

Date: April 2015

DDS Data Local Reconstruction Layer
(DDS-DLRL)

Version 1.4

OMG Document Number: formal/2015-04-12
Standard document URL: http://www.omg.org/spec/DDS-DLRL/1.4
Machine Consumable Files:

Normative: http://www.omg.org/spec/DDS-DLRL/20140501/dds_dlrl.idl
http://www.omg.org/spec/DDS-DLRL/20140501/dds_dlrl_dtd.dtd

Informative: http://www.omg.org/spec/DDS/20140501/dds_dlrl_uml_objecteering.ofp

O B J E C T M A N A G E M E N T G R O U PO B J E C T M A N A G E M E N T G R O U P

Copyright © 2015, Object Management Group
Copyright © 2013, Objective Interface Systems, Inc.
Copyright © 2013, Real-Time Innovations, Inc.
Copyright © 2013, THALES

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms, conditions and
notices set forth below. This document does not represent a commitment to implement any portion of this specification in any
company's products. The information contained in this document is subject to change without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free, paid up,
worldwide license to copy and distribute this document and to modify this document and distribute copies of the modified
version. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed the copyright
in the included material of any such copyright holder by reason of having used the specification set forth herein or having
conformed any computer software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant you a fully-paid
up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use this specification to
create and distribute software and special purpose specifications that are based upon this specification, and to use, copy, and
distribute this specification as provided under the Copyright Act; provided that: (1) both the copyright notice identified above
and this permission notice appear on any copies of this specification; (2) the use of the specifications is for informational
purposes and will not be copied or posted on any network computer or broadcast in any media and will not be otherwise resold
or transferred for commercial purposes; and (3) no modifications are made to this specification. This limited permission
automatically terminates without notice if you breach any of these terms or conditions. Upon termination, you will destroy
immediately any copies of the specifications in your possession or control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may require use
of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a license may be
required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of those patents that are
brought to its attention. OMG specifications are prospective and advisory only. Prospective users are responsible for protecting
themselves against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications regulations and
statutes. This document contains information which is protected by copyright. All Rights Reserved. No part of this work
covered by copyright herein may be reproduced or used in any form or by any means--graphic, electronic, or mechanical,
including photocopying, recording, taping, or information storage and retrieval systems--without permission of the copyright
owner.

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY CONTAIN
ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE MAKE
NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS PUBLICATION, INCLUDING
BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF
MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE.
IN NO EVENT SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE COMPANIES LISTED ABOVE BE
LIABLE FOR ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS, REVENUE, DATA OR
USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE FURNISHING,
PERFORMANCE, OR USE OF THIS MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you. This
disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1) (ii) of The
Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph (c)(1) and (2) of the
Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified in 48 C.F.R. 227-7202-2 of
the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of the Federal Acquisition Regulations and
its successors, as applicable. The specification copyright owners are as indicated above and may be contacted through the
Object Management Group, 109 Highland Avenue, Needham, MA 02494, U.S.A.

TRADEMARKS

IMM®, MDA®, Model Driven Architecture®, UML®, UML Cube logo®, OMG Logo®, CORBA® and XMI® are
registered trademarks of the Object Management Group, Inc., and Object Management Group™, OMG™ , Unified Modeling
Language™, Model Driven Architecture Logo™, Model Driven Architecture Diagram™, CORBA logos™, XMI Logo™,
CWM™, CWM Logo™, MOF™ ,MOF™ , OMG Interface Definition Language (IDL)™ , and OMG SysML™ are
trademarks of the Object Management Group. All other products or company names mentioned are used for identification
purposes only, and may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its designees) is
and shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer software to use
certification marks, trademarks or other special designations to indicate compliance with these materials. Software developed
under the terms of this license may claim compliance or conformance with this specification if and only if the software
compliance is of a nature fully matching the applicable compliance points as stated in the specification. Software developed
only partially matching the applicable compliance points may claim only that the software was based on this specification, but
may not claim compliance or conformance with this specification. In the event that testing suites are implemented or approved
by Object Management Group, Inc., software developed using this specification may claim compliance or conformance with
the specification only if the software satisfactorily completes the testing suites.

OMG’s Issue Reporting Procedure

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage readers to
report any ambiguities, inconsistencies, or inaccuracies they may find by completing the Issue Reporting Form listed on the
main web page http://www.omg.org, under Documents, Report a Bug/Issue (http://www.omg.org/report_issue.htm).

Table of Contents

Preface ...iii

1 Scope ... 1
1.1 Introduction ... 1
1.2 Purpose ... 1

2 Data Local Reconstruction Layer (DLRL) ... 3
2.1 Platform Independent Model (PIM) ... 3

 2.1.1 Overview and Design Rationale ...3
 2.1.2 DLRL Description ...3
 2.1.3 What Can Be Modeled with DLRL ..3

2.1.3.1 DLRL objects .. 3
2.1.3.2 Relations among DLRL objects .. 5
2.1.3.3 Metamodel ... 5

 2.1.4 Structural Mapping ...7
2.1.4.1 Design Principles ... 7
2.1.4.2 Mapping rules ... 7
2.1.4.3 Default Mapping ... 9
2.1.4.4 Metamodel with Mapping Information .. 9
2.1.4.5 Mapping when DCPS Model is Fixed ... 12
2.1.4.6 How is this Mapping Indicated? ... 12

 2.1.5 Operational Mapping ..13
2.1.5.1 Attachment to DCPS Entities ... 13
2.1.5.2 Creation of DCPS Entities .. 14
2.1.5.3 Setting of QoS .. 14

 2.1.6 Functional Mapping ..14
2.1.6.1 DLRL Requested Functions ... 14
2.1.6.2 DLRL Entities ... 16
2.1.6.3 Details on DLRL Entities .. 18
2.1.6.4 Listeners Activation .. 40
2.1.6.5 Cache Accesses Management .. 41
2.1.6.6 Generated Classes .. 42

2.2 OMG IDL Platform Specific Model (PSM) ... 42
 2.2.1 Run-time Entities ..43

2.2.1.1 Mapping Rules ... 43
2.2.1.2 IDL Description.. 43

 2.2.2 Generation Process ..59
2.2.2.1 Principles .. 59
2.2.2.2 Model Description .. 60
2.2.2.3 Model Tags .. 60

 2.2.3 Example ..66
2.2.3.1 UML Model ... 66
2.2.3.2 IDL Model Description .. 66
DDS Data Local Reconstruction Layer (DLRL), v1.4 i

2.2.3.3 XML Model Tags .. 67
2.2.3.4 Underlying DCPS Data Model .. 70
2.2.3.5 Code Example .. 71

Annex A - Compliance Points ... 73
Annex B - Syntax for DLRL Queries and Filters 75
ii DDS Data Local Reconstruction Layer (DLRL), V1.4

Preface

About the Object Management Group

OMG

Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer industry
standards consortium that produces and maintains computer industry specifications for interoperable, portable and
reusable enterprise applications in distributed, heterogeneous environments. Membership includes Information
Technology vendors, end users, government agencies and academia.

OMG member companies write, adopt, and maintain its specifications following a mature, open process. OMG's
specifications implement the Model Driven Architecture® (MDA®), maximizing ROI through a full-lifecycle approach to
enterprise integration that covers multiple operating systems, programming languages, middleware and networking
infrastructures, and software development environments. OMG’s specifications include: UML® (Unified Modeling
Language™); CORBA® (Common Object Request Broker Architecture); CWM™ (Common Warehouse Metamodel);
and industry-specific standards for dozens of vertical markets.

More information on the OMG is available at http://www.omg.org/.

OMG Specifications

As noted, OMG specifications address middleware, modeling and vertical domain frameworks. All OMG Formal
Specifications are available from this URL:

http://www.omg.org/spec

Specifications are organized by the following categories:

Business Modeling Specifications

Middleware Specifications

• CORBA/IIOP

• Data Distribution Services

• Specialized CORBA

IDL/Language Mapping Specifications

Modeling and Metadata Specifications

• UML, MOF, CWM, XMI

• UML Profile

Modernization Specifications
DDS Data Local Reconstruction Layer (DLRL), v1.4 iii

Platform Independent Model (PIM), Platform Specific Model (PSM), Interface Specifications

• CORBAServices

• CORBAFacilities

OMG Domain Specifications

CORBA Embedded Intelligence Specifications

CORBA Security Specifications

All of OMG’s formal specifications may be downloaded without charge from our website. (Products implementing OMG
specifications are available from individual suppliers.) Copies of specifications, available in PostScript and PDF format,
may be obtained from the Specifications Catalog cited above or by contacting the Object Management Group, Inc. at:

OMG Headquarters
109 Highland Avenue
Needham, MA 02494
USA
Tel: +1-781-444-0404
Fax: +1-781-444-0320
Email: pubs@omg.org

Certain OMG specifications are also available as ISO standards. Please consult http://www.iso.org

Issues

The reader is encouraged to report any technical or editing issues/problems with this specification to
http://www.omg.org/report_issue.htm.
 iv DDS Data Local Reconstruction Layer (DLRL), v1.4

1 Scope

1.1 Introduction

This specification describes a high-level Data Local Reconstruction Layer (DLRL) interface to DDS that allows a simple
integration of the DDS Service into the application layer.

DLRL uses typed interfaces. Typed interfaces (i.e., interfaces that take into account the actual data types) offer the following
advantages:

• They are simpler to use: the programmer directly manipulates constructs that naturally represent the data.

• They are safer to use: verifications can be performed at compile time.

• They can be more efficient: the execution code can rely on the knowledge of the exact data type it has in advance, to
e.g., pre-allocate resources.

It should be noted that the decision to use typed interfaces implies the need for a generation tool to translate type descriptions
into appropriate interfaces and implementations that fill the gap between the typed interfaces and the generic middleware.

This specification is designed to allow a clear separation between the publish and the subscribe sides, so that an application
process that only participates as a publisher can embed just what strictly relates to publication. Similarly, an application
process that participates only as a subscriber can embed only what strictly relates to subscription.

1.2 Purpose

The DDS specification offers an API that allows applications to access data in a logical Global Data Space. The DDS APIs
provide direct access to this “shared data” in a uniform manner, meaning all applications share a common view of the data in
terms of its Topic addressing and data-schemas.

However some applications require a local view of this data that is organized to fit the purpose and business logic of the
application, which may be different for each individual process that accesses the Global Data.

This (DLRL) specification addresses this need by providing a convenient locally-defined Object API that abstracts the access
to distributed information. The Data Local Reconstruction Layer (DLRL) automatically reconstructs data locally from the
updates delivered by DDS allowing the application to access the data ‘as if’ it were local.

The combination of DLRL and DDS not only propagates the information to all interested subscribers but also updates a local
copy of the information in the local format specified by each application.
DDS Data Local Reconstruction Layer (DLRL), v1.4 1

2 DDS Data Local Reconstruction Layer (DLRL), v1.4

2 Data Local Reconstruction Layer (DLRL)

2.1 Platform Independent Model (PIM)

DLRL stands for Data Local Reconstruction Layer. It is defined as a layer built on top of the Data-Distribution Service for
Real-Time Systems (DDS).

2.1.1 Overview and Design Rationale

The purpose of DLRL is to provide more direct access to the exchanged data, seamlessly integrated with the native-language
constructs. Object orientation has been selected for all the benefits it provides in software engineering.

As far as possible, DLRL is designed to allow the application developer to use the underlying DDS features. However, this
may conflict with the main purpose of DLRL, which is ease of use and seamless integration into the application. Therefore,
some DDS features may only be used through DDS and are not accessible from DLRL.

2.1.2 DLRL Description

With DLRL, the application developer will be able to:

• Describe classes of objects with their methods, data fields, and relations.

• Attach some of those data fields to DCPS entities.

• Manipulate those objects (i.e., create, read, write, delete) using the native language constructs that will, behind the
scenes, activate the attached DCPS entities in the appropriate way.

• Have those objects managed in a cache of objects, ensuring that all the references that point to a given object actually
point to the same language cell.

This specification explains the following:

• Which object-oriented constructs can be used to define DLRL objects.

• Which functions are applicable to those objects (e.g., create, delete, etc.).

• The different levels of mapping between the two layers:

• structural mapping (i.e., relations between DLRL objects and DCPS data).

• operational mapping (i.e., mapping of the DLRL objects to the DCPS entities (Publisher, DataWriter, etc.)
including QoS settings, combined subscriptions.

• functional mapping (i.e., relations between the DLRL functions (mainly access to the DLRL objects) and the DCPS
functions (write/publish).

2.1.3 What Can Be Modeled with DLRL

2.1.3.1 DLRL objects

DLRL allows an application to describe objects with:
DDS Data Local Reconstruction Layer (DLRL), v1.4 3

• methods;

• attributes that can be:

• local (i.e., that do not participate in the data distribution) or,

• shared (i.e., that participate in the data distribution process and are thus attached to DCPS entities).

NOTE: Only shared attributes are of concern to the Data Distribution Service; therefore, the remaining part of this document
will only deal with these properties.

A DLRL object has at least one shared attribute. Shared attributes are typed1 and can be either mono-valued or multi-valued.

• Mono-valued:

• of a simple type:

•basic-type (long, short, char, string, etc.)

•enumeration-type

•simple structure2

• reference to a DLRL object.

For these mono-valued attributes, type enforcement is as follows:

• Strict type equality for simple types.

• Equality based on inclusion for reference to a DLRL object (i.e., a reference to a derived object can be placed in a
reference to a base object).

• Multi-valued (collection-based):

• two collection basis of homogeneously-typed items:

•a list (ordered with index)

•a map (access by key)

•a set (not ordered)

Type enforcement for collection elements is as follows:

• Strict type equality for simple types.

• Equality based on type inclusion for references to DLRL objects (i.e., a reference to a derived object can be placed
in a collection typed for base objects).

DLRL will manage DLRL objects in a cache (i.e., two different references to the same object – an object with the same
identity – will actually point to the same memory location).

Object identity is given by an oid (object ID) part of any DLRL object.

1. At the PIM level, we describe the minimum set that is required to describe shared attributes. This does not prevent a specific
PSM from extending this minimum set, in case this make sense and does not affect the ability of this layer to be implemented
on top of DCPS.

2. For instance, structures that can be mapped inside one DCPS data.
4 DDS Data Local Reconstruction Layer (DLRL), v1.4

2.1.3.2 Relations among DLRL objects

Relations between DLRL objects are of two kinds:

• Inheritance that organizes the DLRL classes.

• Associations that organize the DLRL instances.

2.1.3.2.1 Inheritance

Single inheritance is allowed between DLRL objects.

Any object inheriting from a DLRL object is itself a DLRL object.

ObjectRoot is the ultimate root for all DLRL objects.

DLRL objects can, in addition, inherit from any number of native language objects.

2.1.3.2.2 Associations

Supported association ends are either to-1 or to-many. In the following, an association end is named a relation:

• to-1 relation is featured by a mono-valued attribute (reference to the target object).

• to-many relation is featured by a multi-valued attribute (collection of references to the target objects).

Supported relations are:

• Plain use-relations (no impact on the object life-cycle).

• Compositions (constituent object lifecycle follows the compound object’s one).

Couples of relations can be managed consistently (one being the inverse of the other), to make a real association (in the UML
sense):

• One plain relation can inverse another plain relation, providing that the types match: can make 1-1, 1-n, n-m.

• One composition relation can only inverse a to-1 relation to the compound object: can make 1-1 or 1-n.

NOTE: Embedded structures are restricted to the ones that can be mapped simply at the DCPS level. For more complex ones,
component objects (i.e., objects linked by a composition relation) may be used.

2.1.3.3 Metamodel

The following figure represents the DLRL metamodel, i.e., all the constructs that can be used to describe the ‘shared’ part of a
DLRL model. This metamodel is given for explanation purpose. This specification does not require that it is implemented as
such.

Note that two objects that will be part of a DLRL model (namely ObjectRoot that is the root for all the DLRL classes as well as
ObjectHome that is the class responsible for creating and managing all DLRL objects of a given class) are featured to show the
conceptual relations between the metamodel and the model. They appear in grey on the schema.
DDS Data Local Reconstruction Layer (DLRL), v1.4 5

Figure 2.1 - DLRL Metamodel

Instances of BasicType are:

• long

• short

• char

• octet

• real

• double

• string

• sequence of any of the above

Instances of EnumerationType are all the enumerations.

MultiRelation MonoRelation

MultiRefType

11

SetBase ListBase MapBase

MultiAttribute MonoAttribute

SimpleStructType EnumerationType BasicType

CollectionBase11 Mul tiS impleType

1

11 SimpleType

1

11

1 1

Attribute

owner

Relation

is_composition : Boolean

0..1

0..1

0..1

0..1

inverse

ownerClass

final : Boolean

11

0..1
*

0..1
*

11

*

1

*

1

*

1

*

1

ObjectHome ObjectRoot

<<create>>

relations attributes

target_type

parent

children

target_type

item_type

basis basis

target_type target_type

item_type

<<friend>>
6 DDS Data Local Reconstruction Layer (DLRL), v1.4

Instances of SimpleStructType are all the structures that can be mapped in a single DCPS data.

2.1.4 Structural Mapping

2.1.4.1 Design Principles

The mapping should not impose unnecessary duplication of data items.

The mapping should not prevent an implementation from being efficient. Therefore, adding information in DCPS data to help
DLRL internal management is allowed.

The mapping should be as flexible as possible. It is therefore specified on an attribute basis (that means that any attribute, even
a simple one, can be located in a DCPS data structure that is separate from the main one; i.e., the DCPS data structure

associated with the DLRL class)3.

This flexibility is highly desirable to meet specific requirements (e.g., to reuse an existing DCPS description). However, there
are cases when this type of flexibility is not needed and leads to extra descriptions that could (and should) be avoided. For
these cases, a default mapping is also defined.

2.1.4.2 Mapping rules

Recall that DCPS data can be seen as tables (Topic) whose rows correspond to instances identified by their key value and
whose columns (fields) correspond to data fields. Each cell contains the value of a given field for a given instance and the key
value is the concatenation of the values of all the fields that make the key definition (itself attached to the Topic).

Structural mapping is thus very close to Object to Relational mapping in database management.

Generally speaking, there is some flexibility in designing the DCPS model that can be used to map a DLRL model.
Nevertheless, there are cases where the underlying DCPS model exists with no provision for storing the object references and
no way to modify them. In that case however, the DCPS topics contain fields (the keys) that allow the unique identification of
instances. With some restrictions concerning inheritance, these models can also be mapped back into DLRL models. Sub
clause 2.1.4.5 is specifically dedicated to that issue.

The mapping rules when some flexibility is allowed in DCPS model are as follows.

2.1.4.2.1 Mapping of Classes

Each DLRL class is associated with at least one DCPS table, which is considered as the ‘main’ table. A DLRL object is
considered to exist if it has a corresponding row in this table. This table contains at least the fields needed to store a reference
to that object (see below).

To facilitate DLRL management and save memory space, it is generally desirable that a derived class has the same main table

as its parent concrete class (if any)4, with the attributes that are specific to the derived class in an extension table. For example,
this allows the application to load all the instances of a given class (including its derivations) in a single operation.

3. This is needed to efficiently manage inheritance. Therefore extending it to any attribute is not costly.
4. Excluding, of course, the abstract ObjectRoot (otherwise all the objects will be located in a single table).
DDS Data Local Reconstruction Layer (DLRL), v1.4 7

2.1.4.2.2 Mapping of an Object Reference

To reference an object, there must be a way to designate it unambiguously and a way to retrieve the exact class of that object
(this last point is needed when the object has to be locally created based on received information).

Therefore, to reference an object, the following must be stored:

• A string that allows retrieval of the exact class (e.g., name class, or more precisely a public name that identifies the
class unambiguously).

• A number that identifies the object inside this class5 (oid).

The combination of these two pieces of information is called full oid.

There are cases where the indication of the class is not needed, for it can be deduced from the knowledge embedded in the
mapping. A class name is needed when:

• Several classes share the same main table.

• Several classes are targets for the same relation (in other words, when the target type of a relation is a class that has
derived classes).

2.1.4.2.3 Mapping of Attributes and Relations

Mono-valued attributes and relations are mapped to one (or several) cell(s)6 in a single row whose key is the means to
unambiguously reference the DLRL object (i.e., its oid or its full oid, depending on the owner class characteristics as indicated
previously):

• simple basic attributes -> one cell of corresponding DCPS type;

• enumeration -> one cell of type integer7 (default behavior) or string;

• simple structures -> as many cells as needed to hold the structure;

• reference to another DLRL object (i.e., relation) -> as many cells as needed to reference unambiguously the referenced
object (i.e., its oid, or its full oid as indicated previously).

Multi-valued attributes are mapped to one (or several) cell(s) in a set of rows (as many as there are items in the collection),
whose key is the means to unambiguously designate the DLRL object (i.e., oid or full oid) plus an index in the collection.

• For each item, there is one row that contains the following, based on the type of attribute:

• simple basic type -> one cell of the corresponding DCPS type;

• enumeration -> one cell of type integer or string;

• simple structures -> as many cells as needed to hold the structure;

5. Note that, in case several parts are creating objects at the same time, there should be a means to guarantee that there is no
confusion (e.g., by means of two sub-fields, one to designate the author and one for a sequence number). This is left to the
implementation.

6. Depending of the type of the value.
7. In the PIM, the type 'integer' has been chosen each time a whole number is needed. In the PSM, however, a more suitable

representation for such numbers (long, short...) will be chosen.
8 DDS Data Local Reconstruction Layer (DLRL), v1.4

• reference to another DLRL object -> as many cells as needed to reference unambiguously the referenced object
(i.e., its oid, or its full oid as indicated previous sub clause).

• The key for that row is the means to designate the owner’s object (i.e., its oid or full oid) + an index, which is:

• An integer if the collection basis is a list (to hold the rank of the item in the list).

• A string or an integer8 if the collection basis is a map (to hold the access key of the item in the map).

2.1.4.3 Default Mapping

The following mapping rules will be applied by default. This default mapping is overwritten by any mapping information
provided by the application developer.

• Main table

• Name of the DCPS Topic is the DLRL class name.

• Name of the oid fields are:

•“class”

•“oid”

• All the mono-valued attributes of an object are located in that main table

• name of the DCPS Topic is thus DLRL class name;

• name of the DCPS fields:

•name of the DLRL attribute, if only one field is required;

•name of the DLRL attribute, concatenated with the name of each sub-field, with '.' as separator, otherwise.

• For each multi-valued attribute, a specific DCPS table is allocated

• name of the DCPS Topic is the DLRL class name concatenated with the DLRL attribute name, with '.' as separator;

• name of the DCPS fields:

•same as above for the value part and the OID part

•“index” for the extra key field

• Inheritance support by means of extension tables gathering all the mono-valued added attributes:

• this choice is the better as far as memory is concerned;

• it is made possible once it is admitted that all the attributes of a given class are not located in a single table.

2.1.4.4 Metamodel with Mapping Information

Figure 2.2 represents the DLRL metamodel with the information that is needed to indicate the structural mapping.

8. String-keyed maps are desired for their openness; however, integer-keyed maps are more suitable when access performance is
desired.
DDS Data Local Reconstruction Layer (DLRL), v1.4 9

Figure 2.2 - DLRL Model with Structural Mapping Information

The three constructs that need added information related to the structural mapping are Class, Attribute, and Relation.

2.1.4.4.1 Class

The related fields have the following meaning:

• main_topic is the name of the main topic for this class. Any DLRL instance of this Class is represented by a row in this

topic9.

• oid_field is the name of the field meant to store the oid of the DLRL object.

• class_field is the name of the field meant to store the name of the Class.

9. It may have attributes in other topics as well.

MultiRelation

index_field : String

MonoRelation

MultiRefType

SetBase ListBase MapBase

MultiAtt ribute

index_field : String

MonoAt tribute

SimpleStruct Type EnumerationType BasicType

CollectionBase MultiSimpleType SimpleType

Attribute

topic : String
key_fields[*] : String
target_field : String

Relation

is_composition : Boolean
topic : String
key_fields[*] : String
target_fields[*] : String
full_oid_required : Boolean

Class

final : Boolean
name : String
full_oid_required : Boolean
main_topic : String
oid_field : String
class_field : String

11

11

11

11

11

11

0..1

0..1

0..1

0..1

inverse

11

0..1

*

0..1

*

11

*

1

*

1

*

1

*

1

relations

owner

owner

attributes

target_type

parent

c hildren

target_type

item_type

basis bas is

target_type target_type

item_type
10 DDS Data Local Reconstruction Layer (DLRL), v1.4

• full_oid_required indicates whether the class name should be the first part of the actual key; the actual key will be
made of:

• (class_field, oid_field) if it is true.

• (oid_field) if it is false.

• final indicates whether or not the class can be extended.

2.1.4.4.2 MonoAttribute

The related fields have the following meaning:

• topic is the name of the table where the related value is located. It may be the same as the owner Class::main_topic.

• target_field is the field that contains the actual value for the attribute.

• key_fields is the name of the fields that make the key in this topic (1 or 2 depending on the Class definition).

2.1.4.4.3 MultiAttribute

The related fields have the following meaning:

• topic is the name of the table where the related value is located. It cannot be the same as the owner Class::topic.

• target_field is the field that contains the actual values for the attribute.

• key_fields is the name of the fields that make the object part of the key in this topic (1 or 2 depending on the owner
Class definition).

• index_field is the name of the item part of the key in this topic (string or integer depending on the collection type)10.

2.1.4.4.4 MonoRelation

The related fields have the following meaning:

• topic is the name of the table where the related value is located. It may be the same as the owner Class::topic.

• target_fields are the fields that contain the actual value for the attribute (i.e., what identifies the target object). It is
made of 1 or 2 fields according to the full_oid_required value).

• key_fields is the name of the fields that make the key in this topic (1 or 2 depending on the owner Class definition).

• full_oid_required indicates whether that relation needs the full oid to designate target objects.

• is_composition indicates if it is a mono- or multi-relation.

2.1.4.4.5 MultiRelation

The related fields have the following meaning:

• topic is the name of the table where the related value is located. It cannot be the same as the owner Class::topic.

10.In other words, all the rows that have the same value for the key_fields constitute the contents of the collection; each individual
item in the collection is pointed by (key_fields, index_field).
DDS Data Local Reconstruction Layer (DLRL), v1.4 11

• target_fields are the fields that contain the actual values for the attribute (i.e., what identify the target objects). It is
made of 1 or 2 fields according to the full_oid_required value).

• key_fields is the name of the fields that make the object part of the key in this topic (1 or 2 depending on the owner
Class definition).

• index_field is the name of the item part of the key in this topic (string or integer depending on the collection type).

• full_oid_required indicates whether that relation needs the full oid to designate target objects.

• is_composition indicates if it is a mono- or multi-relation.

2.1.4.5 Mapping when DCPS Model is Fixed

In some occasions, it is desirable to map an existing DCPS model to the DLRL. It is even desirable to mix, in the same system,
participants that act at DCPS level with others that act at the DLRL level. The DLRL, by not imposing the same object model
to be shared among all participants, is even designed to allow this last feature.

In this case, it is possible to use the topic keys to identify the objects, but not to store the object references directly. Therefore,
the DLRL implementation must indicate the topic fields that are used to store the keys so that, behind the scenes, it can
manage the association keys to/from oid and perform the needed indirection.

Because the object model remains local, this is feasible even if supporting inheritance between the applicative classes (beyond
the primary inheritance between an applicative class and ObjectRoot) may be tricky. However an exiting DCPS model by
construction is unlikely to rely heavily on inheritance between its ‘classes.’ Therefore such a mapping is supported.

2.1.4.6 How is this Mapping Indicated?

There should be two orthogonal descriptions:

• The object model itself, i.e.,

• the full object model,

• indications of the part that is to be made shared.

• The mapping itself.

In case we were targeting only languages where metaclasses are fully supported, this information could be provided by the
application developer by instantiating the above mentioned constructs. As this is not the case, we propose the following
approach, as described in Figure 2.3.
12 DDS Data Local Reconstruction Layer (DLRL), v1.4

Figure 2.3 - DLRL Generation Process

Based on the model description and tags that enhance the description, the tool will generate:

• The native model definition (i.e., the application classes as they will be usable by the application developer).

• The dedicated DLRL entities (i.e., the helper classes to consistently use the former ones and form the DLRL run-time).

• On demand, the corresponding DCPS description.

The syntax of those descriptions is dependant on the underlying platform. One syntax is proposed with the OMG IDL PSM in
sub clause 2.2.

2.1.5 Operational Mapping

2.1.5.1 Attachment to DCPS Entities

A DLRL class is associated with several DCPS Topic, each of which is accessible via a DCPS DataWriter (write access) and/
or a DCPS DataReader (read access). All the DataWriter/DataReader objects that are used by a DLRL object are to be
attached to a single Publisher/Subscriber in order to consistently manage the object contents.

DLRL classes are linked to other DLRL classes by means of relations. In order for these relations to be managed consistently
(e.g., when a relation is set to a newly created object, set up of the relation and the object creation are simultaneously
performed), the whole graph has to be attached to the same Publisher/Subscriber.

Therefore, DLRL has attached a Publisher and/or a Subscriber to the notion of a Cache object, which manages all the objects,
thereby making a consistent set of related objects. The use of those DCPS entities is thus totally transparent to the application
developer.

Model
description

DLRL Generator
Model
Tags

Native
model

description

DCPS
description

Dedicated
DLRL
entities
DDS Data Local Reconstruction Layer (DLRL), v1.4 13

2.1.5.2 Creation of DCPS Entities

Operations are provided at the DLRL level to create and activate all the DCPS entities that are needed for managing all the
instances of DLRL classes attached to a Cache, for publication and/or for subscription.

NOTE: Activating the related DCPS entities for subscription (namely the Subscriber and its attached DataReader objects)
corresponds to actually performing the subscriptions.

2.1.5.3 Setting of QoS

QoS must be attached to each DCPS entity (Publisher/Subscriber, Topic/DataWriter/DataReader). This can be done between
the creation and activation of these entities.

Putting the same QoS on all the DCPS entities that are used for a graph of objects (or even for a single object) is not very
sensible. In return, it is likely that one object will present different attributes with different QoS requirements (i.e., some parts
of the object need to be PERSISTENT, others are VOLATILE). Therefore, DLRL does not offer a specific means to set QoS,
but it does offer a means to retrieve the DCPS entities that are attached to the DLRL entities, so that the application developer
can set QoS if needed.

2.1.6 Functional Mapping

Functional mapping is the translation of the DLRL functions to DCPS functions. It obviously depends firstly on the DLRL
operation modes (i.e., the way the applications may use the DLRL entities).

2.1.6.1 DLRL Requested Functions

2.1.6.1.1 Publishing Application

Once the publishing DCPS infrastructure is set, publishing applications need to repeatedly:

• create objects,

• modify them,

• possibly destroy them,

• request publication of the performed changes (creations, modifications, destructions).

Even if an object is not changeable by several threads at the same time, there is a need to manage concurrent threads of
modifications in a consistent manner.

2.1.6.1.2 Subscribing Application

Once the subscribing DCPS infrastructure is set, subscribing applications need to:

• load objects (i.e., make subscribed DCPS data, DLRL objects);

• read their attributes and/or relations;

• possibly use the relations to navigate among the objects;

• be made aware of changes to the objects that are there, or the arrival of new objects.
14 DDS Data Local Reconstruction Layer (DLRL), v1.4

The application needs to be presented with a consistent view of a set of objects.

2.1.6.1.2.1 Implicit versus Explicit Subscriptions

The first important question is whether the loading of objects happens in the scope of the known subscriptions (explicit
subscriptions) or whether it may extend them, especially when navigating to another object by means of a relation (implicit

subscriptions). The choice has been to keep the DLRL set of objects inside the boundary of the known subscriptions11, for the
following reasons:

• In the use cases we have, implicit subscriptions are not needed.

• Implicit subscriptions would cause the following issues, which are almost impossible to solve while maintaining a high
level of decoupling between DCPS and DLRL:

• Structural mapping - to which DCPS data does the new object definition correspond?

• Operational mapping - in particular, which QoS has to be associated to the related DCPS entities?

• Implicit subscriptions would make it difficult for the application to master its set of objects.

If a relation points towards an object for which no subscription exists, navigating through that relation will raise an error
(NotFound).

2.1.6.1.2.2 Cache Management

The second important question is how the cache of objects is updated with incoming information. This can be done:

• upon application requests,

• fully transparently.

DLRL general principle is to update the cache of objects transparently with incoming updates. However, means are given to
the application to turn on/off this feature when needed. In addition, copies of objects can be requested in order to navigate into
a consistent set of object values when updates continue to be applied on the originals (see CacheAccess objects for more
details).

2.1.6.1.2.3 User Interaction

Another important question is how the application is made aware of changes on the objects it has. A listener is a convenient
pattern for that purpose. The question is, however, the granularity it gets:

• It is useful to reflect several incoming updates ‘as a whole.’

• For an object modification, it is useful to indicate which are the modified attributes.

2.1.6.1.3 Publishing and Subscribing Applications

Most of DLRL publishing applications will also be subscribing ones. There is thus a strong need to support this nicely. In
particular, it means that the application should be able to control the mix of incoming updates and of modifications it performs.

11.That means that no subscription will be made “on the fly” to reach an object that is an instance of a class for which no
subscription has been made.
DDS Data Local Reconstruction Layer (DLRL), v1.4 15

2.1.6.2 DLRL Entities

Figure 2.4 describes all the DLRL entities that support the DLRL operations at run-time. Note that most of them are actually
roots for generated classes depending on the DLRL classes (they are indicated in italics); the list of classes that are generated
for an application-defined class named Foo is given in sub clause 2.1.6.6.

Figure 2.4 - DLRL Entities

Que ry Cr iterion
e x pres s ion
p a ram et e rs

s e t_ex p re ssio n()
s e t_pa ram eters()

Filte rCrite rion

ch eck _ob ject ()

<< Inte rfac e>>

I ntM ap
k eys

rem ove ()
p ut()
g et()
a dde d_e le m ent s()
rem ove d_e le m ent s()
m od ifie d_e le m ent s()

S trMap
ke ys

re m ove()
pu t()
ge t()
ad ded _ele me nt s()
re m oved _ele me nt s()
m odified _ele me nt s()

L ist

re mo ve()
ad d()
pu t()
ge t()
ad ded _elem e nts ()
re mo ved _elem e nts ()
m odified _elem e nts ()

Se t

c ont ains ()
a dd()
rem ove ()
a dde d_e lem ent s()
rem ove d_e lem ent s()

Cach eFac to ry

ge t_ in st anc e()
crea te_ cac he()
find_ cac he()
de lete _ca che ()

ow ner

Ca che List ene r

on_ beg in _up dat es ()
on_ end _up dat es()
on_ upd ate s_e nab led()
on_ upd ate s_d isab le d()

<< In terface >>

C ach eBa se
c ach e_u sag e
k in d

refre sh()

chil dren

O bje ctL ist ene r

o n_o bjec t_c re ate d()
o n_o bjec t_m o difie d()
o n_o bjec t_d elet ed()

<<In terfac e>>

Ca che Acc ess
t yp e _na me s

cre a te_co n tract()
de lete_c o nt rac t()
pu rg e()
w rite()

Con tract
dep th
sco pe

set _de pt h()
set _sc ope ()

**

con tract s

S elec tio nCr ite rion

kind

Se lect ionL iste ner

on _ob je ct _in()
on _ob je ct _m odified ()
on _ob je ct _ou t()

<< Int erfa ce>>

S elect ion

co nce rns _co nt ained
au to_ re fres h

re fres h()
se t_list en er()

11

c ri terio n

11

list ene r

owne r

O bject Ho m e

con ten t_ filt er
reg is trat ion_ in dex
aut o_d eref
nam e

deref _a ll()
und e re f_all()
set _au to dere f()
set _co nt ent _ filter ()
get _all_t op ic _na m es()
get _t opic_ n am e ()
att ac h_list e ne r()
det ach _list ene r()
cre at e_s ele ct ion()
delet e_ selec tion ()
cre at e_o bje ct ()
cre at e_u nre g ist ered_ obj ec t()
reg is te r_ obj ec t()
get _ob ject s ()
get _ne w_ obje cts ()
get _m od ified _ob ject s()
get _de lete d _o bj ec ts()

*

1

*

1

paren t

*

1

*

1

selec tion s

**

list ene rs

C ollec tion

len gt h

Ob j ect Roo t
oid
read_ st ate
writ e_st a te

is_m odified()
de stro y()

*

1

*

1

ob ject s
11co ntrac ted _ob je ct

**

me m be rs

11

ob je ct_ hom e

**

va lu es

ch ild re n

DC PS : :S ubs crib er

C ach e
pub s ub _st ate
upd a tes_ e nable d

ena b le_ a ll_f or_pu b su b()
regis ter_ al l_for_ pubs ub()
ena b le_ u pd at es ()
disa ble_ upd a te s()
creat e _a cce ss()
dele t e_ acc es s()
regis ter_ hom e()
find _hom e_ by_ nam e ()
find _hom e_ by_ inde x()
at tac h _list ener()
det ac h_li st en er()

*

1

*

1

*1 *1

h om es

*

1

*

1

su b _ac ces ses

**
l i sten e rs

0. .1

D CP S :: P ublis her

0. .1

t he _su b s crib e r

t he _pu b lis her

0. .1

0. .1
16 DDS Data Local Reconstruction Layer (DLRL), v1.4

The DLRL entities are:

The DLRL API may raise Exceptions under certain conditions. What follows is an extensive list of all possible Exceptions and
the conditions in which they will be raised:

• DCPSError: if an unexpected error occured in the DCPS.

• BadHomeDefinition: if a registered ObjectHome has dependencies to other, unregistered ObjectHomes.

CacheFactory Class whose unique instance allows the creation of Cache objects.

CacheBase Base class for all Cache types.

Cache Class whose instance represents a set of objects that are locally available. Objects within
a Cache can be read directly; however to be modified, they need to be attached first to a
CcsheAccess. Several Cache objects may be created but in this case, they must be fully
isolated:

• A Publisher can only be attached to one Cache.

• a Subscriber can only be atached to one Cache.

• Only DLRL objects belonging to one Cache can be put in relation.

CacheAccess Class that encapsulates the access to a set of objects. It offers methods to refresh and write
objects attached to it; CacheAccess objects can be created in read mode, in order to
provide a consistent access to a subset of the Cache without blocking the incoming
updates or in write mode in order to provide support for concurrent modifications/updates
threads.

CacheListener Interface to be implemented by the application to be made aware of the arrival of
incoming updates on the cache of objects.

Contract Class that represents a contract between a CacheAccess and a Cache that defines which
objects will be cloned from the Cache into the CacheAccess when the latter is refreshed.

ObjectListener Interface to be implemented by the application to be made aware of incoming updates on
the objects belonging to one peculiar ObjectHome.

Selection Class whose instances act as representatives of a given subset of objects. The subset is
defined by an expression attached to the selection.

SelectionCriterion Class whose instances act as filter for Selection objects. When a Selection is created, it
must be given a SelectionCriterion.

FilterCriterion Specialization of SelectionCriterion that performs a filter based on user-defined filter
algorithm.

QueryCriterion Specialization of SelectionCriterion that performs a filter based on a query expression.

SelectionListener Interface to be implemented by the application to be made aware on updates made on
objects belonging to that selection.

ObjectRoot Abstract root class for all the application-defined classes.

Collection Abstract root for all the collections of objects as well as of values.

List Abstract root for all the lists of objects as well as of values.

Set Abstract root for all the sets of objects as well as of values.

SiteMap Abstract root for all the maps of objects as well as of values, with string key management.

IntMap Abstract root for all the maps of objects as well as of values with integer key management.
DDS Data Local Reconstruction Layer (DLRL), v1.4 17

• NotFound: if a reference is encountered to an object that has not (yet) been received by the DCPS.

• AlreadyExisting: if a new object is created using an identify that is already in use by another object.

• AlreadyDeleted: if an operation is invoked on an object that has already been deleted.

• PreconditionNotMet: if a precondition for this operation has not (yet) been met.

• NoSuchElement: if an attempt is made to retrieve a non-existing element from a Collection.

• SQLError: if an SQL expression has bad syntax, addresses non-existing fields or is not consistent with its parameters.

Each exception contains a string attribute named ‘message,’ that gives a more precise explanation of the reason for the
exception.

2.1.6.3 Details on DLRL Entities

The following sub clauses describe each DLRL entity one by one. For each entity a table summarizes the public attributes and/
or methods provided.

It should be noted that, as far as the return value of a method is concerned, only the functional values are indicated. Errors are
not considered here. At PSM level, a consistent scheme for error returning will be added.

When a parameter or a return value is stated as ‘undefined,’ that means that the operation is actually part of an abstract class,
which will be derived to give concrete classes with typed operations.

2.1.6.3.1 CacheFactory

The unique instance of this class allows the creation of Cache objects.

This class offers methods:

CacheFactory
no attributes

operations

(static)
get_instance

CacheFactory

create_cache Cache

cache_usage CacheUsage

description CacheDescription

find_cache_by_name Cache

name CacheName

delete_cache void

a_cache Cache
18 DDS Data Local Reconstruction Layer (DLRL), v1.4

• To retrieve the CacheFactory singleton. The operation is idempotent, that is, it can be called multiple times without
side-effects and it will return the same CacheFactory instance. The get_instance operation is a static operation
implemented using the syntax of the native language and can therefore not be expressed in the IDL PSM.

• To create a Cache (create_cache).
This method takes as a parameter cache_usage, which indicates the future usage of the Cache (namely
WRITE_ONLY—no subscription, READ_ONLY—no publication, or READ_WRITE—both modes) and a
description of the Cache (at a minimum, this CacheDescription gathers the concerned DomainParticipant as well as
a name allocated to the Cache). Depending on the cache_usage a Publisher, a Subscriber, or both will be created
for the unique usage of the Cache. These two objects will be attached to the passed DomainParticipant.

• To retrieve a Cache based on the name given in the CacheDescription (find_cache_by_name). If the specified name
does not identify an existing Cache, a NULL is returned.

• To delete a Cache (delete_cache). This operation releases all the resources allocated to the Cache.

2.1.6.3.2 CacheBase

CacheBase is the base class for all Cache classes. It contains the common functionality that supports Cache and CacheAccess.

The public attributes give:

• The cache_usage indicates whether the cache is intended to support write operations (WRITE_ONLY or
READ_WRITE) or not (READ_ONLY). This attribute is given at creation time and cannot be changed afterwards.

• A list of (untyped) objects that are contained in this CacheBase. To obtain objects by type, see the get_objects method
in the typed ObjectHome.

The kind describes whether a CacheBase instance represents a Cache or a CacheAccess. It offers methods to:

• Refresh the contents of the Cache with respect to its origins (DCPS in case of a main Cache, Cache in case of a
CacheAccess).

2.1.6.3.3 CacheAccess

CacheAccess is a class that represents a way to globally manipulate DLRL objects in isolation.

CacheBase
attributes

cache_usage CacheUsage

objects ObjectRoot[]

kind CacheKind

operations

refresh void
DDS Data Local Reconstruction Layer (DLRL), v1.4 19

A CacheAccess only belongs to one Cache (owner)—the one that creates it.

The public attributes give:

• The owner of the Cache (owner).

• The contracted objects (contracts). This is the list of all Contracts that are attached to this CacheAccess.

• A list of names that represents the types for which the CacheAccess contains at least one object (type_names).

The CacheAccess offers methods to:

• Write objects (write). If the CacheAccess::cache_usage allows write operation, those objects can be modified and/or
new objects created for that access and eventually all the performed modifications written for publications.

• Detach all contracts (including the contracted DLRL Objects themselves) from the CacheAccess (purge).

• Create a Contract (create_contract). This method defines a contract that covers the specified object with all the objects
in its specified scope. When a CacheAccess is refreshed, all contracted objects will be cloned into it. The contracted
object must be located in the Cache that owns the CacheAccess. If this is not the case, a PreconditionNotMet is raised.

• Delete a Contract (delete_contract). This method deletes a contract from the CacheAccess. When the CacheAccess is
refreshed, the objects covered by the specified contract will no longer appear in the CacheAccess (unless also covered
in another Contract). The specified Contract must be attached to this CacheAccess, otherwise a PreconditionNotMet
is raised.

See sub clause 2.1.6.5 for a description of typical uses of cache accesses.

CacheAccess : CacheBase
attributes

owner Cache

contracts Contract[]

type_names string[]

operations

write void

purge void

create_contract Contract

object ObjectRoot

scope ObjectScope

depth long

delete_contract void

a_contract Contract
20 DDS Data Local Reconstruction Layer (DLRL), v1.4

2.1.6.3.4 Cache

An instance of this class gathers a set of objects that are managed, published, and/or subscribed consistently.

Cache : CacheBase
attributes

pubsub_state DCPSState

updates_enabled boolean

sub_accesses CacheAccess []

homes ObjectHome []

listeners CacheListener []

the_publisher DDS::Publisher

the_subscriber DDS::Subscriber

operations

register_home integer

a_home ObjectHome

find_home_by_name ObjectHome

class_name string

find_home_by_index ObjectHome

index integer

register_all_for_pubsub void

enable_all_for_pubsub void

attach_listener void

listener CacheListener

detach_listener void

listener CacheListener

enable_updates void

disable_updates void

load void

create_access CacheAccess

purpose CacheUsage

delete_access void

access CacheAccess

lock void

to_in_milliseconds integer

unlock void
DDS Data Local Reconstruction Layer (DLRL), v1.4 21

The public attributes give:

• the state of the cache with respect to the underlying Pub/Sub infrastructure (pubsub_state), as well as the related
Publisher (the_publisher) and Subscriber (the_subscriber).

• the state of the cache with respect to incoming updates (updates_enabled). This state is modifiable by the applications
(see enable_updates, disable_updates) in order to support applications that are both publishing and subscribing.

• the attached CacheAccess (sub_accesses).

• the attached ObjectHome (homes).

• the attached CacheListener (listeners).

It offers methods to:

• register an ObjectHome (register_home). This method returns the index under which the ObjectHome is registered by
the Cache. A number of preconditions must be satisfied when invoking the register_home method: the Cache must
have a pubsub_state set to INITIAL, the specified ObjectHome may not yet be registered before (either to this Cache
or to another Cache), and no other instance of the same class as the specified ObjectHome may already have been
registered to this Cache. If these preconditions are not satisfied, a PreconditionNotMet is raised.

• retrieve an already registered ObjectHome based on its name (find_home_by_name) or based on its index of
registration (find_home_by_index). If no registered home can be found that satisfies the specified name or index, a
NULL is returned.

• register all known ObjectHome to the Pub/Sub level (register_all_for_pubsub), i.e., create all the needed DCPS
entities; registration is performed for publication, for subscription, or for both according to the cache_usage. At this
stage, it is the responsibility of the service to ensure that all the object homes are properly linked and set up: that means
in particular that all must have been registered before. When an ObjectHome still refers to another ObjectHome that
has not yet been registered, a BadHomeDefinition is raised. A number of preconditions must also be satisfied before
invoking the register_all_for_pubsub method: at least one ObjectHome needs to have been registered, and the
pubsub_state may not yet be ENABLED. If these preconditions are not satisfied, a PreconditionNotMet will be raised.
Invoking the register_all_for_pub_sub on a REGISTERED pubsub_state will be considered a no-op.

• enable the derived Pub/Sub infrastructure (enable_all_for_pubsub). QoS setting can be performed between those two
operations. One precondition must be satisfied before invoking the enable_all_for_pub_sub method: the pubsub_state
must already have been set to REGISTERED before. A PreconditionNotMet Exception is thrown otherwise. Invoking
the enable_all_for_pub_sub method on an ENABLED pubsub_state will be considered a no-op.

• attach/detach a CacheListener (attach_listener, detach_listener).

• enable/disable incoming updates (enable_updates, disable_updates):

• disable_updates causes incoming but not yet applied updates to be registered for further application. If it is called
in the middle of a set of updates (see Listener operations), the Listener will receive end_updates with a parameter
that indicates that the updates have been interrupted.

• enable_updates causes the registered (and thus not applied) updates to be taken into account, and thus to trigger the
attached Listener, if any.

• explicitly request taking into account the waiting incoming updates (load). In case updates_enabled is TRUE, the
load operation does nothing because the updates are taken into account on the fly; in case updates_enabled is
FALSE, the load operation ‘takes’ all the waiting incoming updates and applies them in the Cache. The load
operation does not trigger any listener (while automatic taking into account of the updates does - see 2.1.6.4 for
more details on listener activation) and may therefore be useful in particular for global initialization of the Cache.
22 DDS Data Local Reconstruction Layer (DLRL), v1.4

• create new CacheAccess objects dedicated to a given purpose (create_access). This method allows the application to
create sub-accesses and takes as a parameter the purpose of that sub-access, namely:

• write allowed (WRITE_ONLY or READ_WRITE12) – to isolate a thread of modifications.

• write forbidden (READ_ONLY) – to take a consistent view of a set of objects and isolate it from incoming updates.

The purpose of the CacheAccess must be compatible with the usage mode of the Cache: only a Cache that is write-enabled
can create a CacheAccess that allows writing. Violating this rule will raise a PreconditionNotMet:

• delete sub-accesses (delete_access). Deleting a CacheAccess will purge all its contents. Deleting a CacheAccess that is
not created by this Cache will raise a PreconditionNotMet.

• transform an ObjectReference to the corresponding ObjectRoot. This operation can return the already instantiated
ObjectRoot or create one if not already done. These ObjectRoot are not modifiable (modifications are only allowed
on cloned objects attached to a CacheAccess in write mode).

• lock the Cache with respect to all other modifications, either from the infrastructure or from other application
threads. This operation ensures that several operations can be performed on the same Cache state (i.e., cloning of
several objects in a CacheAccess). This operation blocks until the Cache can be allocated to the calling thread and
the waiting time is limited by a time-out (to_in_milliseconds). In case the time-out expired before the lock can be
granted, an exception (ExpiredTimeOut) is raised.

• unlock the Cache.

Objects attached to the cache are supposed to be garbage-collected when appropriate. There is no specific operation for doing
this.

2.1.6.3.5 CacheListener

CacheListener is an interface that must be implemented by the application in order to be made aware of the arrival of updates
on the cache.

It provides the following methods:

12.That for a sub-access are equivalent.

CacheListener
operations

on_begin_updates void

on_end_updates void

on_updates_enabled void

on_updated_disable
d

void
DDS Data Local Reconstruction Layer (DLRL), v1.4 23

• on_begin_updates indicates that updates are following. Actual modifications in the cache will be performed only when
exiting this method (assuming that updates_enabled is true).

• on_end_updates indicates that no more update is foreseen.

• on_updates_enabled indicates that the Cache has switched to automatic update mode. Incoming data will now trigger
the corresponding Listeners.

• on_updates_disabled indicates that the Cache has switched to manual update mode. Incoming data will no longer
trigger the corresponding Listeners, and will only be taken into account during the next refresh operation.

In between, the updates are reported on home or selection listeners. Sub clause 2.1.6.4 describes which notifications are
performed and in what order.

2.1.6.3.6 Contract

Contract is the class that defines which objects will be cloned from the Cache into the CacheAccess when the latter is
refreshed.

The public attributes give:

• The top-level object (contracted_object). This is the object that acts as the starting point for the cloning contract.

• The scope of the cloning request (i.e., the object itself, or the object with all its (nested) compositions, or the object with
all its (nested) compositions and all the objects that are navigable from it up till the specified depth).

• The depth of the cloning contract. This defines how many levels of relationships will be covered by the contract
(UNLIMITED_RELATED_OBJECTS when all navigable objects must be cloned recursively). The depth only applies
to a RELATED_OBJECT_SCOPE.

It offers methods to:

• Change the depth of an existing contract (set_depth). This change will only be taken into account at the next refresh of
the CacheAccess.

• Change the scope of an existing contract (set_scope). This change will only be taken into account at the next refresh of
the CacheAccess.

Contract
attributes

depth integer

scope ObjectScope

contracted_object ObjectRoot

operations

set_depth void

depth integer

set_scope void

scope ObjectScope
24 DDS Data Local Reconstruction Layer (DLRL), v1.4

2.1.6.3.7 ObjectHome

For each application-defined class, there is an ObjectHome instance, which exists to globally represent the related set of
instances and to perform actions on it. Actually, ObjectHome is the root class for generated classes (each one being dedicated
to one application-defined class, so that it embeds the related specificity). The name for such a derived class is FooHome,
assuming it corresponds to the application-defined class Foo.

A derived ObjectHome (e.g., a FooHome) has no factory. It is created as an object directly by the natural means in each
language binding (e.g., using “new” in C++ or Java).

ObjectHome
attributes

class_name string

content_filter string

registration_index integer

auto_deref boolean

selections Selection []

listener ObjectListener []

operations

get_topic_name string

attribute_name string

get_all_topic_names string []

set_content_filter void

expression string

set_auto_deref void

value boolean

deref_all void

underef_all void

attach_listener void

listener ObjectListener

concerns_contained_objects boolean

detach_listener void

listener ObjectListener

create_selection Selection

criterion SelectionCriterion

auto_refesh boolean

concerns_contained_objects boolean
DDS Data Local Reconstruction Layer (DLRL), v1.4 25

The public attributes give:

• the public name of the application-defined class (class_name).

• a content filter (content_filter) that is used to filter incoming objects. It only concerns subscribing applications; only
the incoming objects that pass the content filter will be created in the Cache and by that ObjectHome. This content
filter is given by means of a string and is intended to be mapped on the underlying DCPS infrastructure to provide
content-based subscription at DLRL level (see Annex B for its syntax). The content_filter attribute is set to NULL by
default.

• the index under which the ObjectHome has been registered by the Cache (see Cache::register_home operation).

• a boolean that indicates whether the state of a DLRL Object should always be loaded into that Object (auto_deref =
TRUE) or whether this state will only be loaded after it has been accessed explicitly by the application (auto_deref =
FALSE). The auto_deref attribute is set to TRUE by default.

• the list of attached Selection (selections).

• the list of attached ObjectListener (listeners).

Those last four attributes will be generated properly typed in the derived specific home.

It offers methods to:

delete_selection void

a_selection Selection

create_object ObjectRoot

access CacheAccess

create_unregistered_ob
ject

ObjectRoot

access CacheAccess

register_object void

unregistered_object ObjectRoot

find_object ObjectRoot

oid DLRLOid

source CacheBase

get_objects ObjectRoot[]

source CacheBase

get_created_objects ObjectRoot[]

source CacheBase

get_modified_objects ObjectRoot[]

source CacheBase

get_deleted_objects ObjectRoot[]

source CacheBase
26 DDS Data Local Reconstruction Layer (DLRL), v1.4

• set the content_filter for that ObjectHome (set_content_filter). As a content filter is intended to be mapped on the
underlying infrastructure it can be set only before the ObjectHome is registered (see Cache::register_home). An
attempt to change the filter expression afterwards will raise a PreconditionNotMet. Using an invalid filter expression
will raise an SQLError.

• set the auto_deref boolean (set_auto_deref).

• ask to load the most recent state of a DLRL Object into that Object for all objects managed by that home (deref_all).

• ask to unload all object states from objects that are attached to this home (underef_all).

• attach/detach an ObjectListener (attach_listener, detach_listener). When a listener is attached, a boolean parameter
specifies, when set to TRUE, that the listener should listen also for the modification of the contained objects
(concerns_contained_objects).

• create a Selection (create_selection). The criterion parameter specifies the SelectionCriterion (either a
FilterCriterion or a SelectionCriterion) to be attached to the Selection, the auto_refresh parameter specifies if the
Selection has to be refreshed automatically or only on demand (see Selection) and a boolean parameter specifies,
when set to TRUE, that the Selection is concerned not only by its member objects but also by their contained ones
(concerns_contained_objects); attached SelectionCriterion belong to the Selection that itself belongs to its creating
ObjectHome. When creating a Selection while the DCPS State of the Cache is still set to INITIAL, a
PreconditionNotMet is raised.

• delete a Selection (delete_selection). This operation deletes the Selection and its attached SelectionCriterion. If the
Selection was not created by this ObjectHome, a PreconditionNotMet is raised.

• create a new DLRL object (create_object). This operation takes as parameter the CacheAccess concerned by the
creation. The following preconditions must be met: the Cache must be set to the DCPS State of ENABLED, and the
supplied CacheAccess must be writeable. Not satisfying either precondition will raise a PreconditionNotMet.

• pre-create a new DLRL object in order to fill its content before the allocation of the oid
(create_unregistered_object); this method takes as parameter the CacheAccess concerned with this operation. The
following preconditions must be met: the Cache must be set to the DCPS State of ENABLED, and the supplied
CacheAccess must be writeable. Not satisfying either precondition will raise a PreconditionNotMet.

• register an object resulting from such a pre-creation (register_object). This operation embeds a logic to derive from
the object content a suitable oid; only objects created by create_unregistered_object can be passed as parameter, a
PreconditionNotMet is raised otherwise. If the result of the computation leads to an existing oid, an
AlreadyExisting exception is raised. Once an object has been registered, the fields that make up its identity (i.e., the
fields that are mapped onto the keyfields of the corresponding topics) may not be changed anymore.

• retrieve a DLRL object based on its oid in the specified CacheBase (find_object).

• retrieve the name of the topic that contains the value for one attribute (get_topic_name). If the DCPS State of the
Cache is still set to INITIAL, a PreconditionNotMet is raised.

• retrieve the name of all the topics that contain values for all attributes of the class (get_all_topic_names). If the
DCPS State of the Cache is still set to INITIAL, a PreconditionNotMet is raised.

• obtain from a CacheBase a (typed) list of all objects that match the type of the selected ObjectHome (get_objects). For
example the type ObjectRoot[] will be substituted by a type Foo[] in a FooHome.

• obtain from a CacheBase a (typed) list of all objects that match the type of the selected ObjectHome and that have been
created, modified, or deleted during the last refresh operation (get_created_objects, get_modified_objects, and
get_deleted_objects respectively). The type ObjectRoot[] will be substituted by a type Foo[] in a FooHome.
DDS Data Local Reconstruction Layer (DLRL), v1.4 27

2.1.6.3.8 ObjectListener

This interface is an abstract root, from which a typed interface will be derived for each application type. This typed interface
(named FooListener, if the application class is named Foo), then has to be implemented by the application, so that the
application will be made aware of the incoming changes on objects belonging to the FooHome.

It is defined with these methods:

• on_object_created, which is called when a new object appears in the Cache; this operation is called with the newly
created object (the_object).

• on_object_deleted, which is called when an object has been deleted by another participant; this operation is called with
the newly deleted object (the_object).

• on_object_modified, which is called when the contents of an object changes; this operation is called with the modified
object (the_object).

Each of these methods must return a boolean. TRUE means that the event has been fully taken into account and therefore does
not need to be propagated to other ObjectListener objects (of parent classes).

See 2.1.6.4 for a detailed description of how cache, home, and selection listeners are called.

2.1.6.3.9 Selection

A Selection is a mean to designate a subset of the instances of a given ObjectHome, fulfilling a given criterion. This criterion
is given by means of the attached SelectionCriterion.

ObjectListener
operations

on_object_created boolean

the_object ObjectReference

on_object_modified boolean

the_object ObjectRoot

on_object_deleted boolean

the_object ObjectRoot

Selection
attributes

criterion SelectionCriterion

auto_refresh boolean

concerns_contained boolean

members ObjectRoot[]

listener SelectionListener

operations
28 DDS Data Local Reconstruction Layer (DLRL), v1.4

Actually, the Selection class is a root from which are derived classes dedicated to application classes (for an application class
named Foo, FooSelection will be derived).

It has the following attributes:

• the corresponding SelectionCriterion (criterion). It is given at Selection creation time (see
ObjectHome::create_selection).

• a boolean auto_refresh that indicates if the Selection has to be refreshed at each incoming modification (TRUE) or
only on demand (FALSE). It is given at Selection creation time (see ObjectHome::create_selection).

• a boolean concerns_contained that indicates whether the Selection considers the modification of one of its members
based on its content only (FALSE) or based on its content or the content of its contained objects (TRUE). It is given
at Selection creation time (see ObjectHome::create_selection).

• the list of the objects that are part of the selection (members).

• attached listener.

It offers the methods to:

• set the SelectionListener (set_listener), that will be triggered when the composition of the selection changes, as well
as if the members are modified. set_listener returns the previously set listener if any; set_listener called with a
NULL parameter discards the current listener.

• request that the Selection updates its members (refresh).

The SelectionListener is activated when the composition of the Selection is modified as well as when one of its members is
modified. A member can be considered as modified, either when the member is modified or when that member or one of its
contained objects is modified (depending on the value of concerns_contained). Modifications in the Selection are considered
with respect to the state of the Selection last time is was examined, for instance:

• at each incoming updates processing, if auto_refresh is TRUE.

• at each explicit call to refresh, if auto_refresh is FALSE.

2.1.6.3.10 SelectionCriterion

A SelectionCriterion is an object (attached to a Selection) that gives the criterion to be applied to make the Selection. It is the
abstract base-class for both the FilterCriterion and the QueryCriterion.

set_listener SelectionListener

listener SelectionListener

refresh void

SelectionCriterion
attributes

kind SelectionCriteria

no operations
DDS Data Local Reconstruction Layer (DLRL), v1.4 29

It has one attribute (kind) that describes whether a SelectionCriterion instance represents a FilterCriterion or a
QueryCriterion.

2.1.6.3.11 FilterCriterion

FilterCriterion is a specialization of SelectionCriterion that performs the object check based on a user-defined filter
algorithm.

It offers a method to:

• check if an object passes the filter – return value is TRUE – or not – return value is FALSE (check_object). This
method is called with the first parameter set to the object to be checked and the second parameter set to indicate
whether the object previously passed the filter (membership_state). The second parameter (which is actually an
enumeration with three possible values - UNDEFINED_MEMBERSHIP, ALREADY_MEMBER, and
NOT_MEMBER) is useful when the FilterCriterion is attached to a Selection to allow writing optimized filters.

The FilterCriterion class is a root from which are derived classes dedicated to application classes (for an application class
named Foo, FooFilter will be derived).

FooFilter is itself a base class that may be derived by the application in order to provide its own check_object algorithm. The
default provided behavior is that check_object always return TRUE.

2.1.6.3.12 QueryCriterion

QueryCriterion is a specialization of SelectionCriterion that performs the object check based on a query expression.

FilterCriterion : SelectionCriterion
no attributes

operations

check_object boolean

an_object ObjectRoot

membership_state enum MembershipState

QueryCriterion : SelectionCriterion
attributes

expression string

parameters string []

operations

set_query boolean

expression string

arguments string []
30 DDS Data Local Reconstruction Layer (DLRL), v1.4

The query is made of an expression and of parameters that may parameterize the expression (the number of parameters must
fit with the values required by the expression). See Annex B for the syntax of an expression and its parameters.

It offers methods to:

• set the value of the expression and its parameters (set_query); a TRUE return value indicates that they have been
successfully changed.

• set the values of the parameters (set_parameters). The number of parameters must fit with the values required by the
expression. A TRUE return value indicates that they have been successfully changed.

After a successful call to one of those methods the owning Selection is refreshed if its auto_refresh is TRUE.

2.1.6.3.13 SelectionListener

This interface is an abstract root, from which a typed interface will be derived for each application type. This typed interface
(named FooSelectionListener, if the application class is named Foo) has to be implemented by the application in order to be
made aware of the incoming changes on objects belonging to a FooSelection.

It is defined with three methods:

• on_object_in, which is called when an object enters the Selection.

• on_object_out, which is called when an object exits the Selection.

• on_object_modified, which is called when the contents of an object belonging to the Selection changes.

Sub clause 2.1.6.4 includes a detailed description of how cache, home, and selection listeners are called.

2.1.6.3.14 ObjectRoot

ObjectRoot is the abstract root for any DLRL class. It brings all the properties that are needed for DLRL management.
ObjectRoot are used to represent either objects that are in the Cache (also called primary objects) or clones that are attached to

set_parameters boolean

arguments string []

SelectionListener
operations

on_object_in void

the_object ObjectRoot

on_object_out void

the_object ObjectRoot

on_object_modified void

the_object ObjectRoot
DDS Data Local Reconstruction Layer (DLRL), v1.4 31

a CacheAccess (also called secondary objects). Secondary objects refer to a primary one with which they share the
ObjectReference.

Its public attributes13 give:

• the identity of the object (oid);

• its lifecycle states (read_state and write_state);

• its related home (object_home);

• the cache it belongs to (owner), this can be either a Cache or a CacheAccess.

It offers methods to:

• mark the object for destruction (destroy), to be executed during a write operation. If the object is not located in a
writeable CacheAccess, a PreconditionNotMet is raised.

• see if the object has been modified by incoming modifications (is_modified). is_modified takes as parameter the
scope of the request (i.e., only the object contents, the object and its component objects, the object and all its related
objects). In case the object is newly created, this operation returns FALSE; ‘incoming modifications’ should be
understood differently for a primary object and for a clone object.

• For a primary object, they refer to incoming updates (i.e., coming from the infrastructure).

• For a secondary object (cloned), they refer to the modifications applied to the object by the last
CacheAccess::refresh operation.

ObjectRoot
attributes

oid DLRLOid

read_state ObjectState

write_state ObjectState

object_home ObjectHome

owner CacheBase

operations

destroy void

is_modified boolean

scope ObjectScope

which_contained_modified RelationDescrip-
tion[]

13.It is likely that other attributes are needed to manage the objects (i.e., a content version, a reference count ...); however, these
are implementation details not part of the specification.
32 DDS Data Local Reconstruction Layer (DLRL), v1.4

• get which contained objects have been modified (which_contained_modified). This method returns a list of
descriptions for the relations that point to the modified objects (each description includes the name of the relation and if
appropriate the index or key that corresponds to the modified contained object).

In addition, application classes (i.e., inheriting from ObjectRoot), will be generated with a set of methods dedicated to each
shared attribute (including single- and multi-relation attributes):

• get_<attribute>, read accessor to the attribute - this accessor will embed whatever is needed to properly get the data.

• set_<attribute>, write accessor for the attribute - this accessor will embed whatever is needed to further properly write
the data to the publishing infrastructure (in particular, it will take note of the modification). Since the identity of DLRL
Objects that are generated using predefined mapping (i.e., with a keyDescription content of “NoOid”) is determined by
the value of its key fields, changing these key fields means changing their identity. For this reason these keyfields are
considered read-only: any attempt to change them will raise a PreconditionNotMet. The only exception to this rule is
when locally created objects have not yet been registered and therefore do not have an identity yet.

• is_<attribute>_modified, to get if this attribute has been modified by means of incoming modifications (cf. method
is_modified).

A Cache Object represents the global system state. It has a read_state whose transitions represent the updates as they are
received by the DCPS. Since Cache Objects cannot be modified locally, they have no corresponding write_state (i.e., their
write_state is set to VOID). State transitions occur between the start of an update round and the end of an update round. When
in automatic updates mode, the start of the update round is signaled by the invocation of the on_begin_updates callback of the
CacheListener, while the end of an update round is signaled by the invocation of the on_end_updates callback of the
CacheListener. When in manual update mode, the start of an update round is defined as the start of a refresh operation, while
the end of an update round is defined as the invocation of the next refresh operation.
DDS Data Local Reconstruction Layer (DLRL), v1.4 33

 read_state write_state

Figure 2.5 - read_state and write_state of a Cache object

A CacheAccess Object represents either a temporary system state (a so-called ‘snapshot’ of the Cache) when in
READ_ONLY mode, or it represents an intended system state when in WRITE_ONLY or READ_WRITE mode. In
READ_ONLY mode, a CacheAccess object has no write_state (it is VOID, not depicted), while in WRITE_ONLY mode it
has no read_state (it is VOID, not depicted). Transitions of the read_state occur during an update round (caused by invocation
of the refresh method), or when the CacheAccess is purged. Changes of the write_state are caused by either local
modifications (can be done on any time), by committing the local changes to the system (during a write operation), by purging
the CacheAccess, or by starting a new update round (by invoking the refresh method and thus rolling back any uncommitted
changes). Since a refresh operation validates contracts, and both these contracts and the relationships between their targeted
objects may change, two results are possible: an object can be contracted as a result of the refresh operation, thus (re-)
appearing in the CacheAccess, or an object cannot be contracted as a result of a refresh operation, thus disappearing from a
CacheAccess.

NEW

NOT_MODI
FIED

MODIFIED

DELETED

new ins tance arrives

end of update round

update arri ves

ins tance disposedinstance disposed

end of updat e round update arrives

in stanc e dispose d

garbage collected

VOID
34 DDS Data Local Reconstruction Layer (DLRL), v1.4

Figure 2.6 - read_state and write_state of a CacheAccess object

N E W

refres h c on trac ted

N O T_M O DI
F IE D

MO D IF IE D

re fres h updated

D E LE TE D

update de le ted O R
purge O R refr es h no t

c on trac ted

refres h no t up dated

update del e ted O R
pu rge OR re fr es h no t

c on trac ted

re fres h no t updated re fres h updated

upd ate de l e te d O R
purge O R re fr es h

no t c on trac ted

garbag e c ollec ted

N E W

M O D IF IE D

N O T_M O D I
F IE D

D E L E TE D

c re a te o b je c t

re fre s h
c o n t rac te d

re fres h c o n t rac te d

w rite C a c he A c c es s
O R p u rge O R re fres h

no t c on t ra c ted

de s tr o y o b je c t
w rite C ac he A c c es s O R

re fre s h c on t ra c ted

p u rg e O R re fres h
n o t c o n t rac te d

de s tr oy ob je c t

m o d ify o b je c t

pu rg e O R re fres h
n o t c o n t rac te d

w rite C a c he A c c es s

p u rge O R re fre s h
n o t c o n tr ac te d

de s t ro y ob jec t

write_state of
CacheAccess in
WRITE_ONLY or
READ_WRITE mode
DDS Data Local Reconstruction Layer (DLRL), v1.4 35

2.1.6.3.15 Collection

This class is the abstract root for all collections (lists and maps).

It provides the following attributes:

• length - the length of the collection.

• values - a list of all values contained in the Collection.

2.1.6.3.16 List

This class is the abstract root for all the lists. Concrete list classes will be derived, in order to provide typed lists (those classes
will be named FooList, assuming that Foo is the type of one item).

Collection
no attributes

length integer

values undefined [] (e.g. of type ObjectRoot
or Primitive type)

List : Collection
no attributes

operations

remove void

added_elements integer[]

removed_elements integer[]

modified_elements integer[]

add void

value undefined (e.g., of type ObjectRoot
or Primitive type)

put void

index integer

value undefined (e.g., of type ObjectRoot
or Primitive type)

get undefined (e.g., of type ObjectRoot
or Primitive type)

index integer
36 DDS Data Local Reconstruction Layer (DLRL), v1.4

It provides the following methods:

• remove - to remove the item with the highest index from the collection.

• added_elements - to get a list that contains the indexes of the added elements.

• removed_elements - to get a list that contains the indexes of the removed elements.

• modified_elements - to get a list that contains the indexes of the modified elements.

• add - to add an item to the the end of the list.

• put - to put an item in the collection at a specified index.

• get - to retrieve an item in the collection (based on its index).

2.1.6.3.17 Set

This class is the abstract root for all sets. Concrete Set classes will be derived, in order to provide typed sets (those classes will
be named FooSet, assuming that Foo is the type of one item).

It provides the following methods:

• add - to add an element to the Set. If the specified element was already contained in the Set, the operation is ignored.

• remove - to remove an element from the Set. If the specified element is not contained in the Set, the operation is
ignored.

Set : Collection
no attributes

operations

added_elements undefined (e.g., of type ObjectRoot
or Primitive type)

removed_elements undefined (e.g., of type ObjectRoot
or Primitive type)

contains boolean

value undefined (e.g., of type ObjectRoot
or Primitive type)

add void

value undefined (e.g., of type ObjectRoot
or Primitive type)

remove void

value undefined (e.g., of type ObjectRoot
or Primitive type)
DDS Data Local Reconstruction Layer (DLRL), v1.4 37

• contains - returns whether the specified value is already contained in the Set (true) or not (false).

• added_elements - to return the elements added in the last update round.

• removed_elements - to return the elements removed in the last update round.

2.1.6.3.18 StrMap

This class is the abstract root for all the maps with string keys. Concrete map classes will be derived, in order to provide typed
maps (those classes will be named FooStrMap, assuming that Foo is the type of one item).

The public attributes give:

• keys - a list that contains all the keys of the items belonging to the map.

It provides the following methods:

• remove - to remove an item from the collection.

• added_elements - to get a list that contains the keys of the added elements.

• removed_elements - to get a list that contains the keys of the removed elements.

• modified_elements -to get a list that contains the keys of the modified elements.

• put - to put an item in the collection.

• get - to retrieve an item in the collection (based on its key).

StrMap : Collection
attributes

keys string[]

operations

remove void

key string

added_elements string[]

removed_elements string[]

modified_elements string[]

put void

key string

value undefined (e.g., of type ObjectRoot or
Primitive type)

get undefined (e.g., of type ObjectRoot or
Primitive type)

key string
38 DDS Data Local Reconstruction Layer (DLRL), v1.4

2.1.6.3.19 IntMap

This class is the abstract root for all the maps with integer keys. Concrete map classes will be derived, in order to provide typed
maps (those classes will be named FooIntMap, assuming that Foo is the type of one item).

The public attributes give:

• keys - a list that contains all the keys of the items belonging to the map.

It provides the following methods:

• remove - to remove an item from the collection.

• added_elements - to get a list that contains the keys of the added elements.

• removed_elements - to get a list that contains the keys of the removed elements.

• modified_elements - to get a list that contains the keys of the modified elements.

• put - to put an item in the collection.

• get - to retrieve an item in the collection (based on its key).

2.1.6.4 Listeners Activation

As described in 2.1.6.2, there are three kinds of listeners that the application developer may implement and attach to DLRL
entities: CacheListener, ObjectListener, and SelectionListener. All these listeners are a means for the application to attach
specific application code to the arrival of some events. They are therefore only concerned with incoming information.

IntMap : Collection
attributes

keys string[]

operations

remove void

key integer

added_elements integer[]

removed_elements integer[]

modified_elements integer[]

put void

key integer

value undefined (e.g., of type
ObjectRoot or Primitive type)

get undefined (e.g., of type
ObjectRoot or Primitive type)

key integer
DDS Data Local Reconstruction Layer (DLRL), v1.4 39

This sub clause presents how these listeners are triggered (i.e., which ones, on which events, and in which order).

2.1.6.4.1 General Scenario

Incoming updates14 are usually a set of coherent individual updates that may be object creations, object deletions, and object
modifications.

This set of updates is managed as follows:

• First, all the CacheListener::start_updates operations are triggered; the order in which these listeners are triggered is
not specified.

• Then all the updates are actually applied in the cache15. When an object is modified, several operations allow to get
more precisely which parts of the object are concerned (see ObjectRoot::is_modified operations as well as the
operations for Collection, namely, is_modified, how_many_added, how_many_removed, removed_values, and
which_added); these operations can be called in the listeners.

• Then, the suitable object and selection listeners are triggered, depending on each individual update (see the following
sub clauses).

• Finally all the CacheListener::end_updates operations are triggered and the modification states of the updated objects
is cleaned; the order in which these listeners are triggered is not specified.

2.1.6.4.2 Object Creation

When an individual update reports an object creation, the following listeners are activated:

• First, the ObjectListener listeners suitable to that object are searched and their on_object_created operations
triggered. The search follows the inheritance structure starting with the more specific ObjectHome (e.g., FooHome,
if the object is typed Foo) to ObjectRoot. The search is stopped when all on_object_created operations return true at
one level; inside one level, the triggering order is not specified.

• Then, all the Selection objects that are concerned with that kind of object (e.g., the FooSelection and above in the
inheritance hierarchy) are checked to see if that new object is becoming a member of the selection. In case it is true, the
attached SelectionListener::on_object_in is triggered.

2.1.6.4.3 Object Modification

When an individual update reports an object modification, the following listeners are activated:

• First, all the Selection objects that are concerned with that kind of object (e.g., the FooSelection and above in the
inheritance hierarchy, assuming that the object is of type Foo) are checked to see if that new object is:

• becoming a member of the selection. If so, the attached SelectionListener::on_object_in is triggered.

• already and still part of the selection. If so, the attached SelectionListener::on_object_modified is triggered.

• leaving the selection. If so, the attached SelectionListener::on_object_out is triggered.

14.Whether those incoming updates are transmitted to the DLRL layer by means of DCPS listeners or by means of wait sets and
conditions is not discussed here: this is an implementation detail.

15.If an object is deleted, its state is set as DELETED; it will be actually removed when there are no more references to it.
40 DDS Data Local Reconstruction Layer (DLRL), v1.4

• Then, the ObjectListener listeners suitable to that object are searched and their on_object_modified operations
triggered. The search follows the inheritance structure starting with the more specific ObjectHome (e.g., FooHome,
if the object is typed Foo) to ObjectRoot. The search is stopped when all on_object_modified operations return true
at one level; inside one level, the triggering order is not specified.

2.1.6.4.4 Object Deletion

When an individual update reports an object deletion, the following listeners are activated.

• First, all the Selection objects that are concerned with that kind of object (e.g., the FooSelection and above in the
inheritance hierarchy, assuming that the object is of type Foo) are checked to see if that new object was part of the
selection. If so, the attached SelectionListener::on_object_out is triggered.

• Then, the ObjectListener listeners suitable to that object are searched and their on_object_deleted operations
triggered. The search follows the inheritance structure starting with the more specific ObjectHome (e.g., FooHome,
if the object is typed Foo) to ObjectRoot. The search is stopped when all on_object_deleted operations return true at
one level; inside one level, the triggering order is not specified.

2.1.6.5 Cache Accesses Management

Cache accesses are a means to perform read or write operations in isolation from other object modifications. The two
following sub clauses present typical use scenarios.

It should be noted that, even though a sensible design is to create a CacheAccess per thread, DLRL does not enforce this rule
by any means.

2.1.6.5.1 Read Mode

The typical scenario for read mode is as follows:

1. Create the CacheAccess for read purpose (Cache::create_access).

2. Attach some cloning contracts to it (CacheAccess::create_contract).

3. Execute these contracts (CacheAccess::refresh).

4. Consult the clone objects and navigate amongst them (plain access to the objects). These objects are not subject to
any incoming notifications.

5. Purge the cache (CacheAccess::purge); step 2 can be started again.

6. Eventually, delete the CacheAccess (Cache::delete_access).

2.1.6.5.2 Write Mode

The typical scenario for write mode is as follows:

1. Create the CacheAccess for write purpose (Cache::create_access).

2. Clone some objects in it (ObjectRoot::clone or clone_object).

3. Refresh them (CacheAccess::refresh).

4. If needed create new ones for that CacheAccess (ObjectHome:: create_object).
DDS Data Local Reconstruction Layer (DLRL), v1.4 41

5. Modify the attached (plain access to the objects).

6. Write the modifications into the underlying infrastructure (CacheAccess::write).

7. Purge the cache (CacheAccess::purge); step 2 can be started again.

8. Eventually, delete the CacheAccess (Cache::delete_access).

2.1.6.6 Generated Classes

Assuming that there is an application class named Foo (that will extend ObjectRoot), the following classes will be generated:

• FooHome : ObjectHome

• FooListener : ObjectListener

• FooSelection : Selection

• FooSelectionListener : SelectionListener

• FooFilter : FilterCriterion

• FooQuery : FooFilter, QueryCriterion

• And for relations to Foo objects (assuming that these relations are described in the applicative mode – note also that the
actual name of these classes will be indicated by the application):

• “FooRelation” : RefRelation

• “FooListRelation” : ListRelation

• “FooStrMapRelation” : StrMapRelation

• “FooIntMapRelation” : IntMapRelation

2.2 OMG IDL Platform Specific Model (PSM)

This sub clause provides a mapping suitable for CORBA platforms. It is described by means of IDL constructs that can be
used by an application in order to interact with the services; this is described in 2.2.1, Run-time Entities.

This sub clause also specifies the generation process (specializing the abstract one presented in Figure 2.3); in particular, the
following are described:

• How the application introduces its application classes (“Model Description” in Figure 2.3).

• How the application adds indication to properly generate the DLRL entities as well as the resulting enhanced
application constructs (“Model Tags” in Figure 2.3).

This process is described in 2.2.2, Generation Process.
42 DDS Data Local Reconstruction Layer (DLRL), v1.4

2.2.1 Run-time Entities

2.2.1.1 Mapping Rules

Rationale to define DLRL entities mapping is slightly different from what ruled the DCPS mapping, mainly because this layer
does not target C language. Therefore, valuetypes or exceptions have been considered as suitable at the DLRL level, while
they have been rejected for DCPS.

In summary, there are two kinds of DLRL entities:

1. Entities that are access points to servicing objects (e.g., Cache).

2. Entities that are application objects (i.e., whose aim is to be distributed), or parts of them.

Entities belonging to the first category are modeled as IDL local interfaces. Entities belonging to the second one are modeled
as IDL valuetypes.

The choice for valuetypes has been driven by two main reasons:

1. It is the IDL construct that fits best with the concept of DLRL objects.

2. It offers a means to differentiate private from public attributes.

Error reporting has been modeled by use of exceptions, with the following rule:

• When a real error that will affect the future behavior is reported (e.g., passing of a wrong parameter), an exception is
raised.

• When this ‘error’ is actually a warning in the sense that behavior will not be affected (e.g., an attempt to remove
something from a list where it is not, or no more), a return value is used instead.

The language implementation of the CacheFactory interface should have the static operation get_instance described in
2.1.6.3.1. This operation does not appear in the IDL CacheFactory interface, as static operations cannot be expressed in IDL.

The IDL PSM introduces a number of types that are intended to be defined in a native way. As these are opaque types, the
actual definition of the type does not affect portability and is implementation dependent. For completeness the names of the
types appear as typedefs in the IDL and a #define with the suffix “_TYPE_NATIVE” is used as a place-holder for the actual
type. The type used in the IDL by this means is not normative and an implementation is allowed to use any other type,
including non-scalar (i.e., structured types).

Exceptions in DLRL will be mapped according to the default language mapping rules, except for the AlreadyDeleted
exception. Since this exception can be raised on all methods and attributes (which is not possible to specify in IDL versions
older than 3.0), it is not explicitly mentioned in the raise clause of each operation. Implementors may choose to map it onto an
exception type that does not need to be caught explicitly, simplifying the DLRL code significantly.

2.2.1.2 IDL Description

This IDL is split in two sub clauses:

• IDL for the generic DLRL entities

• Implied IDL
DDS Data Local Reconstruction Layer (DLRL), v1.4 43

2.2.1.2.1 Generic DLRL Entities

#include "dds_dcps.idl"

#define DLRL_OID_TYPE_NATIVE long

module DDS {

// Type definitions
// =================

// Scope of action
// ---------------

enum ReferenceScope {
SIMPLE_CONTENT_SCOPE, // only the reference content
REFERENCED_CONTENTS_SCOPE // + referenced contents
};

enum ObjectScope {
SIMPLE_OBJECT_SCOPE, // only the object
CONTAINED_OBJECTS_SCOPE, // + contained objects
RELATED_OBJECTS_SCOPE // + all related objects
};

// State of the underlying infrastructure
// --------------------------------------

enum DCPSState {
 INITIAL,
 REGISTERED,
 ENABLED
 };

// Usage of the Cache
// ------------------

enum CacheUsage {
 READ_ONLY,
 WRITE_ONLY,
 READ_WRITE
 };

// Object State
// ------------
enum ObjectState {
 OBJECT_VOID,
 OBJECT_NEW,
 OBJECT_NOT_MODIFIED,
 OBJECT_MODIFIED,
44 DDS Data Local Reconstruction Layer (DLRL), v1.4

 OBJECT_DELETED
};

// OID
// ---

struct DLRLOid {
 DLRL_OID_TYPE_NATIVE value[3];
 };

// Miscellaneous
// ------------

typedef sequence<long> LongSeq;

typedef string ClassName;
typedef string CacheName;
typedef string RelationName;

// Exceptions
// ==========

exception DCPSError { string message; };
exception BadHomeDefinition { string message; };
exception NotFound { string message; };
exception AlreadyExisting { string message; };
exception AlreadyDeleted { string message; };
exception PreconditionNotMet { string message; };
exception NoSuchElement { string message; };
exception SQLError { string message; };

// DLRL Entities
// =============

/********************
 * Forward References
 ********************/

valuetype ObjectRoot;
typedef sequence<ObjectRoot> ObjectRootSeq;

local interface ObjectHome;
typedef sequence<ObjectHome> ObjectHomeSeq;

local interface ObjectListener;
typedef sequence<ObjectListener> ObjectListenerSeq;

local interface Selection;
typedef sequence<Selection> SelectionSeq;
DDS Data Local Reconstruction Layer (DLRL), v1.4 45

local interface CacheBase;
typedef sequence<CacheBase> CacheBaseSeq;

local interface CacheAccess;
typedef sequence<CacheAccess> CacheAccessSeq;

local interface CacheListener;
typedef sequence<CacheListener> CacheListenerSeq;

local interface Cache;

local interface Contract;
typedef sequence<Contract> ContractSeq;

/***
 * ObjectListener : Root for Listeners to be attached to
 * Home objects
 ***/

local interface ObjectListener {
 boolean on_object_created (
 in ObjectRoot the_object);

 /**** will be generated with the proper Foo type* in the derived
* FooListener
* boolean on_object_modified (
* in ObjectRoot the_object);
****/

 boolean on_object_deleted (
 in ObjectRoot the_object);
 };

/**
 * SelectionListener : Root for Listeners to be attached to
 * Selection objects
 **/

local interface SelectionListener {
 /***
 * will be generated with the proper Foo type
 * in the derived FooSelectionListener
 *
 void on_object_in (
 in ObjectRoot the_object);
 void on_object_modified (
 in ObjectRoot the_object);
 *
 ***/
46 DDS Data Local Reconstruction Layer (DLRL), v1.4

 void on_object_out (
 in ObjectRoot the_object);
 };

/**
 * CacheListener : Listener to be associated with a Cache
 **/

local interface CacheListener {
 void on_begin_updates ();
 void on_end_updates ();
 void on_updates_enabled();
 void on_updates_disabled();
};

/**
 * Contract : Control objects cloned on a CacheAccess refresh
 **/

local interface Contract {
 readonly attribute long depth;
 readonly attribute ObjectScope scope;
 readonly attribute ObjectRoot contracted_object.

 void set_depth(
in long depth);
 void set_scope(
 in ObjectScope scope);
};

/**
 * ObjectRoot : Root fot the shared objects
 **/
enum RelationKind {
 REF_RELATION,
 LIST_RELATION,
 INT_MAP_RELATION,
 STR_MAP_RELATION};

valuetype RelationDescription {
 public RelationKind kind;
 public RelationName name;
 };
valuetype ListRelationDescription : RelationDescription {
 public long index;
 };
valuetype IntMapRelationDescription : RelationDescription {
 public long key;
DDS Data Local Reconstruction Layer (DLRL), v1.4 47

 };
valuetype StrMapRelationDescription : RelationDescription {
 public string key;
 };
typedef sequence<RelationDescription> RelationDescriptionSeq;

typedef short RelatedObjectDepth;
const RelatedObjectDepth UNLIMITED_RELATED_OBJECTS = -1;

valuetype ObjectRoot {

 // State
 // -----
 private DLRLOid m_oid;
 private ClassName m_class_name;

 // Attributes
 // ----------
 readonly attribute DLRLOid oid;
 readonly attribute ObjectState read_state;
 readonly attribute ObjectState write_state;
 readonly attribute ObjectHome object_home;
 readonly attribute ClassName class_name;
 readonly attribute CacheBase owner;

 // Operations
 // ----------
 void destroy ()
 raises (
 PreconditionNotMet);
 boolean is_modified (
 in ObjectScope scope);
 RelationDescriptionSeq which_contained_modified ();
 };

/***
* SelectionCriterion: Root of all filters and queries
***/
enum CriterionKind {
 QUERY,
 FILTER
};

local interface SelectionCriterion {
 readonly attribute CriterionKind kind;
};

/***
* FilterCriterion: Root of all the objects filters
***/
enum MembershipState {
48 DDS Data Local Reconstruction Layer (DLRL), v1.4

 UNDEFINED_MEMBERSHIP,
 ALREADY_MEMBER,
 NOT_MEMBER
};

local interface FilterCriterion : SelectionCriterion {
 /***
 * Following method will be generated properly typed
 * in the generated derived classes
 *
 boolean check_object (
 in ObjectRoot an_object,
 in MembershipState membership_state);
 *
 ***/
};
/***
* QueryCriterion : Specialized SelectionCriterion to make a
* Query
**/
local interface QueryCriterion : SelectionCriterion {
 // Attributes
 // ---------
 readonly attribute string expression;
 readonly attribute StringSeq parameters;
 //--- Methods
 boolean set_query (
 in string expression,
 in StringSeq parameters) raises (SQLError);
 boolean set_parameters (in StringSeq parameters) raises (SQLError);
};

/**
 * Selection : Root of all the selections (dynamic subsets)
 **/

local interface Selection {

 // Attributes
 // ----------
 readonly attribute boolean auto_refresh;
 readonly attribute boolean concerns_contained;

 /***
 * Following attributes will be generated properly typed
 * in the generated derived classes
 *
 readonly attribute SelectionCriterion criterion;
 readonly attribute ObjectRootSeq members;
 readonly attribute SelectionListener listener;
DDS Data Local Reconstruction Layer (DLRL), v1.4 49

 *
 */

 // Operations
 // ----------
 /***
 * Following method will be generated properly typed
 * in the generated derived classes
 *
 SelectionListener set_listener (
 in SelectionListener listener);
 *
 ***/
 void refresh ();
 };

/***
 * ObjectHome : Root of all the representatives of applicative classes
 ***/

local interface ObjectHome {

 // Attributes
 // ----------
 readonly attribute string name; // Shared name of the class
 readonly attribute string content_filter;
 readonly attribute ObjectHome parent;
 readonly attribute ObjectHomeSeq children;
 readonly attribute unsigned long registration_index;
 readonly attribute boolean auto_deref;

 /***
 * Following attributes will be generated properly typed
 * in the generated derived classes
 *
 readonly attribute SelectionSeq selections;
 readonly attribute ObjectListenerSeq listeners;
 *
 ***/

 // Operations
 // ----------

 void set_content_filter (
 in string expression)
 raises (
 SQLError,
 PreconditionNotMet);

 void set_auto_deref (
50 DDS Data Local Reconstruction Layer (DLRL), v1.4

 in boolean value);
 void deref_all();
 void underef_all ();

 //--- Relations to topics

 string get_topic_name (
 in string attribute_name)
 raises (
 PreconditionNotMet);
 StringSeq get_all_topic_names ()
 raises (
 PreconditionNotMet);

 // --- Listener management

 /***
 * Following methods will be generated properly typed
 * in the generated derived classes
 *

void attach_listener (
in ObjectListener listener,
in boolean concerns_contained_objects);

void detach_listener (
in ObjectListener listener);

 *
 ***/

 // --- Selection management

 /***
 * Following methods will be generated properly typed
 * in the generated derived classes
 *
 Selection create_selection(
 in SelectionCriterion criterion,
 in boolean auto_refresh,
 in boolean concerns_contained_objects)
 raises (
 PreconditionNotMet);
 void delete_selection (
 in Selection a_selection)
 raises (
 PreconditionNotMet);
 *
 ***/

 // --- Object management

 /***
DDS Data Local Reconstruction Layer (DLRL), v1.4 51

 * Following methods will be generated properly typed
 * in the generated derived classes
 *
 ObjectRoot create_object(
 in CacheAccess access)
 raises (
 PreconditionNotMet);
 ObjectRoot create_unregistered_object (
 in CacheAccess access)
 raises (
 PreconditionNotMet);
 void register_object (
 in ObjectRoot unregistered_object)
 raises (
 AlreadyExisting,
 PreconditionNotMet);

 ObjectRoot find_object (
 in DLRLOid oid,
 in CacheBase source)
 raises (
 NotFound);

 ObjectRootSeq get_objects (
 in CacheBase source);
 ObjectRootSeq get_created_objects (
 in CacheBase source);
 ObjectRootSeq get_modified_objects (
 in CacheBase source);
 ObjectRootSeq get_deleted_objects (
 in CacheBase source);

 *
 ***/
 };

/***********************
 * Collection operations
 ***********************/
abstract valuetype Collection {

 readonly attribute long length;

 /***
 * The following methods will be generated properly typed
 * in the generated derived classes
 *
 readonly attribute ObjectRootSeq values;
 *
 ***/
52 DDS Data Local Reconstruction Layer (DLRL), v1.4

};

abstract valuetype List : Collection {

 void remove();
 LongSeq added_elements();
 LongSeq removed_elements();
 LongSeq modified_elements();

 /***
 * The following methods will be generated properly typed
 * in the generated derived classes
 *
 void add(in ObjectRoot value);
 void put(in long key, in ObjectRoot value);
 ObjectRoot get(in long key);
 *
 ***/
};

valuetype Set : Collection {
 /***
 * The following methods will be generated properly typed in
 * the generated derived classes.
 *
 ObjectRootSeq added_elements();
 ObjectRootSeq removed_elements();
 boolean contains(ObjectRoot value);
 void add(ObjectRoot value);
 void remove(ObjectRoot value);
 *
 ***/
};

abstract valuetype StrMap : Collection {

 readonly attribute StringSeq keys;
 void remove(in string key);
 StringSeq added_elements();
 StringSeq removed_elements();
 StringSeq modified_elements();

 /***
 * The following methods will be generated properly typed
 * in the generated derived classes
 *
 void put(in string key, in ObjectRoot value);
 ObjectRoot get(in string key);
 *
 ***/
};
DDS Data Local Reconstruction Layer (DLRL), v1.4 53

abstract valuetype IntMap : Collection {

 readonly attribute LongSeq keys;
 void remove(in long key);
 LongSeq added_elements();
 LongSeq removed_elements();
 LongSeq modified_elements();

 /***
 * The following methods will be generated properly typed
 * in the generated derived classes
 *
 void put(in long key, in ObjectRoot value);
 ObjectRoot get(in long key);
 *
 ***/
};

/**
 * CacheBase : Base class to CacheAccess and Cache
 **/
enum CacheKind {
 CACHE_KIND,
 CACHEACCESS_KIND
};

local interface CacheBase {
 readonly attribute CacheUsage cache_usage;
 readonly attribute ObjectRootSeq objects;
 readonly attribute CacheKind kind;

 void refresh() raises (DCPSError);
};

/**
 * CacheAccess : Manager of the access of a subset of objects
 * (cloned) from a Cache
 **/

local interface CacheAccess : CacheBase {

 // Attributes
 // ==========
 readonly attribute Cache owner;
 readonly attribute ContractSeq contracts;
 readonly attribute StringSeq type_names;

 // Operations
 // ==========
 void write ()
54 DDS Data Local Reconstruction Layer (DLRL), v1.4

 raises (
 ReadOnlyMode,
 DCPSError);
 void purge ();
 void create_contract(
 in ObjectRoot object,
 in ObjectScope scope, in long depth)
 raises (PreconditionNotMet);
 void delete_contract(
 in Contract a_contract)
 raises (PreconditionNotMet);
};

/***
 * Cache : Manager of a set of related objects
 * is associated to one DDS::Publisher and/or one DDS::Subscriber
 ***/

local interface Cache : CacheBase {

 // Attributes
 // ----------
 readonly attribute DCPSState pubsub_state;
 readonly attribute DDS::Publisher the_publisher;
 readonly attribute DDS::Subscriber the_subscriber;
 readonly attribute boolean updates_enabled;
 readonly attribute ObjectHomeSeq homes;
 readonly attribute CacheAccessSeq sub_accesses;
 readonly attribute CacheListenerSeq listeners;

 // Operations
 // ----------

 //-- Infrastructure management
 void register_all_for_pubsub()
 raises (
 BadHomeDefinition,
 DCPSError,
 PreconditionNotMet);
 void enable_all_for_pubsub()
 raises (
 DCPSError,
 PreconditionNotMet);

 // -- Home management
 unsigned long register_home (
 in ObjectHome a_home)
 raises (
 PreconditionNotMet);
 ObjectHome find_home_by_name (
DDS Data Local Reconstruction Layer (DLRL), v1.4 55

 in ClassName class_name);
 ObjectHome find_home_by_index (
 in unsigned long index);

 // -- Listener Management
 void attach_listener (
 in CacheListener listener);
 void detach_listener (
 in CacheListener listener);

 // --- Updates management
 void enable_updates ();
 void disable_updates ();

 // --- CacheAccess Management
 CacheAccess create_access (
 in CacheUsage purpose)
 raises (
 PreconditionNotMet);
 void delete_access (
 in CacheAccess access)
 raises (
 PreconditionNotMet);
 };

/**
 * CacheFactory : Factory to create Cache objects
 **/

valuetype CacheDescription {
 public CacheName name;
 public DDS::DomainParticipant domain;
 };

local interface CacheFactory {
 Cache create_cache (
 in CacheUsage cache_usage,
 in CacheDescription cache_description)
 raises (
 DCPSError,
 AlreadyExisting);
 Cache find_cache_by_name(
 in CacheName name);
 void delete_cache (
 in Cache a_cache);
 };

};
56 DDS Data Local Reconstruction Layer (DLRL), v1.4

2.2.1.2.2 Implied IDL

This sub clause contains the implied IDL constructs for an application-defined class named Foo.

#include "dds_dlrl.idl"

valuetype Foo: DDS::ObjectRoot {
 // some attributes and methods
 };

/************************************
 * DERIVED CLASSES FOR Foo
 ************************************/

typedef sequence<Foo> FooSeq;

local interface FooListener: DDS::ObjectListener {
 void on_object_created(
 in Foo the_object);
 void on_object_modified (
 in Foo the_object);
 void on_object_deleted(
 in Foo the_object);
 };
typedef sequence <FooListener> FooListenerSeq;

local interface FooSelectionListener : DDS::SelectionListener {
 void on_object_in (
 in Foo the_object);
 void on_object_modified (
 in Foo the_object);
 void on_object_out (
 in Foo the_object);

 };

 local interface FooFilter: DDS::FilterCriterion {
 boolean check_object (
 in Foo an_object,
 in DDS::MembershipState membership_state);
 };

local interface FooQuery : DDS::QueryCriterion, FooFilter {
 };

local interface FooSelection : DDS::Selection {
 readonly attribute FooFilter filter;
 readonly attribute FooSeq members;
 readonly attribute FooSelectionListener listener;
DDS Data Local Reconstruction Layer (DLRL), v1.4 57

 FooSelectionListener set_listener (
 in FooSelectionListener listener);
 };
typedef sequence <FooSelection> FooSelectionSeq;

local interface FooHome : DDS::ObjectHome {
 readonly attribute FooSelectionSeqselections;
 readonly attribute FooListenerSeq listeners;

 void attach_listener (
 in FooListener listener,
 in boolean concerns_contained_objects);
 void detach_listener (
 in FooListener listener);

 FooSelection create_selection (
 in FooFilter filter,
 in boolean auto_refresh)
 raises (
 DDS::BadParameter);

 void delete_selection (
 in FooSelection a_selection)
 raises (
 DDS::PreconditionNotMet);
 Foo create_object(
 in DDS::CacheAccess access)
 raises (
 DDS::PreconditionNotMet);
 Foo create_unregistered_object (
 in DDS::CacheAccess access)
 raises (
 DDS::PreconditionNotMet);
 void register_object (
 in Foo unregistered_object)
 raises (
 DDS::AlreadyExisting,
 DDS::PreconditionNotMet);
 Foo find_object_in_access (
 in DDS::DLRLOid oid,
 in DDS::CacheAccess access)
 raises (
 DDS::NotFound);
 Foo find_object (
 in DDS::DLRLOid oid);
 FooSeq get_objects(
 in CacheBase source);
 FooSeq get_created_objects(
 in CacheBase source);
 FooSeq get_modified_objects(
 in CacheBase source);
58 DDS Data Local Reconstruction Layer (DLRL), v1.4

 FooSeq get_deleted_objects(
 in CacheBase source);

 };

/***
 * Derived class for relations to Foo
 ***/
valuetype FooList : DDS::List { //List<Foo>
 readonly attribute FooSeq values;
 void add(in Foo value);
 void put(in long key, in Foo value);
 Foo get(in long key);
};

valuetype FooSet : DDS::Set { // Set<Foo>
 FooSeq values ();
 FooSeq added_elements();
 FooSeq removed_elements();
 boolean contains(in Foo value);
 void add(in Foo value);
 void remove(in Foo value);
};

valuetype FooStrMap : DDS::StrMap { //StrMap<Foo>
 readonly attribute FooSeq values;
 void put(in string key, in Foo value);
 Foo get(in string key);
};

valuetype FooIntMap : DDS::IntMap { //IntMap<Foo>
 readonly attribute FooSeq values;
 void put(in long key, in Foo value);
 Foo get(in long key);
};

2.2.2 Generation Process

2.2.2.1 Principles

The generic generation process explained in 2.1.4.6 is instantiated as follows:
DDS Data Local Reconstruction Layer (DLRL), v1.4 59

Figure 2.7 - DLRL Generation Process (OMG IDL)

2.2.2.2 Model Description

As stated in 2.2.1, application classes are modeled by means of IDL value-types.

Support for specific typed collections is introduced by means of a void value declaration, which will be transformed in the
generation process by means of special model tags that are explained in the following sub clause.

2.2.2.3 Model Tags

Model tags are specified by means of XML declarations that must be compliant with the DTD listed in the following sub
clause; subsequent sub clauses give details on the constructs.

2.2.2.3.1 Model Tags DTD

The following is the DTD for expressing the Model Tags in XML:

<?xml version="1.0" encoding="ISO-8859-1"?>
<!ELEMENT Dlrl
 (enumDef | templateDef | associationDef | compoRelationDef| classMapping)*>
<!ATTLIST Dlrl name CDATA #IMPLIED>

<!ELEMENT enumDef (value)*>
<!ATTLIST enumDef name CDATA #REQUIRED>
<!ELEMENT value (#PCDATA)>

Model
Description

(IDL valuetypes)

DLRL Generator

Model
Tags

(XML)

Enhanced
Model

Description
(+ implied IDL)

DCPS
description

Dedicated
DLRL
Entities
(IDL)

Native
constructs

Native
constructs

Language mappings
60 DDS Data Local Reconstruction Layer (DLRL), v1.4

<!ELEMENT templateDef EMPTY>
<!ATTLIST templateDef name CDATA #REQUIRED
 pattern (List | StrMap | IntMap | Set) #REQUIRED
 itemType CDATA #REQUIRED>

<!ELEMENT associationDef (relation,relation)>
<!ELEMENT relation EMPTY>
<!ATTLIST relation class CDATA #REQUIRED
 attribute CDATA #REQUIRED>

<!ELEMENT compoRelationDef EMPTY>
<!ATTLIST compoRelationDef class CDATA #REQUIRED
 attribute CDATA #REQUIRED>

<!ELEMENT classMapping (mainTopic?,extensionTopic?,
(monoAttribute | multiAttribute | monoRelation | multiRelation | local)*)>
<!ATTLIST classMapping name CDATA #REQUIRED>

<!ELEMENT mainTopic (keyDescription)>
<!ATTLIST mainTopic name CDATA #REQUIRED
 typename CDATA #IMPLIED>

<!ELEMENT extensionTopic (keyDescription)>
<!ATTLIST extensionTopic name CDATA #REQUIRED
 typename CDATA #IMPLIED>

<!ELEMENT monoAttribute (placeTopic?,valueField+)>
<!ATTLIST monoAttribute name CDATA #REQUIRED>

<!ELEMENT multiAttribute (multiPlaceTopic,valueField+)>
<!ATTLIST multiAttribute name CDATA #REQUIRED>

<!ELEMENT monoRelation (placeTopic?,keyDescription)>
<!ATTLIST monoRelation name CDATA #REQUIRED>

<!ELEMENT multiRelation (multiPlaceTopic,keyDescription)>
<!ATTLIST multiRelation name CDATA #REQUIRED>

<!ELEMENT local EMPTY>
<!ATTLIST local name CDATA #REQUIRED>

<!ELEMENT placeTopic (keyDescription)>
<!ATTLIST placeTopic name CDATA #REQUIRED
 typename CDATA #IMPLIED>

<!ELEMENT multiPlaceTopic (keyDescription)>
<!ATTLIST multiPlaceTopic name CDATA #REQUIRED
 typename CDATA #IMPLIED
 indexField CDATA #IMPLIED>

<!ELEMENT keyDescription (keyField*)>
<!ATTLIST keyDescription content (FullOid | SimpleOid | NoOid) #REQUIRED>
DDS Data Local Reconstruction Layer (DLRL), v1.4 61

<!ELEMENT keyField (#PCDATA)>

<!ELEMENT valueField (#PCDATA)>

2.2.2.3.2 Details on the XML constructs

To allow a better understanding, in the following examples, the DCPS information (topics, fields) is in capital letters, while the
DLRL one is not.

2.2.2.3.2.1 Root

A DLRL Model Tags XML document, is a list of following XML tags:

• enumDef - to give explicit names to enumeration items, in case the default behavior (coding them by means of long
values) is not suitable.

• templateDef - to define a typed collection or a reference (giving its pattern as well as the type of its elements; it comes
in place of a statement such as List<Foo> which is not allowed in IDL.

• compoRelationDef - to state that a given relation is actually a composition.

• associationDef - to associate two relations, so that they make a full association (in the UML sense).

• classMapping - to define the mapping of a DLRL class to DCPS topics; it comprises a list of:

• monoAttribute - for mono-valued attributes

• multiAttribute - for multi-valued attributes

• monoRelation - for mono-valued relations

• multiRelation - for multi-valued relations

• local - to state that an attribute is not a DLRL attribute (and thus will not be considered by this generation process).

2.2.2.3.2.2 EnumDef

This tag contains an attribute name (scoped name of the IDL enumeration) and as many value sub-tags that needed to give
values.

Example:
 <enumDef name="WeekDays">
 <value>Monday</value>
 <value>Tuesday</value>
 <value>Wednesday</value>
 <value>Thursday</value>
 <value>Friday</value>
 <value>Saturday</value>
 <value>Sunday</value>
 </enumDef>

2.2.2.3.2.3 TemplateDef

This tag contains three attributes:

• name - gives the scoped name of the type.

• pattern - gives the construct pattern. The supported constructs are: List, StrMap, IntMap, and Set.
62 DDS Data Local Reconstruction Layer (DLRL), v1.4

• itemType - gives the type of each element in the collection.

Example:
<templateDef name="BarStrMap" pattern="StrMap" itemType="Bar"/>

This corresponds to a hypothetical typedef StrMap<Foo> FooStrMap;

2.2.2.3.2.4 AssociationDef

This tag puts in association two relations (that represent then the association ends of that association). It embeds two
mandatory relation sub-tags to designate the concerned relations. Each of these sub-tags has two mandatory attributes:

• class - contains the scoped name of the class.

• attribute - contains the name of the attribute that supports the relation inside the class.

Example:
<associationDef>
 <relation class="Track" attribute="a_radar"/>
 <relation class="Radar" attribute="tracks"/>
 </associationDef>

2.2.2.3.2.5 compoRelationDef

This tag states that the relation is actually a composition. It has two mandatory attributes:

• class - contains the scoped name of the class.

• attribute - contains the name of the attribute that supports the relation inside the class.

Example:
<compoRelationDef class"Radar" attribute="tracks"/>

2.2.2.3.2.6 ClassMapping

This tag contains one attribute name that gives the scoped name of the class and:

• an optional sub-tag mainTopic;

• an optional sub-tag extensionTopic;

• a list of attribute and/or relation descriptions.

Example:
<classMapping name="Track">

...
 </classMapping>

2.2.2.3.2.7 MainTopic

This tag gives the main DCPS Topic, to which that class refer. The main Topic is the topic that gives the existence of an object
(an object is declared as existing if, and only if, there is an instance in that Topic matching its key value).

It comprises one attribute (name) that gives the name of the Topic, one (optional) attribute (typename) that gives the name of
the type (if this attribute is not supplied the type name is considered to be equal to the topic name) and:

• a mandatory sub-tag keyDescription.
DDS Data Local Reconstruction Layer (DLRL), v1.4 63

Example:
<mainTopic name="TRACK-TOPIC" typename=”TrackType”>

<keyDescription
...
</keyDescription>

</mainTopic>

2.2.2.3.2.8 KeyDescription

This tag describes the key to be associated to several elements (mainTopic, extensionTopic, placeTopic, and
multiPlaceTopic).

It comprises an attribute that describes the content of the keyDescription, that can be:

• FullOid, in that case, the key description should contain as first keyField the name of the Topic field used to store the
class name and as second keyField the name of the Topic field used to store the OID itself.

• SimpleOid, in that case the key description should only contain one keyField to contain the OID itself.

• NoOid, in that case the case description should contain as many keyField that are needed to identify uniquely one
row in the related Topic and it is the responsibility of the DLRL implementation to manage the association between
those fields and the DLRLOid as perceived by the application developer.

It contains also as many elements keyField as needed.

Example:
<keyDescription content="SimpleOid">

<keyField>OID</keyField>
</keyDescription>

2.2.2.3.2.9 ExtensionTable

This tag gives the DCPS Topic that is used as an extension table for the attributes. It comprises the same attributes as
mainTopic.

2.2.2.3.2.10 MonoAttribute

This tag gives the mapping for a mono-valued attribute. It has:

• A mandatory attribute to give the name of the attribute.

• An optional sub-tag to give the DCPS Topic where it is placed (placeTopic). This sub-tag follows the same pattern as
mainTopic. In case it is not given, the extensionTopic, or if there is no extensionTopic, the mainTopic is used in place
of placeTopic.

• One or more valueField sub-tag(s) to give the name of the field(s) that will contain the value of that attribute.

Example:
<monoAttribute name="y">

<placeTopic name="Y_TOPIC">
<keyDescription content="SimpleOID">

<keyField>OID</keyField>
</keyDescription>

</placeTopic>
 <valueField>Y</valueField>

</monoAttribute>
64 DDS Data Local Reconstruction Layer (DLRL), v1.4

2.2.2.3.2.11 MultiAttribute

This tag gives the mapping for a multi-valued attribute. It has:

• A mandatory attribute to give the name of the attribute.

• A mandatory sub-tag to give the DCPS Topic where it is placed (multiPlaceTopic). This sub-tag follows the same
pattern as placeTopic, except it has a mandatory attribute in addition to state the field needed for storing the collection
index.

• One or more valueField sub-tag(s) to give the name of the field(s) that will contain the value of that attribute.

Example:
<multiAttribute name="comments">

<multiPlaceTopic name="COMMENTS-TOPIC"
<keyDescription content="FullOID">

<keyField>CLASS</keyField>
<keyField>OID</keyField>

</keyDescription>
</multiPlaceTopic>
<valueField>COMMENT</valueField>

</multiAttribute>

2.2.2.3.2.12 MonoRelation

This tag gives the mapping for a mono-valued attribute. It has:

• A mandatory attribute to give the name of the attribute.

• An optional sub-tag to give the Topic where it is placed (placeTopic – see 2.2.2.3.2.10).

• One keyDescription sub-tag to give the name of the field(s) that will contain the value of that relation (i.e., a place
holder to a reference to the pointed object).

Example:
<monoRelation name="a_radar">

<keyDescription content="SimpleOID">
<keyField>RADAR_OID</keyField>

</keyDescription>
</monoRelation>

2.2.2.3.2.13 MultiRelation

This tag gives the mapping for a multi-valued relation. It has:

• A mandatory attribute to give the name of the relation.

• A mandatory sub-tag to give the DCPS Topic where it is placed (multiPlaceTopic – see 2.2.2.3.2.11).

• One valueKey sub-tag (see 2.2.2.3.2.12).
DDS Data Local Reconstruction Layer (DLRL), v1.4 65

Example:
<multiRelation name="tracks">

<multiPlaceTopic name="RADARTRACKS-TOPIC"
<keyDescription content="SimpleOID">

<keyField>RADAR-OID</keyField>
</keyDescription>

<\multiPlaceTopic>
<keyDescription content="FullSimpleOID">

<keyField>TRACK-CLASS</keyField>
<keyField>TRACK-OID</keyField>

</keyDescription>
</multiRelation>

2.2.2.3.2.14 Local

This tag just indicates that the corresponding attribute (designated by its name) has to be ignored by the service.

Example:
 <local name="w"/>

2.2.3 Example

This sub clause contains a very simple example, to illustrate DLRL.

2.2.3.1 UML Model

The following UML diagram describes a very simple application model with three classes:

Figure 2.8 - UML Class Diagram of the Example

2.2.3.2 IDL Model Description

Based on this model, the model description (IDL provided by the application developer) could be:

Track

x : real

y : real

comments [*] : string

w : integer

Track3D

z : real

Radar

x : real

y : real

comments [*] : string

z : real

tracks a_radar

* 0..1

w : integer
66 DDS Data Local Reconstruction Layer (DLRL), v1.4

#include "dlrl.idl"

valuetype stringStrMap; // StrMap<string>
valuetype TrackList; // List<Track>
valuetype Radar;

valuetype Track : DLRL::ObjectRoot {
 public double x;
 public double y;
 public stringStrMap comments;
 public long w;
 public Radar a_radar;
 };

valuetype Track3D : Track {
 public double z;
 };

valuetype Radar : DLRL::ObjectRoot {
 public TrackList tracks;
 };

2.2.3.3 XML Model Tags

The following UML tags to drive the generation process could then be:

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE Dlrl SYSTEM "dlrl.dtd">
<Dlrl name="example">
 <templateDef name="StringStrMap" pattern="StrMap" itemType="string"/>
 <templateDef name="TrackList" pattern="List" itemType="Track"/>
 <classMapping name="Track">
 <mainTopic name="TRACK-TOPIC">
 <keyDescription content="FullOid">
 <keyField>CLASS</keyField>
 <keyField>OID</keyField>
 </keyDescription>
 </mainTopic>
 <monoAttribute name="x">
 <valueField>X</valueField>
 </monoAttribute>
 <monoAttribute name="y">
 <placeTopic name="Y_TOPIC">
 <keyDescription content="FullOid">
 <keyField>CLASS</keyField>
 <keyField>OID</keyField>
 </keyDescription>
 </placeTopic>
 <valueField>Y</valueField>
 </monoAttribute>
 <multiAttribute name="comments">
 <multiPlaceTopic name="COMMENTS-TOPIC" indexField="INDEX">
DDS Data Local Reconstruction Layer (DLRL), v1.4 67

 <keyDescription content="FullOid">
 <keyField>CLASS</keyField>
 <keyField>OID</keyField>
 </keyDescription>
 </multiPlaceTopic>
 <valueField>COMMENT</valueField>
 </multiAttribute>
 <monoRelation name="a_radar">
 <keyDescription content="SimpleOid">
 <keyField>RADAR_OID</keyField>
 </keyDescription>
 </monoRelation>
 <local name="w"/>
 </classMapping>
 <classMapping name="Track3D">
 <mainTopic name="TRACK-TOPIC">
 <keyDescription content="FullOid">
 <keyField>CLASS</keyField>
 <keyField>OID</keyField>
 </keyDescription>
 </mainTopic>
 <extensionTopic name="TRACK3D-TOPIC">
 <keyDescription content="FullOid">
 <keyField>CLASS</keyField>
 <keyField>OID</keyField>
 </keyDescription>
 </extensionTopic>
 <monoAttribute name="z">
 <valueField>Z</valueField>
 </monoAttribute>
 </classMapping>
 <classMapping name="Radar">
 <mainTopic name="RADAR-TOPIC">
 <keyDescription content="SimpleOid">
 <keyField>OID</keyField>
 </keyDescription>
 </mainTopic>
 <multiRelation name="tracks">
 <multiPlaceTopic name="RADARTRACKS-TOPIC" indexField="INDEX">
 <keyDescription content="SimpleOid">
 <keyField>RADAR-OID</keyField>
 </keyDescription>
 </multiPlaceTopic>
 <keyDescription content="FullOid">
 <keyField>TRACK-CLASS</keyField>
 <keyField>TRACK-OID</keyField>
 </keyDescription>
 </multiRelation>
 </classMapping>
 <associationDef>
 <relation class="Track" attribute="a_radar"/>
 <relation class="Radar" attribute="tracks"/>
 </associationDef>
</Dlrl>
68 DDS Data Local Reconstruction Layer (DLRL), v1.4

It should be noted that XML is not suitable for manual editing, therefore the file seems much more complicated than it actually
is. It seems much simpler when viewed through an XML editor, as the following picture illustrates.

Figure 2.9 - XML Editor Illustration

Also note that only the three templateDef, the associationDef, and the local16 tags are mandatory in all cases. The
ClassMapping tags are only required if a deviation is wanted from the default mapping described in 2.1.4.3. In case no
deviation is wanted from the default mapping, the XML description can be restricted to the following minimum:

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE Dlrl SYSTEM "dlrl.dtd">
<Dlrl name="Example">
 <templateDef name="stringStrMap" pattern="StrMap" itemType="string"/>
 <templateDef name="TrackList" pattern="List" itemType="Track"/>
 <classMapping name="Track">
<local name="w"/>
 </classMapping>
 <associationDef>
 <relation class="Track" attribute="a_radar"/>
 <relation class="Radar" attribute="tracks"/>
 </associationDef>
</Dlrl>

16.To state that Track::w is not a DLRL attribute.
DDS Data Local Reconstruction Layer (DLRL), v1.4 69

A following step could be to define UML ‘tags’17 and to generate those files based on the UML model. However, this is far
beyond the scope of this specification.

2.2.3.4 Underlying DCPS Data Model

This mapping description assumes that the underlying DCPS data model is made of five topics with their fields as described in
the following tables:

17.This specification does not address this point and therefore does not say anything about how this should/could be represented in
UML. The interface between the modeling phase and the coding phase has just been designed as simple as possible, so that it
would be very easy to fill the gap.

TRACK-TOPIC Topic to store all Track objects (including the derived classes) –
as well as the embedded attributes/relations defined on Track.

CLASS Field to store the class part of the object reference.

OID Field to store the oid part of the object reference.

X Field to store the value of the attribute x.

RADAR-OID Field to store the relation a_radar.

Y-TOPIC Topic to store Track::y, outside Track’s main topic.

CLASS Field to store the class part of the object reference.

OID Field to store the oid part of the object reference.

Y Field to store the value of the attribute y.

COMMENTS-TOPIC Topic to store Track::comments (required as it is a collection).

CLASS Field to store the class part of the owning object reference (here
a Track).

OID Field to store the oid part of the owning object reference (here a
Track).

INDEX Field to store the index part in the collection

COMMENT Field to store one element of the attribute comments.

TRACK3D-TOPIC Topic to store the embedded attributes/relations added on
Track3D (here only z).

CLASS Field to store the class part of the object reference.

OID Field to store the oid part of the object reference.

Z Field to store the value of the attribute z.
70 DDS Data Local Reconstruction Layer (DLRL), v1.4

Note that references to Track objects (including derived Track3D) must provision a field for the class indication, while
references to Radar objects do not, for the Radar class has no subclasses and does not share its main Topic.

2.2.3.5 Code Example

The following text is a very simple, non fully running, C++ example just to give the flavor of how objects can be created,
modified, and then published.

DDS::DomainParticipant_var dp;
DLRL::CacheFactory_var cf;

/*
 * Init phase
 */
DLRL::Cache_var c = cf->create_cache (WRITE_ONLY, dp);
RadarHome_var rh;
TrackHome_var th;
Track3DHome_var t3dh;

c->register_home (rh);
c->register_home (th);
c->register_home (t3dh);
c->register_all_for_pubsub();
// some QoS settings if needed
c->enable_all_for_pubsub();

/*
 * Creation, modifications and publication
 */
Radar_var r1 = rh->create_object(c);
Track_var t1 = th->create-object (c);
Track3D_var t2 = t3dh->create-object (c);
t1->w(12); // setting of a pure local attribute
t1->x(1000.0); // some DLRL attributes settings
t1->y(2000.0);
t2->a_radar->put(r1);// modifies r1->tracks accordingly
t2->x(1000.0);
t2->y(2000.0);

RADARTRACKS-TOPIC Topic to store Radar::tracks (required as it is a collection).

RADAR-OID Field to store the reference to the owning object (here a Radar).

INDEX Field to store index in the collection.

TRACK-CLASS Field to store the class part of a reference to an item in the
collection (here a Track).

TRACK-OID Field to store the oid part of a reference to an item in the
collection (here a Track).
DDS Data Local Reconstruction Layer (DLRL), v1.4 71

t2->z(3000.0);
t2->a_radar->put(r1);// modifies r1->tracks accordingly
c->write(); // all modifications are published
};
72 DDS Data Local Reconstruction Layer (DLRL), v1.4

Annex A - Compliance Points

This specification has a single mandatory compliance profile, which includes the complete specification.

Compliance with the DLRL specification is equivalent to complying with the “Object Model Profile” of the Data Distribution
Service Specification, version 1.2.
DDS Data Local Reconstruction Layer (DLRL), v1.4 73

74 DDS Data Local Reconstruction Layer (DLRL), v1.4

Annex B - Syntax for DLRL Queries and Filters

The syntax, defined with the BNF-grammar below, is used to express a filter or a query expression in the DLRL constructs:

• The filter in the FilterCriterion (see 2.1.6.3.11).

• The query in the QueryCriterion (see 2.1.6.3.12).

The following notational conventions are made:

• The NonTerminals are typeset in italics.

• The’Terminals’ are quoted and typeset in a fixed width font.

• The TOKENS are typeset in small caps.

• The notation (element // ‘,’) represents a non-empty comma-separated list of elements.

Query grammar in BNF

.
Condition ::= Predicate

| Condition ‘AND’ Condition
| Condition ‘OR’ Condition
| ‘NOT’ Condition
| ‘(’ Condition ‘)’
.

Predicate ::= ComparisonPredicate
| BetweenPredicate
.

ComparisonPredicate ::= FIELDNAME RelOp Parameter
| Parameter RelOp FIELDNAME
| FIELDNAME RelOp FIELDNAME
.

BetweenPredicate ::= FIELDNAME ‘BETWEEN’ Range
| FIELDNAME ‘NOT BETWEEN’ Range
.

RelOp ::= ‘=’ | ‘>’ | ‘>=’ | ‘<’ | ‘<=’ | ‘<>’
.

Range ::= Parameter ‘AND’ Parameter
.

Parameter ::= INTEGERVALUE
| CHARVALUE
| FLOATVALUE
| STRING
| ENUMERATEDVALUE
| PARAMETER
.

Token expression

The syntax and meaning of the tokens used in the SQL grammar is described as follows:
DDS Data Local Reconstruction Layer (DLRL), v1.4 75

• FIELDNAME - A fieldname is a reference to a field in the data-structure. The dot ‘.’ is used to navigate through
nested structures. The number of dots that may be used in a FIELD-NAME is unlimited. The
‘[INTEGERVALUE|STRING]’ construct is used to navigate in a collection. The FIELDNAME can refer to fields at
any depth in the data structure. The names of the field are those specified in the IDL definition of the corresponding
structure, which may or may not match the field-names that appear on the language-specific (e.g., C/C++, Java)
mapping of the structure.

• INTEGERVALUE - Any series of digits, optionally preceded by a plus or minus sign, representing a decimal integer
value within the range of the system. A hexadecimal number is preceded by 0x and must be a valid hexadecimal
expression.

• CHARVALUE - A single character enclosed between single quotes.

• FLOATVALUE - Any series of digits, optionally preceded by a plus or minus sign and optionally including a floating
point (‘.’). A power-of-ten expression may be postfixed, which has the syntax en, where n is a number, optionally
preceded by a plus or minus sign.

• STRING - Any series of characters encapsulated in single quotes, except a new-line character or a right quote. A string
starts with a left or right quote, but ends with a right quote.

• ENUMERATEDVALUE - An enumerated value is a reference to a value declared within an enumeration. Enumerated
values consist of the name of the enumeration label enclosed in single quotes. The name used for the enumeration label
must correspond to the label names specified in the IDL definition of the enumeration.

• PARAMETER - A parameter is of the form %n, where n represents a natural number (zero included) smaller than 100.

It refers to the n + 1 th argument in the given context.
76 DDS Data Local Reconstruction Layer (DLRL), v1.4

	Preface
	1 Scope
	1.1 Introduction
	1.2 Purpose

	2 Data Local Reconstruction Layer (DLRL)
	2.1 Platform Independent Model (PIM)
	2.1.1 Overview and Design Rationale
	2.1.2 DLRL Description
	2.1.3 What Can Be Modeled with DLRL
	2.1.4 Structural Mapping
	2.1.5 Operational Mapping
	2.1.6 Functional Mapping

	2.2 OMG IDL Platform Specific Model (PSM)
	2.2.1 Run-time Entities
	2.2.2 Generation Process
	2.2.3 Example

	Annex A - Compliance Points
	Annex B - Syntax for DLRL Queries and Filters

