
Date: Mar 2016

Remote Procedure Call over DDS

Version 1.0

__

OMG Document Number: ptc/2016-03-19

Normative reference: http://www.omg.org/spec/DDS-RPC/1.0/1.0

Machine Readable Files:

C++ (ptc/16-02-27): http://www.omg.org/spec/DDS-RPC/20160215/omg-dds-rpc-cxx.zip

Java (ptc/16-02-28): http://www.omg.org/spec/DDS-RPC/20160215/omg-dds-rpc-java.zip

IDL (ptc/16-02-29): http://www.omg.org/spec/DDS-RPC/20160215/omg-dds-rpc-idl.zip

__

This OMG document replaces the earlier document (ptc/2015-05-01, Beta 1). This is an

OMG Adopted Beta Specification and is currently in the finalization phase. Comments on the

content of this document are welcome, and should be directed to issues@omg.org by August

24, 2015.

You may view pending issues for this specification from the OMG revision issues web page

http://www.omg.org/issues.

The FTF Recommendation and Report for this specification will be published on December

18, 2015. If you are reading this after that date, please download the available specification

from the OMG Specifications web page http://www.omg.org/spec/.

Contacts:

RTI: Sumant Tambe (sumant@rti.com), Gerardo Pardo-Castellote (gerardo@rti.com)

eProsima: Jaime Martin-Losa (JaimeMartin@eProsima.com)

PrismTech: Angelo Corsaro (angelo.corsaro@prismtech.com)

http://www.omg.org/spec/DDS-RPC/1.0
http://www.omg.org/spec/DDS-RPC/20160215/omg-dds-rpc-cxx.zip
http://www.omg.org/spec/DDS-RPC/20160215/omg-dds-rpc-java.zip
http://www.omg.org/spec/DDS-RPC/20160215/omg-dds-rpc-idl.zip
mailto:issues@omg.org
http://www.omg.org/issues
http://www.omg.org/spec/
mailto:sumant@rti.com
mailto:gerardo@rti.com
mailto:JaimeMartin@eProsima.com
mailto:angelo.corsaro@prismtech.com

Copyright © 2014 Real-time Innovations, Inc.

Copyright © 2014, eProsima

Copyright © 2014, PrismTech

Copyright © 2015, Object Management Group, Inc.

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in

accordance with the terms, conditions and notices set forth below. This document does not

represent a commitment to implement any portion of this specification in any company's

products. The information contained in this document is subject to change without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a

nonexclusive, royalty-free, paid up, worldwide license to copy and distribute this document

and to modify this document and distribute copies of the modified version. Each of the

copyright holders listed above has agreed that no person shall be deemed to have infringed

the copyright in the included material of any such copyright holder by reason of having used

the specification set forth herein or having conformed any computer software to the

specification.

Subject to all of the terms and conditions below, the owners of the copyright in this

specification hereby grant you a fully-paid up, non-exclusive, nontransferable, perpetual,

worldwide license (without the right to sublicense), to use this specification to create and

distribute software and special purpose specifications that are based upon this specification,

and to use, copy, and distribute this specification as provided under the Copyright Act;

provided that: (1) both the copyright notice identified above and this permission notice

appear on any copies of this specification; (2) the use of the specifications is for

informational purposes and will not be copied or posted on any network computer or

broadcast in any media and will not be otherwise resold or transferred for commercial

purposes; and (3) no modifications are made to this specification. This limited permission

automatically terminates without notice if you breach any of these terms or conditions. Upon

termination, you will destroy immediately any copies of the specifications in your possession

or control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of

OMG specifications may require use of an invention covered by patent rights. OMG shall not

be responsible for identifying patents for which a license may be required by any OMG

specification, or for conducting legal inquiries into the legal validity or scope of those patents

that are brought to its attention. OMG specifications are prospective and advisory only.

Prospective users are responsible for protecting themselves against liability for infringement

of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and

communications regulations and statutes. This document contains information which is

protected by copyright. All Rights Reserved. No part of this work covered by copyright

herein may be reproduced or used in any form or by any means--graphic, electronic, or

mechanical, including photocopying, recording, taping, or information storage and retrieval

systems--without permission of the copyright owner.

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS

IS" AND MAY CONTAIN ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT

GROUP AND THE COMPANIES LISTED ABOVE MAKE NO WARRANTY OF ANY

KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS PUBLICATION,

INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP,

IMPLIED WARRANTY OF MERCHANTABILITY OR WARRANTY OF FITNESS FOR

A PARTICULAR PURPOSE OR USE. IN NO EVENT SHALL THE OBJECT

MANAGEMENT GROUP OR ANY OF THE COMPANIES LISTED ABOVE BE LIABLE

FOR ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL,

SPECIAL, CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING LOSS

OF PROFITS, REVENUE, DATA OR USE, INCURRED BY ANY USER OR ANY THIRD

PARTY IN CONNECTION WITH THE FURNISHING, PERFORMANCE, OR USE OF

THIS MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

The entire risk as to the quality and performance of software developed using this

specification is borne by you. This disclaimer of warranty constitutes an essential part of the

license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth

in subparagraph (c) (1) (ii) of The Rights in Technical Data and Computer Software Clause at

DFARS 252.227-7013 or in subparagraph (c)(1) and (2) of the Commercial Computer

Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified in 48 C.F.R. 227-

7202-2 of the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212

of the Federal Acquisition Regulations and its successors, as applicable. The specification

copyright owners are as indicated above and may be contacted through the Object

Management Group, 109 Highland Ave, Needham, MA 02494 USA

TRADEMARKS

MDA®, Model Driven Architecture®, UML®, UML Cube logo®, OMG Logo®, CORBA®

and XMI® are registered trademarks of the Object Management Group, Inc., and Object

Management Group™, OMG™ , Unified Modeling Language™, Model Driven Architecture

Logo™, Model Driven Architecture Diagram™, CORBA logos™, XMI Logo™, CWM™,

CWM Logo™, IIOP™ , IMM™ , MOF™ , OMG Interface Definition Language (IDL)™ ,

and OMG SysML™ are trademarks of the Object Management Group. All other products or

company names mentioned are used for identification purposes only, and may be trademarks

of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting

itself or through its designees) is and shall at all times be the sole entity that may authorize

developers, suppliers and sellers of computer software to use certification marks, trademarks

or other special designations to indicate compliance with these materials.

Software developed under the terms of this license may claim compliance or conformance

with this specification if and only if the software compliance is of a nature fully matching the

applicable compliance points as stated in the specification. Software developed only partially

matching the applicable compliance points may claim only that the software was based on

this specification, but may not claim compliance or conformance with this specification. In

the event that testing suites are implemented or approved by Object Management Group, Inc.,

software developed using this specification may claim compliance or conformance with the

specification only if the software satisfactorily completes the testing suites.

OMG’s Issue Reporting Procedure

All OMG specifications are subject to continuous review and improvement. As part of this

process we encourage readers to report any ambiguities, inconsistencies, or inaccuracies they

may find by completing the Issue Reporting Form listed on the main web page

http://www.omg.org, under Documents, Report a Bug/Issue

(http://www.omg.org/report_issue.htm)

http://www.omg.org/report_issue.htm

 vi

Table of Contents

Contents

Table of Contents ... vi

Preface ... ix

 Scope .. 1

 Conformance .. 1

 Normative References ... 1

 Terms and Definitions ... 2

 Symbols .. 2

 Additional Information ... 3

 Changes to Adopted OMG Specifications .. 3

 Acknowledgements .. 3

 Remote Procedure Call over Data Distribution Service 4

 Overview ... 4

 General Concepts ... 4

7.2.1 Architecture.. 4

7.2.2 Language Binding Styles for RPC over DDS .. 5

7.2.3 Request-Reply Correlation ... 7

7.2.4 Basic and Enhanced Service Mapping for RPC over DDS 7

7.2.5 Interoperability ... 8

 Service Definition .. 8

7.3.1 Service Definition in IDL ... 9

7.3.2 Service Definition in Java ... 13

 Mapping Service Specification to DDS Topics .. 15

7.4.1 Rules for Synthesizing DDS Topic Names ... 15

7.4.2 Basic Service Mapping ... 16

7.4.3 The Enhanced Service Mapping ... 17

 Mapping Service Specification to DDS Topics Types .. 19

7.5.1 Interface Mapping .. 19

7.5.2 Mapping of Error Codes ... 41

 Discovering and Matching RPC Services ... 42

 vii

7.6.1 Client and Service Discovery for the Basic Service Mapping 42

7.6.2 Client and Service Discovery for the Enhanced Service Mapping 43

 Interface Evolution .. 47

7.7.1 Interface Evolution in the Basic Service Mapping 47

7.7.2 Interface Evolution in the Enhanced Service Mapping 48

 Request and Reply Correlation ... 50

7.8.1 Request and Reply Correlation in the Basic Service Profile 50

7.8.2 Request and Reply Correlation in the Enhanced Service Profile 50

 Service Lifecycle ... 51

7.9.1 Activating Services... 51

7.9.2 Processing Requests ... 51

7.9.3 Deactivating Services ... 51

 Service QoS ... 52

7.10.1 Interface Qos Annotation .. 52

7.10.2 Default QoS ... 52

 Language Bindings .. 52

7.11.1 C++ Language Binding .. 53

7.11.2 Java Language Binding .. 61

 viii

 ix

Preface

OMG

Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit

computer industry standards consortium that produces and maintains computer industry

specifications for interoperable, portable, and reusable enterprise applications in distributed,

heterogeneous environments. Membership includes Information Technology vendors, end users,

government agencies, and academia.

OMG member companies write, adopt, and maintain its specifications following a mature, open

process. OMG’s specifications implement the Model Driven Architecture® (MDA®), maximizing

ROI through a full-lifecycle approach to enterprise integration that covers multiple operating

systems, programming languages, middleware and networking infrastructures, and software

development environments. OMG’s specifications include: UML® (Unified Modeling Language™);

CORBA® (Common Object Request Broker Architecture); CWM™ (Common Warehouse

Metamodel); and industry-specific standards for dozens of vertical markets.

More information on the OMG is available at http://www.omg.org/.

OMG Specifications

As noted, OMG specifications address middleware, modeling and vertical domain frameworks. All

OMG Specifications are available from the OMG website at:

http://www.omg.org/spec

Specifications are organized by the following categories:

 Business Modeling Specifications

 Middleware Specifications

o CORBA/IIOP

o Data Distribution Services

o Specialized CORBA

 IDL/Language Mapping Specifications

 Modeling and Metadata Specifications

o UML, MOF, CWM, XMI

o UML Profile

 Modernization Specifications

 Platform Independent Model (PIM), Platform Specific Model (PSM), Interface Specifications

o CORBAServices

o CORBAFacilities

http://www.omg.org/
http://www.omg.org/spec

 x

 OMG Domain Specifications

o CORBA Embedded Intelligence Specifications

o CORBA Security Specifications

All of OMG’s formal specifications may be downloaded without charge from our website. (Products

implementing OMG specifications are available from individual suppliers.) Copies of specifications,

available in PostScript and PDF format, may be obtained from the Specifications Catalog cited above

or by contacting the Object Management Group, Inc. at:

Object Management Group

109 Highland Ave

Needham, MA 02494 USA

Tel: +1-781-444-0404

Fax: +1-781-444-0320

Email: pubs@omg.org

Certain OMG specifications are also available as ISO standards. Please consult http://www.iso.org

Typographical Conventions

The type styles shown below are used in this document to distinguish programming statements from

ordinary English. However, these conventions are not used in tables or sub clause headings where no

distinction is necessary.

Times/Times New Roman - 10 pt.: Standard body text

Helvetica/Arial - 10 pt. Bold: OMG Interface Definition Language (OMG IDL) and syntax

elements.

Courier - 10 pt. Bold: Programming language elements.

Helvetica/Arial - 10 pt: Exceptions

NOTE: Terms that appear in italics are defined in the glossary. Italic text also represents the name

of a document, specification, or other publication.

Issues The reader is encouraged to report any technical or editing issues/problems with this

specification to http://www.omg.org/report_issue.htm.

http://www.omg.org/report_issue.htm

1

 Scope

The Data Distribution Service is widely used for data-centric publish/subscribe communication in

real-time distributed systems. Large distributed systems often need more than one style of

communication. For instance, data distribution works great for one-to-many dissemination of

information. However, certain other styles of communication namely request/reply and remote

method invocation are cumbersome to express using the basic building blocks of DDS. Using two or

more middleware frameworks is often not practical due to complexity, cost, and maintenance

overhead reasons. As a consequence, developing a standard mechanism for request/reply style

bidirectional communication on top of DDS is highly desirable for portability and interoperability.

Such facility would allow commands to be naturally represented as remote method invocations. This

s presents a solution to this problem.

This specification defines a Remote Procedure Calls (RPC) framework using the basic building

blocks of DDS, such as topics, types, DataReaders, and DataWriters to provide request/reply

semantics. It defines distributed services, described using a service interface, which serves as a

shareable contract between service provider and a service consumer. It supports synchronous and

asynchronous method invocation. Despite its similarity, it is not intended to be a replacement for

CORBA.

 Conformance

This specification defines two conformance points: Basic and Enhanced.

[1] Basic conformance (mandatory).

[2] Enhanced conformance (optional).

The basic conformance point includes support for the Basic service mapping and both the functional

and the request-reply language binding styles.

The enhanced conformance point includes the basic conformance and adds support for the Enhanced

Service mapping.

The table below summarizes what is included in each of the conformance points.

Conformance

point

Service Mapping Language Binding Style

Basic Enhanced Function-call Request/Reply

Basic Included Included Included

Enhanced Included Included Included Included

 Normative References

The following normative documents contain provisions which, through reference in this text,

constitute provisions of this specification. For dated references, subsequent amendments to, or

 2

revisions of, any of these publications do not apply.

 [DDS] Data Distribution Service for Real-Time Systems Specification, version 1.2 (OMG document

formal/2007-01-01).

 [RTPS] The Real-Time Publish-Subscribe Wire Protocol DDS Interoperability Wire Protocol (DDSI-RTPS)

(OMG document formal/2010-11-01)

 [DDS-XTypes] Extensible and Dynamic Topic Types for DDS, version 1.0 Beta 1 (OMG document ptc/2010-

05-12).

 [CORBA] Common Object Request Broker Architecture (CORBA/ZIOP) version 3.3. OMG documents

formal/2012-11-12, formal/2012-11-14, and formal/2012-11-16

 [IDL35] Interface Definition Language (IDL), Version 3.5, OMG document formal/2014-03-01

 [EBNF] ISO/IEC 14977 Information Technology – Syntactic Metalanguage – Extended BNF (first edition)

 [Java-Grammar] The Java Language Specification, Third Edition. Chapter 8

http://docs.oracle.com/javase/specs/jls/se5.0/html/syntax.html

 [DDS-Cxx-PSM] ISO/IEC C++ 2003 Language DDS PSM, version 1.0, OMG document formal/2013-11-01

 [DDS-Java-PSM] Java 5 Language PSM for DDS, version 1.0, OMG document formal/2013-11-02

 [DDS4CCM] DDS for lightweight CCM, version 1.1, OMG document formal/2012-02-01

 [IDL2Java] IDL to Java Language Mapping, version 1.3

 [SOA-RM] Reference Model for Service Oriented Architecture (SOA-RM) v1.0, October 2006

 Terms and Definitions

For the purposes of this specification, the following terms and definitions apply.

Service

A Service is a mechanism to enable access to one or more capabilities, where the access is provided

using a prescribed interface and is exercised consistent with constraints and policies as specified by

the service description. [SOA-RM]

Remote Procedure Call

Remote Procedure Call is an inter-process communication that allows a computer program to cause a

subroutine or procedure to execute in another address space

 Symbols

DDS Data-Distribution Service

GUID Global Unique Identifier

RPC Remote Procedure Call

http://docs.oracle.com/javase/specs/jls/se5.0/html/syntax.html

3

RTPS Real-Time Publish-Subscribe Protocol

SN Sequence Number

 Additional Information

 Changes to Adopted OMG Specifications

None

 Acknowledgements

The following companies submitted this specification:

 Real-Time Innovations, Inc.

 eProsima

 PrismTech

The following companies support this specification:

 Real-Time Innovations, Inc.

 eProsima

 PrismTech

 Twin Oaks Computing, Inc.

 4

 Remote Procedure Call over Data Distribution
Service

 Overview

Large distributed systems often require different interaction patterns depending upon the problem at

hand. For instance, distribution of sensor data is best achieved using unidirectional one-to-many

pattern whereas sending commands to a specific device or retrieving configuration of a remote

service is best done using bidirectional request/reply interaction. Using a single middleware that

supports multiple interaction styles is a very cost-effective way of developing and maintaining large

distributed systems. Data Distribution Service (DDS) is a well-known standard for data-centric

publish-subscribe interaction for real-time distributed systems. DDS excels at providing an

abstraction of global data space where applications can publish real-world data and also subscribe to

it without temporal or spatial coupling.

DDS, however, is cumbersome to use for bidirectional interaction in the sense of request-reply

pattern. The pattern can be expressed using the basic building blocks of DDS, however, substantial

plumbing must be created manually to achieve the desired effect. As a consequence, it is fair to say

that request/reply style interaction is not first-class in DDS. The intent of this submission is to

specify higher-level abstractions built on top of DDS to achieve first-class request/reply interaction.

It is also the intent of this submission to facilitate portability, interoperability, and promote data-

centric view for request/reply interaction so that the architectural benefits of using DDS can be

leveraged in request/reply interaction.

 General Concepts

7.2.1 Architecture

Remote Procedure Call necessarily has two participants: a client and a service. Structurally, every

client uses a data writer for sending requests and a data reader for receiving replies. Symmetrically,

every service uses a data reader for receiving the requests and a data writer for sending the replies.

Figure 1 shows the high-level architecture of the remote procedure call over DDS. The client consists

of a data writer to publish the sample that represents remote procedure call on the call topic.

Correspondingly, the service implementation contains a data reader that receives the request

containing the method name and the parameters (e.g., Foo). The service computes the return values

(i.e., Bar) to be sent back to the client on the Return topic. (The service implementation details are

not shown.)

The data reader at the client side receives the response, which is delivered to the application. To

ensure that the client receives a response to a previous call made by itself, a content-based filter

could be used by the reader at the client-side. This ensures that responses for remote invocations of

other clients are filtered out.

It is possible for a client to have more than one outstanding request, particularly when asynchronous

invocations are used. In such cases, it is critical to correlate requests with responses. As a

consequence, each individual request must be correlated with the corresponding reply. Requests, like

all samples in the DDS data space, are identified using a unique SampleIdentity defined as a

struct composed of GUID_t and a SequenceNumber_t defined in sub clause 7.5.1.1.1. When a

5

service implementation sends a reply to a specific remote invocation, it is necessary to identify the

original request by providing the request-id of the request. Note that a reply data sample has its own

unique sample identity, which represents the reply message itself and is independent of the request-

id.

Figure 1: Conceptual View of Remote Procedure Call over DDS

7.2.2 Language Binding Styles for RPC over DDS

Language binding style determines how the client API is exposed to the programmer and how the

service implementation receives notification of the arriving requests. This specification includes a

higher-level language binding with function-call style and a lower-level language binding with

request/reply style.

7.2.2.1 Function-call Style

The function-call style is conceptually analogous to Java RMI, .NET WFC Service Contracts, or

CORBA. To provide function-call style, a common approach is to generate stubs that serve as client-

side proxies for remote operations and skeletons to support service-side implementations. The look-

and-feel is like a local function invocation. A code generator generates stub and skeleton classes

from an interface specification. The generated code is used by the client and service implementation.

An advantage of such a mapping is that the look and feel of the client-side program and the service

implementation is just like a native method call. Asynchronous invocations use

dds::rpc::future<T> to retrieve the result of the operation.

 6

7.2.2.2 Request/Reply Style

The request/reply style makes no effort to make the remote invocation look like a function call.

Instead, it provides a general-purpose API to send and receive messages. The programmer is

responsible for populating the request messages (a.k.a. samples) at the client side and the reply

messages on the service side. In that sense it is lower-level language binding compared to the

function-call semantics.

The request/reply style provides a flat interface, such as send_request, receive_request, and

send_reply, receive_reply, which substantially simplifies language binding as no code generation is

necessary beyond the request/reply types. However, remote procedure call does not appear first-class

to the programmer.

Figure 2: Strong decoupling of language binding (function-call and request/reply) from the service-

specific data model

7.2.2.3 Pros and Cons of each Language Binding Styles

The function-call style is natural to programmers due to its familiar look-and-feel. Sending of the

request message and reception of the corresponding reply is abstracted away using proxy objects on

the client side. Request-reply style, on the other hand, is more explicit about exchanging messages

and therefore can be used to implement complex interactions between the client and the server. For

example, the command-response pattern typically involves multiple replies to the same request. (e.g.,

completion percentage status). Request-reply style can easily implement such a pattern without

polling. For a given request, a service may simply produce multiple replies with the same request-id

as that of the original request. The client correlates the replies with the original request using the

request-id. The function-call style must use application-level polling or asynchronous callbacks if

multiple replies are expected by the client. This is because the single-entry-single-return semantics

restrict underlying messaging.

7

Furthermore, request-reply style is inherently asynchronous because invocation of the service is

separated from reception of replies. Multiple replies (for a single request) may be consumed one at a

time or in a batch. The API for request-reply style often simplifies code-generation requirements

because stubs and skeletons are not required. Finally, the request-reply style is strongly typed and

this specification uses templates in case of C++ and generics in case of Java to provide service-

specific type-rich language bindings.

It is important to note that the client and service sides are not coupled with respect to the language

binding styles. Thanks to the strong separation imposed by the mapping of interfaces to topic types.

It is possible for a client to use function-call style language binding to invoke remote operations on a

server that uses request/reply style language binding to implement the service. The converse is also

true. Furthermore, it is also possible for the stubs and skeletons of the functional style to use the

request/reply language binding under the hood.

In light of the above observation, a conforming implementation to this specification shall support

both styles of language binding.

7.2.3 Request-Reply Correlation

Request-reply correlation requires an ability to retrieve the sample identity (GUID, SN) at both the

requester and service side. The requester needs to know the sample identity because it needs to

correlate the reply with the original request. The service implementation also needs to retrieve the

sample identity of the request so that it can use it to relate the reply sample to the request that

triggered it.

This specification makes important distinction in how the information necessary for correlation is

propagated. The request-id can be propagated either implicitly or explicitly. Explicit request-id

implies that the request-id is visible in the top-level data type for the DDS topic. Implicit request-id,

on the other hand, implies that the request-d is communicated via extensibility mechanisms

supported by the DDS-RTPS protocol. Specifically using the inlineQoS sub-message element. See

sub clause 8.3.7.2 of the DDS-RTPS specification [RTPS].

In both cases, the specification provides APIs to get the request-id at the client side and get/set the

request-id at the service side. The request-id simply maps to dds::SampleIdentity structure that

contains GUID_t and SequenceNumber_t both of which are predefined in [RTPS]. The API to

retrieve request-id is included in the accompanying normative machine readable files.

7.2.4 Basic and Enhanced Service Mapping for RPC over DDS

This specification includes two mappings for interfaces to DDS topics and types called “Basic” and

“Enhanced”.

 The Basic service mapping enables RPC over DDS functionality without any extensions to the

[DDS] and [DDS-RTPS] specifications. It uses explicit request-id for correlation

 The Enhanced service mapping uses implicit request-id for correlation, allows use of the

additional data-types defined in DDS-XTypes, uses DDS-XTypes for type-compatibility

checking, and provides more robust service discovery.

The following table summarizes the key aspects of the Basic and Enhanced service mapping profiles

 8

Mapping Aspect Basic Service Mapping Profile Enhanced Service Mapping

Profile

Correlation Information

(request-id)

Explicitly added to the data-

type

Implicit. Correlation

Information appears on the

Sample meta-data.

Topic Mapping One request topic and one reply

topic per interface. 2*N for a

hierarchy of N interfaces.

One request and one reply

topic per interface independent

of interface hierarchies.

Type Mapping Synthesized types compatible

with DDS 1.3 compliant

implementations.

Use facilities of DDS-XTypes

for type descriptions,

annotations, and type-

compatibility checks.

Discovery No special extensions. Robust service discovery as

described in sub clause 8.6

7.2.5 Interoperability

Client and service interoperability requires both sides to use the same service mapping. Basic and

Enhanced Service Mappings can be mixed in an application but for any given service both client and

the service side must use the same service mapping. It is therefore considered part of the service

interface contract.

The Basic and Enhanced Service mappings are independent of the language binding style. I.e., it is

possible for clients and service implementations to communicate using different language binding

styles as long as their service mappings match.

 Service Definition

A service definition is provided using the following two alternatives.

a. Interface: An interface is a description of the methods/operations and attributes the service

implements. It is a provided interface. A service may implement one or more interfaces related

by inheritance (single or multiple).

b. A Pair of Types: A service specification may simply include a pair of request and reply types.

The request and reply types may be the same. The pair of types may not correspond to an

interface. However, all service descriptions correspond to a pair of types. In that sense the pair-

of-types mechanism of defining a service is strictly more general than interfaces.

This specification uses OMG Interface Definition Language (IDL) or Java 1.5 as a concrete syntax to

define services with either of the mechanisms above.

9

7.3.1 Service Definition in IDL

This specification uses the interface definition syntax specified in [IDL35]. Additionally, annotations

are supported to provide extra information. Service definition in IDL does not specify whether an

operation is synchronous or asynchronous, which is a run-time concern and not intrinsic to the

interface contract. Therefore, this specification provides synchronous and asynchronous invocation

capabilities only at the language binding level.

7.3.1.1 Service Definition in IDL for the Basic Service Mapping

The BNF grammar used to define the IDL syntax uses the same production rules as in sub clause 7.4

(IDL Grammar) in the [IDL35] specification and sub clause 7.3.1.12.1 (New Productions) of the

[DDS-XTypes] specification.

The [IDL35] grammar shall be modified with the productions shown below. These productions are

numbered using the same numbers as in the [IDL35] document.

Note, [] represents optional.

(1) <specification> ::= <definition>+

(2) <definition> ::= <type_dcl> “;” <ann_appl_post>

 | <const_dcl> “;”

 | <except_dcl> “;”

 | <interface> “;”

 | <module> “;”

 | <value> “;”

 | <annotation> “;” <ann_appl_post>

(7) <interface_header> ::= [<annotation>] “interface” <identifier>

 [<interface_inheritance_spec>]

(9) <export> ::= <attr_dcl> “;”

 | <op_dcl> “;”

(42) <type_dcl> ::= [<annotation>] “typedef” <type_declarator>

 | [<annotation>] <struct_type>

Non-normative: The definition of the IDL syntax as part of this specification is a transient

situation. Once IDL 4.0 is adopted this specification will be able to simply reference the appropriate

IDL syntax building blocks defined in IDL 4.0.

 10

 | <union_type>

 | <enum_type>

 | “native” <simple_declarator>

 | <constr_forward_decl>

(87) <op_dcl> ::= [<annotation>] <op_type_spec> <identifier> <parameter_dcls>

 [<raises_expr>]

(91) <param_dcl> ::= [<annotation>] <param_attribute> <param_type_spec>

 <simple_declarator>

(104) <readonly_attr_spec> ::= [<annotation>] “readonly” “attribute”

 <param_type_spec> <readonly_attr_declarator>

(106) <attr_spec> ::= [<annotation>] “attribute” <param_type_spec>

 <attr_declarator>

The <annotations> production used above is defined in sub clause 7.3.1.12.1 of the [DDS-XTypes]

specification.

11

Design Rationale (non-normative)

The table below provides the justification for the modified production rules:

Reference Origin Explanation

(1)
[IDL35] This is the root production rule. Modified to remove the CORBA-

specific import statement.

(2)
[IDL35] Modified to remove the productions for related to CORBA

Repository Identity and CCM. Specifically <type_id_dcl>,

<type_prefix_dcl>, <event>, <component>, and <home_dcl>

The modified rule also adds support for annotation declarations.

The <annotation> and <ann_appl_post> productions are defined

in sub clause 7.3.1.12.1 of the [DDS-XTypes] specification.

(7)
[IDL35] Modified to add support for interface annotations

The <annotation> production is defined in sub clause 7.3.1.12.1 of

the [DDS-XTypes] specification

(9)
[IDL35] Modified to remove productions related to CORBA Repository

Identity. Specifically <type_id_dcl> and <type_prefix_dcl>

This production also removes the rules that allow embedding

declarations of types, constants, and exceptions within an interface.

Specifically the <type_dcl>, | <const_dcl>, and | <except_dcl>

(42)
[IDL35] Added <annotation> production at the beginning of struct and

typedef declarators. This allows a structured type to be a request

or reply type.

(87)
[IDL35] Modified to add support for annotations on operations. Removed

the CORBA-specific “oneway” modifier and the “context”

expressions.

(91)
[IDL35] Modified to add support for annotations on the operation

parameters

(104)
[IDL35] Modified to add support for annotations on read-only attributes

(106)
[IDL35] Modified to add support for annotations on attributes

DDS-

XTypes

[DDS-XTypes]

sub clause

7.3.1.12.2

These productions add support for annotating types and the new

IDL types defined in the [DDS-XTypes] specification.

The use of the <annotations> production from DDS-XTypes does not mean that the underlying DDS

implementation needs to support DDS-XTypes. The Basic Service Mapping uses annotations only

for interface declarations and not on regular type declarations. These interface annotations are

resolved in the mapping such that the resulting IDL used by DDS does not have annotations.

 12

7.3.1.2 Service Definition in IDL for the Enhanced Service Mapping

The Enhanced Service Mapping allows use of the full type-system defined in the [DDS-XTypes]

specification in the declaration of interface attributes, operation parameters and return values.

The Enhanced Service Mapping extends the IDL productions defined in the Basic Service Mapping

with all the productions (i.e., not just related to annotations) in sub clause 7.3.1.12.1 (New

Productions) of the DDS-XTypes specification.

In addition, the Enhanced Service Mapping also uses all the modified productions defined in sub

clause 7.3.1.12.2 (Modified Productions) of the DDS-Xtypes specification with the exception of the

production for <definition>, which shall remain, as defined for the Basic Service Mapping.

7.3.1.3 Example of an Interface in IDL (Non-normative)

module robot {

exception TooFast {};

enum Command { START_COMMAND, STOP_COMMAND };

struct Status {

 string msg;

};

@DDSService

interface RobotControl {

 void command(Command com);

 float setSpeed(float speed) raises (TooFast);

 float getSpeed();

 void getStatus(out Status status);

};

}; //module robot

7.3.1.4 Service Definition in IDL Using a Pair of Types

A service definition may simply include a pair of types, which may be the same. The request and

reply types shall be marked as such using the @RPCRequestType and @RPCReplyType

annotations. Only struct types shall be marked as request/reply types.

In the Basic Service Mapping, the types annotated as @RPCRequestType shall have a member

named header of type dds::rpc::RequestHeader and the types annotated as

@RPCReplyType shall have a member named header of type

dds::rpc::RequestHeader. See sub clause 7.5.1.1.1 for the request and reply header types.

13

When using the Enhanced Service Mapping, the annotations are not necessary and the special data

members must not be defined.

7.3.2 Service Definition in Java

The BNF grammar used to define the Java syntax used in [Java-Grammar]. Conforming

implementations shall support the syntax generated by the following modified productions from the

Java grammar.

Note, [] represents optional and { } represents zero or more occurrences.

InterfaceDeclaration:

NormalInterfaceDeclaration

NormalInterfaceDeclaration:

 interface Identifier [extends TypeList] InterfaceBody

InterfaceBody:

 { InterfaceBodyDeclaration {InterfaceBodyDeclaration} }

InterfaceMemberDecl:

 InterfaceMethodOrFieldDecl

 void Identifier VoidInterfaceMethodDeclaratorRest

 InterfaceDeclaration

 ClassDeclaration

NormalClassDeclaration:

 class Identifier [extends Type] [implements TypeList] ClassBody

ClassBody:

 { ClassBodyDeclaration {ClassBodyDeclaration} }

ClassBodyDeclaration:

 ;

 {Modifier} MemberDecl

MemberDecl:

 MethodOrFieldDecl

MethodOrFieldRest:

 VariableDeclaratorRest

Design Rationale (non-normative)

The table below provides the justification for the modified production rules:

 14

Name Origin Explanation

InterfaceDeclaration Java 1.5 Removed annotation type declaration.

NormalInterfaceDeclaration Java 1.5 Removed generic type parameters.

InterfaceBody Java 1.5 At least one method must be present in an

interface. Note, Java allows empty (marker)

interfaces.

InterfaceMemberDecl Java 1.5 Removed generic method declaration.

NormalClassDeclaration Java 1.5 Removed generic type parameters.

ClassBody Java 1.5 At least one data member must be defined in the

class body. Note, Java allows empty classes.

ClassBodyDeclaration Java 1.5 Removed Java’s static block support.

MemberDecl Java 1.5 Removed method (generic or otherwise)

declarator, constructor declarator, nested

interface and class declarators. This specification

shall support data member declarations inside a

Java class.

MethodOrFieldRest Java 1.5 Removed method declarator. This specification

shall support data member declarations inside a

Java class.

In, out, and inout parameters are specified using the @in, @out and @inout annotations. By

default the parameters are read only, and the use of @in is optional. One or more operations may be

marked oneway using the @oneway annotation.

7.3.2.1 Example of an interface in Java (Non-normative)

public class TooFast extends Exception

{

}

@DDSService

public interface RobotControl

{

 void command(Command com);

 float setSpeed(float speed) throws TooFast;

15

 float getSpeed();

 void getStatus(@out Status status);

};

7.3.2.2 Service Definition in Java Using a Pair of Types

A service definition may simply include a pair of types, which may be the same. The request and

reply types shall be marked as such using the @RPCRequestType and @RPCReplyType

annotations. Only class types shall be marked as request/reply types.

In the Basic Service Mapping, the types annotated as @RPCRequestType shall have a member

named header of type dds.rpc.RequestHeader and the types annotated as

@RPCReplyType shall have a member named header of type dds.rpc.RequestHeader.

See sub clause 7.5.1.1.1 for the request and reply header types.

When using the Enhanced Service Mapping, the annotations are not necessary and the special data

members must not be defined.

 Mapping Service Specification to DDS Topics

7.4.1 Rules for Synthesizing DDS Topic Names

Request and reply topic names use the following BNF grammar.

<topic_name> ::= <interface_name> “_” <service_name> “_” [“Request” | “Reply”]

 | <user_def_alpha_num>

<service_name> ::= “Service”

 | <user_def_alpha_num>

<user_def_alpha_num> ::= ^[[:alnum:]_]+$

Topic name is either a user-defined string literal or a composite string consisting

<interface_name> and <service_name>. The <interface_name> non-terminal represents the

fully-qualified name of the interface, which is captured automatically for interface-based service

definitions. A fully qualified interface-name includes concatenation of module names separates by

underscores followed by the name of the interface. The <service_name> non-terminal may be

user-supplied. When it is not, it defaults to “Service”. If the <service_name> is specified by the

user, “Request” and “Reply” topic suffixes are used automatically. When <service_name> and

user-defined topic names are both provided by the user, the user-defined topic names take

precedence.

For the request-reply style language binding, <interface_name> and the following underscore

shall not be captured automatically.

Note that the <user_def_alpha_num> non-terminal is a regular expression that includes

alphanumeric characters (a-zA-Z0-9), underscore and space.

 16

7.4.2 Basic Service Mapping

The Basic Service mapping maps every interface to a request topic and a reply topic. It provides

three alternative mechanisms to specify the names of the topics. It is possible to use different

mechanism at the client and server sides. However, to ensure successful end-point matching, the

topic names must match.

In case of an interface inheritance hierarchy, including multiple inheritance, each interface in the

hierarchy shall be mapped to its own pair of request and reply topics.

7.4.2.1 Default Topic Names

The default topic names are synthesized using the rules defined in sub clause 7.4.1.

7.4.2.2 Specifying Topic Names using Annotations

Interfaces and the request/reply types may be annotated to specify the names of the request and reply

topics. @DDSRequestTopic and @DDSReplyTopic annotations are pre-defined for this

purpose. They are defined using the [DDS-XTypes] notation as follows:

module dds {

module rpc {

@annotation

local interface DDSRequestTopic {

 attribute string name;

};

@annotation

local interface DDSReplyTopic {

 attribute string name;

};

};

};

Note that support for [DDS-XTypes] in the underlying DDS implementation is not required to

interpret the annotations. These annotations simply control the generated DDS wrapper code.

Non-Normative Example: The RobotControl interface may use one or both of the annotations

shown below.

@DDSService

@DDSRequestTopic(name=“RobotRequestTopic”)

17

@DDSReplyTopic(name=“RobotReplyTopic”)

interface RobotControl

{

 void command(Command com);

 ...

}

7.4.2.3 Specifying Topic Names at Run-time

DDS Topic names may also be specified at run-time. The ServiceParams, ClientParams,

RequesterParams, and ReplierParams classes (sub clause 7.11.1.4) provide functions to

specify the service name and the topic name suffix. When used as such, the rules defined in sub

clause 7.4.1 apply.

When more than one method of specifying topic names is used, the run-time specification shall take

precedence over the IDL annotations and the default mechanism in that order.

7.4.3 The Enhanced Service Mapping

To support single and multiple inheritance of interfaces, the Enhanced Service mapping introduces a

notion called “topic aliases”. A topic-alias is an alternative name for a topic. A topic may have one or

more topic aliases. A topic-alias does not introduce a new topic. It simply indicates the fact that a

given topic may be known by different names. Topic aliases are announced during the endpoint

discovery protocol using either of the PublicationBuiltinTopicDataExt and

SubscriptionBuiltinTopicDataExt structures described in in sub clause 7.6.2.1.

The Enhanced Service Mapping shall map an interface to exactly one request topic and a reply topic.

The names of the topics are obtained using the rules defined in sub clause 7.4.1. In case of single and

multiple inheritance, the request and reply topics shall additionally have topic-aliases, which are

obtained using the rules in sub clause 7.4.1 for each parent interface.

 18

Non-normative example: The following example shows the topic names and topic-aliases for the

Calculator hierarchy while using the function-call style language binding. Depending upon

whether the user has supplied the service name and/or topic-suffixes, different outcomes are

produced.

interface Adder { ... };

interface Subtractor { ... };

interface Calculator : Adder, Subtractor { ... }

 Topic name Topic aliases

Everything

Default

Request Calculator_Service_Request Adder_Service_Request,

Subtractor_Service_Request

Reply Calculator_Service_Reply Adder_Service_Reply,

Subtractor_Service_Reply

User-

defined

service

name

Request Calculator_${servicename}_Reque
st

Adder_${servicename}_Request,
Subtractor_${servicename}_Reques
t

Reply Calculator_${servicename}_Reply Adder_${servicename}_Reply,
Subtractor_${servicename}_Reply

User-

defined

topic

suffixes

Request Calculator_${topic-suffix-request} Adder_${topic-suffix-request},

Subtractor_${topic-suffix-request}

Reply Calculator_${topic-suffix-reply} Adder_${topic-suffix-reply},

Subtractor_${topic-suffix-reply}

For the request-reply style language binding, the interfaces name shall not be annexed automatically.

7.4.3.1 Default Topic Names

The default topic names are synthesized as described above.

7.4.3.2 Specifying Topic Names Using Annotations

Interfaces and the request/reply types may be annotated to specify the names of the request and reply

topics. The same built-in @DDSRequestTopic and @DDSReplyTopic annotations defined in

the Basic Service Mapping may be used for this purpose.

7.4.3.3 Specifying Topic Names at Run-time

DDS Topic names may also be specified at run-time. The ServiceParams, ClientParams,

RequesterParams, and ReplierParams classes (sub clause 7.11.1.4) provide functions to

19

specify the service name and the topic name suffix. When used as such, the rules defined in sub

clause 7.4.1 apply.

When more than one method of specifying topic names is used, the run-time specification shall take

precedence over the IDL annotations and the default mechanism in that order.

 Mapping Service Specification to DDS Topics Types

The request and reply DDS Topic types shall be synthesized from the interface definition.

7.5.1 Interface Mapping

7.5.1.1 Basic Service Mapping of Interfaces

The Basic Service Mapping maps interfaces to data-types that can be used by DDS version 1.3

compliant implementations, which may lack support for the [DDS-XTypes] specification.

 Common Types

All the generated types as per the Basic Service Mapping use a set of common types. Types

EntityId_t, GUID_t, and SequenceNumber_t are defined in the [RTPS] specification.

module dds {

 typedef octet GuidPrefix_t[12];

 struct EntityId_t {

 octet entityKey[3];

 octet entityKind;

 };

 struct GUID_t {

 GuidPrefix_t guidPrefix;

 EntityId_t entityId;

 };

 struct SequenceNumber_t {

 long high;

 unsigned long low;

 };

 20

 struct SampleIdentity {

 GUID_t writer_guid;

 SequenceNumber_t sequence_number;

 };

module rpc {

typedef octet UnknownOperation;

typedef octet UnknownException;

typedef octet UnusedMember;

enum RemoteExceptionCode_t

{

 REMOTE_EX_OK,

 REMOTE_EX_UNSUPPORTED,

 REMOTE_EX_INVALID_ARGUMENT,

 REMOTE_EX_OUT_OF_RESOURCES,

 REMOTE_EX_UNKNOWN_OPERATION,

 REMOTE_EX_UNKNOWN_EXCEPTION

};

typedef string<255> InstanceName;

struct RequestHeader {

 SampleIndentity_t requestId;

 InstanceName instanceName;

};

struct ReplyHeader {

 dds::SampleIdentity relatedRequestId;

 dds::rpc::RemoteExceptionCode_t remoteEx;

};

} // module rpc

21

} // module dds

 The Hashing Algorithm

In the implied IDL definitions in this specification use a HASH function to compute a 32-bit hash of

strings. The HASH function shall use the following pseudo-implementation.

long HASH(string arg)

{

 octet md5_hash[16];

 md5_hash = compute_md5(arg);

 return md5_hash[0] +

 256* md5_hash[1] +

 256*256* md5_hash[2] +

 256*256*256* md5_hash[3];

}

Conforming implementation are not required to detect collisions of identifier names of the form

*_Hash as in general they are not detectable because IDL modules can be reopened and a user

could add a colliding identifier much later a service interface is defined. Therefore, this specification

does not require detection of collision of const identifier names for hashes.

 Mapping of Attributes to Implied IDL

Every attribute in the interface maps to implied IDL using the following rules.

1. Each attribute in an interface maps to a pair of IDL operations.

get_attribute_<attribute-name> and set_attribute_<attribute-name> in the same

interface. It is illegal to have an interface with an attribute named <attribute-name>

and user-defined operations named get_attribute_<attribute-name> and
set_attribute_<attribute-name>.

2. The return type of the get_attribute_<attribute-name> operation is the same as the

attribute's type. This operation accepts no arguments.

3. The return type of the set_attribute_<attribute-name> operation is void and it

accepts an argument of the same type as that of the attribute and the name of the argument is

the same as the attribute name.

4. Exception types listed in getraises, if any, are treated as if the

get_attribute_<attribute-name> operation has the same set of exceptions listed as

raises.

 22

5. Exception types listed in setraises, if any, are treated as if the

set_attribute_<attribute-name> operation has the same set of exceptions listed as

raises.

 Mapping of Operations to the Request Topic Types

The mapping of an interface operation to a request type is defined according to the following rules.

In these rules the token ${interfaceName} shall be replaced with the name of the interface and the

token ${operationName} _shall be replaced with the name of the operation. The substituted names

are not fully qualified. I.e., any module prefixes shall be removed.

1. Each operation in the interface shall map to an In structure with name

“${interfaceName}_${operationName}_In”.

2. The In structure shall be defined within the same module as the original interface.

3. The In structure shall contain as members the in and inout parameters defined in the operation

signature.

a. The members shall appear in the same order as the parameters in the operation, starting

from the left.

b. The names of the members shall be the same as the formal parameter names.

c. If an operation has no in and inout parameters the resulting structure shall contain a single

member of type UnusedMember and name “dummy”.

 Non-normative Example: The operations in the RobotControl interface defined in sub clause

7.3.1.3 shall map to the following In structures.

module robot {

struct RobotControl_command_In {

 Command com;

};

struct RobotControl_setSpeed_In {

 float speed;

};

struct RobotControl_getSpeed_In {

 dds::rpc::UnusedMember dummy;

};

struct RobotControl_getStatus_In {

23

 dds::rpc::UnusedMember dummy;

};

}

 Mapping of Operations to the Reply Topic Types

Each operation in the interface shall map to an Out structure and a Result union.The following rules

define the Out structure.

1. The name of the Out structure shall be “${interfaceName}_${operationName}_Out”.

2. The Out structure shall be defined within the same module as the original interface.

3. The Out structure shall contain as members the out and inout parameters defined in the operation

signature. In addition it may contain a member named “return_”.

a. The Out structure shall include one member for each out and inout parameter in the

operation signature.

i. The members shall appear in the same order as the parameters in the operation,

starting from the left.

ii. The name of the members shall be the same as the formal parameter names.

b. If the operation defines a non-void return value the Out structure shall have its last member

named “return_”. The type of the “return_” member shall be the return type of the

operation. In the case where the function does not define a return value this member shall

not be present. If an operation has an out argument named return_ and the operation has

a regular return value, the regular return value in the Out structure shall be represented as

return_N member of the appropriate type where N is the first integer in the range 1 to

2^31 that avoids the collision.

c. If the operation has no return value, no out/inout parameters, the Out structure shall contain

a single member named “dummy” of type dds::rpc::UnusedMember.

Non-normative Example: The operations defined in the RobotControl interface defined in sub

clause 7.3.1.3 map to the following Out structures.

module robot {

struct RobotControl_command_Out {

 dds::rpc::UnusedMember dummy;

};

struct RobotControl_setSpeed_Out {

 float return_;

};

 24

struct RobotControl_getSpeed_Out {

 float return_;

};

struct RobotControl_getStatus_Out {

 Status status;

};

}

The following rules define the Result union.

1. The Result union name shall be “${interfaceName}}_${operationName}_Result”.

2. The Result union discriminator type shall be long.

3. The Result union shall have a case with label dds::RETCODE_OK which is used to represent a

successful return.

a. This case label shall contain a single member with name “result” and type

${interfaceName}_${operationName}_Out.

4. For each exception type raised by the operation,

a. A constant of type long and with name “${exceptionType}_Ex_Hash” shall be available

in the same namespace as the interface is defined in.

b. The value of the constant shall be the HASH of the fully qualified name of the exception

type where module separator to be used is “::” (2 colons).

5. The union shall have a case label for each exception declared as a possible outcome of the

operation.

a. The integral value of the case label shall be ${exceptionType}_Ex_Hash.

b. The case label shall contain a single member with name synthetized as the lower-case of

the exception name with the suffix “_ex” added.

c. The type associated with the case member shall be the exception type.

Non-normative Example: The operations defined in the RobotControl interface defined in sub

clause 7.3.1.3 map to the following Result unions.

module robot {

const long TooFast_Ex_Hash = HASH(“TooFast”);

union RobotControl_command_Result switch(long)

{

25

 case dds::RETCODE_OK:

 RobotControl_command_Out result;

};

union RobotControl_setSpeed_Result switch(long)

{

 case dds::RETCODE_OK:

 RobotControl_setSpeed_Out result;

 case TooFast_Ex_Hash:

 TooFast toofast_ex;

};

union RobotControl_getSpeed_Result switch(long)

{

 case dds::RETCODE_OK:

 RobotControl_getSpeed_Out result;

};

union RobotControl_getStatus_Result switch(long)

{

 case dds::RETCODE_OK:

 RobotControl_getStatus_Out result;

};

} // module robot

 Mapping of Interfaces to the Request Topic Types

Each interface shall map to a Call union and a Request structure. The following rules define the Call

union.

1. The Call union name shall be “${interfaceName}_Call” in the same module as the interface.

2. The Call union discriminator type shall be of type long.

 26

3. The Call union shall have a default case label containing a member named “unknownOp” of type

dds::rpc::UnknownOperation. [Non-normative design rationale: Due to interface

evolution a client that uses new interface may end up calling a service that implements a previous

version of the interface. In that case, the discriminator value will not match any of the existing

cases and hence will default to unknown, which should be recognized by the service

implementation.]

4. For each operation in the interface, an integral constant of type long and name

“$(interfaceName}_${operationName}_Hash” shall be present in the same module as the

interface. The value of this constant is the HASH of unqualified ${operationName}.

5. The Call union shall have a case label for each operation in the interface.

a. The integral value of the case label shall be the HASH of ${operationName}.

b. The member name for the case label shall be the operation name.

c. The type for the case label member shall be ${interfaceName}_${operationName}_In as

defined in sub clause 7.5.1.1.2.

Non-normative Example: The RobotControl interface defined in sub clause 7.3.1.3 shall map

to the following union RobotControl_Call.

module robot {

const long RobotControl_command_Hash = HASH(“command”);

const long RobotControl_setSpeed_Hash = HASH(“setSpeed”);

const long RobotControl_getSpeed_Hash = HASH(“getSpeed”);

const long RobotControl_getStatus_Hash = HASH(“getStatus”);

union RobotControl_Call switch(long)

{

 default:

 dds::rpc::UnknownOperation unknownOp;

 case RobotControl_command_Hash:

 RobotControl_command_In command;

 case RobotControl_setSpeed_Hash:

 RobotControl_setSpeed_In setSpeed;

27

 case RobotControl_getSpeed_Hash:

 RobotControl_getSpeed_In getSpeed;

 case RobotControl_getStatus_Hash:

 RobotControl_getStatus_In getStatus;

};

}

The following rules define the Request structure.

1. The name of Request structure shall be “${interfaceName}_Request” in the same module as the

interface.

2. The Request structure shall have two members:

a. The first member of the Request structure shall be named “header” and be of type
dds::rpc::RequestHeader.

b. The second member of the Request structure shall be named “data” and be of type

${interfaceName}_Call.

Non-normative Example: The RobotControl interface defined in sub clause 7.3.1.3 shall map

to RobotControl_Request defined below.

module robot {

struct RobotControl_Request {

 dds::rpc::RequestHeader header;

 RobotControl_Call data;

};

}

 Mapping of Interfaces to the Reply Topic Types

Each interface shall map to a Return union and a Reply structure.

The following rules define the Return union.

1. The Return union name shall be “${interfaceName}_Return” in the same module as the interface.

2. The Return union discriminator type shall be of type long.

 28

3. The Return union shall have a default case label containing a member named “unknownOp” of

type dds::rpc::UnknownOperation. [Non-normative rationale: Unknown operation

errors should not be reported back using this member. The ReplyHeader.remoteEx member

should be used for that. The only reason the unknownOp member is used because it is a good

practice to define a default for a union.]

4. For each operation,

a. A constant of type long and with name

“${interfaceName}_${operationName}_Hash” shall be available in the same

namespace as the interface is defined in.

b. The value of the constant shall be the HASH of the name of the operation (not qualified).

5. The Return union shall have a case label for each operation in the interface:

a. The integral value of the case label shall be ${interfaceName}_${operationName}_Hash

as computed using the HASH algorithm of the unqualified name of the operation.

b. The member name for the case label shall be the operation name and the type shall be

${interfaceName}_${operationName}_Result.

Non-normative Example: The RobotControl interface defined in sub clause 7.3.1.3 shall map

to the union RobotControl_Return defined below:

union RobotControl_Return switch(long)

{

 default:

 dds::rpc::UnknownOperation unknownOp;

 case RobotControl_command_Hash:

 RobotControl_command_Result command;

 case RobotControl_setSpeed_Hash:

 RobotControl_setSpeed_Result setSpeed;

 case RobotControl_getSpeed_Hash:

 RobotControl_getSpeed_Result getSpeed;

 case RobotControl_getStatus_Hash:

 RobotControl_getStatus_Result getStatus;

29

};

The following rules define the Reply structure.

1. The Reply structure name shall be “${interfaceName}_Reply,”.

2. The Reply structure shall be defined within the same module as the original interface.

3. The Reply structure shall have two members:

a. The first member of the Reply structure shall be named “header” and be of type
dds::rpc::ReplyHeader.

b. The second member of the Reply type shall be named “data” and be of type

${interfaceName}_Return.

Non-normative Example: The RobotControl interface defined in sub clause 7.3.1.3 shall map

to the structure RobotControl_Reply defined below:

struct RobotControl_Reply {

 dds::rpc::ReplyHeader header;

 RobotControl_Return reply;

};

 Mapping of inherited Interfaces to the Request and Reply Topic Types

Inheritance has no effect on the generated structures and unions. A DDS service that implements a

derived interface uses two topics for every interface in the hierarchy. As a result, a service

implementing a hierarchy of N interfaces, shall have N request topics and N reply topics.

Consequently, it will necessitate N DataWriters and N DataReaders. The types and the topic names

are obtained as specified in sub clause 7.4.2. The Request and Reply types for a derived interface

includes operations defined only in the derived interface.

Non-normative Example: The Basic Service Mapping for the Calculator interface is shown below.

interface Adder {

 long add(long a, long b);

};

interface Subtractor {

 long sub(long a, long b);

};

interface Calculator : Adder, Subtractor {

 void on();

 30

 void off();

};

struct Adder_add_In {

 long a;

 long b;

};

struct Adder_add_Out {

 long return_;

};

union Adder_add_Result switch (long) {

 case dds::rpc::REMOTE_EX_OK:

 Adder_add_Out result;

};

const long Adder_add_Hash = HASH(“add”);

union Adder_Call switch (long) {

 default:

 dds::rpc::UnknownOperation unknownOp;

 case Adder_add_Hash:

 Adder_add_In add;

};

struct Adder_Request {

 dds::rpc::RequestHeader header;

 Adder_Call data;

};

union Adder_Return switch(long) {

31

 default:

 UnknownOperation unknownOp;

 case Adder_add_Hash:

 Adder_add_Result add;

};

struct Adder_Reply {

 dds::rpc::ReplyHeader header;

 Adder_Return data;

};

struct Subtractor_sub_In {

 long a;

 long b;

};

struct Subtractor_sub_Out {

 long return_;

};

union Subtractor_sub_Result switch (long) {

 case dds::rpc::REMOTE_EX_OK:

 Subtractor_sub_Out result;

};

const long Subtractor_sub_Hash = HASH(“sub”);

union Subtractor_Call switch (long) {

 default:

 dds::rpc::UnknownOperation unknownOp;

 case Subtractor_sub_Hash:

 Subtractro_sub_In sub;

 32

};

struct Subtractor_Request {

 dds::rpc::RequestHeader header;

 Subtractor_Call data;

};

union Subtractor_Return switch(long) {

 default:

 dds::rpc::UnknownOperation unknownOp;

 case Subtractor_sub_Hash:

 Subtractor_sub_Result sub;

};

struct Subtractor_Reply {

 dds::rpc::ReplyHeader header;

 Subtractor_Return data;

};

struct Calculator_on_In {

 dds::rpc::UnusedMember dummy;

};

struct Calculator_off_In {

 dds::rpc::UnusedMember dummy;

};

struct Calculator_on_Out {

 dds::rpc::UnusedMember dummy;

};

33

union Calculator_on_Result switch(long) {

 case dds::rpc::REMOTE_EX_OK:

 Calculator_on_Out result;

};

struct Calculator_off_Out {

 dds::rpc::UnusedMember dummy;

};

union Calculator_off_Result switch(long) {

 case dds::rpc::REMOTE_EX_OK:

 Calculator_off_Out result;

};

const long Calculator_on_Hash = HASH(“on”);

const long Calculator_off_Hash = HASH(“off”);

union Calculator_Call switch (long) {

 default:

 dds::rpc::UnknownOperation unknownOp;

 case Calculator_on_Hash:

 Calculator_on_In on;

 case Calculator_off_Hash:

 Calculator_off_In off;

};

struct Calculator_Request {

 dds::rpc::RequestHeader header;

 Calculator_Call data;

};

 34

union Calculator_Return switch(long) {

 default:

 dds::rpc::UnknownOperation unknownOp;

 case Calculator_on_Hash:

 Calculator_on_Result on;

 case Calculator_off_Hash:

 Calculator_off_Result off;

};

struct Calculator_Reply {

 dds::rpc::ReplyHeader header;

 Calculator_Return data;

};

7.5.1.2 Enhanced Service Mapping of Interfaces

To accurately capture the semantics of the method call invocation and return, this specification

defines additional built-in annotations. The following annotations are applicable for the Enhanced

Service Mapping only. The Enhanced Service Mapping uses the [DDS-XTypes] type system in

addition to the annotations defined in sub clause 7.5.1.2.1.

 Annotations for the Enhanced Service Mapping

All annotations below are defined in the dds::rpc module.

7.5.1.2.1.1 @Choice Annotation

This specification defines an @Choice annotation to capture the semantics of a union without

using a discriminator. Using unions to indicate which operation is being invoked is brittle.

Operations in an interface have set semantics and have no ordering constraints. Union, however,

enforces strict association with discriminator values, which are too strict for set semantics. Further,

use of unions leads to ambiguities in case of multiple inheritance of interfaces.

The @Choice annotation is a placeholder annotation defined as follows.

@annotation local interface Choice { };

The @Choice annotation is allowed on structures only. When present, the structure shall be

interpreted as if the structure had the @Extensibility(MUTABLE_EXTENSIBILITY)

annotation and all the members of the structure had the @Optional annotation. Furthermore,

exactly one member shall be present at any given time.

35

This specification uses the semantics of @Choice for the return topic type and to differentiate

between normal and exceptional return from a remote method call.

7.5.1.2.1.2 @Autoid Annotation

The @Autoid annotation shall be allowed on structures and data members. The structures of the

topic types synthesized from the interface shall be annotated as @Autoid.

The @Autoid annotation indicates that the member-id of each member shall be computed using the

HASH algorithm (defined in sub clause 7.5.1.1.2) applied to the name of the member. As IDL does

not support overloading, no two members will have the same name. Consequently, the member ids of

two members will be different, unless a hash-collision occurs, which shall be detected by the code

generator that processes the IDL interface. Using the MD5 hash for the member id also ensures that

the topic types synthesized from the interface definitions are not subject to the order of operation

declaration or interface inheritance. Note that the order of interface inheritance is irrelevant to the

semantics of an interface. Further, it supports interface evolution (including new operations,

operation reorder and new base interfaces) without changing the member ids. The collisions of

member-ids produced as a result of @autoid annotation must be detected. If a structure annotated

as @autoid has a hash collision due to two or more member names map to the same hash-code, the

collision shall be reported as an error.

7.5.1.2.1.3 @Empty Annotation

This specification uses empty IDL structures to capture operations that do not accept any parameters.

IDL does not support empty structures. @Empty annotation has been introduced to simplify the

mapping rules and support operations that take no arguments. Empty structures, however, are used to

maintain consistency between the call and return structures. Furthermore, eliminating empty

structures in the synthesized topic types is undesirable because two or more operations may be empty

in which case it becomes ambiguous. The @Empty annotation allows a structure to be empty. The

code synthesized from an empty structure is implementation dependent.

7.5.1.2.1.4 @Mutable Annotation

This annotation shall be allowed on interface operations. It controls the type-mapping for the

operation parameters and return value. By default, adding and removing operation parameters would

break compatibility with the previous interface. The use of the @Mutable operation changes the type

declaration of the synthesized call and return structures so that they are declared with the

@Extensibility(MUTABLE_EXTENSIBILITY) annotation.

 Mapping of Operations to the Request Topic Types

The mapping for interface operations is same as defined in sub clause 7.5.1.1.2 with the following

additional rules.

If the operation has the @Mutable annotation, then the synthesized In structure shall have the

annotation @Extensibility(MUTABLE_EXTENSIBILITY)

For example, please see sub clause 7.5.1.1.2.

 36

 Mapping of Operations to the Reply Topic Types

Each operation in the interface shall map to an Out structure and a Result structure. The rules for

mapping the Out structure is identical to that defined in sub clause 7.5.1.1.5 with the following

additional rule.

1. If the operation has the @Mutable annotation, then the synthesized Out structure shall have the

annotation @Extensibility(MUTABLE_EXTENSIBILITY)

The mapping rules for the Result structure are as follows.

2. The Result structure name shall be “${interfaceName}_${operationName}_Result”.

3. The Result structure shall have the annotation @Choice.

4. The Result structure shall have the annotation @Autoid.

5. The Result structure shall have a first member with name “result” and with type

${interfaceName}_${operationName}_Out.

6. The Result structure name shall have members for each exception an operation may raise.

a. The member name shall be synthetized as the lower-case version of the exception name

with the suffix “_ex” added.

b. The type associated with the member shall be the exception type.

7. If the operation has the @Mutable annotation, then the synthesized Result structure shall have the

annotation @Extensibility(MUTABLE_EXTENSIBILITY)

37

Non-normative example: The operations defined in the RobotControl interface defined earlier

map to the following Result structures.

@Choice @Autoid

struct RobotControl_command_Result {

 RobotControl_command_Out result;

};

@Choice @Autoid

struct RobotControl_stop_Result {

 RobotControl_getSpeed_Out result;

};

@Choice @Autoid

struct RobotControl_setSpeed_Result {

 RobotControl_setSpeed_Out result;

 TooFast toofast_ex;

};

@Choice @Autoid

struct RobotControl_getSpeed_Result {

 RobotControl_getStatus_Out result;

};

 Interface Mapping for the Request Topic Types

Each interface shall map to a Request structure.

The following rules define the Request structure.

1. The Request structure name shall be “${interfaceName}_Request”.

2. The Request structure shall have the @Choice annotation.

3. The Request structure shall have the @Autoid annotation.

4. The Request structure shall contain a member for each operation in the interface.

a. The member name shall be the operation name.

b. The member type shall be ${interfaceName}_${operationName}_In.

Non-normative example: The Robotcontrol interface defined earlier shall result in the

RobotControl_Call structure defined below.

@Choice @Autoid

struct RobotControl_Request {

 RobotControl_command_In command;

 RobotControl_setSpeed_In setSpeed;

 RobotControl_getSpeed_In getSpeed;

 38

 RobotControl_getStatus_In getStatus;

};

 Interface Mapping for the Reply Type

Each interface shall map to a Reply structure.

The following rules define the Reply structure. In these rules the token ${interfaceName} shall be

replaced with the name of the interface:

1. The Reply structure name shall be “${interfaceName}_Reply”.

2. The Reply structure shall have the @Choice annotation.

3. The Reply structure shall have the @Autoid annotation.

4. The Reply structure shall contain a member for each operation in the interface.

a. The member name shall be the operation name.

b. The member type shall be ${interfaceName}_${operationName}_Result.

5. The Reply structure shall contain a member named “remoteEx” of type

dds::rpc::RemoteException_t. If an interface has an operation named remoteEx

(case-sensitive), the corresponding Reply structure shall contain a member named remoteEx_N

and type RemoteException_t, where N is the first integer in the range 1 to 2^31 that avoids

the collision.

Non-normative example: The RobotService interface defined earlier maps to the following

structure.

@Choice @Autoid

struct RobotControl_Reply {

 RobotControl_command_Result command;

 RobotControl_setSpeed_Result setSpeed;

 RobotControl_getSpeed_Result getSpeed;

 RobotControl_getStatus_Result getStatus;

 dds::rpc::RemoteException_t remoteEx;

};

 Mapping of Inherited Interfaces to Request and Reply Topic Types

A derived interface is interpreted as if all the inherited operations are declared in-place in the derived

interface. That is, the inheritance structure is flattened.

Non-normative Example: The Enhanced Service Mapping rules applied to the Calculator

interface hierarchy results in the following request and reply Topic types.

39

@Autoid

struct Adder_add_In {

 long a;

 long b;

};

@Autoid

struct Adder_add_Out {

 long return_;

};

@Choice @Autoid

struct Adder_add_Result {

 Adder_add_Out result;

};

@Choice @Autoid

struct Adder_Request {

 Adder_add_Result add;

};

@Autoid

struct Subtractor_sub_In {

 long a;

 long b;

};

@Autoid

struct Subtractor_sub_Out {

 long return_;

};

@Choice @Autoid

struct Subtractor_sub_Result {

 Subtractor_sub_Out result;

};

 40

@Choice @Autoid

struct Subtractor_sub_Reply {

 Subtractor_sub_Result sub;

 dds::rpc::RemoteException_t remoteEx;

};

@Autoid

struct Calculator_on_In {

 long dummy;

};

@Autoid

struct Calculator_off_In {

 long dummy;

};

@Autoid

struct Calculator_on_Out {

 long dummy;

};

@Choice @Autoid

struct Calculator_on_Result {

 Calculator_on_Out result;

};

@Autoid

struct Calculator_off_Out {

 long dummy;

};

@Choice @Autoid

struct Calculator_off_Result {

 Calculator_off_Out result;

};

41

@Choice @Autoid

struct Calculator_Request {

 Adder_add_In add;

 Adder_sub_In sub;

 Calculator_on_In on;

 Calculator_off_In off;

};

@Choice @Autoid

struct Calculator_Reply {

 Adder_add_Result add;

 Subtractor_sub_Result sub;

 Calculator_on_Result on;

 Calculator_off_Result off;

 dds::rpc::RemoteException_t remoteEx;

};

The Enhanced Service Mapping leverages the assignability rules defined in the [DDS-XTypes]

specification to ensure that the topic types remain compatible in case of inheritance. A client using

the base interface can invoke an operation in a service that implements a derived interface as long as

the same topic names are used.

7.5.2 Mapping of Error Codes

Error codes are (conceptually) classified as local and remote. The error codes described in the [DDS]

PIM are all local error codes. This specification further adds remote error codes to communicate

service-side error conditions back to the client. Remote error codes are represented using the

RemoteExceptionCode_t IDL enumeration below.

module dds { module rpc {

enum RemoteExceptionCode_t

{

 REMOTE_EX_OK,

 REMOTE_EX_UNSUPPORTED,

 REMOTE_EX_INVALID_ARGUMENT,

 REMOTE_EX_OUT_OF_RESOURCES,

 42

 REMOTE_EX_UNKNOWN_OPERATION,

 REMOTE_EX_UNKNOWN_EXCEPTION

};

} // module rpc

} // module dds

The remote exception codes have the following meanings.

Remote Exception Code Meaning

REMOTE_EX_OK The request was executed successfully.

REMOTE_EX_UNSUPPORTED Operation is valid but it is unsupported (a.k.a. not

implemented)

REMOTE_EX_INVALID_ARGUMENT The value of the parameter passed has an illegal

value. (e.g., two options active in a @Choice
structure)

REMOTE_EX_OUT_OF_RESOURCES The remote service ran out of resources while

processing the request

REMOTE_EX_UNKNOWN_OPERATION The operation called is unknown.

REMOTE_EX_UNKNOWN_EXCEPTION A generic, unspecified exception was raised by the

service implementation.

Both local and remote exception codes map to exceptions in the C++ and Java language bindings

defined in Section 7.11. More specifically, all the local return codes map to exceptions as defined in

the [DDS-Cxx-PSM] and [DDS-Java-PSM] specifications. The remote error codes also map to

exceptions (in dds::rpc namespace/package) and the details are provided in sub section 7.11.

 Discovering and Matching RPC Services

7.6.1 Client and Service Discovery for the Basic Service Mapping

The Basic Service Mapping relies on the built-in discovery provided by the underlying [DDS]

compliant implementation. It does not use any extensions to the DDS discovery built-in topics.

A client comprises one (or more) DataWriter to send requests and one (or more) DataReader to

receive replies. Similarly, a service implementation comprises one (or more) DataReader to receive

requests and one (or more) DataWriter to send replies. The built-in publication and subscription

topics are used to discover the DataWriter and DataReader at both sides.

Non-normative Note: Service discovery for the Basic Service Mapping is not robust because

discovery race conditions can cause the service replies to be lost. The request-topic and reply-topic

43

are two different RTPS sessions that are matched independently by the DDS discovery process. For

this reason it is possible for the entities on the request topic to discover each other before the entities

on the reply topic discover each other. If such a situation, if a client makes a request before the

entities over the reply topic are fully discovered, the client may lose the corresponding replies.

7.6.2 Client and Service Discovery for the Enhanced Service Mapping

The Enhanced Service Mapping relies on the built-in discovery service provided by DDS. However,

it extends the built-in publication and subscription topic data to avoid the discovery race conditions.

Non-normative Design Rationale: The discovery race condition is avoided by announcing the pair

of DataReader and DataWriter endpoints (both client-side and service-side) atomically and ensuring

that the discovery of entities over the reply topic is complete before a request is sent or received.

A client must ensure that the client-side DataReader has discovered the service-side DataWriter

before writing a request to the service-side DataReader. This ensures that the replies received by the

client-side DataReader are not discarded.

A service must ensure that service-side DataWriter has discovered the client-side DataReader before

a request is accepted by the service-side DataReader. This ensures that the replies in response to a

request are not discarded by the service-side DataWriter.

7.6.2.1 Extensions to the DDS Discovery Builtin Topics

The [DDS] specification includes the DCPSPublication and DCPSSubscription builtin topics and

corresponding built-in data writers and readers. The data type associated with the DCPSPublication

built-in Topic is PublicationBuiltinTopicData. The data type associated with the

DCPSSubscription built-in topic is SubscriptionBuiltinTopicData. Both are defined in

sub clause 2.1.5 of the [DDS] specification. This specification extends both

PublicationBuiltinTopicData and SubscriptionBuiltinTopicData.

Non-normative Design Rationale: The extensions specified here are backwards compatible. The

[RTPS] specification, which defines the serialization format of

PublicationBuiltinTopicData and SubscriptionBuiltinTopicData, defines

what’s called a ParameterList where each member in the built-in topic data is serialized using CDR

but preceded by a ParameterID and Length of the serialized member. See sub clause 8.3.5.9 of the

[RTPS] specification. This serialization format allows the PublicationBuiltinTopicData

and SubscriptionBuiltinTopicData to be extended without breaking interoperability.

 Extended PublicationBuiltinTopicData

This specification defines an extension to the PublicationBuiltinTopicData structure.

The member types and the ParameterID used for the serialization are described below.

Member name Member type Parameter ID name Paramete

r ID

value

service_instance_name string<256> PID_SERVICE_INSTANCE_NAME 0x0080

 44

related_datareader_key GUID_t PID_RELATED_ENTITY_GUID 0x0081

topic_aliases sequence<string<256>> PID_TOPIC_ALIASES 0x0082

@extensibility(MUTABLE_EXTENSIBILITY)

struct PublicationBuiltinTopicDataExt : PublicationBuiltinTopicData {

 @ID(0x0080) string<256> service_instance_name;

 @ID(0x0081) GUID_t related_datareader_key;

 @ID(0x0082) sequence<string<256>> topic_aliases;

};

The service_instance_name is the instance name specified by the user at the service-side. If

none is specified, there is no default value. Likewise, the client-side DataWriter shall not include
service_instance_name.

The topic_aliases are as per defined in sub clause 7.4.3. There is no default value.

The related_datareader_key shall be set and interpreted according to the following rules:

 When not present the default value for the related_datareader_key shall be interpreted

as GUID_UNKNOWN as defined by sub clause 9.3.1.5 of the [RTPS] specification.

 The PublicationBuiltinTopicDataExt that corresponds to the client-side

DataWriter used for sending requests for a service shall have the

related_datareader_key set to the BuiltinTopicKey_t of the client-side

DataReader used for receiving the replies.

 The PublicationBuiltinTopicDataExt that corresponds to the service-side

DataWriter used for sending replies shall have the related_datareader_key set to the

BuiltinTopicKey_t of the service-side DataReader used to receive the requests.

 Extended SubscriptionBuiltinTopicData

This specification defines an extension to the SubscriptionBuiltinTopicData structure.

The member types and the ParameterID used for the serialization are described below:

Member name Member type Parameter ID name Paramete

r ID

value

service_instance_name string<256> PID_SERVICE_INSTANCE_NAME 0x0080

related_datawriter_key GUID_t PID_RELATED_ENTITY_GUID 0x0081

topic_aliases sequence<string<256>> PID_TOPIC_ALIASES 0x0082

45

@extensibility(MUTABLE_EXTENSIBILITY)

struct SubscriptionBuiltinTopicDataExt : SubscriptionBuiltinTopicData {

 @ID(0x0080) string<256> service_instance_name;

 @ID(0x0081) GUID_t related_datawriter_key;

 @ID(0x0082) sequence<string<256>> topic_aliases;

};

The service_instance_name is the instance name specified by the user at the service-side. If

none is specified, there is no default value. Likewise, the client-side DataReader shall not include
service_instance_name.

The topic_aliases are as per defined in sub clause 7.4.3. There is no default value.

The related_datawriter_key shall be set and interpreted according to the following rules:

 When not present the default value for the related datawriter_key shall be interpreted

as GUID_UNKNOWN as defined by sub clause 9.3.1.5 of the RTPS specification.

 The SubscriptionBuiltinTopicDataExt that corresponds to the client-side

DataReader used to receive replies shall have the related_datawriter_key set to the

BuiltinTopicKey_t of the client-side DataWriter used to send the requests to the DDS-

RPC Service.

 The SubscriptionBuiltinTopicDataExt that corresponds to the service-side

DataReader used to write replies shall have the related_datawriter_key set to the

BuiltinTopicKey_t of the service-side DataWriter used to receive requests.

7.6.2.2 Enhanced algorithm for Service Discovery

The built-in DDS discovery mechanism ensures that DataWriters discover the matching DataReaders

and vice versa. However to ensure robustness, service discovery must ensure that no replies are lost

due to race conditions in the discovery process of the underlying DDS entities. Additional rules shall

be used at the client-side DataWriter and service-side DataReader:

 The client-side DataWriter (request DataWriter) shall not send out any request to a service

DataReader unless the client-side DataReader (reply DataReader) has discovered and

matched the corresponding service DataWriter (reply DataWriter).

 The service-side DataReader (request DataReader) shall reject requests from a client

DataWriter (request DataWriter) as long as the service-side DataWriter (reply DataWriter)

has not discovered and matched the corresponding client-side DataReader (reply

DataReader).

The above rules may be implemented outside “DDS layer” because no discovery algorithm

modifications are required in the underlying DDS implementation to achieve “service discovery”

beyond the extensions to the built-in topic data described in sub clause 7.6.2.1.

 46

 Client Matching

Figure 3: The service-side client matching algorithm

Figure 3 shows the client-matching algorithm executed at the service side. Client DataWriter and

DataReader are discovered on the service-side using regular DDS discovery but “client matching”

does not complete unless the service-side has discovered both client entities (DataReader and

DataWriter). While “client matching” is still in progress, service-side does not process requests from

the client. This behavior is illustrated in Figure 3 using a notional local state called local_mask.

At the beginning, the service-side DataReader is enabled with local_mask=All_DW so that it

does not process any the incoming requests. When the service-side DataWriter completes the

discovery of a client DataReader, the service DataReader is ready to accept requests from that

specific client. Therefore, it unmasks the related client DataWriter. The “client matching” algorithm

completes when the service-side has discovered both client DDS Entities.

47

 Service Matching

Figure 4: The client-side service matching algorithm

Figure 4 shows the service-matching algorithm executed at the client side. Service DataWriter and

DataReader are discovered using regular DDS discovery but “service matching” does not complete

unless the client-side has discovered both service DDS Entities (DataReader and DataWriter) and it

does not send requests to the service until “service matching” completes. This behavior is illustrated

in Figure 4 using a notional local state called local_mask. At the beginning, the client-side

DataWriter is enabled local_mask=All_DR such that it does not send any request at all.

Attempts to send requests would be queued. When the client-side DataReader completes the

discovery of a service DataWriter, the client DataWriter updates the local mask so that it can send

requests to the service DataReader as long as it has been discovered. The “service matching”

algorithm completes when the client-side has discovered both the service end-points.

 Interface Evolution

7.7.1 Interface Evolution in the Basic Service Mapping

The Basic Service Profile has limited support for interface evolution. I.e., the interfaces used by the

client and the service may not match exactly. Interface evolution is constrained by the rules

described herein.

7.7.1.1 Adding/Removing an Operation

A client may use an interface that has fewer or more operations than what the service has

implemented. If a client uses an interface that has fewer methods than that of the service, it is simply

oblivious of the fact that the service has more capabilities than the client can use. If the client uses an

interface with more operations than that of the service, invocation of an unsupported operation shall

result in REMOTE_EX_UNSUPPORTED remote exception code.

 48

7.7.1.2 Reordering Operations and Base Interfaces

Reordering operations has no impact on the semantics of the interface because every interface has set

semantics. The order in which operations are listed in an interface is irrelevant to the caller.

Reordering base interfaces has no impact on the semantics of the interface.

7.7.1.3 Changing Operation Signature

The Basic Service Profile shall not support any modifications to the operation signatures including

exception specification.

7.7.2 Interface Evolution in the Enhanced Service Mapping

The Enhanced Service Profile supports flexible interface evolution. It is possible for a client/service

pair to use different interfaces where one interface is an evolution of the other. The client may be

using an old interface and the service might be using the new interface or vice versa. Interface

evolution is constrained by the rules described herein.

In sub clauses that follow, Iold represents the old interface whereas Inew represents the evolved

interface. The interface mapping rules in the previous sub clause are designed such that the

assignability rules defined in [DDS-XTypes] will ensure seamless evolution from Iold to Inew.

Each entity is in one of the four possible roles: Cold, Cnew, Sold, Snew. Cold is a client instance using an

older version of the interface. Cnew is a client instance using the new version of the interface.

Likewise, Sold is the old version of service implementing the old interface whereas Snew is the new

instance of the service implementing the new interface.

Cold and Sold use the topic types synthesized from Iold whereas Cnew and Snew use the topic types

synthesized from Inew. Requestold and Replyold are the types synthesized from Iold whereas Requestnew

and Replynew are the types synthesized from Inew.

7.7.2.1 Adding a new Operation

Adding an operation to an interface will result in additional members in the synthesized topic types.

Cold can invoke Snew because the additional member in Requestnew is never populated by Cold. Snew

responds with Replynew, which remains assignable to Replyold because the ids of members are based

on md5 hash and therefore uniquely assignable to the target structure.

When Cnew invokes Sold, Sold receives a sample with no active member because the additional

member in Requestnew has no equivalent in Requestold. In such cases, the service (Sold) returns

Replyold with remoteEx = REMOTE_EX_UNKNOWN_OPERATION. As the ids of the remoteEx

member match in Replyold and Replynew, the sample is assignable and the Cnew receives the correct

remote exception code.

7.7.2.2 Removing an Operation

The case of removing an operation from an interface is quite analogous to adding an operation to an

interface. When Cold calls Snew, Cold receives REMOTE_EX_UNKNOWN_OPERATION

RemoteExceptionCode. Likewise, When Cnew invokes Sold, Cnew uses only a subset of

operations supported by Sold.

49

7.7.2.3 Reordering Operations and Base Interfaces

Reordering operations has no impact on the semantics of the interface because every interface has set

semantics. The order in which operations are listed in an interface is irrelevant to the caller. Due to

the use of md5 hash algorithm to compute the member ids, this specification considers two interfaces

equivalent as long they contain the same operations. Reordering base interfaces has no impact on the

semantics of the interface.

7.7.2.4 Duck Typing Interface Evolution

Enhanced Service Profile supports “duck typing” evolution of an interface.

[Non-Normative Note: Duck typing is a style of dynamic typing in which an object's operations

and properties determine the valid semantics, rather than its inheritance from a particular class or

implementation of a specific interface. When two interfaces with the same name have the identical

set of operations but in one interface all the operations are defined in-place whereas in the other

interface one or more operations are inherited, the two (derived-most) interfaces are identical for

the purpose of this specification. It is possible to specify the same topic name for two different

interfaces. Therefore, as long as the topic names and type names match, the two interfaces are

compatible.]

7.7.2.5 Changing Operation Signature

 Adding and Removing Parameters

Adding and removing parameters in an operation shall break compatibility with the older interface.

The @final annotation on the In and Out structures enforce this restriction. It is, however, possible

to mark an operation @mutable to allow the In and Out structures to be mutable and thereby

supporting extensions.

 Reordering Parameters

Reordering parameters in an operation shall break compatibility with the older interface. The

@final annotation on the In and Out structures enforce this restriction. It is, however, possible to

mark an operation @mutable to allow reordering of parameters. In that case the synthesized

structures (In and Out) shall be annotated @mutable.

 Changing the Type of a Parameters

Changing the type of the parameters is allowed by this specification. The type assignability rules

shall be as described in [DDS-XTypes].

 Adding and Removing Return Type

Adding and removing return type shall break compatibility with the older interface. The @final

annotation on the In and Out structures enforce this restriction. It is, however, possible to annotate an

operation @Mutable to allow the In and Out structures to be mutable and consequently support

addition or removal of return type and the interface level.

 50

 Changing the Return Type

Changing the type of the return value is allowed by this specification. The type assignability rules

shall be as described in [DDS-XTypes].

 Adding and Removing an Exception

This specification supports adding and removing one or more exceptions on an operation. The

@mutable annotation on the return structure will support this interface evolution. The language

binding that provides function call/return semantics may throw

REMOTE_EX_UNKNOWN_EXCEPTION if the RPC call results into an exception that client does not

understand.

 Request and Reply Correlation

7.8.1 Request and Reply Correlation in the Basic Service Profile

The Basic service profile uses the RequestHeader and ReplyHeader described in sub clause

7.5.1.1.1.

7.8.2 Request and Reply Correlation in the Enhanced Service Profile

To support propagation of the sample identity of a related request this specification extends the

[RTPS] specification adding a new parameter id PID_RELATED_SAMPLE_IDENTITY with value

0x0083. This parameter may appear in the inlineQos sub-message element of the DATA sub-

message (see sub clause 9.4.5.3 in [RTPS]).

The PID_RELATED_SAMPLE_IDENTITY shall be used for data samples sent as reply to a request.

When present, it shall contain the CDR serialization of the SampleIdentity structure defined below.

The RELATED_SAMPLE_IDENTITY_INVALID constant is used to indicate an invalid/non-

existing sample identity.

The value of the PID_RELATED_SAMPLE_IDENTITY in a reply message shall be identical to the

sample identity (GUID, SN) of the request sample that triggered the reply.

struct SampleIdentity {

 GUID_t writer_guid;

 SequenceNumber_t sequence_number;

}

RELATED_SAMPLE_IDENTITY_INVALID is defined as { GUID_UNKNOWN ,

SEQUENCENUMBER_UNKNOWN } both of which are defined in the [RTPS] specification.

7.8.2.1 Retrieve the Request Identity at the Service Side

This specification provides language bindings (section 7.11) to retrieve the sample identity of the

request in the form of a SampleIdentity object.

51

7.8.2.2 Retrieve the Request Identity at the Client Side

This specification provides language bindings (section 7.11) to retrieve the related sample identity of

the reply from the reply SampleInfo in the form of a SampleIdentity object.

7.8.2.3 Propagating Request Sample Identity to the Client

Before sending a reply, the service implementation needs to set the related sample identity of the

reply sample. The related sample identity is the same as the identity of the request sample. This

specification provides language bindings to set the related sample identity when sending the reply to

a request.

 Service Lifecycle

7.9.1 Activating Services

In Basic and Enhanced Service Mappings, when using the function-call style language binding,

creating an instance of the Service type activates the service. Likewise, when using the

request/reply style language binding, creating an instance of a Replier activates the service.

Service activation shall result in creation of the underlying DataReader and DataWriter entities and

they shall be enabled. An activated service shall be discoverable.

7.9.2 Processing Requests

7.9.2.1 Processing Requests using Function-Call Style Language Binding

The function-call style language binding provides a synchronous way to receive requests and return

replies. Concrete implementations of the interface operations shall be invoked as a consequence of

receiving requests. The operations must return a reply consistent with the language binding.

7.9.2.2 Processing Requests using Request/Reply Style Language Binding

The request/reply style language binding provides three mutually exclusive ways to process requests.

1. A synchronous service listener callback can be installed during service activation. The

synchronous callback must return the reply before the callback returns. It is invoked for each

received request.

2. An asynchronous service listener callback can be installed during service activation. The

asynchronous callback does not return the reply. The callback receives a handle to the

Replier instance and the Replier API can be used to retrieve the requests and send the

replies. Unlike synchronous Replier listener callback, the asynchronous Replier listener

allows decoupling of request reception from request processing.

3. The Replier API may be used to retrieve the requests and send replies.

7.9.3 Deactivating Services

Deleting (subject to language binding) the service instance deactivates the service. In Java language

binding, Closeable.Close() deactivates the service. In C++ language binding, the destructor of

the service implementation shall deactivate the service. Deactivation shall delete the underlying DDS

entities (i.e., DataReader and DataWriter only).

 52

 Service QoS
Both Basic and Enhanced Service Mappings allow QoS annotation with an interface.

7.10.1 Interface Qos Annotation

To set the specific Qos for an interface, the annotation @Qos shall be used. It is defined as follows.

@annotation

local interface Qos

{

 attribute string RequestProfile;

 attribute string ReplyProfile;

};

The profile attributes are string URLs of the form: <protocol>://path/resource where

protocol, “:”, “//” and path are optional. Support for the file:// protocol is mandatory. If the

protocol:// is omitted, the string attributes are interpreted as if the protocol is file://. The

URL may end with an optional library name. The profile filename and library_name are separated by

a #. For example, file://path/to/filename#library_name.

The QoS profiles are XML QoS Profiles as defined in the [DDS4CCM] specification.

7.10.2 Default QoS

When no QoS is specified, default QoS are in effect. The default QoS for the endpoints (DataReaders

and DataWriters) are specified as follows. The users may modify the mutable QoS policies at run-

time.

QoS Policy Value

Reliability DDS_RELIABLE_RELIABILITY_QOS

History DDS_KEEP_ALL_HISTORY_QOS

Durability DDS_VOLATILE_DURABILITY_QOS

 Language Bindings

Figure 5 shows the relationship of select RPC entities defined by the language bindings.

53

Figure 5: Inheritance Hierarchy of RPC Entities (TReq, TRep are type parameters)

7.11.1 C++ Language Binding

The machine readable files associated with this specification represent the normative language

bindings for C++. The following sub clause summarizes the normative reference.

7.11.1.1 General C++ Language Binding Rules for Basic Service Mappings

 Request-Reply Style Language Binding

The request-reply style language binding for the Basic Service Mapping shall use either the user-

defined IDL structs directly or the structs synthesized from an IDL interface. The IDL shall be

mapped to C++ types as defined in [IDL35] (including the vendor-specific mappings for DDS v1.3).

The Requester, Replier, Sample, SampleRef, WriteSample, and

WriteSampleRef templates provide a uniform interface to send, receive, allocate, initialize, and

destroy data.

 Function-Call Style Language Binding

The function-call style language binding for the Basic Service Mapping shall use the structs (and

unions) synthesized from the user-defined IDL interface as specified in sub clause 7.5. The topic-

types shall be mapped to C++ types as per defined in [DDS-Cxx-PSM] with the following additional

rules.

1. Each IDL interface shall maps to an abstract class named “${interface}” and an abstract

class named “${interface}Async” in the same namespace corresponding to the module

of the interface. If there is no module, no C++ namespace is generated.

2. Both “${interface}” and “${interface}Async” abstract classes shall have a public

virtual destructor.

 54

3. Both “${interface}” and “${interface}Async” abstract classes shall have public

SupportType, RequestType, and ReplyType typedefs for

“${interface}Support”, “${interface}_Request”, and

“${interface}_Reply” types.

4. The “${interface}” abstract class shall contain a public AsyncInterfaceType

typedef for “${interface}Async” .

5. The “${interface}Async” abstract class shall contain a public InterfaceType

typedef for “${interface}”.

6. The “${interface}” abstract class shall contain public pure virtual functions for all the

operations and attributes defined in the IDL using the following rules

a. The name of the function shall be same as the name of the IDL operation.

b. The number and the order of the arguments shall be as defined in the IDL.

c. The functions shall not have any exception specification even if the IDL operation has

an exception specification. The implementation may still throw the exceptions

specified by the IDL operation.

d. The mapping of IDL primitive and container types to C++ types is provided in sub

clause 7.4.2 in [DDS-Cxx-PSM].

e. The mapping of In, Out, and InOut primitive and constructed types (e.g.,struct) is

provided in in sub clause 7.4.5 in [DDS-Cxx-PSM].

f. Getter/Setter functions for attributes in an interface is specified in sub clause 7.4.6 in

[DDS-Cxx-PSM].

g. IDL operations that return primitive types and enumeration types the corresponding

C++ function shall return the C++ type by value as per the mapping specified in sub

clause 7.4.2. in [DDS-Cxx-PSM].

h. IDL operations that return constructed type (e.g., struct) shall map to the first

parameter with name “cxx_return” of type a T& to the function and the function

shall return void.

7. The “${interface}Async” abstract class shall contain asynchronous public pure virtual

functions for all the operations and attributes defined in the IDL using the following rules

a. The name of the function shall be “${operation}_async”.

b. The function shall accept only In and InOut parameters and shall have no Out

parameters.

c. The functions shall not have any exception specification even if the IDL operation has

an exception specification.

d. The mapping of IDL primitive and container types to C++ types is provided in sub

clause 7.4.2 in [DDS-Cxx-PSM]. All the arguments shall be const.

55

e. The mapping of In and InOut primitive and constructed types (e.g.,struct) is

provided in in sub clause 7.4.5 in [DDs-Cxx-PSM]. All the arguments shall be

const.

f. Attribute getter functions shall take no parameters and shall return

dds::rpc::future of the same type as the attribute.

g. Attribute setter functions shall take a parameter as per specified in sub clause 7.4.6 in

[DDS-Cxx-PSM]. It shall return a dds::rpc::future<void>.

h. Operation that produce a return value in the form of a regular return (primitive or

constructed type) shall return a value of dds::rpc::future of that type.

i. Operation that produce return values with one or more Out/InOut parameters shall

return a value of dds::rpc::future of

“${interface}_${operation}_Out” type. Otherwise, it will return

dds::rpc::future<void>.

8. Any identifier (e.g., parameter, operation name, exception, interface, module) in an IDL file

that is a reserved word in C++ shall be prefixed by “cxx_”.

7.11.1.2 General C++ Language Binding Rules for Enhanced Service Mappings

The request-reply style language binding for the Enhanced Service Mapping shall use either the user-

defined IDL structs directly or the structs synthesized from an IDL interface. The IDL shall be

mapped to C++ types as defined in [DDS-Cxx-PSM].

The function-call style language binding for the Enhanced Service Mapping shall use the mapping

rules defined in sub clause 7.11.1.1.2.

7.11.1.3 Mapping of Exceptions

The C++ language binding may throw locally generated and remotely generated exceptions. As such,

all DDS exceptions defined in sub clause 7.5.5 in [DDS-Cxx-PSM] are valid exceptions.

Additionally, remote exception codes defined in sub clause 7.5.2 are mapped to C++ exceptions as

follows.

 56

Figure 6: Inheritance Hierarchy of Local and Remote Exceptions

Specifically, the remote exception codes map to C++ exceptions as per the following table.

Remote Exception Code RPC Exception

REMOTE_EX_OK No exception

REMOTE_EX_UNSUPPORTED dds::rpc::RemoteUnsupportedError

REMOTE_EX_INVALID_ARGUMENT dds::rpc::RemoteInvalidArgumentError

REMOTE_EX_OUT_OF_RESOURCES dds::rpc::RemoteOutOfResourcesError

REMOTE_EX_UNKNOWN_OPERATION dds::rpc::RemoteUnknownOperationError

REMOTE_EX_UNKNOWN_EXCEPTION dds::rpc::RemoteUnknownExceptionError

57

7.11.1.4 Summary of C++ Request-Reply Style Language Binding

 Namespaces

The dds, and dds::rpc namespaces define the classes and functions for the request-reply style

language bindings. Specifically, the language binding includes RPCEntity, Requester,
Replier, ServiceProxy, ListenerBase, SimpleReplierListener,

ReplierListener, SimpleRequesterListener, RequesterListener,

RequesterParams, ReplierParams, future, shared_future, Sample,
SampleRef, WriteSample, WriteSampleRef, LoanedSamples,

SharedSamples, SampleIterator, dds_type_traits, and

dds_entity_traits.

C++ request-reply language binding uses templates. Unless otherwise stated in the following sub

clause, TReq represents the top-level request type and the TRep represents the top-level reply type.

Depending upon the profile in use (Basic/Enhanced), the actual structure of the TReq and TRep

types will vary. However, the request-reply language binding is independent of the profile in use.

 RPCEntity

RPCEntity is the base abstract class extended by all the active RPC entities. It supports close()

and is_null() operations.

 Requester<TReq, TRep>

A requester sends requests and receives replies. Requester is a reference type and when copied it

makes a shallow copy. An instance of a Requester is configured at the time of construction using

RequesterParams, which is a container of configuration parameters, such as domain participant,

QoS, listeners and more.

Requester is inherently asynchronous as sending a request and receiving its corresponding reply (or

replies) are separated. Requester allows listener-based, polling-based, and future-based reception of

replies. SimpleRequesterListener and RequesterListener interfaces enable callback-

based notification when a reply is available. On the other hand, Requester provides functions to

allow polling reception of replies. Future-based notification of replies is analogous to callback-

based notification, however, no request-reply correlation is necessary because every future

represents a reply to a unique request.

A requester reference may be bound to a specific service instance. Requests sent through a bound

requester reference shall be sent to the bound service instance only.

 ServiceProxy

ServiceProxy class defines type-independent operations for Requester and the Client. For

example, binding to a specific instance, waiting for an instance to discover, closing the service, and

more. ServiceProxy shall not be instantiated directly.

 Replier<TReq, TRep>

A replier receives requests and send replies. Replier is a reference type and it is inexpensive to copy

(comparable to a pointer assignment). An instance of Replier is configured at the time of

 58

construction using ReplierParams, which is a container of configuration parameters such as

domain participant, QoS, listeners and more.

Replier allows listener-based and polling-based reception of requests.

SimpleReplierListener and ReplierListener interfaces enable call-back based

notification when a request is available. On the other hand, Replier provides functions to allow

polling reception of requests.

 ListenerBase

ListenerBase is a “marker” abstract base class, which all generic listener abstract classes inherit

from. It defines no member functions.

 SimpleReplierListener<TReq, TRep>

SimpleReplierListener<TReq, TRep> is used to provide a synchronous request listener

for a Replier. ReplierParams is used to pass an instance of

SimpleReplierListener<TReq, TRep>. It extends the ListenerBase abstract class and

enables synchronous processing of the requests. I.e., the callback provides the request object and

expects the reply as the return value.

 ReplierListener<TReq, TRep>

ReplierListener<TReq, TRep> interface is used to provide an asynchronous request listener

for a Replier. It is passed to the Replier constructor through ReplierParams. It extends

ListenerBase interface and enables asynchronous processing of the requests. I.e., the callback

provides the Replier object and returns void.

 SimpleRequesterListener<TRep>

SimpleRequesterListener<TRep> abstract class is used to receive notifications of arrival of

replies. It is used to configure a Requester through RequesterParams. It extends

ListenerBase and enables processing of replies. I.e., the callback provides access to the reply

sample and returns void.

 RequesterListener<TReq, TRep>

RequesterListener<TReq,TRep> interface is used to receive notification of reply arrival. It

is used to configure a Requester through RequesterParams. It extends ListenerBase and

enables processing of replies. I.e., the callback provides the replier object and returns void.

 RequesterParams

RequesterParams is a valuetype that serves as a container of configuration parameters of a

Requester. It is designed to mimic the named-parameters feature available in some programming

languages, which improves readability.

 ReplierParams

ReplierParams is a valuetype that serves as a container of configuration parameters of a

Replier. It is designed to mimic the named-parameters feature available in some programming

languages, which improves readability.

59

 future<T>

future<T> provides a mechanism to access the result of an asynchronous operation. It transports

results (including exceptions) across an asynchronous boundary. In C++11 and C++14

environments, dds::rpc::future<T> is a typedef for std::future<T>. Compiler prior

to C++11, dds::rpc::future<T> shall provide the same API as std::future<T> in

C++11. Future is not copyable but it is movable.

 shared_future<T>

shared_future<T> is closely related to future<T> and the only difference is that

shared_future<T> is copyable and movable.

 Sample<T>

Sample<T> is a valetype that combines a value of type T and a value of type SampleInfo.

Sample is conceptually immutable.

 SampleRef<T>

SampleRef<T> is a reference type that combines a value of type T and a value of type

SampleInfo. Copying SampleRef<T> makes a shall copy.

 WriteSample<T>

WriteSample<T> is a valuetype that combines a value of type T and a value of type

dds::SampleIdentity. The user populates the value of T and the middleware populates the

value of dds::SampleIdentity. When a request is sent as a WriteSample, upon function

return, the WriteSample.identity()uniquely identifies the request sent.

 WriteSampleRef<T>

WriteSampleRef<T> is a reference type, which groups a reference to T and a value of type

dds::SampleIdentity. The user populates the value of T and the middleware populates the

value of dds::SampleIdentity. When a request is sent as a WriteSampleRef<T>, upon

function return, the WriteSample.identity()uniquely identifies the request sent.

 LoanedSamples<T>

LoanedSamples<T> is conceptually a container of loaned Sample<T> from the middleware.

LoanedSamples<T> is not copyable but it is movable. LoanedSamples<T>::value_type

is SampleRef<T>. Upon destruction, LoanedSamples<T> returns the loaned samples to the

middleware.

 SharedSamples<T>

SharedSamples<T> is container that contains loaned samples from the middleware but the

SharedSamples<T> object may be copied in the application space. All copies of a

SharedSamples<T> refer to the same set of loaned samples.

SharedSamples<T>::value_type is SampleRef<T>. Upon destruction of the last

 60

SharedSamples<T>, the underlying loaned samples are returned to the middleware. Note that

SharedSamples<T> can be obtained from LoanedSample<T> but not vice versa.

 SampleIterator<T>

SampleIterator<T> is a random-access iterator over LoanedSamples<T> and SharedSamples<T>.

SampleIterator<T>::value_type is a SampleRef<T>.

 dds_type_traits<T>

dds_type_traits<T> is a collection of meta-functions that given a type T, provides commonly

needed dependent types, such as a DataReader for T, DataWriter for T, Sample<T>,

LoanedSamples<T>, etc. The primary use of dds_type_traits is to provide a consistent

syntax to refer to the dependent types irrespective of the DDS C++ language binding.

 dds_entity_traits

dds_entity_traits abstracts over the DDS entity types and provides consistent syntax to get

DDS entity types irrespective of the DDS C++ language bindings. (e.g., DomainParticipant,

Publisher, Subscriber, DataReaderQos, and DataWriterQos)

7.11.1.5 Summary of C++ Function-Call Style Language Binding

Service, ServiceEndpoint, Server, Client, and ClientEndpoint classes are specific

to the function-call style language binding and are described below.

 Service

Service is a reference type and accepts a reference to the service implementation. A Service

instantiates the underlying DDS entities and makes the service discoverable. Every Service

inherits from ServiceEndpoint. A Service may belong to only one Server.

 ServiceEndpoint

A ServiceEndpoint provides type-independent functions to manage a service (e.g., pause,

resume, close, etc.) A ServiceEndpoint shall not be instantiated directly; it can be obtained

from a Service object. ServiceEndpoint is a reference type.

 Server

A Server is a container of one or more Services. Server.run() function begins dispatching the

requests to the Service implementation. Server is a reference type.

 Client

Client is a reference type and provides functions to invoke operations on a remote service

synchronously and asynchronously. A Client instantiates the underlying DDS entities and makes

them discoverable. Every Client inherits publicly from “${interface}”,

“${interface}Async”, and ClientEndpoint (public virtual).

61

 ClientEndpoint

A ClientEndpoint provides functions to obtain the underlying DDS entities at the client side.

ClientEndpoint inherits from ServiceProxy. A ClientEndpoint shall not be

instantiated directly; it can be obtained from a Client object.

7.11.2 Java Language Binding

The machine readable files associated with this specification represent the normative language

bindings for Java. The Java language binding shall use IDL type mapping as per [DDS-Java-PSM].

The following sub clauses describe the entities that are either different or not described in the C++

language bindings.

7.11.2.1 Mapping of Exceptions

7.11.2.2 Summary of Java Request-Reply Style Language Binding

 Packages

The org.omg.dds, and org.omg.dds.rpc packages define the interfaces for the request-reply

style language binding. Specifically, the language binding includes Requester, Replier,

ServiceProxy, RPCEntity, RPCRuntime, SimpleReplierListener,

ReplierListener, SimpleRequesterListener, RequesterListener,

RequesterParams, ReplierParams, Future, FutureCompletionListener,

Sample, and Sample.Iterator.

 RPCEntity

RPCEntity is the base interface extended by all the active entities. It inherits from the

DDSObject interface defined in [DDS-Java-PSM] and java.io.Closeable. Its purpose is to

provide quick access to the RPCRuntime object.

 RPCRuntime

RPCRuntime is the only abstract class with placeholder implementation in the Java language

binding. It extends ServiceEnvironment abstract class defined in [DDS-Java-PSM]. Its

purpose is to provide access to the RPCRuntime singleton, which serves as a factory for all other

entities.

 Future<T>

The rpc.Future<T> interface extends the java.util.concurrent.Future<T> interface

and adds a single operation to specify a FutureCompletionListener.

 FutureCompletionListener<T>

The FutureCompletionListener allows callback notification when the corresponding future

becomes ready.

 62

 Sample<T>

The rpc.Sample<T> interface extends dds.sub.Sample<T> interface and defines two

additional operations to retrieve the SampleIdentity and the related sample identity, if any.

 Sample.Iterator

The Sample.Iterator interface is the same as in [DDS-Java-PSM].

7.11.2.3 Summary of Java Function-Call Style Language Binding

Function-Call style language binding in Java shall define the same entities as that of C++. See sub

clause 7.11.1.5.

	Table of Contents
	Preface
	1 Scope
	2 Conformance
	3 Normative References
	4 Terms and Definitions
	5 Symbols
	6 Additional Information
	6.1 Changes to Adopted OMG Specifications
	6.2 Acknowledgements

	7 Remote Procedure Call over Data Distribution Service
	7.1 Overview
	7.2 General Concepts
	7.2.1 Architecture
	7.2.2 Language Binding Styles for RPC over DDS
	7.2.2.1 Function-call Style
	7.2.2.2 Request/Reply Style
	7.2.2.3 Pros and Cons of each Language Binding Styles

	7.2.3 Request-Reply Correlation
	7.2.4 Basic and Enhanced Service Mapping for RPC over DDS
	7.2.5 Interoperability

	7.3 Service Definition
	7.3.1 Service Definition in IDL
	7.3.1.1 Service Definition in IDL for the Basic Service Mapping
	7.3.1.2 Service Definition in IDL for the Enhanced Service Mapping
	7.3.1.3 Example of an Interface in IDL (Non-normative)
	7.3.1.4 Service Definition in IDL Using a Pair of Types

	7.3.2 Service Definition in Java
	7.3.2.1 Example of an interface in Java (Non-normative)
	7.3.2.2 Service Definition in Java Using a Pair of Types

	7.4 Mapping Service Specification to DDS Topics
	7.4.1 Rules for Synthesizing DDS Topic Names
	7.4.2 Basic Service Mapping
	7.4.2.1 Default Topic Names
	7.4.2.2 Specifying Topic Names using Annotations
	7.4.2.3 Specifying Topic Names at Run-time

	7.4.3 The Enhanced Service Mapping
	7.4.3.1 Default Topic Names
	7.4.3.2 Specifying Topic Names Using Annotations
	7.4.3.3 Specifying Topic Names at Run-time

	7.5 Mapping Service Specification to DDS Topics Types
	7.5.1 Interface Mapping
	7.5.1.1 Basic Service Mapping of Interfaces
	7.5.1.1.1 Common Types
	7.5.1.1.2 The Hashing Algorithm
	7.5.1.1.3 Mapping of Attributes to Implied IDL
	7.5.1.1.4 Mapping of Operations to the Request Topic Types
	7.5.1.1.5 Mapping of Operations to the Reply Topic Types
	7.5.1.1.6 Mapping of Interfaces to the Request Topic Types
	7.5.1.1.7 Mapping of Interfaces to the Reply Topic Types
	7.5.1.1.8 Mapping of inherited Interfaces to the Request and Reply Topic Types

	7.5.1.2 Enhanced Service Mapping of Interfaces
	7.5.1.2.1 Annotations for the Enhanced Service Mapping
	7.5.1.2.1.1 @Choice Annotation
	7.5.1.2.1.2 @Autoid Annotation
	7.5.1.2.1.3 @Empty Annotation
	7.5.1.2.1.4 @Mutable Annotation

	7.5.1.2.2 Mapping of Operations to the Request Topic Types
	7.5.1.2.3 Mapping of Operations to the Reply Topic Types
	7.5.1.2.4 Interface Mapping for the Request Topic Types
	7.5.1.2.5 Interface Mapping for the Reply Type
	7.5.1.2.6 Mapping of Inherited Interfaces to Request and Reply Topic Types

	7.5.2 Mapping of Error Codes

	7.6 Discovering and Matching RPC Services
	7.6.1 Client and Service Discovery for the Basic Service Mapping
	7.6.2 Client and Service Discovery for the Enhanced Service Mapping
	7.6.2.1 Extensions to the DDS Discovery Builtin Topics
	7.6.2.1.1 Extended PublicationBuiltinTopicData
	7.6.2.1.2 Extended SubscriptionBuiltinTopicData

	7.6.2.2 Enhanced algorithm for Service Discovery
	7.6.2.2.1 Client Matching
	7.6.2.2.2 Service Matching

	7.7 Interface Evolution
	7.7.1 Interface Evolution in the Basic Service Mapping
	7.7.1.1 Adding/Removing an Operation
	7.7.1.2 Reordering Operations and Base Interfaces
	7.7.1.3 Changing Operation Signature

	7.7.2 Interface Evolution in the Enhanced Service Mapping
	7.7.2.1 Adding a new Operation
	7.7.2.2 Removing an Operation
	7.7.2.3 Reordering Operations and Base Interfaces
	7.7.2.4 Duck Typing Interface Evolution
	7.7.2.5 Changing Operation Signature
	7.7.2.5.1 Adding and Removing Parameters
	7.7.2.5.2 Reordering Parameters
	7.7.2.5.3 Changing the Type of a Parameters
	7.7.2.5.4 Adding and Removing Return Type
	7.7.2.5.5 Changing the Return Type
	7.7.2.5.6 Adding and Removing an Exception

	7.8 Request and Reply Correlation
	7.8.1 Request and Reply Correlation in the Basic Service Profile
	7.8.2 Request and Reply Correlation in the Enhanced Service Profile
	7.8.2.1 Retrieve the Request Identity at the Service Side
	7.8.2.2 Retrieve the Request Identity at the Client Side
	7.8.2.3 Propagating Request Sample Identity to the Client

	7.9 Service Lifecycle
	7.9.1 Activating Services
	7.9.2 Processing Requests
	7.9.2.1 Processing Requests using Function-Call Style Language Binding
	7.9.2.2 Processing Requests using Request/Reply Style Language Binding

	7.9.3 Deactivating Services

	7.10 Service QoS
	7.10.1 Interface Qos Annotation
	7.10.2 Default QoS

	7.11 Language Bindings
	7.11.1 C++ Language Binding
	7.11.1.1 General C++ Language Binding Rules for Basic Service Mappings
	7.11.1.1.1 Request-Reply Style Language Binding
	7.11.1.1.2 Function-Call Style Language Binding

	7.11.1.2 General C++ Language Binding Rules for Enhanced Service Mappings
	7.11.1.3 Mapping of Exceptions
	7.11.1.4 Summary of C++ Request-Reply Style Language Binding
	7.11.1.4.1 Namespaces
	7.11.1.4.2 RPCEntity
	7.11.1.4.3 Requester<TReq, TRep>
	7.11.1.4.4 ServiceProxy
	7.11.1.4.5 Replier<TReq, TRep>
	7.11.1.4.6 ListenerBase
	7.11.1.4.7 SimpleReplierListener<TReq, TRep>
	7.11.1.4.8 ReplierListener<TReq, TRep>
	7.11.1.4.9 SimpleRequesterListener<TRep>
	7.11.1.4.10 RequesterListener<TReq, TRep>
	7.11.1.4.11 RequesterParams
	7.11.1.4.12 ReplierParams
	7.11.1.4.13 future<T>
	7.11.1.4.14 shared_future<T>
	7.11.1.4.15 Sample<T>
	7.11.1.4.16 SampleRef<T>
	7.11.1.4.17 WriteSample<T>
	7.11.1.4.18 WriteSampleRef<T>
	7.11.1.4.19 LoanedSamples<T>
	7.11.1.4.20 SharedSamples<T>
	7.11.1.4.21 SampleIterator<T>
	7.11.1.4.22 dds_type_traits<T>
	7.11.1.4.23 dds_entity_traits

	7.11.1.5 Summary of C++ Function-Call Style Language Binding
	7.11.1.5.1 Service
	7.11.1.5.2 ServiceEndpoint
	7.11.1.5.3 Server
	7.11.1.5.4 Client
	7.11.1.5.5 ClientEndpoint

	7.11.2 Java Language Binding
	7.11.2.1 Mapping of Exceptions
	7.11.2.2 Summary of Java Request-Reply Style Language Binding
	7.11.2.2.1 Packages
	7.11.2.2.2 RPCEntity
	7.11.2.2.3 RPCRuntime
	7.11.2.2.4 Future<T>
	7.11.2.2.5 FutureCompletionListener<T>
	7.11.2.2.6 Sample<T>
	7.11.2.2.7 Sample.Iterator

	7.11.2.3 Summary of Java Function-Call Style Language Binding

