\

"o

\
P
:

OBJECT MANAGEME

OPC UA/DDS Gateway

Version 1.0

m
f

NT GROUP

©)

Date: February 2019

OMG Document Number

Normative Reference:

Associated Normative Machine Consumable Files:

ptc/2019-02-25
http://www.omg.org/spec/DDS-OPCUA/1.0

http://www.omg.org/spec/DDS-OPCUA/20190201/dds-opcua_builtin_types.idl

http://www.omg.org/spec/DDS-OPCUA/20190201/dds-opcua_services.idl

http://www.omg.org/spec/DDS-OPCUA/20190201/dds-opcua_subscriptions.idl

http://www.omg.org/spec/DDS-OPCUA/20190201/dds-opcua_definitions.xsd
http://www.omg.org/spec/DDS-OPCUA/20190201/dds-opcua_definitions_nonamespace.xsd

http://www.omg.org/spec/DDS-OPCUA/20190201/dds-opcua_model.xmi

Associated Non-Normative Machine Consumable Files:

http://www.omg.org/spec/DDS-OPCUA/20190201/dds-opcua_dds2opcua_configuration.xml
http://www.omg.org/spec/DDS-OPCUA/20190201/dds-opcua_opcua2dds_configuration.xml

http://www.omg.org/spec/DDS-OPCUA/1.0
http://www.omg.org/spec/DDS-OPCUA/20180201/dds-opcua_opcua2dds_configuration_example.xml
http://www.omg.org/spec/DDS-OPCUA/20180201/dds-opcua_opcua2dds_configuration_example.xml
http://www.omg.org/spec/DDS-OPCUA/20180201/dds-opcua_opcua2dds_configuration_example.xml
http://www.omg.org/spec/DDS-OPCUA/20190201/dds-opcua_dds2opcua_configuration.xml
http://www.omg.org/spec/DDS-OPCUA/20190201/dds-opcua_dds2opcua_configuration.xml
http://www.omg.org/spec/DDS-OPCUA/20190201/dds-opcua_dds2opcua_configuration.xml
http://www.omg.org/spec/DDS-OPCUA/20190201/dds-opcua_dds2opcua_configuration.xml
http://www.omg.org/spec/DDS-OPCUA/20190201/dds-opcua_dds2opcua_configuration.xml
http://www.omg.org/spec/DDS-OPCUA/20190201/dds-opcua_dds2opcua_configuration.xml
http://www.omg.org/spec/DDS-OPCUA/20180201/dds-opcua_model.xmi
http://www.omg.org/spec/DDS-OPCUA/20180201/dds-opcua_model.xmi
http://www.omg.org/spec/DDS-OPCUA/20180201/dds-opcua_model.xmi
http://www.omg.org/spec/DDS-OPCUA/20180201/dds-opcua_definitions_nonamespace.xsd
http://www.omg.org/spec/DDS-OPCUA/20180201/dds-opcua_definitions_nonamespace.xsd
http://www.omg.org/spec/DDS-OPCUA/20180201/dds-opcua_definitions_nonamespace.xsd
http://www.omg.org/spec/DDS-OPCUA/20180201/dds-opcua_definitions.xsd
http://www.omg.org/spec/DDS-OPCUA/20180201/dds-opcua_definitions.xsd
http://www.omg.org/spec/DDS-OPCUA/20180201/dds-opcua_definitions.xsd
http://www.omg.org/spec/DDS-OPCUA/20180201/dds-opcua_subscriptions.idl
http://www.omg.org/spec/DDS-OPCUA/20180201/dds-opcua_subscriptions.idl
http://www.omg.org/spec/DDS-OPCUA/20180201/dds-opcua_subscriptions.idl
http://www.omg.org/spec/DDS-OPCUA/20190201/dds-opcua_services.idl
http://www.omg.org/spec/DDS-OPCUA/20190201/dds-opcua_services.idl
http://www.omg.org/spec/DDS-OPCUA/20190201/dds-opcua_services.idl
http://www.omg.org/spec/DDS-OPCUA/20190201/dds-opcua_services.idl
http://www.omg.org/spec/DDS-OPCUA/20190201/dds-opcua_services.idl
http://www.omg.org/spec/DDS-OPCUA/20190201/dds-opcua_services.idl
http://www.omg.org/spec/DDS-OPCUA/20190201/dds-opcua_builtin_types.idl
http://www.omg.org/spec/DDS-OPCUA/20190201/dds-opcua_builtin_types.idl
http://www.omg.org/spec/DDS-OPCUA/20190201/dds-opcua_builtin_types.idl
http://www.omg.org/spec/DDS-OPCUA/20190201/dds-opcua_builtin_types.idl
http://www.omg.org/spec/DDS-OPCUA/20190201/dds-opcua_builtin_types.idl
http://www.omg.org/spec/DDS-OPCUA/20190201/dds-opcua_builtin_types.idl
http://www.omg.org/spec/DDS-OPCUA/1.0
http://www.omg.org/spec/DDS-OPCUA/1.0
http://www.omg.org/spec/DDS-OPCUA/1.0
http://www.omg.org/spec/DDS-OPCUA/1.0
http://www.omg.org/spec/DDS-OPCUA/1.0

Copyright © 2018-2019, Real-Time Innovations, Inc.
Copyright © 2018-2019, PrismTech, Ltd.

Copyright © 2018-2019, Twin Oaks Computing, Inc.
Copyright © 2018-2019, eProsima, Inc.

Copyright © 2018-2019, Object Management Group, Inc.

USE OF SPECIFICATION — TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms,
conditions and notices set forth below. This document does not represent a commitment to implement any portion of
this specification in any company's products. The information contained in this document is subject to change without
notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free,
paid up, worldwide license to copy and distribute this document and to modify this document and distribute copies of
the modified version. Each of the copyright holders listed above has agreed that no person shall be deemed to have
infringed the copyright in the included material of any such copyright holder by reason of having used the specification
set forth herein or having conformed any computer software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant you a
fully-paid up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use this
specification to create and distribute software and special purpose specifications that are based upon this specification,
and to use, copy, and distribute this specification as provided under the Copyright Act; provided that: (1) both the
copyright notice identified above and this permission notice appear on any copies of this specification; (2) the use of
the specifications is for informational purposes and will not be copied or posted on any network computer or broadcast
in any media and will not be otherwise resold or transferred for commercial purposes; and (3) no modifications are
made to this specification. This limited permission automatically terminates without notice if you breach any of these
terms or conditions. Upon termination, you will destroy immediately any copies of the specifications in your possession
or control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may
require use of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a
license may be required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of
those patents that are brought to its attention. OMG specifications are prospective and advisory only. Prospective users
are responsible for protecting themselves against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications
regulations and statutes. This document contains information which is protected by copyright. All Rights Reserved. No
part of this work covered by copyright herein may be reproduced or used in any form or by any means--graphic,
electronic, or mechanical, including photocopying, recording, taping, or information storage and retrieval systems--
without permission of the copyright owner.

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY CONTAIN
ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE
MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS PUBLICATION,
INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF

ii OPC UA/DDS Gateway 1.0

MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE. IN NO EVENT
SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE COMPANIES LISTED ABOVE BE LIABLE
FOR ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS, REVENUE, DATA
OR USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE FURNISHING,
PERFORMANCE, OR USE OF THIS MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you. This
disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1) (ii)
of The Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph (c)(1) and
(2) of the Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified in 48
C.F.R. 227-7202-2 of the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of the Federal
Acquisition Regulations and its successors, as applicable. The specification copyright owners are as indicated above
and may be contacted through the Object Management Group, 140 Kendrick Street, Needham, MA 02494, U.S.A.

TRADEMARKS

CORBA®, CORBA logos®, FIBO®, Financial Industry Business Ontology®, FINANCIAL INSTRUMENT GLOBAL
IDENTIFIER®, IIOP®, IMM®, Model Driven Architecture®, MDA®, Object Management Group®, OMG®, OMG Logo®,
SoaML®, SOAML®, SysML®, UAF®, Unified Modeling Language®, UML®, UML Cube Logo®™, VSIPL®, and XMI" are
registered trademarks of the Object Management Group, Inc.

For a complete list of trademarks, see: http://www.omg.org/legal/tm_list.htm. All other products or company names
mentioned are used for identification purposes only, and may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its
designees) is and shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer
software to use certification marks, trademarks or other special designations to indicate compliance with these
materials.

Software developed under the terms of this license may claim compliance or conformance with this specification if and
only if the software compliance is of a nature fully matching the applicable compliance points as stated in the
specification. Software developed only partially matching the applicable compliance points may claim only that the
software was based on this specification, but may not claim compliance or conformance with this specification. In the
event that testing suites are implemented or approved by Object Management Group, Inc., software developed using
this specification may claim compliance or conformance with the specification only if the software satisfactorily
completes the testing suites.

OPC UA/DDS Gateway 1.0 iiii

OMG’s Issue Reporting Procedure

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage
readers to report any ambiguities, inconsistencies, or inaccuracies they may find by completing the Issue Reporting
Form listed on the main web page http://www.omg.org, under Documents, Report a Bug/Issue
(http://issues.omg.org/issues/create-new-issue).

iv OPC UA/DDS Gateway 1.0

Table of Contents

LS T o] o = T PRSP PRR 1
P2 O 7o o] 4 0 =1 o et T 1
3 NOrMaAtive REFEIENCES. ... e 2
4 Terms and DefiNitiONS.........oviiiiiiiiiiiiiiieeeeeeeeeeeeee ettt e e et e e e e e e eannnas 4
O SYMDOIS. ... e 4
6 Additional INformMation........ ... e 5
6.1 ACKNOWIEAGEMIENTS. ...ttt e e e e e e e e e e e e e e e 5
7 OPC UA/DDS Gateway Overview (NON-NOrmMative)............eeeeeeeeeiiiiiiiiiiieieeeeeeeeieieeininnnnnns 7
7.1 OPC Unified Architecture (OPC UA).........ooiiiiiiiee et 7
7.1.1 OPC UA AGArESSSPACE.ueeiiiee ittt e e ettt e e e ettt e e e e s s bt e e e e e st b e e e e e s anbbeeaeeaaaaaaaaaaaeaes 7
T.1.2 OPC UA SEIVICES. ...cciutteiieeieiiteit e et ettt e e sttt e e s e bt eea e e e s staeeeeaasateeeeeaanstaeeaeeaassbaeaaeaeaaaaaeaaaaeaeeeeeeeees 8
7.2 Data Distribution Service (DDS)........uuiiiiiiiiiiiiiiiiiei ettt 9
7.2.1 DDS Global Data SPACE.cciiieeiiiiiiiiiieet ettt e e e e e e e e e e s et e e e e e e e e e e eeennn e e aaaaeee 9
7.2.2 Remote Procedure Call over DDS (DDS-RPC).......coiiiiiiiiiiiiiiiieee et 10
7.3 Bridging OPC UA @nd DDS..... ..ottt e e e e e e e e e e e e e e e e e eenan s 10
8 OPC UA L0 DDS BriAGE. .. eeeeiiieieiieiiiiiiieee ettt e e e e 13
8.1 Overview (NON-NOMMALIVE). ..ottt e e e e e e e e e e e e e e e e e s s a e e e eeeas 13
8.2 OPC UA Type SyStem MapPing.........ueeeeeeeeeieeaeeiieiiiiaiiiiie ettt eeeann e e eeeeeees 13
8.2.1 BUIlt-IN PrimItIVe TYPES. ...ttt e e s e e e 14
8.2.2 BUIlt-in COMPIEX TYPES. ...ttt et e e e e e e e e e e e e e e ee e et s s beaeeeeee s e s bbaaaeeeeeeessanns 15
8.3 OPC UA Service Sets MapPing. o coaiii i e e e e e e e e e e s e e e e e eana s 18
8.3.1 Standard DataTypes and NodeClasses Mapping..........ccceeeueiaaaariaiiiiiiieieieee e e e e e e e e 18
8.3.2 VIBW SEIVICE SEL....eeiiiiiiiiiiiie ettt ettt e et e e e s ettt e e e e sttt e eeeesanttaeeeeeaastaeaeeeeantaeeaeesasnnnns 25
8.3.3 QUETY SEIVICE SEL.....eeiiiiiiiiiiiie ettt e e sttt e e e e bttt e e s e be et e e e e aanbb e e e e e s ananeeeeeeaanan 26
8.3.4 AUMDULE SEIVICE SEl.....oeeeeeiiiiiiiiiee et e e e e e e e e e e s e e se e eaeea e e e e eeeennnan 27
8.3.5 MELNOA SEIVICE SEL.......eiiiiiiiiiiie ettt e e e e ettt e e s ettt e e e s aasseeeeaesessaeeeeesannnneeeenan 31
8.3.6 Implementation CoNSIAEratioNS..............uuiiiiiiiiiiie e e e e e e e 32
8.4 OPC UA Subscription Model Mapping.....ccoooooiieeeieiieeeeeeeee e 34
8.4.1 OVerview (NON-NOMIALIVE).oei ittt ee et e e e e e e e e e e e s et ee e e e eeeaaaaaaeeeeaaans 34
8.4.2 OPC UA SubsCription Mapping.........eeeeieiiiiiiiieeaiiiieee e e st ee e e ettt ee e e ettt e e e s eaee e e e s sneseeeaesaaaaeaaaeeeas 37
8.4.3 OPC UA Subscription Mapping BEhavVior.............oouiiiiiii e 46
8.4.4 Implementation CoNSIAEratioNS..............uuuiiiiiiiiiiii e e e e e 51

DI D SR (o @ ol O U 7N =] T [[I 53
9.1 Overview (NON-NOMMATIVE)........iiiiiiiiii ettt e e e e e e e e e e 53
9.2 DDS Type SyStemM MapPing.........uuuuuemmmeieiiieiaeaaeaaeeaieeaie et et e e e e e e e e e e e s aaa e e e e e e eenaaa e eees 53
L T2 B 0 01 (Y=Y Y/ 01 PP 54

1 I S 1] o T Y] o= TR PP UUURRUPPPPPTPPN 58

£ IR I o 1W g 1T = (= To [Y o 1= S PO UPPN 60

L T A Ne o | (=To =) (=T B Y o =TSSP 70

LS I T 0o 1= Tor (o] TN Y/ 01T PP 80
L I (=) (=T I Y o1 T PP TTP PP 103

LS I A 1= Y] o = PP 104
LR T (G- To B Y/ o 1= ST 104
9.3 DDS Global Data Space MappPing.........ueuuuuuiaaaaaee e e e e e e e e e ee e eeenn s 104
9.3.1 OVErview (NON-NOIMALIVE)........eeiiiiiiiiiiii ettt e e e et e e e st e e e s s eneee e e e e e nseeeeeeeenseeeaeeaanreees 104
9.3.2 Representing DDS Domains in OPC UA........uuiiiiiiiiieeee ettt e e e 105

OPC UA/DDS Gateway 1.0 v

9.3.3 Representing DDS Topics in OPC UA ... it e e 108

9.3.4 Representing DDS Instances and Samples in OPC UA ... 112
9.3.5 Implementation ConSIAErations................uuueiiiiiiiiiiii e e e 117
10 OPC UA/DDS Gateway Configuration............cooiuuuiiiieiiieiiiiiiee e 119
TR T O 1= Y 1 P 119
L0 0o T4 To 18] = (o] o PP 119
10.3 Examples (NON-NOIMMALIVE). ...t e e eeeeenees 123
10.3.1 OPC UA to DDS Bridge EXamPIE.........ccoiiiiiiiiiiiiiiiiiiee ettt e e 123
10.3.2 DDS to OPC UA Bridge EXamPIe.........coiiiiiiiiiiee ettt ettt e e e et e e e st ee e e s annaeeees 130

\ OPC UA/DDS Gateway 1.0

Figure 7.1:
Figure 7.2:
Figure 7.3:
Figure 8.1:
Figure 8.2:
Figure 8.3:
Figure 8.4:
Figure 8.5:
Figure 9.1:
Figure 9.2:
Figure 9.3:
Figure 9.4:
Figure 9.5:
Figure 9.6:
Figure 9.7:
Figure 9.8:
Figure 9.9:
Figure 9.10
Figure 9.11
Figure 9.12
Figure 9.13
Figure 9.14
Figure 9.15
Figure 9.16
Figure 9.17
Figure 9.18
Figure 9.19
Figure 9.20
Figure 9.21

Figure 9.22:
Figure 9.23:
Figure 9.24:
Figure 9.25:
Figure 9.26:
Figure 9.27:
Figure 9.28:

Table of Figures

OPC UA MEAMOTEL......cc oottt e e e e e e e e e e s e e et e e e e e e eaaaeeeesaeaaanaaees 8
DCPS ConcCeptual MOEL........couueiiiiieiiiie et 10
OPC UA/DDS GateWway CONCEPL.....coeiiiiiiiiiee ittt e e e a e e e enbeeeaeeas 11
OPC UA t0 DDS Bridge OVEIVIEW.........eeiiiieiiiiiiie ettt ettt a e e e e e e e e eeas 13
OPC UA Subscription Mapping OVEIVIEW...........eeiiiiiiiiee et e e e e e e e e e e e eeeeeaa e e eeeeeees 38
OPC UA INPUL DEFINItION. ...t e e e e e e e e e e e e e e e eeas 39
DDS Output DefinitioN........ccoiiiiieeeeece et e e e e e e 42
Input/Output Mapping DefiNItION.........cooiiiiiie e e e e e 44
DDS t0 OPC UA Bridge OVEIVIEW..........eiiiiiiiiiiiieeieiiiieee e ettt ee e s sttt e e e s sstee e e e e sntaeeaesaanneeeaeaeaaens 53
Primitive Types Mapping to OPC UA—INteger TYPES........ccooiiiiiiiiiiiiiieeeeeeee e 54
Primitive Types Mapping to OPC UA—Floating Point TYPES........cccuvvieiieiiiiiieeeie e, 55
Primitive Types Mapping to OPC UA—Boolean, Byte, and Char Types........cccccccvveeeeeiiiieeeeeennnnnn, 55
Example of Primitive Type Mapping to OPC UA... ...t 57
String Types Mapping 0 OPC UA.... .o e e e 58
Example of String Type Mapping 10 OPC UA....... .o 60
Enumeration Types Mapping to OPC UA e e 61
Example of Enumeration Type Mapping to OPC UA...... ..o 63

: Bitmask Types Mapping t0 OPC UA et e e e e e e e as 65

: Example of Bitmask Type Mapping to OPC UA. ... e 68

: Structure Types Mapping t0 OPC UA ...ttt e e e e e e e e e e 72
: Example of Structure Type Mapping t0 OPC UA.........oo ittt 74
2 Union Types Mapping t0 OPC UA ettt 77
: Example of Union Type Mapping 10 OPC UA ...t 79
: Array of Primitive or String Types Mapping to OPC UA..........oo e, 83

: Array of Enumerations Mapping t0 OPC UA ...t 84
: Array of Bitmasks Mapping 10 OPC UA. ... 85
: Array of Structures Mapping 10 OPC UA e 86
2 Array of Unions Mapping 10 OPC UA.......e e 89
: Array of Collection Types Mapping to OPC UA..........c.oiiiiiii e 90

Sequence of Primitive or String Types Mapping to OPC UA.... ..o 93
Sequence of Enumerations Mapping to OPC UA ... o e 94
Sequence of Bitmasks Variable Definition...............cccuuiiiiiiiiiiii e 95
Sequence of Structures Mapping 10 OPC UA ...t 96
Sequence of Unions Mapping 1o OPC UA.........c.. e 97
Sequence of Collection Types Mapping t0 OPC UA..........oooi i 98
Map Types Mapping 10 OPC UA. ettt e e e e e e e e e e s e e e e e et e e aaaaees 100

Figure 9.29: Example of Map Type Mapping 10 OPC UA....... .o 102
Figure 9.30: DDS Domain Mapping t0 OPC UA........o ittt stteee e e e eeeeeeeeeeees 106
Figure 9.31: DDS Topic Mapping 10 OPC UA. ... ettt e e e st eeeeeeeenes 108
Figure 9.32: DDS Instance Mapping to OPC UA. e a e e 113

OPC UA/DDS Gateway 1.0 vii

Table of Tables

Table 2.1: CoNfOrMANCE POINTS..... ... it e e e e e e e e e e e e e e e e eaaeaeeeesesasassnrnneeeeeeeannnnns 1
L= o) ST T o o] 0 1Y/ o LTSRS 4
Table 8.1: Mapping of OPC UA Primitive Types 10 DDS.........cooiiiiiiiiie e 14
Table 8.2: Mapping of OPC UA Non-Primitive Built-in Types t0 DDS..........ooiiiiiiiiieeiee e 15
Table 8.3: Mapping of OPC UA Standard DataTypes and NodeClasses to DDS.............cccooeiiiiiiiiiiniieeeeeeennn, 18
Table 8.4: Mapping of Types Specific to the View Service Set........ccvviiiiiiiiiii e, 25
Table 8.5: Mapping of Types Specific to the Query Service Set........ccuuvviiiiiiii e, 26
Table 8.6: Mapping of Types Specific to the Attribute Service Set..........oooiiiiiii e 27
Table 8.7: Mapping of Types Specific to the Method Service Set............oii e 32
Table 8.8: Subscription Mapping Configuration..............coooiiiiiic e e 38
Table 8.9: OPC UA INPUt DEfiNItiON.........ooiiii e e e e e e e e e e e e e e eeanaaaas 39
Table 8.10: OPC UA Connection DefinitioNn........ ... e 40
Table 8.11: OPC UA Subscription Protocol Definition.............ccoiiiiiiiiiiiice e 40
Table 8.12: OPC UA Monitoredltem Definition............cccuiiiiiiiiiieicieee et e e s 41
Table 8.13: DDS Output DefinitioN...........eiiiiiiiieiie e e e et e et e e e e eeeeeeeeeeeneeeee 42
Table 8.14: DDS DomainParticipant Definition..............ccccuiiiiiiiii e 43
Table 8.15: Input/Output Mapping DefiNitioN...........ooiuiiiiiiiii e 45
Table 8.16: Simplified Mapping of OPC UA Variant Type to DDS TYPeS........ccuiiiiiiiiiiiiiiiiieee e 48
Table 9.1: Primitive Type Variable Definition..............cooi e 55
Table 9.2: OPC UA Built-in Types Equivalent to DDS Primitive TYPES..........uvueieiiiiiiieeieieiieiicciiiieeeee e 56
Table 9.3: Example of Int32 Variable Definition..............ueiiiiiiiiiiiiiii e 57
Table 9.4: String8 (String) Variable Definition.............ooo i 59
Table 9.5: String16 (Wide String) Variable Definition..............cooiiiiii e 59
Table 9.6: Example of String Variable Definition...............uuviiiiiiiiiii e 60
Table 9.7: Enumeration DataType Definition.............ooui i 61
Table 9.8: Enumeration Variable Definition........ ... 62
Table 9.9: Example of Enumeration DataType Definition.............coociiiiiiiiiiiiic e 63
Table 9.10: Example of Enumeration Variable Definition............ccccuviiiiiiiiiiiie e 64
Table 9.11: Bitmask DataType Definition...........c.ueieiiiiiie e 66
Table 9.12: Bitmask Variable Definifion............ooiiiiiiiiii et e e et eeeeeeeeeeeneeeenee 66
Table 9.13: Example of Bitmask DataType Definition.............ccccmiiiiiiiiiiiice e 68
Table 9.14: Example of Bitmask Variable Definition................oeeiiiii e 69
Table 9.15: Structure DataType Definition...........c.uuieiiiiiiie e 72
Table 9.16: Structure VariableType Definition..............ooi e 73
Table 9.17: Example of Structure DataType Definition.............ooooiiiiiiiiici e 74
Table 9.18: Example of Structure VariableType Definition...........c..eeiiiiiiiiiii e 75
Table 9.19: Example of Structure Variable Definition................ooooiiii e 75
Table 9.20: Union Data Type Definition...........ooii ittt e s eeeeeeeeenees 77
Table 9.21: Union Type Variable Definition..............ooiiiiiiiii e 78
Table 9.22: Example of Union DataType Definition.............ooiiiiiiiiiiiiie e 79
Table 9.23: Example of Union Variable Definition................ceeiiiiiiiiiiiiiiieeeeeee e 79
Table 9.24: Array of Primitive or String Type Variable Definition............ooooiiiii e, 83
Table 9.25: Array of Enumerations Variable Definition..............oooo e 84
Table 9.26: Array of Bitmasks Variable Definition.............ccccuuiiiiiiiiiiii e 85
Table 9.27: Array of Structures Variable Definition...............ooooiiiiiii e 87
Table 9.28: Array of Unions Variable Definition................ueeeiiiiie e 89
Table 9.29: Array of Collection Types Object Definition............ccueiiiiiiiiii e 90
Table 9.30: Collection Variable or Object Definition — Arrays of Collections..............ccccocciiiiiiiieei 90
Table 9.31: Example Array Variable Definition............oouiiiiiiii e 91
Table 9.32: Sequence of Primitive or String Types Variable Definition...............cocoo s 93
Table 9.33: Sequence of Enumerations Variable Definition...............ccvuviiiiiiiiiieeeee e 94
Table 9.34: Sequence of Bitmasks Variable Definition...............cuviiiirii e 95
Table 9.35: Sequence of Structures Variable Definition.............cocciiiiii e 96

viii OPC UA/DDS Gateway 1.0

Table 9.36:
Table 9.37:
Table 9.38:
Table 9.39:
Table 9.40:
Table 9.41:
Table 9.42:
Table 9.43:
Table 9.44:
Table 9.45:
Table 9.46:
Table 9.47:
Table 9.48:
Table 9.49:
Table 9.50:
Table 9.51:
Table 9.52:
Table 9.53:
Table 10.1:

Sequence of Unions Variable DefinitioN..............ciiiiiiiiiiiii e 97
Sequence of Collection Types Object Definition..........ccc.uueeiii e 98

Collection Variable or Object Definition — Sequences of Collections............cccccovcivviiiiiiiiiiiiiiiinns 99
Example of Sequence Variable Definition...............eoiiiiiiiiiiiii e 99
Map ObjJeCt DefiNitiON.eeiiie e 101
MapEntry Variable or Object Definition............ccuuiiiiiiiiiee e 101
Example of MapEntry Variable Definition — First MapENtry.............ccccoiiiiiiiiieiiiiiieeeeeeeieeec e, 102
Example of MapEntry Variable Definition — Second MapENntry...........ccccooiiiiiiiiiiiiiiiieeeeees 102
Example of Map Object Definition...........oooii i 103

Domain Object DefiNitioN...........ooo oo 106
DomainType ObjectType Definition..........ccccuuiiiiiiiieiiicce e 107
TopIiC OBJECt DEfINITION. ... eeeaeaees 109
Registerinstance Method Definition......... ... e 110
Unregisterinstance Method Definition............oouuiiiii i 111
Disposelnstance Method Definition..............eeiiiiiiiiiii e 112
TopicType ObjectType DefiNItiON.........coiiiiiiiie e e et eeeeeeeeees 112
Property Type Variables Representing Members of DDS::Samplelnfo..........cccccoeceiiiiiicienennn. 114
Instance Variable or Object Node Definition.............ccooiiiiiiii e 114
XML Configuration Elements OVErVIEW.ooiuiiiiiiiiiiiie e 119

OPC UA/DDS Gateway 1.0 ix

Preface

OMG

Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer industry
standards consortium that produces and maintains computer industry specifications for interoperable, portable, and
reusable enterprise applications in distributed, heterogeneous environments. Membership includes Information
Technology vendors, end users, government agencies, and academia.

OMG member companies write, adopt, and maintain its specifications following a mature, open process. OMG’s
specifications implement the Model Driven Architecture® (MDA®), maximizing ROI through a full-lifecycle approach
to enterprise integration that covers multiple operating systems, programming languages, middleware and networking
infrastructures, and software development environments. OMG’s specifications include: UML® (Unified Modeling
Language®™); CORBA®™ (Common Object Request Broker Architecture); CWM"™ (Common Warehouse Metamodel™);
and industry-specific standards for dozens of vertical markets.

More information on the OMG is available at http://www.omg.org/.

OMG Specifications

As noted, OMG specifications address middleware, modeling and vertical domain frameworks. All OMG Specifications
are available from the OMG website at:

http://www.omg.org/spec

Specifications are organized by the following categories:

Business Modeling Specifications

Middleware Specifications

¢ CORBA/IIOP
e Data Distribution Services

e Specialized CORBA

IDL/Language Mapping Specifications

Modeling and Metadata Specifications

¢ UML, MOF, CWM, XMI
e UML Profiles

Modernization Specifications

Platform Independent Model (PIM), Platform Specific Model (PSM), Interface
Specifications

e CORBAServices
¢ CORBAFacilities

OMG Domain Specifications

X OPC UA/DDS Gateway 1.0

CORBA Embedded Intelligence Specifications
CORBA Security Specifications

Signal and Image Processing Specifications

All of OMG’s formal specifications may be downloaded without charge from our website. (Products implementing
OMG specifications are available from individual suppliers.) Copies of specifications, available in PostScript and PDF
format, may be obtained from the Specifications Catalog cited above or by contacting the Object Management Group,
Inc. at:

OMG Headquarters
109 Highland Avenue
Needham, MA 02494
USA

Tel: +1-781-444-0404
Fax: +1-781-444-0320
Email: pubs@omg.org

Certain OMG specifications are also available as ISO standards. Please consult http://www.iso.org

Typographical Conventions

The type styles shown below are used in this document to distinguish programming statements from ordinary English.
However, these conventions are not used in tables or section headings where no distinction is necessary.

Times/Times New Roman/Liberation Serif — 10 pt.: Standard body text

Helvetica/Arial — 10 pt. Bold: OMG Interface Definition Language (OMG IDL) and syntax elements.
Courier — 10 pt. Bold: Programming language elements.

Helvetica/Arial — 10 pt: Exceptions

NOTE: Terms that appear in italics are defined in the glossary. Italic text also represents the name of a document,
specification, or other publication.

Issues

The reader is encouraged to report any technical or editing issues/problems with this specification via the report form
at:

http://issues.omg.org/issues/create-new-issue

OPC UA/DDS Gateway 1.0

Xi

Xii

This page intentionally left blank.

OPC UA/DDS Gateway 1.0

1 Scope

Data Distribution Service (DDS) is a family of standards from the Object Management Group (OMG) that provide
connectivity, interoperability, and portability for Industrial Internet, cyber-physical, and mission-critical applications.

The DDS connectivity standards cover Publish-Subscribe (DDS), Service Invocation (DDS-RPC), Interoperability
(DDS-RTPS), Information Modeling (DDS-XTYPES), Security (DDS-SECURITY), as well as programing APIs for C,
C++, Java and other languages.

The OPC Unified Architecture (OPC UA) is an information exchange standard for Industrial Automation and related
systems created by the OPC Foundation. The OPC UA standard provides an Addressing and Information Model for
Data Access, Alarms, and Service invocation layered over multiple transport-level protocols such as Binary TCP and
Web-Services.

DDS and OPC UA exhibit significant deployment similarities:

* Both enable independently developed applications to interoperate even when those applications come from
different vendors, use different programming languages, or run on different platforms and operating systems.

* Both have significant traction within Industrial Automation systems.

* Both define standard protocols built on top of the TCP/ UDP/IP Internet stacks.

The two technologies may coexist within the same application domains; however, while there are solutions that bridge
between DDS and OPC UA, these are based on custom mappings and cannot be relied to work across vendors and
products.

This specification overcomes this situation by defining a standard, vendor-independent, configurable gateway that
enables interoperability and information exchange between systems that use DDS and systems that use OPC UA.

2 Conformance

This specification defines a set of building blocks that are grouped into four conformance points:
e OPC UA to DDS Mapping Basic Conformance
* OPC UA to DDS Mapping Complete Conformance
e DDS to OPC UA Mapping Basic Conformance
e OPC UA to DDS Mapping Complete Conformance

Table 2.1 defines each conformance point and lists the building blocks they are built upon.

Table 2.1: Conformance Points

Conformance Point Definition

OPC UA to DDS Mapping Basic | Constructs an OPC UA/DDS Gateway that allows DDS applications to subscribe
Conformance to data in the AddressSpace of different OPC UA Servers.

Conformance with this point requires the implementation of the following
building blocks:

e OPC UA Type System Mapping

OPC UA/DDS Gateway 1.0 1

Conformance Point

Definition

* OPC UA Subscription Model Mapping

OPC UA to DDS Mapping
Complete Conformance

Constructs an OPC UA/DDS Gateway that allows DDS applications to subscribe,
browse, and manage data in the AddressSpace of different OPC UA Servers.

Conformance with this point requires the implementation of:
¢ OPC UA to DDS Mapping Basic Conformance
e OPC UA Service Sets Mapping

DDS to OPC UA Mapping Basic
Conformance

Constructs an OPC UA/DDS Gateway that allows OPC UA clients to browse,
read, write, and subscribe to information in the DDS Global Data Space.

Conformance with this point requires the implementation of the following
building blocks:

e DDS Type System Mapping

* DDS Global Data Space Mapping (except sub clause 9.3.4.4 Reading
Historical Data from Instance Nodes)

DDS to OPC UA Mapping
Complete Conformance

Constructs an OPC UA/DDS Gateway that allows OPC UA clients to browse,
read, write, and subscribe to information in the DDS Global Data Space, Services.
Additionally, it allows OPC UA clients to access Historical Data.

Conformance with this point requires the implementation of:

e DDS to OPC UA Mapping Basic Conformance

* Reading Historical Data from Instance Nodes

OPC UA to DDS and DDS to OPC UA conformance points may be combined in implementations of the OPC UA/DDS
Gateway that provide bi-directional communication between OPC UA and DDS applications. For example:

¢ Implementations conforming to OPC UA to DDS Mapping Basic Conformance and DDS to OPC UA Mapping
Basic Conformance provide basic bi-directional communication between OPC UA and DDS applications.

e Implementations conforming to OPC UA to DDS Mapping Complete Conformance and DDS to OPC UA
Mapping Complete Conformance provide complete bi-directional communication between OPC UA and DDS

applications.

3 Normative References

The following normative documents contain provisions which, through reference in this text, constitute provisions of
this specification. For dated references, subsequent amendments to, or revisions of, any of these publications do not

apply.

[DDS] OMG, Data Distribution Service for Real-Time Systems, Version 1.4,
http://www.omg.org/spec/DDS/1.4

[DDS-RPC] OMG, Remote Procedure Call Over DDS, Version 1.0, http://www.omg.org/spec/DDS-

RPC/1.0

OPC UA/DDS Gateway 1.0

[DDS-SECURITY] OMG, DDS Security, Version 1.1, http://www.omg.org/spec/DDS-SECURITY/1.1
[DDS-WEB] OMG, Web-Enabled DDS, http://www.omg.org/spec/DDS-WEB/1.0

[DDS-XML] OMG, DDS Consolidated XML Syntax, Version 1.0,
http://www.omg.org/spec/DDS-XML/1.0

[DDS-XTYPES] OMG, Extensible And Dynamic Topic Types For DDS,
http://www.omg.org/spec/DDS-XTypes/1.2

[DDSI-RTPS] OMG, The Real-time Publish-Subscribe Protocol (RTPS) DDS Interoperability Wire
Protocol Specification, Version 2.3, http://www.omg.org/spec/DDSI-RTPS/2.3/Betal

[IDL] OMG, Interface Definition Language (IDL), Version 4.2, http://www.omg.org/spec/IDL/4.2

[OPCUA-01] OPC Foundation, OPC Unified Architecture Specification Part 1: Overview and Concepts,
Release 1.03, 2015

[OPCUA-02] OPC Foundation, OPC Unified Architecture Specification, Part 2: Security Model, Release
1.03, 2015

[OPCUA-03] OPC Foundation, OPC Unified Architecture Specification, Part 3: Address Space Model,
Release 1.03, 2015

[OPCUA-04] OPC Foundation, OPC Unified Architecture Specification, Part 4: Services, Release 1.03,
2015

[OPCUA-05] OPC Foundation, OPC Unified Architecture Specification, Part 5: Information Model,
Release 1.03, 2015

[OPCUA-06] OPC Foundation, OPC Unified Architecture Specification, Part 6: Mappings, Release 1.03,
2015

[OPCUA-07] OPC Foundation, OPC Unified Architecture Specification, Part 7: Profiles, Release 1.03,
2015

[OPCUA-09] OPC Foundation, OPC Unified Architecture Specification, Part 9: Alarms and Conditions,
Release 1.03, 2015

[OPCUA-11] OPC Foundation, OPC Unified Architecture Specification, Part 11: Historical Access,
Release 1.03, 2015

[OPCUA-12] OPC Foundation, OPC Unified Architecture Specification, Part 12: Discovery, Release 1.03,
2015

OPC UA/DDS Gateway 1.0 3

4 Terms and Definitions

For the purposes of this specification, the following terms and definitions apply.

DDS

Data Distribution Service (DDS) is a family of standards from the Object Management Group (OMG,
http://www.omg.org) that provide connectivity, interoperability and portability for Industrial Internet, cyber-physical,
and mission-critical applications. The DDS connectivity standards cover Publish-Subscribe (DDS), Service Invocation
(DDS-RPC), Interoperability (DDSI-RTPS), Information Modeling (DDS-XTYPES), Security (DDS-Security), as well
as programing APIs for C, C++, Java and other languages.

DDS Domain

Represents a global data space. It is a logical scope (or “address space”) for Topic and Type definitions. Each Domain is
uniquely identified by an integer Domain ID. Domains are completely independent from each other. For two DDS
applications to communicate with each other they must join the same DDS Domain.

DDS DomainParticipant

A DomainParticipant is the DDS Entity used by an application to join a DDS Domain. 1t is the first DDS Entity created
by an application and serves as a factory for other DDS Entities. A DomainParticipant can join a single DDS Domain.
If an application wants to join multiple DDS Domains, then it must create corresponding DDS DomainParticipant
entities, one per domain.

Mapping

Specifies how to implement a DDS or an OPC UA feature with a specific technology [OPCUA-06].

OPC UA

OPC Unified Architecture (OPC UA) is an information exchange standard for Industrial Automation and related
systems created by the OPC Foundation (http://www.opcfoundation.org). The OPC UA standard provides an
Addressing and Information Model for Data Access, Alarms, and Service invocation, layered over multiple transport-
level protocols such as Binary TCP and Web-Services.

5 Symbols

The following acronyms are used in this specification.

Table 5.1: Acronyms

Acronyms Meaning
DCPS Data-Centric Publish-Subscribe
DDS Data Distribution Service
GDS Global Data Space

4 OPC UA/DDS Gateway 1.0

http://www.opcfoundation.org/
http://www.omg.org/

Acronyms Meaning
OMG Object Management Group
RPC Remote Procedure Call
RTPS Real-Time Publish-Subscribe Protocol
UA Unified Architecture
XTYPES eXtensible and dynamic topic TYPES (for DDS)
6 Additional Information
6.1 Acknowledgements

The following companies submitted this specification:
e Real-Time Innovations, Inc.
* PrismTech Ltd
e Twin Oaks Computing, Inc.

e eProsima, Inc.

OPC UA/DDS Gateway 1.0

7 OPC UA/DDS Gateway Overview (non-normative)

71 OPC Unified Architecture (OPC UA)

OPC UA defines a pure client-server architecture, where Clients access the AddressSpace of a Server by means of a set
of standard Services. This clause provides an overview of the OPC UA AddressSpace and Service Sets focusing on the
aspects that are important for building a bridge between OPC UA and DDS.

[OPCUA-01] provides a more general purpose overview of OPC UA and the different parts of the specification.

711 OPC UA AddressSpace

The OPC UA AddressSpace model provides a mechanism to describe the entities that exist in a distributed system. It is
defined in [OPCUA-03] using UML as a meta-model that may be exposed by any OPC UA Server.

The AddressSpace is composed of a set of Nodes connected by References. Figure 7.1 depicts the different NodeClasses
defined in the OPC UA standard and their relationship with References.

* BaseNodeClass—The abstract class BaseNodeClass contains the set of Attributes that are common to all
NodeClasses including a NodeClass enumeration attribute that indicates which concrete class is actually
instantiated, and a Nodeld that uniquely identifies a Node anywhere in the system. Note that relationships
between Nodes are defined by means of the Nodeld value (similarly to a foreign key in a relational data
model).

* ReferenceType—ReferenceTypes define the nature of references (relationship between Nodes). Clause 7 of
[OPCUA-03] defines a set of standard ReferenceTypes, which are widely used in OPC UA applications. Other
parts of the OPC UA family of standards define additional ReferencesTypes by instantiating the ReferenceType
NodeClass. It is important to note that References are not NodeClasses and they do not appear as such in the
AddressSpace of OPC UA Servers.

* View—Nodes of the View class allow the selection of a subset of the AddressSpace. The entire AddressSpace is
the default view. Each node in a view may contain only a subset of its References, as defined by the creator of
the view.

* Object—Nodes of the Object NodeClass represent real-life objects in a system. Examples of Objects are
devices, controllers dealing with multiple devices, segments containing multiple controllers, and plants
consisting of multiple segments.

* ObjectType—Nodes of the ObjecType NodeClass provide type definitions for Objects. In other words, Objects
are defined by ObjectTypes, and each node of Object class includes a HasTypeDefinition Reference to an
ObjectDype .

* Variable—Nodes of the Variable NodeClass represent simple or complex values. Depending on their
constraints, Variables are defined as either Properties or DataVariables of other Nodes. Variables may be
simple or complex. Simple Variable objects refer to predefined DataTypes as found in [OPCUA-06].

* JariableType—Nodes of the VariableTypes NodeClass provide type definitions for Variables. In other words,
Variables are defined by VariableTypes, and each node of the Variable includes a HasTypeDefinition Reference
to a VariableType.

* Method—Nodes of the Method NodeClass define functions that are invoked using the Call Service defined in
[OPCUA-04].

* DataType—Nodes of the DataType NodeClass describe the syntax of a Variable’s value. DataTypes can be
simple or complex.

OPC UA/DDS Gateway 1.0 7

class OPCUAMetamodel /
+SourceNode
BaseNodeClass]
+ BrowseName: QualifiedName Ref
+ Description: LocalizedText eterence
+ DisplayName: LocalizedText <> ={+ InverseName: String
+ NodeClass: NodeClass + IsAbstract: Boolean
+ Nodeld:'NodeId + Symmetric: Boolean
+ UsngrlteMask:UInt32 +TargetNode
+ WriteMask: UInt32
A 1
1
ObjectType
ReferenceType
+ IsAbstract: Boolean
+ InverseName: LocalizedText
+ IsAbstract: Boolean
Object + Symmatric: Boolean
+ EventNotifier: Byte
DataType
VariableType + IsAbstract: Boolean
+ ArrayDimensions: UInt32 [0..*]
+ DataType: Nodeld .
+ IsAbstract: Boolean View
+ Nodeld: Nodeld + ContainsNoLoops: Boolean
+ Value + EventNotifier: Byte
+ ValueRank: Int32
Variable Method
+ Accesslevel: Byte + Executable: Izcl)o.leanI
+ ArrayDimensions: UInt32 [0..*] + UserExecutable: Baolean
+ DataType: Nodeld
+ Historizing: Boolean
+ MinimumSamplinglInterval: Duration
+ UserAccesslLevel: Byte
+ Value
+ ValueRank: Int32

Figure 7.1: OPC UA Metamodel

7.1.2 OPC UA Services

In a nutshell, OPC UA Services are Remote Procedure Calls (RPC) that Client applications can invoke to browse the
AddressSpace of a Server, read/write data, and configure subscriptions. OPC UA’s complete Service Set is defined in
[OPCUA-04].

For the purpose of building a bridge between OPC UA and DDS the following Service Sets apply:

e View Service Set—Provides Clients with Services to navigate the AddressSpace or a View—a subset—of the
AddressSpace of an OPC UA Server. These include the Browse, and BrowseNext services.

* Query Service Set—Provides Clients with Services to access information about the OPC UA Server. These
include the QueryFirst and QueryNext services.

8 OPC UA/DDS Gateway 1.0

e Attribute Service Set—Provides Clients with Services to Attributes that are part of a Nodes. For example, it
allows Clients to read the value of a Variable Node using the Read Service, update the value of a Variable Node
using the Write Service, or perform operations on historical values or events using the HistoryRead or
HistoryUpdate services.

e Method Service Set—Provides Clients with the Call Service, which is used to invoke OPC UA Methods.

e Subscription Service Set—Provides Clients with a mechanism to receive notifications from the Server on a
group of Monitoreditems. Unlike in DDS, where subscriptions are configured on a per-7opic bases (which
decouples information producers from information consumers in time and space, and allows efficient one-to-
many and many-to-many communications), OPC UA Subscriptions are server-to-client (i.c., one-to-one). As a
result, a Client is tightly coupled to a Server. In other words, Clients configure their own Subscriptions on the
Server and cannot share them with other Clients.

* Monitoredltems Service Set—Provides Clients with Services to configure the data and Events they wish to
subscribe to. Monitoredltems are created in the context of a Subscription, which is used to push Notifications to
the Client.

OPC UA provides also Service Sets to manage and control connections between OPC UA Clients and Servers. While
these services need not be exposed to DDS applications—because they have no role in the OPC UA to DDS end-to-end
interactions—they shall be implemented by the OPC UA Clients and Servers embedded into the OPC UA/DDS
Gateway (see sub clause 7.3).

e Discovery Service Set—Provides Clients with Services to discover Endpoints they can use to establish a
SecureChannel.

o SecureChannel Service Set—Provides Clients with Services to open a communication channel to exchange
Messages with the Server.

o Session Service Set—Provides Clients with Services to create an application-layer connection once a
SecureChannel has been created.

* NodeManagement Service Set—Provides Clients with Services to modify the AddressSpace of a Server. This
Service Set needs not be implemented by the OPC UA/DDS Gateway.

7.2 Data Distribution Service (DDS)

DDS is based on a data-centric publish-subscribe (DCPS) communication model, where information producers and
information consumers are decoupled in time and space and exchange information by means of a set of Topics. This
enables seamless one-to-many and many-to-many communication.

7.21 DDS Global Data Space

The DDS DCPS model is built upon the concept of a Global Data Space (GDS) that is accessible to all interested
applications. DDS applications that are interested in contributing information to the GDS become Publishers and DDS
applications interested in portions of the GDS become Subscribers. Each time a Publisher posts new data into the
Global Data Space, the DDS middleware propagates the information to the corresponding Subscribers [DDS].

The information that Publishers and Subscribers exchange in the Global Data Space is referred to as Topics, which
uniquely identify the data items in the Global Data Space. Each Topic is associated with a Type, which provides
information on how to manipulate the data, providing a level of type safety.

Lastly, the Global Data Space is divided into different logical divisions called Domains. DDS applications may
participate in different Domains using different DomainParticipants. Likewise, DomainParticipants may create
different DataWriters and DataReaders to publish and subscribe to different Topics on a certain Domain. Figure 7.2

OPC UA/DDS Gateway 1.0 9

provides an overview of the DCPS Model and shows the different DDS Entities that enable applications to participate
in the Global Data Space.

class DCPSModel
. i . . A DomainParticipant is the entry-point
DomainEntity DomainParticipant for the service and isolates a set on
* 1 applications that share a physical
network.
Publisher Subscriber
1 1
TypeSupport::
Topic
1 1
* * * *
DataWriter DataReader
«interface»
TypeSupport
Data

Figure 7.2: DCPS Conceptual Model

7.2.2 Remote Procedure Call over DDS (DDS-RPC)

While the publish-subscribe communications model makes DDS extremely powerful and scalable for one-to-many and
many-to-many communications, it makes it cumbersome to implement request-reply interactions and RPC invocations
such as OPC UA’s.

To overcome this limitation, the DDS family of standards includes the RPC over DDS Specification [DDS-RPC], which
defines a standard RPC framework using the basic building blocks of DDS (e.g., Topics, Types, DataWriters, and
DataReaders) to provide request-reply semantics.

The [IDL] specification provides syntax to represent services and interfaces and the [DDS-RPC] specification provides
the corresponding mapping of that syntax to actual building blocks to implement the DDS services and interfaces.

7.3 Bridging OPC UA and DDS

The goal of this specification is to define a standard, vendor-independent, configurable gateway to enable seamless
interoperability and information exchange between systems that use DDS and systems that use OPC UA.

An important use-case that would greatly benefit from a standards-based gateway is the use of DDS to integrate OPC
UA applications and subsystems (see Figure 7.3). In this scenario, individual applications and components, which
expose their data and services via OPC UA, are integrated into larger systems for monitoring and control using DDS.

10 OPC UA/DDS Gateway 1.0

These systems would benefit from OPC UA’s familiar Industrial Automation information models while benefiting from
DDS’ scalability, performance, QoS, and Global Data Space abstractions.

App
OPC UA DDS-OPC UA Gateway

Client
OPC UA DDS DDS

TCP /WS Server & RTPS RTPS
Client

App /|\ TCP /WS
|

OPC UA
Server I

TCP /WS | R
<<conceptually>>

OPC UA Protocols
+— DDS Protocols RTPS

Figure 7.3: OPC UA/DDS Gateway Concept

An OPC UA/DDS Gateway capable of providing such functionality must implement two different bridges:

e OPC UA to DDS Bridge, which enables DDS applications to interact with the AddressSpace of different OPC
UA Servers using native constructs,

e DDS to OPC UA Bridge, which enables OPC UA Clients to participate as first-class citizens in the DDS
Global Data Space.

Additionally, the OPC UA/DDS Gateway must provide a set of configuration files to allow users to tune the behavior
and mappings of the Gateway to their needs.

It is important to note that this specification does not mandate any specific architecture for the OPC UA/DDS Gateway,
although it describes an implementation based on the use of built-in OPC UA Clients and Servers and DDS Entities.
Instead, it provides a set of building blocks that enable implementers of this specification to construct an interoperable
product.

OPC UA/DDS Gateway 1.0 1

8 OPC UA to DDS Bridge

This chapter defines the OPC UA to DDS Bridge, which enables DDS applications to browse, read, and manage
information in the AddressSpace of different OPC UA Servers. In other words, it enables DDS applications to
communicate with OPC UA Servers using DDS native constructs.

8.1 Overview (non-normative)

Figure 8.1 shows an example OPC UA/DDS Gateway implementing the OPC UA to DDS Bridge.

DDS
App

DDS
Global Data Space

RTPS

opcual OFPCUA RTPS
Bin OPC UA
Server || ¢———» | Client D
OPC UA/DDS
OPC UA) < > (orc UA Gateway
Server OPC UA :
Bin Client @

RTPS
RTPS #

DDS
App

On one side of the Gateway, a set of DDS DomainParticipants and DDS Endpoints (i.e., DataWriters and
DataReaders) handle interactions with DDS applications that wish to access the AddressSpace of different OPC UA
Servers. On the other side of the Gateway, an OPC UA Client handles interactions with different OPC UA Servers by
forwarding requests/responses from DDS applications/OPC UA Servers to OPC UA Servers/DDS applications.

Figure 8.1: OPC UA to DDS Bridge Overview

This chapter is organized as follows:
* Sub clause 8.2 defines a mapping of the OPC UA type to IDL,
¢ Sub clause 8.3 defines a mapping of the OPC UA Service Sets to DDS Services using RPC over DDS.

e Sub clause 8.4 defines a special mapping of the OPC UA Subscription and Monitoredltem Service Sets to allow
DDS applications to subscribe to data in the AddressSpace of different OPC UA Servers following the DCPS
model.

8.2 OPC UA Type System Mapping

OPC UA leverages a collection of built-in types to construct structures, arrays, and messages.

Sub clause 5.1.2 of [OPCUA-06] defines the complete set of built-in types and assigns an ID to each of them. The set of
OPC UA built-in types can be represented as the following enumeration in IDL syntax:

module OMG { module DDSOPCUA { module OPCUA2DDS {
enum BuiltinTypeKind {

@value (1) BOOLEAN TYPE,

@value (2) SBYTE TYPE,

OPC UA/DDS Gateway 1.0 13

@value (3)
@value (4)
@value (5)
@value (6)
@value (7)
@value (8)
@value (9)
@value (10)
@value (11)
@value (12)
@value (13)
@value (14)
@value (15)
@value(16)
@value (17)
@value (18)
@value (19)
@value (20)
@value (21)
@value (22)
@value (23)
@value (24)
@value (25)
}i
Yoyiys

BYTE_TYPE,
INT16_TYPE,
UINT16_TYPE,
INT32_TYPE,
UINT32_TYPE,
INT64_TYPE,
UINT64_TYPE,

FLOAT TYPE,
DOUBLE_TYPE,
STRING_TYPE,
DATETIME_TYPE,

GUID TYPE,
BYTESTRING_TYPE,
XMLELEMENT TYPE,
NODEID_TYPE,
EXPANDEDNODEID_ TYPE,
STATUSCODE_TYPE,
QUALIFIEDNAME TYPE,
LOCALIZEDTEXT TYPE,
EXTENSIONOBJECT TYPE,
DATAVALUE_TYPE,
VARIANT TYPE,
DIAGNOSTICINFO_TYPE

The OPC UA built-in types listed above include both primitive types and complex types. The mapping of primitive
types to DDS is described in sub clause 8.2.1 and the mapping of complex types is described in sub clause 8.2.2. These
mappings are also available in a separate normative machine-readable IDL file named dds-opcua_builtin_types.idl,
which is provided with this specification.

8.2.1 Built-in Primitive Types

Table 8.1 shows the correspondence between the different built-in OPC UA primitive types and DDS types. The
mapping provides both the generic [DDS-XTYPES] equivalent type and its corresponding [IDL] representation.

Table 8.1: Mapping of OPC UA Primitive Types to DDS

OPC UA Built-in Type DDS Type IDL Equivalent
Boolean Boolean boolean
SByte Byte int8
Byte Byte uint8
Intlé6 Intlé6 intlé6
UIntlé UIntlé uintlé
Int32 Int32 int32
UInt32 UInt32 uint32
Int64 Inté64 inté64
UInté64 UInté64 uinté64
Float Float32 float
14 OPC UA/DDS Gateway 1.0

OPC UA Built-in Type DDS Type IDL Equivalent
Double Floaté64 double
String String8 string

There is almost a one-to-one correspondence between these types. They only exception are OPC UA sByte and Byte

types, which represent signed and unsigned 8-bit integers respectively. [DDS-XTYPES] does not define an 8-bit signed

integer; therefore, they are both mapped to DDS Bytes'. Nevertheless, these types can always be expressed in [IDL],

which provides the equivalent int8 and uint8 types.

8.2.2 Built-in Complex Types

Table 8.2 maps the OPC UA non-primitive built-in types to IDL.

Table 8.2: Mapping of OPC UA Non-Primitive Built-in Types to DDS

uint32 datal;

uintl6é data2;

uintl6é data3;

octet data4d[8];
}i

OPC UA Built-in Type DDS Type (IDL Equivalent)?
DateTime inté64
Guid struct Guid {

ByteString sequence<octet>
XmlElement string
NodeId enum NodeIdentifierKind {

NODEID_NUMERIC,

NODEID_ STRING,

NODEID_GUID,

NODEID_OPAQUE
};

@nested

case NUMERIC_NODE ID:
uint32 numeric_id;
case STRING_NODE ID:

case GUID_NODE_ID:
Guid guid _id;
case OPAQUE NODE_ ID:

};

struct NodeId {
uintlé namespace_index;
NodelIdentifierType identifier_ type;

};

union NodeIdentifierType switch (NodeIdentifierKind) ({

string string id; // Restricted to 4096 bytes

ByteString opaque_id; // Restricted to 4096 bytes

ExpandedNodeId struct ExpandedNodeId : NodeId ({
string namespace_uri;

' The addition of types Int8 and UInt8 is planned for the next revision of the [DDS-XTYPES] specification.

2 All these types appear inside the IDL module OMG : : DDSOPCUA : : OPCUA2DDS.

OPC UA/DDS Gateway 1.0

15

OPC UA Built-in Type

DDS Type (IDL Equivalent)

uint32 server_index;

};

StatusCode

uint32

QualifiedName

struct QualifiedName {
uintlé namespace_index;
string name; // Restricted to 512 characters

};

LocalizedText

@mutable
struct LocalizedText {
@id (1) Qoptional string locale;
@id(2) Qoptional string text;
}

ExtensionObject

enum BodyEncoding {
@value (0) NONE_BODY_ ENCODING,
@value (1) BYTESTRING BODY_ ENCODING,
@value (2) XMLELEMENT BODY_ ENCODING
}i

@nested
union ExtensionObjectBody switch (BodyEncoding) {
case NONE_BODY_ ENCODING:
octet none_encoding;
case BYTESTRING BODY_ ENCODING:
sequence<octet> bytestring encoding;
case XMLELEMENT BODY_ ENCODING:
XmlElement xmlelement encoding;

};

struct ExtensionObject ({
Nodeld type_id;
ExtensionObjectBody body;
}i

DataValue

@mutable

struct DataValue {
@id (1) QRoptional Variant value;
@id(2) @optional StatusCode status;
@id(4) Qoptional DateTime source_timestamp;
@id(8) @optional DateTime server_ timestamp;
@id(10) Roptional uintlé source pico_sec;
@id(32) Roptional uintlé server pico_sec;

};

Variant

@nested
union VariantValue switch (BuiltinTypeKind) {
case BOOLEAN TYPE:

boolean bool_value;
case SBYTE TYPE:

int8 sbyte value;
case BYTE TYPE:

uint8 byte_value;
case INT16_TYPE:

intl6é intl6_value;
case UINT16_TYPE:

uintlé uintlé_value;
case INT32 TYPE:

int32 int32_value;
case UINT32 TYPE:

uint32 uint32_value;

16

OPC UA/DDS Gateway 1.0

OPC UA Built-in Type DDS Type (IDL Equivalent)

case INT64_TYPE:
int64 int64_value;
case UINT64_TYPE:
uinté64 uinté4_value;
case FLOAT TYPE:
float float_value;
case DOUBLE_TYPE:
double double_value;
case STRING_TYPE:
string string value;
case DATETIME TYPE:
DateTime datetime_value;
case GUID_TYPE:
Guid guid_value;
case BYTESTRING TYPE:
ByteString bytestring value;
case XMLELEMENT TYPE:
XmlElement xmlelement value;
case NODEID_TYPE:
NodeId nodeid value;
case EXPANDEDNODEID TYPE:
ExpandedNodeId expandednodeid value;
case STATUSCODE TYPE:
StatusCode statuscode_value;
case QUALIFIEDNAME TYPE:
QualifiedName qualifiedname value;
case LOCALIZEDTEXT TYPE:
LocalizedText localizedtext_ value;
case EXTENSIONOBJECT_ TYPE:
ExtensionObject extensionobject_value;

};

struct Variant {
sequence<uint32> array dimensions;
sequence<VariantValue> value;

};

DiagnosticInfo @mutable
struct DiagnosticInfo ({
@id(1) QRoptional int32 symbolic_id;
@id(2) @optional int32 namespace_uri;
@id(4) QRoptional int32 localized_ text;
@id(8) (@optional int32 locale;
@id(10) Roptional string additional_info;
@id(32) @optional StatusCode inner_ status_code;
@id(64) Roptional DiagnosticInfo inner_diagnostic_info;

};

In the IDL representation of a Variant, array_dimensions may be set to a zero-length sequence, a sequence of
length one, or a sequence of length greater than one:

* Ifarray_dimensions is an empty zero-length sequence, it indicates the Variant contains a single element.
In this case the value field shall contain a sequence of length 1 with that one element representing the value of
the variant.

* Ifarray dimensions is a sequence of length 1, it indicates the Variant contains a one-dimensional array.
In this case the first and only array_dimensions element shall match the length of the value sequence.

* Ifarray_dimensions is a sequence with length greater than 1, it indicates the Variant contains a multi-
dimensional array. The length of array_dimensions indicates the number of dimensions and the value of

OPC UA/DDS Gateway 1.0 17

each element in array_dimensions indicates the length of each dimension. As specified in [OPCUA-06],
multi-dimensional arrays are encoded as a one-dimensional array whose length is equal to the sum of the
lengths of each dimension with the higher rank dimensions are appearing first. In this case, the value field
shall contain a sequence with length equaling the sum of all the dimensions.

8.3 OPC UA Service Sets Mapping

This clause defines a set of DDS Services equivalent to the OPC UA Services specified in [OPCUA-04]. These allow
DDS applications to browse, query, read, write, and subscribe to information in the AddressSpace of different OPC UA
Servers in a pure client-server manner.

The DDS Services specified in this clause are built upon the mechanisms defined in [DDS-RPC] and [IDL], which
provide IDL syntax to define interfaces with methods/operations and attributes, and the mapping of OPC UA’s built-in
types specified in sub clause 8.2 of this specification.

Each DDS Service contains a group of methods with input and output parameter, which are identified with the in and
out keywords (e.g., out sequence<DataValue> results). The first parameter of each method is always the input
parameter server_id—a string that uniquely identifies the OPC UA Server that shall process the request. The format
of the server_id is unspecified; it may be the Server s URI (e.g., opc.tcp://10.10.100.131:55001) or an identifier
corresponding a custom name specified in a configuration file. Aside from the output parameters, each method returns a
ResponseHeader, whose mapping is specified in Table 8.3.

The standard DataTypes, NodeClasses, and Services mapped in this clause are also available in a separate machine-
readable IDL file named dds-opcua_services.idl, which is provided with this specification.

8.3.1 Standard DataTypes and NodeClasses Mapping

Table 8.3 maps the OPC UA DataTypes and NodeClasses that are required to implement DDS Services equivalent to
those in [OPCUA-04].

These mappings are built upon the type mappings specified in sub clause 8.2 of this specification.

Table 8.3: Mapping of OPC UA Standard DataTypes and NodeClasses to DDS
OPC UA Type DDS Type (IDL equivalent)®

NodeClass enum NodeClass {
@value (1) OBJECT_NODE_CLASS,
@value (2) VARIABLE _NODE_CLASS,
@value (4) METHOD_NODE_CLASS,
@value (8) OBJECT TYPE NODE_CLASS,
@value(16) VARIABLE TYPE NODE_CLASS,
@value (32) REFERENCE_TYPE NODE_CLASS,
@value(64) DATA TYPE NODE CLASS,
@value (128) VIEW_NODE_CLASS

};

BaseNodeClass @nested

struct BaseNodeClass {
// Attributes
NodelId node_id;
NodeClass node_class;
QualifiedName browse_ name;
LocalizedText display name;
@optional LocalizedText description;

3 All these types appear inside the IDL module OMG : : DDSOPCUA : : OPCUA2DDS.

18 OPC UA/DDS Gateway 1.0

OPC UA Type

DDS Type (IDL equivalent)

@optional uint32 write_mask;
@optional uint32 user_ write mask;
// No References specified for the BaseNodeClass

};

EnumValueType

struct EnumValueType {
int64 value;
LocalizedText display name;
LocalizedText description;

}

DataType

@nested

struct DataType
// Attributes
boolean is_abstract;

BaseNodeClass {

// References

sequence<NodeId> has_ property;
sequence<NodeId> has_subtype;
sequence<NodeId> has_encoding;

// Standard Properties

@optional string node_version;

@optional sequence<LocalizedText> enum_strings;
@optional sequence<EnumValueType> enum values;
@optional sequence<LocalizedText> option_set_values;

};

BaseDataType

Variant

Duration

double

UtcTime

DateTime

ContinuationPoint

ByteString

Index

uint32

IntegerId

uint32

Counter

uint32

NumericRange

string

ViewDescription

@nested

struct ViewDescription ({
NodeId view_id;
UtcTime timestamp;
uint32 view_version;

};

RelativePath

@nested

struct RelativePathElement ({
Nodeld reference_ type_id;
boolean is_inverse;
boolean include_subtypes;
QualifiedName target name;

};

@nested
struct RelativePath {
sequence<RelativePathElement> elements;

};

ReferenceDescription

@nested
struct ReferenceDescription ({

OPC UA/DDS Gateway 1.0

19

OPC UA Type DDS Type (IDL equivalent)

Nodeld reference_ type_ id;
boolean is_forward;
ExpandedNodelId node_id;
QualifiedName browse_name;
LocalizedText display name;
NodeClass node_class;
ExpandedNodeId type_definition;
}i

BrowseResult @nested

struct BrowseResult {
StatusCode status_code;
ContinuationPoint continuation_point;
sequence<ReferenceDescription> references;

};

ResponseHeader @nested @appendable

struct ResponseHeader {
UtcTime timestamp;
Integerld request_handle;
StatusCode service_result;
DiagnosticInfo service_diagnostics;
sequence<string> string_table;

};

ExtensibleParameter @nested

struct ExtensibleParameter ({
Nodeld parameter type id;

};

ContentFilter enum FilterOperator {

@value (0) EQUALS_FILTER OPERATOR,

@value(l) IS NULL | FILTER ._OPERATOR,

@value (2) GREATER THAN__ FILTER OPERATOR,
@value(3) LESS THAN FILTER OPERATOR

@value (4) GREATER THAN OR EQUAL FILTER_OPERATOR,
@value(5) LESS THAN OR _EQUAL_FILTER OPERATOR
@value (6) LIKE FILTER OPERATOR,

@value(7) NOT_ FILTER OPERATOR

@value (8) BETWEEN FILTER OPERATOR,

@value(9) 1IN LIST FILTER OPERATOR

@value (10) AND FILTER OPERATOR

@value (11) OR FILTER OPERATOR

@value(12) CAST FILTER OPERATOR,

@value (13) IN VIEW FILTER ._OPERATOR,

@value (14) OF TYPE FILTER OPERATOR,

@value (15) RELATED TO FILTER . OPERATOR,

@value (16) BITWISE AND FILTER OPERATOR,

@value (17) BITWISE OR | FILTER OPERATOR

};

enum FilterOperandKind {
ELEMENT FILTER OPERAND KIND,
LITERAL FILTER OPERAND KIND,
ATTRIBUTE FILTER OPERAND KIND,
SIMPLE_ATTRIBUTE_FILTER;QPERAND_KIND

};

@nested
struct ElementOperand {
uint32 index;

};

20 OPC UA/DDS Gateway 1.0

OPC UA Type

DDS Type (IDL equivalent)

@nested
struct LiteralOperand {
BaseDataType value;

};

@nested

struct AttributeOperand {
Nodeld node_id;
string operand alias;
RelativePath browse_path;
IntegerId attribute id;
NumericRange index_range;

};

@nested

struct SimpleAttributeOperand {
NodeId type_id;
sequence<QualifiedName> browse path;
IntegerId attribute id;
NumericRange index_range;

};

@nested
union FilterOperand switch (FilterOperandKind) ({
case ELEMENT FILTER OPERAND KIND:
ElementOperand element_operand;
case LITERAL FILTER OPERAND KIND:
LiteralOperand literal operand;
case ATTRIBUTE_FILTER OPERAND KIND:
AttributeOperand attribute_operand;
case SIMPLE ATTRIBUTE_FILTER OPERAND KIND:
SimpleAttributeOperand simple_attribute_operand;
}i

struct ExtensibleParameterFilterOperand : ExtensibleParameter {
FilterOperand parameter_ data;

};

@nested

struct ContentFilterElement {
FilterOperator filter operator;
sequence<ExtensibleParameterFilterOperand> filter operands;

};

@nested

struct ContentFilterElementResult {
StatusCode status_code;
sequence<StatusCode> operand_status_codes;
sequence<DiagnosticInfo> operand diagnostic_infos;

};

@nested
struct ContentFilter {
sequence<ContentFilterElement> content filter element;

};

@nested
struct ContentFilterResult ({
sequence<ContentFilterElementResult> element_results;

OPC UA/DDS Gateway 1.0

21

OPC UA Type

DDS Type (IDL equivalent)

sequence<DiagnosticInfo> element_diagnostic_infos;

};

QueryDataSet

@nested

struct QueryDataSet ({
ExpandedNodelId node_id;
ExpandedNodeld type_definition_node;
sequence<BaseDataType> values;

};

TimestampsToReturn

enum TimestampsToReturn {
@value (0) SOURCE_TIMESTAMPS_ TO_RETURN,
@value (1) SERVER TIMESTAMPS TO_ RETURN,
@value (2) BOTH_TIMESTAMPS_ TO_RETURN,
@value (3) NEITHER TIMESTAMPS TO_ RETURN
}i

ReadValueld

@nested

struct ReadValueld {
NodeId node_id;
Integerld attribute_ id;
NumericRange index_range;
QualifiedName data_encoding;

};

NotificationData
Parameters

enum NotificationKind {
DATA_CHANGE_NOTIFICATION_KIND,
EVENT NOTIFICATION_ KIND,
STATUS_CHANGE_NOTIFICATION_KIND

};

@nested

struct MonitoredItemNotification {
Integerld client handle;
DataValue value;

};

@nested

struct DataChangeNotification {
sequence<MonitoredItemNotification> monitored items;
sequence<DiagnosticInfo> diagnostic_infos;

};

@nested

struct EventFieldList {
Integerld client handle;
sequence<BaseDataType> event_fields;

};

@nested
struct EventNotificationList {
sequence<EventFieldList> events;

};

struct StatusChangeNotification ({
StatusCode status;
DiagnosticInfo diagnostic_info;

};

@nested
union NotificationData switch (NotificationKind) {
case DATA CHANGE NOTIFICATION_ KIND:

22

OPC UA/DDS Gateway 1.0

OPC UA Type

DDS Type (IDL equivalent)

DataChangeNotification data_change notification;
case EVENT_ NOTIFICATION KIND:

EventNotificationList event notification_ list;
case STATUS_CHANGE_] NOTIFICATION KIND:

StatusChangeNotlflcatlon status _change_notication;

};

@nested
struct ExtensibleParameterNotificationData : ExtensibleParameter

{

NotificationData parameter_data;

};

NotificationMessage

@nested
struct NotificationMessage ({
Counter sequence_ number;
UtcTime publish time;
sequence<ExtensibleParameterNotificationData>
notification_data;

}

MonitoringFilter
Parameters

enum MonitoringFilterKind ({
DATA CHANGE MONITORING FILTER_KIND,
EVENT MONITORING FILTER KIND,
AGGREGATE MONITORING FILTER KIND

};

enum DataChangeTrigger {
@value (0) STATUS_DATA CHANGE TRIGGER,
@value (1) STATUS_VALUE_ DATA CHANGE TRIGGER,
@value(2) STATUS_VALUE_TIMESTAMP DATA CHANGE TRIGGER
};

@nested

struct DataChangeFilter {
DataChangeTrigger trigger;
uint32 deadband_type;
double deadband value;

};

@nested

struct EventFilter {
sequence<SimpleAttributeOperand> select_clauses;
ContentFilter where_clause;

};

@nested
struct AggregateConfiguration {
boolean user_server capabilities_defaults;
boolean treat uncertain_as_bad;
octet percent data bad;
octet percent_data good;
boolean use_sloped extrapolation;

};

@nested
struct AggregateFilter ({
UtcTime start_time;
Nodeld aggregate_ type;
Duration processing interval;
AggregateConfiguration aggregate_configuration;

OPC UA/DDS Gateway 1.0

23

OPC UA Type

DDS Type (IDL equivalent)

};

@nested

union MonitoringFilter switch (MonitoringFilterKind) ({

case DATA CHANGE MONITORING_ FILTER KIND:
DataChangeFllter data change filter;

case EVENT MONITORING_ FILTER KIND:
EventFilter event_filter;

case AGGREGATE MONITORING_FILTER KIND:
AggregateFilter aggregate filter result;

};

@nested
struct ExtensibleParameterMonitoringFilter : ExtensibleParameter
{

MonitoringFilter parameter data;

};

@nested

struct EventFilterResult ({
sequence<StatusCode> select_ clause_results;
sequence<DiagnosticInfo> select clause_diagnostic_infos;
ContentFilterResult where clause result;

};

@nested
struct AggregateFilterResult {
UtcTime revised start time;
Duration revised processing interval;

};

@nested
union MonitoringFilterResult switch (MonitoringFilterKind) {
case EVENT MONITORING FILTER_KIND:
EventFilterResult event_ fllter result;
case AGGREGATE MONITORING FILTER KIND
AggregateFllterResult aggregate filter result;

};

@nested
struct ExtensibleParameterMonitoringFilterResult
ExtensibleParameter {
MonitoringFilterResult parameter_ data;

};

MonitoringMode

enum MonitoringMode {
@value (0) DISABLED MONITORING_MODE,
@value (1) SAMPLING MONITORING_ MODE,
@value (2) REPORTING_ MONITORING MODE

};

MonitoringParameters

@nested

struct MonitoringParameters ({
Integerld client handle;
Duration sampling_ interval;
ExtensibleParameterMonitoringFilter filter;
Counter queue_size;
boolean discard oldest;

24

OPC UA/DDS Gateway 1.0

8.3.2 View Service Set

This sub clause defines an equivalent View Service Set using the DDS constructs defined in [DDS-RPC] for DDS
applications that may want to navigate the AddressSpace of an OPC UA Server.

8.3.21 Type Definitions

Table 8.4 shows the mapping of the types specific to the View Service Set. All these types appear inside the IDL module
OMG: : DDSOPCUA: : OPCUA2DDS: : VIEW.

Table 8.4: Mapping of Types Specific to the View Service Set
OPC UA Type DDS Type (IDL equivalent)

BrowsePath @nested
struct BrowsePath {
NodelId starting node;
RelativePath relative path;
}

BrowsePathResult @nested

struct BrowsePathTarget ({
ExpandedNodeld target id;
Index remaining path index;

};

@nested
struct BrowsePathResult ({
StatusCode status_code;
sequence<BrowsePathTarget> targets;
}i

BrowseDirection enum BrowseDirection {

@value (0) FORWARD BROWSE_DIRECTION,
@value (1) REVERSE_BROWSE_DIRECTION ,
@value (3) BOTH_BROWSE_DIRECTION

};

BrowseDescription @nested

struct BrowseDescription {
Nodeld node_id;
BrowseDirection browse_direction;
NodelId reference_ type_id;
boolean include_subtypes;
uint32 node_class_mask;
uint32 result mask;

};

8.3.2.2 Service Interfaces

The following IDL defines the interfaces to be implemented by the DDS View Service Set using the syntax defined in
[DDS-RPC] and [IDL].

The Service and all its methods appear inside the IDL module OMG: : DDSOPCUA : : OPCUA2DDS : : VIEW.

@DDSService
interface View {
ResponseHeader browse (
string server_id, // Identifies OPC UA server
out sequence<BrowseResult> results,
out sequence<DiagnosticInfo> diagnostic_infos,

OPC UA/DDS Gateway 1.0 25

in ViewDescription view_description,
in Counter requested max_ references_per node,
in sequence<BrowseDescription> nodes_to_browse) ;

ResponseHeader browse next (
string server_id, // Identifies OPC UA server
out sequence<BrowseResult> results,
out sequence<DiagnosticInfo> diagnostic_infos,
in boolean relase_continuation points,
in sequence<ContinuationPoint> continution_points);

ResponseHeader translate browse paths_ to_node_ids(
string server_id, // Identifies OPC UA server
out sequence<BrowsePathResult> results,
out sequence<DiagnosticInfo> diagnostic_infos,
in sequence<BrowsePath> browse_ paths) ;

ResponseHeader register_ nodes (
string server_id, // Identifies OPC UA server
out sequence<NodeId> registered node_ids,
in sequence<NodeId> nodes_to_register) ;

ResponseHeader unregister_ nodes(
string server_id, // Identifies OPC UA server
in sequence<NodeId> nodes_to_unregister)

};

8.3.3 Query Service Set

This sub clause defines an equivalent Query Service Set using the DDS constructs defined in [DDS-RPC] for DDS

applications that may obtain information from the AddressSpace of an OPC UA Server.

8.3.3.1 Type Definitions

Table 8.5 shows the mapping of the types specific to the Query Service Set. All these types appear inside the IDL

module OMG: : DDSOPCUA : : OPCUA2DDS : : QUERY.

Table 8.5: Mapping of Types Specific to the Query Service Set

OPC UA Type DDS Type (IDL equivalent)

ParsingResult @nested

struct ParsingResult {
StatusCode status_code;
sequence<StatusCode> data_status_codes;

};

sequence<DiagnosticInfo> data_diagnostic_infos;

QueryDataDescription @nested

struct QueryDataDescription {
RelativePath relative path;
Integerld attribute_ id;
NumericRange index_range;

};

NodeTypeDescription @nested
struct NodeTypeDescription {

26

OPC UA/DDS Gateway 1.0

OPC UA Type DDS Type (IDL equivalent)

ExpandedNodeld type_definition_node;
boolean include_subtypes;
sequence<QueryDataDescription> data_to_return;

};

8.3.3.2 Service Interfaces

The following IDL defines the interfaces to be implemented by the DDS Query Service Set using the syntax defined in
[DDS-RPC] and [IDL].

The Service and all its methods appear inside the IDL module OMG: : DDSOPCUA : : OPCUA2DDS : : QUERY.

@DDSService
interface Query {
ResponseHeader query first(

string server_id, // Identifies OPC UA server
out sequence<QueryDataSet> query data_sets,
out ContinuationPoint continuation_point,
out sequence<ParsingResult> parsing results,
out sequence<DiagnosticInfo> diagnostic_infos,
out ContentFilterResult filter result,
in ViewDescription view,
in sequence<NodeTypeDescription> node_ types,
in ContentFilter filter,
in Counter max datasets_to_return,
in Counter max references_to_return);

ResponseHeader query next(
string server_id, // Identifies OPC UA server
out sequence<QueryDataSet> query data_sets,
out ContinuationPoint revised continuation_point,
in boolean release_continuation_point,
in ContinuationPoint continuation point) ;

};
8.3.4 Attribute Service Set

This sub clause defines an equivalent Attribute Service Set using the DDS constructs defined in [DDS-RPC] for DDS
applications that may want to perform read or write operations (and their equivalent for historical data) on A#tributes
from Nodes in the AddressSpace of an OPC UA Server.

8.3.41 Type Definitions

Table 8.6 shows the mapping of the types specific to the Attribute Service Set’. All these types appear inside the IDL
module OMG: : DDSOPCUA : : OPCUA2DDS : : ATTRIBUTE.

Table 8.6: Mapping of Types Specific to the Attribute Service Set
OPC UA Type DDS Type (IDL equivalent)

HistoryData Parameters |@nested
struct HistoryEventFieldList {
sequence<BaseDataType> event fields;

4 Some of the types defined are part of [OPCUA-11], which focuses on the Historical Access functionality of the OPC UA
standard.

OPC UA/DDS Gateway 1.0 27

OPC UA Type

DDS Type (IDL equivalent)

};

struct HistoryEvent ({
sequence<HistoryEventFieldList> events;

};

@nested
struct HistoryData ({
sequence<DataValue> data_values;

};

@nested
struct ExtensibleParameterHistoryData : ExtensibleParameter ({
HistoryData parameter data;

};

HistoryReadResult

@nested

struct HistoryReadResult {
StatusCode status_code;
ContinuationPoint continuation point;
ExtensibleParameterHistoryData history data;

}

HistoryReadValueId

@nested

struct HistoryReadValueId {
Nodeld node_id;
NumericRange index range;
QualifiedName data_encoding;
ContinuationPoint continuation point;

};

WriteValue

@nested

struct WriteValue {
NodeId node_id;
IntegerId attribute_id;
NumericRange index_ range;
DataValue value;

};

HistoryUpdateResult

@nested

struct HistoryUpdateResult ({
StatusCode status_code;
sequence<StatusCode> operation_results;
sequence<DiagnosticInfo> diagnostic_infos;

};

HistoryUpdateType

enum HistoryUpdateType {
@value (1) INSERT HISTORY UPDATE TYPE,
@value (2) REPLACE HISTORY_ UPDATE_ TYPE,
@value (3) UPDATE HISTORY UPDATE TYPE,
@value (4) DELETE_HISTORY UPDATE_ TYPE

};

@nested

struct ExtensibleParameterHistoryUpdate : ExtensibleParameter
HistoryUpdateType parameter data;

}i

{

HistoryReadDetails
Parameters

enum HistoryReadDetailsKind {
READ_EVENT_HISTORY READ DETAILS KIND,
READ RAW MODIFIED HISTORY READ DETAILS_KIND,
READ PROCESSED_HISTORY READ DETAILS KIND,
READ AT TIME HISTORY READ DETAILS_KIND

28

OPC UA/DDS Gateway 1.0

OPC UA Type

DDS Type (IDL equivalent)

}s

@nested

struct ReadEventDetails ({
Counter num values_per node;
UtcTime start_ time;
UtcTime end_time;
EventFilter filter;

}s

@nested

struct ReadRawModifiedDetails {
boolean is_read modified;
UtcTime start_ time;
UtcTime end_time;
Counter num_values_per node;
boolean return_bounds;

};

struct ReadProcessedDetails ({
UtcTime start_time;
UtcTime end_time;
Duration processing_ interval;
sequence<NodeId> aggregate type;
AggregateConfiguration aggregate_configuration;

};

struct ReadAtTimeDetails ({
sequence<UtcTime> req_times;
boolean use_simple bounds;

}s

@nested

union HistoryReadDetails switch (HistoryReadDetailsKind)

case READ EVENT HISTORY READ DETAILS KIND:
ReadEventDetails read event details;

case READ RAW MODIFIED HISTORY READ DETAILS_ KIND:
ReadRawModifiedDetails read raw_| " modified | details;

case READ PROCESSED_ HISTORY_] READ DETAILS _KIND:
ReadProcessedDetails read_processed detalls,

case READ AT TIME HISTORY READ DETAILS KIND:
ReadAtTimeDetails read at_ time detalls,

}s

@nested
struct ExtensibleParameterHistoryReadDetails
ExtensibleParameter {

HistoryReadDetails parameter_ data;

}s

{

PerformUpdateType

enum PerformUpdateType {
@value (1) INSERT_ PERFORM UPDATE_ TYPE,
Qvalue (2) REPLACE PERFORM UPDATE TYPE,
@value (3) UPDATE_ PERFORM UPDATE TYPE
@value (4) REMOVE PERFORM UPDATE_TYPE

};

HistoryUpdateDetails
Parameters

@nested
struct UpdateDataDetails {
NodeId node_id;
PerformUpdateType perform insert replace;

OPC UA/DDS Gateway 1.0

29

OPC UA Type

DDS Type (IDL equivalent)

sequence<DataValue> update_values;

};

@nested

struct UpdateStructureDataDetails {
NodeId node_id;
PerformUpdateType perform insert_replace;
sequence<DataValue> update_values;

};

@nested
struct UpdateEventDetails {
NodelId node_id;
PerformUpdateType perform insert replace;
EventFilter filter;
sequence<HistoryEventFieldList> event_data;
}i

@nested

struct DeleteRawModifiedDetails {
NodelId node_id;
boolean is_delete modified;
UtcTime start_time;
UtcTime end_ time;

};

@nested

struct DeleteAtTimeDetails ({
Nodeld node_id;
sequence<UtcTime> req_times;

};

@nested

struct DeleteEventDetails ({
Nodeld node_id;
sequence<ByteString> event_ id;

}i

enum HistoryUpdateDetailsKind {
UPDATE DATA HISTORY_ UPDATE_DETAILS_KIND,
UPDATE STRUCTURE HISTORY UPDATE DETAILS _KIND,
UPDATE EVENT HISTORY UPDATE DETAILS KIND
DELETE RAW | MODIFIED HISTORY UPDATE_| DETAILS KIND,
DELETE AT TIMES HISTORY UPDATE DETAILS KIND
DELETE EVENTS HISTORY UPDATE DETAILS KIND

};

union HistoryUpdateDetails switch (HistoryUpdateDetailsKind) ({

case UPDATE_DATA HISTORY UPDATE DETAILS_ KIND:
UpdateDataDetalls update data detalls,

case UPDATE_STRUCTURE HISTORY UPDATE DETAILS_ KIND:
UpdateStructureDataDetails update_structure data details;

case UPDATE_EVENT HISTORY UPDATE DETAILS KIND:
UpdateEventDetalls update event detalls,

case DELETE_RAW_ MODIFIED HISTORY UPDATE DETAILS_ KIND:
DeleteRawModifiedDetails delete_raw modified details;

case DELETE AT TIMES HISTORY UPDATE DETAILS KIND:
DeleteAtTimeDetails delete_at time details;

case DELETE_EVENTS HISTORY_| UPDATE DETAILS KIND:
DeleteEventDetails delete event detalls,

30

OPC UA/DDS Gateway 1.0

OPC UA Type DDS Type (IDL equivalent)

}s

@nested
struct ExtensibleParameterHistoryUpdateDetails
ExtensibleParameter {

HistoryUpdateDetails parameter_data;

}s

8.3.4.2 Service Interfaces

The following IDL defines the interfaces to be implemented by the DDS Attribute Service Set using the syntax defined
in [DDS-RPC] and [IDL].

The Service and all its methods appear inside the IDL module OMG: : DDSOPCUA : : OPCUA2DDS : : ATTRIBUTE.

@DDSService
interface Attribute {
ResponseHeader read(

string server_id, // Identifies OPC UA server
out sequence<DataValue> results,
out sequence<DiagnosticInfo> diagnostic_infos,
in Duration max_age,
in TimestampsToReturn timestamps_to_return,
in sequence<ReadValueld> nodes_to_read);

ResponseHeader history_ read(
string server_id, // Identifies OPC UA server
out sequence<HistoryReadResult> results,
out sequence<DiagnosticInfo> diagnostic_infos,
in ExtensibleParameterHistoryReadDetails history read details,
in TimestampsToReturn timestamps_to_return,
in boolean release_continuation points,
in sequence<HistoryReadValueld> nodes_to_read);

ResponseHeader write(
string server_id, // Identifies OPC UA server
out sequence<StatusCode> results,
out sequence<DiagnosticInfo> diagnostic_infos,
in sequence<WriteValue> nodes_to_write);

ResponseHeader history_ update (
string server_id, // Identifies OPC UA server
out sequence<HistoryUpdateResult> results,
out sequence<DiagnosticInfo> diagnostic_infos,
in sequence<ExtensibleParameterHistoryUpdateDetails> details) ;

};

8.3.5 Method Service Set

This sub clause defines an equivalent Method Service Set using the DDS constructs defined in [DDS-RPC] for DDS
applications that may want to invoke methods available in the AddressSpace of an OPC UA Server.

OPC UA/DDS Gateway 1.0 31

8.3.5.1 Type Definitions

Table 8.7 shows the mapping of the types specific to the Method Service Set. All these types appear inside the IDL
module OMG: : DDSOPCUA : : OPCUA2DDS : : METHOD.

Table 8.7: Mapping of Types Specific to the Method Service Set
OPC UA Type DDS Type (IDL equivalent)

CallMethodRequest @nested

struct CallMethodRequest ({
NodelId object id;
NodeId method id;
sequence<BaseDataType> input_arguments;

};

CallMethodResult @nested

struct CallMethodResult {
StatusCode status_code;
sequence<StatusCode> input arguments_results;
sequence<DiagnosticInfo> input arguments_diagnostic_infos;
sequence<BaseDataType> output_arguments;

};

8.3.5.2 Service Interfaces

The following IDL defines the interfaces to be implemented by the DDS Method Service Set using the syntax defined in
[DDS-RPC] and [IDL].

The Service and all its methods appear inside the IDL module OMG: : DDSOPCUA : : OPCUA2DDS : : METHOD.

@DDSService
interface Method {
ResponseHeader call (

string server_id, // Identifies OPC UA server
out sequence<CallMethodResult> results,
out sequence<DiagnosticInfo> diagnostic_infos,
in sequence<CallMethodRequest> methods_ to_call);

}:

8.3.6 Implementation Considerations

8.3.6.1 OPC UA Implementation Considerations

The representation of the OPC UA Service Sets using RPC over DDS specified in this chapter requires the OPC
UA/DDS Gateway to embed one or more OPC UA Clients. These OPC UA Clients shall be capable of:

¢ Connecting to OPC UA Servers using the Discovery, SecureChannel, and Session Service Sets.
* Browsing the AddressSpace of OPC UA Servers using the View Service Set.

¢ Obtaining information from the AddressSpace of Servers using the Query Service Set.

* Reading and Writing A#tributes using the Attribute Service Set.

¢ Calling Methods on OPC UA Servers using the Method Service Set.

To comply with all the requirements listed above, implementers of this specification shall use an OPC UA Client
compliant with the Standard UA Client Profile defined in sub clause 6.5.121 of [OPCUA-07]. Alternatively,

32 OPC UA/DDS Gateway 1.0

implementers of this specification may use an OPC UA Client that is not fully compliant with the Standard UA Client
Profile, but complies with the following Client Facets specified in [OPCUA-07]:

¢ Core Client Facet

¢ Base Client Behavior Facet

e Discovery Client Facet

e AddressSpace Lookup Client Facet
e Attribute Read Client Facet

e Attribute Write Client Facet

¢ Method Client Facet

Additionally, OPC UA Clients (whether they are compliant with Standard UA Client Profile or compliant with the
required Client Facets listed above) shall support an extra facet to access historical data: the Historical Access Client
Facet defined in sub clause 6.5.97 of [OPCUA-07].

Consequently, compliant implementations of this specification shall be built upon an OPC UA implementation capable
of passing the conformance tests specified for those profiles and facets by the OPC Foundation.

Lastly, it is important to note that implementers of this specification may need to configure the underlying OPC UA
Clients—which provide access to the mapped Services—to satisfy the requirements of remote OPC UA Servers in terms
of authentication, access control, and encryption using the mechanisms provided by the OPC UA Security Model
[OPCUA-02]. Depending on the requirements of the remote OPC UA Servers, OPC UA Clients may need to support
additional security-related facets from [OPCUA-07].

8.3.6.2 DDS Implementation Considerations

To implement the mappings specified in this chapter OPC UA/DDS Gateway shall use a DDS implementation
complaint with:

* Minimum Profile of [DDS].

e Statements listed in clause 8.4.2 of [DDSI-RTPS].

¢ Basic Conformance Profile of [DDS-RPC].

* Minimal Conformance Profile of [DDS-XTYPES].
Some deployments may require the mechanisms specified in [DDS-SECURITY] to enable the DDS side of the OPC
UA/DDS Gateway to access secured Domains and Topics for publishing and subscribing to information. In those cases,

the underlying DDS implementation shall also be compliant with the Built-in Plugin Interoperability and Plugin
Framework Conformance Points of [DDS-SECURITY].

As specified in the rest of clauses dealing with DDS and OPC UA integration, the Gateway shall be capable of dealing
with two different security models: the OPC UA Security Model on one end and the DDS Security Model on the other
end. Each security model shall be configured separately depending on the needs of the end user of the OPC UA/DDS
Gateway. This specification does not directly address these aspects because they are fully described in [OPCUA-02]
and [DDS-SECURITY].

OPC UA/DDS Gateway 1.0 33

8.4 OPC UA Subscription Model Mapping

8.4.1 Overview (non-normative)

As described in sub clause 7.1.2, the OPC UA Subscription and Monitoredltems Service Set provide Clients with a
mechanism to receive Notifications from Servers on data changes and events.

This subscription model requires Client applications to connect to a Server, create a Session, configure a Subscription,
associate a set of Monitoredltems, and send Publish requests to receive Notifications. Unlike in DDS, OPC UA
Subscriptions are Client-specific and cannot be shared with other Clients.

8411 Subscriptions

Subscriptions provide the channel through which Servers deliver Notifications to Clients. The Subscription Service Set
is specified in clause 5.13 of [OPCUA-04].

To create a Subscription, Clients use the CreateSubscription service, which may be mapped to the following IDL:

ResponseHeader create_ subscription(
out IntegerId subscription_id,
out Duration revised publishing_ interval,
out Counter revised_ lifetime_ count,
out Count revised max keep_alive_count,
in Duration requested publishing interval,
in Counter requested_lifetime_count,
in Counter requested max_keep_alive_count,
in Counter max notifications_per publish,
in boolean publishing enabled,
in octet priority);

Where:
* subscription_id is a numeric value that identifies the created Subscription.

* requested publishing_interval is the rate at which the Subscription should deliver Notifications to the
Client. The Server returns revised_publishing_interval—the negotiated value—as part of the response
to the CreateSubscription request. If the requested value is 0 or negative, the Server will use the fastest
supported publishing interval.

* requested lifetime_count is the number of times the publishing timer may expire (without sending a
NotificationMessage) before the Server closes the Subscription. It must be at least three times greater than the
value of the RequestedMaxKeepAliveCount. The Server returns revised_lifetime count—the negotiated
value—as part of the response to the CreateSubscription request.

* requested max keep_alive_count is the number of times the publishing timer may expire (without
sending a NotificationMessage) before the Subscription sends a keep-alive Message to the Client to ensure the
Subscription remains in use. The Server returns revised_lifetime count—the negotiated value—as part
of the response to the CreateSubscription request. If the requested value is 0, the Server will use the smallest
supported keep-alive count.

* max notifications_per_ publish is the maximum number of Notifications that the Client wants to
receive in response to a single Publish request. If the requested value is zero, the Server will respond with all
the Notifications queued to be sent.

* publishing_enabled indicates whether publishing is enabled for the Subscription.

* priority is the relative priority of the Subscription. The value is used to decide which of the competing
Subscription sends Notifications as to respond a Publish request.

34 OPC UA/DDS Gateway 1.0

8.4.1.2 Monitoredltems

Monitoredltems identify the resources that a Client may monitor. To create a Monitoredltem—adding it to an existing
Subscription—Clients use the CreateMonitoredItem service, which may be mapped to the following IDL:
ResponseHeader create monitored_items (

out sequence<MonitoredItemCreateResult> results,

out sequence<DiagnosticInfo> diagnostic_infos,

in IntegerId subscription_id,

in TimestampsToReturn timestamps_to_return,

in sequence<MonitoredItemCreateRequest> items_to_create);

Where:

* subscription_id is the numeric value that identifies the Subscription Notifications regarding the
Monitoredltem will be sent through.

* timestamps_to_return specifies the timestamp attributes to be transmitted for each Monitoreditem.

* items_to_create contains a list with the Monitoredltems to be created as part of the CreateMonitoredltems
request. Each MonitoredItemCreateRequest includes information to identify the Monitoreditem and the
parameters that configure the sampling behavior (e.g., sampling interval, filters, queue size, etc.):

@nested

struct MonitoringParameters {
IntegerId client_handle;
Duration sampling interval;
ExtensibleParameterMonitoringFilter filter;
Counter queue_size;
boolean discard oldest;

};

@nested

struct MonitoredItemCreateRequest {
ReadValueId item_to_monitor;
MonitoringMode monitoring mode;
MonitoringParameters monitoring parameters;

b
* results lists the result of the create operation in every Monitoreditem in items_to_create., this includes a
status code, the assigned monitored_item id, revised sampling interval, etc.

@nested
struct MonitoredItemCreateResult {
StatusCode status_code;
IntegerId monitored item id;
Duration revised sampling_ interval;
Counter revised queue_size;
ExtensibleParameterMonitoringFilterResult filter result;

}:
* diagnostic_infos lists the diagnostic information for every Monitoreditem in items_to_create.

8.4.13 Notification Messages

NotificationMessages are sent to Client application as a response to Publish requests. Publish requests are queued at the
Session level get dequeued by a Subscription in every publishing cycle. Therefore, Clients must issue enough Publish
requests to the Server to guarantee the delivery of NotificationMessages.

NotificationMessages contain a sequence number that identifies them, a publication time, and a sequence of notification
data. There are three kinds of NotificationMessages: DataChange, Event, and StatusChange.

OPC UA/DDS Gateway 1.0 35

8.4.1.3.1 DataChange Notifications

DataChange Notifications® contain a sequence of Monitoredltems for which a change has been detected and a sequence
of Diagnostic Information for each Monitoredltem. The equivalent IDL representation is specified in OPC UA Service
Sets Mapping (Table 8.3):

@nested

struct MonitoredItemNotification {

IntegerId client_handle;
DataValue value;

}

@nested
struct DataChangeNotification {

sequence<MonitoredItemNotification> monitored_items;

sequence<DiagnosticInfo> diagnostic_infos;
}i
The value of each Monitoredltem Notification is represented as a DataValue type, which contains the status code,
value, and timestamp of the Attribute that is being monitored. The equivalent IDL representation is specified in OPC
UA Service Sets Mapping (Table 8.3):

@mutable

struct DataValue {
@id(1l) (Roptional Variant value;
@id(2) (Qoptional StatusCode status;
@id(4) @optional DateTime source_timestamp;
@id(8) @optional DateTime server_ timestamp;
@id(10) @optional uintlé source pico_sec;
@id(32) @optional uintlé server pico_sec;

}:
To simplify the representation of Monitoredltems in DDS, this sub clause focuses only on the Value field of the
Monitoredltems’ DatavValue. Timestamps and status codes are therefore ignored.

The value field of a DataVvalue is represented as Variant type, which provides a powerful mechanism to represent
scalar values, arrays, and multi-dimensional for every OPC UA built-in type. OPC UA Type System Mapping defines in
Table 8.2 a mapping of Variant to the DDS types system.

struct Variant {

sequence<uint32> array dimensions;

sequence<VariantValue> value;
}i
However, this direct mapping is difficult to handle for a typical DDS application, because it requires dealing with
VariantValues, which are unions of all the OPC UA equivalent types; and array_dimensions, which represent the
dimensions of the Variant—in other words, whether it is a scalar value, an array, or a multi-dimensional array.

8.4.1.3.2 Event Notifications

Event Notifications® contain a sequence of Events that have been triggered. The equivalent IDL representation is
specified in OPC UA Service Sets Mapping (Table 8.3) is the following:
@nested
struct EventFieldList {
IntegerId client_handle;
sequence<Variant> event fields;

};

@nested

> Data Change Notifications are specified in sub clause 7.20.2 of [OPCUA-04].
8 Event Notifications are specified in sub clause 7.20.3 of [OPCUA-04].

36 OPC UA/DDS Gateway 1.0

struct EventNotificationList {
sequence<EventFieldList> events;

};

Each Event contains an array of one or more fields that describe it. The sequence of fields in each Event depends on
both the type of Event and the EventFilter the Monitoredltem was created with. [OPCUA-03] lists thirty-four standard
EventTypes, whose representation is specified in [OPCUA-05]. Alarms and Conditions, specified in [OPCUA-09],
extend the Event handling to provide such functionality.

Every EventType inherits contains a common set of EventFields provided by the BaseEventType and may a group of
Event-specific fields. The list of common EventFields is the following:

e Eventld—Identifies a particular Event Notification.

* EventType—Describes the specific type of Event.

e SourceNode—Node that originated the Event.

e SourceName—Description of the source of the Event.

e Time—Provides the time the event occurred.

* ReceiveTime—Provides the time the OPC UA Server received the Event.

* LocalTime—Provides information on the offset between the 7ime property and the time at the location where
the event was issued.

* Message—Localizable text description of the Event.

e Severity—Indicates the urgency of the Event, being 1 the lowest severity and 1,000 the highest.

Each EventField is represented as Variant, which—Ilike in the case of Data Change Notifications—provides a
mechanism to represent any kind of information.

8.41.3.3 StatusChange Notifications

StatusChange Notifications are used to report changes in the status of a Subscription.

8.4.2 OPC UA Subscription Mapping

This clause describes the simplified mapping of the OPC UA Subscription model to DDS. In particular, it specifies how
to configure the OPC UA/DDS Gateway to create Subscriptions with Data and Event Monitoredltems, and how to map
DataChange and Event NotificationMessages to DDS Topics.

8.4.2.1 Overview

To map OPC UA Subscriptions and Monitoredltems to DDS Topics, the OPC UA/DDS Gateway introduces the concept
of Subscription Mapping. This part of the OPC UA to DDS Bridge associates OPC UA Inputs (i.e., OPC UA
Subscriptions) with DDS outputs (i.e., DDS Publications).

The relationship between OPC UA Inputs and a DDS Outputs is many-to-many: an OPC UA Input may be assigned to
multiple DDS Outputs, and a DDS Output may be assigned values from multiple OPC UA Inputs.

OPC UA/DDS Gateway 1.0 37

class OchaSubscripﬁonMapping/

SubscriptionMapping

+opcua_inputs 0.* +dds_outputs |0..* 1 +mapping

OpcUalnput DdsOutput InputOutputMapping

Figure 8.2: OPC UA Subscription Mapping Overview

Table 8.8 provides the IDL definition of Subscription Mapping Configuration.

Table 8.8: Subscription Mapping Configuration

Type

Definition (IDL Equivalent)

SubscriptionMapping struct SubscriptionMapping {

sequence<OpcUalnput> opcua_inputs;
sequence<DdsOutput> dds_outputs;
InputOutputMapping mapping;

};

8.4.2.2 OPC UA Inputs

The OPC UA/DDS Gateway may create Subscriptions to multiple OPC UA Servers using different OPC UA Clients
embedded into the Gateway. Ideally, the Gateway should maintain a single Subscription with each monitored OPC UA
Server to minimize the number of resources associated with the connection. However, because users may wish to define
different Subscriptions to maintain—for instance—different publishing intervals for the same Monitoreditems, the
Gateway shall allow the creation of more than one Subscription to the same OPC UA Server.

38

OPC UA/DDS Gateway 1.0

class OpcUalnput)

OpcUaSubscriptionProtocol

OpcUalnput
pctainpy o - max_notifications_per_publish: UInt32
+subscription_protocol o
priority: Byte
1| - publishing_enabled: Boolean

- requested_lifetime_count: UInt32

- requested_max_keepalive_count: UInt32

- requested_publishing_interval: Double

+ monitored_items: Monitoreditem [0..*]
+ name: String

+opcua_connection 1
OpcUaConnectionConfig

OpcUaConnection
max_chunk_count: UInt32

+ endpoint_url: String max_message_size: UInt32

+local_connection | +
+
+ secure_channel_lifetime: UInt32 1| + protocol_version: Ulnt32
¥
¥

+ timeout: UInt32 recv_buffer_size: UInt32
send_buffer_size: UInt32

«uge»

OPCUA::Client

Figure 8.3: OPC UA Input Definition

Table 8.9 shows the configuration of an OPC UA Input, which is comprised of two properties: SubscriptionProtocol
and Monitoredltems.

Table 8.9: OPC UA Input Definition
Type Definition (IDL Equivalent)

OpcUaInput @nested

struct OpcUaInput {
string name;
OpcUaConnection opcua_connection;
SubscriptionProtocol subscription protocol;
sequence<MonitoredItem> monitored items;

8.4.2.21 Input Name
Every OPC UA Input is given a name that is necessary to identify the Monitoredltems associated with specific inputs in

the mapping section.

OPC UA/DDS Gateway 1.0 39

8.4.2.2.2
An OPC

OPC UA Connections

UA Connection configuration provides all the necessary information for the OPC UA Clients embedded into

the Gateway to establish the connections that shall be used to create subscriptions on remote OPC UA Servers.

Table 8.10 provides the IDL definition of an OPC UA Connection and its connection settings.

Table 8.10: OPC UA Connection Definition

Type Definition (IDL Equivalent)

OpcUaC

onnection @nested
struct OpcUaConnection {
string endpoint_url;
uint32 timeout;
uint32 secure_channel lifetime;
OpcUaConectionConfig local_connection;

};

OpcUaConectionConfig |@nested

struct OpcUaConectionConfig {
uint32 protocol_version;
uint32 send buffer size;
uint32 recv_buffer size;
uint32 max message_size;
uint32 max_chunk_count;

};

8.4.2.2.3 Subscription Protocol

Table 8.11 provides the IDL representation of the SubscriptionProtocol parameters. Each of these parameters is
described in detail in sub clause 8.4.1.1.

Table 8.11: OPC UA Subscription Protocol Definition

Type Definition (IDL Equivalent)

SubscriptionProtocol |@nested

struct SubscriptionProtocol {
double requested publishing interval;
uint32 requested lifetime count;
uint32 requested max keepalive_count;
uint32 max notifications_per publish;
boolean publishing enabled;
octet priority;

8.4.2.2.4 Monitored Items

MonitoredltemsList contains a collection of Dataltems and Eventltems, which represent Data Value and Event
Monitoredltems, respectively.

Each Dataltem is identified by a name and contains the following configuration parameters:

40

Nodeld (NodeId as defined in Table 8.2)—Identifies the Node containing the Dataltem within the
AddressSpace of an OPC UA Server.

Attributeld (uint32)—TIdentifies the attribute to be monitored—usually the value.
SamplingInterval (double)—The fastest rate at which the Monitoreditem should be accessed and evaluated.

QueueSize (uint32)—Requested size of the Monitoredltem queue.

OPC UA/DDS Gateway 1.0

e DiscardOldest (boolean)—Indicates whether the oldest Notification in the queue shall be discarded when the
queue is full. If set to £alse, the last added Notification shall be replaced.

* DataChangeFilter (DataChangeFilter as defined in Table 8.3)—Configures the conditions under which a
DataChange Notification shall be reported.

* AggregateFilter (AggregateFilter as defined in Table 8.3)—Defines an aggregate function to calculate the
values to be returned. Only one filter can be applied at a time.

Note that, depending on the use case, two possible monitoring filters that may be applied to a Dataltem:
DataChangeFilter and AggregateFilter. A Dataltem may define one and only one of these filters—they shall not be
combined.

Each Eventltem contains the following configuration parameters:

* Nodeld (NodeId as defined in Table 8.2)—Identifies the Node providing the Event within the AddressSpace of
an OPC UA Server.

o Samplinglnterval (double)—The fastest rate at which the Event should be accessed and evaluated.
* QueueSize (uint32)—Requested size of the Monitoredltem queue.

e DiscardOldest (boolean)—Indicates whether the oldest Notification in the queue shall be discarded when the
queue is full. If set to false, then the last added Notification shall be replaced.

e EventFilter (EventFilter as defined in Table 8.3)—Provides a way to filter the types of Events to be
reported, as well as the fields within each Event that will be part of the Notification message.

Table 8.12 provides the IDL representation for Dataltem and Eventltem.

Table 8.12: OPC UA Monitoredlitem Definition

Type Definition (IDL Equivalent)

MonitoredItem enum MonitoredItemKind {
DATA MONITORED_ITEM,
EVENT_MONITORED_I TEM

}i

@nested
union MonitoredItem switch (MonitoredItemKind) {
case DATA MONITORED_ ITEM:
Dataltem data_item;
case EVENT MONITORED_ ITEM:
EventItem event item;

};

DataItem @nested
struct DataItem {
NodeId node_id;
uint32 attribute_id;
double sampling interval;
uint32 queue_size;
boolean discard oldest;
// Only one (or none) of the following filter kinds
// can be applied at a time
@optional DataChangeFilter data_change_filter;
@optional AggregateFilter aggregate filter;
}iYs
EventItem @nested
struct EventItem {

OPC UA/DDS Gateway 1.0 41

Type Definition (IDL Equivalent)

NodeId node_id;

double sampling interval;

uint32 queue_size;

boolean discard_oldest;

@Qoptional EventFilter event filter;

8.4.2.3 DDS Outputs

DDS Outputs provide the means to propagate NotificationMessages over DDS. They map a set of Data or Event
Monitoredltems from an OPC UA Inputs’ to a DDS Topic and create the necessary entities to update DDS applications
interested in these NotificationMessages.

class DdsOutput /

DdsOutput

datawriter_qos: DataWriterQos
name: String
registered_type_name: RegisterType 1
topic_name: Topic

+domain_participant_ref | pps.:pomainParticipant

+ + + +

DDS::
DomainEntity

«usge»

DDS::DataWriter DDS::Publisher

+ write()

Figure 8.4: DDS Output Definition

Table 8.13 provides an IDL representation for a DDS Output.

Table 8.13: DDS Output Definition

Type Definition (IDL Equivalent)

DdsOutput @nested
struct DdsOutput {
string name;

7

A DDS Output may include Monitoreditems associated with multiple OPC UA Inputs.

42 OPC UA/DDS Gateway 1.0

Type Definition (IDL Equivalent)

@external DdsDomainParticipant domain_participant_ ref;
string topic_name;

string registered_type name;

@optional DDS::DataWriterQos datawriter_gos;

8.4.2.3.1 Output Name

Every DDS Output is given a name that identifies it within the mapping section.

8.4.2.3.2 DDS DomainParticipants

The Gateway must refer to a DomainParticipant in order to create the Topics and endpoints capable of propagating
OPC UA DataChanges and Events over DDS. A DomainParticipant may be used by different outputs, different OPC
UA to DDS Bridges, and different DDS to OPC UA Bridges; therefore, DomainParticipants are annotated as
@external to indicate DDS Outputs shall use references to either already existing DomainParticipants or references to
newly created objects if they do not exist.

The definition of a DomainParticipant shall only expose a subset of the functionality of DomainParticipants described
in the DDS PIM [DDS]; in particular, the following configuration parameters shall be exposed:

* domain_id—Identifies the Domain DDS Outputs associated with the DomainParticipants will bind to.

* register_types—List of types to be registered. These may later be associated with the DDS Topics created in the
context of a DDS Output.

* participant_gos—QoS settings of the DomainParticipant to be instantiated by the Gateway.

Table 8.14 provides the IDL definition of a DDS DomainParticipant in the context of the Gateway configuration.

Table 8.14: DDS DomainParticipant Definition

Type Definition (IDL Equivalent)

DdsDomainParticipant @nested

struct DdsDomainParticipant ({
int32 domain_id;
sequence<DdsRegisterType> register_ types;
DDS: :DomainParticipantQoS participant_gos;

Y

DdsRegisterType @nested

struct DdsRegisterType {
string type_ name;
string type_ref;

}i

DDS::DomainParticipantQos | As defined in sub clause 2.3.3 of [DDS].

8.4.2.3.3 Topic Name

Specifies the name of the Topic that will be used to update the value of the received Monitoredltems.

8.4.2.3.4 Registered Type Name

Specifies the typename of the Topic associated with the OPC UA Output. The type shall have been registered with the
DomainParticipant the DDS Output is referencing.

OPC UA/DDS Gateway 1.0 43

8.4.2.3.5

DataWriterQos

Configures the DDS DataWriter that is instantiated upon the creation of the DDS Output to publish data samples
associated with NotificationMessages.

8.4.24

Input/Output Mappings

Input/output mappings provide the means to configure many-to-many correspondences between Monitoredltems of
OPC UA Inputs (Dataltems and Eventltems) and DDS Topics of DDS Outputs. In other words, it allows users of the
OPC UA/DDS Gateway to route data from OPC UA to DDS.

class InputOutputMapping/

InputOutputMapping

+assignments 0..*
i +opcua_input_ref
Assignment

1
+dds_output_ref

1

+field_assignments 0..*

FieldAssignment

+ dds_output_field_ref: String

+assignment_input 1

«union»
Assignmentinput

+ constant_value: Variant
data_item: DataltemRef
+ event_field: EventFieldRef

OpcUalnput

DdsOutput

+opcua_input_ref

0.1

Figure 8.5: Input/Output Mapping Definition

MonitoredItems associated with an OPC UA Input may be propagated to different DDS Outputs. For Dataltems, the
Gateway provides the means to map a Dataltem (identified by its name) to a specific Topic field in one or more DDS
Outputs. In the case of Eventltems, the Gateway provides the means to map an element of the EventFieldList (i.e., an

44

OPC UA/DDS Gateway 1.0

EventField) to a specific Topic field in one or more DDS Outputs®. Moreover, input/output mappings provide the means

to assign constant values to specific fields of a DDS Topics in one or more DDS Outputs.

Table 8.15 provides the IDL definition of an input/output mapping.

Table 8.15: Input/Output Mapping Definition

Type Definition (IDL Equivalent)

InputOutputMapping @nested
struct InputOutputMapping {
sequence<Assignment> assignments;

};

Assignment @nested

struct Assignment {
@external DdsOutput dds_output_ref;
@external OpcUalnput opcua_input_ref;
sequence<FieldAssignment> field assignments;

};

FieldAssignment enum AssignmentKind ({
DATA ITEM ASSIGNMENT,
EVENT_ FIELD ASSIGNMENT,
CONSTANT VALUE ASSIGNMENT
};

struct DataltemRef {
string data_item name;

};

struct EventFieldRef {
string event_name;
uint32 event_field index;

};

@nested
union AssignmentInput switch (AssignmentKind) {
case DATA I TEM_AS SIGNMENT :
DataItemRef data_item;
case EVENT_FIELD_AS SIGNMENT :
EventFieldRef event_field;
case CONSTANT VALUE ASSIGNMENT:
Variant constant value;

};

@nested

struct FieldAssignment {
string dds_output_field ref; // name of output field
@optional Rexternal OpcUalnput opcua_input_ ref;
AssignmentInput assignment input;

};

As shown above, an InputOutputMapping is a sequence of assignments, which apply to a specific DDS Output
referenced via dds_output_ref. Each assignment to a DDS Output is also linked to an OPC UA Input via the
opcua_input_ref attribute. This implies that all Dataltems and EventFields assigned are assumed to belong to
MonitoredItems of the given Input.

8 (Non-normative) This mapping model is extremely flexible; however, users of the OPC UA/DDS Gateway should avoid

combining Monitorltems of different kinds in the same DDS Output. That is, they should include Dataltems or Eventltems, but

not both.

OPC UA/DDS Gateway 1.0

45

Every FieldAssignment definition shall provide the fully-qualified name of the member of the Topic type via the
dds_output_field ref attribute. The fully-qualified name shall be represented according to the following syntax:
<member_name>[.<nested member_name>] *. Optionally, users may provide an OPC UA Input different than the
default one specified in the InputOutputMapping declaration. This implicitly enables a DDS Output to publish items
from different OPC UA Inputs.

Lastly, AssignmentInput refers to the source of information that shall be assigned. That is, it provides a reference to
the DataItem, EventField, or constant that shall the field shall be assigned.

e In the case of Dataltems, DataItemRef provides the name of the Dataltem from the OPC UA Input that shall
be assigned.

¢ In the case of Eventltems, EventItemRef provides the name of the Event and the position in the
EventFieldList that shall be assigned.

* In the case of constants, the specific constant to be assigned in the form of a Variant that can take any
possible value.

8.4.3 OPC UA Subscription Mapping Behavior

This clause describes the OPC UA Subscription Mapping behavior. That is, how the OPC UA/DDS Gateway shall
handle NotificationMessages received by the OPC UA Inputs and assign them to DDS Outputs according to the
Input/Output mapping rules so that they can be propagated over DDS.

It is important to note that it is up to implementers of this specification to decide when to trigger DDS publications (i.e.,
when to call write () on the underlying DataWriters) as a response to these input. This specification focuses on the
mapping behavior rather than on the necessary optimization strategies.

8.4.3.1 Constant Assignment

In the model specified in sub clause 8.4.2.4, constants are defined as Variants, which—according to the mapping rules
specified in clause 8.2.2—makes it impossible to directly assign a Variant to a DDS Output field of any type different
than variant. Therefore, when assigning a constant to a DDS Output field, Variants shall be mapped into the
equivalent type following the rules specified in sub clause 8.4.3.3.

The assignment value of a constant value shall be performed only once upon the instantiation of a DDS Output. The
DDS Output field shall be compatible with the type deduced from the Variant mapping rules specified in 8.4.3.3 (i.e.,
shall be safely cast to the type of the DDS Output field); otherwise, the Gateway shall report an error. The mechanism
to report errors to the user is out of the scope of this specification.

8.4.3.2 NotificationMessage Assignment

As explained in sub clause 8.4.1.3, NotificationMessages received by OPC UA Clients’ contain a sequence of
NotificationData objects that represent DataChange Notifications, Event Notifications, or
StatusChangeNotifications.

This sub clause describes how to assign each Notification to the corresponding DDS Output field.

°In the case of the Gateway, these are the internal OPC UA Clients that every OPC UA Input uses to create subscriptions
and to add MonitoredItems)

46 OPC UA/DDS Gateway 1.0

8.4.3.21 DataChange Notification Assignment

DataChangeNotification messages contain a sequence of MonitoredItemNotification with every monitored
Dataltem that has changed. The Gateway shall iterate the sequence and process every MonitoredItemNotification
as follows:

1. Every MonitoredItemNotification contains an IntegerId value named client_handle, which shall
be used to correlate the item to one of the Dataltems in the list of Monitoreditems associated with the current
OPC UA Input (i.e., the Input associated with the Subscription session and the Client).

2. Once the Dataltem has been identified, the Gateway shall lookup the DDS Outputs to be updated with the new
value according to the assignments specified in InputOutputMapping.

3. Next, the OPC UA/DDS Gateway shall analyze the Datavalue value of the
MonitoredItemNotification, which contains a Variant with the real value.

4. Finally, the Gateway shall assign the Variant value—mapped according to the rules specified in 8.4.3.3—to the
DDS type field of every DDS Output field (i.e., every DDS type field associated with a DDS Output)
identified in 2. If the value cannot be cast, the Gateway shall report an error.

8.4.3.2.2 EventField Assignments

EventNotificationList messages contain a sequence of EventFieldList, where each element represents an
Event that has been triggered. The Gateway shall iterate the sequence and process every EventFieldList as follows:

1. Every EventFieldList contains an IntegerId value named client handle, which shall be used to
correlate the Event to one of the Events in the list of Monitoreditems associated with the current OPC UA Input
(i.e., the Input associated with the Subscription session and the Client).

2. Once the Event (the Eventltem) has been identified, the Gateway shall iterate the sequence of EventFields
(event_fields) in the EventFieldList and lookup the DDS Outputs to be updated with the new value
according to the assignments specified in InputOutputMapping. In other words, it shall therefore check the
combination of event_name and event_field index that conform an EventFieldRef in every DDS
Output.

3. Next, the OPC UA/DDS Gateway shall analyze the value of every EventField (i.c., every element of the
event_fields sequence), which is represented as a BaseDataType—a typedef of a Variant.

4. Finally, the Gateway shall assign the BaseDataType value—mapped according to the rules specified in 8.4.3.3
for Variants—to the DDS type field of every DDS Output field (i.c., every DDS type field associated with a
DDS Output) identified in 2.

8.4.3.2.3 StatusChangeNotifications

StatusChangeNotifications are used to report changes in the status of a Subscription. The mapping of this type of
Notifications is out of the scope of this specification—it is up to the implementers of this specification to decide how to
use StatusChangeNotifications.

8.4.3.3 Simplified Mapping of OPC UA Variant Types

To simplify of mapping for OPC UA Variants to equivalent DDS Types that shall be applied when casting the value
of Dataltems and EventFields; this mapping requires implementations of the OPC UA/DDS Gateway to evaluate the
value of array_dimensions of the Variant to determine whether the value is a scalar, an array, or a multi-
dimensional array; and the corresponding DDS according to the following rules:

OPC UA/DDS Gateway 1.0 47

¢ Ifthe value is a scalar, the value shall be mapped to the equivalent type defined in sub clause 8.2 (e.g., int32

or its alias Int32).

e Ifthe value is a one-dimensional array, then the value shall be mapped to a DDS sequence of the equivalent
type for a scalar. This specification defines alias types for each of these sequences (e.g., Int32Array as a

shortcut for sequence<int32>).

e If the value is a multi-dimensional array, then the value is mapped to a structure containing: a one-dimensional
DDS sequence of equivalent type for the scalar value, and a sequence of uint32 to represent the length of

every dimension in the multi-dimensional array (e.g., Int32Matrix).

Table 8.16 shows the specific mapping for all the different combinations of array dimensions and Variant Values.

Table 8.16: Simplified Mapping of OPC UA Variant Type to DDS Types

Array Dimensions Variant Type DDS Type (IDL equivalent)'
If array_dimensionsis |Boolean boolean
an empty zero-length SByte int8
sequence, the Variant type is Bvt int8
mapped to the equivalent yte ut
type. Intlé intlé
UIntlé uintlé
Int32 int32
UInt32 uint32
Int64 int64
UInt64 uint64
Float float
Double double
String string
DateTime DateTime as defined in OPC UA Type System Mapping (Table
8.2).
Guid Guid as defined in OPC UA Type System Mapping (Table 8.2).
ByteString ByteString as defined in OPC UA Type System Mapping
(Table 8.2).
XmlElement XmlElement as defined in OPC UA Type System Mapping
(Table 8.2).
NodeId NodeId as defined in OPC UA Type System Mapping (Table
8.2).
ExpandedNodeId |ExpandedNodeld as defined in OPC UA Type System Mapping
(Table 8.2).
StatusCode StatusCode as defined in OPC UA Type System Mapping
(Table 8.2).
QualifiedName QualifiedName as defined in OPC UA Type System Mapping

1% All these types appear inside the IDL module OMG : : DDSOPCUA : : OPCUA2DDS.

48

OPC UA/DDS Gateway 1.0

Array Dimensions Variant Type DDS Type (IDL equivalent)
(Table 8.2).
LocalizedText LocalizedText as defined in OPC UA Type System Mapping
(Table 8.2).
ExtensionObject ExtensionObject as defined in OPC UA Type System
Mapping (Table 8.2).
If array dimensionsisa |BooleanArray sequence<boolean>
sequence of length one, SByteArray sequence<int8>
Variant Types are mapped to :
. ByteArray sequence<uint8>
an array of the equivalent
type. Intl6Array sequence<intl6>
UIntl6Array sequence<uintlé>
Int32Array sequence<int32>
UInt32Array sequence<uint32>
Int64Array sequence<int64>
UInt64Array sequence<uint64>
FloatArray sequence<float>
DoubleArray sequence<double>
StringArray sequence<string>
DateTimeArray sequence<DateTime>
GuidArray sequence<Guid>
ByteStringArray |sequence<ByteString>
XmlElementArray |sequence<XmlElement>
NodeIdArray sequence<NodeId>
ExpandedNodeIdA |sequence<ExpandedNodeId>
rray
StatusCodeArray |sequence<StatusCode>
QualifiedNameAr |sequence<QualifiedName>
ray
LocalizedTextAr |sequence<LocalizedText>
ray
ExtensionObject |sequence<ExtensionObject>
Array
If array dimensionsisa |BooleanMatrix struct BooleanMatrix {
sequence of length greater BooleanArray array; . _
. sequence<uint32> array dimensions;
than one, Variant types are -
}i
mapped to a structure that
contains: (1) an array of the | SByteMatrix struct SByteMatrix {
equivalent type, and SByteArray array; . .
. . sequence<uint32> array dimensions;
array_ dimensions. }i -
ByteMatrix struct ByteMatrix ({

ByteArray array;
sequence<uint32> array dimensions;

};

OPC UA/DDS Gateway 1.0

49

Array Dimensions

Variant Type

DDS Type (IDL equivalent)

Intl6Matrix

struct Intl6Matrix {
Intl6Array array;
sequence<uint32> array dimensions;

};

UIntl6Matrix

struct UIntléMatrix {
UIntl6Array array;
sequence<uint32> array dimensions;

};

Int32Matrix

struct Int32Matrix {
Int32Array array;
sequence<uint32> array dimensions;

};

UInt32Matrix

struct UInt32Matrix {
UInt32Array array;
sequence<uint32> array dimensions;

};

Int64Matrix

struct Int64Matrix {
Int64Array array;
sequence<uint32> array dimensions;

};

UInt64Matrix

struct UInt64Matrix {
UInt64Array array;
sequence<uint32> array dimensions;

}

FloatMatrix

struct FloatMatrix ({
FloatArray array;
sequence<uint32> array dimensions;

};

DoubleMatrix

struct DoubleMatrix {
DoubleArray array;
sequence<uint32> array dimensions;

};

StringMatrix

struct StringMatrix ({
StringArray array;
sequence<uint32> array dimensions;

};

DateTimeMatrix

struct DateTimeMatrix {
DateTimeArray array;
sequence<uint32> array dimensions;

};

GuidMatrix

struct GuidMatrix {
GuidArray array;
sequence<uint32> array dimensions;

};

ByteStringMatri
x

struct ByteStringMatrix {
ByteStringArray array;
sequence<uint32> array dimensions;

};

XmlElementMatri
x

struct XmlElementMatrix {
XmlElementArray array;
sequence<uint32> array dimensions;

};

NodeIdMatrix

struct NodeIdMatrix {

50

OPC UA/DDS Gateway 1.0

Array Dimensions Variant Type DDS Type (IDL equivalent)
NodeldArray array;
sequence<uint32> array dimensions;

}i
ExpandedNodeIdM |struct ExpandedNodeIdMatrix {
atrix ExpandedNodeIdArray array;
sequence<uint32> array dimensions;
}i
StatusCodeMatri |struct StatusCodeMatrix {
x StatusCodeArray array;
sequence<uint32> array dimensions;
}i
QualifiedNameMa |struct QualifiedNameMatrix {
trix QualifiedNameArray array;
sequence<uint32> array dimensions;
}i
LocalizedTextMa |struct LocalizedTextMatrix {
trix LocalizedTextArray array;
sequence<uint32> array_ dimensions;
};
ExtensionObject |struct ExtensionObjectMatrix {
Matrix ExtensionObjectArray array;
sequence<uint32> array dimensions;
}i
8.4.4 Implementation Considerations
8.4.4.1 OPC UA Implementation Considerations

The mapping of OPC UA Subscriptions specified in this chapter requires the OPC UA/DDS Gateway to embed one or

more OPC UA Clients. These OPC UA Clients shall be capable of:

e Connecting to OPC UA Servers using the Discovery, SecureChannel, and Session Service Sets.

e Creating Subscriptions and issuing Publish and Republish requests using the Subscription Service Set.

e Creating Monitoredltems using the Monitoredltem Service Set.

To comply with all the requirements listed above, implementers of this specification shall use OPC UA Clients
compliant with the Standard UA Client Profile defined in sub clause 6.5.121 of [OPCUA-07]. Alternatively,
implementers of this specification may use an OPC UA Client that is not fully compliant with the Standard UA Client
Profile, but complies with the following Client Facets specified in [OPCUA-07]:

* Core Client Facet

¢ Base Client Behavior Facet

e Discovery Client Facet

¢ DataChange Subscriber Client Facet

Additionally, OPC UA Clients (whether they are compliant with Standard UA Client Profile or compliant with the
required Client Facets listed above) shall support an extra facet to configure Event subscriptions: the Event Subscriber
Client Facet defined in sub clause 6.5.76 of [OPCUA-07].

Consequently, compliant implementations of this specification shall be built upon an OPC UA implementation capable
of passing the conformance tests specified for those profiles and facets by the OPC Foundation.

OPC UA/DDS Gateway 1.0 51

Lastly, it is important to note that implementers of this specification may need to configure the underlying OPC UA
Clients to satisfy the requirements of the remote OPC UA Servers in terms of authentication, access control, and
encryption using the mechanisms provided by the OPC UA Security Model [OPCUA-02]. Depending on the
requirements of the remote OPC UA Servers, OPC UA Clients may need to support additional security-related facets
from [OPCUA-07].

8.4.4.2 DDS Implementation Considerations

To implement the mappings specified in this chapter OPC UA/DDS Gateway shall use a DDS implementation
complaint with:

¢ Minimum Profile of [DDS].

e Statements listed in clause 8.4.2 of [DDSI-RTPS].
As specified in the rest of clauses dealing with DDS and OPC UA integration, the Gateway shall be capable of dealing
with two different security models: the OPC UA Security Model on one end and the DDS Security Model on the other

end. Each security model shall be configured separately depending on the needs of the end user of the OPC UA/DDS
Gateway.

52 OPC UA/DDS Gateway 1.0

9 DDS to OPC UA Bridge

This chapter defines the DDS to OPC UA Bridge, which enables OPC UA Clients to browse, read, write, and receive
notifications on status changes in the DDS Global Data Space. In other words, it enables OPC UA Clients to participate
as first-class citizens in the DDS Global Data Space.

9.1 Overview (non-normative)

Figure 9.1 shows an example of the OPC UA/DDS Gateway implementing the DDS to OPC UA Bridge.

DDS
App

DDS
Global Data Space

RTPS

Client
OSPC UA OPC UA/DDS
erver
opc UA) < > Gateway
Client OPC UA
Bin

RTPS
RTPS #

DDS
App

On one side of the Gateway, a set of DDS DomainParticipants and Endpoints (i.e., DataWriters and DataReaders)
construct a view of the DDS Global Data Space by joining to DDS Domains, subscribing to DDS Topics, and receiving
updates on DDS Topic Instances. On the other side of the Gateway, an OPC UA Server represents in its AddressSpace
that view of DDS Global Data Space using Nodes and References as specified in this chapter.

Figure 9.1: DDS to OPC UA Bridge Overview

The resulting deployment enables OPC UA Clients to browse the Topics available on a certain Domain using the View
Service Set, subscribe to data updates on specific instances of those Topics using the Subscription and MonitoredItems
Service Sets, and read or write updates to those instances using the Attribute Service Set.

The chapter is organized as follows:
e Sub clause 9.2 defines a mapping of the DDS type system to OPC UA.

e Sub clause 9.3 defines an OPC UA Information Model to represent the DDS Global Data Space using OPC UA
Nodes and References.

9.2 DDS Type System Mapping

This clause defines a complete mapping of the DDS Type System to OPC UA.

OPC UA/DDS Gateway 1.0 53

9.2.1 Primitive Types

9.2.1.1 Overview (non-normative)

DDS provides a rich set of primitive types that cover the basic data types used in most common programming
languages. These include boolean types, byte types, integral types of various lengths, floating point types of various
precisions, and single-byte and wide-character types.

OPC UA provides also a rich set of primitive types equivalent, in most cases, to those that are part of the DDS Type
System. The only exception is the absence of al28-bit floating point type, which can nevertheless be represented using
other built-in types.

Because there is a one-to-one correspondence between primitive types in DDS and OPC UA, it is unnecessary to define
new OPC UA DataTypes, ObjectTypes, or VariableTypes represent DDS primitive types''. Therefore, this clause focuses
on specifying how to create Variables of equivalent types.

9.21.2 Mapping

Primitive types shall be represented as Nodes of Variable NodeClass in the AddressSpace an OPC UA Server as shown

in Figures 9.2, 9.3, and 9.4. These Variable Nodes may become components of complex VariableTypes or ObjectTypes
as a result of the mappings specified in this document.

VariableType

VariableTypes::
BaseDataVariableType

1 | +HasTypeDefinition

«Reference»

Variable
Variables::Int8

BrowseName = <VariableName>
DataType = SByte

*

Variable
Variables::Int16

BrowseName = <VariableName>
DataType = Int16

Variable
Variables::Int32

BrowseName = <VariableName>
DataType = Int32

*

Variable
Variables::Int64

BrowseName = <VariableName>
DataType = Int64

Variable
Variables::UInt8

BrowseName = <VariableName>
DataType = Byte

Variable
Variables::UInt16

BrowseName = <VariableName>
DataType = UInt16

Figure 9.2: Primitive Types Mapping to OPC UA—Integer Types

As defined below, there are workarounds to define the unsupported Float128 type.

%

Variable
Variables::UInt32

BrowseName = <VariableName>
DataType = UInt32

%

Variable
Variables::UInt64

BrowseName = <VariableName>
DataType = UInt64

OPC UA/DDS Gateway 1.0

Variable
Variables::Float32

BrowseName = <VariableName>
DataType = Float

Figure 9.3: Primitive Types Mapping to OPC UA—Floating Point Types

Variable
Variables::Boolean

Variables::Char8

VariableType

VariableTypes::
BaseDataVariableType

1 +HasTypeDefinition

«Reference»

Variable
Variables::Float64

BrowseName = <VariableName>
DataType = Double

VariableType

VariableTypes::
BaseDataVariableType

1 | +HasTypeDefinition

«Reference»

Variable

Variable
Variables::Char16

Variable
Variables::Float128

BrowseName = <VariableName>
DataType = ByteString

Variable
Variables::Byte

BrowseName = <VariableName>

BrowseName = <VariableName> BrowseName = <VariableName>

BrowseName = <VariableName>

DataType = Boolean DataType = Byte DataType = UInt16 DataType = Byte

Figure 9.4: Primitive Types Mapping to OPC UA—Boolean, Byte, and Char Types

Table 9.1 specifies the Attributes every Variable Node shall be instantiated with.

Table 9.1: Primitive Type Variable Definition

Attribute Value Description
BrowseName <String> BrowseName shall be a string matching the DDS variable with the same
capitalization.
ValueRank <ValueRank> ValueRank shall be set as follows:

e If'the Variable represents a Primitive Type, ValueRank shall be set to
0.

e Ifthe Variable represents an Array of Primitive Types, ValueRank
shall be set to the number of dimensions of the array (see sub clause
9.2.5.1).

OPC UA/DDS Gateway 1.0 55

* Ifthe Variable represents a Sequence of Primitive Types, ValueRank
shall be set to 1 (see sub clause 9.2.5.2).

ArrayDimensions |[...]| <NULL>

ArrayDimensions shall be set as follows:

e Ifthe Variable represents a Primitive Type, ArrayDimensions shall be

set to NULL.

e Ifthe Variable represents an Array of Primitive Types,
ArrayDimensions shall be set as specified in sub clause 9.2.5.1.

e Ifthe Variable represents a Sequence of Primitive Types,
ArrayDimensions shall be set as specified in sub clause 9.2.5.2.

DataType <Nodeld>

DataType shall be set to the Nodeld of the equivalent OPC UA primitive data
type. The mapping between DDS Primitive Types and OPC UA Primitive

Types is specified in Table 9.2.

For example, if the DDS primitive type is a Boolean, DataType shall be the
Nodeld of the OPC UA built-in type Boolean.

References NodeClass

BrowseName

Description

HasTypeDefinition | VariableType

BaseDataVariable | Because this is a simple DataVariable with no more
Type concrete type definition needs, it shall be defined as a

BaseDataVariableType Variable.

Table 9.2 specifies the equivalent OPC UA built-in types for every DDS primitive type.

Table 9.2: OPC UA Built-in Types Equivalent to DDS Primitive Types

DDS Primitive Type

IDL Equivalent Type

OPC UA Built-in Type

Byte octet Byte
Boolean boolean Boolean
Int8" int8 SByte
Ulnt8 uint8 Byte
Int16 intlé Int16
Ulnt16 uintlé Ulnt16
Int32 int32 Int32
Ulnt32 uint32 Ulnt32
Int64 int64 Int64
Ulnt64 uinté4 Ulnt64
Char8 char Byte

12

Int8 and Ulnt8 have recently been added to [IDL]. Even though they are not part of the current DDS Type System specified in

[DDS-XTYPES], they are planned for the next revision of the specification, and they are therefore added to the table for

completeness.

56

OPC UA/DDS Gateway 1.0

DDS Primitive Type IDL Equivalent Type OPC UA Built-in Type
Charl6 wchar Ulntl16
Float32 float Float
Float64 double Double
Float128 long double ByteString"?
9.213 Example (non-normative)

Let us use the following example to illustrate the mapping of a simple 32-integer value to an OPC UA Variable.

A 32-bit integer variable x, member of a structure type, is represented in IDL as follows:

struct StructuredType {
int32 my_integer;

};

To represent my_integer in OPC UA, we shall create a Variable following the rules specified in Table 9.1.

Figure 9.5 shows the OPC UA Nodes and References involved in the mapping.

class Int32Type

Variables::my_integer

BrowseName = my_integer |,
ValueRank = -1
DataType = Int32

Variable ;
VariableType

+HasTypeDefinition VariableTypes::

«Reference» 1 BaseDataVariableType

Figure 9.5: Example of Primitive Type Mapping to OPC UA

Table 9.3 shows the definition of the Variable representing my _integer.

Table 9.3: Example of Int32 Variable Definition

Attribute Value Description
BrowseName my_integer BrowseName matches the name of the original DDS variable: my_integer.
ValueRank -1 ValueRank of -1 to indicate the Variable contains a scalar Value.
DataType Int32 Nodeld of Int32, which is the type equivalent to a DDS 32-bit integer.
Value <Int32> A valid 32-bit integer value (e.g., 13). If the Variable is used in the definition
of'a complex VariableType or ObjectType, Value may be overwritten by the
instance of the corresponding type.

1 To store the Float128 value, the length of the equivalent ByteString shall be 16.

OPC UA/DDS Gateway 1.0

57

References NodeClass BrowseName Description
HasTypeDefinition | VariableType BaseDataVariable | Because this is a simple DataVariable with no more
Type concrete type definition needs, it shall be defined as a
BaseDataVariableType Variable.
9.2.2 String Types
9.2.21 Overview (non-normative)

String Types are ordered one-dimensional variable-sized collections of characters [DDS-XTYPES]. The DDS Type
System includes two character types: Char8 and Charlé. Therefore, it specifies two equivalent string types composed
of these character types: String8 and Stringlé.

In CDR, string8 strings—commonly referred to as strings—are represented using UTF-8 character encoding, where
characters take from one to four bytes of space. In contrast, Stringl6 strings—commonly referred to as wstrings or
wide strings—are represented using UTF-16 character encoding, where characters take two bytes if they are part of the
Basic Multilingual Plane (BMP) and four bytes otherwise. [DDS-XTYPES] limits the characters that may be used in a
String16 string to those in the BMP. As a result, every Unicode character in a String16 always takes two bytes.

OPC UA specifies two built-in String types: String and ByteString [OPCUA-03]. Strings are used to represent UTF-8
encoded strings. Therefore, DDS string types can be directly mapped to OPC UA Strings. In contrast, ByteStrings
represent opaque sequence of bytes. Because OPC UA does not provide an explicit way of representing UTF-16-
encoded strings, wide strings shall be mapped to ByteStrings where every character is represented as a two-byte pair.

9.2.2.2 Mapping

String types shall be represented as Nodes of Variable NodeClass in the AddressSpace of an OPC UA Server as shown

in Figure 9.6. These Variable Nodes may become components of complex VariableTypes or ObjectTypes as a result of
the mappings specified in this document.

class StringTypes

VariableType

VariableTypes::
BaseDataVariableType

+HasTypeDefinition

+HasTypeDefinition 1

«Reference»
*
Variable
Variables::String8

BrowseName = <VariableName>
DataType = String

«Reference»

Variable
Variables::String16

BrowseName = <VariableName>
DataType = ByteString

Figure 9.6: String Types Mapping to OPC UA

58

OPC UA/DDS Gateway 1.0

Table 9.4 defines the mapping of the String8 type to an OPC UA Variable.

Table 9.4: String8 (String) Variable Definition

Attribute Value Description

BrowseName <String> BrowseName shall be a string matching the name of the DDS variable with the
same capitalization.

ValueRank -1 Because variables of String8 (strings) represent scalar values', they shall
have a ValueRank of -1.

DataType String Nodeld of the OPC UA built-in type equivalent to String8: String.

References NodeClass BrowseName Description

HasTypeDefinition | VariableType BaseDataVariable | Because this is a simple DataVariable with no more

Type concrete type definition needs, it shall be defined as a
BaseDataVariableType Variable.

Table 9.5 defines a mapping of the String16 type to an OPC UA Variable.

Table 9.5: String16 (Wide String) Variable Definition

Attribute Value Description

BrowseName <String> BrowseName shall be a string matching the name of the DDS variable with the
same capitalization.

ValueRank -1 Because variables of Stringl6 type (wide strings) represent scalar values',
they shall have a ValueRank of -1.

DataType ByteString Nodeld of the OPC UA built-in type equivalent to Stringlé: ByteString. In
the equivalent ByteString, each Unicode character is represented as two
consecutive bytes; therefore, the length of the ByteString shall be the number
of characters in the wide string times two.

References NodeClass BrowseName Description

HasTypeDefinition | VariableType BaseDataVariable | Because this is a simple DataVariable with no more

Type concrete type definition needs, it shall be defined as a
BaseDataVariableType Variable.
9.2.23 Example (non-normative)

Let us use the following example to illustrate the mapping of a string type to an OPC UA Variable.

A string8 variable my_string, member of a structure type, is represented in IDL as follows:

struct StructuredType {
string my_ string;

};

To represent my_string in OPC UA, we shall create a Variable following the rules specified in Table 9.4.

14

OPC UA/DDS Gateway 1.0

Indeed, they are a special kind of scalar values that contain a collection of characters.

59

Figure 9.7 shows the OPC UA Nodes and References involved in the mapping.

class MyStringType

Variable VariableType

Variables::my_string

+HasTypeDefinition VariableTypes::

BrowseName = my_string |, BaseDataVariableType
ValueRank = -1

DataType = String

«Reference» 1

Figure 9.7: Example of String Type Mapping to OPC UA

Table 9.6 shows the definition of the Variable representing my string.

Table 9.6: Example of String Variable Definition

Attribute Value Description

BrowseName my_string BrowseName matches the name of the original DDS Variable: my_string.

ValueRank -1 ValueRank of -1 to indicate the Variable contains a scalar Variable.

DataType String Nodeld of String, the equivalent type for a DDS Stringg8.

Value <String> A valid string value (e.g., “*Julia”). When the Variable is used in the
definition of a complex VariableType or ObjectType, Value may be overwritten
by the instance of the corresponding Instance Type.

References NodeClass BrowseName Description

HasTypeDefinition | VariableType BaseDataVariable | Because this is a simple DataVariable with no more
Type concrete type definition needs, it shall be defined as a

BaseDataVariableType Variable.

9.2.3 Enumerated Types

9.2.31 Enumeration Types

9.2.3.1.1 Overview (non-normative)

In DDS, an Enumeration type is a collection of enumerated literals that associate a string with an Int32 value [DDS-

XTYPES].

OPC UA provides a similar concept via the Enumeration DataType, a subtype of the abstract Structure DataType. Like
in DDS, OPC UA Variables of Enumeration DataType are treated as Int32 Variables; but the associated DataType Node
may include one of the following standard properties that allow OPC UA Clients to map the enumerated value to a
human-readable representation: EnumStrings and EnumValues [OPCUA-03].

e The EnumStrings Property defines an array of LocalizedText elements, where each position of the array may be
associated with an enumerated value. Therefore, the EnumStrings property is suitable for providing a human-
readable representation of the enumeration when the enumeration is zero-based and has no gaps.

60

OPC UA/DDS Gateway 1.0

e The EnumValues Property defines an array of EnumValueType, which is a Structure DataType that holds: (1) an
integer representation of the enumerated value (/nt64 in this case); (2) a display name for the human-readable
representation of the enumerated value (LocalizedText); and (3) a localized description of the enumerated value
(LocalizedText—may be set to an empty string when no description is available).

9.2.3.1.2 Mapping

Every DDS Enumeration type definition shall be mapped to an OPC UA Enumeration DataType. Instances of DDS
Enumeration Types, such as members of Aggregated Types and elements of Collection Types, shall be mapped to
Variables of the corresponding OPC UA Enumeration DataType as show in Figure 9.8.

class EnumerationTypes /

VariableType DataType DataType VariableType
VariableTypes:: DataTypes::EnumerationDataType +HasSubtype DataTypes:: VariableTypes::
BaseDataVariableType Enumeration PropertyType
BrowseName = <EnumerationTypeName>DataType «Reference»
+HasTypeDefinition 1 +DataType 1 1 1
«Reference» «Attribute» «Referknce»
Variable Variable

Variables::Enumeration +HasProperty Variables::EnumValues

) * «Reference» 1 ValueRank =1

DataType = EnumValueType

BrowseName = <VariableName>

Figure 9.8: Enumeration Types Mapping to OPC UA

The OPC UA Enumeration DataType shall be defined as a subtype of the standard Enumeration DataType as specified
in Table 9.7.

Table 9.7: Enumeration DataType Definition

Name Type Description
<EnumerationTyp | Enumeration The equivalent Enumeration DataType shall be a subtype of the standard
eName>DataType Enumeration DataType.

The DataType shall be named according to the following convention:
<EnumerationTypeName>DataType. Where <EnumerationTypeName>
corresponds to the name of the original DDS Enumeration Type. For example,
if the name of the original Enumeration Type is TemperatureKind, then the
OPC UA DataType shall be named TemperatureKindDataType.

Because DDS Enumeration Types may be not zero-based and may have gaps,
<EnumerationTypeName>DataType shall include a reference to an
EnumValues Property. This property shall be defined as an array of
EnumValueType, where every element shall represent an enumerated literal as
follows:

e Value shall be set to the enumerated literal value.

* DisplayName shall be set to the string representation of the
enumerated literal constant.

e Description may be set to any specification-specific string.

OPC UA/DDS Gateway 1.0 61

References NodeClass BrowseName DataType TypeDefinition | Modeling Rule

HasProperty Variable EnumValues EnumValueType[] | PropertyType Mandatory

Variables of <EnumerationTypeName>DataType shall be defined as specified in Table 9.8.

Table 9.8: Enumeration Variable Definition

Attribute Value Description

BrowseName <String> BrowseName shall be a string matching the name of the DDS variable with the
same capitalization.

ValueRank -1 ValueRank shall be -1, indicating that Value is a scalar.
Value <Int32> Integer value of the Enumeration (e.g., 2).
DataType <Nodeld> DataType shall point to the Nodeld of <EnumerationTypeName>DataType.
References NodeClass BrowseName Description
HasTypeDefinition | VariableType BaseDataVariable | Because this is a simple DataVariable with no more
Type concrete type definition needs, it shall be defined as a
BaseDataVariableType Variable.

9.2.3.1.3 Example (non-normative)

Let us use the following example to illustrate the mapping of a common WorkDays enumeration type that assigns an
integer value to every work day of the week.

WorkDays is represented in IDL as follows:

enum WorkDays {
@value (1) MONDAY,
@value (2) TUESDAY,
@value (3) WEDNESDAY,
@value (4) THURSDAY,
@value (5) FRIDAY
}i
To represent WorkDays in OPC UA, we shall define an equivalent DataType named WorkDaysDataType. Instances of
WorkDaysDataType, such as a variable of WorkDays, shall be represented as Variables in the AddressSpace of the OPC

UA Server.

Figure 9.9 shows the OPC UA Nodes and References involved in the mapping.

62 OPC UA/DDS Gateway 1.0

class WorkDays

VariableType DataType DataType
VariableTypes:: DataTypes::WorkDaysDataType +HasSubtype DataTypes::
BaseDataVariableType Enumeration
BrowseName = WorkDaysDataType «Reference»
+HasTypeDefinition +DataType 1
«Reference»
«Attribute»
M 1 +HasProperty
«References» .
Variable Variable
Variables::my_workday Variables::EnumValues
BrowseName = my_workday Value = [{Value:1,DisplayName:"Monday",...},...]
. Value = 1 - ArrayDimensions = [7]
ValueRank = -1 ValueRank =1
DataType = EnumValueType
Figure 9.9: Example of Enumeration Type Mapping to OPC UA
Table 9.9 shows the equivalent WorkDaysDataType.
Table 9.9: Example of Enumeration DataType Definition
Name Type
WorkDaysDataType | Enumeration
Reference Type BrowseName Value

OPC UA/DDS Gateway 1.0

63

HasProperty EnumValueType[] EnumValues [0]
Value = 1
DisplayName = “MONDAY”

Description = “I don’t like Mondays!”

Value =2
DisplayName = “TUESDAY”

Description = “Today is Tuesday!”

Value =3

DisplayName = “WEDNESDAY”

Description = “Today is Wednesday!”
(3]

Value = 4

DisplayName = “THURSDAY”

— <

Description = “Today is Thursday!”

Value =5
DisplayName = “FRIDAY”
Description = “Today is Friday!”

To represent a specific instance of a WorkDays enumeration, we shall create Variables of WorkDaysDataType type as
specified in Table 9.8. Table 9.10 shows a variable representing “Monday.”

Table 9.10: Example of Enumeration Variable Definition

Attribute Value Description
BrowseName my_workday Variable name.
ValueRank -1 The value is a scalar.
Value 1 Integer value representing “Monday.”
DataType WorkDaysDataT | Nodeld of the WorkDaysDataType.
ype
References NodeClass BrowseName Description
HasTypeDefinition | VariableType BaseDataVariable | Because this is a simple DataVariable with no more
Type concrete type definition needs, it shall be defined as a
BaseDataVariableType Variable.

64 OPC UA/DDS Gateway 1.0

9.2.3.2 Bitmask Types

9.2.3.21 Overview (non-normative)

In DDS, a Bitmask type represents a collection of boolean flags that can be inspected and set individually [DDS-
XTYPES]. Bitmasks provide an efficient representation, where every boolean flag is represented with a single bit,
rather than with a native boolean value, an integer, or an octet.

Every Bitmask reserves a number of bits (boolean flags) that indicate its bound. The bound of a DDS Bitmask shall be
greater than zero and no greater than 64. Each bit is identified by a name and by an index, which is numbered from 0 to
bound-1.

In OPC UA bit masks are represented as subtypes of the abstract OptionSet DataType. Every OptionSet is defined as a
structure containing two ByteStrings to represent the value and the valid bits [OPCUA-03]:

* Value is an array of bytes representing the bits in the Bitmask. The length depends on the number of bits.

* ValidBits is an array of bytes with the same size as value that represents the bits in the Bitmask that been set. In
other words, the bits that have a meaning.

To provide a human-readable representation for every bit in the Bitmask, subtypes of the OPC UA OptionSet DataType
shall have an OptionSetValues Property. This property is equivalent to the EnumStrings Property for Enumeration
Types (described in sub clause 9.2.3.1.1). It is defined as array of LocalizedText containing the human-readable
representation for every bit.

9.23.2.2 Mapping

Every DDS Bitmask Type definition shall be mapped to an OPC UA OptionSet DataType. Instances of DDS Bitmask
Types, such as members of Aggregated Types and elements of Collection Types, shall be mapped to Variables of the
corresponding OPC UA OptionSet DataType as show in Figure 9.10.

class BitmaskTypes ~

VariableType DataType DataType

VariableTypes:: DataTypes::BitmaskDataType +HasSubtype DataTypes::

BaseDataVariableT OptionSet

asetatataniabielype BrowseName = <BitmaskTypeName>DataType «Reference» P
+HasTypeDefinition 1 +DataType 1 1
«Reference»
«Attribute»
«Refergnce» * 1 +HasProperty

Variable Variable

Variables::Bitmask Variables::OptionSetValues

ValueRank =1

* BrowseName = <VariableName>)
DataType = LocalizedText

Figure 9.10: Bitmask Types Mapping to OPC UA

The OPC UA OptionSet DataType shall be defined as a subtype of the standard abstract OptionSet DataType as
specified in Table 9.11.

OPC UA/DDS Gateway 1.0 65

Table 9.11: Bitmask DataType Definition

Name

Type

Description

<BitmaskTypeNa
me>DataType

OptionSet

The equivalent OptionSet DataType shall be a subtype of the standard abstract
OptionSet DataType.

The OptionSet shall be named according to the following convention:
<BitmaskTypeName>DataType. Where <BitmaskTypeName> corresponds to
the name of the original DDS Bitmask Type. For example, if the name of the
original Bitmask Type is StatusMask, then the OPC UA DataType shall be
named StatusMaskDataType.

<BitmaskTypeName>DataType shall have an OptionSetValues Property. This
property shall be represented as an array of LocalizedText of size equal to the
Bitmask bound, where every element of the array shall include the string
representation of the Bitflag in the position of the corresponding position
(whether it has been explicitly set or not).

If no Bitflag has been defined to cover the corresponding position (i.e., if no
Bitflag has position x), then the corresponding element of the array shall
include the string “UndefinedPosition_<PositionNumber>” where
<PositionNumber> is the representation in decimal of the position for
which no Bitflag has been defined.

References

NodeClass

BrowseName DataType TypeDefinition | Modeling Rule

HasProperty

Variable

OptionSetValues | LocalizedText[] |PropertyType Optional

Variables of <BitmaskTypeName>DataType shall be defined as specified in Table 9.12.

Table 9.12: Bitmask Variable Definition

Attribute Value Description
BrowseName <String> BrowseName shall be a string matching the name of the DDS variable with
the same capitalization.
ValueRank -1 ValueRank shall be -1, indicating that Value is a scalar.
Value <<BitmaskType |The Value of the two members of the structure representing
Name>DataType | <BitmaskTypeName>DataType shall be set as follows:
>
e The value ByteString shall have a length equal to the bound of the
original Bitmask Type.
e The validBits ByteString shall have a length equal to the bound of the
original Bitmask type.
DataType <Nodeld> DataType shall point to the Nodeld of <BitmaskTypeName>DataType.
References NodeClass BrowseName Description
HasTypeDefinition | VariableType BaseDataVariabl | Because this is a simple DataVariable with no more
eType concrete type definition needs, it shall be defined as a
BaseDataVariableType Variable.

66

OPC UA/DDS Gateway 1.0

9.2.3.2.3 Example (non-normative)

Let us use the following example to illustrate the mapping of a Bitmask type to an OPC UA Variable.

A Bitmask with the access permissions in a Unix system is represented in IDL as follows:

@bit_bound(3)
bitmask AccessPermission {

READ PERMISSION,

WRITE_ PERMISSION,

EXECUTE PERMISSION
}:
To represent AccessPermission in OPC UA, we shall define an equivalent DataType named
AccessPermissionDataType. Instances of AccessPermissionDataType, such as user_permission, shall be represented

as Variables.

OPC UA/DDS Gateway 1.0 67

Figure 9.11 shows the OPC UA Nodes and References involved in the mapping.

class AccessPermissionType /

VariableType

VariableTypes::
BaseDataVariableType

+HasTypeDefinition 1 +DataType 1

«Attribute»

*
«Reference»

Variables::user_permission

* BrowseName = user_permission

ValueRank = -1

DataTypes::AccessPermissionDataType

BrowseName = AccessPermissionDataType

Variable

Value = {values: [...], validVvalues: [...]}

DataType DataType
+HasSubtype DataTypes::
«Reference» OptionSet
«Reference»
+HasProperty

Variable
Variables::OptionSetValues

Value = ["READ_PERMISSION", ...]
ArrayDimensions = [3]
ValueRank =1

DataType = LocalizedText

Figure 9.11: Example of Bitmask Type Mapping to OPC UA

Table 9.13 shows the equivalent AccessPermissionDataType.

Table 9.13: Example of Bitmask DataType Definition

Name

Type

AccessPermissionDat | OptionSet

aType

Reference Type BrowseName

Value

HasProperty LocalizedText[] OptionSetValues

[0] “READ_PERMISSION”
[1] “WRITE_PERMISSION”
[2] “EXECUTE_PERMISSION”

As specified above, for a Bitmask with gaps (i.e., a
Bitmask that does not associate a bitflag for a
specific position), the array of LocalizedText array
shall include predefined strings to indicate that the
position is undefined.

For example, for the following Bitmask:

@bit_bound (5)
bitmask BitmaskWGaps {
INITIAL FIELD,
@position(2) MIDDLE FIELD,
@position(4) LAST_ FIELD
i
OptionSetValues would be set as follows:

[0] “INITIAL_FIELD”
[1] “UndefinedPosition_1”
[2] “MIDDLE_FIELD”

68

OPC UA/DDS Gateway 1.0

[3] “UndefinedPosition_3”
[4] “LAST _FIELD”

Table 9.14 defines user_permission—a Variable representing the permission for a specific user.

Table 9.14: Example of Bitmask Variable Definition

Attribute Value Description
BrowseName user_permission Access permission for a specific user.
ValueRank -1 The value is a scalar.
Value values: values is a ByteString where every element represents the boolean value of
«.. 5 |abitflag. In the example, values represents a Bitmask with value 100,
[0] “true™ |. . -
indicating that the user has read-only permission.
[1] “false validValues is a ByteString where every element represents a boolean value
[2] “false” | indicating whether the position in the Bitmask has been defined. In this
validValues: case, because all positions have been defined, all elements in values are set
' to “true”.
0 “t 2 . .
[0] *true In contrast, for the following Bitmask:
[117true™ Jepi ¢ bound (5)
[2] “true” |bitmask BitmaskWGaps {
INITIAL_ FIELD,
@position (2) MIDDLE FIELD,
@position(4) LAST FIELD
};
validValues would be set to:
[0] “true”
[1] “false”
[2] “true”
[3] “false”
[4] “true”
which indicates that only the positions 0, 2, and 4 have been defined.
DataType AccessPermission | Nodeld of AccessPermissionDataType.
DataType
References NodeClass BrowseName Description
HasTypeDefinition | VariableType BaseDataVariab | Because this is a simple DataVariable with no more
leType concrete definition needs, it shall be defined as a
BaseDataVariableType Variable.

OPC UA/DDS Gateway 1.0

69

9.2.4 Aggregated Types

9.241 Structure Types

9.24.1.1 Overview (non-normative)

In DDS, Structure types are complex types composed of members of any Primitive, String, Collection, Enumerated, or
Aggregated type—including other Structure types [DDS-XTYPES].

In OPC UA, Structure types may be represented in different ways. [OPCUA-03] discusses in clause A.4.3 three
different approaches for representing structured types':

1. Representing simple members of the Structure type as Variables of simple DataTypes grouped in Objects.

2. Creating Structure DataTypes derived from the standard abstract Structure DataType and instantiating these
into a single Variable.

3. Creating both a Structure DataType and a complex VariableType of that DataType including also sub-Variables
to represent simple members of the structure.

The first approach provides easy access for generic OPC UA Clients, because every member of the structure is visible
in the AddressSpace of the OPC UA Server. However, this approach does not provide a transactional context where the
Server can pass directly the structure to the specific OPC UA Client.

The second approach provides such transactional context, but the information exposed by the OPC UA Server cannot
be interpreted by generic OPC UA Clients. Furthermore, OPC UA Clients may not access individual items and need to
read the whole structure to process a single data item.

The third approach combines the first two approaches: it provides a transactional context and it exposes individual
items as Variables that can be separately read by generic OPC UA Clients.

The first structure is more adequate for scenarios in which a transactional context is unnecessary and data items can be
interpreted separately, because it simplifies the OPC UA Server logic. (The OPC UA Server needs not offer information
in both its native format—structure—and in interpreted format—separate items.) However, in DDS data structures are
usually modeled as a whole (e.g., a DataReader must receive the value of longitude and latitude to fully process
an instance of a Position Topic composed of both members). The only scenario in which members of a structure could
be sent and processed separately would be in that of a structure containing only optional members.

As a result, this specification has chosen to model Structure types following the third approach; that is, providing a
Structure DataType, and a VariableType of that DataType including references to sub-variables with simple members of
the structure. This approach guarantees that the exposed information can be processed by both generic and specific
OPC UA Clients depending on the use case.

9.24.1.2 Mapping

Every DDS Structure Type shall be mapped to both an OPC UA Structure DataType and a complex VariableType.
Instances of the DDS Structure type shall be represented as Variables of the specified VariableType as shown in Figure
9.12.

'3 The OPC Unified Architecture Book discusses these options in more detail in Section 3.3.3 “Providing Complex Data

Structures.” Further information may be found in a whitepaper entitled OPC UA Information Model Deployment Whitepaper
(pp. 17-18), and in the Unified Automation .NET Based OPC UA Client/Server SDK User's Manual.

70 OPC UA/DDS Gateway 1.0

class StructureTypes /

Variable

Variables::Structure +HasTypeDefinition

BrowseName = <VariableName> |* «Reference» 1

ValueRank = -1

«Reference»

+HasComponent

DataTypes::StructureDataType

BrowseName = <StructureTypeName>DataType

+DataType

«Attribute»

VariableTypes::StructureVariableType

BrowseName = <StructureTypeName>VariableType

ValueRank = -1

«Reference»

+HasComponent

*

Variables::StructureMember

BrowseName = <MemberName>

DataType DataType

+HasSubtype DataTypes::

«Reference» Structure

VariableType

Variable

Figure 9.12: Structure Types Mapping to OPC UA

The Structure DataType shall be defined as a subtype of the standard Structure DataType. It shall be named after the
original DDS Structure type according to the following naming convention: <StructureTypeName>DataType. Every
member of the structure shall be added as a child field where:

¢ The field name shall match the DDS member name, including capitalization.

¢ The field type shall be the member’s OPC UA equivalent type as specified by the mapping rules defined in this

chapter.

Table 9.15: Structure DataType Definition

Name Type Description
<StructureTypeName>DataType Structure Structure representing the DDS
structure type.
<MemberName> <EquivalentType> First member of the structure. The

field name shall be the name of the
original DDS structure member. The
type shall be the equivalent OPC UA
type for the original member of the
structure.

OPC UA/DDS Gateway 1.0

71

The VariableType shall be defined as a subtype of BaseDataVariableType and shall be named after the original DDS
Structure type according to the following convention: <StructureTypeName>VariableType. The DataType of the
equivalent VariableType shall be <StructureTypeName>DataType.

Each member shall be added as a HasComponent Reference Variable Nodes with:
* NodeClass—Variable.

e BrowseName—Name of the DDS member name. It shall match the member name used in the definition of
<StructureTypeName>DataType.

e DataType—OPC UA DataType equivalent to that of the member as specified by the mapping rules defined in
this chapter. It shall match the type used in the definition of <StructurelypeName>DataType.

o TypeDefinition—BaseDataVariableType.
* ModelingRule—"Optional" for DDS optional members and "Mandatory" for every other member.

Table 9.16: Structure VariableType Definition

Attribute Value
BrowseName <StructureType>VariableType
DataType <StructureType>DataType
ValueRank -1 (for scalar Structures)
References NodeClass BrowseName DataType TypeDefinition | ModelingRule

Subtype of BaseDataVariableType.

HasComponent Variable <MemberName> | <EquivalentType>| BaseDataVariable | Mandatory/
Type Optional

9.24.1.3 Example (non-normative)

Let us use ShapeType to illustrate the mapping of a simple structured type to OPC UA. This type is used in DDS demo
applications that vendors often use to illustrate DDS concepts and test interoperability.

ShapeType in represented in IDL as follows:

struct ShapeType {

string color;

int32 x;

int32 y;

int32 shapesize;
}:
To represent ShapeType in OPC UA we need to define an equivalent DataType named ShapeTypeDataType (i.e., the
base Structure DataType) and an equivalent VariableType named ShapeTypeVariableType that the OPC UA Server will
instantiate to represent instances of ShapeType.

Figure 9.13 shows the OPC UA Nodes and References involved in the mapping.

72 OPC UA/DDS Gateway 1.0

class ShapeType

Variable
Variables::my_shape

+HasTypeDefinition

BrowseName = my_shape |[* «Reference» 1 BrowseName = ShapeTypeVariableType
ValueRank = -1
1 1 1 1 1 1 1 1
«Referehce»
+HasComponent 1 «Reference»
Variable 1 +HasComponent

+HasComponent «Refefence» «Referepce» Variables::shapesize
BrowseName = color
«Reference» 1 DataType = String BrowseName = shapesize
ValueRank = -1 ValueRank = -1
DataType = Int32
+HasComponent /1 +HasComponent 1 e
Variable Variable +HasComponent 1
+HasComponent Variables::x Variables::y
«Reference» 1
BrowseName = x BrowseName =y
DataType = Int32 DataType = Int32
ValueRank = -1 ValueRank = -1
+HasComponent 1
«Reference»
«Reference»

DataType
DataTypes::ShapeTypeDataType
BrowseName = ShapeTypeDataType

+ color: String

+ shapesize: Int32
+ x:Int32

+ y:Int32

+DataType 1

«Attribute»

*

VariableType
VariableTypes::ShapeTypeVariableType

Variables::color Variable

Figure 9.13: Example of Structure Type Mapping to OPC UA

The equivalent ShapeTypeDataType is defined in Table 9.17.

Table 9.17: Example of Structure DataType Definition

Name Type Description
ShapeTypeDataType Structure This structure represents the DDS
ShapeType.
color String Member of the structure representing
the color of the shape.
X Int32 Member of the structure representing
the x position of a shape in a

OPC UA/DDS Gateway 1.0

73

Name

Type

Description

coordinate plane.

y Int32 Member of the structure representing
the y position of a shape in a
coordinate plane.

shapesize Int32 Member of the structure representing

the size of the shape.

The equivalent ShapeTypeVariableType is defined in Table 9.18.

Table 9.18: Example of Structure VariableType Definition

Attribute Value
BrowseName ShapeTypeVariableType
DataType ShapeTypeDataType
ValueRank -1
References NodeClass BrowseName DataType TypeDefinition | ModelingRule
Subtype of BaseDataVariableType.
HasComponent | Variable color String BaseDataVariable | Mandatory
Type
HasComponent | Variable X Int32 BaseDataVariable | Mandatory
Type
HasComponent | Variable y Int32 BaseDataVariable | Mandatory
Type
HasComponent Variable shapesize Int32 BaseDataVariable | Mandatory
Type
Finally, defines my_shape, a Variable representing an Instance of ShapeType.
Table 9.19: Example of Structure Variable Definition
Attribute Value Description
BrowseName my_shape Name of the my_shape instance of ShapeType.
ValueRank -1 The value is a scalar.
Value Color = “BLUE” | Value indicates the current color, position, and size of the shape.
x =150
y=25
shapesize=30

74

OPC UA/DDS Gateway 1.0

References NodeClass BrowseName DataType TypeDefinition | ModelingRule

HasTypeDefinition | VariableType ShapeTypeVaria | ShapeTypeDataTy | BaseDataVariable | Mandatory
bleType pe Type

HasComponent Variable color String BaseDataVariable | Mandatory
Type

HasComponent Variable X Int32 BaseDataVariable | Mandatory
Type

HasComponent Variable y Int32 BaseDataVariable | Mandatory
Type

HasComponent Variable shapesize Int32 BaseDataVariable | Mandatory
Type

9.24.2 Union Types

9.24.21 Overview (non-normative)

In DDS, Union Types are complex types composed of a well-known discriminator member and a set of type-specific
members [DDS-XTYPES].

The discriminator member—identified by the name “discriminator”—is guaranteed to be the first element of the Union
and may be of the following types: Boolean, Byte, Char8, Charl6, Intl6, UIntl6, Int32, UInt32, Int64,
UInt64, Enum, and Bitmask. Alias Types resolving to those types are also valid discriminator types. The value of the
discriminator may change at any moment, thereby changing the selected type-specific member.

Type-specific members may be associated with one or more values of the discriminator and may be selected because
they are either associated with a specific discriminator value or they are associated with the default value.

The following example illustrates the definition of a DDS Union in IDL:

union ExampleUnion switch(int32) ({
case 1:
int32 int32_value;
case 2:
int64 int64_value;
}:
In OPC UA, Unions are standard abstract DataTypes derived from the Structure DataType [OPCUA-03]. As specified in
[OPCUA-06], these structured types contain a switch field that serves a union discriminator and a set of fields that
represent each of the type-specific members of the union.

The switch field is represented with a UInt32. Therefore, the maximum number of elements of the union discriminator
is 2*2-1 (the switch value 0 is reserved to indicate no fields are present, i.e., that the Union has NULL value). Switch
fields of a value greater than the number of fields in the Union are invalid; thus, switch fields must be set consecutively,
no gaps are allowed.

The following example, illustrates the definition of an OPC UA Union using the OPC UA Binary Schema:

<opc:StructuredType Name="ExampleUnion'">
<opc:Field Name="SwitchValue" TypeName="opc:UInt32" />
<opc:Field Name="int32 value" TypeName="opc:Int32"
SwitchField="SwitchValue" SwitchValue="1"/>
<opc:Field Name="int64 value" TypeName="opc:Int64"
SwitchField="SwitchValue" SwitchValue="2"/>

OPC UA/DDS Gateway 1.0 75

</opc:StructuredType>

9.24.2.2 Mapping

Every DDS Union type shall be mapped to an OPC UA Union DataType. Instances of DDS Union types shall be
represented as Variables of the specified DataType as shown in Figure 9.14.

class UnionTypes

VariableType DataType

VariableTypes:: DataTypes::Union
BaseDataVariableType

+HasTypeDefinition 1

«Reference»
+HasSubtype
Variable DataType
«Reference» Variables::Union DataTypes::UnionDataType
+DataType
BrowseName = <VariableName> N BrowseName = <UnionTypeName>DataType
ValueRank = -1 «Attribute» 1

Figure 9.14: Union Types Mapping to OPC UA

The Union DataType shall be defined as a subtype of the standard Union DataType. It shall be named after the original
DDS Union type according to the following naming convention: <UnionTypeName>DataType. Every union case
member of the structure shall be added as a child field where:

¢ The field name shall match the name of the DDS union case member, including capitalization.

e The field type shall be the OPC UA type equivalent to that of the union case member, as specified by the
mapping rules defined in this chapter.

* The switch value shall be a value assigned in consecutive order—starting from 1—based on the position of the
case member in the definition of the Union. Implementations of the OPC UA/DDS Gateway shall be able to
map switch values to their corresponding union discriminator values and vice versa—even when different DDS
union discriminator values identify the same case member. Lastly, default case members shall be treated like
any other union case members; that is, they shall be assigned a switch value in the order in which they were
declared.

Because in OPC UA switch fields are represented with a Ulnt32 value, DDS Union Types with more than 2%-1 case
members (i.e., with more than 4 billion—4,294,967,295—case members) may not be represented in OPC UA and are
therefore unsupported's.

Table 9.20 formally defines an OPC UA Union DataType equivalent to a DDS Union Type.

Table 9.20: Union Data Type Definition

Name Type Description
<UnionTypeName>DataType Union Union representing the DDS Union type.
<SwitchField> Ulnt32 Switch field is the first member of the structure
representing the OPC UA Union. Its type limits the

' DDS Union Types with more than 2*2-1 case members require an Int64 or UInt64 union discriminator.

76 OPC UA/DDS Gateway 1.0

number of union members to 2*2-1 fields. Thus,

DDS Unions with more than 2*>-1 cases are

unsupported by this specification.
<UnionMember1Name> <EquivalentType> |First union case member.

Field name shall be the name of the original DDS

union case member.

Type shall be the OPC UA type equivalent to type

of the original DDS union case member.

Switch value shall be 1—even if more than one

union discriminator resolves to this union case

member.

Subsequent union members shall be assigned switch

values with increments of one.
<UnionMemberName> <EquivalentType> |Last union case member.

The switch value of the last member shall be equal

to the number of case members in the DDS Union.

Table 9.21 formally specifies an instance of a DDS Union in OPC UA using a Variable Node.

Table 9.21: Union Type Variable Definition

Attribute Value Description
BrowseName <UnionName> |Name of the instance of the Union type the Variable represents.
DataType <UnionTypeNa | Nodeld of the OPC UA equivalent type representing the Union.
me>DataType
ValueRank -1 ValueRank of -1 to indicate the Variable contains a scalar value.
References NodeClass BrowseName Description
HasTypeDefintion | VariableType BaseDataVariable | Because this is a simple DataVariable with no more
Type concrete type definition needs, it shall be defined as a
BaseDataVariableType Variable.

9.24.2.3 Example (non-normative)

Let us use the following example to illustrate the mapping of a DDS Union type instance to an OPC UA Variable.

An ElementValue Union with different case members is represented in IDL as follows:

enum ElementValueType {
INT16_VALUE,
INT32_VALUE,
INT64_VALUE

};

union ElementValue switch (ElementValueType) {

case INT16_VALUE:
intlé intl6é_value;

case INT32 VALUE:
int32 int32_value;

OPC UA/DDS Gateway 1.0

77

default:
case INT64_ VALUE:
int64 int64_value;

}i
To represent ElementValue in OPC UA, we shall define an equivalent DataType named ElementValueDataType.
Instances of ElementValue, such as ElementValue my_ value, shall be represented as OPC UA Variables of

ElementValueDataType.

Figure 9.15 shows the OPC UA Nodes and References involved in the mapping.

class ElementValueType /

DataType

DataTypes::ElementValueDataType
Variable
Variables::my_value BrowseName = ElementValueDataType
+DataType
- int16_value: Int16
«Attribute» 1|- int32_value: Int32
int64_value: Int64

switch_field: UInt32

BrowseName = my_value

Figure 9.15: Example of Union Type Mapping to OPC UA

Table 9.22 shows the equivalent ElementValueDataType.

Table 9.22: Example of Union DataType Definition

Name Type Switch Value Description
ElementValueDataType Union N/A This Union represents the DDS
ElementValue union.
intl6_value Int16 1 Case member for INT16_VALUE.
int32_value Int32 2 Case member for INT32_VALUE.
int64_value Int64 3 Case member for both INT64_VALUE

and default!’.

Table 9.23 defines my_value, a Variable representing an Instance of ElementValue.

Table 9.23: Example of Union Variable Definition

Attribute Value Description
BrowseName my_value Name of the my_value instance of the ElementValueDataType.
ValueRank -1 The value is a scalar.
Value Switch Field =2 | The switch field of the Union is 2. Therefore, in this case

"7 Implementers of the OPC UA/DDS Gateway must keep track of both discriminator values internally.

78 OPC UA/DDS Gateway 1.0

int32 value =4

ElementValueDataType is providing an int32_value that is equal to 4.

DataType ElementValueDa | Nodeld of ElementValueDataType.
taType
References NodeClass BrowseName Description
HasTypeDefinition | VariableType BaseDataVariable |Because this is a simple DataVaraible with no more
Type concrete definition needs, it shall be defined as a
BaseDataVariableType.
9.2.5 Collection Types

Collection types represent containers for elements of homogeneous types [DDS-XTYPES]. The DDS Type System

defines three types of containers: Arrays, Sequences, and Maps.

9.2.51 Arrays

9.2.5.1.1

Arrays are fixed-size one- or multi-dimensional collections. That is, all instances of a given array type shall have the

Overview (non-normative)

same number of elements of a certain type.

9.2.5.1.2
9.2.5.1.21

Mapping
Arrays of Primitive and String Types

Arrays of Primitive and String types shall be mapped to Variables of the corresponding OPC UA built-in type as shown

in Figure 9.16. These Variable Nodes may become part of complex VariableTypes or ObjectTypes as a result of the

mappings defined in this specification.

OPC UA/DDS Gateway 1.0

79

80

OPC UA/DDS Gateway 1.0

OPC UA/DDS Gateway 1.0

81

82

OPC UA/DDS Gateway 1.0

class ArrayOfPrimitiveOrStringTypes /

VariableType

VariableTypes::

BaseDataVariableType

+HasTypeDefinition 1

«Reference»

*

Variables::

ArrayOfPrimitiveOrStringType +DataType

BrowseName = <VariableName> | * «Attribute» 1 Intl6
ArrayDimensions = [...]
ValueRank = N>=1

Variable Byte

«enumeration»
DataTypes::
BuiltinTypes

Boolean

ByteString
Double
Float

Int32
Int64
SByte
String
Uintl6
Uint32
Uint64

Figure 9.16: Array of Primitive or String Types Mapping to OPC UA

Table 9.24 formally specifies the representation of an Array of Primitive or String types in OPC UA using a Variable

Node.

Table 9.24: Array of Primitive or String Type Variable Definition

Attribute

Value

Description

BrowseName

<String>

BrowseName shall be a string matching the name of the DDS variable with the
same capitalization.

ValueRank

<UlInt32>>=1

ValueRank shall be equal to the number of dimensions of the DDS array. For
example, if the array has two dimensions, ValueRank shall be 2.

ArrayDimensions

<UInt32[]>

ArrayDimensions array shall have a number of elements equal to the number
of dimensions of the DDS array (i.e., equal to ValueRank). Each element of
the ArrayDimensions array shall specify the size of the corresponding
dimension in the original DDS Array type.

For example, if a DDS array has two dimensions of size 32 and 64,
respectively; ArrayDimensions shall be [32, 64].

DataType

<Nodeld>

DataType shall point to the Nodeld of the OPC UA type equivalent to that of
the array elements.

e Ifthe array is of a DDS Primitive type, DataType shall point to the
Nodeld of the equivalent type according to the rules specified in

OPC UA/DDS Gateway 1.0

83

Table 9.2.

e If'the array is of a String type, DataType shall point to the Nodeld of
the equivalent OPC UA built-in type specified in sub clause 9.2.2.2
(see Table 9.4 for string8 Types and Table 9.5 for Stringlé

types).
References NodeClass BrowseName Description
HasTypeDefinition | VariableType BaseDataVariable | Because this is a simple DataVariable with no more
Type concrete type definition needs, it shall be defined as a
BaseDataVariableType Variable.

9.2.5.1.2.2 Arrays of Enumerated Types

Arrays of Enumerated types shall be mapped to OPC UA Variables of the corresponding Enumeration or OrderedSet
DataType. These Variable Nodes may become part of complex VariableTypes or ObjectTypes as a result of the
mappings defined in this specification.

Figure 9.17 shows the Nodes and References involved in the mapping of an Array of Enumerations to OPC UA.

class ArrayOfEnumerations /

VariableType DataType DataType VariableType

VariableTypes:: DataTypes::EnumerationDataType +HasSubtype DataTypes:: VariableTypes::
BaseDataVariableType Enumeration PropertyType
BrowseName = <EnumerationTypeName>DataType «Reference»
+HasTypeDefinition 1 +DataType 1 1 1
«Reference» «Attribute» «Reference»

Variable Variable

Variables::EnumerationArray +HasProperty Variables::EnumValues

ValueRank = 1
DataType = EnumValueType

* BrowseName = <VariableName>
ArrayDimensions = [...]
ValueRank = N>=1

* «Reference» 1

Figure 9.17: Array of Enumerations Mapping to OPC UA

Table 9.25 formally specifies the representation of an Array of Enumerations in OPC UA using a Variable Node.

Table 9.25: Array of Enumerations Variable Definition

Attribute Value Description

BrowseName <String> BrowseName shall be a string matching the name of the DDS variable
representing the Array of Enumerations with the same capitalization.

ValueRank <UInt32>>=1 | ValueRank shall be equal to the number of dimensions of the DDS array. For
example, if the array has two dimensions, ValueRank shall be 2.

ArrayDimensions | <UInt32[]> ArrayDimensions array shall have a number of elements equal to the number
of dimensions of the DDS array (i.e., equal to ValueRank). Each element of
the ArrayDimensions array shall specify the size of the corresponding
dimension in the original DDS Array Type.

For example, if a DDS array has two dimensions of size 32 and 64,

84 OPC UA/DDS Gateway 1.0

respectively; ArrayDimensions shall be [32, 64].

DataType <Nodeld> DataType shall point to the Nodeld of <EnumerationTypeName>DataType (as
specified in Table 9.7). Variables representing scalar Enumerations and Arrays
of Enumerations share the same DataType.

References NodeClass BrowseName Description

HasTypeDefinition | VariableType BaseDataVariable |Because this is a simple DataVariable with no more

Type concrete definition needs, it shall be defined as a
BaseDataVariableType Variable.

Figure 9.18 shows the Nodes and References involved in the mapping of an Array of Bitmasks to OPC UA.

+HasTypeDefinition

class ArrayOfBitmasks/

VariableType

VariableTypes::
BaseDataVariableType

1

«Reference»

DataType
+HasSubtype

DataType
DataTypes::BitmaskDataType DataTypes::

OptionSet
BrowseName = <BitmaskTypeName>DataType «Reference» P

+DataType 1 1
«Reference»
«Attribute» 1 +HasProperty
Variable
* Variables::OptionSetValues

Variable ValueRank =1

Variables::BitmaskArray DataType = LocalizedText

* BrowseName = <VariableName>

Figure 9.18: Array of Bitmasks Mapping to OPC UA

Table 9.26 formally specifies the representation of an Array of Bitmasks in OPC UA using a Variable Node.

Table 9.26: Array of Bitmasks Variable Definition

Attribute Value Description
BrowseName <String> BrowseName shall be a string matching the name of the DDS variable
representing the Array of Bitmasks with the same capitalization.
ValueRank <Ulnt32>>=1 | ValueRank shall be equal to the number of dimensions of the DDS array. For
example, if the array has two dimensions, ValueRank shall be 2.
ArrayDimensions | <UInt32[]> ArrayDimensions array shall have a number of elements equal to the number

of dimensions of the DDS array (i.e., equal to ValueRank). Each element of
the ArrayDimensions array shall specify the size of the corresponding
dimension in the original DDS Array Type.

For example, if a DDS array has two dimensions of size 32 and 64,
respectively; ArrayDimensions shall be [32, 64].

OPC UA/DDS Gateway 1.0

85

DataType <Nodeld> DataType shall point to the Nodeld of <BitmaskTypeName>DataType (as
specified in Table 9.13). Variables representing scalar Bitmasks and Arrays of
Bitmasks share the same DataType.

References NodeClass BrowseName Description
HasTypeDefinition | VariableType BaseDataVariable |Because this is a simple DataVariable with no more
Type concrete definition needs, it shall be defined as a
BaseDataVariableType Variable

9.2.5.1.2.3 Arrays of Structures

Arrays of Structures shall be mapped to OPC UA Variable Nodes representing fixed-size one- or multi-dimensional
arrays of the equivalent Structure DataType. These Variable Nodes may become part of complex VariableTypes or
ObjectTypes as a result of the mappings defined in this specification.

Figure 9.19 shows the Nodes and References involved in the mapping of an Array of Structures to OPC UA.

class ArrayOfStructures /
- fE— +HasSubtype DataType
VariableType vp DataTypes::
VariableTypes:: DataTypes::StructureDataType «Reference» Structure
BaseDataVariableType
e BrowseName = <StructureTypeName>DataType | +DataType
1
+HasTypeDefinition 1 +DataType 1
«Attribute»
«Attribute»
«Reference» * *
Variable VariableType
Variables::StructureArray VariableTypes::StructureVariableType
* BrowseName = <VariableName> BrowseName = <StructureTypeName>VariableType
ArrayDimensions = [...] ValueRank = -1
ValueRank = N>=1
1 +HasTypeDefinition 1 1
«Reference» «Reference»
«Refefence»
*
+HasOrderedComponent 0.* +HasComponent | *
Variable Variable
Variables::Structure +HasComponent Variables::StructureMember
BrowseName = <VariableName> |1 ¢Reference» * BrowseName = <MemberName>
ValueRank = -1

Figure 9.19: Array of Structures Mapping to OPC UA

Variable Nodes representing an Array of Structures shall be constructed as follows'®:

18

This mapping is based on the guidelines for modeling arrays of complex variables defined in clause A.6 of [OPCUA-05].

86 OPC UA/DDS Gateway 1.0

¢ The DataType of the Variable shall be the equivalent OPC UA Structure DataType specified in Table 9.15.
Thus, Variables representing scalar Structures and Arrays of Structures share the same DataType:
<StructureTypeName>DataType.

e The Value Attribute of the Variable shall be capable of storing a fix-length one- or multi-dimensional arrays of
<StructureTypeName>DataType. Therefore, the Variable shall be instantiated with ValueRank 1 or more and
ArrayDimensions with the equivalent number of elements specifying each dimension’s length. This
configuration enables OPC UA Clients capable of deserializing <StructureTypeName>DataType to read the

whole array in one operation.

* The Variable shall define a set of HasOrderedComponent References to Variables representing each element of
the array. These Variables shall be defined as instances of <StructureTypeName>VariableType (as specified in
Table 9.16) and shall be named according to the following convention: <StructureTypeName> <index>;
where <StructureTypeName> is the name of the original DDS Structure type and <index> is the position of the
element in the array. If the array is multi-dimensional <index> will represent the position in each dimension
separated by underscores (e.g., for position [1][2][3] <index> will be 1 _2 3 and the Structure’s name
<StructureTypeName> 1 2 3). This mapping enables generic OPC UA Clients incapable of deserializing
<StructureTypeName>DataType to process every element of the Array by recursively following the
HasComponent References specified by <StructureTypeName>VariableType to provide separate access to the
Structure members.

Table 9.27 formally specifies the representation of an Array of Structures in OPC UA using a Variable Node.

Table 9.27: Array of Structures Variable Definition

Attribute Value Description

BrowseName <String> BrowseName shall be a string matching the name of the DDS variable
representing the Array of Structures with the same capitalization.

ValueRank <UlInt32>>=1 | ValueRank shall be equal to the number of dimensions of the DDS array. For
example, if the array has two dimensions, ValueRank shall be 2.

ArrayDimensions | <UInt32[]> ArrayDimensions array shall have a number of elements equal to the number
of dimensions of the DDS array (i.e., equal to ValueRank). Each element of
the ArrayDimensions array shall specify the size of the corresponding
dimension in the original DDS Array Type.
For example, if a DDS array has two dimensions of size 32 and 64,
respectively; ArrayDimensions shall be [32, 64].

DataType <Nodeld> DataType shall point to the Nodeld of <StructureTypeName>DataType (as
specified in Table 9.15). Variables representing scalar Structures and Arrays of
Structures share the same DataType.

References NodeClass BrowseName DataType TypeDefinition | ModelingRule

HasTypeDefinition | VariableType BaseDataVariable | BaseDataType BaseVariableType | Mandatory
Type

HasOrderedCompo | Variable <StructureTypeNa | <StructureTypeNa | <StructureTypeNa | Mandatory

nent me> <index> me>DataType me>VariableType

(as specified in
Table 9.16)
OPC UA/DDS Gateway 1.0 87

9.2.5.1.2.4 Arrays of Union Types

Arrays of Unions shall be mapped to OPC UA Variables of the corresponding Union DataType. These Variable Nodes
may become part of complex VariableTypes or ObjectTypes as a result of the mappings defined in this specification.

88 OPC UA/DDS Gateway 1.0

Figure 9.20 shows the Nodes and References involved in the mapping of an Array of Unions to OPC UA.

class ArrayOfUnions

+HasTypeDefinition

VariableType
VariableTypes::
BaseDataVariableType

«Refergnce»

+HasSubtype
Variable DataType
Variables::UnionArray DataTypes::UnionDataType
+DataType
= i BrowseName = <UnionTypeName>DataType
BrowseName = <VariableName> «Attribute» 1 yp! yp

ArrayDimensions = [...]
ValueRank = N>=1

DataType
DataTypes::Union

«Reference»

Figure 9.20: Array of Unions Mapping to OPC UA

Table 9.28 formally specifies the representation of an Array of Union types in OPC UA using a Variable Node.

Table 9.28: Array of Unions Variable Definition

Attribute Value Description

BrowseName <String> BrowseName shall be a string matching the name of the DDS variable
representing the Array of Unions with the same capitalization.

ValueRank <UlInt32>>=1 | ValueRank shall be equal to the number of dimensions of the DDS Array. For
example, if the array has two dimensions, ValueRank shall be 2.

ArrayDimensions | <UInt32[]> The ArrayDimensions array shall have a number of elements equal to the
number of dimensions of the DDS Array (i.e., equal to ValueRank). Each
element of the ArrayDimensions array shall specify the size of the
corresponding dimension in the original DDS Array type.
For example, if a DDS Array has two dimensions of size 32 and 64,
respectively; ArrayDimensions shall be [32, 64].

DataType <Nodeld> DataType shall point to the Nodeld of <UnionTypeName>DataType (as
specified in Table 9.20). Variables representing scalar Unions and Arrays of
Unions share the same DataType.

References NodeClass BrowseName Description
HasTypeDefinition | VariableType BaseDataVariable | Because this is a simple DataVariable with no more

Type concrete definition needs, it shall be defined as a
BaseDataVariableType Variable.

OPC UA/DDS Gateway 1.0

89

9.2.5.1.2.5 Arrays of Collection Types

Arrays of Collection Types shall be mapped to Object Nodes with HasOrderedComponent References to Variables or
Objects representing instances of the associated Collection Type as shown in Figure 9.21. These Objects may become
part of complex VariableTypes or ObjectTypes as a result of the mappings specified in this chapter.

class ArrayOfCollections

Object Variable

iects::, i . . Objects representing Arrays of Collection Types may refer
Objects::ArrayOfCollectionTypes +HasOrderedComponent Variables::Collection) P € Array yp Y

to a set of either Variables Nodes or Object Nodes. The
BrowseName = <VariableName> |4 «Reference» 0. BrowseName = <Name>_<Index> NodeClass and TypeDefinition of these Nodes depend on
the representation of the instances of the specific
collection type the Array contains in OPC UA.

Because Arrays are a homogeneous collections, all
components of an Object Node representing an Array of
Object Collection Types shall have the same NodeClass and
+HasOrderedComponent Objects::Collection TypeDefinition. Therefore, only one of the associations in

this diagram may be instantiated at the same time.
«Reference» 0.* BrowseName = <Name>_<Index>

Figure 9.21: Array of Collection Types Mapping to OPC UA

Table 9.29 formally specifies the representation of an Array of Collection types in OPC UA using an Object Node.

Table 9.29: Array of Collection Types Object Definition

Attribute Value Description
BrowseName <ArrayVariableNa | Name of the instance of an Array of Collection Types the Object represents.
me>
IsAbstract False Objects representing an Array of Collection Types are never abstract.
References NodeClass BrowseName DataType TypeDefinition | ModelingRule

Subtype of BaseObjectType.

HasOrderedComp | Variable or Object | <ArrayVariableNa | <Nodeld> <CollectionTypeE | Mandatory
onent me> <index> quivalentTypeDef
inition>

Table 9.30 defines the structure of a Variable or Object Node representing a Collection within the Array of Collections.

Table 9.30: Collection Variable or Object Definition — Arrays of Collections

Attribute Value Description
BrowseName <ArrayName> <i | The BrowseName is composed of the <ArrayVariableName> and an <index>
ndex> suffix indicating the position of the Collection element in the Array.

Attributes of the Variable or Object Node representing the Collection.

90 OPC UA/DDS Gateway 1.0

References

NodeClass

BrowseName DataType TypeDefinition | ModelingRule

9.2.5.1.3

Example (non-normative)

Let us use the following example to illustrate the mapping of an Array type to an OPC UA Jariable.

An array of 32-bit integers, member of a Structure type, is represented in IDL as follows:

struct StructuredType {
int32 my_array[4];

};

To represent my_array in OPC UA, we shall create a Variable following the rules specified in Table 9.24. Table 9.31
shows the definition of this Variable.

Table 9.31: Example Array Variable Definition

Attribute Value Description
BrowseName my_array BrowseName matches the name of the original DDS variable: my array.
ValueRank 1 ValueRank of 1 to indicate the Variable contains a one-dimensional array.
ArrayDimensions | [4] ArrayDimensions has a single element with value 4 to indicate the array has
one dimension with 4 elements.
DataType Int32 Nodeld of Int32, the equivalent type for the elements of the DDS Array.
Value [<Int32>, A valid Array, containing four 32-bit integer values. When the Variable is used
<Int32>, in the definition of a complex VariableType or ObjectType, Value may be
<Int32>, overwritten by the instance of the corresponding /nstance Type.
<Int32>]
References NodeClass BrowseName Description
HasTypeDefinition | VariableType BaseDataVariable |Because this is a simple DataVariable with no more
Type concrete type definition needs, it shall be defined as a
BaseDataVariableType Variable.
9.2.5.2 Sequences
9.2.5.21 Overview (non-normative)

Sequence types are variable-size one-dimensional collections. That is, different instances of a given sequence type may
have a different number of elements of a certain type. Sequences may be defined as bounded or unbounded, depending
on whether the maximum number of elements that the sequence may contain is specified.

9.2.5.2.2
9.2.5.2.21

Mapping

Sequences of Primitive and String Types

Sequences of Primitive and String types shall be mapped to Variables of the corresponding OPC UA built-in type as
show in Figure 9.22. These Variable Nodes may become part of complex VariableTypes or ObjectTypes as a result of
the mappings defined in this specification.

OPC UA/DDS Gateway 1.0

91

92

OPC UA/DDS Gateway 1.0

class SequenceOfPrimitiveOrStringTypes /

VariableType

VariableTypes::
BaseDataVariableType

+HasTypeDefinition 1

«Reference»
*

Variable

Variables::
SequenceOfPrimitiveOrStringTypes +DataType

BrowseName = <VariableName> |* «Attribute» 1
ArrayDimensions = [0]
ValueRank =1

«enumeration»
DataTypes::
BuiltinTypes

Boolean
Byte
ByteString
Double
Float
Int16
Int32
Int64

SByte
String
Uintl6
Uint32
Uint64

Figure 9.22: Sequence of Primitive or String Types Mapping to OPC UA

Table 9.32 formally specifies the representation of a Sequence of Primitive or String types in OPC UA using a Variable

Node.

Table 9.32: Sequence of Primitive or String Types Variable Definition

Attribute Value Description

BrowseName <String> BrowseName shall be a string matching the name of the DDS variable with the
same capitalization.

ValueRank 1 ValueRank shall be 1, indicating that the sequence has one dimension.

ArrayDimensions | [0] Sequences are one-dimensional arrays of variable length. Thus, the
ArrayDimensions array shall include a single element of value 0 (which
indicates the only dimension has variable length).

DataType <Nodeld> DataType shall point to the Nodeld of the OPC UA type equivalent to that of

the sequence elements:

e If the sequence is of a DDS Primitive type, DataType shall point to
the Nodeld of the equivalent type as specified in Table 9.2.

* If the sequence is of a String type, DataType shall point to the Nodeld
of the equivalent OPC UA built-in type as specified in sub clause
9.2.2.2 (see Table 9.4 for string8 Types and Table 9.5 for

OPC UA/DDS Gateway 1.0

93

Stringlé Types).
References NodeClass BrowseName Description
HasTypeDefinition | VariableType BaseDataVariable | Because this is a simple DataVariable with no more
Type concrete type definition needs, it shall be defined as a
BaseDataVariableType Variable.
9.2.5.2.2.2 Sequences of Enumerated Types

Sequences of Enumerated types shall be mapped to OPC UA Variables of the corresponding Enumeration or
OrderedSet DataType. These Variable Nodes may become part of complex VariableTypes or ObjectTypes as a result of
the mappings defined in this specification.

Figure 9.23 shows the Nodes and References involved in the mapping of Sequences of Enumerations to OPC UA.

+HasTypeDefinition 1

«Reference»

class SequenceOfEnumeraﬁons/

VariableType

VariableTypes::
BaseDataVariableType

Variables::EnumerationSequence

* BrowseName = <VariableName>
ArrayDimensions = [0]
ValueRank =1

DataType DataType VariableType
DataTypes::EnumerationDataType +HasSubtype DataTypes:: VariableTypes::
Enumeration PropertyType
BrowseName = <EnumerationTypeName>DataType «Reference»
+DataType 1 1 1

«Attribute» «Reference»

Variable Variable

+HasProperty Variables::EnumValues
ValueRank =1

«Reference» 1
* DataType = EnumValueType

Figure 9.23: Sequence of Enumerations Mapping to OPC UA

Table 9.33 formally specifies the representation of a Sequence of Enumerations in OPC UA as a Variable Node.

Table 9.33: Sequence of Enumerations Variable Definition

Attribute Value Description

BrowseName <String> BrowseName shall be a string matching the name of the DDS variable
representing the Sequence of Enumerations with the same capitalization.

ValueRank 1 ValueRank shall be 1, indicating that the sequence has one dimension.

ArrayDimensions | [0] Sequences are one-dimensional arrays of variable length. Thus, the
ArrayDimensions array shall include a single element of value 0 (which
indicates the only dimension has variable length).

DataType <Nodeld> DataType shall point to the Nodeld of <EnumerationTypeName>DataType.
Variables representing scalar Enumerations and Sequences of Enumerations
share the same DataType.

References NodeClass BrowseName Description

HasTypeDefinition | VariableType BaseDataVariable | Because this is a simple DataVariable with no more
Type concrete definition needs, it shall be defined as a

94

OPC UA/DDS Gateway 1.0

BaseDataVariableType Variable.

Figure 9.24 shows the Nodes and References involved in the mapping of a Sequences of Bitmasks to OPC UA.

class SequenceOfBitmasks/

VariableType DataType DataType
VariableTypes:: DataTypes::BitmaskDataType +HasSubtype DataTypes::
BaseDataVariableType OptionSet
P BrowseName = <BitmaskTypeName>DataType «Reference» P
+HasTypeDefinition 1 +DataType 1 1
«Reference»
«Refergnce» «Attribute» 1 +HasProperty
Variable Variable
Variables::BitmaskSequence Variables::OptionSetValues
% BrowseName = <VariableName> |, ValueRank = 1
ArrayDimensions = [0] DataType = LocalizedText

ValueRank = 1

Figure 9.24: Sequence of Bitmasks Variable Definition

Table 9.34 formally specifies the representation of a Sequence of Bitmasks in OPC UA as a Variable Node.

Table 9.34: Sequence of Bitmasks Variable Definition

Attribute Value Description

BrowseName <String> BrowseName shall be a string matching the name of the DDS variable
representing the Sequence of Bitmasks with the same capitalization.

ValueRank 1 ValueRank shall be 1, indicating that the sequence has one dimension.

ArrayDimensions | [0] Sequences are one-dimensional arrays of variable length. Thus, the
ArrayDimensions array shall include a single element of value 0 (which
indicates the only dimension has variable length).

DataType <Nodeld> DataType shall point to the Nodeld of <BitmaskTypeName>DataType (as
specified in Table 9.13). Variables representing scalar Bitmasks and
Sequences of Bitmasks share the same DataType.

References NodeClass BrowseName Description
HasTypeDefinition | VariableType BaseDataVariable | Because this is a simple DataVariable with no more
Type concrete definition needs, it shall be defined as a
BaseDataVariableType Variable

9.2.5.2.2.3 Sequences of Structures

Sequence of Structures shall be mapped to OPC UA Variable Nodes representing variable-length one-dimensional
arrays of the equivalent Structure DataType. These Variable Nodes may become part of complex VariableTypes or
ObjectTypes as a result of the mappings specified in this chapter.

OPC UA/DDS Gateway 1.0

95

Figure 9.25 shows the Nodes and References involved in the mapping of a Sequence of Structure types to OPC UA.

class SequenceOfStructures /

+HasSubtype DataType
DataTypes::
Structure

VariableType DataType

VariableTypes:: DataTypes::StructureDataType «Reference»
BaseDataVariableType
BrowseName = <StructureTypeName>DataType | +DataType

1
+HasTypeDefinition 1 +DataType 1

«Attribute»
«Attribute»

«Referpnce» *

Variab VariableType
ariable VariableTypes::StructureVariableType
Variables::StructureSequence

- BrowseName = <StructureTypeName>VariableType
¥ BrowseName = <VariableName>

ValueRank = -1
ArrayDimensions = [0]
ValueRank = 1
+HasTypeDefinition 1 1
1
«Reference»
«Referpnce» «Reference»
*
+HasOrderedComponent 0.* +HasComponent *
Variable Variable
Variables::Structure +HasComponent Variables::StructureMember
BrowseName = <VariableName> |1 «Reference» * BrowseName = <MemberName>
ValueRank = -1

Figure 9.25: Sequence of Structures Mapping to OPC UA

Variable Nodes representing a Sequence of Structures shall be constructed as follows:

e The DataType of the Variable shall be the equivalent OPC UA Structure Type specified in Table 9.15. Thus,
Variables representing scalar Structures and Sequences of Structures share the same DataType:
<StructureTypeName>DataType.

e The Value Attribute of the Variable shall be capable of storing a variable-length one-dimensional array of
<StructureTypeName>DataType. Therefore, the Variable shall be instantiated with ValueRank equal to 1, and
ArrayDimensions equal to [0]. This configuration enables OPC UA Clients capable of deserializing
<StructureTypeName>DataType to read the whole array in one operation.

* The Variable shall define a set of HasOrderedComponent References to Variables representing each element of
the sequence. These Variables shall be defined as instances of <StructureTypeName>VariableType (as specified
in Table 9.16) and shall be named according to the following convention: <StructureTypeName> <index>,
where <StructureTypeName> is the name of the original Structure Type and <index> is the position of the
element in the sequence. This mapping enables generic OPC UA Clients incapable of deserializing
<StructureTypeName>DataType to process every element of the Sequence by recursively following the
HasComponent References specified by <StructureTypeName>VariableType to provide separate access to the
Structure members.

Table 9.35 formally specifies the representation of a Sequence of Structures in OPC UA using a Variable Node.

Table 9.35: Sequence of Structures Variable Definition

Attribute Value Description

96 OPC UA/DDS Gateway 1.0

BrowseName <String> BrowseName shall be a string matching the name of the DDS variable
representing the Sequence of Structure types with the same capitalization.
ValueRank 1 ValueRank shall be 1, indicating that the sequence has one dimension.
ArrayDimensions | [0] Sequences are one-dimensional arrays of variable length. Thus, the
ArrayDimensions array shall include a single element of value 0 (which
indicates the only dimension has variable length).
DataType <StructureTypeNa | DataType shall point to the Nodeld of <StructureTypeName>DataType (as
me>DataType specified in Table 9.15). Variables representing scalar Structures and
Sequences of Structures share the same DataType.
References NodeClass BrowseName DataType TypeDefinition | ModelingRule
HasTypeDefinitio | VariableType BaseDataVariable | BaseDataType BaseVariableType | Mandatory
n Type
HasOrderedComp | Variable <StructureTypeNa | <StructureTypeNa | <StructureTypeNa | Mandatory
onent me> <index> me>DataType me>VariableType
(as specified in
Table 9.16)
9.2.5.2.2.4 Sequences of Unions

Sequences of Unions shall be mapped to OPC UA Variables of the corresponding Union Type. These Variable Nodes
may become part of complex VariableTypes or ObjectTypes as a result of the mappings defined in this specification.

Figure 9.26 shows the Nodes and References involved in the mapping of Sequences of Unions to OPC UA.

+HasTypeDefinition

class SequenceOfUnions

VariableType

VariableTypes::
BaseDataVariableType

«Reference»

Variable

Variables::UnionSequence

BrowseName = <VariableName>

ArrayDimensions = [0]

ValueRank =1

+DataType

«Attribute» 1

DataType
DataTypes::Union

DataType

DataTypes::UnionDataType

BrowseName = <UnionTypeName>DataType

+HasSubtype

«Reference»

Figure 9.26: Sequence of Unions Mapping to OPC UA

Table 9.36 formally specifies the representation of a Sequence of Union types in OPC UA as a Variable Node.

Table 9.36: Sequence of Unions Variable Definition

Attribute

Value

Description

OPC UA/DDS Gateway 1.0

97

BrowseName <String> BrowseName shall be a string matching the name of the DDS variable
representing the Sequence of Unions with the same capitalization.
ValueRank 1 ValueRank shall be 1, indicating that the sequence has one dimension.

ArrayDimensions | [0] Sequences are one-dimensional arrays of variable length. Thus, the
ArrayDimensions array shall include a single element of value 0 (which

indicates the only dimension has variable length).

DataType <Nodeld> DataType shall point to the Nodeld of <UnionTypeName>DataType.
Variables representing scalar Unions and Sequences of Unions share the same
DataType.
References NodeClass BrowseName Description

HasTypeDefinition | VariableType BaseDataVariable | Because this is a simple DataVaraible with no more
Type concrete definition needs, it shall be defined as

BaseDataVariableType Variable.

9.2.5.2.2.5 Sequences of Collection Types

Sequences of Collection Types shall be mapped to Object Nodes with HasOrderedComponent References to Variables
or Objects representing instances of the associated Collection Type as shown in Figure 9.27. These Objects may
become part of complex VariableTypes or ObjectTypes as a result of the mappings defined in this specification.

class SequenceOfCollections /

Object Variable

+HasOrderedComponent Objects representing Sequences of Collection Types

may refer to a set of either Variables Nodes or Object
Nodes. The NodeClass and TypeDefinition of these
Nodes depend on the representation of the
instances of the specific collection type the

1 Sequence contains in OPC UA.

Objects::SequenceOfCollectionTypes Variables::Collection

BrowseName = <VariableName> |1 «Reference» 0.* BrowseName = <Name>_<Index>

Because Sequences are a homogeneous collections,

Object

+HasOrderedComponent Objects::Collection

«Reference» 0.*% BrowseName = <Name>_<Index>

all components of an Object Node representing a
Sequence of Collection Types shall have the same
NodeClass and TypeDefinition. Therefore, only one of
the associations in this diagram may be instantiated
at the same time.

Figure 9.27: Sequence of Collection Types Mapping to OPC UA

Table 9.37 formally specifies the representation of a Sequence of Collection Types in OPC UA using an Object Node.

Table 9.37: Sequence of Collection Types Object Definition

Attribute Value Description
BrowseName <SequenceName> | Name of the instance a Sequence of Collection Types the Object represents.
IsAbstract False Objects representing Sequence of Collection Types are never abstract.
References NodeClass BrowseName DataType TypeDefinition | ModelingRule
98 OPC UA/DDS Gateway 1.0

Subtype of BaseObjectType.

HasOrderedComp | Variable or Object | <SequenceName> | <Nodeld> <CollectionTypeE | Mandatory
onent _<index> quivalentTypeDef
inition>

Table 9.38 defines the structure of a Variable or Object Node representing a specific Collection within the Sequence of
Collections.

Table 9.38: Collection Variable or Object Definition — Sequences of Collections

Attribute Value Description
BrowseName <SequenceName> | The BrowseName is composed of the <SequenceName> and an <index>
_<index> indicating the position of the Collection element in the Sequence.

Attributes of the Variable or Object Node representing the Collection.

References NodeClass BrowseName DataType TypeDefinition | ModelingRule

9.2.5.2.3 Example (non-normative)
Let us use the following example to illustrate the mapping of a Sequence type to an OPC UA Variable.

An unbounded Sequence of 32-bit integers, member of a Structure type, is represented in IDL as follows:

struct StructuredType {
sequence<int32> my_ sequence;

};

To represent my _sequence, we shall create a Variable following the rules specified in Table 9.32. Table 9.39 shows the
definition of this Variable.

Table 9.39: Example of Sequence Variable Definition

Attribute Value Description
BrowseName my_sequence BrowseName matches the name of the original DDS variable: my_sequence.
ValueRank 1 ValueRank of 1 to indicate the Variable contains a one-dimensional array (i.e.,

a sequence).

ArrayDimensions | [0] ArrayDimensions has a single element with value zero to indicate that the only
dimension has variable length.

DataType Int32 Nodeld of Int32, the equivalent type for the elements of the DDS Sequence.
Value [<Int32>, A valid Sequence, containing a three 32-bit integer values. When the Variable
<Int32>, is used in the definition of a complex VariableType or ObjectType, Value may
<Int32>] be overwritten by the instance of the corresponding Instance type.
References NodeClass BrowseName Description

OPC UA/DDS Gateway 1.0 99

HasTypeDefinition | VariableType BaseDataVariable | Because this is a simple DataVariable with no more
Type concrete type definition needs, it shall be defined as a
BaseDataVariableType Variable.

9.2.5.3 Maps

9.2.5.3.1 Overview (non-normative)

Maps are variable-size associative collections. They provide a simple way of organizing a homogeneous collection of
elements by an associated key. In practice, a map can be seen as sequence of structured types containing a key-value
pair. The IDL representation of such implementation would be the following:

struct MapEntry ({
<KeyType> key;
<ValueType> value;
}i

sequence<MapEntry> MapType; // sequence<MapEntry, <bound>> for bounded maps

With this approach, an application seeking to retrieve a certain value must first search for the appropriate key value in
the sequence of map entries, and then access the value member of the structure.

[DDS-XTYPES] specifies in sub clause 7.2.2.4.3 that “implementers (...) need only support key elements of signed and
unsigned integer types and of narrow and wide string types” and “the behavior of maps with other key element types is
undefined and may not be portable.” As a result, this specification only addresses the mapping of Map types with
integer and string key types.

9.2.5.3.2 Mapping

Maps shall be represented as Object Nodes with HasComponent References to Variable or Object Nodes representing
the associated MapEntries as shown in Figure 9.28. Map Objects may become part of complex VariableTypes or
ObjectTypes as a result of the mappings defined in this specification.

class MapTypes /

Object Variable
Objects::Map +HasComponent Variables::MapEntry Map Objects may refer to a set of either Variables Nodes
or Object Nodes. The NodeClass and TypeDefinition of
BrowseName = <VariableName> |1 ~«Reference» o_ BrowseName = <EntryKey> these Nodes depend on the representation of the value
element type of the MapEntry in OPC UA.
! Because maps are a homogeneous collection of
MapEntries, all components of an Object Node
Object representing a MapEntry shall have the same NodeClass
+HasComponent R .
Objects::MapEntry and TypeDefinition. Therefore, only one of the
«Reference» 0.* associations in this diagram may be instantiated at the

BrowseName = <EntryKey> same time.

Figure 9.28: Map Types Mapping to OPC UA

MapEntry Nodes shall be modeled according to the mapping rules specified in this chapter for its value element type
(i.e., <ValueType> in the MapEntry definition of sub clause 9.2.5.3.1). Because those mapping rules associate
instances of DDS types to either Objects or Variables depending on the type, a MapEntry may be represented as an
Object or a Variable Node.

100 OPC UA/DDS Gateway 1.0

The BrowseName of each map MapEntry shall be the string representation of its key element (i.e., the string
representation of the specific instance of <KeyType> in the MapEntry definition of sub clause 9.2.5.3.1).

Table 9.40 defines the structure Object Nodes representing instances of a DDS Map.

Table 9.40: Map Object Definition

Attribute Value Description
BrowseName <MapName> Name of the instance of Map type the Object represents.
IsAbstract False Objects representing DDS Maps are never abstract.
References NodeClass BrowseName DataType TypeDefinition | ModelingRule

Subtype of the BaseObjectType.

HasComponent Variable or Object | <MapEntryKeyStr | <Nodeld> <MapEntryValue | Mandatory
ingRepresentation EquivalentTypeD
> efinition>

Table 9.41 defines the structure of a Variable or Object Node representing a specific MapEntry.

Table 9.41: MapEntry Variable or Object Definition

Attribute Value Description
BrowseName <MapEntryKeyStr | String representation of the key element of the MapEntry.
ingRepresentation
>
Attributes of the Variable or Object Nodes representing the MapEntry.
References NodeClass BrowseName DataType TypeDefinition | ModelingRule
9.2.5.3.3 Example (non-normative)

Let us use the following example to illustrate the mapping of a Map type to an OPC UA Object.

A Map with String keys and Int32 values, member of a Structure type, is represented in IDL as follows:

struct StructuredType {

map<string, int32> my map;

};

Let us also assume that my map has been instantiated and contains two MapEntries:

my map [“Manuela”]

57;

my map[“JoseMaria”] = 51;

As specified above, to represent my map we need to:

1. Create two Nodes of Variable or Object NodeClass to represent the two existing MapEntries (see Table 9.41).
Since in this case the value element type of my map is int32, MapEntries shall be represented as OPC UA

OPC UA/DDS Gateway 1.0

101

Variables of DataType Int32 (see sub clause 9.2.1.2). The BrowseName of each Variable shall be the string
representation of each MapEntry’s key element; i.e.: “Manuela” and “JoseMaria”.

2. Instantiate an Object Node to represent the Map (see Table 9.40).

Figure 9.29 shows the OPC UA Nodes and References involved in the mapping.

class MyMapType /

+HasComponent 1 1

Variables::Manuela

BrowseName = Manuela

Value = 57
ValueRank = -1
DataType = Int32

Variable

Object
Objects::my_map

BrowseName = my_map

«Referénce» «Reference»

+HasComponent

Variable
Variables::JoseMaria

BrowseName = JoseMaria
Value =51

ValueRank = -1

DataType = Int32

Figure 9.29: Example of Map Type Mapping to OPC UA

Table 9.42 and Table 9.43 show the definition for the Variables representing the different MapEntries in my_map:

Table 9.42: Example of MapEntry Variable Definition — First MapEntry

Attribute Value Description
BrowseName Manuela BrowseName is the string representation of the key element of the MapEntry.
ValueRank -1 ValueRank of -1 to indicate the Variable contains a scalar value.
DataType Int32 Nodeld of Int32, the type equivalent to a DDS 32-bit integer (which is the
type of the value element of the MapEntry).
Value 57 Value of the MapEntry.
References NodeClass BrowseName Description
HasTypeDefinition | VariableType BaseDataVariable | Because this is a simple DataVariable with no more

concrete type definition needs, it shall be defined as a
BaseDataVariableType Variable.

Type

Table 9.43: Example

of MapEntry Variable Definition — Second MapEntry

Attribute

Value

Description

102

OPC UA/DDS Gateway 1.0

BrowseName JoseMaria BrowseName is the string representation of the key element of the MapEntry.

ValueRank -1 ValueRank of -1 to indicate the Variable contains a scalar value.

DataType Int32 Nodeld of Int32, the type equivalent to a DDS 32-bit integer (which is the
type of the value element of the MapFEntry).

Value 51 Value of the MapEntry.

References NodeClass BrowseName Description

HasTypeDefinition | VariableType BaseDataVariable |Because this is a simple DataVariable with no more

Type concrete type definition needs, it shall be defined as a
BaseDataVariableType Variable.

Table 9.44 shows the definition of the Object Node representing my map.

Table 9.44: Example of Map Object Definition

Attribute Value Description
BrowseName my_map Name of the instance of a Map this Object represents.
IsAbstract False This Object is not abstract.
References NodeClass BrowseName Description

HasTypeDefinition | ObjectType BaseObjectType |Because this is a simple Object with no more concrete
type definition needs, it shall be defined as an Object of
BaseObjectType.

HasComponent Variable Manuela Reference to one of the MapEntries.

HasComponent Variable JoseMaria Reference to one of the MapEntries.

9.2.6 Nested Types

9.2.6.1

Overview (non-normative)

Nested Types are data types that appear only as members of other types. In IDL, these are documented with the
@nested annotation, which indicates the IDL compiler that no DataWriter, DataReader, or TypeSupport classes shall
be generated for the annotated types.

9.2.6.2

Mapping

Implementations of this specification generating DataWriter, DataReader, or TypeSupport classes based on type
representation languages supporting the @nested (e.g., IDL and XML) shall not generate such classes for types marked

as nested either.

Other than that, types marked as @nested shall be mapped according to the general mapping rules specified in this

chapter.

OPC UA/DDS Gateway 1.0

103

9.2.7 Alias Types
9.2.71 Overview (non-normative)

Alias types—also referred to as typedefs from their representation in IDL—introduce an additional name for an existing
type. The purpose of Alias types is to provide a more human-readable name to help understand the semantics and uses
of a given type.

9.2.7.2 Mapping

The alternative name specified by the Alias types shall be ignored when mapping DDS types to OPC UA. That is, Alias
types and instances of Alias types shall be mapped as if the alternative type name were the original type name.

9.2.7.3 Example (non-normative)

An array of Entero32—an alias of Int32—represented in IDL as follows:

typedef int32 Entero32;
sequence<Entero32> my_sequence;

Shall be mapped, as specified in 9.2.5.2, to the OPC UA Variable described in Table 9.39. That is, it shall be mapped as
my_sequence were simply defined as a sequence of int32:

sequence<int32> my_ sequence;

9.2.8 Keyed Types

As specified in [DDS-XTYPES)], structure members and union discriminators can be marked as key members. These
members determine the Instance of a Topic a data sample belongs to.

To enable the Instance creation lifecycle specified in sub clause 9.3.4.6:

e The WriteMask Attribute of Variable Nodes representing key members of a structures shall be undefined (i.e.,
set to 0).

¢ The union discriminator is not directly exposed in the AddressSpace of the OPC UA Server; therefore, a
mapping for key union discriminators is unnecessary.

9.3 DDS Global Data Space Mapping
This clause defines a complete mapping of the DDS Global Data Space to OPC UA.
9.3.1 Overview (non-normative)

9.3.11 DDS Global Data Space and DDS

As explained in clause 7.2.1, the DDS data model defines a logical Global Data Space where Publisher and Subscriber
applications send and receive data objects.

The DDS Global Data Space is divided into different logical portions named Domains. A Domain establishes a virtual
network that links all the applications that share the same Domainld; therefore, it isolates DDS applications from
applications running on different Domains [DDS].

104 OPC UA/DDS Gateway 1.0

DDS applications exchange data objects in the form of Topics, which have an associated type. Topics may have
different Instances, which are identified by a key built upon all the key members of its type. If no key is provided, the
data set associated with a Topic is restricted to a single instance [DDS].

To provide applications with the necessary means to participate in the Global Data Space and perform operations in it
DDS defines a complete set of Entities:

* DomainParticipants allow applications to join a certain Domain; create Topics, Publishers and Subscribers;
and register types.

* Publishers allow applications to create DataWriters.
e Subscribers allow applications to create DataReaders
e DataWriters allow applications to publish (write) data.

* DataReaders allow applications to subscribe (read) data.

Figure 7.2 describes these entities DDS Entities and their relationship with the rest of objects involved in the DDS data-
centric publish-subscribe model.

9.3.1.2 OPC UA Mapping Alternatives

There are different approaches to mapping the DDS Global Data Space to OPC UA. In general, we can categorize these
in:

e Approaches mapping DDS Entities to OPC UA Objects with Methods and Variables similar to those specified
by the DDS PIM. In other words, approaches that create an OPC UA PSM for DDS.

e Approaches mapping resources in the DDS Global Data Space such as Domains, Topics, and Instances to OPC
UA Objects and Variables. These approaches rely on OPC UA Services to handle the operations that are usually
performed by DDS Entities.

Each approach has advantages and disadvantages. On the one hand, mapping DDS Entities to OPC UA leverages the
already existing DDS PIM that has been successfully ported to IDL, C++, and Java; but on the other hand, relying on
custom Methods to perform operations equivalent to those provided by Services seems unnatural to OPC UA users and
developers. Therefore, this specification has chosen the latter approach. It defines an OPC UA information model to
represent the DDS Global Data Space, which simplifies interactions between OPC UA Clients and DDS applications by
re-using the mechanisms that are most natural for them.

9.3.2 Representing DDS Domains in OPC UA

Figure 9.30 shows the Nodes and References involved in the mapping of DDS Domains to OPC UA.

OPC UA/DDS Gateway 1.0 105

class Domain /

+HasTypeDefinition

+HasTypeDefinition

ObjectType

ObjectTypes::
BaseObjectType

1

«Reference»

ObjectType

ObjectTypes::
DomainType

«Reference»

Object

Domain

BrowseName = Domain_<Domainld>

VariableType

VariableTypes::
PropertyType

+HasTypeDefinition 1

«Reference»
Variable
+HasProperty Variables::Domainid
«Reference» 1 BrowseName = Domainld
ValueRank = -1
DataType = Int32
+HasProperty 1
«Reference» Object
Topic
+HasComponent BrowseName = <TopicName>
«Reference» 0.%

Figure 9.30: DDS Domain Mapping to OPC UA

9.3.2.1

Domain Objects

Domains shall be mapped to Object Nodes in the AddressSpace of the OPC UA server embedded in the OPC UA/DDS
Gateway. Every Domain shall be modeled according to the DomainType ObjectType, which—as specified in sub clause
9.3.2.2—provides its basic structure and a reference to its Domainld. Moreover, Domain objects may contain references
to a set of Topics representing the information DDS Publisher and Subscriber applications exchange in it.

Table 9.45 formally specifies the representation of a Domain in OPC UA using an Object Node.

Table 9.45: Domain Object Definition

Attribute Value Description
BrowseName Domain_<Doma | BrowseName is composed of a Domain_ prefix and a numeric <DomainId>,
inld> representation of the 32-bit integer Domainld.
For instance, the BrowseName of a Domain object representing Domain 0
shall be Domain_0.
IsAbstract False Objects representing Domains are never abstract.
References NodeClass BrowseName Description
HasTypeDefinition | ObjectType DomainType Every Domain object shall be an instantiation of the
DomainType ObjectType.
HasProperty Variable Domainld Every Domain has an associated Domainld.

106

OPC UA/DDS Gateway 1.0

Upon instantiation, every Domain object shall set the

value of the Domainld Property.

HasComponent Object <TopicName> A Domain may refer to one or more objects representing
the Topics that are being published and subscribed to
within it.

The reference shall be of HasComponent ReferenceType.
9.3.2.2 DomainType ObjectType

To simplify the instantiation of new Domains, the OPC UA/DDS Gateway shall provide a DomainType ObjectType as
specified in Table 9.46.

Table 9.46: DomainType ObjectType Definition

Attribute Value Description
BrowseName DomainType BrowseName of the DomainType ObjectType.
IsAbstract False DomainType objects are never abstract.
References NodeClass BrowseName DataType TypeDefinition | ModelingRule
Subtype of BaseObjectType.
HasProperty Variable Domainld" Int32 PropertyType Mandatory

' While the DDS specification states that the format of the Domainld is middleware-specific, the IDL PSM maps DomainId_t to

a 32-bit integer.

OPC UA/DDS Gateway 1.0

107

9.3.3

Representing DDS Topics in OPC UA

Figure 9.31 shows the Nodes and References involved in the mapping of DDS Topics to OPC UA.

class Topic /

+HasTypeDefinition 1

Object
Variable

Instance

BrowseName = Instance[_<Instanceld>]

+HasTypeDefinition

ObjectType VariableType
ObjectTypes:: VariableTypes::
BaseObjectType PropertyType

1

«Referpnce» «Reference»
ObjectType Variable
ObjectTypes::TopicType +HasProperty Variables::RegisteredTypeName
BrowseName = TopicType «Reference» BrowseName : RegisteredTypeName
DataType = String
+HasTypeDefinition 1
+HasTypeDefinition 1
«Reference»
Object Method
Topic «Reference» RegisterInstance
BrowseName = <TopicName> +HasComponent BrowseName = RegisterInstance
«Reference» 0.1
Method
+HasComponent Unregisterinstance
«Reference» 0.1 BrowseName = Unregisterinstance
«Reference»
+HasComponent
Method
+HasComponent 0.* «Reference» 0.1

Disposelnstance

BrowseName = Disposelnstance

Figure 9.31: DDS Topic Mapping to OPC UA

9.3.31 Topic Objects

Topics shall be mapped to Object Nodes in the AddressSpace of the OPC UA Server embedded in the OPC UA/DDS
Gateway. Every Topic shall be modeled according to the TopicType ObjectType, which provides its basic structure and a
reference to its RegisteredTypeName.

Moreover, Nodes representing Topics shall provide references to Nodes representing their /nstances. These are modeled
using HasComponent references. Topics of keyed type may contain references to multiple /nstance Nodes, whereas
Topics of unkeyed types may contain a single reference to an Instance Node™.

Table 9.47 formally specifies the representation of a Topic in OPC UA using an Object Node.

20 As explained in sub clause 9.3.1.1, the data set associated with a Topic of unkeyed type is restricted to a single instance.

108 OPC UA/DDS Gateway 1.0

Table 9.47: Topic Object Definition

Attribute

Value

Description

BrowseName

<TopicName>

BrowseName shall be equal the name of the Topic the object represents,
including capitalization.

IsAbstract

False

Objects representing a Topic shall never be abstract.

References

NodeClass

BrowseName

Description

HasTypeDefinition

ObjectType

TopicType

Every Topic object shall be an instantiation of the
TopicType ObjectType.

HasProperty

Variable

RegisteredTypeNa
me

Every Topic has an associated RegisteredType identified
by a RegisteredTypeName.

Upon instantiation, every Topic object shall set the value
of the RegisteredTypeName property.

HasComponent*

Method

RegisterInstance

This method allows OPC UA Clients to register (i.e.,
create) new Instance Nodes to represent DDS Instances.

If the method is invoked successfully, a new Instance
Node is created and a HasComponent Reference is added
to the Topic Node pointing to it.

(*) This method is only available in Topics with keyed
types. Topics with unkeyed types shall not have a
RegisterInstance method because there can only be a
single Instance.

HasComponent*

Method

UnregisterInstance

This method allows OPC UA Clients to unregister
Instances.

(*) This method is only available in Topics with keyed
types. Topics with unkeyed types shall not have an
UnregisterInstance method because there can only be a
single Instance.

HasComponent*

Method

Disposelnstance

This method allows OPC UA Clients to dispose Instances.

(*) This method is only available in Topics with keyed
types. Topics with unkeyed types shall not have a
Disposelnstance method because there can only be a
single Instance.

HasComponent

Variable

Instance[<Instanc
eld>]

A Topic may refer to one or more Variables or Objects
representing instances of the top-level type (i.e., not
nested type) it is associated with.

Topics of keyed types shall refer to Instance Nodes
representing instances that: (1) have been discovered by
the DataReader embedded in the Gateway, (2) have been
registered via the Registernstance method, or (3) have
been instantiated via configuration files.

Topics of unkeyed types shall refer to a single Instance
Node representing their only instance. This Instance Node
shall be instantiated at startup time and shall always be

OPC UA/DDS Gateway 1.0

109

available—even if no data has been received yet.

9.3.3.1.1 Registerinstance Method

RegisterInstance provides a mechanism to create new Instance Nodes”. This Method shall only be provided by Topics

with a keyed type.

The signature of Registerinstance depends on the key members of the Topic type. It shall be set according to the
following pattern:

StatusCode RegisterInstance {
in <EquivalentType> <key member 1 name>;
[...in <EquivalentType> <key member N name>;]
}i

Every key member of the type shall be mapped to an input parameter where:

* <EquivalentType>—The Type of the input parameter shall be the equivalent type according to the rules
specified in clause 9.2.

* <key member N_name>—The Name of the input parameter shall be the fully-qualified name of the primitive
member within the parent type. Nesting levels shall be represented by a double underscore: *__". (e.g., for a
structure key member instance_identifier containing a type string, the input parameter would be
labeled as “instance_identifier__type”).

The Method shall return one of the following StatusCodes:
* Good—The operation was successful.
* Bad_InvalidArgument—One or more arguments are invalid.

* Bad_NodeExists—The Node to be created as a consequence of the invocation to RegisterInstance already
exists.

Table 9.48 formally specifies the AddressSpace representation of the Registerinstance Method.

Table 9.48: Registerinstance Method Definition

Attribute Value
BrowseName RegisterInstance

References NodeClass BrowseName DataType TypeDefinition | ModelingRule
HasProperty Variable InputArguments | Argument[] PropertyType Mandatory
9.3.3.1.2 Unregisterinstance Method

UnregisterInstance provides a mechanism to unregister /nstances. This Method shall only be provided by Topics with a
keyed type.

The signature of Unregisterinstance depends on the key members of the Topic type. It shall be set according to the
following pattern:

StatusCode UnregisterInstance {
in <EquivalentType> <key member 1 name>;
[...in <EquivalentType> <key member N name>;]

2l For more information on the use cases that motivate the creation of this Method refer to sub clause 9.3.4.6.

110 OPC UA/DDS Gateway 1.0

}i
Every key member of the type shall be mapped to an input parameter where:

* <EquivalentType>—The Type of the input parameter shall be the equivalent type according to the rules
specified in clause 9.2.

* <key_member_ N_name>—The Name of the input parameter shall be the fully-qualified name of the primitive
member within the parent type. Nesting levels shall be represented by a double underscore: *__~. (e.g., for a
structure key member instance_identifier containing a type string, the input parameter would be labeled
as “instance_identifier _type”).

The Method shall return one of the following StatusCodes:
* Good—The operation was successful.

* Bad_InvalidArgument—One or more arguments are invalid.

Table 9.49 formally specifies the AddressSpace representation of the Unregisterinstance Method.

Table 9.49: Unregisterinstance Method Definition

Attribute Value
BrowseName UnregisterInstance
References NodeClass BrowseName DataType TypeDefinition | ModelingRule
HasProperty Variable InputArguments | Argument][] PropertyType Mandatory

9.3.3.1.3 Disposelnstance Method
Disposelnstance provides a mechanism to dispose Instances. This Method shall only be provided by Topics with a

keyed type.

The signature of Disposelnstance depends on the key members of the Topic type. It shall be set according to the
following pattern:

StatusCode Disposelnstance {
in <EquivalentType> <key member 1 name>;
[...in <EquivalentType> <key member N name>;]
}i

Every key member of the type shall be mapped to an input parameter where:

* <EquivalentType>—The Type of the input parameter shall be the equivalent type according to the rules
specified in clause 9.2.

* <key_member N_name>—The Name of the input parameter shall be the fully-qualified name of the primitive
member within the parent type. Nesting levels shall be represented by a double underscore: *__”. (e.g., for a
structure key member instance identifier containing a type string, the input parameter would be labeled
as “instance_identifier _type”).

The Method shall return one of the following StatusCodes:

* Good—The operation was successful.

* Bad_InvalidArgument—One or more arguments are invalid.

Table 9.50 formally specifies the AddressSpace representation of the Disposelnstance Method.

OPC UA/DDS Gateway 1.0 111

Table 9.50: Disposelnstance Method Definition

Attribute Value
BrowseName Disposelnstance
References NodeClass BrowseName DataType TypeDefinition | ModelingRule
HasProperty Variable InputArguments | Argument][] PropertyType Mandatory

9.3.3.2 Topic ObjectType

To simplify the instantiation of new Topics, the OPC UA/DDS Gateway shall provide a TopicType ObjectType as
specified in Table 9.51.

Table 9.51: TopicType ObjectType Definition

Attribute Value Description
BrowseName TopicType BrowseName of the TopicType ObjectType.
IsAbstract False TopicType objects are never abstract.
Reference NodeClass BrowseName DataType TypeDefinition | ModelingRule

Subtype of BaseObjectType.

HasProperty Variable RegisteredTypeNa | String PropertyType Mandatory
me

9.34 Representing DDS Instances and Samples in OPC UA
9.3.41 DDS Instance Node Representation

DDS Topic Instances shall be mapped to OPC UA Variable or Object nodes representing instances of the associated
type in the Gateway according to the rules specified in clause 9.2.

Figure 9.32 shows the Nodes and References involved in the definition of an Instance, excluding those introduced by
the aforementioned mapping rules.

112 OPC UA/DDS Gateway 1.0

class Instance

Object
Variable
Instance

BrowseName = Instance[_<Instanceld>]

«Reference»
«Reference» +HasProperty
+HasPropert:
? Y . 1 Variable
Variable Variables::InstanceHandle
Variables::SampleState
«Reference» «Reference» _
«Referénce» «Reference» BrowseName = InstanceHandle
BrowseName = SampleState DataType = String
DataType = String
+HasProperty 1 +HasProperty 1
+HasProperty 1 Variable Variable 1 +HasProperty
Variable Variables::InstanceState Variables::SourceTimestamp Variable
Variables::ViewState BrowseName = InstanceState BrowseName = SourceTimestamp Variables::ValidData
BrowseName = ViewState DataType = String DataType = DateTime

BrowseName = ValidData

DataType = String DataType = Boolean

Figure 9.32: DDS Instance Mapping to OPC UA

The BrowseName of the Variable or Object Node is different for Instances of Topics of keyed and unkeyed types:
* The BrowseName of the single Instance Node of a Topic of unkeyed type shall be “Instance”.

* The BrowseName of the Instance Nodes of a Topic of keyed type, shall be constructed according to the
following convention: *Instance <InstanceId>”. Where <InstanceId> is an undefined string
representing the value of DDS: : InstanceHandle_t returned by the DataReader’s get_key_ value ()
operation (see sub clause 2.2.2.5.3.29 of [DDS])).

Because at the time of writing of this document the format for DDS: : InstanceHandle_t is undefined in the
[DDS] specification, we may only propose a number of non-normative string representations alternatives®.
For instance, if all key fields of the type are of numeric or string types, <InstanceId> may be a combination
of the string representation of the value of all key fields separated by colons (* :). Alternatively,
<InstanceId> may be the MDS5 hash of the value of a vendor’s implementation of

DDS: :InstanceHandle_t.

Besides the References defined by the mapping rules specified in clause 9.2 for the type, the OPC UA Variable or
Object Nodes representing Instances shall also include a number of HasProperty References to Variables of
PropertyType representing a subset of the fields of the DDS : : SampleInfo structure™. These fields provide important

metadata information about the state of the instance and the samples that have been received by DataReaders
embedded in the Gateway.

Table 9.52 provides the list of Variables of PropertyType that every Instance Node shall refer to. Note that all these
Variables shall be marked as read-only; i.e., they shall be instantiated with the WriteMask Attribute set to 0.

22 This is consistent with the approach taken by other specifications such as Web-Enabled DDS, which defines the value of

DDS: :InstanceHandle_t as an opaque string that can be used to refer to a registered instance.

23

In particular, this specification has chosen the same subset of fields specified in Web-Enabled DDS [DDS-WEB].

OPC UA/DDS Gateway 1.0 113

Table 9.52: PropertyType Variables Representing Members of DDS::Samplelnfo

Variable Name DataType Description

SampleState String String representation of the state of a sample®.

Implementers of this specification shall assign SampleStates to strings as
follows:

* READ: “READ”
* NOT_READ: “NOT_READ”

ViewState String String representation of the ViewState of a sample®.

Implementers of this specifications shall assign ViewStates to strings as
follows:

e NEW: “NEW”
e NOT_NEW: “NOT_NEW”

InstanceState String String representation of the state of a given instance®.

Implementers of this specifications shall assign /nstanceStates to strings as
follows:

* ALIVE: “Alive”
e NOT_ALIVE_DISPOSED: “NOT_ALIVE DISPOSED”
* NOT_ALIVE NO_WRITERS: “NOT ALIVE NO_WRITERS”

SourceTimestamp | DateTime DateTime representation of the source timestamp for a given sample.
Implementers of this specification shall handle the conversion from
DDS: :Time_t to OPC UA’s DateTime.

InstanceHandle String String representation of the DDS: : InstanceHandle_t according to the
rules specified in sub clause 9.3.4.1 of this specification.

ValidData Boolean Boolean value indicating whether there is data associated with a given
sample.

Table 9.53 formally specifies the definition of an /nstance Node according to the rules mentioned above.

Table 9.53: Instance Variable or Object Node Definition

Attribute Value Description

BrowseName <String> String with the name of the Instance the Node represents. This string shall be
constructed as follows:

* For Nodes representing the single instance of a Topic with an unkeyed
type, BrowseName shall be “Instance”.

* For Nodes representing an Instance of a Topic with a keyed type,
BrowseName shall be “Instance <InstanceId>”. Where
<InstanceId> is an undefined string identifying the instance. For
example, <InstanceId> may be the string representation or the

2 To simplify the mapping of SampleState, ViewState, and InstanceState we have chosen a string representation rather than an

enumeration, which requires the definition of a new type and adds an extra level of indirection for client applications.

114 OPC UA/DDS Gateway 1.0

MDS5 hash of all the key fields of a type.
Attributes specific to the NodeClass (Variable or Object) of the Instance Node.
These attributes shall be configured as specified in the mapping rules defined
in clause 9.2 for instances of the DDS type this Instance Node represents.
References NodeClass BrowseName DataType TypeDefinition | ModelingRule
HasProperty Variable SampleState String PropertyType Mandatory
HasProperty Variable ViewState String PropertyType Mandatory
HasProperty Variable InstanceState String PropertyType Mandatory
HasProperty Variable SourceTimestamp | DateTime PropertyType Mandatory
HasProperty Variable InstanceHandle String PropertyType Mandatory
HasProperty Variable ValidData Boolean PropertyType Mandatory
List of references derived from the mapping rules specified in clause 9.2 for instances of the
DDS type the Instance Node represents.
For example, these may include:
* A HasTypeDefinition Reference to BaseDataVariableType, BaseObjectType, or any other
VariableType or ObjectType Node.
* HasComponent References, such as those that link a Structure with Nodes representing
its members.
* HasOrderedComponent References, such as those that link a Map Object to its
MapkEntries.
9.3.4.2 Updating the Value of DDS Instance Nodes

The OPC UA/DDS Gateway shall update the Value of the Variable Nodes associated with every instance of every Topic
—including the Property Variables representing the DDS: : SampleInfo structure—with the content of the latest
samples received by its internal DataReaders. As already mentioned, there are some distinctions regarding Topics of
keyed and unkeyed types:

* For Topics of unkeyed types, the only Instance Node shall be updated with the latest sample available for that

Topic.

e For Topics of keyed types, the different Instance Nodes shall be updated with the latest sample available for
that specific Topic instance.

The Value Variable Nodes associated with an Instance shall be updated as follows:

* The Value of the Variable Node (or Variable Nodes) representing sample data (i.e., all Variable Nodes except
the Property Variables listed in Table 9.52) shall only be updated if the valid data flag of the
DDS: : SampleInfo structure is true.

¢ The Value of the Variable Nodes representing sample info (i.e., the Property Variables listed in Table 9.52)
shall be updated regardless of the value of the valid_data flag”.

25

OPC UA/DDS Gateway 1.0

This enables OPC UA client applications to receive updated information about the lifecycle of an instance. For example, it
provides information on whether the instance is ALIVE or NOT ALIVE (DISPOSED or NO_WRITERS).

115

Implementations of this specification shall provide users with the necessary means to configure the QoS Policies
associated with the internal DataReaders. This specification provides an optional conformance point with a
configuration syntax for this purpose in chapter 10.

Optionally, implementers may provide additional mechanisms to automatically remove Instance Nodes representing
NOT_ALIVE instances (i.e., Instances whose InstanceState is NOT _ALIVE DISPOSED or
NOT_ALIVE NO_ WRITERS).

9.3.4.3 Reading and Monitoring Instance Nodes

OPC UA Clients may use the Read Service to read the current value of Instances of a DDS Topic by invoking the
appropriate operation on the Variable Nodes representing the Value associated with an Instance Node.

Moreover, OPC UA Clients may use Services of the Subscription and Monitoredltems Service Sets to receive updates
any time the value of one of the Variable Nodes representing the Value associated with an Instance Node changes.

9.34.4 Reading Historical Data from Instance Nodes

OPC UA Clients may use the HistoryRead Service to read historical values on a specific DDS Topic Instance.

To enable that scenario, the OPC UA Server embedded in the Gateway shall instantiate the Variable Nodes associated
with every Instance of the DDS Topic as HistoricalDataNodes. As specified in sub clause 5.2.5 of [OPCUA-11]), this
implies defining—setting to 1—both the Historizing Attribute and the HistoryRead bit in the AccessLevel Attribute of
every Variable Node. These Attributes—along with the OPC UA Server’s HistoryServerCapabilities object—inform
Client applications of the availability of historical access. Additionally, the Server may add a
HasHistoricalConfiguration Reference to a “HA Configuration” Node indicating the desired HistoricalConfiguration
for every Variable. The selected “HA Configuration” shall be consistent for all Variable Nodes associated with every
Instance of the DDS Topic.

Moreover, the DataReader embedded in the Gateway to handle subscription to the DDS Topic shall be configured to
support historical access. In particular, their HISTORY QoS Policy shall be configured either as KEEP_ALL or as
KEEP LAST with a HISTORY DEPTH big enough to store the desired time span of samples. Implementers of this
specification shall provide users with the means to configure these QoS Policies (see chapter 10).

9.345 Writing Instance Nodes

OPC UA Clients may use the Write Service to update the value of any of the Variable Nodes associated with an
Instance Node. This sub clause describes the behavior of the OPC UA/DDS Gateway to facilitate those updates.

Updates on the Value of Variables associated with Instance Nodes shall be trigger the invocation of the write ()
method on a DDS DataWriter instantiated by the OPC UA/DDS Gateway for that purpose. It is up to implementers of
the specification to decide whether to invoke the write () operation immediately or wait until a certain number of
updates have been received. This allows optimizations such batching of updates to members of a specific structure
before calling write ().

Updates on Variables representing key members of the data type associated with a Topic are disallowed because they
would automatically transform the existing /nstance into a different Topic Instance. In the case of key union
discriminators this is not a problem, because their value is not exposed in the AddressSpace of the OPC UA/DDS.
However, key structure members shall be explicitly configured as read-only. As specified in 9.2.4.1.2, to allow generic
and non-generic OPC UA Clients to access the value of the different members of structure, these are represented twice
in the AddressSpace of the OPC UA Server. Therefore their immutability must be specified and enforced differently:

116 OPC UA/DDS Gateway 1.0

1. For updates on key members of a Variable of Structure DataType, the Gateway shall validate that the Write
operation does not change their value and return StatusCode Bad_UserAccessDenied otherwise.

2. For updates on Variable Nodes representing members of a structure linked to Variable Nodes representing the
structure with a HasComponent Reference, the Gateway shall rely on the behavior of the underlying OPC UA
SDK by definition—the WriteMask Attribute is set to zero (read-only) as specified by the mapping rules in sub
clause 9.2.8.

Likewise, updates on the PropertyType Variables representing members of the DDS : : SampleInfo structure (i.e.,
SampleState, ViewState, InstanceState, SourceTimestamp, InstanceHandle, and ValidData) are disallowed because, as
stated in sub clause 9.3.4.1, the WriteMask Attribute of these nodes shall be set to zero.

Finally, the Value of Variables associated with an Instance Node shall be updated in the AddressSpace after the
corresponding DDS DataWriter has called the write () operation. The OPC UA/DDS Gateway shall ensure that the
value of structure members—which are represented twice in the AddressSpace of the OPC UA Server—remains
consistent.

9.3.4.6 Registering New Instances

Occasionally, OPC UA Clients may wish to use the Writer Service to write a new sample of an Instance that has not
previously been registered. In other words, they may wish to update the value of an Instance Node that does not exist in
the AdressSpace of the OPC UA Server.

To register an instance, OPC UA Clients must invoke the Registerinstance Method associated with the corresponding
Topic Object using the Call Service [OPCUA-04]. This Method—defined in sub clause 9.3.3.1.1—is only available in
Topics with keyed types. (Topics of unkeyed types always have an Instance Node associated with it that can be used to
write any sample of that Topic.) The InputParameters for the Registerinstance Method are the fields that represent the
key; therefore, the OPC UA Client shall pass in the appropriate values for the /nstance to be registered.

After invoking the Method, the Client application will receive a StatusCode indicating the success or failure of the
operation. If StatusCode is Good, then the OPC UA/DDS Gateway will create a new Instance Node representing the
registered instance in the AddressSpace of its OPC UA Server, and will link it to the Topic Node with a HasComponent
Reference. Client applications may now use the Write Service to write samples of the new instance, or the Read Service
to read the most recent value of the Instance.

9.34.7 Unregistering and Disposing Instances

OPC UA Clients that may wish to unregister or dispose an Instance can use the corresponding Method associated with
the Topic. Like in the case of RegisterInstance, these Methods are only available in Topics with keyed types.

9.3.5 Implementation Considerations
9.3.51 OPC UA Implementation Considerations

The representation of the DDS Global Data Space specified in this chapter requires the OPC UA/DDS Gateway to
embed an OPC UA Server. This OPC UA Server shall be capable of:

¢ Instantiating a number of Nodes in its AddressSpace to represent DDS types, Domains, Topics, and Instances
that OPC UA Client applications may browse, read, and write to participate as a first-class citizen in the DDS
Global Data Space.

* Responding to View Service requests from OPC UA Clients willing to browse the AddressSpace of the Server.

OPC UA/DDS Gateway 1.0 117

* Responding to Read Service requests from OPC UA Clients willing to read the current value of a mapped DDS
Topic Instance (see sub clause 9.3.4.3).

* Responding to HistoryRead Service requests from OPC UA Clients willing to read historical values of a
mapped DDS Topic Instance (see sub clause 9.3.4.4).

* Responding to Write Service requests from OPC UA Clients willing to publish data on a mapped DDS Topic
(see sub clause 9.3.4.5).

* Responding to Subscription and MonitoredItems Service requests from OPC UA Clients willing to subscribe to
the mapped DDS Topics to receive updates on data changes (see sub clause 9.3.4.3).

e Being discovered by the Local and Global Discovery Servers defined in [OPCUA-12].

To comply with all the requirements listed above, the OPC UA Server shall comply with the Embedded UA Server
Profile defined in sub clause 6.5.54 of [OPCUA-07]. Additionally, to support access to historical data, the OPC UA
Server shall comply with the Historical Raw Data Server Facet defined in sub clause 6.5.36 of [OPCUA-07].
Consequently, compliant implementations of this specification shall be built on top of an OPC UA implementation
capable of passing the conformance tests specified for those profiles and facets by the OPC Foundation.

Lastly, it is important to note that implementers of this specification may need to configure the underlying OPC UA
Server to require authentication, access control, and encryption using the mechanisms provided by the OPC UA
Security Model specified in [OPCUA-02]. These mechanisms can be used to enforce that only authorized OPC UA
Clients can access the AddressSpace of the OPC UA Server, and therefore the DDS Global Data Space—or a subset of
it. These mechanisms may pose additional requirements in the underlying OPC UA Servers, which shall be addressed
according to the needs of each specific use case.

9.3.5.2 DDS Implementation Considerations

The OPC UA/DDS Gateway shall be capable of publishing and subscribing to updates in the DDS Global Data Space
using a DDS implementation complaint with:

* Minimum Profile of [DDS]
e Statements listed in clause 8.4.2 of [DDSI-RTPS].

Some deployments may require using the mechanisms specified in [DDS-SECURITY] to access information provided
by secured DDS applications, or publish information in restricted Domains. In those cases, the underlying DDS
implementation shall also be compliant with the Built-in Plugin Interoperability and Plugin Framework Conformance
Points of [DDS-SECURITY].

As specified in the rest of clauses dealing with DDS and OPC UA integration, the Gateway shall be capable of dealing
with two different security models: the OPC UA Security Model on one end and the DDS Security Model on the other
end. Each security model shall be configured separately depending on the needs of the end user of the OPC UA/DDS
Gateway.

118 OPC UA/DDS Gateway 1.0

10 OPC UA/DDS Gateway Configuration

This chapter defines an XML syntax to configure the OPC UA/DDS Gateway. It is built upon the DDS Consolidated
XML Syntax [DDS-XML], which provides all the necessary constructs to specify DDS resources in XML.

10.1 Overview

The syntax to configure the OPC UA/DDS Gateway is specified in two normative XSD files.

* dds-opcua_definitions nonamespace.xsdi—Contains all the type definitions that build up the XML syntax to
configure the Gateway. It makes use of dds-xml_domainparticipant defintions_nonamespace.xsd, a schema
file specified in the DomainParticipants Building Block of [DDS-XML] that provides syntax to represent DDS
types, entities, and QoS Policies. Moreover, to facilitate the integration of the definitions into more complex or
vendor-specific schema files, the XSD file defines neither a root element nor namespaces®.

* dds-opcua_configuration.xsd—Defines the root element of the OPC UA/DDS Gateway configuration file and
the http://'www.omg.org/spec/DDS-OPCUA namespace. It includes dds-opcua_definitions nonamespace.xsd to
resolve the necessary type definitions. This is the schema file that shall be used to validate OPC UA/DDS
Gateway XML configuration files.

10.2 Configuration

Table 10.1 provides implementers of this specification with an overview of the configuration elements that are part of
the OPC UA/DDS Gateway XML configuration syntax. All described elements—except the noted exceptions—are
defined in dds-opcua_definitions _nonamespace.xsd. Attributes and low-level configuration details have been left out of
this overview; therefore, implementers shall refer to the normative XSD file for a comprehensive study of all the
configuration capabilities of the syntax defined by this specification.

Table 10.1: XML Configuration Elements Overview

XML Configuration Element Type Definition Description

<dds> rootType Root element. Is the entry point of the OPC
UA/DDS Gateway configuration.

<types> types®’ Defines types that DomainParticipants may register
to create Topics for reading or writing DDS data.

<qos_libraries> gosLibrary?* Organizes QoS Profiles with QoS Policies that may
be used to specify behavior of the DDS entities
instantiated by the Gateway.

<ddsopcua_gateway> ddsOpcUaGateway Configures of an OPC UA/DDS Gateway that may
be instantiated by the application or library
implementing it.

A ddsopcua_gateway configuration may refer to
types and gos_1libraries specified in the
configuration file. Moreover, it may define

26 This allows applying the Chameleon Schema pattern defined in [DDS-XML].
77 types is defined in the schema file associated with Types Building Block of [DDS-XML].

gosLibrary is defined in the schema file associated with the QoS Building Block of [DDS-XML].

OPC UA/DDS Gateway 1.0 119

XML Configuration Element

Type Definition

Description

opcua_connections, opcua_servers,
domain_participants,
opcua_to_dds_bridges; and
dds_to_opcua_bridges. The definition of
multiple bridges—on either direction—in the same
instance of the OPC UA/DDS Gateway is permitted.

<opcua_connection>

opcuaConnection

Defines a connection of the OPC UA/DDS Gateway
to an external service. When referenced from a
service_set or subscription configuration in
the context of an OPC UA to DDS Bridge, the
Gateway will instantiate an OPC UA Client capable
of connecting to the specified Server according to
the specified configuration.

An OPC UA/DDS Gateway configuration may
contain multiple opcua_connection definitions.

<opcua_server>

opcuaServer

Defines an OPC UA Server that may be instantiated
by DDS to OPC UA Bridges. The AddressSpace of
these servers will expose the DDS Global Data
Space to OPC UA Clients.

The configuration of OPC UA Servers is
unspecified as those settings are not standardized
and are therefore OPC UA vendor-specific.

An OPC UA/DDS Gateway configuration may
contain multiple opcua_server definitions.

<domain_participant>

ddsDomainParticipant

Configures a DomainParticipant, which provides
the entry point for OPC UA to DDS or DDS to OPC
UA Bridges to operate in a DDS Domain. The same
DomainParticipant definition may be used by
different bridges regardless of their direction.

An OPC UA/DDS Gateway configuration may
contain multiple domain_participant
definitions.

<opcua_to_dds_bridge>

opcua2DdsBridge

Configures an OPC UA to DDS Bridge, which
exposes the AddressSpace of one or more OPC UA
Servers to DDS applications.

An OPC UA/DDS Gateway configuration may
contain multiple opcua_to_dds_bridge
definitions.

<service_set>

opcuaServiceSet

Exposes selected OPC UA Services from an OPC
UA Server to DDS applications by creating
equivalent DDS Services using RPC over DDS, as
specified in clause 8.3.

An OPC UA to DDS Bridge may include multiple
service_set definitions to expose Service Sets
from different OPC UA Servers to DDS

120

OPC UA/DDS Gateway 1.0

XML Configuration Element

Type Definition

Description

applications.

<subscription>

opcuaSubscription

Defines OPC UA Inputs (Subscriptions to different
Monitoredltems—Dataltems and Eventltems—in
OPC UA Servers) and DDS Outputs (DataWriters
associated to DDS Topics) and provides the ability
to map Dataltems or Eventltems from different OPC
UA Inputs to fields of Topics associated with DDS
Outputs.

An OPC UA to DDS Bridge may include multiple
subscription definitions.

<opcua_input>

opcualnput

Configures a Subscription to an OPC UA Client and
a set of Monitoredltems—Dataltems or Eventltems
—using an opcua_connection definition.

A subscription may contain different
opcua_input definitions to allow combining
information from different Inputs in one or more
DDS Outputs.

<dds_output>

ddsOutput

Configures a DDS DataWriter capable of publishing
a Topic in the context of an already defined
domain_participant. The definition of a
dds_output does not trigger any publication; for
that to happen, users shall specify mappings and
assignments of elements in an OPC UA Input to
fields of the Topic associated with an OPC UA
Output.

A subscription may contain different dds_output
definitions.

<mapping>

inputOutputMapping

Maps Dataltems and Eventltems from an OPC UA
Input to fields of one or more DDS Outputs.

A subscription shall contain a single mapping
definition. In other words, only one mapping
section can appear under a subscription element.

<assignment>

inputOutputAssignment

Assigns Dataltems, EventFields from an Eventltem,
or a constant values to fields of the Topic associated
with a DDS Output. Each assignment is therefore
bound to a specific DDS Output.

A reference to an OPC UA Input under the
subscription is also required. The referred OPC
UA Input is used as the default input for all the
Monitoredltems being assigned (Dataltems or
EventFields); however, in the mapping of specific
fields, users are allowed to override the default OPC
UA Input by referencing a different Input from the
subscription. This enables combining
information from different OPC UA Inputs into a

OPC UA/DDS Gateway 1.0

121

XML Configuration Element

Type Definition

Description

single OPC UA Output.

A mapping definition may contain multiple
assignments—as many as DDS Outputs under the
parent subscription definition.

<dds_to_opcua_bridge>

dds2opcuaBridge

Configures a DDS to OPC UA Bridge, which
instantiates an OPC UA Server capable of
representing the DDS Global Data Space in its
AddressSpace.

On one side, the DDS to OPC UA Bridge must refer
to one of the opcua_server definitions of the
configuration file; on the other side, the Bridge
must refer to one or multiple
domain_participant definitions (which provide
access to one or multiple DDS Domains).

An OPC UA/DDS Gateway configuration may
contain multiple dds_to_opcua_bridge
definitions.

<domain>

ddsDomain

Configures a Domain that shall be added to the OPC
UA Server associated with the parent
dds_to_opcua_bridge definition. The
configuration shall reference a
domain_participant to access the Domain.

A dds_to_opcua_bridge may contain several
domain definitions to represent different Domains.

<topic>

ddsTopic

Configures a Topic to be exposed in the
AddressSpace of the OPC UA Server embedded into
the Gateway.

A domain may contain several topic definitions to
represent different Topics available in the Domain.

<registered_
type_ name>

xs:string

Name of the type—previously registered with the
DomainParticipant—the Topic will be associated
with.

<read_access>

ddsReadAccess

Provides mechanisms to: (1) enable read access on
the OPC UA Nodes associated with the Topic, (2)
configure the associated DataReader, and (3) define
content filters that can be used, among other things,
to specify which Topic Instances are exposed to
OPC UA C(lients.

<write_access>

ddsWriteAccess

Provides mechanism to: (1) enable write access on
the OPC UA Nodes associated with the Topic, (2)

per-register Topic Instances that Clients may write,
and (3) configure the associated DataWriter’s QoS.

<topic_group>

ddsTopicGroup

Configures a group of Topics to be exposed in the
AddressSpace of the OPC UA Server embedded into

122

OPC UA/DDS Gateway 1.0

XML Configuration Element Type Definition Description

the Gateway. In particular, they provide the ability
to expose Topics matching a certain criteria in terms
of Topic name and Topic type.

A domain may contain several topic_group
definitions to represent different 7opics available in

the Domain.
~ <allow_topic_ nameFilterList A regular expression describing which Topics
name_filter> should be represented in the AddressSpace of the
Server.

Topics with names that matching this filter are
allowed to be represented, unless they do not pass
the additional filters.

<deny_topic_ nameFilterList A regular expression describing which Topics
name_filter> should be represented in the AddressSpace of the
OPC UA Server. This is applied after the allow
filter.
<allow_type nameFilterList A regular expression describing a set of type names
name filter> registered in the DDS DomainParticipant. Topics

with data types that match this filter are allowed to
be shown in the AddressSpace of the OPC UA

Server.
~ <deny_type_ nameFilterList A regular expression describing a set of type names
name_f£ilter> registered in the DDS DomainParticipant that shall

be filtered out.

Topics with data types that match this regular
expression are not allowed to be shown in the
AddressSpace of the OPC UA Server. This is

applied after allow_type name filter.

<read_access> ddsReadAccess See definition above.

<write_access> |ddsWriteAccess See definition above.

10.3 Examples (non-normative)

This specification includes two non-normative XML files that illustrate different configurations of the OPC UA/DDS
Gateway according to the syntax specified in this chapter.

10.3.1 OPC UA to DDS Bridge Example

This example illustrates how to configure the OPC UA/DDS Gateway to leverage the mappings specified in clauses 8.3
and 8.4. Effectively, it builds a bridge between the AddressSpace of an OPC UA Server and DDS applications.

At a high level, the XML configuration document is organized as follows:
<dds>

OPC UA/DDS Gateway 1.0 123

<types>
<struct>...</struct>
</types>
<ddsopcua_gateway name="MyGateway">
<opcua_connection>...</opcua_connection>
<domain participant>...</domain_ participant>
<opcua_to_dds_bridge>
<service_set>...</service_set>
<subscription>
<opcua_input>...</opcua_input>
<dds_output>...</dds_output>
<dds_output>...</dds_output>
<dds_output>...</dds_output>
<mapping>. . .</mapping>
</subscription>
</opcua_to_dds_bridge>
</ddsopcua_gateway>
</dds>

Where:

* <types> defines DDS types that are required to create DDS Outputs according to the users’ interests and the
mapping rules defined in sub clause 8.4.2.

* <ddsocupa_gateway> defines a scenario to be loaded by the Gateway. Each definition includes connections
to OPC UA Servers and DDS DomainParticipants that may be used to create DDS Topics.

* <opcua_to_dds_bridge> configures OPC UA Service Set and Subscription mappings to build a bridge
between the AddressSpace of OPC UA Servers and DDS applications.

The complete example may be found in the non-normative file dds-opcua_opcua2dds configuration.xml, which is
included with this specification.

10.3.1.1 DDS Type Definitions

Following the mapping rules specified in sub clause 8.4.2, we define the DDS types that we will use in each DDS
Output. In particular, we have decided to create three data types to group the set of Monitoredltems in a meaningful set
of Topics: MotorStatus, DevicePosition, and Event. The DDS types associated with those Topics are represented
in XML format using the syntax specified in [DDS-XML].

The MotorDataType is defined as follows:

<struct name="MotorDataType">
<member name="motor name" type="string" key="true" />
<member name="motor moves" type="boolean" />
<member name="motor changes_direction" type="boolean" />
</struct>

Note that it includes an extra member named motor_name that identifies the source of information and serves as a key.

The DevicePositionType is defined as follows:

<struct name="DevicePositionType'">
<member name="device name" type="string" key="true" />
<member name="longitude" type="float64" />
<member name="latitude" type="float64" />
<member name="altitude" type="float64"/>
</struct>

Lastly, the EventType is defined as follows:

<struct name="EventType'">
<member name="message" type="string"/>

124 OPC UA/DDS Gateway 1.0

<member name="source name" type="string"/>
<member name="severity" type="string" />
</struct>

10.3.1.2 OPC UA Connection and DDS DomainParticipant Definition

To connect the OPC UA Gateway with OPC UA Servers and DDS Domains, we must first define an OPC UA
Connection and a DDS DomainParticipant.

The OPC UA Connection is defined as follows:

<opcua_connection name="MyServerConnection"
server endpoint url="opc.tcp://10.10.100.130:55001">
<timeout>5000</timeout>
</opcua_connection>

When defining an OPC UA Connection we must provide the EndpointUrl of the remote Server we aim to connect to.

The DDS DomainParticipant is defined as follows:

<domain_participant name="MyDomainParticipant" domain_id="0">
<register_ type name="MotorDataType" type_ ref="MotorDataType" />
<register_ type name="DeviceDataType" type ref="DevicePosition" />
<register_ type name="EventType" type ref="EventType" />
</domain_participant>

When defining the DomainParticipant, we must register all the types we are going to use in the deployment. In this
case, we register those that describe the Moniforedltems we want to send over DDS. Note that the
DomainParticipantQos can be defined as a nested structure of the DomainParticipant.

10.3.1.3 OPC UA to DDS Bridge Definition

The OPC UA to DDS Bridge configures Service Sets and Subscriptions using one or more OPC UA Connections. In our
example, we configure one Service Set mapping and one Subscription Mapping as follows.

<opcua_to_dds bridge name="MyOpcUa2DdsBridge'">
<service_set>...</service_set>
<subscription>.</subscription>
</opcua_to_dds_bridge>

It is important to note that multiple OPC UA to DDS Bridges (possibly along with multiple DDS to OPC UA Bridges)
may be instantiated by a single OPC UA/DDS Gateway configuration.

10.3.1.4 OPC UA Service Set Mapping Definition

In our example, we map a subset of an OPC UA Server’s Services to an equivalent DDS Service as follows:

<service_set opcua_connection_ref="MyServerConnection"
domain participant ref="MyDomainParticipant" >
<view_service_set>
<enabled>true</enabled>
</view_service_set>
<query service_ set>
<enabled>false</enabled>
</query_service_set>
<attribute_service_set>
<enabled>true</enabled>
</attribute_service_set>
<method_service_set>
<enabled>false</enabled>
</method_service_ set>
</service_set>

OPC UA/DDS Gateway 1.0 125

On one side, we specify the OPC UA Connection to be used, which effectively indicates the OPC UA Server that is
going to be exposed; and on the other side, the DomainParticipant under which all DDS entities will be created. We
must explicitly enable every Service we want to expose.

Note that multiple Service Set Mapping definitions may be created under a single OPC UA to DDS Bridge.
10.3.1.5 OPC UA Subscription Mapping Definition

An OPC UA Subscription mapping defines OPC UA Inputs (subscriptions), DDS Outputs (publications), and
Input/Output mappings (assignments).

<subscription name="MySubscription">
<opcua_input name="MyInput"
opcua_connection_ref="MyServerConnection">

</opcua_input>
<dds_output name="MotorDataPublication"
domain participant ref="MyDomainParticipant">

</dds_output>
<dds_output name="DevicePublication"
domain participant ref="MyDomainParticipant">

</dds_output>
<dds_output name="EventPublication"
domain participant ref="MyDomainParticipant">

</dds_output>
</subscription>

10.3.1.5.1 OPC UA Input

The OPC UA Input in the example configures an OPC UA Subscription with a set of Monitoredltems and some
properties associated with the SubscriptionProtocol. To create an OPC UA Input it is necessary to specify an OPC UA
Connection.

10.3.1.5.1.1 OPC UA Input and Subscription Protocol Definition

At a high level, the OPC UA Input and SubscriptionProtocol are defined as follows; below we provide a detailed
description of each Monitoredltems associated with it:
<opcua_input name="MyInput"
opcua_connection_ref="MyServerConnection">
<subscription_ protocol>
<requested publishing interval>10</requested publishing interval>
<requested lifetime count>3000</requested lifetime count>
<requested max keep alive count>1000</requested max keep alive count>
<max not1f1cat10ns_per_publlsh>0</max notlflcatlons_per_publ1sh>
<publishing enabled>true</publishing enabled>
<priority>0</priority>
</subscription_protocol>

<monitored items>

</monitored items>
</opcua_input>

10.3.1.5.1.2 Monitoreditems

This section defines each of the Monitoreditems that are going to be attached to the OPC UA Input upon instantiation:

126 OPC UA/DDS Gateway 1.0

* MotorMoves—Boolean value indicating whether the motor is currently moving. In this case, the application is
monitoring data changes on the Value Attribute of a Node in Namespace 1, with string identifier:

“MotorVars.MotorMoves”.

* MotorChangesDirection—Boolean value indicating whether the motor is currently changing direction. In
this case the application is monitoring data changes on the Value Attribute of a Node in Namespace 1, with
String Identifier: “MotorVars.MotorChangesDirection”.

* Longitude—Double value indicating the current longitude of the device. The application is monitoring data
changes on the Value Attribute of a Node in Namespace 2, with String Identifier:

“DeviceVars.Longitude”.

* Longitude—Double value indicating the current latitude of the device. The application is monitoring data
changes on the Value Attribute of a Node in Namespace 2, with String Identifier: “DeviceVars.Latitude”.

* Altitude—Double value indicating the current altitude of the device. The application is monitoring data
changes on the Value Attribute of a Node in Namespace 2, with String Identifier: “DeviceVars.Altitude”.

* Event—Event Monitoredltem that subscribes Events via the standard Node OpcUald_Server (which is
located in Namespace 0, with Numeric Identifier 2253). It configures a filter so that only the Message,
SourceName, and Severity EventFields are reported.

The list of Monitoredltems includes several Dataltems and one Eventltem. In the Dataltems, we specify the Nodes from
which we want to monitor the Value Attribute. In the case of DeviceAltitude, we also define a filter to trigger
Notifications only when there is change in altitude of more than 100 ft. In contrast, In the EventMonitoreditem we refer
to a standard server node that provides eventing information, and configure a filter to receive only a subset of the
EventFields.

<monitored_items>
<data_item name="MotorMoves">
<node_id>
<namespace_index>1</namespace_index>
<string_identifier>MotionVars.MotorMoves</string identifier>
</node_id>
<attribute id>VALUE</attribute_id>
<sampling_ interval>l</sampling interval>
<queue_size>2</queue_size>
<discard oldest>true</discard oldest>
</data_item>

<data_item name="MotorChangesDirection">
<node_id>
<namespace_index>l</namespace_index>
<string_identifier>MotionVars.MotorChangesDirection</string identifier>
</node_id>
<attribute id>VALUE</attribute id>
</data_item>

<data_item name="DeviceLongitude">
<node_id>
<namespace_index>2</namespace_index>
<string identifier>DeviceVars.Longitude</string identifier>
</node_id>
<attribute id>VALUE</attribute id>
</data_item>

<data_item name="DeviceLatitude">
<node_id>
<namespace_index>2</namespace_index>
<string_identifier>DeviceVars.Latitude</string identifier>

OPC UA/DDS Gateway 1.0 127

</node_id>
<attribute id>VALUE</attribute_ id>
</data_item>

<data_item name="DeviceAltitude">
<node_id>
<namespace_index>1</namespace_index>
<string_ identifier>MotionVars.MotorChangesDirection</string identifier>
</node_id>
<attribute id>VALUE</attribute_ id>
<!-- Notify if there is a change in altitude of more
than 100 feet -->
<datachange_ filter>
<trigger>STATUS VALUE</trigger>
<deadband_type>ABSOLUTE</deadband_type>
<deadband value>100</deadband value>
</datachange filter>
</data_item>

<event_item name="MyEvent">

<node_id>
<namespace_index>0</namespace_index>
<!-- OpcUald_Server -->

<numeric_identifier>2253</numeric_identifier>
</node_id>
<sampling interval>0</sampling_ interval>
<queue_size>0</queue_size>
<discard oldest>true</discard oldest>

<event_filter>
<select_clauses>
<element>
<browse_path>
<element>
<namespace_index>0</namespace_index>
<name>Message</name>
</element>
</browse_path>
</element>
<element>
<browse_path>
<element>
<namespace_index>0</namespace_index>
<name>SourceName</name>
</element>
</browse_path>
</element>
<element>
<browse_path>
<element>
<namespace_index>0</namespace_index>
<name>Severity</name>
</element>
</browse_path>
</element>
</select_clauses>
</event_filter>
</event_item>
</monitored items>

128 OPC UA/DDS Gateway 1.0

10.3.1.5.2 DDS Output

The Subscription mapping configuration defines three DDS Outputs to propagate NotificationMessages to DDS
Subscriber applications. In particular, it organizes the Monitoredltems associated with the OPC Input in three Topics:
MotorStatus, DevicePosition, and Event.

Each DDS Output provides the means to:
¢ Define the type and the Topic to be used via the <register_type name> and <topic_name> tags.

* Define the QoS settings of the associated DataWriter using the <datawriter_gos> tag.

10.3.1.5.2.1 MotorDataPublication Definition

The MotorDataPublication is defined as follows:

<dds_output name="MotorDataPublication"
domain participant ref="MyDomainParticipant">
<topic_name>MotorStatus</topic_name>
<registered type name>MotorDataType</registered type name>
<datawriter_gos>
<durability>
<kind>TRANSIENT LOCAL DURABILITY QOS< /kind>
</durability>
</datawriter_ gos>
</dds_output>

10.3.1.5.2.2 DevicePublication Definition

The DevicePublication is defined as follows:

<dds_output name="DevicePublication"
domain participant ref="MyDomainParticipant">
<topic_name>DevicePosition</topic_name>
<registered type name>DeviceDataType</registered type name>
</dds_output>

10.3.1.5.2.3 EventPublication Definition

The EventPublication is defined as follows.
<dds_output name="EventPublication"
domain participant ref="MyDomainParticipant">
<topic_name>Event</topic_name>
<registered type name>EventType</registered type name>
</dds_output>

10.3.1.5.3 Input/Output Mapping

Lastly, the OPC UA Subscription mapping allows us to assign Notification messages to specific fields of DDS Outputs.
In our case, we must assign values to the three DDS Outputs defined above. We do this by explicitly mapping
Dataltems, Eventltems, or constants to OPC UA Output fields as follows.
<mapping>
<assignment dds_output_ref="MotorDataPublication"
opcua_input ref="MyInput">

</assignment>
<assignment dds_output_ref="DevicePublication"
opcua_input ref="MyInput">

</assignment>

<assignment dds_output_ref="DevicePublication"
opcua_input ref="MyInput">

</assignment>

</mapping>

OPC UA/DDS Gateway 1.0 129

10.3.1.5.3.1 MotorDataPublication Assignment

In the case of MotorDataPublication, we assign a constant to motor_name and two Dataltems to motor_moves
and motor_changes_direction, respectively.

<assignment dds_output_ref="MotorDataPublication"
opcua_input ref="MyInput">
<field dds_output field ref="motor_ name">
<value>Motorl</value>
</field>
<field dds_output field ref="motor_moves">
<data_item data_item;ref="MotorMoves"/>
</field>
<field dds_output field ref="motor_changes_direction">
<data_item data_item ref="MotorChangesDirection"/>
</field>
</assignment>

10.3.1.5.3.2 DevicePublication Assignment

In the case of DevicePublication, we assign a constant to device name and three Dataltems to longitude and
latitude, and altitude, respectively.

<assignment dds_output ref="DevicePublication"
opcua_input ref="MyInput">
<field dds_output_field ref="device name">
<value>Devicel</value>
</field>
<field dds_output field ref="longitude">
<data_item data item ref="Longitude"/>
</field>
<field dds_output_field ref="latitude">
<data_item data_item;ref="Latitude"/>
</field>
<field dds_output field ref="altitude">
<data_item data item ref="Altitude"/>
</field>
</assignment>

10.3.1.5.3.3 EventPublication Assignment

In the case of EventPublication, we assign an EventField to each DDS Output field. When referring to an
EventField, we must provide the fully-qualified name of the field, which includes the Event name and the EventField
name separated by “: : 7. For example, “"MyEvent: :Field”.

<assignment dds_output_ref="EventPublication"
opcua_input ref="MyInput">
<field dds_output field ref="message">
<event_ field event field ref="MyEvent::Message"/>
</field>
<field dds_output field ref="source name">
<event field event_field_ref="MyEvent::SourceName"/>
</field>
<field dds_output field ref="severity">
<event field event field ref="MyEvent::Severity"/>
</field>
</assignment>

10.3.2 DDS to OPC UA Bridge Example

This example shows how to configure the OPC UA/DDS Gateway to leverage the mappings specified in clauses 9.2
and in 9.3. Effectively, it builds a bridge between the DDS Global Data Space and OPC UA Clients.

130 OPC UA/DDS Gateway 1.0

At a high level, the XML configuration document is organized as follows:

<dds>
<types>
<struct>...</struct>
</types>
<ddsopcua_gateway name="MyOtherGateway'">
<opcua_server>...</opcua_server>
<domain participant>...</domain_participant>
<domain_participant>...</domain participant>
<dds_to_opcua bridge>
<domain>
<topic_group>...</topic_group>
<topic>...</topic>
</domain>
<domain>
<topic_group>...</topic_group>
</domain>
</dds_to_opcua_ bridge>
</ddsopcua_gateway>
</dds>

Where:

* <types> defines the DDS types that are required to create Topics, DataReaders, and DataWriters responsible
for dealing with the DDS communication side of the Gateway.

* <ddsocupa_gateway> defines a scenario that may be loaded by the Gateway. Each definition includes OPC
UA Servers capable of representing the DDS Global Data Space and DDS DomainParticipants that may be
used to create DDS Topics, DataReaders, and DataWriters.

* <dds_to_opcua_bridge> configures an OPC UA Server capable of representing the specified Domains,
Topics, and Topic Instances in the in its AddressSpace.

The complete example may be found in the non-normative file dds-opcua_dds2opcua_configuration.xml, which is
included with this specification.

10.3.2.1 DDS Type Definitions

In this example we are only going to preconfigure one type named ShapeType. We will use it to create all the entities
associated with a Circle Topic, which will be later on instantiated in the AddressSpace of the Gateway’s OPC UA
Server.

ShapeType is defined as follows:

<types>
<struct name="ShapeType'">
<member name="color" stringMaxLength="128" type="string" key="true"/>
<member name="x" type="int32"/>
<member name="y" type="int32"/>
<member name="shapesize" type="int32"/>
</struct>
</types>

10.3.2.2 OPC UA Server and DDS DomainParticipant Definitions

To create a DDS to OPC UA Bridge we must first define an OPC UA Server and a DDS DomainParticipant per DDS
Domain to be shown.

OPC UA/DDS Gateway 1.0 131

Configuration settings for an OPC UA Servers are vendor-specific. In this example, we assume that the Server is
configured with an external XML file.

<opcua_server name="MyServer'">
<configuration_ file>/path/to/server config.xml</configuration_ file>
</opcua_server>

DomainParticipants are configured as explained in sub clause 10.3.1.2. In this example, we declare two
DomainParticipants, which allow the Gateway to join Domains 0 and 1.

<domain_participant name="DomainParticipant0" domain_id="0" >
<register type name="ShapeType" type_ ref="ShapeType" />
</domain_participant>

<domain_participant name="DomainParticipantl" domain_id="1"/>

10.3.2.3 DDS to OPC UA Bridge Definition

The DDS to OPC UA Bridge allows users to configure which Domains, Topics, and Topic Instances are exposed in the
AddressSpace of the OPC UA Server embedded in the Gateway. This scenario enables OPC UA Clients to use the
Gateway to discover Topics and Topic Instances in different Domains, monitor their value, and even publish data using
regular OPC UA Services.

The DDS to OPC UA Bridge in the example is defined as follows:
<dds_to_opcua_bridge name="MyDds20pcUaBridge"
opcua_server_ ref="MyServer">
<domain>
<topic_group>...</topic_group>
<topic>...</topic>
</domain>
<domain>
<topic_group>...</topic_group>
</domain>
</dds_to_opcua_bridge>

Where opcua_server_ref specifies the OPC UA Server that must be instantiated to represent the Domains, Topics,
and Topic Instances included in the Bridge definition.

10.3.2.3.1 Domain Definitions

Domain definitions provide the means to specify which Domains must be exposed in the AddressSpace of the OPC UA
Server. Each Domain definition must refer to a DomainParticipant using the domain_participant_ref attribute:
<domain domain_participant_ ref="DomainParticipant0">

</domain>

<domain domain participant_ref="DomainParticipantl">

</dox;1:;1in>
10.3.2.3.2 Topic Definitions

Topic definitions allow users to explicitly add DDS Topics to the AddressSpace of the OPC UA Server. In our example,
we add a Topic named Circle to DomainParticipantO0 as follows:

<topic name="Circle">
<registered type name>ShapeType</registered type name>
<write_access>
<enabled>true</enabled>
<preregistered_instances>
<instance name="BLUE">
<field name="color">BLUE</field>
</instance>

132 OPC UA/DDS Gateway 1.0

</preregistered instances>

</write_access>

<read_access>
<enabled>true</enabled>
<historical_access>

<enabled>true</enabled>

</historical access>

</read_access>

</topic>

Where:

* registered_type name provides the name of the Topic type, which we previously registered with the
DomainParticipant.

* write_access configures (if enabled) a DataWriter to allow OPC UA Clients to write Topic Instances.
Moreover, it provides the ability to preregister Instances, which the Gateway will add to the AddressSpace of
the Server along with their parent opic. In this case, we preregister a “BLUE” circle.

* read_access configures (if enabled) a DataReader that allows OPC UA Clients to read Topic Instances. It
also provides an option to enable historical data access, and—even though not exercised in this example—an
option to create content filters capable of filtering out unwanted Topic instances or samples.

10.3.2.3.3 Topic Group Definitions

Topic Groups configure the Gateway to automatically add Nodes representing Topics to the AddressSpace of the OPC
UA Server according to the specified filter criteria. Our example includes two Topic Group definitions—one for each
Domain.

The first one—associated with DomainParticipant0—configures the Gateway to instantiate Nodes representing
discovered Topics whose name starts with “dds/”. Instances of those Topics may be read but not written according to
the Read and Write Access rules specified below:

<domain domain_ participant ref="DomainParticipant0">
<topic_group name="AllDdsTopics">
<allow_topic_name filter>dds/*</allow_topic_name filter>
<read_access>
<enabled>true</enabled>
</read_access>
<write_access>
<enabled>false</enabled>
</write_access>
</topic_group>

</domain>
The second one—associated with DomainParticipantl—configures the Gateway to instantiate Nodes representing

every discovered Topic. Like in the previous case, Instances of those Topics may be read but not written.

<domain domain_participant_ ref="DomainParticipantl">
<topic_group name="AllTopics">
<allow_topic_name filter>*</allow_topic_name filter>
<read_access>
<enabled>true</enabled>
</read_access>
<write_access>
<enabled>false</enabled>
</write_access>
</topic_group>
</domain>

OPC UA/DDS Gateway 1.0 133

This page intentionally left blank.

134 OPC UA/DDS Gateway 1.0

	1 Scope
	2 Conformance
	3 Normative References
	4 Terms and Definitions
	5 Symbols
	6 Additional Information
	6.1 Acknowledgements

	7 OPC UA/DDS Gateway Overview (non-normative)
	7.1 OPC Unified Architecture (OPC UA)
	7.1.1 OPC UA AddressSpace
	7.1.2 OPC UA Services

	7.2 Data Distribution Service (DDS)
	7.2.1 DDS Global Data Space
	7.2.2 Remote Procedure Call over DDS (DDS-RPC)

	7.3 Bridging OPC UA and DDS

	8 OPC UA to DDS Bridge
	8.1 Overview (non-normative)
	8.2 OPC UA Type System Mapping
	8.2.1 Built-in Primitive Types
	8.2.2 Built-in Complex Types

	8.3 OPC UA Service Sets Mapping
	8.3.1 Standard DataTypes and NodeClasses Mapping
	8.3.2 View Service Set
	8.3.2.1 Type Definitions
	8.3.2.2 Service Interfaces

	8.3.3 Query Service Set
	8.3.3.1 Type Definitions
	8.3.3.2 Service Interfaces

	8.3.4 Attribute Service Set
	8.3.4.1 Type Definitions
	8.3.4.2 Service Interfaces

	8.3.5 Method Service Set
	8.3.5.1 Type Definitions
	8.3.5.2 Service Interfaces

	8.3.6 Implementation Considerations
	8.3.6.1 OPC UA Implementation Considerations
	8.3.6.2 DDS Implementation Considerations

	8.4 OPC UA Subscription Model Mapping
	8.4.1 Overview (non-normative)
	8.4.1.1 Subscriptions
	8.4.1.2 MonitoredItems
	8.4.1.3 Notification Messages
	8.4.1.3.1 DataChange Notifications
	8.4.1.3.2 Event Notifications
	8.4.1.3.3 StatusChange Notifications

	8.4.2 OPC UA Subscription Mapping
	8.4.2.1 Overview
	8.4.2.2 OPC UA Inputs
	8.4.2.2.1 Input Name
	8.4.2.2.2 OPC UA Connections
	8.4.2.2.3 Subscription Protocol
	8.4.2.2.4 Monitored Items

	8.4.2.3 DDS Outputs
	8.4.2.3.1 Output Name
	8.4.2.3.2 DDS DomainParticipants
	8.4.2.3.3 Topic Name
	8.4.2.3.4 Registered Type Name
	8.4.2.3.5 DataWriterQos

	8.4.2.4 Input/Output Mappings

	8.4.3 OPC UA Subscription Mapping Behavior
	8.4.3.1 Constant Assignment
	8.4.3.2 NotificationMessage Assignment
	8.4.3.2.1 DataChange Notification Assignment
	8.4.3.2.2 EventField Assignments
	8.4.3.2.3 StatusChangeNotifications

	8.4.3.3 Simplified Mapping of OPC UA Variant Types

	8.4.4 Implementation Considerations
	8.4.4.1 OPC UA Implementation Considerations
	8.4.4.2 DDS Implementation Considerations

	9 DDS to OPC UA Bridge
	9.1 Overview (non-normative)
	9.2 DDS Type System Mapping
	9.2.1 Primitive Types
	9.2.1.1 Overview (non-normative)
	9.2.1.2 Mapping
	9.2.1.3 Example (non-normative)

	9.2.2 String Types
	9.2.2.1 Overview (non-normative)
	9.2.2.2 Mapping
	9.2.2.3 Example (non-normative)

	9.2.3 Enumerated Types
	9.2.3.1 Enumeration Types
	9.2.3.1.1 Overview (non-normative)
	9.2.3.1.2 Mapping
	9.2.3.1.3 Example (non-normative)

	9.2.3.2 Bitmask Types
	9.2.3.2.1 Overview (non-normative)
	9.2.3.2.2 Mapping
	9.2.3.2.3 Example (non-normative)

	9.2.4 Aggregated Types
	9.2.4.1 Structure Types
	9.2.4.1.1 Overview (non-normative)
	9.2.4.1.2 Mapping
	9.2.4.1.3 Example (non-normative)

	9.2.4.2 Union Types
	9.2.4.2.1 Overview (non-normative)
	9.2.4.2.2 Mapping
	9.2.4.2.3 Example (non-normative)

	9.2.5 Collection Types
	9.2.5.1 Arrays
	9.2.5.1.1 Overview (non-normative)
	9.2.5.1.2 Mapping
	9.2.5.1.2.1 Arrays of Primitive and String Types
	9.2.5.1.2.2 Arrays of Enumerated Types
	9.2.5.1.2.3 Arrays of Structures
	9.2.5.1.2.4 Arrays of Union Types
	9.2.5.1.2.5 Arrays of Collection Types

	9.2.5.1.3 Example (non-normative)

	9.2.5.2 Sequences
	9.2.5.2.1 Overview (non-normative)
	9.2.5.2.2 Mapping
	9.2.5.2.2.1 Sequences of Primitive and String Types
	9.2.5.2.2.2 Sequences of Enumerated Types
	9.2.5.2.2.3 Sequences of Structures
	9.2.5.2.2.4 Sequences of Unions
	9.2.5.2.2.5 Sequences of Collection Types

	9.2.5.2.3 Example (non-normative)

	9.2.5.3 Maps
	9.2.5.3.1 Overview (non-normative)
	9.2.5.3.2 Mapping
	9.2.5.3.3 Example (non-normative)

	9.2.6 Nested Types
	9.2.6.1 Overview (non-normative)
	9.2.6.2 Mapping

	9.2.7 Alias Types
	9.2.7.1 Overview (non-normative)
	9.2.7.2 Mapping
	9.2.7.3 Example (non-normative)

	9.2.8 Keyed Types

	9.3 DDS Global Data Space Mapping
	9.3.1 Overview (non-normative)
	9.3.1.1 DDS Global Data Space and DDS
	9.3.1.2 OPC UA Mapping Alternatives

	9.3.2 Representing DDS Domains in OPC UA
	9.3.2.1 Domain Objects
	9.3.2.2 DomainType ObjectType

	9.3.3 Representing DDS Topics in OPC UA
	9.3.3.1 Topic Objects
	9.3.3.1.1 RegisterInstance Method
	9.3.3.1.2 UnregisterInstance Method
	9.3.3.1.3 DisposeInstance Method

	9.3.3.2 Topic ObjectType

	9.3.4 Representing DDS Instances and Samples in OPC UA
	9.3.4.1 DDS Instance Node Representation
	9.3.4.2 Updating the Value of DDS Instance Nodes
	9.3.4.3 Reading and Monitoring Instance Nodes
	9.3.4.4 Reading Historical Data from Instance Nodes
	9.3.4.5 Writing Instance Nodes
	9.3.4.6 Registering New Instances
	9.3.4.7 Unregistering and Disposing Instances

	9.3.5 Implementation Considerations
	9.3.5.1 OPC UA Implementation Considerations
	9.3.5.2 DDS Implementation Considerations

	10 OPC UA/DDS Gateway Configuration
	10.1 Overview
	10.2 Configuration
	10.3 Examples (non-normative)
	10.3.1 OPC UA to DDS Bridge Example
	10.3.1.1 DDS Type Definitions
	10.3.1.2 OPC UA Connection and DDS DomainParticipant Definition
	10.3.1.3 OPC UA to DDS Bridge Definition
	10.3.1.4 OPC UA Service Set Mapping Definition
	10.3.1.5 OPC UA Subscription Mapping Definition
	10.3.1.5.1 OPC UA Input
	10.3.1.5.1.1 OPC UA Input and Subscription Protocol Definition
	10.3.1.5.1.2 MonitoredItems

	10.3.1.5.2 DDS Output
	10.3.1.5.2.1 MotorDataPublication Definition
	10.3.1.5.2.2 DevicePublication Definition
	10.3.1.5.2.3 EventPublication Definition

	10.3.1.5.3 Input/Output Mapping
	10.3.1.5.3.1 MotorDataPublication Assignment
	10.3.1.5.3.2 DevicePublication Assignment
	10.3.1.5.3.3 EventPublication Assignment

	10.3.2 DDS to OPC UA Bridge Example
	10.3.2.1 DDS Type Definitions
	10.3.2.2 OPC UA Server and DDS DomainParticipant Definitions
	10.3.2.3 DDS to OPC UA Bridge Definition
	10.3.2.3.1 Domain Definitions
	10.3.2.3.2 Topic Definitions
	10.3.2.3.3 Topic Group Definitions

