
An OMGR Remote Procedure Call over DDS Publication

Remote Procedure Call over DDS (DDS-RPC)

v1.0

__

OMG Document Number: formal/2017-04-01

Date: April, 2017

Standard document URL: http://www.omg.org/spec/DDS-RPC/1.0

Normative Machine Consumable File(s):

http://www.omg.org/spec/ DDS-RPC/20160215/omg-dds-rpc-cxx.zip

http://www.omg.org/spec/ DDS-RPC/20160215/omg-dds-rpc-java.zip

http://www.omg.org/spec/ DDS-RPC/20160215/omg-dds-rpc-idl.zip

O B J E C T M A N A G E M E N T G R O U P

http://www.omg.org/spec/ASCMM/20141211/AutomatedSourceCodeMaintainabilityMeasure
http://www.omg.org/spec/DDS-RPC/20160215/omb-dds-rpc-java.zip
http://www.omg.org/spec/DDS-RPC/20160215/omb-dds-rpc-java.zip
http://www.omg.org/spec/DDS-RPC/20160215/omb-dds-rpc-java.zip
http://www.omg.org/spec/DDS-RPC/20160215/omb-dds-rpc-java.zip

Copyright © 2014, eProsima

Copyright © 2016, Object Management Group, Inc.

Copyright © 2014, PrismTech

Copyright © 2014, Real-time Innovations, Inc.

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms,
conditions and notices set forth below. This document does not represent a commitment to implement any
portion of this specification in any company's products. The information contained in this document is subject to
change without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive,
royalty-free, paid up, worldwide license to copy and distribute this document and to modify this document and
distribute copies of the modified version. Each of the copyright holders listed above has agreed that no person
shall be deemed to have infringed the copyright in the included material of any such copyright holder by reason
of having used the specification set forth herein or having conformed any computer software to the
specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant
you a fully-paid up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to
sublicense), to use this specification to create and distribute software and special purpose specifications that are
based upon this specification, and to use, copy, and distribute this specification as provided under the Copyright
Act; provided that: (1) both the copyright notice identified above and this permission notice appear on any
copies of this specification; (2) the use of the specifications is for informational purposes and will not be copied
or posted on any network computer or broadcast in any media and will not be otherwise resold or transferred for
commercial purposes; and (3) no modifications are made to this specification. This limited permission
automatically terminates without notice if you breach any of these terms or conditions. Upon termination, you
will destroy immediately any copies of the specifications in your possession or control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications
may require use of an invention covered by patent rights. OMG shall not be responsible for identifying patents
for which a license may be required by any OMG specification, or for conducting legal inquiries into the legal
validity or scope of those patents that are brought to its attention. OMG specifications are prospective and
advisory only. Prospective users are responsible for protecting themselves against liability for infringement of
patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications
regulations and statutes. This document contains information which is protected by copyright. All Rights
Reserved. No part of this work covered by copyright herein may be reproduced or used in any form or by any
means--graphic, electronic, or mechanical, including photocopying, recording, taping, or information storage
and retrieval systems--without permission of the copyright owner.

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY
CONTAIN ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES
LISTED ABOVE MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO
THIS PUBLICATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR
OWNERSHIP, IMPLIED WARRANTY OF MERCHANTABILITY OR WARRANTY OF FITNESS FOR A
PARTICULAR PURPOSE OR USE. IN NO EVENT SHALL THE OBJECT MANAGEMENT GROUP OR
ANY OF THE COMPANIES LISTED ABOVE BE LIABLE FOR ERRORS CONTAINED HEREIN OR FOR
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, CONSEQUENTIAL, RELIANCE OR COVER DAMAGES,
INCLUDING LOSS OF PROFITS, REVENUE, DATA OR USE, INCURRED BY ANY USER OR ANY
THIRD PARTY IN CONNECTION WITH THE FURNISHING, PERFORMANCE, OR USE OF THIS
MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you.
This disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c)
(1) (ii) of The Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in
subparagraph (c)(1) and (2) of the Commercial Computer Software - Restricted Rights clauses at 48 C.F.R.
52.227-19 or as specified in 48 C.F.R. 227-7202-2 of the DoD F.A.R. Supplement and its successors, or as
specified in 48 C.F.R. 12.212 of the Federal Acquisition Regulations and its successors, as applicable. The
specification copyright owners are as indicated above and may be contacted through the Object Management
Group, 109 Highland Avenue, Needham, MA 02494, U.S.A.

TRADEMARKS

CORBA®, CORBA logos®, FIBO®, Financial Industry Business Ontology®, FINANCIAL INSTRUMENT
GLOBAL IDENTIFIER®, IIOP®, IMM®, Model Driven Architecture®, MDA®, Object Management
Group®, OMG®, OMG Logo®, SoaML®, SOAML®, SysML®, UAF®, Unified Modeling Language®,
UML®, UML Cube Logo®, VSIPL®, and XMI® are registered trademarks of the Object Management Group,
Inc.

For a complete list of trademarks, see: http://www.omg.org/legal/tm_list.htm. All other products or company
names mentioned are used for identification purposes only, and may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its
designees) is and shall at all times be the sole entity that may authorize developers, suppliers and sellers of
computer software to use certification marks, trademarks or other special designations to indicate compliance
with these materials.

Software developed under the terms of this license may claim compliance or conformance with this
specification if and only if the software compliance is of a nature fully matching the applicable compliance
points as stated in the specification. Software developed only partially matching the applicable compliance
points may claim only that the software was based on this specification, but may not claim compliance or
conformance with this specification. In the event that testing suites are implemented or approved by Object
Management Group, Inc., software developed using this specification may claim compliance or conformance
with the specification only if the software satisfactorily completes the testing suites.

http://www.omg.org/legal/tm_list.htm

OMG’s Issue Reporting

All OMG specifications are subject to continuous review and improvement. As part of this process we
encourage readers to report any ambiguities, inconsistencies, or inaccuracies they may find by completing the
Issue Reporting Form listed on the main web page http://www.omg.org, under Documents, Report a Bug/Issue.

Table of Contents

1 Scope..9

2 Conformance..9

3 Normative References...9

4 Terms and Definitions..10

5 Symbols and Abbreviated Terms...10

6 Additional Information...11
6.1 Acknowledgements..11

7 Remote Procedure Call over Data Distribution Service..13
7.1 Overview...13

7.2 General Concepts...13

7.2.1 Architecture..13

7.2.2 Language Binding Styles for RPC over DDS..14

7.2.2.1 Function-call Style...14

7.2.2.2 Request/Reply Style...14

7.2.2.3 Pros and Cons of each Language Binding Style..15

7.2.3 Request-Reply Correlation..15

7.2.4 Basic and Enhanced Service Mapping for RPC over DDS...16

7.2.5 Interoperability..16

7.3 Service Definition..17

7.3.1 Service Definition in IDL..17

7.3.1.1 Service Definition in IDL for the Basic Service Mapping...17

7.3.1.2 Service Definition in IDL for the Enhanced Service Mapping..19

7.3.1.3 Example of an Interface in IDL (Non-normative)...19

7.3.1.4 Service Definition in IDL Using a Pair of Types...20

7.3.2 Service Definition in Java..20

7.3.2.1 Example of an interface in Java (Non-normative)...22

7.3.2.2 Service Definition in Java Using a Pair of Types..22

7.4 Mapping Service Specification to DDS Topics...22

7.4.1 Rules for Synthesizing DDS Topic Names..22

7.4.2 Basic Service Mapping..23

7.4.2.1 Default Topic Names...23

Remote Procedure Call over DDS, v1.0 1

7.4.2.2 Specifying Topic Names using Annotations..23

7.4.2.3 Specifying Topic Names at Run-time..24

7.4.3 The Enhanced Service Mapping..24

7.4.3.1 Default Topic Names...25

7.4.3.2 Specifying Topic Names Using Annotations...25

7.4.3.3 Specifying Topic Names at Run-time..25

7.5 Mapping Service Specification to DDS Topics Types..26

7.5.1 Interface Mapping..26

7.5.1.1 Basic Service Mapping of Interfaces...26

7.5.1.1.1 Common Types..26

7.5.1.1.2 The Hashing Algorithm...27

7.5.1.1.3 Mapping of Attributes to Implied IDL...28

7.5.1.1.4 Mapping of Operations to the Request Topic Types...28

7.5.1.1.5 Mapping of Operations to the Reply Topic Types...29

7.5.1.1.6 Mapping of Interfaces to the Request Topic Types...31

7.5.1.1.7 Mapping of Interfaces to the Reply Topic Types...33

7.5.1.1.8 Mapping of Inherited Interfaces to the Request and Reply Topic Types..34

7.5.1.2 Enhanced Service Mapping of Interfaces..39

7.5.1.2.1 Annotations for the Enhanced Service Mapping...39

7.5.1.2.1.1 @Choice Annotation...39

7.5.1.2.1.2 @Autoid Annotation...39

7.5.1.2.1.3 @Empty Annotation...40

7.5.1.2.1.4 @Mutable Annotation...40

7.5.1.2.2 Mapping of Operations to the Request Topic Types...40

7.5.1.2.3 Mapping of Operations to the ReplyTopic Types..40

7.5.1.2.4 Interface Mapping for the Request Topic Types..41

7.5.1.2.5 Interface Mapping for the Reply Type...42

7.5.1.2.6 Mapping of Inherited Interfaces to Request and Reply Topic Types..42

7.5.2 Mapping of Error Codes..45

7.6 Discovering and Matching RPC Services...46

7.6.1 Client and Service Discovery for the Basic Service Mapping..46

7.6.2 Client and Service Discovery for the Enhanced Service Mapping..47

7.6.2.1 Extensions to the DDS Discovery Builtin Topics..47

7.6.2.1.1 Extended PublicationBuiltin TopicData..47

7.6.2.1.2 Extended SubscriptionBuiltinTopicData...48

7.6.2.2 Enhanced algorithm for Service Discovery...49

7.6.2.2.1 Client Matching..50

2 Remote Procedure Call over DDS, v1.0

7.6.2.2.2 Service Matching...51

7.7 Interface Evolution..52

7.7.1 Interface Evolution in the Basic Service Mapping..52

7.7.1.1 Adding/Removing an Operation..52

7.7.1.2 Reordering Operations and Base Interfaces...52

7.7.1.3 Changing Operation Signature...52

7.7.2 Interface Evolution in the Enhanced Service Mapping...52

7.7.2.1 Adding a new Operation..52

7.7.2.2 Removing an Operation...53

7.7.2.3 Reordering Operations and Base Interfaces...53

7.7.2.4 Duck Typing Interface Evolution...53

7.7.2.5 Changing Operation Signature...53

7.7.2.5.1 Adding and Removing Parameters..53

7.7.2.5.2 Reordering Parameters...53

7.7.2.5.3 Changing the Type of a Parameter...53

7.7.2.5.4 Adding and Removing Return Type..53

7.7.2.5.5 Changing the Return Type...54

7.7.2.5.6 Adding and Removing an Exception...54

7.8 Request and Reply Correlation..54

7.8.1 Request and Reply Correlation in the Basic Service Profile...54

7.8.2 Request and Reply Correlation in the Enhanced Service Profile..54

7.8.2.1 Retrieve the Request Identity at the Service Side..54

7.8.2.2 Retrieve the Request Identity at the Client Side..54

7.8.2.3 Propagating Request Sample Identity to the Client...54

7.9 Service Lifecycle...55

7.9.1 Activating Services..55

7.9.2 Processing Requests...55

7.9.2.1 Processing Requests using Function-Call Style Language Binding..55

7.9.2.2 Processing Requests using Request/Reply Style Language Binding...55

7.9.3 Deactivating Services..55

7.10 Service QoS...55

7.10.1 Interface QoS Annotation..55

7.10.2 Default QoS...56

7.11 Language Bindings..56

7.11.1 C++ Language Binding..57

7.11.1.1 General C++ Language Binding Rules for Basic Service Mappings..57

7.11.1.1.1 Request-Reply Style Language Binding..57

Remote Procedure Call over DDS, v1.0 3

7.11.1.1.2 Function-Call Style Language Binding..57

7.11.1.2 General C++ Language Binding Rules for Enhanced Service Mappings..58

7.11.1.3 Mapping of Exceptions..58

7.11.1.4 Summary of C++ Request-Reply Style Language Binding...60

7.11.1.4.1 Namespaces..60

7.11.1.4.2 RPCEntity..60

7.11.1.4.3 Requester<TReq, TRep>...60

7.11.1.4.4 ServiceProxy..60

7.11.1.4.5 Replier<TReq, TRep>..60

7.11.1.4.6 ListenerBase...61

7.11.1.4.7 SimpleReplierListener<TReq, TRep>...61

7.11.1.4.8 ReplierListener<TReq, TRep>...61

7.11.1.4.9 SimpleRequesterListener<TRep>..61

7.11.1.4.10 RequesterListener<TReq, TRep>..61

7.11.1.4.11 RequesterParams..61

7.11.1.4.12 ReplierParams..61

7.11.1.4.13 future<T>...61

7.11.1.4.14 shared_future<T>...61

7.11.1.4.15 Sample<T>...61

7.11.1.4.16 SampleRef<T>...61

7.11.1.4.17 WriteSample<T>..62

7.11.1.4.18 WriteSampleRef<T>..62

7.11.1.4.19 LoanedSamples<T>...62

7.11.1.4.20 SharedSamples<T>..62

7.11.1.4.21 SampleIterator<T>...62

7.11.1.4.22 dds_type_traits<T>..62

7.11.1.4.23 dds_entity_traits...62

7.11.1.5 Summary of C++ Function-Call Style Language Binding..62

7.11.1.5.1 Service..62

7.11.1.5.2 ServiceEndpoint...63

7.11.1.5.3 Server...63

7.11.1.5.4 Client..63

7.11.1.5.5 ClientEndpoint...63

7.11.2 Java Language Binding..63

7.11.2.1 Mapping of Exceptions..63

7.11.2.2 Summary of Java Request-Reply Style Language Binding...63

7.11.2.2.1 Packages...63

4 Remote Procedure Call over DDS, v1.0

7.11.2.2.2 RPCEntity..63

7.11.2.2.3 RPCRuntime..63

7.11.2.2.4 Future<T>..63

7.11.2.2.5 FutureCompletionListener<T>..64

7.11.2.2.6 Sample<T>...64

7.11.2.2.7 Sample.Iterator...64

7.11.2.3 Summary of Java Function-Call Style Language Binding...64

Remote Procedure Call over DDS, v1.0 5

This page intentionally left blank.

6 Remote Procedure Call over DDS, v1.0

Preface

OMG

Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer industry
standards consortium that produces and maintains computer industry specifications for interoperable, portable, and
reusable enterprise applications in distributed, heterogeneous environments. Membership includes Information
Technology vendors, end users, government agencies, and academia.

OMG member companies write, adopt, and maintain its specifications following a mature, open process. OMG’s
specifications implement the Model Driven Architecture® (MDA®), maximizing ROI through a full-lifecycle approach
to enterprise integration that covers multiple operating systems, programming languages, middleware and networking
infrastructures, and software development environments. OMG’s specifications include: UML® (Unified Modeling
Language®); CORBA® (Common Object Request Broker Architecture); CWM™ (Common Warehouse Metamodel™);
and industry-specific standards for dozens of vertical markets.

More information on the OMG is available at http://www.omg.org/.

OMG Specifications
As noted, OMG specifications address middleware, modeling and vertical domain frameworks. All OMG Specifications
are available from the OMG website at:

http://www.omg.org/spec

Specifications are organized by the following categories:

Business Modeling Specifications

Middleware Specifications

• CORBA/IIOP

• Data Distribution Services

• Specialized CORBA

IDL/Language Mapping Specifications

Modeling and Metadata Specifications

• UML, MOF, CWM, XMI

• UML Profile

Modernization Specifications

Platform Independent Model (PIM), Platform Specific Model (PSM), Interface Specifications

• CORBAServices

• CORBAFacilities

Remote Procedure Call over DDS, v1.0 7

OMG Domain Specifications

CORBA Embedded Intelligence Specifications

CORBA Security Specifications

Signal and Image Processing Specifications

All of OMG’s formal specifications may be downloaded without charge from our website. (Products implementing OMG
specifications are available from individual suppliers.) Copies of specifications, available in PostScript and PDF format,
may be obtained from the Specifications Catalog cited above or by contacting the Object Management Group, Inc. at:

OMG Headquarters

109 Highland Avenue

Needham, MA 02494

USA

Tel: +1-781-444-0404

Fax: +1-781-444-0320

Email: pubs@omg.org

Certain OMG specifications are also available as ISO standards. Please consult http://www.iso.org

Typographical Conventions

The type styles shown below are used in this document to distinguish programming statements from ordinary English.
However, these conventions are not used in tables or headings where no distinction is necessary.

Times/Times New Roman - 10 pt.: Standard body text, table text, bullets

Helvetica/Arial – 9 or 10 pt. Bold: OMG Interface Definition Language (OMG IDL) and syntax elements.

Courier new/Courier – 10 pt. Bold: Programming Languages

Helvetica/Arial – 10 pt.: Exceptions

Courier/Courier New – 9

Issues

The reader is encouraged to report any technical or editing issues/problems with this specification to
http://issues.omg.org/issues/create-new-issue

8 Remote Procedure Call over DDS, v1.0

1 Scope

The Data Distribution Service is widely used for data-centric publish/subscribe communication in real-time distributed
systems. Large distributed systems often need more than one style of communication. For instance, data distribution
works great for one-to-many dissemination of information. However, certain other styles of communication namely
request/reply and remote method invocation are cumbersome to express using the basic building blocks of DDS. Using
two or more middleware frameworks is often not practical due to complexity, cost, and maintenance overhead reasons.
As a consequence, developing a standard mechanism for request/reply style bidirectional communication on top of DDS
is highly desirable for portability and interoperability. Such facility would allow commands to be naturally represented as
remote method invocations. This presents a solution to this problem.

This specification defines a Remote Procedure Calls (RPC) framework using the basic building blocks of DDS, such as
topics, types, DataReaders, and DataWriters to provide request/reply semantics. It defines distributed services, described
using a service interface, which serves as a shareable contract between service provider and a service consumer. It
supports synchronous and asynchronous method invocation. Despite its similarity, it is not intended to be a replacement
for CORBA.

2 Conformance

This specification defines two conformance points: Basic and Enhanced.

[1] Basic conformance (mandatory)

[2] Enhanced conformance (optional)

The basic conformance point includes support for the Basic service mapping and both the functional and the request-
reply language binding styles.

The enhanced conformance point includes the basic conformance and adds support for the Enhanced Service mapping.

The table below summarizes what is included in each of the conformance points.

Conformance point Service Mapping Language Binding Style

Basic Enhanced Function-call Request/Reply

Basic Included Included Included

Enhanced Included Included Included Included

3 Normative References

The following normative documents contain provisions, which, through reference in this text, constitute provisions of
this specification. For dated references, subsequent amendments to, or revisions of any of these publications do not
apply.

 [DDS] Data Distribution Service for Real-Time Systems Specification, version 1.2 (OMG document
formal/2007-01-01).

 [RTPS] The Real-Time Publish-Subscribe Wire Protocol DDS Interoperability Wire Protocol (DDSI-RTPS)
(OMG document formal/2010-11-01)

Remote Procedure Call over DDS, v1.0 9

 [DDS-Xtypes] Extensible and Dynamic Topic Types for DDS, version 1.0 Beta 1 (OMG document
ptc/2010-05-12

 [CORBA] Common Object Request Broker Architecture (CORBA/ZIOP) version 3.3. OMG documents
formal/2012-11-12, formal/2012-11-14, and formal/2012-11-16

 [IDL35] Interface Definition Language (IDL), version 3.5, OMG document formal/2014-03-01

 [EBNF] ISO/IEC 14977 Information Technology – Syntactic Metalanguage – Extended BNF (first edition)

 [Java-Grammar] The Java Language specification, Third Edition. Chapter 8
http://docs.oracle.com/javase/specs/jls/se5.0/html/syntax.html

 [DDS-Cxx-PSM] ISO/IEC C++ 2003 Language DDS PSM, version 1.0, OMG document formal/2013-11-01

 [DDS-Java-PSM] Java 5 Language PSM for DDS, version 1.0, OMG document formal/2013-11-02

 [DDS4CCM] DDS for lightweight CCM, version 1.1, OMG document formal/2012-02-01

 [IDL2Java] IDL to Java Language Mapping, version 1.3, OMG document formal/2008-01-14

 [SOA-RM] Reference Model for Service Oriented Architecture (SOA-RM), v1.0, October 2006

4 Terms and Definitions

For the purposes of this specification, the following terms and definitions apply.

Service - a Service is a mechanism to enable access to one or more capabilities, where the access is provided using a
prescribed interface and is exercised consisent with constraints and policies as specified by the service description.
[SOA-RM]

Remote Procedure Call – Remote Procedure Call is an inter-process communication that allows a computer program
to cause a subroutine or procedure to execute in another address space.

5 Symbols and Abbreviated Terms

 DDS – Data-Distribution Service

 GUID – Global Unique Identifier

 RPC – Remote Procedure Call

 RTPS – Real-Time Publish-Subscribe Protocol

 SN – Sequence Number

10 Remote Procedure Call over DDS, v1.0

http://docs.oracle.com/javase/specs/jls/se5.0/html/syntax.html

6 Additional Information

6.1 Acknowledgements
The following companies submitted this specification:

 Real-Time Innovations, Inc.

 eProsima

 PrismTech

The following companies support this specification:

 Real-Time Innovations, Inc.

 eProsima

 PrismTech

 Twin Oaks Computing, Inc.

Remote Procedure Call over DDS, v1.0 11

This page is intentionally left blank.

12 Remote Procedure Call over DDS, v1.0

7 Remote Procedure Call over Data Distribution
Service

7.1 Overview

Large distributed systems often require different communication patterns depending upon the problem at hand. For
instance, distribution of sensor data is best achieved using unidirectional one-to-many pattern whereas sending
commands to a specific device or retrieving configuration of a remote service is best done using bidirectional
request/reply communication. Using a single middleware that supports multiple communication styles is a very cost-
effective way of developing and maintaining large distributed systems. Data Distribution Service (DDS) is a well-known
standard for data-centric publish-subscribe communication for real-time distributed systems. DDS excels at providing an
abstraction of global data space where applications can publish real-world data and also subscribe to it without temporal
or spatial coupling.

DDS, however, is cumbersome to use for bidirectional communication in the sense of request-reply pattern. The pattern
can be expressed using the basic building blocks of DDS, however, substantial plumbing must be created manually to
achieve the desired effect. As a consequence, it is fair to say that request/reply style communication is not first-class in
DDS. The intent of this specification is to specify higher-level abstractions built on top of DDS to achieve first-class
request/reply communication. It is also the intent of this specification to facilitate portability, interoperability, and
promote data-centric view for request/reply communication so that the architectural benefits of using DDS can be
leveraged in request/reply communication.

7.2 General Concepts

7.2.1 Architecture

Remote Procedure Call necessarily has two participants: a client and a service. Structurally, every client uses a data
writer for sending requests and a data reader for receiving replies. Symmetrically, every service uses a data reader for
receiving the requests and a data writer for sending the replies.

Figure 7.1 shows the high-level architecture of the remote procedure call over DDS. The client consists of a data writer
to publish the sample that represents remote procedure call on the call topic. Correspondingly, the service
implementation contains a data reader to read the method name and the parameters (i.e., Foo). The service computes the
return values (i.e., Bar) to be sent back to the client on the Return topic. (The service implementation details are not
shown.)

The data reader at the client side receives the response, which is delivered to the application. To ensure that the client
receives a response to a previous call made by itself, a content-based filter is used by the reader at the client-side. This
ensures that responses for remote invocations of other clients are filtered.

It is possible for a client to have more than one outstanding request, particularly when asynchronous invocations are
used. In such cases, it is critical to correlate requests with responses. As a consequence, each individual request must be
correlated with the corresponding reply. Requests, like all samples in the DDS data space, are identified using a unique
SampleIdentity defined as a struct composed of GUID_t and a SequenceNumber_t defined in sub clause
7.5.1.1.1 Common Types. When a service implementation sends a reply to a specific remote invocation, it is necessary
to identify the original request by providing the sample-identity of the request. Note that a reply data sample has its own
unique message-id (sample identity), which represents the reply message itself and is independent of the request sample-
identity.

Remote Procedure Call over DDS, v1.0 13

7.2.2 Language Binding Styles for RPC over DDS

Language binding style determines how the client API is exposed to the programmer and how the service
implementation receives notification of the arriving requests. This specification includes a higher-level language binding
with function-call style and a lower-level language binding with request/reply style.

7.2.2.1 Function-call Style

The function-call style is conceptually analogous to Java RMI, .NET WFC Service Contracts, or CORBA. To provide
function-call style, a common approach is to generate stubs that serve as client-side proxies for remote operations and
skeletons to support service-side implementations. The look-and-feel is like a local function invocation. A code generator
generates stub and skeleton classes from an interface specification. The generated code is used by the client and service
implementation. An advantage of such a mapping is that the look and feel of the client-side program and the service
implementation is just like a native method call.

7.2.2.2 Request/Reply Style

The request/reply style makes no effort to make the remote invocation look like a function call. Instead, it provides a
general-purpose API to send and receive messages. The programmer is responsible for populating the request messages
(a.k.a. samples) at the client side and the reply messages on the service side. In that sense it is lower-level language
binding compared to the function-call semantics.

The request/reply style provides a flat interface, such as send_request, receive_request, and send_reply, receive_reply,
which substantially simplifies language binding as no code generation is necessary beyond the request/reply types.
However, remote procedure call does not appear first-class to the programmer.

14 Remote Procedure Call over DDS, v1.0

Figure 7.1 - Conceptual View of Remote Procedure Call over DDS

7.2.2.3 Pros and Cons of each Language Binding Style

The function-call style is natural to programmers due to its familiar look-and-feel. Sending of the request message and
reception of the corresponding reply is abstracted away using proxy objects on the client side. Request-reply style, on the
other hand, is more explicit about exchanging messages and therefore can be used to implement complex interactions
between the client and the server. For example, the command-response pattern typically involves multiple replies to the
same request. (e.g., completion percentage status). Request-reply style can easily implement such a pattern without
polling. For a given request, a service may simply produce multiple replies with the same request-id as that of the
original request. The client correlates the replies with the original request using the request-id. The function-call style
must use application-level polling or asynchronous callbacks if multiple replies are expected by the client. This is
because the single-entry-single-return semantics restrict underlying messaging.

Furthermore, request-reply style is inherently asynchronous because invocation of the service is separated from reception
of replies. Multiple replies (for a single request) may be consumed one at a time or in a batch. The API for request-reply
style often simplifies code-generation requirements because stubs and skeletons are not required. Finally, the request-
reply style is strongly typed and this specification uses templates in case of C++ and generics in case of Java to provide
service-specific type-rich language bindings.

It is important to note that the client and service sides are not coupled with respect to the language binding styles. Thanks
to the strong separation imposed by the mapping of interfaces to topic types. It is possible for a client to use function-call
style language binding to invoke remote operations on a server that uses request/reply style language binding to
implement the service. The converse is also true. Furthermore, it is also possible for the stubs and skeletons of the
functional style to use the request/reply language binding under the hood.

In light of the above observation, a conforming implementation to this specification shall support both styles of language
binding.

7.2.3 Request-Reply Correlation

Request-reply correlation requires an ability to retrieve the sample identity (GUID, SN) at both the requester and service
side. The requester needs to know the sample identity because it needs to correlate the reply with the original request.
The service implementation also needs to retrieve the sample identity of the request so that it can use it to relate the reply
sample to the request that triggered it.

Remote Procedure Call over DDS, v1.0 15

Figure 7.2 - Strong decoupling of language binding (function-call and request /reply) from the service-specific
 data model

This specification makes important distinction in how the information necessary for correlation is propagated. The
sample-identity can be propagated either implicitly or explicitly. Explicit sample-identity implies that the request-id is
visible in the top-level data type for the DDS topic. Implicit sample-identity, on the other hand, implies that the request
sample-identity is communicated via extensibility mechanisms supported by the DDS-RTPS protocol. Specifically using
the inlineQoS sub-message element. See sub clause 8.3.7.2 of the DDS-RTPS specification [RTPS].

In both cases, the specification provides APIs to get the request-id at the client side and get/set the request-id at the
service side.

7.2.4 Basic and Enhanced Service Mapping for RPC over DDS

This specification includes two mappings for interfaces to DDS topics and types called “Basic” and “Enhanced.”

 The Basic service mapping enables RPC over DDS functionality without any extensions to the [DDS] and
[DDS-RTPS] specifications. It uses explicit request-id for correlation.

 The Enhanced service mapping uses implicit request-id for correlation, allows use of the additional data-types
defined in DDS-XTypes, uses DDS-XTypes for type-compatibility checking, and provides more robust service
discovery.

The following table summarizes the key aspects of the Basic and Enhanced service mapping profiles.

Mapping Aspect Basic Service Mapping Profile Enhanced Service Mapping Profile

Correlation Information
(request-id)

Explicitly added to the data-type Implicit. Correlation Information
appears on the Sample meta-data.

Topic Mapping One request topic and one reply topic
per interface. 2*N for a hierarchy of N
interfaces.

One request and one reply topic per
interface independent of interface
hierarchies.

Type Mapping Synthesized types compatible with
DDS 1.3 compliant implementations.

Use facilities of DDS-XTypes for
type descriptions, annotations, and
type-compatibility checks.

Discovery No special extensions. Robust service discovery as described
in sub clause 7.6.

7.2.5 Interoperability

Client and service interoperability requires both sides to use the same service mapping. Basic and Enhanced Service
Mappings can be mixed in an application but for any given service both client and the service side must use the same
service mapping. It is therefore considered part of the service interface contract.

The Basic and Enhanced Service mappings are independent of the language binding style. For instance, it is possible for
clients and service implementations to communicate using different language binding styles as long as their service
mappings match.

16 Remote Procedure Call over DDS, v1.0

7.3 Service Definition

A service definition is provided using the following two alternatives.

a) Interface: An interface is a description of the methods/operations and attributes the service implements. It is a
provided interface. A service may implement one or more interfaces related by inheritance (single or multiple).

b) A Pair of Types: A service specification may simply include a pair of request and reply types. The request and
reply types may be the same. The pair of types may not correspond to an interface. However, all service
descriptions correspond to a pair of types. In that sense the pair-of-types mechanism of defining a service is
strictly more general than interfaces.

This specification uses OMG Interface Definition Language (IDL) or Java 1.5 as a concrete syntax to define services
with either of the mechanisms above.

7.3.1 Service Definition in IDL

This specification uses the interface definition syntax specified in [IDL]. Additionally, annotations are supported to
provide extra information. Service definition in IDL does not specify whether an operation is synchronous or
asynchronous, which is a run-time concern and not intrinsic to the interface contract. Therefore, this specification
provides synchronous and asynchronous invocation capabilities only at the language binding level.

Non-normative: The definition of the IDL syntax as part of this specification is a transient situation. Once IDL 4.0 is
adopted this specification will be able to simply reference the appropriate IDL syntax building blocks defined in IDL
4.0.

7.3.1.1 Service Definition in IDL for the Basic Service Mapping

The BNF grammar used to define the IDL syntax uses the same production rules as in sub clause 7.4 (IDL Grammar) in
the [IDL] specification and sub clause 7.3.1.12.1 (New Productions) of the [DDS-XTypes] specification.

The IDL 3.5 grammar shall be modified with the productions shown below. These productions are numbered using the
same numbers as in the IDL 3.5 document.

Note, [] represents optional.

(1) <specification> ::= <definition>+

(2) <definition> ::= <type_dcl> “;” <ann_appl_post>

 | <const_dcl> “;”

 | <except_dcl> “;”

 | <interface> “;”

 | <module> “;”

 | <value> “;”

 | <annotation> “;” <ann_appl_post>

(7) <interface_header> ::= [<annotation>] “interface” <identifier>

 [<interface_inheritance_spec>]

Remote Procedure Call over DDS, v1.0 17

(9) <export> ::= <attr_dcl> “;”

 | <op_dcl> “;”

(42) <type_dcl> ::= [<annotation>] “typedef” <type_declarator>

 | [<annotation>] <struct_type>

 | <union_type>

 | <enum_type>

 | “native” <simple_declarator>

 | <constr_forward_decl>

(87) <op_dcl> ::= [<annotation>] <op_type_spec> <identifier> <parameter_dcls>

 [<raises_expr>]

(91) <param_dcl> ::= [<annotation>] <param_attribute> <param_type_spec>

 <simple_declarator>

(104) <readonly_attr_spec> ::= [<annotation>] “readonly” “attribute”

 <param_type_spec> <readonly_attr_declarator>

(106) <attr_spec> ::= [<annotation>] “attribute” <param_type_spec>

 <attr_declarator>

The <annotations> production used above is defined in sub clause 7.3.1.12.1 of the [DDS-XTypes] specification.

Design Rationale (non-normative)

The table below provides the justification for the modified production rules.

Reference Origin Explanation

(1)
IDL 3.5 This is the root production rule. Modified to remove the CORBA-specific import

statement.

(2)
IDL 3.5 Modified to remove the productions for related to CORBA Repository Identity

and CCM. Specifically <type_id_dcl>, <type_prefix_dcl>, <event>,
<component>, and <home_dcl>.

The modified rule also adds support for annotation declarations.

The <annotation> and <ann_appl_post> productions are defined in sub clause
7.3.1.12.1 of the [DDS-XTypes] specification.

(7)
IDL 3.5 Modified to add support for interface annotations.

The <annotation> production is defined in sub clause 7.3.1.12.1 of the [DDS-
XTypes] specification.

18 Remote Procedure Call over DDS, v1.0

(9)
IDL 3.5 Modified to remove productions related to CORBA Repository Identity.

Specifically <type_id_dcl> and <type_prefix_dcl>

This production also removes the rules that allow embedding declarations of
types, constants, and exceptions within an interface. Specifically the <type_dcl>,
| <const_dcl>, and | <except_dcl>.

(42)
IDL 3.5 Added <annotation> production at the beginning of struct and typedef

declarators. This allows a structured type to be a request or reply type.

(87)
IDL 3.5 Modified to add support for annotations on operations. Removed the CORBA-

specific “oneway” modifier and the “context” expressions.

(91)
IDL 3.5 Modified to add support for annotations on the operation parameters.

(104)
IDL 3.5 Modified to add support for annotations on read-only attributes.

(106)
IDL 3.5 Modified to add support for annotations on attributes.

DDS-XTypes
[DDS-
XTypes] sub
clause
7.3.1.12.2

These productions add support for annotating types and the new IDL types
defined in the [DDS-XTypes] specification.

The use of the <annotations> production from DDS-XTypes does not mean that the underlying DDS implementation
needs to support DDS-XTypes. The Basic Service Mapping uses annotations only for interface declarations and not on
regular type declarations. These interface annotations are resolved in the mapping such that the resulting IDL used by
DDS does not have annotations.

7.3.1.2 Service Definition in IDL for the Enhanced Service Mapping

The Enhanced Service Mapping allows use of the full type-system defined in the DDS-XTypes specification in the
declaration of interface attributes, operation parameters, and return values.

The Enhanced Service Mapping extends the IDL productions defined in the Basic Service Mapping with all the
productions (i.e., not just related to annotations) in sub clause 7.3.1.12.1 (New Productions) of the DDS-XTypes
specification.

In addition, the Enhanced Service Mapping also uses all the modified productions defined in sub clause 7.3.1.12.2
(Modified Productions) of the [DDS-Xtypes] specification with the exception of the production for <definition>, which
shall remain, as defined for the Basic Service Mapping.

7.3.1.3 Example of an Interface in IDL (Non-normative)

module robot {

exception TooFast {};

enum Command { START_COMMAND, STOP_COMMAND };

struct Status {

 string msg;

};

@DDSService

Remote Procedure Call over DDS, v1.0 19

interface RobotControl {

 void command(Command com);

 float setSpeed(float speed) raises (TooFast);

 float getSpeed();

 void getStatus(out Status status);

};

}; //module robot

7.3.1.4 Service Definition in IDL Using a Pair of Types

A service definition may simply include a pair of types, which may be the same. The request and reply types shall be
marked as such using the @RPCRequestType and @RPCReplyType annotations. Only struct types shall be
marked as request/reply types.

In the Basic Service Mapping, the types annotated as @RPCRequestType shall have a member named header of
type dds::rpc::RequestHeader and the types annotated as @RPCReplyType shall have a member named
header of type dds::rpc::RequestHeader. See sub clause 7.5.1.1.1 Common Types for the request and reply
header types.

When using the Enhanced Service Mapping, the annotations are not necessary and the special data members must not be
defined.

7.3.2 Service Definition in Java

The BNF grammar used to define the Java syntax used in [Java-Grammar]. Conforming implementations shall support
the syntax generated by the following modified productions from the Java grammar.

Note, [] represents optional and { } represents zero or more occurrences.

InterfaceDeclaration:

NormalInterfaceDeclaration

NormalInterfaceDeclaration:

 interface Identifier [extends TypeList] InterfaceBody

InterfaceBody:

 { InterfaceBodyDeclaration {InterfaceBodyDeclaration} }

InterfaceMemberDecl:

 InterfaceMethodOrFieldDecl

 void Identifier VoidInterfaceMethodDeclaratorRest

 InterfaceDeclaration

 ClassDeclaration

NormalClassDeclaration:

 class Identifier [extends Type] [implements TypeList] ClassBody

ClassBody:

20 Remote Procedure Call over DDS, v1.0

 { ClassBodyDeclaration {ClassBodyDeclaration} }

ClassBodyDeclaration:

 ;

 {Modifier} MemberDecl

MemberDecl:

 MethodOrFieldDecl

MethodOrFieldRest:

 VariableDeclaratorRest

Design Rationale (non-normative)

The table below provides the justification for the modified production rules.

Name Origin Explanation

InterfaceDeclaration Java 1.5 Removed annotation type declaration.

NormalInterfaceDeclaration Java 1.5 Removed generic type parameters.

InterfaceBody Java 1.5 At least one method must be present in an interface.
Note, Java allows empty (marker) interfaces.

InterfaceMemberDecl Java 1.5 Removed generic method declaration.

NormalClassDeclaration Java 1.5 Removed generic type parameters.

ClassBody Java 1.5 At least one data member must be defined in the class
body. Note, Java allows empty classes.

ClassBodyDeclaration Java 1.5 Removed Java’s static block support.

MemberDecl Java 1.5 Removed method (generic or otherwise) declarator,
constructor declarator, nested interface and class
declarators. This specification shall support data
member declarations inside a Java class.

MethodOrFieldRest Java 1.5 Removed method declarator. This specification shall
support data member declarations inside a Java class.

In, out, and inout parameters are specified using the @in, @out and @inout annotations. By default the parameters are
read only, and the use of @in is optional. One or more operations may be marked oneway using the @oneway
annotation.

Remote Procedure Call over DDS, v1.0 21

7.3.2.1 Example of an interface in Java (Non-normative)

Public class TooFast extends Exception

{

}

@DDSService

public interface RobotControl

{

 void command(Command com);

 float setSpeed(float speed) throws (TooFast);

 float getSpeed();

 void getStatus(out Status status);

};

7.3.2.2 Service Definition in Java Using a Pair of Types

A service definition may simply include a pair of types, which may be the same. The request and reply types shall be
marked as such using the @RPCRequestType and @RPCReplyType annotations. Only class types shall be
marked as request/reply types.

In the Basic Service Mapping, the types annotated as @RPCRequestType shall have a member named header of
type dds.rpc.RequestHeader and the types annotated as @RPCReplyType shall have a member named
header of type dds.rpc.RequestHeader. See sub clause 7.5.1.1.1 Common Types for the request and reply
header types.

When using the Enhanced Service Mapping, the annotations are not necessary and the special data members must not be
defined.

7.4 Mapping Service Specification to DDS Topics

7.4.1 Rules for Synthesizing DDS Topic Names

Request and reply topic names use the following BNF grammar.

<topic_name> ::= <interface_name> “_” <service_name> “_” [“Request” | “Reply”]

 | <user_def_alpha_num>

<service_name> ::= “Service”

 | <user_def_alpha_num>

<user_def_alpha_num> ::= ^[[:alnum:]_]+$

Topic name is either a user-defined string literal or a composite string consisting <interface_name> and
<service_name>. The <interface_name> non-terminal represents the fully-qualified name of the interface, which is
captured automatically for interface-based service definitions. A fully qualified interface-name includes concatenation of
module names separates by underscores followed by the name of the interface. The <service_name> non-terminal

22 Remote Procedure Call over DDS, v1.0

may be user-supplied. When it is not, it defaults to “Service.” If the <service_name> is specified by the user,
“Request” and “Reply” topic suffixes are used automatically. When <service_name> and user-defined topic names
are both provided by the user, the user-defined topic names take precedence.

For the request-reply style language binding, <interface_name> and the following underscore shall not be captured
automatically.

Note that the <user_def_alpha_num> non-terminal is a regular expression that includes alphanumeric characters (a-
zA-Z0-9), underscore and space.

7.4.2 Basic Service Mapping

The Basic Service mapping maps every interface to a request topic and a reply topic. It provides three alternative
mechanisms to specify the names of the topics. It is possible to use different mechanism at the client and server sides.
However, to ensure successful end-point matching, the topic names must match.

In case of an interface inheritance hierarchy, including multiple inheritance, each interface in the hierarchy shall be
mapped to its own pair of request and reply topics.

7.4.2.1 Default Topic Names

The default topic names are synthesized using the rules defined in sub clause 7.4.1 Rules for Synthesizing DDS Topic
Names.

7.4.2.2 Specifying Topic Names using Annotations

Interfaces and the request/reply types may be annotated to specify the names of the request and reply topics.
@DDSRequestTopic and @DDSReplyTopic annotations are pre-defined for this purpose. They are defined using
the [DDS-XTypes] notation as follows:

module dds {

module rpc {

@Annotation

local interface DDSRequestTopic {

 attribute String name;

};

 @Annotation

local interface DDSReplyTopic {

 attribute String name;

};

};

};

Note that support for [DDS-XTypes] in the underlying DDS implementation is not required to interpret the annotations.
These annotations simply control the generated DDS wrapper code.

Remote Procedure Call over DDS, v1.0 23

Non-Normative Example: The RobotControl interface may use one or both of the annotations shown below.

@DDSService

@DDSRequestTopic (name=“RobotRequestTopic”)

@DDSReplyTopic (name=”RobotReplyTopic”)

interface RobotControl

{

 void command(Command.com);

 ...

}

7.4.2.3 Specifying Topic Names at Run-time

DDS Topic names may also be specified at run-time. The ServiceParams, ClientParams, RequesterParams,
and ReplierParams classes (7.11.1.4 Summary of C++ Request-Reply Style Language Binding) provide
functions to specify the service name and the topic name suffix. When used as such, the rules defined in 7.4.1 Rules for
Synthesizing DDS Topic Names apply.

When more than one method of specifying topic names is used, the run-time specification shall take precedence over the
IDL annotations and the default mechanism in that order.

7.4.3 The Enhanced Service Mapping

To support single and multiple inheritance of interfaces, the Enhanced Service mapping introduces a notion called “topic
aliases.” A topic-alias is an alternative name for a topic. A topic may have one or more topic aliases. A topic-alias does
not introduce a new topic. It simply indicates the fact that a given topic may be known by different names. Topic aliases
are announced during the endpoint discovery protocol using either of the PublicationBuiltinTopicDataExt
and SubscriptionBuiltinTopicDataExt structures described in 7.6.2.1 Extensions to the DDS Discovery
Builtin Topics.

The Enhanced Service Mapping shall map an interface to exactly one request topic and a reply topic. The names of the
topics are obtained using the rules defined in 7.4.1 Rules for Synthesizing DDS Topic Names. In case of single and
multiple inheritance, the request and reply topics shall additionally have topic-aliases, which are obtained using the rules
in sub clause 7.4.1 for each parent interface.

Non-normative example: The following example shows the topic names and topic-aliases for the Calculator
hierarchy while using the function-call style language binding. Depending upon whether the user has supplied the service
name and/or topic-suffixes, different outcomes are produced.

24 Remote Procedure Call over DDS, v1.0

interface Adder { ... };

interface Subtractor { ... };

interface Calculator : Adder, Subtractor { ... }

Topic name Topic aliases

Everything
Default

Request Calculator_Service_Request Adder_Service_Request,

Subtractor_Service_Request

Reply Calculator_Service_Reply Adder_Service_Reply,

Subtractor_Service_Reply

User-
defined
service
name

Request Calculator_${servicename}_Request Adder_${servicename}_Request,
Subtractor_${servicename}_Request

Reply Calculator_${servicename}_Reply Adder_${servicename}_Reply,
Subtractor_${servicename}_Reply

User-
defined
topic
suffixes

Request Calculator_${topic-suffix-request} Adder_${topic-suffix-request},

Subtractor_${topic-suffix-request}

Reply Calculator_${topic-suffix-reply} Adder_${topic-suffix-reply},

Subtractor_${topic-suffix-reply}

For the request-reply style language binding, the interfaces name shall not be annexed automatically.

7.4.3.1 Default Topic Names

The default topic names are synthesized as described above.

7.4.3.2 Specifying Topic Names Using Annotations

Interfaces and the request/reply types may be annotated to specify the names of the request and reply topics. The same
built-in @DDSRequestTopic and @DDSReplyTopic annotations defined in the Basic Service Mapping may be used
for this purpose.

7.4.3.3 Specifying Topic Names at Run-time

DDS Topic names may also be specified at run-time. The ServiceParams, ClientParams, RequesterParams,
and ReplierParams classes (7.11.1.4 Summary of C++ Request-Reply Style Language Binding) provide functions
to specify the service name and the topic name suffix. When used as such, the rules defined in 7.4.1 Rules for
Synthesizing DDS Topic Names apply.

When more than one method of specifying topic names is used, the run-time specification shall take precedence over the
IDL annotations and the default mechanism in that order.

Remote Procedure Call over DDS, v1.0 25

7.5 Mapping Service Specification to DDS Topics Types

The request and reply DDS Topic types shall be synthesized from the interface definition.

7.5.1 Interface Mapping

7.5.1.1 Basic Service Mapping of Interfaces

The Basic Service Mapping maps interfaces to data-types that can be used by DDS version 1.3 compliant
implementations, which may lack support for the [DDS-XTypes] specification.

7.5.1.1.1 Common Types

All the generated types as per the Basic Service Mapping use a set of common types. Types EntityId_t, GUID_t,
and SequenceNumber_t are defined in the [RTPS] specification.

module dds {

 typedef octet GuidPrefix_t[12];

 struct EntityId_t {

 octet entityKey[3];

 octet entityKind;

 };

 struct GUID_t {

 GuidPrefix_t guidPrefix;

 EntityId_t entityId;

 };

 struct SequenceNumber_t {

 long high;

 unsigned long low;

 };

 struct SampleIdentity {

 GUID_t writer_guid;

 SequenceNumber_t sequence_number;

 };

module rpc {

26 Remote Procedure Call over DDS, v1.0

typedef octet UnknownOperation;

typedef octet UnknownException;

typedef octet UnusedMember;

enum RemoteExceptionCode_t

{

 REMOTE_EX_OK,

 REMOTE_EX_UNSUPPORTED,

 REMOTE_EX_INVALID_ARGUMENT,

 REMOTE_EX_OUT_OF_RESOURCES,

 REMOTE_EX_UNKNOWN_OPERATION,

 REMOTE_EX_UNKNOWN_EXCEPTION

};

typedef string<255> InstanceName;

struct RequestHeader {

 SampleIndentity_t requestId;

 InstanceName instanceName;

};

struct ReplyHeader {

 dds::SampleIdentity relatedRequestId;

 dds::rpc::RemoteExceptionCode_t remoteEx;

};

} // module rpc

} // module dds

7.5.1.1.2 The Hashing Algorithm

In the implied IDL definition in this specification use a HASH function to compute a 32-bit hash of strings. The HASH
function shall use the following pseudo-implementation.

long HASH (string arg)

{

 octet md5_hash [16] ;

 md5_hash = compute_md5 (arg) ;

return md5_hash[0] +

256* md5_hash[1] +

256*256* md5_hash[2] +

Remote Procedure Call over DDS, v1.0 27

 256*256*256* md5_hash[3];

}

Conforming implementation are not required to detect collisions of identifier names of the form *_Hash as in general
they are not detectable because IDL modules can be reopened and a user could add a colliding identifier much later a
service interface is defined. Therefore, this specification does not require detection of collision of const identifier names
for hashes.

7.5.1.1.3 Mapping of Attributes to Implied IDL

Every attribute in the interface maps to implied IDL, using the following rules:

1. Each attribute in an interface maps to a pair of IDL operations.
 get_attribute_<attribute-name> and set_attribute_<attribute-name> in the same interface.
 It is illegal to have an interface with an attribute named <attribute-name> and user-defined operations
 named get_attribute_<attribute-name> and set_attribute_<attribute-name>.

2. The return type of the get_attribute_<attribute-name> operation is the same as the attribute's type.
 This operation accepts no arguments.

3. The return type of the set_attribute_<attribute-name> operation is void and it accepts an argument
 of the same type as that of the attribute and the name of the argument is the same as the attribute name.

4. Exception types listed in getraises, if any, are treated as if the get_attribute_<attribute-name>
 operation has the same set of exceptions listed as raises.

5. Exception types listed in setraises, if any, are treated as if the set_attribute_<attribute-name>
 operation has the same set of exceptions listed as raises.

7.5.1.1.4 Mapping of Operations to the Request Topic Types

The mapping of an interface operation to a request type is defined according to the following rules. In these rules the
token ${interfaceName} shall be replaced with the name of the interface and the token ${operationName}_shall be
replaced with the name of the operation. The substituted names are not fully qualified (i.e., any module prefixes shall be
removed).

1. Each operation in the interface shall map to an In structure with name “${interfaceName}_$
 {operationName}_In.”

2. The In structure shall be defined within the same module as the original interface.

3. The In structure shall contain as members the in and inout parameters defined in the operation signature.

a. The members shall appear in the same order as the parameters in the operation, starting
 from the left.

b. The names of the members shall be the same as the formal parameter names.

c. If an operation has no in and inout parameters the resulting structure shall contain a
 single member of type UnusedMember and name “dummy.”

Non-normative Example: The operations in the RobotControl interface defined in sub clause 7.3.1.3 shall map to
the following In structures.

module robot {

struct RobotControl_command_In {

 Command com;

28 Remote Procedure Call over DDS, v1.0

};

struct RobotControl_setSpeed_In {

 float speed;

};

struct RobotControl_getSpeed_In {

 dds::rpc::UnusedMember dummy;

};

struct RobotControl_getStatus_In {

 dds::rpc::UnusedMember dummy;

};

}

7.5.1.1.5 Mapping of Operations to the Reply Topic Types

Each operation in the interface shall map to an Out structure and a Result union.The following rules define the Out
structure.

1. The name of the Out structure shall be “${interfaceName}_${operationName}_Out.”

2. The Out structure shall be defined within the same module as the original interface.

3. The Out structure shall contain as members the out and inout parameters defined in the operation signature.
 In addition it may contain a member named “return_.”

a. The Out structure shall include one member for each out and inout parameter in the
 operation signature.

i. The members shall appear in the same order as the parameters in the operation,
 starting from the left.

ii. The name of the members shall be the same as the formal parameter names.

b. If the operation defines a non-void return value the Out structure shall have its last member
 named “return_.” The type of the “return_” member shall be the return type of the operation.
 In the case where the function does not define a return value this member shall not be present. If an

 operation has an out argument named return_ and the operation has a regular return value, the
 regular return value in the Out structure shall be represented as return_N member of the
 appropriate type where N is the first integer in the range 1 to 2^31 that avoids the collision.

c. If the operation has no return value, no out/inout parameters, the Out structure shall contain a single
 member named “dummy” of type dds::rpc::UnusedMember.

Non-normative Example: The operations defined in the RobotControl interface defined in 7.3.1.3 Example of an
Interface in IDL (Non-normative) map to the following Out structures.

module Robot {

struct RobotControl_command_Out {

 dds::rpc::UnusedMember dummy;

};

Remote Procedure Call over DDS, v1.0 29

struct RobotControl_setSpeed_Out {

 float return_;

};

struct RobotControl_getSpeed_Out {
 float return_;
};

struct RobotControl_getStatus_Out {
 Status status;
};

}

The following rules define the Result union:

1. The Result union name shall be “${interfaceName}}_${operationName}_Result.”

2. The Result union discriminator type shall be long.

3. The Result union shall have a case with label dds::RETCODE_OK which is used to represent a
 successful return.

a. This case label shall contain a single member with name “result” and type
 ${interfaceName}_${operationName}_Out.

4. For each exception type raised by the operation,

a. A constant of type long and with name “${exceptionType}_Ex_Hash” shall be
 available in the same namespace as the interface is defined in.

b. The value of the constant shall be the HASH of the fully qualified name of the exception
 type where module separator to be used is “::” (2 colons).

5. The union shall have a case label for each exception declared as a possible outcome of the operation.

a. The integral value of the case label shall be ${exceptionType}_Ex_Hash.

b. The case label shall contain a single member with name synthetized as the lower-case of
 the exception name with the suffix “_ex” added.

c. The type associated with the case member shall be the exception type.

Non-normative Example: The operations defined in the RobotControl interface defined in 7.3.1.3 Example of an
Interface in IDL (Non-normative) map to the following Result unions.

module robot {

const long TooFast_Ex_Hash = HASH (“TooFast”);

union RobotControl_command_Result switch(long)

{

case dds::RETCODE_OK:

RobotControl_Command_Out result;

};

union RobotControl_setSpeed_Result switch(long)

30 Remote Procedure Call over DDS, v1.0

{

case dds::RETCODE_OK:

RobotControl_setSpeed_Out result;

case TooFast_Ex_Hash:

TooFast toofast_ex;

};

union RobotControl_getSpeed_Result switch(long)

{

case dds::RETCODE_OK:

RobotControl_getSpeed_Out result;

};

union RobotControl_getStatus_Result switch(long)

{

case dds::RETCODE_OK:

RobotControl_getStatus_Out result;

};

};// module robot

7.5.1.1.6 Mapping of Interfaces to the Request Topic Types

Each interface shall map to a Call union and a Request structure. The following rules define the Call union:

1. The Call union name shall be “${interfaceName}_Call” in the same module as the interface.

2. The Call union discriminator type shall be of type long.

3. The Call union shall have a default case label containing a member named “unknownOp” of type
 dds::rpc::UnknownOperation. [Non-normative design rationale: Due to interface evolution
 a client that uses new interface may end up calling a service that implements a previous version of the
 interface. In that case, the discriminator value will not match any of the existing cases and hence will
 default to unknown, which should be recognized by the service implementation.]

4. For each operation in the interface, an integral constant of type long and name “$(interfaceName}_$
 {operationName}_Hash” shall be present in the same module as the interface. The value of this constant
 is the HASH of unqualified ${operationName}.

5. The Call union shall have a case label for each operation in the interface.

a. The integral value of the case label shall be the HASH of ${operationName}.

b. The member name for the case label shall be the operation name.

c. The type for the case label member shall be ${interfaceName}_${operationName}_In as
 defined in sub clause 7.5.1.1.2 The Hashing Algorithm.

Remote Procedure Call over DDS, v1.0 31

Non-normative Example: The RobotControl interface defined in 7.3.1.3 Example of an Interface in IDL (Non-
normative) shall map to the following union RobotControl_Call.

module robot {

const long RobotControl_command_Hash = HASH(“command”);

const long RobotControl_setSpeed_Hash = HASH(“setSpeed”);

const long RobotControl_getSpeed_Hash = HASH(“getSpeed”);

const long RobotControl_getStatus_Hash = HASH(“getStatus”);

union RobotControl_Call switch(long)

{

default

dds::rpc::UnknownOperation unknownOp;

case RobotControl_command_Hash:

RobotControl_command_In command;

case RobotControl_setSpeed_Hash:

RobotControl_setSpeed_In setSpeed;

case RobotControl_getSpeed_Hash:

RobotControl_getSpeed_In getSpeed;

case RobotControl_getStatus_Hash:

RobotControl_getStatus_In getStatus;

};

}

The following rules define the Request structure:

1. The name of Request structure shall be “${interfaceName}_Request” in the same module as the interface.

2. The Request structure shall have two members:

a. The first member of the Request structure shall be named “header” and be of type
 dds::rpc::RequestHeader.

b. The second member of the Request structure shall be named “data” and be of type $
 {interfaceName}_Call.

32 Remote Procedure Call over DDS, v1.0

Non-normative Example: The RobotControl interface defined in 7.3.1.3 Example of an Interface in IDL (Non-
normative) shall map to RobotControl_Request defined below.

Module robot {

struct RobotControl_Request {

dds::rpc::RequestHeader header;

RobotControl_Call data;

};

}

7.5.1.1.7 Mapping of Interfaces to the Reply Topic Types

Each interface shall map to a Return union and a Reply structure.

The following rules define the Return union:

1. The Return union name shall be “${interfaceName}_Return” in the same module as the interface.

2. The Return union discriminator type shall be of type long.

3. The Return union shall have a default case label containing a member named “unknownOp” of type
 dds::rpc::UnknownOperation. [Non-normative rationale: Unknown operation errors should
 not be reported back using this member. The ReplyHeader.remoteEx member should be used for
 that. The only reason the unknownOp member is used because it is a good practice to define a default
 for a union.]

4. For each operation,

a. A constant of type long and with name “${interfaceName}_${operationName}_Hash” shall
 be available in the same namespace as the interface is defined in.

b. The value of the constant shall be the HASH of the name of the operation (not qualified).

5. The Return union shall have a case label for each operation in the interface:

a. The integral value of the case label shall be ${interfaceName}_${operationName}_Hash as
 computed using the HASH algorithm of the unqualified name of the operation.

b. The member name for the case label shall be the operation name and the type shall be $
 {interfaceName}_${operationName}_Result.

Non-normative Example: The RobotControl interface defined in 7.3.1.3 Example of an Interface in IDL (Non-
normative) shall map to the union RobotControl_Return defined below:

union RobotControl_Return switch (long)

{

default:

dds::rpc::UnknownOperation unknownOp;

case RobotControl_command_Hash:

RobotControl_command_Result command;

Remote Procedure Call over DDS, v1.0 33

case RobotControl_setSpeed_Hash:

RobotControl_setSpeed_Result setSpeed;

case RobotControl_getSpeed_Hash:

RobotControl_getSpeed_Result getSpeed;

case RobotControl_getStatus_Hash:

RobotControl_getStatus_Result getStatus;

};

The following rules define the Reply structure:

1. The Reply structure name shall be “${interfaceName}_Reply,”.

2. The Reply structure shall be defined within the same module as the original interface.

3. The Reply structure shall have two members:

a. The first member of the Reply structure shall be named “header” and be of type
 dds::rpc::ReplyHeader.

b. The second member of the Reply type shall be named “data” and be of type $
 {interfaceName}_Return.

Non-normative Example: The RobotControl interface defined in 7.3.1.3 Example of an Interface in IDL (Non-
normative) shall map to the structure RobotControl_Reply defined below:

struct RobotControl_Reply {

dds::rpc::ReplyHeader header;

RobotControl_Return reply;

};

7.5.1.1.8 Mapping of Inherited Interfaces to the Request and Reply Topic Types

Inheritance has no effect on the generated structures and unions. A DDS service that implements a derived interface uses
two topics for every interface in the hierarchy. As a result, a service implementing a hierarchy of N interfaces, shall have
N request topics and N reply topics. Consequently, it will necessitate N DataWriters and N DataReaders. The types and
the topic names are obtained as specified in 7.4.2 Basic Service Mapping. The Request and Reply types for a derived
interface includes operations defined only in the derived interface.

Non-normative Example: The Basic Service Mapping for the Calculator interface is shown below.

interface Adder {

long add(long a, long b);

};

interface Subtractor {

34 Remote Procedure Call over DDS, v1.0

long sub(long a, long b);

};

interface Calculator : Adder, Subtractor {

void on();

void off();

};

struct Adder_add_In {

long a;

long b;

};

struct Adder_add_Out {

long return_;

};

union Adder_add_Result switch (long) {

 default:

 dds::rpc::UnknownException unknownEx;

 case dds::rpc::REMOTE_EX_OK:

 Adder_add_Out result;

};

const long Adder_add_Hash = HASH(“add”);

union Adder_Call switch (long) {

default:

dds::rpc::UnknownOperation unknownOp;

case Adder_add_Hash:

Adder_add_In add;

};

struct Adder_Request {

dds::rpc::RequestHeader header;

Adder_Call data;

};

Remote Procedure Call over DDS, v1.0 35

union Adder_Return switch (long) {

default:

UnknownOperation unknownOp;

case Adder_add_Hash:

Adder_add_Result add;

};

struct Adder_Reply {

dds::rpc::ReplyHeader header;

Adder_Return data;

};

struct Subtractor_sub_In {

long a;

long b;

};

struct Subtractor_sub_Out {

long return_;

};

union Subtractor_sub_Result switch (long) {

 default:

dds::rpc::UnknownException unknownEx;

case dds::rpc::REMOTE_EX_OK:

Subtractor_sub_Out result;

};

const long Subtractor_sub_Hash = HASH (“sub”) ;

union Subtractor_Call switch (long) {

default:

dds::rpc::UnknownOperation unknownOp;

36 Remote Procedure Call over DDS, v1.0

case Subtractor_sub_Hash:

Subtractor_sub_In sub;

};

struct Subtractor_Request {

dds::rpc::RequestHeader header;

Subtractor_Call data;

};

union Subtractor_Return switch (long) {

default:

dds::rpc::UnknownOperation unknownOp;

case Subtractor_sub_Hash:

Subtractor_sub_Result sub;

};

struct Subtractor_Reply {

dds::rpc::ReplyHeader header;

Subtractor_Return data;

};

struct Calculator_on_In {

dds::rpc::UnusedMember dummy;

};

struct Calculator_off_In {

dds::rpc::UnusedMember dummy;

};

struct Calculator_on_Out {

dds::rpc::UnusedMember dummy;

};

union Calculator_on_Result switch (long) {

default:

dds::rpc::UnknownException unknownEx;

Remote Procedure Call over DDS, v1.0 37

case dds::rpc::REMOTE_EX_OK:

Calculator_on_Out result;

};

struct Calculator_off_Result switch (long) {

default:

dds::rpc::UnknownException unknownEx;

case dds::rpc::REMOTE_EX_OK:

Calculator_off_Out result;

};

const long Calculator_on_Hash = HASH(“on”);

const long Calculator_off_Hash = HASH(“off”);

union Calculator_Call switch (long) {

default:

dds::rpc::UnknownOperation unknownOp;

case Calculator_on_Hash:

Calculator_on_In on;

case Calculator_off_Hash:

Calculator_off_In off;

};

struct Calculator_Request {

dds::rpc::RequestHeader header;

Calculator_Call data;

};

union Calculator_Return switch (long) {

default:

dds::rpc::UnknownOperation unknownOp;

38 Remote Procedure Call over DDS, v1.0

case Calculator_on_Hash:

Calculator_on_Result on;

case Calculator_off_Hash:

Calculator_off_Result off;

};

struct Calculator_Reply {

dds::rpc::RequestHeader header;

Calculator_Return data;

};

7.5.1.2 Enhanced Service Mapping of Interfaces

To accurately capture the semantics of the method call invocation and return, this specification defines additional built-in
annotations. The following annotations are applicable for the Enhanced Service Mapping only. The Enhanced Service
Mapping uses the [DDS-XTypes] type system in addition to the annotations defined in 7.5.1.2.1 Annotations for the
Enhanced Service Mapping.

7.5.1.2.1 Annotations for the Enhanced Service Mapping

All annotations below are defined in the dds::rpc module.

7.5.1.2.1.1 @Choice Annotation

This specification defines an @Choice annotation to capture the semantics of a union without using a discriminator.
Using unions to indicate which operation is being invoked is brittle. Operations in an interface have set semantics and
have no ordering constraints. Union, however, enforces strict association with discriminator values, which are too strict
for set semantics. Further, use of unions leads to ambiguities in case of multiple inheritance of interfaces.

The @Choice annotation is a placeholder annotation defined as follows.

@Annotation local interface Choice { };

The @Choice annotation is allowed on structures only. When present, the structure shall be interpreted as if the
structure had the @Extensibility(MUTABLE_EXTENSIBILITY) annotation and all the members of the structure
had the @Optional annotation. Furthermore, exactly one member shall be present at any given time.

This specification uses the semantics of @Choice for the return topic type and to differentiate between normal and
exceptional return from a remote method call.

7.5.1.2.1.2 @Autoid Annotation

The @Autoid annotation shall be allowed on structures and data members. The structures of the topic types synthesized
from the interface shall be annotated as @Autoid.

The @Autoid annotation indicates that the member-id of each member shall be computed using the HASH algorithm
(defined in 7.5.1.1.2 The Hashing Algorithm) applied to the name of the member. As IDL does not support
overloading, no two members will have the same name. Consequently, the member ids of two members will be different,

Remote Procedure Call over DDS, v1.0 39

unless a hash-collision occurs, which shall be detected by the code generator that processes the IDL interface. Using the
MD5 hash for the member id also ensures that the topic types synthesized from the interface definitions are not subject to
the order of operation declaration or interface inheritance. Note that the order of interface inheritance is irrelevant to the
semantics of an interface. Further, it supports interface evolution (including new operations, operation reorder and new
base interfaces) without changing the member ids. The collisions of member-ids produced as a result of @Autoid
annotation must be detected. If a structure annotated as @Autoid has a hash collision due to two or more member
names map to the same hash-code, the collision shall be reported as an error.

7.5.1.2.1.3 @Empty Annotation

This specification uses empty IDL structures to capture operations that do not accept any parameters. IDL does not
support empty structures. @Empty annotation has been introduced to simplify the mapping rules and support operations
that take no arguments. Empty structures, however, are used to maintain consistency between the call and return
structures. Furthermore, eliminating empty structures in the synthesized topic types is undesirable because two or more
operations may be empty in which case it becomes ambiguous. The @Empty annotation allows a structure to be empty.
The code synthesized from an empty structure is implementation dependent.

7.5.1.2.1.4 @Mutable Annotation

This annotation shall be allowed on interface operations. It controls the type-mapping for the operation parameters and
return value. By default, adding and removing operation parameters would break compatibility with the previous
interface. The use of the @Mutable operation changes the type declaration of the synthesized call and return structures so
that they are declared with the @Extensibility(MUTABLE_EXTENSIBILITY) annotation.

7.5.1.2.2 Mapping of Operations to the Request Topic Types

The mapping for interface operations is the same as defined in 7.5.1.1.2 The Hashing Algorithm with the following
additional rules.

If the operation has the @Mutable annotation, then the synthesized In structure shall have the annotation
@Extensibility(MUTABLE_EXTENSIBILITY).

For example, please see sub clause 7.5.1.1.2 The Hashing Algorithm.

7.5.1.2.3 Mapping of Operations to the ReplyTopic Types

Each operation in the interface shall map to an Out structure and a Result structure. The rules for mapping the Out
structure are identical to that defined in 7.5.1.1.5 Mapping of Operations to the Reply Topic Types with the following
additional rule.

1. If the operation has the @Mutable annotation, then the synthesized Out structure shall have the
 annotation @Extensibility(MUTABLE_EXTENSIBILITY).

The mapping rules for the Result structure are as follows.

2. The Result structure name shall be “${interfaceName}_${operationName}_Result.”

3. The Result structure shall have the annotation @Choice.

4. The Result structure shall have the annotation @Autoid.

5. The Result structure shall have a first member with name “result” and with type ${interfaceName}_$
 {operationName}_Out.

6. The Result structure name shall have members for each exception an operation may raise.

a. The member name shall be synthetized as the lower-case version of the exception
 name with the suffix “_ex” added.

b. The type associated with the member shall be the exception type.

7. If the operation has the @Mutable annotation, then the synthesized Result structure shall have the
 annotation @Extensibility(MUTABLE_EXTENSIBILITY).

40 Remote Procedure Call over DDS, v1.0

Non-normative example: The operations defined in the RobotControl interface defined earlier map to the following
Result structures.

@Choice @Autoid

struct RobotControl_command_Result {

RobotControl_command_Out result;

};@Choice @Autoid

struct RobotControl_stop_Result {

RobotControl_getSpeed_Out result;

};

};@Choice @Autoid

struct RobotControl_setSpeed_Result {

RobotControl_setSpeed_Out result;

TooFast toofast_ex;

};

};@Choice @Autoid

struct RobotControl_getSpeed_Result {

RobotControl_getStatus_Out result;

};

7.5.1.2.4 Interface Mapping for the Request Topic Types

Each interface shall map to a Request structure.

The following rules define the Request structure:

1. The Request structure name shall be “${interfaceName}_Request.”

2. The Request structure shall have the @Choice annotation.

3. The Request structure shall have the @Autoid annotation.

4. The Request structure shall contain a member for each operation in the interface.

a. The member name shall be the operation name.

b. The member type shall be ${interfaceName}_${operationName}_In.

Non-normative example: The Robotcontrol interface defined earlier shall result in the RobotControl_Call
structure defined below.

@Choice @Autoid

struct RobotControl_Request {

Remote Procedure Call over DDS, v1.0 41

RobotControl_command_In command;

RobotControl_setSpeed_In setSpeed;

RobotControl_getSpeed_In getSpeed;

RobotControl_getStatus_In getStatus;

};

7.5.1.2.5 Interface Mapping for the Reply Type

Each interface shall map to a Reply structure.

The following rules define the Reply structure. In these rules the token ${interfaceName} shall be replaced with the
name of the interface:

1. The Reply structure name shall be “${interfaceName}_Reply”.

2. The Reply structure shall have the @Choice annotation.

3. The Reply structure shall have the @Autoid annotation.

4. The Reply structure shall contain a member for each operation in the interface.

a. The member name shall be the operation name.

b. The member type shall be ${interfaceName}_${operationName}_Result.

5. The Reply structure shall contain a member named “remoteEx” of type
 dds::rpc::RemoteException_t. If an interface has an operation named remoteEx
 (case-sensitive), the corresponding Reply structure shall contain a member named remoteEx_N and type
 RemoteException_t, where N is the first integer in the range 1 to 2^31 that avoids the collision.

Non-normative example: The RobotService interface defined earlier maps to the following structure.

@Choice @Autoid

struct RobotControl_Reply {

RobotControl_command_Result command;

RobotControl_setSpeed_Result setSpeed;

RobotControl_getSpeed_Result getSpeed;

RobotControl_getStatus_Result getStatus;

dds::rpc::RemoteException_t remoteEx;

};

7.5.1.2.6 Mapping of Inherited Interfaces to Request and Reply Topic Types

A derived interface is interpreted as if all the inherited operations are declared in-place in the derived interface. That is,
the inheritance structure is flattened.

Non-normative Example: The Enhanced Service Mapping rules applied to the Calculator interface hierarchy
results in the following request and reply Topic types.

42 Remote Procedure Call over DDS, v1.0

@Autoid

struct Adder_add_In {

long a;

long b;

};

@Autoid

struct Adder_add_Out {

long return_;

};

@Choice @Autoid

struct Adder_add_Result {

Adder_add_Out result;

};

@Choice @Autoid

struct Adder_Request {

Adder_add_Result add;

};

@Autoid

struct Subtractor_sub_In {

long a;

long b;

};

@Autoid

struct Subtractor_sub_Out {

long return;

};

@Choice @Autoid

struct Subtractor_sub_Result {

Remote Procedure Call over DDS, v1.0 43

Subtractor_sub_Out result;

};

@Choice @Autoid

struct Subtractor_sub_Reply {

Subtractor_sub_Result sub;

dds::rpc::RemoteException_t remoteEx;

};

@Autoid

struct Calculator_on_In {

long dummy;

};

@Autoid

struct Calculator_off_In {

long dummy;

};

@Autoid

struct Calculator_on_Out {

long dummy;

};

@Choice @Autoid

struct Calculator_on_Result {

Calculator_on_Out result;

};

@Autoid

struct Calculator_off_Out {

long dummy;

};

@Choice @Autoid

44 Remote Procedure Call over DDS, v1.0

struct Calculator_off_Result {

Calculator_off_Out result;

};

@Choice @Autoid

struct Calculator_Request {

Adder_add_In add;

Adder_sub_In sub;

Calculator_on_In on;

Calculator_off_In off;

};

@Choice @Autoid

struct Calculator_Reply {

Adder_add_Result add;

Subtractor_sub_Result sub;

Calculator_on_Result on;

Calculator_off_Result off;

dds::rpc::RemoteException_t remoteEx;

};

The Enhanced Service Mapping leverages the assignability rules defined in the [DDS-XTypes] specification to ensure
that the topic types remain compatible in case of inheritance. A client using the base interface can invoke an operation in
a service that implements a derived interface as long as the same topic names are used.

7.5.2 Mapping of Error Codes

Error codes are (conceptually) classified as local and remote. The error codes described in the [DDS] PIM are all local
error codes. This specification further adds remote error codes to communicate service-side error conditions back to the
client. Remote error codes are represented using the RemoteExceptionCode_t IDL enumeration below.

module dds { module rpc {

enum RemoteExceptionCode_t

{

 REMOTE_EX_OK,

 REMOTE_EX_UNSUPPORTED,

Remote Procedure Call over DDS, v1.0 45

 REMOTE_EX_INVALID_ARGUMENT,

 REMOTE_EX_OUT_OF_RESOURCES,

 REMOTE_EX_UNKNOWN_OPERATION,

 REMOTE_EX_UNKNOWN_EXCEPTION

};

} // module rpc

} // module dds

The remote exception codes have the following meanings.

Remote Exception Code Meaning

REMOTE_EX_OK The request was executed successfully.

REMOTE_EX_UNSUPPORTED Operation is valid but it is unsupported (a.k.a. not
implemented).

REMOTE_EX_INVALID_ARGUMENT The value of the parameter passed has an illegal value
(e.g., two options active in a @Choice structure).

REMOTE_EX_OUT_OF_RESOURCES The remote service ran out of resources while processing
the request.

REMOTE_EX_UNKNOWN_OPERATION The operation called is unknown.

REMOTE_EX_UNKNOWN_EXCEPTION A generic, unspecified exception was raised by the service
implementation.

Both local and remote exception codes map to exceptions in the C++ and Java language bindings defined in 7.11
Language Bindings. More specifically, all the local return codes map to exceptions as defined in the [DDS-Cxx-PSM]
and [DDS-Java-PSM] specifications. The remote error codes also map to exceptions (in dds::rpc
namespace/package) and the details are provided in sub clause 7.11 Language Bindings.

7.6 Discovering and Matching RPC Services

7.6.1 Client and Service Discovery for the Basic Service Mapping

The Basic Service Mapping relies on the built-in discovery provided by the underlying [DDS] compliant
implementation. It does not use any extensions to the DDS discovery built-in topics.

A client comprises one (or more) DataWriter to send requests and one (or more) DataReader to receive replies. Similarly,
a service implementation comprises one (or more) DataReader to receive requests and one (or more) DataWriter to send
replies. The built-in publication and subscription topics are used to discover the DataWriter and DataReader at both
sides.

Non-normative Note: Service discovery for the Basic Service Mapping is not robust because discovery race conditions
can cause the service replies to be lost. The request-topic and reply-topic are two different RTPS sessions that are
matched independently by the DDS discovery process. For this reason it is possible for the entities on the request topic to
discover each other before the entities on the reply topic discover each other. If such a situation, if a client makes a
request before the entities over the reply topic are fully discovered, the client may lose the corresponding replies.

46 Remote Procedure Call over DDS, v1.0

7.6.2 Client and Service Discovery for the Enhanced Service Mapping

The Enhanced Service Mapping relies on the built-in discovery service provided by DDS. However, it extends the built-
in publication and subscription topic data to avoid the discovery race conditions.

Non-normative Design Rationale: The discovery race condition is avoided by announcing the pair of DataReader and
DataWriter endpoints (both client-side and service-side) atomically and ensuring that the discovery of entities over the
reply topic is complete before a request is sent or received.

A client must ensure that the client-side DataReader has discovered the service-side DataWriter before writing a request
to the service-side DataReader. This ensures that the replies received by the client-side DataReader are not discarded.

A service must ensure that service-side DataWriter has discovered the client-side DataReader before a request is
accepted by the service-side DataReader. This ensures that the replies in response to a request are not discarded by the
service-side DataWriter.

7.6.2.1 Extensions to the DDS Discovery Builtin Topics

The [DDS] specification includes the DCPSPublication and DCPSSubscription builtin topics and corresponding built-in
data writers and readers. The data type associated with the DCPSPublication built-in Topic is
PublicationBuiltinTopicData. The data type associated with the DCPSSubscription built-in topic is
SubscriptionBuiltinTopicData. Both are defined in sub clause 2.1.5 of the [DDS] specification. This
specification extends both PublicationBuiltinTopicData and SubscriptionBuiltinTopicData.

Non-normative Design Rationale: The extensions specified here are backwards compatible. The [RTPS] specification,
which defines the serialization format of PublicationBuiltinTopicData and
SubscriptionBuiltinTopicData, defines what’s called a ParameterList where each member in the built-in
topic data is serialized using CDR but preceded by a ParameterID and Length of the serialized member. See sub clause
8.3.5.9 of the [RTPS] specification. This serialization format allows the PublicationBuiltinTopicData and
SubscriptionBuiltinTopicData to be extended without breaking interoperability.

7.6.2.1.1 Extended PublicationBuiltin TopicData

This specification defines an extension to the PublicationBuiltinTopicData structure. The member types and
the ParameterID used for the serialization are described below.

Member name Member type Parameter ID name Parameter
ID value

service_instance_name string<256> PID_SERVICE_INSTANCE_NAME 0x0080

related_datareader_key GUID_t PID_RELATED_ENTITY_GUID 0x0081

topic_aliases sequence<string<256>> PID_TOPIC_ALIASES 0x0082

@extensibility(MUTABLE_EXTENSIBILITY)
struct PublicationBuiltinTopicDataExt : PublicationBuiltinTopicData {

@ID(0x0080) string<256> service_instance_name;
@ID(0x0081) GUID_t related_datareader_key;
@ID(0x0082) sequence<string<256>> topic_aliases;

};

Remote Procedure Call over DDS, v1.0 47

The service_instance_name is the instance name specified by the user at the service-side. If none is specified,
there is no default value. Likewise, the client-side DataWriter shall not include service_instance_name.

The topic_aliases are as per defined in 7.4.3 The Enhanced Service Mapping. There is no default value.

The related_datareader_key shall be set and interpreted according to the following rules:

 When not present the default value for the related_datareader_key shall be interpreted as
GUID_UNKNOWN as defined by sub clause 9.3.1.5 of the [RTPS] specification.

 The PublicationBuiltinTopicDataExt that corresponds to the client-side DataWriter used

for sending requests for a service shall have the related_datareader_key set to the

BuiltinTopicKey_t of the client-side DataReader used for receiving the replies.

 The PublicationBuiltinTopicDataExt that corresponds to the service-side DataWriter

used for sending replies shall have the related_datareader_key set to the

BuiltinTopicKey_t of the service-side DataReader used to receive the requests.

7.6.2.1.2 Extended SubscriptionBuiltinTopicData

This specification defines an extension to the SubscriptionBuiltinTopicData structure. The member types and
the ParameterID used for the serialization are described below:

Member name Member type Parameter ID name Parameter
ID value

service_instance_name string<256> PID_SERVICE_INSTANCE_NAME 0x0080

related_datawriter_key GUID_t PID_RELATED_ENTITY_GUID 0x0081

topic_aliases sequence<string<256>> PID_TOPIC_ALIASES 0x0082

@extensibility(MUTABLE_EXTENSIBILITY)
struct SubscriptionBuiltinTopicDataExt : SubscriptionBuiltinTopicData {

@ID(0x0080) string<256> service_instance_name;
@ID(0x0081) GUID_t related_datawriter_key;
@ID(0x0082) sequence<string<256>> topic_aliases;

};

The service_instance_name is the instance name specified by the user at the service-side. If none is specified,
there is no default value. Likewise, the client-side DataReader shall not include service_instance_name.

The topic_aliases are as per defined in sub clause 7.4.3. There is no default value.

The related_datawriter_key shall be set and interpreted according to the following rules:

48 Remote Procedure Call over DDS, v1.0

 When not present the default value for the related_datareader_key shall be interpreted as
GUID_UNKNOWN as defined by sub clause 9.3.1.5 of the [RTPS] specification.

 The SubscriptionBuiltinTopicDataExt that corresponds to the client-side DataReader
used to receive replies shall have the related_datawriter_key set to the
BuiltinTopicKey_t of the client-side DataWriter used to send the requests to the DDS-RPC

Service.

 The SubscriptionBuiltinTopicDataExt that corresponds to the service-side DataReader

used to write replies shall have the related_datawriter_key set to the BuiltinTopicKey_t

of the service-side DataWriter used to receive requests.

7.6.2.2 Enhanced algorithm for Service Discovery

The built-in DDS discovery mechanism ensures that DataWriters discover the matching DataReaders and vice versa.
However to ensure robustness, service discovery must ensure that no replies are lost due to race conditions in the
discovery process of the underlying DDS entities. Additional rules shall be used at the client-side DataWriter and
service-side DataReader:

 The client-side DataWriter (request DataWriter) shall not send out any request to a service DataReader unless
the client-side DataReader (reply DataReader) has discovered and matched the corresponding service
DataWriter (reply DataWriter).

 The service-side DataReader (request DataReader) shall reject requests from a client DataWriter (request
DataWriter) as long as the service-side DataWriter (reply DataWriter) has not discovered and matched the
corresponding client-side DataReader (reply DataReader).

The above rules may be implemented outside “DDS layer” because no discovery algorithm modifications are required in
the underlying DDS implementation to achieve “service discovery” beyond the extensions to the built-in topic data
described in 7.6.2.1 Extensions to the DDS Discovery Builtin Topics.

Remote Procedure Call over DDS, v1.0 49

7.6.2.2.1 Client Matching

Figure 7.3 shows the client-matching algorithm executed at the service side. Client DataWriter and DataReader are
discovered on the service-side using regular DDS discovery but “client matching” does not complete unless the service-
side has discovered both client entities (DataReader and DataWriter). While “client matching” is still in progress,
service-side does not process requests from the client. This behavior is illustrated in Figure 7.3 using a notional local
state called local_mask. At the beginning, the service-side DataReader is enabled with local_mask=All_DW so
that it does not process any incoming requests. When the service-side DataWriter completes the discovery of a client
DataReader, the service DataReader is ready to accept requests from that specific client. Therefore, it unmasks the
related client DataWriter. The “client matching” algorithm completes when the service-side has discovered both client
DDS Entities.

50 Remote Procedure Call over DDS, v1.0

Figure 7.3 - The service-side client matching algorithm

7.6.2.2.2 Service Matching

Figure 7.4 shows the service-matching algorithm executed at the client side. Service DataWriter and DataReader are
discovered using regular DDS discovery but “service matching” does not complete unless the client-side has discovered
both service DDS Entities (DataReader and DataWriter) and it does not send requests to the service until “service
matching” completes. This behavior is illustrated in Figure 7.4 using a notional local state called local_mask. At the
beginning, the client-side DataWriter is enabled local_mask=All_DR such that it does not send any request at all.
Attempts to send requests would be queued. When the client-side DataReader completes the discovery of a service
DataWriter, the client DataWriter updates the local mask so that it can send requests to the service DataReader as long as
it has been discovered. The “service matching” algorithm completes when the client-side has discovered both the service
end-points.

Remote Procedure Call over DDS, v1.0 51

Figure 7.4 - The client-side service matching algorithm

7.7 Interface Evolution

7.7.1 Interface Evolution in the Basic Service Mapping

The Basic Service Profile has limited support for interface evolution (i.e., the interfaces used by the client and the service
may not match exactly). Interface evolution is constrained by the rules described herein.

7.7.1.1 Adding/Removing an Operation

A client may use an interface that has fewer or more operations than what the service has implemented. If a client uses an
interface that has fewer methods than that of the service, it is simply oblivious of the fact that the service has more
capabilities than the client can use. If the client uses an interface with more operations than that of the service, invocation
of an unsupported operation shall result in REMOTE_EX_UNSUPPORTED remote exception code.

7.7.1.2 Reordering Operations and Base Interfaces

Reordering operations has no impact on the semantics of the interface because every interface has set semantics. The
order in which operations are listed in an interface is irrelevant to the caller. Reordering base interfaces has no impact on
the semantics of the interface.

7.7.1.3 Changing Operation Signature

The Basic Service Profile shall not support any modifications to the operation signatures including exception
specification.

7.7.2 Interface Evolution in the Enhanced Service Mapping

The Enhanced Service Profile supports flexible interface evolution. It is possible for a client/service pair to use different
interfaces where one interface is an evolution of the other. The client may be using an old interface and the service might
be using the new interface or vice versa. Interface evolution is constrained by the rules described herein.

In sub clauses that follow, Iold represents the old interface whereas Inew represents the evolved interface. The interface

mapping rules in the previous sub clause are designed such that the assignability rules defined in [DDS-XTypes] will
ensure seamless evolution from Iold to Inew.

Each entity is in one of the four possible roles: Cold, Cnew, Sold, Snew. Cold is a client instance using an older version of

the interface. Cnew is a client instance using the new version of the interface. Likewise, Sold is the old version of service

implementing the old interface whereas Snew is the new instance of the service implementing the new interface.

Cold and Sold use the topic types synthesized from Iold whereas Cnew and Snew use the topic types synthesized from Inew.

Requestold and Replyold are the types synthesized from Iold whereas Requestnew and Replynew are the types synthesized

from Inew.

7.7.2.1 Adding a new Operation

Adding an operation to an interface will result in additional members in the synthesized topic types. Cold can invoke

Snew because the additional member in Requestnew is never populated by Cold. Snew responds with Replynew, which

remains assignable to Replyold because the ids of members are based on md5 hash and therefore uniquely assignable to

the target structure.

When Cnew invokes Sold, Sold receives a sample with no active member because the additional member in Requestnew

has no equivalent in Requestold. In such cases, the service (Sold) returns Replyold with remoteEx =

52 Remote Procedure Call over DDS, v1.0

REMOTE_EX_UNKNOWN_OPERATION. As the ids of the remoteEx member match in Replyold and Replynew, the

sample is assignable and the Cnew receives the correct remote exception code.

7.7.2.2 Removing an Operation

The case of removing an operation from an interface is quite analogous to adding an operation to an interface. When Cold
calls Snew, Cold receives REMOTE_EX_UNKNOWN_OPERATION RemoteExceptionCode. Likewise, When Cnew

invokes Sold, Cnew uses only a subset of operations supported by Sold.

7.7.2.3 Reordering Operations and Base Interfaces

Reordering operations has no impact on the semantics of the interface because every interface has set semantics. The
order in which operations are listed in an interface is irrelevant to the caller. Due to the use of md5 hash algorithm to
compute the member ids, this specification considers two interfaces equivalent as long as they contain the same
operations. Reordering base interfaces has no impact on the semantics of the interface.

7.7.2.4 Duck Typing Interface Evolution

Enhanced Service Profile supports “duck typing” evolution of an interface.

[Non-Normative Note: Duck typing is a style of dynamic typing in which an object's operations and properties
determine the valid semantics, rather than its inheritance from a particular class or implementation of a specific
interface. When two interfaces with the same name have the identical set of operations but in one interface all the
operations are defined in-place whereas in the other interface one or more operations are inherited, the two (derived-
most) interfaces are identical for the purpose of this specification. It is possible to specify the same topic name for two
different interfaces. Therefore, as long as the topic names and type names match, the two interfaces are compatible.]

7.7.2.5 Changing Operation Signature

7.7.2.5.1 Adding and Removing Parameters

Adding and removing parameters in an operation shall break compatibility with the older interface. The @final
annotation on the In and Out structures enforce this restriction. It is, however, possible to mark an operation @mutable
to allow the In and Out structures to be mutable and thereby supporting extensions.

7.7.2.5.2 Reordering Parameters

Reordering parameters in an operation shall break compatibility with the older interface. The @final annotation on the
In and Out structures enforce this restriction. It is, however, possible to mark an operation @mutable to allow
reordering of parameters. In that case the synthesized structures (In and Out) shall be annotated @mutable.

7.7.2.5.3 Changing the Type of a Parameter

Changing the type of the parameters is allowed by this specification. The type assignability rules shall be as described in
[DDS-XTypes].

7.7.2.5.4 Adding and Removing Return Type

Adding and removing return type shall break compatibility with the older interface. The @final annotation on the In
and Out structures enforce this restriction. It is, however, possible to annotate an operation @Mutable to allow the In
and Out structures to be mutable and consequently support addition or removal of return type and the interface level.

Remote Procedure Call over DDS, v1.0 53

7.7.2.5.5 Changing the Return Type

Changing the type of the return value is allowed by this specification. The type assignability rules shall be as described
in [DDS-Xtypes].

7.7.2.5.6 Adding and Removing an Exception

This specification supports adding and removing one or more exceptions on an operation. The @mutable annotation on
the return structure will support this interface evolution. The language binding that provides function call/return
semantics may throw REMOTE_EX_UNKNOWN_EXCEPTION if the RPC call results into an exception that client does
not understand.

7.8 Request and Reply Correlation

7.8.1 Request and Reply Correlation in the Basic Service Profile

The Basic service profile uses the RequestHeader and ReplyHeader described in sub clause 7.5.1.1.1.

7.8.2 Request and Reply Correlation in the Enhanced Service Profile

To support propagation of the sample identity of a related request this specification extends the [RTPS] specification
adding a new parameter id PID_RELATED_SAMPLE_IDENTITY with value 0x0083. This parameter may appear in the
inlineQos sub-message element of the DATA sub-message (see sub clause 9.4.5.3 in [RTPS]).

The PID_RELATED_SAMPLE_IDENTITY shall be used for data samples sent as reply to a request. When present, it
shall contain the CDR serialization of the SampleIdentity structure defined below. The
RELATED_SAMPLE_IDENTITY_INVALID constant is used to indicate an invalid/non-existing sample identity.

The value of the PID_RELATED_SAMPLE_IDENTITY in a reply message shall be identical to the sample identity
(GUID, SN) of the request sample that triggered the reply.

struct SampleIdentity {

GUID_t writer_guid;

SequenceNumber_t sequence_number;

}

RELATED_SAMPLE_IDENTITY_INVALID is defined as { GUID_UNKNOWN ,
SEQUENCENUMBER_UNKNOWN } both of which are defined in the [RTPS] specification.

7.8.2.1 Retrieve the Request Identity at the Service Side

This specification provides language bindings (7.11 Language Bindings) to retrieve the sample identity of the request in
the form of a SampleIdentity object.

7.8.2.2 Retrieve the Request Identity at the Client Side

This specification provides language bindings (7.11 Language Bindings) to retrieve the related sample identity of the
reply from the reply SampleInfo in the form of a SampleIdentity object.

7.8.2.3 Propagating Request Sample Identity to the Client

Before sending a reply, the service implementation needs to set the related sample identity of the reply sample. The
related sample identity is the same as the identity of the request sample. This specification provides language bindings to
set the related sample identity when sending the reply to a request.

54 Remote Procedure Call over DDS, v1.0

7.9 Service Lifecycle

7.9.1 Activating Services

In Basic and Enhanced Service Mappings, when using the function-call style language binding, creating an instance of
the Service type activates the service. Likewise, when using the request/reply style language binding, creating an
instance of a Replier activates the service.

Service activation shall result in creation of the underlying DataReader and DataWriter entities and they shall be enabled.
An activated service shall be discoverable.

7.9.2 Processing Requests

7.9.2.1 Processing Requests using Function-Call Style Language Binding

The function-call style language binding provides a synchronous way to receive requests and return replies. Concrete
implementations of the interface operations shall be invoked as a consequence of receiving requests. The operations must
return a reply consistent with the language binding.

7.9.2.2 Processing Requests using Request/Reply Style Language Binding

The request/reply style language binding provides three mutually exclusive ways to process requests.

1. A synchronous service listener callback can be installed during service activation. The synchronous
 callback must return the reply before the callback returns. It is invoked for each received request.

2. An asynchronous service listener callback can be installed during service activation. The asynchronous
 callback does not return the reply. The callback receives a handle to the Replier instance and the
 Replier API can be used to retrieve the requests and send the replies. Unlike synchronous Replier
 listener callback, the asynchronous Replier listener allows decoupling of request reception from request
 processing.

3. The Replier API may be used to retrieve the requests and send replies.

7.9.3 Deactivating Services

Deleting (subject to language binding) the service instance deactivates the service. In Java language binding,
Closeable.Close() deactivates the service. In C++ language binding, the destructor of the service implementation
shall deactivate the service. Deactivation shall delete the underlying DDS entities (i.e., DataReader and DataWriter
only).

7.10 Service QoS
Both Basic and Enhanced Service Mappings allow QoS annotation with an interface.

7.10.1 Interface QoS Annotation

To set the specific Qos for an interface, the annotation @Qos shall be used. It is defined as follows.

@annotation
local interface Qos
{

Remote Procedure Call over DDS, v1.0 55

 attribute string RequestProfile;
 attribute string ReplyProfile;
};

The profile attributes are string URLs of the form: <protocol>://path/resource where protocol, “:”, “//”
and path are optional. Support for the file:// protocol is mandatory. If the protocol:// is omitted, the string
attributes are interpreted as if the protocol is file://. The URL may end with an optional library name. The profile
filename and library_name are separated by a #. For example, file://path/to/filename#library_name.

The QoS profiles are XML QoS Profiles as defined in the [DDS4CCM] specification.

7.10.2 Default QoS

When no QoS is specified, default QoS are in effect. The default QoS for the endpoints (DataReaders and DataWriters)
are specified as follows. The users may modify the mutable QoS policies at run-time.

QoS Policy Value

 Reliability DDS_RELIABLE_RELIABILITY_QOS

 History DDS_KEEP_ALL_HISTORY_QOS

 Durability DDS_VOLATILE_DURABILITY_QOS

7.11 Language Bindings
Figure 7.5 shows the relationship of select RPC entities defined by the language bindings.

56 Remote Procedure Call over DDS, v1.0

Figure 7.5 - Inheritance Hierarchy of RPC Entities (TReq, TRep are type parameters)

file:///%5C%5Cpath%5Cto%5Cfilename#library_name

7.11.1 C++ Language Binding

The machine readable files associated with this specification represent the normative language bindings for C++. The
following sub clause summarizes the normative reference.

7.11.1.1 General C++ Language Binding Rules for Basic Service Mappings

7.11.1.1.1 Request-Reply Style Language Binding

The request-reply style language binding for the Basic Service Mapping shall use either the user-defined IDL structs
directly or the structs synthesized from an IDL interface. The IDL shall be mapped to C++ types as defined in
[IDL35] (including the vendor-specific mappings for DDS v1.3). The Requester, Replier, Sample,
SampleRef, WriteSample, and WriteSampleRef templates provide a uniform interface to send, receive,
allocate, initialize, and destroy data.

7.11.1.1.2 Function-Call Style Language Binding

The function-call style language binding for the Basic Service Mapping shall use the structs (and unions)
synthesized from the user-defined IDL interface as specified in 7.5 Mapping Service Specification to DDS Topics
Types. The topic-types shall be mapped to C++ types as per defined in [DDS-Cxx-PSM] with the following additional
rules:

1. Each IDL interface shall map to an abstract class named “${interface}” and an abstract class
 named “${interface}Async” in the same namespace corresponding to the module of the interface. If
 there is no module, no C++ namespace is generated.

2. Both “${interface}” and “${interface}Async” abstract classes shall have a public virtual
 destructor.

3. Both “${interface}” and “${interface}Async” abstract classes shall have public
 SupportType, RequestType, and ReplyType typedefs for “${interface}Support,”
 “${interface}_Request,” and “${interface}_Reply” types.

4. The “${interface}” abstract class shall contain a public AsyncInterfaceType typedef for
 “${interface}Async.”

5. The “${interface}Async” abstract class shall contain a public InterfaceType typedef for
 “${interface}.”

6. The “${interface}” abstract class shall contain public pure virtual functions for all the operations
 and attributes defined in the IDL using the following rules:

a. The name of the function shall be same as the name of the IDL operation.

b. The number and the order of the arguments shall be as defined in the IDL.

c. The functions shall not have any exception specification even if the IDL operation has an exception
 specification. The implementation may still throw the exceptions specified by the IDL operation.

d. The mapping of IDL primitive and container types to C++ types is provided in sub clause 7.4.2 in
 [DDS-Cxx-PSM].

e. The mapping of In, Out, and InOut primitive and constructed types (e.g., struct) is provided in
 sub clause 7.4.5 in [DDS-Cxx-PSM].

f. Getter/Setter functions for attributes in an interface is specified in sub clause 7.4.6 in
 [DDS-Cxx-PSM].

g. IDL operations that return primitive types and enumeration types the corresponding C++ function
 shall return the C++ type by value as per the mapping specified in sub clause 7.4.2. in
 [DDS-Cxx-PSM].

h. IDL operations that return constructed type (e.g., struct) shall map to the first parameter with
 name “cxx_return” of type a T& to the function and the function shall return void.

Remote Procedure Call over DDS, v1.0 57

7. The “${interface}Async” abstract class shall contain asynchronous public pure virtual functions for
 all the operations and attributes defined in the IDL using the following rules:

a. The name of the function shall be “${operation}_async”.

b. The function shall accept only In and InOut parameters and shall have no Out parameters.

c. The functions shall not have any exception specification even if the IDL operation has an exception
 specification.

d. The mapping of IDL primitive and container types to C++ types is provided in sub clause 7.4.2 in
 [DDS-Cxx-PSM]. All the arguments shall be const.

e. The mapping of In and InOut primitive and constructed types (e.g.,struct) is provided in sub
 clause 7.4.5 in [DDs-Cxx-PSM]. All the arguments shall be const.

f. Attribute getter functions shall take no parameters and shall return dds::rpc::future of the
 same type as the attribute.

g. Attribute setter functions shall take a parameter as per specified in sub clause 7.4.6 in [DDS-Cxx-
 PSM]. It shall return a dds::rpc::future<void>.

h. Operation that produce a return value in the form of a regular return (primitive or constructed type)
 shall return a value of dds::rpc::future of that type.

i. Operation that produces return values with one or more Out/InOut parameters shall return a value
 of dds::rpc::future of “${interface}_${operation}_Out” type. Otherwise, it will
 return dds::rpc::future<void>.

8. Any identifier (e.g., parameter, operation name, exception, interface, module) in an IDL file that is a
 reserved word in C++ shall be prefixed by “cxx_”.

7.11.1.2 General C++ Language Binding Rules for Enhanced Service Mappings

The request-reply style language binding for the Enhanced Service Mapping shall use either the user-defined IDL
structs directly or the structs synthesized from an IDL interface. The IDL shall be mapped to C++ types as defined
in [DDS-Cxx-PSM].

The function-call style language binding for the Enhanced Service Mapping shall use the mapping rules defined in
7.11.1.1.2 Function-Call Style Language Binding.

7.11.1.3 Mapping of Exceptions

The C++ language binding may throw locally generated and remotely generated exceptions. As such, all DDS exceptions
defined in sub clause 7.5.5 in [DDS-Cxx-PSM] are valid exceptions. Additionally, remote exception codes defined in
7.5.2 Mapping of Error Codes are mapped to C++ exceptions as follows.

58 Remote Procedure Call over DDS, v1.0

Specifically, the remote exception codes map to C++ exceptions as per the following table.

Remote Exception Code RPC Exception

REMOTE_EX_OK No exception

REMOTE_EX_UNSUPPORTED dds::rpc::RemoteUnsupportedError

REMOTE_EX_INVALID_ARGUMENT dds::rpc::RemoteInvalidArgumentError

REMOTE_EX_OUT_OF_RESOURCES dds::rpc::RemoteOutOfResourcesError

REMOTE_EX_UNKNOWN_OPERATION dds::rpc::RemoteUnknownOperationError

REMOTE_EX_UNKNOWN_EXCEPTION dds::rpc::RemoteUnknownExceptionError

Remote Procedure Call over DDS, v1.0 59

Figure 7.6 - Inheritance Hierarchy of Local and Remote Exceptions

7.11.1.4 Summary of C++ Request-Reply Style Language Binding

7.11.1.4.1 Namespaces

The dds, and dds::rpc namespaces define the classes and functions for the request-reply style language bindings.
Specifically, the language binding includes RPCEntity, Requester, Replier, ServiceProxy,
ListenerBase, SimpleReplierListener, ReplierListener, SimpleRequesterListener,
RequesterListener, RequesterParams, ReplierParams, future, shared_future, Sample,
SampleRef, WriteSample, WriteSampleRef, LoanedSamples, SharedSamples,
SampleIterator, dds_type_traits, and dds_entity_traits.

C++ request-reply language binding uses templates. Unless otherwise stated in the following sub clause, TReq
represents the top-level request type and the TRep represents the top-level reply type. Depending upon the profile in use
(Basic/Enhanced), the actual structure of the TReq and TRep types will vary. However, the request-reply language
binding is independent of the profile in use.

7.11.1.4.2 RPCEntity

RPCEntity is the base abstract class extended by all the active RPC entities. It supports close() and is_null()
operations.

7.11.1.4.3 Requester<TReq, TRep>

A requester sends requests and receives replies. Requester is a reference type and when copied it makes a shallow
copy. An instance of a Requester is configured at the time of construction using RequesterParams, which is a
container of configuration parameters, such as domain participant, QoS, listeners and more.

Requester is inherently asynchronous as sending a request and receiving its corresponding reply (or replies) are
separated. Requester allows listener-based, polling-based, and future-based reception of replies.
SimpleRequesterListener and RequesterListener interfaces enable callback-based notification when a
reply is available. On the other hand, Requester provides functions to allow polling reception of replies. Future-based
notification of replies is analogous to callback-based notification, however, no request-reply correlation is necessary
because every future represents a reply to a unique request.

A requester reference may be bound to a specific service instance. Requests sent through a bound requester reference
shall be sent to the bound service instance only.

7.11.1.4.4 ServiceProxy

ServiceProxy class defines type-independent operations for Requester and the Client. For example, binding to
a specific instance, waiting for an instance to discover, closing the service, and more. ServiceProxy shall not be
instantiated directly.

7.11.1.4.5 Replier<TReq, TRep>

A replier receives requests and send replies. Replier is a reference type and it is inexpensive to copy (comparable to a
pointer assignment). An instance of Replier is configured at the time of construction using ReplierParams, which is
a container of configuration parameters such as domain participant, QoS, listeners and more.

Replier allows listener-based and polling-based reception of requests. SimpleReplierListener and
ReplierListener interfaces enable call-back based notification when a request is available. On the other hand,
Replier provides functions to allow polling reception of requests.

60 Remote Procedure Call over DDS, v1.0

7.11.1.4.6 ListenerBase

ListenerBase is a “marker” abstract base class, which all generic listener abstract classes inherit from. It defines no
member functions.

7.11.1.4.7 SimpleReplierListener<TReq, TRep>

SimpleReplierListener<TReq, TRep> is used to provide a synchronous request listener for a Replier.
ReplierParams is used to pass an instance of SimpleReplierListener<TReq, TRep>. It extends the
ListenerBase abstract class and enables synchronous processing of the requests. I.e., the callback provides the
request object and expects the reply as the return value.

7.11.1.4.8 ReplierListener<TReq, TRep>

ReplierListener<TReq, TRep> interface is used to provide an asynchronous request listener for a Replier. It
is passed to the Replier constructor through ReplierParams. It extends ListenerBase interface and enables
asynchronous processing of the requests (i.e., the callback provides the Replier object and returns void).

7.11.1.4.9 SimpleRequesterListener<TRep>

SimpleRequesterListener<TRep> abstract class is used to receive notifications of arrival of replies. It is used to
configure a Requester through RequesterParams. It extends ListenerBase and enables processing of replies.
I.e., the callback provides access to the reply sample and returns void.

7.11.1.4.10 RequesterListener<TReq, TRep>

RequesterListener<TReq,TRep> interface is used to receive notification of reply arrival. It is used to configure
a Requester through RequesterParams. It extends ListenerBase and enables processing of replies. I.e., the
callback provides the replier object and returns void.

7.11.1.4.11 RequesterParams

RequesterParams is a valuetype that serves as a container of configuration parameters of a Requester. It is
designed to mimic the named-parameters feature available in some programming languages, which improves readability.

7.11.1.4.12 ReplierParams

ReplierParams is a valuetype that serves as a container of configuration parameters of a Replier. It is designed to
mimic the named-parameters feature available in some programming languages, which improves readability.

7.11.1.4.13 future<T>

future<T> provides a mechanism to access the result of an asynchronous operation. It transports results (including
exceptions) across an asynchronous boundary. In C++11 and C++14 environments, dds::rpc::future<T> is a
typedef for std::future<T>. Compiler prior to C++11, dds::rpc::future<T> shall provide the same API
as std::future<T> in C++11. Future is not copyable but it is movable.

7.11.1.4.14 shared_future<T>

shared_future<T> is closely related to future<T> and the only difference is that shared_future<T> is copyable and
movable.

7.11.1.4.15 Sample<T>

Sample<T> is a valetype that combines a value of type T and a value of type SampleInfo. Sample is conceptually immutable.

7.11.1.4.16 SampleRef<T>

SampleRef<T> is a reference type that combines a value of type T and a value of type SampleInfo. Copying
SampleRef<T> makes a shall copy.

Remote Procedure Call over DDS, v1.0 61

7.11.1.4.17 WriteSample<T>

WriteSample<T> is a valuetype that combines a value of type T and a value of type dds::SampleIdentity. The
user populates the value of T and the middleware populates the value of dds::SampleIdentity. When a request is
sent as a WriteSample, upon function return, the WriteSample.identity()uniquely identifies the request sent.

7.11.1.4.18 WriteSampleRef<T>

WriteSampleRef<T> is a reference type, which groups a reference to T and a value of type
dds::SampleIdentity. The user populates the value of T and the middleware populates the value of
dds::SampleIdentity. When a request is sent as a WriteSampleRef<T>, upon function return, the
WriteSample.identity()uniquely identifies the request sent.

7.11.1.4.19 LoanedSamples<T>

LoanedSamples<T> is conceptually a container of loaned Sample<T> from the middleware.
LoanedSamples<T> is not copyable but it is movable. LoanedSamples<T>::value_type is
SampleRef<T>. Upon destruction, LoanedSamples<T> returns the loaned samples to the middleware.

7.11.1.4.20 SharedSamples<T>

SharedSamples<T> is container that contains loaned samples from the middleware but the SharedSamples<T>
object may be copied in the application space. All copies of a SharedSamples<T> refer to the same set of loaned
samples. SharedSamples<T>::value_type is SampleRef<T>. Upon destruction of the last
SharedSamples<T>, the underlying loaned samples are returned to the middleware. Note that
SharedSamples<T> can be obtained from LoanedSample<T> but not vice versa.

7.11.1.4.21 SampleIterator<T>

SampleIterator<T> is a random-access iterator over LoanedSamples<T> and SharedSamples<T>.
SampleIterator<T>::value_type is a SampleRef<T>.

7.11.1.4.22 dds_type_traits<T>

dds_type_traits<T> is a collection of meta-functions that given a type T, provides commonly needed dependent
types, such as a DataReader for T, DataWriter for T, Sample<T>, LoanedSamples<T>, etc. The primary use of
dds_type_traits is to provide a consistent syntax to refer to the dependent types irrespective of the DDS C++
language binding.

7.11.1.4.23 dds_entity_traits

dds_entity_traits abstracts over the DDS entity types and provides consistent syntax to get DDS entity types
irrespective of the DDS C++ language bindings. (e.g., DomainParticipant, Publisher, Subscriber,
DataReaderQos, and DataWriterQos).

7.11.1.5 Summary of C++ Function-Call Style Language Binding

Service, ServiceEndpoint, Server, Client, and ClientEndpoint classes are specific to the function-call
style language binding and are described below.

7.11.1.5.1 Service

Service is a reference type and accepts a reference to the service implementation. A Service instantiates the
underlying DDS entities and makes the service discoverable. Every Service inherits from ServiceEndpoint. A
Service may belong to only one Server.

62 Remote Procedure Call over DDS, v1.0

7.11.1.5.2 ServiceEndpoint

A ServiceEndpoint provides type-independent functions to manage a service (e.g., pause, resume, close, etc.)
A ServiceEndpoint shall not be instantiated directly; it can be obtained from a Service object.
ServiceEndpoint is a reference type.

7.11.1.5.3 Server

A Server is a container of one or more Services. Server.run() function begins dispatching the requests to the
Service implementation. Server is a reference type.

7.11.1.5.4 Client

Client is a reference type and provides functions to invoke operations on a remote service synchronously and
asynchronously. A Client instantiates the underlying DDS entities and makes them discoverable. Every Client
inherits publicly from “${interface}”, “${interface}Async”, and ClientEndpoint (public virtual).

7.11.1.5.5 ClientEndpoint

A ClientEndpoint provides functions to obtain the underlying DDS entities at the client side. ClientEndpoint
inherits from ServiceProxy. A ClientEndpoint shall not be instantiated directly; it can be obtained from a
Client object.

7.11.2 Java Language Binding

The machine readable files associated with this specification represent the normative language bindings for Java. The
Java language binding shall use IDL type mapping as per [DDS-Java-PSM].

The following sub clauses describe the entities that are either different or not described in the C++ language bindings.

7.11.2.1 Mapping of Exceptions

7.11.2.2 Summary of Java Request-Reply Style Language Binding

7.11.2.2.1 Packages

The org.omg.dds, and org.omg.dds.rpc packages define the interfaces for the request-reply style language
binding. Specifically, the language binding includes Requester, Replier, ServiceProxy, RPCEntity,
RPCRuntime, SimpleReplierListener, ReplierListener, SimpleRequesterListener,
RequesterListener, RequesterParams, ReplierParams, Future,
FutureCompletionListener, Sample, and Sample.Iterator.

7.11.2.2.2 RPCEntity

RPCEntity is the base interface extended by all the active entities. It inherits from the DDSObject interface defined
in [DDS-Java-PSM] and java.io.Closeable. Its purpose is to provide quick access to the RPCRuntime object.

7.11.2.2.3 RPCRuntime

RPCRuntime is the only abstract class with placeholder implementation in the Java language binding. It extends
ServiceEnvironment abstract class defined in [DDS-Java-PSM]. Its purpose is to provide access to the
RPCRuntime singleton, which serves as a factory for all other entities.

7.11.2.2.4 Future<T>

The rpc.Future<T> interface extends the java.util.concurrent.Future<T> interface and adds a single
operation to specify a FutureCompletionListener.

Remote Procedure Call over DDS, v1.0 63

7.11.2.2.5 FutureCompletionListener<T>

The FutureCompletionListener allows callback notification when the corresponding future becomes ready.

7.11.2.2.6 Sample<T>

The rpc.Sample<T> interface extends dds.sub.Sample<T> interface and defines two additional operations to
retrieve the SampleIdentity and the related sample identity, if any.

7.11.2.2.7 Sample.Iterator

The Sample.Iterator interface is the same as in [DDS-Java-PSM].

7.11.2.3 Summary of Java Function-Call Style Language Binding

Function-Call style language binding in Java shall define the same entities as that of C++. See 7.11.1.5 Summary of C+
+ Function-Call Style Language Binding.

64 Remote Procedure Call over DDS, v1.0

	1 Scope
	2 Conformance
	3 Normative References
	4 Terms and Definitions
	5 Symbols and Abbreviated Terms
	6 Additional Information
	6.1 Acknowledgements

	7 Remote Procedure Call over Data Distribution Service
	7.1 Overview
	7.2 General Concepts
	7.2.1 Architecture
	7.2.2 Language Binding Styles for RPC over DDS
	7.2.2.1 Function-call Style
	7.2.2.2 Request/Reply Style
	7.2.2.3 Pros and Cons of each Language Binding Style

	7.2.3 Request-Reply Correlation
	7.2.4 Basic and Enhanced Service Mapping for RPC over DDS
	7.2.5 Interoperability

	7.3 Service Definition
	7.3.1 Service Definition in IDL
	7.3.1.1 Service Definition in IDL for the Basic Service Mapping
	7.3.1.2 Service Definition in IDL for the Enhanced Service Mapping
	7.3.1.3 Example of an Interface in IDL (Non-normative)
	7.3.1.4 Service Definition in IDL Using a Pair of Types

	7.3.2 Service Definition in Java
	7.3.2.1 Example of an interface in Java (Non-normative)
	7.3.2.2 Service Definition in Java Using a Pair of Types

	7.4 Mapping Service Specification to DDS Topics
	7.4.1 Rules for Synthesizing DDS Topic Names
	7.4.2 Basic Service Mapping
	7.4.2.1 Default Topic Names
	7.4.2.2 Specifying Topic Names using Annotations
	7.4.2.3 Specifying Topic Names at Run-time

	7.4.3 The Enhanced Service Mapping
	7.4.3.1 Default Topic Names
	7.4.3.2 Specifying Topic Names Using Annotations
	7.4.3.3 Specifying Topic Names at Run-time

	7.5 Mapping Service Specification to DDS Topics Types
	7.5.1 Interface Mapping
	7.5.1.1 Basic Service Mapping of Interfaces
	7.5.1.1.1 Common Types
	7.5.1.1.2 The Hashing Algorithm
	7.5.1.1.3 Mapping of Attributes to Implied IDL
	7.5.1.1.4 Mapping of Operations to the Request Topic Types
	7.5.1.1.5 Mapping of Operations to the Reply Topic Types
	7.5.1.1.6 Mapping of Interfaces to the Request Topic Types
	7.5.1.1.7 Mapping of Interfaces to the Reply Topic Types
	7.5.1.1.8 Mapping of Inherited Interfaces to the Request and Reply Topic Types

	7.5.1.2 Enhanced Service Mapping of Interfaces
	7.5.1.2.1 Annotations for the Enhanced Service Mapping
	7.5.1.2.1.1 @Choice Annotation
	7.5.1.2.1.2 @Autoid Annotation
	7.5.1.2.1.3 @Empty Annotation
	7.5.1.2.1.4 @Mutable Annotation
	7.5.1.2.2 Mapping of Operations to the Request Topic Types
	7.5.1.2.3 Mapping of Operations to the ReplyTopic Types
	7.5.1.2.4 Interface Mapping for the Request Topic Types
	7.5.1.2.5 Interface Mapping for the Reply Type
	7.5.1.2.6 Mapping of Inherited Interfaces to Request and Reply Topic Types

	7.5.2 Mapping of Error Codes

	7.6 Discovering and Matching RPC Services
	7.6.1 Client and Service Discovery for the Basic Service Mapping
	7.6.2 Client and Service Discovery for the Enhanced Service Mapping
	7.6.2.1 Extensions to the DDS Discovery Builtin Topics
	7.6.2.1.1 Extended PublicationBuiltin TopicData
	7.6.2.1.2 Extended SubscriptionBuiltinTopicData

	7.6.2.2 Enhanced algorithm for Service Discovery
	7.6.2.2.1 Client Matching
	7.6.2.2.2 Service Matching

	7.7 Interface Evolution
	7.7.1 Interface Evolution in the Basic Service Mapping
	7.7.1.1 Adding/Removing an Operation
	7.7.1.2 Reordering Operations and Base Interfaces
	7.7.1.3 Changing Operation Signature

	7.7.2 Interface Evolution in the Enhanced Service Mapping
	7.7.2.1 Adding a new Operation
	7.7.2.2 Removing an Operation
	7.7.2.3 Reordering Operations and Base Interfaces
	7.7.2.4 Duck Typing Interface Evolution
	7.7.2.5 Changing Operation Signature
	7.7.2.5.1 Adding and Removing Parameters
	7.7.2.5.2 Reordering Parameters
	7.7.2.5.3 Changing the Type of a Parameter
	7.7.2.5.4 Adding and Removing Return Type
	7.7.2.5.5 Changing the Return Type
	7.7.2.5.6 Adding and Removing an Exception

	7.8 Request and Reply Correlation
	7.8.1 Request and Reply Correlation in the Basic Service Profile
	7.8.2 Request and Reply Correlation in the Enhanced Service Profile
	7.8.2.1 Retrieve the Request Identity at the Service Side
	7.8.2.2 Retrieve the Request Identity at the Client Side
	7.8.2.3 Propagating Request Sample Identity to the Client

	7.9 Service Lifecycle
	7.9.1 Activating Services
	7.9.2 Processing Requests
	7.9.2.1 Processing Requests using Function-Call Style Language Binding
	7.9.2.2 Processing Requests using Request/Reply Style Language Binding

	7.9.3 Deactivating Services

	7.10 Service QoS
	7.10.1 Interface QoS Annotation
	7.10.2 Default QoS

	7.11 Language Bindings
	7.11.1 C++ Language Binding
	7.11.1.1 General C++ Language Binding Rules for Basic Service Mappings
	7.11.1.1.1 Request-Reply Style Language Binding
	7.11.1.1.2 Function-Call Style Language Binding

	7.11.1.2 General C++ Language Binding Rules for Enhanced Service Mappings
	7.11.1.3 Mapping of Exceptions
	7.11.1.4 Summary of C++ Request-Reply Style Language Binding
	7.11.1.4.1 Namespaces
	7.11.1.4.2 RPCEntity
	7.11.1.4.3 Requester<TReq, TRep>
	7.11.1.4.4 ServiceProxy
	7.11.1.4.5 Replier<TReq, TRep>
	7.11.1.4.6 ListenerBase
	7.11.1.4.7 SimpleReplierListener<TReq, TRep>
	7.11.1.4.8 ReplierListener<TReq, TRep>
	7.11.1.4.9 SimpleRequesterListener<TRep>
	7.11.1.4.10 RequesterListener<TReq, TRep>
	7.11.1.4.11 RequesterParams
	7.11.1.4.12 ReplierParams
	7.11.1.4.13 future<T>
	7.11.1.4.14 shared_future<T>
	7.11.1.4.15 Sample<T>
	7.11.1.4.16 SampleRef<T>
	7.11.1.4.17 WriteSample<T>
	7.11.1.4.18 WriteSampleRef<T>
	7.11.1.4.19 LoanedSamples<T>
	7.11.1.4.20 SharedSamples<T>
	7.11.1.4.21 SampleIterator<T>
	7.11.1.4.22 dds_type_traits<T>
	7.11.1.4.23 dds_entity_traits

	7.11.1.5 Summary of C++ Function-Call Style Language Binding
	7.11.1.5.1 Service
	7.11.1.5.2 ServiceEndpoint
	7.11.1.5.3 Server
	7.11.1.5.4 Client
	7.11.1.5.5 ClientEndpoint

	7.11.2 Java Language Binding
	7.11.2.1 Mapping of Exceptions
	7.11.2.2 Summary of Java Request-Reply Style Language Binding
	7.11.2.2.1 Packages
	7.11.2.2.2 RPCEntity
	7.11.2.2.3 RPCRuntime
	7.11.2.2.4 Future<T>
	7.11.2.2.5 FutureCompletionListener<T>
	7.11.2.2.6 Sample<T>
	7.11.2.2.7 Sample.Iterator

	7.11.2.3 Summary of Java Function-Call Style Language Binding

