
Date: December 20112012

Java 5 Language PSM for DDS
(DDS-PSM-Java)

FTF Beta 2 Beta 3

__

OMG Document Number: ptc/2011-10-072012-12-02

Standard document URL: http://www.omg.org/spec/DDS-Java/1.0/Beta3/PDF

http://www.omg.org/spec/DDS-Java/1.0

Associated Schema File(s): http://www.omg.org/spec/DDS-
Java/20101101http://www.omg.org/spec/DDS-Java/20121201

 http://www.omg.org/spec/DDS-Java/20101102

__

* original files: ptc/2011-10-09 (omgdds.jar), ptc/2011-10-08 (omgdds_src.zip)
* original files: ptc/2012-10-09 (omgdds.jar), ptc/2012-10-10 (omgdds_src.zip)

This OMG document replaces the Beta 1 2 document (ptc/2011-01-012011-10-07). It is
an OMG Adopted Beta Specification and is currently in the finalization phase.
Comments on the content of this document are welcome, and should be directed to
issues@omg.org by August 29, 2011.

You may view the pending issues for this specification, if any, from the OMG revision
web page http://www.omg.org/issues/.

The FTF Recommendation and Report for this specification will be published on
November 7, 2011 December 21, 2012. If you are reading this after that date, please
download the available specification from the OMG Specifications Catalog.

Field Code Changed

Formatted: Font: Not Bold

Formatted: Default Paragraph Font, Font:
(Default) Times New Roman, Not Bold

Formatted: Font: Not Bold

http://www.omg.org/spec/DDS-Java/1.0/Beta3/PDF
mailto:issues@omg.org
http://www.omg.org/issues/

Copyright © 2010, Object Management Group, Inc. (OMG)

Copyright © 2010, PrismTech

Copyright © 2010, Real-Time Innovations, Inc. (RTI)

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance

with the terms, conditions and notices set forth below. This document does not represent a

commitment to implement any portion of this specification in any company's products. The

information contained in this document is subject to change without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a

nonexclusive, royalty-free, paid up, worldwide license to copy and distribute this document and

to modify this document and distribute copies of the modified version. Each of the copyright

holders listed above has agreed that no person shall be deemed to have infringed the copyright in

the included material of any such copyright holder by reason of having used the specification set

forth herein or having conformed any computer software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification

hereby grant you a fully-paid up, non-exclusive, nontransferable, perpetual, worldwide license

(without the right to sublicense), to use this specification to create and distribute software and

special purpose specifications that are based upon this specification, and to use, copy, and

distribute this specification as provided under the Copyright Act; provided that: (1) both the

copyright notice identified above and this permission notice appear on any copies of this

specification; (2) the use of the specifications is for informational purposes and will not be

copied or posted on any network computer or broadcast in any media and will not be otherwise

resold or transferred for commercial purposes; and (3) no modifications are made to this

specification. This limited permission automatically terminates without notice if you breach any

of these terms or conditions. Upon termination, you will destroy immediately any copies of the

specifications in your possession or control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG

specifications may require use of an invention covered by patent rights. OMG shall not be

responsible for identifying patents for which a license may be required by any OMG

specification, or for conducting legal inquiries into the legal validity or scope of those patents

that are brought to its attention. OMG specifications are prospective and advisory only.

Prospective users are responsible for protecting themselves against liability for infringement of

patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and

communications regulations and statutes. This document contains information that is protected

by copyright. All Rights Reserved. No part of this work covered by copyright herein may be

reproduced or used in any form or by any means--graphic, electronic, or mechanical, including

photocopying, recording, taping, or information storage and retrieval systems--without

permission of the copyright owner.

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS"

AND MAY CONTAIN ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP

AND THE COMPANIES LISTED ABOVE MAKE NO WARRANTY OF ANY KIND,

EXPRESS OR IMPLIED, WITH REGARD TO THIS PUBLICATION, INCLUDING BUT

NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY

OF MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE

OR USE. IN NO EVENT SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE

COMPANIES LISTED ABOVE BE LIABLE FOR ERRORS CONTAINED HEREIN OR FOR

DIRECT, INDIRECT, INCIDENTAL, SPECIAL, CONSEQUENTIAL, RELIANCE OR

COVER DAMAGES, INCLUDING LOSS OF PROFITS, REVENUE, DATA OR USE,

INCURRED BY ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE

FURNISHING, PERFORMANCE, OR USE OF THIS MATERIAL, EVEN IF ADVISED OF

THE POSSIBILITY OF SUCH DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is

borne by you. This disclaimer of warranty constitutes an essential part of the license granted to

you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in

subparagraph (c) (1) (ii) of The Rights in Technical Data and Computer Software Clause at

DFARS 252.227-7013 or in subparagraph (c)(1) and (2) of the Commercial Computer Software -

Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified in 48 C.F.R. 227-7202-2 of the

DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of the Federal

Acquisition Regulations and its successors, as applicable. The specification copyright owners are

as indicated above and may be contacted through the Object Management Group, 140 Kendrick

Street, Needham, MA 02494, U.S.A.

TRADEMARKS

MDA®, Model Driven Architecture®, UML®, UML Cube logo®, OMG Logo®, CORBA® and

XMI® are registered trademarks of the Object Management Group, Inc., and Object

Management Group™, OMG™ , Unified Modeling Language™, Model Driven Architecture

Logo™, Model Driven Architecture Diagram™, CORBA logos™, XMI Logo™, CWM™,

CWM Logo™, IIOP™ , IMM™ , MOF™ , OMG Interface Definition Language (IDL)™ , and

OMG SysML™ are trademarks of the Object Management Group. All other products or

company names mentioned are used for identification purposes only, and may be trademarks of

their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting

itself or through its designees) is and shall at all times be the sole entity that may authorize

developers, suppliers and sellers of computer software to use certification marks, trademarks or

other special designations to indicate compliance with these materials.

Software developed under the terms of this license may claim compliance or conformance with

this specification if and only if the software compliance is of a nature fully matching the

applicable compliance points as stated in the specification. Software developed only partially

matching the applicable compliance points may claim only that the software was based on this

specification, but may not claim compliance or conformance with this specification. In the event

that testing suites are implemented or approved by Object Management Group, Inc., software

developed using this specification may claim compliance or conformance with the specification

only if the software satisfactorily completes the testing suites.

OMG’s Issue Reporting Procedure

All OMG specifications are subject to continuous review and improvement. As part of this

process we encourage readers to report any ambiguities, inconsistencies, or inaccuracies they

may find by completing the Issue Reporting Form listed on the main web page

http://www.omg.org, under Documents, Report a Bug/Issue

(http://www.omg.org/technology/agreement.)

Java 5 Language PSM for DDS, Beta 1 i

Table of Contents

1 Scope... 1

2 Conformance ... 1

3 References .. 1
3.1 Normative References.. 1
3.2 Non-Normative References ... 2

4 Terms and Definitions ... 2

5 Symbols .. 3

6 Additional Information .. 3
6.1 Changes to Adopted OMG Specifications .. 3
6.2 Relationships to Non-OMG Specifications... 3
6.3 Acknowledgements .. 4

7 Java 5 Language PSM for DDS ... 4
7.1 General Concerns and Conventions ... 4

7.1.1 Packages and Type Organization ... 4
7.1.2 Implementation Coexistence ... 5
7.1.3 Resource Management .. 5
7.1.4 Concurrency and Reentrancy ... 6
7.1.5 Method Signature Conventions ... 7
7.1.6 API Extensibility ... 7

7.2 Infrastructure Module ... 7
7.2.1 ServiceEnvironment Class .. 8
7.2.2 Error Handling and Exceptions ... 8
7.2.3 Value Types ... 10
7.2.4 Time and Duration ..1110
7.2.5 QoS and QoS Policies ..1110
7.2.6 Entity Base Interfaces .. 13
7.2.7 Entity Status Changes .. 1413

7.3 Domain Module.. 1514
7.3.1 DomainParticipantFactory Interface ... 15
7.3.2 DomainParticipant Interface ... 15

7.4 Topic Module .. 1615
7.4.1 Type Support ... 1615
7.4.2 Topic Interface .. 1615
7.4.3 ContentFilteredTopic and MultiTopic Interfaces.. 16
7.4.4 Discovery Interfaces .. 1716

7.5 Publication Module .. 1716
7.5.1 Publisher Interface .. 1716
7.5.2 DataWriter Interface .. 1716

7.6 Subscription Module ... 1817
7.6.1 Subscriber Interface .. 1817
7.6.2 Sample Interface ... 1817

ii Java 5 Language PSM for DDS, Beta 1

7.6.3 DataReader Interface .. 18
7.7 Extensible and Dynamic Topic Types Module ... 2019

7.7.1 Dynamic Language Binding .. 2019
7.7.2 Built-in Types .. 2221
7.7.3 Representing Types with TypeObject ... 2221

8 Java Type Representation and Language Binding .. 2321
8.1 Default Mappings .. 2322
8.2 Metadata... 2423
8.3 Primitive Types .. 2423
8.4 Collections .. 2524

8.4.1 Strings ... 2524
8.4.2 Maps .. 2524
8.4.3 Sequences and Arrays .. 2624

8.5 Aggregated Types ... 2625
8.5.1 Structures .. 2625
8.5.2 Unions ... 2726

8.6 Enumerations and Bit Sets .. 2726
8.7 Modules .. 2726
8.8 Annotations .. 2726

9 Improved Plain Language Binding for Java .. 2726
9.1 TypeMapping ... 2826

9.1.1 Mapping Aggregation Types.. 2826
9.1.2 Mapping Sequences and Arrays... 2827

9.2 Example (non-normative) ... 2827

Annex A: Java JAR Library File ... 3129

Annex B: Java Source Code ... 3230

Java 5 Language PSM for DDS, Beta 1 iii

Preface

OMG

Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-

profit computer industry standards consortium that produces and maintains computer industry

specifications for interoperable, portable, and reusable enterprise applications in distributed,

heterogeneous environments. Membership includes Information Technology vendors, end users,

government agencies, and academia.

OMG member companies write, adopt, and maintain its specifications following a mature, open
process. OMG’s specifications implement the Model Driven Architecture® (MDA®),

maximizing ROI through a full-lifecycle approach to enterprise integration that covers multiple

operating systems, programming languages, middleware and networking infrastructures, and

software development environments. OMG’s specifications include: UML® (Unified Modeling

Language™); CORBA® (Common Object Request Broker Architecture); CWM™ (Common

Warehouse Metamodel); and industry-specific standards for dozens of vertical markets.

More information on the OMG is available at http://www.omg.org/.

OMG Specifications

As noted, OMG specifications address middleware, modeling and vertical domain frameworks. A
Specifications Catalog is available from the OMG website at:

http://www.omg.org/technology/documents/spec_catalog.htm

Specifications within the Catalog are organized by the following categories:

OMG Modeling Specifications

 UML

 MOF

 XMI

 CWM

 Profile specifications

OMG Middleware Specifications

 CORBA/IIOP

 IDL/Language Mappings

 Specialized CORBA specifications

 CORBA Component Model (CCM)

Platform Specific Model and Interface Specifications

 CORBAservices

iv Java 5 Language PSM for DDS, Beta 1

 CORBAfacilities

 OMG Domain specifications

 OMG Embedded Intelligence specifications

 OMG Security specifications

All of OMG’s formal specifications may be downloaded without charge from our website.

(Products implementing OMG specifications are available from individual suppliers.) Copies of

specifications, available in PostScript and PDF format, may be obtained from the Specifications

Catalog cited above or by contacting the Object Management Group, Inc. at:

Certain OMG specifications are also available as ISO standards. Please consult

http://www.iso.org.

Typographical Conventions

The type styles shown below are used in this document to distinguish programming statements
from ordinary English. However, these conventions are not used in tables or section headings

where no distinction is necessary.

Helvetica/Arial - 10 pt. Bold:

Courier - 10 pt. Bold:

Helvetica/Arial - 10 pt

Terms that appear in italics are defined in the glossary. Italic text also represents the
name of a document, specification, or other publication.

http://www.iso.org/

Java 5 Language PSM for DDS, Beta 1 1

1 Scope

This specification defines a platform-specific model (PSM) for the OMG Data Distribution

Service for Real-Time Systems (DDS). It specifies an API only for the Data-Centric Publish-

Subscribe (DCPS) portion of that specification; it does not address the Data Local

Reconstruction Layer (DLRL). In addition, it encompasses (a) the DDS APIs introduced by

[DDS-XTypes] and (b) an API to specifying QoS libraries and profiles such as were specified by

[DDS-CCM].

This specification also defines a means of publishing and subscribing Java objects with DDS—

the Java Type Representation—without first describing the types of those objects in another

language, such as XML or OMG IDL.

2 Conformance

This specification consists of this document as well as a Java jar library file and the source files

that generated it, identified on the cover page. All are normative. In the event of a conflict

between them, the latter shall prevail.

Conformance to this specification parallels conformance to the DDS specification itself and

consists of the same conformance levels. For example, an implementation may conform to the
DDS Minimum Profile with respect to this PSM, meaning that all of the programming interfaces

identified by the DDS specification as pertaining to that conformance level must be implemented

in this PSM. The one exception to this rule is the Object Model Profile, which includes in part

the Data Local Reconstruction Layer (DLRL); DLRL is outside of the scope of this PSM.

In addition to the conformance levels defined in the DDS specification itself, this PSM

recognizes and implements the Extensible and Dynamic Types conformance level for DDS

defined by the Extensible and Dynamic Topic Types for DDS specification [DDS-XTypes].

This PSM furthermore defines methods to create Entities and to set their QoS based on the XML

QoS libraries and profiles defined by the DDS for Lightweight CCM specification.

Implementations that support these XML QoS profiles shall implement these operations fully;

other implementations shall throw java.lang.UnsupportedOperationException.

Finally, any conformant implementation must support at least one of the OMG-specified Type
Representations defined by [DDS-XTypes] and/or in the Java Type Representation section of this

specification (8 below).

3 References

3.1 Normative References

The following normative documents contain provisions that, through reference in this text,
constitute provisions of this specification. For dated references, subsequent amendments to, or

revisions of, any of these publications do not apply.

2 Java 5 Language PSM for DDS, Beta 1

 [DDS] Data Distribution Service for Real-Time Systems Specification, version 1.2 (OMG
document formal/2007-01-01).

 [DDS-CCM] DDS for Lightweight CCM, version 1.0 Beta 1 (OMG document ptc/2009-

02-02).

 [DDS-XTypes] Extensible and Dynamic Topic Types for DDS, version 1.0 Beta 1 (OMG
document ptc/2010-05-12).

 [Java-MAP] IDL to Java Language Mapping, Version 1.3 (OMG document
formal/2008-01-11)

 [Java-Lang] The Java Language Specification, Third Edition, published by Addison
Wesley in 2005 with ISBN 0321246780

 [XML] Extensible Markup Language (XML), version 1.1, Second Edition (W3C

recommendation, August 2006).

3.2 Non-Normative References

The following non-normative references are provided for informational purposes.

 [JMS] Java Message Service Specification, version 1.1 (Sun Microsystems,

http://java.sun.com/products/jms/docs.html).

4 Terms and Definitions

For the purposes of this specification, the following terms and definitions apply.

Data-Centric Publish-Subscribe (DCPS)

The mandatory portion of the DDS specification used to provide the functionality required for an

application to publish and subscribe to the values of data objects.

Data Distribution Service (DDS)

An OMG distributed data communications specification that allows Quality of Service policies

to be specified for data timeliness and reliability. It is independent of implementation languages.

Data Local Reconstruction Layer

The optional portion of the DDS specification used to provide the functionality required for an
application for direct access to data exchanged at the DCPS layer. This later builds upon the

DCPS layer.

Java Archive (JAR)

A zip file, whose name ends in the suffix .jar, that contains the compiled Java class files and

other artifacts that comprise a Java library.

Formatted: Font: 12 pt

http://java.sun.com/products/jms/docs.html

Java 5 Language PSM for DDS, Beta 1 3

Java Runtime Environment (JRE)

The environment within which Java applications execute. The JRE consists of an executing

instance of a JVM, a set of class libraries, and potentially other components.

Java Virtual Machine (JVM)

An abstract computing machine capable of executing interpreted and/or compiled Java byte

code. JVM implementations typically take the form of executables that run as processes under

operating systems, but this style of implementation is not mandatory.

Platform-Independent Model (PIM)

An abstract definition of a facility, often expressed with the aid of formal or semi-formal

modeling languages such as OMG UML, that does not depend on any particular implementation

technology.

Platform-Specific Model (PSM)

A concrete definition of a facility, typically based on a corresponding PIM, in which all

implementation-specific dependencies have been resolved.

5 Symbols

This specification does not define any symbols or abbreviations.

6 Additional Information

6.1 Changes to Adopted OMG Specifications

This specification does not extend or modify any existing OMG specifications.

6.2 Relationships to Non-OMG Specifications

This specification depends on version 5 of the Java Standard Edition platform. Service

implementations may impose additional constraints; the nature and scope of these, if any, are

unspecified.

Design Rationale (non-normative)

As of the publication of this specification, Java SE remains the predominant platform for the

development and deployment of DDS Java applications.

 Introducing a dependency on Java EE would have brought little additional capability to
the PSM and would have put it outside of the reach of many potential users, especially

those deploying to embedded operating systems, many of which do support Java EE.

 Allowing the PSM to support Java ME would have made it less usable for the majority of

potential users: as of the publication of this specification, Java ME platforms lack support

for many modern collections and Java language features. At the same time, support for

4 Java 5 Language PSM for DDS, Beta 1

Java ME would not have significantly increased the availability of implementations of

this specification: many embedded platforms already support Java SE, and existing DDS

vendors have not observed significant customer demand for Java ME support in existing

products.

6.3 Acknowledgements

The following companies submitted this specification:

 Real-Time Innovations, Inc. (RTI)

 PrismTech

7 Java 5 Language PSM for DDS

The specification below is organized according to the module defined by the DDS specification

and the types and operations defined within them.

7.1 General Concerns and Conventions

This section defines those elements of this specification that cut across multiple DDS modules.

7.1.1 Packages and Type Organization

This PSM is defined in a set of Java packages, the names of each beginning with the prefix

org.omg.dds. Each of these contains a Java interface or abstract class for each type in the

corresponding DDS module.

All of these packages, and the types within them, are packaged into a single JAR file,

omgdds.jar (see Annex A: Java JAR Library File).

All those types that are abstract—including interfaces and abstract classes—are intended to be

implemented concretely by the Service implementation. In addition, the subtypes defined by the

implementation may expose additional implementation-specific properties and operations;

however, the nature of these, if any, is undefined.

Design Rationale (non-normative)

This PSM divides the types it defines into multiple packages, rather than collocating them in a

single package, for the following reasons:

 DDS defines a large number of types. Grouping them into multiple packages makes it
clear which are more closely related to one another.

 The package organization improves traceability to the DDS PIM ([DDS]).

 The package organization parallels the namespace organization of the C++ PSM for

DDS, facilitating cross-training across languages.

Java 5 Language PSM for DDS, Beta 1 5

7.1.2 Implementation Coexistence

To facilitate the coexistence of multiple DDS implementations within the same JVM instance,

each implementation of this PSM shall cooperate at the API level with other JVM-local

implementations in at least the following ways:

 It shall be possible to pass an instance of any value type (see section 7.2.3) created by one

DDS implementation to a method implemented by another. For example, the method

DataWriter.write optionally accepts an argument of type InstanceHandle; this

object may have been created by the same DDS implementation that created the

DataWriter or by another DDS implementation.

 It shall be possible to read or take samples from a DataReader provided by one DDS

implementation and immediately write them using a DataWriter provided by another

DDS implementation, provided that the samples are of a DDS type compatible with that

DataWriter.

Note that passing an object from one implementation to another may incur a performance cost, as
the “receiving” implementation may have to copy the object in question before operating on it.

Otherwise, unless elsewhere noted in this specification, a Service implementation may raise an

exception or behave in an undefined way if it encounters a concrete type defined by another

party. For example, the concrete WaitSet implementation provided by one DDS vendor need

not support the attachment of Condition implementations provided by another DDS vendor.

7.1.3 Resource Management

The use of interfaces instead of classes requires the introduction of an explicit factory pattern for

the construction of objects of all DDS types. For some types (Entities in particular), this pattern

is already explicit in the DDS PIM. For other types (such as QoS policies), it is a property solely

of the PIM-to-PSM mapping. These latter types—those without PIM-defined factory

construction methods—serve as their own factories. Each is represented as an abstract class with
one or more static factory methods. These methods are named according to the convention

new<ClassName> in order to resemble constructor invocations and are amenable to use with

the Java 5 static import facility.

This PSM maps the factory deletion methods of the DDS PIM (e.g.,

DomainParticipant.delete_publisher) to close methods on the “product”

interfaces themselves (e.g., Publisher.close). Closing an Entity implicitly closes all of its

contained objects, if any. For example, closing a Publisher also closes all of its contained

DataWriters.

Design Rationale (non-normative)

The close destruction design pattern is intended to be familiar to those developers who have

used java.io stream APIs and/or [JMS] and eliminates the possibility that an object could be

deleted using a factory other than the one that created it.

Users of this PSM are recommended to call close once they are finished using such

6 Java 5 Language PSM for DDS, Beta 1

heavyweight objects. In addition, implementations may automatically close objects that the JRE

deems to be no longer in use—for example, they may call close() in an

Object.finalize() override—subject to the following restrictions:

 Any object to which the application has a direct reference is still in use.

 Any entity with a non-null listener is still in use.

 Any object that has been explicitly retained is still in use

 The creator of any object that is still in use is itself still in use.

7.1.4 Concurrency and Reentrancy

It is expected that most Service implementations will be used frequently in multi-threaded
environments. Therefore, for the sake of portability, this PSM constrains the level of thread

safety that applications may expect:

 All DataReader and DataWriter operations shall be reentrant.

 All Topic (and other TopicDescription extension interfaces), Publisher,

Subscriber, and DomainParticipant operations shall be reentrant with the

exception that close may not be called on a given object concurrently with any other

call of any method on that object or on any contained object.

 All BootstrapServiceEnvironment and DomainParticipantFactory

operations shall be reentrant with the exception that

DomainParticipantFactory.close may not be called on a given object

concurrently with any other call of any method on that object or on any contained object.

 All WaitSet and Condition (including Condition extension interfaces)

operations shall be reentrant with the exception that their close methods may not be

called on a given object concurrently with any other call of any method on that object.

 Code within a DDS listener callback may not safely call any method on any DDS Entity

but the one on which the status change occurred.

 Any method of any value type may be non-reentrant.

A vendor may choose to provide stronger guarantees than the rules above, but if so, those

guarantees are unspecified.

Design Rationale (non-normative)

Objects that are likely to “own” mutexes within their implementation need not permit close

invocations currently with other method invocations. This is to allow implementations to dispose

of these mutexes within the close method without creating a race condition or requiring an

additional level of locking.

Method invocations are restricted within listener callbacks in order to avoid deadlocks,

especially in Service implementations that invoke callbacks within Service-managed threads.

Java 5 Language PSM for DDS, Beta 1 7

7.1.5 Method Signature Conventions

This PSM maps the underscore-formatted names of the DDS PIM and IDL PSM (such as

get_qos) into conventional Java “camel-case” names (such as getQos). This mapping makes

the API look more familiar to Java developers and makes it interoperate better with Java

reflective technologies that expect this naming convention.

Properties defined by the DDS PIM are expressed as sets of accessor and mutator methods. The

signatures of these methods conform to the following convention:

 Mutators are named set<PropertyName>. (For example, the mutator for a property

“Foo” would be named setFoo.) They take a single argument—the new value of the

property—and return the enclosing object in order to facilitate method chaining.

 Accessors for properties that are either of unmodifiable objects (such as those of

primitive types, primitive box types, or strings) or pointers to the internal state of an

object are named get<PropertyName>. (For example, the accessor for an integer

property “Foo” would be named getFoo.) They take no arguments.

 Accessors for properties that are of mutable types, and that may change asynchronously

after they are retrieved, are named get<PropertyName>. They take a pre-allocated

object of the property type as their first argument, the contents of which shall be

overwritten by the method. To facilitate method chaining, these methods also return a

reference to this argument. This pattern forces the caller to make a copy, thereby avoiding

unexpected changes to the property. An Entity’s status is an example of a property of this

kind.

7.1.6 API Extensibility

Implementation-specific extensions to the types specified by this PSM are by definition
unspecified. However, implementations may provide such a capability by providing extended

implementation-specific interfaces and returning instances of these interfaces from the specified

factory methods.

Implementations shall not place their extensions, if any, in any interface or class in the package

org.omg.dds or in any other package whose name begins with that prefix.

7.2 Infrastructure Module

This PSM realizes the Infrastructure Module from the DDS specification with two packages:

org.omg.dds.core and org.omg.dds.core.policy. The latter contains all QoS

policy classes, since a given QoS policy may apply to multiple DDS Entity types. The former

contains all other Infrastructure types, including for example Entity and Condition base

interfaces.

Design Rationale (non-normative)

These two packages have been made distinct from one another for two reasons: First, the QoS

policies constitute a significant proportion of the total set of types in the Infrastructure Module,

8 Java 5 Language PSM for DDS, Beta 1

and the contents of the module are thus easier to understand when they are divided along this

line. Second, a dedicated package for QoS policies makes the code completion features of

modern programming environments easier to use, because it allows users to narrow the set of

classes through which they must search in order to find the one they’re looking for. The term

“core” has been preferred to “infrastructure” for the sake of brevity (such as when using fully

qualified names) and for consistency with the C++ PSM for DDS, which uses the term “core” as

well.

 Issue #16531: Getting rid of the Bootstrap object

7.2.1 BootstrapServiceEnvironment Class

A BootstrapServiceEnvironment object represents an instantiation of a Service

implementation within a JVM. It is the “root” for all other DDS objects and assists in their

creation by means of an internal service-provider interface. All stateful types in this PSM

implement an interface DDSObject, through a getBootstrapServiceEnvironment

method on which they can provide access to the BootstrapServiceEnvironment from

which they are ultimately derived. (BootstrapServiceEnvironment itself implements

this interface; a BootstrapServiceEnvironment always returns this from its

getBootstrapServiceEnvironment operation.)

The BootstrapServiceEnvironment class allows implementations to avoid the presence

of static state, if desired. It also allows multiple DDS implementations—or multiple versions of

the “same” implementation—to potentially coexist within the same Java run-time environment.

A DDS application’s first step is to instantiate a BootstrapServiceEnvironment, which

represents the DDS implementation that it will use. From there, it can create all of its additional

DDS objects.

The BootstrapServiceEnvironment class is abstract. To avoid compile-time

dependencies on concrete BootstrapServiceEnvironment implementations, an

application can instantiate a BootstrapServiceEnvironment by means of a static

createInstance method on the BootstrapServiceEnvironment class. This method

looks up a concrete BootstrapServiceEnvironment subclass using a Java system

property containing the name of that subclass. This subclass must be provided by implementers

and will therefore have an implementation-specific name.

ServiceEnvironement provides factory mehods for the following objects:

DynamicTypeFactory, WaitSet, GuardCondition, TypeSupport, Time,
Duration, and InstanceHandle. It also provides helper functions

allStatuses and noStatuses to create special instances of Status objects.

7.2.2 Error Handling and Exceptions

The PSM maps the ReturnCode_t type from the DDS PIM into a combination of standard

Java exceptions (where their semantics match those expressed in the PIM) and new exception

classes defined by this PSM. This mapping is as follows:

Formatted: Normal

Formatted: Font: Bold, Border: : (Single

solid line, Auto, 0.5 pt Line width)

Formatted: Border: : (Single solid line,

Auto, 0.5 pt Line width)

Formatted: Font: Not Italic

Java 5 Language PSM for DDS, Beta 1 9

 With the exception of java.util.concurrent.TimeoutException, all

exceptions are unchecked (that is, they extend java.lang.RuntimeException

directly or indirectly).

 The exception classes defined by this PSM extend the base class DDSException. All

of the PSM-defined exception classes are defined in the package org.omg.dds.core.

All of these classes are abstract so as not to specify the representation of state;

implementations shall provide concrete implementations.

Table 1 ReturnCode_t  exception mapping

ReturnCode_t Value Exception Class

RETCODE_OK Normal return; no exception

RETCODE_NO_DATA An informational state (e.g., a Boolean result) attached
to a normal return; no exception

RETCODE_ERROR DDSException

RETCODE_BAD_PARAMETER java.lang.IllegalArgumentException

RETCODE_TIMEOUT java.util.concurrent.TimeoutException

RETCODE_UNSUPPORTED java.lang.UnsupportedOperationException

RETCODE_ALREADY_DELETED AlreadyClosedException

RETCODE_ILLEGAL_OPERATION IllegalOperationException

RETCODE_NOT_ENABLED NotEnabledException

RETCODE_PRECONDITION_NOT_MET PreconditionNotMetException

RETCODE_IMMUTABLE_POLICY ImmutablePolicyException

RETCODE_INCONSISTENT_POLICY InconsistentPolicyException

RETCODE_OUT_OF_RESOURCES OutOfResourcesException

In addition, this PSM permits implementations to throw exceptions to indicate errors in

operations that in the PIM return an object reference. The PIM uses the convention of modeling

failure conditions as operation return results, making it impossible to provide finer failure-
detection granularity than a simple nil/non-nil result check in the case of methods that must

return something other than a return code. The Java language, with built-in exception support,

eliminates that restriction, and this PSM takes advantage of that fact.

Design Rationale (non-normative)

This PSM uses checked and unchecked exceptions according to the following rationale: Where

the exception represents a fault—a design flaw, implementation mistake, or runtime failure—it is

unchecked. Where it represents a contingency—an uncommon-but-expected return scenario, for

10 Java 5 Language PSM for DDS, Beta 1

which the caller is expected to have a coping strategy—it is checked1.

Most exceptions in the DDS API represent faults, not contingencies.

Within each category, this PSM reuses existing JRE exception classes when they are available

and appropriate.

7.2.3 Value Types

All DDS types with value semantics implement the interface org.omg.dds.core.Value2.

These include QoS, QoS policy, status, time, and other types.

The Value interface extends the standard Java SE interfaces java.lang.Cloneable and

java.io.Serializable, allowing objects of implementing types to be copied by value as

well as serialized and deserialized using built-in Java mechanisms.

It also defines a small number of additional methods. It defines a method copyFrom that

accepts a source object of the same type as the object itself. This method overwrites the state of

the target object (“this”) with the state of the argument object; it is similar to clone but does

not require allocating a new object. Value implementers are also expected to override their

inherited implementations of Object.equals and Object.hashCode in order to enforce

value semantics.

QoS policy objects are immutable. New policy objects can be created from existing policy

objects by using the QoS DSL.described in Section 7.2.5.3.

Some value types come in modifiable and unmodifiable varieties—notably QoS and QoS
policies. The “modifiable” interface extends the “unmodifiable” one.

 The latter provides an operation modify that returns an instance of the former. Classes

that implement the unmodifiable interface but not the modifiable one shall implement this

operation to return a new modifiable object containing a copy of the state of the target

unmodifiable object. Classes that implement the modifiable interface shall return a

pointer to themselves.

 Modifiable value types with unmodifiable counterparts have an inverse operation:

finishModification. In many cases, calling this operation is optional, as

modifiable interfaces extend unmodifiable ones. However, in some cases, a truly

unmodifiable object is desirable, such as when it will be shared among threads without

locking.

1
 The fault/contingency model of Java exceptions was first described by Barry Ruzek, then of BEA, in late 2006 or

early 2007 in the article Effective Java Exceptions. This article was originally published at

http://dev2dev.bea.com/pub/a/2006/11/effective-exceptions.html and is now available at

http://crmondemand.oracle.com/technetwork/articles/entarch/effective-exceptions-092345.html.
2
 The term “value type” refers to any data type for which object identity is considered to be established solely based

on the state of the objects of that type. Such types generally provide deep copy and comparison operations. (For ex-

ample, integers are an example of a value type: every occurrence of the quantity 42 is considered to refer to the same

number as every other.) The term should not be confused with an IDL valuetype as defined by the CORBA spec-

ification.

Formatted: Font: Times New Roman

Formatted: Font: Times New Roman

http://dev2dev.bea.com/pub/a/2006/11/effective-exceptions.html
http://crmondemand.oracle.com/technetwork/articles/entarch/effective-exceptions-092345.html

Java 5 Language PSM for DDS, Beta 1 11

7.2.4 Time and Duration

This PSM maps the DDS Time_t and Duration_t types into the value types Time and

Duration respectively. These classes can provide their magnitude using a variety of units

(expressed using java.util.concurrent.TimeUnit).

Design Rationale (non-normative)

The names of these types omit the underscore and ‘t’ characters from the ends of their names.

That naming convention, while common among C POSIX programmers, is not conventional in

Java.

7.2.5 QoS and QoS Policies

Issue #17204: Obsolete EntityQos interface name

QoS-related types fall into two categories, as expressed in the DDS PIM: individual QoS policies

(such as reliability) and the collections of policies that apply to a particular DDS Entity type.

This PSM represents the former with the base interface

org.omg.dds.core.policy.QosPolicy and the latter with the base interface

org.omg.dds.core.EntityQos.

7.2.5.1 QoS Policies

The DDS PIM represents each QoS policy in three ways; this PSM maps them as follows.

Table 2 QoS policy representation

DDS PIM Java 5 PSM

QoS policy structure

containing the state of

an instance of that

policy

QoS policy interface extending org.omg.dds.core.policy.QosPolicy. Each

policy provides Java Bean-style properties.

Unique QoS policy ID,

represented by an

instance of the

enumeration

QosPolicyId_t

Unique QoS policy ID, represented by an instance of the nested abstract
class org.omg.dds.core.policy.QosPolicy.Id. The numeric
value given in the IDL PSM is preserved in the Id integer-valued method

getPolicyIdValue().

Java platform provides “Class object”, which uniquely identifies a QoS policy.

The id will be represented by an object of Class<? extends
QosPolicy>. For example, Class<Reliability>

Unique QoS policy

name, represented by a

string property

QosPolicy.name

Unique QoS policy ID, represented by an instance of the nested abstract
class org.omg.dds.core.policy.QosPolicy.Id. The name is

preserved in the Id string-valued method getPolicyName().

Java reflection provides the necessary capability to obtain name of a

QoSPolicy class.

Issue #16529: Modifiable Types should be removed and replaced by values

Formatted: Font: Bold, Border: : (Single

solid line, Auto, 0.5 pt Line width)

Formatted: Border: : (Single solid line,

Auto, 0.5 pt Line width)

Formatted: Font: Times New Roman

Formatted: Font: Times New Roman

Formatted: Font: Times New Roman

Formatted: Font: Times New Roman

Formatted: Font: Times New Roman

Formatted: Font: Times New Roman

Formatted: Font: (Default) Courier New

Formatted: Font: (Default) Courier New

Formatted: Font: Times New Roman

Formatted Table

Formatted: Font: Times New Roman

Formatted: Font: Times New Roman

Formatted: Font: Bold, Border: : (Single

solid line, Auto, 0.5 pt Line width)

Formatted: Border: : (Single solid line,

Auto, 0.5 pt Line width)

12 Java 5 Language PSM for DDS, Beta 1

The org.omg.dds.core.policy.PolicyFactory interface allows creation of new

default-initiated policy objects. The default state of the newly created policy objects via the

PolicyFactory interface is unspecified.

Design rationale (non-normative): In general, to ensure portability, programmers are encouraged to explicitly

specify policy parameters using the QoS DSL.

7.2.5.2 Entity QoS

Issue #17204: Obsolete EntityQos interface name

Each Entity QoS (e.g., DataReaderQos) is an interface extending

org.omg.dds.core.EntityQos. These sub-interfaces provide direct access to their

policies as in the IDL PSM. However, the base interface also provides for generic access using

the java.util.Map interface. This interface allows applications to look up policies by ID and

to iterate over them in a generic way, including vendor-specific extension policies, without

introducing compile-time dependencies on vendor-specific APIs.

QoS objects cannot be created directly. They can be either retrieved from an entity (e.g.,

DataReader) using the getQoS method or lookedup using a string identifier using the

QoSProvider interface. QoS objects can be The contents of a QoS object are only meaningful

in relation to the current QoS or default QoS of some Entity or group of Entities. Therefore, these

objects cannot be created directly; they can only be cloned from pre-existing state maintained by

the Service implementation.

QoS objects as returned by Entities and QoSProvider shall be immutable; applications shall

never observe them to change. Applications that wish to modify QoS values must first call

modify to obtain a modifiable QoS object; after making their desired modifications, they must

pass their new QoS values to setQos.use the “QoS DSL” supported by the the QoS and Policy

classes.

7.2.5.3 QoS DSL

Issue #16536: QoS DSL Needed

Modifying QoS objects and their constituent policies is disallowed but a QoS DSL shall support
creation of new QoS objects and policies from the existing objects using Java fluent interface

design. QoS classes shall provide withPolicy and withPolicies methods which accept

one or more policy objects to create a new QoS objects. Policy classes shall provide with

methods to specify policy parameters and to create new policy objects from the existing ones.

Each with method call will create a new policy object because the target object of the method call

is immutable. The with methods shall support method chaining (QoS DSL).

Design Rationale (non-normative)

The copy-on-write idiom described above has several benefits:

Example (non-normative)

PolicyFactory pf = … // object policy factory reference

Formatted: Font: (Default) Courier New

Formatted: Font: (Default) Courier New

Formatted: Font: 10 pt, Bold

Formatted Table

Formatted: Font: 10 pt, Bold

Formatted: Font: 10 pt

Formatted: Font: (Default) Courier New

Formatted: Font: (Default) Courier New

Formatted: Font: (Default) Courier New

Formatted: Font: Bold, Border: : (Single
solid line, Auto, 0.5 pt Line width)

Formatted: Border: : (Single solid line,
Auto, 0.5 pt Line width)

Formatted: Font: (Default) Courier New

Formatted: Font: (Default) Courier New

Formatted: Font: Italic

Formatted: Font: Times New Roman

Formatted: Font: 10 pt, Bold

Formatted: Font: 8 pt

Formatted: Font: 10 pt

Java 5 Language PSM for DDS, Beta 1 13

ResourceLimits rl = pf.ResourceLimits().withMaxSamples(P).withMaxInstances(Q);

 Design Rationale (non-normative)

 The getQos operation can operate maximally efficiently: it need not allocate any

memory or perform any copies.

 The immutable result of getQos can be used safely concurrently from multiple threads.

 The getQos and setQos methods form a conventional Java-Bean-style property.

7.2.5.37.2.5.4 QoS Libraries and Profiles

The DDS for Lightweight CCM specification [DDS-CCM] defines a format for QoS libraries and

profiles. These libraries and profiles provide a mechanism for entity QoS configuration

administration. This PSM provides the following APIs for accessing these administered QoS

configurations:

Issue #15966: XML-Based QoS Policy Settings

 The org.omg.dds.core.Entity interface allows any Entity’s QoS to be set based

on the names of a QoS library and profile.

 Each Entity factory interface—DomainParticipantFactory,

DomainParticipant, Publisher, and Subscriber—provides methods to

create new “product” Entities and to set their default QoS based on the names of a QoS

library and profile.

 The org.omg.dds.core.QosProvider interface allows Entity’s Qos to be

obtained from the names of QoS library and profile. The Qos library source is provided

as a uniform resource identifier (URI). Conforming implementation must support “file://”

prefix. For instance, “file:///path/to/qos/library”.

 An instance of QosProvider is obtained from the ServiceEnvironment. For example,

 serviceEnv.newQosProvider(String uri, String profile);

 The uri parameter uses the standard uri syntax. The profile parameter identifies a

uniquely identified profile in the document referred by the uri.

 Each Entity factory interface DomainParticipantFactory,

DomainParticipant, Publisher, and Subscriber provides methods to create

new “product” Entities and to set their default QoS based on QoS objects created

programmatically or obtained through QosProvider.

7.2.6 Entity Base Interfaces

Issue #17302: Implement Java5 Closeable interface

As in the DDS PIM, all Entity interfaces extend—directly or indirectly—the interface Entity.

In this PSM, this interface is generic; it is parameterized by the Entity’s QoS and listener types.

Formatted: Font: 10 pt, Bold

Formatted: Font: Bold

Formatted: Border: Box: (Single solid

line, Auto, 0.5 pt Line width)

Formatted: Font: MS Serif

Formatted: Font: (Default) Courier New

Formatted: Font: MS Serif

Formatted: Indent: Left: 0.25", No

bullets or numbering

Formatted: No bullets or numbering

Formatted: Font: (Default) Courier New

Formatted: Font: (Default) Courier New

Formatted: Font: (Default) Courier New

Formatted: Font: (Default) Courier New

Formatted: Font: (Default) Courier New

Formatted: Font: MS Serif

Formatted: Font: Bold, Border: : (Single

solid line, Auto, 0.5 pt Line width)

Formatted: Border: : (Single solid line,

Auto, 0.5 pt Line width)

Formatted: Font: (Default) Courier New

/path/to/qos/library

14 Java 5 Language PSM for DDS, Beta 1

These parameters allow applications to call common operations like getQos or getListener

in a type-safe way while still working with Entities polymorphically. The Entity interface

extends java.io.Closeable interface to support specific new language constructs (e.g.,

Java 7 try-with-resources) for dealing with all Entities polymorphically.

Also as in the DDS PIM, Entities other than DomainParticipant extend the interface

DomainEntity. These Entities provide operations to get the creating parent Entity; in this

PSM, this operation is the polymorphic DomainEntity.getParent.

7.2.7 Entity Status Changes

This section describes the objects pertaining to the status changes of DDS Entities: the Status

types themselves, listeners, conditions, and wait sets.

7.2.7.1 Status Classes

This PSM represents each status identified by the DDS PIM as an abstract class extending

org.omg.dds.core.Status, which in turn extends java.util.EventObject.

The DDS PIM also identifies statuses using a “status kind”; these are composed into a mask that

is used when setting listeners and at other times. This PSM represents status kinds using the

java.lang.Class instances of the corresponding status classes and status masks as

java.util.Sets of such status classes.

Status objects passed to listeners in callbacks may be pooled and reused by the implementation.
Therefore, applications that wish to retain these objects—or any objects found within them, such

as instance handles—for later use outside of the callback are responsible for copying them.

7.2.7.2 Listeners

This PSM maps the Listener interface from the DDS PIM to the empty marker interface

java.util.EventListener interface defined by the Java SE standard library.

For each listener sub-interface (e.g., DataWriterListener), this PSM provides a concrete

implementation of that interface in which all methods have empty implementations. These

concrete classes are named like the listener interfaces they implement, but with the word

“Listener” replaced by “Adapter.”

In the DDS PIM, each listener callback receives two arguments: the Entity, the status of which
has changed, and the new value of that status. In this PSM, the former is unnecessary and is

omitted: it is available through the read-only Source property of the status object.

Design Rationale (non-normative)

The listener + adapter design pattern is consistent with that used in the standard AWT and Swing

UI libraries and elsewhere. It allows applications that are only interested in a subset of the

callbacks provided by an interface to override only those methods and ignore the others.

This PSM distinguishes between lower-level listener interfaces, the implementations of which

are likely to do type-specific things, and higher-level listener interfaces, the implementations of

Formatted: Font: (Default) Courier New

Formatted: Font: (Default) Courier New

Java 5 Language PSM for DDS, Beta 1 15

which are likely to do type-agnostic things.

 The former category includes TopicListener, DataReaderListener, and

DataWriterListener. These classes are generic; their type parameters match that of

the Entities on which they are set. This convention allows applications to read and write

data within the context of a callback in a statically type-safe way.

 The latter category includes PublisherListener, SubscriberListener, and

DomainParticipantListener. The Topics, DataReaders, and

DataWriters passed to these listeners’ callbacks are parameterized with the generic

wildcard ‘?’. Because of this difference between these listeners and those in the former

category, there are no inheritance relationships between these categories, unlike in the

PIM.

7.2.7.3 Conditions

Conditions extend the base interface org.omg.dds.core.Condition.

Issue 16327: Parent accessors should be uniform across Entities and Conditions

The interface StatusCondition, which extends Condition, is a generic interface with a

type parameter that is the type of the Entity to which it belongs. This type parameter allows its

getParent method to be both polymorphic and type safe.

7.2.7.4 Wait Sets

Wait sets extend the base interface org.omg.dds.core.WaitSet.

In the DDS PIM, an application indicates its intention to wait for a condition to be triggered by

invoking the operation WaitSet.wait. However, in Java, this operation overloads

unintentionally with the inherited method Object.wait. This inherited method has a different

meaning; the overload is inappropriate. Therefore, this PSM maps the DDS PIM wait operation

to the more explicit method name waitForConditions.

7.3 Domain Module

This PSM realizes the Domain Module from the DDS specification with the package

org.omg.dds.domain. This package contains DomainParticipant,

DomainParticipantFactory, and so forth.

7.3.1 DomainParticipantFactory Interface

The DomainParticipantFactory is a per-Bootstrap ServiceEnvironment

singleton. An instance of this interface can be obtained by passing that Bootstrap

ServiceEnvironment to the factory’s getInstance method.

7.3.2 DomainParticipant Interface

This PSM represents the DomainParticipant classifier from the DDS PIM with the

Formatted: Body

16 Java 5 Language PSM for DDS, Beta 1

interface org.omg.dds.domain.DomainParticipant.

7.4 Topic Module

This PSM realizes the Topic Module from the DDS specification with the packages

org.omg.dds.type and org.omg.dds.topic.

7.4.1 Type Support

As in the DDS PIM, each type to be published or subscribed with DDS is represented by a class

extending org.omg.dds.type.TypeSupport. Applications obtain instances of these

interfaces by calling the static base class operation newTypeSupport, passing this method the

Java Class object of the type they wish to support and optionally a name under which that type

should be registered. If no such name is provided, the type shall be registered under the fully

qualified name of the provided Class.

This PSM modifies slightly the capability for type registration provided by the DDS PIM. In the

PIM, types are registered by invoking a TypeSupport.register_type operation.

Subsequently, applications provide the registered type name to the

DomainParticipant.create_topic operation in order to refer to the registered type.

This PSM instead asks applications to instantiate each TypeSupport object with a name and

then provide that TypeSupport itself to the create_topic method.

Design Rationale (non-normative)

By requiring the application to pass an instance of the generic TypeSupport interface to the

createTopic method, this PSM maintains unbroken static type safety all the way from type

registration to data publication or reception. A pattern of type access based on the name strings

would require a type cast.

7.4.2 Topic Interface

Issue #17302: Implement Java5 Closeable interface

The Topic interface adds only a single operation to the set of those it inherits from its

TopicDescription and DomainEntity super-types: an accessor for the inconsistent topic

status. Topic—like all TopicDescriptions, and like DataReader and DataWriter—

is a generic interface with a type parameter that identifies the type of the data with which it is

associated. Although Topic provides no type-specific operations, its type parameter preserves

type safety from Topic creation (actually all the way from type registration) through data

publication and/or subscription. TopicDescription interface extends

java.io.Closeable to support specific new language constructs (e.g., Java try-with-

resources) for dealing with this interface.

7.4.3 ContentFilteredTopic and MultiTopic Interfaces

ContentFilteredTopic and MultiTopic are generic interfaces with type parameters

Formatted: Font: (Default) Courier New

Formatted: Font: (Default) Courier New

Java 5 Language PSM for DDS, Beta 1 17

that identify the types of the data with which they are associated.

Note that the type parameter of a ContentFilteredTopic does not need to match that of its

related Topic exactly; it can be any supertype. So for example, if the user-defined type Bar

extends the user-defined type Foo, a ContentFilteredTopic<Foo> can wrap a

Topic<Bar>.

7.4.4 Discovery Interfaces

The data types pertaining to the DDS built-in discovery topics are contained in the package

org.omg.dds.topic as well. These types provide only accessors for their state, not

mutators, to reflect the read-only (from an application’s point of view) nature of discovery.

7.5 Publication Module

This PSM realizes the Publication Module from the DDS specification with the package

org.omg.dds.pub.

Design Rationale (non-normative)

The term “pub” has been preferred to the longer “publication” for the sake of brevity (such as

when using fully qualified names) and for consistency with the C++ PSM for DDS, which uses

the term “pub” as well.

7.5.1 Publisher Interface

Publishers are represented by instances of the org.omg.dds.pub.Publisher

interface.

In addition to the methods defined for this interface by [DDS], it additionally provides a

lookupDataWriter overload that acts on the basis of a Topic object rather than solely on

the topic’s name. This overload is provided for the sake of additional static type safety.

7.5.2 DataWriter Interface

DataWriters are represented by instances of the org.omg.dds.pub.DataWriter

interface. This is a generic interface, parameterized by the type of the data samples to be written

by a given writer. The DDS PIM distinguishes between a type-specific DataWriter

(FooDataWriter) and one whose type is not statically known (DataWriter itself); these

are related by an inheritance relationship. This PSM makes no such distinction: Java’s generic

wildcard syntax (DataWriter<?>) makes it possible to express all type-specific

DataWriter operations on the DataWriter interface itself; there is no FooDataWriter.

For most type-specific operations, the DDS PIM provides variants that accept an explicit
timestamp (to allow applications to manage the passage of time themselves) and variants that do

not (indicating that the Service implementation should provide this); these two sets of operations

use different naming conventions. In addition, the PIM includes an instance handle parameter in

the signatures of these operations, despite the fact that not all types are keyed and therefore have

18 Java 5 Language PSM for DDS, Beta 1

any use for instance handles. These design choices reflect the existence of the IDL PSM: IDL

does not support method overloading. Java does; therefore, the provision of timestamps and/or

instance handles is optional and is handled by means of method overloads. For example, the

write method provides the following overloads: one accepting a data sample only, another

accepting a sample and an instance handle, and another accepting both of these as well as a

timestamp. Users of DataWriters of unkeyed types may choose to call the overloads that

accept instance handle arguments; if they do, the handle argument must be a nil handle (as

explained in the DDS PIM).

7.6 Subscription Module

This PSM realizes the Subscription Module from the DDS specification with the package

org.omg.dds.sub.

Design Rationale (non-normative)

The term “sub” has been preferred to the longer “subscription” for the sake of brevity (such as
when using fully qualified names) and for consistency with the C++ PSM for DDS, which uses

the term “sub” as well.

7.6.1 Subscriber Interface

Subscribers are represented by instances of the org.omg.dds.sub.Subscriber

interface.

In addition to the methods defined for this interface by [DDS], it additionally provides a

lookupDataReader overload that acts on the basis of a TopicDescription object rather

than solely on the topic description’s name. This overload is provided for the sake of additional

static type safety.

7.6.2 Sample Interface

This PSM follows the guidance of the DDS PIM rather than of the IDL PSM: it represents data

samples as single objects that incorporate both data and metadata. Each sample is represented by

an instance of the org.omg.dds.sub.Sample interface. It provides its data via a getData

method; if there is no valid data (corresponding to a false value for

SampleInfo.valid_data in the IDL PSM), this operation returns null. It provides its

metadata (corresponding to the other SampleInfo properties in the IDL PSM) as read-only

Java-Bean-style properties.

The Sample interface also defines a nested interface: Sample.Iterator, an iterator that

extends java.util.ListIterator. An iterator of this type provides read-only access to an

ordered series of samples of a single type; such iterators are used by the DataReader read

and take methods (see below).

7.6.3 DataReader Interface

DataReaders are represented by instances of the org.omg.dds.sub.DataReader

Java 5 Language PSM for DDS, Beta 1 19

interface. This is a generic interface, parameterized by the type of the data samples to be read by

a given reader. The DDS PIM distinguishes between a type-specific DataReader

(FooDataReader) and one whose type is not statically known (DataReader itself); these

are related by an inheritance relationship. This PSM makes no such distinction: Java’s generic

wildcard syntax (DataReader<?>) makes it possible to express all type-specific

DataReader operations on the DataReader interface itself; there is no FooDataReader.

The DataReader interface provides an extensive set a number of read and take method

overloads. In addition to the distinction between read vs. take semantics (as defined in the DDS

PIM), these operations come in two “flavors”: one that loans samples from a Service pool and

returns a Sample.Iterator and another that deeply copies into an application-provided

java.util.List.

Issue #17415: Implement java.io.Closeable in Sample.Iterator

 Applications that read or take loans must eventually return those loans; this PSM maps

the return_loan operation from the DDS PIM to an operation returnLoan on the

Sample.Iterator. Moreover, the iterator implements the Java.io.Closeable interface

so that try-with-resources construct can be used in Java 7,

 Applications that read or take copies may provide to the Service destination Lists with

any number of Samples already in them (including empty Lists). Regardless of the

number of Samples already in the list when the method is called, when it returns, the

List shall contain the number of Samples requested by the application (or fewer, if

fewer were available). The Service implementation may—for example, in order to avoid

object allocations—elect to overwrite the contents of any Samples that are passed into it

by invocations of these methods.

The read and take operations defined by the DDS PIM do not take advantage of overloading,

because they were designed with the IDL PSM in mind, and IDL does not support overloading.

Java does; therefore, this PSM both simplifies the operations’ signatures as well as captures

commonalities among them as follows:

Issue #17065: Class for Query Expression

 Instead of overloading Several several operation variants that accept large numbers of

infrequently used parameters, a DataReader.Selector is provided to encapsulate

various selection criteria (for example, sets of sample, instance, and view states). These

operations have been split into two overloaded methods: one that accepts the minimum

number of arguments and a second that accepts the full list. DataReader.select

method returns a Selector object, which encapsulates the default selection criteria. For

portability, the default state of the Selector object is defined as
instanceHandle=null, nextInstance=false, dataState=any,

queryExpression=null, and maxSamples=unlimited. Selector provides

fluent interface to modify the default selection parameters. For convenience, Selector

provides read and take methods.

Formatted: Font: Times New Roman,

Bold

Formatted: Border: Box: (Single solid
line, Auto, 0.5 pt Line width)

Formatted: Font: Times New Roman

Formatted: Font: (Default) Courier New

Formatted: Font: Times New Roman

Formatted: Font: (Default) Courier New

Formatted: Font: Times New Roman

Formatted: Font: Times New Roman

Formatted: Font: Bold, Border: : (Single
solid line, Auto, 0.5 pt Line width)

Formatted: Border: : (Single solid line,

Auto, 0.5 pt Line width)

Formatted: Font: (Default) Courier New

Formatted: Font: (Default) Courier New

Formatted: Font: (Default) Courier New

Formatted: Font: Italic

Formatted: Font: (Default) Courier New

Formatted: Font: (Default) Courier New

Formatted: Font: (Default) Courier New

Formatted: Font: (Default) Courier New

20 Java 5 Language PSM for DDS, Beta 1

Issue 16321: Too many read/take overloads

 Qualifications to the data to be read or taken, including the number of samples, a

ReadCondition, a particular instance, and so on, have been encapsulated in a nested

type DataReader.Query. This refactoring allows a large number of distinct methods

from the PIM, each qualified by a different name suffix, to be collapsed to a very small

number of overloads.

7.7 Extensible and Dynamic Topic Types Module

This section of this specification addresses those additions to DDS introduced by the Extensible

and Dynamic Topic Types for DDS specification [DDS-XTypes]. The additions fall into the

following categories:

 Types pertaining to TypeObject Type Representations are defined in the package

org.omg.dds.type.typeobject.

 Types pertaining to the Dynamic Language Binding are defined in the package

org.omg.dds.type.dynamic.

 The TypeKind enumeration, which pertains to both of the above, is defined in the

package org.omg.dds.type.

 The built-in types are defined in the package org.omg.dds.type.builtin.

 Extensions by [DDS-XTypes] to types defined by [DDS] (such as the built-in topic data

types) are contained within those types.

7.7.1 Dynamic Language Binding

The Dynamic Language Binding, as defined by [DDS-XTypes], consists of DynamicType,

DynamicTypeMember, DynamicData, their respective factories, and several “descriptor”

value types.

7.7.1.1 DynamicTypeFactory Interface

Issue 16324: Improve polymorphic sample creation

This abstract factory is a per-Bootstrap ServiceEnvironment singleton. The static

delete_instance operations defined in [DDS-XTypes] have been omitted in this PSM; the

Service shall manage the life cycles of the factory.

7.7.1.2 DynamicTypeSupport Interface

The interface DynamicTypeSupport defined by [DDS-XTypes] does not provide any

capability beyond what the generic TypeSupport interface provided by this PSM already

provides. Therefore, it has been omitted from this PSM.

Java 5 Language PSM for DDS, Beta 1 21

7.7.1.3 DynamicType and DynamicTypeMember Interfaces

These interfaces are expressed in this PSM according to the mapping rules expressed elsewhere

in this document. In addition, the following changes to this mapping have been made:

 Operations that provide their result as an in-out value in their first parameter and return

DDS::ReturnCode_t have been changed such that they instead return their results

directly. (This change, made for the convenience of the caller, is possible because

DDS::ReturnCode_t is mapped to a set of exceptions in this PSM.)

 The equals and clone operations on these types have been mapped to overrides of the

Java-standard Object.equals and Object.clone, respectively.

 DynamicTypeMember is a reference type, and instances of it are obtained from

DynamicType.addMember. This change avoids the need to provide an additional

factory method for DynamicTypeMember instances.

 On each type, the operations get_annotation_count and get_annotation (by

index) have been unified into a single getAnnotations method that returns a list of

annotations. The lists returned from these methods shall not be modifiable.

In addition to the methods specified by [DDS-XTypes], DynamicTypeFactory provides one

additional factory method: createType(Class<?>). This method shall inspect the given

type reflectively in accordance with the Java Type Representation (section 8 below) and

instantiate an equivalent DynamicType object.

7.7.1.4 DynamicData Interface

This interface is expressed in this PSM according to the mapping rules expressed elsewhere in
this document. In addition, the following changes to this mapping have been made:

 Operations that provide their result as an in-out value in their first parameter and return

DDS::ReturnCode_t have been changed such that they instead return their results

directly. (This change, made for the convenience of the caller, is possible because

DDS::ReturnCode_t is mapped to a set of exceptions in this PSM.)

 The equals and clone operations on these types have been mapped to overrides of the

Java-standard Object.equals and Object.clone, respectively.

 Methods dealing with unsigned integer types have been omitted. Applications may access

unsigned data using the signed type of the same size (e.g., UInt32 becomes Int32),

which preserves bitwise representation but not logical value, or by using the signed type

one size up (e.g., UInt32 becomes Int64), which preserves logical value but not

representation (and may therefore require additional range checking by the

implementation). In the case of UInt64, the “type one size up” is

java.math.BigInteger.

 The 128-bit Float128 type has been represented using java.math.BigDecimal.

22 Java 5 Language PSM for DDS, Beta 1

7.7.1.5 Descriptor Interfaces

Issue #16529: Modifiable Types should be removed and replaced by values (e.g. immutable

types)

The following interfaces are values types with modifiable and unmodifiable variants, as

described in section 7.2.3 above: This specification defines three descriptor interfaces. The

instances of descriptor interfaces are immutable and therefore, provide methods to create new

descriptor objects from the existing ones.

 AnnotationDescriptor (and ModifiableAnnotationDescriptor)

 MemberDescriptor (and ModifiablememberDescriptor)

 TypeDescriptor (and ModifiableTypeDescriptor)

7.7.2 Built-in Types

[DDS-XTypes] specifies four built-in types: DDS::String, DDS::Bytes,

DDS::KeyedString, and DDS::KeyedBytes.

 DDS::String is mapped to java.lang.String.

 DDS::Bytes is mapped to byte[].

 DDS::KeyedString and DDS::KeyedBytes are mapped to modifiable value type

interfaces.

The generic DataReader and DataWriter interfaces are applicable to the built-in types.

Subscriber and Publisher provide generic createDataReader and

createDataWriter methods to create datareader and datawriter for the built-in types,

respectively. specializations for these built-in types provide additional overloaded methods not

implied by the generic versions of these interfaces. Therefore, this PSM defines extended

interfaces StringDataReader, StringDataWriter, BytesDataReader,

BytesDataWriter, and so on. It furthermore provides additional

Subscriber.createDataReader and Publisher.createDataWriter variants

specially tailored to the built-in types that return these extended interface types to allow

applications to take advantage of these additional methods while maintaining static type safety.

Note that the existence of these built-in-type-specific Publisher and Subscriber factory

methods does not imply that the generic versions of these methods do not apply to the built-in

types; they do.

7.7.3 Representing Types with TypeObject

The types in this package are expressed as modifiable value types according to the mapping rules

expressed elsewhere in this document. In addition, the following changes to this mapping have

been made:

 Top-level constants are moved into related interfaces, for example:

Member.MEMBER_ID_INVALID.

Formatted: Font: Bold, Border: : (Single

solid line, Auto, 0.5 pt Line width)

Formatted: Border: : (Single solid line,
Auto, 0.5 pt Line width)

Formatted: Font: (Default) Courier New

Formatted: Font: (Default) Courier New

Formatted: Font: (Default) Courier New

Formatted: Font: (Default) Courier New

Java 5 Language PSM for DDS, Beta 1 23

 Enumerations of member ID values are nested final classes within the interfaces for
which they provide the member’s IDs. These classes have constant integer fields, for

example: MapType.MemberId. BOUND_MAPTYPE_MEMBER_ID.

8 Java Type Representation and Language Binding

The Java Type Representation defined in this section provides a means for Java developers to

publish and subscribe to DDS topics typed by plain Java objects without resorting to code

generation or the reflective style of the Dynamic Language Binding.

By its very nature as an expression of the Java programming language, this Type Representation
implicitly and simultaneously defines a Language Binding for DDS types. That is, a Java type

necessarily defines a Java API to itself as part of its definition. Therefore, this Type

Representation is intended for the run-time use of implementations of this PSM. While this

specification does not preclude Service implementations from using this Type Representation for

other purposes—for example, generating a Plain Language Binding in C for a DDS type

represented in Java—such uses are non-normative and unspecified.

The Java platform provides a mechanism by which Java type definitions can be used to define

how objects can be serialized for transmission over a network: the java.io.Serializable

interface and its related types. Since the transmission of data from Java programs over DDS is a

related problem, this specification builds on that mechanism. Any Java type that implements

Serializable (directly or indirectly) shall be available for publishing and/or subscribing

over DDS as defined below. Note that the DDS serialization of a type will not generally be the

same as the JRE serialization of the same type, even if the type designer’s specification of which

data to serialize can be shared between these two mechanisms.

8.1 Default Mappings

The following table defines the default mappings from Java type system definitions to DDS type
system ones.

Table 3 — Default type mappings

Java Type DDS Type

int, java.lang.Integer Int32

short, java.lang.Short Int16

long, java.lang.Long Int64

float, java.lang.Float Float32

double, java.lang.Double Float64

char, java.lang.Character Char8

byte, java.lang.Byte Byte

24 Java 5 Language PSM for DDS, Beta 1

boolean, java.lang.Boolean Boolean

java.lang.String string<Char8>

java.util.Map map

java.lang.Collection, array sequence

java.lang.Object Structure

A type designer may modify these defaults on a type-by-type and/or field-by-field basis by

applying the annotation org.omg.dds.type.SerializeAs:

public @interface SerializeAs {

 public TypeKind value();

 …

}

8.2 Metadata

The type system metadata represented with built-in annotations in the IDL Type Representation

(such as @Key, @ID) shall be represented by equivalent Java annotations unless otherwise noted.

These annotations are in the package org.omg.dds.type.

The annotations in this package logically govern the behavior of concrete classes, not of

polymorphic interfaces. As such, they may be applied to classes or to their fields, as appropriate.

Interface designers wishing to document the DDS serialization of a type may additionally apply

them to interfaces or to property accessor and/or mutator methods; however, they have no

specified behavior in such cases.

8.3 Primitive Types

By default, Java primitive types are mapped to DDS primitive types as defined in Table 3 above.

The @SerializeAs annotation may be used to modify these mappings as follows.

Table 4 — Customized primitive type mappings

DDS Type Permitted Java Primitive Types

Int32 int, java.lang.Integer

UInt32 int, long, java.lang.Integer, java.lang.Long

Int16 short, java.lang.Short

UInt16 short, int, java.lang.Short, java.lang.Integer

Int64 long, java.lang.Long

UInt64 long, java.lang.Long, java.math.BigInteger

Java 5 Language PSM for DDS, Beta 1 25

Float32 float, java.lang.Float

Float64 double, java.lang.Double

Float128 double, java.lang.Double, java.math.BigDecimal

Byte byte, java.lang.Byte

Boolean boolean, java.lang.Boolean

Char8 char, java.lang.Character

Char32 char, int, java.lang.Character, java.lang.Integer

The DDS Type System ([DDS-XTypes]) defines unsigned integer types; the Java type system
does not. As a result, this Type Representation must map unsigned values to “equivalent” signed

types. Type designers have two choices, reflected in the table above:

 Preserve representation: Map the DDS unsigned type to a Java signed type of the same

size. Designers can be confident that every value in the range of the DDS type has an

equivalent value in the range of the Java type. However, logical values will not be

preserved in all cases: for example, large unsigned (positive) values will appear as

negative values to Java applications.

 Preserve logical value: Map the DDS unsigned type to the next-larger Java signed type

such that all values in the range of the DDS type can be reflected faithfully in the range of

the Java type. However, applications must be prepared to deal with failures that may

occur when data values that are logically unsigned mistakenly take a negative value that

cannot be faithfully represented on the DDS network.

8.4 Collections

[DDS-XTypes] recognizes three categories of collections: strings (variable-length lists of narrow
or wide characters), sequences (variable-length lists of any single element type), and maps

(homogeneously typed key-value mappings).

8.4.1 Strings

DDS strings, whether of narrow or wide characters, are represented by Java String objects.

 If a string is to be of narrow characters (the default), each Java character shall be

truncated to its least-significant byte.

 If a string is to be of wide characters (in which case it must be so marked with

@SerializeAs), each Java code point shall become a single DDS wide character.

8.4.2 Maps

Any object whose class implements the interface java.util.Map shall be considered a DDS

map unless marked otherwise with @SerializeAs.

26 Java 5 Language PSM for DDS, Beta 1

8.4.3 Sequences and Arrays

Any object whose class implements the interface java.util.Collection shall be

considered DDS sequences unless marked otherwise with @SerializeAs. If the class

implements java.util.List, the order of the elements in the sequence shall corresponds

exactly to the order of the elements in the list. Otherwise, the order of the elements in the

sequence shall correspond to that returned by the collection’s iterator.

Objects of array types shall be considered DDS sequences unless marked otherwise with

@SerializeAs.

Any Java collection or array may be designated as a DDS array with @SerializeAs.

Design Rationale (non-normative)

Objects of array types must receive special care, because a Java array—like any Java object—is

stored by reference only. Therefore, although a given array object itself is not of variable length,

the reference to it may be reassigned to point to an array of a different length. Even if the

reference does not change, the length of the array pointed to cannot in general be discovered by

analysis of the type itself and may vary from object to object of the same type.

8.5 Aggregated Types

[DDS-XTypes] recognizes two kinds of aggregated types: structures and unions.

Any DDS type that is not a nested type (in the sense of that word defined by [DDS-XTypes], as

indicated in this Type Representation by the annotation @Nested) must define a no-argument

constructor for use by the Service implementation. Service implementations shall have the

capability to invoke this constructor reflectively, even if it is not public.

The fields in the DDS structured type shall correspond to those of the Java class. Their order

shall be that returned by the method

java.lang.reflect.Class.getDeclaredFields. Static and/or transient

fields shall be omitted. Service implementations shall have the capability to get and set the

values of fields reflectively regardless of their declared access level (e.g., public,

protected, private).

Service implementations need not address the following cases:

 A Java Security Manager (java.lang.SecurityManager) prevents privileged

access to a non-public field or constructor.

 A field that is neither static nor transient is declared final, preventing its value

from being modified.

 Object references form a cycle. (Cycles are not permitted by the DDS Type System.)

8.5.1 Structures

Every Java class that is not a collection or map shall be considered a structure by default.

Java 5 Language PSM for DDS, Beta 1 27

8.5.1.1 Inheritance

Java class extension shall map to structure inheritance in the DDS Type System [DDS-XTypes],

subject to the restrictions documented by the java.io.Serializable interface, such as

those pertaining to non-Serializable base types.

8.5.1.2 Extensibility

The extensibility kind shall be determined in the following manner:

 FINAL: If the class extends java.lang.Object directly and is final, or if explicitly

indicated.

 EXTENSIBLE: In all other cases, by default, or if explicitly indicated.

 MUTABLE: Only if explicitly indicated.

8.5.2 Unions

Any class may be annotated as a union with @SerializeAs.

 Such a class must annotate exactly one field to be the discriminator with

@UnionDiscriminator.

 All other fields that are not transient or static must be annotated with

@UnionMember, which shall identify the discriminator value associated with that field.

8.6 Enumerations and Bit Sets

By default, any Java enumeration class will be considered to be a DDS enumeration.

As in IDL, a type that is syntactically an enumeration may be annotated as a bit set type. In this

case, objects of these types must also be annotated in order to be serialized correctly. A type

member of type java.util.EnumSet or java.util.BitSet will be serialized as a bit

set if marked with @BitSet.

8.7 Modules

Each segment of a Java type’s package name shall correspond to a module in the DDS Type

System [DDS-XTypes]. For example, a class com.acme.project.TheClass would be in

the nested modules com::acme::project.

8.8 Annotations

This Type Representation ignores Java annotation types by default. Java annotations that are

intended to be represented explicitly within the DDS Type System must be so annotated with

@SerializeAs.

9 Improved Plain Language Binding for Java

28 Java 5 Language PSM for DDS, Beta 1

9.1 TypeMapping

 Issue #17303: Update specification for final DDS-XTypes

The type system for DDS topic types is defined by the Extensible and Dynamic Topic Types for

DDS specification [DDS-XTypes].

This section defines the set of rules to be used in order to map abstract DDS topic types into Java

types that can be used by application programmers. Those aspects of the DDS Type System that

are not addressed below are as specified in the Plain Language Binding as defined by [DDS-

XTypes] (which in turn is defined in terms of an IDL-to-Java mapping [Java-MAP]).

Issue #15968: formal description of how topic types are mapped to Java classes needed

9.1.1 Mapping Aggregation Types
DDS aggregation types shall be mapped to a final Java class. Contained attributes shall be

encapsulated. Java Bean style accessors shall be provided. Special mapping rules for boolean

properties are allowed. The representation of internal state shall be private.

9.1.2 Mapping Sequences and Arrays
Unbounded DDS sequences are mapped to Collection<E> interface. The state is encapsulated

and getters/setters are provided through bean style property accessors. Bounded sequences and

arrays are mapped to Java arrays.

9.2 Example (non-normative)

IDL Java Representation

struct Point {

 long x, y;

 long z; //@optional

};

typedef sequence<octet>

plot_t;

struct RadarTrack {

 string id;

 string name;

//@optional

public final class Point {

 Point();

 Point(int x, int y,

 java.lang.Integer z);

 int getX();

 void setX(int32 v);

 int32 getY();

 void setY(int32 v);

 java.lang.Integer getZ();

Formatted: Font: Bold, Border: : (Single

solid line, Auto, 0.5 pt Line width)

Formatted: Normal

Formatted: Border: : (Single solid line,

Auto, 0.5 pt Line width)

Formatted: Font: Bold, Border: : (Single

solid line, Auto, 0.5 pt Line width)

Formatted: Border: : (Single solid line,
Auto, 0.5 pt Line width)

Formatted: Heading 2

Formatted: Font: Bold

Formatted: Centered

Formatted Table

Formatted: Font: (Default) Courier New

Formatted: Font: (Default) Courier New

Formatted: Font: (Default) Courier New

Java 5 Language PSM for DDS, Beta 1 29

 Point center;

 Point vicinity[8];

 plot_t plot; //@shared

};

 void setZ(java.lang.Integer v);

};

public class final RadarTrack

{

 RadarTrack();

 RadarTrack(String id,

 String name,

 Point center,

 Point[] vicinity,

java.util.Collection<byte> plot);

 String getId();

 void setId(String id);

 String getName();

 void setName(String name);

 Point getCenter();

 void setCenter(Point center);

 Point[] getVicinity();

 void setVicinity(Point[]

vicinity);

 java.util.Collection<byte>

getPlot();

 void

setPlot(java.util.Collection<byte>

plot);

30 Java 5 Language PSM for DDS, Beta 1

};

Formatted: Body

Java 5 Language PSM for DDS, Beta 1 31

Annex A: Java JAR Library File

In addition to this document, this specification includes a Java Archive (JAR) library,

omgdds.jar. This library contains compiled Java *.class files for all of the classes and

interfaces specified by this PSM.

This library comprises the compile-time portion of this specification: users shall be able to
compile their PSM-compliant code against this library and then deploy the result against any

conformant implementation.

Distributors of binary implementations of this PSM may elect to distribute the omgdds library

alongside their implementation libraries or to package both the contents of omgdds.jar and

their implementation into a single library.

32 Java 5 Language PSM for DDS, Beta 1

Annex B: Java Source Code

In addition to this document, this specification includes the Java source code to all of the classes

and interfaces specified by this PSM in the zip archive omgdds_src.zip. This source code, in

the directory srcJava within the archive, corresponds to the binary distribution found in the

library omgdds.jar and is also normative with respect to both its programming interfaces and

its embedded documentation comments. (The latter have been transformed into JavaDoc HTML

documentation, which is available in the zip file within the doc/ directory.)

For the convenience of both implementers and application developers, the archive contains
additional files that are neither API source code nor documentation. These file are non-normative

and include:

 Code examples: Short code segments, intended to be illustrative to application

developers, can be found in the directory srcJavaExample within the archive.

 build.xml: A build script, compatible with version 1.6 of the Apache Ant tool3, can be
found in the top-level directory of the archive. It is capable of creating both the

omgdds.jar and omg_src.zip files

 Project files: Project definition files compatible with version 3.5 of the Eclipse IDE for

Java can be found in the top-level directory of the archive.

3
 See http://ant.apache.org.

http://ant.apache.org/

