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Preface

About the Object Management Group

OMG

Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer industry 
standards consortium that produces and maintains computer industry specifications for interoperable, portable and 
reusable enterprise applications in distributed, heterogeneous environments. Membership includes Information 
Technology vendors, end users, government agencies and academia. 

OMG member companies write, adopt, and maintain its specifications following a mature, open process. OMG's 
specifications implement the Model Driven Architecture® (MDA®), maximizing ROI through a full-lifecycle approach to 
enterprise integration that covers multiple operating systems, programming languages, middleware and networking 
infrastructures, and software development environments. OMG’s specifications include: UML® (Unified Modeling 
Language™); CORBA® (Common Object Request Broker Architecture); CWM™ (Common Warehouse Metamodel); 
and industry-specific standards for dozens of vertical markets.

More information on the OMG is available at http://www.omg.org/.

OMG Specifications

As noted, OMG specifications address middleware, modeling and vertical domain frameworks. All OMG Formal 
Specifications are available from this URL: 

http://www.omg.org/spec

Specifications are organized by the following categories:

Business Modeling Specifications

Middleware Specifications

• CORBA/IIOP

• Data Distribution Services

• Specialized CORBA

IDL/Language Mapping Specifications

Modeling and Metadata Specifications

• UML, MOF, CWM, XMI

• UML Profile

Modernization Specifications
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Platform Independent Model (PIM), Platform Specific Model (PSM), Interface Specifications

• CORBAServices

• CORBAFacilities

OMG Domain Specifications

CORBA Embedded Intelligence Specifications

CORBA Security Specifications

All of OMG’s formal specifications may be downloaded without charge from our website. (Products implementing OMG 
specifications are available from individual suppliers.) Copies of specifications, available in PostScript and PDF format, 
may be obtained from the Specifications Catalog cited above or by contacting the Object Management Group, Inc. at:

OMG Headquarters
109 Highland Avenue
Needham, MA 02494
USA
Tel: +1-781-444-0404
Fax: +1-781-444-0320
Email: pubs@omg.org

Certain OMG specifications are also available as ISO standards. Please consult http://www.iso.org

Issues

The reader is encouraged to report any technical or editing issues/problems with this specification to http://www.omg.org/
report_issue.htm.
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1 Scope

The purpose of this document is to specify the ISO/IEC C++ PSM for DDS. This new PSM provides a new C++ API for 
programming DDS which is clear, simple, expressive, safe, efficient, extensible, and portable. The ISO/IEC-C++ PSM does 
not impact on-the-wire interoperability with other language mappings. The PSM API is defined by means of a set of C++ 
header files.

This PSM includes all DCPS conformance profiles defined in the DDS specification. In addition, it includes platform-specific 
mappings for:

• The programming interface specified by [DDS-XTypes] 

• Accessing QoS profiles such as are specified in [DDS-CCM] 

This specification only addresses the DCPS layer of the DDS specification. The optional DLRL layer may be addressed 
separately in a future specification. This specification also introduces a new C++ mapping for the DDS type system as 
specified in the Extensible and Dynamic Topic Types Specification [REF]. 

2 Conformance

This specification consists of this document as well as a set of C++ header files, references on the cover page. Both are 
normative. In the event of a conflict between them, the latter shall prevail.

2.1 Conformance Profiles

Conformance to this specification parallels conformance to the DDS specification itself and consists of the same conformance 
levels. For example, an implementation may conform to the DDS Minimum Profile with respect to this PSM, meaning that all 
of the programming interfaces identified by the DDS specification as pertaining to that conformance level must be 
implemented in this PSM. The one exception to this rule is the Object Model Profile, which defines the Data Local 
Reconstruction Layer (DLRL); DLRL is outside of the scope of this PSM.

In addition to the conformance level defined in the DDS specification itself, this PSM recognizes and implements the 
Extensible and Dynamic Types conformance level for DDS defined by the Extensible and Dynamic Topic Types for DDS 
specification.

This PSM furthermore defines methods to create Entities and to set their QoS based on the XML QoS libraries and profiles 
defined by the DDS for Lightweight CCM specification. Implementations that support these XML QoS profiles shall 
implement these operations fully; other implementations shall indicate failure with the DDS-standard UNSUPPORTED error. 
The Plain Language Binding for C++ defined in this specification represents an optional conformance point. Implementers 
may support either this Language Binding or the previously defined Plain Language Binding for C++ defined in [DDS-
XTypes].  

2.2 Programming Interfaces

Conformance to the C++ programming interfaces consists of the following conditions:

• The file names and relative locations of all C++ headers within the “dds” directory are normative. Those headers within 
“detail” subdirectories are excepted; they are not normative.
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• All public symbol names within the ::dds:: namespace and its contained namespaces, including those names introduced 
into those namespaces by means of typedef declarations, are normative. Those names within “detail” namespaces are 
excepted; they are not normative.

• The distribution of the normative symbol names among the normative headers is itself normative, such that a source 
file that includes the header in which a given name is declared will continue to compile when that header is replaced 
with the corresponding header from a different DDS implementation.

The remainder of the files, declarations, and definitions contained within this specification’s C++ programming interfaces 
constitute a reference implementation and a set of examples. They are not normative.

Conforming implementations shall not define implementation-specific extension programming interfaces within normative 
namespaces. They may, however, specialize normative templates defined by this specification.

3 Normative References

The following normative documents contain provisions that, through reference in this text, constitute provisions of this 
specification. For dated references, subsequent amendments to, or revisions of, any of these publications do not apply.

• [C99] C Programming Language (ISO/IEC 9899:1999) 

• [C++] C++ Programming Language (ISO/IEC 14882:2003)

• [DDS] Data Distribution Service for Real-Time Systems Specification, version 1.2 (OMG document formal/2007-01-
01)

• [DDS-XTypes] Extensible and Dynamic Topic Types, version 1.0 Beta 1 (OMG document ptc/2010-05-12)

• [DDS-CCM] DDS for Lightweight CCM, version 1.0 Beta 1 (OMG document ptc/2009-02-02)

4 Terms and Definitions

For the purposes of this specification, the following terms and definitions apply.

Data Centric Publish-Subscribe (DCPS)

The mandatory portion of the DDS specification used to provide the functionality required for an application to publish and 
subscribe to the values of data objects.

Data Distribution Service for Real-Time Systems (DDS)

An OMG distributed data communications specification that allows Quality of Service policies to be specified for data 
timeliness and reliability. It is independent of implementation languages.

Data Local Reconstruction Layer

The optional portion of the DDS specification used to provide the functionality required for an application for direct access to 
data exchanged at the DCPS layer. This later builds upon the DCPS layer.
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Platform-Independent Model (PIM)

An abstract definition of a facility, often expressed with the aid of formal or semi-formal modeling languages such as OMG 
UML that does not depend on any particular implementation technology.

Platform-Specific Model (PSM)

A concrete definition of a facility, typically based on a corresponding PIM, in which all implementation-specific dependencies 
have been resolved.

5 Symbols

This specification leverages some symbols of common usage whose meaning is reported in the table below.

6 Additional Information

6.1 Acknowledgments

The following companies submitted this specification:

• PrismTech Corporation, Ltd. 

• Real-Time Innovations, Inc. (RTI)

Symbol Meaning

<: The symbol “<:” is the commonly used symbol to denote subtyping. Given two programming 
language type T and Q, we can say that Q <: T if any occurrence of T can be replaced by Q.

Foo<+T> When Foo is a class parameterized on the type T, we use the notation Foo<+T> to indicate that Foo 
is covariant in T.
This means that given Q <: T then Foo<Q> <: Foo<T> When no annotation is provided then the 
class is supposed to be invariant.

Foo<-T> When Foo is a class parameterized on the type T, we use the notation Foo<- T> to indicate that Foo 
is contra-variant in T.
This means that given Q <: T then Foo<T> <: Foo<Q>
When no annotation is provided then the class is supposed to be invariant.

Foo<T> When foo is non-variant in T.
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7 ISO/IEC C++ Language DDS PSM (DDS-PSM-Cxx)

7.1 Overview

The “ISO/IEC C++ Language DDS PSM” (DDS-PSM-Cxx) was motivated by mainly two reasons. First the IDL-derived C++ 
API for DDS does not integrate well with the C++ language and it does not leverage some of the features provided by the C++ 
language today universally sup- ported by C++ compilers. Second, the current IDL-derived PSM suffers from the gap existing 
between the features available in IDL and those available in a programming language such as C++. Some examples of this gap 
are as simple as method overloading, yet, there are many other examples that we could make in comparing the expressiveness 
power of IDL versus that of native C++.

As a result this specification takes a completely fresh look at how a native C++ PSM can be derived from the DDS PIM. In 
doing so, it tries to balance two forces - derive an API that is as simple and safe as possible while retaining the structure of the 
PIM. This specification does not require C++11 features for its implementation, yet it is designed to enable the use of C++11 
features, such as the auto keyword, range-based for loops, etc.

7.2 Specification Organization

The DDS-PSM-Cxx API is organized around namespaces that match the different modules defined by the DDS v1.2 PIM 
(see Figure 7.1). The dds::core - as implied by its name - provides core abstractions that are used throughout the API, 
such as the Time and Duration, the Policies, and the definition of reference and value types. The specification defines 
type constructors, i.e., parameterized class, that delegate their behavior to a delegate type parameter. The standard API is 
turned into an implementation by properly instantiating these type constructors with implementation provided delegates. 
The "detail" sub-packages visible in Figure 7.1, are intended to store the "link" between the standard API and the vendor 
implementation.  The content of the detail sub-package is provided as a guideline and does not constitute a point of 
compliance.

The DDS-PSM-Cxx organizes DDS classes as a set of packages that maximize the coherence and minimize the 
dependencies across packages. This organization minimizes API dependencies and reduce the include files required by 
publish, or subscribe, only applications speeding up compilation times.

Figure 7.1 - Standard Packages Organization

For instance if we take as an example the type constructor TInstanceHandle, specified in the file dds/core/
TInstanceHandle.hpp as:
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   namespace dds { 
      namespace core {
         template <typename DELEGATE> class TInstanceHandle ;
      }
   }

Then its instantiation is to be defined by the implementor of the API within the dds::core::delegate namespace as 
something like:

   namespace dds { 
      namespace core {
         namespace detail {
          typedef dds::core::TInstanceHandle<foo::core::InstanceHandleDelegate>
          InstanceHandle;
      }
   }

This instantiation of the type constructor TInstanceHandle is then used by the standard API in the dds/core/
InstanceHandle.hpp file to define the standard instance handle as:

   namespace dds { 
      namespace core {
         typedef detail::InstanceHandle InstanceHandle;
      }
   }

Under no circumstances a vendor shall change the public API defined by this specification. The only action performed by 
type constructor is to delegate their implementation to the DELEGATE template parameter. It is the DELEGATE type that 
provides the actual implementation and that encapsulate vendor extensions. The DDS-PSM-Cxx API provides a standard 
way of accessing vendor specific extensions.

Application source code imports the DDS API by including one or more header files from the dds/ directory hierarchy. 
There are three ways to do this, depending on how the application programmer wishes to manage file dependencies.

1. The entire DDS API can be included at once: 

• #include <dds/dds.hpp>

2. Individual DDS modules can be included. These headers have the form dds/module/ddsmodule.hpp. For example:

• #include <dds/pub/ddspub.hpp>

3. Individual types can be included. These headers have the form dds/module/ClassName.hpp. For example: 

• #include <dds/pub/DataWriter.hpp>

7.3 Concurrency, Reentrancy and Exception Safety

It is expected that most Service implementations will support multi-threaded environments. Therefore, for the sake of 
portability, this PSM constrains the level of thread and exception safety that applications may expect:

• All DataReader and DataWriter operations shall be reentrant.

• Loand-based read/take operation shall be exception safe. 
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• Constructors and copy-assignment operators of normative classes that inherit from Value<D> and the Value<D> 
template itself shall preferably be exception safe. Deviation from this norm should be carefully noted on vendor 
documentation.

• All Topic (and other TopicDescription extension interfaces), Publisher, Subscriber, and DomainParticipant operations 
shall be reentrant with the exception that close may not be called on a given object concurrently with any other call of 
any method on that object or on any contained object.

• All DomainParticipantFactory operations shall be reentrant with the exception that DomainParticipantFactory.close 
may not be called on a given object concurrently with any other call of any method on that object or on any contained 
object.

• All WaitSet and Condition (including Condition extension interfaces) operations shall be reentrant with the exception 
that their close() operations may not be invoked concurrently with any other method on the same object.

• Code within a DDS listener callback may not safely call any method on any DDS Entity but the one on which the status 
change occurred.

• Any method of any value type may be non-reentrant.

A Service implementation may choose to provide unspecified stronger guarantees than the rules above.

7.4 General Rules for Mapping the DDS PIM to the DDS-PSM-Cxx

This specification defines some general rules to map DDS PIM classes to DDS-PSM-Cxx classes. These rules are 
applicable to a subset of classes, luckily the most numerous, while special mapping is required for some of the DDS 
entities as described below.

7.4.1 MappingClasses

As a general rule all classes included in the DDS PIM have to be mapped into a C++ class. The specific nature of this 
class depends on whether the DDS PIM element has reference or value semantics.

Note – An implication of this mapping is that no DDS PIM class ever maps to a C++ struct.

7.4.2 Mapping Primitive and Container Types

The table below provides a complete mapping between the types defined and used by the DDS PIM and the 
corresponding types used by the DDS-PSM-Cxx.  

Table 7.1 - Primitive and Container Types Mapping

DDS Type C++ Type

Boolean bool

Char8 char

Char32 wchar_t

Byte uint8_t

Int16 int16_t

UInt16 uint16_t

Int32 int32_t
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The above fixed-size integer types shall conform to the types of the same names as defined by [C99] in the header 
stdint.h.

• The presence of these types shall not be construed to require that DDS implementations only support [C99]-compliant 
platforms. Implementations for non-[C99]-compliant platforms shall provide their own conformant integer type 
definitions.

• It shall not be construed to imply the existence of any other definitions that would be found in the header stdint.h on a 
[C99]-compliant platform or even the existence of that header itself.

Note that these types are defined in the global namespace, not in the std namespace. In addition, it is worth noticing that 
bounded and unbounded sequence types map to the same C++ types.  

The DDS Array type is mapped to the dds::core::array type which is specified to conform with the std::array type 
specified as part of C++11, exception made for the move operators. 

7.4.3 Mapping Enumerations

Native enumerations in C++ are not safe. This specification maps DDS enumerations to a safe enumeration class defined 
as follows:

namespace dds {
  namespace core {
    template<typename def, typename inner = typename def::type>
    class safe_enum : public def
    {
      typedef typename def::type type;
      inner val;

    public:

      safe_enum(type v) : val(v) {}
      inner underlying() const { return val; }

      bool operator == (const safe_enum & s) const;
      bool operator != (const safe_enum & s) const;

UInt32 uint32_t

Int64 int64_t

UInt64 uint64_t

Float64 double

Float128 long double

Float32 float

string<Char8> std::string

string<Char32> std::wstring

sequence<T> std::vector<T>

map<K, V> std::map<K, V>

T[N] dds::core::array<T, N>

Table 7.1 - Primitive and Container Types Mapping
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      bool operator <  (const safe_enum & s) const;
      bool operator <= (const safe_enum & s) const;
      bool operator >  (const safe_enum & s) const;
      bool operator >= (const safe_enum & s) const;
    };
  }
}

Below we provide an example of how implementations of this specification have to the safe_enum class to map DDS 
enumeration. For convenience we use IDL to express a DDS enumeration. 

Notice that this enumeration provides scoped names and leads to code that is equivalent to those written using C++11 
enumeration classes. As such, for C++11 compilers, implementers may choose to map enumeration to C++11 enumeration 
classes.

7.4.4 Mapping Unions

DDS unions mapping is the same as the one defined by the IDL2C++11 specification as defined in 6.13.2 of the document 
ptc/2012-04-03. This choice is compatible with the use of C++03 and aligns the mapping of DDS types to that of IDL.

7.4.5 Mapping Parameters Passing and Parameters Return Rules

The DDS PIM defines parameters as being either IN/OUT/INOUT depending on whether the parameter has no side effect, 
is used only for side effect, or whether it provides data that then is changed by the invoked method. Likewise the PIM 
defines return types.

The table below provides a mapping between IN/OUT/INOUT for a generic type T, distinguishing between primitive and 
non-primitive types. To this end, container types are considered as non-primitive types.  

DDS Type C++ Type

enum Color {
   GREEN,
   WHITE,
   RED
}; 

enum Color_def__ {
   GREEN,
   WHITE,
   RED
};

typedef dds::core::safe_enum<Color_def> Color;

PIM Native Type 
Parameter

DDS-PSM-Cxx Native Type 
Parameter

IN T T

OUT T T&

INOUT T T&
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7.4.6 Mapping Attributes

Attributes defined by DDS PIM classes have to be mapped into:

• Implementation-defined state,

• Getter and setter methods named after the attribute, and

• A constructor argument that allows initializing the attribute.

Getter/Setter methods shall be declared as described in the following table. 

PIM Native Return Type DDS-PSM-Cxx Native Return Type

T T

PIM Type Parameter DDS-PSM-Cxx  Type Parameter

IN T const T&

OUT T T&

INOUT T T&

PIM Native Return Type DDS-PSM-Cxx Native Return Type

T One of the following, depending on wether 
the return parameter is an attribute or not.

• T

• const T&

Attribute Type Getter/Setter Signature

NT attribute;  
Where NT is a native.

NT attribute();
void attribute(NT attrib);

CT attribute;
Where CT is a constructed type  (e.g., a struct)

CT& attribute();
const CT& attribute() const;
void attribute(const CT& attrib);

ST attribute;
Where ST is a sequence type  (e.g., a string, 
sequence, map, arrays, etc.)

ST& attribute();
const ST& attribute() const;
void attribute(const ST& attrib);
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7.5 Core Package

The core package of the ISO/IEC C++ PSM for DDS (DDS-PSM-Cxx) defines the classes at the foundation of the API 
object model as well as all the DDS types used by all other modules. This sub clause describes the most important classes 
of the package.

7.5.1 Object Model

The ISO/IEC C++ PSM for DDS (DDS-PSM-Cxx) is based on an object model that is structured in two different kinds of 
object types: reference-types and value-types.

7.5.1.1 Reference Types

All objects that have a reference-type have an associated shallow (polymorphic) assignment operator that simply changes 
the value of the reference. Furthermore reference-types are safe, meaning that under no circumstances can a reference 
point to an invalid object. At any single point in time a reference can either refer to the null object or to a valid object.

The semantics for Reference types is defined by the DDS-PSM-Cxx class dds::core::Reference. In the context of this 
specification the semantics implied by the ReferenceType is mandatory, yet the implementation provided as part of this 
standard is provided to show one possible way of implementing this semantics.

All DDS-PSM-Cxx reference-types store references to a delegate. To avoid imposing too many constraints on the actual 
implementation of the DDS-PSM-Cxx standard while ensuring that efficiency can be retained, all DDS-PSM-Cxx 
reference-types are template classes whose parameter is the DELEGATE. Each vendor will plug-in his implementation 
simply by providing a file that instantiates the DDS-PSM-Cxx API with its own delegates. Furthermore, by using this 
approach, the same API can be used without changes on multiple implementations. At the limit, it is possible for end-
users to program to the OMG provided DDS-PSM-Cxx and then switch from one DDS to another by simply switching to 
use his own mapping file and his libraries. Finally, the PSM also provides weak references.

Table 7.2 lists all the DDS PIM classes that have reference semantics.
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7.5.1.2 Resource for Reference Types

Instances of reference types are created using C++ constructors. The trivial constructor is not defined for reference types, 
the only alternative to properly constructing a reference is to initialize it to a null reference by assigning dds::core::null.

Resource management for some reference types might involve relatively heavyweight operating- system resources—such 
as e.g., threads, mutexes, and network sockets—in addition to memory. These objects therefore provide a method close() 
that shall halt network communication (in the case of entities) and dispose of any appropriate operating-system resources.

Users of this PSM are recommended to call close on objects of all reference types once they are finished using them. In 
addition, implementations may automatically close objects that they deem to be no longer in use, subject to the following 
restrictions:

• Any object to which the application has a direct reference (not including a WeakRefer- ence) is still in use.

• Any entity with a non-null listener is still in use.

• Any object that has been explicitly retained is still in use

• The creator of any object that is still in use is itself still in use.

Table 7.2 - DDS Classes with Reference semantics

Namespace Class

dds core • Entity 

• Condition

• GuardCondition

• ReadCondition

• QueryCondition

• Waitset

pomain • DomainParticipant

pub • AnyDataWriter

• Publisher 

• DataWriter

sub • AnyDataReader

• Subscriber 

• DataReader 

• SharedSamples

topic • AnyTopic

• Topic
12                 ISO/IEC C++ 2003 Language DDS PSM, v1.0



7.5.2 Value Types

All objects that have a value-type have a deep-copy assignment and copy construction semantics. It should also be 
pointed out that value-types are not “pure-value-types” in the sense that they are immutable (as in functional 
programming languages). The DDS-PSM-Cxx makes value-types mutable to limit the number of copies as well limit the 
time-overhead necessary to change a value-type (note that for immutable value-types the only form of change is to create 
a new value- type).

The DDS-PSM-Cxx models all DDS PIM classes beyond what is listed in Table 7.2 as value- types. In other terms, QoS, 
Policy, Statuses, and Topic samples are all modeled as value-types.

7.5.3 Any Types

The DDS-PSM-Cxx has been designed to take advantage of the compile time polymorphism provided by C++ templates. 
As such, the whole standard interface only has a few virtual methods, and in general does not rely on inheritance but as 
opposed exploits delegation.

Since the DDS API requires at times to pass DDS entities without exposing the complete type, while other times requires 
to store in containers list of objects of different types, the DDS-PSM-Cxx provides a selection of “Any” types.

These Any types safely store references in generic container objects without losing type information while at the same 
time exposing some type-independent operations.

7.5.4 Status Classes

The DDS-PSM-Cxx mapping for the status classes as defined in the DDS v1.2 specification is obtained by applying the 
generic mapping rules described in 7.4 with the following caption – inheritance from the root status class has been 
ignored.

The reason for ignoring the inheritance from the root Status class is that this super-class does not provide any common 
behavior, or common state.

Status classes are part of the dds::core::status namespace. As an example, consider the following PIM Status class:

Based on the mapping rules defined so far, the associated DDS-PSM-Cxx class would be the following:

namespace dds { namespace core { namespace status {
template <typename D>
class SampleLostStatus : public  dds::core::Value<D>{
public:
    SampleLostStatus();
    SampleLostStatus(uint32_t total_count, uint32_t total_count_change);
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public:
    uint32_t total_count() const;
    uint32_t& total_count();
    void total_count(uint32_t total_count);
}; } } }

The full set of status classes is includes in the mandatory standard headers in the file dds/core/status/Status.hpp.

7.5.5 Error Codes  

The DDS-PSM-Cxx maps error codes to C++ exceptions defined in the dds::core namespace and inheriting from a base 
Exception class and the appropriate standard C++ exception. Table 7.3 lists the mapping between error codes as defined 
in the DDS PIM and C++ exceptions as used in this specification. Exceptions have value semantics, this means have to 
always have deep copy semantics. The full list of exceptions is included in the file dds/core/Exceptions.hpp.

7.5.6 Time and Duration

This PSM maps the DDS Time_t and Duration_t types into the value types Time and Duration respectively. In addition to 
providing their seconds and nanoseconds state through accessor and mutator methods, these classes provide a small 
number of convenience operations:

• Time object scan be incremented by durations expressed as seconds, nanoseconds, milliseconds, or Duration objects.

• Time object scan be converted to and from times expressed in milliseconds (or other units) as integer types.

• Duration objects can be incremented by durations expressed as seconds, nanoseconds, milliseconds, or Duration 
objects.

• Duration objects can be converted to and from durations expressed in milliseconds(or other units) as integer types.

Table 7.3 - Mapping between PIM Error Codes and C++ Exception

DDS PIM Return Code DDS-PSM-Cxx Exception Class Std C++ Parent Exception
RETCODE_OK Normal return; no exception

RETCODE_NO_DATA An informational state attached to a normal 
return; no exception

RETCODE_ERROR Error std::logic_error

RETCODE_BAD_PARAMETER InvalidArgumentError std::invalid_argument

RETCODE_TIMEOUT TimeoutError std::runtime_error

RETCODE_UNSUPPORTED UnsupportedError std::logic_error

RETCODE_ALREADY_DELETED AlreadyClosedError std::logic_error

RETCODE_ILLEGAL_OPERATION IllegalOperationError std::logic_error

RETCODE_NOT_ENABLED NotEnabledError std::logic_error

RETCODE_PRECONDITION_NOT_MET PreconditionNotMetError std::logic_error

RETCODE_IMMUTABLE_POLICY ImmutablePolicyError std::logic_error

RETCODE_INCONSISTENT_POLICY InconsistentPolicyError std::logic_error

RETCODE_OUT_OF_RESOURCES OutOfResourcesError std::runtime_error
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7.6 QoS Packages

The QoS package provides all definitions for Policy and QoS.The DDS-PSM-Cxx provide extensible policy and 
extensible QoS. This means that vendor can easily add additional attributes to policy as well as new policies to Qos. All 
of this without requiring changes in the public API. As explained above, the PSM uses the “operator ->”, or equivalently 
the “delegate()” method to access vendor-specific extensions.

7.6.1 Policy Classes

The DDS-PSM-Cxx mapping for the policy classes as defined in the DDS v1.2 specification is obtained by applying the 
generic mapping rules described in 7.4 with the following guidelines:

• the inheritance from the root Policy class has been ignored

• the trailing “QosPolicy” has to be discarded from the name as redundant.

• Policy kind is represented with a C++ enumeration and an associated constructor type as shown in the example below.

Policy classes are part of the dds::qos namespace and the Policy Name and Policy ID are to be provided by specialization 
of the following trait classes:

namespace dds { namespace qos {
   template <typename Policy>
   class policy_id {
   public:
      enum {
         id = -1
      };
   };
   template <typename Policy>
   class policy_name {
   };

} } 

As an example let’s consider the following Policy class as modeled in the DDS PIM:

This would map to the following set of types:

namespace dds { namespace qos {

  struct HistoryKind_def {
    enum Type {
      KEEP_LAST,
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      KEEP_ALL
    };
  };
 
 typedef dds::core::safe_enum<HistoryKind_def> HistoryKind;
} }

namespace dds { namespace qos {
template <typename D>
class THistory : public dds::core::Value<D> {

public:
    THistory();

    THistory(HistoryKind kind, int32_t depth);

    HistoryKind::Type kind() const;
    HistoryKind::Type& kind();
    THistory& kind(HistoryKind kind);

    int32_t depth() const;
    int32_t& depth();
    THistory& depth(int32_t depth);

   static History KeepAll();
   static History KeepLast(uint32_t depth);
};
} } 

As shown in the example above, when a policy presents a variability that is captured at a PIM- Level by a kind, the DDS-
PSM-Cxx captures this variability into two ways, first it associates an enumeration with the Policy defining a code for the 
variation (as it was done in the IDL PSM), then, it defines a set of helper methods to construct the possible variants. The 
full set of policies is included in the mandatory standard headers in the file dds/qos/Policy.hpp.

7.6.2 Entity Class

The Entity class is the root for all DDS entities, as specified in the DDS v1.2 specification. Since an Entity is a reference 
type, its resources are automatically managed by the middleware. Specifically, the resources associated with the entity 
will be reclaimed either when the number of live reference from the user application to the entity drops to zero, or when 
the user explicitly invokes the method close.

7.6.2.1 QoS and Profiles

This specification introduces the concept of a QosProvider to load a QoS configuration from an URI. The URI is used to 
deduce both the protocol to be used to access the QoS configuration as well as the format in which it is expressed. As an 
example, from the URI ” the QosProvider would deduce that the configuration is accessible as a file on the local 
filesystem and that it is expressed in xml format.  

Implementation of this specification shall support at very least file URIs and XML format compliant with the QoS-Profile 
defined in the DDS for Lightweight CCM specification [DDS-CCM]. 
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template <typename DELEGATE>
class dds::core::qos::TQosProvider : public dds::core::Reference<DELEGATE> {
public:
  explicit TQosProvider(const std::string& uri, const std::string& profile);

   explicit TQosProvider(const std::string& uri);

   dds::domain::qos::DomainParticipantQos
   participant_qos();

   dds::domain::qos::DomainParticipantQos
   participant_qos(const std::string& id);

   dds::topic::qos::TopicQos
   topic_qos();

   dds::topic::qos::TopicQos
   topic_qos(const std::string& id);

   dds::sub::qos::SubscriberQos
   subscriber_qos();

   dds::sub::qos::SubscriberQos
   subscriber_qos(const std::string& id);

   dds::sub::qos::DataReaderQos
   datareader_qos();

   dds::sub::qos::DataReaderQos
   datareader_qos(const std::string& id); 

   dds::pub::qos::PublisherQos
   publisher_qos();

   dds::pub::qos::PublisherQos
   publisher_qos(const std::string& id);

   dds::pub::qos::DataWriterQos
   datawriter_qos();

   dds::pub::qos::DataWriterQos
   datawriter_qos(const std::string& id);
};

Below a non mandatory example showing how the QosProvider can be used:
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dds::core::qos::QosProvider qos_provider("file:///smwr/hdd/config-qos.xml",
                                         "myprofile");
DataReader<ShapeType> dr(sub, topic, qos_provider.datareader_qos());

7.7 Domain Package

The domain package defines the DomainParticipantFactory, DomainParticipant, and DomainParticipantListener. For a 
complete reference see the standard header files.

7.8 Topic Package

The topic packaged defines the classes related to topic management. As such it provides definitions for the Topic, 
TopicDescription, ContentFilteredTopic, MultiTopic, and the TopicListener.

The topic class is parameterized in the topic type and transparently performs the registration of type support.

If we consider the RadarTrack topic type used in the example above, we can create a topic for this type as follows:

DomainParticipant dp(domainId); 

dds::topic::Topic<RadarTrack> topic(dp, "RadarTrackTopic");

If the topic is to be created with a QoS different from the default, than the code above would be:

DomainParticipant dp(domainId); 

dds::qos::TopicQos tqos = dp.default_topic_qos();

tqos << Reliability::Reliable() << Ownership::Exclusive(); 

dds::topic::Topic<RadarTrack> topic(dp, "RadarTrackTopic", tqos);

7.9 Pub Package

The publication (pub) package defines all the classes associated with the production of data. As such, it defines the 
Publisher, the DataWriter and their associated listeners as well as any types.

The mandatory classes are specified in the standard header files. Below, we focus on the specifics of the DataWriter class.

7.9.1 DataWriter Class

The DataWriter class is parameterized with respect to the delegate and the topic type that it writes. The class provides 
several different overloaded methods for writing data by providing single samples or iterators over samples.

7.10 Sub Package

The subscription (sub) package defines all the classes associated with the consumption of data. As such, it defines the 
Subscriber, the DataReader and their associated listeners as well as any types. The mandatory classes are specified in the 
standard header files. Below, we focus on the specifics of the DataReader class.
18                 ISO/IEC C++ 2003 Language DDS PSM, v1.0



7.11 Extensible and Dynamic Type Support Package

The Extensible and Dynamic Type Support (xtypes) package defines all the classes associated with the definition of 
extensible topics, such as annotations and the definition and manipulation of dynamic types. As such, this package 
introduces all classes necessary for describing dynamic types and their attributes, creating and annotating them.

7.12 C++11 Compatibility 

This specification relies on C++03 features only.  However, to improve its efficiency and usability in a C++11 
environment, it provides built-in support for some C++11 features, such as initializer lists. 

Below we list the set of features required by this specification to enable some of the C++11 extensions:

• A move(LoanedSamples<T>&) function shall be defined in the same namespace as LoanedSamples<T> that behaves 
identical to std::move.

• LoanedSamples<T> and SharedSamples<T> shall provide member cbegin() and cend() functions, which return 
const_iterator irrespective of the constness of the object.

When targeting a C++11 environment implementations compliant with this specification shall follow these additional 
rules:

• LoanedSamples<T> shall be implemented as a first-class move-only type using move operations. A representative 
example is std::uniqe_ptr. 

• LoanedSamples<T> and SharedSamples<T> shall provide namespace level begin() and end() functions to facilitate use 
of range-based for loop.

• dds::core::array shall be a template typedef to std::array.

• Enumerations shall use built-in type-safe enumerations with enum class syntax.

• Move operations (move constructor and move assign) shall be provided for all Value<DELEGATE> types.

• Plain language binding shall be augmented as follows

• Generated code for complex types shall use move operations (move-assignment, move-constructor) as defined in 
idl2cpp11 (ptc/2012-04-03) struct type mapping. 

• Structures containing arrays shall use a const-reference parameter for arrays as opposed to pass-by-value.

• A namespace level swap(t1) and a member swap shall be provided for each generated class.

• Move-assign, move-constructor, and member swap functions, and namespace-level swap may provide noexcept 
specification to allow efficient and exception-safe resizing of standard containers.

7.13 Examples

7.13.1 C++03 Example

This sub clause provides an example for full application writing and reading RadarTracks topics.
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   // ================== DataWriter ===================
    try {

DomainId id = 0;
DomainParticipant dp(id);

pub::qos::PublisherQos pqos;
pqos << policy::Partition("Tracks");

pub::Publisher pub(dp, pqos);

topic::qos::TopicQos tqos;
tqos << policy::Reliability::Reliable()
     << policy::Durability::Transient()
     << policy::History::KeepLast(10)
     << policy::TransportPriority(14);

dds::topic::Topic<RadarTrack> topic(dp, "TrackTopic", tqos);

pub::qos::DataWriterQos dwqos(tqos);

pub::DataWriter<RadarTrack> dw(pub, topic, dwqos);

RadarTrack track("alpha", 100, 200);

dw.write(track);
// or
dw << track;

       

    } catch (const dds::core::Exception& e) { }

   // ================== DataReader===================

   try {
DomainId id = 0;
DomainParticipant dp(id);

sub::qos::SubscriberQos sqos;
sqos << policy::Partition("Tracks");

sub::Subscriber sub(dp, sqos);

topic::qos::TopicQos tqos = dp.default_topic_qos();
tqos << policy::Reliability::Reliable()
     << policy::Durability::Transient()
     << policy::History::KeepLast(10)
     << policy::TransportPriority(14);
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dds::topic::Topic<RadarTrack> topic(dp, "TrackTopic", tqos);

sub::qos::DataReaderQos dwqos(tqos);

sub::DataReader<RadarTrack> dr(sub, topic, drqos);

std::vector< Samples<RadarTrack> > samples(MY_MAX_LEN);
dr.read(samples.begin(), MY_MAX_LEN);

    } catch (const dds::core::Exception& e) { }

7.13.2 C++11 Example

While not requiring C++11 the DDS-PSM-Cxx API described in this specification has built-in support for some of the 
most interesting C++11 features. 

   // ================== DataWriter ===================
    try {

DomainId id = 0;
DomainParticipant dp(id);

pub::qos::PublisherQos pqos;
pqos << policy::Partition("Tracks");

pub::Publisher pub(dp, pqos);

topic::qos::TopicQos tqos = dp.default_topic_qos();
tqos << policy::Reliability::Reliable()
     << policy::Durability::Transient()
     << policy::History::KeepLast(10)
     << policy::TransportPriority(14);

dds::topic::Topic<RadarTrack> topic(dp, "TrackTopic", tqos);

pub::qos::DataWriterQos dwqos(tqos);

pub::DataWriter<RadarTrack> dw(pub, topic, dwqos);

RadarTrack track("alpha", 100, 200);

dw.write(track);
// or
dw << track;

    } catch (const dds::core::Exception& e) { }
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   // ================== DataReader===================

   try {
DomainId id = 0;
DomainParticipant dp(id);

sub::qos::SubscriberQos sqos;
sqos << policy::Partition("Tracks");

sub::Subscriber sub(dp, sqos);

topic::qos::TopicQos tqos = dp.default_topic_qos();
tqos << policy::Reliability::Reliable()
     << policy::Durability::Transient()
     << policy::History::KeepLast(10)
     << policy::TransportPriority(14);

dds::topic::Topic<RadarTrack> topic(dp, "TrackTopic", tqos);

sub::qos::DataReaderQos dwqos(tqos);

sub::DataReader<RadarTrack> dr(sub, topic, drqos);

auto samples = 
   dr.select()
       .max_samples(100)
       .data(dds::sub::status::DataState::new_data())
          take();

for (auto s : samples) {
         std::cout << samples.data() << std::endl;
}
    } catch (const dds::core::Exception& e) { }
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8 Improved Plain Language Binding for C++

8.1 Type Mapping

The type system for DDS topic types is defined by the Extensible and Dynamic Topic Types for DDS specification [DDS-
XTypes].

This sub clause defines the set of rules to be used in order to map abstract DDS topic types into C++ types that can be 
used by application programmers. Those aspects of the DDS Type System that are not addressed below are as specified in 
the Plain Language Binding as defined by [DDS- XTypes] (which in turn is defined in terms of an IDL-to-C++ mapping).

8.1.1 Mapping Aggregation Types

DDS aggregation types shall be mapped to a C++ class. Contained attributes shall be encapsulated. Accessors shall be 
provided following the rules described in 7.4. The representation of internal state is unspecified.

8.1.2 Mapping Primitive and Collection Types

IDL primitive and collection types used to define a topic type shall be mapped to C++ following the rules listed in Table 
7.1.

8.1.3 Mapping Enumerations

IDL enumerations shall be mapped into C++ enumerations with exactly the same enumeration name and enumeration 
constants.

8.1.4 Mapping Optional Attributes

Attributes annotated though the @Optional annotation are mapped to a template instantiation of the class 
dds::core::optional<T> with T equal to the type attribute would normally map as per the rules specified above.

8.1.5 Mapping Shared Attributes

Attributes annotated through the @Shared annotation are mapped to a pointer of the type they would normally map as per 
the rules specified above.

8.2 Example

This sub clause provides a simple yet representative example demonstrating the ISO/IEC mapping for DDS types.
ISO/IEC C++ 2003 Language DDS PSM, v1.0        23



Topic Type Declaration (IDL) C++ Representation

typedef sequence<octet>   
        plot_t; 

struct RadarTrack {
    string id;
    long x;
    long y;
    long z; //@Optional
    plot_t plot; //@Shared
};

typedef  std::vector<uint8_t> plot_t

class RadarTrack {
public:
   typedef 
   typename smart_ptr_traits<plot_t>::ref_type
      plot_ref_t;
   
public:
    RadarTrack();
    RadarTrack(const std::string& id,     
               int32_t x, int32_t y,
               int32_t z, 
               std::vector<uint8_t>* plot);
public:
    // Notice that sequence type
    // are not returned by const reference
    // to avoid forcing copies when needing
    // to change just one element.
    // This is unfortunate, but a necessary
    // tradeoff.
    std::string& id() const;
    void id(const std::string& s);

    int32_t x() const;
    void x(int32_t v);
    
    int32_t y() const;
    void y(int32_t v);
 
    dds::core::optional<int32_t>& z() const;
    void z(int32_t v);
    void z(const 
           dds::core::optional<int32_t>& z)

    const plot_ref_t& plot() const;
    void plot(plot_ref_t pr)

// State representation is implementation 
// dependent.    

};
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