

Date: November 2013

ISO/IEC C++ 2003 Language DDS PSM

Version 1.0

OMG Document Number: formal/2013-11-01
Standard document URL: http://www.omg.org/spec/DDS-PSM-Cxx/
Machine Consumable File(s)*:

Normative:
http://www.omg.org/spec/DDS-PSM-Cxx/20121110/sources
http://www.omg.org/spec/DDS-PSM-Cxx/20121110/api-documentation

Copyright © 2013, Object Management Group
Copyright © 2012, PrismTech Corp.
Copyright © 2012, Real-Time Innovations, Inc. (RTI)

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms, conditions
and notices set forth below. This document does not represent a commitment to implement any portion of this
specification in any company's products. The information contained in this document is subject to change without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free,
paid up, worldwide license to copy and distribute this document and to modify this document and distribute copies of the
modified version. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed
the copyright in the included material of any such copyright holder by reason of having used the specification set forth
herein or having conformed any computer software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant you a fully-
paid up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use this
specification to create and distribute software and special purpose specifications that are based upon this specification, and
to use, copy, and distribute this specification as provided under the Copyright Act; provided that: (1) both the copyright
notice identified above and this permission notice appear on any copies of this specification; (2) the use of the
specifications is for informational purposes and will not be copied or posted on any network computer or broadcast in any
media and will not be otherwise resold or transferred for commercial purposes; and (3) no modifications are made to this
specification. This limited permission automatically terminates without notice if you breach any of these terms or
conditions. Upon termination, you will destroy immediately any copies of the specifications in your possession or control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may
require use of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a
license may be required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of
those patents that are brought to its attention. OMG specifications are prospective and advisory only. Prospective users are
responsible for protecting themselves against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications regulations
and statutes. This document contains information which is protected by copyright. All Rights Reserved. No part of this
work covered by copyright herein may be reproduced or used in any form or by any means--graphic, electronic, or
mechanical, including photocopying, recording, taping, or information storage and retrieval systems--without permission
of the copyright owner.

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY CONTAIN
ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE
MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS PUBLICATION,
INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF
MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE. IN NO EVENT
SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE COMPANIES LISTED ABOVE BE LIABLE
FOR ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL, CONSEQUENTIAL,
RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS, REVENUE, DATA OR USE, INCURRED
BY ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE FURNISHING, PERFORMANCE, OR USE
OF THIS MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you. This
disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1) (ii) of
The Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph (c)(1) and (2)
of the Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified in 48 C.F.R. 227-
7202-2 of the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of the Federal Acquisition
Regulations and its successors, as applicable. The specification copyright owners are as indicated above and may be
contacted through the Object Management Group, 109 Highland Avenue, Needham, MA 02494, U.S.A.

TRADEMARKS

IMM®, MDA®, Model Driven Architecture®, UML®, UML Cube logo®, OMG Logo®, CORBA® and XMI® are
registered trademarks of the Object Management Group, Inc., and Object Management Group™, OMG™ , Unified
Modeling Language™, Model Driven Architecture Logo™, Model Driven Architecture Diagram™, CORBA logos™,
XMI Logo™, CWM™, CWM Logo™, IIOP™ , MOF™ , OMG Interface Definition Language (IDL)™, and SysML™
are trademarks of the Object Management Group. All other products or company names mentioned are used for
identification purposes only, and may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its
designees) is and shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer
software to use certification marks, trademarks or other special designations to indicate compliance with these materials.

Software developed under the terms of this license may claim compliance or conformance with this specification if and
only if the software compliance is of a nature fully matching the applicable compliance points as stated in the
specification. Software developed only partially matching the applicable compliance points may claim only that the
software was based on this specification, but may not claim compliance or conformance with this specification. In the
event that testing suites are implemented or approved by Object Management Group, Inc., software developed using this
specification may claim compliance or conformance with the specification only if the software satisfactorily completes
the testing suites.

Table of Contents

Preface ..iii

1 Scope .. 1

2 Conformance ... 1

2.1 Conformance Profiles ...1

2.2 Programming Interfaces ..1

3 Normative References ... 2

4 Terms and Definitions ... 2

5 Symbols .. 3

6 Additional Information .. 3

6.1 Acknowledgments ...3

7 ISO/IEC C++ Language DDS PSM (DDS-PSM-Cxx) 5

7.1 Overview ...5

7.2 Specification Organization ..5

7.3 Concurrency, Reentrancy and Exception Safety ..6

7.4 General Rules for Mapping the DDS PIM to the DDS-PSM-Cxx7
7.4.1 MappingClasses ... 7
7.4.2 Mapping Primitive and Container Types ... 7
7.4.3 Mapping Enumerations ... 8
7.4.4 Mapping Unions .. 9
7.4.5 Mapping Parameters Passing and Parameters Return Rules .. 9
7.4.6 Mapping Attributes .. 10

7.5 Core Package ...11
7.5.1 Object Model .. 11
7.5.2 Value Types .. 13
7.5.3 Any Types ... 13
7.5.4 Status Classes .. 13
7.5.5 Error Codes .. 14
7.5.6 Time and Duration .. 14

7.6 QoS Packages ..15
7.6.1 Policy Classes .. 15
7.6.2 Entity Class ... 16
ISO/IEC C++ 2003 Language DDS PSM, v1.0 i

7.7 Domain Package ...18

7.8 Topic Package ..18

7.9 Pub Package ...18
7.9.1 DataWriter Class .. 18

7.10 Sub Package ...18

7.11 Extensible and Dynamic Type Support Package ..19

7.12 C++11 Compatibility ...19

7.13 Examples ..19
7.13.1 C++03 Example .. 19
7.13.2 C++11 Example .. 21

8 Improved Plain Language Binding for C++ ... 23

8.1 Type Mapping ...23
8.1.1 Mapping Aggregation Types ... 23
8.1.2 Mapping Primitive and Collection Types ... 23
8.1.3 Mapping Enumerations ... 23
8.1.4 Mapping Optional Attributes ... 23
8.1.5 Mapping Shared Attributes ... 23

8.2 Example ..23
ii ISO/IEC C++ 2003 Language DDS PSM, v1.0

OMG’s Issue Reporting Procedure

All OMG specifications are subject to continuous review and improvement. As part of this process
we encourage readers to report any ambiguities, inconsistencies, or inaccuracies they may find by
completing the Issue Reporting Form listed on the main web page http://www.omg.org, under
Documents, Report a Bug/Issue (http://www.omg.org/report_issue.htm).

Preface

About the Object Management Group

OMG

Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer industry
standards consortium that produces and maintains computer industry specifications for interoperable, portable and
reusable enterprise applications in distributed, heterogeneous environments. Membership includes Information
Technology vendors, end users, government agencies and academia.

OMG member companies write, adopt, and maintain its specifications following a mature, open process. OMG's
specifications implement the Model Driven Architecture® (MDA®), maximizing ROI through a full-lifecycle approach to
enterprise integration that covers multiple operating systems, programming languages, middleware and networking
infrastructures, and software development environments. OMG’s specifications include: UML® (Unified Modeling
Language™); CORBA® (Common Object Request Broker Architecture); CWM™ (Common Warehouse Metamodel);
and industry-specific standards for dozens of vertical markets.

More information on the OMG is available at http://www.omg.org/.

OMG Specifications

As noted, OMG specifications address middleware, modeling and vertical domain frameworks. All OMG Formal
Specifications are available from this URL:

http://www.omg.org/spec

Specifications are organized by the following categories:

Business Modeling Specifications

Middleware Specifications

• CORBA/IIOP

• Data Distribution Services

• Specialized CORBA

IDL/Language Mapping Specifications

Modeling and Metadata Specifications

• UML, MOF, CWM, XMI

• UML Profile

Modernization Specifications
ISO/IEC C++ 2003 Language DDS PSM, v1.0 iii

Platform Independent Model (PIM), Platform Specific Model (PSM), Interface Specifications

• CORBAServices

• CORBAFacilities

OMG Domain Specifications

CORBA Embedded Intelligence Specifications

CORBA Security Specifications

All of OMG’s formal specifications may be downloaded without charge from our website. (Products implementing OMG
specifications are available from individual suppliers.) Copies of specifications, available in PostScript and PDF format,
may be obtained from the Specifications Catalog cited above or by contacting the Object Management Group, Inc. at:

OMG Headquarters
109 Highland Avenue
Needham, MA 02494
USA
Tel: +1-781-444-0404
Fax: +1-781-444-0320
Email: pubs@omg.org

Certain OMG specifications are also available as ISO standards. Please consult http://www.iso.org

Issues

The reader is encouraged to report any technical or editing issues/problems with this specification to http://www.omg.org/
report_issue.htm.
iv ISO/IEC C++ 2003 Language DDS PSM, v1.0

1 Scope

The purpose of this document is to specify the ISO/IEC C++ PSM for DDS. This new PSM provides a new C++ API for
programming DDS which is clear, simple, expressive, safe, efficient, extensible, and portable. The ISO/IEC-C++ PSM does
not impact on-the-wire interoperability with other language mappings. The PSM API is defined by means of a set of C++
header files.

This PSM includes all DCPS conformance profiles defined in the DDS specification. In addition, it includes platform-specific
mappings for:

• The programming interface specified by [DDS-XTypes]

• Accessing QoS profiles such as are specified in [DDS-CCM]

This specification only addresses the DCPS layer of the DDS specification. The optional DLRL layer may be addressed
separately in a future specification. This specification also introduces a new C++ mapping for the DDS type system as
specified in the Extensible and Dynamic Topic Types Specification [REF].

2 Conformance

This specification consists of this document as well as a set of C++ header files, references on the cover page. Both are
normative. In the event of a conflict between them, the latter shall prevail.

2.1 Conformance Profiles

Conformance to this specification parallels conformance to the DDS specification itself and consists of the same conformance
levels. For example, an implementation may conform to the DDS Minimum Profile with respect to this PSM, meaning that all
of the programming interfaces identified by the DDS specification as pertaining to that conformance level must be
implemented in this PSM. The one exception to this rule is the Object Model Profile, which defines the Data Local
Reconstruction Layer (DLRL); DLRL is outside of the scope of this PSM.

In addition to the conformance level defined in the DDS specification itself, this PSM recognizes and implements the
Extensible and Dynamic Types conformance level for DDS defined by the Extensible and Dynamic Topic Types for DDS
specification.

This PSM furthermore defines methods to create Entities and to set their QoS based on the XML QoS libraries and profiles
defined by the DDS for Lightweight CCM specification. Implementations that support these XML QoS profiles shall
implement these operations fully; other implementations shall indicate failure with the DDS-standard UNSUPPORTED error.
The Plain Language Binding for C++ defined in this specification represents an optional conformance point. Implementers
may support either this Language Binding or the previously defined Plain Language Binding for C++ defined in [DDS-
XTypes].

2.2 Programming Interfaces

Conformance to the C++ programming interfaces consists of the following conditions:

• The file names and relative locations of all C++ headers within the “dds” directory are normative. Those headers within
“detail” subdirectories are excepted; they are not normative.
ISO/IEC C++ 2003 Language DDS PSM, v1.0 1

• All public symbol names within the ::dds:: namespace and its contained namespaces, including those names introduced
into those namespaces by means of typedef declarations, are normative. Those names within “detail” namespaces are
excepted; they are not normative.

• The distribution of the normative symbol names among the normative headers is itself normative, such that a source
file that includes the header in which a given name is declared will continue to compile when that header is replaced
with the corresponding header from a different DDS implementation.

The remainder of the files, declarations, and definitions contained within this specification’s C++ programming interfaces
constitute a reference implementation and a set of examples. They are not normative.

Conforming implementations shall not define implementation-specific extension programming interfaces within normative
namespaces. They may, however, specialize normative templates defined by this specification.

3 Normative References

The following normative documents contain provisions that, through reference in this text, constitute provisions of this
specification. For dated references, subsequent amendments to, or revisions of, any of these publications do not apply.

• [C99] C Programming Language (ISO/IEC 9899:1999)

• [C++] C++ Programming Language (ISO/IEC 14882:2003)

• [DDS] Data Distribution Service for Real-Time Systems Specification, version 1.2 (OMG document formal/2007-01-
01)

• [DDS-XTypes] Extensible and Dynamic Topic Types, version 1.0 Beta 1 (OMG document ptc/2010-05-12)

• [DDS-CCM] DDS for Lightweight CCM, version 1.0 Beta 1 (OMG document ptc/2009-02-02)

4 Terms and Definitions

For the purposes of this specification, the following terms and definitions apply.

Data Centric Publish-Subscribe (DCPS)

The mandatory portion of the DDS specification used to provide the functionality required for an application to publish and
subscribe to the values of data objects.

Data Distribution Service for Real-Time Systems (DDS)

An OMG distributed data communications specification that allows Quality of Service policies to be specified for data
timeliness and reliability. It is independent of implementation languages.

Data Local Reconstruction Layer

The optional portion of the DDS specification used to provide the functionality required for an application for direct access to
data exchanged at the DCPS layer. This later builds upon the DCPS layer.
2 ISO/IEC C++ 2003 Language DDS PSM, v1.0

Platform-Independent Model (PIM)

An abstract definition of a facility, often expressed with the aid of formal or semi-formal modeling languages such as OMG
UML that does not depend on any particular implementation technology.

Platform-Specific Model (PSM)

A concrete definition of a facility, typically based on a corresponding PIM, in which all implementation-specific dependencies
have been resolved.

5 Symbols

This specification leverages some symbols of common usage whose meaning is reported in the table below.

6 Additional Information

6.1 Acknowledgments

The following companies submitted this specification:

• PrismTech Corporation, Ltd.

• Real-Time Innovations, Inc. (RTI)

Symbol Meaning

<: The symbol “<:” is the commonly used symbol to denote subtyping. Given two programming
language type T and Q, we can say that Q <: T if any occurrence of T can be replaced by Q.

Foo<+T> When Foo is a class parameterized on the type T, we use the notation Foo<+T> to indicate that Foo
is covariant in T.
This means that given Q <: T then Foo<Q> <: Foo<T> When no annotation is provided then the
class is supposed to be invariant.

Foo<-T> When Foo is a class parameterized on the type T, we use the notation Foo<- T> to indicate that Foo
is contra-variant in T.
This means that given Q <: T then Foo<T> <: Foo<Q>
When no annotation is provided then the class is supposed to be invariant.

Foo<T> When foo is non-variant in T.
ISO/IEC C++ 2003 Language DDS PSM, v1.0 3

4 ISO/IEC C++ 2003 Language DDS PSM, v1.0

7 ISO/IEC C++ Language DDS PSM (DDS-PSM-Cxx)

7.1 Overview

The “ISO/IEC C++ Language DDS PSM” (DDS-PSM-Cxx) was motivated by mainly two reasons. First the IDL-derived C++
API for DDS does not integrate well with the C++ language and it does not leverage some of the features provided by the C++
language today universally sup- ported by C++ compilers. Second, the current IDL-derived PSM suffers from the gap existing
between the features available in IDL and those available in a programming language such as C++. Some examples of this gap
are as simple as method overloading, yet, there are many other examples that we could make in comparing the expressiveness
power of IDL versus that of native C++.

As a result this specification takes a completely fresh look at how a native C++ PSM can be derived from the DDS PIM. In
doing so, it tries to balance two forces - derive an API that is as simple and safe as possible while retaining the structure of the
PIM. This specification does not require C++11 features for its implementation, yet it is designed to enable the use of C++11
features, such as the auto keyword, range-based for loops, etc.

7.2 Specification Organization

The DDS-PSM-Cxx API is organized around namespaces that match the different modules defined by the DDS v1.2 PIM
(see Figure 7.1). The dds::core - as implied by its name - provides core abstractions that are used throughout the API,
such as the Time and Duration, the Policies, and the definition of reference and value types. The specification defines
type constructors, i.e., parameterized class, that delegate their behavior to a delegate type parameter. The standard API is
turned into an implementation by properly instantiating these type constructors with implementation provided delegates.
The "detail" sub-packages visible in Figure 7.1, are intended to store the "link" between the standard API and the vendor
implementation. The content of the detail sub-package is provided as a guideline and does not constitute a point of
compliance.

The DDS-PSM-Cxx organizes DDS classes as a set of packages that maximize the coherence and minimize the
dependencies across packages. This organization minimizes API dependencies and reduce the include files required by
publish, or subscribe, only applications speeding up compilation times.

Figure 7.1 - Standard Packages Organization

For instance if we take as an example the type constructor TInstanceHandle, specified in the file dds/core/
TInstanceHandle.hpp as:
ISO/IEC C++ 2003 Language DDS PSM, v1.0 5

 namespace dds {
 namespace core {
 template <typename DELEGATE> class TInstanceHandle ;
 }
 }

Then its instantiation is to be defined by the implementor of the API within the dds::core::delegate namespace as
something like:

 namespace dds {
 namespace core {
 namespace detail {
 typedef dds::core::TInstanceHandle<foo::core::InstanceHandleDelegate>
 InstanceHandle;
 }
 }

This instantiation of the type constructor TInstanceHandle is then used by the standard API in the dds/core/
InstanceHandle.hpp file to define the standard instance handle as:

 namespace dds {
 namespace core {
 typedef detail::InstanceHandle InstanceHandle;
 }
 }

Under no circumstances a vendor shall change the public API defined by this specification. The only action performed by
type constructor is to delegate their implementation to the DELEGATE template parameter. It is the DELEGATE type that
provides the actual implementation and that encapsulate vendor extensions. The DDS-PSM-Cxx API provides a standard
way of accessing vendor specific extensions.

Application source code imports the DDS API by including one or more header files from the dds/ directory hierarchy.
There are three ways to do this, depending on how the application programmer wishes to manage file dependencies.

1. The entire DDS API can be included at once:

• #include <dds/dds.hpp>

2. Individual DDS modules can be included. These headers have the form dds/module/ddsmodule.hpp. For example:

• #include <dds/pub/ddspub.hpp>

3. Individual types can be included. These headers have the form dds/module/ClassName.hpp. For example:

• #include <dds/pub/DataWriter.hpp>

7.3 Concurrency, Reentrancy and Exception Safety

It is expected that most Service implementations will support multi-threaded environments. Therefore, for the sake of
portability, this PSM constrains the level of thread and exception safety that applications may expect:

• All DataReader and DataWriter operations shall be reentrant.

• Loand-based read/take operation shall be exception safe.

6 ISO/IEC C++ 2003 Language DDS PSM, v1.0

• Constructors and copy-assignment operators of normative classes that inherit from Value<D> and the Value<D>
template itself shall preferably be exception safe. Deviation from this norm should be carefully noted on vendor
documentation.

• All Topic (and other TopicDescription extension interfaces), Publisher, Subscriber, and DomainParticipant operations
shall be reentrant with the exception that close may not be called on a given object concurrently with any other call of
any method on that object or on any contained object.

• All DomainParticipantFactory operations shall be reentrant with the exception that DomainParticipantFactory.close
may not be called on a given object concurrently with any other call of any method on that object or on any contained
object.

• All WaitSet and Condition (including Condition extension interfaces) operations shall be reentrant with the exception
that their close() operations may not be invoked concurrently with any other method on the same object.

• Code within a DDS listener callback may not safely call any method on any DDS Entity but the one on which the status
change occurred.

• Any method of any value type may be non-reentrant.

A Service implementation may choose to provide unspecified stronger guarantees than the rules above.

7.4 General Rules for Mapping the DDS PIM to the DDS-PSM-Cxx

This specification defines some general rules to map DDS PIM classes to DDS-PSM-Cxx classes. These rules are
applicable to a subset of classes, luckily the most numerous, while special mapping is required for some of the DDS
entities as described below.

7.4.1 MappingClasses

As a general rule all classes included in the DDS PIM have to be mapped into a C++ class. The specific nature of this
class depends on whether the DDS PIM element has reference or value semantics.

Note – An implication of this mapping is that no DDS PIM class ever maps to a C++ struct.

7.4.2 Mapping Primitive and Container Types

The table below provides a complete mapping between the types defined and used by the DDS PIM and the
corresponding types used by the DDS-PSM-Cxx.

Table 7.1 - Primitive and Container Types Mapping

DDS Type C++ Type

Boolean bool

Char8 char

Char32 wchar_t

Byte uint8_t

Int16 int16_t

UInt16 uint16_t

Int32 int32_t
ISO/IEC C++ 2003 Language DDS PSM, v1.0 7

The above fixed-size integer types shall conform to the types of the same names as defined by [C99] in the header
stdint.h.

• The presence of these types shall not be construed to require that DDS implementations only support [C99]-compliant
platforms. Implementations for non-[C99]-compliant platforms shall provide their own conformant integer type
definitions.

• It shall not be construed to imply the existence of any other definitions that would be found in the header stdint.h on a
[C99]-compliant platform or even the existence of that header itself.

Note that these types are defined in the global namespace, not in the std namespace. In addition, it is worth noticing that
bounded and unbounded sequence types map to the same C++ types.

The DDS Array type is mapped to the dds::core::array type which is specified to conform with the std::array type
specified as part of C++11, exception made for the move operators.

7.4.3 Mapping Enumerations

Native enumerations in C++ are not safe. This specification maps DDS enumerations to a safe enumeration class defined
as follows:

namespace dds {
 namespace core {
 template<typename def, typename inner = typename def::type>
 class safe_enum : public def
 {
 typedef typename def::type type;
 inner val;

 public:

 safe_enum(type v) : val(v) {}
 inner underlying() const { return val; }

 bool operator == (const safe_enum & s) const;
 bool operator != (const safe_enum & s) const;

UInt32 uint32_t

Int64 int64_t

UInt64 uint64_t

Float64 double

Float128 long double

Float32 float

string<Char8> std::string

string<Char32> std::wstring

sequence<T> std::vector<T>

map<K, V> std::map<K, V>

T[N] dds::core::array<T, N>

Table 7.1 - Primitive and Container Types Mapping
8 ISO/IEC C++ 2003 Language DDS PSM, v1.0

 bool operator < (const safe_enum & s) const;
 bool operator <= (const safe_enum & s) const;
 bool operator > (const safe_enum & s) const;
 bool operator >= (const safe_enum & s) const;
 };
 }
}

Below we provide an example of how implementations of this specification have to the safe_enum class to map DDS
enumeration. For convenience we use IDL to express a DDS enumeration.

Notice that this enumeration provides scoped names and leads to code that is equivalent to those written using C++11
enumeration classes. As such, for C++11 compilers, implementers may choose to map enumeration to C++11 enumeration
classes.

7.4.4 Mapping Unions

DDS unions mapping is the same as the one defined by the IDL2C++11 specification as defined in 6.13.2 of the document
ptc/2012-04-03. This choice is compatible with the use of C++03 and aligns the mapping of DDS types to that of IDL.

7.4.5 Mapping Parameters Passing and Parameters Return Rules

The DDS PIM defines parameters as being either IN/OUT/INOUT depending on whether the parameter has no side effect,
is used only for side effect, or whether it provides data that then is changed by the invoked method. Likewise the PIM
defines return types.

The table below provides a mapping between IN/OUT/INOUT for a generic type T, distinguishing between primitive and
non-primitive types. To this end, container types are considered as non-primitive types.

DDS Type C++ Type

enum Color {
 GREEN,
 WHITE,
 RED
};

enum Color_def__ {
 GREEN,
 WHITE,
 RED
};

typedef dds::core::safe_enum<Color_def> Color;

PIM Native Type
Parameter

DDS-PSM-Cxx Native Type
Parameter

IN T T

OUT T T&

INOUT T T&
ISO/IEC C++ 2003 Language DDS PSM, v1.0 9

7.4.6 Mapping Attributes

Attributes defined by DDS PIM classes have to be mapped into:

• Implementation-defined state,

• Getter and setter methods named after the attribute, and

• A constructor argument that allows initializing the attribute.

Getter/Setter methods shall be declared as described in the following table.

PIM Native Return Type DDS-PSM-Cxx Native Return Type

T T

PIM Type Parameter DDS-PSM-Cxx Type Parameter

IN T const T&

OUT T T&

INOUT T T&

PIM Native Return Type DDS-PSM-Cxx Native Return Type

T One of the following, depending on wether
the return parameter is an attribute or not.

• T

• const T&

Attribute Type Getter/Setter Signature

NT attribute;
Where NT is a native.

NT attribute();
void attribute(NT attrib);

CT attribute;
Where CT is a constructed type (e.g., a struct)

CT& attribute();
const CT& attribute() const;
void attribute(const CT& attrib);

ST attribute;
Where ST is a sequence type (e.g., a string,
sequence, map, arrays, etc.)

ST& attribute();
const ST& attribute() const;
void attribute(const ST& attrib);
10 ISO/IEC C++ 2003 Language DDS PSM, v1.0

7.5 Core Package

The core package of the ISO/IEC C++ PSM for DDS (DDS-PSM-Cxx) defines the classes at the foundation of the API
object model as well as all the DDS types used by all other modules. This sub clause describes the most important classes
of the package.

7.5.1 Object Model

The ISO/IEC C++ PSM for DDS (DDS-PSM-Cxx) is based on an object model that is structured in two different kinds of
object types: reference-types and value-types.

7.5.1.1 Reference Types

All objects that have a reference-type have an associated shallow (polymorphic) assignment operator that simply changes
the value of the reference. Furthermore reference-types are safe, meaning that under no circumstances can a reference
point to an invalid object. At any single point in time a reference can either refer to the null object or to a valid object.

The semantics for Reference types is defined by the DDS-PSM-Cxx class dds::core::Reference. In the context of this
specification the semantics implied by the ReferenceType is mandatory, yet the implementation provided as part of this
standard is provided to show one possible way of implementing this semantics.

All DDS-PSM-Cxx reference-types store references to a delegate. To avoid imposing too many constraints on the actual
implementation of the DDS-PSM-Cxx standard while ensuring that efficiency can be retained, all DDS-PSM-Cxx
reference-types are template classes whose parameter is the DELEGATE. Each vendor will plug-in his implementation
simply by providing a file that instantiates the DDS-PSM-Cxx API with its own delegates. Furthermore, by using this
approach, the same API can be used without changes on multiple implementations. At the limit, it is possible for end-
users to program to the OMG provided DDS-PSM-Cxx and then switch from one DDS to another by simply switching to
use his own mapping file and his libraries. Finally, the PSM also provides weak references.

Table 7.2 lists all the DDS PIM classes that have reference semantics.
ISO/IEC C++ 2003 Language DDS PSM, v1.0 11

7.5.1.2 Resource for Reference Types

Instances of reference types are created using C++ constructors. The trivial constructor is not defined for reference types,
the only alternative to properly constructing a reference is to initialize it to a null reference by assigning dds::core::null.

Resource management for some reference types might involve relatively heavyweight operating- system resources—such
as e.g., threads, mutexes, and network sockets—in addition to memory. These objects therefore provide a method close()
that shall halt network communication (in the case of entities) and dispose of any appropriate operating-system resources.

Users of this PSM are recommended to call close on objects of all reference types once they are finished using them. In
addition, implementations may automatically close objects that they deem to be no longer in use, subject to the following
restrictions:

• Any object to which the application has a direct reference (not including a WeakRefer- ence) is still in use.

• Any entity with a non-null listener is still in use.

• Any object that has been explicitly retained is still in use

• The creator of any object that is still in use is itself still in use.

Table 7.2 - DDS Classes with Reference semantics

Namespace Class

dds core • Entity

• Condition

• GuardCondition

• ReadCondition

• QueryCondition

• Waitset

pomain • DomainParticipant

pub • AnyDataWriter

• Publisher

• DataWriter

sub • AnyDataReader

• Subscriber

• DataReader

• SharedSamples

topic • AnyTopic

• Topic
12 ISO/IEC C++ 2003 Language DDS PSM, v1.0

7.5.2 Value Types

All objects that have a value-type have a deep-copy assignment and copy construction semantics. It should also be
pointed out that value-types are not “pure-value-types” in the sense that they are immutable (as in functional
programming languages). The DDS-PSM-Cxx makes value-types mutable to limit the number of copies as well limit the
time-overhead necessary to change a value-type (note that for immutable value-types the only form of change is to create
a new value- type).

The DDS-PSM-Cxx models all DDS PIM classes beyond what is listed in Table 7.2 as value- types. In other terms, QoS,
Policy, Statuses, and Topic samples are all modeled as value-types.

7.5.3 Any Types

The DDS-PSM-Cxx has been designed to take advantage of the compile time polymorphism provided by C++ templates.
As such, the whole standard interface only has a few virtual methods, and in general does not rely on inheritance but as
opposed exploits delegation.

Since the DDS API requires at times to pass DDS entities without exposing the complete type, while other times requires
to store in containers list of objects of different types, the DDS-PSM-Cxx provides a selection of “Any” types.

These Any types safely store references in generic container objects without losing type information while at the same
time exposing some type-independent operations.

7.5.4 Status Classes

The DDS-PSM-Cxx mapping for the status classes as defined in the DDS v1.2 specification is obtained by applying the
generic mapping rules described in 7.4 with the following caption – inheritance from the root status class has been
ignored.

The reason for ignoring the inheritance from the root Status class is that this super-class does not provide any common
behavior, or common state.

Status classes are part of the dds::core::status namespace. As an example, consider the following PIM Status class:

Based on the mapping rules defined so far, the associated DDS-PSM-Cxx class would be the following:

namespace dds { namespace core { namespace status {
template <typename D>
class SampleLostStatus : public dds::core::Value<D>{
public:
 SampleLostStatus();
 SampleLostStatus(uint32_t total_count, uint32_t total_count_change);
ISO/IEC C++ 2003 Language DDS PSM, v1.0 13

public:
 uint32_t total_count() const;
 uint32_t& total_count();
 void total_count(uint32_t total_count);
}; } } }

The full set of status classes is includes in the mandatory standard headers in the file dds/core/status/Status.hpp.

7.5.5 Error Codes

The DDS-PSM-Cxx maps error codes to C++ exceptions defined in the dds::core namespace and inheriting from a base
Exception class and the appropriate standard C++ exception. Table 7.3 lists the mapping between error codes as defined
in the DDS PIM and C++ exceptions as used in this specification. Exceptions have value semantics, this means have to
always have deep copy semantics. The full list of exceptions is included in the file dds/core/Exceptions.hpp.

7.5.6 Time and Duration

This PSM maps the DDS Time_t and Duration_t types into the value types Time and Duration respectively. In addition to
providing their seconds and nanoseconds state through accessor and mutator methods, these classes provide a small
number of convenience operations:

• Time object scan be incremented by durations expressed as seconds, nanoseconds, milliseconds, or Duration objects.

• Time object scan be converted to and from times expressed in milliseconds (or other units) as integer types.

• Duration objects can be incremented by durations expressed as seconds, nanoseconds, milliseconds, or Duration
objects.

• Duration objects can be converted to and from durations expressed in milliseconds(or other units) as integer types.

Table 7.3 - Mapping between PIM Error Codes and C++ Exception

DDS PIM Return Code DDS-PSM-Cxx Exception Class Std C++ Parent Exception
RETCODE_OK Normal return; no exception

RETCODE_NO_DATA An informational state attached to a normal
return; no exception

RETCODE_ERROR Error std::logic_error

RETCODE_BAD_PARAMETER InvalidArgumentError std::invalid_argument

RETCODE_TIMEOUT TimeoutError std::runtime_error

RETCODE_UNSUPPORTED UnsupportedError std::logic_error

RETCODE_ALREADY_DELETED AlreadyClosedError std::logic_error

RETCODE_ILLEGAL_OPERATION IllegalOperationError std::logic_error

RETCODE_NOT_ENABLED NotEnabledError std::logic_error

RETCODE_PRECONDITION_NOT_MET PreconditionNotMetError std::logic_error

RETCODE_IMMUTABLE_POLICY ImmutablePolicyError std::logic_error

RETCODE_INCONSISTENT_POLICY InconsistentPolicyError std::logic_error

RETCODE_OUT_OF_RESOURCES OutOfResourcesError std::runtime_error
14 ISO/IEC C++ 2003 Language DDS PSM, v1.0

7.6 QoS Packages

The QoS package provides all definitions for Policy and QoS.The DDS-PSM-Cxx provide extensible policy and
extensible QoS. This means that vendor can easily add additional attributes to policy as well as new policies to Qos. All
of this without requiring changes in the public API. As explained above, the PSM uses the “operator ->”, or equivalently
the “delegate()” method to access vendor-specific extensions.

7.6.1 Policy Classes

The DDS-PSM-Cxx mapping for the policy classes as defined in the DDS v1.2 specification is obtained by applying the
generic mapping rules described in 7.4 with the following guidelines:

• the inheritance from the root Policy class has been ignored

• the trailing “QosPolicy” has to be discarded from the name as redundant.

• Policy kind is represented with a C++ enumeration and an associated constructor type as shown in the example below.

Policy classes are part of the dds::qos namespace and the Policy Name and Policy ID are to be provided by specialization
of the following trait classes:

namespace dds { namespace qos {
 template <typename Policy>
 class policy_id {
 public:
 enum {
 id = -1
 };
 };
 template <typename Policy>
 class policy_name {
 };

} }

As an example let’s consider the following Policy class as modeled in the DDS PIM:

This would map to the following set of types:

namespace dds { namespace qos {

 struct HistoryKind_def {
 enum Type {
 KEEP_LAST,

ISO/IEC C++ 2003 Language DDS PSM, v1.0 15

 KEEP_ALL
 };
 };

 typedef dds::core::safe_enum<HistoryKind_def> HistoryKind;
} }

namespace dds { namespace qos {
template <typename D>
class THistory : public dds::core::Value<D> {

public:
 THistory();

 THistory(HistoryKind kind, int32_t depth);

 HistoryKind::Type kind() const;
 HistoryKind::Type& kind();
 THistory& kind(HistoryKind kind);

 int32_t depth() const;
 int32_t& depth();
 THistory& depth(int32_t depth);

 static History KeepAll();
 static History KeepLast(uint32_t depth);
};
} }

As shown in the example above, when a policy presents a variability that is captured at a PIM- Level by a kind, the DDS-
PSM-Cxx captures this variability into two ways, first it associates an enumeration with the Policy defining a code for the
variation (as it was done in the IDL PSM), then, it defines a set of helper methods to construct the possible variants. The
full set of policies is included in the mandatory standard headers in the file dds/qos/Policy.hpp.

7.6.2 Entity Class

The Entity class is the root for all DDS entities, as specified in the DDS v1.2 specification. Since an Entity is a reference
type, its resources are automatically managed by the middleware. Specifically, the resources associated with the entity
will be reclaimed either when the number of live reference from the user application to the entity drops to zero, or when
the user explicitly invokes the method close.

7.6.2.1 QoS and Profiles

This specification introduces the concept of a QosProvider to load a QoS configuration from an URI. The URI is used to
deduce both the protocol to be used to access the QoS configuration as well as the format in which it is expressed. As an
example, from the URI ” the QosProvider would deduce that the configuration is accessible as a file on the local
filesystem and that it is expressed in xml format.

Implementation of this specification shall support at very least file URIs and XML format compliant with the QoS-Profile
defined in the DDS for Lightweight CCM specification [DDS-CCM].
16 ISO/IEC C++ 2003 Language DDS PSM, v1.0

template <typename DELEGATE>
class dds::core::qos::TQosProvider : public dds::core::Reference<DELEGATE> {
public:
 explicit TQosProvider(const std::string& uri, const std::string& profile);

 explicit TQosProvider(const std::string& uri);

 dds::domain::qos::DomainParticipantQos
 participant_qos();

 dds::domain::qos::DomainParticipantQos
 participant_qos(const std::string& id);

 dds::topic::qos::TopicQos
 topic_qos();

 dds::topic::qos::TopicQos
 topic_qos(const std::string& id);

 dds::sub::qos::SubscriberQos
 subscriber_qos();

 dds::sub::qos::SubscriberQos
 subscriber_qos(const std::string& id);

 dds::sub::qos::DataReaderQos
 datareader_qos();

 dds::sub::qos::DataReaderQos
 datareader_qos(const std::string& id);

 dds::pub::qos::PublisherQos
 publisher_qos();

 dds::pub::qos::PublisherQos
 publisher_qos(const std::string& id);

 dds::pub::qos::DataWriterQos
 datawriter_qos();

 dds::pub::qos::DataWriterQos
 datawriter_qos(const std::string& id);
};

Below a non mandatory example showing how the QosProvider can be used:
ISO/IEC C++ 2003 Language DDS PSM, v1.0 17

dds::core::qos::QosProvider qos_provider("file:///smwr/hdd/config-qos.xml",
 "myprofile");
DataReader<ShapeType> dr(sub, topic, qos_provider.datareader_qos());

7.7 Domain Package

The domain package defines the DomainParticipantFactory, DomainParticipant, and DomainParticipantListener. For a
complete reference see the standard header files.

7.8 Topic Package

The topic packaged defines the classes related to topic management. As such it provides definitions for the Topic,
TopicDescription, ContentFilteredTopic, MultiTopic, and the TopicListener.

The topic class is parameterized in the topic type and transparently performs the registration of type support.

If we consider the RadarTrack topic type used in the example above, we can create a topic for this type as follows:

DomainParticipant dp(domainId);

dds::topic::Topic<RadarTrack> topic(dp, "RadarTrackTopic");

If the topic is to be created with a QoS different from the default, than the code above would be:

DomainParticipant dp(domainId);

dds::qos::TopicQos tqos = dp.default_topic_qos();

tqos << Reliability::Reliable() << Ownership::Exclusive();

dds::topic::Topic<RadarTrack> topic(dp, "RadarTrackTopic", tqos);

7.9 Pub Package

The publication (pub) package defines all the classes associated with the production of data. As such, it defines the
Publisher, the DataWriter and their associated listeners as well as any types.

The mandatory classes are specified in the standard header files. Below, we focus on the specifics of the DataWriter class.

7.9.1 DataWriter Class

The DataWriter class is parameterized with respect to the delegate and the topic type that it writes. The class provides
several different overloaded methods for writing data by providing single samples or iterators over samples.

7.10 Sub Package

The subscription (sub) package defines all the classes associated with the consumption of data. As such, it defines the
Subscriber, the DataReader and their associated listeners as well as any types. The mandatory classes are specified in the
standard header files. Below, we focus on the specifics of the DataReader class.
18 ISO/IEC C++ 2003 Language DDS PSM, v1.0

7.11 Extensible and Dynamic Type Support Package

The Extensible and Dynamic Type Support (xtypes) package defines all the classes associated with the definition of
extensible topics, such as annotations and the definition and manipulation of dynamic types. As such, this package
introduces all classes necessary for describing dynamic types and their attributes, creating and annotating them.

7.12 C++11 Compatibility

This specification relies on C++03 features only. However, to improve its efficiency and usability in a C++11
environment, it provides built-in support for some C++11 features, such as initializer lists.

Below we list the set of features required by this specification to enable some of the C++11 extensions:

• A move(LoanedSamples<T>&) function shall be defined in the same namespace as LoanedSamples<T> that behaves
identical to std::move.

• LoanedSamples<T> and SharedSamples<T> shall provide member cbegin() and cend() functions, which return
const_iterator irrespective of the constness of the object.

When targeting a C++11 environment implementations compliant with this specification shall follow these additional
rules:

• LoanedSamples<T> shall be implemented as a first-class move-only type using move operations. A representative
example is std::uniqe_ptr.

• LoanedSamples<T> and SharedSamples<T> shall provide namespace level begin() and end() functions to facilitate use
of range-based for loop.

• dds::core::array shall be a template typedef to std::array.

• Enumerations shall use built-in type-safe enumerations with enum class syntax.

• Move operations (move constructor and move assign) shall be provided for all Value<DELEGATE> types.

• Plain language binding shall be augmented as follows

• Generated code for complex types shall use move operations (move-assignment, move-constructor) as defined in
idl2cpp11 (ptc/2012-04-03) struct type mapping.

• Structures containing arrays shall use a const-reference parameter for arrays as opposed to pass-by-value.

• A namespace level swap(t1) and a member swap shall be provided for each generated class.

• Move-assign, move-constructor, and member swap functions, and namespace-level swap may provide noexcept
specification to allow efficient and exception-safe resizing of standard containers.

7.13 Examples

7.13.1 C++03 Example

This sub clause provides an example for full application writing and reading RadarTracks topics.
ISO/IEC C++ 2003 Language DDS PSM, v1.0 19

 // ================== DataWriter ===================
 try {

DomainId id = 0;
DomainParticipant dp(id);

pub::qos::PublisherQos pqos;
pqos << policy::Partition("Tracks");

pub::Publisher pub(dp, pqos);

topic::qos::TopicQos tqos;
tqos << policy::Reliability::Reliable()
 << policy::Durability::Transient()
 << policy::History::KeepLast(10)
 << policy::TransportPriority(14);

dds::topic::Topic<RadarTrack> topic(dp, "TrackTopic", tqos);

pub::qos::DataWriterQos dwqos(tqos);

pub::DataWriter<RadarTrack> dw(pub, topic, dwqos);

RadarTrack track("alpha", 100, 200);

dw.write(track);
// or
dw << track;

 } catch (const dds::core::Exception& e) { }

 // ================== DataReader===================

 try {
DomainId id = 0;
DomainParticipant dp(id);

sub::qos::SubscriberQos sqos;
sqos << policy::Partition("Tracks");

sub::Subscriber sub(dp, sqos);

topic::qos::TopicQos tqos = dp.default_topic_qos();
tqos << policy::Reliability::Reliable()
 << policy::Durability::Transient()
 << policy::History::KeepLast(10)
 << policy::TransportPriority(14);
20 ISO/IEC C++ 2003 Language DDS PSM, v1.0

dds::topic::Topic<RadarTrack> topic(dp, "TrackTopic", tqos);

sub::qos::DataReaderQos dwqos(tqos);

sub::DataReader<RadarTrack> dr(sub, topic, drqos);

std::vector< Samples<RadarTrack> > samples(MY_MAX_LEN);
dr.read(samples.begin(), MY_MAX_LEN);

 } catch (const dds::core::Exception& e) { }

7.13.2 C++11 Example

While not requiring C++11 the DDS-PSM-Cxx API described in this specification has built-in support for some of the
most interesting C++11 features.

 // ================== DataWriter ===================
 try {

DomainId id = 0;
DomainParticipant dp(id);

pub::qos::PublisherQos pqos;
pqos << policy::Partition("Tracks");

pub::Publisher pub(dp, pqos);

topic::qos::TopicQos tqos = dp.default_topic_qos();
tqos << policy::Reliability::Reliable()
 << policy::Durability::Transient()
 << policy::History::KeepLast(10)
 << policy::TransportPriority(14);

dds::topic::Topic<RadarTrack> topic(dp, "TrackTopic", tqos);

pub::qos::DataWriterQos dwqos(tqos);

pub::DataWriter<RadarTrack> dw(pub, topic, dwqos);

RadarTrack track("alpha", 100, 200);

dw.write(track);
// or
dw << track;

 } catch (const dds::core::Exception& e) { }
ISO/IEC C++ 2003 Language DDS PSM, v1.0 21

 // ================== DataReader===================

 try {
DomainId id = 0;
DomainParticipant dp(id);

sub::qos::SubscriberQos sqos;
sqos << policy::Partition("Tracks");

sub::Subscriber sub(dp, sqos);

topic::qos::TopicQos tqos = dp.default_topic_qos();
tqos << policy::Reliability::Reliable()
 << policy::Durability::Transient()
 << policy::History::KeepLast(10)
 << policy::TransportPriority(14);

dds::topic::Topic<RadarTrack> topic(dp, "TrackTopic", tqos);

sub::qos::DataReaderQos dwqos(tqos);

sub::DataReader<RadarTrack> dr(sub, topic, drqos);

auto samples =
 dr.select()
 .max_samples(100)
 .data(dds::sub::status::DataState::new_data())
 take();

for (auto s : samples) {
 std::cout << samples.data() << std::endl;
}
 } catch (const dds::core::Exception& e) { }
22 ISO/IEC C++ 2003 Language DDS PSM, v1.0

8 Improved Plain Language Binding for C++

8.1 Type Mapping

The type system for DDS topic types is defined by the Extensible and Dynamic Topic Types for DDS specification [DDS-
XTypes].

This sub clause defines the set of rules to be used in order to map abstract DDS topic types into C++ types that can be
used by application programmers. Those aspects of the DDS Type System that are not addressed below are as specified in
the Plain Language Binding as defined by [DDS- XTypes] (which in turn is defined in terms of an IDL-to-C++ mapping).

8.1.1 Mapping Aggregation Types

DDS aggregation types shall be mapped to a C++ class. Contained attributes shall be encapsulated. Accessors shall be
provided following the rules described in 7.4. The representation of internal state is unspecified.

8.1.2 Mapping Primitive and Collection Types

IDL primitive and collection types used to define a topic type shall be mapped to C++ following the rules listed in Table
7.1.

8.1.3 Mapping Enumerations

IDL enumerations shall be mapped into C++ enumerations with exactly the same enumeration name and enumeration
constants.

8.1.4 Mapping Optional Attributes

Attributes annotated though the @Optional annotation are mapped to a template instantiation of the class
dds::core::optional<T> with T equal to the type attribute would normally map as per the rules specified above.

8.1.5 Mapping Shared Attributes

Attributes annotated through the @Shared annotation are mapped to a pointer of the type they would normally map as per
the rules specified above.

8.2 Example

This sub clause provides a simple yet representative example demonstrating the ISO/IEC mapping for DDS types.
ISO/IEC C++ 2003 Language DDS PSM, v1.0 23

Topic Type Declaration (IDL) C++ Representation

typedef sequence<octet>
 plot_t;

struct RadarTrack {
 string id;
 long x;
 long y;
 long z; //@Optional
 plot_t plot; //@Shared
};

typedef std::vector<uint8_t> plot_t

class RadarTrack {
public:
 typedef
 typename smart_ptr_traits<plot_t>::ref_type
 plot_ref_t;

public:
 RadarTrack();
 RadarTrack(const std::string& id,
 int32_t x, int32_t y,
 int32_t z,
 std::vector<uint8_t>* plot);
public:
 // Notice that sequence type
 // are not returned by const reference
 // to avoid forcing copies when needing
 // to change just one element.
 // This is unfortunate, but a necessary
 // tradeoff.
 std::string& id() const;
 void id(const std::string& s);

 int32_t x() const;
 void x(int32_t v);

 int32_t y() const;
 void y(int32_t v);

 dds::core::optional<int32_t>& z() const;
 void z(int32_t v);
 void z(const
 dds::core::optional<int32_t>& z)

 const plot_ref_t& plot() const;
 void plot(plot_ref_t pr)

// State representation is implementation
// dependent.

};
24 ISO/IEC C++ 2003 Language DDS PSM, v1.0

	Preface
	1 Scope
	2 Conformance
	2.1 Conformance Profiles
	2.2 Programming Interfaces

	3 Normative References
	4 Terms and Definitions
	5 Symbols
	6 Additional Information
	6.1 Acknowledgments

	7 ISO/IEC C++ Language DDS PSM (DDS-PSM-Cxx)
	7.1 Overview
	7.2 Specification Organization
	7.3 Concurrency, Reentrancy and Exception Safety
	7.4 General Rules for Mapping the DDS PIM to the DDS-PSM-Cxx
	7.4.1 MappingClasses
	7.4.2 Mapping Primitive and Container Types
	7.4.3 Mapping Enumerations
	7.4.4 Mapping Unions
	7.4.5 Mapping Parameters Passing and Parameters Return Rules
	7.4.6 Mapping Attributes

	7.5 Core Package
	7.5.1 Object Model
	7.5.2 Value Types
	7.5.3 Any Types
	7.5.4 Status Classes
	7.5.5 Error Codes
	7.5.6 Time and Duration

	7.6 QoS Packages
	7.6.1 Policy Classes
	7.6.2 Entity Class

	7.7 Domain Package
	7.8 Topic Package
	7.9 Pub Package
	7.9.1 DataWriter Class

	7.10 Sub Package
	7.11 Extensible and Dynamic Type Support Package
	7.12 C++11 Compatibility
	7.13 Examples
	7.13.1 C++03 Example
	7.13.2 C++11 Example

	8 Improved Plain Language Binding for C++
	8.1 Type Mapping
	8.1.1 Mapping Aggregation Types
	8.1.2 Mapping Primitive and Collection Types
	8.1.3 Mapping Enumerations
	8.1.4 Mapping Optional Attributes
	8.1.5 Mapping Shared Attributes

	8.2 Example

