
An OMG® DDS® Consolidated JSON Syntax Publication

DDS Consolidated JSON Syntax

Version 1.0

OMG Document Number

Normative Reference:

Release Date:

formal/2020-12-01

 http s ://www.omg.org/spec/ DDS- JSON

March 2021

Normative Machine Consumable Files:

http s ://www.omg.org/spec/ DDS-JSON / 20190601 /dds-json_type s .schema.json
http s ://www.omg.org/spec/ DDS-JSON / 20190601 /dds-json_qos.schema.json
http s ://www.omg.org/spec/ DDS-JSON / 20190601 /dds-json_domain s .schema.json
https://www.omg.org/spec/DDS-JSON/ 20190601 /dds-json_domainparticipants.schema.json
http s ://www.omg.org/spec/ DDS-JSON / 20190601 /dds-json_application s .schema.json
https://www.omg.org/spec/DDS-JSON/ 20190601 /dds-json_ data_samples .schema.json
http s ://www.omg.org/spec/ DDS-JSON / 20190601 / dds-json_dds_system.schema.json

Informative Machine Consumable Files:

http s ://www.omg.org/spec/ DDS-JSON /201 90 6 01 /dds-json_types_example.json
http s ://www.omg.org/spec/ DDS-JSON /201 90 6 01 /dds-json_qos_example.json
http s ://www.omg.org/spec/ DDS-JSON /201 90 6 01 /dds-json_domains_example.jso n
http s ://www.omg.org/spec/ DDS-JSON /201 90 6 01 /dds-json_domainparticipants_example.json
http s ://www.omg.org/spec/ DDS-JSON /201 90 6 01 /dds-json_applications_example.json
https://www.omg.org/spec/DDS-JSON/20190 6 01/dds-json_ data_samples_example .json
http s ://www.omg.org/spec/ DDS-JSON /201 90 6 01 / dds-json_dds_system_example.json

https://www.omg.org/spec/DDS-JSON/20190601/dds-json_dds_system_example.json
https://www.omg.org/spec/DDS-JSON/20190601/dds-json_dds_system_example.json
https://www.omg.org/spec/DDS-JSON/20190601/dds-json_dds_system_example.json
https://www.omg.org/spec/DDS-JSON/20190601/dds-json_dds_system_example.json
https://www.omg.org/spec/DDS-JSON/20190601/dds-json_dds_system_example.json
https://www.omg.org/spec/DDS-JSON/20190601/dds-json_dds_system_example.json
https://www.omg.org/spec/DDS-JSON/20190601/dds-json_dds_system_example.json
https://www.omg.org/spec/DDS-JSON/20190601/dds-json_dds_system_example.json
https://www.omg.org/spec/DDS-JSON/20190601/dds-json_dds_system_example.json
https://www.omg.org/spec/DDS-JSON/20190601/dds-json_dds_system_example.json
https://www.omg.org/spec/DDS-JSON/20190601/dds-json_data_samples_example.json
https://www.omg.org/spec/DDS-JSON/20190601/dds-json_data_samples_example.json
https://www.omg.org/spec/DDS-JSON/20190601/dds-json_data_samples_example.json
https://www.omg.org/spec/DDS-JSON/20190601/dds-json_data_samples_example.json
https://www.omg.org/spec/DDS-JSON/20190601/dds-json_data_samples_example.json
https://www.omg.org/spec/DDS-JSON/20190601/dds-json_applications_example.json
https://www.omg.org/spec/DDS-JSON/20190601/dds-json_applications_example.json
https://www.omg.org/spec/DDS-JSON/20190601/dds-json_applications_example.json
https://www.omg.org/spec/DDS-JSON/20190601/dds-json_applications_example.json
https://www.omg.org/spec/DDS-JSON/20190601/dds-json_applications_example.json
https://www.omg.org/spec/DDS-JSON/20190601/dds-json_applications_example.json
https://www.omg.org/spec/DDS-JSON/20190601/dds-json_applications_example.json
https://www.omg.org/spec/DDS-JSON/20190601/dds-json_applications_example.json
https://www.omg.org/spec/DDS-JSON/20190601/dds-json_applications_example.json
https://www.omg.org/spec/DDS-JSON/20190601/dds-json_domainparticipants_example.json
https://www.omg.org/spec/DDS-JSON/20190601/dds-json_domainparticipants_example.json
https://www.omg.org/spec/DDS-JSON/20190601/dds-json_domainparticipants_example.json
https://www.omg.org/spec/DDS-JSON/20190601/dds-json_domainparticipants_example.json
https://www.omg.org/spec/DDS-JSON/20190601/dds-json_domainparticipants_example.json
https://www.omg.org/spec/DDS-JSON/20190601/dds-json_domainparticipants_example.json
https://www.omg.org/spec/DDS-JSON/20190601/dds-json_domainparticipants_example.json
https://www.omg.org/spec/DDS-JSON/20190601/dds-json_domainparticipants_example.json
https://www.omg.org/spec/DDS-JSON/20190601/dds-json_domainparticipants_example.json
https://www.omg.org/spec/DDS-JSON/20190601/dds-json_domains_example.json
https://www.omg.org/spec/DDS-JSON/20190601/dds-json_domains_example.json
https://www.omg.org/spec/DDS-JSON/20190601/dds-json_domains_example.json
https://www.omg.org/spec/DDS-JSON/20190601/dds-json_domains_example.json
https://www.omg.org/spec/DDS-JSON/20190601/dds-json_domains_example.json
https://www.omg.org/spec/DDS-JSON/20190601/dds-json_domains_example.json
https://www.omg.org/spec/DDS-JSON/20190601/dds-json_domains_example.json
https://www.omg.org/spec/DDS-JSON/20190601/dds-json_domains_example.json
https://www.omg.org/spec/DDS-JSON/20190601/dds-json_domains_example.json
https://www.omg.org/spec/DDS-JSON/20190601/dds-json_domains_example.json
https://www.omg.org/spec/DDS-JSON/20190601/dds-json_qos_example.json
https://www.omg.org/spec/DDS-JSON/20190601/dds-json_qos_example.json
https://www.omg.org/spec/DDS-JSON/20190601/dds-json_qos_example.json
https://www.omg.org/spec/DDS-JSON/20190601/dds-json_qos_example.json
https://www.omg.org/spec/DDS-JSON/20190601/dds-json_qos_example.json
https://www.omg.org/spec/DDS-JSON/20190601/dds-json_qos_example.json
https://www.omg.org/spec/DDS-JSON/20190601/dds-json_qos_example.json
https://www.omg.org/spec/DDS-JSON/20190601/dds-json_qos_example.json
https://www.omg.org/spec/DDS-JSON/20190601/dds-json_qos_example.json
https://www.omg.org/spec/DDS-JSON/20190601/dds-json_types_example.json
https://www.omg.org/spec/DDS-JSON/20190601/dds-json_types_example.json
https://www.omg.org/spec/DDS-JSON/20190601/dds-json_types_example.json
https://www.omg.org/spec/DDS-JSON/20190601/dds-json_types_example.json
https://www.omg.org/spec/DDS-JSON/20190601/dds-json_types_example.json
https://www.omg.org/spec/DDS-JSON/20190601/dds-json_types_example.json
https://www.omg.org/spec/DDS-JSON/20190601/dds-json_types_example.json
https://www.omg.org/spec/DDS-JSON/20190601/dds-json_types_example.json
https://www.omg.org/spec/DDS-JSON/20190601/dds-json_types_example.json
https://www.omg.org/spec/DDS-JSON/20190601/dds-json_dds_system.schema.json
https://www.omg.org/spec/DDS-JSON/20190601/dds-json_dds_system.schema.json
https://www.omg.org/spec/DDS-JSON/20190601/dds-json_dds_system.schema.json
https://www.omg.org/spec/DDS-JSON/20190601/dds-json_dds_system.schema.json
https://www.omg.org/spec/DDS-JSON/20190601/dds-json_dds_system.schema.json
https://www.omg.org/spec/DDS-JSON/20190601/dds-json_dds_system.schema.json
https://www.omg.org/spec/DDS-JSON/20190601/dds-json_dds_system.schema.json
https://www.omg.org/spec/DDS-JSON/20190601/dds-json_dds_system.schema.json
https://www.omg.org/spec/DDS-JSON/20190601/dds-json_data_samples.schema.json
https://www.omg.org/spec/DDS-JSON/20190601/dds-json_data_samples.schema.json
https://www.omg.org/spec/DDS-JSON/20190601/dds-json_data_samples.schema.json
https://www.omg.org/spec/DDS-JSON/20190601/dds-json_data_samples.schema.json
https://www.omg.org/spec/DDS-JSON/20190601/dds-json_data_samples.schema.json
https://www.omg.org/spec/DDS-JSON/20190601/dds-json_applications.schema.json
https://www.omg.org/spec/DDS-JSON/20190601/dds-json_applications.schema.json
https://www.omg.org/spec/DDS-JSON/20190601/dds-json_applications.schema.json
https://www.omg.org/spec/DDS-JSON/20190601/dds-json_applications.schema.json
https://www.omg.org/spec/DDS-JSON/20190601/dds-json_applications.schema.json
https://www.omg.org/spec/DDS-JSON/20190601/dds-json_applications.schema.json
https://www.omg.org/spec/DDS-JSON/20190601/dds-json_applications.schema.json
https://www.omg.org/spec/DDS-JSON/20190601/dds-json_applications.schema.json
https://www.omg.org/spec/DDS-JSON/20190601/dds-json_applications.schema.json
https://www.omg.org/spec/DDS-JSON/20190601/dds-json_domainparticipants.schema.json
https://www.omg.org/spec/DDS-JSON/20190601/dds-json_domainparticipants.schema.json
https://www.omg.org/spec/DDS-JSON/20190601/dds-json_domainparticipants.schema.json
https://www.omg.org/spec/DDS-JSON/20190601/dds-json_domains.schema.json
https://www.omg.org/spec/DDS-JSON/20190601/dds-json_domains.schema.json
https://www.omg.org/spec/DDS-JSON/20190601/dds-json_domains.schema.json
https://www.omg.org/spec/DDS-JSON/20190601/dds-json_domains.schema.json
https://www.omg.org/spec/DDS-JSON/20190601/dds-json_domains.schema.json
https://www.omg.org/spec/DDS-JSON/20190601/dds-json_domains.schema.json
https://www.omg.org/spec/DDS-JSON/20190601/dds-json_domains.schema.json
https://www.omg.org/spec/DDS-JSON/20190601/dds-json_domains.schema.json
https://www.omg.org/spec/DDS-JSON/20190601/dds-json_domains.schema.json
https://www.omg.org/spec/DDS-JSON/20190601/dds-json_qos.schema.json
https://www.omg.org/spec/DDS-JSON/20190601/dds-json_qos.schema.json
https://www.omg.org/spec/DDS-JSON/20190601/dds-json_qos.schema.json
https://www.omg.org/spec/DDS-JSON/20190601/dds-json_qos.schema.json
https://www.omg.org/spec/DDS-JSON/20190601/dds-json_qos.schema.json
https://www.omg.org/spec/DDS-JSON/20190601/dds-json_qos.schema.json
https://www.omg.org/spec/DDS-JSON/20190601/dds-json_qos.schema.json
https://www.omg.org/spec/DDS-JSON/20190601/dds-json_types.schema.json
https://www.omg.org/spec/DDS-JSON/20190601/dds-json_types.schema.json
https://www.omg.org/spec/DDS-JSON/20190601/dds-json_types.schema.json
https://www.omg.org/spec/DDS-JSON/20190601/dds-json_types.schema.json
https://www.omg.org/spec/DDS-JSON/20190601/dds-json_types.schema.json
https://www.omg.org/spec/DDS-JSON/20190601/dds-json_types.schema.json
https://www.omg.org/spec/DDS-JSON/20190601/dds-json_types.schema.json
https://www.omg.org/spec/DDS-JSON/20190601/dds-json_types.schema.json
https://www.omg.org/spec/DDS-JSON/20190601/dds-json_types.schema.json
https://www.omg.org/spec/DDS-JSON
https://www.omg.org/spec/DDS-JSON
https://www.omg.org/spec/DDS-JSON
https://www.omg.org/spec/DDS-JSON
https://www.omg.org/spec/DDS-JSON

Copyright © 2019-2020, Object Management Group, Inc.
Copyright © 2019-2020, Real-Time Innovations, Inc.
Copyright © 2019-2020, ADLINK Technology Ltd.
Copyright © 2019-2020, Kongsberg Defence & Aerospace
Copyright © 2019-2020, Jackrabbit Consulting, Inc.
Copyright © 2019-2020, Micro Focus
Copyright © 2019-2020, Object Computing, Inc.
Copyright © 2019-2020, Twin Oaks Computing, Inc.

USE OF SPECIFICATION – TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms,
conditions and notices set forth below. This document does not represent a commitment to implement any
portion of this specification in any company's products. The information contained in this document is subject
to change without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive,
royalty-free, paid up, worldwide license to copy and distribute this document and to modify this document and
distribute copies of the modified version. Each of the copyright holders listed above has agreed that no person
shall be deemed to have infringed the copyright in the included material of any such copyright holder by reason
of having used the specification set forth herein or having conformed any computer software to the
specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant
you a fully-paid up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to
sublicense), to use this specification to create and distribute software and special purpose specifications that are
based upon this specification, and to use, copy, and distribute this specification as provided under the Copyright
Act; provided that: (1) both the copyright notice identified above and this permission notice appear on any
copies of this specification; (2) the use of the specifications is for informational purposes and will not be copied
or posted on any network computer or broadcast in any media and will not be otherwise resold or transferred for
commercial purposes; and (3) no modifications are made to this specification. This limited permission
automatically terminates without notice if you breach any of these terms or conditions. Upon termination, you
will destroy immediately any copies of the specifications in your possession or control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications
may require use of an invention covered by patent rights. OMG shall not be responsible for identifying patents
for which a license may be required by any OMG specification, or for conducting legal inquiries into the legal
validity or scope of those patents that are brought to its attention. OMG specifications are prospective and
advisory only. Prospective users are responsible for protecting themselves against liability for infringement of
patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications
regulations and statutes. This document contains information which is protected by copyright. All Rights
Reserved. No part of this work covered by copyright herein may be reproduced or used in any form or by any
means--graphic, electronic, or mechanical, including photocopying, recording, taping, or information storage
and retrieval systems--without permission of the copyright owner.

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY
CONTAIN ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES
LISTED ABOVE MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO
THIS PUBLICATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR
OWNERSHIP, IMPLIED WARRANTY OF MERCHANTABILITY OR WARRANTY OF FITNESS FOR A
PARTICULAR PURPOSE OR USE. IN NO EVENT SHALL THE OBJECT MANAGEMENT GROUP OR
ANY OF THE COMPANIES LISTED ABOVE BE LIABLE FOR ERRORS CONTAINED HEREIN OR FOR
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, CONSEQUENTIAL, RELIANCE OR COVER DAMAGES,
INCLUDING LOSS OF PROFITS, REVENUE, DATA OR USE, INCURRED BY ANY USER OR ANY
THIRD PARTY IN CONNECTION WITH THE FURNISHING, PERFORMANCE, OR USE OF THIS
MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you.
This disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph
(c) (1) (ii) of The Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in
subparagraph (c)(1) and (2) of the Commercial Computer Software - Restricted Rights clauses at 48 C.F.R.
52.227-19 or as specified in 48 C.F.R. 227-7202-2 of the DoD F.A.R. Supplement and its successors, or as
specified in 48 C.F.R. 12.212 of the Federal Acquisition Regulations and its successors, as applicable. The
specification copyright owners are as indicated above and may be contacted through the Object Management
Group, 9C Medway Road, PMB 274, Milford, MA 01757, U.S.A.

TRADEMARKS

CORBA®, CORBA logos®, FIBO®, Financial Industry Business Ontology®, FINANCIAL INSTRUMENT
GLOBAL IDENTIFIER®, IIOP®, IMM®, Model Driven Architecture®, MDA®, Object Management
Group®, OMG®, OMG Logo®, SoaML®, SOAML®, SysML®, UAF®, Unified Modeling Language®,
UML®, UML Cube Logo®, VSIPL®, and XMI® are registered trademarks of the Object Management Group,
Inc.

For a complete list of trademarks, see: http s ://www.omg.org/legal/tm_list.htm . All other products or company
names mentioned are used for identification purposes only, and may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its
designees) is and shall at all times be the sole entity that may authorize developers, suppliers and sellers of
computer software to use certification marks, trademarks or other special designations to indicate compliance
with these materials.

Software developed under the terms of this license may claim compliance or conformance with this
specification if and only if the software compliance is of a nature fully matching the applicable compliance
points as stated in the specification. Software developed only partially matching the applicable compliance
points may claim only that the software was based on this specification, but may not claim compliance or
conformance with this specification. In the event that testing suites are implemented or approved by Object
Management Group, Inc., software developed using this specification may claim compliance or conformance
with the specification only if the software satisfactorily completes the testing suites.

http://www.omg.org/legal/tm_list.htm
http://www.omg.org/legal/tm_list.htm
http://www.omg.org/legal/tm_list.htm

OMG’s Issue Reporting Procedure
All OMG specifications are subject to continuous review and improvement. As part of this process we
encourage readers to report any ambiguities, inconsistencies, or inaccuracies they may find by completing the
Issue Reporting Form listed on the main web page http s ://www.omg.org , under Documents, Report a Bug/Issue.

http://www.omg.org/
http://www.omg.org/
http://www.omg.org/

Table of Contents
1 Scope..1

2 Conformance Criteria...1

3 Normative References..1

4 Terms and Definitions...2

5 Symbols..2

6 Additional Information...2
6.1 Changes to Adopted OMG Specifications...2
6.2 Acknowledgments...2

7 JSON Syntax for DDS Resources..5
7.1 JSON Representation Syntax..5

7.1.1 General Rules... 5
7.1.2 JSON Schema Definition Files...5

7.2 JSON Representation of Resources Defined in the DDS IDL PSM...............................5
7.2.1 JSON Representation of Enumeration Types...5
7.2.2 JSON Representation of Primitive Constants...6
7.2.3 JSON Representation of Structure Types...7
7.2.4 JSON Representation of Arrays and Sequences..8
7.2.5 JSON Representation of Duration..9

7.3 Building Blocks..10
7.3.1 Overview... 10
7.3.2 Building Block QoS...11
7.3.3 Building Block Types...14
7.3.4 Building Block Domains..14
7.3.5 Building Block DomainParticipants...16
7.3.6 Building Block Applications...18
7.3.7 Building Block Data Samples..19

8 Building Block Sets...29
8.1 DDS System Block Set..29

Table of Figures
 Figure 7.1: Relationship between building blocks...11

Table of Tables
Table 5.1: Acronyms.. 2
Table 7.1: JSON Representation of Primitive Types..25

http://www.omg.org/spec
http://www.omg.org/spec
http://www.omg.org/spec

Preface

OMG

Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer
industry standards consortium that produces and maintains computer industry specifications for interoperable,
portable, and reusable enterprise applications in distributed, heterogeneous environments. Membership includes
Information Technology vendors, end users, government agencies, and academia.

OMG member companies write, adopt, and maintain its specifications following a mature, open process.
OMG’s specifications implement the Model Driven Architecture® (MDA®), maximizing ROI through a full-
lifecycle approach to enterprise integration that covers multiple operating systems, programming languages,
middleware and networking infrastructures, and software development environments. OMG’s specifications
include: UML® (Unified Modeling Language®); CORBA® (Common Object Request Broker Architecture);
CWM™ (Common Warehouse Metamodel™); and industry-specific standards for dozens of vertical markets.

More information on the OMG is available at https://www.omg.org/.

OMG Specifications

As noted, OMG specifications address middleware, modeling and vertical domain frameworks. All OMG
Specifications are available from the OMG website at:

http s ://www.omg.org/spec

All of OMG’s formal specifications may be downloaded without charge from our website. (Products
implementing OMG specifications are available from individual suppliers.) Copies of specifications, available
in PostScript and PDF format, may be obtained from the Specifications Catalog cited above or by contacting the
Object Management Group, Inc. at:

OMG Headquarters
9C Medway Road, PMB 274
Medway, MA 01757
USA

Tel: +1-781-444-0404
Fax: +1-781-444-0320
Email: pubs@omg.org

Certain OMG specifications are also available as ISO standards. Please consult http://www.iso.org

Issues
The reader is encouraged to report any technical or editing issues/problems with this specification by
completing the Issue Reporting Form listed on the main web page https://www.omg.org, under Documents,
Report a Bug/Issue.

x DDS Consolidated JSON Syntax 1.0

1 Scope
JavaScript Object Notation (JSON) is a lightweight language-independent text format to represent structured data.
Originally inspired by the object literals of JavaScript, JSON has become an extremely popular mechanism for data
interchange; information storage, with built-in support in many database management systems; and structured
document definition.

This specification defines a consolidated JSON syntax to represent DDS resources and data. That is, syntax to represent
the DDS Type System, DDS QoS Policies, DDS Entities and Applications, and DDS Data Samples using JSON. The
syntax defined in this specification can be used as an alternative to the existing XML syntax to represent DDS resources
and data defined in [DDS-XML].

2 Conformance Criteria
This document contains no independent conformance points. Rather, it defines JSON schema files [JSON-SCHEMA]
to describe DDS resources that can be referenced by other specifications, leaving the definition of conformance criteria
to the referencing specifications. Nevertheless, the general organization of the clauses (by means of atomic building
blocks and building block sets that group them) is intended to ease conformance description and scoping.

Users of this standard shall follow these rules:

1. Future specifications that describe DDS resources in JSON shall reference this specification or a future
revision thereof.

2. Future revisions of current specifications that describe DDS resources in JSON should reference this
specification or a future revision thereof. Reference to this specification shall result in a selection of building
blocks where all selected building blocks shall be supported entirely.

3 Normative References
The following normative documents contain provisions which, through reference in this text, constitute provisions of
this specification. For dated references, subsequent amendments to, or revisions of, any of these publications do not
apply.

[DDS] OMG, Data Distribution Service, Version 1.4, https://www.omg.org/spec/DDS

[DDS-XML] OMG, DDS Consolidated XML Syntax, Version 1.0, https://www.omg.org/spec/DDS-XML

[DDS-XTYPES] OMG, Extensible And Dynamic Topic Types For DDS, Version 1.3,
https://www.omg.org/spec/DDS-XTypes

[ECMA-404] Ecma International, The JSON Data Interchange Syntax, https://www.ecma-
international.org/publications/files/ECMA-ST/ECMA-404.pdf

[JSON-SCHEMA] A. Wright, H. Andrews, JSON Schema: A Media Type for Describing JSON
Documents, https://tools.ietf.org/html/draft-handrews-json-schema-01

[RFC-4648] IETF, The Base16, Base32, and Base64 Data Encodings, https://tools.ietf.org/html/rfc4648

[RFC-7493] IETF, The I-JSON Message Format, https://tools.ietf.org/html/rfc7493

[RFC-8259] IETF, The JavaScript Object Notation (JSON) Data Interchange Format,
https://tools.ietf.org/html/rfc8259

DDS Consolidated JSON Syntax 1.0 1

4 Terms and Definitions
For the purposes of this specification, the following terms and definitions apply.

Building Block

A building block is a consistent set of JSON schemas that together can be used to describe the syntax of JSON
documents that represent a set of set of DDS resources or data. Building blocks are atomic, which means that if selected
they must be totally supported.

Building blocks are described in Chapter 7, JSON Syntax for DDS Resources.

Building Block Set

A building block set is a selection of building blocks that determines a specific JSON schema usage.

Building block sets are described in Chapter 8, Building Block Sets.

5 Symbols
The acronyms used in this specification are show in Table 5.1.

Table 5.1: Acronyms

Acronym Meaning

DDS Data Distribution Service

JSON JavaScript Object Notation

PIM Platform-Independent Model

PSM Platform-Specific Model

QoS Quality of Service

XML Extensible Markup Language

XTypes eXtensible and dynamic topic Types (for DDS)

6 Additional Information

6.1 Changes to Adopted OMG Specifications
This specification does not change any adopted OMG specification.

6.2 Acknowledgments
The following companies submitted this specification:

• Real-Time Innovations, Inc.

2 DDS Consolidated JSON Syntax 1.0

The following companies supported this specification:

• ADLINK Technology Ltd.

• Kongsberg Defence & Aerospace

• Jackrabbit Consulting

• MITRE

• Object Computing, Inc.

• Twin Oaks Computing, Inc.

DDS Consolidated JSON Syntax 1.0 3

This page intentionally left blank.

4 DDS Consolidated JSON Syntax 1.0

7 JSON Syntax for DDS Resources

7.1 JSON Representation Syntax

7.1.1 General Rules

The JSON representation of DDS-related resources shall follow these syntax rules:

• It shall be a well-formed JSON document according to the grammar rules defined in Clause 2 of [RFC-8259]
and the conformance rules defined in Clause 2 of [ECMA-404].

• It shall be compliant with the I-JSON profile defined in [RFC-7493].

7.1.2 JSON Schema Definition Files

This specification makes use of the JSON Schema vocabulary specified in [JSON-SCHEMA] to represent the syntax of
the different building blocks that define DDS resources. In particular, each building block provides a normative JSON
schema file that defines its syntax (see Clause 7.3.1).

7.2 JSON Representation of Resources Defined in the DDS IDL PSM
The JSON representation of resources that correspond to data types defined in the DDS IDL PSM [DDS] is obtained by
performing a one-to-one mapping of the corresponding IDL type according to the rules specified in this clause.

7.2.1 JSON Representation of Enumeration Types

IDL Enumerations are represented in JSON using string types that may only be assigned the string representation of the
corresponding enumeration literals.

7.2.1.1 Example (Non-normative)

For example, HistoryQosPolicyKind is defined in the DDS IDL PSM as:

enum HistoryQosPolicyKind {
 KEEP_LAST_HISTORY_QOS,
 KEEP_ALL_HISTORY_QOS
};

The equivalent representation in JSON is defined by the JSON schema below:
{
 "$schema": "http://json-schema.org/draft-07/schema#",
 "definitions": {
 ...
 "HistoryQosPolicyKind": {
 "enum": [
 "KEEP_LAST_HISTORY_QOS",
 "KEEP_ALL_HISTORY_QOS"
],
 "type": "string",
 "default": "KEEP_LAST_HISTORY_QOS"
 },
 ...
 "properties": {
 "kind": {
 "$ref": "#/definitions/HistoryQosPolicyKind"
 }
 }
 ...
 },
 ...

DDS Consolidated JSON Syntax 1.0 5

}

An example JSON resource representation satisfying this syntax would be:
{
 "kind": "KEEP_ALL_HISTORY_QOS"
}

Conversely, the following JSON resource representation would not satisfy the syntax:
{
 "kind": "A_STRING_VALUE"
}

7.2.2 JSON Representation of Primitive Constants

The DDS IDL PSM defines constant values of type long and string. These are intended as predefined values that can
be used to initialize members of certain structured types.

Constant definitions appear in JSON schemas as integer or string types that provide custom syntax allowing an
element to have a value that is either given as a number or as a string with the constant name.

7.2.2.1 Example (Non-Normative)

For example, the DDS IDL PSM defines the constants:
const long LENGTH_UNLIMITED = -1;
const long DURATION_INFINITE_SEC = 0x7fffffff;
const unsigned long DURATION_INFINITE_NSEC = 0x7fffffff;
const long DURATION_ZERO_SEC = 0;
const unsigned long DURATION_ZERO_NSEC = 0;
const long TIME_INVALID_SEC = -1;
const unsigned long TIME_INVALID_NSEC = 0xffffffff;

The constant LENGTH_UNLIMITED is intended to initialize structure members that represent lengths. Constants with
DURATION_ prefix are intended to initialize members of the Duration_t structure and constants with TIME_ prefix are
intended to initialize members of the Time_t structure.

For example, the above constants are mapped into the following definitions in JSON schema format:
{
 "$schema": "http://json-schema.org/draft-07/schema#",
 ...
 "definitions": {
 ...
 "nonNegativeInteger_Duration_SEC": {
 "type": [
 "integer",
 "string"
],
 "pattern": "DURATION_INFINITY|DURATION_INFINITE_SEC",
 "minimum": 0,
 "examples": [
 0,
 1,
 "DURATION_INFINITY",
 "DURATION_INFINITE_SEC"
]
 },
 "nonNegativeInteger_Duration_NSEC": {
 "type": [
 "integer",
 "string"
],
 "pattern": "DURATION_INFINITY|DURATION_INFINITE_NSEC",

6 DDS Consolidated JSON Syntax 1.0

 "minimum": 0,
 "examples": [
 0,
 1,
 "DURATION_INFINITY",
 "DURATION_INFINITE_NSEC"
]
 },
 "positiveInteger_UNLIMITED": {
 "type": [
 "integer",
 "string"
],
 "pattern": "LENGTH_UNLIMITED",
 "minimum": 1,
 "examples": [
 1,
 2,
 "LENGTH_UNLIMITED"
]
 },
 ...
 },
 ...
}

See Clause 7.2.5 for a description on how these definitions are used to represent Duration_t.

7.2.3 JSON Representation of Structure Types

In general, IDL structures are represented in JSON as object types. The members of the IDL structure become
unordered properties of the object with the member name appearing as the property name. The mapping is applied
recursively for nested structures.

If the DDS specification defines default values for the structure members, the corresponding JSON element shall
provide the same default value.

7.2.3.1 Example (Non-normative)

For example, HistoryQosPolicy is defined in the DDS IDL PSM [DDS] as:

struct HistoryQosPolicy {
 HistoryQosPolicyKind kind;
 long depth;
};

The DDS IDL PSM states that the default value for the HistoryQosPolicy is KEEP_LAST_HISTORY_QOS and the
default depth is 1.

The equivalent representation in JSON schema is defined below:
{
 "$schema": "http://json-schema.org/draft-07/schema#",
 "definitions": {
 ...
 "HistoryQosPolicy": {
 "type": "object",
 "properties": {
 "kind": {
 "$ref": "#/definitions/HistoryQosPolicyKind"
 },
 "depth": {
 "type": "integer",

DDS Consolidated JSON Syntax 1.0 7

 "minimum": 1,
 "default": 1
 }
 }
 }
 },
 ...
}

An example JSON representation satisfying this syntax would be:
{
 "kind": "KEEP_LAST_HISTORY_QOS",
 "depth": 10
}

7.2.4 JSON Representation of Arrays and Sequences

In general, IDL arrays and sequences shall be represented as JSON arrays. Nested inside each item shall be the JSON
schema obtained from mapping the IDL type of the element itself to JSON.

7.2.4.1 Example (Non-normative)

For example, QosPolicyCountSeq is defined in the DDS IDL PSM as:

struct QosPolicyCount {
 long policy_id;
 long count;
};
typedef sequence<QosPolicyCount> QosPolicyCountSeq;

The equivalent representation in JSON is defined by the JSON schema defined below:
{
 "$schema": "http://json-schema.org/draft-07/schema#",
 "definitions": {
 ...
 "QosPolicyCount": {
 "type": "object",
 "properties": {
 "policy_id": {
 "type": "integer",
 "minimum": 0
 },
 "count": {
 "type": "integer",
 "minimum": 0
 }
 }
 },
 "QosPolicyCountSeq": {
 "type": "array",
 "items": {
 "$ref": "#/definitions/QosPolicyCount"
 }
 }
 },
 ...
}

An example JSON representation satisfying this syntax would be:
[
 {
 "policy_id": 1,

8 DDS Consolidated JSON Syntax 1.0

 "count": 23
 },
 {
 "policy_id": 4,
 "count": 44
 }
]

7.2.5 JSON Representation of Duration

The IDL structure Duration_t shall be represented in JSON following the general rules for structures defined in
Clause 7.2.3, except that the schema shall provide also an option to represent infinite duration—based on the constants
defined for that purpose in the DDS IDL PSM.

The Duration_t structure is defined in the DDS IDL PSM as:

struct Duration_t {
 long sec;
 unsigned long nanosec;
};

The equivalent representation in JSON is defined by the following JSON schema:
{
 "$schema": "http://json-schema.org/draft-07/schema#",
 "definitions": {
 "nonNegativeInteger_Duration_SEC": {
 "type": [
 "integer",
 "string"
],
 "pattern": "DURATION_INFINITY|DURATION_INFINITE_SEC",
 "minimum": 0,
 "examples": [
 0,
 1,
 "DURATION_INFINITY",
 "DURATION_INFINITE_SEC"
]
 },
 "nonNegativeInteger_Duration_NSEC": {
 "type": [
 "integer",
 "string"
],
 "pattern": "DURATION_INFINITY|DURATION_INFINITE_NSEC",
 "minimum": 0,
 "examples": [
 0,
 1,
 "DURATION_INFINITY",
 "DURATION_INFINITE_NSEC"
]
 },
 "duration": {
 "type": "object",
 "properties": {
 "sec": {
 "$ref": "#/definitions/nonNegativeInteger_Duration_SEC"
 },
 "nanosec": {
 "$ref": "#/definitions/nonNegativeInteger_Duration_NSEC"
 }
 }

DDS Consolidated JSON Syntax 1.0 9

 },
 ...
 },
 ...
}

7.2.5.1 Example (Non-normative)

An example JSON resource representation satisfying the syntax defined above would be:
{
 "duration": {
 "sec": 0,
 "nanosec": "DURATION_INFINITY_NSEC"
 }
}

7.3 Building Blocks

7.3.1 Overview

This specification breaks the syntax to represent DDS resources in JSON into the six different building blocks as shown
in Figure 7.1:

• Building Block QoS

• Building Block Types

• Building Block Domains

• Building Block DomainParticipants

• Building Block Applications

• Building Block Data Samples

10 DDS Consolidated JSON Syntax 1.0

Each of these building blocks is associated with a normative JSON schema file:

• dds-json_<building_block_name>.schema.json contains the type declarations for all the constructs the
building block defines. This JSON schema file may be easily integrated into other JSON schemas to define
custom elements, making use of constructs from different building blocks without any restriction in terms of
object hierarchy.

Moreover, each building block is associated with a non-normative JSON example file:

• dds-json_<building_block_name>_example.json contains an example JSON file that shows the definitions of
the normative schema in practice.

7.3.2 Building Block QoS

7.3.2.1 Purpose

This building block defines the syntax to represent DDS QoS policies in JSON.

7.3.2.2 Dependencies with other Building Blocks

This building block has no dependencies on other building blocks.

7.3.2.3 Syntax

The following normative JSON schema file defines the syntax to represent DDS QoS policies in JSON format:

• dds-json_qos.schema.json

DDS Consolidated JSON Syntax 1.0 11

pkg BuildingBlocksRelationship

BBTypesBBQos

BBDomains

BBApplicationsBBDomainParticipants

BBDataSamples

Figure 7.1: Relationship between building blocks

Moreover, the following non-normative file contains an example on how to apply the aforementioned schema to
represent QoS policies in JSON format:

• dds-json_qos_example.json

7.3.2.4 Explanations and Semantics

7.3.2.4.1 QoS Libraries and QoS Profiles

QoS Libraries are the top level element of the Building Block QoS. They are collections of QoS Profiles, which group a
set of related QoS Policies.

7.3.2.4.1.1 Example (Non-normative)

{
 "name": "ReliableProfilesLibrary",
 "qos_profiles": [
 {
 "name": "StrictReliableCommunicationProfile",
 "datawriter_qos": {
 "history": {
 "kind": "KEEP_ALL_HISTORY_QOS"
 },
 "reliability": {
 "kind": "RELIABLE_RELIABILITY_QOS"
 }
 },
 "datareader_qos": {
 "history": {
 "kind": "KEEP_ALL_HISTORY_QOS"
 },
 "reliability": {
 "kind": "RELIABLE_RELIABILITY_QOS"
 }
 }
 }
]
}

7.3.2.4.2 QoS Profile Inheritance

A QoS Profile can inherit from another QoS Profile using the "base_name" property. The name of the base profile
shall be preceded by the name of the containing QoS Library and two separating colons (i.e., "::"), according to the
following expression: "<baseQosProfileLibraryName>::<baseQosProfileName>".

7.3.2.4.2.1 Example (Non-normative)

{
 "name": "MyQosProfile",
 "base_name": "BaseQosProfileLibraryName::BaseQosProfileName",
 ...
}

7.3.2.4.3 QoS Profile Topic-name Filters

A QoS Profile may contain several DataWriter, DataReader, and Topic QoS settings that are selected based on the
evaluation of a filter expression on the topic name. In that case, the "datawriter_qos", "datareader_qos", and
"topic_qos" properties shall be represented as a JSON array of objects describing the entity QoS, with a "name"
property and a "topic_filter" property.

12 DDS Consolidated JSON Syntax 1.0

The filter expression is specified via the "topic_filter" property in the definition of the entity QoS. If the topic
filter is unspecified, the filter "*" will be assumed. The QoS with an explicit "topic_filter" property definition will
be evaluated in order; they take precedence over a QoS without a topic filter expression.

7.3.2.4.3.1 Example (Non-normative)

For example, in the following definition:
{
 "name": "MyQosProfile",
 "datawriter_qos": [
 {
 "name": "DataWriterQosA",
 "topic_filter": "A*",
 "history": {
 "kind": "KEEP_ALL_HISTORY_QOS"
 },
 "reliability": {
 "kind": "RELIABLE_RELIABILITY_QOS"
 }
 },
 {
 "name": "DataWriterQosB"
 "topic_filter": "B*",
 "history": {
 "kind": "KEEP_ALL_HISTORY_QOS"
 },
 "reliability": {
 "kind": "BEST_EFFORT_RELIABILITY_QOS"
 },
 "resource_limits": {
 "max_samples": 128,
 "max_samples_per_instance": 128,
 "initial_samples": 128,
 "max_instances": 1,
 "initial_instances": 1
 }
 },
 ...
],
 ...
}

DataWriters of Topics with names matching the "A*" expression will have their DataWriterQos policies defined in
the object containing the "topic_filter": "A*" property (i.e., "DataWriterQosA"). DataWriters of Topics with
names matching the "B*" expression will have their DataWriterQos policies defined in the object containing the
"topic_filter": "B*" property (i.e., "DataWriterQosB").

7.3.2.4.4 QoS Profiles with a Single QoS

The definition of QoS Policies for DDS Entities within a QoS Library is a shortcut for defining a QoS Profile with
QoS settings for a single DDS Entity.

7.3.2.4.4.1 Example (Non-normative)

For example, the following definition:
{
 "name": "MyQosLibrary",
 "datawriter_qos": {
 "name": "KeepAllWriter",
 "history": {
 "kind": "KEEP_ALL_HISTORY_QOS"
 }

DDS Consolidated JSON Syntax 1.0 13

 }
}

Is equivalent to the following:
{
 "name": "MyQosLibrary",
 "qos_profiles": [
 {
 "name": "KeepAllWriterProfile",
 "datawriter_qos": {
 "history": {
 "kind": "KEEP_ALL_HISTORY_QOS"
 }
 }
 }
]
}

7.3.3 Building Block Types

7.3.3.1 Purpose

This building block gathers the syntax used to represent DDS Types in JSON. Additionally, it provides capabilities that
are necessary or convenient for the organization and management of types and other JSON resource representations.

7.3.3.2 Dependencies with other Building Blocks

This building block has no dependencies on other building blocks.

7.3.3.3 Syntax

The following normative JSON schema file defines the syntax to represent all the types defined in the DDS type system
in JSON format:

• dds-json_types.schema.json

Moreover, the following non-normative file contains an example on how to apply the aforementioned schema to
represent DDS types in JSON format:

• dds-json_types_example.json

7.3.4 Building Block Domains

7.3.4.1 Purpose

This building block defines the syntax used to represent DDS Domains in JSON. Domains provide a data space where
information can be shared by reading and writing a set of Topics, which are associated to registered data types.

7.3.4.2 Dependencies with other Building Blocks

This building block depends on Building Block QoS and Building Block Types.

7.3.4.3 Syntax

The following normative JSON schema file defines the syntax to represent DDS Domains in JSON format:

• dds-json_domains.schema.json

Moreover, the following non-normative file contains an example on how to apply the aformentioned schema to
represent DDS Domains in JSON format:

14 DDS Consolidated JSON Syntax 1.0

• dds-json_domains_example.json

7.3.4.4 Explanations and Semantics

7.3.4.4.1 Defining a Domain

A Domain includes a set of Topics and Registered Types that can be read and written within the Domain.

Registered types shall provide a reference to data types that have been previously defined using the "type_ref"
property of the object representing the registered type. The name under which types are registered may be different than
original type name.

Topics shall refer to a registered type using the "register_type_ref" property of the object representing the Topic.
Topics may also specify QoS settings inline following the syntax defined in the Building Block QoS. The syntax
supports QoS Profile inheritance through the "base_name" property, as specified in Clause 7.3.2.4.2.

7.3.4.4.1.1 Example (Non-normative)

{
 "name": "MyDomain",
 "domain_id": 10,
 "register_types": [
 {
 "name": "MyFirstRegisterType",
 "type_ref": "MyType"
 },
 {
 "name": "MySecondRegisterType",
 "type_ref": "MyType"
 }
],
 "topics": [
 {
 "name": "FirstTopic",
 "register_type_ref": "MyFirstRegisterType",
 "topic_qos": {
 "base_name": "BaseQoSProfile"
 }
 },
 {
 "name": "SecondTopic",
 "register_type_ref": "MySecondRegisterType"
 }
]
}

7.3.4.4.2 Domain Inheritance

A Domain can inherit from another Domain using the "base_name" property of the JSON object representing the
Domain. The base domain name shall be preceded by the name of the containing Domain Library and two separating
colons (i.e., "::"), according to the following expression: "<baseDomainLibraryName>::<baseDomainName>".

7.3.4.4.2.1 Example (Non-normative)

{
 "name": "MyDomain",
 "base_name": "BaseDomainLibraryName::BaseDomain",
 ...
}

DDS Consolidated JSON Syntax 1.0 15

7.3.5 Building Block DomainParticipants

7.3.5.1 Purpose

This building block defines the syntax to represent DDS DomainParticipants and all their contained entities (i.e.,
Publishers, Subscribers, DataWriters, and DataReaders) in JSON.

7.3.5.2 Dependencies with other Building Blocks

This building block depends on Building Block QoS, Building Block Types, and Building Block Domains.

7.3.5.3 Syntax

The following normative JSON schema file defines the syntax to represent DDS entities in JSON format:

• dds-json_domainparticipants.schema.json

Moreover, the following non-normative file contains an example on how to apply the aforementioned schema to
represent DDS entities in JSON format:

• dds-json_domainparticipants_example.json

7.3.5.4 Explanations and Semantics

7.3.5.4.1 DomainParticipant Libraries, DomainParticipants, and Contained Entities

DomainParticipant Libraries are collections of DomainParticipants and contained entities. They are the top level
elements of the Building Block DomainParticipants.

DomainParticipants are responsible for the creation and deletion of Publishers and Subscribers, which are in turn
responsible for the creation and deletion of DataWriters and DataReaders.

To represent this hierarchical relationship between DDS entities, each entity is declared as a nested JSON property
within the declaration of its parent entity.

7.3.5.4.1.1 Example (Non-normative)

{
 "name": "MyDomainParticipantLibrary",
 "domain_participants": [
 {
 "name": "MyDomainParticipant",
 "domain_ref": "MyDomainLibrary::MyDomain",
 "publishers": [
 {
 "name": "MyPublisher",
 "data_writers": [
 {
 "name": "MyDataWriter",
 "topic_ref": "MyTopic"
 }
]
 }
],
 "subscribers": [
 {
 "name": "MySubscriber",
 "data_readers": [
 {
 "name": "MyDataReader",
 "topic_ref": "MyTopic"
 }

16 DDS Consolidated JSON Syntax 1.0

]
 }
]
 }
]
}

7.3.5.4.2 Using the Domain Building Block

DomainParticipants may refer to a Domain declared in the context of a Domain Library (see Building Block Domains)
using the "domain_ref" property of the corresponding JSON object. This makes the Topics and Registered Types
defined in the Domain available for all the DataWriters and DataReaders defined in the context of the
DomainParticipant.

The Domain ID specified in the parent Domain can be overridden via the "domain_id" property of the
DomainParticipant’s JSON object.

7.3.5.4.2.1 Example (Non-normative)

{
 "name": "MyDomainParticipant",
 "domain_ref": "MyDomainLibrary::MyDomain",
 "domain_id": 32,
 ...
}

7.3.5.4.3 DomainParticipant Inheritance

A DomainParticipant may inherit from another DomainParticipant defined in the context of a DomainParticipant
Library using the "base_name" property of the corresponding JSON object. The name of the base DomainParticipant
shall be preceded by the name of the containing DomainParticipant Library and two separating colons (i.e., "::"),
according to the following expression:
"<baseDomainParticipantLibraryName>::<baseDomainParticipantName>".

7.3.5.4.3.1 Example (Non-normative)

{
 "name": "MyDomainParticipantLibrary",
 "domain_participants": [
 {
 "name": "MyDomainParticipant",
 "base_name": "BaseDomainParticipantLibraryName::BaseDomainParticipantName",
 ...
 }
]
}

7.3.5.4.4 Inline Entity QoS Settings Definition

Inline definition of QoS Policies is allowed in the context of an entity definition. Inline QoS settings apply only to the
entity that is being defined. These definitions support QoS Profile inheritance through the "base_name" property as
specified in Clause 7.3.2.4.2.

7.3.5.4.4.1 Example (Non-normative)

{
 "name": "MyDomainParticipantLibrary",
 "domain_participants": [
 {
 "name": "MyDomainParticipant",
 ...
 "domain_participant_qos": {
 "base_name": "BaseQosLibraryName::BaseQosProfileName",

DDS Consolidated JSON Syntax 1.0 17

 "entity_factory": {
 "autoenable_created_entities": false
 }
 },
 ...
 }
]
}

7.3.6 Building Block Applications

7.3.6.1 Purpose

This building block defines syntax to represent DDS applications that participate (or may be participating) in the DDS
Global Data Space in JSON format.

7.3.6.2 Dependencies with other Building Blocks

This building block depends on Building Block QoS, Building Block Types, Building Block Domains, and Building
Block DomainParticipants.

7.3.6.3 Syntax

The following normative JSON schema file defines the syntax to represent DDS applications and their contained
entities in JSON format:

• dds-json_applications.schema.json

Moreover, the following non-normative file contains an example on how to apply the aforementioned schema to
represent applications in JSON format:

• dds-json_applications_example.json

7.3.6.4 Explanations and Semantics

7.3.6.4.1 Applications, DomainParticipants, and Contained Entities

Application Libraries are collections of Applications. Applications are in turn aggregations of DomainParticipants and
their contained entities. Application Libraries are the top level elements of Building Block Applications.

7.3.6.4.1.1 Example (Non-normative)

{
 "name": "MyApplicationLibrary",
 "applications": [
 {
 "name": "MyApplication",
 "domain_participants": [
 {
 "name": "MyParticipant",
 "domain_ref": "BaseDomainLibraryName::BaseDomainName",
 "publishers": [
 {
 "name": "MyPublisher",
 "data_writers": [
 {
 "name": "MySquareWriter",
 "topic_ref": "Square"
 }
]
 }
],

18 DDS Consolidated JSON Syntax 1.0

 "subscribers": [
 {
 "name": "MySubscriber",
 "data_readers": [
 {
 "name": "MySquareReader",
 "topic_ref": "Square"
 }
]
 }
]
 }
]
 }
]
}

7.3.6.4.2 Using DomainParticipants defined in DomainParticipant Libraries

DomainParticipants defined in the context of an Application may inherit from a DomainParticipant defined in the
context of a DomainParticipant Library using the "base_name" property, as specified in Clause 7.3.5.4.3.

7.3.6.4.2.1 Example (Non-normative)

{
 "name": "MyApplication",
 "domain_participants" : [
 {
 "name": "MyParticipant",
 "base_name": "BaseDomainParticipantLibraryName::BaseDomainParticipantName",
 ...
 }
]
}

7.3.7 Building Block Data Samples

7.3.7.1 Purpose

This block defines syntax to represent Data Samples that may be exchanged between different DDS applications in
JSON format.

7.3.7.2 Dependencies with other Building Blocks

This building block has no dependencies on other building blocks.

7.3.7.3 Syntax

The following normative JSON schema file defines the syntax to represent DDS Data Samples and Sample
Information:

• dds-json_data_samples.schema.json

Moreover, the following non-normative file contains an example on how to apply the aforementioned schema to
represent Data Samples and Sample Information in JSON format:

• dds-json_data_samples_example.json

Because it is impossible to define a generic JSON schema file to represent Data Samples for all the possible Data Type
combinations in DDS, dds-json_data_samples.schema.json defines just the syntax that is common to the representation
of all Data Samples: the syntax to represent the Sample Information (i.e., the metadata portion of the sample), and the
syntax to represent primitive types.

DDS Consolidated JSON Syntax 1.0 19

Therefore, the complete syntax to represent Data Samples is based on the mapping rules and JSON schema definitions
specified in this building block, and the syntax to represent Sample Information specified in dds-
json_data_samples.schema.json.

Implementers of this specification who may want to define and provide schema files to validate the syntax of Data
Samples of user-defined data types shall generate JSON schema files following the rules specified in this building
block, adding the syntax to define Sample Information defined in dds-json_data_samples.schema.json.

7.3.7.4 Explanations and Semantics

7.3.7.4.1 JSON Representation of Structures

Structures shall be represented as JSON objects including members of the structure as properties of the corresponding
object. The name of the corresponding properties shall be the name of the structure members with no changes.

Unset optional members shall be omitted from the sample representation.

7.3.7.4.1.1 Example (Non-normative)

For a structured type defined in IDL as follows:
struct InnerStruct {
 long x;
 long y;
};
struct OuterStruct {
 long a;
 InnerStruct s;
};

The JSON representation of a sample would need to comply with the following schema:
{
 "$schema": "http://json-schema.org/draft-07/schema#",
 "definitions": {
 "InnerStruct": {
 "type": "object",
 "properties": {
 "x": {
 "type": "integer"
 },
 "y": {
 "type": "integer"
 }
 }
 }
 },
 "type": "object",
 "properties": {
 "s": {
 "$ref": "#/definitions/InnerStruct"
 },
 "a": {
 "type": "integer"
 }
 }
}

For example:
{
 "a": 5,
 "s": {
 "x": 4,
 "y": 3

20 DDS Consolidated JSON Syntax 1.0

 }
}

7.3.7.4.2 JSON Representation of Unions

Unions shall be represented as JSON objects including the specific union case that was selected as a property.
Therefore, the mapping is equivalent to that of a structure with the member selected by the union case (see Clause
7.3.7.4.1). The property name shall be the name of the original union member with no changes.

The JSON representation of a Union may optionally include the value of the discriminator field for reference. In that
case, the discriminator shall be represented as a property of named "$discriminator".

7.3.7.4.2.1 Example (Non-normative)

For a union type defined in IDL as follows:
union MyUnion switch(long) {
case 1:
 float x;
case 2:
 long y;
default:
 string z;
};

The JSON representation of a sample containing the union would need to comply with the following schema:
{
 "$schema": "http://json-schema.org/draft-07/schema#",
 "type": "object",
 "oneOf": [
 {
 "properties": {
 "$discriminator": {
 "type": "integer"
 },
 "x": {
 "type": "number"
 }
 },
 "additionalProperties": false
 },
 {
 "properties": {
 "$discriminator": {
 "type": "integer"
 },
 "y": {
 "type": "integer"
 }
 },
 "additionalProperties": false
 },
 {
 "properties": {
 "$discriminator": {
 "type": "integer"
 },
 "z": {
 "type": "string"
 }
 },
 "additionalProperties": false
 }
]

DDS Consolidated JSON Syntax 1.0 21

}

For example:
{
 "$discriminator": 1,
 "x": 4.5
}

or
{
 "x": 4.5
}

7.3.7.4.3 JSON Representation of Sequences and Arrays

Sequences and arrays shall be represented as JSON arrays of the corresponding type. Sequence and array elements
shall be represented as elements of the corresponding JSON array according to the mapping rules specified in this
building block.

7.3.7.4.3.1 Example (Non-normative)

For a sequence defined in IDL as:
struct Coordinates {
 long x;
 long y;
};
struct OuterStruct {
 sequence<Coordinates> coordinates_sequence;
};

The JSON representation of a sample would need to comply with the following schema:
{
 "$schema": "http://json-schema.org/draft-07/schema#",
 "definitions": {
 "Coordinates": {
 "type": "object",
 "properties": {
 "x": {
 "type": "integer"
 },
 "y": {
 "type": "integer"
 }
 }
 },
 "CoordinatesSeq": {
 "type": "array",
 "items": {
 "$ref": "#/definitions/Coordinates"
 }
 }
 },
 "type": "object",
 "properties": {
 "coordinates_sequence": {
 "$ref": "#/definitions/CoordinatesSeq"
 }
 }
}

For example:
[
 {

22 DDS Consolidated JSON Syntax 1.0

 "x": 1,
 "y": 15
 },
 {
 "x": 4,
 "y": 11
 }
]

7.3.7.4.4 JSON Representation of Maps

Maps shall be represented as JSON objects. Each map element shall become a property of the corresponding JSON
object, using the string representation of the map element key as the property name, and the equivalent JSON
representation of the map value as the property value.

In the case of signed and unsigned integer key types, the string representation shall present the integer value in base 10.
For string and wstring key types, the value of the map key shall be the value of the string with no changes1.

7.3.7.4.4.1 Example (Non-normative)

For example, samples of a structure containing maps represented in IDL as follows:
struct MyStruct {
 map<string,long> known_satellites;
 map<long,char> ascii_characters;
};

Would need to conform with the following schema:
{
 "$schema": "http://json-schema.org/draft-07/schema#",
 "type": "object",
 "properties": {
 "known_satellites": {
 "type": "object",
 "properties": {
 "earth": {
 "type": "integer"
 },
 "mars": {
 "type": "integer"
 },
 ...
 }
 },
 "ascii_characters": {
 "type": "object",
 "properties": {
 "65": {
 "type": "string",
 "maxLength": 1
 },
 "97": {
 "type": "string",
 "maxLength": 1
 },
 ...
 }
 }
 }
}

1 Clause 7.2.2.4.3 of [DDS-XTYPES] mandates compliant implementations to support map key types of signed and unsigned
integer, string, and wide string type. The behavior for other key types is undefined and may not be portable; therefore, the string
representation of key types other those expliclty listed in [DDS-XTYPES] is out of the scope of this specification.

DDS Consolidated JSON Syntax 1.0 23

For example:
{
 "known_satelites": {
 "earth": 1,
 "mars": 2,
 },
 "ascii_characters": {
 "65": "A",
 "97": "a"
 }
}

7.3.7.4.5 JSON Representation of Enums

Enums shall be represented as properties of integer or string type holding the value of the corresponding enumeration
literal2.

7.3.7.4.5.1 Example (Non-normative)

Samples of a structure containing an enum, represented in IDL as follows:
enum Weekday {
 @value(1) MONDAY,
 @value(2) TUESDAY,
 @value(3) WEDNESDAY,
 ...
};
struct MyStruct {
 Weekday wd;
};

Would need to conform with the following schema:
{
 "$schema": "http://json-schema.org/draft-07/schema#",
 "type": "object",
 "definitions": {
 "Weekday": {
 "oneOf": [
 {
 "type": "string",
 "enum": [
 "MONDAY",
 "TUESDAY",
 "WEDNESDAY",
 ...
]
 },
 {
 "type": "integer"
 }
]
 }
 },
 "properties": {
 "wd": {
 "$ref": "#/definitions/Weekday"
 }
 }
}

2 This enables implementers of this specification to select one of the two representations to encode the value of an enum
depending on the use case. Implementations shall be capable of converting the string or integer value representing the
corresponding enumeration literal into the corresponding internal representation accordingly.

24 DDS Consolidated JSON Syntax 1.0

For example:
{
 "wd": "MONDAY"
}

or
{
 "wd": 1
}

7.3.7.4.6 JSON Representation of Bitmasks

Bitmasks shall be represented as properties of integer type holding the value of the corresponding Bitmask.

7.3.7.4.7 JSON Representation of String Types

Strings and wide strings shall be represented as properties of string type holding the value of the corresponding string.

7.3.7.4.7.1 Example (Non-normative)

Samples of a structure containing strings, represented IDL as follows:
struct MyStruct {
 wstring a_string;
 string another_string;
};

Would need to conform with the following schema:
{
 "$schema": "http://json-schema.org/draft-07/schema#",
 "type": "object",
 "properties": {
 "a_string": {
 "type": "string"
 },
 "another_string": {
 "type": "string"
 }
 }
}

For example:
{
 "a_string": "A string!",
 "another_string": "El r\u00EDo mi\u00F1o"
}

7.3.7.4.8 JSON Representation of Primitive Types

Primitive types shall be represented as properties of JSON objects or elements of JSON arrays, according to the
mapping rules for the containing type specified in this building block. The type definition for each primitive type in the
DDS type system is defined in Table 7.1.

Table 7.1: JSON Representation of Primitive Types

Type JSON Schema Example

boolean {
 "type": "boolean"
}

{
 "my_boolean": true
}

DDS Consolidated JSON Syntax 1.0 25

Type JSON Schema Example

byte {
 "type": "integer",
 "minimum": 0,
 "maximum": 255
}

{
 "my_byte": 1
}

int8 {
 "type": "integer",
 "minimum": -127,
 "maximum": 128
}

{
 "my_int8": -3
}

uint8 {
 "type": "integer",
 "minimum": 0,
 "maximum": 255
}

{
 "my_uint8": 2
}

int16 {
 "type": "integer",
 "minimum": -32768,
 "maximum": 32767
}

{
 "my_int16": -32000
}

uint16 {
 "type": "integer",
 "minimum": 0,
 "maximum": 65535
}

{
 "my_uint16": 64000
}

int32 {
 "type": "integer",
 "minimum": -2147483648,
 "maximum": 2147483647
}

{
 "my_int32": -21000000
}

uint32 {
 "type": "integer",
 "minimum": 0,
 "maximum": 4294967295
}

{
 "my_int32": 21000000
}

int64 {
 "oneOf": [
 {
 "type": "integer",
 "minimum": -9007199254740991,
 "maximum": 9007199254740991
 },
 {
 "type": "string"
 }
]
}

{
 "my_int64": -31321212111
}

{
 "my_int64":
 "-9007199254740992"
}

uint64 {
 "type": "integer",
 "minimum": 0,
 "maximum": 9007199254740991
}

{
 "my_int64": 31321212111
}

{
 "my_int64":
 "9007199254740992"
}

26 DDS Consolidated JSON Syntax 1.0

Type JSON Schema Example

float32 {
 "type": "number"
}

{
 "my_float32": 3.14
}

float64 {
 "type": "number"
}

{
 "my_float64": 3.14345
}

float128 {
 "type": "string"
}

{
 "my_float128": "My4xNA=="
}

char8 {
 "type": "string"
}

{
 "my_char8": "a"
}

char16 {
 "type": "string"
}

{
 "my_char16": "\u007E"
}

{
 "my_char16": "a"
}

As shown in Table 7.1, values of most DDS primitive types can be represented using simply native JSON types.
However, the following primitive types require special mapping rules:

• byte values shall be represented as properties of integer type in the range [0, 255] using base 10.

• int64 values in the range [-253 + 1, 253 - 1] shall be represented as properties of integer type. Valid int64
values outside that range shall be represented as strings including the numeric value in base 103.

• uint64 values in the range [0, 253 - 1] shall be represented as properties of integer type. Valid uint64 values
outside that range shall be represented as strings including the numeric value in base 103.

• float128 values shall be represented as properties of string type encoding the value of the float128
member using base64 according to [RFC-4648].

Numeric values, such as Infinity, -Infinity, and NaN, which as stated in [ECMA-404] cannot be represented as
sequences of digits, shall be represented using the following JSON strings: "inf", "-inf", and "nan".

3 This mapping is consistent with the recommendations of [RFC-8259] and the I-JSON profile defined in [RFC-7493]. The latter
states that “an I-JSON sender cannot expect an integer whose absolute value is greater than 9007199254740991 (i.e., that is
outside the range [-253 + 1, 253 - 1]) as an exact value.”

DDS Consolidated JSON Syntax 1.0 27

This page intentionally left blank.

28 DDS Consolidated JSON Syntax 1.0

	1 Scope
	2 Conformance Criteria
	3 Normative References
	4 Terms and Definitions
	5 Symbols
	6 Additional Information
	6.1 Changes to Adopted OMG Specifications
	6.2 Acknowledgments

	7 JSON Syntax for DDS Resources
	7.1 JSON Representation Syntax
	7.1.1 General Rules
	7.1.2 JSON Schema Definition Files

	7.2 JSON Representation of Resources Defined in the DDS IDL PSM
	7.2.1 JSON Representation of Enumeration Types
	7.2.1.1 Example (Non-normative)

	7.2.2 JSON Representation of Primitive Constants
	7.2.2.1 Example (Non-Normative)

	7.2.3 JSON Representation of Structure Types
	7.2.3.1 Example (Non-normative)

	7.2.4 JSON Representation of Arrays and Sequences
	7.2.4.1 Example (Non-normative)

	7.2.5 JSON Representation of Duration
	7.2.5.1 Example (Non-normative)

	7.3 Building Blocks
	7.3.1 Overview
	7.3.2 Building Block QoS
	7.3.2.1 Purpose
	7.3.2.2 Dependencies with other Building Blocks
	7.3.2.3 Syntax
	7.3.2.4 Explanations and Semantics
	7.3.2.4.1 QoS Libraries and QoS Profiles
	7.3.2.4.1.1 Example (Non-normative)

	7.3.2.4.2 QoS Profile Inheritance
	7.3.2.4.2.1 Example (Non-normative)

	7.3.2.4.3 QoS Profile Topic-name Filters
	7.3.2.4.3.1 Example (Non-normative)

	7.3.2.4.4 QoS Profiles with a Single QoS
	7.3.2.4.4.1 Example (Non-normative)

	7.3.3 Building Block Types
	7.3.3.1 Purpose
	7.3.3.2 Dependencies with other Building Blocks
	7.3.3.3 Syntax

	7.3.4 Building Block Domains
	7.3.4.1 Purpose
	7.3.4.2 Dependencies with other Building Blocks
	7.3.4.3 Syntax
	7.3.4.4 Explanations and Semantics
	7.3.4.4.1 Defining a Domain
	7.3.4.4.1.1 Example (Non-normative)

	7.3.4.4.2 Domain Inheritance
	7.3.4.4.2.1 Example (Non-normative)

	7.3.5 Building Block DomainParticipants
	7.3.5.1 Purpose
	7.3.5.2 Dependencies with other Building Blocks
	7.3.5.3 Syntax
	7.3.5.4 Explanations and Semantics
	7.3.5.4.1 DomainParticipant Libraries, DomainParticipants, and Contained Entities
	7.3.5.4.1.1 Example (Non-normative)

	7.3.5.4.2 Using the Domain Building Block
	7.3.5.4.2.1 Example (Non-normative)

	7.3.5.4.3 DomainParticipant Inheritance
	7.3.5.4.3.1 Example (Non-normative)

	7.3.5.4.4 Inline Entity QoS Settings Definition
	7.3.5.4.4.1 Example (Non-normative)

	7.3.6 Building Block Applications
	7.3.6.1 Purpose
	7.3.6.2 Dependencies with other Building Blocks
	7.3.6.3 Syntax
	7.3.6.4 Explanations and Semantics
	7.3.6.4.1 Applications, DomainParticipants, and Contained Entities
	7.3.6.4.1.1 Example (Non-normative)

	7.3.6.4.2 Using DomainParticipants defined in DomainParticipant Libraries
	7.3.6.4.2.1 Example (Non-normative)

	7.3.7 Building Block Data Samples
	7.3.7.1 Purpose
	7.3.7.2 Dependencies with other Building Blocks
	7.3.7.3 Syntax
	7.3.7.4 Explanations and Semantics
	7.3.7.4.1 JSON Representation of Structures
	7.3.7.4.1.1 Example (Non-normative)

	7.3.7.4.2 JSON Representation of Unions
	7.3.7.4.2.1 Example (Non-normative)

	7.3.7.4.3 JSON Representation of Sequences and Arrays
	7.3.7.4.3.1 Example (Non-normative)

	7.3.7.4.4 JSON Representation of Maps
	7.3.7.4.4.1 Example (Non-normative)

	7.3.7.4.5 JSON Representation of Enums
	7.3.7.4.5.1 Example (Non-normative)

	7.3.7.4.6 JSON Representation of Bitmasks
	7.3.7.4.7 JSON Representation of String Types
	7.3.7.4.7.1 Example (Non-normative)

	7.3.7.4.8 JSON Representation of Primitive Types

	8 Building Block Sets
	8.1 DDS System Block Set

