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Preface

OMG

Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer 
industry standards consortium that produces and maintains computer industry specifications for interoperable, 
portable, and reusable enterprise applications in distributed, heterogeneous environments. Membership includes
Information Technology vendors, end users, government agencies, and academia. 

OMG member companies write, adopt, and maintain its specifications following a mature, open process. 
OMG’s specifications implement the Model Driven Architecture® (MDA®), maximizing ROI through a full-
lifecycle approach to enterprise integration that covers multiple operating systems, programming languages, 
middleware and networking infrastructures, and software development environments. OMG’s specifications 
include: UML® (Unified Modeling Language®); CORBA® (Common Object Request Broker Architecture); 
CWM™ (Common Warehouse Metamodel™); and industry-specific standards for dozens of vertical markets.

More information on the OMG is available at https://www.omg.org/.

OMG Specifications

As noted, OMG specifications address middleware, modeling and vertical domain frameworks. All OMG 
Specifications are available from the OMG website at:

http  s  ://www.omg.org/spec  

All of OMG’s formal specifications may be downloaded without charge from our website. (Products 
implementing OMG specifications are available from individual suppliers.) Copies of specifications, available 
in PostScript and PDF format, may be obtained from the Specifications Catalog cited above or by contacting the
Object Management Group, Inc. at:

OMG Headquarters
9C Medway Road, PMB 274
Medway, MA 01757
USA

Tel: +1-781-444-0404
Fax: +1-781-444-0320
Email: pubs@omg.org

Certain OMG specifications are also available as ISO standards. Please consult http://www.iso.org

Issues
The reader is encouraged to report any technical or editing issues/problems with this specification by 
completing the Issue Reporting Form listed on the main web page https://www.omg.org, under Documents, 
Report a Bug/Issue.
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1 Scope
JavaScript Object Notation (JSON) is a lightweight language-independent text format to represent structured data. 
Originally inspired by the object literals of JavaScript, JSON has become an extremely popular mechanism for data 
interchange; information storage, with built-in support in many database management systems; and structured 
document definition. 

This specification defines a consolidated JSON syntax to represent DDS resources and data. That is, syntax to represent
the DDS Type System, DDS QoS Policies, DDS Entities and Applications, and DDS Data Samples using JSON. The 
syntax defined in this specification can be used as an alternative to the existing XML syntax to represent DDS resources
and data defined in [DDS-XML].

2 Conformance Criteria
This document contains no independent conformance points. Rather, it defines JSON schema files [JSON-SCHEMA] 
to describe DDS resources that can be referenced by other specifications, leaving the definition of conformance criteria 
to the referencing specifications. Nevertheless, the general organization of the clauses (by means of atomic building 
blocks and building block sets that group them) is intended to ease conformance description and scoping. 

Users of this standard shall follow these rules:

1. Future specifications that describe DDS resources in JSON shall reference this specification or a future 
revision thereof.

2. Future revisions of current specifications that describe DDS resources in JSON should reference this 
specification or a future revision thereof. Reference to this specification shall result in a selection of building 
blocks where all selected building blocks shall be supported entirely.

3 Normative References
The following normative documents contain provisions which, through reference in this text, constitute provisions of 
this specification. For dated references, subsequent amendments to, or revisions of, any of these publications do not 
apply. 

[DDS] OMG, Data Distribution Service, Version 1.4, https://www.omg.org/spec/DDS

[DDS-XML] OMG, DDS Consolidated XML Syntax, Version 1.0, https://www.omg.org/spec/DDS-XML

[DDS-XTYPES] OMG, Extensible And Dynamic Topic Types For DDS, Version 1.3, 
https://www.omg.org/spec/DDS-XTypes

[ECMA-404] Ecma International, The JSON Data Interchange Syntax, https://www.ecma-
international.org/publications/files/ECMA-ST/ECMA-404.pdf

[JSON-SCHEMA] A. Wright, H. Andrews, JSON Schema: A Media Type for Describing JSON 
Documents, https://tools.ietf.org/html/draft-handrews-json-schema-01

[RFC-4648] IETF, The Base16, Base32, and Base64 Data Encodings, https://tools.ietf.org/html/rfc4648

[RFC-7493] IETF, The I-JSON Message Format, https://tools.ietf.org/html/rfc7493

[RFC-8259] IETF, The JavaScript Object Notation (JSON) Data Interchange Format, 
https://tools.ietf.org/html/rfc8259
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4 Terms and Definitions
For the purposes of this specification, the following terms and definitions apply.

Building Block

A building block is a consistent set of JSON schemas that together can be used to describe the syntax of JSON 
documents that represent a set of set of DDS resources or data. Building blocks are atomic, which means that if selected
they must be totally supported. 

Building blocks are described in Chapter 7, JSON Syntax for DDS Resources.

Building Block Set

A building block set is a selection of building blocks that determines a specific JSON schema usage. 

Building block sets are described in Chapter 8, Building Block Sets.

5 Symbols
The acronyms used in this specification are show in Table 5.1.

Table 5.1: Acronyms

Acronym Meaning

DDS Data Distribution Service

JSON JavaScript Object Notation

PIM Platform-Independent Model

PSM Platform-Specific Model

QoS Quality of Service

XML Extensible Markup Language

XTypes eXtensible and dynamic topic Types (for DDS)

6 Additional Information

6.1 Changes to Adopted OMG Specifications
This specification does not change any adopted OMG specification.

6.2 Acknowledgments
The following companies submitted this specification:

• Real-Time Innovations, Inc.
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7 JSON Syntax for DDS Resources

7.1 JSON Representation Syntax

7.1.1 General Rules

The JSON representation of DDS-related resources shall follow these syntax rules:

• It shall be a well-formed JSON document according to the grammar rules defined in Clause 2 of [RFC-8259] 
and the conformance rules defined in Clause 2 of [ECMA-404].

• It shall be compliant with the I-JSON profile defined in [RFC-7493].

7.1.2 JSON Schema Definition Files

This specification makes use of the JSON Schema vocabulary specified in [JSON-SCHEMA] to represent the syntax of
the different building blocks that define DDS resources. In particular, each building block provides a normative JSON 
schema file that defines its syntax (see Clause 7.3.1).

7.2 JSON Representation of Resources Defined in the DDS IDL PSM
The JSON representation of resources that correspond to data types defined in the DDS IDL PSM [DDS] is obtained by
performing a one-to-one mapping of the corresponding IDL type according to the rules specified in this clause.

7.2.1 JSON Representation of Enumeration Types

IDL Enumerations are represented in JSON using string types that may only be assigned the string representation of the
corresponding enumeration literals.

7.2.1.1 Example (Non-normative)

For example, HistoryQosPolicyKind is defined in the DDS IDL PSM as: 

enum HistoryQosPolicyKind {
    KEEP_LAST_HISTORY_QOS,
    KEEP_ALL_HISTORY_QOS
};

The equivalent representation in JSON is defined by the JSON schema below:
{
    "$schema": "http://json-schema.org/draft-07/schema#",
    "definitions": {
        ...
        "HistoryQosPolicyKind": {
            "enum": [
                "KEEP_LAST_HISTORY_QOS",
                "KEEP_ALL_HISTORY_QOS"
            ],
            "type": "string",
            "default": "KEEP_LAST_HISTORY_QOS"
        },
        ...
        "properties": {
            "kind": {
                "$ref": "#/definitions/HistoryQosPolicyKind"
            }
        }
        ...
    },
    ...
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}

An example JSON resource representation satisfying this syntax would be:
{
    "kind": "KEEP_ALL_HISTORY_QOS"
}

Conversely, the following JSON resource representation would not satisfy the syntax:
{
    "kind": "A_STRING_VALUE"
}

7.2.2 JSON Representation of Primitive Constants

The DDS IDL PSM defines constant values of type long and string. These are intended as predefined values that can
be used to initialize members of certain structured types.

Constant definitions appear in JSON schemas as integer or string types that provide custom syntax allowing an 
element to have a value that is either given as a number or as a string with the constant name.

7.2.2.1 Example (Non-Normative)

For example, the DDS IDL PSM defines the constants:
const long LENGTH_UNLIMITED = -1;
const long DURATION_INFINITE_SEC   = 0x7fffffff;
const unsigned long DURATION_INFINITE_NSEC  = 0x7fffffff;
const long DURATION_ZERO_SEC = 0;
const unsigned long DURATION_ZERO_NSEC = 0;
const long TIME_INVALID_SEC = -1;
const unsigned long TIME_INVALID_NSEC = 0xffffffff;

The constant LENGTH_UNLIMITED is intended to initialize structure members that represent lengths. Constants with  
DURATION_ prefix are intended to initialize members of the Duration_t structure and constants with TIME_ prefix are
intended to initialize members of the Time_t structure.

For example, the above constants are mapped into the following definitions in JSON schema format:
{
    "$schema": "http://json-schema.org/draft-07/schema#",
    ...
    "definitions": {
        ...
        "nonNegativeInteger_Duration_SEC": {
            "type": [
                "integer",
                "string"
            ],
            "pattern": "DURATION_INFINITY|DURATION_INFINITE_SEC",
            "minimum": 0,
            "examples": [
                0,
                1,
                "DURATION_INFINITY",
                "DURATION_INFINITE_SEC"
            ]
        },
        "nonNegativeInteger_Duration_NSEC": {
            "type": [
                "integer",
                "string"
            ],
            "pattern": "DURATION_INFINITY|DURATION_INFINITE_NSEC",
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            "minimum": 0,
            "examples": [
                0,
                1,
                "DURATION_INFINITY",
                "DURATION_INFINITE_NSEC"
            ]
        },
        "positiveInteger_UNLIMITED": {
            "type": [
                "integer",
                "string"
            ],
            "pattern": "LENGTH_UNLIMITED",
            "minimum": 1,
            "examples": [
                1,
                2,
                "LENGTH_UNLIMITED"
            ]
        },
        ...
    },
    ...
}

See Clause 7.2.5 for a description on how these definitions are used to represent Duration_t.

7.2.3 JSON Representation of Structure Types

In general, IDL structures are represented in JSON as object types. The members of the IDL structure become 
unordered properties of the object with the member name appearing as the property name. The mapping is applied 
recursively for nested structures.

If the DDS specification defines default values for the structure members, the corresponding JSON element shall 
provide the same default value.

7.2.3.1 Example (Non-normative)

For example, HistoryQosPolicy is defined in the DDS IDL PSM [DDS] as: 

struct HistoryQosPolicy {
    HistoryQosPolicyKind kind;
    long depth;
};

The DDS IDL PSM states that the default value for the HistoryQosPolicy is KEEP_LAST_HISTORY_QOS and the 
default depth is 1.

The equivalent representation in JSON schema is defined below:
{
    "$schema": "http://json-schema.org/draft-07/schema#",
    "definitions": {
        ...
        "HistoryQosPolicy": {
            "type": "object",
            "properties": {
                "kind": {
                    "$ref": "#/definitions/HistoryQosPolicyKind"
                },
                "depth": {
                    "type": "integer",
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                    "minimum": 1,
                    "default": 1
                }
            }
        }
    },
    ...
}

An example JSON representation satisfying this syntax would be:
{
    "kind": "KEEP_LAST_HISTORY_QOS",
    "depth": 10
}

7.2.4 JSON Representation of Arrays and Sequences

In general, IDL arrays and sequences shall be represented as JSON arrays. Nested inside each item shall be the JSON 
schema obtained from mapping the IDL type of the element itself to JSON.

7.2.4.1 Example (Non-normative)

For example, QosPolicyCountSeq is defined in the DDS IDL PSM as:

struct QosPolicyCount {
    long policy_id;
    long count;
};
typedef sequence<QosPolicyCount> QosPolicyCountSeq;

The equivalent representation in JSON is defined by the JSON schema defined below:
{
    "$schema": "http://json-schema.org/draft-07/schema#",
    "definitions": {
        ...
        "QosPolicyCount": {
            "type": "object",
            "properties": {
                "policy_id": {
                    "type": "integer",
                    "minimum": 0
                },
                "count": {
                    "type": "integer",
                    "minimum": 0
                }
            }
        },
        "QosPolicyCountSeq": {
            "type": "array",
            "items": {
                "$ref": "#/definitions/QosPolicyCount"
            }
        }
    },
    ...
}

An example JSON representation satisfying this syntax would be:
[
    {
        "policy_id": 1,
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        "count": 23
    },
    {
        "policy_id": 4,
        "count": 44
    }
]

7.2.5 JSON Representation of Duration

The IDL structure Duration_t shall be represented in JSON following the general rules for structures defined in 
Clause 7.2.3, except that the schema shall provide also an option to represent infinite duration—based on the constants 
defined for that purpose in the DDS IDL PSM.

The Duration_t structure is defined in the DDS IDL PSM as: 

struct Duration_t {
    long sec;
    unsigned long nanosec; 
};

The equivalent representation in JSON is defined by the following JSON schema:
{
    "$schema": "http://json-schema.org/draft-07/schema#",
    "definitions": {
        "nonNegativeInteger_Duration_SEC": {
            "type": [
                "integer",
                "string"
            ],
            "pattern": "DURATION_INFINITY|DURATION_INFINITE_SEC",
            "minimum": 0,
            "examples": [
                0,
                1,
                "DURATION_INFINITY",
                "DURATION_INFINITE_SEC"
            ]
        },
        "nonNegativeInteger_Duration_NSEC": {
            "type": [
                "integer",
                "string"
            ],
            "pattern": "DURATION_INFINITY|DURATION_INFINITE_NSEC",
            "minimum": 0,
            "examples": [
                0,
                1,
                "DURATION_INFINITY",
                "DURATION_INFINITE_NSEC"
            ]
        },
        "duration": {
            "type": "object",
            "properties": {
                "sec": {
                    "$ref": "#/definitions/nonNegativeInteger_Duration_SEC"
                },
                "nanosec": {
                    "$ref": "#/definitions/nonNegativeInteger_Duration_NSEC"
                }
            }
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        },
        ... 
    },
    ...
}

7.2.5.1 Example (Non-normative)

An example JSON resource representation satisfying the syntax defined above would be:
{
    "duration": {
        "sec": 0,
        "nanosec": "DURATION_INFINITY_NSEC"
    }
}

7.3 Building Blocks

7.3.1 Overview

This specification breaks the syntax to represent DDS resources in JSON into the six different building blocks as shown
in Figure 7.1:

• Building Block QoS

• Building Block Types

• Building Block Domains

• Building Block DomainParticipants

• Building Block Applications

• Building Block Data Samples
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Each of these building blocks is associated with a normative JSON schema file:

• dds-json_<building_block_name>.schema.json contains the type declarations for all the constructs the 
building block defines. This JSON schema file may be easily integrated into other JSON schemas to define 
custom elements, making use of constructs from different building blocks without any restriction in terms of 
object hierarchy.

Moreover, each building block is associated with a non-normative JSON example file:

• dds-json_<building_block_name>_example.json contains an example JSON file that shows the definitions of 
the normative schema in practice.  

7.3.2 Building Block QoS

7.3.2.1 Purpose 

This building block defines the syntax to represent DDS QoS policies in JSON.

7.3.2.2 Dependencies with other Building Blocks

This building block has no dependencies on other building blocks.

7.3.2.3 Syntax

The following normative JSON schema file defines the syntax to represent DDS QoS policies in JSON format:

• dds-json_qos.schema.json
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Moreover, the following non-normative file contains an example on how to apply the aforementioned schema to 
represent QoS policies in JSON format:

• dds-json_qos_example.json

7.3.2.4 Explanations and Semantics

7.3.2.4.1 QoS Libraries and QoS Profiles

QoS Libraries are the top level element of the Building Block QoS. They are collections of QoS Profiles, which group a
set of related QoS Policies.

7.3.2.4.1.1 Example (Non-normative)

{
    "name": "ReliableProfilesLibrary",
    "qos_profiles": [
        {
            "name": "StrictReliableCommunicationProfile",
            "datawriter_qos": {
                "history": {
                    "kind": "KEEP_ALL_HISTORY_QOS"
                },
                "reliability": {
                    "kind": "RELIABLE_RELIABILITY_QOS"
                }
            },
            "datareader_qos": {
                "history": {
                    "kind": "KEEP_ALL_HISTORY_QOS"
                },
                "reliability": {
                    "kind": "RELIABLE_RELIABILITY_QOS"
                }
            }
        }
    ]
}

7.3.2.4.2 QoS Profile Inheritance

A QoS Profile can inherit from another QoS Profile using the "base_name" property. The name of the base profile 
shall be preceded by the name of the containing QoS Library and two separating colons (i.e., "::"), according to the 
following expression: "<baseQosProfileLibraryName>::<baseQosProfileName>".

7.3.2.4.2.1 Example (Non-normative)

{
    "name": "MyQosProfile",
    "base_name": "BaseQosProfileLibraryName::BaseQosProfileName",
    ...
}

7.3.2.4.3 QoS Profile Topic-name Filters

A QoS Profile may contain several DataWriter, DataReader, and Topic QoS settings that are selected based on the 
evaluation of a filter expression on the topic name. In that case, the "datawriter_qos", "datareader_qos", and 
"topic_qos" properties shall be represented as a JSON array of objects describing the entity QoS, with a "name" 
property and a "topic_filter" property.
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The filter expression is specified via the "topic_filter" property in the definition of the entity QoS. If the topic 
filter is unspecified, the filter "*" will be assumed. The QoS with an explicit "topic_filter" property definition will 
be evaluated in order; they take precedence over a QoS without a topic filter expression.

7.3.2.4.3.1 Example (Non-normative)

For example, in the following definition: 
{
    "name": "MyQosProfile",
    "datawriter_qos": [
        {
            "name": "DataWriterQosA",
            "topic_filter": "A*",
            "history": {
                "kind": "KEEP_ALL_HISTORY_QOS"
            },
            "reliability": {
                "kind": "RELIABLE_RELIABILITY_QOS"
            }
        },
        {
            "name": "DataWriterQosB"
            "topic_filter": "B*",
            "history": {
                "kind": "KEEP_ALL_HISTORY_QOS"
            },
            "reliability": {
                "kind": "BEST_EFFORT_RELIABILITY_QOS"
            },
            "resource_limits": {
                "max_samples": 128,
                "max_samples_per_instance": 128,
                "initial_samples": 128,
                "max_instances": 1,
                "initial_instances": 1
            }
        },
        ...
    ],
    ...
}

DataWriters of Topics with names matching the "A*" expression will have their DataWriterQos policies defined in 
the object containing the "topic_filter": "A*" property (i.e., "DataWriterQosA"). DataWriters of Topics with 
names matching the "B*" expression will have their DataWriterQos policies defined in the object containing the 
"topic_filter": "B*" property (i.e., "DataWriterQosB").

7.3.2.4.4 QoS Profiles with a Single QoS

The definition of QoS Policies for DDS Entities within a QoS Library is a shortcut for defining a QoS Profile with  
QoS settings for a single DDS Entity.

7.3.2.4.4.1 Example (Non-normative)

For example, the following definition:
{
    "name": "MyQosLibrary",
    "datawriter_qos": {
        "name": "KeepAllWriter",
        "history": {
            "kind": "KEEP_ALL_HISTORY_QOS"
        }
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    }
}

Is equivalent to the following:
{
    "name": "MyQosLibrary",
    "qos_profiles": [
        {
            "name": "KeepAllWriterProfile",
            "datawriter_qos": {
                "history": {
                    "kind": "KEEP_ALL_HISTORY_QOS"
                }
            }
        }
    ]
}

7.3.3 Building Block Types

7.3.3.1 Purpose

This building block gathers the syntax used to represent DDS Types in JSON. Additionally, it provides capabilities that 
are necessary or convenient for the organization and management of types and other JSON resource representations.

7.3.3.2 Dependencies with other Building Blocks

This building block has no dependencies on other building blocks.

7.3.3.3 Syntax

The following normative JSON schema file defines the syntax to represent all the types defined in the DDS type system
in JSON format:

• dds-json_types.schema.json

Moreover, the following non-normative file contains an example on how to apply the aforementioned schema to 
represent DDS types in JSON format:

• dds-json_types_example.json

7.3.4 Building Block Domains

7.3.4.1 Purpose

This building block defines the syntax used to represent DDS Domains in JSON. Domains provide a data space where 
information can be shared by reading and writing a set of Topics, which are associated to registered data types.

7.3.4.2 Dependencies with other Building Blocks

This building block depends on Building Block QoS and Building Block Types.

7.3.4.3 Syntax

The following normative JSON schema file defines the syntax to represent DDS Domains in JSON format:

• dds-json_domains.schema.json

Moreover, the following non-normative file contains an example on how to apply the aformentioned schema to 
represent DDS Domains in JSON format:
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• dds-json_domains_example.json

7.3.4.4 Explanations and Semantics

7.3.4.4.1 Defining a Domain

A Domain includes a set of Topics and Registered Types that can be read and written within the Domain.

Registered types shall provide a reference to data types that have been previously defined using the "type_ref" 
property of the object representing the registered type. The name under which types are registered may be different than
original type name.

Topics shall refer to a registered type using the "register_type_ref" property of the object representing the Topic. 
Topics may also specify QoS settings inline following the syntax defined in the Building Block QoS. The syntax 
supports QoS Profile inheritance through the "base_name" property, as specified in Clause 7.3.2.4.2.

7.3.4.4.1.1 Example (Non-normative)

{
    "name": "MyDomain",
    "domain_id": 10,
    "register_types": [
        {
            "name": "MyFirstRegisterType",
            "type_ref": "MyType"
        },
        {
            "name": "MySecondRegisterType",
            "type_ref": "MyType"
        }
    ],
    "topics": [
        {
            "name": "FirstTopic",
            "register_type_ref": "MyFirstRegisterType",
            "topic_qos": {
                "base_name": "BaseQoSProfile"
            }
        },
        {
            "name": "SecondTopic",
            "register_type_ref": "MySecondRegisterType"
        }
    ]
}

7.3.4.4.2 Domain Inheritance

A Domain can inherit from another Domain using the "base_name" property of the JSON object representing the 
Domain. The base domain name shall be preceded by the name of the containing Domain Library and two separating 
colons (i.e., "::"), according to the following expression: "<baseDomainLibraryName>::<baseDomainName>".

7.3.4.4.2.1 Example (Non-normative)

{
    "name": "MyDomain",
    "base_name": "BaseDomainLibraryName::BaseDomain",
    ...
}
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7.3.5 Building Block DomainParticipants

7.3.5.1 Purpose

This building block defines the syntax to represent DDS DomainParticipants and all their contained entities (i.e., 
Publishers, Subscribers, DataWriters, and DataReaders) in JSON.

7.3.5.2 Dependencies with other Building Blocks

This building block depends on Building Block QoS, Building Block Types, and Building Block Domains.

7.3.5.3 Syntax

The following normative JSON schema file defines the syntax to represent DDS entities in JSON format:

• dds-json_domainparticipants.schema.json

Moreover, the following non-normative file contains an example on how to apply the aforementioned schema to 
represent DDS entities in JSON format:

• dds-json_domainparticipants_example.json 

7.3.5.4 Explanations and Semantics

7.3.5.4.1 DomainParticipant Libraries, DomainParticipants, and Contained Entities

DomainParticipant Libraries are collections of DomainParticipants and contained entities. They are the top level 
elements of the Building Block DomainParticipants.

DomainParticipants are responsible for the creation and deletion of Publishers and Subscribers, which are in turn 
responsible for the creation and deletion of DataWriters and DataReaders. 

To represent this hierarchical relationship between DDS entities, each entity is declared as a nested JSON property 
within the declaration of its parent entity. 

7.3.5.4.1.1 Example (Non-normative)

{
    "name": "MyDomainParticipantLibrary",
    "domain_participants": [
        {
            "name": "MyDomainParticipant",
            "domain_ref": "MyDomainLibrary::MyDomain",
            "publishers": [
                {
                    "name": "MyPublisher",
                    "data_writers": [
                        {
                            "name": "MyDataWriter",
                            "topic_ref": "MyTopic"
                        }
                    ]
                }
            ],
            "subscribers": [
                {
                    "name": "MySubscriber",
                    "data_readers": [
                        {
                            "name": "MyDataReader",
                            "topic_ref": "MyTopic"
                        }
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                    ]
                }
            ]
        }
    ]
}

7.3.5.4.2 Using the Domain Building Block

DomainParticipants may refer to a Domain declared in the context of a Domain Library (see Building Block Domains) 
using the "domain_ref" property of the corresponding JSON object. This makes the Topics and Registered Types 
defined in the Domain available for all the DataWriters and DataReaders defined in the context of the 
DomainParticipant.

The Domain ID specified in the parent Domain can be overridden via the "domain_id" property of the 
DomainParticipant’s  JSON object. 

7.3.5.4.2.1 Example (Non-normative)

{
    "name": "MyDomainParticipant",
    "domain_ref": "MyDomainLibrary::MyDomain",
    "domain_id": 32,
    ...
}

7.3.5.4.3 DomainParticipant Inheritance

A DomainParticipant may inherit from another DomainParticipant defined in the context of a DomainParticipant 
Library using the "base_name" property of the corresponding JSON object. The name of the base DomainParticipant 
shall be preceded by the name of the containing DomainParticipant Library and two separating colons (i.e., "::"), 
according to the following expression: 
"<baseDomainParticipantLibraryName>::<baseDomainParticipantName>".

7.3.5.4.3.1 Example (Non-normative)

{
    "name": "MyDomainParticipantLibrary",
    "domain_participants": [
        {
            "name": "MyDomainParticipant",
            "base_name": "BaseDomainParticipantLibraryName::BaseDomainParticipantName",
            ...
        }
    ]
}

7.3.5.4.4 Inline Entity QoS Settings Definition

Inline definition of QoS Policies is allowed in the context of an entity definition. Inline QoS settings apply only to the 
entity that is being defined. These definitions support QoS Profile inheritance through the "base_name" property as 
specified in Clause 7.3.2.4.2. 

7.3.5.4.4.1 Example (Non-normative)

{
    "name": "MyDomainParticipantLibrary",
    "domain_participants": [
        {
            "name": "MyDomainParticipant",
            ...
            "domain_participant_qos": {
                "base_name": "BaseQosLibraryName::BaseQosProfileName",
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                "entity_factory": {
                    "autoenable_created_entities": false
                }
            },
            ...
        }
    ]
}

7.3.6 Building Block Applications

7.3.6.1 Purpose

This building block defines syntax to represent DDS applications that participate (or may be participating) in the DDS 
Global Data Space in JSON format. 

7.3.6.2 Dependencies with other Building Blocks

This building block depends on Building Block QoS, Building Block Types, Building Block Domains, and Building 
Block DomainParticipants.

7.3.6.3 Syntax

The following normative JSON schema file defines the syntax to represent DDS applications and their contained 
entities in JSON format:

• dds-json_applications.schema.json

Moreover, the following non-normative file contains an example on how to apply the aforementioned schema to 
represent applications in JSON format:

• dds-json_applications_example.json

7.3.6.4 Explanations and Semantics

7.3.6.4.1 Applications, DomainParticipants, and Contained Entities

Application Libraries are collections of Applications. Applications are in turn aggregations of DomainParticipants and 
their contained entities. Application Libraries are the top level elements of Building Block Applications. 

7.3.6.4.1.1 Example (Non-normative)

{
    "name": "MyApplicationLibrary",
    "applications": [
        {
            "name": "MyApplication",
            "domain_participants": [
                {
                    "name": "MyParticipant",
                    "domain_ref": "BaseDomainLibraryName::BaseDomainName",
                    "publishers": [
                        {
                            "name": "MyPublisher",
                            "data_writers": [
                                {
                                    "name": "MySquareWriter",
                                    "topic_ref": "Square"
                                }
                            ]
                        }
                    ],
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                    "subscribers": [
                        {
                            "name": "MySubscriber",
                            "data_readers": [
                                {
                                    "name": "MySquareReader",
                                    "topic_ref": "Square"
                                }
                            ]
                        }
                    ]
                }
            ]
        }
    ]
}

7.3.6.4.2 Using DomainParticipants defined in DomainParticipant Libraries

DomainParticipants defined in the context of an Application may inherit from a DomainParticipant defined in the 
context of a DomainParticipant Library using the "base_name" property, as specified in Clause 7.3.5.4.3. 

7.3.6.4.2.1 Example (Non-normative)

{
    "name": "MyApplication",
    "domain_participants" : [
        {
            "name": "MyParticipant",
            "base_name": "BaseDomainParticipantLibraryName::BaseDomainParticipantName",
            ...
        }
    ]
}

7.3.7 Building Block Data Samples

7.3.7.1 Purpose

This block defines syntax to represent Data Samples that may be exchanged between different DDS applications in 
JSON format.

7.3.7.2 Dependencies with other Building Blocks

This building block has no dependencies on other building blocks. 

7.3.7.3 Syntax

The following normative JSON schema file defines the syntax to represent DDS Data Samples and Sample 
Information:

• dds-json_data_samples.schema.json

Moreover, the following non-normative file contains an example on how to apply the aforementioned schema to 
represent Data Samples and Sample Information in JSON format:

• dds-json_data_samples_example.json

Because it is impossible to define a generic JSON schema file to represent Data Samples for all the possible Data Type 
combinations in DDS, dds-json_data_samples.schema.json defines just the syntax that is common to the representation 
of all Data Samples: the syntax to represent the Sample Information (i.e., the metadata portion of the sample), and the 
syntax to represent primitive types.
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Therefore, the complete syntax to represent Data Samples is based on the mapping rules and JSON schema definitions 
specified in this building block, and the syntax to represent Sample Information specified in dds-
json_data_samples.schema.json. 

Implementers of this specification who may want to define and provide schema files to validate the syntax of Data 
Samples of user-defined data types shall generate JSON schema files following the rules specified in this building 
block, adding the syntax to define Sample Information defined in dds-json_data_samples.schema.json.

7.3.7.4 Explanations and Semantics

7.3.7.4.1 JSON Representation of Structures

Structures shall be represented as JSON objects including members of the structure as properties of the corresponding 
object. The name of the corresponding properties shall be the name of the structure members with no changes.

Unset optional members shall be omitted from the sample representation.

7.3.7.4.1.1 Example (Non-normative)

For a structured type defined in IDL as follows:
struct InnerStruct {
    long x;
    long y;
};
struct OuterStruct {
    long a;
    InnerStruct s;
};

The JSON representation of a sample would need to comply with the following schema:
{
    "$schema": "http://json-schema.org/draft-07/schema#",
    "definitions": {
        "InnerStruct": {
            "type": "object",
            "properties": {
                "x": {
                    "type": "integer"
                },
                "y": {
                    "type": "integer"
                }
            }
        }
    },
    "type": "object",
    "properties": {
        "s": {
            "$ref": "#/definitions/InnerStruct"
        },
        "a": {
            "type": "integer"
        }
    }
}

For example:
{
    "a": 5,
    "s": {
        "x": 4,
        "y": 3
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    }
}

7.3.7.4.2 JSON Representation of Unions

Unions shall be represented as JSON objects including the specific union case that was selected as a property. 
Therefore, the mapping is equivalent to that of a structure with the member selected by the union case (see Clause
7.3.7.4.1). The property name shall be the name of the original union member with no changes.

The JSON representation of a Union may optionally include the value of the discriminator field for reference. In that 
case, the discriminator shall be represented as a property of named "$discriminator".

7.3.7.4.2.1 Example (Non-normative)

For a union type defined in IDL as follows:
union MyUnion switch(long) {
case 1:
    float x;
case 2:
    long y;
default:
    string z;
};

The JSON representation of a sample containing the union would need to comply with the following schema:
{
    "$schema": "http://json-schema.org/draft-07/schema#",
    "type": "object",
    "oneOf": [
        {
            "properties": {
                "$discriminator": {
                    "type": "integer"
                },
                "x": {
                    "type": "number"
                }
            },
            "additionalProperties": false
        },
        {
            "properties": {
                "$discriminator": {
                    "type": "integer"
                },
                "y": {
                    "type": "integer"
                }
            },
            "additionalProperties": false
        },
        {
            "properties": {
                "$discriminator": {
                    "type": "integer"
                },
                "z": {
                    "type": "string"
                }
            },
            "additionalProperties": false
        }
    ]
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}

For example:
{
    "$discriminator": 1,
    "x": 4.5
}

or 
{
    "x": 4.5
}

7.3.7.4.3 JSON Representation of Sequences and Arrays

Sequences and arrays shall be represented as JSON arrays of the corresponding type. Sequence and array elements 
shall be represented as elements of the corresponding JSON array according to the mapping rules specified in this 
building block.

7.3.7.4.3.1 Example (Non-normative)

For a sequence defined in IDL as:
struct Coordinates {
    long x;
    long y;
};
struct OuterStruct {
    sequence<Coordinates> coordinates_sequence;
};

The JSON representation of a sample would need to comply with the following schema:
{
    "$schema": "http://json-schema.org/draft-07/schema#",
    "definitions": {
        "Coordinates": {
            "type": "object",
            "properties": {
                "x": {
                    "type": "integer"
                },
                "y": {
                    "type": "integer"
                }
            }
        },
        "CoordinatesSeq": {
            "type": "array",
            "items": {
                "$ref": "#/definitions/Coordinates"
            }
        }
    },
    "type": "object",
    "properties": {
        "coordinates_sequence": {
            "$ref": "#/definitions/CoordinatesSeq"
        }
    }
}

For example:
[
    {
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        "x": 1,
        "y": 15
    },
    {
        "x": 4,
        "y": 11
    }
]

7.3.7.4.4 JSON Representation of Maps

Maps shall be represented as JSON objects. Each map element shall become a property of the corresponding JSON 
object, using the string representation of the map element key as the property name, and the equivalent JSON 
representation of the map value as the property value.

In the case of signed and unsigned integer key types, the string representation shall present the integer value in base 10.
For string and wstring key types, the value of the map key shall be the value of the string with no changes1.

7.3.7.4.4.1 Example (Non-normative)

For example, samples of a structure containing maps represented in IDL as follows:
struct MyStruct {
    map<string,long> known_satellites;
    map<long,char> ascii_characters;
};

Would need to conform with the following schema:
{
    "$schema": "http://json-schema.org/draft-07/schema#",
    "type": "object",
    "properties": {
        "known_satellites": {
            "type": "object",
            "properties": {
                "earth": {
                    "type": "integer"
                },
                "mars": {
                    "type": "integer"
                },
                ...
            }
        },
        "ascii_characters": {
            "type": "object",
            "properties": {
                "65": {
                    "type": "string",
                    "maxLength": 1
                },
                "97": {
                    "type": "string",
                    "maxLength": 1
                },
                ...
            }
        }
    }
}

1 Clause 7.2.2.4.3 of [DDS-XTYPES] mandates compliant implementations to support map key types of signed and unsigned 
integer, string, and wide string type. The behavior for other key types is undefined and may not be portable; therefore, the string 
representation of key types other those expliclty listed in [DDS-XTYPES] is out of the scope of this specification.
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For example:
{
    "known_satelites": {
        "earth": 1,
        "mars": 2,
    },
    "ascii_characters": {
        "65": "A",
        "97": "a"
    }
}

7.3.7.4.5 JSON Representation of Enums

Enums shall be represented as properties of integer or string type holding the value of the corresponding enumeration 
literal2.

7.3.7.4.5.1 Example (Non-normative)

Samples of a structure containing an enum, represented in IDL as follows:
enum Weekday {
    @value(1) MONDAY,
    @value(2) TUESDAY,
    @value(3) WEDNESDAY,
    ...
};
struct MyStruct {
    Weekday wd;
};

Would need to conform with the following schema:
{
    "$schema": "http://json-schema.org/draft-07/schema#",
    "type": "object",
    "definitions": {
        "Weekday": {
            "oneOf": [
                {
                    "type": "string",
                    "enum": [
                        "MONDAY",
                        "TUESDAY",
                        "WEDNESDAY",
                        ...
                    ]
                },
                {
                    "type": "integer"
                }
            ]
        }
    },
    "properties": {
        "wd": {
            "$ref": "#/definitions/Weekday"
        }
    }
}

2 This enables implementers of this specification to select one of the two representations to encode the value of an enum 
depending on the use case. Implementations shall be capable of converting the string or integer value representing the 
corresponding enumeration literal into the corresponding internal representation accordingly.
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For example:
{
    "wd": "MONDAY"
}

or
{
    "wd": 1
}

7.3.7.4.6 JSON Representation of Bitmasks

Bitmasks shall be represented as properties of integer type holding the value of the corresponding Bitmask.

7.3.7.4.7 JSON Representation of String Types

Strings and wide strings shall be represented as properties of string type holding the value of the corresponding string.

7.3.7.4.7.1 Example (Non-normative)

Samples of a structure containing strings, represented IDL as follows:
struct MyStruct {
    wstring a_string;
    string another_string;
};

Would need to conform with the following schema:
{
    "$schema": "http://json-schema.org/draft-07/schema#",
    "type": "object",
    "properties": {
        "a_string": {
            "type": "string"
        },
        "another_string": {
            "type": "string"
        }
    }
}

For example:
{
    "a_string": "A string!",
    "another_string": "El r\u00EDo mi\u00F1o"
}

7.3.7.4.8 JSON Representation of Primitive Types

Primitive types shall be represented as properties of JSON objects or elements of JSON arrays, according to the 
mapping rules for the containing type specified in this building block. The type definition for each primitive type in the 
DDS type system is defined in Table 7.1.

Table 7.1: JSON Representation of Primitive Types

Type JSON Schema Example

boolean {
    "type": "boolean"
}

{
    "my_boolean": true
}
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Type JSON Schema Example

byte {
    "type": "integer",
    "minimum": 0,
    "maximum": 255
}

{
    "my_byte": 1
}

int8 {
    "type": "integer",
    "minimum": -127,
    "maximum": 128
}

{
    "my_int8": -3
}

uint8 {
    "type": "integer",
    "minimum": 0,
    "maximum": 255
}

{
    "my_uint8": 2
}

int16 {
    "type": "integer",
    "minimum": -32768,
    "maximum": 32767
}

{
    "my_int16": -32000
}

uint16 {
    "type": "integer",
    "minimum": 0,
    "maximum": 65535
}

{
    "my_uint16": 64000
}

int32 {
    "type": "integer",
    "minimum": -2147483648,
    "maximum": 2147483647
}

{
    "my_int32": -21000000
}

uint32 {
    "type": "integer",
    "minimum": 0,
    "maximum": 4294967295
}

{
    "my_int32": 21000000
}

int64 {
    "oneOf": [
        {
            "type": "integer",
            "minimum": -9007199254740991,
            "maximum": 9007199254740991
        },
        {
            "type": "string"
        }
    ]
}

{
    "my_int64": -31321212111
}

{
    "my_int64": 
        "-9007199254740992"
}

uint64 {
    "type": "integer",
    "minimum": 0,
    "maximum": 9007199254740991
}

{
    "my_int64": 31321212111
}

{
    "my_int64": 
        "9007199254740992"
}
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Type JSON Schema Example

float32 {
    "type": "number"
}

{
    "my_float32": 3.14
}

float64 {
    "type": "number"
}

{
    "my_float64": 3.14345
}

float128 {
    "type": "string"
}

{
    "my_float128": "My4xNA=="
}

char8 {
    "type": "string"
}

{
    "my_char8": "a"
}

char16 {
    "type": "string"
}

{
    "my_char16": "\u007E"
}

{
    "my_char16": "a"
}

As shown in Table 7.1, values of most DDS primitive types can be represented using simply native JSON types. 
However, the following primitive types require special mapping rules:

• byte values shall be represented as properties of integer type in the range [0, 255] using base 10.

• int64 values in the range [-253 + 1, 253 - 1] shall be represented as properties of integer type. Valid int64 
values outside that range shall be represented as strings including the numeric value in base 103. 

• uint64 values in the range [0, 253 - 1] shall be represented as properties of integer type. Valid uint64 values 
outside that range shall be represented as strings including the numeric value in base 103.

• float128 values shall be represented as properties of string type encoding the value of the float128 
member using base64 according to [RFC-4648].

Numeric values, such as Infinity, -Infinity, and NaN, which as stated in [ECMA-404] cannot be represented as 
sequences of digits, shall be represented using the following JSON strings: "inf", "-inf", and "nan".

3 This mapping is consistent with the recommendations of [RFC-8259] and the I-JSON profile defined in [RFC-7493]. The latter 
states that “an I-JSON sender cannot expect an integer whose absolute value is greater than 9007199254740991 (i.e., that is 
outside the range [-253 + 1, 253 - 1]) as an exact value.”
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