
Date: September 2024

DDS Status Monitoring

Version 1.0 – beta 1

__

OMG Document Number: dtc/24-09-15

Normative Reference: http://www.omg.org/spec/DDS-Monitoring/1.0

Associated Normative Machine Consumable Files:

 http://www.omg.org/spec/DDS-Monitoring/20240801/monitoring_dds_distribution.idl
 http://www.omg.org/spec/DDS-Monitoring/20240801/monitoring_dds_distribution_constants.idl

 http://www.omg.org/spec/DDS-Monitoring/20240801/monitoring_dds_common.idl
 http://www.omg.org/spec/DDS-Monitoring/20240801/monitoring_dds_status.idl
 http://www.omg.org/spec/DDS-Monitoring/20240801/monitoring_dds_qos.idl
 http://www.omg.org/spec/DDS-Monitoring/20240801/monitoring_dds_entities.idl
 http://www.omg.org/spec/DDS-Monitoring/20240801/monitoring_annotations.idl
 http://www.omg.org/spec/DDS-Monitoring/20240801/monitoring_statistics.idl
 http://www.omg.org/spec/DDS-Monitoring/20240801/monitoring_logging.idl
 http://www.omg.org/spec/DDS-Monitoring/20240801/monitoring_resource.idl
 http://www.omg.org/spec/DDS-Monitoring/20240801/monitoring_administration.idl

This OMG document replaces the submission document (c4i/24-08-01). It is an OMG Adopted Beta Specification
and is currently in the finalization phase. Comments on the content of this document are welcome and should be
directed to issues@omg.org by December 16, 2024.

You may view the pending issues for this specification from the OMG revision issues web page
https://issues.omg.org/issues/lists.

The FTF Recommendation and Report for this specification will be published in September 2025. If you are
reading this after that date, please download the available specification from the OMG Specifications Catalog.

http://www.omg.org/spec/DDS-MONITORING/1.0
http://www.omg.org/spec/DDS-MONITORING/1.0
http://www.omg.org/spec/DDS-MONITORING/1.0
http://www.omg.org/spec/DDS-MONITORING/1.0
http://www.omg.org/spec/DDS-MONITORING/1.0
http://www.omg.org/spec/DDS-MONITORING/1.0
http://www.omg.org/spec/DDS-Monitoring/20240801/monitoring_dds_distribution.idl
http://www.omg.org/spec/DDS-Monitoring/20240801/monitoring_dds_distribution_constants.idl
http://www.omg.org/spec/DDS-Monitoring/20240801/monitoring_dds_common.idl
http://www.omg.org/spec/DDS-Monitoring/20240801/monitoring_dds_status.idl
http://www.omg.org/spec/DDS-Monitoring/20240801/monitoring_dds_qos.idl
http://www.omg.org/spec/DDS-Monitoring/20240801/monitoring_dds_entities.idl
http://www.omg.org/spec/DDS-Monitoring/20240801/monitoring_annotations.idl
http://www.omg.org/spec/DDS-Monitoring/20240801/monitoring_statistics.idl
http://www.omg.org/spec/DDS-Monitoring/20240801/monitoring_logging.idl
http://www.omg.org/spec/DDS-Monitoring/20240801/monitoring_resource.idl
http://www.omg.org/spec/DDS-Monitoring/20240801/monitoring_administration.idl

ii DDS Status Monitoring 1.0-beta 1

Copyright © 2024, Real-Time Innovations, Inc.
Copyright © 2024, SimVentions, Inc.
Copyright © 2024, Object Management Group, Inc.

USE OF SPECIFICATION – TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms,
conditions and notices set forth below. This document does not represent a commitment to implement any portion of
this specification in any company's products. The information contained in this document is subject to change without
notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free,
paid up, worldwide license to copy and distribute this document and to modify this document and distribute copies of
the modified version. Each of the copyright holders listed above has agreed that no person shall be deemed to have
infringed the copyright in the included material of any such copyright holder by reason of having used the specification
set forth herein or having conformed any computer software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant you a
fully-paid up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use this
specification to create and distribute software and special purpose specifications that are based upon this specification,
and to use, copy, and distribute this specification as provided under the Copyright Act; provided that: (1) both the
copyright notice identified above and this permission notice appear on any copies of this specification; (2) the use of the
specifications is for informational purposes and will not be copied or posted on any network computer or broadcast in
any media and will not be otherwise resold or transferred for commercial purposes; and (3) no modifications are made
to this specification. This limited permission automatically terminates without notice if you breach any of these terms or
conditions. Upon termination, you will destroy immediately any copies of the specifications in your possession or
control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may
require use of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a
license may be required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of
those patents that are brought to its attention. OMG specifications are prospective and advisory only. Prospective users
are responsible for protecting themselves against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications regulations
and statutes. This document contains information which is protected by copyright. All Rights Reserved. No part of this
work covered by copyright herein may be reproduced or used in any form or by any means--graphic, electronic, or
mechanical, including photocopying, recording, taping, or information storage and retrieval systems--without
permission of the copyright owner.

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY CONTAIN
ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE
MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS PUBLICATION,
INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY
OF MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE. IN NO
EVENT SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE COMPANIES LISTED ABOVE BE
LIABLE FOR ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS, REVENUE, DATA

DDS Status Monitoring 1.0-beta 1 iii

OR USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE FURNISHING,
 PERFORMANCE, OR USE OF THIS MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you. This
disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1) (ii)
of The Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph (c)(1) and
(2) of the Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified in 48
C.F.R. 227-7202-2 of the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of the Federal
Acquisition Regulations and its successors, as applicable. The specification copyright owners are as indicated above and
may be contacted through the Object Management Group, 9C Medway Road, PMB 274, Milford, MA 01757, U.S.A.

TRADEMARKS

CORBA®, CORBA logos®, FIBO®, Financial Industry Business Ontology®, FINANCIAL INSTRUMENT GLOBAL
IDENTIFIER®, IIOP®, IMM®, Model Driven Architecture®, MDA®, Object Management Group®, OMG®, OMG
Logo®, SoaML®, SOAML®, SysML®, UAF®, Unified Modeling Language®, UML®, UML Cube Logo®, VSIPL®, and
XMI® are registered trademarks of the Object Management Group, Inc.

For a complete list of trademarks, see: http://www.omg.org/legal/tm_list.htm. All other products or company names
mentioned are used for identification purposes only, and may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its
designees) is and shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer
software to use certification marks, trademarks or other special designations to indicate compliance with these
materials.

Software developed under the terms of this license may claim compliance or conformance with this specification if and
only if the software compliance is of a nature fully matching the applicable compliance points as stated in the
specification. Software developed only partially matching the applicable compliance points may claim only that the
software was based on this specification, but may not claim compliance or conformance with this specification. In the
event that testing suites are implemented or approved by Object Management Group, Inc., software developed using
this specification may claim compliance or conformance with the specification only if the software satisfactorily
completes the testing suites.

http://www.omg.org/legal/tm_list.htm

iv DDS Status Monitoring 1.0-beta 1

OMG’s Issue Reporting Procedure
All OMG specifications are subject to continuous review and improvement. As part of this process we encourage
readers to report any ambiguities, inconsistencies, or inaccuracies they may find by completing the Issue Reporting
Form listed on the main web page http://www.omg.org, under Documents, Report a Bug/Issue
(http://issues.omg.org/issues/create-new-issue).

http://www.omg.org/
http://issues.omg.org/issues/create-new-issue

DDS Status Monitoring 1.0-beta 1 v

Table of Contents
Contents
DDS Status Monitoring .. 1

OMG’s Issue Reporting Procedure .. iv
Table of Contents .. v

OMG vi
OMG Specifications .. vi

Typographical Conventions .. vii
Issues vii
1 Scope .. 1
2 Conformance .. 1
3 Normative References .. 1
4 Terms and Definitions .. 2
5 Symbols .. 3
6 Additional Information ... 3

6.1 Acknowledgments .. 3
7 Conceptual Model .. 4

7.1 Introduction .. 4
7.2 Concepts ... 4
7.3 Dependencies .. 5
7.4 Monitoring Resource Model ... 6
7.5 Distribution of the Monitoring Data ... 31
7.6 Monitoring Distribution Data Model .. 33
7.7 Monitoring Administration Datamodel .. 39
7.8 Monitoring Distribution Protocol ... 44

8 Full IDL definition of DDS Monitoring Data models .. 48
8.1 DDS Monitoring Resource Model .. 48
8.2 DDS Monitoring Distribution Model ... 48

Annex A – References .. 50

vi DDS Status Monitoring 1.0-beta 1

Preface
OMG
Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer industry
standards consortium that produces and maintains computer industry specifications for interoperable, portable, and
reusable enterprise applications in distributed, heterogeneous environments. Membership includes Information
Technology vendors, end users, government agencies, and academia.

OMG member companies write, adopt, and maintain its specifications following a mature, open process. OMG’s
specifications implement the Model Driven Architecture® (MDA®), maximizing ROI through a full-lifecycle approach
to enterprise integration that covers multiple operating systems, programming languages, middleware and networking
infrastructures, and software development environments. OMG’s specifications include: UML® (Unified Modeling
Language®); CORBA® (Common Object Request Broker Architecture); CWM™ (Common Warehouse Metamodel™);
and industry-specific standards for dozens of vertical markets.

More information on the OMG is available at http://www.omg.org/.

OMG Specifications
As noted, OMG specifications address middleware, modeling and vertical domain frameworks. All OMG Specifications
are available from the OMG website at:

http://www.omg.org/spec

Specifications are organized by the following categories:

Business Modeling Specifications

Middleware Specifications
• CORBA/IIOP
• Data Distribution Services
• Specialized CORBA

IDL/Language Mapping Specifications

Modeling and Metadata Specifications
• UML, MOF, CWM, XMI
• UML Profiles

Modernization Specifications

Platform Independent Model (PIM), Platform Specific Model (PSM), Interface
Specifications

• CORBAServices
• CORBAFacilities

OMG Domain Specifications

CORBA Embedded Intelligence Specifications

CORBA Security Specifications

Signal and Image Processing Specifications

http://www.omg.org/
http://www.omg.org/spec

DDS Status Monitoring 1.0-beta 1 vii

All of OMG’s formal specifications may be downloaded without charge from our website. (Products implementing
OMG specifications are available from individual suppliers.) Copies of specifications, available in PostScript and PDF
format, may be obtained from the Specifications Catalog cited above or by contacting the Object Management Group,
Inc. at:

OMG Headquarters
9C Medway Road
PMB 274
Milford, MA 01757
USA

Tel: +1-781-444-0404
Fax: +1-781-444-0320
Email: pubs@omg.org

Certain OMG specifications are also available as ISO standards. Please consult http://www.iso.org

Typographical Conventions
The type styles shown below are used in this document to distinguish programming statements from ordinary English.
However, these conventions are not used in tables or section headings where no distinction is necessary.

Times/Times New Roman/Liberation Serif – 10 pt.: Standard body text

Helvetica/Arial – 10 pt. Bold: OMG Interface Definition Language (OMG IDL) and syntax elements.

Courier – 10 pt. Bold: Programming language elements.

Helvetica/Arial – 10 pt: Exceptions

NOTE: Terms that appear in italics are defined in the glossary. Italic text also represents the name of a document,
specification, or other publication.

Issues
The reader is encouraged to report any technical or editing issues/problems with this specification via the report form at:

http://issues.omg.org/issues/create-new-issue

This page intentionally left blank.

mailto:pubs@omg.org
http://www.iso.org/
http://issues.omg.org/issues/create-new-issue

DDS Status Monitoring 1.0-beta 1 1

1 Scope
The DDS Monitoring specification provides a framework for monitoring the health and performance of the DDS
platform in live operational environments. This standard addresses the critical need for a unified and standardized
approach to remotely observe the operational status of DDS systems, detect anomalies or degradations, and identify
their root cause.

The specification defines the various elements needed to remotely observe and assess the operational health of a DDS
System. This is broken into 3 separate aspects:

• The DDS Monitoring Resource Model. This describes the set of Resources contained in a DDS platform and
the Observable Metrics associated with each Resource.

• The DDS Monitoring Distribution Model. This describes how the set of resources and associated observable
elements can be accessed from a remote application over the network.

• The DDS Monitoring Administration API. This describes the API/protocol remote applications and tools can
use to control the data collected as well as query current values of the Observable Elements.

2 Conformance
The Conformance clause identifies which clauses of the specification are mandatory (or conditionally mandatory) and
which are optional for an implementation to claim conformance to the specification.

There is a single conformance profile for this speciation. To conform with the specification an implementation must
implement the data model, distribution model, administration API, and protocols specified in clauses 7 and 8.

3 Normative References
The following normative documents contain provisions which, through reference in this text, constitute provisions of
this specification. For dated references, subsequent amendments to, or revisions of, any of these publications do not
apply.

[DDS] Object Management Group, Data Distribution Service, Version 1.4,
https://www.omg.org/spec/DDS/1.4

[DDSI-RTPS] Object Management Group, Real-Time Publish-Subscribe (RTPS): The DDS-Interoperability
Wire Protocol, Version 1.3, https://www.omg.org/spec/DDSI-RTPS/2.5

[DDS-XTYPES] Object Management Group, Extensible Types for DDS, Version 1.3,
https://www.omg.org/spec/DDS-XTYPES/1.3

[DDS-RPC] Object Management Group, RPC over DDS, Version 1.0, https://www.omg.org/spec/DDS-
RPC/1.0

[DDS-Security] Object Management Group, DDS Security, Version 1.1, https://www.omg.org/spec/DDS-
Security/1.2

[IDL] Object Management Group, Interface Definition Language, Version 4.2,
https://www.omg.org/spec/IDL/4.2

https://www.omg.org/spec/DDS/1.4
https://www.omg.org/spec/DDSI-RTPS/2.5
https://www.omg.org/spec/DDS-XTYPES/1.3
https://www.omg.org/spec/DDS-RPC/1.0
https://www.omg.org/spec/DDS-RPC/1.0
https://www.omg.org/spec/DDS-Security/1.2
https://www.omg.org/spec/DDS-Security/1.2
https://www.omg.org/spec/IDL/4.2

2 DDS Status Monitoring 1.0-beta 1

[POSIX fnmatch] The Open Group Base Specifications Issue 7, 2018 fnmatch function.
https://pubs.opengroup.org/onlinepubs/9699919799/functions/fnmatch.html

4 Terms and Definitions
For this specification, the following terms and definitions apply.

Attribute
Key-value pairs that provide additional contextual information about monitoring data. They can be associated with
metrics, logs, and resources. Attributes allow for the annotation of monitoring data with rich, structured contextual
information, making the data more meaningful and easier to analyze.

DDS
Data Distribution Service (DDS) is a family of standards from the Object Management Group (OMG,
http://www.omg.org) that provide connectivity, interoperability, and portability for Industrial Internet, cyber-physical,
and mission-critical applications. The DDS connectivity standards cover Publish-Subscribe (DDS), Service Invocation
(DDS-RPC), Interoperability (DDSI-RTPS), Information Modeling (DDS-XTYPES), Security (DDS-Security), as well
as programming APIs for C, C++, Java and other languages.

DDS Domain
Represents a global data space. It is a logical scope (or “address space”) for Topic and Type definitions. Each Domain is
uniquely identified by an integer Domain ID. Domains are completely independent of each other. For two DDS
applications to communicate with each other they must join the same DDS Domain.

Log
A (structured), unit of text produced by a system to inform of the occurrence of an event. E.g. a line of text indicating
that a remote DDS Participant has been discovered.

Metric
A measured, numeric value representing one aspect of the state or performance of a system under observation. E.g. a
counter indicating how many messages a DDS DataReader has in its cache.

Monitoring
The task of assessing the health of a system by collecting and analyzing Metrics, Logs, and Traces produces by the
system.

Monitoring Data
A type of data that is not used as part of the application function but rather serves the purposes of observing application
status and health. This data largely consists of numeric Metrics that are collected either periodically or whenever there is
a significant change. Monitoring data may also contain non-numeric information representing configuration
information, event occurrence, logs, and traces.

Monitoring Distribution Model
The data model and communication protocol or mechanism used to send the monitoring data values to external
applications that collect, store, analyze, or visualize the data.

https://pubs.opengroup.org/onlinepubs/9699919799/functions/fnmatch.html
http://www.omg.org/

DDS Status Monitoring 1.0-beta 1 3

Monitoring Resource Model
The set of monitoring-relevant Resources associated with a specific software stack (e.g. the DDS Platform) and the
Monitoring Data associated with each of those.

Observability
The extent to which the internal states of a system can be inferred from externally available data. An observable
software system provides the ability to understand its operational behavior and detect issues, and their causality.

Resource
Resource is an abstraction that represents an application, platform, or middleware entity that can be monitored in the
system. Resources have an identity and a lifecycle. Resources are referenceable and visible to the Monitoring
Infrastructure. They provide context for the Monitoring Data In a DDS System the DDS Entities (DomainParcitpant,
DataWriter, etc.) could be considered resources.

Trace
Structured data representing represents the entire journey of an individual action as it moves through all the nodes of a
distributed system. E.g. the journey of a data message from the moment an application writes it using a DDS DataWriter
to the moment another application receives it using a DDS DataReader.

5 Symbols
The following acronyms are used in this specification.

Table 5.1: Acronyms

Acronyms Meaning

API Application Programming Interface

DCPS Data-Centric Publish-Subscribe

DDS Data Distribution Service

OMG Object Management Group

QoS Quality-of-Service

RPC Remote Procedure Call

RTPS Real-Time Publish-Subscribe Protocol

6 Additional Information
6.1 Acknowledgments
The following individuals and companies contributed to this specification:

• Gerardo Pardo-Castellote, Real-Time Innovations, Inc.
• Matt Wilson, SimVentions, Inc.

4 DDS Status Monitoring 1.0-beta 1

7 Conceptual Model
7.1 Introduction
Monitoring the health status of a DDS System requires an Instrumentation Layer and a Distribution Layer:

• The Instrumentation Layer gathers Monitoring Data on the internal state of the DDS platform and the
occurrence of relevant events (including logs and traces).

• The Distribution Layer makes the Monitoring Data available to other applications (and tools) that collect,
store, analyze, and visualize the data to assess the health of the overall system and each of its components.

Def

Figure 8.1: Instrumentation and Distribution Layers

7.2 Concepts
Monitoring Data is a type of data that is not used as part of the application function, instead, it is used to observe
application status and health. This data may consist of numeric values (metrics), non-numeric values (attributes),
configuration information, event notifications, logs, and traces. The metric data may be generated periodically or when
there is a significant change.

Monitoring Data must be associated with an application/user-relevant object (or entity) that provides the context for that
information. For example, the Metric “CPU utilization” is associated with a specific Resource (e,g, an Operating
System Process or a Hardware CPU core).

Resources are those identifiable objects/entities whose state and events can be observed, generating and providing the
context for the monitoring data.

Resources may belong to different software (or hardware) layers, such as the underlying computing platform, the
operating system, the middleware layers, or the application itself.

The Monitoring Resource Model is the set of monitoring-relevant Resources associated with a specific software stack
(e.g. the DDS Platform) and the observable elements belonging to each resource.

DDS Status Monitoring 1.0-beta 1 5

The Monitoring Distribution Model is the communication protocol and data model used to deliver the Monitoring Data
to other applications that store, process, analyze, and visualize the data.

• The DDS-Monitoring specification uses the OMG IDL4 language, extended using annotations defined in this
specification, to define the Monitoring Resource Model. Likewise, it also uses IDL4 to define the data model
used by the Monitoring Distribution Model.

• The DDS-Monitoring specification uses DDS, extended with additional built-in Topics included in the
specification, as the communication protocol to distribute the Monitoring Data.

Note that the DDS domain (and middleware implementation) used to distribute monitoring data need not be the same
that is used to distribute the application data. This prevents interference and allows for different deployment
configurations.

7.3 Dependencies

7.3.1 HashId algorithm
This specification uses the hashid algorithm defined in DDS-XTYPES 1.3 (see [3]) to generate
integer IDs from string names. To improve the specification readability the algorithm is copied
below.
Given a string <string_value> the hashid(<string_value>) is computed as follows:

• Let string_md5hash be the MD5 Hash of the <string_value> encoded in UTF-8. This is a byte array.
• Let hashid_tmp be the uint32 integer resulting from interpreting the first 4 bytes of string_md5hash as a

Little Endian integer.
• Let hashid be equal to hashid_tmp & 0x0FFFFFF

For example, hashid("data_reader") = 177233665.

7.3.2 Supported Data Types
The Observable Data distributed by the Monitoring infrastructure must have an associated type to
allow proper encoding and interpretation. The types supported by DDS Monitoring are a subset of
the IDL types, specifically:

• Primitive Types
o Numeric Primitive Types
o Non-Numeric Primitive Types

• Primitive Collection Types
• Composite Types

These types are defined in the sections below.
Note that these are a subset of the types allowed in the IDL4, in particular unions, valuetypes, and
interfaces are not supported.

7.3.2.1 Numeric Primitive Types

These are defined to be:

• The IDL primitive integer types :
o int8, uint8, int16, uint16, int32, uint32, int64, and uint64

• The IDL floating point types:
o float and double.

6 DDS Status Monitoring 1.0-beta 1

7.3.2.2 Non-Numeric Primitive Types

These are defined to be:

• The IDL Discrete Types:

o enum, bitmap, and bitset

• The IDL primitive Non-Numeric Types:

o octet, boolean, char, and wchar.

• The IDL string types:

o string and wstring

7.3.2.3 Primitive Types

Types that are either Numeric Primitive Types (see 7.3.2.1) or Non-Numeric Primitive Types (see
7.3.2.2).

7.3.2.4 Collections of Primitive Types

These are defined to be:

• IDL sequences and arrays whose element type is a Primitive Types (see 7.3.2.3).

• IDL maps whose key type and value are Primitive Types (see 7.3.2.3).

7.3.2.5 Collections of Non-Primitive Types

IDL sequences, arrays, and maps of any supported data type that do not qualify as Collections of
Primitive Types (see 7.3.2.4).

7.3.2.6 Collections Types

Types that are either Collections of Primitive Types (see 7.3.2.4) or Collections of Non-Primitive
Types (see 7.3.2.5).

7.3.2.7 Structured Types

IDL struct types, whose members of any supported data type, including (recursively) Structured
types.

7.4 Monitoring Resource Model

7.4.1 Overview
The Monitoring Resource Model provides a way to organize and contextualize the observable elements of a software
stack:

• It provides a way to classify, identify, and name the application-relevant objects that are considered the source
of the monitoring data.

• It organizes and names the observable elements of each resource and provides the association from those
elements to the Monitoring Data produced.

The remaining sections define the building blocks of the Monitoring Resource Model.

DDS Status Monitoring 1.0-beta 1 7

7.4.2 Resources
A Resource is an abstraction representing the entities that can be monitored in the system.
Resources generate Monitoring Data that can be observed and provide the context for the
monitoring data to be interpreted.

Figure
8.2: Application Information modeled as a set of related Resources

7.4.2.1 Resource Class

Resources have an associated Type, called the Resource Class. For any given Resource Class there can be multiple
Resource Objects of that class.

For example, in the case of a DDS-based application, we may define a “data_writer” Resource Class, this resource type
contains data elements whose value represents the status of that DDS DataWriter, such as the number of samples sent,
the number of bytes sent, the number of repair messages sent, the number of matched DDS DataReaders, and so on.

A complete system may contain many Resource Objects whose Resource Class is “data_writer,” one for each DDS
DataWriter Entity in the system.

7.4.2.1.1 ResourceClassName

Resource types are identified by a string called the ResourceClassName which may be different from the name of the
type and is used to declare relationships between resources, see 7.4.2.2.

For example, in a DDS System the ResourceClassName “data_writer” may be used to identify the
type of resource associated with a DDS DataWriter.
The ResourceClassName has global scope across all resource types, it is not scoped by the
associated data type or any module the data type belongs to. It is explicitly assigned using the
@resource annotation, see 7.4.9.1.7.

8 DDS Status Monitoring 1.0-beta 1

7.4.2.1.2 ResourceClassNamespace
Resource Classes must be assigned a namespace. The ResourceClassNamespace helps categorize
the Monitoring Data generated by the resources of that class.
For example, all resources in DDS Monitoring are assigned the namespace “dds”. This namespace
is later used as part of ObservableElementName (see 7.4.3.4.1). That way the metrics produced by
DDS resources are organized and differentiated from those coming from other facilities.
The ResourceClassNamespace has global scope across all resource types, it is not scoped by the
associated data type or any module the data type belongs to. It is explicitly assigned using the
@resource annotation, see 7.4.9.1.7.

7.4.2.1.3 ResourceClassId

Resource Classes are also identified by a ResourceClassId which is a 32-bit integer. The ResourceClassId is derived
from the ResourceClassName using the hashid algorithm (see 7.3.1).

ResourceClassId = hashid(ResourceClassName)

For example, the resource class “domain_participant” has the ResourceClassId:

hashid("domain_participant")= 99258059

7.4.2.2 Resource Tree

Resources types can be related to other resource types by three kinds of relationships: “owner”,
“requires”, and “uses”.

• Owner. Each Resource Class may designate another resource Class as its “Owner”. This is a containment-type
relationship for the objects of the respective classes.

o Objects of the “owned” resource exist within the context of their owner.
o The owner relationship is also used to provide a scope for naming the resource Objects.
o There can be at most one Owner for each Resource Class. A resource without an “Owner” is

considered a “root” resource.
• Requires. Each Resource may designate one or more resources as “required”. This means that Objects of that

resource type need the existence of other objects of the specified classes.
• Uses. Each Resource may designate one or more resources as “uses”. This means that Objects of that resource

type may reference objects of the specified classes.

When a resource object is created, these class relationships result in corresponding relationships
between the Resource Objects
For example, in a DDS System, a “topic” resource would designate the “domain_participant”
resource as its “owner” as DDS Topics are created in the scope of a specific DomainParticipant.
Likewise, the “topic” resource may designate the “requitered_type” resource as “required” given
that in DDS a Topic must have an associated data type that has been registered with the
DomainParticipant.
The Resource Tree is defined as the tree created by the “owner” relationship amongst the Resource
Objects that exist in a given system.
Resources also contain Data elements (or members) whose value represents the status or
configuration of the resource. See 7.4.3.
Root resources shall have a namespace explicitly assigned using the @resource annotation.
Children resources can omit the explicit specification of their namespace. In this case, they are
considered to belong to the same namespace as the parent resource.

DDS Status Monitoring 1.0-beta 1 9

7.4.2.3 Resource Object Identification

Resource Objects have a Global Unique Identifier (ResourceGUID) and a Global Resource Name
(ResourcePathName) that allows them to be referenced in a human-readable way.

7.4.2.3.1 ResourceGUID
The ResourceGUID is assigned automatically by the Monitoring infrastructure. It is constructed
using a compact binary representation. It provides an efficient way to identify and relate resources.
The algorithm to generate it is vendor-specific, but it shall be constructed to be globally unique
within the entire system being monitored.

7.4.2.3.2 ResourcePathName
The ResourcePathName is constructed from the Resource Tree. 7.4.2.2. It is a human-readable
representation that uses string. The string uses a file “path” format that mirrors the hierarchical
relations in the Resource Tree: Given the ResourcePathName the Resource can be easily located
within the tree. Ideally, it should also be globally unique, but this cannot be enforced. The correct
operation of the system does not depend on the ResourcePathName uniqueness since anything that
requires unique identification shall use the ResourceGUID.
The algorithm to construct the ResourcePathName shall be as described below:

• Starting with the sting resource_name being the empty string, traverse the Resource Tree from the root until
reaching the Resource Object being named.

• For each (resource) node traversed:
• Let <resource_class_name> be the ResourceClassName of the resource. This is assigned using the

@resource annotation, see 7.4.9.1.7
• Let <resource_object_name> be a name assigned at the time the resource object is instantiated. This

name must be unique within the scope of the Parent Resource Object.
• Append the 4 strings: "/", <resource_class_name>, "s/", and <resource_object_name> to

resource_name. Note the use of the character ‘/’ as a separator and the extra "s" following the
<resource_class_name>.

Note that <resource_object_name> is generally provided by the user who ultimately
instantiates the resource object in their system. In the case of DDS, it would be the user that defines
the DDS Entities and deploys them.
Generating a <resource_object_name> for the root resources that are unique within the
scope of the Parent Object may present a challenge. This is because the scope for these root
resource object names is the whole system being monitored.

• One approach could be to use some application-specific GUID that may be available when the application is
deployed.

• In the case of DDS. The DomainParticipant GUID the DDS infrastructure generates for every DDS
DomainParticipant.

• An alternative approach may combine host identifiers (e.g. hostname, MAC address, IP address) with
processIds and type stamps.

• If a system is defined using DDS-XML, or a tool-based model-driven approach is followed, the entire
distributed application can be expressed in a single model and unique names could be generated from it.

• If DDS-Security is being used, the Subject Names of the Identity certificates that uniquely identify each
DomainParticipant may be used to create globally unique names.

10 DDS Status Monitoring 1.0-beta 1

7.4.2.3.3 Example
For example, a ResourcePathName used to identify a specific DDS DomainParticipant in the
system may be:
/applications/ShapeApp_25/domain_participants/SquarePublisher
/applications/ShapeApp_25(GUID=86FGA845-8F24aD74)/domain_participants/SquarePublisher
/applications/ShapeApp_25(ip=142.250.189.196;ts=2024-05-17T20:26:26Z)/domain_participants
/SquarePublisher

7.4.3 Observable Elements
Resource Objects contain Data elements (or members) whose value represents the status or
configuration of the resource.
The Data elements whose value can be observed are called Observable Elements. See 7.4.9 for the
description of how the observability of data elements is specified.

7.4.3.1 Observable Element data type

Observable Elements have an associated data type. In DDS monitoring the type of Observable
Elements must be one of the supported types defined in 7.3.2.

7.4.3.2 Observable Element Children

Observable Elements may contain children Observable Elements. This will be the case if the type
associated with an Observable Element is a Structured Type (see 0). The Structured Type is
considered the “parent” of its children’s Observable Elements.
Observable Elements whose type is not a Structured Type (see 0) are considered “terminal” in the
sense that they do not contain children Observable Elements.

• This applies trivially to Observable Elements whose type is a Primitive Type.
• This also applies to Observable Elements whose type is a Collection Type (see 7.3.2.6).

7.4.3.3 Resource Observable Element Tree

The Resource Observable Element Tree (shortened as the Observable Element Tree) is a tree of
Observable Elements defined for each Resource Object that has the Resource Object itself as its
root.
The Observable Element Tree contains all the Observable Elements that can be reached from the
Resource Object, (recursively) following the parent-children relationship of the Structured data type
associated with each Observable Element.
For example, assuming the Resource Class “application” is defined as:

module monitoring {
module dds {

@appendable @nested
@observable_unit(distribution=PERIODIC)
struct ProcessMemoryUtilization {

@unit("B") uint64 resident_memory_bytes;
@unit("B") uint64 virtual_memory_bytes;

};

@appendable @nested
struct ProcessPlatformUtilization {

@observable @unit("%"). uint16 cpu_usage;
@observable ProcessMemoryUtilization memory_usage;

};

DDS Status Monitoring 1.0-beta 1 11

@mutable @nested
@resource(class="application", namespace="dds")
struct Application {

@observable(distribution=ON_CHANGE) string hostname;
@observable ProcessPlatformUtilization process_utilization;

};
};

};

Then given a Resource Object for the “application” resource class, the corresponding Observable
Element Tree would contain the data elements:

.
|- hostname
|- process_utilization

|- cpu_usage
|- memory_usage

|- resident_memory_bytes
|- virtual_memory_bytes

7.4.3.4 Observable Element Identification

Observable Elements have an ObservableElementName and an ObservableElementId. Either one
may be used to uniquely identify an ObservableElement within the scope of its owning Resource.

7.4.3.4.1 ObservableElementName
The ObservableElementName is a string that identifies each Observable Element within the scope
of the Resource Object that contains it.
The ObservableElementName string is the concatenation of three strings: ResourceClassNamespace
(see 7.4.2.1.2), ResourceClassName (see 7.4.2.1.1), and ElementPathSuffix. The resulting string is
also converted to lowercase:
The ElementPathSuffix concatenates the member names of all the Observable Elements traversed
following the Observable Element Tree starting at Resource Class until reaching the Observable
Element.
All concatenations shall use the underscore character ‘_’ as a separator. The ‘_’ separator is not
used if one of the strings being concatenated is the empty string.
Note that the @obsevable_name annotation may be used to substitute the member names with
other strings (including the empty string) when constructing the ElementPathSuffix (see 7.4.9.1.6).
Note that the ResourceClassNamspace and ResourceClassName are not strictly needed to uniquely
identify the Observable Element within the owning resource. However, the use of this prefix
improves the usability of the Monitoring Administration API and the organization of metrics when
mixed with those originating from other facilities.

7.4.3.4.2 ObservableElementId
The ObservableElementId is computed from the ObservableElementName using the hashid
algorithm, see 7.3.1,

ObservableElementId = hashid(ObservableElementName)

7.4.3.4.3 Example
Assuming the same resource model example in 7.4.3.3, the ObservableElementName of the
observable elements would be:

"dds_application_hostname"
"dds application_process_utilization"
"dds application_process_utilization_cpu_usage"
"dds_application_process_utilization_memory_usage
"dds_application_process_utilization_memory_usage_resident_memory_bytes"

12 DDS Status Monitoring 1.0-beta 1

"dds_application_process_utilization_memory_usage_virtual_memory_bytes"

In this example, the ResourceClassNamespace is "dds". and the ResourceClassName is
"application".
The corresponding ObservableElementId of the observable elements would be:

166613811, 264598945, 205002779, 230327161, 137131145, 120161950.

7.4.4 Observable Unit
ObservableUnits are the subset of ObservableElements that can be sent atomically using DDS
Monitoring. They represent the smallest unit of “distribution” or “network transmission”.
ObservableUnits may be explicitly marked in the resource model, see 7.4.9, or may be deduced
from the Observable Element Tree.
Being Observable Elements, the Observable Units also have an associated data type, see 7.3.2.
If the Type associated with an Observable Unit is a Structured Type (see 0), it may contain one or
more (children) Observable Elements. In this case, the children observable elements cannot be sent
separately from each other by DDS Monitoring. Whenever one needs to be sent all the other ones
will also be sent.
The reason to define Observable Units with structure types is to improve performance and minimize
resource utilization. These can be especially important when the monitored systems are real-time
and/or edge systems.
If the Type associated with an Observable Unit is a Collection Type, the elements of the collection
may have Structured data types. Despite this, the Observable Unit is treated as a unit of selection
and “distribution”.

7.4.4.1 Observable Unit Identification

Observable Units are ObservableElements so they are identified by their ObservableElementName
and an ObservableElementId. Either one may be used to uniquely identify an ObservableUnit
within the scope of their owning Resource Object.

7.4.5 Metrics (Numeric Primitive Types)
Metrics represent the ObservableElements containing Numeric Primitive Types (7.3.2.1).
Metrics are used to hold a ‘measurement’ of some aspect of the status of the resource. They contain
the kind of information that may be stored as a time series so that statistics and trends may be
analyzed. They are the natural interface to Telemetry backends focused on storing and analyzing
time-series data.
For example, a resource representing an Operating System Process may have metrics about
hardware utilization, such as, “current CPU usage” and the “current memory usage.”

7.4.5.1 Metrics vs Observable Units

The term Metric is a convenient and intuitive way to refer to all the ObservableElements in the
Resource Tree that have a Numeric Primitive Types.
Some Metrics are also ObservableUnits. Other Metrics are grouped with other Metrics all nested
inside an ObservableUnit:

• ObservableUnits whose associated data type is a Numeric Primitive Type are also Metrics.
• ObservableUnits whose associated data type is a Structured Type (see 7.3.2.7) may contain multiple Metrics

inside, one per nested element whose type is a Numeric Primitive Type.

DDS Status Monitoring 1.0-beta 1 13

In cases where a Metric is not an ObservableUnit, rather it is only a part of it, alongside other
Metrics, it is not possible to receive that Metric by itself, It will be received alongside all the other
metrics in the Observable Unit. However, the application receiving the Observable Unit may
request and address the individual Metrics when configuring and processing the Monitoring Data.
For example, assume the simplified resource definition below:

@appendable @nested
@observable_unit(distribution=PERIODIC)
struct ProcessMemoryUtilization {

@unit("B") uint64 resident_memory_bytes;
@unit("B") uint64 virtual_memory_bytes;

};

@appendable @nested
struct ProcessPlatformUtilization {

@unit("%"). @observable uint16 cpu_usage;
@observable ProcessMemoryUtilization memory_usage;

};
@mutable @nested
@resource(class="application")
struct Application {

@observable(distribution=ON_CHANGE) string hostname;
@observable ProcessPlatformUtilization process_utilization;

};

In this example, the observable element named
"dds_application_process_utilization_cpu_usage" would be an ObservableUnit.
The reason is that its type is a Primitive Type and none of the containing Observable elements has
the @observable_unit annotation (the algorithm to define ObservableUnits from the resource
model is described in 7.6). Since the data type is a Numeric Type (uint16) it is also a Metric.
Continuing the example, the observable element named
"dds_application_process_utilization_memory_usage" would also be an
ObservableUnit (see 7.6) because the associated type (struct
ProcessMemoryUtilization) has the @observable_unit annotation. Note that since
this last element is not a Numeric Primitive Type it is not a Metric. Rather, it contains two metrics
corresponding to its two Numeric Primitive Type members: resident_memory_bytes and
virtual_memory_bytes.

7.4.5.2 Metric Identification (MetricId, MetricName)

Metrics are ObservableElements so they are identified by their ObservableElementName and an
ObservableElementId. Either one may be used to uniquely identify a Metric within the scope of
their owning Resource.

7.4.6 Attributes
Attributes represent the ObservableElements containing Non-Numeric Primitive Types (see 7.3.2.2)
or Collection Types (see 7.3.2.6).
Attributes are used to represent configuration, classification., or contextual data, encoding
additional aspects of the status of a resource.
For example, a Resource representing an Operating System Process may contain multiple attributes,
such as the executable_name and the user_name of the parent process.

14 DDS Status Monitoring 1.0-beta 1

7.4.6.1 Attributes vs Observable Units

The term Attribute is a convenient and intuitive way to refer to all the ObservableElements that
either have Non-Numeric Primitive Types in the Resource Tree or have a numeric type but should
be treated as Non-numeric as indicated by annotations in the Monitoring Resource Model.
Some Attributes are also ObservableUnits. Other Attributes are grouped with other Attributes all
nested inside an ObservableUnit:

• ObservableUnits whose associated data type is a Non Numeric Primitive Type (see 7.3.2.2 are also Attributes.
• ObservableUnits whose associated data type is a Numeric Primitive Type (see 7.3.2.1) and have the annotation

@attribute (see 7.4.9.1.2) are also Attributes.
• ObservableUnits whose associated data type is a Collection Type (see 7.3.2.6) are also Attributes.
• ObservableUnits whose associated data type is a Structured Type (see 7.3.2.7) may contain multiple Attributes

inside.

Similar to Metrics, in cases where an Attribute is not an ObservableUnit, rather it is only a part of it,
alongside other Attributes, it is not possible to receive that Attribute in isolation, without also
receiving all the other Attributes in the Observable Unit.
For example, the observable unit named "dds_application_hostname" has an associated
data type string. So it is also an Attribute.
For example, the observable unit named "dds_publisher_qos_presentation" has an
associated structure data type PresentationQosPolicy, shown below, so it is not an
Attribute.

@appendable @nested
@observable_unit(distribution=ON_CHANGE)
struct PresentationQosPolicy {

PresentationQosPolicyAccessScopeKind access_scope;
boolean coherent_access;
boolean ordered_access;

};

Based on the above definition, the observable unit "publisher_qos_presentation"
contains three Attributes corresponding to each member of the PresentationQosPolicy.

7.4.6.2 Attribute Identification

Attributes are ObservableElements so they are identified by their ObservableElementName and an
ObservableElementId. Either one may be used to uniquely identify the Attribute within the scope of
their owning Resource.

7.4.7 Logs and Events
Resources may also generate observable data in the form of Logs and Events. This type of observable data is a record
describing a discrete occurrence within a Resource.

• Events represent significant occurrences within systems that are specifically captured because of their
relevance to the system's operation or behavior. Data representing Events is typically structured with specific
fields to convey information about the incident.

• Logs represent a broader category that can include anything from detailed debug information to high-level
system alerts and errors. They are useful for troubleshooting, providing a detailed trail of what happened
where, and when. Data representing logs typically has standard fields used for classification as well as
formatted strings containing more detailed information.

DDS Status Monitoring 1.0-beta 1 15

This specification does not distinguish Events from Logs, treating events as another kind of log. Furthermore, it uses the
same model for Logs as DDS-Security which itself follows the Syslog model (IETF RFC 5424).

7.4.7.1 Log Identification

Logs are identified within the context of their owning Resource by the combination of the
SyslogFacility and a LogSequenceNumber.
The SyslogFacility is a standard numerical code that represents the source of the log message, allowing the observer to
categorize and filter log messages based on their origin. These codes are defined in IETF RFC 5424, see [7].

This specification uses:

• Code 23 (MIDDLEWARE) for logs generated by Resources representing DDS Entities.

• Code 22 (SERVICE) for logs generated by Resources representing DDS Services (e.g. Persistence Service).

• Code 10 (SECURITY_EVENT) for any logs generated by DDS Security Plugins.

• Code 1 (USER) for logs generated by other Resources.

7.4.8 Monitoring Data
Monitoring Data is any data distributed by the Monitoring infrastructure. It includes data generated
by sampling Observable Elements as well as Logs and Events.
Resources are the source of all the Monitoring Data distributed by the Monitoring Infrastructure.

7.4.9 IDL definition of the Monitoring Resource Model
Within the context of DDS Monitoring, the Monitoring Resource Model consists of the definition of
the Resource Classes, including relationships between resources (owns, requires, uses). It also
includes the definition of the Observable Elements and Observable Units. Beyond that, the model
also includes additional information that may impact the naming or distribution of Observable
Elements.
This DDS-Monitoring specification uses OMG IDL to formally define the DDS Monitoring
Resource model. The DDS-Monitoring specification defines custom IDL annotations that identify
resource classes, and all the additional information required to fully specify the resource model.
IDL annotations are also used to configure the distribution aspects of the monitoring data.
These annotations could be used to define Monitoring Resource models for other kinds of software
systems, not just DDS-based systems.

7.4.9.1 Annotations used to define the Monitoring Resource Model

The custom annotations defined by the DDS-Monitoring speciation are defined in the IDL file
monitoring_annotations.idl included as part of this specification. This clause specifies
how they are used.

7.4.9.1.1 @view
This annotation may be applied to members of a Structured Type. The annotation controls the
serialization of data objects of that type, allowing the definition of multiple levels of “detail” in the
serialization.
The annotation is defined in the following IDL (all definitions are in the module monitoring::dds):

@annotation view {
@max(31) uint8 level default 0; // 0 => default level
@max(31) uint8 member_level default 0; // member default level

16 DDS Status Monitoring 1.0-beta 1

};

The @view annotation on a member of a Structure type may be used to define multiple ways to
serialize the structure. Each of these is considered a “level” in the sense that it serializes additional
members beyond the ones serialized by the level below.
The @view annotation on a member of a Structure type may also be used to select a specific
serialization level for serializing the member.
Each different value of the level parameter defines a “serialization level” for the Structure type.
The serialization level is identified by the value of the level.
Non-structure types are considered to have only one level, selected by level 0.
The serialization of a data object of type a Structure Type for level LI is done according to the rules
below:

• Members without the @view annotation are treated as if they had the annotation @view(level=0,
member_level=0).

• Members having the @view annotation with the parameter level <= LI are serialized. Other members are
treated as if they had the @non_serialized annotation.

• The serialization of a member that has the @view annotation serializes the member according to the member
type for the level identified by the member_level.

7.4.9.1.1.1 Parameters
The annotation may specify the following parameters:

• Parameter level. Selects the members included in the level identified by the level value. The level identified by
level=LI contains only the members with the @view annotation that have parameter level <= LI.

• Parameter member_level. Specifies the level used when serializing the member.

7.4.9.1.1.2 Example
The following IDL example illustrates the use of the @view annotation:

@appendable @nested
struct FloatStat {

@view(level=2) uint32 period_ms;
@view(level=2) uint64 count;
@view(level=0) float mean;
@view(level=1) float min;
@view(level=1) float max;

};

@nested
@mutable
struct ParticipantPeriodic {

@view(level=0, member_level=1) @optional
FloatStat send_samples_per_s;
@view(level=1, member_level=0) @optional
FloatStat send_bytes_per_s;
@view(level=2, member_level=2) @optional
FloatStat receive_samples_per_s;
@view(level=2, member_level=2) @optional
FloatStat receive_bytes_per_s;

}

The type FloatStat above defines 3 serialization levels identified by level values 0, 1, and 2.
• Level with level = 0: serializes member mean.
• Level with level = 1: serializes the same members as level 0 plus min and max.
• Level with level = 2: serializes the same members as level 1 plus period_ms and count.

DDS Status Monitoring 1.0-beta 1 17

The type ParticipantPeriodic defines 3 serialization levels identified by level values 0, 1,
and 2.

• Level with level = 0: serializes member send_samples_per_s.
• Level with level = 1: serializes member send_samples_per_s. and send_bytes_per_s
• Level with level = 2: serializes member send_samples_per_s, send_bytes_per_s,

receive_samples_per_s,and receive_bytes_per_s.

These members are serialized as follows:
• Member send_samples_per_s serializes level 1 of the FloatStat type. Therefore, it serializes mean,

min, and max.
• Member send_bytes_per_s serializes level 0 of the FloatStat type. Therefore, it serializes mean.
• Member receive_samples_per_s serializes level 2 of the FloatStat type. Therefore, it serializes

period_ms, count, mean, min, and max.
• Member send_bytes_per_s serializes level 2 of the FloatStat type. Therefore, it serializes

period_ms, count, mean, min, and max.

Just because a Member type defines multiple serialization levels it does not mean the container type
has to also define multiple levels. The example ParticipantPeriodic defined earlier in this
clause only has one level (level 0) despite containing members whose type defines multiple levels.

7.4.9.1.2 @attribute
This annotation may be applied to members of a Structure Type. The annotation indicates that any
Observable Elements related to the member (directly or nested within) that are Primitive Types
should be treated as Attributes. The use of the annotation overrides the default criteria used to make
the decision.
The annotation is defined in the following IDL (all definitions are in the module monitoring::dds):

@annotation attribute {
};

By default the decision of whether an Observable Element becomes a Metric or an Attribute is
made based on the type associated with the element:

• Observable Elements whose type is a Numeric Primitive Type (7.3.2.1) become Metrics.

• Observable members whose type is a Non-Numeric Primitive Type (7.3.2.2), become Attributes.

If this annotation is used, the default criteria is modified and any Observable Elements related to the
marked member (the member itself and any nested members) will become Attributes even if their
type is a Numeric Primitive Type.
7.4.9.1.2.1 Parameters
The @atribute annotation does not have any parameters.

7.4.9.1.2.2 Example
The following IDL annotations provide a simple definition of a Resource Class "simplified_participant".

@final @nested
struct RTPSVersion_t

uint8 major;
uint8 minor;

};

@mutable @nested
@resource(class="simplified_participant", owner="application")
struct SimplifiedParticipant {

18 DDS Status Monitoring 1.0-beta 1

@observable uint64 messages_sent;
@observable string domain_tag;
@attribute
@observable uint32 domain_id;
@attribute
@observable RTPSVersion_t rtps_version;

};

The observable element messages_sent will be classified as a Metric according to the default
criteria given its type is a Numeric Primitive Type (7.3.2.1).
Likewise, the observable element domain_tag will be classified as an Attribute according to the
default criteria as its type is a Non-Numeric Primitive Type (Error! Reference source not found.).
The member domain_id would have been classified as a Metric according to the default criteria
as its type is a Numeric Primitive Type. However, the presence of the @attribute annotation
changes the behavior, and it is classified as an Attribute instead.
The observable element rtps_version results in two Attributes: rtps_version_major and
rtps_version_minor. Although the nested observable elements have integer types, the
presence of the @attribute annotation changes the behavior and they become Attributes instead.

7.4.9.1.3 @observable
This annotation may be applied to a member of a Structure type. The annotation controls whether
the member becomes an Observable Element when it appears in a Resource Observable Element
Tree.
The annotation is also used to configure distribution aspects of nested Observable Elements, see
7.5, specifically whether they are sent periodically (see 7.5.1) or only when there are (significant)
changes (see 7.5.2).
The annotation is defined in the following IDL (all definitions are in the module monitoring::dds):

enum DistributionKind {
UNSPECIFIED,
PERIODIC,
ON_CHANGE

};

@annotation observable {
DistributionKind distribution default UNSPECIFIED;

};

For Structures representing the resources, there shall always be at least one member with the
@observable annotation.
The annotation may be applied to only a subset of the members of a Structure Type. In this case,
any member that does not have the annotation will not be considered an Observable Element,
unless the annotation @observable_view has also been applied to the enclosing Structure Type.
See 7.4.9.1.5.
The special case where no member is annotated is treated as if all members had the annotation
@observable(distribution=UNSPECIFIED) for structure types that are not a Resource
Class.
7.4.9.1.3.1 Parameters
The observable annotation may specify the following parameters:

• Parameter distribution. Configures aspects of the distribution of the Observable Elements. It may take three
values:

o PERIODIC. This setting modifies the default distribution of data for nested Observable Elements to
PERIODIC, see 7.5.1.

DDS Status Monitoring 1.0-beta 1 19

o ON_CHANGE. This setting modifies the default distribution of data for nested Observable Elements
to event-driven (ON_CHANGE), see 7.5.2.

o UNSPECIFIED. This setting does not modify the default distribution of data for nested Observable
Elements.

7.4.9.1.3.2 Algorithm to determine the DistributionKind of Observable Elements
Observable Elements may appear nested inside Observable Elements and those could have
@observability annotations. In addition, for Observable Elements whose type is a Structured
type, the containing Type itself could have @observability annotations.
The Monitoring Distribution Model (7.6) needs to determine the DistributionKind of
Observable Element whose associated type is a Primitive Type (7.3.2.3) or a Collection Type
(7.3.2.6). This determination is based on the Resource’s Observable Element Tree. The rules shall
be applied in the order they appear:

• Do a depth-first Resource’s Observable Element Tree, setting the initial parentDistribution to UNSPECIFIED.
• When visiting an Observable Element node in the tree:
• If the Observable Element type is an Observable Unit (see 7.4.4), the distribution kind shall be set according to

these rules:
o If the Observable Element has an @observable annotation with a distribution parameter value

different from UNSPECIFIED, use the value of distribution in the annotation.
o Otherwise, if the value of the parentDistribution is different from UNSPECIFIED, use the value of

the parentDistribution.
o Otherwise, if the Observable Element type is a Structured Type and the @observable_unit

annotation distribution parameter has a value different from UNSPECIFIED, use the value of the
distribution parameter in the Structure Type.

• Otherwise, set the DistributionKind to ON_CHANGE.
• Otherwise, the Observable Element type must be Structured Type:
• If the Observable Element has @observable annotation and the value of the distribution parameter is not

UNSPECIFIED, set the value of the parentDistribution to match the distribution in the annotation.
• Recurse through into the Structure Type, visiting each nested Observable Element.
• Once the recursion completes, set the parentDistribution back to the value it had before visiting the

Observable Element.

7.4.9.1.3.3 Example
Assume the following definition of a simplified application resource:

@observable_unit(distribution=PERIODIC)
struct MemoryStatus {

uint64 bytes_used;
uint64 allocation_cummulative_count;
uint64 free_cummulative_count;

};

struct NetworkStatus {
@observable distribution=ON_CHANGE)

string

nic_name;

@observable(distribution=ON_CHANGE) uint64 nic_speed;
@observable

};
uint64 messages_sent;

struct ProcessState {
@observable

string

cpu_model_name;

@observable(distribution=ON_CHANGE) uint32 pid;
@observable MemoryStatus memory;
@observable(distribution=PERIODIC) NetworkStatus network;
@observable(distribution=PERIODIC) uint64 cpu_time;

20 DDS Status Monitoring 1.0-beta 1

@observable uint8 percent_cpu_use;
string command;

};

@mutable @nested
@resource(class="simplified_application")
struct SimplifiedApplication {

@observable(distribution=ON_CHANGE) string hostname;
@observable ProcessState process_state;

};

The algorithm traverses the Observable Element tree:

Set parentDistribution to UNSPECIFIED before starting the traversal.

The observable element hostname is a Primitive Type and specifies distribution=ON_CHANGE using the
@observability annotation directly in the element, so the DistributionKind is set to match the annotation:
ON_CHANGE.

The observable element process_state is a Structure. It has a @observability but it does
not have a distribution parameter so it is interpreted as being UNSPECIFIED, which means that
parentDistribution is not modified: it remains set to UNSPECIFIED.
Then the traversal visits the Observable Elements contained by process_state these are obtained from the associated
member type: ProcessState:

• Element cpu_model_name is a Primitive Type. It does not have an @observability y annotation so it
checks the parentDistribution. Since this is UNSPECIFIED it checks if the type ProcessState has the
@observable or @observable_unit annotations, since it does not have them it sets the
DistributionKind to the default (ON_CHANGE).

• Element pid is a Primitive Type, it has an @observability annotation with a specified distribution so it
sets the distribution kind accordingly. It is set to ON_CHANGE.’

• Element memory is a Structure type (MemoryStatus). It has a @observability but it does not specify
the distribution, therefore the parentDistribution is not modified: it remains set to UNSPECIFIED. The
traversal visits the elements inside MemoryStatus.

• Element bytes_used is a Primitive Type. It does not have an @observability annotation so it checks
the parentDistribution. Since this is UNSPECIFIED it checks if the type MemoryStatus. This type has the
@observability_unit annotation with parameter distribution=PERIODIC so the
DistributionKind of bytes_used is also set PERIODIC.

• Likewise, the DistributionKind of allocation_cummulative_count and
free_cummulative_count are also set to PERIODIC.

• Element network is a Structured type (NetworkStatus). It has a @observability with parameter
distribution = PERIODIC to the parentDistribution is set to PERIODIC. The traversal visits the elements
inside NetworkStatus.

• Element nic_name is a Primitive Type. Its DistributionKind will be set to ON_CHANGE based on the
@observability annotation having parameter distribution=ON_CHANGE.

• Element nic_speed is a Primitive Type. Its DistributionKind will be set to ON_CHANGE based on
the @observability annotation having parameter distribution=ON_CHANGE.

• Element messages_sent is a Primitive Type. Its DistributionKind will be set to PERIODIC based on
the parentDistribution as it does not have an @observability annotation.

• Exiting the network Observable Element sets the parentDistribution back to UNSPECIFIED.
• Element cpu_time is a Primitive Type. Its DistributionKind will be set to PERIODIC based on the

@observability annotation having parameter distribution=PERIODIC.

DDS Status Monitoring 1.0-beta 1 21

• Element cpu_time is a Primitive Type. Its DistributionKind will be set to ON_CHANGE because it
does not have @observability annotation and the parentDistribution is UNSPECIFIED, so it uses the
default value of ON_CHANGE.

• Element command is not an Observable Element since it does not have the @observability annotation
and is in a Structure type (ProcessState) with other elements that do have the @observability
annotation.

7.4.9.1.4 @observable_unit

This annotation may only be applied to a Structured type. The annotation is used to define an Observable Unit (see
7.4.4). Observable Elements that appear (recursively) as children of the Observable Unit will not be propagated
individually. Instead, they will appear grouped with the other Observable Elements in the unit.

The annotation may also impact the DistributionKind of nested Observable Elements, see 7.4.9.1.3.2.

This use of this annotation and the related @observable_view (see 7.4.9.1.5) impact the mapping of structure into
the Monitoring distribution data model.

This grouping of Observable Elements simplifies the mapping to the distribution data model and can also increase
performance in situations where multiple observable elements are often sent together. Both are important concerns for
real-time or Edge systems.

The annotation is defined in the following IDL (all definitions are in the module monitoring::dds):
@annotation observable_unit {

DistributionKind distribution default UNSPECIFIED;
};

The enumerated type DistributionKind is defined in 7.4.9.1.3.
If a Structured type does not have the @observable_unit annotation, then the nested Observable Elements shall be
mapped into the Distribution Model in such a way that it is possible to send them separately.

If a Structured type has the @observable_unit annotation, then the Observable Elements nested within shall be
mapped into the Distribution Model grouped together. This means that if one of the Observable Elements needs to be
sent, other Observable Elements placed in the same unit will also be sent, even if not explicitly requested by the
consumer.

The number of Observable Units used to send the nested Observable Elements depends on whether the annotation
@observable_view is also used.

7.4.9.1.4.1 Parameters
The observable annotation may specify the following parameters:

• Parameter distribution. Configures aspects of the distribution of the monitoring data. It may take the same
three values described in 7.4.9.1.3.1. The setting impacts all the contained observable elements in the unit.

7.4.9.1.4.2 Example
The following IDL annotations define some of the Observable Elements in a type used to represent the state of a
Process.

@appendable @nested

@observable_unit(distribution=PERIODIC)

struct ProcessMemoryUtilization {

@unit("B") uint64 resident_memory_bytes;

@unit("B") uint64 virtual_memory_bytes;

};

22 DDS Status Monitoring 1.0-beta 1

The presence of the @observable_unit causes the two Observable Elements resident_memory_bytes and
virtual_memory_bytes to be grouped together in the distribution data model such that one cannot be sent
without also sending the other.

7.4.9.1.5 @observable_view

This annotation may only be applied to a Structured type that has the @observable_unit annotation. It may appear
multiple times in the same Structure. Each occurrence in a type shall use a different value for the “level” parameter (see
below).

The annotation is defined in the following IDL (all definitions are in the module monitoring::dds):
@annotation observable_view {

@max(8) int8 level default 0;
string select default "%";

};

The annotation determines the number of Observable Units created from the Structure type and the Observable
Elements included in each unit.

• If the annotation is not present the distribution model shall have a single unit containing all the nested
Observable Elements.

• If the annotation is present the distribution model shall have one unit for each @observable_view
annotation.

o Given the annotation @observable_view(level=LI, select=<pattern>), the
corresponding unit shall contain all the nested Observable Elements that match the select <pattern>
parameter in the annotation, in addition to all the nested Observable Elements contained in all the
units for levels with level 0<= level < LI.

o Each incremental value of the level adds the Observable Elements that match the corresponding select
parameter.

7.4.9.1.5.1 Parameters
The annotation may specify the following parameters:

• Parameter level. Used to identify each of the observable units created from the Composite Type. The value is
interpreted as an inclusion “level”:

o Increasing values of the level shall correspond to increasingly more observable element detail. The
most common observable elements should be placed at level=0, the next set at level=1, and so on.

o The distribution model groups the observable elements in a level with the observable elements in all
lower levels. Therefore, to send a metric at level=L the distribution model will also send the metrics at
level =L-1, and recursively to the metrics at level=0.

• Parameter select. Expression used to identify the (subset) of members of the Structure Type that will be added
to the Observable Unit identified by the level.

• The selection of the members of a level shall be done in the order that corresponds to increasing values of
the level parameter.

• The expression can contain one or more patterns separated by a semicolon ‘;’ character.

o Only members who are not already part of a unit with a lower value for the level parameter are
considered for matching.

o Each pattern is applied in order against the name of each member. If any pattern matches, the
member will be considered part of the unit associated with the value of the level.

DDS Status Monitoring 1.0-beta 1 23

• Each pattern can contain only alphanumeric characters, and the characters ‘_’ and ‘%’.

o The character ‘%’ is treated as a special character that can match any number of characters in the
member’s name.

o Other characters in the pattern must match exactly with the corresponding characters in the
member name.

• Examples:

o The select expression “%” will match all members of an IDL structure.

o The select expression “%_count” will match any members of an IDL structure with a name
ending in the suffix “_count”.

o The select expression “min;max” will match any members of an IDL structure that have exactly
the name “min” or “max”.

o The select expression “min_%;max_%” will match any members of an IDL structure that have a
name that starts with the prefix “min_” or “max_”.

7.4.9.1.5.2 Example
The following IDL annotations define three units with levels 0, 1, and 2 from the structured type Int32Stat.

@appendable @nested
@observable_unit
@observable_view(level=0, select="mean")
@observable_view(level=1, select="min;max")
@observable_view(level=2, select="%")
@appendable @nested
struct FloatStat {

@view(level=2) uint32 period_ms;
@view(level=2) uint64 count;
@view(level=0) float mean;
@view(level=1) float min;
@view(level=1) float max;

};

In this example:

• The definition of units starts with the lowest level (level =0). The corresponding select expression “mean”
matches the one member that has that exact name. Therefore, the unit for level=1 contains the member:

o mean (included because it matches the expression for level 0)

• The definition of the unit for level=1 matches the select expression “min;max” against all members (except for
the member mean as it already belongs to level=0). The expression “min;max” ends up matching the two
members with those exact names. Therefore, the unit for level=1 contains the following members:

o mean (included in level 1 because it is part of level 0)

o min (included because it matches the expression for level 1)

o max (included because it matches the expression for level 1)

• The definition of the unit for level=2 matches the select expression “%” against all members that are not part
of level 0 or 1. This ends up matching all remaining members (period_ms and count). Therefore, the unit for
level=1 contains the following members:

o period_ms (included because it matches the expression for level 2)

o count (included because it matches the expression for level 2)

o mean (included in level 2 because it is part of level 0)

24 DDS Status Monitoring 1.0-beta 1

o min (included in level 2 because it is part of level 1)

o max (included in level 2 because it is part of level 1)

7.4.9.1.5.3 Relationship with @observability and @view
The @observable_view can be considered a convenient “shorthand” notation for common uses of the
@observable and @view.

The @observable_view annotation applied to a Structure type is equivalent to applying the @observable and
@view annotations to some of the members of the structure:

For each @observable_view(level=<level>, select=<pattern>) that appears in the Structure is
equivalent to adding the annotations @observable and @view(level=0, member_level=<level>) to all
the members that have a member name that matches the <pattern> according to the rules described in 7.4.9.1.5.

For example, assume FloatStat structure type is defined as shown below using the @observable_view
annotations on the structure:

@observable_view(level=0, select="mean")
@observable_view(level=1, select="min;max")
@observable_view(level=2, select="%")
struct FloatStat {

uint32 period_ms;
uint64 count;
float mean;
float min;
float max;

};

The above is completely equivalent to the FloatStat type below that uses @observable and @view annotations
on the structure members:

struct FloatStat {
@observable @view(level=2) uint32 period_ms;
@observable @view(level=2) uint64 count;
@observable @view(level=0) float mean;
@observable @view(level=1) float min;
@observable @view(level=1) float max;

};

7.4.9.1.6 @observable_name

This annotation may be applied to a member of an IDL Structure. The annotation impacts the ObservableElementName
(see 7.4.3.4) of the Observable Elements that correspond to the annotated member and its children.

The annotation is defined in the following IDL (all definitions are in the module monitoring::dds):
@annotation observable_name {

string value default "";
};

As described in 7.4.3.4, the ObservableElementName is constructed from the Resource Observable Element Tree
concatenating the member names on the Types that correspond to the Observable Elements. The presence of the
@observable_name()annotation on a member replaces the member name used with the value specified in the
annotation.

7.4.9.1.6.1 Parameters
The annotation may specify the following parameters:

• Parameter value. Used to modify the name used to construct FQNs, MetricNames, and AttributeNames.

DDS Status Monitoring 1.0-beta 1 25

o If value is not present or set to the empty string ("")the name of the Module or Member is omitted in
the construction of FQN, MetricNames, and AttributeNames.

o If value is not set to a non-empty the specified string is used instead of the name of the module of
member in the construction of FQNs, MetricNames, and AttributeNames.

7.4.9.1.6.2 Example
Assume the following resource definition:

module monitoring { module dds {

@appendable
struct ProcessPlatformUtilization {

/* Elements removed for illustrative purpose */
uint32 uptime_sec;

};

@mutable @nested
@resource(class="application", namespace="dds", owner="")
struct Application {

/* Elements removed for illustrative purpose */
@observable(distribution=PERIODIC) @observable_name("process")
ProcessPlatformUtilization process_utilization;
/* Elements removed for illustrative purpose */

};};};

Without the @observable_name annotation applying the rules in 7.4.9.1.3.2, the
ObservableElementName for the application resource element containing the process uptime would
be "dds_application_process_utilization_uptime".
However, the application resource member process_utilization has the annotation
@observable_name("process"), therefore the ObservableElementName is
"dds_application_process_uptime".

7.4.9.1.7 @resource

This annotation may be applied to any structured type. It is used to define a Resource Class.

The annotation is defined in the following IDL (all definitions are in the module monitoring::dds:
module DDS { module Monitoring {

@annotation resource {
string name;
string namespace default "";
string owner default "";
string requires default "";
string uses default "";

};
};};

7.4.9.1.7.1 Parameters
The annotation may specify the following parameters:

• Parameter class. The name used to identify this resource type.

o If name is not present or set to the empty string ("")the name of the structured type is used.

o The name used for the class should be unique among all the resources that have the same owner.

• Parameter namespace. A namespace that helps organize and categorize the Monitoring Data generated by the
resource Observable Elements. The namespace is used as part of the ObservableElementName.

26 DDS Status Monitoring 1.0-beta 1

o The namespace shall be present if the resource is a root resource (i.e. it does not have an owner).

o if the resource is not a root resource and the namespace is not present (or it is set to the empty string
(""), then the namespace of the owner resource is used.

• Parameter owner. The name of the Resource Class that is the direct parent of the resource within the resource
tree.

o If owner is not present or it is set to the empty string ("")the Resource Class is directly under the
root of the resource class tree. These are called “root resource classes”. The name of each root
resource class should be unique among all root resource classes.

• Parameter requires. The name of one or more Resource Classes that the resource depends on. If multiple
resources are listed, each is separated from the previous by a semicolon (‘;’) character.

o Every Resource Object of the Resource Class shall be associated with a Resource Object of each of
the classes listed in the requires parameter.

• Parameter uses. The name of one or more Resource Classes that the resource may use. If multiple resources are
listed, each is separated from the previous by a semicolon (‘;’) character.

o Resource Object of the Resource Class may only be associated with Resource Objects of the classes
that appear listed in the uses parameter, in addition to the ones that appear listed in the requires
parameter.

7.4.9.1.7.2 Example
The following IDL annotations define a resource class called “topic” that contains the monitoring data associated with a
DDS Topic Entity. All IDL definitions are in the module monitoring::dds:

@mutable @nested
@resource(class="topic", owner="domain_participant", requires="type")
struct Topic {

@observable(distribution=ON_CHANGE) GUID_t dds_guid;
@observable(distribution=ON_CHANGE) ObjectName topic_name;
@observable(distribution=ON_CHANGE) string registered_type_name;
@observable TopicQos qos;
@metric_name("")
@observable TopicStatus status;

};

The “topic” resource objects will be nested inside resource objects belonging to the class “domain_participant” and
require resource objects of class “type”.

7.4.9.2 Full IDL definition of the Monitoring Resource Model

The full definition of the DDS Monitoring Resource model is provided in the following IDL files which are included as
part of this specification:

• monitoring_annotations.idl
• monitoring_statistics.idl
• monitoring_logging.idl
• monitoring_resource.idl
• monitoring_administration.idl
• monitoring_dds_common.idl
• monitoring_dds_status.idl
• monitoring_dds_qos.idl
• monitoring_dds_entities.idl

DDS Status Monitoring 1.0-beta 1 27

The types in the above "monitoring_dds_*" IDL files are contained inside the module monitoring::dds. The types
in the remaining IDL files are inside the module monitoring::dds. These types are independent of DDS and could
be used as Resource models for non-DDS systems.

7.4.9.3 Description of main types in the Monitoring Resource Model

7.4.9.3.1 Type ResourceClassId
This type is used to identify the Resource type, see 7.4.2.1. It is defined as shown in the IDL
below:

typedef uint32 ResourceClassId;

7.4.9.3.2 Type ResourceClassName
This type is used to identify the Resource type using a human-readable representation, see
7.4.2.1. It is defined as shown in the IDL below:

const int32 RESOURCE_CLASSNAME_LENGTH_MAX = 63;
typedef string<RESOURCE_NAME_LENGTH_MAX> ResourceClassName;

7.4.9.3.3 Type ResourceGUID
This type is used to identify resource objects, see 7.4.2.3.1. It is defined as shown in the IDL below:

typedef octet ResourceGUID[16];

7.4.9.3.4 Type ResourcePathName
This type is used to identify resource objects using a human-readable representation, see 7.4.2.3.2.
It is defined as shown in the IDL below:

const int32 RESOURCE_NAME_LENGTH_MAX = 255;
typedef string<RESOURCE_NAME_LENGTH_MAX> ResourceName;

7.4.9.3.5 Type ObservableElementId
This type is used to identify observable elements within the scope of the containing Resource
Object, see 7.4.3.4.2. It is defined as shown in the IDL below:

typedef uint32 ObservableElementId;

7.4.9.3.6 Type TypeObjectSerialized
This type is used to hold the full definition of a type. It is defined as shown in the IDL below:

typedef sequence<octet> TypeObjectSerialized;

The octet sequence shall contain the CompleteTypeObject as defined in sections 7.3.4.3 and
7.3.4.5 of DDS-XTYPES version 1.3, see [3], serialized as specified in section 7.3.4.5 of the
aforementioned DDS-XTYPES specification.

7.4.9.3.7 Type TypeIdentifierSerialized
This type is used to uniquely identify a Type. It is defined as shown in the IDL below:

typedef sequence<octet, 24> TypeIdentifierSerialized;

This type shall contain the serialized representation of the TypeIdentifier as defined in section
7.3.4.2 of DDS-XTYPES version 1.3, see [3].
The Type Identifier shall be computed in the Complete Type Object, see XTYPES 7.3.4.3.
The serialization of the TypeIdentifier shall be done using XCDR version 3 with Little Endian
encoding, see XTYPES 7.4.2.

7.4.9.3.8 Type TypeDefinition
This type is used to hold a TypeIndetifier alongside the full definition of a type. It is defined as
shown in the IDL below:

@appendable

28 DDS Status Monitoring 1.0-beta 1

struct TypeDefinition {
TypeIdentifierSerialized type_id;
TypeObjectSerialized type_object_serialized;

}
typedef sequence<TypeDefinition> TypeDefinitionSequence;

7.4.9.3.9 Type ResourceMutableState and ResourceInmutableState
This type is used to hold the state of a Resource alongside the ResourceGUID that identifies the
resource.
The ResourceInmutableState is used to represent the state attributes that cannot change after the
resource is created. The ResourceMutableState is used to represent and communicate changes to
that state. The types are defined as shown in the IDL below:

@appendable
struct ResourceMutableState {

sequence<ResourceGUID> used_resources;
sequence<ObservableElementId> active_obsevable_element_ids;

};

@appendable
struct ResourceInmutableState {

ResourceClassId class_id;
ResourceName name;
ResourceName namespace;
ResourceGUID owner_resource;
sequence<ResourceGUID> required_resources;
UserGUID user_guid;

};

The ResourceMutableState contains the following members:
• Member used_resources. Contains the list of resource objects currently associated with the resource identified

by guid.
• Member active_observable_element_ids. Contains the list of Observable Elements in the resource that are

being actively monitored.

The ResourceInmutableState contains the following members:
• Member class_id. Identifies the type of resource
• Member name. Holds the name of the resource.
• Member owner_resource. Applies to children resources. It identifies the parent resource.
• Member user_guid. Contains a user-provided identifier. It is not interpreted by DDS-Monitoring.

7.4.9.3.10 Types Resource and ResourceReference
The Resource type is used to hold the full definition of a Resource and its relationships to other
Resources. It is defined as shown in the IDL below:

@final
struct Resource {

ResourceGUID guid;
@observable_name("")
ResourceMutableState mutable_state;
@observable_name("")
ResourceInmutableState inmutable_state;

};
typedef @external Resource ResourceReference;
typedef sequence<ResourceReference> ResourceList;

The ResourceReference type is used to hold a reference to a Resource.

DDS Status Monitoring 1.0-beta 1 29

7.4.9.3.11 Type ResourceStateUpdate
The ResourcStateUpdate type is used to communicate a change in the state of a Resource. It
is defined as shown in the IDL below:

@final
struct ResourceStateUpdate {

ResourceGUID guid;
@observable_name("")
ResourceMutableState mutable_state;

};

7.4.9.3.12 Type ResourceList
This type is used to hold the full description of a list of resources. It may serve multiple purposes:

• It may be used to communicate a snapshot of the existing resources, usually as a response to a query requesting
the list of resources that meet some condition.

• It may be used to communicate the creation/addition of new resources to a system

The type is defined as shown in the IDL below:
typedef sequence<ResourceReference> ResourceSequence;

7.4.9.3.13 ResourceClassId constants
For each Type in the Resource Model that has the @resource annotation, there shall be a constant
of type ResourceClassId with name <RESOURCECLASSNAME>_RESOURCE_CLASS_ID
where <RESOURCECLASSNAME> stands for the ResourceClassName (see 7.4.2.1.1) resource class
name in upper case.
The value of the constant <RESOURCECLASSNAME>_RESOURCE_CLASS_ID shall be the
ResourceClassId computed as specified in 7.4.2.1.3.

7.4.9.3.14 Type EventInfo
The EventInfo type is used to include additional data when sending Event information (see
7.6.8). It is defined as shown in the IDL below:

@appendable
struct EventInfo {

ResourceGUID root_resource_guid;
uint64 epoch_resource;
uint64 epoch_observable_unit;
boolean is_snapshot;

};

The type contains the following members:
• Member root_resource_guid. The GUID of the root resource associated with the event. Note that the Event

type (see 7.6.8). already contains the GUID of the resource that originated the Event (resource_guid). The
root_resource_guid is the ancestor of the resource_guid which is the root resource in the resource tree (see
7.4.2.2).

• Member epoch_resource. Counts the number of changes that occurred in the resource_guid
ResourceMutableState (see 7.4.9.3.9). This is used to detect missing updates to the resource state.

• Member epoch_observable_unit. Counts the number of changes that occurred in the ObservableElement that
is causing the change Event notification to be sent. This is used to detect missing updates to the
ObservableElement. Note that this observable element is also an ObservableUnit.

• Member is_snapshot. Indicates the Event Message is a response to a snapshot request sent via the Monitoring
Administration Interface, see 7.7.3.5.

30 DDS Status Monitoring 1.0-beta 1

7.4.9.3.15 Type RegistryPeriodic
This type is used to send PERIODIC information about the Resource registry. In this version of the
specification, it is defined as the empty type below:

@mutable @nested @autoid
struct RegistryPeriodic {
};

7.4.9.3.16 Type TypePeriodic
This type is used to send PERIODIC information about the types in the system. In this version of
the specification it is defined as the empty type below:

@mutable @nested @autoid
struct TypePeriodic {
};

7.4.9.3.17 Type RegistryEvent
This type is used to send ON_CHANGE information about the Resource registry. It is defined as
shown in the IDL below:

@mutable @nested @autoid
struct RegistryEvent {

// Full list of resources in the registry
@optional
ResourceList resource_snapshot; /* first element root */
@optional
ResourceList created_resources;
@optional
sequence<ResourceGUID> deleted_resources;
@optional
ResourceStateUpdateList updated_resources;

};

This type contains the following members:
• Member resource_snapshot. This member contains a list of resources representing a snapshot of the registry.

It is sent in response to a request received on the Administration interface (see 7.7). The list will contain the list
of resources that match the request query.

• Member created_resources. This member contains a list of resources representing the resources that have
been added to the registry. It is sent ON_CHANGE whenever resources are added.

• Member deleted_resources. This member contains a list of resource identifiers, representing the resources that
have been deleted from the registry. It is sent ON_CHANGE whenever resources are deleted.

• Member updated_resources. This member contains a list of updates to existing resources. It is sent
ON_CHANGE whenever resources are modified.

7.4.9.3.18 Type TypeEvent
This type is used to send ON_CHANGE information about the Resource registry. It is defined as
shown in the IDL below:

@mutable @nested @autoid
struct TypeEvent {

@optional
sequence<TypeDefinition> type_definitions;
@optional
TypeIdentifierSequence dependent_type_ids; /* Nested hash types */

};

This type contains the following members:
• Member type_descriptors. This member contains a list of TypeDescriptos representing types in the system.
• .It is sent in response to a request received on the Administration interface (see 7.7). The list will contain the

list of types that match the request query.

DDS Status Monitoring 1.0-beta 1 31

• Member dependent_type_ids. This member contains a list of TypeIdentifiers that are referenced by the types
included in the type_descriptors. This information may be useful to the requester to identify other types it
may need to also request.

7.4.9.3.19 Type PeriodicUnionBase
This type is used as a base type in the Monitoring Distribution Datamodel. It is defined as shown in
the IDL below:

@appendable @nested
union EventUnionBase switch (ResourceClassId) {
case REGISTRY_RESOURCE_CLASS_ID:

RegistryEvent registry;
case TYPE_RESOURCE_CLASS_ID:

TypeEvent type;
};

7.4.9.3.20 Type EventUnionBase
This type is used as a base type in the Monitoring Distribution Datamodel. It is defined as shown in
the IDL below:

@appendable @nested
union PeriodicUnionBase switch (ResourceClassId) {
case REGISTRY_RESOURCE_CLASS_ID:

RegistryPeriodic registry;
case TYPE_RESOURCE_CLASS_ID:

TypePeriodic type;
};

7.5 Distribution of the Monitoring Data
Monitoring Data may be gathered in two ways:

• Sampling a resource observable unit to get the data at some rate.
• By notification from the resource indicating a change has occurred to values in an observable unit.

The gathered Monitoring Data may be distributed also in two ways:
• PERIODICALLY: The Monitoring Data is sent at regular intervals, irrespective of any changes from the

previously sent values for the same observable unit.
• ON_CHANGE: The Monitoring Data is sent only when (significant) changes occur in the values of a

resource's observable unit.
This specification only focuses on the distribution of the Monitoring Data as it will be the aspect that impacts
interoperability. The precise mechanism used to gather the Monitoring Data is considered implementation-specific.
DDS Monitoring defines IDL annotations in the Resource Model that control how the monitoring data is distributed.

7.5.1 Periodic Data
For observable elements whose change is frequent and/or periodic, the direct approach is to gather
data via “periodic sampling” also known as “polling”. The monitoring infrastructure periodically
polls (reads/queries) the value of the observable elements and generates the monitoring data from
this. An example of this would be a metric recording the total number of bytes sent by an
application since it started.
Note that when sampling is used, the values observed may be the same as previously seen. It is also
possible that the observable elements had “intermediate” values missed by the sampling.
This approach requires that the infrastructure provides the query/read mechanisms to gather the
observable data from resources.

32 DDS Status Monitoring 1.0-beta 1

Monitoring Data gathered periodically may also be distributed PERIODICALLY using the same
period. However, in situations where the value changes are infrequent, or the semantics are such
that “small” differences are not important, it may be more efficient to distribute them
ON_CHANGE, that is compare the values with the previous ones distributed and send them only if
the difference is deemed “significant”. An example of this would be a metric recording the current
bandwidth utilization in bytes per second. This metric may be gathered by polling internal counters
periodically but distributed only if the utilization value differs from the previous more than a
configured threshold.
As mentioned, DDS-Monitoring only concerns itself with the way the Monitoring Data is
distributed, not how it is gathered.
The IDL @observable and @observable_unit annotations defined in 7.4.9.1.3, and
7.4.9.1.4 provide a way to configure which Observable Elements should be distributed
PERIODICALLY.

7.5.2 On-Change Data
For observable elements whose change is infrequent and/or non-periodic the most natural (and
likely efficient) approach is to capture the observable data “on change”. In this approach, the
monitoring infrastructure is notified each time the observable element changes at which point it can
gather the Monitoring Data and make it available for distribution. An example of this would be a
metric recording the total number of DDS DataReaders currently matched with a DataWriter.
The use of this approach requires that the infrastructure provides a change-notification mechanism
that is sufficiently fine-grained to identify the resources and aspects of a resource that have
changed. This is in addition to the query/read mechanisms to gather the observable data from
resources upon receiving the change notification.
Monitoring Data gathered On-Change is typically distributed ON_CHANGE as well. However, it
may be advantageous to not distribute every individual change separately. Rather the Monitoring
infrastructure could accumulate changes for some time duration, trading off delay in the
communication for efficiency.
The IDL @observable and @observable_unit annotations defined in 7.4.9.1.3, and
7.4.9.1.4 provide a way to configure which Observable Elements should be distributed
ON_CHANGE.

7.5.3 Log Data
Log Messages are normally generated by the Software Infrastructure whenever relevant events
occur. Typically, these log messages are printed to a console, written to a file, or sent to some
system facility like syslog (available in Unix-like systems).
DDS Monitoring supports distributing the DDS Log Messages in addition to other Monitoring Data.
This way the log messages become accessible to the same DDS Monitoring Infrastructure in a
common way, regardless of the platform details where each DDS application is running.
Implementations of DDS Monitoring may offer implementation-specific mechanisms to configure
logging in terms of verbosity level and enabled modules. Regardless of how it is configured, the
Data Types and Topics used to send the Log information are specified in DDS Monitoring. That
way applications sending or consuming the Log messages with interoperate independently of the
DDS Monitoring implementation being used.

DDS Status Monitoring 1.0-beta 1 33

7.6 Monitoring Distribution Data Model
This specification uses OMG IDL to formally define the Monitoring Distribution Datamodel. This model is derived
from the Monitoring Resource Model (see 7.4) by applying the rules in the subclauses below:

7.6.1 Use of IDL
The Monitoring distribution data model is defined using the OMG IDL language version 4.2.

7.6.2 Module Scope
All generated types shall appear in the module monitoring::dds.

7.6.3 Periodic structures for each Resource Type
For each (Structured) Type <ResourceStructureName> in the Resource Model there shall be
a structure type called <ResourceStructureName>Periodic. Here
<ResourceStructureName> stands for the name of the Structured type associated with the
resource.
The structure type shall be constructed applying the following rules:

• The structure shall have the annotations @mutable, @nested, and @autoid.
• Every member of the structure shall have the @optional annotation
• The structure shall have at least one member for each descendent Observable Element (according to the

Resource Observable Element Tree, see 7.4.3.3) of the resource <ResourceStructureName> that
corresponds to an Observable Unit with distributionKind=PERIODIC, see 7.4.9.1.2 - 7.4.9.1.5. For
each member:

o The member type shall be the same as the type of the Observable Unit, we refer to this type as
<ResourceStructureMemberTypeName>.

o The member name shall be the ElementPathSuffix of the ObservableElementName, see 7.4.3.4.1. We
refer to this member as <resource_structure_member_name>.

o If the <ResourceStructureMemberTypeName> type associated with the member has
multiple @observable_view annotations, then:
 The structure shall include additional members of type

<ResourceStructureMemberTypeName> in 1-to-1 correspondence with the views so
that the number of members generated matches the number of view levels.

 The member corresponding to the view with level LI =0 shall be named
<resource_structure_member_name>. It shall also have the annotation
@view(level=0, member_level=0).

 The members corresponding to views with level LI > 0 shall be named according to the
pattern <resource_structure_member_name>_LI. These members shall have the
annotation @view(level=0, member_level=LI).

o If the <ResourceStructureMemberTypeName> type associated with a member defines
multiple serialization levels by having some members annotated with @view.

 This case shall be treated as the previous case where the member Type has multiple
@observble_level as these two notations are equivalent, see.

As an example, given the resource class name "simplified_application" with the declaration below:
@appendable @nested
@observable_unit
@observable_view(level=0, select="mean")
@observable_view(level=1, select="min;max")
@observable_view(level=2, select="%")

34 DDS Status Monitoring 1.0-beta 1

struct Int32Stat {
uint32 period_ms;
uint32 count;
int32 mean;
int32 min;
int32 max;

};

struct NetworkUsage {
@observable(distribution= PERIODIC) Int32Stat messages_sent;
@observable(distribution=ON_CHANGE) Int32Stat messages_received;

};

@mutable @nested
@resource(class="simplified_application", namespace="dds", owner="")
struct SimplifiedApplication {

@observable(distribution=ON_CHANGE) int32 cpu_temperature;
@observable(distribution=PERIODIC) int32 memory_usage;
@observable NetworkUsage network;

};

The SimplifiedParticipantPeriodic structure shall be defined as:
@mutable @nested @autoid
struct SimplifiedApplicationPeriodic {

@optional int32 memory_usage;
@optional @view(level=0, member_level=0) Int32Stat network_messages_sent;
@optional @view(level=0, member_level=1) Int32Stat network_messages_sent_1;
@optional @view(level=0, member_level=2) Int32Stat network_messages_sent_2;

The member messages_sent results in 3 members each in
SimplifiedApplicationPeriodic. This is because its type (Int32Stat) uses the
@observable_view annotation to define 3 levels identified by the level values: 0, 1, and 2.
The members cpu_temparature and messages_received do not appear in
SimplifiedApplicationPeriodic because they do not have distributionKind PERIODIC.

7.6.4 Event structures for each Resource Type
For each (Structured) Type <ResourceStructureName> in the Resource Model that has been
annotated as a resource there shall be a structure type called
<ResourceStructureName>Event. Here <ResourceStructureName> stands for the
name of the Structure Type associated with the resource.
The structure type shall be constructed applying the following rules:

• The structure shall have the annotations @mutable, @nested, and @autoid.
• Every member of the structure shall have the @optional annotation
• The structure shall have at least one member for each descendent Observable Element (according to the

Resource Observable Element Tree, see 7.4.3.3) of the resource <ResourceStructureName> that
corresponds to an Observable Unit with distributionKind=ON_CHANGE, see 7.4.9.1.2 - 7.4.9.1.5. For
each member:

o The member type shall be the same as the type of the Observable Unit, we refer to this type as
<ResourceStructureMemberTypeName>.

o The member name shall be the ElementPathSuffix of the ObservableElementName, see 7.4.3.4.1. We
refer to this member as <resource_structure_member_name>.

o If the <ResourceStructureMemberTypeName> type associated with the member has
multiple @observable_view annotations, then:

DDS Status Monitoring 1.0-beta 1 35

 The structure shall include additional members of type
<ResourceStructureMemberTypeName> in 1-to-1 correspondence with the views so
that the number of members generated matches the number of view levels.

 The member corresponding to the view with level LI =0 shall be named
<resource_structure_member_name>. It shall also have the annotation
@view(level=0, member_level=0).

 The members corresponding to views with level LI > 0 shall be named according to the
pattern <resource_structure_member_name>_LI. These members shall have the
annotation @view(level=0, member_level=LI).

o If the <ResourceStructureMemberTypeName> type associated with a member defines
multiple serialization levels by having some members annotated with @view.

 This case shall be treated as the previous case where the member Type has multiple
@observble_level as these two notations are equivalent, see

As an example, given the resource class name "simplified_application" with the declaration below:
@appendable @nested
@observable_view(level=0, select="mean")
@observable_view(level=1, select="min;max")
@observable_view(level=2, select="%")
struct Int32Stat {

uint32 period_ms;
uint32 count;
int32 mean;
int32 min;
int32 max;

};

struct NetworkUsage {
@observable(distribution= PERIODIC) Int32Stat messages_sent;
@observable(distribution=ON_CHANGE) Int32Stat messages_received;

};

@mutable @nested
@resource(class="simplified_application", namespace="dds", owner="")
struct SimplifiedApplication {

@observable(distribution=ON_CHANGE) int32 cpu_temperature;
@observable(distribution=PERIODIC) int32 memory_usage;
@observable NetworkUsage network;

};

The SimplifiedParticipantEvent structure shall be defined as:
@extensibility(MUTABLE) @nested @autoid
struct SimplifiedApplicationEvent {

@optional int32 cpu_temperature
@optional @view(level=0, member_level=0) Int32Stat network_messages_received;
@optional @view(level=0, member_level=1) Int32Stat network_messages_received_1;
@optional @view(level=0, member_level=2) Int32Stat network_messages_received_2;

The member messages_received results in 3 members each in
SimplifiedApplicationPeriodic. This is because its type (Int32Stat) uses the
@observable_view annotation to define 3 levels identified by the level values: 0, 1, and 2.
The members memory_usage and messages_sent do not appear in
SimplifiedApplicationPeriodic because they do not have distributionKind
ON_CHANGE.

o.

36 DDS Status Monitoring 1.0-beta 1

7.6.5 PeriodicUnion type
There shall be a union type called PeriodicUnion. The type shall have the annotations
@appendable and @nested.
The type shall be constructed applying the following rules:

• The PeriodicUnion shall extend the PeriodicUnionBase, see 7.4.9.3.19.
• The PeriodicUnion shall not have a default case.
• The PeriodicUnion shall have one case branch for each Type in the Resource Model that has the

@resource annotation.
• The case discriminator values of the PeriodicUnion shall correspond to

<RESOURCECLASSNAME>_RESOURCE_CLASS_ID constants defined in 7.4.9.3.13.
• The case member that corresponds to the case discriminator

<RESOURCECLASSNAME>_RESOURCE_CLASS_ID shall have the type
<ResourceStructureName>Periodic where <ResourceStructureName> is the Structure Type
associated that declared the resource <RESOURCECLASSNAME>.

For example, assume the following resources:
@mutable @nested
@resource(class="application", namespace="dds")
struct Application { ... };

@mutable @nested
@resource(class="domain_participant", owner="application")
struct DomainParticipant { ... };

@mutable @nested
@resource(class="topic", owner="domain_participant")
struct Topic { ... };

The above resources would result in the following definition of the PeriodicUnion:
@appendable @nested
union PeriodicUnion : PeriodicUnionBase {

case APPLICATION_RESOURCE_CLASS_ID:
ApplicationPeriodic application;

case DOMAIN_PARTICIPANT_RESOURCE_CLASS_ID:
ParticipantPeriodic domain_participant;

case TOPIC_RESOURCE_CLASS_ID:
TopicPeriodic topic;

};

7.6.6 EventUnion type
There shall be a union type called EventUnion. The type shall have the annotations
@appendable and @nested.
The type shall be constructed applying the following rules:

• The EventUnion shall extend the EventUnionBase, see 7.4.9.3.20
• The EventUnion shall not have a default case.
• The EventUnion shall have one case branch for each Type in the Resource Model that has the @resource

annotation.
• The case discriminator values of the EventUnion shall correspond to

<RESOURCECLASSNAME>_RESOURCE_CLASS_ID constants defined in 7.4.9.3.13.
• The case member that corresponds to the case discriminator

<RESOURCECLASSNAME>_RESOURCE_CLASS_ID shall have the type

DDS Status Monitoring 1.0-beta 1 37

<ResourceStructureName>Event where <ResourceStructureName> is the Structure Type
associated that declared the resource <RESOURCECLASSNAME>.

For example the resources:
@mutable @nested
@resource(class="application", namespace="dds")
struct Application { ... };

@mutable @nested
@resource(class="domain_participant")
struct Participant { ... };

@mutable @nested
@resource(class="topic")
struct Topic { ... };

The above resources would result in the following definition of the EventUnion:
@appendable @nested
union EventUnion : EventUnionBase {

case APPLICATION_RESOURCE_CLASS_ID:
ApplicationEvent application;

case DOMAIN_PARTICIPANT_RESOURCE_CLASS_ID:
ParticipantEvent domain_participant;

case TOPIC_RESOURCE_CLASS_ID:
TopicEvent topic;

};

7.6.7 Periodic type (not nested)
There shall be a type called Periodic. The type shall have the definition shown in the IDL below.

@appendable @nested(false)
struct Periodic {

GUID_t resource_guid;
PeriodicUnion value;

};

The type contains the following members:
• Member resource_guid. The GUID of the resource associated with the periodic update.
• Member value. The value of monitoring data associated with the resource for the most recent period (see

7.6.5).

7.6.8 Event type (not nested)
There shall be a type called Event. The type shall have the definition shown in the IDL below.

@appendable @nested(false)
struct Event {

GUID_t resource_guid;
@optional
EventInfo info;
EventUnion value;

};

The type contains the following members:
• Member resource_guid. The GUID of the resource associated with the event.
• Member info. Additional information related to the event, see 7.4.9.3.14.
• Member value. The value of monitoring data describing the event, see 7.6.6.

38 DDS Status Monitoring 1.0-beta 1

7.6.9 Logging type (not nested)
There shall be a type called Logging. The type shall have the definition shown in the IDL below.

@appendable
enum LoggingLevel { // DDS-Security 1.5

@value(0) EMERGENCY_LEVEL, // System is unusable. Should not continue use.
@value(1) ALERT_LEVEL, // Should be corrected immediately
@value(2) CRITICAL_LEVEL, // A failure in primary application.
@value(3) ERROR_LEVEL, // General error conditions
@value(4) WARNING_LEVEL, // May indicate future error if action not taken.
@value(5) NOTICE_LEVEL,// Unusual, but not erroneous event or condition.
@value(6) INFORMATIONAL_LEVEL, // Normal operational. Requires no action.
@value(7) DEBUG_LEVEL

};

@appendable
enum SyslogVerbosity {

@value(0) SILENT,
@value(1) EMERGENCY,
@value(3) ALERT,
@value(7) CRITICAL,
@value(15) ERROR,
@value(31) WARNING,
@value(63) NOTICE,
@value(127) INFORMATIONAL,
@value(255) DEBUG

};

const uint8 SYSLOG_FACILITY_USER = 1;
const uint8 SYSLOG_FACILITY_SECURITY_EVENT = 10;
const uint8 SYSLOG_FACILITY_SERVICE= 22;
const uint8 SYSLOG_FACILITY_MIDDLEWARE = 23;

@appendable @nested
struct LoggingSetting {

SyslogVerbosity verbosity;
uint8 facility;

};

@appendable @nested
@observable_unit(distribution=ON_CHANGE)
struct LoggingConfig {

sequence<LoggingSetting> logging_collection;
sequence<LoggingSetting> logging_forwarding;

};

@final @nested
struct NameValuePair { // DDS-Security 1.5

string name;
string value;

};

@appendable @nested
struct LoggingMessage { // DDS-Security 1.5

uint8 facility; // Set to 0x10. Indicates sec/auth msgs
LoggingLevel severity;
Time_t timestamp; // Since epoch 1970-01-01 00:00:00 +0000 (UTC)
@optional string hostname; // IP host name of originator
@optional string hostip; // IP address of originator
@optional string appname; // Identify the device or application
@optional string procid; // Process name/ID for syslog system
string msgid; // Identify the type of message
string message; // Free-form message

DDS Status Monitoring 1.0-beta 1 39

// Note that certain string keys (SD-IDs) are reserved by IANA
map<string, NameValuePairSeq> structured_data;
uint64 sn; // Sequence number to uniquely identify msgs per

facility
};

@external typedef LoggingMessage LogReference;

@appendable @nested
struct LoggingEventInfo {

GUID_t root_resource_guid; // app guid
uint64 epoch;
boolean is_snapshot;

};

@appendable @nested(false)
struct Logging {

LoggingEventInfo info;
@optional sequence<LogReference> update;
@optional sequence<LoggingMessage> snapshot;

};

The Logging type contains the following members:
• Member info. Information about the root resource associated with the Log message and total number of logs

generated.
• Member update. Holder for a collection of Log messages
• Member snapshot. Holder for a collection of Log messages sent as a response to an administration request.

See 7.7.3.6.

7.7 Monitoring Administration Datamodel
DDS Monitoring exposes a DDS-RPC Interface that allows remote applications to configure the resources and logs
being distributed.

7.7.1 Use of IDL
The Monitoring Administration data model is defined using the OMG IDL language version 4.2. All the service
operations are included in a single interface called monitoring::Administration.

The normative IDL definition of the monitoring::Administration interface is provided in
the file monitoring_administration.idl, included in this specification.
The Administration interface shall be implemented using the remote procedure call protocol defined
in the DDS-RPC specification [4]. Accordingly, the DDS Monitoring implementation shall create
two Topics, one DataWriter and one DataReader, that are used to implement the
monitoring::Administration:

• The DataReader DDSMonitoringAdministrationRequestReader shall subscribe to a Topic with
name “DDSMonitoringAdministrationRequest” and Type monitoring::AdministrationRequest.

• The DataWriter DDSMonitoringAdministrationReplyWriter shall publish a Topic with name
“DDSMonitoringAdministrationReply” and Type monitoring::AdministrationReply.

The types monitoring::AdministrationRequest and monitoring::AdministrationReply shall be
derived from the monitoring::Administration interface in accordance with DDS-RPC.

40 DDS Status Monitoring 1.0-beta 1

7.7.2 Types used by the Monitoring Administration Interface

7.7.2.1 ResourcePathExpression

This type is used to hold an expression that may be used to match the ResourcePathName of one or more resources.
See 7.4.2.3.2 for the definition of ResourcePathName.

The expression syntax and matching rules follow the POSIX fnmatch function [8]. In addition, the string "//" may be
used to match a path prefix (with zero or more path elements) until a path element matching the pattern is found. This is
similar to how it is used in the X-Path matching syntax.

It is defined in the IDL below.
typedef string ResourcePathExpression;
typedef sequence<ResourcePathExpression> ResourcePathExpressionSequence;

Examples:
"/applications/myApp/domain_participants/myParticipant"
"/applications/*/domain_participants/*/subscribers/*"
"//subscribers/*"

The 3rd (last) pattern uses the matching expression "//" to match any path prefix the element
/subscribers/ is found so it may be used instead of the second pattern.

7.7.2.2 ObservableElementNameExpression

This type is used to hold an expression that may be used to match the ObservableElementName of one or more
resources. See 7.4.3.4.1 for the definition of ObservableElementName.

The expression syntax and matching rules follow the POSIX fnmatch function[8].

It is defined in the IDL below (all definitions are in the module monitoring).
typedef string ObservableElementNameExpression;
typedef sequence< ObservableElementNameExpression > ObservableElementNameExpressionSequence;

Examples:
"dds_domain_participant/receive_samples_per_sec"
"dds_domain_participant/send_* "

7.7.2.3 ObservableElementSelector

This type is used to select a set of ObservableElements (see 7.4.3). It is defined in the IDL below (all definitions
are in the module monitoring).

@appendable @nested
struct ObservableElementSelector {

ResourcePathExpression resource_path_selector;
sequence< ObservableElementNameExpression > observable_name_selectors;

};
typedef sequence<ObservableElementSelector> ObservableElementSelectorSequence;

The resource_path_selector is used to match a set of resources. For each of these resources, the matching algorithm
iterates over all the ObservableElementNameExpression expressions in the observable_name_selectors
sequence. Each expression is used to match against the ObservableElementNames in the Resource’s Observable
Element Tree.

If an ObservableElementName is matched by at least one of the expressions the corresponding
ObservableElement will be selected.

DDS Status Monitoring 1.0-beta 1 41

7.7.2.4 ObservableElementChangeSet

This type is used to define a change on the list of ObservableElements that belong to a pre-existing set. The
change is described in terms of a list of observable elements being added and removed.

It is defined in the IDL below (all definitions are in the module monitoring).
@appendable @nested
struct ObservableElementChangeSet {

ResourcePathExpression resource_path_selector;
sequence< ObservableElementNameExpression > add_observable_name_selectors;
sequence< ObservableElementNameExpression > remove_observable_name_selectors;

};
typedef sequence< ObservableElementChangeSet > ObservableElementChangeSetSequence;

The resource_path_selector is used to match a set of resources, then for each of these resources:

• Each string in the add_observable_selectors contains an ObservableElementNameExpression. Each
expression is used to match all the ObservableElementNames in the Resource. If an
ObservableElementName is matched by at least one of the expressions the corresponding
ObservableElement will be selected for addition.

• Each string in the remove_observable_unit_selectors contains an
ObservableElementNameExpression. Each expression is used to match all the
ObservableElementNames in the existing set. If an ObservableElementName is matched by at
least one of the expressions the corresponding ObservableElement will be selected for removal.

7.7.2.5 LoggingVerbosityLevelSelector

This type is used to configure the log messages distributed by DDS Monitoring. It is defined in the IDL below (all
definitions are in the module monitoring). See also 7.5.3 for the IDL definition of the types: LoggingLevel,
LoggingFacilityLevel, and SYSLOG_FACILITY constants.

@appendable @nested
struct LoggingVerbosityLevelSelector {

ResourcePathExpression application_path_selector;
sequence<LoggingFacilityLevel> logging_facility_level;

};
typedef sequence< LoggingVerbosityLevelSelector > LoggingVerbosityLevelSelectorSequence;

The application_path_selector is used to select a set of applications. This is done by matching the
ResourcePathNames of resources that have Resource Class “application”.
For each of the selected applications, the facility_verbosity_level is used to specify the log verbosity
level for each SysLog facility.

7.7.2.6 MonitoringCommandError

This type is used to return an exception from an operation in the monitoring::dds::Service interface. It is defined in the
IDL below (all definitions are in the module monitoring).

@appendable
@nested
exception MonitoringCommandError {

ReturnCode_t ret_code;
string error_message;

};

7.7.3 Operations in the Monitoring Administration Interface
The interface is defined in the following IDL (all definitions are in the module monitoring).

42 DDS Status Monitoring 1.0-beta 1

@DDSService
@DDSRequestTopic (name="DDSMonitoringAdministrationRequest")
@DDSReplyTopic (name=" DDSMonitoringAdministrationReply")
interface Administration {

void set_subscription_state(
in sequence<ObservableElementSelector> observable_element_selectors)
raises (MonitoringCommandError);

void update_subscription_state(

in sequence<ObservableElementChangeSet> observable_element_change_sets)
raises (MonitoringCommandError);

void set_logging_verbosity(

in sequence<LoggingVerbosityLevelSelector> logging_verbosity_level_selectors)
raises (MonitoringCommandError);

void request_resource_registry(

in sequence<ResourcePathExpression> application_selector)
raises (MonitoringCommandError);

void request_observable_element_snapshot(

in sequence<ObservableElementSelector> observable_element_selectors)
raises (MonitoringCommandError);

void request_logging_snapshot(
in sequence<LoggingVerbosityLevelSelector> logging_verbosity_level_selectors)
raises (MonitoringCommandError);

void request_type_definitions(
in sequence<TypeIdentifierSerialized> type_ids,
in boolean include_required_type_ids)
raises (MonitoringCommandError);

};

7.7.3.1 Operation: set_subscription_state

Configures the complete set of ObservableElements that the DDS Monitoring infrastructure should include in the
Monitoring Data it sends to the requesting application.

The operation has the following parameters:

• Parameter observable_element_selectors. Used to specify the ObservableElements that are of interest.
Each element of the sequence is an ObservableElementSelector that matches a collection of
ObservableElements. The union of all these matches becomes the “subscribed” set of
ObservableElements. This means:

o Any previously-subscribed ObservableElements that are not matched by the
observable_element_selectors become unsubscribed.

o Any previously un-subscribed ObservableElements that are matched by the
observable_element_selectors become subscribed.

• Parameter exception. Used to report errors in the processing of the request command.

7.7.3.2 Operation: update_subscription_state

Modifies the set of ObservableElements that the DDS Monitoring infrastructure should include in the Monitoring
Data it sends to the requesting application.

DDS Status Monitoring 1.0-beta 1 43

Unlike set_subscription_state, this operation specifies a delta change, meaning it specifies
ObservableElements to add and remove from the currently subscribed set.

The operation has the following parameters:

• Parameter observable_unit_change_sets. Used to specify the ObservableElements that are added and
removed. Each element of the sequence is an ObservableElementChangeSet that specifies a list of
ObservableElements to add and remove.

o Starting from the set of ObservableElements currently subscribed, each of these additions and
removals is performed resulting in an updated set of subscribed ObservableElements.

• Parameter exception. Used to report errors in the processing of the request command.

7.7.3.3 Operation: set_logging_subscription_state

Configures the Log messages that the DDS Monitoring infrastructure should include in the Monitoring Data it sends to
the requesting application.

The operation has the following parameters:

• Parameter logging_verbosity_level_selectors. Used to specify the Log Messages that are of interest. Each
element of the sequence is a LoggingVerbosityLevelSelector that specifies the verbosity level for
each Log category on a set of application resources.

• Parameter exception. Used to report errors in the processing of the request command.

7.7.3.4 Operation: request_resource_registry

Requests the DDS Monitoring infrastructure to send the resources contained by a set of applications.

The operation has the following parameters:

• Parameter application_selector. Used to match against the ResourcePathNames corresponding to application
resources. Any application resource that is matched by one of the expressions in the application_selector
becomes a target for the request.

• Parameter exception. Used to report errors in the processing of the request command.

7.7.3.5 Operation: request_observable_element_snapshot

Requests the DDS Monitoring infrastructure to send a one-time copy of the latest Monitoring Data corresponding to the
specified ObservableElements.

Unlike set_subscription_state and update_subscription_state, this operation requests DDS
Monitoring to send the data just once. It does not request the Monitoring infrastructure to send future changes to the
values of the ObservableElements.

The operation has the following parameters:

• Parameter observable_element_selectors. Used to specify the ObservableElements that are of interest.
Each element of the sequence is an ObservableElementSelector that matches a collection of
ObservableElements. The union of all these matches becomes the set of ObservableElements that
are requested in the snapshot.

• Parameter exception. Used to report errors in the processing of the request command.

44 DDS Status Monitoring 1.0-beta 1

7.7.3.6 Operation: request_logging_snapshot

Requests the DDS Monitoring infrastructure to send a one-time copy of the Log Messages that match the request
specification.

The operation has the following parameters:

• Parameter logging_verbosity_level_selectors. Used to specify the Log Messages that are of interest. Each
element of the sequence is a LoggingVerbosityLevelSelector that specifies the verbosity level for
each Log category on a set of application resources.

• Parameter exception. Used to report errors in the processing of the request command.

7.7.3.7 Operation: request_type_definitions

Requests the DDS Monitoring infrastructure to send a one-time copy of the Type Definitions that match the request
specification.

The operation has the following parameters:

• Parameter type_ids. Used to specify the TypeIdentifiers for the requested types

• Parameter include_required_type_ids. Used to specify that the response should include a list of the
TypeIdentifiers that the included definitions depend on. This can help minimize the number of RPC calls to
retrieve a type alongside all the types it depends on. TypeIdentiofiers for the requested types

Parameter exception. Used to report errors in the processing of the

7.8 Monitoring Distribution Protocol
Monitoring Data is distributed to external client applications using a communication protocol. This can be described in
terms of a middleware platform and corresponding data models and services used with the platform.

7.8.1 Middleware Platform
This specification uses the OMG Data-Distribution Service (DDS) [1] and the DDS Real-Time
Publish-Subscribe Protocol (DDS-RTPS) [2] as the Middleware platform to distribute the
monitoring data to external consumers.
The monitoring data is represented using the Monitoring Distribution Data Model (see 7.6), when
the monitoring data is sent on the network via DDS it shall be serialized according to the rules
defined in the DDS-XTYPES version 1.3 specification [3] applied to the types in the IDL-specified
data model.
DDS-Security [5] may be used to provide access control to the Monitoring Data and ensure the
confidentiality and integrity of the Monitoring Data.

7.8.2 Middleware Services
The services built on DDS used to distribute the Monitoring Data are fully specified in terms of:

• The collection of DDS Topics and associated Data Types (aligned with the distribution data model) used to
send and receive the data

• The DDS quality of service (QoS) of the DataWriters and DataReaders used to publish/subscribe the Topics.
• A collection of DDS-RPC service interfaces and associated data types used to remotely configure the service.

DDS Status Monitoring 1.0-beta 1 45

7.8.2.1 DDS Topics and Types

A specific configuration of DDS Monitoring will distribute the data with the types described in the Monitoring
Distribution Model which is derived from a corresponding Monitoring Resource Model (see 7.8).
The Monitoring Distribution Model has only three non-nested (top-level) types: the IDL-defined structures Periodic,
Event, and Logging, see 7.6.7, 7.6.8, and . These types are used to send the Monitoring Data for all Resources.
The DDS Monitoring Distribution shall use the following three Topics to send the Monitoring Data.

• The “DDSMonitoringPeriodic” Distribution Topic is used to send the Monitoring Data resulting from the
observable elements configured with distribution kind PERIODIC. The associated data type is the Periodic
structure defined in 7.6.7.

• The “DDSMonitoringEvent” Distribution Topic is used to send the Monitoring Data resulting from the
observable elements configured with distribution kind ON_CHANGE. The associated data type is the Event
structure defined in 7.6.7. This topic is also used to send the Resource Tree.

• The “DDSMonitoringLogging” Distribution Topic is used to send the Logging Data resulting from the Log
Messages emitted by the middleware infrastructure.

Figure 8.3: Resource distribution mapping into DDS Distribution Topics

The DDS Monitoring Distribution Layer shall create three DataWriters to send Monitoring Data:
DDSMonitoringPeriodicWriter, DDSMonitoringEventWriter, and
DDSMonitoringLoggingWriter.

• DDSMonitoringPeriodicWriter shall publish the topic name “DDSMonitoringPeriodic” with type
monitoring::dds::Periodic.

• DDSMonitoringEventWriter shall publish the topic name “DDSMonitoringEvent” with type
monitoring::dds::Event.

• DDSMonitoringLoggingWriter shall publish the topic name “DDSMonitoringLogging” with type
monitoring::dds::Logging.

These DataWriter entities shall have the Qos defined in 7.8.2.3.

46 DDS Status Monitoring 1.0-beta 1

7.8.2.2 DDS-RPC Services

The DDS Monitoring Distribution Layer shall implement the
monitoring::Administration interface as specified in the DDS-RPC specification. It shall
create two Topics “DDSMonitoringAdministrationRequest” and
“DDSMonitoringAdministrationReply”, one DataReader and one DataWriter:

• The DataReader DDSMonitoringAdministrationRequestReader shall subscribe to the Topic
“DDSMonitoringAdministrationRequest” with Type monitoring::AdministrationRequest.

• The DataWriter DDSMonitoringAdministrationReplyWriter shall publish the Topic
“DDSMonitoringAdministrationReply” with Type monitoring::AdministrationReply.

The types monitoring::AdministrationRequest and monitoring::AdministrationReply shall be
derived from the monitoring::Administration interface as specified by DDS-RPC. These types are specified
in the monitoring_administration.idl which is included as part of the specification.
These DataWriter and DataWriter entities shall have the Qos defined in 7.8.2.3.

7.8.2.3 DDS QoS

The DDSMonitoringPeriodicWriter, DDSMonitoringEventWriter, and
DDSMonitoringLoggingWriter have a fixed set of QoS settings that are adequate for the nature of the
information flow they carry.

The DDSMonitoringAdministrationRequestReader and
DDSMonitoringAdministrationReplyWriter also have a fixed set of QoS settings which are specified in
DDS-RPC as default QoS for the DDS Entities implementing the Service request and reply.

Table 8.1 specifies the differentiating QoS settings for each of them. Qos Policies that are not specified shall be set to
their corresponding default values.

Table 8.1: QoS settings for the DDS Monitoring DataWriters and DataReaders

 DDS QoS Policy

DDS Monitoring Endpoint RELIABILITY
kind

DURABILITY
kind

HISTORY
kind

DDSMonitoringPeriodicWriter BEST_EFFORT VOLATILE KEEP_ALL

DDSMonitoringEventWriter RELIABLE VOLATILE KEEP_ALL

DDSMonitoringLoggingWriter RELIABLE VOLATILE KEEP_ALL

DDSMonitoringAdministrationReques
tReader

RELIABLE VOLATILE KEEP_ALL

DDSMonitoringAdministrationReplyW
riter

RELIABLE VOLATILE KEEP_ALL

7.8.3 Security
DDS Monitoring uses DDS to distribute the Monitoring Data and send the administration commands that configure the
Monitoring infrastructure. Applications that have a security requirement for their monitoring data shall use DDS
Security to protect the DDS Topics and Services used by DDS Monitoring.

DDS Status Monitoring 1.0-beta 1 47

As described in 7.8.2.1 and 7.8.2.2, DDS Monitoring creates 4 DataWriters and 1 DataReader:

• DDSMonitoringPeriodicWriter with Topic "DDSMonitoringPeriodic"
• DDSMonitoringEventWriter with Topic "DDSMonitoringEvent"
• DDSMonitoringLoggingWriter with Topic "DDSMonitoringLogging"
• DDSMonitoringAdministrationRequestReader with Topic "DDSMonitoringAdministrationRequest"
• DDSMonitoringAdministrationReplyWriter with Topic " DDSMonitoringAdministrationReply"

In accordance with DDS-Security, to protect the system:

• These Topic names should appear in the shared Governance file so the security deployment requirements for
these Topics can be specified.

o Alternatively, the governance file may use Topic-Name expressions that cover these topic names.
• These Topic names should appear in the Permissions file of every application that is being monitored, the

permission file should contain grants allowing the "DDSMonitoringAdministrationRequest" to be read and the
remaining Topics to be written.

o Alternatively, the permissions file may use Topic-Name expressions that cover these topic names.

48 DDS Status Monitoring 1.0-beta 1

8 Full IDL definition of DDS Monitoring Data models
8.1 DDS Monitoring Resource Model
The full definition of the DDS Monitoring Resource model is provided in the following machine-readable files which
are included in this specification:

• monitoring_annotations.idl
• monitoring_resource.idl
• monitoring_statistics.idl
• monitoring_logging.idl
• monitoring_administration.idl
• monitoring_dds_common.idl
• monitoring_dds_status.idl
• monitoring_dds_qos.idl
• monitoring_dds_entities.idl

8.2 DDS Monitoring Distribution Model
The DDS Monitoring Distribution Model is obtained by applying the rules in clause 7.6 to the types in the DDS
Monitoring Resource Model (see 8.1).

The DDS Monitoring Distribution Model resulting from the application of these rules is provided in the machine-
readable files monitoring_dds_distribution.idl and
monitoring_dds_distribution_constants.idl which are included in this specification.

The file monitoring_dds_distribution.idl includes the IDL files in the monitoring resource model.

DDS Status Monitoring 1.0-beta 1 49

DDS Status Monitoring 1.0 63

50 DDS Status Monitoring 1.0-beta 1

Annex A – References

[1] DDS: Data-Distribution Service for Real-Time Systems version 1,4. http://www.omg.org/spec/DDS/
[2] DDS-RTPS: Data-Distribution Service Interoperability Wire Protocol version 2.5,

http://www.omg.org/spec/DDSI-RTPS/
[3] DDS-XTYPES: Extensible and Dynamic Topic-Types for DDS version 1.3

http://www.omg.org/spec/DDS-XTypes/
[4] DDS-RPC: RPC Over DDS version 1.0. https://www.omg.org/spec/DDS-RPC/
[5] DDS-Security: DDS Security version 1.2. https://www.omg.org/spec/DDS-SECURITY/
[6] OMG-IDL: Interface Definition Language (IDL) version 4.2 http://www.omg.org/spec/IDL/
[7] The Syslog Protocol. IETF RFC 5424. https://www.rfc-editor.org/rfc/rfc5424.txt
[8] POSIX fnmatch. The Open Group Base Specifications Issue 7, 2018 fnmatch function.

https://pubs.opengroup.org/onlinepubs/9699919799/functions/fnmatch.html

http://www.omg.org/spec/DDS/
http://www.omg.org/spec/DDSI%20RTPS/
http://www.omg.org/spec/DDS%20XTypes/
https://www.omg.org/spec/DDS-RPC/
https://www.omg.org/spec/DDS-SECURITY/
http://www.omg.org/spec/IDL/
https://www.rfc-editor.org/rfc/rfc5424.txt
https://pubs.opengroup.org/onlinepubs/9699919799/functions/fnmatch.html

	DDS Status Monitoring
	OMG Document Number: dtc/24-09-15
	USE OF SPECIFICATION – TERMS, CONDITIONS & NOTICES
	LICENSES
	PATENTS
	GENERAL USE RESTRICTIONS
	DISCLAIMER OF WARRANTY
	RESTRICTED RIGHTS LEGEND
	TRADEMARKS
	COMPLIANCE
	OMG’s Issue Reporting Procedure
	Table of Contents
	OMG
	OMG Specifications
	Business Modeling Specifications Middleware Specifications
	IDL/Language Mapping Specifications Modeling and Metadata Specifications
	Modernization Specifications

	Typographical Conventions
	Issues
	1 Scope
	2 Conformance
	3 Normative References
	Security/1.2

	4 Terms and Definitions
	5 Symbols
	6 Additional Information
	6.1 Acknowledgments

	7 Conceptual Model
	7.1 Introduction
	7.2 Concepts
	7.3 Dependencies
	7.3.1 HashId algorithm
	7.3.2 Supported Data Types

	7.4 Monitoring Resource Model
	7.4.1 Overview
	7.4.2 Resources
	7.4.3 Observable Elements
	7.4.4 Observable Unit
	7.4.5 Metrics (Numeric Primitive Types)
	7.4.6 Attributes
	7.4.7 Logs and Events
	7.4.8 Monitoring Data
	7.4.9 IDL definition of the Monitoring Resource Model

	7.5 Distribution of the Monitoring Data
	7.5.1 Periodic Data
	7.5.2 On-Change Data
	7.5.3 Log Data

	7.6 Monitoring Distribution Data Model
	7.6.1 Use of IDL
	7.6.2 Module Scope
	7.6.3 Periodic structures for each Resource Type
	7.6.4 Event structures for each Resource Type
	7.6.5 PeriodicUnion type
	7.6.6 EventUnion type
	7.6.7 Periodic type (not nested)
	7.6.8 Event type (not nested)
	7.6.9 Logging type (not nested)

	7.7 Monitoring Administration Datamodel
	7.7.1 Use of IDL
	7.7.2 Types used by the Monitoring Administration Interface
	7.7.3 Operations in the Monitoring Administration Interface

	7.8 Monitoring Distribution Protocol
	7.8.1 Middleware Platform
	7.8.2 Middleware Services
	7.8.3 Security

	8 Full IDL definition of DDS Monitoring Data models
	8.1 DDS Monitoring Resource Model
	8.2 DDS Monitoring Distribution Model

	Annex A – References

