterns as a pure data-centric exchange, where applications publish (supply or stream)
“data” which is then available to the remote applications that are interested in it.
Relevant real-time applications can be found in C4I, industrial automation, distributed
control and simulation, telecom equipment control, sensor networks, and network
management systems. More generally, any application requiring (selective) information
dissemination is a candidate for a data-driven network architecture.

Predictable distribution of data with minimal overhead is of primary concern to these
real-time applications. Since it is not feasible to infinitely extend the needed resources, it
is important to be able to specify the available resources and provide policies that allow
the middleware to align the resources to the most critical requirements. This necessity
translates into the ability to control Quality of Service (QoS) properties that affect
predictability, overhead, and resource utilization.

The need to scale to hundreds or thousands of publishers and subscribers in a robust
manner is also an important requirement. This is actually not only a requirement of
scalability but also a requirement of flexibility: on many of these systems, applications
1-2 DDS Data Local Reconstruction Layer (DLRL), v1.4 June 2014

1

are added with no need/possibility to reconstruct the whole system. Data-centric
communications decouples senders from receivers; the less coupled the publishers and
the subscribers are, the easier these extensions become.

Distributed shared memory is a classic model that provides data-centric exchanges.
However, this model is difficult to implement efficiently over a network and does not
offer the required scalability and flexibility. Therefore, another model, the Data-Centric
Publish-Subscribe (DCPS) model, has become popular in many real-time applications.
This model builds on the concept of a “global data space” that is accessible to all
interested applications. Applications that want to contribute information to this data
space declare their intent to become “Publishers.” Similarly, applications that want to
access portions of this data space declare their intent to become “Subscribers.” Each time
a Publisher posts new data into this “global data space,” the middleware propagates the
information to all interested Subscribers.

Underlying any data-centric publish subscribe system is a data model. This model
defines the “global data space” and specifies how Publishers and Subscribers refer to
portions of this space. The data-model can be as simple as a set of unrelated data-
structures, each identified by a topic and a type. The topic provides an identifier that
uniquely identifies some data items within the global data space1. The type provides
structural information needed to tell the middleware how to manipulate the data and also
allows the middleware to provide a level of type safety. However, the target applications
often require a higher-level data model that allows expression of aggregation and
coherence relationships among data elements.

Anothercommon need is a Data Local Reconstruction Layer (DLRL) that automatically
reconstructs the data locally from the updates and allows the application to access the
data ‘as if’ it were local. In that case, the middleware not only propagates the
information to all interested subscribers but also updates a local copy of the information.

There are commercially-available products that implement DCPS fully and the DLRL
partially (among them, NDDS from Real-Time Innovations and Splice from THALES
Naval Nederland); however, these products are proprietary and do not offer standardized
interfaces and behavior that would allow portability of the applications built upon them.
The purpose of this specification is to offer those standardized interfaces and behavior.

This specification focuses on the portability of applications using the Data-Distribution
Service. This is consistent with the requirements expressed in the RFP. Wire-protocol
interoperability between vendor implementations is planned as an extension.The DDS
Specification offers an API that allows applications to access data in a logical Global
Data Space. The DDS APIs provide direct access to this “shared data” in a uniform
manner, meaning all applications share a common view of the data in terms of its Topic
addressing and data-schemas.

1. In addition to topic and type, it is sometimes desirable for subscriptions to further refine the
data they are interested in based on the content of the data itself. These so called content-
based subscriptions are gaining popularity in large-scale systems.
June 2014 DDS Data Local Reconstruction Layer (DLRL), v1.4 1-3

1

However some applications require a local view of this data that is organized to fit the
purpose and business logic of the application, which may be different for each individual
process that accesses the Global Data.

This (DLRL) specification addresses this need by providing a convenient locally-defined
Object API that abstracts the access to distributed information. The Data Local
Reconstruction Layer (DLRL) automatically reconstructs data locally from the updates
delivered by DDS allowing the application to access the data ‘as if’ it were local.

The combination of DLRL and DDS not only propagates the information to all interested
subscribers but also updates a local copy of the information in the local format specified
by each application.
1-4 DDS Data Local Reconstruction Layer (DLRL), v1.4 June 2014

Data Local Reconstruction Layer
(DLRL) 2
Contents

This chapter contains the following sections.

2.1 Platform Independent Model (PIM)

DLRL stands for Data Local Reconstruction Layer. It is an optional layer that may be
built on top of the DCPS layer. It is defined as a layer built on top of the Data-
Distribution Service for Real-Time Systems (DDS).

2.1.1 Overview and Design Rationale

The purpose of this DLRL layer is to provide more direct access to the exchanged data,
seamlessly integrated with the native-language constructs. Object orientation has been
selected for all the benefits it provides in software engineering.

As for DCPS, typed interfaces1 have been selected, for the same reasons of ease of use
and potential performance.

Section Title Page

“Platform Independent Model (PIM)” 2-1

“OMG IDL Platform Specific Model (PSM)” 2-45

1.In the sense, interfaces whose type depend on application-defined types.
June 2014 DDS Data Local Reconstruction Layer (DLRL), v1.4 2-1

2

As far as possible, DLRL is designed to allow the application developer to use the
underlying DCPSDDS features. However, this may conflict with the main purpose of this
layer DLRL, which is ease of use and seamless integration into the application.
Therefore, some DCPSDDS features may only be used through DCPSDDS and are not
accessible from the DLRL.

2.1.2 DLRL Description

With DLRL, the application developer will be able to:

• Describe classes of objects with their methods, data fields and relations.

• Attach some of those data fields to DCPS entities.

• Manipulate those objects (i.e., create, read, write, delete) using the native language
constructs that will, behind the scenes, activate the attached DCPS entities in the
appropriate way.

• Have those objects managed in a cache of objects, ensuring that all the references
that point to a given object actually point to the same language cell.

This specification explains the following:

• Which object-oriented constructs can be used to define DLRL objects.

• Which functions are applicable to those objects (e.g., create, delete, etc.).

• The different levels of mapping between the two layers:

• structural mapping (i.e., relations between DLRL objects and DCPS data).

• operational mapping (i.e., mapping of the DLRL objects to the DCPS entities
(Publisher, DataWriter, etc.) including QoS settings, combined subscriptions.

• functional mapping (i.e., relations between the DLRL functions (mainly access to
the DLRL objects) and the DCPS functions (write/publish).

2.1.3 What Can Be Modeled with DLRL

2.1.3.1 DLRL objects

DLRL allows an application to describe objects with:

• methods;

• attributes that can be:

• local (i.e., that do not participate in the data distribution) or,

• shared (i.e., that participate in the data distribution process and are thus attached
to DCPS entities).

Only shared attributes are of concern to the Data Distribution Service; therefore, the
remaining part of this document will only deal with these properties.

A DLRL object has at least one shared attribute. Shared attributes are typed2 and can be
either mono-valued or multi-valued:
2-2 DDS Data Local Reconstruction Layer (DLRL), v1.4 June 2014

2

• Mono-valued:

• of a simple type:

• basic-type (long, short, char, string, etc.)
• enumeration-type
• simple structure3

• reference to a DLRL object.

For these mono-valued attributes, type enforcement is as follows:

• Strict type equality for simple types.

• Equality based on inclusion for reference to a DLRL object (i.e., a reference to a
derived object can be placed in a reference to a base object).

• Multi-valued (collection-based):

• two collection basis of homogeneously-typed items:

• a list (ordered with index)
• a map (access by key).
• a set (not ordered).

Type enforcement for collection elements is as follows:

• Strict type equality for simple types.

• Equality based on type inclusion for references to DLRL objects (i.e., a reference
to a derived object can be placed in a collection typed for base objects).

DLRL will manage DLRL objects in a cache (i.e., two different references to the same
object – an object with the same identity – will actually point to the same memory
location).

Object identity is given by an oid (object ID) part of any DLRL object.

2.1.3.2 Relations among DLRL objects

Relations between DLRL objects are of two kinds:

• Inheritance that organizes the DLRL classes.

• Associations that organize the DLRL instances.

2.1.3.2.1 Inheritance

Single inheritance is allowed between DLRL objects.

Any object inheriting from a DLRL object is itself a DLRL object.

ObjectRoot is the ultimate root for all DLRL objects.

2. At the PIM level, we describe the minimum set that is required to describe shared attributes.
This does not prevent a specific PSM from extending this minimum set, in case this make
sense and does not affect the ability of this layer to be implemented on top of DCPS.

3. For instance, structures that can be mapped inside one DCPS data.
June 2014 DDS Data Local Reconstruction Layer (DLRL), v1.4 2-3

2

DLRL objects can, in addition, inherit from any number of native language objects.

2.1.3.2.2 Associations

Supported association ends are either to-1 or to-many. In the following, an association
end is named a relation:

• to-1 relation is featured by a mono-valued attribute (reference to the target object).

• to-many relation is featured by a multi-valued attribute (collection of references to
the target objects).

Supported relations are:

• Plain use-relations (no impact on the object life-cycle).

• Compositions (constituent object lifecycle follows the compound object’s one).

Couples of relations can be managed consistently (one being the inverse of the other), to
make a real association (in the UML sense):

• One plain relation can inverse another plain relation, providing that the types
match: can make 1-1, 1-n, n-m.

• One composition relation can only inverse a to-1 relation to the compound object:
can make 1-1 or 1-n.

Note – Embedded structures are restricted to the ones that can be mapped simply at the
DCPS level. For more complex ones, component objects (i.e., objects linked by a
composition relation) may be used.

2.1.3.3 Metamodel

The following figure represents the DLRL metamodel, i.e., all the constructs that can be
used to describe the ‘shared’ part of a DLRL model. This metamodel is given for
explanation purpose. This specification does not require that it is implemented as such.

Note that two objects that will be part of a DLRL model (namely ObjectRoot that is the
root for all the DLRL classes as well as ObjectHome that is the class responsible for
creating and managing all DLRL objects of a given class) are featured to show the
conceptual relations between the metamodel and the model. They appear in grey on the
schema.
2-4 DDS Data Local Reconstruction Layer (DLRL), v1.4 June 2014

2

Figure 2-1 DLRL Metamodel

Instances of BasicType are:

• long

• short

• char

• octet

• real

• double

• string

• sequence of any of the above

Instances of EnumerationType are all the enumerations.

Instances of SimpleStructType are all the structures that can be mapped in a single DCPS
data.

MultiRelation MonoRelation

MultiRefType

11

SetBase ListBase MapBase

MultiAttribute MonoAttribute

SimpleStructType EnumerationType BasicType

CollectionBase11 Mul tiS impleType

1

11 SimpleType

1

11

1 1

Attribute

owner

Relation

is_composition : Boolean

0..1

0.. 1

0..1

0.. 1

inverse

ownerClass

final : Boolean

11

0..1
*

0..1
*

11

*

1

*

1

*

1

*

1

ObjectHome ObjectRoot

<<create>>

relations attributes

target_type

parent

children

target_type

it em_type

basis basis

target_type target_type

it em_type

<<friend>>
June 2014 DDS Data Local Reconstruction Layer (DLRL), v1.4 2-5

2

2.1.4 Structural Mapping

2.1.4.1 Design Principles

The mapping should not impose unnecessary duplication of data items.

The mapping should not prevent an implementation from being efficient. Therefore,
adding information in DCPS data to help DLRL internal management is allowed.

The mapping should be as flexible as possible. It is therefore specified on an attribute
basis (that means that any attribute, even a simple one, can be located in a DCPS data
structure that is separate from the main one; i.e., the DCPS data structure associated with
the DLRL class)4.

This flexibility is highly desirable to meet specific requirements (e.g., to reuse an
existing DCPS description). However, there are cases when this type of flexibility is not
needed and leads to extra descriptions that could (and should) be avoided. For these
cases, a default mapping is also defined.

2.1.4.2 Mapping rules

Recall that DCPS data can be seen as tables (Topic) whose rows correspond to instances
identified by their key value and whose columns (fields) correspond to data fields. Each
cell contains the value of a given field for a given instance and the key value is the
concatenation of the values of all the fields that make the key definition (itself attached
to the Topic).

Structural mapping is thus very close to Object to Relational mapping in database
management.

Generally speaking, there is some flexibility in designing the DCPS model that can be
used to map a DLRL model. Nevertheless, there are cases where the underlying DCPS
model exists with no provision for storing the object references and no way to modify
them. In that case however, the DCPS topics contain fields (the keys) that allow the
unique identification of instances. With some restrictions concerning inheritance, these
models can also be mapped back into DLRL models. Section 2.1.4.5, “Mapping when
DCPS Model is Fixed,” on page 2-11 is specifically dedicated to that issue.

The mapping rules when some flexibility is allowed in DCPS model are as follows.

2.1.4.2.1 Mapping of Classes

Each DLRL class is associated with at least one DCPS table, which is considered as the
‘main’ table. A DLRL object is considered to exist if it has a corresponding row in this
table. This table contains at least the fields needed to store a reference to that object (see
below).

4. This is needed to efficiently manage inheritance. Therefore extending it to any attribute is
not costly.
2-6 DDS Data Local Reconstruction Layer (DLRL), v1.4 June 2014

2

To facilitate DLRL management and save memory space, it is generally desirable that a
derived class has the same main table as its parent concrete class (if any)5, with the
attributes that are specific to the derived class in an extension table. For example, this
allows the application to load all the instances of a given class (including its derivations)
in a single operation.

2.1.4.2.2 Mapping of an Object Reference

To reference an object, there must be a way to designate it unambiguously and a way to
retrieve the exact class of that object (this last point is needed when the object has to be
locally created based on received information).

Therefore, to reference an object, the following must be stored:

• A string that allows retrieval of the exact class (e.g., name class, or more precisely
a public name that identifies the class unambiguously).

• A number that identifies the object inside this class6 (oid).

The combination of these two pieces of information is called full oid.

There are cases where the indication of the class is not needed, for it can be deduced
from the knowledge embedded in the mapping. A class name is needed when:

• Several classes share the same main table.

• Several classes are targets for the same relation (in other words, when the target
type of a relation is a class that has derived classes).

2.1.4.2.3 Mapping of Attributes and Relations

Mono-valued attributes and relations are mapped to one (or several) cell(s)7 in a single
row whose key is the means to unambiguously reference the DLRL object (i.e., its oid or
its full oid, depending on the owner class characteristics as indicated in the previous
section):

• simple basic attributes -> one cell of corresponding DCPS type;

• enumeration -> one cell of type integer8 (default behavior) or string;

• simple structures -> as many cells as needed to hold the structure;

• reference to another DLRL object (i.e., relation) -> as many cells as needed to
reference unambiguously the referenced object (i.e., its oid, or its full oid as
indicated in the previous section).

5. Excluding, of course, the abstract ObjectRoot (otherwise all the objects will be located in a
single table).

6. Note that, in case several parts are creating objects at the same time, there should be a means
to guarantee that there is no confusion (e.g., by means of two sub-fields, one to designate the
author and one for a sequence number). This is left to the implementation.

7. Depending of the type of the value.
June 2014 DDS Data Local Reconstruction Layer (DLRL), v1.4 2-7

2

Multi-valued attributes are mapped to one (or several) cell(s) in a set of rows (as many as
there are items in the collection), whose key is the means to unambiguously designate the
DLRL object (i.e., oid or full oid) plus an index in the collection.

• For each item, there is one row that contains the following, based on the type of
attribute:

• simple basic type -> one cell of the corresponding DCPS type;

• enumeration -> one cell of type integer or string;

• simple structures -> as many cells as needed to hold the structure;

• reference to another DLRL object -> as many cells as needed to reference
unambiguously the referenced object (i.e., its oid, or its full oid as indicated in the
previous section).

• The key for that row is the means to designate the owner’s object (i.e., its oid or full
oid) + an index, which is:

• An integer if the collection basis is a list (to hold the rank of the item in the list).

• A string or an integer9 if the collection basis is a map (to hold the access key of
the item in the map).

2.1.4.3 Default Mapping

The following mapping rules will be applied by default. This default mapping is
overwritten by any mapping information provided by the application developer.

• Main table

• Name of the DCPS Topic is the DLRL class name.

• Name of the oid fields are:

• “class”
• “oid”

• All the mono-valued attributes of an object are located in that main table

• name of the DCPS Topic is thus DLRL class name;

• name of the DCPS fields:

• name of the DLRL attribute, if only one field is required;
• name of the DLRL attribute, concatenated with the name of each sub-field,

with '.' as separator, otherwise.

• For each multi-valued attribute, a specific DCPS table is allocated

• name of the DCPS Topic is the DLRL class name concatenated with the DLRL
attribute name, with '.' as separator;

• name of the DCPS fields:

8. In the PIM, the type 'integer' has been chosen each time a whole number is needed. In the
PSM, however, a more suitable representation for such numbers (long, short...) will be cho-
sen.

9. String-keyed maps are desired for their openness; however, integer-keyed maps are more
suitable when access performance is desired.
2-8 DDS Data Local Reconstruction Layer (DLRL), v1.4 June 2014

2

• same as above for the value part and the OID part
• "index" for the extra key field

• Inheritance support by means of extension tables gathering all the mono-valued
added attributes:

• this choice is the better as far as memory is concerned;

• it is made possible once it is admitted that all the attributes of a given class are
not located in a single table.

2.1.4.4 Metamodel with Mapping Information

Figure 2-2 represents the DLRL metamodel with the information that is needed to
indicate the structural mapping.

Figure 2-2 DLRL Model with Structural Mapping Information

The three constructs that need added information related to the structural mapping are
Class, Attribute, and Relation.

2.1.4.4.1 Class

The related fields have the following meaning:

• main_topic is the name of the main topic for this class. Any DLRL instance of this
Class is represented by a row in this topic10.

MultiRelation

index_field : String

MonoRelation

MultiRefType

SetBase List Base MapBase

Mul tiAtt ribute

index_field : String

MonoAt tr ibute

SimpleStruct Type EnumerationType BasicType

CollectionBase MultiSimpleType SimpleType

Attribute

topic : String
key_fields[*] : String
target_field : String

Relation

is_composition : Boolean
topic : String
key_fields[*] : String
target_fields[*] : String
full_oid_required : Boolean

Class

final : Boolean
name : String
full_oid_required : Boolean
main_topic : String
oid_field : String
class_field : String

11

11

11

11

11

11

0..1

0..1

0..1

0..1

inverse

11

0..1

*

0..1

*

11

*

1

*

1

*

1

*

1

relations

owner

owner

attributes

target_type

parent

c hildren

target_type

item_type

basis bas is

t arget_type target_type

it em_type
June 2014 DDS Data Local Reconstruction Layer (DLRL), v1.4 2-9

2

• oid_field is the name of the field meant to store the oid of the DLRL object.

• class_field is the name of the field meant to store the name of the Class.

• full_oid_required indicates whether the class name should be the first part of the
actual key; the actual key will be made of:

• (class_field, oid_field) if it is true.

• (oid_field) if it is false.

• final indicates whether or not the class can be extended.

2.1.4.4.2 MonoAttribute

The related fields have the following meaning:

• topic is the name of the table where the related value is located. It may be the same
as the owner Class::main_topic.

• target_field is the field that contains the actual value for the attribute.

• key_fields is the name of the fields that make the key in this topic (1 or 2 depending
on the Class definition).

2.1.4.4.3 MultiAttribute

The related fields have the following meaning:

• topic is the name of the table where the related value is located. It cannot be the
same as the owner Class::topic.

• target_field is the field that contains the actual values for the attribute.

• key_fields is the name of the fields that make the object part of the key in this topic
(1 or 2 depending on the owner Class definition).

• index_field is the name of the item part of the key in this topic (string or integer
depending on the collection type)11.

2.1.4.4.4 MonoRelation

The related fields have the following meaning:

• topic is the name of the table where the related value is located. It may be the same
as the owner Class::topic.

• target_fields are the fields that contain the actual value for the attribute (i.e., what
identifies the target object). It is made of 1 or 2 fields according to the
full_oid_required value).

10.It may have attributes in other topics as well.

11. In other words, all the rows that have the same value for the key_fields constitute the con-
tents of the collection; each individual item in the collection is pointed by (key_fields,
index_field).
2-10 DDS Data Local Reconstruction Layer (DLRL), v1.4 June 2014

2

• key_fields is the name of the fields that make the key in this topic (1 or 2 depending
on the owner Class definition).

• full_oid_required indicates whether that relation needs the full oid to designate
target objects.

• is_composition indicates if it is a mono- or multi-relation.

2.1.4.4.5 MultiRelation

The related fields have the following meaning:

• topic is the name of the table where the related value is located. It cannot be the
same as the owner Class::topic.

• target_fields are the fields that contain the actual values for the attribute (i.e., what
identify the target objects). It is made of 1 or 2 fields according to the
full_oid_required value).

• key_fields is the name of the fields that make the object part of the key in this topic
(1 or 2 depending on the owner Class definition).

• index_field is the name of the item part of the key in this topic (string or integer
depending on the collection type).

• full_oid_required indicates whether that relation needs the full oid to designate
target objects.

• is_composition indicates if it is a mono- or multi-relation.

2.1.4.5 Mapping when DCPS Model is Fixed

In some occasions, it is desirable to map an existing DCPS model to the DLRL. It is even
desirable to mix, in the same system, participants that act at DCPS level with others that
act at the DLRL level. The DLRL, by not imposing the same object model to be shared
among all participants, is even designed to allow this last feature.

In this case, it is possible to use the topic keys to identify the objects, but not to store the
object references directly. Therefore, the DLRL implementation must indicate the topic
fields that are used to store the keys so that, behind the scenes, it can manage the
association keys to/from oid and perform the needed indirection.

Because the object model remains local, this is feasible even if supporting inheritance
between the applicative classes (beyond the primary inheritance between an applicative
class and ObjectRoot) may be tricky. However an exiting DCPS model by construction
is unlikely to rely heavily on inheritance between its ‘classes.’ Therefore such a mapping
is supported.

2.1.4.6 How is this Mapping Indicated?

There should be two orthogonal descriptions:

• The object model itself, i.e.,

• the full object model,
June 2014 DDS Data Local Reconstruction Layer (DLRL), v1.4 2-11

2

• indications of the part that is to be made shared.

• The mapping itself.

In case we were targeting only languages where metaclasses are fully supported, this
information could be provided by the application developer by instantiating the above
mentioned constructs. As this is not the case, we propose the following approach, as
described on Figure 2-3.

Figure 2-3 DLRL Generation Process

Based on the model description and tags that enhance the description, the tool will
generate:

• The native model definition (i.e., the application classes as they will be usable by
the application developer).

• The dedicated DLRL entities (i.e., the helper classes to consistently use the former
ones and form the DLRL run-time).

• On demand, the corresponding DCPS description.

The syntax of those descriptions is dependant on the underlying platform. One syntax is
proposed with the OMG IDL PSM in Section 2.2, “OMG IDL Platform Specific Model
(PSM),” on page 2-45.

Model
description

DLRL Generator
Model
Tags

Native
model

description

DCPS
description

Dedicated
DLRL
entities
2-12 DDS Data Local Reconstruction Layer (DLRL), v1.4 June 2014

2

2.1.5 Operational Mapping

2.1.5.1 Attachment to DCPS Entities

A DLRL class is associated with several DCPS Topic, each of which is accessible via a
DCPS DataWriter (write access) and/or a DCPS DataReader (read access). All the
DataWriter/DataReader objects that are used by a DLRL object are to be attached to a
single Publisher/Subscriber in order to consistently manage the object contents.

DLRL classes are linked to other DLRL classes by means of relations. In order for these
relations to be managed consistently (e.g., when a relation is set to a newly created
object, set up of the relation and the object creation are simultaneously performed), the
whole graph has to be attached to the same Publisher/Subscriber.

Therefore, DLRL has attached a Publisher and/or a Subscriber to the notion of a Cache
object, which manages all the objects, thereby making a consistent set of related objects.
The use of those DCPS entities is thus totally transparent to the application developer.

2.1.5.2 Creation of DCPS Entities

Operations are provided at the DLRL level to create and activate all the DCPS entities
that are needed for managing all the instances of DLRL classes attached to a Cache, for
publication and/or for subscription.

Note – Activating the related DCPS entities for subscription (namely the Subscriber
and its attached DataReader objects) corresponds to actually performing the
subscriptions.

2.1.5.3 Setting of QoS

QoS must be attached to each DCPS entity (Publisher/Subscriber,
Topic/DataWriter/DataReader). This can be done between the creation and activation of
these entities.

Putting the same QoS on all the DCPS entities that are used for a graph of objects (or
even for a single object) is not very sensible. In return, it is likely that one object will
present different attributes with different QoS requirements (i.e., some parts of the object
need to be PERSISTENT, others are VOLATILE). Therefore, DLRL does not offer a
specific means to set QoS, but it does offer a means to retrieve the DCPS entities that are
attached to the DLRL entities, so that the application developer can set QoS if needed.

2.1.6 Functional Mapping

Functional mapping is the translation of the DLRL functions to DCPS functions. It
obviously depends firstly on the DLRL operation modes (i.e., the way the applications
may use the DLRL entities).
June 2014 DDS Data Local Reconstruction Layer (DLRL), v1.4 2-13

2

2.1.6.1 DLRL Requested Functions

2.1.6.1.1 Publishing Application

Once the publishing DCPS infrastructure is set, publishing applications need to
repeatedly:

• create objects,

• modify them,

• possibly destroy them,

• request publication of the performed changes (creations, modifications,
destructions).

Even if an object is not changeable by several threads at the same time, there is a need to
manage concurrent threads of modifications in a consistent manner.

2.1.6.1.2 Subscribing Application

Once the subscribing DCPS infrastructure is set, subscribing applications need to:

• load objects (i.e., make subscribed DCPS data, DLRL objects);

• read their attributes and/or relations;

• possibly use the relations to navigate among the objects;

• be made aware of changes to the objects that are there, or the arrival of new objects.

The application needs to be presented with a consistent view of a set of objects.

2.1.6.1.2.1 Implicit versus Explicit Subscriptions

The first important question is whether the loading of objects happens in the scope of the
known subscriptions (explicit subscriptions) or whether it may extend them, especially
when navigating to another object by means of a relation (implicit subscriptions). The
choice has been to keep the DLRL set of objects inside the boundary of the known
subscriptions12, for the following reasons:

• In the use cases we have, implicit subscriptions are not needed.

• Implicit subscriptions would cause the following issues, which are almost
impossible to solve while maintaining a high level of decoupling between DCPS
and DLRL:

• Structural mapping - to which DCPS data does the new object definition
correspond?

• Operational mapping - in particular, which QoS has to be associated to the related
DCPS entities?

12.That means that no subscription will be made “on the fly” to reach an object that is an
instance of a class for which no subscription has been made.
2-14 DDS Data Local Reconstruction Layer (DLRL), v1.4 June 2014

2

• Implicit subscriptions would make it difficult for the application to master its set of
objects.

If a relation points towards an object for which no subscription exists, navigating through
that relation will raise an error (NotFound).

2.1.6.1.2.2 Cache Management

The second important question is how the cache of objects is updated with incoming
information. This can be done:

• upon application requests,

• fully transparently.

DLRL general principle is to update the cache of objects transparently with incoming
updates. However, means are given to the application to turn on/off this feature when
needed. In addition, copies of objects can be requested in order to navigate into a
consistent set of object values when updates continue to be applied on the originals (see
CacheAccess objects for more details).

2.1.6.1.2.3 User Interaction

Another important question is how the application is made aware of changes on the
objects it has. A listener is a convenient pattern for that purpose. The question is,
however, the granularity it gets:

• It is useful to reflect several incoming updates ‘as a whole.’

• For an object modification, it is useful to indicate which are the modified attributes.

2.1.6.1.3 Publishing and Subscribing Applications

Most of DLRL publishing applications will also be subscribing ones. There is thus a
strong need to support this nicely. In particular, it means that the application should be
able to control the mix of incoming updates and of modifications it performs.

2.1.6.2 DLRL Entities

Figure 2-4 describes all the DLRL entities that support the DLRL operations at run-time.
Note that most of them are actually roots for generated classes depending on the DLRL
classes (they are indicated in italics); the list of classes that are generated for an
application-defined class named Foo is given in Section 2.1.6.6, “Generated Classes,” on
page 2-44.
June 2014 DDS Data Local Reconstruction Layer (DLRL), v1.4 2-15

2

Figure 2-4 DLRL entities

QueryCriterion

express ion
param eters

s et_expression()
s et_param eters()

FilterCriterion

check_object()

<<Interface>>

IntMap

keys

remove()
put()
get()
added_elements()
removed_elements()
modified_elements()

StrMap

keys

remove()
put()
get()
added_elements()
removed_elements()
modified_elements()

List

remove()
add()
put()
get()
added_elements()
removed_elements()
modified_elements()

Set

contains()
add()
remove()
added_elements()
removed_elements()

CacheFactory

get_instance()
create_cache()
find_cache()
delete_cache()

owner

CacheListener

on_begin_updates()
on_end_updates()
on_updates_enabled()
on_updates_disabled()

<<Interface>>

CacheBase

cache_usage
kind

refresh()

children

ObjectListener

on_object_created()
on_object_modified()
on_object_deleted()

<<Interface>>

CacheAccess

type_names

create_contract()
delete_contract()
purge()
write()

Contract

depth
scope

set_depth()
set_scope()

**

contract s

SelectionCriterion

kind

SelectionListener

on_object_in()
on_object_modified()
on_object_out()

<<Interface>>

Selection

concerns_contained
auto_refresh

refresh()
set_listener()

11

cri terion

11

listener

owner

ObjectHome

content_filter
regis tration_index
auto_deref
name

deref_all()
underef_all()
set_autoderef()
set_content_filter()
get_all_topic_names()
get_topic_name()
attach_listener()
detach_listener()
create_selection()
delete_selection()
create_object()
create_unregistered_object()
regis ter_object()
get_objects ()
get_new_objects()
get_m odified_objects()
get_deleted_objects()

*

1

*

1

parent

*

1

*

1

selections

**

listeners

Collection

length

ObjectRoot

oid
read_state
write_state

is_m odified()
destroy()

*

1

*

1

objects
11contracted_object

**

members

11

object_home

**

values

children

DCPS::Subscriber

Cache

pubsub_state
updates_enabled

enable_all_for_pubsub()
register_al l_for_pubsub()
enable_updates()
disable_updates()
create_access()
delet e_access ()
register_hom e()
find_hom e_by_name()
find_hom e_by_index()
attac h_listener()
detach_listener()

*

1

*

1

*1 *1

homes

*

1

*

1

sub_accesses

**

li steners

0..1

DCPS ::Publisher

0..1

t he_subs criber

the_publisher

0..1

0..1
2-16 DDS Data Local Reconstruction Layer (DLRL), v1.4 June 2014

2

The DLRL entities are:

CacheFactory Class whose unique instance allows the creation of Cache
objects.

CacheBase Base class for all Cache types.

Cache Class whose instance represents a set of objects that are
locally available. Objects within a Cache can be read
directly; however to be modified, they need to be attached
first to a CacheAccess. Several Cache objects may be
created but in this case, they must be fully isolated:

• A Publisher can only be attached to one Cache.

• A Subscriber can only be attached to one Cache.

• Only DLRL objects belonging to one Cache can be put
in relation.

CacheAccess Class that encapsulates the access to a set of objects. It
offers methods to refresh and write objects attached to it;
CacheAccess objects can be created in read mode, in order
to provide a consistent access to a subset of the Cache
without blocking the incoming updates or in write mode in
order to provide support for concurrent
modifications/updates threads.

CacheListener Interface to be implemented by the application to be made
aware of the arrival of incoming updates on the cache of
objects.

Contract Class that represents a contract between a CacheAccess and
a Cache that defines which objects will be cloned from the
Cache into the CacheAccess when the latter is refreshed.

ObjectHome Class whose instances act as representative for all the local
instances of a given application-defined class.

ObjectListener Interface to be implemented by the application to be made
aware of incoming updates on the objects belonging to one
peculiar ObjectHome.

Selection Class whose instances act as representatives of a given
subset of objects. The subset is defined by an expression
attached to the selection.

SelectionCriterion Class whose instances act as filter for Selection objects.
When a Selection is created, it must be given an
SelectionCriterion.

FilterCriterion Specialization of SelectionCriterion that performs a filter
based on user-defined filter algorithm.
June 2014 DDS Data Local Reconstruction Layer (DLRL), v1.4 2-17

2

The DLRL API may raise Exceptions under certain conditions. What follows is an
extensive list of all possible Exceptions and the conditions in which they will be raised:

• "DCPSError: if an unexpected error occured in the DCPS

• "BadHomeDefinition: if a registered ObjectHome has dependencies to other,
unregistered ObjectHomes.

• "NotFound: if a reference is encountered to an object that has not (yet) been
received by the DCPS.

• "AlreadyExisting: if a new object is created using an identify that is already in use
by another object.

• "AlreadyDeleted - if an operation is invoked on an object that has already been
deleted.

• "PreconditionNotMet - if a precondition for this operation has not (yet) been met.

• "NoSuchElement - if an attempt is made to retrieve a non-existing element from a
Collection.

• "SQLError - if an SQL expression has bad syntax, addresses non-existing fields or
is not consistent with its parameters.

Each exception contains a string attribute named 'message', that gives a more precise
explanation of the reason for the exception.

2.1.6.3 Details on DLRL Entities

The following sections describe each DLRL entity one by one. For each entity a table
summarizes the public attributes and/or methods provided.

QueryCriterion Specialization of SelectionCriterion that performs a filter
based on a query expression.

SelectionListener Interface to be implemented by the application to be made
aware on updates made on objects belonging to that
selection.

ObjectRoot Abstract root class for all the application-defined classes.

Collection Abstract root for all the collections of objects as well as of
values.

List Abstract root for all the lists of objects as well as of values.

Set Abstract root for all the sets of objects as well as of values.

StrMap Abstract root for all the maps of objects as well as of values,
with string key management.

IntMap Abstract root for all the maps of objects as well as of values,
with integer key management.
2-18 DDS Data Local Reconstruction Layer (DLRL), v1.4 June 2014

2

It should be noted that, as far as the return value of a method is concerned, only the
functional values are indicated. Errors are not considered here. At PSM level, a
consistent scheme for error returning will be added.

When a parameter or a return value is stated as ‘undefined,’ that means that the operation
is actually part of an abstract class, which will be derived to give concrete classes with
typed operations.

2.1.6.3.1 CacheFactory

The unique instance of this class allows the creation of Cache objects.

This class offers methods:

• To retrieve the CacheFactory singleton. The operation is idempotent, that is, it can
be called multiple times without side-effects and it will return the same
CacheFactory instance. The get_instance operation is a static operation
implemented using the syntax of the native language and can therefore not be
expressed in the IDL PSM

• To create a Cache (create_cache).
This method takes as a parameter cache_usage, which indicates the future usage of
the Cache (namely WRITE_ONLY—no subscription, READ_ONLY—no
publication, or READ_WRITE—both modes) and a description of the Cache (at a
minimum, this CacheDescription gathers the concerned DomainParticipant as well
as a name allocated to the Cache). Depending on the cache_usage a Publisher, a
Subscriber, or both will be created for the unique usage of the Cache. These two
objects will be attached to the passed DomainParticipant.

• To retrieve a Cache based on the name given in the CacheDescription
(find_cache_by_name). If the specified name does not identify an existing Cache, a
NULL is returned.

• To delete a Cache (delete_cache). This operation releases all the resources allocated
to the Cache.

CacheFactory
no attributes

operations

(static)
get_instance

CacheFactory

create_cache Cache

cache_usage CacheUsage

description CacheDescription

find_cache_by_name Cache

name CacheName

delete_cache void

a_cache Cache
June 2014 DDS Data Local Reconstruction Layer (DLRL), v1.4 2-19

2

2.1.6.3.2 CacheBase

CacheBase is the base class for all Cache classes. It contains the common functionality
that supports Cache and CacheAccess.

The public attributes give:

• "The cache_usage indicates whether the cache is intended to support write
operations (WRITE_ONLY or READ_WRITE) or not (READ_ONLY). This
attribute is given at creation time and cannot be changed afterwards.

• "A list of (untyped) objects that are contained in this CacheBase. To obtain objects
by type, see the get_objects method in the typed ObjectHome.

The kind describes whether a CacheBase instance represents a Cache or a
CacheAccess.It offers methods to:

• "Refresh the contents of the Cache with respect to its origins (DCPS in case of a
main Cache, Cache in case of a CacheAccess).

2.1.6.3.3 CacheAccess

CacheAccess is a class that represents a way to globally manipulate DLRL objects in
isolation.

CacheBase
attributes

cache_usage CacheUsage

objects ObjectRoot[]

kind CacheKind

operations

refresh void

CacheAccess : CacheBase
attributes

owner Cache

contracts Contract[]

type_names string[]

operations
2-20 DDS Data Local Reconstruction Layer (DLRL), v1.4 June 2014

2

A CacheAccess only belongs to one Cache (owner)—the one that creates it.

The public attributes give:

• The owner of the Cache (owner)

• The contracted objects (contracts). This is the list of all Contracts that are attached
to this CacheAccess.

• "A list of names that represents the types for which the CacheAccess contains at
least one object (type_names).

The CacheAccess offers methods to:

• Write objects (write). If the CacheAccess::cache_usage allows write operation,
those objects can be modified and/or new objects created for that access and
eventually all the performed modifications written for publications.

• Detach all contracts (including the contracted DLRL Objects themselves) from the
CacheAccess (purge)."

• "Create a Contract (create_contract). This method defines a contract that covers
the specified object with all the objects in its specified scope. When a CacheAccess
is refreshed, all contracted objects will be cloned into it. The contracted object must
be located in the Cache that owns the CacheAccess. If this is not the case, a
PreconditionNotMet is raised.

• "Delete a Contract (delete_contract). This method deletes a contract from the
CacheAccess. When the CacheAccess is refreshed, the objects covered by the
specified contract will no longer appear in the CacheAccess (unless also covered in
another Contract). The specified Contract must be attached to this CacheAccess,
otherwise a PreconditionNotMet is raised

See Section 2.1.6.5, “Cache Accesses Management,” on page 2-43 for a description of
typical uses of cache accesses.

write void

purge void

create_contract Contract

object ObjectRoot

scope ObjectScope

depth long

delete_contract void

a_contract Contract
June 2014 DDS Data Local Reconstruction Layer (DLRL), v1.4 2-21

2

2.1.6.3.4 Cache

An instance of this class gathers a set of objects that are managed, published and/or
subscribed consistently.

The public attributes give:

• the state of the cache with respect to the underlying Pub/Sub infrastructure
(pubsub_state), as well as the related Publisher (the_publisher) and Subscriber
(the_subscriber).

Cache : CacheBase
attributes

pubsub_state DCPSState

updates_enabled boolean

sub_accesses CacheAccess []

homes ObjectHome []

listeners CacheListener []

the_publisher DDS::Publisher

the_subscriber DDS::Subscriber

operations

register_home integer

a_home ObjectHome

find_home_by_name ObjectHome

class_name string

find_home_by_index ObjectHome

index integer

register_all_for_pubsub void

enable_all_for_pubsub void

attach_listener void

listener CacheListener

detach_listener void

listener CacheListener

enable_updates void

disable_updates void

load void

create_access CacheAccess

purpose CacheUsage

delete_access void

access CacheAccess

lock void

to_in_milliseconds integer

unlock void
2-22 DDS Data Local Reconstruction Layer (DLRL), v1.4 June 2014

2

• the state of the cache with respect to incoming updates (updates_enabled). This
state is modifiable by the applications (see enable_updates, disable_updates) in
order to support applications that are both publishing and subscribing.

• the attached CacheAccess (sub_accesses).

• the attached ObjectHome (homes).

• the attached CacheListener (listeners).

It offers methods to:

• register an ObjectHome (register_home). This method returns the index under
which the ObjectHome is registered by the Cache. A number of preconditions must
be satisfied when invoking the register_home method: the Cache must have a
pubsub_state set to INITIAL, the specified ObjectHome may noy yet be registered
before (either to this Cache or to another Cache), and no other instance of the same
class as the specified ObjectHome may already have been registered to this Cache.
If these preconditions are not satisfied, a PreconditionNotMet is raised

• retrieve an already registered ObjectHome based on its name (find_home_by_name)
or based on its index of registration (find_home_by_index). If no registered home
can be found that satisfies the specified name or index, a NULL is returned.

• register all known ObjectHome to the Pub/Sub level (register_all_for_pubsub), i.e.,
create all the needed DCPS entities; registration is performed for publication, for
subscription or for both according to the cache_usage. At this stage, it is the
responsibility of the service to ensure that all the object homes are properly linked
and set up: that means in particular that all must have been registered before. When
an ObjectHome still refers to another ObjectHome that has not yet been registered,
a BadHomeDefinition is raised. A number of preconditions must also be satisfied
before invoking the register_all_for_pubsub method: at least one ObjectHome
needs to have been registered, and the pubsub_state may not yet be ENABLED. If
these preconditions are not satisfied, a PreconditionNotMet will be raised. Invoking
the register_all_for_pub_sub on a REGISTERED pubsub_state will be considered
a no-op.

• enable the derived Pub/Sub infrastructure (enable_all_for_pubsub). QoS setting
can be performed between those two operations. One precondition must be satisfied
before invoking the enable_all_for_pub_sub method: the pubsub_state must
already have been set to REGISTERED before. A PreconditionNotMet Exception
is thrown otherwise. Invoking the enable_all_for_pub_sub method on an
ENABLED pubsub_state will be considered a no-op.

• attach/detach a CacheListener (attach_listener, detach_listener).

• enable/disable incoming updates (enable_updates, disable_updates):

• disable_updates causes incoming but not yet applied updates to be registered for
further application. If it is called in the middle of a set of updates (see Listener
operations), the Listener will receive end_updates with a parameter that indicates
that the updates have been interrupted.

• enable_updates causes the registered (and thus not applied) updates to be taken
into account, and thus to trigger the attached Listener, if any.
June 2014 DDS Data Local Reconstruction Layer (DLRL), v1.4 2-23

2

• explicitly request taking into account the waiting incoming updates (load). In case
updates_enabled is TRUE, the load operation does nothing because the updates are
taken into account on the fly; in case updates_enabled is FALSE, the load operation
'takes' all the waiting incoming updates and applies them in the Cache. The load
operation does not trigger any listener (while automatic taking into account of the
updates does - see Section 2.1.6.4, “Listeners Activation,” on page 2-41 for more
details on listener activation) and may therefore be useful in particular for global
initialization of the Cache.

• create new CacheAccess objects dedicated to a given purpose (create_access). This
method allows the application to create sub-accesses and takes as a parameter the
purpose of that sub-access, namely:

• write allowed (WRITE_ONLY or READ_WRITE13) – to isolate a thread of
modifications.

• write forbidden (READ_ONLY) – to take a consistent view of a set of objects and
isolate it from incoming updates.

The purpose of the CacheAccess must be compatible with the usage mode of the Cache:
only a Cache that is write-enabled can create a CacheAccess that allows writing.
Violating this rule will raise a PreconditionNotMet:

• delete sub-accesses (delete_access). Deleting a CacheAccess will purge all its
contents. Deleting a CacheAccess that is not created by this Cache will raise a
PreconditionNotMet.

• transform an ObjectReference to the corresponding ObjectRoot. This operation can
return the already instantiated ObjectRoot or create one if not already done. These
ObjectRoot are not modifiable (modifications are only allowed on cloned objects
attached to a CacheAccess in write mode).

• lock the Cache with respect to all other modifications, either from the infrastructure
or from other application threads. This operation ensures that several operations can
be performed on the same Cache state (i.e., cloning of several objects in a
CacheAccess). This operation blocks until the Cache can be allocated to the calling
thread and the waiting time is limited by a time-out (to_in_milliseconds). In case
the time-out expired before the lock can be granted, an exception (ExpiredTimeOut)
is raised.

• unlock the Cache.

Objects attached to the cache are supposed to be garbage-collected when appropriate.
There is therefore no specific operation for doing this.

13.That for a sub-access are equivalent.
2-24 DDS Data Local Reconstruction Layer (DLRL), v1.4 June 2014

2

2.1.6.3.5 CacheListener

CacheListener is an interface that must be implemented by the application in order to be
made aware of the arrival of updates on the cache.

It provides the following methods:

• on_begin_updates indicates that updates are following. Actual modifications in the
cache will be performed only when exiting this method (assuming that
updates_enabled is true).

• on_end_updates indicates that no more update is foreseen.

• "on_updates_enabled - indicates that the Cache has switched to automatic update
mode. Incoming data will now trigger the corresponding Listeners.

• "on_updates_disabled - indicates that the Cache has switched to manual update
mode. Incoming data will no longer trigger the corresponding Listeners, and will
only be taken into account during the next refresh operation.

In between, the updates are reported on home or selection listeners. Section 2.1.6.4,
“Listeners Activation,” on page 2-41 describes which notifications are performed and in
what order.

2.1.6.3.6 Contract

Contract is the class that defines which objects will be cloned from the Cache into the
CacheAccess when the latter is refreshed.

The public attributes give:

CacheListener
operations

on_begin_updates void

on_end_updates void

on_updates_enabled void

on_updated_disabled void

Contract
attributes

depth integer

scope ObjectScope

contracted_object ObjectRoot

operations

set_depth void

depth integer

set_scope void

scope ObjectScope
June 2014 DDS Data Local Reconstruction Layer (DLRL), v1.4 2-25

2

• "The top-level object (contracted_object). This is the object that acts as the starting
point for the cloning contract.

• "The scope of the cloning request (i.e., the object itself, or the object with all its
(nested) compositions, or the object with all its (nested) compositions and all the
objects that are navigable from it up till the specified depth).

• "The depth of the cloning contract. This defines how many levels of relationships
will be covered by the contract (UNLIMITED_RELATED_OBJECTS when all
navigable objects must be cloned recursively). The depth only applies to a
RELATED_OBJECT_SCOPE.

It offers methods to:

• "Change the depth of an existing contract (set_depth). This change will only be
taken into account at the next refresh of the CacheAccess.

• "Change the scope of an existing contract (set_scope). This change will only be
taken into account at the next refresh of the CacheAccess.

2.1.6.3.7 ObjectHome

For each application-defined class, there is an ObjectHome instance, which exists to
globally represent the related set of instances and to perform actions on it. Actually,
ObjectHome is the root class for generated classes (each one being dedicated to one
application-defined class, so that it embeds the related specificity). The name for such a
derived class is FooHome, assuming it corresponds to the application-defined class Foo.

A derived ObjectHome (e.g. a FooHome) has no factory. It is created as an object
directly by the natural means in each language binding (e.g., using "new" in C++ or
Java).

ObjectHome
attributes

class_name string

content_filter string

registration_index integer

auto_deref boolean

selections Selection []

listener ObjectListener []

operations

get_topic_name string

attribute_name string

get_all_topic_names string []

set_content_filter void

expression string

set_auto_deref void

value boolean

deref_all void
2-26 DDS Data Local Reconstruction Layer (DLRL), v1.4 June 2014

2

The public attributes give:

• the public name of the application-defined class (class_name).

• a content filter (content_filter) that is used to filter incoming objects. It only
concerns subscribing applications; only the incoming objects that pass the content
filter will be created in the Cache and by that ObjectHome. This content filter is
given by means of a string and is intended to be mapped on the underlying DCPS
infrastructure to provide content-based subscription at DLRL level (see Appendix C
for its syntax). The content_filter attribute is set to NULL by default.

• the index under which the ObjectHome has been registered by the Cache (see
Cache::register_home operation).

underef_all void

attach_listener void

listener ObjectListener

concerns_contained_
objects

boolean

detach_listener void

listener ObjectListener

create_selection Selection

criterion SelectionCri-
terion

auto_refesh boolean

concerns_contained_obj
ects

boolean

delete_selection void

a_selection Selection

create_object ObjectRoot

access CacheAccess

create_unregistered_ob
ject

ObjectRoot

access CacheAccess

register_object void

unregistered_object ObjectRoot

find_object ObjectRoot

oid DLRLOid

source CacheBase

get_objects ObjectRoot[]

source CacheBase

get_created_objects ObjectRoot[]

source CacheBase

get_modified_objects ObjectRoot[]

source CacheBase

get_deleted_objects ObjectRoot[]

source CacheBase
June 2014 DDS Data Local Reconstruction Layer (DLRL), v1.4 2-27

2

• a boolean that indicates whether the state of a DLRL Object should always be
loaded into that Object (auto_deref = TRUE) or whether this state will only be
loaded after it has been accessed explicitly by the application (auto_deref =
FALSE). The auto_deref attribute is set to TRUE by default.

• the list of attached Selection (selections).

• the list of attached ObjectListener (listeners).

Those last four attributes will be generated properly typed in the derived specific home.

It offers methods to:

• set the content_filter for that ObjectHome (set_content_filter). As a content filter is
intended to be mapped on the underlying infrastructure it can be set only before the
ObjectHome is registered (see Cache::register_home). An attempt to change the
filter expression afterwards will raise a PreconditionNotMet. Using an invald filter
expression will raise an SQLError.

• set the auto_deref boolean (set_auto_deref).

• ask to load the most recent state of a DLRL Object into that Object for all objects
managed by that home (deref_all).

• ask to unload all object states from objects that are attached to this home
(underef_all).

• attach/detach a ObjectListener (attach_listener, detach_listener). When a listener is
attached, a boolean parameter specifies, when set to TRUE, that the listener should
listen also for the modification of the contained objects
(concerns_contained_objects).

• create a Selection (create_selection). The criterion parameter specifies the
SelectionCriterion (either a FilterCriterion or an SelectionCriterion) to be attached
to the Selection, the auto_refresh parameter specifies if the Selection has to be
refreshed automatically or only on demand (see Selection) and a boolean parameter
specifies, when set to TRUE, that the Selection is concerned not only by its member
objects but also by their contained ones (concerns_contained_objects); attached
SelectionCriterion belong to the Selection that itself belongs to its creating
ObjectHome. When creating a Selection while the DCPS State of the Cache is still
set to INITIAL, a PreconditionNotMet is raised.

• delete a Selection (delete_selection). This operation deletes the Selection and its
attached SelectionCriterion. If the Selection was not created by this ObjectHome, a
PreconditionNotMet is raised.

• create a new DLRL object (create_object). This operation takes as parameter the
CacheAccess concerned by the creation. The following preconditions must be met:
the Cache must be set to the DCPS State of ENABLED, and the supplied
CacheAccess must writeable. Not satisfying either precondition will raise a
PreconditionNotMet.
2-28 DDS Data Local Reconstruction Layer (DLRL), v1.4 June 2014

2

• pre-create a new DLRL object in order to fill its content before the allocation of the
oid (create_unregistered_object); this method takes as parameter the CacheAccess
concerned with this operation. The following preconditions must be met: the Cache
must be set to the DCPS State of ENABLED, and the supplied CacheAccess must
writeable. Not satisfying either precondition will raise a PreconditionNotMet.

• register an object resulting from such a pre-creation (register_object). This
operation embeds a logic to derive from the object content a suitable oid; only
objects created by create_unregistered_object can be passed as parameter, a
PreconditionNotMet is raised otherwise. If the result of the computation leads to an
existing oid, an AlreadyExisting exception is raised. Once an object has been
registered, the fields that make up its identity (i.e. the fields that are mapped onto
the keyfields of the corresponding topics) may not be changed anymore.

• retrieve a DLRL object based on its oid in the in the specified CacheBase
(find_object).

• retrieve the name of the topic that contains the value for one attribute
(get_topic_name). If the DCPS State of the Cache is still set to INITIAL, a
PreconditionNotMet is raised.

• retrieve the name of all the topics that contain values for all attributes of the class
(get_all_topic_names). If the DCPS State of the Cache is still set to INITIAL, a
PreconditionNotMet is raised.

• obtain from a CacheBase a (typed) list of all objects that match the type of the
selected ObjectHome (get_objects). For example the type ObjectRoot[] will be
substituted by a type Foo[] in a FooHome.

• obtain from a CacheBase a (typed) list of all objects that match the type of the
selected ObjectHome and that have been created, modified or deleted during the
last refresh operation (get_created_objects, get_modified_objects and
get_deleted_objects respectively). The type ObjectRoot[] will be substituted by a
type Foo[] in a FooHome.

2.1.6.3.8 ObjectListener

This interface is an abstract root, from which a typed interface will be derived for each
application type. This typed interface (named FooListener, if the application class is
named Foo), then has to be implemented by the application, so that the application will
be made aware of the incoming changes on objects belonging to the FooHome.

ObjectListener
operations

on_object_created boolean

the_object ObjectReference

on_object_modified boolean

the_object ObjectRoot

on_object_deleted boolean

the_object ObjectRoot
June 2014 DDS Data Local Reconstruction Layer (DLRL), v1.4 2-29

2

It is defined with four methods:

• on_object_created, which is called when a new object appears in the Cache; this
operation is called with the newly created object (the_object).

• on_object_deleted, which is called when an object has been deleted by another
participant; this operation is called with the newly deleted object (the_object).

• on_object_modified, which is called when the contents of an object changes; this
operation is called with the modified object (the_object).

Each of these methods must return a boolean. TRUE means that the event has been fully
taken into account and therefore does not need to be propagated to other ObjectListener
objects (of parent classes).

See Section 2.1.6.4, “Listeners Activation,” on page 2-41 for a detailed description of
how cache, home and selection listeners are called.

2.1.6.3.9 Selection

A Selection is a mean to designate a subset of the instances of a given ObjectHome,
fulfilling a given criterion. This criterion is given by means of the attached
SelectionCriterion.

Actually, the Selection class is a root from which are derived classes dedicated to
application classes (for an application class named Foo, FooSelection will be derived).

It has the following attributes:

• the corresponding SelectionCriterion (criterion). It is given at Selection creation
time (see ObjectHome::create_selection).

• a boolean auto_refresh that indicates if the Selection has to be refreshed at each
incoming modification (TRUE) or only on demand (FALSE). It is given at Selection
creation time (see ObjectHome::create_selection).

Selection
attributes

criterion SelectionCriterion

auto_refresh boolean

concerns_contained boolean

members ObjectRoot[]

listener SelectionListener

operations

set_listener SelectionListener

listener SelectionListener

refresh void
2-30 DDS Data Local Reconstruction Layer (DLRL), v1.4 June 2014

2

• a boolean concerns_contained that indicates whether the Selection considers he
modification of one of its members based on its content only (FALSE) or based on
its content or the content of its contained objects (TRUE). It is given at Selection
creation time (see ObjectHome::create_selection).

• the list of the objects that are part of the selection (members).

• attached listener.

It offers the methods to:

• set the SelectionListener (set_listener), that will be triggered when the composition
of the selection changes, as well as if the members are modified. set_listener returns
the previously set listener if any; set_listener called with a NULL parameter
discards the current listener.

• request that the Selection updates its members (refresh).

The SelectionListener is activated when the composition of the Selection is modified as
well as when one of its members is modified. A member can be considered as modified,
either when the member is modified or when that member or one of its contained objects
is modified (depending on the value of concerns_contained). Modifications in the
Selection are considered with respect to the state of the Selection last time is was
examined, for instance:

• at each incoming updates processing, if auto_refresh is TRUE.

• at each explicit call to refresh, if auto_refresh is FALSE.

2.1.6.3.10 SelectionCriterion

An SelectionCriterion is an object (attached to a Selection) that gives the criterion to be
applied to make the Selection.It is the abstract base-class for both the
FilterCriterion and the QueryCriterion.

It has one attribute (kind) that describes whether a SelectionCriterion instance represents
a FilterCriterion or a QueryCriterion.

SelectionCriterion
attributes

kind SelectionCriteria

no operations
June 2014 DDS Data Local Reconstruction Layer (DLRL), v1.4 2-31

2

2.1.6.3.11 FilterCriterion

FilterCriterion is a specialization of SelectionCriterion that performs the object check
based on a user-defined filter algorithm.

It offers a method to:

• check if an object passes the filter – return value is TRUE – or not – return value is
FALSE (check_object). This method is called with the first parameter set to the
object to be checked and the second parameter set to indicate whether the object
previously passed the filter (membership_state). The second parameter (which is
actually an enumeration with three possible values - UNDEFINED_MEMBERSHIP,
ALREADY_MEMBER and NOT_MEMBER) is useful when the FilterCriterion is
attached to a Selection to allow writing optimized filters.

The FilterCriterion class is a root from which are derived classes dedicated to
application classes (for an application class named Foo, FooFilter will be derived).

FooFilter is itself a base class that may be derived by the application in order to provide
its own check_object algorithm. The default provided behavior is that check_object
always return TRUE.

2.1.6.3.12 QueryCriterion

QueryCriterion is a specialization of SelectionCriterion that performs the object check
based on a query expression.

FilterCriterion : SelectionCriterion
no attributes

operations

check_object boolean

an_object ObjectRoot

membership_state enum MembershipState

QueryCriterion : SelectionCriterion
attributes

expression string

parameters string []

operations

set_query boolean

expression string

arguments string []

set_parameters boolean

arguments string []
2-32 DDS Data Local Reconstruction Layer (DLRL), v1.4 June 2014

2

The query is made of an expression and of parameters that may parameterize the
expression (the number of parameters must fit with the values required by the
expression). See Appendix C for the syntax of an expression and its parameters.

It offers methods to:

• set the value of the expression and its parameters (set_query); a TRUE return value
indicates that they have been successfully changed.

• set the values of the parameters (set_parameters). The number of parameters must
fit with the values required by the expression. A TRUE return value indicates that
they have been successfully changed.

After a successful call to one of those methods the owning Selection is refreshed if its
auto_refresh is TRUE.

2.1.6.3.13 SelectionListener

This interface is an abstract root, from which a typed interface will be derived for each
application type. This typed interface (named FooSelectionListener, if the application
class is named Foo) has to be implemented by the application in order to be made aware
of the incoming changes on objects belonging to a FooSelection.

It is defined with three methods:

• on_object_in, which is called when an object enters the Selection.

• on_object_out, which is called when an object exits the Selection.

• on_object_modified, which is called when the contents of an object belonging to
the Selection changes.

Section 2.1.6.4, “Listeners Activation,” on page 2-41 includes a detailed description of
how cache, home, and selection listeners are called.

2.1.6.3.14 ObjectRoot

ObjectRoot is the abstract root for any DLRL class. It brings all the properties that are
needed for DLRL management. ObjectRoot are used to represent either objects that are
in the Cache (also called primary objects) or clones that are attached to a CacheAccess
(also called secondary objects). Secondary objects refer to a primary one with which they
share the ObjectReference.

SelectionListener
operations

on_object_in void

the_object ObjectRoot

on_object_out void

the_object ObjectRoot

on_object_modified void

the_object ObjectRoot
June 2014 DDS Data Local Reconstruction Layer (DLRL), v1.4 2-33

2

.

Its public attributes14 give:

• the identity of the object (oid);

• its lifecycle states (read_state and write_state);

• its related home (object_home);

• the cache it belongs to (owner), this can be either a Cache or a CacheAccess.

It offers methods to:

• mark the object for destruction (destroy), to be executed during a write operation. If
the object is not located in a writeable CacheAccess, a PreconditionNotMet is
raised.

• see if the object has been modified by incoming modifications (is_modified).
is_modified takes as parameter the scope of the request (i.e., only the object
contents, the object and its component objects, the object and all its related objects).
In case the object is newly created, this operation returns FALSE; ‘incoming
modifications’ should be understood differently for a primary object and for a clone
object.

• For a primary object, they refer to incoming updates (i.e., coming from the
infrastructure).

• For a secondary object (cloned), they refer to the modifications applied to the
object by the last CacheAccess::refresh operation.

ObjectRoot
attributes

oid DLRLOid

read_state ObjectState

write_state ObjectState

object_home ObjectHome

owner CacheBase

operations

destroy void

is_modified boolean

scope ObjectScope

which_contained_modified RelationDescription[]

14.It is likely that other attributes are needed to manage the objects (i.e., a content version, a
 reference count...); however these are implementation details not part of the specification.
2-34 DDS Data Local Reconstruction Layer (DLRL), v1.4 June 2014

2

• get which contained objects have been modified (which_contained_modified). This
method returns a list of descriptions for the relations that point to the modified
objects (each description includes the name of the relation and if appropriate the
index or key that corresponds to the modified contained object).

In addition, application classes (i.e., inheriting from ObjectRoot), will be generated with
a set of methods dedicated to each shared attribute (including single- and multi-relation
attributes):

• get_<attribute>, read accessor to the attribute - this accessor will embed whatever
is needed to properly get the data.

• set_<attribute>, write accessor for the attribute - this accessor will embed whatever
is needed to further properly write the data to the publishing infrastructure (in
particular, it will take note of the modification). Since the identity of DLRL Objects
that are generated using predefined mapping (i.e. with a keyDescription content of
"NoOid") is determined by the value of its key fields, changing these key fields
means changing their identity. For this reason these keyfields are considered read-
only: any attempt to change them will raise a PreconditionNotMet. The only
exception to this rule is when locally created objects have not yet been registered
and therefore do not have an identity yet.

• is_<attribute>_modified, to get if this attribute has been modified by means of
incoming modifications (cf. method is_modified).

A Cache Object represents the global system state. It has a read_state whose transitions
represent the updates as they are received by the DCPS. Since Cache Objects cannot be
modified locally, they have no corresponding write_state (i.e. their write_state is set to
VOID). State transitions occur between the start of an update round and the end of of an
update round. When in automatic updates mode, the start of the update round is signaled
by the invocation of the on_begin_updates callback of the CacheListener, while the end
of an update round is signaled by the invocation of the on_end_updates callback of the
CacheListener. When in manual update mode, the start of an update round is defined as
the start of a refresh operation, while the end of an update round is defined as the
invocation of the next refresh operation.
June 2014 DDS Data Local Reconstruction Layer (DLRL), v1.4 2-35

2

.

Figure 2-5 read_state and write_state of a Cache object

A CacheAccess Object represents either represents a temporary system state (a so-called
'snapshot' of the Cache) when in READ_ONLY mode, or it represents an intended
system state when in WRITE_ONLY or READ_WRITE mode. In READ_ONLY mode,
a CacheAccess object has no write_state (it is VOID, not depicted), while in
WRITE_ONLY mode it has no read_state (it is VOID, not depicted). Transitions of the
read_state occur during an update round (caused by invocation of the refresh method) ,
or when the CacheAccess is purged. Changes of the write_state are caused by either local
modifications (can be done on any time), by commiting the local changes to the system
(during a write operation), by purging the CacheAccess or by starting a new update
round (by invoking the refresh method and thus rolling back any uncommitted changes).
Since a refresh operation validates contracts, and both these contracts and the
relationships between their targeted objects may change, two results are possible: an
object can be contracted as a result of the refresh operation, thus (re-)appearing in the
CacheAccess, or an object can not be contracted as a result of a refresh operation, thus
disappearing from a CacheAccess.

VOIDNEW

NOT_MODI
FIED

MODIFIED

DELETED

new instance arrives

end of update round

update arrives

ins tance disposedinstance disposed

end of updat e round update arrives

instanc e disposed

garbage collected

 read_state write_state
2-36 DDS Data Local Reconstruction Layer (DLRL), v1.4 June 2014

2

Figure 2-6 ead_state and write_state of a CacheAccess object

NEW

refresh contracted

NOT_MODI
FIED

MODIFIED

refresh updated

DELETED

update de leted OR
purge OR refresh not

contracted

refres h not updated

update deleted OR
purge OR refresh not

contracted

refresh not updated refresh updated

update deleted OR
purge OR refresh

not contracted

garbage collected

NEW

MODIFIED

NOT_MODI
FIED

DELETED

create object

refresh
contracted

refresh contracted

write CacheAccess
OR purge OR refresh

not contracted

destroy objec t
write CacheAcces s OR

refresh contracted

purge OR refresh
not contracted

destroy objec t

modify object

purge OR refresh
not contracted

write CacheAccess

purge OR refresh
not contracted

destroy object

 write_state of
CacheAccess in
WRITE_ONLY or
READ_WRITE mode
June 2014 DDS Data Local Reconstruction Layer (DLRL), v1.4 2-37

2

2.1.6.3.15 Collection

This class is the abstract root for all collections (lists and maps).

It provides the following attributes:

• length - the length of the collection.

• values - a list of all values contained in the Collection.

2.1.6.3.16 List

This class is the abstract root for all the lists. Concrete list classes will be derived, in
order to provide typed lists (those classes will be named FooList, assuming that Foo is
the type of one item).

It provides the following methods:

• "remove - to remove the item with the highest index from the collection.

• "added_elements - to get a list that contains the indexes of the added elements.

Collection
no attributes

length integer

values undefined [] (e.g. of type ObjectRoot
or Primitive type)

List : Collection
no attributes

operations

remove void

added_elements integer[]

removed_elements integer[]

modified_elements integer[]

add void

value undefined (e.g. of
type ObjectRoot or
Primitive type)

put void

index integer

value undefined (e.g. of
type ObjectRoot or
Primitive type)

get undefined (e.g. of
type ObjectRoot or
Primitive type)

index integer
2-38 DDS Data Local Reconstruction Layer (DLRL), v1.4 June 2014

2

• "removed_elements - to get a list that contains the indexes of the removed
elements.

• "modified_elements - to get a list that contains the indexes of the modified
elements.

• "add - to add an item to the the end of the list.

• "put - to put an item in the collection at a specified index.

• "get - to retrieve an item in the collection (based on its index).

2.1.6.3.17 Set

This class is the abstract root for all setss. Concrete Set classes will be derived, in order
to provide typed sets (those classes will be named FooSet, assuming that Foo is the type
of one item).

• It provides the following methods:

• "add - to add an element to the Set. If the specified element was already contained in
the Set, the operation is ignored.

• "remove - to remove an element from the Set. If the specified element is not contained
in the Set, the operation is ignored.

• "contains - returns whether the specified value is already contained in the Set (true) or
not (false).

• "added_elements - to return the elements added in the last update round.

Set : Collection
no attributes

operations

added_elements undefined (e.g. of
type ObjectRoot or
Primitive type)

removed_elements undefined (e.g. of
type ObjectRoot or
Primitive type)

contains boolean

value undefined (e.g. of
type ObjectRoot or
Primitive type)

add void

value undefined (e.g. of
type ObjectRoot or
Primitive type)

remove void

value undefined (e.g. of
type ObjectRoot or
Primitive type)
June 2014 DDS Data Local Reconstruction Layer (DLRL), v1.4 2-39

2

• "removed_elements - to return the elements removed in the last update round

2.1.6.3.18 StrMap

This class is the abstract root for all the maps with string keys. Concrete map classes will
be derived, in order to provide typed maps (those classes will be named FooStrMap,
assuming that Foo is the type of one item).

The public attributes give:

• "keys - a list that contains all the keys of the items belonging to the map.

It provides the following methods:

• "remove - to remove an item from the collection.

• "added_elements - to get a list that contains the keys of the added elements.

• "removed_elements - to get a list that contains the keys of the removed elements.

• "modified_elements -to get a list that contains the keys of the modified elements.

• "put - to put an item in the collection.

• "get - to retrieve an item in the collection (based on its key).

StrMap : Collection
attributes

keys string[]

operations

remove void

key string

added_elements string[]

removed_elements string[]

modified_elements string[]

put void

key string

value undefined (e.g. of
type ObjectRoot or
Primitive type)

get undefined (e.g. of
type ObjectRoot or
Primitive type)

key string
2-40 DDS Data Local Reconstruction Layer (DLRL), v1.4 June 2014

2

2.1.6.3.19 IntMap

This class is the abstract root for all the maps with integer keys. Concrete map classes
will be derived, in order to provide typed maps (those classes will be named FooIntMap,
assuming that Foo is the type of one item).

The public attributes give:

• "keys - a list that contains all the keys of the items belonging to the map.

It provides the following methods:

• "remove - to remove an item from the collection.

• "added_elements - to get a list that contains the keys of the added elements.

• "removed_elements - to get a list that contains the keys of the removed elements.

• "modified_elements - to get a list that contains the keys of the modified elements.

• "put - to put an item in the collection.

• "get - to retrieve an item in the collection (based on its key).

2.1.6.4 Listeners Activation

As described in Section 2.1.6.2, “DLRL Entities,” on page 2-15, there are three kinds of
listeners that the application developer may implement and attach to DLRL entities:
CacheListener, ObjectListener, and SelectionListener. All these listeners are a means for
the application to attach specific application code to the arrival of some events. They are
therefore only concerned with incoming information.

IntMap : Collection
attributes

keys string[]

operations

remove void

key integer

added_elements integer[]

removed_elements integer[]

modified_elements integer[]

put void

key integer

value undefined (e.g. of
type ObjectRoot or
Primitive type)

get undefined (e.g. of
type ObjectRoot or
Primitive type)

key integer
June 2014 DDS Data Local Reconstruction Layer (DLRL), v1.4 2-41

2

This section presents how these listeners are triggered (i.e., which ones, on which events,
and in which order).

2.1.6.4.1 General Scenario

Incoming updates15 are usually a set of coherent individual updates that may be object
creations, object deletions, and object modifications.

This set of updates is managed as follows:

• First, all the CacheListener::start_updates operations are triggered; the order in
which these listeners are triggered is not specified.

• Then all the updates are actually applied in the cache16. When an object is
modified, several operations allow to get more precisely which parts of the object
are concerned (see ObjectRoot::is_modified operations as well as the operations for
Collection, namely, is_modified, how_many_added, how_many_removed,
removed_values, and which_added); these operations can be called in the listeners.

• Then, the suitable object and selection listeners are triggered, depending on each
individual update (see the following sections).

• Finally all the CacheListener::end_updates operations are triggered and the
modification states of the updated objects is cleaned; the order in which these
listeners are triggered is not specified.

2.1.6.4.2 Object Creation

When an individual update reports an object creation, the following listeners are
activated:

• First, the ObjectListener listeners suitable to that object are searched and their
on_object_created operations triggered. The search follows the inheritance structure
starting with the more specific ObjectHome (e.g., FooHome, if the object is typed
Foo) to ObjectRoot. The search is stopped when all on_object_created operations
return true at one level; inside one level, the triggering order is not specified.

• Then, all the Selection objects that are concerned with that kind of object (e.g., the
FooSelection and above in the inheritance hierarchy) are checked to see if that new
object is becoming a member of the selection. In case it is true, the attached
SelectionListener::on_object_in is triggered.

2.1.6.4.3 Object Modification

When an individual update reports an object modification, the following listeners are
activated:

15.Whether those incoming updates are transmitted to the DLRL layer by means of DCPS lis-
teners or by means of wait sets and conditions is not discussed here: this is an implementa-
tion detail.

16.If an object is deleted, its state is set as DELETED; it will be actually removed when there
are no more references to it.
2-42 DDS Data Local Reconstruction Layer (DLRL), v1.4 June 2014

2

• First, all the Selection objects that are concerned with that kind of object (e.g., the
FooSelection and above in the inheritance hierarchy, assuming that the object is of
type Foo) are checked to see if that new object is:

• becoming a member of the selection. If so, the attached
SelectionListener::on_object_in is triggered.

• already and still part of the selection. If so, the attached
SelectionListener::on_object_modified is triggered.

• leaving the selection. If so, the attached SelectionListener::on_object_out is
triggered.

• Then, the ObjectListener listeners suitable to that object are searched and their
on_object_modified operations triggered. The search follows the inheritance
structure starting with the more specific ObjectHome (e.g., FooHome, if the object
is typed Foo) to ObjectRoot. The search is stopped when all on_object_modified
operations return true at one level; inside one level, the triggering order is not
specified.

2.1.6.4.4 Object Deletion

When an individual update reports an object deletion, the following listeners are
activated.

• First, all the Selection objects that are concerned with that kind of object (e.g., the
FooSelection and above in the inheritance hierarchy, assuming that the object is of
type Foo) are checked to see if that new object was part of the selection. If so, the
attached SelectionListener::on_object_out is triggered.

• Then, the ObjectListener listeners suitable to that object are searched and their
on_object_deleted operations triggered. The search follows the inheritance structure
starting with the more specific ObjectHome (e.g., FooHome, if the object is typed
Foo) to ObjectRoot. The search is stopped when all on_object_deleted operations
return true at one level; inside one level, the triggering order is not specified.

2.1.6.5 Cache Accesses Management

Cache accesses are a means to perform read or write operations in isolation from other
object modifications. The two following subsections present typical use scenarios.

It should be noted that, even though a sensible design is to create a CacheAccess per
thread, DLRL does not enforce this rule by any means.

2.1.6.5.1 Read Mode

The typical scenario for read mode is as follows:

1. Create the CacheAccess for read purpose (Cache::create_access).

2. Attach some cloning contracts to it (CacheAccess::create_contract).

3. Execute these contracts (CacheAccess::refresh).
June 2014 DDS Data Local Reconstruction Layer (DLRL), v1.4 2-43

2

4. Consult the clone objects and navigate amongst them (plain access to the objects).
These objects are not subject to any incoming notifications.

5. Purge the cache (CacheAccess::purge); step 2 can be started again.

6. Eventually, delete the CacheAccess (Cache::delete_access).

2.1.6.5.2 Write Mode

The typical scenario for write mode is as follows:

1. Create the CacheAccess for write purpose (Cache::create_access).

2. Clone some objects in it (ObjectRoot::clone or clone_object).

3. Refresh them (CacheAccess::refresh).

4. If needed create new ones for that CacheAccess (ObjectHome:: create_object).

5. Modify the attached (plain access to the objects).

6. Write the modifications into the underlying infrastructure (CacheAccess::write).

7. Purge the cache (CacheAccess::purge); step 2 can be started again.

8. Eventually, delete the CacheAccess (Cache::delete_access).

2.1.6.6 Generated Classes

Assuming that there is an application class named Foo (that will extend ObjectRoot), the
following classes will be generated:

• FooHome : ObjectHome

• FooListener : ObjectListener

• FooSelection : Selection

• FooSelectionListener : SelectionListener

• FooFilter : FilterCriterion

• FooQuery : FooFilter, QueryCriterion

• And for relations to Foo objects (assuming that these relations are described in the
applicative mode – note also that the actual name of these classes will be indicated
by the application):

• “FooRelation” : RefRelation

• “FooListRelation” : ListRelation

• “FooStrMapRelation” : StrMapRelation

• “FooIntMapRelation” : IntMapRelation
2-44 DDS Data Local Reconstruction Layer (DLRL), v1.4 June 2014

2

2.2 OMG IDL Platform Specific Model (PSM)

This section provides a mapping suitable for CORBA platforms. It is described by means
of IDL constructs that can be used by an application in order to interact with the services;
this is described in Section 2.2.1, “Run-time Entities,” on page 2-45.

This section also specifies the generation process (specializing the abstract one presented
on Figure 2-3 : DLRL Generation Process); in particular, the following are described:

• How the application introduces its application classes (“Model Description” in
Figure 2-3).

• How the application adds indication to properly generate the DLRL entities as well
as the resulting enhanced application constructs (“Model Tags” in Figure 2-3).

This process is described in Section 2.2.2, “Generation Process,” on page 2-62.

2.2.1 Run-time Entities

2.2.1.1 Mapping Rules

Rationale to define DLRL entities mapping is slightly different from what ruled the
DCPS mapping, mainly because this layer does not target C language. Therefore,
valuetypes or exceptions have been considered as suitable at the DLRL level, while they
have been rejected for DCPS.

In summary, there are two kinds of DLRL entities:

1. Entities that are access points to servicing objects (e.g., Cache).

2. Entities that are application objects (i.e., whose aim is to be distributed), or parts of
them.

Entities belonging to the first category are modeled as IDL local interfaces. Entities
belonging to the second one are modeled as IDL valuetypes.

The choice for valuetypes has been driven by two main reasons:

• It is the IDL construct that fits best with the concept of DLRL objects.

• It offers a means to differentiate private from public attributes.

Error reporting has been modeled by use of exceptions, with the following rule:

• When a real error that will affect the future behavior is reported (e.g., passing of a
wrong parameter), an exception is raised.

• When this ‘error’ is actually a warning in the sense that behavior will not be
affected (e.g., an attempt to remove something from a list where it is not, or no
more), a return value is used instead.
June 2014 DDS Data Local Reconstruction Layer (DLRL), v1.4 2-45

2

The language implementation of the CacheFactory interface should have the static
operation get_instance described in Section 2.1.6.3.1, “CacheFactory,” on page 2-19.
This operation does not appear in the IDL CacheFactory interface, as static operations
cannot be expressed in IDL

The IDL PSM introduces a number of types that are intended to be defined in a native
way. As these are opaque types, the actual definition of the type does not affect
portability and is implementation dependent. For completeness the names of the types
appear as typedefs in the IDL and a #define with the suffix "_TYPE_NATIVE" is used as
a place-holder for the actual type. The type used in the IDL by this means is not
normative and an implementation is allowed to use any other type, including non-scalar
(i.e., structured types).

Exceptions in DLRL will be mapped according to the default language mapping rules,
except for the AlreadyDeleted exception. Since this exception can be raised on all
methods and attributes (which is not possible to specify in IDL versions older than 3.0),
it is not explicitly mentioned in the raise clause of each operation. Implementors may
choose to map it onto an exception type that does not need to be caught explicitly,
simplifying the DLRL code significantly.

2.2.1.2 IDL Description

This IDL is split in two sections:

• IDL for the generic DLRL entities

• Implied IDL

2.2.1.2.1 Generic DLRL Entities

#include "dds_dcps.idl"

#define DLRL_OID_TYPE_NATIVE long

module DDS {

// Type definitions
// =================

// Scope of action
// ---------------

enum ReferenceScope {
SIMPLE_CONTENT_SCOPE, // only the reference content
REFERENCED_CONTENTS_SCOPE // + referenced contents
};

enum ObjectScope {
SIMPLE_OBJECT_SCOPE, // only the object
2-46 DDS Data Local Reconstruction Layer (DLRL), v1.4 June 2014

2

CONTAINED_OBJECTS_SCOPE, // + contained objects
RELATED_OBJECTS_SCOPE // + all related objects
};

// State of the underlying infrastructure
// --------------------------------------

enum DCPSState {
 INITIAL,
 REGISTERED,
 ENABLED
 };

// Usage of the Cache
// ------------------

enum CacheUsage {
 READ_ONLY,
 WRITE_ONLY,
 READ_WRITE
 };

// Object State
// ------------
enum ObjectState {
 OBJECT_VOID,
 OBJECT_NEW,
 OBJECT_NOT_MODIFIED,
 OBJECT_MODIFIED,
 OBJECT_DELETED
};

// OID
// ---

struct DLRLOid {
 DLRL_OID_TYPE_NATIVE value[3];
 };

// Miscellaneous
// ------------

typedef sequence<long> LongSeq;

typedef string ClassName;
typedef string CacheName;
typedef string RelationName;

// Exceptions
June 2014 DDS Data Local Reconstruction Layer (DLRL), v1.4 2-47

2

// ==========

exception DCPSError { string message; };
exception BadHomeDefinition { string message; };
exception NotFound { string message; };
exception AlreadyExisting { string message; };
exception AlreadyDeleted { string message; };
exception PreconditionNotMet { string message; };
exception NoSuchElement { string message; };
exception SQLError { string message; };

// DLRL Entities
// =============

/********************
 * Forward References
 ********************/

valuetype ObjectRoot;
typedef sequence<ObjectRoot> ObjectRootSeq;

local interface ObjectHome;
typedef sequence<ObjectHome> ObjectHomeSeq;

local interface ObjectListener;
typedef sequence<ObjectListener> ObjectListenerSeq;

local interface Selection;
typedef sequence<Selection> SelectionSeq;

local interface CacheBase;
typedef sequence<CacheBase> CacheBaseSeq;

local interface CacheAccess;
typedef sequence<CacheAccess> CacheAccessSeq;

local interface CacheListener;
typedef sequence<CacheListener> CacheListenerSeq;

local interface Cache;

local interface Contract;
typedef sequence<Contract> ContractSeq;

/***
 * ObjectListener : Root for Listeners to be attached to
 * Home objects
 ***/

local interface ObjectListener {
 boolean on_object_created (
2-48 DDS Data Local Reconstruction Layer (DLRL), v1.4 June 2014

2

 in ObjectRoot the_object);

 /**** will be generated with the proper Foo type* in the derived
* FooListener
* boolean on_object_modified (
* in ObjectRoot the_object);
****/

 boolean on_object_deleted (
 in ObjectRoot the_object);
 };

/**
 * SelectionListener : Root for Listeners to be attached to
 * Selection objects
 **/

local interface SelectionListener {
 /***
 * will be generated with the proper Foo type
 * in the derived FooSelectionListener
 *
 void on_object_in (
 in ObjectRoot the_object);
 void on_object_modified (
 in ObjectRoot the_object);
 *
 ***/
 void on_object_out (
 in ObjectRoot the_object);
 };

/**
 * CacheListener : Listener to be associated with a Cache
 **/

local interface CacheListener {
 void on_begin_updates ();
 void on_end_updates ();
 void on_updates_enabled();
 void on_updates_disabled();
};

/**
 * Contract : Control objects cloned on a CacheAccess refresh
 **/

local interface Contract {
June 2014 DDS Data Local Reconstruction Layer (DLRL), v1.4 2-49

2

 readonly attribute long depth;
 readonly attribute ObjectScope scope;
 readonly attribute ObjectRoot contracted_object.

 void set_depth(
in long depth);
 void set_scope(
 in ObjectScope scope);
};

/**
 * ObjectRoot : Root fot the shared objects
 **/
enum RelationKind {
 REF_RELATION,
 LIST_RELATION,
 INT_MAP_RELATION,
 STR_MAP_RELATION};

valuetype RelationDescription {
 public RelationKind kind;
 public RelationName name;
 };
valuetype ListRelationDescription : RelationDescription {
 public long index;
 };
valuetype IntMapRelationDescription : RelationDescription {
 public long key;
 };
valuetype StrMapRelationDescription : RelationDescription {
 public string key;
 };
typedef sequence<RelationDescription> RelationDescriptionSeq;

typedef short RelatedObjectDepth;
const RelatedObjectDepth UNLIMITED_RELATED_OBJECTS = -1;

valuetype ObjectRoot {

 // State
 // -----
 private DLRLOid m_oid;
 private ClassName m_class_name;

 // Attributes
 // ----------
 readonly attribute DLRLOid oid;
 readonly attribute ObjectState read_state;
 readonly attribute ObjectState write_state;
 readonly attribute ObjectHome object_home;
2-50 DDS Data Local Reconstruction Layer (DLRL), v1.4 June 2014

2

 readonly attribute ClassName class_name;
 readonly attribute CacheBase owner;

 // Operations
 // ----------
 void destroy ()
 raises (
 PreconditionNotMet);
 boolean is_modified (
 in ObjectScope scope);
 RelationDescriptionSeq which_contained_modified ();
 };

/***
* SelectionCriterion: Root of all filters and queries
***/
enum CriterionKind {
 QUERY,
 FILTER
};

local interface SelectionCriterion {
 readonly attribute CriterionKind kind;
};

/***
* FilterCriterion: Root of all the objects filters
***/
enum MembershipState {
 UNDEFINED_MEMBERSHIP,
 ALREADY_MEMBER,
 NOT_MEMBER
};

local interface FilterCriterion : SelectionCriterion {
 /***
 * Following method will be generated properly typed
 * in the generated derived classes
 *
 boolean check_object (
 in ObjectRoot an_object,
 in MembershipState membership_state);
 *
 ***/
};
/***
* QueryCriterion : Specialized SelectionCriterion to make a
* Query
**/
local interface QueryCriterion : SelectionCriterion {
 // Attributes
June 2014 DDS Data Local Reconstruction Layer (DLRL), v1.4 2-51

2

 // ---------
 readonly attribute string expression;
 readonly attribute StringSeq parameters;
 //--- Methods
 boolean set_query (
 in string expression,
 in StringSeq parameters) raises (SQLError);
 boolean set_parameters (in StringSeq parameters) raises (SQLError);
};

/**
 * Selection : Root of all the selections (dynamic subsets)
 **/

local interface Selection {

 // Attributes
 // ----------
 readonly attribute boolean auto_refresh;
 readonly attribute boolean concerns_contained;

 /***
 * Following attributes will be generated properly typed
 * in the generated derived classes
 *
 readonly attribute SelectionCriterion criterion;
 readonly attribute ObjectRootSeq members;
 readonly attribute SelectionListener listener;
 *
 */

 // Operations
 // ----------
 /***
 * Following method will be generated properly typed
 * in the generated derived classes
 *
 SelectionListener set_listener (
 in SelectionListener listener);
 *
 ***/
 void refresh ();
 };

/***
 * ObjectHome : Root of all the representatives of applicative classes
 ***/

local interface ObjectHome {
2-52 DDS Data Local Reconstruction Layer (DLRL), v1.4 June 2014

2

 // Attributes
 // ----------
 readonly attribute string name; // Shared name of the class
 readonly attribute string content_filter;
 readonly attribute ObjectHome parent;
 readonly attribute ObjectHomeSeq children;
 readonly attribute unsigned long registration_index;
 readonly attribute boolean auto_deref;

 /***
 * Following attributes will be generated properly typed
 * in the generated derived classes
 *
 readonly attribute SelectionSeq selections;
 readonly attribute ObjectListenerSeq listeners;
 *
 ***/

 // Operations
 // ----------

 void set_content_filter (
 in string expression)
 raises (
 SQLError,
 PreconditionNotMet);

 void set_auto_deref (
 in boolean value);
 void deref_all();
 void underef_all ();

 //--- Relations to topics

 string get_topic_name (
 in string attribute_name)
 raises (
 PreconditionNotMet);
 StringSeq get_all_topic_names ()
 raises (
 PreconditionNotMet);

 // --- Listener management

 /***
 * Following methods will be generated properly typed
 * in the generated derived classes
 *

void attach_listener (
June 2014 DDS Data Local Reconstruction Layer (DLRL), v1.4 2-53

2

in ObjectListener listener,
in boolean concerns_contained_objects);

void detach_listener (
in ObjectListener listener);

 *
 ***/

 // --- Selection management

 /***
 * Following methods will be generated properly typed
 * in the generated derived classes
 *
 Selection create_selection(
 in SelectionCriterion criterion,
 in boolean auto_refresh,
 in boolean concerns_contained_objects)
 raises (
 PreconditionNotMet);
 void delete_selection (
 in Selection a_selection)
 raises (
 PreconditionNotMet);
 *
 ***/

 // --- Object management

 /***
 * Following methods will be generated properly typed
 * in the generated derived classes
 *
 ObjectRoot create_object(
 in CacheAccess access)
 raises (
 PreconditionNotMet);
 ObjectRoot create_unregistered_object (
 in CacheAccess access)
 raises (
 PreconditionNotMet);
 void register_object (
 in ObjectRoot unregistered_object)
 raises (
 AlreadyExisting,
 PreconditionNotMet);

 ObjectRoot find_object (
 in DLRLOid oid,
 in CacheBase source)
 raises (
 NotFound);
2-54 DDS Data Local Reconstruction Layer (DLRL), v1.4 June 2014

2

 ObjectRootSeq get_objects (
 in CacheBase source);
 ObjectRootSeq get_created_objects (
 in CacheBase source);
 ObjectRootSeq get_modified_objects (
 in CacheBase source);
 ObjectRootSeq get_deleted_objects (
 in CacheBase source);

 *
 ***/
 };

/***********************
 * Collection operations
 ***********************/
abstract valuetype Collection {

 readonly attribute long length;

 /***
 * The following methods will be generated properly typed
 * in the generated derived classes
 *
 readonly attribute ObjectRootSeq values;
 *
 ***/
};

abstract valuetype List : Collection {

 void remove();
 LongSeq added_elements();
 LongSeq removed_elements();
 LongSeq modified_elements();

 /***
 * The following methods will be generated properly typed
 * in the generated derived classes
 *
 void add(in ObjectRoot value);
 void put(in long key, in ObjectRoot value);
 ObjectRoot get(in long key);
 *
 ***/
};

valuetype Set : Collection {
 /***
June 2014 DDS Data Local Reconstruction Layer (DLRL), v1.4 2-55

2

 * The following methods will be generated properly typed in
 * the generated derived classes.
 *
 ObjectRootSeq added_elements();
 ObjectRootSeq removed_elements();
 boolean contains(ObjectRoot value);
 void add(ObjectRoot value);
 void remove(ObjectRoot value);
 *
 ***/
};

abstract valuetype StrMap : Collection {

 readonly attribute StringSeq keys;
 void remove(in string key);
 StringSeq added_elements();
 StringSeq removed_elements();
 StringSeq modified_elements();

 /***
 * The following methods will be generated properly typed
 * in the generated derived classes
 *
 void put(in string key, in ObjectRoot value);
 ObjectRoot get(in string key);
 *
 ***/
};

abstract valuetype IntMap : Collection {

 readonly attribute LongSeq keys;
 void remove(in long key);
 LongSeq added_elements();
 LongSeq removed_elements();
 LongSeq modified_elements();

 /***
 * The following methods will be generated properly typed
 * in the generated derived classes
 *
 void put(in long key, in ObjectRoot value);
 ObjectRoot get(in long key);
 *
 ***/
};

/**
 * CacheBase : Base class to CacheAccess and Cache
 **/
2-56 DDS Data Local Reconstruction Layer (DLRL), v1.4 June 2014

2

enum CacheKind {
 CACHE_KIND,
 CACHEACCESS_KIND
};

local interface CacheBase {
 readonly attribute CacheUsage cache_usage;
 readonly attribute ObjectRootSeq objects;
 readonly attribute CacheKind kind;

 void refresh() raises (DCPSError);
};

/**
 * CacheAccess : Manager of the access of a subset of objects
 * (cloned) from a Cache
 **/

local interface CacheAccess : CacheBase {

 // Attributes
 // ==========
 readonly attribute Cache owner;
 readonly attribute ContractSeq contracts;
 readonly attribute StringSeq type_names;

 // Operations
 // ==========
 void write ()
 raises (
 ReadOnlyMode,
 DCPSError);
 void purge ();
 void create_contract(
 in ObjectRoot object,
 in ObjectScope scope, in long depth)
 raises (PreconditionNotMet);
 void delete_contract(
 in Contract a_contract)
 raises (PreconditionNotMet);
};

/***
 * Cache : Manager of a set of related objects
 * is associated to one DDS::Publisher and/or one DDS::Subscriber
 ***/

local interface Cache : CacheBase {

 // Attributes
June 2014 DDS Data Local Reconstruction Layer (DLRL), v1.4 2-57

2

 // ----------
 readonly attribute DCPSState pubsub_state;
 readonly attribute DDS::Publisher the_publisher;
 readonly attribute DDS::Subscriber the_subscriber;
 readonly attribute boolean updates_enabled;
 readonly attribute ObjectHomeSeq homes;
 readonly attribute CacheAccessSeq sub_accesses;
 readonly attribute CacheListenerSeq listeners;

 // Operations
 // ----------

 //-- Infrastructure management
 void register_all_for_pubsub()
 raises (
 BadHomeDefinition,
 DCPSError,
 PreconditionNotMet);
 void enable_all_for_pubsub()
 raises (
 DCPSError,
 PreconditionNotMet);

 // -- Home management
 unsigned long register_home (
 in ObjectHome a_home)
 raises (
 PreconditionNotMet);
 ObjectHome find_home_by_name (
 in ClassName class_name);
 ObjectHome find_home_by_index (
 in unsigned long index);

 // -- Listener Management
 void attach_listener (
 in CacheListener listener);
 void detach_listener (
 in CacheListener listener);

 // --- Updates management
 void enable_updates ();
 void disable_updates ();

 // --- CacheAccess Management
 CacheAccess create_access (
 in CacheUsage purpose)
 raises (
 PreconditionNotMet);
 void delete_access (
 in CacheAccess access)
 raises (
2-58 DDS Data Local Reconstruction Layer (DLRL), v1.4 June 2014

2

 PreconditionNotMet);
 };

/**
 * CacheFactory : Factory to create Cache objects
 **/

valuetype CacheDescription {
 public CacheName name;
 public DDS::DomainParticipant domain;
 };

local interface CacheFactory {
 Cache create_cache (
 in CacheUsage cache_usage,
 in CacheDescription cache_description)
 raises (
 DCPSError,
 AlreadyExisting);
 Cache find_cache_by_name(
 in CacheName name);
 void delete_cache (
 in Cache a_cache);
 };

};

2.2.1.2.2 Implied IDL

This section contains the implied IDL constructs for an application-defined class named
Foo.

#include "dds_dlrl.idl"

valuetype Foo: DDS::ObjectRoot {
 // some attributes and methods
 };

/************************************
 * DERIVED CLASSES FOR Foo
 ************************************/

typedef sequence<Foo> FooSeq;

local interface FooListener: DDS::ObjectListener {
 void on_object_created(
 in Foo the_object);
 void on_object_modified (
 in Foo the_object);
June 2014 DDS Data Local Reconstruction Layer (DLRL), v1.4 2-59

2

 void on_object_deleted(
 in Foo the_object);
 };
typedef sequence <FooListener> FooListenerSeq;

local interface FooSelectionListener : DDS::SelectionListener {
 void on_object_in (
 in Foo the_object);
 void on_object_modified (
 in Foo the_object);
 void on_object_out (
 in Foo the_object);

 };

 local interface FooFilter: DDS::FilterCriterion {
 boolean check_object (
 in Foo an_object,
 in DDS::MembershipState membership_state);
 };

local interface FooQuery : DDS::QueryCriterion, FooFilter {
 };

local interface FooSelection : DDS::Selection {
 readonly attribute FooFilter filter;
 readonly attribute FooSeq members;
 readonly attribute FooSelectionListener listener;

 FooSelectionListener set_listener (
 in FooSelectionListener listener);
 };
typedef sequence <FooSelection> FooSelectionSeq;

local interface FooHome : DDS::ObjectHome {
 readonly attribute FooSelectionSeqselections;
 readonly attribute FooListenerSeq listeners;

 void attach_listener (
 in FooListener listener,
 in boolean concerns_contained_objects);
 void detach_listener (
 in FooListener listener);

 FooSelection create_selection (
 in FooFilter filter,
 in boolean auto_refresh)
 raises (
 DDS::BadParameter);
2-60 DDS Data Local Reconstruction Layer (DLRL), v1.4 June 2014

2

 void delete_selection (
 in FooSelection a_selection)
 raises (
 DDS::PreconditionNotMet);
 Foo create_object(
 in DDS::CacheAccess access)
 raises (
 DDS::PreconditionNotMet);
 Foo create_unregistered_object (
 in DDS::CacheAccess access)
 raises (
 DDS::PreconditionNotMet);
 void register_object (
 in Foo unregistered_object)
 raises (
 DDS::AlreadyExisting,
 DDS::PreconditionNotMet);
 Foo find_object_in_access (
 in DDS::DLRLOid oid,
 in DDS::CacheAccess access)
 raises (
 DDS::NotFound);
 Foo find_object (
 in DDS::DLRLOid oid);
 FooSeq get_objects(
 in CacheBase source);
 FooSeq get_created_objects(
 in CacheBase source);
 FooSeq get_modified_objects(
 in CacheBase source);
 FooSeq get_deleted_objects(
 in CacheBase source);

 };

/***
 * Derived class for relations to Foo
 ***/
valuetype FooList : DDS::List { //List<Foo>
 readonly attribute FooSeq values;
 void add(in Foo value);
 void put(in long key, in Foo value);
 Foo get(in long key);
};

valuetype FooSet : DDS::Set { // Set<Foo>
 FooSeq values ();
 FooSeq added_elements();
 FooSeq removed_elements();
June 2014 DDS Data Local Reconstruction Layer (DLRL), v1.4 2-61

2

 boolean contains(in Foo value);
 void add(in Foo value);
 void remove(in Foo value);
};

valuetype FooStrMap : DDS::StrMap { //StrMap<Foo>
 readonly attribute FooSeq values;
 void put(in string key, in Foo value);
 Foo get(in string key);
};

valuetype FooIntMap : DDS::IntMap { //IntMap<Foo>
 readonly attribute FooSeq values;
 void put(in long key, in Foo value);
 Foo get(in long key);
};

2.2.2 Generation Process

2.2.2.1 Principles

The generic generation process explained in Section 2.1.4.6, “How is this Mapping
Indicated?,” on page 2-11, is instantiated as follows:

Figure 2-7 DLRL Generation Process (OMG IDL)

Model
Description

(IDL valuetypes)

DLRL Generator

Model
Tags

(XML)

Enhanced
Model

Description
(+ implied IDL)

DCPS
description

Dedicated
DLRL
Entities
(IDL)

Native
constructs

Native
constructs

Language mappings
2-62 DDS Data Local Reconstruction Layer (DLRL), v1.4 June 2014

2

2.2.2.2 Model Description

As stated in Section 2.2.1, “Run-time Entities,” on page 2-45, application classes are
modeled by means of IDL value-types.

Support for specific typed collections is introduced by means of a void value declaration,
which will be transformed in the generation process by means of special model tags that
are explained in the following section.

2.2.2.3 Model Tags

Model tags are specified by means of XML declarations that must be compliant with the
DTD listed in the following section; subsequent sections give details on the constructs.

2.2.2.3.1 Model Tags DTD

The following is the DTD for expressing the Model Tags in XML:

<?xml version="1.0" encoding="ISO-8859-1"?>
<!ELEMENT Dlrl
 (enumDef | templateDef | associationDef | compoRelationDef| classMapping)*>
<!ATTLIST Dlrl name CDATA #IMPLIED>

<!ELEMENT enumDef (value)*>
<!ATTLIST enumDef name CDATA #REQUIRED>
<!ELEMENT value (#PCDATA)>

<!ELEMENT templateDef EMPTY>
<!ATTLIST templateDef name CDATA #REQUIRED
 pattern (List | StrMap | IntMap | Set) #REQUIRED
 itemType CDATA #REQUIRED>

<!ELEMENT associationDef (relation,relation)>
<!ELEMENT relation EMPTY>
<!ATTLIST relation class CDATA #REQUIRED
 attribute CDATA #REQUIRED>

<!ELEMENT compoRelationDef EMPTY>
<!ATTLIST compoRelationDef class CDATA #REQUIRED
 attribute CDATA #REQUIRED>

<!ELEMENT classMapping (mainTopic?,extensionTopic?,
(monoAttribute | multiAttribute | monoRelation | multiRelation | local)*)>
<!ATTLIST classMapping name CDATA #REQUIRED>

<!ELEMENT mainTopic (keyDescription)>
<!ATTLIST mainTopic name CDATA #REQUIRED
 typename CDATA #IMPLIED>

<!ELEMENT extensionTopic (keyDescription)>
<!ATTLIST extensionTopic name CDATA #REQUIRED
 typename CDATA #IMPLIED>

June 2014 DDS Data Local Reconstruction Layer (DLRL), v1.4 2-63

2

<!ELEMENT monoAttribute (placeTopic?,valueField+)>
<!ATTLIST monoAttribute name CDATA #REQUIRED>

<!ELEMENT multiAttribute (multiPlaceTopic,valueField+)>
<!ATTLIST multiAttribute name CDATA #REQUIRED>

<!ELEMENT monoRelation (placeTopic?,keyDescription)>
<!ATTLIST monoRelation name CDATA #REQUIRED>

<!ELEMENT multiRelation (multiPlaceTopic,keyDescription)>
<!ATTLIST multiRelation name CDATA #REQUIRED>

<!ELEMENT local EMPTY>
<!ATTLIST local name CDATA #REQUIRED>

<!ELEMENT placeTopic (keyDescription)>
<!ATTLIST placeTopic name CDATA #REQUIRED
 typename CDATA #IMPLIED>

<!ELEMENT multiPlaceTopic (keyDescription)>
<!ATTLIST multiPlaceTopic name CDATA #REQUIRED
 typename CDATA #IMPLIED
 indexField CDATA #IMPLIED>

<!ELEMENT keyDescription (keyField*)>
<!ATTLIST keyDescription content (FullOid | SimpleOid | NoOid) #REQUIRED>

<!ELEMENT keyField (#PCDATA)>

<!ELEMENT valueField (#PCDATA)>

2.2.2.3.2 Details on the XML constructs

To allow a better understanding, in the following examples, the DCPS information
(topics, fields) is in capital letters, while the DLRL one is not.

2.2.2.3.2.1 Root

A DLRL Model Tags XML document, is a list of following XML tags:

• enumDef - to give explicit names to enumeration items, in case the default behavior
(coding them by means of long values) is not suitable.

• templateDef - to define a typed collection or a reference (giving its pattern as well
as the type of its elements; it comes in place of a statement such as List<Foo>
which is not allowed in IDL.

• compoRelationDef - to state that a given relation is actually a composition.

• associationDef - to associate two relations, so that they make a full association (in
the UML sense).

• classMapping - to define the mapping of a DLRL class to DCPS topics; it
comprises a list of:

• monoAttribute - for mono-valued attributes
2-64 DDS Data Local Reconstruction Layer (DLRL), v1.4 June 2014

2

• multiAttribute - for multi-valued attributes

• monoRelation - for mono-valued relations

• multiRelation - for multi-valued relations

• local - to state that an attribute is not a DLRL attribute (and thus will not be
considered by this generation process).

2.2.2.3.2.2 EnumDef

This tag contains an attribute name (scoped name of the IDL enumeration) and as many
value sub-tags that needed to give values.

Example:
 <enumDef name="WeekDays">
 <value>Monday</value>
 <value>Tuesday</value>
 <value>Wednesday</value>
 <value>Thursday</value>
 <value>Friday</value>
 <value>Saturday</value>
 <value>Sunday</value>
 </enumDef>

2.2.2.3.2.3 TemplateDef

This tag contains three attributes:

• name - gives the scoped name of the type.

• pattern - gives the construct pattern. The supported constructs are: List, StrMap,
IntMap, and Set.

• itemType - gives the type of each element in the collection.

Example:
<templateDef name="BarStrMap" pattern="StrMap" itemType="Bar"/>

This corresponds to a hypothetical typedef StrMap<Foo> FooStrMap;

2.2.2.3.2.4 AssociationDef

This tag puts in association two relations (that represent then the association ends of that
association). It embeds two mandatory relation sub-tags to designate the concerned
relations. Each of these sub-tags has two mandatory attributes:

• class - contains the scoped name of the class.

• attribute - contains the name of the attribute that supports the relation inside the
class.

Example:

<associationDef>
 <relation class="Track" attribute="a_radar"/>
 <relation class="Radar" attribute="tracks"/>
 </associationDef>
June 2014 DDS Data Local Reconstruction Layer (DLRL), v1.4 2-65

2

2.2.2.3.2.5 compoRelationDef

This tag states that the relation is actually a composition. It has two mandatory attributes:

• class - contains the scoped name of the class.

• attribute - contains the name of the attribute that supports the relation inside the
class.

Example:

<compoRelationDef class"Radar" attribute="tracks"/>

2.2.2.3.2.6 ClassMapping

This tag contains one attribute name that gives the scoped name of the class and:

• an optional sub-tag mainTopic;

• an optional sub-tag extensionTopic;

• a list of attribute and/or relation descriptions.

Example:

<classMapping name="Track">
...

 </classMapping>

2.2.2.3.2.7 MainTopic

This tag gives the main DCPS Topic, to which that class refer. The main Topic is the
topic that gives the existence of a object (an object is declared as existing if, and only if,
there is an instance in that Topic matching its key value.

It comprises one attribute (name) that gives the name of the Topic, one (optional)
attribute (typename) that gives the name of the type (if this attribute is not supplied the
type name is considered to be equal to the topic name) and:

• a mandatory sub-tag keyDescription.

Example:

<mainTopic name="TRACK-TOPIC" typename=”TrackType”>
<keyDescription
...
</keyDescription>

</mainTopic>

2.2.2.3.2.8 KeyDescription

This tag describes the key to be associated to several elements (mainTopic,
extensionTopic, placeTopic, and multiPlaceTopic).

It comprises an attribute that describes the content of the keyDescription, that can be:

• FullOid, in that case, the key description should contain as first keyField the name
of the Topic field used to store the class name and as second keyField the name of
the Topic field used to store the OID itself.
2-66 DDS Data Local Reconstruction Layer (DLRL), v1.4 June 2014

2

• SimpleOid, in that case the key description should only contain one keyField to
contain the OID itself.

• NoOid, in that case the case description should contain as many keyField that are
needed to identify uniquely one row in the related Topic and it is the responsibility
of the DLRL implementation to manage the association between those fields and
the DLRLOid as perceived by the application developer.

It contains also as many elements keyField as needed.

Example:

<keyDescription content="SimpleOid">
<keyField>OID</keyField>

</keyDescription>

2.2.2.3.2.9 ExtensionTable

This tag gives the DCPS Topic that is used as an extension table for the attributes. It
comprises the same attributes as mainTopic.

2.2.2.3.2.10 MonoAttribute

This tag gives the mapping for a mono-valued attribute. It has :

• A mandatory attribute to give the name of the attribute.

• An optional sub-tag to give the DCPS Topic where it is placed (placeTopic). This
sub-tag follows the same pattern as mainTopic. In case it is not given, the
extensionTopic, or if there is no extensionTopic, the mainTopic is used in place of
placeTopic.

• One or more valueField sub-tag(s) to give the name of the field(s) that will contain
the value of that attribute.

Example:

<monoAttribute name="y">
<placeTopic name="Y_TOPIC">

<keyDescription content="SimpleOID">
<keyField>OID</keyField>

</keyDescription>
</placeTopic>

 <valueField>Y</valueField>
</monoAttribute>

2.2.2.3.2.11 MultiAttribute

This tag gives the mapping for a multi-valued attribute. It has:

• A mandatory attribute to give the name of the attribute.

• A mandatory sub-tag to give the DCPS Topic where it is placed (multiPlaceTopic).
This sub-tag follows the same pattern as placeTopic, except it has a mandatory
attribute in addition to state the field needed for storing the collection index.
June 2014 DDS Data Local Reconstruction Layer (DLRL), v1.4 2-67

2

• One or more valueField sub-tag(s) to give the name of the field(s) that will contain
the value of that attribute.

Example:

<multiAttribute name="comments">
<multiPlaceTopic name="COMMENTS-TOPIC"

<keyDescription content="FullOID">
<keyField>CLASS</keyField>
<keyField>OID</keyField>

</keyDescription>
</multiPlaceTopic>
<valueField>COMMENT</valueField>

 </multiAttribute>

2.2.2.3.2.12 MonoRelation

This tag gives the mapping for a mono-valued attribute. It has:

• A mandatory attribute to give the name of the attribute.

• An optional sub-tag to give the Topic where it is placed (placeTopic – see
Section 2.2.2.3.2.10, “MonoAttribute).

• One keyDescription sub-tag to give the name of the field(s) that will contain the
value of that relation (i.e., a place holder to a reference to the pointed object).

Example:

<monoRelation name="a_radar">
<keyDescription content="SimpleOID">

<keyField>RADAR_OID</keyField>
</keyDescription>

</monoRelation>

2.2.2.3.2.13 MultiRelation

This tag gives the mapping for a multi-valued relation. It has:

• A mandatory attribute to give the name of the relation.

• A mandatory sub-tag to give the DCPS Topic where it is placed (multiPlaceTopic –
see Section 2.2.2.3.2.11).

• One valueKey sub-tag (see Section 2.2.2.3.2.12).

Example:

<multiRelation name="tracks">
<multiPlaceTopic name="RADARTRACKS-TOPIC"

<keyDescription content="SimpleOID">
<keyField>RADAR-OID</keyField>

</keyDescription>
<\multiPlaceTopic>
<keyDescription content="FullSimpleOID">

<keyField>TRACK-CLASS</keyField>
<keyField>TRACK-OID</keyField>

</keyDescription>
2-68 DDS Data Local Reconstruction Layer (DLRL), v1.4 June 2014

2

</multiRelation>

2.2.2.3.2.14 Local

This tag just indicates that the corresponding attribute (designated by its name) has to be
ignored by the service.

Example:

 <local name="w"/>

2.2.3 Example

This section contains a very simple example, to illustrate DLRL.

2.2.3.1 UML Model

The following UML diagram describes a very simple application model with three
classes:

Figure 2-8 UML Class Diagram of the Example

2.2.3.2 IDL Model Description

Based on this model, the model description (IDL provided by the application developer)
could be:

#include "dlrl.idl"

valuetype stringStrMap; // StrMap<string>
valuetype TrackList; // List<Track>
valuetype Radar;

valuetype Track : DLRL::ObjectRoot {

Track

x : real

y : real

comments [*] : string

w : integer

Track3D

z : real

Radar

x : real

y : real

comments [*] : string

z : real

tracks a_radar

* 0..1

w : integer
June 2014 DDS Data Local Reconstruction Layer (DLRL), v1.4 2-69

2

 public double x;
 public double y;
 public stringStrMap comments;
 public long w;
 public Radar a_radar;
 };

valuetype Track3D : Track {
 public double z;
 };

valuetype Radar : DLRL::ObjectRoot {
 public TrackList tracks;
 };

2.2.3.3 XML Model Tags

The following UML tags to drive the generation process could then be:

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE Dlrl SYSTEM "dlrl.dtd">
<Dlrl name="example">
 <templateDef name="StringStrMap" pattern="StrMap" itemType="string"/>
 <templateDef name="TrackList" pattern="List" itemType="Track"/>
 <classMapping name="Track">
 <mainTopic name="TRACK-TOPIC">
 <keyDescription content="FullOid">
 <keyField>CLASS</keyField>
 <keyField>OID</keyField>
 </keyDescription>
 </mainTopic>
 <monoAttribute name="x">
 <valueField>X</valueField>
 </monoAttribute>
 <monoAttribute name="y">
 <placeTopic name="Y_TOPIC">
 <keyDescription content="FullOid">
 <keyField>CLASS</keyField>
 <keyField>OID</keyField>
 </keyDescription>
 </placeTopic>
 <valueField>Y</valueField>
 </monoAttribute>
 <multiAttribute name="comments">
 <multiPlaceTopic name="COMMENTS-TOPIC" indexField="INDEX">
 <keyDescription content="FullOid">
 <keyField>CLASS</keyField>
 <keyField>OID</keyField>
 </keyDescription>
 </multiPlaceTopic>
 <valueField>COMMENT</valueField>
 </multiAttribute>
2-70 DDS Data Local Reconstruction Layer (DLRL), v1.4 June 2014

2

 <monoRelation name="a_radar">
 <keyDescription content="SimpleOid">
 <keyField>RADAR_OID</keyField>
 </keyDescription>
 </monoRelation>
 <local name="w"/>
 </classMapping>
 <classMapping name="Track3D">
 <mainTopic name="TRACK-TOPIC">
 <keyDescription content="FullOid">
 <keyField>CLASS</keyField>
 <keyField>OID</keyField>
 </keyDescription>
 </mainTopic>
 <extensionTopic name="TRACK3D-TOPIC">
 <keyDescription content="FullOid">
 <keyField>CLASS</keyField>
 <keyField>OID</keyField>
 </keyDescription>
 </extensionTopic>
 <monoAttribute name="z">
 <valueField>Z</valueField>
 </monoAttribute>
 </classMapping>
 <classMapping name="Radar">
 <mainTopic name="RADAR-TOPIC">
 <keyDescription content="SimpleOid">
 <keyField>OID</keyField>
 </keyDescription>
 </mainTopic>
 <multiRelation name="tracks">
 <multiPlaceTopic name="RADARTRACKS-TOPIC" indexField="INDEX">
 <keyDescription content="SimpleOid">
 <keyField>RADAR-OID</keyField>
 </keyDescription>
 </multiPlaceTopic>
 <keyDescription content="FullOid">
 <keyField>TRACK-CLASS</keyField>
 <keyField>TRACK-OID</keyField>
 </keyDescription>
 </multiRelation>
 </classMapping>
 <associationDef>
 <relation class="Track" attribute="a_radar"/>
 <relation class="Radar" attribute="tracks"/>
 </associationDef>
</Dlrl>

It should be noted that XML is not suitable for manual editing, therefore the file seems
much more complicated than it actually is. It seems much simpler when viewed through
an XML editor, as the following picture illustrates.
June 2014 DDS Data Local Reconstruction Layer (DLRL), v1.4 2-71

2

:

Figure 2-9 XML Editor Illustration

Also note that only the three templateDef, the associationDef, and the local17 tags are
mandatory in all cases. The ClassMapping tags are only required if a deviation is wanted
from the default mapping described in Section 2.1.4.3, “Default Mapping,” on page 2-8.
In case no deviation is wanted from the default mapping, the XML description can be
restricted to the following minimum:

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE Dlrl SYSTEM "dlrl.dtd">
<Dlrl name="Example">
 <templateDef name="stringStrMap" pattern="StrMap" itemType="string"/>
 <templateDef name="TrackList" pattern="List" itemType="Track"/>
 <classMapping name="Track">
<local name="w"/>
 </classMapping>
 <associationDef>
 <relation class="Track" attribute="a_radar"/>
 <relation class="Radar" attribute="tracks"/>
 </associationDef>
</Dlrl>

17.To state that Track::w is not a DLRL attribute.
2-72 DDS Data Local Reconstruction Layer (DLRL), v1.4 June 2014

2

A following step could be to define UML 'tags'18 and to generate those files based on the
UML model. However, this is far beyond the scope of this specification.

2.2.3.4 Underlying DCPS Data Model

This mapping description assumes that the underlying DCPS data model is made of five
topics with their fields as described in the following tables:

18.This specification does not address this point and therefore does not say anything about how
this should/could be represented in UML. The interface between the modeling phase and the
coding phase has just been designed as simple as possible, so that it would be very easy to
fill the gap.

TRACK-TOPIC Topic to store all Track objects (including the derived
classes) – as well as the embedded attributes/relations
defined on Track.

CLASS Field to store the class part of the object reference.

OID Field to store the oid part of the object reference.

X Field to store the value of the attribute x.

RADAR-OID Field to store the relation a_radar.

Y-TOPIC Topic to store Track::y, outside Track's main topic.

CLASS Field to store the class part of the object reference.

OID Field to store the oid part of the object reference.

Y Field to store the value of the attribute y.

COMMENTS-TOPIC Topic to store Track::comments (required as it is a
collection).

CLASS Field to store the class part of the owning object
reference (here a Track).

OID Field to store the oid part of the owning object
reference (here a Track).

INDEX Field to store the index part in the collection

COMMENT Field to store one element of the attribute comments.
June 2014 DDS Data Local Reconstruction Layer (DLRL), v1.4 2-73

2

Note that references to Track objects (including derived Track3D) must provision a field
for the class indication, while references to Radar objects do not, for the Radar class has
no subclasses and does not share its main Topic.

2.2.3.5 Code Example

The following text is a very simple, non fully running, C++ example just to give the
flavor of how objects can be created, modified, and then published.

DDS::DomainParticipant_var dp;
DLRL::CacheFactory_var cf;

/*
 * Init phase
 */
DLRL::Cache_var c = cf->create_cache (WRITE_ONLY, dp);
RadarHome_var rh;
TrackHome_var th;
Track3DHome_var t3dh;

c->register_home (rh);
c->register_home (th);
c->register_home (t3dh);
c->register_all_for_pubsub();
// some QoS settings if needed
c->enable_all_for_pubsub();

TRACK3D-TOPIC Topic to store the embedded attributes/relations added
on Track3D (here only z).

CLASS Field to store the class part of the object reference.

OID Field to store the oid part of the object reference.

Z Field to store the value of the attribute z.

RADARTRACKS-TOPIC Topic to store Radar::tracks (required as it is a
collection).

RADAR-OID Field to store the reference to the owning object (here a
Radar).

INDEX Field to store index in the collection.

TRACK-CLASS Field to store the class part of a reference to an item in
the collection (here a Track).

TRACK-OID Field to store the oid part of a reference to an item in
the collection (here a Track).
2-74 DDS Data Local Reconstruction Layer (DLRL), v1.4 June 2014

2

/*
 * Creation, modifications and publication
 */
Radar_var r1 = rh->create_object(c);
Track_var t1 = th->create-object (c);
Track3D_var t2 = t3dh->create-object (c);
t1->w(12);// setting of a pure local attribute
t1->x(1000.0);// some DLRL attributes settings
t1->y(2000.0);
t2->a_radar->put(r1);// modifies r1->tracks accordingly
t2->x(1000.0);
t2->y(2000.0);
t2->z(3000.0);
t2->a_radar->put(r1);// modifies r1->tracks accordingly
c->write();// all modifications are published
};
June 2014 DDS Data Local Reconstruction Layer (DLRL), v1.4 2-75

2

2-76 DDS Data Local Reconstruction Layer (DLRL), v1.4 June 2014

 Compliance Points A
This specification includes the following compliance profiles.

• Minimum profile: This profile contains just the mandatory features of the DCPS
layer. None of the optional features are included.

• Content-subscription profile: This profile adds the optional classes:
ContentFilteredTopic, QueryCondition, MultiTopic. This profile enables
subscriptions by content. See Section 2.1.2.3, “Topic-Definition Module,” on
page 2-38.

• Persistence profile: This profile adds the optional Qos policy
DURABILITY_SERVICE as well as the optional settings ‘TRANSIENT’ and
‘PERSISTENT’ of the DURABILITY QoS policy kind. This profile enables saving
data into either TRANSIENT memory, or permanent storage so that it can survive
the lifecycle of the DataWriter and system outings. See Section 2.1.3.4,
“DURABILITY,” on page 2-114.

• Ownership profile: This profile adds two things First the optional setting
‘EXCLUSIVE’ of the OWNERSHIP kind. Second support for the optional
OWNERSHIP_STRENGTH policy. Third the ability to set a depth > 1 for the
HISTORY QoS policy.

• Object model profile: This profile includes the DLRL and also includes support for
the PRESENTATION access_scope setting of ‘GROUP’ (Section 2.1.3.6,
“PRESENTATION,” on page 2-115).

This specification has a single mandatory compliance profile, which includes the
complete specification.

Compliance with the DLRL specification is equivalent to complying with the “Object
Model Profile” of the Data Distribution Service Specification version 1.2.
June 2014 DDS Data Reconstruction Layer (DLRL), v1.4 A-1

A

A-2 DDS Data Reconstruction Layer (DLRL), v1.4 June 2014

 Syntax for DLRL Queries and Filters C
The syntax, defined with the BNF-grammar below, is used to express a filter or a query
expression in the DLRL constructs:

• The filter in the FilterCriterion (see Section 2.1.6.3.11, “FilterCriterion,” on
page 2-32” on page 4-23).

• The query in the QueryCriterion (see Section 2.1.6.3.12, “QueryCriterion,” on
page 2-32” on page 4-27).

The following notational conventions are made:

• The NonTerminals are typeset in italics.

• The ‘Terminals’ are quoted and typeset in a fixed width font.

• The TOKENS are typeset in small caps.

• The notation (element // ‘,’) represents a non-empty comma-separated list of
elements.

Query grammar in BNF
.

Condition ::= Predicate
| Condition ‘AND’ Condition
| Condition ‘OR’ Condition
| ‘NOT’ Condition
| ‘(’ Condition ‘)’
.

Predicate ::= ComparisonPredicate
| BetweenPredicate
.

ComparisonPredicate ::= FIELDNAME RelOp Parameter
| Parameter RelOp FIELDNAME
| FIELDNAME RelOp FIELDNAME
.

BetweenPredicate ::= FIELDNAME ‘BETWEEN’ Range
| FIELDNAME ‘NOT BETWEEN’ Range
.

RelOp ::= ‘=’ | ‘>’ | ‘>=’ | ‘<’ | ‘<=’ | ‘<>’
June 2014 DDS Data Local Reconstruction Layer (DLRL), v1.4 C-1

C

.
Range ::= Parameter ‘AND’ Parameter

.
Parameter ::= INTEGERVALUE

| CHARVALUE
| FLOATVALUE
| STRING
| ENUMERATEDVALUE
| PARAMETER
.

Token expression

The syntax and meaning of the tokens used in the SQL grammar is described as follows:

• FIELDNAME - A fieldname is a reference to a field in the data-structure. The dot
‘.’ is used to navigate through nested structures. The number of dots that may be
used in a FIELD-NAME is unlimited. The ‘[INTEGERVALUE|STRING]’
construct is used to navigate in a collection. The FIELDNAME can refer to fields at
any depth in the data structure. The names of the field are those specified in the IDL
definition of the corresponding structure, which may or may not match the field-
names that appear on the language-specific (e.g., C/C++, Java) mapping of the
structure.

• INTEGERVALUE - Any series of digits, optionally preceded by a plus or minus
sign, representing a decimal integer value within the range of the system. A
hexadecimal number is preceded by 0x and must be a valid hexadecimal
expression.

• CHARVALUE - A single character enclosed between single quotes.

• FLOATVALUE - Any series of digits, optionally preceded by a plus or minus sign
and optionally including a floating point (‘.’). A power-of-ten expression may be
postfixed, which has the syntax en, where n is a number, optionally preceded by a
plus or minus sign.

• STRING - Any series of characters encapsulated in single quotes, except a new-line
character or a right quote. A string starts with a left or right quote, but ends with a
right quote.

• ENUMERATEDVALUE - An enumerated value is a reference to a value declared
within an enumeration. Enumerated values consist of the name of the enumeration
label enclosed in single quotes. The name used for the enumeration label must
correspond to the label names specified in the IDL definition of the enumeration.

• PARAMETER - A parameter is of the form %n, where n represents a natural
number (zero included) smaller than 100. It refers to the n + 1 th argument in the
given context.
C-2 DDS Data Local Reconstruction Layer (DLRL), v1.4 June 2014

C
Cache 22
CacheAccess 20
CacheFactory 19
CacheListener 25
Code Example 74
Collection 38
compliance 1
CORBA

contributors v

D
Data Local Reconstruction Layer (DLRL) 3
data model 3
data-centric exchange 2
Data-Centric Publish-Subscribe (DCPS) model 3
DCPS 2
DCPS (Data-Centric Publish-Subscribe) 1
DCPS data model 73
DLRL 1
DLRL (Data Local Reconstruction Layer) 1
DLRL metamodel 4
DLRL objects 2

G
generation process 62
generation tool 2

I
IDL Model Description 69
IntMap 41

L
List 38

M
mapping of an object reference 7
mapping of attributes and relations 7
mapping of classes 6
mapping when DCPS model is fixed 11
mapping, default 8
mapping, operational 13
Model Tags DTD 63

O
ObjectHome 26
ObjectListener 29
ObjectRoot 33

P
Platform Specific Model (PSM) 45

Q
QoS (Quality of Service) 2

R
run-time entities 45

S
Security Service 1
Selection 30
SelectionListener 33
StrMap 40

syntax for DLRL queries and filters 1

T
typed interfaces 2

U
UML Model 69

X
XML Model Tags 70

	Contents
	Preface
	Overview
	1.1 Introduction
	1.2 Purpose

	Data Local Reconstruction Layer (DLRL)
	2.1 Platform Independent Model (PIM)
	2.1.1 Overview and Design Rationale
	2.1.2 DLRL Description
	2.1.3 What Can Be Modeled with DLRL
	2.1.3.1 DLRL objects
	2.1.3.2 Relations among DLRL objects
	2.1.3.2.1 Inheritance
	2.1.3.2.2 Associations

	2.1.3.3 Metamodel

	2.1.4 Structural Mapping
	2.1.4.1 Design Principles
	2.1.4.2 Mapping rules
	2.1.4.2.1 Mapping of Classes
	2.1.4.2.2 Mapping of an Object Reference
	2.1.4.2.3 Mapping of Attributes and Relations

	2.1.4.3 Default Mapping
	2.1.4.4 Metamodel with Mapping Information
	2.1.4.4.1 Class
	2.1.4.4.2 MonoAttribute
	2.1.4.4.3 MultiAttribute
	2.1.4.4.4 MonoRelation
	2.1.4.4.5 MultiRelation

	2.1.4.5 Mapping when DCPS Model is Fixed
	2.1.4.6 How is this Mapping Indicated?

	2.1.5 Operational Mapping
	2.1.5.1 Attachment to DCPS Entities
	2.1.5.2 Creation of DCPS Entities
	2.1.5.3 Setting of QoS

	2.1.6 Functional Mapping
	2.1.6.1 DLRL Requested Functions
	2.1.6.1.1 Publishing Application
	2.1.6.1.2 Subscribing Application
	2.1.6.1.2.1 Implicit versus Explicit Subscriptions
	2.1.6.1.2.2 Cache Management
	2.1.6.1.2.3 User Interaction

	2.1.6.1.3 Publishing and Subscribing Applications

	2.1.6.2 DLRL Entities
	2.1.6.3 Details on DLRL Entities
	2.1.6.3.1 CacheFactory
	2.1.6.3.2 CacheBase
	2.1.6.3.3 CacheAccess
	2.1.6.3.4 Cache
	2.1.6.3.5 CacheListener
	2.1.6.3.6 Contract
	2.1.6.3.7 ObjectHome
	2.1.6.3.8 ObjectListener
	2.1.6.3.9 Selection
	2.1.6.3.10 SelectionCriterion
	2.1.6.3.11 FilterCriterion
	2.1.6.3.12 QueryCriterion
	2.1.6.3.13 SelectionListener
	2.1.6.3.14 ObjectRoot
	2.1.6.3.15 Collection
	2.1.6.3.16 List
	2.1.6.3.17 Set
	2.1.6.3.18 StrMap
	2.1.6.3.19 IntMap

	2.1.6.4 Listeners Activation
	2.1.6.4.1 General Scenario
	2.1.6.4.2 Object Creation
	2.1.6.4.3 Object Modification
	2.1.6.4.4 Object Deletion

	2.1.6.5 Cache Accesses Management
	2.1.6.5.1 Read Mode
	2.1.6.5.2 Write Mode

	2.1.6.6 Generated Classes

	2.2 OMG IDL Platform Specific Model (PSM)
	2.2.1 Run-time Entities
	2.2.1.1 Mapping Rules
	2.2.1.2 IDL Description
	2.2.1.2.1 Generic DLRL Entities
	2.2.1.2.2 Implied IDL

	2.2.2 Generation Process
	2.2.2.1 Principles
	2.2.2.2 Model Description
	2.2.2.3 Model Tags
	2.2.2.3.1 Model Tags DTD
	2.2.2.3.2 Details on the XML constructs
	2.2.2.3.2.1 Root
	2.2.2.3.2.2 EnumDef
	2.2.2.3.2.3 TemplateDef
	2.2.2.3.2.4 AssociationDef
	2.2.2.3.2.5 compoRelationDef
	2.2.2.3.2.6 ClassMapping
	2.2.2.3.2.7 MainTopic
	2.2.2.3.2.8 KeyDescription
	2.2.2.3.2.9 ExtensionTable
	2.2.2.3.2.10 MonoAttribute
	2.2.2.3.2.11 MultiAttribute
	2.2.2.3.2.12 MonoRelation
	2.2.2.3.2.13 MultiRelation
	2.2.2.3.2.14 Local

	2.2.3 Example
	2.2.3.1 UML Model
	2.2.3.2 IDL Model Description
	2.2.3.3 XML Model Tags
	2.2.3.4 Underlying DCPS Data Model
	2.2.3.5 Code Example

	Compliance Points
	Syntax for DLRL Queries and Filters

