
ISO/IEC C++ DDS PSM, Beta v1.0 i

Formatted: Font: Arial, 9 pt

Date: January 2010

ISO/IEC C++ 2003 Language DDS PSM
(DDS-PSM-Cxx)

vFTF Beta 11.0

__

OMG Document Number: ptc/20121-1001-022

Standard document URL: http://www.omg.org/spec/DDS-PSM-Cxx/1.0

Associated File(s)*: http://www.omg.org/spec/DDS-PSM-Cxx/20120101031

* original file: mars/2010-11-02

This OMG document replaces the submission document (mars/2010-12-20, Alpha). It is an
OMG Adopted Beta Specification and is currently in the finalization phase. Comments on
the content of this document are welcome, and should be directed to issues@omg.org by
August 29, 2011.

You may view the pending issues for this specification from the OMG revision web page
http://www.omg.org/issues/.

The FTF Recommendation and Report for this specification will be published on November
7, 2011. If you are reading this after that date, please download the available specification
from the OMG Specifications Catalog.

Formatted: Default Paragraph Font, Font:
Times New Roman, 10 pt, Not Bold

Formatted: Default Paragraph Font, Font:
Times New Roman, 10 pt, Not Bold

Formatted: Default Paragraph Font, Font:
Times New Roman, 10 pt, Not Bold

http://www.omg.org/spec/DDS-PSM-Cxx/1.0

ii ISO/IEC C++ DDS PSM, vBeta 1.0

Copyright © 20120, Object Management Group, Inc. (OMG)

Copyright © 20120, PrismTech Corp.

Copyright © 20120, Real-Time Innovations, Inc. (RTI)

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms,

conditions and notices set forth below. This document does not represent a commitment to implement any portion of this

specification in any company's products. The information contained in this document is subject to change without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free,

paid up, worldwide license to copy and distribute this document and to modify this document and distribute copies of the

modified version. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed

the copyright in the included material of any such copyright holder by reason of having used the specification set forth

herein or having conformed any computer software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant you a

fully-paid up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use this

specification to create and distribute software and special purpose specifications that are based upon this specification,

and to use, copy, and distribute this specification as provided under the Copyright Act; provided that: (1) both the

copyright notice identified above and this permission notice appear on any copies of this specification; (2) the use of the

specifications is for informational purposes and will not be copied or posted on any network computer or broadcast in

any media and will not be otherwise resold or transferred for commercial purposes; and (3) no modifications are made to

this specification. This limited permission automatically terminates without notice if you breach any of these terms or

conditions. Upon termination, you will destroy immediately any copies of the specifications in your possession or

control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may

require use of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a

license may be required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of

those patents that are brought to its attention. OMG specifications are prospective and advisory only. Prospective users

are responsible for protecting themselves against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications regulations

and statutes. This document contains information that is protected by copyright. All Rights Reserved. No part of this

work covered by copyright herein may be reproduced or used in any form or by any means--graphic, electronic, or

mechanical, including photocopying, recording, taping, or information storage and retrieval systems--without permission

of the copyright owner.

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY CONTAIN

ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE

MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS PUBLICATION,

INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF

MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE. IN NO EVENT

SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE COMPANIES LISTED ABOVE BE LIABLE

FOR ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL,

ISO/IEC C++ DDS PSM, Beta v1.0 iii

Formatted: Font: Arial, 9 pt

CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS, REVENUE, DATA OR

USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE FURNISHING,

PERFORMANCE, OR USE OF THIS MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH

DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you. This

disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1) (ii) of

The Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph (c)(1) and (2)

of the Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified in 48 C.F.R.

227-7202-2 of the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of the Federal

Acquisition Regulations and its successors, as applicable. The specification copyright owners are as indicated above and

may be contacted through the Object Management Group, 140 Kendrick Street, Needham, MA 02494, U.S.A.

TRADEMARKS

MDA®, Model Driven Architecture®, UML®, UML Cube logo®, OMG Logo®, CORBA® and XMI® are registered

trademarks of the Object Management Group, Inc., and Object Management Group™, OMG™, Unified Modeling

Language™, Model Driven Architecture Logo™, Model Driven Architecture Diagram™, CORBA logos™, XMI

Logo™, CWM™, CWM Logo™, IIOP™, MOF™, OMG Interface Definition Language (IDL)™, and OMG SysML™

are trademarks of the Object Management Group. All other products or company names mentioned are used for

identification purposes only, and may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its

designees) is and shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer

software to use certification marks, trademarks or other special designations to indicate compliance with these materials.

Software developed under the terms of this license may claim compliance or conformance with this specification if and

only if the software compliance is of a nature fully matching the applicable compliance points as stated in the

specification. Software developed only partially matching the applicable compliance points may claim only that the

software was based on this specification, but may not claim compliance or conformance with this specification. In the

event that testing suites are implemented or approved by Object Management Group, Inc., software developed using this

specification may claim compliance or conformance with the specification only if the software satisfactorily completes

the testing suites.

iv ISO/IEC C++ DDS PSM, vBeta 1.0

OMG’s Issue Reporting Procedure

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage readers

to report any ambiguities, inconsistencies, or inaccuracies they may find by completing the Issue Reporting Form listed

on the main web page http://www.omg.org, under Documents, Report a Bug/Issue

(http://www.omg.org/technology/agreement.)

Formatted: Default Paragraph Font

http://www.omg.org/technology/agreement

ISO/IEC C++ DDS PSM, Beta v1.0 v

Formatted: Font: Arial, 9 pt

Table of Contents

ISO/IEC C++ 2003 Language DDS PSM (DDS-PSM-Cxx) .. i
USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES .. ii
LICENSES .. ii
PATENTS ... ii
GENERAL USE RESTRICTIONS ... ii
DISCLAIMER OF WARRANTY .. ii
RESTRICTED RIGHTS LEGEND .. iii
TRADEMARKS ... iii
COMPLIANCE .. iii
OMG’s Issue Reporting Procedure .. iv

Table of Contents ... v

Preface ... vii

OMG Specifications .. vii
OMG Modeling Specifications ... vii
OMG Middleware Specifications ... vii
Platform Specific Model and Interface Specifications .. vii

Typographical Conventions .. viii

1 Scope ... 1

2 Conformance ... 1
2.1 Conformance Profiles ... 1
2.2 Programming Interfaces ... 2

3 References ... 2

4 Terms and Definitions .. 2
Data Centric Publish-Subscribe (DCPS) .. 2
Data Distribution Service for Real-Time Systems (DDS) ... 3
Data Local Reconstruction Layer .. 3
Platform-Independent Model (PIM) .. 3
Platform-Specific Model (PSM) .. 3

5 Symbols ... 3

6 Additional Information .. 4
6.1 Acknowledgements .. 4

7 ISO/IEC C++ Language DDS PSM (DDS-PSM-CXX) ... 4
7.1 Overview .. 4
7.2 Specification Organization .. 4
7.3 ConcurrencyandReentrancy .. 37
7.4 General Rules for Mapping the DDS PIM to the DDS-PSM-Cxx ... 47

7.4.1 MappingClasses .. 47
7.4.2 MappingPrimitiveandContainerTypes .. 47

Formatted: Font: (Default) Calibri, Bold

vi ISO/IEC C++ DDS PSM, vBeta 1.0

7.4.3 Mapping Parameters Passing and Parameters Return Rules .. 68
7.4.4 MappingAttributes .. 89

7.5 CorePackage ... 810
7.5.1 ObjectModel ... 910
7.5.2 ValueTypes .. 1011
7.5.3 AnyTypes ... 1112
7.5.4 StatusClasses ... 1112
7.5.5 Error Codes ... 1213
7.5.6 TimeandDuration .. 1214

7.6 QoS Packages .. 1314
7.6.1 PolicyClasses ... 1314
7.6.2 EntityClass ... 1416

7.7 Domain Package ... 16
7.8 Topic Package ... 16
7.9 Pub Package ... 17

7.9.1 DataWriterClass .. 17
7.10 Sub Package .. 17
7.11 Extensible and Dynamic Type Support Package .. 17
7.12 Example .. 1817

8 Improved Plain Language Binding for C++ ... 2119
8.1 TypeMapping .. 2119

8.1.1 Mapping Aggregation Types ... 2219
8.1.2 Mapping Primitive and Collection Types .. 2219
8.1.3 Mapping Enumerations ... 2219
8.1.4 Mapping Optional Attributes .. 2219
8.1.5 Mapping Shared Attributes ... 2219

8.2 Example .. 2220

ISO/IEC C++ DDS PSM, Beta v1.0 vii

Formatted: Font: Arial, 9 pt

Preface

OMG

Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer industry

standards consortium that produces and maintains computer industry specifications for interoperable, portable, and

reusable enterprise applications in distributed, heterogeneous environments. Membership includes Information

Technology vendors, end users, government agencies, and academia.

OMG member companies write, adopt, and maintain its specifications following a mature, open process. OMG’s

specifications implement the Model Driven Architecture® (MDA®), maximizing ROI through a full-lifecycle approach

to enterprise integration that covers multiple operating systems, programming languages, middleware and networking

infrastructures, and software development environments. OMG’s specifications include: UML® (Unified Modeling

Language™); CORBA® (Common Object Request Broker Architecture); CWM™ (Common Warehouse Metamodel);

and industry-specific standards for dozens of vertical markets.

More information on the OMG is available at http://www.omg.org/.

OMG Specifications

As noted, OMG specifications address middleware, modeling and vertical domain frameworks. A Specifications Catalog

is available from the OMG website at:

http://www.omg.org/technology/documents/spec_catalog.htm

Specifications within the Catalog are organized by the following categories:

OMG Modeling Specifications
 UML

 MOF

 XMI

 CWM

 Profile specifications

OMG Middleware Specifications
 CORBA/IIOP

 IDL/Language Mappings

 Specialized CORBA specifications

 CORBA Component Model (CCM)

Platform Specific Model and Interface Specifications
 CORBAservices

 CORBAfacilities

 OMG Domain specifications

 OMG Embedded Intelligence specifications

 OMG Security specifications

All of OMG’s formal specifications may be downloaded without charge from our website. (Products implementing OMG

specifications are available from individual suppliers.) Copies of specifications, available in PostScript and PDF format,

may be obtained from the Specifications Catalog cited above or by contacting the Object Management Group, Inc. at:

viii ISO/IEC C++ DDS PSM, vBeta 1.0

Certain OMG specifications are also available as ISO standards. Please consult http://www.iso.org.

Typographical Conventions

The type styles shown below are used in this document to distinguish programming statements from ordinary English.

However, these conventions are not used in tables or section headings where no distinction is necessary.

Helvetica/Arial - 10 pt. Bold:

Courier - 10 pt. Bold:

Helvetica/Arial - 10 pt

Terms that appear in italics are defined in the glossary. Italic text also represents the name of a document,

specification, or other publication.

Formatted: Font: Not Italic, No underline,
Font color: Auto

http://www.iso.org/

ISO/IEC C++ DDS PSM, Beta 1 1

1 Scope

The purpose of this document is to specify the ISO/IEC C++ PSM for DDS. This new PSM provides

a new C++ API for programming DDS which is clear, simple, expressive, safe, efficient, extensible

and portable. The ISO/IEC-C++ PSM does not impact on-the-wire interoperability with other

language mappings. The PSM API is defined by means of a set of C++ header files.

This PSM includes all DCPS conformance profiles defined in the DDS specification. In addition, it

includes platform-specific mappings for:

 The programming interface specified by [DDS-XTypes]

 Accessing QoS profiles such as are specified in [DDS-CCM]  

This specification only addresses the DCPS layer of the DDS specification. The optional DLRL layer

may be addressed separately in a future specification.This specificatio also introduces a new C++

mapping for the DDS type system as specified in the Extensible and Dynamic Topic Types

Specification [REF].

2 Conformance

This specification consists of this document as well as a set of C++ header files, references on the

cover page. Both are normative. In the event of a conflict between them, the latter shall prevail.

2.1 Conformance Profiles

Conformance to this specification parallels conformance to the DDS specification itself and consists

of the same conformance levels. For example, an implementation may conform to the DDS

Minimum Profile with respect to this PSM, meaning that all of the programming interfaces identified

by the DDS specification as pertaining to that conformance level must be implemented in this PSM.

The one exception to this rule is the Object Model Profile, which defines the Data Local

Reconstruction Layer (DLRL); DLRL is outside of the scope of this PSM.

In addition to the conformance level defined in the DDS specification itself, this PSM recognizes and

implements the Extensible and Dynamic Types conformance level for DDS defined by the Extensible

and Dynamic Topic Types for DDS specification.

This PSM furthermore defines methods to create Entities and to set their QoS based on the XML

QoS libraries and profiles defined by the DDS for Lightweight CCM specification. Implementations

that support these XML QoS profiles shall implement these operations fully; other implementations

shall indicate failure with the DDS-standard UNSUPPORTED error. The Plain Language Binding for

C++ defined in this specification represents an optional conformance point. Implementers may

support either this Language Binding or the previously defined Plain Language Binding for C++

defined in [DDS-XTypes].

ISO/IEC C++ DDS PSM, Beta 1 1

2 ISO/IEC C++ DDS PSM, Beta 1

2.2 Programming Interfaces

Conformance to the C++ programming interfaces consists of the following conditions:

 The file names and relative locations of all C++ headers within the “dds” directory are

normative. Those headers within “detail” subdirectories are excepted; they are not normative.

 All public symbol names within the ::dds:: namespace and its contained namespaces,

including those names introduced into those namespaces by means of typedef declarations,

are normative. Those names within “detail” namespaces are excepted; they are not normative.

 The distribution of the normative symbol names among the normative headers is itself

normative, such that a source file that includes the header in which a given name is declared

will continue to compile when that header is replaced with the corresponding header from a

different DDS implementation.

The remainder of the files, declarations, and definitions contained within this specification's C++

programming interfaces constitute a reference implementation and a set of examples. They are not

normative.

Conforming implementations shall not define implementation-specific extension programming

interfaces within normative namespaces. They may, however, specialize normative templates defined

by this specification.

3 References

The following normative documents contain provisions that, through reference in this text, constitute

provisions of this specification. For dated references, subsequent amendments to, or revisions of, any

of these publications do not apply.

 [C99] C Programming Language (ISO/IEC 9899:1999)

 [C++] C++ Programming Language (ISO/IEC 14882:2003)

 [DDS] Data Distribution Service for Real-Time Systems Specification, version 1.2 (OMG

document formal/2007-01-01)

 [DDS-XTypes] Extensible and Dynamic Topic Types, version 1.0 Beta 1 (OMG docu- ment

ptc/2010-05-12)

 [DDS-CCM] DDS for Lightweight CCM, version 1.0 Beta 1 (OMG document ptc/2009- 02-

02).

4 Terms and Definitions

For the purposes of this specification, the following terms and definitions apply.

Data Centric Publish-Subscribe (DCPS)
The mandatory portion of the DDS specification used to provide the functionality required for an

ISO/IEC C++ DDS PSM, Beta 1 3

application to publish and subscribe to the values of data objects.

Data Distribution Service for Real-Time Systems (DDS)
An OMG distributed data communications specification that allows Quality of Service policies to be

specified for data timeliness and reliability. It is independent of implementation languages.

Data Local Reconstruction Layer
The optional portion of the DDS specification used to provide the functionality required for an

application for direct access to data exchanged at the DCPS layer. This later builds upon the DCPS

layer.

Platform-Independent Model (PIM)
An abstract definition of a facility, often expressed with the aid of formal or semi-formal modeling

languages such as OMG UML that does not depend on any particular implementation technology.

Platform-Specific Model (PSM)
A concrete definition of a facility, typically based on a corresponding PIM, in which all

implementation-specific dependencies have been resolved.

5 Symbols

This specification leverages some symbols of common usage whose meaning is reported in the table

below:

Symbol Meaning

<: The symbol “<:” is the commonly used symbol to denote

subtyping. Given two programming language type T and

Q, we can say that Q <: T if any occurrence of T can be

replaced by Q.

Foo<+T> When Foo is a class parameterized on the type T, we use

the notation Foo<+T> to indicate that Foo is covariant in

T.

This means that given Q <: T then Foo<Q> <: Foo<T>

When no annotation is provided then the class is

supposed to be invariant.

Foo<-T> When Foo is a class parameterized on the type T, we use

the notation Foo<- T> to indicate that Foo is

contravariant in T.

This means that given Q <: T then Foo<T> <: Foo<Q>

When no annotation is provided then the class is

supposed to be invariant.

Formatted: Font: (Default) Times New
Roman

Formatted: Font: (Default) Times New
Roman

Formatted: Font: (Default) Times New
Roman

Formatted: Font: (Default) Times New
Roman

Formatted: Font: (Default) Times New
Roman

Formatted: Font: (Default) Times New
Roman

4 ISO/IEC C++ DDS PSM, Beta 1

Foo<T> When foo is non-variant in T.

6 Additional Information

6.1 Acknowledgements

The following companies submitted this specification:

 PrismTech Corporation, Ltd.

 Real-Time Innovations, Inc. (RTI)

7 ISO/IEC C++ Language DDS PSM (DDS-PSM-CXX)

7.1 Overview

The “ISO/IEC C++ Language DDS PSM” (DDS-PSM-Cxx) was motivated by mainly two reasons.

First the IDL-derived C++ API for DDS does not integrate well with the C++ language and it does

not leverage some of the features provided by the C++ language today universally sup- ported by

C++ compilers. Second, the current IDL-derived PSM suffers from the gap existing between the

features available in IDL and those available in a programming language such as C++. Some

examples of this gap are as simple as method overloading, yet, there are many other examples that

we could make in comparing the expressiveness power of IDL versus that of na- tive C++.

As a result this submission takes a complete fresh look at how a native C++ PSM can be derived

from the DDS PIM. In doing so, it tries to balance two forces – --derive an API that is as simple and

safe as possible while retaining the structure of the PIM. In addition, theThis specification does,

while not requireing any C++110x features for its implementation, yet it is designed to enable the

use of C++11 features, such as the auto keyword, range-based for loops, etc.it will greatly benefits

from it both in terms of further simplify- ing the programming of DDS applications, for instance

using the new “auto” keyword” or by simplifying the actual implementation of the API.

7.2 Specification Organization

The DDS-PSM-Cxx API is organized around namespaces that match the different modules defined

by the DDS v1.2 PIM (see Figure 7.1Figure 7.1). The dds::core – as implied by its name – provides

core abstractions that are used throughout the API, such as the Time and Duration, the Policies, and

the definition of reference and value types. The specification defines type constructors, i.e.

parameterized class, that delegate their behavior to a delegate type parameter. The standard API is

turned into an implementation by properly instantiating these type constructors with implementation

provided delegates. The “detail” sub-packages visible in Figure 7.1Figure 7.1, are intended to store

Formatted: Font: (Default) Times New
Roman

Field Code Changed

Field Code Changed

ISO/IEC C++ DDS PSM, Beta 1 5

the “link” between the standard API and the vendor implementation. The content of the detail sub-

package is provided as a guideline and does not constitute a point of compliance.

in two packages hierarchies, namely “tdds” and “dds”, as shown in Figure 7.1.

All the classes included in the package hierarchy “tdds” are type constructors, meaning template

classes parameterized with respect to a delegate type to which the implementation of the prescribed

behavior is delegated—these delegates are to be provided by vendors as shown in Figure 7.1 and are

used to instantiate the standard types as specified in the “dds” package by means of the type

constructors. The structure and dependencies of the “tdds” and “dds” package hierarchies are shown

in Figure 7.3 and Figure 7.2 respectively. The package organization reveals how various parts of the

API are grouped into a package so to limit their dependencies. The DDS-PSM-Cxx organizes the

various DDS classes asin a set of packages that maximize the coherence among contained classes

and minimize the dependencies across packages. The new This organization assures that minimizes

the API minimizes dependencies to the minimum by construction and . In addition, the DDS-PSM-

Cxx allow applications that use only the publishing or the subscribing functionalities to limit reduce

the include files to the minimum required the files being by publish, or subscribe, only applications

included, thus speeding up compilation times.

ISO/IEC C++ DDS PSM, Beta 1 1

Figure 7.1 – Standard Packages Organization

dds

core

xtypes policy detail cond

detail detail

status

detail

domain Topic

qos detail

detail

pub

qos

detail

detail

sub

detail

qos

detail

cond status

detaildetail

detaildetail qos

detail

Field Code Changed

Field Code Changed

Formatted: English (U.S.)

ISO/IEC C++ DDS PSM, Beta 1 1

For instance if we take as an example the

type constructor TInstanceHandle, specified

in the file

dds/core/TInstanceHandle.hpp as :

 namespace dds {
 namespace core {
 template <typename DELEGATE> class TInstanceHandle ;
 }
 }

Then its instantiation is to be defined by the implementor of the API within the dds::core::delegate

namespace as something like:

 namespace dds {
 namespace core {
 namespace detail {
 typedef dds::core::TInstanceHandle<foo::core::InstanceHandleDelegate>
 InstanceHandle;
 }
 }

This instantiation of the type constructor TInstanceHandle is then used by the standard API in the

dds/core/InstanceHandle.hpp file to define the standard instance handle as:

 namespace dds {
 namespace core {
 typedef detail::InstanceHandle InstanceHandle;
 }
 }

Under no circumstances a vendor shall change the public API defined by this specification. The only

action performed by type constructor is to delegate their implementation to the DELEGATE template

parameter. It is the DELEGATE type that provides the actual implementation and that encapsulate

Formatted: English (U.S.)

Formatted: Font: (Default) Menlo Regular,
10 pt, English (U.S.)

Formatted: English (U.S.)

Formatted: Font: (Default) Menlo Regular,
10 pt, English (U.S.)

Formatted: English (U.S.)

Formatted: Font: (Default) Menlo Regular,
10 pt, English (U.S.)

Formatted: English (U.S.)

Formatted: Font: (Default) Menlo Regular,
10 pt, English (U.S.)

Formatted: English (U.S.)

Formatted: Font: (Default) Menlo Regular,
10 pt, English (U.S.)

Formatted: Font: (Default) Menlo Regular,
10 pt

Formatted: English (U.S.)

Formatted: English (U.S.)

2 ISO/IEC C++ DDS PSM, Beta 1

vendor extensions.

Figure 7.1 – Standard Packages Organization

Figure 7.2 – Instantiated Package Structure

Formatted: Centered

ISO/IEC C++ DDS PSM, Beta 1 3

Figure 7.1 and Figure 7.2 show that the DDS-PSM-Cxx API is parameterized with respect to a

DELEGATE. The delegation layer is provided by vendors and used to instantiate the DDS-PSM-

Cxx API into a concrete API. The DDS-PSM-Cxx API instantiation is as simple as the instantiation

of a set of C++ templates. This standard provides a non-mandatory reference implementation

showing how that can be done. Under any circumstances, compliant implementation shall not change

the DDS-PSM-Cxx API vendor-specific extensions shall be added only via DELEGATEs. The DDS-

PSM-Cxx API provides a standard way of accessing vendor specific extensions.

Application source code imports the DDS API by including one or more header files from the dds/

directory hierarchy. There are three ways to do this, depending on how the application programmer

wishes to manage file dependencies.

 The entire DDS API can be included at once:

o #include <dds/dds.hpp>

 Individual DDS modules can be included. These headers have the form

dds/module/ddsmodule_module.hpp. For example:

o #include <dds/pub/ddspub_module.hpp>

 Individual types can be included. These headers have the form dds/module/ClassName.hpp.

For example:

o #include <dds/pub/DataWriter.hpp>

7.3 Concurrency, andReentrancy and Exception Safety

It is expected that most Service implementations will support multi-threaded environments.

Figure 7.3 2 – Standard Package
Organization

4 ISO/IEC C++ DDS PSM, Beta 1

Therefore, for the sake of portability, this PSM constrains the level of thread and exception safety

that applications may expect:

 All DataReader and DataWriter operations shall be reentrant.

 Loand-based read/take operation shall be exception safe.

 Constructors and copy-assignment operators of normative classes that inherit from Value<D>

and the Value<D> template itself shall preferably be exception safe. Deviation from this norm

should be carefully noted on vendor documentation.

 All Topic (and other TopicDescription extension interfaces), Publisher, Subscriber, and

DomainParticipant operations shall be reentrant with the exception that close may not be

called on a given object concurrently with any other call of any method on that object or on

any contained object.

 All DomainParticipantFactory operations shall be reentrant with the exception that

DomainParticipantFactory.close may not be called on a given object concurrently with any

other call of any method on that object or on any contained object.

 All WaitSet and Condition (including Condition extension interfaces) operations shall be

reentrant with the exception that their close() operations may not be invoked concurrently

with any other method on the same object.

 Code within a DDS listener callback may not safely call any method on any DDS Entity but

the one on which the status change occurred.

 Any method of any value type may be non-reentrant.

A Service implementation may choose to provide unspecified stronger guarantees than the rules

above.

7.4 General Rules for Mapping the DDS PIM to the DDS-PSM-
Cxx

This specification defines some general rules to map DDS PIM classes to DDS-PSM-Cxx classes.

These rules are applicable to a subset of classes, luckily the most numerous, while special mapping is

required for some of the DDS entities as described below.

7.4.1 MappingClasses
As a general rule all classes included in the DDS PIM have to be mapped into a C++ class. The

specific nature of this class depends on whether the DDS PIM element has reference or value

semantics.

NOTE: An implication of this mapping is that no DDS PIM class ever maps to a C++ struct. 7.4.2

7.4.2 Mapping Primitive and Container Types
The table below provides a complete mapping between the types defined and used by the DDS PIM

ISO/IEC C++ DDS PSM, Beta 1 5

and the corresponding types used by the DDS-PSM-Cxx:

Table 7.1 – Primitive and Container Types Mapping

DDS Type C++ Type

Boolean bool

Char8 char

Char32 wchar_t

Byte uint8_t

Int16 int16_t

UInt16 uint16_t

Int32 int32_t

UInt32 uint32_t

Int64 int64_t

UInt64 uint64_t

Float64 double

Float128 long double

Float32 float

string<Char8> std::string

string<Char32> std::wstring

sequence<T> std::vector<T>

map<K, V> std::map<K,

V>

T[N] dds::core::array<T,

N>[]

The above fixed-size integer types shall conform to the types of the same names as defined by [C99]

in the header stdint.h.

 The presence of these types shall not be construed to require that DDS implementations only

support [C99]-compliant platforms. Implementations for non-[C99]-compliant plat- forms

shall provide their own conformant integer type definitions.

 It shall not be construed to imply the existence of any other definitions that would be found in

Field Code Changed

Field Code Changed

Formatted Table

Formatted: Font: (Default) Times New
Roman

Formatted: Font: (Default) Times New
Roman

Formatted: Font: (Default) Times New
Roman

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

6 ISO/IEC C++ DDS PSM, Beta 1

the header stdint.h on a [C99]-compliant platform or even the existence of that header itself.

Note that these types are defined in the global namespace, not in the std namespace. In addition, it is

worth noticing that bounded and unbounded sequence types map to the same C++ types.

The DDS Array type is mapped to the dds::core::array type which is specified to conform with the

std::array type specified as part of C++11, exception made for the move operators.

7.4.3 Mapping Enumerations
 Native enumerations in C++ are not safe. This specification maps DDS enumerations to a

safe enumeration class defined as follows:

namespace dds {
 namespace core {
 template<typename def, typename inner = typename def::type>
 class safe_enum : public def
 {
 typedef typename def::type type;
 inner val;

 public:

 safe_enum(type v) : val(v) {}
 inner underlying() const { return val; }

 bool operator == (const safe_enum & s) const;
 bool operator != (const safe_enum & s) const;
 bool operator < (const safe_enum & s) const;
 bool operator <= (const safe_enum & s) const;
 bool operator > (const safe_enum & s) const;
 bool operator >= (const safe_enum & s) const;
 };
 }
}

 Below we provide an example of how implementations of this specification have to the

safe_enum class to map DDS enumeration. For convenience we use IDL to express a DDS

enumeration.

DDS Type C++ Type

enum Color {

 GREEN,

 WHITE,

 RED

};

enum Color_def__ {

 GREEN,

 WHITE,

 RED

};

typedef dds::core::safe_enum<Color_def> Color;

Formatted: Normal

Formatted: English (U.S.)

Formatted: Normal

Formatted: English (U.S.)

Formatted Table

Formatted: Left

Formatted: Left

Formatted: Font:

Formatted: Left, Tab stops: Not at 3" + 6"

Formatted: Left

Formatted: Normal

ISO/IEC C++ DDS PSM, Beta 1 7

 Notice that this enumeration provides scoped names and leads to code that is equivalent to

those written using C++11 enumeration classes. As such, for C++11 compilers, implementers may

choose to map enumeration to C++11 enumeration classes.

7.4.4 Mapping Unions
DDS unions mapping is the same as the one defined by the IDL2C++11 specification as defined in

section 6.13.2 of the document ptc/2012-04-03. This choice is compatible with the use of C++03 and

aligns the mapping of DDS types to that of IDL.

7.4.37.4.5 Mapping Parameters Passing and Parameters Return Rules
The DDS PIM defines parameters as being either IN/OUT/INOUT depending on whether the

parameter has no side effect, is used only for side effect, or whether it provides data that then is

changed by the invoked method. Likewise the PIM defines return types.

The table below provides a mapping between IN/OUT/INOUT for a generic type T, distinguish- ing

between primitive and non-primitive types. To this end, container types are considered as non-

primitive types.

PIM Native Type

Parameter

DDS-PSM-Cxx Native Type

Parameter

IN T T

OUT T T&

INOUT T T&

PIM Native Return

Type

DDS-PSM-Cxx Native

Return Type

T T

PIM Type Parameter DDS-PSM-Cxx Type

Parameter

IN T const T&

OUT T T&

INOUT T T&

PIM Native Return DDS-PSM-Cxx Native

Formatted: English (U.S.)

Formatted: English (U.S.)

Formatted: Normal

Formatted: Font: (Default) Times New
Roman

Formatted: Font: (Default) Times New
Roman

Formatted: Font: (Default) Times New
Roman

Formatted: Font: (Default) Times New
Roman

Formatted: Font: (Default) Times New
Roman

Formatted: Font: (Default) Times New
Roman

Formatted: Font: (Default) Times New
Roman

Formatted: Font: (Default) Times New
Roman

Formatted: Font: (Default) Times New
Roman

Formatted: Font: (Default) Times New
Roman

Formatted: Font: (Default) Times New
Roman

Formatted: Font: (Default) Times New
Roman

Formatted: Font: (Default) Times New
Roman

Formatted: Font: (Default) Times New
Roman

Formatted: Font: (Default) Times New
Roman

Formatted: Font: (Default) Times New
Roman

Formatted: Font: (Default) Times New
Roman

Formatted: Font: (Default) Times New
Roman

Formatted: Font: (Default) Times New
Roman

Formatted: Font: (Default) Times New
Roman

8 ISO/IEC C++ DDS PSM, Beta 1

Type Return Type

T One of the following,

depending on wether the

return parameter is an

attribute or not.

● T

● const T&

7.4.47.4.6 MappingAttributes
Attributes defined by DDS PIM classes have to be mapped into:

 Implementation-defined state,

 Accessors Getter and setter methods named after the attribute, and

 A constructor argument that allows initializing the attribute.

 Getter/Setter methods shall be declared as described in the following table:

Attribute Type Getter/Setter Signature

NT attribute;

Where NT is a native.

NT attribute();

void attribute(NT attrib);

CT attribute;

Where CT is a constructed

type (e.g. a struct)

CT& attribute();

const CT& attribute() const;

void attribute(const CT& attrib);

ST attribute;

Where ST is a

sequence type (e.g.

a string, sequence,

map, arrays, etc.)

ST& attribute();

const ST& attribute() const;

void attribute(const ST& attrib);



7.5 CorePackage

The core package of the ISO/IEC C++ PSM for DDS (DDS-PSM-Cxx) defines the classes at the

foundation of the API object model as well as all the DDS types used by all other modules. This

section describes the most important classes of the package. The full list of mandatory classes is

included in the appendix.

Formatted: Font: (Default) Times New
Roman

Formatted: Font: (Default) Times New
Roman

Formatted: Font: (Default) Times New
Roman

Formatted: Font: (Default) Times New
Roman

Formatted: Font: (Default) Times New
Roman

Formatted: Font: (Default) Times New
Roman

Formatted: No bullets or numbering

Formatted: Font: Bold

Formatted: Font: Bold

Formatted: Font: Bold

Formatted: Font: Not Bold

Formatted: Font: Bold

Formatted: Font: Bold

Formatted: Left, Tab stops: Not at 3" + 6"

Formatted: Font: Bold

Formatted: Left

Formatted: Font: Not Bold

Formatted: Font:

Formatted: Font: (Default) Times New
Roman

Formatted: Font: (Default) Times New
Roman

Formatted: Font: Not Bold

Formatted: Font:

Formatted: No bullets or numbering

ISO/IEC C++ DDS PSM, Beta 1 9

7.5.1 ObjectModel
The ISO/IEC C++ PSM for DDS (DDS-PSM-Cxx) is based on an object model that is structured in

two different kinds of object types: reference-types and value-types.

7.5.1.1 Reference Types
All objects that have a reference-type have an associated shallow (polymorphic) assignment op-

erator that simply changes the value of the reference. Furthermore reference-types are safe, meaning

that under no circumstances can a reference point to an invalid object. At any single point in time a

reference can either refer to the null object or to a valid object.

The semantics for Reference types is defined by the DDS-PSM-Cxx class dds::core::Reference.

In the context of this specification the semantics implied by the Refer- enceType is mandatory, yet

the implementation provided as part of this standard is provided to show one possible way of

implementing this semantics.

All DDS-PSM-Cxx reference-types store references to a delegate. To avoid imposing too many

constraints on the actual implementation of the DDS-PSM-Cxx standard while ensuring that effi-

ciency can be retained, all DDS-PSM-Cxx reference-types are template classes whose parameter is

the DELEGATE. Each vendor will plug-in his implementation simply by providing a file that

instantiates the DDS-PSM-Cxx API with its own delegates. Furthermore, by using this approach, the

same API can be used without changes on multiple implementations. At the limit, it is possi- ble for

end-users to program to the OMG provided DDS-PSM-Cxx and then switch from one DDS to

another by simply switching to use his own mapping file and his libraries. Finally, the PSM also

provides weak references.

The table below lists all the DDS PIM classes that have reference semantics:

Namespace Class

tdds

core  Entity

 Condition

 GuardCondition

 ReadCondition

 QueryCondition

 Waitset

pomain  DomainParticipant

pub  AnyDataWriter

 Publisher

 DataWriter

sub  AnyDataReader

 Subscriber

 DataReader

 SharedSamples

Formatted: Font: (Default) Times New
Roman

Formatted: Font: (Default) Times New
Roman

Formatted: Font: (Default) Times New
Roman

Formatted: Font: (Default) Times New
Roman

10 ISO/IEC C++ DDS PSM, Beta 1

topic  AnyTopic

 Topic

Table 7.2 – DDS Classes with Reference semantics

Namespace Class

dds

pub  AnyDataWriter

sub  AnyDataReader

topic  AnyTopic

7.5.1.2 Resource for Reference Types
Instances of reference types are created using C++ constructors. The trivial constructor is not defined

for reference types, the only alternative to properly constructing a reference is to initialize it to a null

reference by assigning dds::core::null. by the factory methods specified in the DDS PIM or (in the

case of WaitSet and GuardCondition, which have no PIM-specified factory classes) by static factory

methods in the classes themselves. Declaring an object of a reference type on the stack with its

default constructor, without assigning to it the result of any factory method or other previously

created object, initializes a null reference.

Resource management for some reference types might involve relatively heavyweight operating-

system resources—such as e.g., threads, mutexes, and network sockets—in addition to memory.

These objects therefore provide a method close() that shall halt network communication (in the case

of entities) and dispose of any appropriate operating-system resources

Users of this PSM are recommended to call close on objects of all reference types once they are

finished using them. In addition, implementations may automatically close objects that they deem to

be no longer in use, subject to the following restrictions:

 Any object to which the application has a direct reference (not including a WeakRefer- ence)

is still in use.

 Any entity with a non-null listener is still in use.

 Any object that has been explicitly retained is still in use

 The creator of any object that is still in use is itself still in use.

7.5.2 ValueTypes
All objects that have a value-type have a deep-copy assignment and copy construction semantics. It

should also be pointed out that value-types are not “pure-value-types” in the sense that they are

immutable (as in functional programming languages). The DDS-PSM-Cxx makes value-types

mutable to limit the number of copies as well limit the time-overhead necessary to change a value-

Formatted: Font: (Default) Times New
Roman

Field Code Changed

Field Code Changed

Formatted: Font: (Default) Times New
Roman

Formatted: Font: (Default) Times New
Roman

Formatted: Font: (Default) Times New
Roman

Formatted: Font: (Default) Times New
Roman

Formatted: Font: (Default) Times New
Roman

Formatted: Font: (Default) Times New
Roman

Formatted: Font: (Default) Times New
Roman

ISO/IEC C++ DDS PSM, Beta 1 11

type (note that for immutable value-types the only form of change is to create a new value- type).

The DDS-PSM-Cxx models all DDS PIM classes beyond what is listed in Table 7.2 as value- types.

In other terms, QoS, Policy, Statuses, and Topic samples are all modeled as value-types.

7.5.3 AnyTypes
The DDS-PSM-Cxx has been designed to take advantage of the compile time polymorphism

provided by C++ templates. As such, the whole standard interface only has a few virtual meth- ods,

and in general does not rely on inheritance but as opposed exploits delegation.

Since the DDS API requires at times to pass DDS entities without exposing the complete type, while

other times requires to store in containers list of objects of different types, the DDS-PSM- Cxx

provides a selection of “Any” types.

These Any types safely store references in generic container objects without losing type informa-

tion while at the same time exposing some type-independent operations.

7.5.4 StatusClasses
The DDS-PSM-Cxx mapping for the status classes as defined in the DDS v1.2 specification is

obtained by applying the generic mapping rules described in Section 7.4 with the following ex-

caption – inheritance from the root status class has been ignored.

The reason for ignoring the inheritance from the root Status class is that this super-class does not

provide any common behavior, or common state.

Status classes are part of the dds::core::status namespace. As an example, consider the following

PIM Status class:

Based on the mapping rules defined so far, the associated DDS-PSM-Cxx class would be the

following:

namespace dds { namespace core { namespace status {
template <typename D>
class SampleLostStatus : public dds::core::Value<D>{
public:
 SampleLostStatus();
 SampleLostStatus(uint32_t total_count, uint32_t total_count_change);

public:
 uint32_t total_count() const;
 uint32_t& total_count();
 void total_count(uint32_t total_count);
}; } } }

12 ISO/IEC C++ DDS PSM, Beta 1

The full set of status classes is includes in the mandatory standard headers in the file

dds/core/status/Status.hpp.

7.5.5 Error Codes

DDS PIM Return Code DDS-PSM-Cxx Exception Class Std C++ Parent

Exception

RETCODE_OK Normal return; no exception

RETCODE_NO_DATA An informational state attached to

a normal return; no exception

RETCODE_ERROR Error
 std::logic_error

RETCODE_BAD_PARAMETER
 InvalidArgumentError

 std::invalid_argument

 RETCODE_TIMEOUT
TimeoutError std::runtime_error

RETCODE_UNSUPPORTED UnsupportedError std::logic_error

RETCODE_ALREADY_DELETED AlreadyClosedError std::logic_error

RETCODE_ILLEGAL_OPERATION IllegalOperationError std::logic_error

RETCODE_NOT_ENABLED NotEnabledError std::logic_error

RETCODE_PRECONDITION_NOT_

MET

PreconditionNotMetError std::logic_error

RETCODE_IMMUTABLE_POLICY ImmutablePolicyError std::logic_error

RETCODE_INCONSISTENT_POLIC

Y

InconsistentPolicyError std::logic_error

RETCODE_OUT_OF_RESOURCES OutOfResourcesError std::runtime_error

Table 7.3 – Mapping between PIM Error Codes and C++ Exceptions

The DDS-PSM-Cxx maps error codes to C++ exceptions defined in the dds::core namespace and

inheriting from a base Exception class and the appropriate standard C++ exception. Table 7.3 lists the

mapping between error codes as defined in the DDS PIM and C++ exceptions as used in this

specification. Exceptions have value semantics, this means have to always have deep copy

semantics. The full list of exceptions is included in the file dds/core/Exceptions.hpp.

7.5.6 Time and Duration
This PSM maps the DDS Time_t and Duration_t types into the value types Time and Duration

respectively. In addition to providing their seconds and nanoseconds state through accessor and

mutator methods, these classes provide a small number of convenience operations:

 Time object scan be incremented by durations expressed as seconds, nanoseconds,

milliseconds, or Duration objects.

Formatted ...

Formatted Table ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Field Code Changed ...

ISO/IEC C++ DDS PSM, Beta 1 13

 Time object scan be converted to and from times expressed in milliseconds (or other units) as

integer types.

 Duration objects can be incremented by durations expressed as seconds, nanoseconds,

milliseconds, or Duration objects.

 Duration objects can be converted to and from durations expressed in milliseconds(or other

units) as integer types.

7.6 QoS Packages

The QoS package provides all definitions for Policy and QoS.The DDS-PSM-Cxx provide ex-

tensible policy and extensible QoS. This means that vendor can easily add additional attributes to

policy as well as new policies to Qos. All of this without requiring changes in the public API. As

explained above, the PSM uses the “operator ->”, or equivalently the “delegate()” method to ac- cess

vendor-specific extensions.

7.6.1 PolicyClasses
The DDS-PSM-Cxx mapping for the policy classes as defined in the DDS v1.2 specification is

obtained by applying the generic mapping rules described in Section 7.4 with the following

guidelines:

 the inheritance from the root Policy class has been ignored

 the trailing “QosPolicy” has to be discarded from the name as redundant.

 Policy kind is represented with a C++ enumeration and an associated constructor type as

shown in the example below.

Policy classes are part of the dds::qos namespace and the Policy Name and Policy ID are to be

provided by specialization of the following trait classes:

namespace dds { namespace qos {
 template <typename Policy>
 class policy_id {
 public:
 enum {
 id = -1
 };
 };
 template <typename Policy>
 class policy_name {
 };

} }

As an example let's consider the following Policy class as modeled in the DDS PIM:

This would map to the following set of types:

14 ISO/IEC C++ DDS PSM, Beta 1

namespace dds { namespace qos {

 namespace struct HistoryKind_def {
 enum Type {
 KEEP_LAST,
 KEEP_ALL
 };
 };

 typedef dds::core::safe_enum<HistoryKind_def> HistoryKind;
} }

namespace tdds { namespace qos {
template <typename D>
class THistory : public dds::core::Value<D> {

public:
 THistory();

 THistory(HistoryKind::Type kind, int32_t depth);

 HistoryKind::Type kind() const;
 HistoryKind::Type& kind();
 THistory& void kind(HistoryKind::Type kind);

 int32_t depth() const;
 int32_t& depth();
 THistory&void depth(int32_t depth);

 static History KeepAll();
 static History KeepLast(uint32_t depth);
};
} }

As shown in the example above, when a policy presents a variability that is captured at a PIM- Level

by a kind, the DDS-PSM-Cxx captures this variability into two ways, first it associates an

enumeration with the Policy defining a code for the variation (as it was done in the IDL PSM), then,

it defines a set of helper methods to construct the possible variants. The full set of policies is

included in the mandatory standard headers in the file dds/qos/Policy.hpp.

7.6.2 EntityClass
The Entity class is the root for all DDS entities, as specified in the DDS v1.2 specification. Since an

Entity is a reference type, its resources are automatically managed by the middleware. Spe- cifically,

the resources associated with the entity will be reclaimed either when the number of live reference

from the user application to the entity drops to zero, or when the user explicitly invokes the method

close.

Formatted: Font: Not Bold

ISO/IEC C++ DDS PSM, Beta 1 15

7.6.2.1 QoS and Profiles
 This specification introduces the concept of a QosProvider to load a QoS configuration from

an URI. The URI is used to deduce both the protocol to be used to access the QoS configuration as

well as the format in which it is expressed. As an example, from the URI

file:///somewhere/on/my/hdd/qos-config.xml” the QosProvider would deduce that the configuration

is accessible as a file on the local filesystem and that it is expressed in xml format.

Implementation of this specification shall support at very least file URIs and XML format compliant

with the QoS-Profile defined in the The DDS for Lightweight CCM specification [DDS-CCM].

defines a format for QoS libraries and profiles. This PSM provides the following APIs for accessing

these:

 Entity classes provide a method to set their QoS based on the names of a QoS library and

profile.

 Each Entity factory interface—DomainParticipantFactory, DomainParticipant, Publisher, and

Subscriber—provides methods to create new “product” Entities and to set their default QoS based on

the names of a QoS library and profile.

template <typename DELEGATE>
class dds::core::qos::TQosProvider : public dds::core::Reference<DELEGATE> {
public:
 explicit TQosProvider(const std::string& uri, const std::string& profile);

 explicit TQosProvider(const std::string& uri);

 dds::domain::qos::DomainParticipantQos
 participant_qos();

 dds::domain::qos::DomainParticipantQos
 participant_qos(const std::string& id);

 dds::topic::qos::TopicQos
 topic_qos();

 dds::topic::qos::TopicQos
 topic_qos(const std::string& id);

 dds::sub::qos::SubscriberQos
 subscriber_qos();

 dds::sub::qos::SubscriberQos
 subscriber_qos(const std::string& id);

 dds::sub::qos::DataReaderQos
 datareader_qos();

 dds::sub::qos::DataReaderQos
 datareader_qos(const std::string& id);

 dds::pub::qos::PublisherQos

Formatted: Space Before: 0 pt, No
bullets or numbering

Field Code Changed

Formatted: Space Before: 0 pt, No
bullets or numbering

Formatted: English (U.S.)

Formatted: Font: (Default) Menlo Regular,
10 pt, English (U.S.)

Formatted: English (U.S.)

Formatted: Font: (Default) Menlo Regular,
10 pt, English (U.S.)

Formatted: Font: (Default) Menlo Regular,
10 pt, English (U.S.)

Formatted: Font: (Default) Menlo Regular,
10 pt, English (U.S.)

Formatted: Font: (Default) Menlo Regular,
10 pt, English (U.S.)

Formatted: Font: (Default) Menlo Regular,
10 pt, English (U.S.)

Formatted: Font: (Default) Menlo Regular,
10 pt, English (U.S.)

Formatted: Font: (Default) Menlo Regular,
10 pt, English (U.S.)

Formatted: Font: (Default) Menlo Regular,
10 pt, English (U.S.)

Formatted: Font: (Default) Menlo Regular,
10 pt, English (U.S.)

Formatted: Font: (Default) Menlo Regular,
10 pt, English (U.S.)

/somewhere/on/my/hdd/qos-config.xml

16 ISO/IEC C++ DDS PSM, Beta 1

 publisher_qos();

 dds::pub::qos::PublisherQos
 publisher_qos(const std::string& id);

 dds::pub::qos::DataWriterQos
 datawriter_qos();

 dds::pub::qos::DataWriterQos
 datawriter_qos(const std::string& id);
};

 Below a non mandatory example showing how the QosProvider can be used:

dds::core::qos::QosProvider qos_provider("file:///smwr/hdd/config-qos.xml",
 "myprofile");
 DataReader<ShapeType> dr(sub, topic, qos_provider.datareader_qos());



7.7 Domain Package

The domain package defines the DomainParticipantFactory, DomainParticipant, and DomainPar-

ticipantListener. For a complete reference see the standard header files.

7.8 Topic Package

The topic packaged defines the classes related to topic management. As such it provides defini- tions

for the Topic, TopicDescription, ContentFilteredTopic, MultiTopic, and the TopicListener.

The topic class is parameterized in the topic type and transparently performs the registration of type

support.

If we consider the RadarTrack topic type used in the example above, we can create a topic for this

type as follows:

DomainParticipant dp =(domainId);

 TheParticipantFactory().create_participant(domainId);

dds::topic::Topic<RadarTrack> topic =
 dp.create_topic<RadarTrack>(dp, "RadarTrackTopic");

If the topic is to be created with a QoS different from the default, than the code above would be:

DomainParticipant dp(domainId);
DomainParticipant dp =
 TheParticipantFactory().create_participant(domainId);

dds::qos::TopicQos tqos = dp.default_topic_qos();

Formatted: Font: (Default) Menlo Regular,
10 pt, English (U.S.)

Formatted: Font: (Default) Menlo Regular,
10 pt, English (U.S.)

Formatted: Font: (Default) Menlo Regular,
10 pt, English (U.S.)

Formatted: Font: (Default) Menlo Regular,
10 pt, English (U.S.)

Formatted: Space Before: 0 pt, No
bullets or numbering

Formatted: Font: (Default) Menlo Regular,
10 pt, English (U.S.)

Formatted: English (U.S.)

Formatted: Font: (Default) Menlo Regular,
10 pt, English (U.S.)

Formatted: English (U.S.)

Formatted: Font: (Default) Menlo Regular,
10 pt, English (U.S.)

Formatted: Space Before: 0 pt, No
bullets or numbering

Formatted: English (U.S.)

Formatted: Font: (Default) Menlo Regular,
10 pt, English (U.S.)

Formatted: English (U.S.)

Formatted: Font: (Default) Menlo Regular,
10 pt

Formatted: Indent: Left: 0"

Formatted: Indent: Left: 0.5", First line:
0"

ISO/IEC C++ DDS PSM, Beta 1 17

tqos << Reliability::Reliable() << Ownership::Exclusive();

dds::topic::Topic<RadarTrack> topic =
 dp.create_topic<RadarTrack>(dp, "RadarTrackTopic", "RadarTrack", tqos);

7.9 Pub Package

The publication (pub) package defines all the classes associated with the production of data. As such,

it defines the Publisher, the DataWriter and their associated listeners as well as any types.

The mandatory classes are specified in the standard header files. Below, we focus on the specif- ics

of the DataWriter class.

7.9.1 DataWriterClass
The DataWriter class is parametrizedparameterized with respect to the delegate and the topic type

that it writes. The class provides several different overloaded methods for writing data by providing

single samples or iterators over samples.

7.10 Sub Package

The subscription (sub) package defines all the classes associated with the consumption of data. As

such, it defines the Subscriber, the DataReader and their associated listeners as well as any types.

The mandatory classes are specified in the standard header files. Below, we focus on the specifics of

the DataReader class.

7.11 Extensible and Dynamic Type Support Package

The Extensible and Dynamic Type Support (xtypes) package defines all the classes associated with

the definition of extensible topics, such as annotations and the definition and manipulation of

dynamic types. As such, this package introduces all classes necessary for describing dynamic types

and their attributes, creating and annotating them.

7.12 C++11 Compatibility

This specification relies on C++03 features only. However, to improve its efficiency and usability in

a C++11 environment, it provides built-in support for some C++11 features, such as initializer lists.

Below we list the set of features required by this specification to enable some of the C++11

extensions:

 A move(LoanedSamples<T>&) function shall be defined in the same namespace as

LoanedSamples<T> that behaves identical to std::move.

 LoanedSamples<T> and SharedSamples<T> shall provide member cbegin() and cend() func-

tions, which return const_iterator irrespective of the const-ness of the object.

Formatted: Heading 2

Formatted: Font: Times New Roman, 12
pt

Formatted: List Paragraph, Bulleted +
Level: 1 + Aligned at: 0.25" + Indent at:
0.5"

Formatted: Font: Times New Roman, 12
pt

Formatted: List Paragraph

Formatted: Font: Times New Roman, 12
pt

Formatted: List Paragraph, Bulleted +
Level: 1 + Aligned at: 0.25" + Indent at:
0.5"

18 ISO/IEC C++ DDS PSM, Beta 1

 When targeting a C++11 environment implementations compliant with this specification shall

follow these additional rules:

 LoanedSamples<T> shall be implemented as a first-class move-only type using move opera-

tions. A representative example is std::uniqe_ptr.

 LoanedSamples<T> and SharedSamples<T> shall provide namespace level begin() and end()

functions to facilitate use of range-based for loop.

 dds::core::array shall be a template typedef to std::array.

 Enumerations shall use built-in type-safe enumerations with enum class syntax.

 Move operations (move constructor and move assign) shall be provided for all Val-

ue<DELEGATE> types.

 Plain language binding shall be augmented as follows

o Generated code for complex types shall use move operations (move-assignment,

move-constructor) as defined in idl2cpp11 (ptc/2012-04-03) struct type mapping.

o Structures containing arrays shall use a const-reference parameter for arrays as op-

posed to pass-by-value.

o A namespace level swap(t1) and a member swap shall be provided for each generated

class.

o Move-assign, move-constructor, and member swap functions, and namespace-level

swap may provide noexcept specification to allow efficient and exception-safe resiz-

ing of standard containers.

7.13 Examples

7.127.13.1 C++03 Example
This section provides an example for full application writing and reading RadarTracks topics.

 // ================== DataWriter ===================
 try {
 DomainId id = 0;
 DomainParticipant dp =
 TheParticipantFactory().create_participant(id);

 pub::qos::PublisherQos pqos;

Formatted: Normal, No bullets or
numbering

Formatted: Font: Times New Roman, 12
pt, English (U.S.)

Formatted: Bulleted + Level: 1 + Aligned
at: 0.25" + Indent at: 0.5"

Formatted: Font: Times New Roman, 12
pt, English (U.S.)

Formatted: Font: Times New Roman, 12
pt, English (U.S.)

Formatted: Font: Kern at 1.5 pt

Formatted: Indent: Left: 0.5", No bullets
or numbering

Formatted: Font: (Default) Times New
Roman, 12 pt, English (U.S.), Kern at 1.5
pt

Formatted: Normal, No bullets or
numbering

Formatted: Font: (Default) Times New
Roman, 12 pt, English (U.S.), Kern at 1.5
pt

Formatted: Bulleted + Level: 1 + Aligned
at: 0.25" + Indent at: 0.5"

Formatted: Normal, No bullets or
numbering

Formatted: Font: (Default) Times New
Roman, 12 pt, English (U.S.), Kern at 1.5
pt

Formatted: Bulleted + Level: 1 + Aligned
at: 0.25" + Indent at: 0.5"

Formatted: Normal, No bullets or
numbering

Formatted: Font: (Default) Times New
Roman, 12 pt, English (U.S.), Kern at 1.5
pt

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted: Heading 3

ISO/IEC C++ DDS PSM, Beta 1 19

 pqos << policy::Partition("Tracks");

 pub::Publisher pub =
 dp.create_publisher(dp, pqos);

 topic::qos::TopicQos tqos;
 tqos << policy::Reliability::Reliable()
 << policy::Durability::Transient()
 << policy::History::KeepLast(10)
 << policy::TransportPriority(14);

 dds::topic::Topic<RadarTrack> topic =
 dp.create_topic<RadarTrack>(dp, "TrackTopic", "RadarTrack", tqos);

 pub::qos::DataWriterQos dwqos(tqos);

 pub::DataWriter<RadarTrack> dw =
 pub.create_datawriter(pub, topic, dwqos);

 RadarTrack track("alpha", 100, 200);

 dw.write(track);
 // or
 dw << track;

 } catch (const dds::core::Exception& e) { }

 // ================== DataReader===================

 try {
 DomainId id = 0;
 DomainParticipant dp =
 TheParticipantFactory().create_participant(id);

 sub::qos::SubscriberQos sqos;
 sqos << policy::Partition("Tracks");

 sub::Subscriber sub =
 dp.create_subscriber(dp, sqos);

 topic::qos::TopicQos tqos = dp.default_topic_qos();
 tqos << policy::Reliability::Reliable()
 << policy::Durability::Transient()
 << policy::History::KeepLast(10)
 << policy::TransportPriority(14);

 dds::topic::Topic<RadarTrack> topic =
 dp.create_topic<RadarTrack>(dp, "TrackTopic", "RadarTrack", tqos);

 sub::qos::DataReaderQos dwqos(tqos);

20 ISO/IEC C++ DDS PSM, Beta 1

 sub::DataReader<RadarTrack> dr =
 (sub.create_datareader, (topic, drqos);

 std::vector< RadarTrackSamples<RadarTrack> > samples(MY_MAX_LEN);
 std::vector<SampleInfo> info(MY_MAX_LEN);
 dr.read(samples.begin(), , info.begin(), MY_MAX_LEN);

 } catch (const dds::core::Exception& e) { }

7.13.2 C++11 Example
While not requiring C++11 the DDS-PSM-Cxx API described in this specification has built-in

support for some of the most interesting C++11 features.

 // ================== DataWriter ===================
 try {
 DomainId id = 0;
 DomainParticipant dp(id);

 pub::qos::PublisherQos pqos;
 pqos << policy::Partition("Tracks");

 pub::Publisher pub(dp, pqos);

 topic::qos::TopicQos tqos = dp.default_topic_qos();
 tqos << policy::Reliability::Reliable()
 << policy::Durability::Transient()
 << policy::History::KeepLast(10)
 << policy::TransportPriority(14);

 dds::topic::Topic<RadarTrack> topic(dp, "TrackTopic", tqos);

 pub::qos::DataWriterQos dwqos(tqos);

 pub::DataWriter<RadarTrack> dw(pub, topic, dwqos);

 RadarTrack track("alpha", 100, 200);

 dw.write(track);
 // or
 dw << track;

 } catch (const dds::core::Exception& e) { }

 // ================== DataReader===================

 try {
 DomainId id = 0;
 DomainParticipant dp(id);

ISO/IEC C++ DDS PSM, Beta 1 21

 sub::qos::SubscriberQos sqos;
 sqos << policy::Partition("Tracks");

 sub::Subscriber sub(dp, sqos);

 topic::qos::TopicQos tqos = dp.default_topic_qos();
 tqos << policy::Reliability::Reliable()
 << policy::Durability::Transient()
 << policy::History::KeepLast(10)
 << policy::TransportPriority(14);

 dds::topic::Topic<RadarTrack> topic(dp, "TrackTopic", tqos);

 sub::qos::DataReaderQos dwqos(tqos);

 sub::DataReader<RadarTrack> dr(sub, topic, drqos);

 auto samples =

 dr.select()
 .max_samples(100)
 .data(dds::sub::status::DataState::new_data())

 take();

 for (auto s : samples) {
 std::cout << samples.data() << std::endl;

}
 } catch (const dds::core::Exception& e) { }

8 Improved Plain Language Binding for C++

8.1 TypeMapping

The type system for DDS topic types is defined by the Extensible and Dynamic Topic Types for DDS

specification [DDS-XTypes].

This section defines the set of rules to be used in order to map abstract DDS topic types into C++

types that can be used by application programmers. Those aspects of the DDS Type System that are

not addressed below are as specified in the Plain Language Binding as defined by [DDS- XTypes]

(which in turn is defined in terms of an IDL-to-C++ mapping).

The example below illustrates the application of these simple rules.

Formatted: Indent: First line: 0.5"

Formatted: Indent: First line: 0.5"

22 ISO/IEC C++ DDS PSM, Beta 1

8.1.1 Mapping Aggregation Types
DDS aggregation types shall be mapped to a C++ class. Contained attributes shall be encapsul-

lated.: Aaccessors shall be provided following the rules described in Section 7.4. The representa- tion

of internal state is unspecified.

8.1.2 Mapping Primitive and Collection Types
IDL primitive and collection types used to define a topic type shall be mapped to C++ following the

rules listed in Table 7.1.

8.1.3 Mapping Enumerations
IDL enumerations shall be mapped into C++ enumerations with exactly the same enumeration name

and enumeration constants.

8.1.4 Mapping Optional Attributes
Attributes annotated though the @optional annotation are mapped to a template instantiation of the

class dds::core::optional<T> with T equal to the type attribute would normally map as per the rules

specified above.

8.1.5 Mapping Shared Attributes
Attributes annotated through the @shared annotation are mapped to a pointer of the type they

would normally map as per the rules specified above.

8.2 Example

This section provides a simple yet representative example demonstrating the ISO/IEC mapping for

DDS types.

Topic Type Declaration

(IDL)

C++ Reprentation

typedef

sequence<octet>

 plot_t;

struct RadarTrack {
 string id;
 long x;
 long y;
 long z; //@optional
 sequence<octet>plot_t

typedef std::vector<uint8_t> plot_t

class RadarTrack {

public:

 typedef

 typename

smart_ptr_traits<plot_t>::ref_type

 plot_ref_t;

Formatted: Font: (Default) Times New
Roman

Formatted: Font: (Default) Times New
Roman

Formatted: English (U.S.)

ISO/IEC C++ DDS PSM, Beta 1 23

plot; //@shared
};

public:
 RadarTrack();
 RadarTrack(const std::string& id,
 int32_t x, int32_t y,
 int32_t z,
 std::vector<uint8_t>* plot);
public:

 // Notice that sequence type

 // are not returned by const

reference

 // to avoid forcing copies when

needing

 // to change just one element.

 // This is unfortunate, but a

necessary

 // tradeoff.

 std::string& id() const;
 void id(const std::string& s);

 int32_t x() const;
 void x(int32_t v);

 int32_t y() const;
 void y(int32_t v);

 dds::core::optional<int32_t>& z() const;
 void z(int32_t v);
 void z(const
 dds::core::optional<int32_t>& z)

 std::vector<uint8_t>* const plot_ref_t&
plot() const;

 void

plot(std::vector<uint8_t>*plot_ref_t prp)

// State representation is implementation
// dependent.

};

