
Date: September 2016

DDS Security
Version 1.0

OMG Document Number: formal/2016-08-01
Standard document URL: http://www.omg.org/spec/DDS-SECURITY/1.0
Machine Consumable Files:

Normative:

 http://www.omg.org/spec/DDS-SECURITY/20160303/dds_security_plugins.idl
 http://www.omg.org/spec/DDS-SECURITY/20160303/omg_shared_ca_governance.xsd
 http://www.omg.org/spec/DDS-SECURITY/20160303/omg_shared_ca_permissions.xsd
 http://www.omg.org/spec/DDS-SECURITY/20160303/dds_security_plugins_model.xmi

 Non-normative:
 http://www.omg.org/spec/DDS-SECURITY/20160303/omg_shared_ca_governance_example.xml
 http://www.omg.org/spec/DDS-SECURITY/20160303/omg_shared_ca_permissions_example.xml
 http://www.omg.org/spec/DDS-SECURITY/20160303/dds_security_plugins_model.eap

IPR mode: Non-Assert

http://www.omg.org/spec/DDS-SECURITY/1.0
http://www.omg.org/spec/DDS-SECURITY/20160303/dds_security_plugins.idl
http://www.omg.org/spec/DDS-SECURITY/20160303/omg_shared_ca_governance.xsd
http://www.omg.org/spec/DDS-SECURITY/20160303/omg_shared_ca_permissions.xsd
http://www.omg.org/spec/DDS-SECURITY/20160303/dds_security_plugins_model.xmi
http://www.omg.org/spec/DDS-SECURITY/20160303/omg_shared_ca_governance_example.xml
http://www.omg.org/spec/DDS-SECURITY/20160303/omg_shared_ca_permissions_example.xml
http://www.omg.org/spec/DDS-SECURITY/20160303/dds_security_plugins_model.eap

Copyright © 2014-16, Object Management Group, Inc. (OMG)
Copyright © 2014-16, PrismTech.
Copyright © 2014-16, Real-Time Innovations, Inc. (RTI)

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms, conditions
and notices set forth below. This document does not represent a commitment to implement any portion of this specification
in any company's products. The information contained in this document is subject to change without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free, paid
up, worldwide license to copy and distribute this document and to modify this document and distribute copies of the
modified version. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed
the copyright in the included material of any such copyright holder by reason of having used the specification set forth
herein or having conformed any computer software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant you a fully-
paid up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use this
specification to create and distribute software and special purpose specifications that are based upon this specification, and
to use, copy, and distribute this specification as provided under the Copyright Act; provided that: (1) both the copyright
notice identified above and this permission notice appear on any copies of this specification; (2) the use of the
specifications is for informational purposes and will not be copied or posted on any network computer or broadcast in any
media and will not be otherwise resold or transferred for commercial purposes; and (3) no modifications are made to this
specification. This limited permission automatically terminates without notice if you breach any of these terms or
conditions. Upon termination, you will destroy immediately any copies of the specifications in your possession or control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may require
use of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a license may
be required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of those patents that
are brought to its attention. OMG specifications are prospective and advisory only. Prospective users are responsible for
protecting themselves against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications regulations
and statutes. This document contains information which is protected by copyright. All Rights Reserved. No part of this
work covered by copyright herein may be reproduced or used in any form or by any means--graphic, electronic, or
mechanical, including photocopying, recording, taping, or information storage and retrieval systems--without permission of
the copyright owner.

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY CONTAIN
ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE
MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS PUBLICATION,
INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF
MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE.
IN NO EVENT SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE COMPANIES LISTED ABOVE
BE LIABLE FOR ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS, REVENUE, DATA OR
USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE FURNISHING,

PERFORMANCE, OR USE OF THIS MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you. This
disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1) (ii) of
The Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph (c)(1) and (2) of
the Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified in 48 C.F.R. 227-
7202-2 of the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of the Federal Acquisition
Regulations and its successors, as applicable. The specification copyright owners are as indicated above and may be
contacted through the Object Management Group, 109 Highland Avenue, Needham, MA 02494, U.S.A.

TRADEMARKS

CORBA®, CORBA logos®, FIBO®, Financial Industry Business Ontology®, FINANCIAL INSTRUMENT GLOBAL
IDENTIFIER®, IIOP®, IMM®, Model Driven Architecture®, MDA®, Object Management Group®, OMG®, OMG
Logo®, SoaML®, SOAML®, SysML®, UAF®, Unified Modeling Language®, UML®, UML Cube Logo®, VSIPL®, and
XMI® are registered trademarks of the Object Management Group, Inc.

For a complete list of trademarks, see: http://www.omg.org/legal/tm_list.htm. All other products or company names
mentioned are used for identification purposes only, and may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its designees)
is and shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer software to use
certification marks, trademarks or other special designations to indicate compliance with these materials.

Software developed under the terms of this license may claim compliance or conformance with this specification if and
only if the software compliance is of a nature fully matching the applicable compliance points as stated in the specification.
Software developed only partially matching the applicable compliance points may claim only that the software was based
on this specification, but may not claim compliance or conformance with this specification. In the event that testing suites
are implemented or approved by Object Management Group, Inc., software developed using this specification may claim
compliance or conformance with the specification only if the software satisfactorily completes the testing suites.

OMG’s Issue Reporting Procedure

All OMG specifications are subject to continuous review and improvement. As part of this process we
encourage readers to report any ambiguities, inconsistencies, or inaccuracies they may find by
completing the Issue Reporting Form listed on the main web page http://www.omg.org, under
Documents, Report a Bug/Issue.

http://www.omg.org/

DDS Security, v1.0 i

Table of Contents
Preface ... ix

1 Scope .. 1

1.1 General ... 1

1.2 Overview of this Specification ... 1

2 Conformance ... 3

2.1 Conformance points .. 3

2.2 Builtin plugin interoperability (mandatory) ... 3

2.3 Plugin framework (mandatory): .. 3

2.4 Plugin Language APIs (optional): ... 3

2.5 Logging and Tagging profile (optional): .. 4

3 Normative References ... 5

4 Terms and Definitions .. 7

5 Symbols ... 11

6 Additional Information .. 13

6.1 Changes to Adopted OMG Specifications .. 13

6.2 Acknowledgments .. 13

7 Support for DDS Security ... 15

7.1 Security Model ... 15

7.1.1 Threats ... 15

7.2 Types used by DDS Security... 18

7.2.1 Property_t .. 18

7.2.2 BinaryProperty_t .. 19

7.2.3 DataHolder ... 20

7.2.4 Token .. 21

7.2.5 PropertyQosPolicy, DomainParticipantQos, DataWriterQos, and DataReaderQos 23

7.2.6 ParticipantGenericMessage ... 23

7.2.7 Additional DDS Return Code: NOT_ALLOWED_BY_SEC ... 24

7.3 Securing DDS Messages on the Wire ... 24

ii DDS Security, v1.0

7.3.1 RTPS Background (Non-Normative) ... 24

7.3.2 Secure RTPS Messages ... 26

7.3.3 Constraints of the DomainParticipant BuiltinTopicKey_t (GUID) ... 27

7.3.4 Mandatory use of the KeyHash for encrypted messages .. 27

7.3.5 Immutability of Publisher Partition Qos in combination with non-volatile Durability kind 28

7.3.6 Platform Independent Description .. 28

7.3.7 Mapping to UDP/IP PSM .. 36

7.4 DDS Support for Security Plugin Information Exchange ... 41

7.4.1 Secure builtin Discovery Topics .. 41

7.4.2 New ParticipantMessageSecure builtin Topic .. 47

7.4.3 New ParticipantStatelessMessage builtin Topic ... 47

7.4.4 New ParticipantVolatileMessageSecure builtin Topic .. 50

7.4.5 Definition of the “Builtin Secure Endpoints” ... 54

8 Plugin Architecture .. 55

8.1 Introduction .. 55

8.1.1 Service Plugin Interface Overview ... 55

8.1.2 Plugin Instantiation .. 56

8.2 Common Types ... 57

8.2.1 Security Exception .. 57

8.3 Authentication Plugin ... 58

8.3.1 Background (Non-Normative) .. 58

8.3.2 Authentication Plugin Model ... 58

8.4 Access Control Plugin .. 76

8.4.1 Background (Non-Normative) .. 76

8.4.2 AccessControl Plugin Model ... 76

8.5 Cryptographic Plugin ... 99

8.5.1 Cryptographic Plugin Model ... 99

8.6 The Logging Plugin .. 129

8.6.1 Background (Non-Normative) .. 129

8.6.2 Logging Plugin Model ... 129

8.7 Data Tagging ... 133

8.7.1 Background (Non-Normative) .. 133

DDS Security, v1.0 iii

8.7.2 DataTagging Model .. 133

8.7.3 DataTagging Types .. 133

8.8 Security Plugins Behavior .. 134

8.8.1 Authentication and AccessControl behavior with local DomainParticipant 134

8.8.2 Authentication behavior with discovered DomainParticipant ... 136

8.8.3 DDS Entities impacted by the AccessControl operations ... 139

8.8.4 AccessControl behavior with local participant creation .. 142

8.8.5 AccessControl behavior with local domain entity creation ... 142

8.8.6 AccessControl behavior with remote participant discovery .. 144

8.8.7 AccessControl behavior with remote domain entity discovery ... 146

8.8.8 Cryptographic Plugin key generation behavior .. 149

8.8.9 Cryptographic Plugin key exchange behavior .. 151

8.8.10 Cryptographic Plugins encoding/decoding behavior ... 156

9 Builtin Plugins ... 165

9.1 Introduction .. 165

9.2 Requirements and Priorities (Non-Normative) .. 165

9.2.1 Performance and Scalability ... 166

9.2.2 Robustness and Availability .. 166

9.2.3 Fitness to the DDS Data-Centric Model ... 167

9.2.4 Leverage and Reuse of Existing Security Infrastructure and Technologies 167

9.2.5 Ease-of-Use while Supporting Common Application Requirements .. 167

9.3 Builtin Authentication: DDS:Auth:PKI-DH .. 168

9.3.1 Configuration ... 168

9.3.2 DDS:Auth:PKI-DH Types ... 170

9.3.3 DDS:Auth:PKI-DH plugin behavior.. 176

9.3.4 DDS:Auth:PKI-DH plugin authentication protocol .. 182

9.4 Builtin Access Control: DDS:Access:Permissions .. 186

9.4.1 Configuration ... 186

9.4.2 DDS:Access:Permissions Types ... 208

9.4.3 DDS:Access:Permissions plugin behavior ... 209

9.5 Builtin Crypto: DDS:Crypto:AES-GCM-GMAC ... 214

9.5.1 Configuration ... 216

iv DDS Security, v1.0

9.5.2 DDS:Crypto:AES-GCM-GMAC Types ... 216

9.5.3 DDS:Crypto:AES-GCM-GMAC plugin behavior ... 221

9.6 Builtin Logging Plugin .. 242

9.6.1 DDS:Logging:DDS_LogTopic plugin behavior ... 243

10 Plugin Language Bindings .. 245

10.1 Introduction .. 245

10.2 IDL representation of the plugin interfaces .. 245

10.3 C language representation of the plugin interfaces .. 245

10.4 C++ classic representation of the plugin interfaces .. 246

10.5 Java classic .. 246

10.6 C++11 representation of the plugin interfaces ... 246

10.7 Java modern aligned with the DDS-JAVA5+ PSM .. 246

Annex A - References .. 247

DDS Security, v1.0 v

Tables
Table 1 – Property_t class ... 19

Table 2 – BinaryProperty_t class .. 20

Table 3 – DataHolder class ... 21

Table 4 – SecureSubMsg class ... 31

Table 5 – SecurePrefixSubMsg class .. 32

Table 6 – SecurePostfixSubMsg class .. 34

Table 7 – SecureRTPSPrefixSubMsg class .. 35

Table 8 – SecurePostfixSubMsg class .. 36

Table 9 – EntityId values for secure builtin data writers and data readers ... 37

Table 10 – Additional parameter IDs in ParticipantBuiltinTopicData .. 43

Table 11 – Mapping of the additional builtin endpoints added by DDS security to the
availableBuiltinEndpoints ... 44

Table 12 – Additional parameter IDs in PublicationBuiltinTopicDataSecure .. 45

Table 13 – Additional parameter IDs in SubscriptionBuiltinTopicDataSecure 46

Table 14 – Non-default Qos policies for BuiltinParticipantVolatileMessageSecureWriter 51

Table 15 – Non-default Qos policies for BuiltinParticipantVolatileMessageSecureReader 51

Table 16 – Purpose of each Security Plugin ... 56

Table 18 – Authentication plugin interface ... 62

Table 19 – Values for ValidationResult_t .. 65

Table 20 – Authentication listener class ... 75

Table 21 – Description of the ParticipantSecurityAttributes .. 78

Table 22 – Description of the EndpointSecurityAttributes ... 80

Table 23 – AccessControl Interface .. 81

Table 24 – AccessControlListener interface ... 97

Table 25 – CryptoTransformIdentifier class ... 101

Table 26 – SecureSubmessageCategory_t .. 101

Table 27 – CryptoKeyFactory Interface ... 102

Table 28 – CryptoKeyExchange Interface .. 108

Table 29 – CryptoTransform interface .. 115

Table 30 – LogOptions values .. 130

vi DDS Security, v1.0

Table 32 – Logger structured_data entries .. 132

Table 33 – Impact of Access Control Operations to the DDS Builtin and Application-defined Entities
 .. 140

Table 34 – Summary of the Builtin Plugins .. 165

Table 35 – Properties used to configure the builtin Authentication plugin .. 168

Table 36 – IdentityToken class for the builtin Authentication plugin ... 171

Table 37 – AuthenticatedPeerCredentialToken class for the builtin Authentication plugin 171

Table 38 – HandshakeRequestMessageToken for the builtin Authentication plugin 172

Table 39 – HandshakeReplyMessageToken for the builtin Authentication plugin 173

Table 40 – HandshakeFinalMessageToken for the builtin Authentication plugin 175

Table 41 – Actions undertaken by the operations of the builtin Authentication plugin 176

Table 42 – Terms used in the description of the builtin authentication protocol 182

Table 43 – Notation of the operations/transformations used in the description of the builtin
authentication protocol ... 184

Table 44 – Description of built-in authentication protocol ... 184

Table 45 – Properties used to configure the builtin AccessControl plugin ... 186

Table 46 PermissionsCredentialToken class for the builtin AccessControl plugin 208

Table 47 PermissionsToken class for the builtin AccessControl plugin ... 209

Table 48 – Actions undertaken by the operations of the bulitin AccessControl plugin 209

Table 49 – AES-GCM transformation inputs ... 215

Table 50 – AES-GCM trasnsformation outputs .. 215

Table 51 – CryptoToken class for the builtin Cryptographic plugin .. 216

Table 52 – KeyMaterial_AES_GCM_GMAC for BuiltinParticipantVolatileMessageSecureWriter and
BuiltinParticipantVolatileMessageSecureReader ... 218

Table 53 – Terms used in KxKey and KxMacKey derivation formula for the builtin Cryptographic
plugin .. 218

Table 54 – CryptoTransformIdentifier class for the builtin Cryptographic plugin 219

Table 55 – Actions undertaken by the operations of the builtin Cryptographic CryptoKeyFactory plugin
 .. 222

Table 56 – Actions undertaken by the operations of the builtin Cryptographic CryptoKeyExchange
plugin .. 223

Table 57 – Actions undertaken by the operations of the builtin Cryptographic CryptoKeyTransform
plugin .. 225

DDS Security, v1.0 vii

Table 58 – Terms used in Key Computation and cryptographic transformations formulas for the builtin
cryptographic plugin ... 232

Table 59 – Actions undertaken by the operations of the builtin Logging plugin 243

Figures
Figure 1 – Overall architecture for DDS Security .. 1

Figure 2 – Threat actors .. 16

Figure 3 – Token Model .. 22

Figure 4 – RTPS message structure .. 25

Figure 5 – Secure Submessage and Secured Payload Model ... 30

Figure 6 – RTPS message transformations ... 33

Figure 7 – Plugin Architecture Model .. 55

Figure 8 – Authentication plugin model ... 59

Figure 9 – Authentication plugin interaction state machine ... 61

Figure 10 – AccessControl Plugin Model ... 77

Figure 11 – Cryptographic Plugin Model ... 99

Figure 12 – Effect of encode_serialized_payload within an RTPS message .. 119

Figure 13 – Effect of encode_datawriter_submessage within an RTPS message 120

Figure 14 – Effect of encode_datareader_submessage within an RTPS message 122

Figure 15 – Possible effect of encode_rtps within an RTPS message .. 123

Figure 16 – Possible effect of decode_rtps within an RTPS message .. 124

Figure 17 – Effect of decode_datawriter_submessage within an RTPS message 126

Figure 18 – Effect of decode_datawriter_submessage within an RTPS message 127

Figure 19 – Effect of decode_serialized_payload within an RTPS message .. 128

Figure 20 – Logging Plugin Model .. 129

Figure 22 – Authentication sequence diagram with discovered DomainParticipant 137

Figure 23 – AccessControl sequence diagram with local entities .. 143

Figure 24 – AccessControl sequence diagram with discovered DomainParticipant 145

Figure 25 – AccessControl sequence diagram with discovered entities when
is_access_protected==FALSE .. 147

viii DDS Security, v1.0

Figure 26 – AccessControl sequence diagram with discovered entities when
is_access_protected==TRUE .. 148

Figure 27 – Cryptographic KeyExchange plugin sequence diagram with discovered DomainParticipant
 .. 152

Figure 28 – Cryptographic KeyExchange plugin sequence diagram with discovered DataReader 154

Figure 29 – Cryptographic KeyExchange plugin sequence diagram with discovered DataWriter 155

Figure 30 – Cryptographic CryptoTransform plugin sequence diagram for encoding/decoding a single
DataWriter submessage .. 157

Figure 31 – Cryptographic CryptoTransform plugin sequence diagram for encoding/decoding multiple
DataWriter submessages ... 159

Figure 32 -- Cryptographic CryptoTransform plugin sequence diagram for encoding/decoding multiple
DataReader submessages .. 160

Figure 33 – Cryptographic CryptoTransform plugin sequence diagram for encoding/decoding multiple
DataWriter and DataReader submessages .. 162

DDS Security, v1.0 ix

Preface

About the Object Management Group

OMG

Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit
computer industry standards consortium that produces and maintains computer industry
specifications for interoperable, portable and reusable enterprise applications in distributed,
heterogeneous environments. Membership includes Information Technology vendors, end users,
government agencies and academia.

OMG member companies write, adopt, and maintain its specifications following a mature, open
process. OMG's specifications implement the Model Driven Architecture® (MDA®), maximizing
ROI through a full-lifecycle approach to enterprise integration that covers multiple operating
systems, programming languages, middleware and networking infrastructures, and software
development environments. OMG’s specifications include: UML® (Unified Modeling Language™);
CORBA® (Common Object Request Broker Architecture); CWM™ (Common Warehouse
Metamodel); and industry-specific standards for dozens of vertical markets.

More information on the OMG is available at http://www.omg.org/.

OMG Specifications
As noted, OMG specifications address middleware, modeling, and vertical domain frameworks. A
listing of all OMG Specifications is available from the OMG website at:

http://www.omg.org/spec/index.htm

Specifications are organized by the following categories:

Business Modeling Specifications

Middleware Specifications
• CORBA/IIOP
• Data Distribution Services
• Specialized CORBA

IDL/Language Mapping Specifications

Modeling and Metadata Specifications
• UML, MOF, CWM, XMI
• UML Profile

Modernization Specifications

Platform Independent Model (PIM), Platform Specific Model (PSM), Interface Specifications
• CORBAServices
• CORBAFacilities

x DDS Security, v1.0

OMG Domain Specifications

CORBA Embedded Intelligence Specifications

CORBA Security Specifications

All of OMG’s formal specifications may be downloaded without charge from our website. (Products
implementing OMG specifications are available from individual suppliers.) Copies of specifications,
available in PostScript and PDF format, may be obtained from the Specifications Catalog cited above
or by contacting the Object Management Group, Inc. at:

OMG Headquarters
109 Highland Avenue
Needham, MA 02494
USA
Tel: +1-781-444-0404
Fax: +1-781-444-0320
Email: pubs@omg.org

Certain OMG specifications are also available as ISO standards. Please consult http://www.iso.org.

Issues
The reader is encouraged to report any technical or editing issues/problems with this specification by
completing the Issue Reporting Form listed on the main web page http://www.omg.org under
Documents, Report a Bug/Issue.

http://www.omg.org/

DDS Security, v1.0 1

1 Scope
1.1 General
This specification adds several new “DDS Security Support” compliance points (“profile”) to the DDS
Specification. See the compliance levels within the Conformance Clause below.

1.2 Overview of this Specification
This specification defines the Security Model and Service Plugin Interface (SPI) architecture for
compliant DDS implementations. The DDS Security Model is enforced by the invocation of these SPIs
by the DDS implementation. This specification also defines a set of builtin implementations of these
SPIs.

• The specified builtin SPI implementations enable out-of-the box security and interoperability
between compliant DDS applications.

• The use of SPIs allows DDS users to customize the behavior and technologies that the DDS
implementations use for Information Assurance, specifically customization of Authentication,
Access Control, Encryption, Message Authentication, Digital Signing, Logging and Data
Tagging.

Figure 1 – Overall architecture for DDS Security

2 DDS Security, v1.0

This specification defines five SPIs that when combined together provide Information Assurance to
DDS systems:

• Authentication Service Plugin. Provides the means to verify the identity of the application
and/or user that invokes operations on DDS. Includes facilities to perform mutual
authentication between participants and establish a shared secret.

• AccessControl Service Plugin. Provides the means to enforce policy decisions on what DDS
related operations an authenticated user can perform. For example, which domains it can join,
which Topics it can publish or subscribe to, etc.

• Cryptographic Service Plugin. Implements (or interfaces with libraries that implement) all
cryptographic operations including encryption, decryption, hashing, digital signatures, etc. This
includes the means to derive keys from a shared secret.

• Logging Service Plugin. Supports auditing of all DDS security-relevant events.

• Data Tagging Service Plugin. Provides a way to add tags to data samples.

DDS Security, v1.0 3

2 Conformance
2.1 Conformance points
This specification defines the following conformance points:

(1) Builtin plugin interoperability (mandatory)
(2) Plugin framework (mandatory)
(3) Plugin language APIs (optional)
(4) Logging and Tagging (optional)

Conformance with the “DDS Security” specification requires conformance with all the mandatory
conformance points.

2.2 Builtin plugin interoperability (mandatory)
This point provides interoperability with all the builtin plugins with the exception of the Logging
plugin. Conformance to this point requires conformance to:

• Clause 7 (the security model and the support for interoperability between DDS Security
implementations).

• The configuration of the plugins and the observable wire-protocol behavior specified in Clause 9
(the builtin-plugins), except for sub clause 9.6. This conformance point does not require
implementation of the APIs between the DDS implementation and the plugins.

2.3 Plugin framework (mandatory)
This point provides the architectural framework and abstract APIs needed to develop new security
plugins and “plug them” into a DDS middleware implementation. Plugins developed using this
framework are portable between conforming DDS implementations. However portability for a specific
programming language also requires conformance to the specific language API (see 2.4).

Conformance to this point requires conformance to:

• Clause 7 (the security model and the support for interoperability between DDS Security
implementations).

• Clause 8 (the plugin model) with the exception of 8.6 and 8.7 (Logging and Data Tagging plugins).
The conformance to the plugin model is at the UML level; it does not mandate a particular language
mapping.

• Clause 9, the builtin-plugins, except for 9.6 (Builtin Logging Plugin).

In addition it requires the conforming DDS implementation to provide a public API to insert the
plugins that conform to the aforementioned sections.

2.4 Plugin Language APIs (optional)
These conformance points provide portability across compliant DDS implementations of the security
plugins developed using a specific programming language.

Conformance to any of the language portability points requires conformance to the (mandatory) plugin
architecture framework point.

4 DDS Security, v1.0

These are 5 “plugin language API” points, each corresponding to a different programming language
used to implement the plugins.

Each language point is a separate independent conformance point. Conformance with the “plugin
language API” point requires conformance with at least one of the 5 language APIs enumerated below:

• C Plugin APIs. Conformance to sub clauses 10.2 and 10.3
• C++ classic Plugin APIs. Conformance to sub clauses 10.2 and 10.4
• Java classic Plugin APIs. Conformance to sub clauses 10.2 and 10.5
• C++11 Plugin APIs. Conformance to sub clauses 10.2 and 10.6
• Java5+ Plugin APIs. Conformance to sub clauses 10.2 and 10.7.

2.5 Logging and Tagging profile (optional)
This point adds support for logging and tagging. Conformance to this point requires conformance to
sub clauses 8.6, 8.7, and 9.6.

DDS Security, v1.0 5

3 Normative References
• DDS: Data-Distribution Service for Real-Time Systems version 1.4.

http://www.omg.org/spec/DDS/1.4
• DDS-RTPS: Data-Distribution Service Interoperability Wire Protocol version 2.2,

http://www.omg.org/spec/DDS-RTPS/2.2/
• DDS-XTYPES: Extensible and Dynamic Topic-Types for DDS version 1.1

http://www.omg.org/spec/DDS-XTypes/1.1/
• OMG-IDL: Interface Definition Language (IDL) version 3.5 http://www.omg.org/spec/IDL35/
• HMAC: Keyed-Hashing for Message Authentication. H. Krawczyk, M. Bellare, and R.Canetti,

IETF RFC 2104, http://tools.ietf.org/html/rfc2104
• PKCS #7: Cryptographic Message Syntax Version 1.5. IETF RFC 2315.

http://tools.ietf.org/html/rfc2315
• Public-Key Cryptography Standards (PKCS) #1: RSA Cryptography Specifications Version 2.1.

IETF RFC 3447. https://tools.ietf.org/html/rfc3447

http://www.omg.org/spec/DDS/1.4
http://www.omg.org/spec/DDS-RTPS/2.2/
http://www.omg.org/spec/DDS-XTypes/1.1/
http://www.omg.org/spec/IDL35/
http://tools.ietf.org/html/rfc2104
http://tools.ietf.org/html/rfc2315
https://tools.ietf.org/html/rfc3447

6 DDS Security, v1.0

DDS Security, v1.0 7

4 Terms and Definitions
For the purposes of this specification, the following terms and definitions apply:

Access Control

Mechanism that enables an authority to control access to areas and resources in a given physical
facility or computer-based information system.

Authentication

Security measure(s) designed to establish the identity of a transmission, message, or originator.

Authorization

Access privileges that are granted to an entity; conveying an “official” sanction to perform a security
function or activity.

Ciphertext

Data in its encrypted or signed form.

Certification authority

The entity in a Public Key Infrastructure (PKI) that is responsible for issuing certificates, and exacting
compliance to a PKI policy.

Confidentiality

Assurance that information is not disclosed to unauthorized individuals, processes, or devices.

Cryptographic algorithm

A well-defined computational procedure that takes variable inputs, including a cryptographic key and
produces an output.

Cryptographic key

A parameter used in conjunction with a cryptographic algorithm that operates in such a way that
another agent with knowledge of the key can reproduce or reverse the operation, while an agent
without knowledge of the key cannot.

Examples include:

1. The transformation of plaintext data into ciphertext.
2. The transformation of ciphertext data into plaintext.
3. The computation of a digital signature from data.
4. The verification of a digital signature.
5. The computation of a message authentication code from data.
6. The verification of a message authentication code from data and a received authentication

code.

Data-Centric Publish-Subscribe (DCPS)

The mandatory portion of the DDS specification used to provide the functionality required for an
application to publish and subscribe to the values of data objects.

8 DDS Security, v1.0

Data Distribution Service (DDS)

An OMG distributed data communications specification that allows Quality of Service policies to be
specified for data timeliness and reliability. It is independent of the implementation language.

Digital signature

The result of a cryptographic transformation of data that, when properly implemented with supporting
infrastructure and policy, provides the services of:

1. origin authentication
2. data integrity
3. signer non-repudiation

Extended IDL

Extended Interface Definition Language (IDL) used to describe data types in a way that can be
represented in a machine neutral format for network communications. This syntax was introduced as
part of the DDS-XTYPES specification [3].

Hashing algorithm

A one-way algorithm that maps an input byte buffer of arbitrary length to an output fixed-length byte
array in such a way that:

(a) Given the output it is computationally infeasible to determine the input.
(b) It is computationally infeasible to find any two distinct inputs that map to the same output.

Information Assurance

The practice of managing risks related to the use, processing, storage, and transmission of information
or data and the systems and processes used for those purposes.

Integrity

Protection against unauthorized modification or destruction of information.

Key management

The handling of cryptographic material (e.g., keys, Initialization Vectors) during their entire life cycle
of the keys from creation to destruction.

Message authentication code (MAC)

A cryptographic hashing algorithm on data that uses a symmetric key to detect both accidental and
intentional modifications of data.

Non-Repudiation

Assurance that the sender of data is provided with proof of delivery and the recipient is provided with
proof of the sender's identity, so neither can later deny having received or processed the data.

Public key

A cryptographic key used with a public key cryptographic algorithm that is uniquely associated with an
entity and that may be made public. The public key is associated with a private key. The public key
may be known by anyone and, depending on the algorithm, may be used to:

DDS Security, v1.0 9

1. Verify a digital signature that is signed by the corresponding private key,

2. Encrypt data that can be decrypted by the corresponding private key, or

3. Compute a piece of shared data.

Public key certificate

A set of data that uniquely identifies an entity, contains the entity's public key and possibly other
information, and is digitally signed by a trusted party, thereby binding the public key to the entity.

Public key cryptographic algorithm

A cryptographic algorithm that uses two related keys, a public key and a private key. The two keys
have the property that determining the private key from the public key is computationally infeasible.

Public Key Infrastructure

A framework that is established to issue, maintain and revoke public key certificates.

10 DDS Security, v1.0

DDS Security, v1.0 11

5 Symbols
This specification does not define any symbols or abbreviations.

12 DDS Security, v1.0

DDS Security, v1.0 13

6 Additional Information
6.1 Changes to Adopted OMG Specifications
This specification does not modify any existing adopted OMG specifications. It reuses and/or adds
functionality on top of the current set of OMG specifications.

• DDS: This specification does not modify or invalidate any existing DDS profiles or compliance
levels. It extends some of the DDS builtin Topics to carry additional information in a
compatible way with existing implementations of DDS.

• DDS-RTPS: This specification does not require any modifications to RTPS; however, it may
impact interoperability with existing DDS-RTPS implementations. In particular, DDS-RTPS
implementations that do not implement the DDS Security specification will have limited
interoperability with implementations that do implement the mechanisms introduced by this
specification. Interoperability is limited to systems configured to allow “unauthorized”
DomainParticipant entities and within those systems, only to Topics configured to be
“unprotected.”

• DDS-XTYPES: This specification depends on the IDL syntax introduced by and the Extended
CDR encoding defined in the DDS-XTYPES specification. It does not require any
modifications of DDS-XTYPES.

• OMG IDL: This specification does not modify any existing IDL-related compliance levels.

6.2 Acknowledgments
The following individuals and companies submitted content that was incorporated into this
specification:

Submitting contributors:

• (lead) Gerardo Pardo-Castellote, Ph.D., Real-Time Innovations. gerardo.pardo AT rti.com

• Jaime Martin-Losa, eProsima JaimeMartin AT eprosima.com

• Angelo Corsaro, Ph.D., PrismTech. angelo.corsaro AT prismtech.com

Supporting contributors:

• Char Wales, MITRE charwing AT mitre.org

• Clark Tucker, Twin Oaks Computing, Inc. ctucker AT twinoakscomputing.com

Finalization Task Force members and participants:

• (chair) Gerardo Pardo-Castellote, Ph.D., Real-Time Innovations. gerardo.pardo AT rti.com

• Clark Tucker, Twin Oaks Computing, Inc. ctucker AT twinoakscomputing.com

• Jaime Martin-Losa, eProsima JaimeMartin AT eprosima.com

• Virginie Watine, THALES, virginie.watine AT thalesgroup.com

• Cyril Dangerville, THALES, cyril.dangerville AT thalesgroup.com

14 DDS Security, v1.0

• Angelo Corsaro, Ph.D., PrismTech. angelo.corsaro AT prismtech.com

• Julien Enoch, PrismTech, julien.enoch AT prismtech.com

• Jaime Martin-Losa, eProsima JaimeMartin AT eprosima.com

• Ricardo Gonzalez, eProsime, RicardoGonzalez AT eprosima.com

• Gilles Bessens, Kongsberg Gallium, gilles.bessens AT kongsberggallium.com

• Charles Fudge, NSWC Dalghren, charles.fudge AT navy.mil

• Ron Townsen, General Dynamics AIS, Ronald.Townsen AT gd-ais.com

mailto:julien.enoch@prismtech.com

DDS Security, v1.0 15

7 Support for DDS Security
7.1 Security Model
The Security Model for DDS defines the security principals (users of the system), the objects that are
being secured, and the operations on the objects that are to be restricted. DDS applications share
information on DDS Global Data Spaces (called DDS Domains) where the information is organized
into Topics and accessed by means of read and write operations on data-instances of those Topics.

Ultimately what is being secured is a specific DDS Global Data Space (domain) and, within the
domain, the ability to access (read or write) information (specific Topic or even data-object instances
within the Topic) in the DDS Global Data Space.

Securing DDS means providing:

• Confidentiality of the data samples

• Integrity of the data samples and the messages that contain them

• Authentication of DDS writers and readers

• Authorization of DDS writers and readers

• Non-repudiation of data

To provide secure access to the DDS Global Data Space, applications that use DDS must first be
authenticated, so that the identity of the application (and potentially the user that interacts with it) can
be established. Once authentication has been obtained, the next step is to enforce access control
decisions that determine whether the application is allowed to perform specific actions. Examples of
actions are: joining a DDS Domain, defining a new Topic, reading or writing a specific DDS Topic,
and even reading or writing specific Topic instances (as identified by the values of key fields in the
data). Enforcement of access control shall be supported by cryptographic techniques so that
information confidentiality and integrity can be maintained, which in turn requires an infrastructure to
manage and distribute the necessary cryptographic keys.

7.1.1 Threats

In order to understand the decisions made in the design of the plugins, it is important to understand
some of the specific threats impacting applications that use DDS and DDS Interoperability Wire
Protocol (RTPS).

Most relevant are four categories of threats:

1. Unauthorized subscription

2. Unauthorized publication

3. Tampering and replay

4. Unauthorized access to data

These threats are described in the context of a hypothetical communication scenario with six actors all
attached to the same network:

• Alice. A DDS DomainParticipant who is authorized to publish data on a Topic T.

16 DDS Security, v1.0

• Bob. A DDS DomainParticipant who is authorized to subscribe to data on a Topic T.

• Eve. An eavesdropper. Someone who is not authorized to subscribe to data on Topic T.
However Eve uses the fact that she is connected to the same network to try to see the data.

• Trudy. An intruder. A DomainParticipant who is not authorized to publish on Topic T.
However, Trudy uses the fact that she is connected to the same network to try to send data.

• Mallory. A malicious DDS DomainParticipant. Mallory is authorized to subscribe to data on
Topic T but she is not authorized to publish on Topic T. However, Mallory will try to use
information gained by subscribing to the data to publish in the network and try to convince Bob
that she is a legitimate publisher.

• Trent. A trusted service who needs to receive and send information on Topic T. For example,
Trent can be a persistence service or a relay service. He is trusted to relay information without
having malicious intent. However he is not trusted to see the content of the information.

Figure 2 – Threat actors

7.1.1.1 Unauthorized Subscription

The DomainParticipant Eve is connected to the same network infrastructure as the rest of the agents
and is able to observe the network packets despite the fact that the messages are not intended to be sent
to Eve. Many scenarios can lead to this situation. Eve could tap into a network switch or observe the
communication channels. Alternatively, in situations where Alice and Bob are communicating over
multicast, Eve could simply subscribe to the same multicast address.

Protecting against Eve is reasonably simple. All that is required is for Alice to encrypt the data she
writes using a secret key that is only shared with authorized receivers such as Bob, Trent, and Mallory.

7.1.1.2 Unauthorized Publication

The DomainParticipant Trudy is connected to the same network infrastructure as the rest of the agents
and is able to inject network packets with any data contents, headers and destination she wishes (e.g.,
Bob). The network infrastructure will route those packets to the indicated destination.

DDS Security, v1.0 17

To protect against Trudy, Bob, Trent and Mallory need to realize that the data is not originating from
Alice. They need to realize that the data is coming from someone not authorized to send data on Topic
T and therefore reject (i.e., not process) the packet.

Protecting against Trudy is also reasonably simple. All that is required is for the protocol to require that
the messages include either a hash-based message authentication code (HMAC) or digital signature.

• An HMAC creates a message authentication code using a secret key that is shared with the
intended recipients. Alice would only share the secret key with Bob, Mallory and Trent so that
they can recognize messages that originate from Alice. Since Trudy is not authorized to publish
Topic T, Bob and the others will not recognize any HMACs Trudy produces (i.e., they will not
recognize Trudy’s key).

• A digital signature is based on public key cryptography. To create a digital signature, Alice
encrypts a digest of the message using Alice’s private key. Everybody (including Bob, Mallory
and Trent) has access to Alice’s public key. Similar to the HMAC above, the recipients can
identify messages from Alice, as they are the only ones whose digital signature can be
interpreted with Alice’s public key. Any digital signatures Trudy may use will be rejected by the
recipients, as Trudy is not authorized to write Topic T.

The use of HMACs versus digital signatures presents tradeoffs that will be discussed further in
subsequent sections. Suffice it to say that in many situations the use of HMACs is preferred because
the performance to compute and verify them is about 1000 times faster than the performance of
computing/verifying digital signatures.

7.1.1.3 Tampering and Replay

Mallory is authorized to subscribe to Topic T. Therefore Alice has shared with Mallory the secret key
to encrypt the topic and also, if an HMAC is used, the secret key used for the HMAC.

Assume Alice used HMACs instead of digital signatures. Then Mallory can use her knowledge of the
secret keys used for data encryption and the HMACs to create a message on the network and pretend it
came from Alice. Mallory can fake all the TCP/UDP/IP headers and any necessary RTPS identifiers
(e.g., Alice’s RTPS DomainParticipant and DataWriter GUIDs). Mallory has the secret key that was
used to encrypt the data so she can create encrypted data payloads with any contents she wants. She
has the secret key used to compute HMACs so she can also create a valid HMAC for the new message.
Bob and the others will have no way to see that message came from Mallory and will accept it,
thinking it came from Alice.

So if Alice used an HMAC, the only solution to the problem is that the secret key used for the HMAC
when sending the message to Mallory cannot be the same as the key used for the HMAC when sending
messages to Bob. In other words, Alice must share a different secret key for the HMAC with each
recipient. Then Mallory will not have the HMAC key that Bob expects from Alice and the messages
from Mallory to Bob will not be misinterpreted as coming from Alice.

Recall that Alice needs to be able to use multicast to communicate efficiently with multiple receivers.
Therefore, if Alice wants to send an HMAC with a different key for every receiver, the only solution is
to append multiple HMACs to the multicast message with some key-id that allows the recipient to
select the correct HMAC to verify.

If Alice uses digital signatures to protect the integrity of the message, then this ‘masquerading’
problem does not arise and Alice can send the same digital signature to all recipients. This makes using

18 DDS Security, v1.0

multicast simpler. However, the performance penalty of using digital signatures is so high that in many
situations it will be better to compute and send multiple HMACs as described earlier.

7.1.1.4 Unauthorized Access to Data by Infrastructure Services

Infrastructure services, such as the DDS Persistence Service or relay services need to be able to receive
messages, verify their integrity, store them, and send them to other participants on behalf of the
original application.

These services can be trusted not to be malicious; however, often it is not desirable to grant them the
privileges they would need to understand the contents of the data. They are allowed to store and
forward the data, but not to see inside the data.

Trent is an example of such a service. To support deployment of these types of services, the security
model needs to support the concept of having a participant, such as Trent, who is allowed to receive,
process, and relay RTPS messages, but is not allowed to see the contents of the data within the
message. In other words, he can see the headers and sample information (writer GUID, sequence
numbers, keyhash and such) but not the message contents.

To support services like Trent, Alice needs to accept Trent as a valid destination for her messages on
topic T and share with Trent only the secret key used to compute the HMAC for Trent, but not the
secret key used to encrypt the data itself. In addition, Bob, Mallory and others need to accept Trent as
someone who is able to write on Topic T and relay messages from Alice. This means two things: (1)
accept and interpret messages encrypted with Alice’s secret key and (2) allow Trent to include in his
sample information, the information he got from Alice (writer GUID, sequence number and anything
else needed to properly process the relayed message).

Assume Alice used an HMAC in the message sent to Trent. Trent will have received from Alice the
secret key needed to verify the HMAC properly. Trent will be able to store the messages, but lacking
the secret key used for its encryption, will be unable to see the data. When he relays the message to
Bob, he will include the information that indicates the message originated from Alice and produce an
HMAC with its own secret HMAC key that was shared with Bob. Bob will receive the message, verify
the HMAC and see it is a relayed message from Alice. Bob recognizes Trent is authorized to relay
messages, so Bob will accept the sample information that relates to Alice and process the message as if
it had originated with Alice. In particular, he will use Alice’s secret key to decrypt the data.

If Alice had used digital signatures, Trent would have two choices. If the digital signature only covered
the data and the sample information he needs to relay from Alice, Trent could simply relay the digital
signature as well. Otherwise, Trent could strip out the digital signature and put in his own HMAC.
Similar to before, Bob recognizes that Trent is allowed to relay messages from Alice and will be able
to properly verify and process the message.

7.2 Types used by DDS Security
The DDS security specification includes extensions to the DDS Interoperability Wire Protocol (DDS-
RTPS), as well as, new API-level functions in the form of Security Plugins. The types described in sub
clause 7.2 are used in these extensions.

7.2.1 Property_t

Section 9.3.2 of the DDS-RTPS specification defines Property_t as a data type that holds a pair of
strings. One string is considered the property “name” and the other is the property “value” associated
with that name.

DDS Security, v1.0 19

The DDS Security specification extends the DDS-RTPS definition of Property_t to contain the
additional boolean attribute “propagate” used to indicate whether a property is intended for local use
only or should be propagated by DDS discovery.

The DDS-Security specification uses Property_t sequences as a generic data type to configure the
security plugins, pass metadata and provide an extensible mechanism for vendors to configure the
behavior of their plugins without breaking portability or interoperability.

Property_t objects with names that start with the prefix “dds.sec.” are reserved by this
specification, including future versions of this specification. Plugin implementers can also use this
mechanism to pass metadata and configure the behavior of their plugins. In order to avoid collisions
with the value of the “name” attribute, implementers shall use property names that start with a prefix to
an ICANN domain name they own, in reverse order. For example, the prefix would be “com.acme.”
for plugins developed by a hypothetical vendor that owns the domain “acme.com.”

The names and interpretation of the expected properties shall be specified by each plugin
implementation.
Table 1 – Property_t class

Property_t

Attributes

name String

value String

propagate Boolean

7.2.1.1 IDL Representation for Property_t

The Property_t type may be used for information exchange over the network. When a
Property_t is sent over the network it shall be serialized using Extended CDR format according to
the Extended IDL representation [3] below.

@Extensibility (EXTENSIBLE_EXTENSIBILITY)
struct Property_t {
 string name;
 string value;
 @non-serialized boolean propagate;
};
typedef sequence< Property_t > PropertySeq;

7.2.2 BinaryProperty_t

BinaryProperty_t is a data type that holds a string and an octet sequence. The string is
considered the property “name” and the octet sequence the property “value” associated with that name.
Sequences of BinaryProperty_t are used as a generic data type to configure the plugins, pass
metadata and provide an extensible mechanism for vendors to configure the behavior of their plugins
without breaking portability or interoperability.

20 DDS Security, v1.0

BinaryProperty_t also contains the boolean attribute “propagate.” Similar to Property_t
this attribute is used to indicate weather the corresponding binary property is intended for local use
only or shall be propagated by DDS discovery.

BinaryProperty_t objects with a “name” attribute that start with the prefix “dds.sec.” are
reserved by this specification, including future versions of this specification.

Plugin implementers may use this mechanism to pass metadata and configure the behavior of their
plugins. In order to avoid collisions with the value of the “name,” attribute implementers shall use
property names that start with a prefix to an ICANN domain name they own, in reverse order. For
example, the prefix would be “com.acme.” for plugins developed by a hypothetical vendor that owns
the domain “acme.com.”

The valid values of the “name” attribute and the interpretation of the associated “value” shall be
specified by each plugin implementation.
Table 2 – BinaryProperty_t class

BinaryProperty_t

Attributes

name String

value OctetSeq

propagate Boolean

7.2.2.1 IDL Representation for BinaryProperty_t

The BinaryProperty_t type may be used for information exchange over the network. When a
BinaryProperty_t is sent over the network, it shall be serialized using Extended CDR format
according to the Extended IDL representation [3] below.

@Extensibility (EXTENSIBLE_EXTENSIBILITY)
struct BinaryProperty_t {
 string name;
 OctetSeq value;
 @non-serialized boolean propagate;
};
typedef sequence< BinaryProperty_t > BinaryPropertySeq;

7.2.3 DataHolder

DataHolder is a data type used to hold generic data. It contains various attributes used to store data
of different types and formats. DataHolder appears as a building block for other types, such as
Token and GenericMessageData.

DDS Security, v1.0 21

 Table 3 – DataHolder class

DataHolder

Attributes

class_id String

properties PropertySeq

binary_properties BinaryPropertySeq

7.2.3.1 IDL representation for DataHolder

The DataHolder type may be used for information exchange over the network. When a
DataHolder is sent over the network, it shall be serialized using Extended CDR format according to
the Extended IDL representation [3] below.

@Extensibility (EXTENSIBLE_EXTENSIBILITY)
struct DataHolder {
 string class_id;
 PropertySeq properties;
 BinaryPropertySeq binary_properties;

};

typedef sequence<DataHolder> DataHolderSeq;

7.2.4 Token

The Token class provides a generic mechanism to pass information between security plugins using
DDS as the transport. Token objects are meant for transmission over the network using DDS either
embedded within the builtin topics sent via DDS discovery or via special DDS Topic entities defined in
this specification.

The Token class is structurally identical to the DataHolder class and therefore has the same
structure for all plugin implementations. However, the contents and interpretation of the Token
objects shall be specified by each plugin implementation.

There are multiple specializations of the Token class. They all share the same format, but are used for
different purposes. This is modeled by defining specialized classes.

22 DDS Security, v1.0

Figure 3 – Token Model

7.2.4.1 Attribute: class_id

When used as a Token class, the class_id attribute in the DataHolder identifies the kind of Token.
Strings with the prefix “dds.sec.” are reserved for this specification, including future versions of
the specification. Implementers of this specification can use this attribute to identify non-standard
tokens. In order to avoid collisions, the class_id they use shall start with a prefix to an ICANN domain
name they own, using the same rules specified in 7.2.1 for property names.

7.2.4.2 IDL Representation for Token and Specialized Classes

The Token class is used to hold information exchanged over the network. When a Token is sent over
the network, it shall be serialized using Extended CDR format according to the Extended IDL
representation below:

typedef DataHolder Token;

typedef Token HandshakeMessageToken;
typedef Token IdentityToken;
typedef Token PermissionsToken;
typedef Token AuthenticatedPeerCredentialToken;
typedef Token PermissionsCredentialToken;

typedef Token CryptoToken;
typedef Token ParticipantCryptoToken;
typedef Token DatawriterCryptoToken;
typedef Token DatareaderCryptoToken;

typedef sequence<HandshakeMessageToken> HandshakeMessageTokenSeq;
typedef sequence<CryptoToken> CryptoTokenSeq;
typedef CryptoTokenSeq ParticipantCryptoTokenSeq;

class Tokens

CryptoToken

Token

«discovery»
IdentityToken

«discovery»
PermissionsToken

MessageTokenPermissionsCredentialToken

DataHolder

- class_id: string
- string_properties: Property[]
- binary_properties: BinaryProperty[]
- string_values: string[]
- binary_value1: byte[]
- binary_value2: byte[]
- longlong_values: LongLong[]

DDS Security, v1.0 23

typedef CryptoTokenSeq DatawriterCryptoTokenSeq;
typedef CryptoTokenSeq DatareaderCryptoTokenSeq;

7.2.5 PropertyQosPolicy, DomainParticipantQos, DataWriterQos, and DataReaderQos

This specification introduces an additional Qos policy called PropertyQosPolicy, which is
defined by the following extended IDL:

@Extensibility (EXTENSIBLE_EXTENSIBILITY)
struct PropertyQosPolicy {
 PropertySeq value;
 BinaryPropertySeq binary_value;
};

The PropertyQosPolicy applies to the following DDS entities: DomainParticipant,
DataWriter, and DataReader. To allow configuration of this policy from the DDS API the DDS
Security specification extends the definitions of the DDS defined types DomainParticipantQos,
DataWriterQos, and DataReaderQos with the additional member “property” of type
PropertyQosPolicy as indicated in the extended IDL snippets below.

@Extensibility (MUTABLE_EXTENSIBILITY)
struct DomainParticipantQos {
 // Existing policies from the DDS specification
 PropertyQosPolicy property;
};

@Extensibility (MUTABLE_EXTENSIBILITY)
struct DataWriterQos {
 // Existing policies from the DDS specification
 PropertyQosPolicy property;
};

@Extensibility (MUTABLE_EXTENSIBILITY)
struct DataReaderQos {
 // Existing policies from the DDS specification
 PropertyQosPolicy property;
};

The PropertyQosPolicy shall be propagated via DDS discovery so it appears in the
ParticipantBuiltinTopicData, PublicationBuiltinTopicData, and
SubscriptionBuiltinTopicData (see 7.4.1.3, 7.4.1.4, and 7.4.1.5). This is used by the plugins
to check configuration compatibility. Not all name/value pairs within the underlying PropertySeq
and BinaryPropertySeq are propagated. Specifically only the ones with propagate=TRUE are
propagated via DDS discovery and shall appear in the ParticipantBuiltinTopicData,
PublicationBuiltinTopicData, and SubscriptionBuiltinTopicData.

7.2.6 ParticipantGenericMessage

This specification introduces additional builtin DataWriter and DataReader entities used to send
generic messages between the participants. To support these entities, this specification uses a general-

24 DDS Security, v1.0

purpose data type called ParticipantGenericMessage, which is defined by the following
extended IDL:

typedef octet[16] BuiltinTopicKey_t;

@Extensibility (EXTENSIBLE_EXTENSIBILITY)
struct MessageIdentity {
 BuiltinTopicKey_t source_guid;
 long long sequence_number;
};

typedef string<> GenericMessageClassId;

@Extensibility (EXTENSIBLE_EXTENSIBILITY)
struct ParticipantGenericMessage {
 /* target for the request. Can be GUID_UNKNOWN */
 MessageIdentity message_identity;
 MessageIdentity related_message_identity;
 BuiltinTopicKey_t destination_participant_key;
 BuiltinTopicKey_t destination_endpoint_key;
 BuiltinTopicKey_t source_endpoint_key;
 GenericMessageClassId message_class_id;
 DataHolderSeq message_data;
};

7.2.7 Additional DDS Return Code: NOT_ALLOWED_BY_SEC

The DDS specification defines a set of return codes that may be returned by the operations on the DDS
API (see sub clause 7.1.1 of the DDS specification).

The DDS Security specification adds an additional return code NOT_ALLOWED_BY_SEC, which
shall be returned by any operation on the DDS API that fails because the security plugins do not allow
it.

7.3 Securing DDS Messages on the Wire
OMG DDS uses the Real-Time Publish-Subscribe (RTPS) on-the-wire protocol [2] for communicating
data. The RTPS protocol includes specifications on how discovery is performed, the metadata sent
during discovery, and all the protocol messages and handshakes required to ensure reliability. RTPS
also specifies how messages are put together.

7.3.1 RTPS Background (Non-Normative)

In a secure system where efficiency and message latency are also considerations, it is necessary to
define exactly what needs to be secured. Some applications may require only the data payload to be
confidential and it is acceptable for the discovery information, as well as, the reliability meta-traffic
(HEARTBEATs, ACKs, NACKs, etc.) to be visible, as long as it is protected from modification. Other
applications may also want to keep the metadata (sequence numbers, in-line QoS) and/or the reliability
traffic (ACKs, NACKs, HEARTBEATs) confidential. In some cases, the discovery information (who is
publishing what and its QoS) may need to be kept confidential as well.

DDS Security, v1.0 25

To help clarify these requirements, sub clause 7.3.1 explains the structure of the RTPS Message and
the different Submessages it may contain.

Figure 4 – RTPS message structure

An RTPS Message is composed of a leading RTPS Header followed by a variable number of RTPS
Submessages. Each RTPS Submessage is composed of a SubmessageHeader followed by a
variable number of SubmessagElements. There are various kinds of SubmessageElements to
communicate things like sequence numbers, unique identifiers for DataReader and DataWriter entities,
SerializedKeys or KeyHash of the application data, source timestamps, QoS, etc. There is one kind of
SubmessageElement called SerializedPayload that is used to carry the data sent by DDS
applications.

For the purposes of securing communications we distinguish three types of RTPS Submessages:

1. DataWriter Submessages. These are the RTPS submessages sent by a DataWriter to one or
more DataReader entities. These include the Data, DataFrag, Gap, Heartbeat, and
HeartbeatFrag submessages.

2. DataReader Submessages. These are the RTPS submessages sent by a DataReader to one or
more DataWriter entities. These include the AckNack and NackFrag submessages.

3. Interpreter Submessages. These are the RTPS submessages that are destined to the Message
Interpreter and affect the interpretation of subsequent submessages. These include all the
“Info” messages.

26 DDS Security, v1.0

The only RTPS submessages that contain application data are the Data and DataFrag. The
application data is contained within the SerializedPayload submessage element. In addition to
the SerializedPayload these submessages contain sequence numbers, inline QoS, the Key Hash,
identifiers of the originating DataWriter and destination DataReader, etc.

The Data, and DataFrag submessages contain a ParameterList submessage element called
inlineQos (see section 8.3.7 of the DDS-RTPS specification version 2.2). The inlineQos holds
metadata associated with the submessage. It is encoded as a ParameterList (see section 9.4.2.11
of the DDS-RTPS specification version 2.2). ParameterList is a list of {paramaterId, length,
value} tuples terminated by a sentinel. One of these parameters is the KeyHash.

The KeyHash parameter may only appear in the Data and DataFrag submessages. Depending on
the data type associated with the DataWriter that wrote the data, the KeyHash parameter contains
either:

• A serialized representation of the values of all the attributes declared as ‘key’ attributes in the
associated data type, or

• An MD5 hash computed over the aforementioned serialized key attributes.

Different RTPS Submessage within the same RTPS Message may originate on different
DataWriter or DataReader entities within the DomainParticipant that sent the RTPS message.

It is also possible for a single RTPS Message to combine submessages that originated on different
DDS DomainParticipant entities. This is done by preceding the set of RTPS Submessages that
originate from a common DomainParticipant with an InfoSource RTPS submessage.

7.3.2 Secure RTPS Messages

Sub clause 7.1.1 identified the threats addressed by the DDS Security specification. To protect against
the “Unauthorized Subscription” threat it is necessary to use encryption to protect the sensitive parts of
the RTPS message.

Depending on the application requirements, it may be that the only thing that should be kept
confidential is the content of the application data; that is, the information contained in the
SerializedPayload RTPS submessage element. However, other applications may also consider
the information in other RTPS SubmessageElements (e.g., sequence numbers, KeyHash, and
unique writer/reader identifiers) to be confidential. So the entire Data (or DataFrag) submessage
may need to be encrypted. Similarly, certain applications may consider other submessages such as
Gap, AckNack, Heartbeat, HeartbeatFrag, etc. also to be confidential.

For example, a Gap RTPS Submessage instructs a DataReader that a range of sequence numbers
is no longer relevant. If an attacker can modify or forge a Gap message from a DataWriter, it can
trick the DataReader into ignoring the data that the DataWriter is sending.

To protect against “Unauthorized Publication” and “Tampering and Replay” threats, messages must be
signed using secure hashes or digital signatures. Depending on the application, it may be sufficient to
sign only the application data (SerializedPayload submessage element), the whole
Submessage, and/or the whole RTPS Message.

DDS Security, v1.0 27

To support different deployment scenarios, this specification uses a “message transformation”
mechanism that gives the Security Plugin Implementations fine-grain control over which parts of the
RTPS Message need to be encrypted and/or signed.

The Message Transformation performed by the Security Plugins transforms an RTPS Message into
another RTPS Message. A new RTPS Header may be added and the content of the original RTPS
Message may be encrypted, protected by a Secure Message Authentication Code (MAC), and/or
signed. The MAC and/or signature can also include the RTPS Header to protect its integrity.

7.3.3 Constraints of the DomainParticipant BuiltinTopicKey_t (GUID)

The DDS and the DDS Interoperability Wire Protocol specifications state that DDS
DomainParticipant entities are identified by a unique 16-byte GUID.

This DomainParticipant GUID is communicated as part of DDS Discovery in the
ParticipantBuiltinTopicData in the attribute participant_key of type
BuiltinTopicKey_t defined as:

typedef octet BuiltinTopicKey_t[16];

Allowing a DomainParticipant to select its GUID arbitrarily would allow hostile applications to
perform a “squatter” attack, whereby a DomainParticipant with a valid certificate could
announce itself into the DDS Domain with the GUID of some other DomainParticipant. Once
authenticated the “squatter” DomainParticipant would preclude the real DomainParticipant
from being discovered, because its GUID would be detected as a duplicate of the already existing
one.

To prevent the aforementioned “squatter” attack, this specification constrains the GUID that can be
chosen by a DomainParticipant, so that it is tied to the Identity of the DomainParticipant.
This is enforced by the Authentication plugin.

7.3.4 Mandatory use of the KeyHash for encrypted messages

The RTPS Data and DataFrag submessages can optionally contain the KeyHash as an inline Qos
(see sub clause 9.6.3.3, titled “KeyHash (PID_KEY_HASH)”) of the DDS-RTPS specification version
2.3. In this sub clause it is specified that when present, the key hash shall be computed either as the
serialized key or as an MD5 on the serialized key.

The key values are logically part of the data and therefore in situations where the data is considered
sensitive the key should also be considered sensitive.

For this reason the DDS Security specification imposes additional constraints in the use of the key
hash. These constraints apply only to the Data or DataFrag RTPS SubMessages where the
SerializedPayload SubmessageElement is encrypted by the operation
encode_serialized_payload of the CryptoTransform plugin:

(1) The KeyHash shall be included in the Inline Qos.
(2) The KeyHash shall be computed as the 128 bit MD5 Digest (IETF RFC 1321) applied to the

CDR Big- Endian encapsulation of all the Key fields in sequence. Unlike the rule stated in sub
clause 9.6.3.3 of the DDS specification, the MD5 hash shall be used regardless of the
maximum-size of the serialized key.

28 DDS Security, v1.0

These rules accomplish two objectives:

(1) Avoid leaking the value of the key fields in situations where the data is considered sensitive
and therefore appears encrypted within the Data or DataFrag submessages.

(2) Enable the operation of infrastructure services without needed to leak to them the value of the
key fields (see 7.1.1.4).

Note that the use of the MD5 hashing function for these purposes does not introduce significant
vulnerabilities. While MD5 is considered broken as far as resistance to collisions (being able to find
two inputs that result in an identical unspecified hash) there are still no known practical preimage
attacks on MD5 (being able to find the input that resulted on a given hash).

7.3.5 Immutability of Publisher Partition Qos in combination with non-volatile
Durability kind

The DDS specification allows the PartitionQos policy of a Publisher to be changed after the
Publisher has been enabled. See sub clause 7.1.3 titled “Supported QoS) of the DDS 1.2
specification.

The DDS Security specification restricts this situation.

The DDS implementation shall not allow a Publisher to change PartitionQos policy after the
Publisher has been enabled if it contains any DataWriter that meets the following two criteria:

(1) The DataWriter either encrypts the SerializedPayload submessage element or
encrypts the Data or DataFrag submessage elements.

(2) The DataWriter has the DurabilityQos policy kind set to something other than
VOLATILE.

This rule prevents data that was published while the DataWriter had associated a set of
Partitions from being sent to DataReaders that were not matching before the Partition
change and match after the Partition is changed.

7.3.6 Platform Independent Description

7.3.6.1 RTPS Secure Submessage Elements

This specification introduces new RTPS SubmessageElements that may appear inside RTPS
Submessages.

7.3.6.1.1 CryptoTransformIdentifier

The CryptoTransformIdentifier submessage element identifies the kind of cryptographic
transformation that was performed in an RTPS Submessage or an RTPS SubmessageElement
and also provides a unique identifier of the key material used for the cryptographic transformation.

The way in which attributes in the CryptoTransformIdentifier are set shall be specified for
each Cryptographic plugin implementation. However, all Cryptographic plugin implementations shall
be set in a way that allows the operations preprocess_secure_submsg,
decode_datareader_submessage, decode_datawriter_submessage, and
decode_serialized_payload to uniquely recognize the cryptographic material they shall use
to decode the message, or recognize that they do not have the necessary key material.

DDS Security, v1.0 29

7.3.6.1.2 SecureDataBody

The SecureDataBody submessage element is used to wrap a SerializedPayload, an RTPS
Submessage, or a complete RTPS Message. It is the result of applying one of the encoding
transformations on the CryptoTransform plugin.

The specific format of this shall be defined by each Cryptographic plugin implementation.

7.3.6.1.3 SecureDataHeader

The SecureDataHeader submessage element is used as prefix to wrap a SerializedPayload,
an RTPS Submessage, or a complete RTPS Message. It is the result of applying one of the encoding
transformations on the CryptoTransform plugin.

The leading bytes in the SecureDataHeader shall encode the
CryptoTransformIdentifier. Therefore, the transformationKind is guaranteed to be the first
element within the SecureDataHeader. The specific format of this shall be defined by each
Cryptographic plugin implementation.

7.3.6.1.4 SecureDataTag

The SecureDataTag submessage element is used as postfix to wrap a SerializedPayload, an
RTPS Submessage, or a complete RTPS Message. It is the result of applying one of the encoding
transformations on the CryptoTransform plugin.

The specific format of this shall be defined by each Cryptographic plugin implementation.

7.3.6.2 RTPS Submessage: SecureSubMsg

This specification introduces a new RTPS submessage: SecureSubMsg. The format of the
SecureSubMsg complies with the RTPS SubMessage format mandated in the RTPS specification.
It consists of the RTPS SubmessageHeader followed by a set of RTPS SubmessageElement
elements.

Since the SecureSubMsg conforms to the general structure of RTPS submessages, it can appear
inside a well-formed RTPS message.

30 DDS Security, v1.0

Figure 5 – Secure Submessage and Secured Payload Model

7.3.6.2.1 Purpose

The SecureSubMsg submessage is used to wrap one or more regular RTPS submessages in such a
way that their contents are secured via encryption, message authentication, and/or digital signatures.

7.3.6.2.2 Content

The elements that form the structure of the RTPS SecureSubMsg are described in the table below.

class SecureSubmessages

RTPS::SubmessageHeader

- submessageId: SubmessageKind
- submessagLengh: ushort
- flags: SubmessageFlag[8]

SecureBodySubMsg

RTPS::Submessage

«interface»
CryptoTransformIdentifier

- transformationKind: long
- transformationId: octet[8]

SecureDataBody

RTPS::SubmessageElement

SecurePrefixSubMsg

SecurePostfixSubMsg

SecureRTPSPrefixSubMsg

SecureRTPSPostfixSubMsg

SecureDataHeader

- transformationId: CryptoTransformIdentifier
- value: octet[*]

SecureDataTag

- common_mac: char[]
- receiver_specific_macs: ReceiverSpecificMAC[]

1

0..*

«use»

«use»

DDS Security, v1.0 31

Table 4 – SecureSubMsg class

Element Type Meaning

SEC_SUB_MSG SubmessageKind The presence of this field is common
to RTPS submessages. It identifies
the kind of submessage.

The value indicates it is a
SecureSubMsg

submessageLength ushort The presence of this field is common
to RTPS submessages. It identifies
the length of the submessage.

EndianessFlag SubmessageFlag Appears in the Submessage header
flags. Indicates endianess.

sec_body SecureDataBody

Contains the result of transforming
the original message. Depending on
the plugin implementation and
configuration, it may contain
encrypted content, message access
codes, and/or digital signatures

7.3.6.2.3 Validity

The RTPS Submessage is invalid if the submessageLength in the Submessage header is too small.

7.3.6.2.4 Logical Interpretation

The SecureSubMsg provides a way to secure content inside a legal RTPS submessage.

A SecureSubMsg may wrap a single RTPS Submessage or a whole RTPS Message.

7.3.6.3 RTPS Submessage: SecurePrefixSubMsg

This specification introduces the RTPS submessage: SecurePrefixSubMsg. The format of the
SecurePrefixSubMsg complies with the RTPS SubMessage format mandated in the RTPS
specification. It consists of the RTPS SubmessageHeader followed by a set of RTPS
SubmessageElement elements.

7.3.6.3.1 Purpose

The SecurePrefixSubMsg submessage is used as prefix to wrap an RTPS submessage in such a
way that its contents are secured via encryption, message authentication, and/or digital signatures.

7.3.6.3.2 Content

The elements that form the structure of the RTPS SecurePrefixSubMsg are described in the table
below.

32 DDS Security, v1.0

Table 5 – SecurePrefixSubMsg class

Element Type Meaning

SEC_PREFIX SubmessageKind The presence of this field is common to RTPS
submessages. It identifies the kind of
submessage.

The value indicates it is a SecurePrefixSubMsg

submessageLength ushort The presence of this field is common to RTPS
submessages. It identifies the length of the
submessage.

EndianessFlag SubmessageFlag Appears in the Submessage header flags.
Indicates endianess.

transformation_id

CryptoTransformIdentifier

Identfies the kind of transformation performed
on the RTPS Sububmessage that follows it.

plugin_sec_header octet[]

Provides further information on the
transformation performed. The contents are
specific to the Plugin Implementation and the
value of the transformation_id

7.3.6.3.3 Validity

The RTPS Submessage is invalid if the submessageLength in the Submessage header is too small.

7.3.6.3.4 Logical Interpretation

The SecurePrefixSubMsg provides a way to prefix secure content inside a legal RTPS
submessage.

A SecurePrefixSubMsg shall be followed by a single RTPS Submessage which itself shall be
followed by a SecurePostfixSubMsg.

DDS Security, v1.0 33

Figure 6 – RTPS message transformations

7.3.6.4 RTPS Submessage: SecurePostfixSubMsg

This specification introduces the RTPS submessage: SecurePostfixSubMsg. The format of the
SecurePostfixSubMsg complies with the RTPS SubMessage format mandated in the RTPS
specification. As such it consists of the RTPS SubmessageHeader followed by a set of RTPS
SubmessageElement elements.

7.3.6.4.1 Purpose

The SecurePostfixSubMsg submessage is used to authenticate the RTPS Submessage that
preceeds it.

7.3.6.4.2 Content

The elements that form the structure of the RTPS SecurePostfixSubMsg are described in the
table below.

34 DDS Security, v1.0

Table 6 – SecurePostfixSubMsg class

Element Type Meaning

SEC_POSTFIX SubmessageKind The presence of this field is common to RTPS
submessages. It identifies the kind of submessage.

The value indicates it is a SecurePostfixSubMsg.

submessageLength ushort The presence of this field is common to RTPS
submessages. It identifies the length of the
submessage.

EndianessFlag SubmessageFlag Appears in the Submessage header flags. Indicates
endianess.

plugin_sec_tag octet[]

Provides information on the results of the
transformation performed, typically a list of
authentication tags. The contents are specific to the
Plugin Implementation and the value of the
transformation_id contained on the related
SecurePrefixSubMsg.

7.3.6.4.3 Validity

The RTPS Submessage is invalid if the submessageLength in the Submessage header is too small.

The RTPS Submessage is invalid if there is no SecurePrefixSubMsg immediately before the
RTPS submessage that preceeds the SecurePostfixSubMsg. This SecurePrefixSubMsg is
referred to as the related the SecurePrefixSubMsg.

7.3.6.4.4 Logical Interpretation

The SecurePostfixSubMsg provides a way to authenticate the validity and origin of the RTPS
SubMessage that preceeds the SecurePrefixSubMsg. The Cryptographic transformation applied is
identified in the related SecurePrefixSubMsg.

7.3.6.5 RTPS Submessage: SecureRTPSPrefixSubMsg

This specification introduces the RTPS submessage: SecureRTPSPrefixSubMsg. The format of
the SecurePrefixSubMsg complies with the RTPS SubMessage format mandated in the RTPS
specification. It consists of the RTPS SubmessageHeader followed by a set of RTPS
SubmessageElement elements.

7.3.6.5.1 Purpose

The SecureRTPSPrefixSubMsg submessage is used as prefix to wrap a complete RTPS message
in such a way that its contents are secured via encryption, message authentication, and/or digital
signatures.

7.3.6.5.2 Content

The elements that form the structure of the RTPS SecureRTPSPrefixSubMsg are described in the
table below.

DDS Security, v1.0 35

Table 7 – SecureRTPSPrefixSubMsg class

Element Type Meaning

SRTPS_PREFIX SubmessageKind The presence of this field is common to RTPS
submessages. It identifies the kind of
submessage.

The value indicates it is a
SecureRTPSPrefixSubMsg.

submessageLength ushort The presence of this field is common to RTPS
submessages. It identifies the length of the
submessage.

EndianessFlag SubmessageFlag Appears in the Submessage header flags.
Indicates endianess.

transformation_id

CryptoTransformIdentifier

Identfies the kind of transformation performed
on the RTPS Subumessages that follow up to
the SRTPS_POSTFIX submessage.

plugin_sec_header octet[]

Provides further information on the
transformation performed. The contents are
specific to the Plugin Implementation and the
value of the transformation_id.

7.3.6.5.3 Validity

The RTPS Submessage is invalid if the submessageLength in the Submessage header is too small.

The SecureRTPSPrefixSubMsg shall immediately follow the RTPS Header.

7.3.6.5.4 Logical Interpretation

The SecureRTPSPrefixSubMsg provides a way to prefix a list of RTPS Submessages so that they
can be secured.

A SecureRTPSPrefixSubMsg shall be followed by a list of RTPS Submessages which
themselves shall be followed by a SecureRTPSPostfixSubMsg.

7.3.6.6 RTPS Submessage: SecureRTPSPostfixSubMsg

This specification introduces the RTPS submessage: SecureRTPSPostfixSubMsg. The format of
the SecureRTPSPostfixSubMsg complies with the RTPS SubMessage format mandated in the
RTPS specification. As such it consists of the RTPS SubmessageHeader followed by a set of RTPS
SubmessageElement elements.

7.3.6.6.1 Purpose

The SecureRTPSPostfixSubMsg submessage is used to authenticate the RTPS Submessages that
appear between the preceeding SecureRTPSPostfixSubMsg and the
SecureRTPSPostfixSubMsg.

36 DDS Security, v1.0

7.3.6.6.2 Content

The elements that form the structure of the SecureRTPSPostfixSubMsg are described in the table
below.
Table 8 – SecurePostfixSubMsg class

Element Type Meaning

SRTPS_POSTFIX SubmessageKind The presence of this field is common to RTPS
submessages. It identifies the kind of
submessage.

The value indicates it is a
SecureRTPSPostfixSubMsg.

submessageLength ushort The presence of this field is common to RTPS
submessages. It identifies the length of the
submessage.

EndianessFlag SubmessageFlag Appears in the Submessage header flags.
Indicates endianess.

plugin_sec_tag octet[]

Provides information on the results of the
transformation performed, typically a list of
authentication tags. The contents are specific
to the Plugin Implementation and the value of
the transformation_id contained on the related
SecureRTPSPrefixSubMsg.

7.3.6.6.3 Validity

The RTPS Submessage is invalid if the submessageLength in the Submessage header is too small.

The RTPS SecureRTPSPostfixSubMsg is invalid if there is no SecureRTPSPrefixSubMsg
following the RTPS Header. This SecureRTPSPrefixSubMsg is referred to as the related
SecureRTPSPrefixSubMsg.

7.3.6.6.4 Logical Interpretation

The SecureRTPSPostfixSubMsg provides a way to authenticate the validity and origin of the list
of RTPS Submessages between the related SecureRTPSPrefixSubMsg and the
SecureRTPSPrefixSubMsg. The Cryptographic transformation applied is identified in the related
SecureRTPSPrefixSubMsg.

7.3.7 Mapping to UDP/IP PSM

The DDS-RTPS specification defines the RTPS protocol in terms of a platform-independent model
(PIM) and then maps it to a UDP/IP transport PSM (see clause 9, “Platform Specific Model (PSM):
UDP/IP” of the DDS-RTPS specification [2]).

Sub clause 7.3.7 does the same thing for the new RTPS submessage elements and submessages
introduced by the DDS Security specification.

DDS Security, v1.0 37

7.3.7.1 Mapping of the EntityIds for the Builtin DataWriters and DataReaders

Sub clause 7.4 defines a set of builtin Topics and corresponding DataWriter and DataReader entities
that shall be present on all compliant implementations of the DDS Security specification. The
corresponding EntityIds used when these endpoints are used on the UDP/IP PSM are given in the table
below.
Table 9 – EntityId values for secure builtin data writers and data readers

Entity EntityId_t name EntityId_t value

SEDPbuiltinPublicationsSecure
Writer

ENTITYID_SEDP_BUILTIN_PUBLICATIO
NS_SECURE_WRITER

{{ff, 00, 03}, c2}

SEDPbuiltinPublicationsSecure
Reader

ENTITYID_SEDP_BUILTIN_PUBLICATIO
NS_SECURE_READER

{{ff, 00, 03}, c7}

SEDPbuiltinSubscriptions
SecureWriter

ENTITYID_SEDP_BUILTIN_SUBSCRIPTI
ONS_SECURE_WRITER

{{ff, 00, 04}, c2}

SEDPbuiltinSubscriptions
SecureReader

ENTITYID_ SEDP_BUILTIN_
SUBSCRIPTIONS_SECURE_READER

{{ff, 00, 04}, c7}

BuiltinParticipantMessage
SecureWriter

ENTITYID_P2P_BUILTIN_PARTICIPANT_
MESSAGE_SECURE_WRITER

{{ff, 02, 00}, c2}

BuiltinParticipantMessage
SecureReader

ENTITYID_P2P_BUILTIN_PARTICIPANT_
MESSAGE_SECURE_READER

{{ff, 02, 00}, c7}

BuiltinParticipantStateless
MessageWriter

ENTITYID_P2P_BUILTIN_PARTICIPANT_
STATELESS_WRITER

{{00, 02, 01}, c3}

BuiltinParticipantStateless
MessageReader

ENTITYID_P2P_BUILTIN_PARTICIPANT_
STATELESS_READER

{{00, 02, 01}, c4}

BuiltinParticipantVolatile
MessageSecureWriter

ENTITYID_P2P_BUILTIN_PARTICIPANT_
VOLATILE_SECURE_WRITER

{{ff, 02, 02}, c3}

BuiltinParticipantVolatile
MessageSecureReader

ENTITYID_P2P_BUILTIN_PARTICIPANT_
VOLATILE_SECURE_READER

{{ff, 02, 02}, c4}

7.3.7.2 Mapping of the CryptoTransformIdentifier Type

The UDP/IP PSM maps the CryptoTransformIdentifier to the following extended IDL
structure:

@Extensibility(FINAL_EXTENSIBILITY)
struct CryptoTransformIdentifier {
 octet transformation_kind[4];

38 DDS Security, v1.0

 octet transformation_key_id[4];
};

7.3.7.3 Mapping of the SecureDataHeader SubmessageElement

A SecureDataHeader SubmessageElement contains the information that identifies a
cryptographic transformation. The SecuredDataHeader shall start with the
CryptoTransformIdentifier and be followed by a plugin-specific plugin_sec_header
returned by the encoding transformation.

The UDP/IP wire representation for the SecuredDataHeader shall be:

0...2...........8...............16.............24...............32
+---------------+---------------+---------------+---------------+
| octet transformation_kind[4] |
+---------------+---------------+---------------+---------------+
| |
+ octet transformation_key_id[4] +
| |
+---------------+---------------+---------------+---------------+
| |
~ octet plugin_sec_header[] ~
| |
+---------------+---------------+---------------+---------------+

7.3.7.4 Mapping of the SecureDataTag SubmessageElement

A SecureDataTag SubmessageElement contains the information that authenticates the result
of a cryptographic transformation. The SecuredDataTag contains a plugin-specific plugin_sec_tag
returned by the encoding transformation.

The UDP/IP wire representation for the SecureDataTag shall be:

0...2...........8...............16.............24...............32
+---------------+---------------+---------------+---------------+
| |
~ octet plugin_sec_tag[] ~
| |
+---------------+---------------+---------------+---------------+

7.3.7.5 SecureBodySubMsg Submessage

7.3.7.5.1 Wire Representation

The UDP/IP wire representation for the SecureBodySubMsg shall be:

DDS Security, v1.0 39

0...2...........8...............16.............24...............32
+---------------+---------------+---------------+---------------+
| SecureSubMsgId|X|X|X|X|X|X|X|E| octetsToNextHeader |
+---------------+---------------+---------------+---------------+
| |
+ SecuredPayload payload +
| |
+---------------+---------------+---------------+---------------+

7.3.7.5.2 Submessage Id

The SecureBodySubMsg shall have the submessageId set to the value 0x30.

7.3.7.5.3 Flags in the Submessage Header

The SecureBodySubMsg only uses the EndiannessFlag.

7.3.7.6 SecurePrefixSubMsg Submessage

7.3.7.6.1 Wire Representation

The UDP/IP wire representation for the SecurePrefixSubMsg shall be:

0...2...........8...............16.............24...............32
+---------------+---------------+---------------+---------------+
| SEC_PREFIX |X|X|X|X|X|X|X|E| octetsToNextHeader |
+---------------+---------------+---------------+---------------+
| |
+ SecureDataHeader sec_data_header +
| |
+---------------+---------------+---------------+---------------+

7.3.7.6.2 Submessage Id

The SecurePrefixSubMsg shall have the submessageId set to the value 0x31 and referred by the
symbolic name SEC_PREFIX.

7.3.7.6.3 Flags in the Submessage Header

The SecurePrefixSubMsg only uses the EndiannessFlag.

7.3.7.7 SecurePostfixSubMsg Submessage

7.3.7.7.1 Wire Representation

The UDP/IP wire representation for the SecurePostfixSubMsg shall be:

40 DDS Security, v1.0

0...2...........8...............16.............24...............32
+---------------+---------------+---------------+---------------+
| SEC_POSTFIX |X|X|X|X|X|X|X|E| octetsToNextHeader |
+---------------+---------------+---------------+---------------+
| |
+ SecureDataTag sec_data_tag +
| |
+---------------+---------------+---------------+---------------+

7.3.7.7.2 Submessage Id

The SecurePostfixSubMsg shall have the submessageId set to the value 0x32 and referred by the
symbolic name SEC_POSTFIX.

7.3.7.7.3 Flags in the Submessage Header

The SecurePostfixSubMsg only uses the EndiannessFlag.

7.3.7.8 SecureRTPSPrefixSubMsg Submessage

7.3.7.8.1 Wire Representation

The UDP/IP wire representation for the SecureRTPSPrefixSubMsg shall be:

0...2...........8...............16.............24...............32
+---------------+---------------+---------------+---------------+
| SRTPS_PREFIX |X|X|X|X|X|X|X|E| octetsToNextHeader |
+---------------+---------------+---------------+---------------+
| |
+ SecureDataHeader sec_data_header +
| |
+---------------+---------------+---------------+---------------+

7.3.7.8.2 Submessage Id

The SecureRTPSPrefixSubMsg shall have the submessageId set to the value 0x33 and referred
by the symbolic name SRTPS_PREFIX.

7.3.7.8.3 Flags in the Submessage Header

The SecureRTPSPrefixSubMsg only uses the EndiannessFlag.

7.3.7.9 SecureRTPSPostfixSubMsg Submessage

7.3.7.9.1 Wire Representation

The UDP/IP wire representation for the SecureRTPSPostfixSubMsg shall be:

DDS Security, v1.0 41

0...2...........8...............16.............24...............32
+---------------+---------------+---------------+---------------+
| SRTPS_POSTFIX |X|X|X|X|X|X|X|E| octetsToNextHeader |
+---------------+---------------+---------------+---------------+
| |
+ SecureDataTag sec_data_tag +
| |
+---------------+---------------+---------------+---------------+

7.3.7.9.2 Submessage Id

The SecureRTPSPostfixSubMsg shall have the submessageId set to the value 0x34 and referred
by the symbolic name SRTPS_POSTFIX.

7.3.7.9.3 Flags in the Submessage Header

The SecureRTPSPostfixSubMsg only uses the EndiannessFlag.

7.4 DDS Support for Security Plugin Information Exchange
In order to perform their function, the security plugins associated with different DDS
DomainParticipant entities need to exchange information representing things such as Identity
and Permissions of the DomainParticipant entities, authentication challenge messages, tokens
representing key material, etc.

DDS already has several mechanisms for information exchange between DomainParticipant
entities. Notably the builtin DataWriter and DataReader entities used by the Simple Discovery
Protocol (see sub clause 8.5 of the DDS Interoperability Wire Protocol [2]) and the
BuiltinParticipantMessageWriter and BuiltinParticipantMessageReader (see sub clause 9.6.2.1 of the
DDS Interoperability Wire Protocol [2]).

Where possible, this specification tries to reuse and extend existing DDS concepts and facilities so that
they can fulfill the needs of the security plugins, rather than defining entirely new ones. This way, the
Security Plugin implementation can be simplified and it does not have to implement a separate
messaging protocol.

7.4.1 Secure builtin Discovery Topics

7.4.1.1 Background (Non-Normative)

DDS discovery information is sent using builtin DDS DataReaders and DataWriters. These are
regular DDS DataReaders and DataWriters, except they are always present in the system and
their Topic names, associated data types, QoS, and RTPS EntityIds are all specified as part of the
DDS and RTPS specifications, so they do not need to be discovered.

The DDS specification defines three discovery builtin Topic entities: the DCPSParticipants used to
discover the presence of DomainParticipants, the DCPSPublications used to discover
DataWriters, and the DCPSSubscriptions used to discover DataReaders (see sub clause 8.5 of
the DDS Interoperability Wire Protocol [2]).

42 DDS Security, v1.0

Much of the discovery information could be considered sensitive in secure DDS systems. Knowledge
of things like the Topic names that an application is publishing or subscribing to could reveal
sensitive information about the nature of the application. In addition, the integrity of the discovery
information needs to be protected against tampering, since it could cause erroneous behaviors or
malfunctions.

One possible approach to protecting discovery information would be to require that the discovery
builtin Topic entities always be protected via encryption and message authentication. However, this
would entail the problems explained below.

The DCPSParticipants builtin Topic is used to bootstrap the system, detect the presence of
DomainParticipant entities, and kick off subsequent information exchanges and handshakes. It
contains the bare minimum information needed to establish protocol communications (addresses, port
numbers, version number, vendor IDs, etc.). If this Topic were protected, the Secure DDS system
would have to create an alternative mechanism to bootstrap detection of other participants and gather
the same information—which needs to happen prior to being able to perform mutual authentication and
exchange of key material. This mechanism would, in essence, duplicate the information in the
DCPSParticipants builtin Topic. Therefore, it makes little sense to protect the DCPSParticipants
builtin Topic. A better approach is to augment the information sent using the DCPSParticipants
builtin Topic with any additional data the Secure DDS system needs for bootstrapping
communications (see 7.4.1.3).

Secure DDS systems need to co-exist in the same network and, in some cases, interoperate with non-
secure DDS systems. There may be systems built using implementations compliant with the DDS
Security specification, which do not need to protect their information. Or there may be systems
implemented with legacy DDS implementations that do not support DDS Security. In this situation, the
fact that a secure DDS implementation is present on the network should not impact the otherwise
correct behavior of the non-secure DDS systems. In addition, even in secure systems not all Topics are
necessarily sensitive, so it is desirable to provide ways to configure a DDS Secure system to have
Topics that are “unprotected” and be able to communicate with non-secure DDS systems on those
“unprotected” Topics.

To allow co-existence and interoperability between secure DDS systems and DDS systems that do not
implement DDS security, secure DDS systems must retain the same builtin Topics as the regular DDS
systems (with the same GUIDs, topics names, QoS, and behavior). Therefore, to protect the discovery
and liveliness information of Topics that are considered sensitive, Secure DDS needs to use additional
builtin discovery Topics protected by the DDS security mechanisms.

7.4.1.2 Extending the Data Types used by DDS Discovery

The DDS Interoperability Wire Protocol specifies the serialization of the data types used for the
discovery of builtin Topics (ParticipantBuiltinTopicData, PublicationBuiltinTopicData, and
SubscriptionBuiltinTopicData) using a representation called a ParameterList. Although this
description precedes the DDS-XTYPES specification, the serialization format matches the Extended
CDR representation defined in DDS-XTYPES for data types declared with MUTABLE extensibility.
This allows the data type associated with discovery topics to be extended without breaking
interoperability.

Given that DDS-XTYPES formalized the ParameterList serialization approach, first defined in the
DDS Interoperability and renamed it to “Extended CDR,” this specification will use the DDS
Extensible Types notation to define the data types associated with the builtin Topics. This does not

DDS Security, v1.0 43

imply that compliance to the DDS-XTYPES is required to comply with DDS Security. All that is
required is to serialize the specific data types defined here according to the format described in the
DDS-XTYPES specification.

7.4.1.3 Extension to RTPS Standard DCPSParticipants Builtin Topic

The DDS specification specifies the existence of the DCPSParticipants builtin Topic and a
corresponding builtin DataWriter and DataReader to communicate this Topic. These
endpoints are used to discover DomainParticipant entities.

The data type associated with the DCPSParticipants builtin Topic is ParticipantBuiltinTopicData,
defined in sub clause 7.1.5 of the DDS specification [1].

The DDS Interoperability Wire Protocol specifies the serialization of ParticipantBuiltinTopicData.
The format used is what the DDS Interoperability Wire Protocol calls a ParameterList whereby each
member of the ParticipantBuiltinTopicData is serialized using CDR but preceded in the stream by the
serialization of a short ParameterID identifying the member, followed by another short containing the
length of the serialized member, followed by the serialized member. See sub clause 8.3.5.9 of the DDS
Interoperability Wire Protocol [2]. This serialization format allows the ParticipantBuiltinTopicData to
be extended without breaking interoperability.

This DDS Security specification adds several new members to the ParticipantBuiltinTopicData
structure. The member types and the ParameterIDs used for the serialization are described below.
Table 10 – Additional parameter IDs in ParticipantBuiltinTopicData

Member name Member type Parameter ID name Parameter ID value

identity_token IdentityToken

(see 7.2.4)

PID_IDENTITY_TOKEN 0x1001

permissions_token PermissionsToken

(see 7.2.4)

PID_PERMISSIONS_TOKEN 0x1002

property PropertyQosPolicy PID_PROPERTY_LIST

(See Table 9.12 of DDS-
RTPS)

0x0059

(See Table 9.12 of
DDS-RTPS)

@extensibility(MUTABLE_EXTENSIBILITY)
struct ParticipantBuiltinTopicDataSecure: ParticipantBuiltinTopicData {
 @ID(0x1001) IdentityToken identity_token;
 @ID(0x1002) PermissionsToken permissions_token;
};

Only the Property_t and BinaryProperty_t elements having the propagate member set to
TRUE are serialized. Furthermore as indicated by the @non-serialized annotation the
serialization of the Property_t and BinaryProperty_t elements shall omit the serialization of
the propagate member. That is they are serialized as if the type definition did not contain the
propagate member. This is consistent with the data-type definition for Property_t specific in the DDS-
RTPS specification (see Table 9.12 of DDS-RTPS). Even if it is not present in the serialized data, the
receiver will set the propagate member to TRUE.

44 DDS Security, v1.0

Note that according to DDS-RTPS the PID_PROPERTY_LIST is associated with a single
PropertySeq rather than the PropertyQosPolicy, which is a structure that contains two
sequences. This does not cause any interoperability problems because the containing
ParticipantBuiltinTopicData has mutable extensibility.

The DDS Interoperability Wire Protocol specifies that the ParticipantBuiltinTopicData shall contain
the attribute called availableBuiltinEndpoints that is used to announce the builtin endpoints that are
available in the DomainParticipant. See clause 8.5.3.2 of the DDS Interoperability Wire Protocol
[2]. The type for this attribute is an array of BuiltinEndpointSet_t. For the UDP/IP PSM the
BuiltinEndpointSet_t is mapped to a bitmap represented as type long. Each builtin endpoint is
represented as a bit in this bitmap with the bit values defined in Table 9.4 (clause 9.3.2) of the DDS
Interoperability Wire Protocol [2].

This DDS Security specification reserves additional bits to indicate the presence of the corresponding
built-in end points listed in clause 7.4.5. These bits shall be set on the availableBuiltinEndpoints. The
bit that encodes the presence of each individual endpoint is defined in Table 11 below.
Table 11 – Mapping of the additional builtin endpoints added by DDS security to the availableBuiltinEndpoints

Builtin Endpoint Bit in the ParticipantBuiltinTopicData
availableBuiltinEndpoints

SEDPbuiltinPublicationsSecureWriter

SEDPbuiltinPublicationsSecureReader

See clause 7.4.1.4

(0x00000001 << 16)

(0x00000001 << 17)

SEDPbuiltinSubscriptionsSecureWriter

SEDPbuiltinSubscriptionsSecureReader

See clause 7.4.1.5

(0x00000001 << 18)

(0x00000001 << 19)

BuiltinParticipantMessageSecureWriter

BuiltinParticipantMessageSecureReader

See clause 7.4.2

(0x00000001 << 20)

(0x00000001 << 21)

BuiltinParticipantStatelessMessageWriter

BuiltinParticipantStatelessMessageReader

See clause 7.4.3

(0x00000001 << 22)

(0x00000001 << 23)

BuiltinParticipantVolatileMessageSecureWriter

BuiltinParticipantVolatileMessageSecureReader

See clause 7.4.4

(0x00000001 << 24)

(0x00000001 << 25)

DDS Security, v1.0 45

7.4.1.4 New DCPSPublicationsSecure Builtin Topic

The DDS specification specifies the existence of the DCPSPublications builtin Topic with topic
name “DCPSPublications” and corresponding builtin DataWriter and DataReader entities to
communicate on this Topic. These endpoints are used to discover non-builtin DataWriter entities.

The data type associated with the DCPSPublications Topic is PublicationBuiltinTopicData, defined
in sub clause 7.1.5 of the DDS specification.

Implementations of the DDS Security shall use that same DCPSPublications Topic to communicate
the DataWriter information for Topic entities that are not considered sensitive.

Implementations of the DDS Security specification shall have an additional builtin Topic referred to
as DCPSPublicationsSecure and associated builtin DataReader and DataWriter entities to
communicate the DataWriter information for Topic entities that are considered sensitive.

The determination of which Topic entities are considered sensitive shall be specified by the
AccessControl plugin.

The Topic name for the DCPSPublicationsSecure Topic shall be “DCPSPublicationsSecure”.

The data type associated with the DCPSPublicationsSecure Topic shall be
PublicationBuiltinTopicDataSecure, defined to be the same as the PublicationBuiltinTopicData
structure used by the DCPSPublications Topic, except the structure has the additional member
data_tags with the data type and ParameterIds described below.
Table 12 – Additional parameter IDs in PublicationBuiltinTopicDataSecure

Member name Member type Parameter ID name Parameter ID value

data_tags DataTags PID_DATA_TAGS 0x1003

struct Tag {
 string name;
 string value;
};

typedef sequence<Tag> TagSeq;
struct DataTags {
 TagSeq tags;
};

@extensibility(MUTABLE_EXTENSIBILITY)
struct PublicationBuiltinTopicDataSecure: PublicationBuiltinTopicData {
 @ID(0x1003) DataTags data_tags;
};

The QoS associated with the DCPSPublicationsSecure Topic shall be the same as for the
DCPSPublications Topic.

The builtin DataWriter for the DCPSPublicationsSecure Topic shall be referred to as the
SEDPbuiltinPublicationsSecureWriter. The builtin DataReader for the DCPSPublicationsSecure
Topic shall be referred to as the SEDPbuiltinPublicationsSecureReader.

46 DDS Security, v1.0

The RTPS EntityId_t associated with the SEDPbuiltinPublicationsSecureWriter and
SEDPbuiltinPublicationsSecureReader shall be as specified in 7.4.5.

7.4.1.5 New DCPSSubscriptionsSecure Builtin Topic

The DDS specification specifies the existence of the DCPSSubscriptions builtin Topic with Topic
name “DCPSSubscriptions” and corresponding builtin DataWriter and DataReader entities to
communicate on this Topic. These endpoints are used to discover non-builtin DataReader entities.

The data type associated with the DCPSSubscriptions is SubscriptionBuiltinTopicData is defined in
sub clause 7.1.5 of the DDS specification.

Implementations of the DDS Security specification shall use that same DCPSSubscriptions Topic to
send the DataReader information for Topic entities that are not considered sensitive. The
existence and configuration of Topic entities as non-sensitive shall be specified by the
AccessControl plugin.

Implementations of the DDS Security specification shall have an additional builtin Topic referred to
as DCPSSubscriptionsSecure and associated builtin DataReader and DataWriter entities to
communicate the DataReader information for Topic entities that are considered sensitive.

The determination of which Topic entities are considered sensitive shall be specified by the
AccessControl plugin.

The data type associated with the DCPSSubscriptionsSecure Topic shall be
SubscriptionBuiltinTopicDataSecure defined to be the same as the SubscriptionBuiltinTopicData
structure used by the DCPSSubscriptions Topic, except the structure has the additional member
data_tags with the data type and ParameterIds described below.
Table 13 – Additional parameter IDs in SubscriptionBuiltinTopicDataSecure

Member name Member type Parameter ID name Parameter ID value

data_tags DataTags PID_DATA_TAGS 0x1003

@extensibility(MUTABLE_EXTENSIBILITY)
struct SubscriptionBuiltinTopicDataSecure: SubscriptionBuiltinTopicData {
 @ID(0x1003) DataTags data_tags;
};

The QoS associated with the DCPSSubscriptionsSecure Topic shall be the same as for the
DCPSSubscriptions Topic.

The builtin DataWriter for the DCPSSubscriptionsSecure Topic shall be referred to as the
SEDPbuiltinSubscriptionsSecureWriter. The builtin DataReader for the DCPSPublicationsSecure
Topic shall be referred to as the SEDPbuiltinSubscriptionsSecureReader.

The RTPS EntityId_t associated with the SEDPbuiltinSubscriptionsSecureWriter and
SEDPbuiltinSubscriptionsSecureReader shall be as specified in 7.4.5.

DDS Security, v1.0 47

7.4.2 New ParticipantMessageSecure builtin Topic

The DDS Interoperability Wire Protocol specifies the BuiltinParticipantMessageWriter and
BuiltinParticipantMessageReader (see sub clauses 8.4.13 and 9.6.2.1 of the DDS Interoperability
Wire Protocol[2]). These entities are used to send information related to the LIVELINESS QoS. This
information could be considered sensitive and therefore secure DDS systems need to provide an
alternative protected way to send liveliness information.

The data type associated with these endpoints is ParticipantMessageData defined in sub clause 9.6.2.1
of the DDS Interoperability Wire Protocol specification [2].

To support coexistence and interoperability with non-secure DDS applications, implementations of the
DDS Security specification shall use the same standard BuiltinParticipantMessageWriter and
BuiltinParticipantMessageReader to communicate liveliness information on Topic entities that are
not considered sensitive.

Implementations of the DDS Security specification shall have an additional
ParticipantMessageSecure builtin Topic and associated builtin DataReader and DataWriter
entities to communicate the liveliness information for Topic entities that are considered sensitive.

The data type associated with the ParticipantMessageSecure Topic shall be the same as the
ParticipantMessageData structure.

The QoS associated with the ParticipantMessageSecure Topic shall be the same as for the
ParticipantMessageSecure Topic as defined in sub clause 8.4.13 of the DDS Interoperability Wire
Protocol [2].

The builtin DataWriter for the ParticipantMessageSecure Topic shall be referred to as the
BuiltinParticipantMessageSecureWriter. The builtin DataReader for the
ParticipantMessageSecure Topic shall be referred to as the
BuiltinParticipantMessageSecureReader.

The RTPS EntityId_t associated with the BuiltinParticipantMessageSecureWriter and
BuiltinParticipantMessageSecureReader shall be as specified in 7.4.5.

7.4.3 New ParticipantStatelessMessage builtin Topic

To perform mutual authentication between DDS DomainParticipant entities, the security plugins
associated with those participants need to be able to send directed messages to each other. As described
in 7.4.3.1 below, the mechanisms provided by existing DDS builtin Topic entities are not adequate
for this purpose. For this reason, this specification introduces a new ParticipantStatelessMessage
builtin Topic and corresponding builtin DataReader and DataWriter entities to read and write
the Topic.

7.4.3.1 Background: Sequence Number Attacks (non normative)

DDS has a builtin mechanism for participant-to-participant messaging: the
BuiltinParticipantMessageWriter and BuiltinParticipantMessageReader (see sub clause 9.6.2.1 of the
DDS Interoperability Wire Protocol [2]). However this mechanism cannot be used for mutual
authentication because it relies on the RTPS reliability protocol and suffers from the sequence-number
prediction vulnerability present in unsecured reliable protocols:

48 DDS Security, v1.0

• The RTPS reliable protocol allows a DataWriter to send to a DataReader Heartbeat
messages that advance the first available sequence number associated with the DataWriter. A
DataReader receiving a Heartbeat from a DataWriter will advance its first available
sequence number for that DataWriter and ignore any future messages it receives with sequence
numbers lower than the first available sequence number for the DataWriter. The reliable
DataReader will also ignore duplicate messages for that same sequence number.

• The behavior of the reliability protocol would allow a malicious application to prevent other
applications from communicating by sending Heartbeats pretending to be from other
DomainParticipants that contain large values of the first available sequence number. All the
malicious application needs to do is learn the GUIDs of other applications, which can be done from
observing the initial discovery messages on the wire, and use that information to create fake
Heartbeats.

Stated differently: prior to performing mutual authentication and key exchange, the applications cannot
rely on the use of encryption and message access codes to protect the integrity of the messages.
Therefore, during this time window, they are vulnerable to this kind of sequence-number attack. This
attack is present in most reliable protocols. Stream-oriented protocols such as TCP are also vulnerable
to sequence-number-prediction attacks but they make it more difficult by using a random initial
sequence number on each new connection and discarding messages with sequence numbers outside the
window. This is something that RTPS cannot do given the data-centric semantics of the protocol.

In order to avoid this vulnerability, the Security plugins must exchange messages using writers and
readers sufficiently robust to sequence number prediction attacks. The RTPS protocol specifies
endpoints that meet this requirement: the RTPS StatelessWriter and StatelessReader (see
8.4.7.2 and 8.4.10.2 of the DDS Interoperability Wire Protocol [2]) but there are no DDS builtin
endpoints that provide access to this underlying RTPS functionality.

7.4.3.2 BuiltinParticipantStatelessMessageWriter and BuiltinParticipantStatelessMessageReader

The DDS Security specification defines two builtin Endpoints: the
BuiltinParticipantStatelessMessageWriter and the BuiltinParticipantStatelessMessageReader. These
two endpoints shall be present in compliant implementations of this specification. These endpoints are
used to write and read the builtin ParticipantStatelessMessage Topic.

The BuiltinParticipantStatelessMessageWriter is an RTPS Best-Effort StatelessWriter (see sub
clause 8.4.7.2 of the DDS Interoperability Wire Protocol [2]).

The BuiltinParticipantStatelessMessageReader is an RTPS Best-Effort StatelessReader (see
sub clause 8.4.10.2 of the DDS Interoperability Wire Protocol [2]).

The data type associated with these endpoints is ParticipantStatelessMessage defined
below (see also 7.2.5):

typedef ParticipantStatelessMessage ParticipantGenericMessage;

The RTPS EntityId_t associated with the BuiltinParticipantStatelessMessageWriter and
BuiltinParticipantStatelessMessageReader shall be as specified in 7.4.5.

DDS Security, v1.0 49

7.4.3.3 Contents of the ParticipantStatelessMessage

The ParticipantStatelessMessage is intended as a holder of information that is sent point-
to-point from a DomainParticipant to another.

The message_identity uniquely identifies each individual ParticipantStatelessMessage:

• The source_guid field within the message_identity shall be set to match the
BuiltinTopicKey_t of the BuiltinParticipantStatelessMessageWriter that writes the message.

• The sequence_number field within the message_identity shall start with the value set to one and be
incremented for each different message sent by the BuiltinParticipantStatelessMessageWriter.

The related_message_identity uniquely identifies another ParticipantStatelessMessage that
is related to the message being processed. It shall be set to either the tuple {GUID_UNKNOWN, 0} if
the message is not related to any other message, or else set to match the message_identity of the
related ParticipantStatelessMessage.

The destination_participant_key shall contain either the value GUID_UNKNOWN (see sub clause
9.3.1.5 of the DDS Interoperability Wire Protocol [2]) or else the BuiltinTopicKey_t of the
destination DomainParticipant.

The destination_endpoint_key provides a mechanism to specify finer granularity on the intended
recipient of a message beyond the granularity provided by the destination_participant_key. It can
contain either GUID_UNKNOWN or else the GUID of a specific endpoint within destination
DomainParticipant. The targeted endpoint is the one whose Endpoint (DataWriter or
DataReader) BuiltinTopic_t matches the destination_endpoint_key.

The contents message_data depend on the value of the message_class_id and are defined in this
specification in the sub clause that introduces each one of the pre-defined values of the
GenericMessageClassId. See 7.4.3.5 and 7.4.3.6.

7.4.3.4 Destination of the ParticipantStatelessMessage

If the destination_participant_key member is not set to GUID_UNKNOWN, the message written is
intended only for the BuiltinParticipantStatelessMessageReader belonging to the
DomainParticipant with a matching Participant Key.

This is equivalent to saying that the BuiltinParticipantStatelessMessageReader has an implied content
filter with the logical expression:

“destination_participant_key == GUID_UNKNOWN

 || destination_participant_key == BuiltinParticipantStatelessMessageReader.participant.key”

Implementations of the specification can use this content filter or some other mechanism as long as the
resulting behavior is equivalent to having this content filter.

If the destination_endpoint_key member is not set to GUID_UNKNOWN, the message written targets
the specific endpoint within the destination DomainParticipant with a matching Endpoint Key.

7.4.3.5 Reserved values of ParticipantStatelessMessage GenericMessageClassId

This specification, including future versions of this specification reserves GenericMessageClassId
values that start with the prefix “dds.sec.” (without quotes) .

50 DDS Security, v1.0

The specification defines and uses the following specific values for the GenericMessageClassId:

#define GMCLASSID_SECURITY_AUTH_HANDSHAKE \
 “dds.sec.auth”

Additional values of the GenericMessageClassId may be defined with each plugin implementation.

7.4.3.6 Format of data within ParticipantStatelessMessage

Each value for the GenericMessageClassId uses different schema to store data within the
generic attributes in the message_data.

7.4.3.6.1 Data for message class GMCLASSID_SECURITY_AUTH_HANDSHAKE

If GenericMessageClassId is GMCLASSID_SECURITY_AUTH_HANDSHAKE the
message_data attribute shall contain the HandshakeMessageTokenSeq containing one element.
The specific contents of the HandshakeMessageToken element shall be defined by the
Authentication Plugin.

The destination_participant_key shall be set to the BuiltinTopicKey_t of the destination
DomainParticipant.

The destination_endpoint_key shall be set to GUID_UNKNOWN. This indicates that there is no
specific endpoint targeted by this message: It is intended for the whole DomainParticipant.

The source_endpoint_key shall be set to GUID_UNKNOWN.

7.4.4 New ParticipantVolatileMessageSecure builtin Topic

7.4.4.1 Background (Non-Normative)

In order to perform key exchange between DDS DomainParticipant entities, the security plugins
associated with those participants need to be able to send directed messages to each other using a
reliable and secure channel. These messages are intended only for Participants that are currently in the
system and therefore need a DURABILITY Qos of kind VOLATILE.

The existing mechanisms provided by DDS are not adequate for this purpose:

• The new ParticipantStatelessMessage is not suitable because it is a stateless best-effort channel not
protected by the security mechanisms in this specification and therefore requires the message data
to be explicitly encrypted and signed prior to being given to the
ParticipantStatelessMessageWriter.

• The new ParticipantMessageSecure is not suitable because its QoS has DURABILITY kind
TRANSIENT_LOCAL (see sub clause 8.4.13 of the DDS Interoperability Wire Protocol [2]) rather
than the required DURABILITY kind VOLATILE.

For this reason, implementations of the DDS Security specification shall have an additional builtin
Topic ParticipantVolatileMessageSecure and corresponding builtin DataReader and
DataWriter entities to read and write the Topic.

DDS Security, v1.0 51

7.4.4.2 BuiltinParticipantVolatileMessageSecureWriter and
BuiltinParticipantVolatileMessageSecureReader

The DDS Security specification defines two new builtin Endpoints: The
BuiltinParticipantVolatileMessageSecureWriter and the
BuiltinParticipantVolatileMessageSecureReader. These two endpoints shall be present in compliant
implementations of this specification. These endpoints are used to write and read the builtin
ParticipantVolatileSecureMessage Topic.

The BuiltinParticipantVolatileMessageSecureWriter is an RTPS Reliable StatefulWriter (see sub
clause 8.4.9.2 of the DDS Interoperability Wire Protocol [2]). The DDS DataWriter Qos associated
with the DataWriter shall be as defined in the table below. Any policies that are not shown in the
table shall be set corresponding to the DDS defaults.
Table 14 – Non-default Qos policies for BuiltinParticipantVolatileMessageSecureWriter

DataWriter Qos policy Policy Value

RELIABILITY kind= RELIABLE

HISTORY kind= KEEP_ALL

DURABILITY kind= VOLATILE

The BuiltinParticipantVolatileMessageSecureReader is an RTPS Reliable StatefulReader (see sub
clause 8.4.11.2 of the DDS Interoperability Wire Protocol [2]). The DDS DataReader Qos
associated with the DataReader shall be as defined in the table below. Any policies that are not
shown in the table shall be set corresponding to the DDS defaults.
Table 15 – Non-default Qos policies for BuiltinParticipantVolatileMessageSecureReader

DataReader Qos policy Policy Value

RELIABILITY kind= RELIABLE

HISTORY kind= KEEP_ALL

DURABILITY kind= VOLATILE

The data type associated with these endpoints is ParticipantVolatileSecureMessage
defined as:

typedef ParticipantVolatileSecureMessage ParticipantGenericMessage;

The RTPS EntityId_t associated with the BuiltinParticipantVolatileMessageSecureWriter and
BuiltinParticipantVolatileMessageSecureReader shall be as specified in 7.4.5.

7.4.4.3 Contents of the ParticipantVolatileSecureMessage

The ParticipantVolatileSecureMessage is intended as a holder of secure information that
is sent point-to-point from a DomainParticipant to another.

The destination_participant_key shall contain either the value GUID_UNKNOWN (see sub clause
9.3.1.5 of the DDS Interoperability Wire Protocol [2] or else the BuiltinTopicKey_t of the
destination DomainParticipant.

52 DDS Security, v1.0

The message_identity uniquely identifies each individual
ParticipantVolatileSecureMessage:

• The source_guid field within the message_identity shall be set to match the
BuiltinTopicKey_t of the BuiltinParticipantVolatileMessageSecureWriter that writes the
message.

• The sequence_number field within the message_identity shall start with the value set to one and be
incremented for each different message sent by the
BuiltinParticipantVolatileMessageSecureWriter.

The related_message_identity uniquely identifies another
ParticipantVolatileSecureMessage that is related to the message being processed. It shall
be set to either the tuple {GUID_UNKNOWN, 0} if the message is not related to any other message, or
else set to match the message_identity of the related ParticipantVolatileSecureMessage.

The contents message_data depend on the value of the message_class_id and are defined in this
specification in the sub clause that introduces each one of the defined values of the
GenericMessageClassId, see 7.4.4.5.

7.4.4.4 Destination of the ParticipantVolatileSecureMessage

If the destination_participant_key member is not set to GUID_UNKNOWN, the message written is
intended only for the BuiltinParticipantVolatileMessageSecureReader belonging to the
DomainParticipant with a matching Participant Key.

This is equivalent to saying that the BuiltinParticipantVolatileMessageSecureReader has an implied
content filter with the logical expression:

 “destination_participant_key == GUID_UNKNOWN

 || destination_participant_key == BuiltinParticipantVolatileMessageSecureReader.participant.key”

Implementations of the specification can use this content filter or some other mechanism as long as the
resulting behavior is equivalent to having this filter.

If the destination_endpoint_key member is not set to GUID_UNKNOWN the message written targets
a specific endpoint within the destination DomainParticipant. The targeted endpoint is the one whose
Endpoint Key (DataWriter or DataReader BuiltinTopic_t) matches the destination_endpoint_key. This
attribute provides a mechanism to specify finer granularity on the intended recipient of a message
beyond the granularity provided by the destination_participant_key.

7.4.4.5 Reserved values of ParticipantVolatileSecureMessage GenericMessageClassId

This specification, including future versions of this specification reserves GenericMessageClassId
values that start with the prefix “dds.sec.” (without the quotes) .

The specification defines and uses the following specific values for the GenericMessageClassId:

#define GMCLASSID_SECURITY_PARTICIPANT_CRYPTO_TOKENS \
 ”dds.sec.participant_crypto_tokens”
#define GMCLASSID_SECURITY_DATAWRITER_CRYPTO_TOKENS \
 ”dds.sec.datawriter_crypto_tokens”
#define GMCLASSID_SECURITY_DATAREADER_CRYPTO_TOKENS \
 ”dds.sec.datareader_crypto_tokens”

DDS Security, v1.0 53

Additional values of the GenericMessageClassId may be defined with each plugin implementation.

7.4.4.6 Format of data within ParticipantVolatileSecureMessage

Each value for the GenericMessageClassId uses different schema to store data within the
generic attributes in the message_data.

7.4.4.6.1 Data for message class GMCLASS_SECURITY_PARTICIPANT_CRYPTO_TOKENS

If GenericMessageClassId is GMCLASSID_SECURITY_PARTICIPANT_CRYPTO_TOKENS,
the message_data attribute shall contain the ParticipantCryptoTokenSeq.

This message is intended to send cryptographic material from one DomainParticipant to another
when the cryptographic material applies to the whole DomainParticipant and not a specific
DataReader or DataWriter within.

The concrete contents of the ParticipantCryptoTokenSeq shall be defined by the
Cryptographic Plugin (CryptoKeyFactory).

The destination_participant_key shall be set to the BuiltinTopicKey_t of the destination
DomainParticipant.

The destination_endpoint_key shall be set to GUID_UNKNOWN. This indicates that there is no
specific endpoint targeted by this message: It is intended for the whole DomainParticipant.

The source_endpoint_key shall be set to GUID_UNKNOWN.

7.4.4.6.2 Data for message class GMCLASSID_SECURITY_DATAWRITER_CRYPTO_TOKENS

If GenericMessageClassId is GMCLASSID_SECURITY_DATAWRITER_CRYPTO_TOKENS,
the message_data shall contain the DatawriterCryptoTokenSeq.

This message is intended to send cryptographic material from one DataWriter to a DataReader
whom it wishes to send information to. The cryptographic material applies to a specific ‘sending’
DataWriter and it is constructed for a specific ‘receiving’ DataReader. This may be used to send
the crypto keys used by a DataWriter to encrypt data and sign the data it sends to a DataReader.

The concrete contents of the DatawriterCryptoTokenSeq shall be defined by the Cryptographic
Plugin (CryptoKeyFactory).

The destination_endpoint_key shall be set to the BuiltinTopicKey_t of the DataReader that
should receive the CryptoToken values in the message.

The source_endpoint_key shall be set to the BuiltinTopicKey_t of the DataWriter that will
be using the CryptoToken values to encode the data it sends to the DataReader.

7.4.4.6.3 Data for message class GMCLASSID_SECURITY_DATAREADER_CRYPTO_TOKENS

If GenericMessageClassId is GMCLASSID_SECURITY_DATAWRITER_CRYPTO_TOKENS,
the message_data attribute shall contain the DatareaderCryptoTokenSeq.

This message is intended to send cryptographic material from one DataReader to a DataWriter
whom it wishes to send information to. The cryptographic material applies to a specific ‘sending’
DataReader and it is constructed for a specific ‘receiving’ DataWriter. This may be used to send

54 DDS Security, v1.0

the crypto keys used by a DataReader to encrypt data and sign the ACKNACK messages it sends to
a DataWriter.

The concrete contents of the DatareaderCryptoTokenSeq shall be defined by the Cryptographic
Plugin (CryptoKeyFactory).

The destination_endpoint_key shall be set to the BuiltinTopicKey_t of the DataWriter that
should receive the CryptoToken values in the message.

The source_endpoint_key shall be set to the BuiltinTopicKey_t of the DataReader that will
be using the CryptoToken values to encode the data it sends to the DataWriter.

7.4.5 Definition of the “Builtin Secure Endpoints”

The complete list of builtin Endpoints that are protected by the security mechanism introduced in the
DDS Security specification is: SEDPbuiltinPublicationsSecureWriter,
SEDPbuiltinPublicationsSecureReader, SEDPbuiltinSubscriptionsSecureWriter,
SEDPbuiltinSubscriptionsSecureReader, BuiltinParticipantMessageSecureWriter,
BuiltinParticipantMessageSecureReader, BuiltinParticipantVolatileMessageSecureWriter, and
BuiltinParticipantVolatileMessageSecureReader.
This list shall be referred to as the builtin secure endpoints.

DDS Security, v1.0 55

8 Plugin Architecture
8.1 Introduction

8.1.1 Service Plugin Interface Overview

There are five plugin SPIs: Authentication, Access-Control, Cryptographic, Logging, and Data
Tagging.

Figure 7 – Plugin Architecture Model

The responsibilities and interactions between these Service Plugins are summarized in the table below
and detailed in the sections that follow.

class DDS::Ov erv iew

Token

«discovery»
IdentityToken

SecurityPlugin

«interface»
AccessControl

SecurityPlugin

«interface»
Authentication

«primitive»
PermissionsHandle

«primitive»
IdentityHandle

SecurityPlugin

«interface»
Logging

+ enable_logging(): void
+ log(): void
+ set_log_options(): boolean

Token

«discovery»
PermissionsToken

Token
CryptoToken

SecurityPlugin

«interface»
DataTagging

«primitive»
SharedSecretHandle

CryptoKeyExchange
CryptoKeyFactory

CryptoTransform

«interface»
Cryptographic

«create»

«use»

«create»

«create»

«create»

«create»

«use»

«use» «create»

«use»

56 DDS Security, v1.0

Table 16 – Purpose of each Security Plugin

Service Plugin Purpose Interactions

Authentication Authenticate the principal that is
joining a DDS Domain.

Support mutual authentication
between participants and establish a
shared secret.

The principal may be an
application/process or the user associated
with that application or process.

AccessControl Decide whether a principal is
allowed to perform a protected
operation.

Protected operations include joining a
specific DDS domain, creating a Topic,
reading a Topic, writing a Topic, etc.

Cryptography Generate keys. Perform Key
Exchange. Perform the encryption
and decryption operations. Compute
digests, compute and verify
Message Authentication Codes.
Sign and verify signatures of
messages.

This plugin implements 3
complementary interfaces:
CryptoKeyFactory, CryptoKeyExchange,
and CryptoTransform.

Logging Log all security relevant events. This plugin is accessible to all other
plugins such that they can log the
relevant events.

DataTagging Add a data tag for each data sample.

8.1.2 Plugin Instantiation

The Security Plugins shall be configurable separately for each DomainParticipant even when
multiple DomainParticipants are constructed within the same Operating System Process and share the
same Address Space.

A collection of the 5 SPIs intended to be used with the same DomainParticipant is referred to as
a DDS-Security Plugin Suite.

The mechanism used to instantiate the security Service Plugins and associate them with each
DomainParticipant is not defined by the DDS-Security specification.

Implementations of this specification may use vendor-specific configurations to facilitate linking the
Plugin Suite, including providing dynamic loading and linking facilities as well as initializing the
Plugin Suite.

Likewise implementations of this specification may use vendor-specific configurations to bind a Plugin
Suite to the DomainParticipant. However it is required for the Plugin Suite to be initialized and
bound by the time the DomainParticipant is enabled. Therefore this process shall complete either
during the DomainParticipantFactory create_domain_participant or else during the
DomainParticipant enable operations defined in [1]. Note that some of the Plugin Suite
Authentication and AccessControl operations shall also be called during
create_domain_participant or during enable.

DDS Security, v1.0 57

8.2 Common Types

8.2.1 Security Exception

SecurityException is a data type used to hold error information. SecurityException
objects are potentially returned from many of the calls in the Security plugins. They are used to return
an error code and message.
Table 17 – SecurityException class

SecurityException

Attributes

code SecurityExceptionCode

minor_code long

message String

58 DDS Security, v1.0

8.3 Authentication Plugin
The Authentication Plugin SPI defines the types and operations necessary to support the authentication
of DDS DomainParticipants.

8.3.1 Background (Non-Normative)

Without the security enhancements, any DDS DomainParticipant is allowed to join a DDS
Domain without authenticating. However, in the case of a secure DDS system, every DDS participant
will be required to authenticate to avoid data contamination from unauthenticated participants.

The DDS protocol uses its native discovery mechanism to detect when participants enter the DDS
Domain.

The discovery mechanism that registers participants with the DDS middleware is enhanced with an
authentication protocol. For protected DDS Domains a DomainParticipant that enables the
authentication plugin will only communicate with another DomainParticipant that has the
authentication plugin enabled.

The plugin SPI is designed to support multiple implementations with varying numbers of message
exchanges. The message exchanges may be used by two DomainParticipant entities to challenge each
other so that their identity can be authenticated. Often a shared secret is also derived from a successful
authentication message exchange. The shared secret can be used to exchange cryptographic materal in
support of encryption and message authentication.

8.3.2 Authentication Plugin Model

The Authentication Plugin model is presented in the figure below.

DDS Security, v1.0 59

Figure 8 – Authentication plugin model

8.3.2.1 IdentityToken

An IdentityToken contains summary information on the identity of a DomainParticipant in
a manner that can be externalized and propagated via DDS discovery. The specific content of the
IdentityToken shall be defined by each Authentication plugin specialization. The intent is
to provide only summary information on the permissions or derived information such as a hash.

8.3.2.2 IdentityHandle

An IdentityHandle is an opaque local reference to internal state within the Authentication
plugin, which uniquely identifies a DomainParticipant. It is understood only by the
Authentication plugin and references the authentication state of the DomainParticipant.
This object is returned by the Authentication plugin as part of the validation of the identity of a
DomainParticipant and is used whenever a client of the Authentication plugin needs to
refer to the identity of a previously identified DomainParticipant.

class Authentication

SecurityPlugin

«interface»
Authentication

+ validate_local_identity(): ValidationResult_t
+ get_identity_token(): Boolean
+ set_permissions_credential_and_token(): Boolean
+ validate_remote_identity(): ValidationResult_t
+ begin_handshake_request(): ValidationResult_t
+ begin_handshake_reply(): ValidationResult_t
+ process_handshake(): ValidationResult_t
+ get_shared_secret(): SharedSecretHandle
+ get_peer_permissions_credential_token(): Boolean
+ set_listener(): Boolean
+ return_identity_token(): Boolean
+ return_peer_permissions_credential_token(): Boolean
+ return_handshake_handle(): Boolean
+ return_identity_handle(): Boolean
+ return_sharedsecret_handle(): Boolean

«primitive»
IdentityHandle

«interface»
AuthenticationListener

+ revoke_identity(): Boolean

Token

«discovery»
IdentityToken

Token
MessageToken

«primitive»
HandshakeHandle

«primitive»
SharedSecretHandle

Token
PermissionsCredentialToken

Property

«create»

«create»

«use»

«create»

«use» «create»

«create»

60 DDS Security, v1.0

8.3.2.3 HandshakeHandle

A HandshakeHandle is an opaque local reference used to refer to the internal state of a possible
mutual authentication or handshake protocol.

8.3.2.4 HandshakeMessageToken

A HandshakeMessageToken encodes plugin-specific information that the Authentication plugins
associated with two DomainParticipant entities exchange as part of the mutual authentication
handshake. The HandshakeMessageToken is understood only by the
AuthenticationPlugin implementations on either side of the handshake. The
HandshakeMessageToken is sent and received by the DDS implementation under the direction of
the AuthenticationPlugins.

8.3.2.5 AuthenticatedPeerCredentialToken

An AuthenticatedPeerCredentialToken encodes plugin-specific information that the
Authentication plugin obtains from a remote DomainParticipant during the authentication process that
is of interest to the AccessControlPlugin. This information is accessible via the operation
get_authenticated_peer_credential_token.

8.3.2.6 SharedSecretHandle

A SharedSecretHandle is an opaque local reference to internal state within the
AuthenticationPlugin containing a secret that is shared between the
AuthenticationPlugin implementation and the peer AuthenticationPlugin
implementation associated with a remote DomainParticipant. It is understood only by the two
AuthenticationPlugin implementations that share the secret. The shared secret is used to
encode Tokens, such as the CryptoToken, such that they can be exchanged between the two
DomainParticipants in a secure manner.

8.3.2.7 Authentication

This interface is the starting point for all the security mechanisms. When a DomainParticipant
is either locally created or discovered, it needs to be authenticated in order to be able to communicate
in a DDS Domain.

The interaction between the DDS implementation and the Authentication plugin has been designed in a
flexible manner so it is possible to support various authentication mechanisms, including those that
require a handshake and/or perform mutual authentication between participants. It also supports
establishing a shared secret. This interaction is described in the state machine illustrated in the figure
below.

DDS Security, v1.0 61

Figure 9 – Authentication plugin interaction state machine

8.3.2.7.1 Reliability of the Authentication Handshake

In order to be sufficiently robust to avert sequence number attacks (7.4.3.1), the Authentication
Handshake uses the BuiltinParticipantStatelessMessageWriter and
BuiltinParticipantStatelessMessageReader endpoints (7.4.3) with GenericMessageClassId set
to GMCLASSID_SECURITY_AUTH_HANDSHAKE (7.4.3.5). These stateless endpoints send
messages best-effort without paying attention to any sequence number information to remove
duplicates or attempt ordered delivery. Despite this, the Authentication Handshake needs to be able to
withstand the message loss that may occur on the network.

In order to operate robustly in the presence of message loss and sequence number attacks DDS
Security implementations shall follow the rules below:

1. The DDS security implementation shall pass to the AuthenticationPlugin any message received
by the BuiltinParticipantStatelessMessageReader that has a GenericMessageClassId
set to GMCLASSID_SECURITY_AUTH_HANDSHAKE.

2. Any time the state-machine indicates that a message shall be sent using the
BuiltinParticipantStatelessMessageWriter and a reply message needs to be received by the

stm AuthBehav ior

HandshakeInit

HandshakeInitReply

Choice

Initialized

EntryPoint

Validation_OK

Validation_Failed

HandshakeMessageSend

Choice

HandshakeCompletedOK

HandshakeMessageWait

HandshakeInitMessageWait

HandshakeFinalMessage
HandshakeMessageReceiv ed

[VALIDATION_FAILED]

begin_handshake_reply()

[VALIDATION_PENDING_HANDSHAKE_REQUEST] [VALIDATION_PENDING_HANDSHAKE_MESSAGE]

[VALIDATION_OK] [VALIDATION_FAILED]

validate_remote_identity()

begin_handshake_request()

DDS::send_message()

process_handshake()

[VALIDATION_OK]

[VALIDATION_PENDING_HANDSHAKE_MESSAGE]

[VALIDATION_OK_WITH_FINAL_MESSAGE]

get_shared_secret()

DDS::receive_message()

DDS::receive_message()

DDS::send_message()

validate_local_identity()

62 DDS Security, v1.0

BuiltinParticipantStatelessMessageReader, the DDS implementation shall cache the message
that was sent and set a timer. If a correct reply message is not received when the timer expires,
the state-machine shall send the same message again. This process shall be repeated multiple
times until a correct message is received.

3. Whenever a message is sent using the BuiltinParticipantStatelessMessageWriter, a reply
message is received by the BuiltinParticipantStatelessMessageReader. The reply is then
passed to the AuthenticationPlugin. If the plugin operation returns VALIDATION_NOT_OK,
the implementation transitions back to the previous state that caused the message to be sent and
resends the same message.

Rule #2 makes authentication robust to message loss.

Rule #3 makes authentication robust to an attacker trying to disrupt an authentication exchange by
sending bad replies.

Example application of rule #2: Assume the DDS implementation transitioned to the
HandshakeMessageSend state, sent the message M1 and is now in the HandshakeMessageWait state
waiting for the reply. If no reply is received within an implementation-specific retry-time, the same
message M1 shall be sent again and the process repeated until either a reply is received or an
implementation-specific timeout elapses (or a maximum number of retries is reached).

Example application of rule #3: Assume the DDS implementation transitioned to the
HandshakeMessageSend state, sent the message M2, transitions to HandshakeMessageWait, receives
the reply, transitions to HandshakeMessageReceived, calls process_handshake() and the operation
returns VALIDATION_NOT_OK. In this situation the DDS implementation shall transition back to
HandshakeMessageSend and resent M2 again.

8.3.2.8 Unauthenticated DomainParticipant entities

The term “Unauthenticated” DomainParticipant entity refers to a discovered
DomainParticipant that cannot be authenticated by the Authentication plugin. This can be either
because they lack support for the Authentication plugin being used, have incompatible plugins,
or simply fail the authentication protocol.

8.3.2.9 Authentication plugin interface

The Authentication plugin shall have the operations shown in the table below.
Table 18 – Authentication plugin interface

Authentication

No Attributes

Operations

validate_local_iden
tity

 ValidationResult_t

out:
local_identity_handle

IdentityHandle

out:

adjusted_participant_key

BuiltinTopicKey_t

DDS Security, v1.0 63

domain_id DomainId_t

participant_qos DomainParticipantQos

candidate_participant_key BuiltinTopicKey_t

exception SecurityException

get_identity_token Boolean

out: identity_token IdentityToken

handle IdentityHandle

exception SecurityException

set_permissions_cre
dential_and_token

 Boolean

handle IdentityHandle

permissions_credential_to
ken

PermissionsCredentia
lToken

permissions_token PermissionsToken

exception SecurityException

validate_remote_ide
ntity

 ValidationResult_t

out:
remote_identity_handle

IdentityHandle

local_identity_handle IdentityHandle

remote_identity_token IdentityToken

remote_participant_key BuiltinTopicKey_t

out: exception SecurityException

begin_handshake_req
uest

 ValidationResult_t

out: handshake_handle HandshakeHandle

out: handshake_message HandshakeMessageToke
n

initiator_identity_handle IdentityHandle

replier_identity_handle IdentityHandle

exception SecurityException

begin_handshake_rep
ly

 ValidationResult_t

out: handshake_handle HandshakeHandle

out:
handshake_message_out

HandshakeMessageToke
n

64 DDS Security, v1.0

handshake_message_in HandshakeMessageToke
n

initiator_identity_handle IdentityHandle

replier_identity_handle IdentityHandle

out: exception SecurityException

process_handshake ValidationResult_t

out:
handshake_message_out

HandshakeMessageToke
n

handshake_message_in HandshakeMessageToke
n

handshake_handle HandshakeHandle

out: exception SecurityException

get_shared_secret SharedSecretHandle

handshake_handle HandshakeHandle

out: exception SecurityException

get_authenticated_p
eer_credential_toke
n

 Boolean

out:
peer_credential_token

AuthenticatedPeerCre
dentialToken

handshake_handle HandshakeHandle

out: exception SecurityException

set_listener

 Boolean

listener AuthenticationListen
er

out: exception SecurityException

return_identity_tok
en

 Boolean

token IdentityToken

out: exception SecurityException

return_authenticate
d_peer_credential_t
oken

 Boolean

peer_credential_token AuthenticatedPeerCre
dentialToken

out: exception SecurityException

return_handshake_ha
ndle

 Boolean

handshake_handle HandshakeHandle

DDS Security, v1.0 65

out: exception SecurityException

return_identity_han
dle

 Boolean

identity_handle IdentityHandle

out: exception SecurityException

return_sharedsecret
_handle

 Boolean

sharedsecret_handle SharedSecretHandle

out: exception SecurityException

8.3.2.9.1 Type: ValidationResult_t

Enumerates the possible return values of the validate_local_identity and
validate_remote_identity operations.
Table 19 – Values for ValidationResult_t

ValidationResult_t

VALIDATION_OK Indicates the validation has succeeded

VALIDATION_FAILED Indicates the validation has failed

VALIDATION_PENDING_
RETRY

Indicates that validation is still proceeding. The operation shall be
retried at a later point in time.

VALIDATION_PENDING_
HANDSHAKE_REQUEST

Indicates that validation of the submitted IdentityToken requires
sending a handshake message. The DDS Implementation shall call the
operation begin_handshake_request and send the
HandshakeMessageToken obtained from this call using the
BuiltinParticipantMessageWriter with
GenericMessageClassId set to
GMCLASSID_SECURITY_AUTH_HANDSHAKE.

VALIDATION_PENDING_
HANDSHAKE_MESSAGE

Indicates that validation is still pending. The DDS Implementation
shall wait for a message on the BuiltinParticipantMessageReader
and, once this is received, call process_handshake to pass the
information received in that message.

VALIDATION_OK_FINAL
_MESSAGE

Indicates that validation has succeeded but the DDS Implementation
shall send a final message using the
BuiltinParticipantMessageWriter with
GenericMessageClassId set to
GMCLASSID_SECURITY_AUTH_HANDSHAKE.

66 DDS Security, v1.0

8.3.2.9.2 Operation: validate_local_identity

Validates the identity of the local DomainParticipant. The operation returns as an output
parameter the IdentityHandle, which can be used to locally identify the local Participant to the
Authentication Plugin.

In addition to validating the identity, this operation also returns the DomainParticipant
BuiltinTopicKey_t that shall be used by the DDS implementation to uniquely identify the
DomainParticipant on the network.

This operation shall be called before the DomainParticipant is enabled. It shall be called either
by the implementation of DomainParticipantFactory create_domain_participant or
DomainParticipant enable [1].

If an error occurs, this method shall return VALIDATION_FAILED and fill the
SecurityException.

The method shall return either VALIDATION_OK if the validation succeeds, or
VALIDATION_FAILED if it fails, or VALIDATION_PENDING_RETRY if the verification has not
finished.

If VALIDATION_PENDING_RETRY has been returned, the operation shall be called again after a
configurable delay to check the status of verification. This shall continue until the operation returns
either VALIDATION_OK (if the validation succeeds), or VALIDATION_FAILED. This approach
allows non-blocking interactions with services whose verification may require invoking remote
services.

Parameter (out) local_identity_handle: A handle that can be used to locally refer to the
Authenticated Participant in subsequent interactions with the Authentication plugin. The nature
of the handle is specific to each Authentication plugin implementation. The handle will only be
meaningful if the operation returns VALIDATION_OK.

Parameter (out) adjusted_participant_key: The BuiltinTopicKey_t that the DDS
implementation shall use to uniquely identify the DomainParticipant on the network. The
returned adjusted_participant_key shall be the one that eventually appears in the participant_key
attribute of the ParticipantBuiltinTopicData sent via discovery.

Parameter domain_id: The DDS Domain Id of the DomainParticipant.

Parameter participant_qos: The DomainParticipantQos of the DomainParticipant.

Parameter candidate_participant_key: The BuiltinTopicKey_t that the DDS implementation
would have used to uniquely identify the DomainParticipant if the Security plugins were not
enabled.

Parameter exception: A SecurityException object.

Return: The operation shall return

• VALIDATION_OK if the validation was successful.
• VALIDATION_FAILED if it failed.
• VALIDATION_PENDING_RETRY if verification has not completed and the operation should be

retried later.

DDS Security, v1.0 67

8.3.2.9.3 Operation: validate_remote_identity

Initiates the process of validating the identity of the discovered remote DomainParticipant,
represented as an IdentityToken object. The operation returns the ValidationResult_t
indicating whether the validation succeeded, failed, or is pending a handshake. If the validation
succeeds, an IdentityHandle object is returned, which can be used to locally identify the remote
DomainParticipant to the Authentication plugin.

If the validation can be performed with the information passed and succeeds, the operation shall return
VALIDATION_OK. If it can be performed with the information passed and it fails, it shall return
VALIDATION_FAILED.

The validation of a remote participant might require the remote participant to perform a handshake. In
this situation, the validate_remote_identity operation shall return
VALIDATION_PENDING_HANDSHAKE_REQUEST or
VALIDATION_PENDING_HANDSHAKE_MESSAGE.

If the operation returns VALIDATION_PENDING_HANDSHAKE_REQUEST, then the DDS
implementation shall call the operation begin_handshake_request to continue the validation
process.

If the operation returns VALIDATION_PENDING_HANDSHAKE_MESSAGE, then the DDS
implementation shall wait until it receives a ParticipantStatelessMessage from the remote
participant identified by the remote_participant_key using the contents described in 8.3.2.9.5 and then
call the operation begin_handshake_reply.

If an error occurs, this method shall return VALIDATION_FAILED and fill the
SecurityException.

Parameter remote_identity_token: A token received as part of
ParticipantBuiltinTopicData, representing the identity of the remote
DomainParticipant.

Parameter local_identity_handle: A handle to the local DomainParticipant requesting the
remote participant to be validated. The local handle shall be the result of an earlier call to
validate_local_identity.

Parameter (out) remote_identity_handle: A handle that can be used to locally refer to the remote
Authenticated Participant in subsequent interactions with the AuthenticationPlugin. The nature
of the remote_identity_handle is specific to each AuthenticationPlugin implementation. The
handle will only be provided if the operation returns something other than VALIDATION_FAILED.

Parameter exception: A SecurityException object.

Return: The operation shall return:

• VALIDATION_OK if the validation was successful.
• VALIDATION_FAILED if it failed.
• VALIDATION_PENDING_HANDSHAKE_REQUEST if validation has not completed. If this is

returned, the DDS implementation shall call begin_handshake_request, to continue the
validation.

• VALIDATION_PENDING_HANDSHAKE_MESSAGE if validation has not completed. If this is
returned, the DDS implementation shall wait for a message on the

68 DDS Security, v1.0

BuiltinParticipantMessageReader with the message_identity containing a source_guid that
matches the remote_participant_key and a message_class_id set to
GMCLASSID_SECURITY_AUTH_HANDSHAKE.

• VALIDATION_PENDING RETRY if the validation has not completed. If this is returned, the
operation should be called again at a later point in time to check the validation status.

8.3.2.9.4 Operation: begin_handshake_request

This operation is used to initiate a handshake. It shall be called by the DDS middleware solely as a
result of having a previous call to validate_remote_identity returning
VALIDATION_PENDING_HANDSHAKE_REQUEST.

This operation returns a HandshakeMessageToken that shall be used to send a handshake to the
remote participant identified by the replier_identity_handle.

The contents of the HandshakeMessageToken are specified by the plugin implementation.

If an error occurs, this method shall return VALIDATION_FAILED and fill the
SecurityException.

Parameter (out) handshake_handle: A handle returned by the Authentication plugin used to
keep the state of the handshake. It is passed to other operations in the Authentication plugin.

Parameter (out) handshake_message_token: A HandshakeMessageToken to be sent using the
BuiltinParticipantMessageWriter. The contents shall be specified by each plugin implementation.

Parameter initiator_identity_handle: Handle to the local participant that originated the handshake.

Parameter replier_identity_handle: Handle to the remote participant whose identity is being
validated.

Parameter exception: A SecurityException object.

Return: The operation shall return:

• VALIDATION_OK if the validation was successful.
• VALIDATION_FAILED if it failed.
• VALIDATION_PENDING_HANDSHAKE_MESSAGE if validation has not completed. If this is

returned, the DDS implementation shall send the handshake_message_out using the
BuiltinParticipantMessageWriter and then wait for the reply message on the
BuiltinParticipantMessageReader. The DDS implementation shall set the
ParticipantStatelessMessage participantGuidPrefix message_class_id to
GMCLASSID_SECURITY_AUTH_HANDSHAKE and fill the message_data with the
handshake_message HandshakeMessageToken and set the destination_participant_key to
match the DDS BuiltinTopicKey_t of the destination DomainParticipant. When the
reply message is received the DDS implementation shall call the operation
begin_handshake_reply, to continue the validation.

• VALIDATION_OK_FINAL_MESSAGE if the validation succeeded. If this is returned, the DDS
implementation shall send the returned handshake_message using the
BuiltinParticipantMessageReader.

• VALIDATION_PENDING RETRY if the validation has not completed. If this is returned, the DDS
implementation shall call the operation again at a later point in time to check the validation status.

DDS Security, v1.0 69

In the cases where the return code indicates that a message shall be sent using the
BuiltinParticipantMessageWriter, the DDS implementation shall set the
ParticipantStatelessMessage as follows:

• The message_class_id shall be set to GMCLASSID_SECURITY_AUTH_HANDSHAKE.
• The destination_participant_key shall be set to match the DDS BuiltinTopicKey_t of the

destination DomainParticipant.
• The message_identity shall be set to have the source_guid matching the DDS
BuiltinTopicKey_t of the DomainParticipant that is sending the message and the
sequence_number to the value in the previous message sent by the
BuiltinParticipantMessageWriter, incremented by one.

• The related_message_identity shall be set with source_guid as GUID_UNKNOWN and
sequence_number to zero.

• The message_data shall be filled with the CDR serialization of the handshake_message
HandshakeMessageToken.

8.3.2.9.5 Operation: begin_handshake_reply

This operation shall be invoked by the DDS implementation in reaction to the reception of the initial
handshake message that originated on a DomainParticipant that called the
begin_handshake_request operation. It shall be called by the DDS implementation solely as a
result of having a previous call to validate_remote_identity returns
VALIDATION_PENDING_HANDSHAKE_MESSAGE and having received a message on the
BuiltinParticipantMessageReader with attributes set as follows:

• message_class_id GMCLASSID_SECURITY_AUTH_HANDSHAKE
• message_identity source_guid matching the BuiltinTopicKey_t of the

DomainParticipant associated with the initiator_identity_handle
• destination_participant_key matching the BuiltinTopicKey_t of the receiving
DomainParticipant

This operation generates a handshake_message_out in response to a received
handshake_message_in. Depending on the return value of the operation, the DDS implementation
shall send the handshake_message_out using the BuiltinParticipantMessageWriter to the participant
identified by the initiator_identity_handle.

The contents of the handshake_message_out HandshakeMessageToken are specified by the
plugin implementation.

If an error occurs, this method shall return VALIDATION_FAILED and fill the
SecurityException.

Parameter (out) handshake_handle: A handle returned by the Authentication Plugin used to keep the
state of the handshake. It is passed to other operations in the Plugin.

Parameter (out) handshake_message_out: A HandshakeMessageToken containing a message
to be sent using the BuiltinParticipantMessageWriter. The contents shall be specified by each plugin
implementation.

70 DDS Security, v1.0

Parameter handshake_message_in: A HandshakeMessageToken containing a message received
from the BuiltinParticipantMessageReader. The contents shall be specified by each plugin
implementation.

Parameter initiator_identity_handle: Handle to the remote participant that originated the handshake.

Parameter replier_identity_handle: Handle to the local participant that is initiating the handshake
response.

Parameter exception: A SecurityException object.

Return: The operation shall return:

• VALIDATION_OK if the validation was successful.
• VALIDATION_FAILED if it failed.
• VALIDATION_PENDING_HANDSHAKE_MESSAGE if validation has not completed. If this is

returned, the DDS implementation shall send the handshake_message_out using the
BuiltinParticipantMessageWriter and then wait for a reply message on the
BuiltinParticipantMessageReader from that remote DomainParticipant.

• VALIDATION_OK_FINAL_MESSAGE if the validation succeeded. If this is returned, the DDS
implementation shall send the returned handshake_message_out using the
BuiltinParticipantMessageWriter.

• VALIDATION_PENDING RETRY if the validation has not completed. If this is returned, the DDS
implementation shall call the operation again at a later point in time to check the validation status.

In cases where the return code indicates that a message shall be sent using the
BuiltinParticipantMessageWriter, the DDS implementation shall set the
ParticipantStatelessMessage as follows:

• The message_class_id shall be set to GMCLASSID_SECURITY_AUTH_HANDSHAKE.
• The destination_participant_key shall be set to match the DDS BuiltinTopicKey_t of the

destination DomainParticipant.
• The message_identity shall be set to have the source_guid matching the DDS
BuiltinTopicKey_t of the DomainParticipant that is sending the message and the
sequence_number to the value in the previous message sent by the
BuiltinParticipantMessageWriter, incremented by one.

• The related_message_identity shall be set to match the message_identity of the
ParticipantStatelessMessage received that triggered the execution of the
begin_handshake_reply operation.

• The message_data shall be filled with the CDR serialization of the handshake_message_out
HandshakeMessageToken.

8.3.2.9.6 Operation: process_handshake

This operation is used to continue a handshake. It shall be called by the DDS middleware solely as a
result of having a previous call to begin_handshake_request or begin_handshake_reply that returned
VALIDATION_PENDING_HANDSHAKE_MESSAGE and having also received a
ParticipantStatelessMessage on the BuiltinParticipantMessageReader with attributes set
as follows:

• message_class_id GMCLASSID_SECURITY_AUTH_HANDSHAKE

DDS Security, v1.0 71

• message_identity source_guid matching the BuiltinTopicKey_t of the peer
DomainParticipant associated with the handshake_handle

• related_message_identity matching the message_identity of the last
ParticipantStatelessMessage sent to the peer DomainParticipant associated with the
handshake_handle.

• destination_participant_key matching the BuiltinTopicKey_t of the receiving
DomainParticipant.

This operation generates a handshake_message_out HandshakeMessageToken in response to a
received handshake_message_in HandshakeMessageToken. Depending on the return value of
the function the DDS implementation shall send the handshake_message_out using the
BuiltinParticipantMessageWriter to the peer participant identified by the handshake_handle.

The contents of the handshake_message_out HandshakeMessageToken are specified by the
plugin implementation.

If an error occurs, this method shall return VALIDATION_FAILED and fill the
SecurityException.

Parameter (out) handshake_message_out: A HandshakeMessageToken containing the
message_data that should be placed in a ParticipantStatelessMessage to be sent using the
BuiltinParticipantMessageWriter. The contents shall be specified by each plugin implementation.

Parameter handshake_message_in: The HandshakeMessageToken contained in the
message_data attribute of the ParticipantStatelessMessage received. The interpretation of
the contents shall be specified by each plugin implementation.

Parameter handshake_handle: Handle returned by a corresponding previous call to
begin_handshake_request or begin_handshake_reply.

Parameter exception: A SecurityException object.

Return: The operation shall return:

• VALIDATION_OK if the validation was successful.
• VALIDATION_FAILED if it failed.
• VALIDATION_PENDING_HANDSHAKE_MESSAGE if validation has not completed. If this is

returned, the DDS implementation shall send an ParticipantStatelessMessage
continuing the returned handshake_message_out using the BuiltinParticipantMessageWriter and
then wait for a reply message on the BuiltinParticipantMessageReader from that remote
DomainParticipant.

• VALIDATION_OK_FINAL_MESSAGE if the validation succeeded. If this is returned, the DDS
implementation shall send a ParticipantStatelessMessage containing the returned
handshake_message_out using the BuiltinParticipantMessageWriter but not wait for any replies.

• VALIDATION_PENDING RETRY if the validation has not completed. If this is returned, the DDS
implementation shall call the operation again at a later point in time to check the validation status.

In the cases where the return code indicates that a ParticipantStatelessMessage shall be
sent using the BuiltinParticipantMessageWriter the DDS implementation shall set the fields of the
ParticipantStatelessMessage as follows:

• The message_class_id shall be set to GMCLASSID_SECURITY_AUTH_HANDSHAKE.

72 DDS Security, v1.0

• The destination_participant_key shall be set to match the DDS BuiltinTopicKey_t of the
destination DomainParticipant.

• The message_identity shall be set to have the source_guid matching the DDS
BuiltinTopicKey_t of the DomainParticipant that is sending the message and the
sequence_number to the value in the previous message sent by the
BuiltinParticipantMessageWriter, incremented by one.

• The related_message_identity shall be set to match the message_identity of the
ParticipantStatelessMessage received that triggered the execution of the
begin_handshake_reply operation.

• The message_data shall be filled with the CDR serialization of the handshake_message_out
HandshakeMessageToken.

8.3.2.9.7 Operation: get_shared_secret

Retrieves the SharedSecretHandle resulting with a successfully completed handshake.

This operation shall be called by the DDS middleware on each HandshakeHandle after the
handshake that uses that handle completes successfully, that is after the last ‘handshake’ operation
called on that handle (begin_handshake_request, begin_handshake_reply, or
process_handshake) returns VALIDATION_OK or VALIDATION_OK_FINAL_MESSAGE.

The retrieved SharedSecretHandle shall be used by the DDS middleware in conjunction with the
CryptoKeyExchange interface of the Cryptographic Plugin to exchange cryptographic key
material with other DomainParticipant entities.

If an error occurs, this method shall return the NILHandle and fill the SecurityException.

Parameter handshake_handle: Handle returned by a corresponding previous call to
begin_handshake_request or begin_handshake_reply, which has successfully completed the
handshake operations.

Parameter exception: A SecurityException object.

8.3.2.9.8 Operation: get_authenticated_peer_ credential_token

Retrieves the AuthenticatedPeerCredentialToken resulting with a successfully completed
authentication of a discovered DomainParticipant.

This operation shall be called by the DDS middleware on each HandshakeHandle after the
handshake that uses that handle completes successfully, that is after the last ‘handshake’ operation
called on that handle (begin_handshake_request, begin_handshake_reply, or
process_handshake) returns VALIDATION_OK or VALIDATION_OK_FINAL_MESSAGE.

If an error occurs, this method shall return false and fill the SecurityException.

Parameter peer_credential_token (out): A placeholder for the returned
AuthenticatedPeerCredentialToken.

Parameter handshake_handle: HandshakeHandle returned by a corresponding previous call to
begin_handshake_request or begin_handshake_reply, which has successfully
completed the handshake operations.

Parameter exception: A SecurityException object.

DDS Security, v1.0 73

8.3.2.9.9 Operation: get_identity_token

Retrieves an IdentityToken used to represent on the network the identity of the
DomainParticipant identified by the specified IdentityHandle.

Parameter identity_token (out): The returned IdentityToken.

Parameter handle: The handle used to locally identify the DomainParticipant for which an
IdentityToken is desired. The handle must have been returned by a successful call to
validate_local_identity, otherwise the operation shall return false and fill the
SecurityException.

Parameter exception: A SecurityException object.

Return: If an error occurs, this method shall return false and fill the SecurityException.
otherwise it shall return the IdentityToken.

8.3.2.9.10 Operation: set_permissions_credential_and_token

Associates the PermissionsCredentialToken (see 8.4.2.2) returned by the AccessControl
plugin operation get_permissions_credential_token with the local
DomainParticipant identified by the IdentityHandle.

This operation shall be called by the middleware after calling validate_local_identity and
prior to any calls to validate_remote_identity.

Parameter handle: The handle used to locally identify the DomainParticipant whose
PermissionsCredential is being supplied. The handle must have been returned by a successful
call to validate_local_identity, otherwise the operation shall return false and fill the
SecurityException.

Parameter permissions_credential_token: The PermissionsCredentialToken associated
with the DomainParticipant identified by the IdentityHandle. The
permissions_credential_token must have been returned by a successful call to
get_permissions_credential_token, on the AccessControl plugin. Otherwise the
operation shall return false and fill the SecurityException.

Parameter exception: A SecurityException object.

Return: If an error occurs, this method shall return false, otherwise it shall return true.

8.3.2.9.11 Operation: set_listener

Sets the AuthenticationListener that the Authentication plugin will use to notify the
DDS middleware infrastructure of events relevant to the Authentication of DDS Participants.

If an error occurs, this method shall return false and fill the SecurityException.

Parameter listener: An AuthenticationListener object to be attached to the
Authentication object. If this argument is nil, it indicates that there shall be no listener.

Parameter exception: A SecurityException object, which provides details in case the operation
returns false.

74 DDS Security, v1.0

8.3.2.9.12 Operation: return_identity_token

Returns the IdentityToken object to the plugin so it can be disposed of.

Parameter token: An IdentityToken issued by the plugin on a prior call to
get_identity_token.

Parameter exception: A SecurityException object, which provides details in the case this
operation returns false.

8.3.2.9.13 Operation: return_authenticated_peer_credential_token

Returns the AuthenticatedPeerCredentialToken object to the plugin so it can be disposed
of.

Parameter peer_credential_token: An AuthenticatedPeerCredentialToken issued by the
plugin on a prior call to get_authenticated_peer_credential_token.

Parameter exception: A SecurityException object, which provides details in the case this
operation returns false.

8.3.2.9.14 Operation: return_handshake_handle

Returns the HandshakeHandle object to the plugin so it can be disposed of.

Parameter handshake_handle: A HandshakeHandle issued by the plugin on a prior call to
begin_handshake_request or begin_handshake_reply.

Parameter exception: A SecurityException object, which provides details in the case this
operation returns false.

8.3.2.9.15 Operation: return_identity_handle

Returns the IdentityHandle object to the plugin so it can be disposed of.

Parameter identity_handle: An IdentityHandle issued by the plugin on a prior call to
validate_local_identity or validate_remote_identity.

Parameter exception: A SecurityException object, which provides details in the case this
operation returns false.

8.3.2.9.16 Operation: return_sharedsecret_handle

Returns the SharedSecretHandle object to the plugin so it can be disposed of.

Parameter sharedsecret_handle: An IdentityHandle issued by the plugin on a prior call to
get_shared_secret.

Parameter exception: A SecurityException object, which provides details in the case this
operation returns false.

8.3.2.10 AuthenticationListener

The AuthenticationListener provides the means for notifying the DDS middleware
infrastructure of events relevant to the authentication of DDS DomainParticipant entities. For
example, identity certificates can expire; in this situation, the AuthenticationPlugin shall call

DDS Security, v1.0 75

the AuthenticationListener to notify the DDS implementation that the identity of a specific
DomainParticipant is being revoked.
Table 20 – Authentication listener class

AuthenticationListener

No Attributes

Operations

on_revoke_identity Boolean

plugin Authentication

handle IdentityHandle

exception SecurityException

8.3.2.10.1 Operation: on_revoke_identity

Revokes the identity of the participant identified by the IdentityHandle. The corresponding
IdentityHandle becomes invalid. As a result of this, the DDS middleware shall terminate any
communications with the DomainParticipant associated with that handle.

If an error occurs, this method shall return false.

Parameter plugin: An Authentication plugin object that has this listener allocated.

Parameter handle: An IdentityHandle object that corresponds to the Identity of a DDS
Participant whose identity is being revoked.

76 DDS Security, v1.0

8.4 Access Control Plugin
The Access Control Plugin API defines the types and operations necessary to support an access control
mechanism for DDS DomainParticipants.

8.4.1 Background (Non-Normative)

Once a DomainParticipant is authenticated, its permissions need to be validated and enforced.
Permissions or access rights are often described using an access control matrix where the rows are
subjects (i.e., users), the columns are objects (i.e., resources), and a cell defines the access rights that a
given subject has over a resource. Typical implementations provide either a column-centric view (i.e.,
access control lists) or a row-centric view (i.e., a set of capabilities stored with each subject). With the
proposed AccessControl SPI, both approaches can be supported.

Before we can describe the access control plugin SPI, we need to define the permissions that can be
attached to a DomainParticipant. Every DDS application uses a DomainParticipant to
access or produce information on a Domain; hence the DomainParticipant has to be allowed to
run in a certain Domain. Moreover, a DomainParticipant is responsible for creating
DataReaders and DataWriters that communicate over a certain Topic. Hence, a
DomainParticipant has to have the permissions needed to create a Topic, to publish through its
DataWriters certain Topics, and to subscribe via its DataReaders to certain Topics. There
is a very strong relationship between the AccessControl plugin and the Cryptographic plugin
because encryption keys need to be generated for DataWriters based on the
DomainParticipant’s permissions.

8.4.2 AccessControl Plugin Model

The AccessControl plugin model is presented in the figure below.

DDS Security, v1.0 77

Figure 10 – AccessControl Plugin Model

8.4.2.1 PermissionsToken

A PermissionsToken contains summary information on the permissions for a
DomainParticipant in a manner that can be externalized and propagated over DDS discovery.
The specific content of the PermissionsToken shall be defined by each
AccessControlPlugin specialization. The intent is to provide only summary information on the
permissions or derived information such as a hash.

8.4.2.2 PermissionsCredentialToken

A PermissionsCredentialToken encodes the permissions and access information for a
DomainParticipant in a manner that can be externalized and sent over the network. The
PermissionsCredential is used by the AccessControl plugin to verify the permissions of a

class AccessControl

SecurityPlugin

«interface»
AccessControl

+ validate_local_permissions(): PermissionsHandle
+ validate_remote_permissions(): PermissionsHandle
+ check_create_participant(): Boolean
+ check_create_datawriter(): Boolean
+ check_create_datareader(): Boolean
+ check_create_topic(): Boolean
+ check_local_datawriter_register_instance(): Boolean
+ check_local_datawriter_dispose_instance(): Boolean
+ check_remote_participant(): Boolean
+ check_remote_datawriter(): Boolean
+ check_remote_datareader(): Boolean
+ check_remote_topic(): Boolean
+ check_local_datawriter_match(): Boolean
+ check_local_datareader_match(): Boolean
+ check_remote_datawriter_register_instance(): Boolean
+ check_remote_datawriter_dispose_instance(): Boolean
+ get_permissions_token(): Boolean
+ get_permissions_credential_token(): Boolean
+ get_participant_sec_attributes(): Boolean
+ get_datawriter_sec_attributes(): Boolean
+ get_datareader_sec_attributes(): Boolean
+ set_listener(): Boolean
+ return_permissions_token(): Boolean
+ return_permissions_credential_token(): Boolean

«primitive»
PermissionsHandle

«interface»
AccessControlListener

+ revoke_persimissions(): Boolean

Token

«discovery»
PermissionsToken

«primitive»
IdentityHandle

ParticipantSecurityAttributes

+ is_access_protected: Boolean
+ is_rtps_protected: Boolean

EndpointSecurityAttributes

+ ia_access_protected: Boolean
+ is_discovery_protected: Boolean
+ is_submessage_protected: Boolean
+ is_payload_protected: Boolean

Property

«create»

«create»

«create»«use»

«create»

78 DDS Security, v1.0

peer DomainParticipant and perform all the access-control decisions related to that peer
DomainParticipant, including determining whether it can join a domain, match specific local
DataWriters or DataReaders, etc.

The PermissionsCredentialToken is intended for dissemination during the authentication
handshake. The specific content of the PermissionsCredentialToken shall be defined by each
AccessControl plugin specialization and it may not be used by some AccessControl plugin
specializations.

8.4.2.3 PermissionsHandle

A PermissionsHandle is an opaque local reference to internal state within the AccessControl
plugin. It is understood only by the AccessControl plugin and characterizes the permissions
associated with a specific DomainParticipant. This object is returned by the AccessControl
plugin as part of the validation of the permissions of a DomainParticipant and is used whenever
a client of the AccessControl plugin needs to refer to the permissions of a previously validated
DomainParticipant.

8.4.2.4 ParticipantSecurityAttributes

The ParticipantSecurityAttributes describe how the middleware should protect the
DomainParticipant. This is a structured type whose members are described in the table below:
Table 21 – Description of the ParticipantSecurityAttributes

Member Type Meaning

allow_unauthenticated_
participants

Boolean Indicates whether the matching of the DomainParticipant
with a remote DomainParticipant requires successful
authentication.

If allow_unauthenticated_participants is TRUE, the
DomainParticipant shall allow matching other
DomainParticipants—even if the remote
DomainParticipant cannot authenticate.

If allow_unauthenticated_participants is FALSE, the
DomainParticipant shall enforce the authentication of
remote DomainParticipants and disallow matching those
that cannot be successfully authenticated.

is_access_protected Boolean Indicates whether the matching of the DomainParticipant
with a remote DomainParticipant requires authorization
by the AccessControl plugin.

If is_access_protected is FALSE, the DomainParticipant
shall allow matching of a remote DomainParticipant
without checking authorization with the AccessControl
plugin.

If is_access_protected is TRUE, the DomainParticipant shall
check that the remote DomainParticipant is authorized to

DDS Security, v1.0 79

join the Domain by calling the operations in the
AccessControl plugin. Only remote DomainParticipants
for which authorization is successful are allowed match
the local DomainParticipant.

is_rtps_protected Boolean Indicates whether the whole RTPS Message needs to be
transformed by the CryptoTransform operation
encode_rtps_message.

If is_rtps_protected is TRUE then:

(1) The DDS middleware shall call the operations on the
CryptoKeyFactory for the DomainParticipant.

(2) The DDS middleware shall call the operations on the
CryptoKeyExchange for matched DomainParticipants that
have been authenticated.

(3) The RTPS messages sent by the DomainParticipant to
matched DomainParticipants that have been
authenticated shall be transformed using the
CryptoTransform operation encode_rtps_message and the
messages received from the matched authenticated
DomainParticipants shall be transformed using the
CryptoTransform operation decode_rtps_message.

If is_rtps_protected is FALSE then the above actions shall
not be taken.

ac_participant_properti
es

Propert
ySeq

Additional properties to add to the participant_properties
parameter passed to the CryptoKeyFactory operation
register_local_participant. See 8.5.1.7.1.

The returned ac_participant_properties and their
interpretation shall be specified by each plugin
implementation.

8.4.2.5 EndpointSecurityAttributes

The EndpointSecurityAttributes describe how the middleware shall protect the Entity. This
is a structured type, whose members are described in the table below:

80 DDS Security, v1.0

Table 22 – Description of the EndpointSecurityAttributes

Member Type Meaning

is_access_protected Boolean Indicates if the access to the Entity by a matching
Entity is protected.

If is_access_protected is FALSE, the entity shall be
matched without further access-control mechanisms
imposed on remote entities that match it. Otherwise
the entity match shall be checked using the
AccessControl plugin operations.

is_discovery_protected Boolean Indicates the discovery information for the entity shall
be sent using a secure builtin discovery topics or the
regular builtin discovery topics:

If is_discovery_protected is TRUE, then discovery
information for that entity shall be sent using the
SEDPbuiltinPublicationsSecureWriter
SEDPbuiltinSubscriptionsSecureWriter.

If is_discovery_protected is FALSE, then discovery
information for that entity shall be sent using the
SEDPbuiltinPublicationsWriter or
SEDPbuiltinSubscriptionsWriter.

is_submessage_protected Boolean Indicates the DDS middleware shall call the operations
on the CryptoKeyFactory, CryptoKeyExchange, and
CryptoTransform for the entity:

If is_submessage_protected is TRUE, then the
CryptoKeyFactory, CryptoKeyExchange operations
shall be called for that entity to create the associated
cryptographic material and send it to the matched
entities.

If is_submessage_protected is FALSE, then the
CryptoKeyFactory, CryptoKeyExchange and
CryptoTransform operations are called only if
is_payload_protected is TRUE.

If is_submessage_protected is TRUE and the entity is a
DataWriter, the submessages sent by the DataWriter
shall be transformed using the CryptoTransform
operation encode_datawriter_submessage and the
messages received from the matched DataReaders
shall be transformed using the CryptoTransform
operation decode_datareader_submessage.

 If is_submessage_protected is TRUE and the entity is a
DataReader, the submessages sent by the DataReader

DDS Security, v1.0 81

shall be transformed using the CryptoTransform
operation encode_datareader_submessage and the
messages received from the matched DataWriters shall
be transformed using the CryptoTransform operation
decode_datawriter_submessage.

is_payload_protected Boolean Indicates the DDS middleware shall call the operations
on the CryptoKeyFactory, CryptoKeyExchange, and
CryptoTransform for the entity.

If is_payload_protected is TRUE, then the
CryptoKeyFactory, CryptoKeyExchange operations
shall be called for that entitity to create the associated
cryptographic material and send it to the matched
entities.

If is_payload_protected is FALSE, then the
CryptoKeyFactory, CryptoKeyExchange and
CryptoTransform operations are called only if
is_payload_protected is TRUE.

If is_ payload_protected is TRUE and the entity is a
DataWriter, the serialized data sent by the DataWriter
shall be transformed by calling
encode_serialized_payload.

If is_ payload_protected is TRUE and the entity is a
DataReader, the serialized data received by the
DataReader shall be transformed by calling
decode_serialized_payload

ac_endpoint_properties PropertySeq Additional properties to add to the
datawriter_properties or datareader_properties passed to
the CryptoKeyFactory operations
register_local_datawriter and
register_local_datareader.

The returned ac_endpoint_properties and their
interpretation shall be specified by each plugin
implementation.

8.4.2.6 AccessControl interface
Table 23 – AccessControl Interface

AccessControl
No Attributes

Operations

82 DDS Security, v1.0

validate_local_permi
ssions

 PermissionsHandle

auth_plugin AuthenticationPlugin

identity IdentityHandle

domain_id DomainId_t

participant_qos DomainParticipantQos

out: exception SecurityException

validate_remote_perm
issions

 PermissionsHandle

auth_plugin AuthenticationPlugin

local_identity_
handle

IdentityHandle

remote_identity
_handle

IdentityHandle

remote_permissi
ons_token

PermissionsToken

remote_credenti
al_token

AuthenticatedPeerCredentia
lToken

out: exception SecurityException

check_create_partici
pant

 Boolean

permissions_han
dle

PermissionsHandle

domain_id DomainId_t

qos DomainParticipantQoS

out: exception SecurityException

check_create_datawri
ter

 Boolean

permissions_han
dle

PermissionsHandle

domain_id DomainId_t

topic_name String

qos DataWriterQoS

partition PartitionQosPolicy

data_tag DataTag

out: exception SecurityException

check_create_datarea Boolean

DDS Security, v1.0 83

der
permissions_han
dle

PermissionsHandle

domain_id DomainId_t

topic_name String

qos DataReaderQoS

partition PartitionQosPolicy

data_tag DataTag

out: exception SecurityException

check_create_topic Boolean

permissions_han
dle

PermissionsHandle

domain_id DomainId_t

topic_name String

qos TopicQoS

out: exception SecurityException

check_local_datawrit
er_register_instance

 Boolean

permissions_han
dle

PermissionsHandle

writer DataWriter

key DynamicData

out: exception SecurityException

check_local_datawrit
er_dispose_instance

 Boolean

permissions_han
dle

PermissionsHandle

writer DataWriter

key DynamicData

out: exception SecurityException

check_remote_partici
pant

 Boolean

permissions_han
dle

PermissionsHandle

domain_id DomainId_t

participant_dat
a

ParticipantBuiltinTopicDat
aSecure

84 DDS Security, v1.0

out: exception SecurityException

check_remote_datawri
ter

 Boolean

permissions_han
dle

PermissionsHandle

domain_id DomainId_t

publication_dat
a

PublicationBuiltinTopicDat
aSecure

out: exception SecurityException

check_remote_datarea
der

 Boolean

permissions_han
dle

PermissionsHandle

domain_id DomainId_t

subscription_da
ta

SubscriptionBuiltinTopicDa
taSecure

out: relay_only Boolean

out: exception SecurityException

check_remote_topic Boolean

permissions_han
dle

PermissionsHandle

DomainId_t domain_id

topic_data TopicBuiltinTopicData

out: exception SecurityException

check_local_datawrit
er_match

 Boolean

writer_permissi
ons_handle

PermissionsHandle

reader_permissi
ons_handle

PermissionsHandle

publisher_parti
tion

PartitionQosPolicy

writer_data_tag DataTag

reader_data_tag DataTag

out: exception SecurityException

check_local_dataread Boolean

DDS Security, v1.0 85

er_match
reader_permissi
ons_handle

PermissionsHandle

writer_permissi
ons_handle

PermissionsHandle

subscriber_part
ition

PartitionQosPolicy

reader_data_tag DataTag

writer_data_tag DataTag

out: exception SecurityException

check_remote_datawri
ter_register_instanc
e

 Boolean

permissions_han
dle

PermissionsHandle

reader DataReader

publication_han
dle

InstanceHandle_t

key DynamicData

instance_handle InstanceHandle_t

out: exception SecurityException

check_remote_datawri
ter_dispose_instance

 Boolean

permissions_han
dle

PermissionsHandle

reader DataReader

publication_han
dle

InstanceHandle_t

key DynamicData

out: exception SecurityException

get_permissions_toke
n

 PermissionsToken

handle PermissionsHandle

exception SecurityException

get_permissions_cred
ential_token

 PermissionsCredentialToken

handle PermissionsHandle

out: exception SecurityException

set_listener Boolean

86 DDS Security, v1.0

listener AccessControlListener

out: exception SecurityException

return_permissions_t
oken

 Boolean

token PermissionsToken

out: exception SecurityException

return_permissions_c
redential_token

 Boolean

permissions_cre
dential_token

PermissionsCredentialToken

out: exception SecurityException

get_participant_sec_
attributes

 Boolean

permissions_han
dle

PermissionsHandle

out: attributes ParticipantSecurityAttribu
tes

out: exception SecurityException

get_datawriter_sec_a
ttributes

 Boolean

permissions_han
dle

PermissionsHandle

topic_name string

partition PartitionQosPolicy

data_tag DataTagQosPolicy

out: attributes EndpointSecurityAttributes

out: exception SecurityException

get_datareader_sec_a
ttributes

 Boolean

permissions_han
dle

PermissionsHandle

topic_name string

partition PartitionQosPolicy

data_tag DataTagQosPolicy

out: attributes EndpointSecurityAttributes

out: exception SecurityException

DDS Security, v1.0 87

8.4.2.6.1 Operation: validate_local_permissions

Validates the permissions of the local DomainParticipant. The operation returns a
PermissionsHandle object, if successful. The PermissionsHandle can be used to locally
identify the permissions of the local DomainParticipant to the AccessControl plugin.

This operation shall be called before the DomainParticipant is enabled. It shall be called either
by the implementation of DomainParticipantFactory create_domain_participant or
DomainParticipant enable [1].

If an error occurs, this method shall return HandleNIL.

Parameter auth_plugin: The Authentication plugin, which validated the identity of the local
DomainParticipant. If this argument is nil, the operation shall return HandleNIL.

Parameter identity: The IdentityHandle returned by the authentication plugin from a successful
call to validate_local_identity.

Parameter domain_id: The DDS Domain Id of the DomainParticipant.

Parameter participant_qos: The DomainParticipantQos of the DomainParticipant.

Parameter exception: A SecurityException object, which provides details, in case this operation
returns HandleNIL.

8.4.2.6.2 Operation: validate_remote_permissions

Validates the permissions of the previously authenticated remote DomainParticipant, given the
PermissionsToken object received via DDS discovery and the
PermissionsCredentialToken obtained as part of the authentication process. The operation
returns a PermissionsHandle object, if successful.

If an error occurs, this method shall return HandleNIL.

Parameter auth_plugin: The Authentication plugin, which validated the identity of the remote
DomainParticipant. If this argument is nil, the operation shall return HandleNIL.

Parameter local_identity_handle: The IdentityHandle returned by the authentication plugin.

Parameter remote_identity_handle: The IdentityHandle returned by a successful call to the
validate_remote_identity operation on the Authentication plugin.

Parameter remote_permissions_token: The PermissionsToken of the remote
DomainParticipant received via DDS discovery inside the permissions_token member of the
ParticipantBuiltinTopicData. See 7.4.1.3.

Parameter remote_credential_token: The AuthenticatedPeerCredentialToken of the
remote DomainParticipant returned by the operation
get_authenticated_peer_credential_token on the Authentication plugin.

Parameter exception: A SecurityException object, which provides details, in case this
operation returns HandleNIL.

88 DDS Security, v1.0

8.4.2.6.3 Operation: check_create_participant

Enforces the permissions of the local DomainParticipant. When the local
DomainParticipant is created, its permissions must allow it to join the DDS Domain specified
by the domain_id. Optionally the use of the specified value for the DomainParticipantQoS must
also be allowed by its permissions. The operation returns a Boolean value.

This operation shall be called before the DomainParticipant is enabled. It shall be called either
by the implementation of DomainParticipantFactory create_domain_participant or
DomainParticipant enable [1].

If an error occurs, this method shall return false.

Parameter permissions_handle: The PermissionsHandle object associated with the local
DomainParticipant. If this argument is nil, the operation shall return false.

Parameter domain_id: The domain id where the local DomainParticipant is about to be
created. If this argument is nil, the operation shall return false.

Parameter qos: The QoS policies of the local DomainParticipant. If this argument is nil, the
operation shall return false.

Parameter exception: A SecurityException object, which provides details in case this operation
returns false.

8.4.2.6.4 Operation: check_create_datawriter

Enforces the permissions of the local DomainParticipant. When the local
DomainParticipant creates a DataWriter for topic_name with the specified
DataWriterQos associated with the data_tag, its permissions must allow this. The operation
returns a Boolean object.

If an error occurs, this method shall return false.

Parameter permissions_handle: The PermissionsHandle object associated with the local
DomainParticipant. If this argument is nil, the operation shall return false.

Parameter domain_id: The DomainId_t of the local DomainParticipant to which the local
DataWriter will belong.

Parameter topic_name: The topic name that the DataWriter is supposed to write. If this argument
is nil, the operation shall return false.

Parameter qos: The QoS policies of the local DataWriter. If this argument is nil, the operation
shall return false.

Parameter partition: The PartitionQosPolicy of the local Publisher to which the
DataWriter will belong.

Parameter data_tag: The data tags that the local DataWriter is requesting to be associated with its
data. This argument can be nil if it is not considered for access control.

Parameter exception: A SecurityException object, which provides details in case this operation
returns false.

DDS Security, v1.0 89

8.4.2.6.5 Operation: check_create_datareader

Enforces the permissions of the local DomainParticipant. When the local
DomainParticipant creates a DataReader for a Topic for topic_name with the specified
DataReaderQos qos associated with the data_tag, its permissions must allow this. The operation
returns a Boolean value.

If an error occurs, this method shall return false.

Parameter permissions_handle: The PermissionsHandle object associated with the local
DomainParticipant. If this argument is nil, the operation shall return false.

Parameter domain_id: The DomainId_t of the local DomainParticipant to which the local
DataReader will belong.

Parameter topic_name: The topic name that the DataReader is supposed to read. If this argument
is nil, the operation shall return false.

Parameter qos: The QoS policies of the local DataReader. If this argument is nil, the operation
shall return false.

Parameter partition: The PartitionQosPolicy of the local Subscriber to which the
DataReader will belong.

Parameter data_tag: The data tags that the local DataReader is requesting read access to. This
argument can be nil if it is not considered for access control.

Parameter exception: A SecurityException object, which provides details in case this operation
returns false.

8.4.2.6.6 Operation: check_create_topic

Enforces the permissions of the local DomainParticipant. When an entity of the local
DomainParticipant creates a Topic with topic_name and TopicQos qos its permissions
must allow this. The operation returns a Boolean value.

If an error occurs, this method shall return false.

Parameter permissions_handle: The PermissionsHandle object associated with the local
DomainParticipant. If this argument is nil, the operation shall return false.

Parameter domain_id: The DomainId_t of the local DomainParticipant that creates the
Topic.

Parameter topic_name: The topic name to be created. If this argument is nil, the operation shall
return false.

Parameter qos: The QoS policies of the local Topic. If this argument is nil, the operation shall return
false.

Parameter exception: A SecurityException object, which provides details in case this operation
returns false.

90 DDS Security, v1.0

8.4.2.6.7 Operation: check_local_datawriter_register_instance

Enforces the permissions of the local DomainParticipant. In case the access control requires a
finer granularity at the instance level, this operation enforces the permissions of the local
DataWriter. The key identifies the instance being registered and permissions are checked to
determine if registration of the specified instance is allowed. The operation returns a Boolean value.

If an error occurs, this method shall return false.

Parameter permissions_handle: The PermissionsHandle object associated with the local
DomainParticipant. If this argument is nil, the operation shall return false.

Parameter writer: DataWriter object that registers the instance. If this argument is nil, the
operation shall return false.

Parameter key: The key of the instance for which the registration permissions are being checked. If
this argument is nil, the operation shall return false.

Parameter exception: A SecurityException object, which provides details in case this operation
returns false.

8.4.2.6.8 Operation: check_local_datawriter_dispose_instance

Enforces the permissions of the local DomainParticipant. In case the access control requires a
finer granularity at the instance level, this operation enforces the permissions of the local
DataWriter. The key has to match the permissions for disposing an instance. The operation returns
a Boolean object.

If an error occurs, this method shall return false.

Parameter permissions_handle: The PermissionsHandle object associated with the local
DomainParticipant. If this argument is nil, the operation shall return false.

Parameter writer: DataWriter object that registers the instance. If this argument is nil, the
operation shall return false.

Parameter key: The key identifies the instance being registered and the permissions are checked to
determine if disposal of the specified instance is allowed. If this argument is nil, the operation shall
return false.

Parameter exception: A SecurityException object, which provides details in case this operation
returns nil.

8.4.2.6.9 Operation: check_remote_participant

Enforces the permissions of the remote DomainParticipant. When the remote
DomainParticipant is discovered, the domain_id and, optionally, the
DomainParticipantQoS are checked to verify that joining that DDS Domain and using that QoS
is allowed by its permissions. The operation returns a Boolean result.

If an error occurs, this method shall return false.

Parameter permissions_handle: The PermissionsHandle object associated with the remote
DomainParticipant. If this argument is nil, the operation shall return false.

DDS Security, v1.0 91

Parameter domain_id: The domain id where the remote DomainParticipant is about to be
created. If this argument is nil, the operation shall return false.

Parameter participant_data: The ParticipantBuiltInTopicDataSecure object associated
with the remote DomainParticipant. If this argument is nil, the operation shall return false.

Parameter exception: A SecurityException object, which provides details in case this operation
returns nil.

8.4.2.6.10 Operation: check_remote_datawriter

Enforces the permissions of a remote DomainParticipant.

This operation shall be called by a DomainParticipant prior to matching a local DataReader
belonging to that DomainParticipant with a DataWriter belonging to a different (peer)
DomainParticipant.

This operation shall also be called whenever a DomainParticipant detects a QoS change for a
DataWriter belonging to a different (peer) DomainParticipant that is matched with a local
DataReader.

This operation verifies that the peer DomainParticipant has the permissions necessary to publish
data on the DDS Topic with name topic_name using the DataWriterQoS that appears in
publication_data. The operation returns a Boolean value.

If an error occurs, this method shall return false.

Parameter permissions_handle: The PermissionsHandle object associated with the remote
DomainParticipant. If this argument is nil, the operation shall return false.

Parameter domain_id: The domain id of the DomainParticipant to which the remote
DataWriter belongs.

Parameter publication_data: The PublicationBuiltInTopicDataSecure object associated
with the remote DataWriter. If this argument is nil, the operation shall return false.

Parameter exception: A SecurityException object, which provides details in case this operation
returns false.

8.4.2.6.11 Operation: check_remote_datareader

Enforces the permissions of a remote DomainParticipant.

This operation shall be called by a DomainParticipant prior to matching a local DataWriter
belonging to that DomainParticipant with a DataReader belonging to a different (peer)
DomainParticipant.

This operation shall also be called whenever a DomainParticipant detects a QoS change for a
DataReader belonging to a different (peer) DomainParticipant that is matched with a local
DataWriter.

This operation verifies that the peer DomainParticipant has the permissions necessary to
subscribe to data on the DDS Topic with name topic_name using the DataReaderQoS that

92 DDS Security, v1.0

appears in subscription_data. The operation returns a Boolean value and also sets the relay_only
output parameter.

If the operation returns true, the DDS middleware shall allow the local DataWriter to match with
the remote DataReader, if it returns false, it shall not allow it.

If the operation returns true, the relay_only parameter shall be remembered by the DDS middleware
and passed to the register_matched_remote_datareader operation on the
CryptoKeyFactory.

If an error occurs, this method shall return false.

Parameter permissions_handle: The PermissionsHandle object associated with the local
DomainParticipant. If this argument is nil, the operation shall return false.

Parameter domain_id: The domain id of the DomainParticipant to which the remote
DataReader belongs.

Parameter subscription_data: The SubscriptionBuiltInTopicDataSecure object
associated with the remote DataReader. If this argument is nil, the operation shall return false.

Parameter (out) relay_only: Boolean indicating whether the permissions of the remote
DataReader are restricted to relaying the information (understanding sequence numbers and other
SubmessageHeader information) but not decoding the data itself. This parameter is only
meaningful if the operation returns true.

Parameter exception: A SecurityException object, which provides details in case this operation
returns false.

8.4.2.6.12 Operation: check_remote_topic

Enforces the permissions of the remote DomainParticipant. When the remote
DomainParticipant creates a certain topic, the topic_name and optionally the TopicQoS
extracted from the topic_data are verified to ensure the remote DomainParticipant permissions
allow it to create the DDS Topic with the specified QoS. The operation returns a Boolean value.

If an error occurs, this method shall return false.

Parameter permissions_handle: The PermissionsHandle object associated with the remote
DomainParticipant. If this argument is nil, the operation shall return false.

Parameter topic_data: The TopicBuiltInTopicData object associated with the Topic. If this
argument is nil, the operation shall return false.

Parameter exception: A SecurityException object, which provides details in case this operation
returns false.

8.4.2.6.13 Operation: check_local_datawriter_match

Provides the means for the AccessControl plugin to enforce access control rules that are based on
the DataTag associated with DataWriter and a matching DataReader.

The operation shall be called for any local DataWriter that matches a DataReader. The
operation shall be called after the operation check_local_datawriter has been called on the

DDS Security, v1.0 93

local DataWriter and either check_local_datareader or check_remote_datareader
has been called on the DataReader.

This operation shall also be called when a local DataWriter, matched with a DataReader,
detects a change on the Qos of the DataReader.

The operation shall be called only if the aforementioned calls to check_local_datawriter and
check_local_datareader or check_remote_datareader are returned successfully.

The operation returns a Boolean value. If an error occurs, this method shall return false and the
SecurityException filled.

Parameter writer_permissions_handle: The PermissionsHandle object associated with the
DomainParticipant that contains the local DataWriter. If this argument is nil, the operation
shall return false.

Parameter reader_permissions_handle: The PermissionsHandle object associated with the
remote DomainParticipant. If this argument is nil, the operation shall return false.

Parameter publisher_partition: The PartitionQosPolicy of the Publisher that contains the
local DataWriter.

Parameter writer_data_tag: The DataTag associated with the local DataWriter.

Parameter reader_data_tag: The DataTag associated with the matched DataReader.

Parameter exception: A SecurityException object, which provides details in case this operation
returns false.

8.4.2.6.14 Operation: check_local_datareader_match

Provides the means for the AccessControl plugin to enforce access control rules that are based on
the DataTag associated with a DataReader and a matching DataWriter.

The operation shall be called for any local DataReader that matches a DataWriter. The
operation shall be called after the operation check_local_datareader has been called on the
local DataReader and either check_local_datawriter or check_remote_datawriter
has been called on the DataWriter.

This operation shall also be called when a local DataReader, matched with a DataWriter, detects
a change on the Qos of the DataWriter.

The operation shall be called only if the aforementioned calls to check_local_datareader and
check_local_datawriter or check_remote_datawriter are returned successfully.

The operation returns a Boolean value. If an error occurs, this method shall return false and the
SecurityException filled.

Parameter writer_permissions_handle: The PermissionsHandle object associated with the
DomainParticipant that contains the local DataReader. If this argument is nil, the operation
shall return false.

94 DDS Security, v1.0

Parameter reader_permissions_handle: The PermissionsHandle object associated with the
remote DomainParticipant. If this argument is nil, the operation shall return false.

Parameter subscriber_partition: The PartitionQosPolicy of the Subscriber that contains
the local DataReader.

Parameter writer_data_tag: The DataTag associated with the local DataWriter.

Parameter reader_data_tag: The DataTag associated with the matched DataReader.

Parameter exception: A SecurityException object, which provides details in case this operation
returns false.

8.4.2.6.15 Operation: check_remote_datawriter_register_instance

Enforces the permissions of the remote DomainParticipant. In case the access control requires a
finer granularity at the instance level, this operation enforces the permissions of the remote
DataWriter. The key has to match the permissions for registering an instance. The operation
returns a Boolean value.

If an error occurs, this method shall return false.

Parameter permissions_handle: The PermissionsHandle object associated with the remote
DomainParticipant. If this argument is nil, the operation shall return false.

Parameter reader: The local DataReader object that is matched to the remote DataWriter that
registered an instance.

Parameter publication handle: Handle that identifies the remote DataWriter.

Parameter key: The key of the instance that needs to match the permissions for registering an
instance. If this argument is nil, the operation shall return false.

Parameter exception: A SecurityException object, which provides details in case this operation
returns false.

8.4.2.6.16 Operation: check_remote_datawriter_dispose_instance

Enforces the permissions of the remote DomainParticipant. In case the access control requires a
finer granularity at the instance level, this operation enforces the permissions of the remote
DataWriter. The key has to match the permissions for disposing an instance. The operation returns
a Boolean value.

If an error occurs, this method shall return false.

Parameter permissions_handle: The PermissionsHandle object associated with the remote
DomainParticipant. If this argument is nil, the operation shall return false.

Parameter reader: The local DataReader object that is matched to the Publication that disposed an
instance.

Parameter publication handle: Handle that identifies the remote Publication.

Parameter key: The key of the instance that needs to match the permissions for disposing an
instance. If this argument is nil, the operation shall return false.

DDS Security, v1.0 95

Parameter exception: A SecurityException object, which provides details in case this operation
returns false.

8.4.2.6.17 Operation: get_permissions_token

Retrieves a PermissionsToken object. The PermissionsToken is propagated via DDS
discovery to summarize the permissions of the DomainParticipant identified by the specified
PermissionsHandle.

If an error occurs, this method shall return false.

Parameter permissions_token (out): The returned PermissionsToken.

Parameter handle: The handle used to locally identify the permissions of the DomainParticipant for
which a PermissionsToken is desired. If this argument is nil, the operation shall return nil.

Parameter exception: A SecurityException object, which provides details in case this operation
returns false.

8.4.2.6.18 Operation: get_permissions_credential_token

Retrieves a PermissionsCredentialToken object that can be used to represent on the network
the permissions of the DomainParticipant identified by the specified PermissionsHandle.

If an error occurs, this method shall return false.

Parameter permissions_credential_token (out): The returned
PermissionsCredentialToken.

Parameter handle: The PermissionsHandle used to locally identify the permissions of the
DomainParticipant for which a PermissionsCredentialToken is desired. If this
argument is nil, the operation shall return nil.

Parameter exception: A SecurityException object, which provides details in case this operation
returns false.

8.4.2.6.19 Operation: set_listener

Sets the listener for the AccessControl plugin.

If an error occurs, this method shall return false.

Parameter listener: An AccessControlListener object to be attached to the
AccessControl plugin. If this argument is nil, the operation returns false.

Parameter exception: A SecurityException object, which provides details in case this operation
returns false.

8.4.2.6.20 Operation: return_permissions_token

Returns the PermissionsToken to the plugin for disposal.

Parameter token: A PermissionsToken to be disposed of. It should correspond to the
PermissionsToken returned by a prior call to get_permissions_token on the same plugin.

96 DDS Security, v1.0

Parameter exception: A SecurityException object, which provides details in case this operation
returns false.

8.4.2.6.21 Operation: return_permissions_credential_token

Returns the PermissionsCredentialToken to the plugin for disposal.

Parameter permissions_credential_token: A PermissionsCredentialToken to be disposed
of. It should correspond to the PermissionsCredentialToken returned by a prior call to
get_permissions_credential_token on the same plugin.

Parameter exception: A SecurityException object, which provides details in case this operation
returns false.

8.4.2.6.22 Operation: get_participant_sec_attributes

Retrieves the ParticipantSecurityAttributes, which describe how the DDS middleware
should enforce the security and integrity of the information produced and consumed via the
DomainParticipant.

This operation shall be called by the DDS middleware as part of the creation or enabling of the DDS
DomainParticipant.

If an error occurs, this method shall return false.

Parameter permissions_handle: The PermissionsHandle object associated with the local
DomainParticipant. If this argument is nil, the operation shall return false.

Parameter (out) attributes: The returned ParticipantSecurityAttributes.

Parameter exception: A SecurityException object, which provides details in case this operation
returns false.

8.4.2.6.23 Operation: get_datarwriter_sec_attributes

Retrieves the EndpointSecurityAttributes, which describes how the DDS middleware
should enforce the security and integrity of the information related to the DDS DataWriter
endpoint.

This operation shall be called by the DDS middleware as part of the creation or enabling of a DDS
DataWriter. The operation shall be called after calling check_create_datawriter.

If an error occurs, this method shall return false.

Parameter permissions_handle: The PermissionsHandle object associated with the local
DomainParticipant. If this argument is nil, the operation shall return false.

Parameter topic_name: The name of the Topic associated with the DataWriter. If this argument
is nil, the operation shall return false.

Parameter partition: The PartitionQosPolicy of the local Publisher to which the
DataWriter belongs.

Parameter data_tag: The DataTagQosPolicy associated with the DataWriter. This argument
can be nil.

DDS Security, v1.0 97

Parameter (out) attributes: The returned EndpointSecurityAttributes.

Parameter exception: A SecurityException object, which provides details in case this operation
returns false.

8.4.2.6.24 Operation: get_datareader_sec_attributes

Retrieves the EndpointSecurityAttributes, which describes how the DDS middleware
should enforce the security and integrity of the information related to the DDS DataReader
endpoint.

This operation shall be called by the DDS middleware as part of the creation or enabling of a DDS
DataReader. The operation shall be called after calling check_create_datareader.

If an error occurs, this method shall return false.

Parameter permissions_handle: The PermissionsHandle object associated with the local
DomainParticipant. If this argument is nil, the operation shall return false.

Parameter topic_name: The name of the Topic associated with the DataReader. If this argument
is nil, the operation shall return false.

Parameter partition: The PartitionQosPolicy of the local Subscriber to which the
DataReader belongs.

Parameter data_tag: The data tag associated with the DataReader. This argument can be nil.

Parameter (out) attributes: The returned EndpointSecurityAttributes.

Parameter exception: A SecurityException object, which provides details in case this operation
returns false.

8.4.2.7 AccessControlListener interface

The purpose of the AccessControlListener is to be notified of all status changes for different
identities. For example, permissions can change; hence, the AccessControlListener is notified
and enforces the new permissions.
Table 24 – AccessControlListener interface

AccessControlListener

No Attributes

Operations

on_revoke_permissions Boolean

plugin AccessControl

handle PermissionsHandle

8.4.2.7.1 Operation: on_revoke_permissions

DomainParticipants’ Permissions can be revoked/changed. This listener provides a callback for
permission revocation/changes.

98 DDS Security, v1.0

If an error occurs, this method shall return false.

Parameter plugin: The correspondent AccessControl object.

Parameter handle: A PermissionsHandle object that corresponds to the Permissions of a DDS
Participant whose permissions are being revoked.

DDS Security, v1.0 99

8.5 Cryptographic Plugin
The Cryptographic plugin defines the types and operations necessary to support encryption,
digest, message authentication codes, and key exchange for DDS DomainParticipants,
DataWriters and DDS DataReaders.

Users of DDS may have specific cryptographic libraries they use for encryption, as well as, specific
requirements regarding the algorithms for digests, message authentication, and signing. In addition,
applications may require having only some of those functions performed, or performed only for certain
DDS Topics and not for others. Therefore, the plugin API has to be general enough to allow flexible
configuration and deployment scenarios.

8.5.1 Cryptographic Plugin Model

The Cryptographic plugin model is presented in the figure below. It combines related
cryptographic interfaces for key creation, key exchange, encryption, message authentication, hashing,
and signature.

Figure 11 – Cryptographic Plugin Model

class Cryptographic

«interface»
Cryptographic

«interface»
CryptoKeyFactory

+ register_local_participant(): ParticipantCryptoHandle
+ register_matched_remote_participant(): ParticipantCryptoHandle
+ register_local_datawriter(): DatawriterCryptoHandle
+ register_matched_remote_datareader(): DatareaderCryptoHandle
+ register_local_datareader(): DatareaderCryptoHandle
+ register_matched_remote_datawriter(): DatawriterCryptoHandle
+ unregister_participant(): Boolean
+ unregister_datawriter(): Boolean
+ unregister_datareader(): Boolean

«primitive»
ParticipantCryptoHandle

«primitive»
DatawriterCryptoHandle

«primitive»
DatareaderCryptoHandle

«interface»
CryptoKeyExchange

+ create_local_participant_crypto_tokens(): Boolean
+ set_remote_participant_crypto_tokens(): Boolean
+ create_local_datawriter_crypto_tokens(): Boolean
+ set_remote_datawriter_crypto_tokens(): Boolean
+ create_local_datareader_crypto_tokens(): Boolean
+ set_remote_datareader_crypto_tokens(): Boolean
+ return_cypto_tokens(): Boolean

«interface»
CryptoTransform

+ encode_serialized_payload(): Boolean
+ encode_datawriter_submessage(): Boolean
+ encode_datareader_submessage(): Boolean
+ encode_rtps_message(): Boolean
+ decode_rtps_message(): Boolean
+ preprocess_secure_submessage(): Boolean
+ decode_datawriter_submessage(): Boolean
+ decode_datareader_submessage(): Boolean
+ decode_serialized_payload(): Boolean

Token
CryptoToken

«primitive»
IdentityHandle

«primitive»
PermissionsHandle

«dataType»
CryptoTransformIdentifier

- transformation_kind_id: octet[4]
- transformation_key_id: octet[4]

«primitive»
SharedSecretHandle

Property

SubmessageElement
SecureDataTag

- common_mac: char[]
- receiver_specific_macs: ReceiverSpecificMAC[]

«use»

100 DDS Security, v1.0

8.5.1.1 CryptoToken

This class represents a generic holder for key material. A CryptoToken object contains all the
information necessary to construct a set of keys to be used to encrypt and/or sign plain text
transforming it into cipher-text or to reverse those operations.

The format and interpretation of the CryptoToken depends on the implementation of the
Cryptographic plugin. Each plugin implementation shall fully define itself, so that applications are able
to interoperate. In general, the CryptoToken will contain one or more keys and any other necessary
material to perform crypto-transformation and/or verification, such as, initialization vectors (IVs),
salts, etc.

8.5.1.2 ParticipantCryptoHandle

The ParticipantCryptoHandle object is an opaque local reference that represents the key
material used to encrypt and sign whole RTPS Messages. It is used by the operations
encode_rtps_message and decode_rtps_message.

8.5.1.3 DatawriterCryptoHandle

The DatawriterCryptoHandle object is an opaque local reference that represents the key
material used to encrypt and sign RTPS submessages sent from a DataWriter. This includes the RTPS
submessages Data, DataFrag, Gap, Heartbeat, and HeartbeatFrag, as well as, the
SerializedPayload submessage element that appears in the Data and DataFrag submessages.

It is used by the operations encode_datawriter_submessage,
decode_datawriter_submessage, encode_serialized_payload, and
decode_serialized_payload.

8.5.1.4 DatareaderCryptoHandle

The DatareaderCryptoHandle object is an opaque local reference that represents the key
material used to encrypt and sign RTPS Submessages sent from a DataReader. This includes the
RTPS Submessages AckNack and NackFrag.

It is used by the operations encode_datareader_submessage,
decode_datareader_submessage.

8.5.1.5 CryptoTransformIdentifier

The CryptoTransformIdentifier object used to uniquely identify the transformation applied
on the sending side (encoding) so that the receiver can locate the necessary key material to perform the
inverse transformation (decoding). The generation of CryptoTransformIdentifier is
performed by the Cryptographic plugin.

To enable interoperability and avoid misinterpretation of the key material, the structure of the
CryptoTransformIdentifier is defined for all Cryptographic plugin implementations as
follows:

typedef octet CryptoTransformKind[4];
typedef octet CryptoTransformKeyId[4];
struct CryptoTransformIdentifier {
 CryptoTransformKind transformation_kind;

DDS Security, v1.0 101

 CryptoTransformKeyId transformation_key_id;
};

Table 25 – CryptoTransformIdentifier class

CryptoTransformIdentifier

Attributes

transformation_kind CryptoTransformKind

transformation_key_id CryptoTransformKeyId

8.5.1.5.1 Attribute: transformation_kind

Uniquely identifies the type of cryptographic transformation.

Values of transformation_kind having the first two octets set to zero are reserved by this
specification, including future versions of this specification.

Implementers can use the transformation_kind attribute to identify non-standard cryptographic
transformations. In order to avoid collisions, the first two octets in the transformation_kind
shall be set to a registered RTPS VendorId [36]. The RTPS VendorId used shall either be one
reserved to the implementer of the Cryptographic Plugin, or else the implementer of the
Cryptographic Plugin shall secure permission from the registered owner of the RTPS
VendorId to use it.

8.5.1.5.2 Attribute: transformation_key_id

Uniquely identifies the key material used to perform a cryptographic transformation within the scope
of all Cryptographic Plugin transformations performed by the DDS DomainParticipant that
creates the key material.

In combination with the sending DomainParticipant GUID, the transformation_key_id
attribute allows the receiver to select the proper key material to decrypt/verify a message that has been
encrypted and/or signed. The use of this attribute allows a receiver to be robust to dynamic changes in
keys and key material in the sense that it can identify the correct key or at least detect that it does not
have the necessary keys and key material.

The values of the transformation_key_id are defined by the Cryptographic plugin
implementation and understood only by that plugin.

8.5.1.6 SecureSubmessageCategory_t

Enumerates the possible categories of RTPS submessages.
Table 26 – SecureSubmessageCategory_t

SecureSubmessageCategory_t

INFO_SUBMESSAGE Indicates an RTPS Info submessage: InfoSource, InfoDestination, or
InfoTimestamp.

DATAWRITER_SUBMES
SAGE

Indicates an RTPS submessage that was sent from a DataWriter: Data,
DataFrag, HeartBeat, Gap.

102 DDS Security, v1.0

DATAREADER_SUBMES
SAGE

Indicates an RTPS submessage that was sent from a DataReader:
AckNack, NackFrag.

8.5.1.7 CryptoKeyFactory interface

This interface groups the operations related to the creation of keys used for encryption and digital
signing of both the data written by DDS applications and the RTPS submessage and message headers,
used to implement the discovery protocol, distribute the DDS data, implement the reliability protocol,
etc.
Table 27 – CryptoKeyFactory Interface

CryptoKeyFactory
No Attributes

Operations

register_local_partic
ipant

 ParticipantCryptoHandle

participant_ide
ntity

IdentityHandle

participant_per
missions

PermissionsHandle

participant_pro
perties

PropertySeq

out: exception SecurityException

register_matched_remo
te_participant

 ParticipantCryptoHandle

local_participa
nt_crypto_handl
e

ParticipantCryptoHandle

remote_particip
ant_identity

IdentityHandle

remote_particip
ant_permissions

PermissionsHandle

shared_secret SharedSecretHandle

out: exception SecurityException

register_local_datawr
iter

 DatawriterCryptoHandle

participant_cry
pto

ParticipantCryptoHandle

datawriter_prop
erties

PropertySeq

DDS Security, v1.0 103

out: exception SecurityException

register_matched_remo
te_datareader

 DatareaderCryptoHandle

local_datawrite
r_crypto_handle

DatawriterCryptoHandle

remote_particip
ant_crypto

ParticipantCryptoHandle

shared_secret SharedSecretHandle

relay_only Boolean

out: exception SecurityException

register_local_datare
ader

 DatareaderCryptoHandle

participant_cry
pto

ParticipantCryptoHandle

datareader_prop
erties

PropertySeq

out: exception SecurityException

register_matched_remo
te_datawriter

 DatawriterCryptoHandle

local_datareade
r_crypto_handle

DatareaderCryptoHandle

remote_particip
ant_crypt

ParticipantCryptoHandle

shared_secret SharedSecretHandle

out: exception SecurityException

unregister_participan
t

 Boolean

participant_cry
pto_handle

ParticipantCryptoHandle

out: exception SecurityException

unregister_datawriter Boolean

datawriter_cryp
to_handle

DatawriterCryptoHandle

out: exception SecurityException

unregister_datareader Boolean

datareader_cryp
to_handle

DatareaderCryptoHandle

104 DDS Security, v1.0

8.5.1.7.1 Operation: register_local_participant

Registers a local DomainParticipant with the Cryptographic Plugin. The
DomainParticipant must have been already authenticated and granted access to the DDS
Domain. The operation shall create any necessary key material that is needed to Encrypt and Sign
secure messages that are directed to other DDS DomainParticipant entities on the DDS Domain.

Parameter participant_identity: An IdentityHandle returned by a prior call to
validate_local_identity. If this argument is nil, the operation returns HandleNIL.

Parameter participant_permissions: A PermissionsHandle returned by a prior call to
validate_local_permissions. If this argument is nil, the operation returns HandleNIL.

Parameter participant_properties: This parameter shall combine the PropertyQosPolicy of the
local DomainParticipant with the ac_participant_properties in the
ParticipantSecurityAttributes returned by the AccessControl
get_participant_sec_attributes operation. In addition to the properties in the ac_
participant_properties, the participant_properties shall include all the properties in the
PropertyQosPolicy whose name has the prefix “dds.sec.crypto.” The purpose of this
parameter is to allow configuration of the Cryptographic Plugin by the DomainParticipant,
e.g., selection of the cryptographic algorithm, key size, or even setting of the key. The use of this
parameter depends on the particular implementation of the plugin and shall be specified for each
implementation. Properties not understood by the plugin implementation shall be silently ignored.

Parameter exception: A SecurityException object, which provides details in case this operation
returns HandleNIL.

8.5.1.7.2 Operation: register_matched_remote_participant

Registers a remote DomainParticipant with the Cryptographic Plugin. The remote
DomainParticipant must have been already Authenticated and granted Access to the DDS
Domain. The operation performs two functions:

1. It shall create any necessary key material needed to decrypt and verify the signatures of
messages received from that remote DomainParticipant and directed to the local
DomainParticipant.

2. It shall create any necessary key material that will be used by the local DomainParticipant
when encrypting or signing messages that are intended only for that remote
DomainParticipant.

Parameter local_participant_crypto_handle: A ParticipantCryptoHandle returned by a prior
call to register_local_participant. If this argument is nil, the operation returns false.

Parameter remote_participant_identity: An IdentityHandle returned by a prior call to
validate_remote_identity. If this argument is nil, the operation returns nil.

Parameter participant_permissions: A PermissionsHandle returned by a prior call to
validate_remote_permissions. If this argument is nil, the operation returns nil

out: exception SecurityException

DDS Security, v1.0 105

Parameter shared_secret: The SharedSecretHandle returned by a prior call to
get_shared_secret as a result of the successful completion of the Authentication handshake
between the local and remote DomainParticipant entities.

Parameter exception: A SecurityException object, which provides details in case this operation
returns false.

8.5.1.7.3 Operation: register_local_datawriter

Registers a local DataWriter with the Cryptographic Plugin. The fact that the DataWriter
was successfully created indicates that the DomainParticipant to which it belongs was
authenticated, granted access to the DDS Domain, and granted permission to create the DataWriter
on its Topic.

This operation shall create the cryptographic material necessary to encrypt and/or sign the data written
by the DataWriter and returns a DatawriterCryptoHandle to be used for any cryptographic
operations affecting messages sent or received by the DataWriter.

If an error occurs, this method shall return false. If it succeeds, the operation shall return an opaque
handle that can be used to refer to that key material.

Parameter participant_crypto: A ParticipantCryptoHandle returned by a prior call to
register_local_participant. It shall correspond to the ParticipantCryptoHandle
of the DomainParticipant to which the DataWriter belongs. If this argument is nil, the
operation returns false.

Parameter local_datawriter_properties: This parameter shall combine PropertyQosPolicy of
the local DataWriter with the ac_endpoint_properties in the
EndpointSecurityAttributes returned by the AccessControl
get_datawriter_sec_attributes operation. In addition to the properties in the
ac_endpoint_properties, the local_datawriter_properties shall include all the properties in the
PropertyQosPolicy whose name has the prefix “dds.sec.crypto.” The purpose of this
parameter is to allow configuration of the Cryptographic Plugin by the DataWriter, e.g.,
selection of the cryptographic algorithm, key size, or even setting of the key. The use of this parameter
depends on the particular implementation of the plugin and shall be specified for each implementation.
Properties not understood by the plugin implementation shall be silently ignored.

Parameter exception: A SecurityException object, which provides details in case this operation
returns false.

8.5.1.7.4 Operation: register_matched_remote_datareader

Registers a remote DataReader with the Cryptographic Plugin. The remote DataReader
shall correspond to one that has been granted permissions to match with the local DataWriter.

This operation shall create the cryptographic material necessary to encrypt and/or sign the RTPS
submessages (Data, DataFrag, Gap, Heartbeat, HeartbeatFrag) sent from the local
DataWriter to that DataReader. It shall also create the cryptographic material necessary to
process RTPS Submessages (AckNack, NackFrag) sent from the remote DataReader to the
DataWriter.

106 DDS Security, v1.0

The operation shall associate the value of the relay_only parameter with the returned
DatawriterCryptoHandle. This information shall be used in the generation of the KeyToken
objects to be sent to the DataReader.

Parameter local_datawriter_crypto_handle: A DatawriterCryptoHandle returned by a prior
call to register_local_datawriter. If this argument is nil, the operation returns
HandleNIL.

Parameter remote_participant_crypto: A ParticipantCryptoHandle returned by a prior call
to register_matched_remote_participant. It shall correspond to the
ParticipantCryptoHandle of the DomainParticipant to which the remote DataReader
belongs. If this argument is nil, the operation returns HandleNIL.

Parameter shared_secret: The SharedSecretHandle returned by a prior call to
get_shared_secret as a result of the successful completion of the Authentication handshake
between the local and remote DomainParticipant entities.

Parameter relay_only: Boolean indicating whether the cryptographic material to be generated for the
remote DataReader shall contain everything, or only the material necessary to relay (store and
forward) the information (i.e., understand the SubmessageHeader) without being able to decode
the data itself (i.e., decode the SecureData).

Parameter exception: A SecurityException object, which provides details in case this operation
returns HandleNIL.

8.5.1.7.5 Operation: register_local_datareader

Registers a local DataReader with the Cryptographic Plugin. The fact that the DataReader
was successfully created indicates that the DomainParticipant to which it belongs was
authenticated, granted access to the DDS Domain, and granted permission to create the DataReader
on its Topic.

This operation shall create the cryptographic material necessary to encrypt and/or sign the messages
sent by the DataReader when the encryption/signature is independent of the targeted
DataWriter.

If successful, the operation returns a DatareaderCryptoHandle to be used for any cryptographic
operations affecting messages sent or received by the DataWriter.

Parameter participant_crypto: A ParticipantCryptoHandle returned by a prior call to
register_local_participant. It shall correspond to the ParticipantCryptoHandle
of the DomainParticipant to which the DataReader belongs. If this argument is nil, the
operation returns HandleNIL.

Parameter local_datareader_properties: This parameter shall combine PropertyQosPolicy of
the local DataReader with the ac_endpoint_properties in the
EndpointSecurityAttributes returned by the AccessControl
get_datareader_sec_attributes operation. In addition to the properties in the
ac_endpoint_properties, the local_datareader_properties shall include all the properties in the
PropertyQosPolicy whose name has the prefix “dds.sec.crypto.” The purpose of this
parameter is to allow configuration of the Cryptographic Plugin by the DataReader, e.g.,

DDS Security, v1.0 107

selection of the cryptographic algorithm, key size, or even setting of the key. The use of this parameter
depends on the particular implementation of the plugin and shall be specified for each implementation.
Properties not understood by the plugin implementation shall be silently ignored.

Parameter exception: A SecurityException object, which provides details in case this operation
returns HandleNIL.

8.5.1.7.6 Operation: register_matched_remote_datawriter

Registers a remote DataWriter with the Cryptographic Plugin. The remote DataWriter
shall correspond to one that has been granted permissions to match with the local DataReader.

This operation shall create the cryptographic material necessary to decrypt and/or verify the signatures
of the RTPS submessages (Data, DataFrag, Heartbeat, HeartbeatFrag, Gap) sent from the
remote DataWriter to the DataReader. The operation shall also create the cryptographic material
necessary to encrypt and/or sign the RTPS submessages (AckNack, NackFrag) sent from the local
DataReader to the remote DataWriter.

Parameter local_datareader_crypto_handle: A DatareaderCryptoHandle returned by a prior
call to register_local_datareader. If this argument is nil, the operation returns nil.

Parameter remote_participant_crypto: A ParticipantCryptoHandle returned by a prior call
to register_matched_remote_participant. It shall correspond to the
ParticipantCryptoHandle of the DomainParticipant to which the remote
DataWriter belongs. If this argument is nil, the operation returns nil.

Parameter shared_secret: The SharedSecretHandle returned by a prior call to
get_shared_secret as a result of the successful completion of the Authentication handshake
between the local and remote DomainParticipant entities.

Parameter exception: A SecurityException object, which provides details in case this operation
returns HandleNIL.

8.5.1.7.7 Operation: unregister_participant

Releases the resources, associated with a DomainParticipant that the Cryptographic plugin
maintains. After calling this function, the DDS Implementation shall not use the
participant_crypto_handle anymore.

The DDS Implementation shall call this function when it determines that there will be no further
communication with the DDS DomainParticipant associated with the
participant_crypto_handle. Specifically, it shall be called when the application deletes a
local DomainParticipant and also when the DDS Discovery mechanism detects that a matched
DomainParticipant is no longer in the system.

Parameter participant_crypto_handle: A ParticipantCryptoHandle returned by a prior call
to register_local_participant, or register_matched_remote_participant if
this argument is nil, the operation returns false.

Parameter exception: A SecurityException object, which provides details in case this operation
returns false.

108 DDS Security, v1.0

8.5.1.7.8 Operation: unregister_datawriter

Releases the resources, associated with a DataWriter that the Cryptographic plugin maintains. After
calling this function, the DDS Implementation shall not use the datawriter_crypto_handle
anymore.

The DDS Implementation shall call this function when it determines that there will be no further
communication with the DDS DataWriter associated with the datawriter_crypto_handle.
Specifically it shall be called when the application deletes a local DataWriter and also when the
DDS Discovery mechanism detects that a matched DataWriter is no longer in the system.

Parameter datawriter_crypto_handle: A ParticipantCryptoHandle returned by a prior call to
register_local_datawriter, or register_matched_remote_datawriter if this
argument is nil, the operation returns false.

Parameter exception: A SecurityException object, which provides details in case this operation
returns false.

8.5.1.7.9 Operation: unregister_datareader

Releases the resources, associated with a DataReader, that the Cryptographic plugin maintains.
After calling this function, the DDS Implementation shall not use the
datareader_crypto_handle anymore.

The DDS Implementation shall call this function when it determines that there will be no further
communication with the DDS DataReader associated with the datareader_crypto_handle.
Specifically it shall be called when the application deletes a local DataReader and also when the
DDS Discovery mechanism detects that a matched DataReader is no longer in the system.

Parameter datareader_crypto_handle: A ParticipantCryptoHandle returned by a prior call to
register_local_datareader, or register_matched_remote_datareader if this
argument is nil, the operation returns false.

Parameter exception: A SecurityException object, which provides details in case this operation
returns false.

8.5.1.8 CryptoKeyExchange Interface

The key exchange interface manages the creation of keys and assists in the secure distribution of keys
and key material.
Table 28 – CryptoKeyExchange Interface

CryptoKeyExchange

No Attributes

Operations

create_local_partici
pant_crypto_tokens

 Boolean

out:

local_participan
t_crypto_tokens

ParticipantCryptoTokenSeq

DDS Security, v1.0 109

local_participan
t_crypto

ParticipantCryptoHandle

remote_participa
nt_crypto

ParticipantCryptoHandle

out: exception SecurityException

set_remote_participa
nt_crypto_tokens

 Boolean

local_participan
t_crypto

ParticipantCryptoHandle

remote_participa
nt_crypto

ParticipantCryptoHandle

remote_participa
nt_tokens

ParticipantCryptoTokenSeq

out: exception SecurityException

create_local_datawri
ter_crypto_tokens

 Boolean

out:

local_datawriter
_crypto_tokens

DatawriterCryptoTokenSeq

local_datawriter
_crypto

DatawriterCryptoHandle

remote_datareade
r_crypto

DatareaderCryptoHandle

out: exception SecurityException

set_remote_datawrite
r_crypto_tokens

 Boolean

local_datareader
_crypto

DatareaderCryptoHandle

remote_datawrite
r_crypto

DatawriterCryptoHandle

remote_datawrite
r_tokens

DatawriterCryptoTokenSeq

out: exception SecurityException

create_local_datarea
der_crypto_tokens

 Boolean

out:

local_datareader
_crypto_tokens

DatareaderCryptoTokenSeq

local_datareader DatareaderCryptoHandle

110 DDS Security, v1.0

8.5.1.8.1 Operation: create_local_participant_crypto_tokens

This operation creates a sequence of CryptoToken tokens containing the information needed to
correctly interpret cipher text encoded using the local_participant_crypto. That is, the CryptoToken
sequence contains the information needed to decrypt any data encrypted using the
local_participant_crypto, as well as, verify any signatures produced using the
local_participant_crypto.

The returned CryptoToken sequence contains opaque data, which only the plugins understand. The
returned CryptoToken sequence is intended for transmission in “clear text” to the remote
DomainParticipant associated with the remote_participant_crypto so that the remote
DomainParticipant has access to the necessary key material. For this reason, the
CryptoKeyExchange plugin implementation may encrypt the sensitive information inside the
CryptoToken using shared secrets and keys obtained from the remote_participant_crypto. The
specific ways in which this is done depend on the plugin implementation.

The DDS middleware implementation shall call this operation for each remote
DomainParticipant that matches a local DomainParticipant. That is, remote participants
that have been successfully authenticated and granted access by the AccessControl plugin. The
returned ParticipantCryptoTokenSeq shall be sent to the remote DomainParticipant
using the BuiltinParticipantVolatileMessageSecureWriter with kind set to
GMCLASSID_SECURITY_PARTICIPANT_CRYPTO_TOKENS (see 7.4.3.5). The returned
ParticipantCryptoTokenSeq sequence shall appear in the message_data attribute of the
ParticipantVolatileSecureMessage (see 7.4.4).

Parameter local_participant_crypto_tokens (out): The returned
ParticipantCryptoTokenSeq.

_crypto

remote_datawrite
r_crypto

DatawriterCryptoHandle

out: exception SecurityException

set_remote_datareade
r_crypto_tokens

 Boolean

local_datawriter
_crypto

DatawriterCryptoHandle

remote_datareade
r_crypto

DatareaderCryptoHandle

remote_datareade
r_tokens

DatareaderCryptoTokenSeq

out: exception SecurityException

return_crypto_tokens Boolean

crypto_tokens CryptoTokenSeq

out: exception SecurityException

DDS Security, v1.0 111

Parameter local_participant_crypto: A ParticipantCryptoHandle, returned by a previous
call to register_local_participant, which corresponds to the DomainParticipant that
will be encrypting and signing messages.

Parameter remote_participant_crypto: A ParticipantCryptoHandle, returned by a previous
call to register_matched_remote_participant, that corresponds to the
DomainParticipant that will be receiving the messages from the local DomainParticipant
and will be decrypting them and verifying their signature.

Parameter exception: A SecurityException object, which provides details in case this operation
returns false.

8.5.1.8.2 Operation: set_remote_participant_crypto_tokens

This operation shall be called by the DDS implementation upon reception of a message on the
BuiltinParticipantVolatileMessageSecureReader with kind set to
GMCLASSID_SECURITY_PARTICIPANT_CRYPTO_TOKENS (see 7.4.3.5).

The operation configures the Cryptographic plugin with the key material necessary to interpret
messages encoded by the remote DomainParticipant associated with the
remote_participant_crypto and destined to the local DomainParticipant associated with the
local_participant_crypto. The interpretation of the CryptoToken sequence is specific to each
Cryptographic plugin implementation. The CryptoToken sequence may contain information
that is encrypted and/or signed. Typical implementations of the Cryptographic plugin will use the
previously configured shared secret associated with the local and remote
ParticipantCryptoHandle to decode the CryptoToken sequence and retrieve the key
material within.

Parameter remote_participant_crypto: A ParticipantCryptoHandle, returned by a previous
call to register_matched_remote_participant, that corresponds to the
DomainParticipant that will be sending the messages from the local DomainParticipant
and will be encrypting/signing them with the key material encoded in the CryptoToken sequence.

Parameter local_participant_crypto: A ParticipantCryptoHandle, returned by a previous
call to register_local_participant, that corresponds to the DomainParticipant that
will be receiving messages from the remote DomainParticipant and will need to decrypt and/or
verify their signature.

Parameter remote_participant_tokens: A ParticipantCryptoToken sequence received via
the BuiltinParticipantVolatileMessageSecureReader. The CryptoToken sequence shall correspond
to the one returned by a call to create_local_participant_crypto_tokens performed by
the remote DomainParticipant on the remote side.

Parameter exception: A SecurityException object, which provides details in case this operation
returns false.

8.5.1.8.3 Operation: create_local_datawriter_crypto_tokens

This operation creates a DatawriterCryptoTokenSeq containing the information needed to
correctly interpret cipher text encoded using the local_datawriter_crypto. That is, the

112 DDS Security, v1.0

CryptoToken sequence contains that information needed to decrypt any data encrypted using the
local_datawriter_crypto as well as verify any signatures produced using the local_datawriter_crypto.

The returned CryptoToken sequence contains opaque data, which only the plugins understand. The
returned CryptoToken sequence shall be sent to the remote DataReader associated with the
remote_datareader_crypto so that the remote DataReader has access to the necessary key
material.

The operation shall take into consideration the value of the relay_only parameter associated with the
DatawriterCryptoHandle (see 8.5.1.7.4) this parameter shall control whether the Tokens
returned contain all the cryptographic material needed to decode/verify both the RTPS SubMessage
and the SecuredPayload submessage element within or just part of it.

If the value of the relay_only parameter was FALSE, the Tokens returned contain all the cryptographic
material.

If the value of the relay_only parameter was TRUE, the Tokens returned contain only the
cryptographic material needed to verify and decode the RTPS SubMessage but not the SecuredPayload
submessage element within.

The DDS middleware implementation shall call this operation for each remote DataReader that
matches a local DataWriter. The returned CryptoToken sequence shall be sent by the DDS
middleware to the remote DataReader using the BuiltinParticipantVolatileMessageSecureWriter
with kind set to GMCLASSID_SECURITY_DATAWRITER_CRYPTO_TOKENS(see 7.4.3.5). The
returned DatawriterCryptoToken shall appear in the message_data attribute of the
ParticipantVolatileSecureMessage (see 7.4.4.2). The source_endpoint_key attribute shall be set to the
BuiltinTopicKey_t of the local DataWriter and the destination_endpoint_key attribute shall
be set to the BuiltinTopicKey_t of the remote DataReader.

Parameter local_datawriter_crypto_tokens: The returned DatawriterCryptoTokenSeq.

Parameter local_datawriter_crypto: A DatawriterCryptoHandle, returned by a previous call
to register_local_datawriter that corresponds to the DataWriter that will be encrypting
and signing messages.

Parameter remote_datareader_crypto: A DatareaderCryptoHandle, returned by a previous
call to register_matched_remote_datareader, that corresponds to the DataReader that
will be receiving the messages from the local DataWriter and will be decrypting them and
verifying their signature.

Parameter exception: A SecurityException object, which provides details in case this operation
returns false.

8.5.1.8.4 Operation: set_remote_datawriter_crypto_tokens

This operation shall be called by the DDS implementation upon reception of a message on the
BuiltinParticipantVolatileMessageSecureReader with kind set to
GMCLASSID_SECURITY_DATAWRITER_CRYPTO_TOKENS (see 7.4.3.5).

The operation configures the Cryptographic plugin with the key material necessary to interpret
messages encoded by the remote DataWriter associated with the
remote_datawriter_crypto and destined to the local DataReader associated with the

DDS Security, v1.0 113

local_datareader_crypto. The interpretation of the DatawriterCryptoTokenSeq
sequence is specific to each Cryptographic plugin implementation. The CryptoToken sequence
may contain information that is encrypted and/or signed. Typical implementations of the
Cryptographic plugin will use the previously configured shared secret associated with the remote
DatawriterCryptoHandle and local DatareaderCryptoHandle to decode the
CryptoToken sequence and retrieve the key material within.

Parameter remote_datawriter_crypto: A DatawriterCryptoHandle, returned by a previous
call to register_matched_remote_datawriter, that corresponds to the DataWriter that
will be sending the messages to the local DataReader and will be encrypting/signing them with the
key material encoded in the CryptoToken.

Parameter local_datareader_crypto: A DatareaderCryptoHandle, returned by a previous call
to register_local_datareader, that corresponds to the DataReader that will be receiving
messages from the remote DataWriter and will need to decrypt and/or verify their signature.

Parameter remote_datawriter_tokens: A CryptoToken sequence received via the
BuiltinParticipantVolatileMessageSecureReader. The DatawriterCryptoToken shall
correspond to the one returned by a call to create_local_datawriter_crypto_tokens
performed by the remote DataWriter on the remote side.

Parameter exception: A SecurityException object, which provides details in case this operation
returns false.

8.5.1.8.5 Operation: create_local_datareader_crypto_tokens

This operation creates a DatareaderCryptoTokenSeq containing the information needed to
correctly interpret cipher text encoded using the local_datareader_crypto. That is, the CryptoToken
sequence contains that information needed to decrypt any data encrypted using the
local_datareader_crypto as well as verify any signatures produced using the local_datareader_crypto.

The returned CryptoToken sequence contains opaque data, which only the plugins understand. The
returned CryptoToken sequence shall be sent to the remote DataWriter associated with the
remote_datawriter_crypto so that the remote DataWriter has access to the necessary key material.
For this reason, the CryptoKeyExchange plugin implementation may encrypt the sensitive
information inside the CryptoToken sequence using shared secrets and keys obtained from the
remote_datawriter_crypto. The specific ways in which this is done depend on the plugin
implementation.

The DDS middleware implementation shall call this operation for each remote DataWriter that
matches a local DataReader. The returned DatareaderCryptoTokenSeq shall be sent by the
DDS middleware to the remote DataWriter using the
BuiltinParticipantVolatileMessageSecureWriter with kind set to
GMCLASSID_SECURITY_DATAREADER_CRYPTO_TOKENS(see 7.4.4.2). The returned
DatareaderCryptoTokenSeq shall appear in the message_data attribute of the
ParticipantVolatileSecureMessage (see 7.4.4.2). The source_endpoint_key attribute shall
be set to the BuiltinTopicKey_t of the local DataReader and the destination_endpoint_key
attribute shall be set to the BuiltinTopicKey_t of the remote DataWriter.

Parameter local_datareader_crypto_tokens (out): The returned DatareaderCryptoTokenSeq.

114 DDS Security, v1.0

Parameter local_datareader_crypto: A DatareaderCryptoHandle, returned by a previous call
to register_local_datareader, that corresponds to the DataReader that will be encrypting
and signing messages.

Parameter remote_datawriter_crypto: A DatawriterCryptoHandle, returned by a previous
call to register_matched_remote_datawriter, that corresponds to the DataWriter that
will be receiving the messages from the local DataReader and will be decrypting them and
verifying their signature.

Parameter exception: A SecurityException object, which provides details in case this operation
returns false.

8.5.1.8.6 Operation: set_remote_datareader_crypto_tokens

This operation shall be called by the DDS implementation upon reception of a message on the
BuiltinParticipantVolatileMessageSecureReader with kind set to
GMCLASSID_SECURITY_DATAREADER_CRYPTO_TOKENS(see 7.4.4.2).

The operation configures the Cryptographic plugin with the key material necessary to interpret
messages encoded by the remote DataReader associated with the remote_datareader_crypto and
destined to the local DataWriter associated with the local_datawriter_crypto. The interpretation of
the DatareaderCryptoTokenSeq is specific to each Cryptographic plugin implementation.
The CryptoToken sequence may contain information that is encrypted and/or signed. Typical
implementations of the Cryptographic plugin will use the previously configured shared secret
associated with the remote DatareaderCryptoHandle and local
DatawriterCryptoHandle to decode the CryptoToken sequence and retrieve the key material
within.

Parameter remote_datareader_crypto: A DatareaderCryptoHandle, returned by a previous
call to register_matched_remote_datareader, that corresponds to the DataReader that
will be sending the messages to the local DataWriter and will be encrypting/signing them with the
key material encoded in the CryptoToken sequence.

Parameter local_datawriter_crypto: A DatawriterCryptoHandle returned by a previous call
to register_local_datawriter, that corresponds to the DataWriter that will be receiving
messages from the remote DataReader and will need to decrypt and/or verify their signature.

Parameter remote_datareader_tokens: A CryptoToken sequence received via the
BuiltinParticipantVolatileMessageSecureReader. The DatareaderCryptoToken shall
correspond to the one returned by a call to create_local_datareader_crypto_tokens
performed by the remote DataReader on the remote side.

Parameter exception: A SecurityException object, which provides details in case this operation
returns false.

8.5.1.8.7 Operation: return_crypto_tokens

Returns the tokens in the CryptoToken sequence to the plugin so the plugin can release any
information associated with it.

Parameter crypto_tokens: Contains CryptoToken objects issued by the plugin on a prior call to
one of the following operations:

DDS Security, v1.0 115

• create_local_participant_crypto_tokens
• create_local_datawriter_crypto_tokens
• create_local_datareader_crypto_tokens

Parameter exception: A SecurityException object, which provides details in case this operation
returns false.

8.5.1.9 CryptoTransform interface

This interface groups the operations related to encrypting/decrypting, as well as, computing and
verifying both message digests (hashes) and Message Authentication Codes (MAC).

MACs may be used to verify both the (data) integrity and the authenticity of a message. The
computation of a MAC (also known as a keyed cryptographic hash function), takes as input a secret
key and an arbitrary-length message to be authenticated, and outputs a MAC. The MAC value protects
both a message's data integrity, as well as, its authenticity by allowing verifiers (who also possess the
secret key) to detect any changes to the message content.

A Hash-based Message Authentication Code (HMAC) is a specialized way to compute MACs. While
an implementation of the plugin is not forced to use HMAC, and could use other MAC algorithms, the
API is chosen such that plugins can implement HMAC if they so choose.

The operations in the CryptoTransform Plugin are defined to be quite generic, taking an input
byte array to transform and producing the transformed array of bytes as an output. The DDS
implementation is only responsible for calling the operations in the CryptoTransform plugin at the
appropriate times as it generates and processes the RTPS messages, substitutes the input bytes with the
transformed bytes produced by the CryptoTransform operations, and proceeds to generate/send or
process the RTPS message as normal but with the replaced bytes. The decision of the kind of
transformation to perform (encrypt and/or produce a digest and/or a MAC and/or signature) is left to
the plugin implementation.
Table 29 – CryptoTransform interface

CryptoTransform
No Attributes

Operations

encode_serialized_pa
yload

 Boolean

out:
encoded_buffer

octet[]

out:

extra_inline_qos

octet[]

plain_buffer octet[]

sending_datawrit
er_crypto

DatawriterCryptoHandle

out: exception SecurityException

116 DDS Security, v1.0

encode_datawriter_su
bmessage

 Boolean

out:
encoded_rtps_sub
message

octet[]

plain_rtps_subme
ssage

octet[]

sending_datawrit
er_crypto

DatawriterCryptoHandle

receiving_datare
ader_crypto_list

DatareaderCryptoHandle[]

out: exception SecurityException

encode_datareader_su
bmessage

 Boolean

out:
encoded_rtps_sub
message

octet[]

plain_rtps_subme
ssage

octet[]

sending_dataread
er_crypto

DatareaderCryptoHandle

receiving_datawr
iter_crypto_list

DatawriterCryptoHandle[]

out: exception SecurityException

encode_rtps_message

 Boolean

out:
encoded_rtps_mes
sage

octet[]

plain_rtps_messa
ge

octet[]

sending_crypto ParticipantCryptoHandle

receiving_crypto
_list

ParticipantCryptoHandle[]

out: exception SecurityException

decode_rtps_message Boolean

out:
plain_buffer

octet[]

encoded_buffer octet[]

DDS Security, v1.0 117

receiving_crypto ParticipantCryptoHandle

sending_crypto ParticipantCryptoHandle

out: exception SecurityException

preprocess_secure_su
bmsg

 Boolean

out:

datawriter_crypt
o

DatawriterCryptoHandle

out:

datareader_crypt
o

DatareaderCryptoHandle

out:
secure_submessag
e_category

DDS_SecureSumessageCatego
ry_t

in:
encoded_rtps_sub
message

octet[]

receiving_crypto ParticipantCryptoHandle

sending_crypto ParticipantCryptoHandle

out: exception SecurityException

decode_datawriter_su
bmessage

 Boolean

out:
plain_rtps_subme
ssage

octet[]

encoded_rtps_sub
message

octet[]

receiving_datare
ader_crypto

DatareaderCryptoHandle

sending_datawrit
er_crypto

DatawriterCryptoHandle

out: exception SecurityException

decode_datareader_su
bmessage

 Boolean

out:
plain_rtps_subme
ssage

octet[]

encoded_rtps_sub
message

octet[]

118 DDS Security, v1.0

8.5.1.9.1 Operation: encode_serialized_payload

This operation shall be called by the DDS implementation as a result of the application calling the
write operation on the DataWriter associated with the DatawriterCryptoHandle specified in the
sending_datawriter_crypto parameter.

The operation receives the data written by the DataWriter in serialized form wrapped inside the
RTPS SerializedPayload submessage element and shall output an RTPS SecuredPayload
submessage element and a extra_inline_qos containing InlineQos formatted as a ParameterList,
see section 7.3.1.

If the returned extra_inline_qos is not empty, the parameters contained shall be added to the list of
inlineQos parameters present in the (Data or DataFrag) submessage. If the (Data or DataFrag)
submessage did not already have an inlineQos, then the inlineQos submessage element shall be added
and the submessage flags modified accordingly.

The DDS implementation shall call this operation for all outgoing RTPS Submessages with
submessage kind Data and DataFrag. The DDS implementation shall substitute the
SerializedPayload submessage element within the aforementioned RTPS submessages with the
SecuredPayload produced by this operation.

The implementation of encode_serialized_payload can perform any desired cryptographic
transformation of the SerializedPayload using the key material in the
sending_datawriter_crypto, including encryption, addition of a MAC, and/or signature. The
encode_serialized_payload shall include in the extra_inline_qos or the SecuredPayload
the CryptoTransformIdentifier and the additional information needed to identify the key
used and decode the SecuredPayload submessage element.

receiving_datawr
iter_crypto

DatawriterCryptoHandle

sending_dataread
er_crypto

DatareaderCryptoHandle

out: exception SecurityException

decode_serialized_pa
yload

 Boolean

out:
plain_buffer

octet[]

encoded_buffer octet[]

inline_qos octet[]

receiving_datare
ader_crypto

DatareaderCryptoHandle

sending_datawrit
er_crypto

DatawriterCryptoHandle

out: exception SecurityException

DDS Security, v1.0 119

Figure 12 – Effect of encode_serialized_payload within an RTPS message

If an error occurs, this method shall return false.

Parameter encoded_buffer: The output containing the SecuredPayload RTPS submessage element,
which shall be used to replace the input plain_buffer.

Parameter extra_inline_qos: The output containing additional parameters to be added to the inlineQos
ParamaterList in the submessage.

Parameter plain_buffer: The input containing the SerializedPayload RTPS submessage
element.

Parameter sending_datawriter_crypto: The DatawriterCryptoHandle returned by a previous
call to register_local_datawriter for the DataWriter that wrote the
SerializedPayload.

Parameter exception: A SecurityException object, which provides details in case this operation
returns false.

8.5.1.9.2 Operation: encode_datawriter_submessage

This operation shall be called by the DDS implementation whenever it has constructed an RTPS
submessage of kind Data, DataFrag, Gap, Heartbeat, or HeartbeatFrag.

The operation receives the DatawriterCryptoHandle of the DataWriter that is sending the
submessage, as well as, a list of DatareaderCryptoHandle corresponding to all the
DataReader entities to which the submessage is being sent.

The operation receives the complete RTPS submessage as it would normally go onto the wire in the
parameter rtps_submessage and shall output one or more RTPS Submessages in the output
parameter encoded_rtps_submessage. The DDS implementation shall substitute the original RTPS
submessage that was passed in the rtps_submessage with the RTPS Submessages returned in the

120 DDS Security, v1.0

encoded_rtps_submessage output parameter in the construction of the RTPS message that is
eventually sent to the intended recipients.

The implementation of encode_datawriter_submessage can perform any desired
cryptographic transformation of the RTPS Submessage using the key material in the
sending_datawriter_crypto; it can also add one or more MACs and/or signatures. The fact that the
cryptographic material associated with the list of intended DataReader entities is passed in the
parameter receiving_datareader_crypto_list allows the plugin implementation to include MACs that
may be computed differently for each DataReader.

The implementation of encode_datawriter_submessage shall include, within the RTPS
Submessages, the CryptoTransformIdentifier containing any additional information
necessary for the receiving plugin to identify the DatawriterCryptoHandle associated with the
DataWriter that sent the message, as well as, the DatareaderCryptoHandle associated with the
DataReader that is meant to process the submessage. How this is done depends on the plugin
implementation.

A typical implementation of encode_datawriter_submessage may output a
SecurePrefixSubMsg followed by a SecureBodySubMsg, followed by a
SecurePostfixSubMsg.

If an error occurs, this method shall return false.

Figure 13 – Effect of encode_datawriter_submessage within an RTPS message

Parameter encoded_rtps_submessage: The output containing one or more RTPS submessages, which
shall be used to replace the input rtps_submessage.

Parameter plain_rtps_submessage: The input containing the RTPS submessage created by a
DataWriter. This submessage will be one of following kinds: Data, DataFrag, Gap, Heartbeat,
and HeartbeatFrag.

Parameter sending_datawriter_crypto: The DatawriterCryptoHandle returned by a previous
call to register_local_datawriter for the DataWriter whose GUID is inside the rtps_submessage.

Parameter receiving_datareader_crypto_list: The list of DatareaderCryptoHandle returned by
previous calls to register_matched_remote_datareader for the DataReader entities to
which the submessage will be sent.

DDS Security, v1.0 121

Parameter exception: A SecurityException object, which provides details in case this operation
returns false.

8.5.1.9.3 Operation: encode_datareader_submessage

This operation shall be called by the DDS implementation whenever it has constructed an RTPS
submessage of kind AckNack or NackFrag.

The operation receives the DatareaderCryptoHandle of the DataReader that is sending the
submessage, as well as, a list of DatawriterCryptoHandle corresponding to all the DataWriter
entities to which the submessage is being sent.

The operation receives the complete RTPS submessage as it would normally go onto the wire in the
parameter rtps_submessage and shall output one or more RTPS Submessages in the output
parameter encoded_rtps_submessage. The DDS implementation shall substitute the original RTPS
submessage that was passed in the rtps_submessage with the Submessages returned in the
encoded_rtps_submessage output parameter in the construction of the RTPS message that is
eventually sent to the intended recipients.

The implementation of encode_datareader_submessage can perform any desired
cryptographic transformation of the RTPS Submessage using the key material in the
sending_datareader_crypto, it can also add one or more MACs, and/or signatures. The fact
that the cryptographic material associated with the list of intended DataWriter entities is passed in
the parameter receiving_datawriter_crypto_list allows the plugin implementation to
include one of MAC that may be computed differently for each DataWriter.

The implementation of encode_datareader_submessage shall include within the
encoded_rtps_submessage the CryptoTransformIdentifier containing any additional
information necessary for the receiving plugin to identify the DatareaderCryptoHandle
associated with the DataReader that sent the message as well as the DatawriterCryptoHandle
associated with the DataWriter that is meant to process the submessage. How this is done depends on
the plugin implementation.

A typical implementation of encode_datareader_submessage may output a
SecurePrefixSubMsg followed by a SecureBodySubMsg, followed by a
SecurePostfixSubMsg.

If an error occurs, this method shall return false.

122 DDS Security, v1.0

Figure 14 – Effect of encode_datareader_submessage within an RTPS message

Parameter encoded_rtps_submessage: The output containing one or more RTPS submessages, which
shall be used to replace the input rtps_submessage.

Parameter plain_rtps_submessage: The input containing the RTPS submessage created by a
DataReader. This submessage will be one of following kinds: AckNack, NackFrag.

Parameter sending_datareader_crypto: The DatareaderCryptoHandle returned by a previous
call to register_local_datareader for the DataReader whose GUID is inside the rtps_submessage.

Parameter receiving_datawriter_crypto_list: The list of DatawriterCryptoHandle returned by
previous calls to register_matched_remote_datawriter for the DataWriter entities to
which the submessage will be sent.

Parameter exception: A SecurityException object, which provides details in case this operation
returns false.

8.5.1.9.4 Operation: encode_rtps_message

This operation shall be called by the DDS implementation whenever it has constructed an RTPS
message prior to sending it on the wire.

The operation receives the ParticipantCryptoHandle of the DomainParticipant that is sending
the submessage, as well as, a list of ParticipantCryptoHandle corresponding to all the
DomainParticipant entities to which the submessage is being sent.

The operation receives the complete RTPS message as it would normally go onto the wire in the
parameter plain_rtps_message and shall also output an RTPS message in the output parameter
encoded_rtps_message. The DDS implementation shall substitute the original RTPS message that was
passed in the plain_rtps_message with the encoded_rtps_message returned by this operation and
proceed to send it to the intended recipients.

This operation may optionally not perform any transformation of the input RTPS message. In this case,
the operation shall return false but not set the exception object. In this situation the DDS
implementation shall send the original RTPS message.

The implementation of encode_rtps_message may perform any desired cryptographic
transformation of the whole RTPS Message using the key material in the
sending_participant_crypto, it can also add one or more MACs, and/or signatures. The fact
that the cryptographic material associated with the list of intended DataWriter entities is passed in the
parameter receiving_participant_crypto_list allows the plugin implementation to
include one of MAC that may be computed differently for each destination DomainParticipant.

The implementation of encode_rtps_message shall include within the encoded_rtps_message
the CryptoTransformIdentifier containing any additional information beyond the one shared
via the CryptoToken that would be needed to identify the key used and decode the
encoded_rtps_message back into the original RTPS message.

A typical implementation of encode_rtps_message to provide authentication only may output
the RTPS Header followed by a SecureRTPSPrefixSubMsg followed by a
InfoSourceSubMsg (containing the information in the original RTPS Header so it can be

DDS Security, v1.0 123

authenticated), followed by the submessages included in the input plain_rtps_message, followed by a
SecureRTPSPostfixSubMsg.

If an error occurs, this method shall return false and set the exception object.

Figure 15 – Possible effect of encode_rtps within an RTPS message

Parameter encoded_rtps_message: The output containing the encoded RTPS message.

Parameter plain_rtps_message: The input containing the RTPS messages the DDS implementation
intended to send.

Parameter sending_participant_crypto: The ParticipantCryptoHandle returned by a
previous call to register_local_participant for the DomainParticipant whose GUID is inside the RTPS
Header.

Parameter receiving_participant_crypto_list: The list of ParticipantCryptoHandle returned
by previous calls to register_matched_remote_participant for the DomainParticipant
entities to which the message will be sent.

Parameter exception: A SecurityException object, which provides details in case this operation
returns false.

8.5.1.9.5 Operation: decode_rtps_message

This operation shall be called by the DDS implementation whenever it receives an RTPS message prior
to parsing it.

This operation shall reverse the transformation performed by the encode_rtps_message
operation, decrypting the content if appropriate and verifying any MACs or digital signatures that were
produced by the encode_rtps_message operation.

If an error occurs, this method shall return an exception.

124 DDS Security, v1.0

Figure 16 – Possible effect of decode_rtps within an RTPS message

Parameter plain_rtps_message: The output containing the decoded RTPS message. The output
message shall contain the original RTPS message.

Parameter encoded_rtps_message: The input containing the encoded RTPS message the DDS
implementation received.

Parameter receiving_participant_crypto: The ParticipantCryptoHandle returned by previous
calls to register_local_participant for the DomainParticipant entity that received
the RTPS message.

Parameter sending_participant_crypto: The ParticipantCryptoHandle returned by a
previous call to register_matched_remote_participant for the DomainParticipant
that sent the RTPS message whose GUID is inside the RTPS Header.

Parameter exception: A SecurityException object, which provides details in case this operation
returns false.

8.5.1.9.6 Operation: preprocess_secure_submsg

This operation shall be called by the DDS implementation as a result of a DomainParticipant
receiving an RTPS SecureSubMsg with the MultiSubmsgFlag (see 7.3.6.2) set to false.

The purpose of the operation is to determine whether the secure submessage was produced as a result
of a call to encode_datawriter_submessage or a call to
encode_datareader_submessage, and retrieve the appropriate
DatawriterCryptoHandle and DatareaderCryptoHandle needed to decode the
submessage.

If the operation returns successfully, the DDS implementation shall call the appropriate decode
operation based on the returned SecureSubmessageCategory_t:

DDS Security, v1.0 125

• If the returned SecureSubmessageCategory_t equals DATAWRITER_SUBMESSAGE,
then the DDS Implementation shall call decode_datawriter_submessage.

• If the returned SecureSubmessageCategory_t equals DATAREADER_SUBMESSAGE,
then the DDS Implementation shall call decode_datareader_submessage.

• If the returned SecureSubmessageCategory_t equals INFO_SUBMESSAGE, then the DDS
Implementation proceeds normally to process the submessage without further decoding.

Parameter secure_submessage_category: Output SecureSubmessageCategory_t. It shall be
set to DATAWRITER_SUBMESSAGE if the SecureSubMsg was created by a call to
encode_datawriter_submessage or set to DATAREADER_SUBMESSAGE if the
SecureSubMsg was created by a call to encode_datareader_submessage. If none of these
conditions apply, the operation shall return false.

Parameter datawriter_crypto: Output DatawriterCryptoHandle. The setting depends on the
returned value of secure_submessage_category:

• If secure_submessage_category is DATAWRITER_SUBMESSAGE, the
datawriter_crypto shall be the DatawriterCryptoHandle returned by a previous call
to register_matched_remote_datawriter for the DataWriter that wrote the RTPS
Submessage.

• If secure_submessage_category is DATAREADER_SUBMESSAGE, the
datawriter_crypto shall be the DatawriterCryptoHandle returned by a previous call
to register_local_datawriter for the DataWriter that is also the destination of the RTPS
Submessage.

Parameter datareader_crypto: Output DatareaderCryptoHandle. The setting depends on the
returned value of secure_submessage_category:

• If secure_submessage_category is DATAWRITER_SUBMESSAGE, the
datareader_crypto shall be the DatareaderCryptoHandle returned by a previous call
to register_local_datareader for the DataReader that is the destination of the RTPS
Submessage.

• If secure_submessage_category is DATAREADER_SUBMESSAGE, the
datareader_crypto shall be the DatareaderCryptoHandle returned by a previous call
to register_matched_remote_datareader for the DataReader that wrote the RTPS
Submessage.

Parameter encoded_rtps_message: The input containing the received RTPS message.

Parameter receiving_participant_crypto: The ParticipantCryptoHandle returned by previous
calls to register_local_participant for the DomainParticipant that received the RTPS
message.

Parameter sending_participant_crypto: The ParticipantCryptoHandle returned by a
previous call to register_matched_remote_participant for the DomainParticipant whose
GUID is inside the RTPS Header.

Parameter exception: A SecurityException object, which provides details in case this operation
returns false.

126 DDS Security, v1.0

8.5.1.9.7 Operation: decode_datawriter_submessage

This operation shall be called by the DDS implementation as a result of receiving a SecureSubMsg
with the MultiSubmsgFlag set to false whenever the preceding call to
preprocess_secure_submessage identified the SecureSubmessageCategory_t as
DATAWRITER_SUBMESSAGE.

This operation shall reverse the transformation performed by the
encode_datawriter_submessage operation, decrypting the content if appropriate and
verifying any MACs or digital signatures that were produced by the
encode_datawriter_submessage operation.

The DDS implementation shall substitute the RTPS SecureSubMsg submessage within the received
submessages with the RTPS Submessage produced by this operation.

If an error occurs, this method shall return false.

Figure 17 – Effect of decode_datawriter_submessage within an RTPS message

Parameter plain_rtps_submessage: The output containing the RTPS submessage created by a
DataWriter. This submessage will be one of following kinds: Data, DataFrag, Gap, Heartbeat,
and HeartbeatFrag.

Parameter encoded_rtps_submessage: The input containing the RTPS SecureSubMsg submessage,
which was created by a call to encode_datawriter_submessage.

Parameter receiving_datareader_crypto: The DatareaderCryptoHandle returned by the
preceding call to preprocess_secure_submessage performed on the received
SecureSubMsg. It shall contain the DatareaderCryptoHandle corresponding to the
DataReader that is receiving the RTPS Submessage.

Parameter sending_datawriter_crypto: The DatawriterCryptoHandle returned by the
preceding call to preprocess_secure_submsg performed on the received SecureSubMsg. It
shall contain the DatawriterCryptoHandle corresponding to the DataWriter that is sending the
RTPS Submessage.

Parameter exception: A SecurityException object, which provides details in case this
operation returns false.

DDS Security, v1.0 127

8.5.1.9.8 Operation: decode_datareader_submessage

This operation shall be called by the DDS implementation as a result of receiving a SecureSubMsg
with the MultiSubmsgFlag set to false whenever the preceding call to
preprocess_secure_submessage identified the SecureSubmessageCategory_t as
DATAREADER_SUBMESSAGE.

This operation shall reverse the transformation performed by the
encode_datareader_submessage operation, decrypting the content if appropriate and
verifying any MACs or digital signatures that were produced by the
encode_datareader_submessage operation.

The DDS implementation shall substitute the RTPS SecureSubMsg submessage within the received
submessages with the RTPS Submessage produced by this operation.

If an error occurs, this method shall return false.

Figure 18 – Effect of decode_datawriter_submessage within an RTPS message

Parameter plain_rtps_submessage: The output containing the RTPS submessage created by a
DataReader. This submessage will be one of following kinds: AckNack, NackFrag.

Parameter encoded_rtps_submessage: The input containing the RTPS SecureSubMsg submessage,
which was created by a call to encode_datareader_submessage.

Parameter receiving_datawriter_crypto: The DatawriterCryptoHandle returned by the
preceding call to preprocess_secure_subessage performed on the received
SecureSubMsg. It shall contain the DatawriterCryptoHandle corresponding to the
DataWriter that is receiving the RTPS Submessage.

Parameter sending_datareader_crypto: The DatareaderCryptoHandle returned by the
preceding call to preprocess_secure_submessage performed on the received
SecureSubMsg. It shall contain the DatareaderCryptoHandle corresponding to the
DataReader that is sending the RTPS Submessage.

8.5.1.9.9 Operation: decode_serialized_payload

This operation shall be called by the DDS implementation as a result of a DataReader receiving a
Data or DataFrag submessage containing a SecuredPayload RTPS submessage element
(instead of the normal SerializedPayload).

128 DDS Security, v1.0

The operation shall receive in the inline_qos parameter the InlineQos RTPS SubmessageElement
that appeared in the RTPS Data submessage that carried the SerializedPayload.

The DDS implementation shall substitute the SecuredPayload submessage element within the
received submessages with the SerializedPayload produced by this operation.

The implementation of decode_serialized_payload shall undo the cryptographic
transformation of the SerializedPayload that was performed by the corresponding call to
encode_serialized_payload on the DataWriter side. The DDS implementation shall use the
available information on the remote DataWriter that wrote the message and the receiving DataReader
to locate the corresponding DatawriterCryptoHandle and DatareaderCryptoHandle and
pass them as parameters to the operation. In addition, it shall use the
CryptoTransformIdentifier present in the SecuredPayload to verify that the correct key
us available and obtain any additional data needed to decode the SecuredPayload.

Figure 19 – Effect of decode_serialized_payload within an RTPS message

If an error occurs, this method shall return false.

Parameter plain_buffer: The output containing the SerializedPayload RTPS submessage
element, which shall be used to replace the input plain_buffer.

Parameter encoded_buffer: The input containing the SecuredPayload RTPS submessage element.

Parameter receiving_reader_crypto: The DatareaderCryptoHandle returned by a previous call
to register_local_datareader for the DataReader that received the Submessage
containing the SecuredPayload.

Parameter sending_datawriter_crypto: The DatawriterCryptoHandle returned by a previous
call to register_matched_remote_datawriter for the DataWriter that wrote the
SecuredPayload.

Parameter exception: A SecurityException object, which provides details in case this operation
returns false.

DDS Security, v1.0 129

8.6 The Logging Plugin
The Logging Control Plugin API defines the types and operations necessary to support logging of
security events for a DDS DomainParticipant.

8.6.1 Background (Non-Normative)

The Logging plugin provides the capability to log all security events, including expected behavior
and all security violations or errors. The goal is to create security logs that can be used to support
audits. The rest of the security plugins will use the logging API to log events.

The Logging plugin will add an ID to the log message that uniquely specifies the
DomainParticipant. It will also add a time-stamp to each log message.

The Logging API has two options for collecting log data. The first is to log all events to a local file
for collection and storage. The second is to distribute log events securely over DDS.

8.6.2 Logging Plugin Model

The logging model is shown in the figure below.

Figure 20 – Logging Plugin Model

class Logging

SecurityPlugin

«interface»
Logging

+ enable_logging(): void
+ log(): void
+ set_log_options(): boolean

«primitive»
LogOptions

«interface»
LoggerListener

+ log_message(): int

BuiltinLoggingType

- facil ity: string
- severity: int
- timestamp: Time_t
- hostname: byte
- hostip: string
- procname: string
- procid: int
- msgid: int
- message: string
- structured_data: map<string, NameValuePair>

NameValuePair

- name: string
- value: string

130 DDS Security, v1.0

8.6.2.1 LogOptions

The LogOptions let the user control the log level and where to log. The options must be set before
logging starts and may not be changed at run-time after logging has commenced. This is to ensure that
an attacker cannot temporarily suspend logging while they violate security rules, and then start it up
again.

The options specify if the messages should be logged to a file and, if so, the file name. The
LogOptions also specify whether the log messages should be distributed to remote services or only
kept locally.
Table 30 – LogOptions values

LogOptions

Attributes

log_level Long

log_file String

distribute Boolean

8.6.2.1.1 Attribute: log_level

Specifies what level of log messages will be logged. Messages at or below the log_level are logged.
The levels are as follows, from low to high:

• FATAL_LEVEL – security error causing a shutdown or failure of the Domain Participant

• SEVERE_LEVEL – major security error or fault

• ERROR_LEVEL – minor security error or fault

• WARNING_LEVEL – undesirable or unexpected behavior

• NOTICE_LEVEL – important security event

• INFO_LEVEL – interesting security event

• DEBUG_LEVEL – detailed information on the flow of the security events

• TRACE_LEVEL – even more detailed information

8.6.2.1.2 Attribute: log_file

Specifies the full path to a local file for logging events. If the file already exists, the logger will append
log messages to the file. If it is NULL, then the logger will not log messages to a file.

8.6.2.1.3 Attribute: distribute

Specifies whether the log events should be distributed over DDS. If it is TRUE, each log message at or
above the log_level is published as a DDS Topic.

DDS Security, v1.0 131

8.6.2.2 Logging
Table 31 – Logging Interface

8.6.2.2.1 Operation: set_log_options

Sets the options for the logger. This must be called before enable_logging; it is an error to set the
options after logging has been enabled.

If the options are not successfully set, then the method shall return false.

Parameter options: the LogOptions object with the required options.

Parameter exception: A SecurityException object, which provides details in case this operation
returns false.

8.6.2.2.2 Operation: log

Log a message. The logger shall log the message if its log_level is at or above the level set in the
LogOptions. The Logger shall add to the message the RTPS GUID of the DomainParticipant
whose operations are being logged.

The Logger shall populate the facility, severity, and timestamp, fields. The Logger may populate
the hostname, hostip, appname, procid fields as appropriate. The Logger shall add an entry to the
structured_data field with the key “DDS.” This NameValuePair sequence shall include the
following name-value pairs:

Logging
No Attributes

Operations

set_log_options Boolean

options LogOptions

out: exception SecurityException

log void

log_level long

message String

category String

out:exception SecurityException

enable_logging void

out: exception SecurityException

set_listener Boolean

 listener LoggerListener

 out: exception SecurityException

132 DDS Security, v1.0

Table 32 – Logger structured_data entries

Name Value

guid RTPS GUID of the DDS entity that triggered the log message

domain_id Domain Id of the DomainParticipant that triggered the log
message

plugin_class Identifier of the type of security plugin: Authentication,
AccessControl, Cryptographic, etc.

plugin_method Security plugin method name that triggered the log
message

The Logger may add more entries as appropriate for the error condition.

Parameter log_level: The level of the log message. It must correspond to one of the levels defined in
8.6.2.1.1.

Parameter message: The log message.

Parameter category: A category for the log message. This can be used to specify which security
plugin generated the message.

Parameter exception: A SecurityException object that will return an exception if there is an
error with logging.

8.6.2.2.3 Operation: enable_logging

Enables logging. After this method is called, any call to log shall log the messages according to the
options. After this method is called, the options may not be modified. This is to ensure that the logger
cannot be temporarily suspended to cover up an attack.

If the options are not successfully set, then the method shall return false.

Parameter options: the LogOptions object with the required options.

Parameter exception: A SecurityException object, which provides details in case this operation
returns false.

8.6.2.2.4 Operation: set_listener

Sets the LoggerListener that the Logger plugin will use to notify the application of log events.
If an error occurs, this method shall return false and fill the SecurityException.

Parameter listener: A LoggerListener object to be attached to the Logger object. If this
argument is NIL, it indicates that there shall be no listener.

Parameter exception: A SecurityException object, which provides details in case the operation
returns FALSE.

DDS Security, v1.0 133

8.7 Data Tagging
Data tagging is the ability to add a security label or tag to data. This is often used to specify a
classification level of the data including information about its releasability. In a DDS context, it could
have several uses:

• It can be used for access control – access control would be granted based on the tag.

• It could be used for message prioritization.

• It could not be used by the middleware, and instead used by the application or other service.

8.7.1 Background (Non-Normative)

There are four different approaches to data tagging:

1. DataWriter tagging: data received from a certain DataWriter has the tag of the
DataWriter. This solution does not require the tag to be added to each individual sample.

2. Data instance tagging: each instance of the data has a tag. This solution does not require the tag to
be added to each individual sample.

3. Individual sample tagging: every DDS sample has its own tag attached.
4. Per-field sample tagging: very complex management of the tags.

This specification supports DataWriter tagging. This was considered the best choice as it meets the
majority of uses cases. It fits into the DDS paradigm, as the metadata for all samples from a
DataWriter is the same. It is also the highest performance, as the tag only needs to be exchanged
once when the DataWriter is discovered, not sent with each sample.

This approach directly supports typical use cases where each application or DomainParticipant
writes data on a Topic with a common set of tags (e.g., all at the same specified security level). For
use cases where an application creates data at different classifications, that application can create
multiple DataWriters with different tags.

8.7.2 DataTagging Model

The DataWriter tag will be associated with every sample written by the DataWriter. The
DataWriter DataTag is implemented as an immutable DataWriterQos. The DataWriter
DataTag shall be propagated via in the PublicationBuiltinTopicData as part of the DDS
discovery protocol.

The DataReader DataTag is implemented as an immutable DataReaderQos. The DataReader
DataTag shall be propagated via in the SubscriptionBuiltinTopicData as part of the DDS
discovery protocol.

8.7.3 DataTagging Types

The following data types are used for the DataTag included as part of both DataReader and DataWriter
Qos.

typedef DataTags DataTagQosPolicy;

134 DDS Security, v1.0

8.8 Security Plugins Behavior
In the previous sub clauses, the functionality and APIs of each plugin have been described. This sub
clause provides additional information on how the plugins are integrated with the middleware.

8.8.1 Authentication and AccessControl behavior with local DomainParticipant

The figure below illustrates the functionality of the security plugins with regards to a local
DomainParticipant.

In this sub clause the term “DDS application” refers to the application code that calls the DDS API.
The term “DDS middleware” refers to a DDS Implementation that complies with the DDS Security
specification.

Figure 21 – Authentication and AccessControl sequence diagram with local DomainParticipant

This behavior sequence is triggered when the DDS application initiates the creation of a local
DomainParticipant by calling the create_participant operation on the
DomainParticipantFactory. The following are mandatory steps that the DDS middleware
shall perform prior to creating the DomainParticipant. The steps need not occur exactly as
described as long as the observable behavior matches the one described below.

The DDS middleware shall validate the identity of the application attempting to create the
DomainParticipant by calling the Authentication::validate_local_identity

sd DDS::Security-Participant

Authentication

DDS-DiscoveryDDSApplication

Participant AccessControl

«create»
validate_local_identity() :ValidationResult_t

validate_local_permissions() :PermissionsHandle

check_create_participant() :Boolean

get_identity_token() :Boolean

get_permissions_token() :Boolean

get_permissions_credential_token() :Boolean

set_permissions_credential_and_token() :Boolean

get_participant_sec_attributes() :Boolean

configure(IdentityToken, PermissionsToken)

DDS Security, v1.0 135

operation, passing the domain_id, the DomainParticipantQos, and a
candidate_participant_key. The Authentication plugin validates the identity of the local
DomainParticipant and returns an IdentityHandle for the holder of the identity
(DomainParticipant), which will be necessary for interacting with the access control plugin. The
validate_local_identity operation also returns an adjusted_participant_key. If the identity is
not successfully validated, the DDS middleware shall not create the DomainParticipant and the
create_participant operation shall return NIL and set the return code to
NOT_ALLOWED_BY_SEC.

1. The DDS middleware shall validate that the DDS application has the necessary permissions
to join DDS domains by calling the
AccessControl::validate_local_permissions operation. The Access
Control plugin shall validate the permissions and issue a signed PermissionsHandle
for the holder of the identity (DomainParticipant). If the permissions are not
validated, the DomainParticipant shall not be created, the create_participant
operation shall return NIL and set the return code to NOT_ALLOWED_BY_SEC.

2. The DDS middleware shall verify that the DDS application has the necessary permissions
to join the specific Domain identified by the domainId by calling the operation
AccessControl::check_create_participant. If this operation returns FALSE,
the DomainParticipant shall not be created, the create_participant operation
shall return NIL and set the return code to NOT_ALLOWED_BY_SEC.

3. The DDS middleware shall call the get_identity_token operation to obtain the
IdentityToken object corresponding to the received IdentityHandle. The
IdentityToken object shall be placed in the ParticipantBuiltinTopicData sent via
discovery, see 7.4.1.3.

4. The middleware shall call the get_permissions_token operation on the
AccessControl plugin to obtain the PermissionsToken object corresponding to the
received PermissionsHandle. The PermissionsToken shall be placed in the
ParticipantBuiltinTopicData sent via discovery, see 7.4.1.3.

5. The middleware calls the get_permissions_credential_token operation on
the AccessControl plugin, which returns the PermissionsCredentialToken
object corresponding to the received PermissionsHandle. The
PermissionsCredentialToken object is necessary to configure the
Authentication plugin.

6. The middleware calls the set_permissions_credential_and_token operation
on the Authentication plugin such that it can be sent during the authentication
handshake.

7. The middleware calls the get_participant_sec_attributes operation on the
AccessControl plugin to obtain the ParticipantSecurityAttributes such
that it knows how to handle remote participants that fail to authenticate.

8. The DomainParticipant’s IdentityToken and PermissionsToken are used to
configure DDS discovery such that they are propagated inside the identity_token and the
permissions_token members of the ParticipantBuiltinTopicData. This operation is internal

136 DDS Security, v1.0

to the DDS implementation and therefore this API is not specified by the DDS Security
specification. It is mentioned here to provide guidance to implementers.

8.8.2 Authentication behavior with discovered DomainParticipant

Depending on the ParticipantSecurityAttributes returned by the AccessControl
operation get_participant_sec_attributes the DomainParticipant may allow
remote DomainParticipants that lack the ability to authenticate (e.g., do not implement DDS
Security) to match.

8.8.2.1 Behavior when allow_unauthenticated_participants is set to TRUE

If the ParticipantSecurityAttributes returned by the operation
get_participant_sec_attributes has the member
allow_unauthenticated_participants set to TRUE, the DomainParticipant shall
allow matching remote DomainParticipant entities that are not able to authenticate. Specifically:

• Discovered DomainParticipant entities that do not implement the DDS Security specification
or do not contain compatible Security Plugins shall be matched without the
DomainParticipant attempting to authenticate them and shall be treated as “Unauthenticated”
DomainParticipant entities.

• Discovered DomainParticipant entities that do implement the DDS Security specification and
declare compatible Security Plugins but fail the Authentication protocol shall be matched and
treated as “Unauthenticated” DomainParticipants entities.

For any matched “Unauthenticated” DomainParticipant entities, the DomainParticipant
shall match only the regular builtin Endpoints (ParticipantMessage, DCPSParticipants,
DCPSPublications, DCPSSubscriptions) and not the builtin secure Endpoints (see 7.4.5 for the
complete list).

For any matched authenticated DomainParticipant entities, the DomainParticipant
shall match all the builtin endpoints.

8.8.2.2 Behavior when allow_unauthenticated_participants is set to FALSE

If the ParticipantSecurityAttributes has the member
allow_unauthenticated_participants set to FALSE, the DomainParticipant shall
reject remote DomainParticipant entities that are not able to authenticate. Specifically:

• Discovered DomainParticipant entities that do not implement the DDS Security specification
or do not contain compatible Security Plugins shall be rejected without the
DomainParticipant attempting to authenticate them.

• Discovered DomainParticipant entities that do implement the DDS Security specification,
declare compatible Security Plugins but fail the Authentication protocol shall be rejected.

• Discovered DomainParticipant entities that do implement the DDS Security specification and
declare compatible Security Plugins automatically "match" the ParticipantStatelessMessage builtin
endpoints to allow the authentication handshake to proceed.

• Discovered DomainParticipant entities that do implement the DDS Security specification,
declare compatible Security Plugins, and pass the Authentication protocol successfully shall be
matched and the DomainParticipant shall also match all the builtin endpoints of the

DDS Security, v1.0 137

discovered DomainParticipant, except for the ParticipantStatelessMessage builtin endpoints,
which were already matched prior to the Authentication protocol.

The figure below illustrates the behavior of the security plugins with regards to a discovered
DomainParticipant that also implements the DDS Security specification and announces
compatible security plugins. The exact operations depend on the plugin implementations. The
sequence diagram shown below is just indicative of one possible sequence of events and matches what
the builtin DDS:Auth:PKI-DH plugin (see 9.3.3) does.

Figure 22 – Authentication sequence diagram with discovered DomainParticipant

1. Participant2 discovers Participant1via the discovery protocol. The
BuiltinParticipantTopicData contains the IdentityToken and
PermissionsToken of Participant1.

2. Participant2 calls the validate_remote_identity operation to validate the identity
of Participant1 passing the IdentityToken and PermissionsToken of Participant1
received via discovery and obtains an IdentityHandle for Participant1, needed for
further operations involving Participant1. The operation returns
PENDING_HANDSHAKE_MESSAGE indicating that further handshake messages are
needed to complete the validation and that Participant2 should wait for a
HandshakeMessageToken to be received from Participant1. Participant2 waits for this
message.

sd DDS::Security-RemoteParticipant

DDS-DiscoveryParticipant1 Participant2DDS-Protocol

«interface»
:Authentication

«interface»
:Authentication

discoveredParticipant(Participant1,
IdentityToken1, PermissionsToken1)

validate_remote_identity() :
PENDING_HANDSHAKE_MESSAGEdiscoveredParticipant(Participant2,

IdentityToken2, PermissionsToken2)

validate_remote_identity() :
PENDING_HANDSHAKE_REQUEST

begin_handshake_request(out: messageToken1) :
PENDING_HANDSHAKE_MESSAGE

send(messageToken1)

begin_handshake_reply(out: messageToken2,
in: messageToken1) :
PENDING_HANDSHAKE_MESSAGE

send(messageToken2)
process_handshake() :
OK_WITH_FINAL_MESSAGE

send(messageToken3)

process_handshake() :OK
get_shared_secret() :SharedSecret

get_peer_permissions_credential_token() :
Boolean

get_shared_secret() :SharedSecret

get_peer_permissions_credential_token() :
Boolean

138 DDS Security, v1.0

3. Participant1 discovers Participant2 via the DDS discovery protocol. The
BuiltinParticipantTopicData contains the IdentityToken and
PermissionsToken of Participant2.

4. Participant1 calls the operation validate_remote_identity to validate the identity
of Participant2 passing the IdentityToken and PermissionsToken of Participant2
received via discovery and obtains an IdentityHandle for Participant2, needed for
further operations involving Participant2. The operation returns
PENDING_HANDSHAKE_REQUEST indicating further handshake messages are needed
and Participant1 should initiate the handshake.

5. Participant1 calls begin_handshake_request to begin the requested handshake. The
operation outputs a HandshakeHandle and a HandshakeMessageToken
(messageToken1). The operation returns PENDING_HANDSHAKE_MESSAGE
indicating authentication is not complete and the returned messageToken1 needs to be sent
to Participant2 and a reply should be expected.

6. Participant1 sends the HandshakeMessageToken (messageToken1) to Participant2
using the BuiltinParticipantMessageWriter.

7. Participant2 receives the HandshakeMessageToken (messageToken1) on the
BuiltinParticipantMessageReader. Participant2 determines the message originated from a
remote DomainParticipant (Participant1) for which it had already called
validate_remote_identity where the function had returned
PENDING_HANDSHAKE_REPLY.

8. Participant2 calls begin_handshake_reply passing the received
HandshakeMessageToken (messageToken1). The Authentication plugin
processes the HandshakeMessageToken (messageToken1) and outputs a
HandshakeMessageToken (messageToken2) in response and a HandshakeHandle.
The operation begin_handshake_reply returns
PENDING_HANDSHAKE_MESSAGE, indicating authentication is not complete and an
additional message needs to be received.

9. Participant2 sends the HandshakeMessageToken (messageToken2) back to
Participant1 using the BuiltinParticipantMessageWriter.

10. Participant1 receives the HandshakeMessageToken (messageToken2) on the
BuiltinParticipantMessageReader. Participant1 determines this message originated from a
remote DomainParticipant (Participant2) for which it had already called
validate_remote_identity where the function had returned
PENDING_HANDSHAKE_REQUEST.

11. Participant1 calls process_handshake passing the received
HandshakeMessageToken (messageToken2). The Authentication plugin processes
messageToken2, verifies it is a valid reply to the messageToken1 it had sent and outputs the
HandshakeMessageToken messageToken3 in response. The process_handshake
operation returns OK_WITH_FINAL_MESSAGE, indicating authentication is complete
but the returned HandshakeMessageToken (messageToken3) must be sent to
Participant2.

DDS Security, v1.0 139

12. Participant1 sends the HandshakeMessageToken (messageToken3) to Participant2
using the BuiltinParticipantMessageWriter.

13. Participant2 receives the HandshakeMessageToken (messageToken3) on the
BuiltinParticipantMessageReader. Participant2 determines this message originated from a
remote DomainParticipant (Participant1) for which it had already called the
operation begin_handshake_reply where the call had returned
PENDING_HANDSHAKE_MESSAGE.

14. Participant2 calls the process_handshake operation, passing the received
HandshakeMessageToken (messageToken3). The Authentication plugin processes the
messageToken2, verifies it is a valid reply to the messageToken2 it had sent and returns
OK, indicating authentication is complete and no more messages need to be sent or
received.

15. Participant1, having completed the authentication of Participant2, calls the operation
get_shared_secret to retrieve the SharedSecret, which is used with the other
Plugins to create Tokens to exchange with Participant2.

16. Participant1, having completed the authentication of Participant2, calls the operation
get_authenticated_peer_credential_token to retrieve the
AuthenticatedPeerCredentialToken associated with Participant2, which is
used with the AccessControl plugin to determine the permissions that Participant1 will
grant to Participant2.

17. Participant2, having completed the authentication of Participant1, calls the operation
get_shared_secret to retrieve the SharedSecret, which is used with the other
Plugins to create Tokens to exchange with Participant1.

18. Participant2, having completed the Authentication of Participant1, calls the operation
get_authenticated_peer_credential_token to retrieve the
AuthenticatedPeerCredentialToken associated with Participant2 which is used
with the AccessControl plugins to determine the permissions that Participant2 will
grant to Participant1.

8.8.3 DDS Entities impacted by the AccessControl operations

There are six types of DDS Entities: DomainParticipant, Topic, Publisher,
Subscriber, DataReader, and DataWriter. All these except the DomainParticipant are
defined as the DDS Domain Entities (subclause 2.2.2.1.2 of DDS [1]).

The Domain Entities created by a DomainParticipant can be grouped into four categories:

• DDS-RTPS Protocol [2] Builtin Entities. These are domain entities used to read and write the
four builtin Topics: DCPSParticipants, DCPSTopics, DCPSPublications,
DCPSSubscriptions.

• Builtin Secure Entities. These are the Domain Entities related to the Builtin Secure
Endpoints defined in Section 7.4.5. These Entities are used to read and write the four
builtin secure topics: DCPSPublicationsSecure, DCPSSubscriptionsSecure,
ParticipantMessageSecure, and ParticipantVolatileMessageSecure.

140 DDS Security, v1.0

• Other builtin Entities defined by the DDS-Security specification not included in the
“Builtin Secure Endpoints”. These are the BuiltinParticipantStatelessMessageWriter and the
BuiltinParticipantStatelessMessageReader.

• Application-defined Entities. These are any non-builtin Domain Entities.

The AccessControl plugin shall impact only the Builtin Secure Entities and the application-
defined Entities. It shall not impact the builtin entities defined by the DDS-RTPS Protocol
specification nor the BuiltinParticipantStatelessMessageWriter or the
BuiltinParticipantStatelessMessageReader.

AccessControl plugin operations can be grouped into 5 groups:

1. Group1. Operations related to DomainParticipant. These are: validate_local_permissions,
validate_remote_permissions, check_create_participant, get_permissions_token,
get_permissions_credential_token, set_listener, return_permissions_token,
return_permissions_credential_token, get_participant_sec_attributes.

2. Group2. Operations related to the creation of local Domain Entities. These are:
check_create_topic, check_create_datawriter, check_create_datareader,
get_datawriter_sec_attributes, get_datareader_sec_attributes.

3. Group3. Operations related to write activities of local Domain Entities. These are:
check_local_datawriter_register_instance and check_local_datawriter_dispose_instance.

4. Group4. Operations related to discovery and match of remote Domain Entities. These are:
check_remote_topic, check_remote_datawriter, check_remote_datareader,
check_local_datawriter_match, and check_local_datareader_match.

5. Group5. Operations related to the write activities of remote Domain Entities. These are:
check_remote_datawriter_register_instance and check_remote_datawriter_dispose_instance.

Table 33 below summarizes the DDS Entities affected by each operation group.
Table 33 – Impact of Access Control Operations to the DDS Builtin and Application-defined Entities

Entity
Category

Entity Impact by AccessControl operation in group

Group1 Group2 Group3 Group4 Group5

DomainPar
ticipant

 All created Yes No No No No

DDS-RTPS
Protocol
Builtin
Entities

See RTPS Protocol
specification [2]

Yes,
indirectly

No No No No

Builtin
Secure

SEDPbuiltinPublicat
ionsSecureWriter

SEDPbuiltinPublicat
ionsSecureReader

SEDPbuiltinSubscrip
tionsSecureWriter

SEDPbuiltinSubscrip

Yes,
indirectly

Only

get_datawriter_
sec_attributes

No

No

No

DDS Security, v1.0 141

Entities tionsSecureReader

BuiltinParticipantM
essageSecureWriter

BuiltinParticipantM
essageSecureReader

BuiltinParticipantVo
latileMessageSecure
Writer

BuiltinParticipantVo
latileMessageSecure
Reader

and

get_datareader_
sec_attributes

Other
builtin
Entities
defined by
DDS-
Security

BuiltinParticipantSt
atelessMessageWrit
er

BuiltinParticipantSt
atelessMessageRead
er

Yes,
indirectly

No No No No

Application
-defined
Domain
Entities

Publisher,
Subscriber

Yes,
indirectly

Yes, indirectly No Yes,
indirectly

No

Topic,

DataWriter,

DataReader

Yes,
indirectly

Yes Yes Yes Yes

The DomainParticipant entities are only impacted by AccessControl plugin operations in
Group1. The DomainParticipant is not created unless allowed by the AccessControl plugin.
Also the matching of a remote DomainParticipant must be allowed by the AccessControl
plugin. The full interaction is described in sub clauses 8.8.1 and 8.8.6.

The DDS-RTPS Builtin Entities are impacted indirectly by AccessControl plugin operations in
Group1 in the sense that if the sense that the creation of the Entities is dependent on the successful
creation of the local DomainParticipant which is controlled by the Group1 operations. Likewise
the match of the remote entities is dependent on the successful match of a remote
DomainParticipant, which is also controlled by the Group1 operations.

The DDS-RTPS Builtin Entities shall not be impacted by any of the operations in Group2, Group3,
Group4, or Group5.

The Secure Builtin Entities are impacted indirectly by AccessControl plugin operations in Group1
in the same way as the DDS-RTPS Builtin Entities.

The Secure Builtin Entities are impacted only by the get_datawriter_sec_attributes and
get_datareader_sec_attributes operations in Group2. They shall not be impacted by any
other Group2 operations. This means that the Secure Builtin Entities shall be created unconditionally
when the DomainParticipant is created. During the creation process of DataWriter entities the

142 DDS Security, v1.0

get_datawriter_sec_attributes shall be called and likewise during the creation process of
DataReader entities the get_datareader_sec_attributes shall be called. The purpose of
calling these get_xxx_sec_attributes operations is to obtain the information necessary to call
the Cryptographic plugin operations on these endpoints.

The BuiltinParticipantStatelessMessageWriter and BuiltinParticipantStatelessMessageReader are
only indirectly impacted by the Group2 operations in that they are tied to the successful creation of the
DomainParticipant. They are not impacted by the successful match of remote entities not any
other AccessControl plugin operations in any Group. DDS Secure implementations shall create
these endpoints unconditionally for all created DomainParticipant. Being stateless these
endpoints are not “matched” to remote endpoints in the sense of being aware and maintaining the state
and presence of the remote endpoints. Nevertheless they are able to send exchange information in a
stateless, best-efforts manner.

The Application-defined Publisher and Subscriber Entities are impacted indirectly by
AccessControl plugin operations in Group1 only by the fact that they depend on the successful
creation of the DomainParticipant. They are impacted indirectly by operations in Group2 by the
fact that the PartitionQos settings of the Publisher (or Subscriber) may cause the
AccessControl plugin to prevent the creation of DataWriter (or DataReader) entities
belonging to them. Likewise they are impacted indirectly by operations in Group4 in that the
PartitionQos settings of the remote Publisher (or Subscriber) may cause the
AccessControl plugin to prevent matching of remote DataWriter (or DataReader)
entities. They are not impacted by operations in Group3 or Group5.

The Application-defined Topic, DataWriter and DataReader entities are impacted indirectly by
AccessControl plugin operations in Group1 the same way the The DDS-RTPS Builtin Entities are.
These Entities are impacted by the AccessControl plugin operations in Group2, Group3,
Group4, and Group5. This is described in subclauses 8.8.5 and 8.8.7.

8.8.4 AccessControl behavior with local participant creation

The functionality of the AccesControl plugin with regards to the creation of local DDS
DomainParticipant entities was illustrated in Figure 21 and described in 8.8.1. Sub clause 8.8.1
covered Authentication and AccessControl plugin behavior simultanepusly because these
two plugins interact with each other.

8.8.5 AccessControl behavior with local domain entity creation

The figure below illustrates the functionality of the security plugins with regards to the creation of
local DDS domain entities: Topic, DataWriter, and DataReader entities.

DDS Security, v1.0 143

Figure 23 – AccessControl sequence diagram with local entities

1. The DDS application initiates the creation of a new Topic for the
DomainParticipant.

2. The middleware verifies the DomainParticipant is allowed to create a Topic with
name topicName. Operation AccessControl::check_create_topic() is
called for this verification. If the verification fails, the Topic object is not created.

3. The DDS application initiates the creation of a local DataWriter.

4. The middleware verifies that the DataWriter has the right permissions to publish on
Topic topicName. Operation AccessControl::check_create_datawriter()
is called for this verification. As an optional behavior, check_create_datawriter ()
can also verify if the DataWriter is allowed to tag data with dataTag. If the
verification doesn’t succeed, the DataWriter is not created. As an optional behavior,
check_create_datawriter() can also check the QoS associated with the
DataWriter and grant permissions taking that into consideration.

5. The middleware calls AccessControl::get_datawriter_sec_attributes to
obtain the EndpointSecurityAttributes for the created DataWriter.

6. This sequence diagram illustrates the situation where the
EndpointSecurityAttributes for the created DataWriter has the
is_discovery_protected attribute set to FALSE. In this situation the middleware configures

sd DDS::Security-LocalParticipantAccess

DDSApplication

DataWriter

(from DDS)

DataReader

(from DDS)

AccessControlTopic

(from DDS)

DDS-SecureDiscoveryDDS-RegularDiscovery

configure()

register_instance()

check_create_topic(): Boolean

«create»

check_create_datawriter(): Boolean

«create»

check_local_datawriter_dispose_instance(): Boolean

get_datareader_sec_attributes(): Boolean

dispose_instance()

get_datawriter_sec_attributes(): Boolean

check_local_datawriter_register_instance(): Boolean

check_create_datareader(): Boolean

configure()

«create»

144 DDS Security, v1.0

Discovery to use regular (not secure) publications discovery endpoint (DCPSPublications)
to propagate the PublicationBuiltinTopicData for the created DataWriter.

7. The DDS application initiates the creation of a local DataReader.

8. The middleware verifies that the DataReader has the right permissions to subscribe on
Topic topicName. Operation AccessControl::check_create_datareader()
is called for this verification. As an optional behavior, check_create_datareader()
can also verify if the DataReader is allowed to receive data tagged with dataTag. If
the verification doesn’t succeed, the DataReader is not created. As an optional behavior
check_create_datareader() can also check the QoS associated with the
DataReader and grant permissions taking that into consideration.

9. The middleware calls the operation
AccessControl::get_datareader_sec_attributes to obtain the
EndpointSecurityAttributes for the created DataReader entity.

10. This sequence diagram illustrates the situation where the
EndpointSecurityAttributes for the created DataReader has the
is_discovery_protected attribute set to TRUE. In this situation the middleware configures
Discovery to use the secure subscriptions discovery endpoint (DCPSSecureSubscriptions)
to propagate the SubscriptionBuiltinTopicData for the created DataReader.

11. The DDS application initiates the registration of a data instance on the DataWriter.

12. The middleware verifies that the DataWriter has the right permissions to register the
instance. The operation
AccessControl::check_local_datawriter_register_instance() is
called for this verification. If the verification doesn’t succeed, the instance is not registered.

13. The DDS application initiates the disposal of an instance of the DataWriter.

14. The middleware verifies that the DataWriter has the right permissions to dispose the
instance. The operation
AccessControl::check_local_datawriter_dispose_instance() is
called for this verification. If the verification doesn’t succeed, the instance is not disposed.

8.8.6 AccessControl behavior with remote participant discovery

If the ParticipantSecurityAttributes object returned by the AccessControl operation
get_participant_sec_attributes has the is_access_protected attribute set to
FALSE, the DomainParticipant may discover DomainParticipants that cannot be authenticated
because they either lack support for the authentication protocol or they fail the authentication protocol.
These “Unauthenticated” DomainParticipant entities shall be matched and considered
“Unauthenticated” DomainParticipant entities.

If the DomainParticipant discovers a DomainParticipant entity that it can authenticate
successfully, then it shall validate with the AccessControl plugin that it has the permissions necessary
to join the DDS domain:

• If the validation succeeds, the discovered DomainParticipant shall be considered “Authenticated”
and all the builtin Topics automatically matched.

DDS Security, v1.0 145

• If the validation fails, the discovered DomainParticipant shall be considered ignored and all the
builtin Topics should not be matched.

The figure below illustrates the functionality of the security plugins with regards to the discovery of
remote DomainParticipant entity that has been successfully authenticated by the Authentication
plugin.

Figure 24 – AccessControl sequence diagram with discovered DomainParticipant

1. The DomainParticipant Participant1 discovers the DomainParticipant
(Participant2) via the discovery protocol and successfully authenticates Participant2 and
obtains the AuthenticatedPeerCredentialToken as described in 8.8.2.

2. Participant1 calls the operation validate_remote_permissions to validate the
permissions of Participant2, passing the PermissionsToken obtained via discovery
from Participant2 and the AuthenticatedPeerCredentialToken returned by the
operation get_authenticated_peer_credential_token on the
Authentication plugin. The operation validate_remote_permissions returns
a PermissionsHandle, which the middleware will use whenever an access control
decision must be made for the remote DomainParticipant.

3. Participant1 calls the operation check_remote_participant to verify the remote
DomainParticipant (Participant2) is allowed to join the DDS domain with the
specified domainId, passing the PermissionsHandle returned by the
validate_remote_permissions operation. If the verification fails, the remote
DomainParticipant is ignored and all the endpoints corresponding to the builtin
Topics are unmatched.

4. Participant1 discovers that DomainParticipant (Participant2) has created a new DDS
Topic.

5. Participant1 verifies that the remote DomainParticipant (Participant2) has the
permissions needed to create a DDS Topic with name topicName. The operation

sd DDS::Security-RemoteParticipantAccess

Participant1

AccessControl

DDS-Discovery Participant2

discoveredParticipant(Participant2)

Authentication Process() :
PermissionsCredentialTokenvalidate_remote_permissions(PermissionsCredentialToken) :

PermissionsHandle

check_remote_participant(PermissionsHandle) :Boolean

discoveredTopic()
check_remote_topic(PermissionsHandle) :Boolean

146 DDS Security, v1.0

check_remote_topic is called for this verification. If the verification fails, the
discovered Topic is ignored.

8.8.7 AccessControl behavior with remote domain entity discovery

This sub clause describes the functionality of the AccessControl plugin relative to the discovery of
remote domain entities, that is, Topic, DataWriter, and DataReader entities.

If the ParticipantSecurityAttributes object returned by the AccessControl operation
get_participant_sec_attributes has the is_access_protected attribute set to
FALSE, the DomainParticipant may have matched a remote “Unauthenticated”
DomainParticipant, i.e., a DomainParticipant that has not authenticated successfully and
may therefore discover endpoints via the regular (non-secure) discovery endpoints from an
“Unauthenticated” DomainParticipant.

8.8.7.1 AccessControl behavior with discovered endpoints from “Unauthenticated” DomainParticipant

If the DomainParticipant discovers endpoints from an “Unauthenticated”
DomainParticipant it shall:

• Match automatically the local DataWriter endpoints for whom the
EndpointSecurityAttributes object returned by the operation
get_datawriter_sec_attributes have the attribute is_access_protected set to FALSE.

• Match automatically the local DataReader endpoints for whom the
EndpointSecurityAttributes object returned by the operation
get_datareader_sec_attributes have the attribute is_access_protected set to FALSE.

• Do not match automatically the remaining local endpoints for whom the
EndpointSecurityAttributes have the attribute is_access_protected set to TRUE.

Note that, as specified in 8.8.2.2, a DomainParticipant for whom the
ParticipantSecurityAttributes object returned by the AccessControl operation
get_participant_sec_attributes has the is_access_protected attribute set to
TRUE, cannot be matched with an “Unauthenticated” DomainParticipant and therefore cannot
discover any endpoints from an “Unauthenticated” DomainParticipant.

8.8.7.2 AccessControl behavior with discovered endpoints from “Authenticated” DomainParticipant

If the DomainParticipant discovers endpoints from an “authenticated” DomainParticipant
it shall:

• Match automatically the local endpoints for whom the EndpointSecurityAttributes
object returned by the operation get_datawriter_sec_attributes or
get_datareader_sec_attributes has the is_access_protected attribute set to FALSE.

• Perform the AccessControl checks for discovered endpoints that would match local endpoints for
whom the is_access_protected attribute is set to TRUE, and only match the discovered endpoints
for whom the access control checks succeed.

DDS Security, v1.0 147

The figure below illustrates the behavior relative to discovered endpoints coming from an
“Authenticated” DomainParticipant that would match local endpoints for whom the
is_access_protected attribute set to FALSE.

Figure 25 – AccessControl sequence diagram with discovered entities when is_access_protected==FALSE

1. DataReader1 discovers via the discovery protocol that a remote DataWriter
(DataWriter2) on a Topic with name topicName. The DataReader1 shall not call any
operations on the AccessControl plugin and shall proceed to match DataWriter2
subject to the matching criteria specified in the DDS and DDS-XTypes specifications.
check_remote_datawriter to verify that Participant2 has the permissions needed to
publish the DDS Topic with name topicName.

2. DataReader1 receives a Sample from DataWriter2 with DDS ViewState NEW,
indicating this is the first sample for that instance received by the DataReader. This
sample shall be processed according to the DDS specification without any calls to the
AccessControl plugin.

3. DataReader1 receives a Sample from DataWriter2 with DDS InstanceState
NOT_ALIVE_DISPOSED, indicating the remote DataWriter disposed an instance. This
sample shall be processed according to the DDS specification without any calls to the
AccessControl plugin.

4. DataReader1 receives a Sample from DataWriter2 with DDS ViewState NOT_NEW.
DataReader1 shall operate according to the DDS and DDS-RTPS specifications without
any calls to the AccessControl plugin.

5. DataReader1 receives an RTPS HeartBeat message or an RTPS Gap message from
DataWriter2. In both these cases DataReader1 shall operate according to the DDS and
DDS-RTPS specifications without any calls to the AccessControl plugin.

sd DDS::Security-RemoteEndpoint-UnprotectedAccess

AccessControl

DDS-Discovery DDS-ProtocolDataReader1 DataWriter1

E ntities with
is_ access_ protected = FALS E

discoveredDatawriter()

newInstance()

disposedInstance()

Sample()

RTPS_Heartbeat_Gap()

discoveredDatareader()

RTPS_AckNack()

148 DDS Security, v1.0

6. DataWriter1 discovers via the discovery protocol that a remote DataReader
(DataReader2) on a Topic with name topicName. DataWriter1 shall not call any
operations on the AccessControl plugin and shall match DataReader2 subject to the
matching criteria specified in the DDS and DDS-XTypes specifications.

7. DataWriter1 receives an RTPS AckNack message from DataReader2. DataWriter1 shall
operate according to the DDS and DDS-RTPS specifications without any calls to the
AccessControl plugin.

The figure below illustrates the behavior relative to discovered endpoints coming from an
“Authenticated” DomainParticipant that would match local endpoints for whom the
is_access_protected attribute set to TRUE.

Figure 26 – AccessControl sequence diagram with discovered entities when is_access_protected==TRUE

1. DataReader1 discovers via the discovery protocol a remote DataWriter (DataWriter2)
on a Topic with name topicName that matches the DataReader1 Topic topicName.

2. DataReader1 shall call the operation check_remote_datawriter to verify that
Participant2 (the DomainParticipant to whom DataWriter2 belongs) has the
permissions needed to publish the DDS Topic with name topicName. As an optional
behavior, the same operation can also verify if the DataWriter2 is allowed to tag data with
dataTag that are associated with it.
1. If the verification doesn’t succeed, the DataWriter2 is ignored.
2. If the verification succeeds, DataReader1 shall proceed to match DataWriter2 subject to

the matching criteria specified in the DDS and DDS-XTypes specifications.
3. DataReader1 receives a Sample from DataWriter2 with DDS ViewState NEW, indicating

this is the first sample for that instance received by the DataReader. This sample shall be

sd DDS::Security-RemoteEndpoint-ProtectedAccess

AccessControl

DDS-Discovery DDS-ProtocolDataReader2 DataWriter2

E ntities with
is_ access_ protected=T RUE

discoveredDatawriter()check_remote_datawriter() :Boolean

newInstance()check_remote_datawriter_register_instance() :Boolean

disposedInstance()check_remote_datawriter_dispose_instance() :Boolean

Sample()

RTPS_Heartbeat_Gap()

discoveredDatareader()
check_remote_datareader() :Boolean

RTPS_AckNack()

DDS Security, v1.0 149

processed according to the DDS specification without any calls to the AccessControl
plugin.

4. DataReader1 shall call the operation
check_remote_datawriter_register_instance to verify that Participant2
has the permissions needed to register the instance. If the verification doesn’t succeed, the
sample shall be ignored.

5. DataReader1 receives a Sample from DataWriter2 with DDS InstanceState
NOT_ALIVE_DISPOSED, indicating the remote DataWriter disposed an instance.

6. DataReader1 shall call the operation
check_remote_datawriter_dispose_instance to verify that Participant2 has
the permissions needed to dispose the instance. If the verification doesn’t succeed, the
instance disposal shall be ignored.

7. DataReader1 receives a Sample from DataWriter2 with DDS ViewState NOT_NEW,
indicating this DataReader1 already received samples on that instance. This sample shall be
processed according to the DDS specification without any calls to the AccessControl
plugin.

8. DataReader1 receives an RTPS HeartBeat message or an RTPS Gap message from
DataWriter2. In both these cases DataReader1 shall operate according to the DDS and
DDS-RTPS specifications without any calls to the AccessControl plugin.

9. DataWriter1 discovers via the discovery protocol a remote DataReader (DataReader2)
on a Topic with name topicName that matches the DataReader1 Topic topicName.

10. DataWriter1 shall call the operation check_remote_datareader to verify that
Participant2 (the DomainParticipant to whom DataReader2 belongs) has the permissions
needed to subscribe the DDS Topic with name topicName. As an optional behavior, the
same operation can also verify if the DataReader2 is allowed to read data with dataTag
that are associated with DataWriter1.
1. If the verification doesn’t succeed, DataReader2 is ignored.
2. If the verification succeeds, DataWriter1 shall proceed to match DataReader2 subject to

the matching criteria specified in the DDS and DDS-XTypes specifications.
11. DataWriter1 receives an RTPS AckNack message from DataReader2. DataWriter1 shall

operate according to the DDS and DDS-RTPS specifications without any calls to the
AccessControl plugin.

8.8.8 Cryptographic Plugin key generation behavior

Key Generation is potentially needed for:

• The DomainParticipant as a whole
• Each DomainParticipant match pair
• Each builtin secure endpoint (DataWriter or DataReader)
• Each builtin secure endpoint match pair
• Each application secure endpoint (DataWriter or DataReader)
• Each application secure endpoint match pair

8.8.8.1 Key generation for the BuiltinParticipantVolatileMessageSecureWriter and
BuiltinParticipantVolatileMessageSecureReader

The BuiltinParticipantVolatileMessageSecureWriter and
BuiltinParticipantVolatileMessageSecureReader endpoints are special in that they are the ones used

150 DDS Security, v1.0

to securely send the Crypto Tokens. Therefore the key material needed to secure this channel has to be
derivable from the SharedSecret without having access to Crypto Tokens returned by the
create_local_datawriter_crypto_tokens or
create_local_datareader_crypto_tokens. Effectively this means the key material used
for key-exchange is always derived from the SharedSecret.

For the BuiltinParticipantVolatileMessageSecureWriter the creation of the key material necessary to
communicate with a matched BuiltinParticipantVolatileMessageSecureReader shall complete during
the operation register_matched_remote_datareader and the DDS middleware shall not
call the operation create_local_datawriter_crypto_tokens or the operation
set_remote_datareader_crypto_tokens on the CryptoKeyExchange.

For the BuiltinParticipantVolatileMessageSecureReader the creation of the key material necessary to
communicate with a matched BuiltinParticipantVolatileMessageSecureWriter shall complete during
the operation register_matched_remote_datawriter and the DDS middleware shall not
call the operation create_local_datareader_crypto_tokens or the operation
set_remote_datawriter_crypto_tokens on the CryptoKeyExchange.

The DDS implementation shall add a property with name “dds.sec.builtin_endpoint_name” and
value “BuiltinParticipantVolatileMessageSecureWriter” to the Property_t passed to the operation
register_local_datawriter when it registers the
BuiltinParticipantVolatileMessageSecureWriter with the CryptoKeyFactory.

The DDS implementation shall add a property with name “dds.sec.builtin_endpoint_name” and
value “BuiltinParticipantVolatileMessageSecureReader” to the Property_t passed to the operation
register_local_datareader when it registers the
BuiltinParticipantVolatileMessageSecureReader with the CryptoKeyFactory.

Setting the Property_t as described above allows the CryptoKeyFactory to recognize the
BuiltinParticipantVolatileMessageSecureWriter and the
BuiltinParticipantVolatileMessageSecureReader.

8.8.8.2 Key generation for the DomainParticipant

For each local DomainParticipant that is successfully created the DDS implementation shall call
the operation register_local_participant on the KeyFactory.

For each discovered DomainParticipant that has successfully authenticated and has been
matched to the local DomainParticipant the DDS middleware shall call the operation
register_matched_remote_participant on the KeyFactory. Note that this operation
takes as one parameter the SharedSecret obtained from the Authentication plugin.

8.8.8.3 Key generation for the builtin endpoints

For each DataWriter belonging to list of “Builtin Secure Endpoints”, see 7.4.5, with the exception
of the BuiltinParticipantVolatileMessageSecureWriter, the DDS middleware shall call the operation
register_local_datawriter on the KeyFactory to obtain the
DatawriterCryptoHandle for the builtin DataWriter.

For each DataReader belonging to list of “Builtin Secure Endpoints”, see 7.4.5, with the exception
of the BuiltinParticipantVolatileMessageSecureReader, the DDS middleware shall call the operation

DDS Security, v1.0 151

register_local_datareader on the KeyFactory to obtain the
DatareaderCryptoHandle for the corresponding builtin DataReader.

For each discovered DomainParticipant that has successfully authenticated and has been
matched to the local DomainParticipant the DDS middleware shall:

1. Call the operation KeyFactory::register_matched_remote_datawriter for each
local DataWriter belonging to the “Builtin Secure Endpoints” passing it the local
DataWriter and the corresponding remote DataReader belonging to the “Builtin Secure
Endpoints” of the discovered DomainParticipant.

2. Call the operation KeyFactory::register_matched_remote_datareader for each
local DataReader belonging to the “Builtin Secure Endpoints” passing it the local
DataReader , the corresponding remote DataWriter belonging to the “Builtin Secure
Endpoints” of the discovered DomainParticipant, and the SharedSecret obtained
from the Authentication plugin.

8.8.8.4 Key generation for the application-defined endpoints

Recall that for each application-defined (non-builtin) DataWriter and DataReader successfully
created by the DDS Application the DDS middleware has an associated
EndpointSecurityAttributes object which is the one returned by the
AccessControl::get_datawriter_sec_attributes or
AccessControl::get_datareader_sec_attributes.

For each non-builtin DataWriter for whom the associated EndpointSecurityAttributes
object has either the member is_submessage_protected or the member is_payload_protected set to
TRUE, the DDS middleware shall:

1. Call the operation register_local_datawriter on the KeyFactory to obtain the
DatawriterCryptoHandle for the DataWriter.

2. Call the operation register_matched_remote_datareader for each discovered
DataReader that matches the DataWriter.

For each non-builtin DataReader for whom the associated EndpointSecurityAttributes
object has either the member is_submessage_protected or the member is_payload_protected set to
TRUE, the DDS middleware shall:

1. Call the operation register_local_datareader on the KeyFactory to obtain the
DatareaderCryptoHandle for the DataReader.

2. Call the operation register_matched_remote_datawriter for each discovered
DataWriter that matches the DataReader.

8.8.9 Cryptographic Plugin key exchange behavior

Cryptographic key exchange is potentially needed for:

• Each DomainParticipant match pair.
• Each builtin secure endpoint match pair.
• Each application secure endpoint match pair.

152 DDS Security, v1.0

8.8.9.1 Key Exchange with discovered DomainParticipant

Cryptographic key exchange shall occur between each DomainParticipant and each discovered
DomainParticipant that has successfully authenticated. This key exchange propagates the key
material related to encoding/signing/decoding/verifying the whole RTPS message. In other words the
key material needed to support the CryptoTransform operations encode_rtps_message and
decode_rtps_message.

Given a local DomainParticipant the DDS middleware shall:

1. Call the operation create_local_participant_crypto_tokens on the
KeyFactory for each discovered DomainParticipant that has successfully
authenticated and has been matched to the local DomainParticipant. This operation takes
as parameters the local and remote ParticipantCryptoHandle.

2. Send the ParticipantCryptoTokenSeq returned by operation
create_local_participant_crypto_tokens to the discovered
DomainParticipant using BuiltinParticipantVolatileMessageSecureWriter.

The discovered DomainParticipant shall call the operation
set_remote_participant_crypto_tokens passing the
ParticipantCryptoTokenSeq received by the
BuiltinParticipantVolatileMessageSecureReader.

The figure below illustrates the functionality of the Cryptographic KeyExchange plugins with regards
to the discovery and match of an authenticated remote DomainParticipant entity.

Figure 27 – Cryptographic KeyExchange plugin sequence diagram with discovered DomainParticipant

1. Participant2 discovers the DomainParticipant (Participant1) via the DDS discovery
protocol. This sequence is not described here as it equivalent to the sequence that
Participant1 performs when it discovers Participant2.

sd DDS::Security-Kx-Participant

DDS-Discovery DDS-ProtocolParticipant1 Participant2

«interface»
:CryptoKeyExchange

«interface»
CryptoKeyFactory

«interface»
:CryptoKeyExchange

discoveredParticipant(Participant1)
discoveredParticipant(Participant2)

register_matched_remote_participant() :ParticipantCryptoHandle

create_local_participant_crypto_tokens()
:Boolean

send(BuiltinParticipantVolati leMessageSecureWriter)

receive(BuiltinParticipantVolati leMessageSecureReader)

set_remote_participant_crypto_tokens() :
Boolean

DDS Security, v1.0 153

2. Participant1 discovers the DomainParticipant (Participant2) via the DDS discovery
protocol. Participant2 is authenticated and its permissions are checked as described in 8.8.2
and 8.8.6. This is not repeated here. The authentication and permissions checking resulted
in the creation of an IdentityHandle, a PermissionsHandle, and a
SharedSecretHandle for Participant2.

3. Participant1 calls the operation register_matched_remote_participant on the
Cryptographic plugin (CryptoKeyFactory interface) to store the association of the
remote identity and the SharedSecret.

4. Participant1 calls the operation create_local_participant_crypto_tokens
on the Cryptographic plugin (CryptoKeyExchange interface) to obtain a collection
of CriptoToken (cryptoTokensParticipant1ForParticipant2) to send to the remote
DomainParticipant (Participant2).

5. Participant1 sends the collection of CryptoToken objects
(cryptoTokensParticipant1ForParticipant2) to Participant2 using the
BuiltinParticipantVolatileMessageSecureWriter.

6. Participant2 receives the CryptoToken objects
(cryptoTokensParticipant1ForParticipant2) and calls the operation
set_remote_participant_crypto_tokens()to register the CryptoToken
sequence with the DomainParticipant. This will enable the Cryptographic plugin
on Participant2 to decode and verify MACs on the RTPS messages sent by Participant1 to
Participant2.

8.8.9.2 Key Exchange with remote DataReader

Cryptographic key exchange shall occur between each builtin secure DataWriter and the matched
builtin secure DataReader entities of authenticated matched DomainParticipant entities, see
7.4.5, with the exception of the BuiltinParticipantVolatileMessageSecureReader.

Cryptographic key exchange shall also occur between each application DataWriter whose
EndpointSecurityAttributes object has either the is_submessage_protected or the
is_payload_protected members set to TRUE, and each of its matched DataReader entities.

Given a local DataWriter that is either a builtin secure DataWriter or an application
DataWriter meeting the condition stated above the DDS middleware shall:

1. Call the operation create_local_datawriter_crypto_tokens on the
KeyFactory for each matched DataReader. This operation takes as parameters the local
DatawriterCryptoHandle and the remote DatareaderCryptoHandle.

2. Send the DatawriterCryptoTokenSeq returned by operation create_local_
datawriter_crypto_tokens to the discovered DomainParticipant using
BuiltinParticipantVolatileMessageSecureWriter.

The matched DataReader shall call the operation
set_remote_datawriter_crypto_tokens passing the DatawriterCryptoTokenSeq
received by the BuiltinParticipantVolatileMessageSecureReader.

154 DDS Security, v1.0

The figure below illustrates the functionality of the Cryptographic KeyExchange plugin with regards
to the discovery and match of a local secure DataWriter and a matched DataReader.

Figure 28 – Cryptographic KeyExchange plugin sequence diagram with discovered DataReader

1. Participant2 discovers a DataWriter (Writer1) belonging to Participant1 that matches a
local DataReader (Reader2) according to the constraints in the DDS security specification.

2. Participant1 discovers a DataReader (Reader2) belonging to Participant2 that matches a
local DataWriter (Writer1) according to the constraints in the DDS security specification.

3. Participant1 calls the operation register_matched_remote_datareader as
stated in 8.8.8.

4. Participant1 calls the operation create_local_datawriter_crypto_tokens on
the CryptoKeyExchange to obtain a collection of CriptoToken objects
(cryptoTokensWriter1ForReader2).

5. Participant1 sends the collection of CryptoToken objects
(cryptoTokensWriter1ForReader2) to Participant2 using the
BuiltinParticipantVolatileMessageSecureWriter.

6. Participant2 receives the CryptoToken objects (cryptoTokensWriter1ForReader2) and
calls the operation set_remote_ datawriter_crypto_tokens()to register the
CryptoToken sequence with the DataWriter (Writer1). This will enable the
Cryptographic plugin on Participant2 to decode and verify MACs on the RTPS
submessages and data payloads sent from Writer1to Reader2.

8.8.9.3 Key Exchange with remote DataWriter

Cryptographic key exchange shall occur between each builtin secure DataReader and the matched
builtin secure DataWriter entities of authenticated matched DomainParticipant entities, see
7.4.5, with the exception of the BuiltinParticipantVolatileMessageSecureReader.

sd DDS::Security-Kx-Reader

Participant1 DDS-Discovery DDS-Protocol Participant2

«interface»
CryptoKeyExchange

«interface»
CryptoKeyFactory

discoveredDatawriter(Participant1, Writer1)
discoveredDatareader(Participant2, Reader2)

register_matched_remote_datareader() :DatareaderCryptoHandle

create_local_datawriter_crypto_tokens() :Boolean

send(BuiltinParticipantVolati leSecureMessage) receive(BuiltinParticipantVolati leSecureMessage)

set_remote_datawriter_crypto_tokens() :Boolean

DDS Security, v1.0 155

Cryptographic key exchange shall also occur between each application DataReader whose
EndpointSecurityAttributes object has the is_submessage_protected member set to TRUE,
and each of its matched DataWriter entities.

Given a local DataReader that is either a builtin secure DataReader or an application
DataReader meeting the condition stated above the DDS middleware shall:

1. Call the operation create_local_datareader_crypto_tokens on the
KeyFactory for each matched DataWriter. This operation takes as parameters the local
DatareaderCryptoHandle and the remote DatawriterCryptoHandle.

2. Send the DatareaderCryptoTokenSeq returned by operation create_local_
datareader_crypto_tokens to the discovered DomainParticipant using
BuiltinParticipantVolatileMessageSecureWriter.

The matched DataWriter shall call the operation
set_remote_datareader_crypto_tokens passing the DatareaderCryptoTokenSeq
received by the BuiltinParticipantVolatileMessageSecureReader.

The figure below illustrates the functionality of the Cryptographic KeyExchange plugin with regards
to the discovery and match of a local secure DataReader and a matched DataWriter.

Cryptographic key exchange shall occur between each DataReader whose
EndpointSecurityAttributes has the is_submessage_protected members set to TRUE and
each of its matched DataWriter entities.

Figure 29 – Cryptographic KeyExchange plugin sequence diagram with discovered DataWriter

1. Participant1 discovers a DataReader (Reader2) belonging to Participant2 that matches a
local DataWriter (Writer1) according to the constraints in the DDS security specification.

2. Participant2 discovers a DataWriter (Writer1) belonging to Participant1 that matches a
local DataReader (Reader2) according to the constraints in the DDS security specification.

sd DDS::Security-Kx-Writer

Participant1 DDS-Discovery DDS-Protocol Participant2

«interface»
CryptoKeyExchange

«interface»
CryptoKeyFactory

discoveredDatareader(Participant2, Reader2)

discoveredDatawriter(Participant1, Writer1)

register_matched_remote_datawriter() :DatawriterCryptoHandle

create_local_datareader_crypto_tokens() :Boolean

send(BuiltinParticipantVolati leSecureMessageWriter)
receive(receive(BuiltinParticipantVolati leSecureMessageReader)

set_remote_datareader_crypto_tokens() :Boolean

156 DDS Security, v1.0

3. Participant2 calls the operation register_matched_remote_datawriter as stated
in 8.8.8.

4. Participant2 calls the operation create_local_datareader_crypto_tokens on
the CryptoKeyExchange to obtain a collection of CriptoToken objects
(cryptoTokensReader2ForWriter1).

5. Participant2 sends the collection of CryptoToken objects
(cryptoTokensReader2ForWriter1) to Participant1 using the
BuiltinParticipantVolatileMessageSecureWriter.

6. Participant1 receives the CryptoToken objects (cryptoTokensReader2ForWriter1) and
calls the operation set_remote_ datareader_crypto_tokens()to register the
CryptoToken sequence with the DataWriter (Writer1). This will enable the
Cryptographic plugin on Participant1 to decode and verify MACs on the RTPS
submessages sent from Reader2 to Writer1.

8.8.10 Cryptographic Plugins encoding/decoding behavior

This sub clause describes the behavior of the DDS implementation related to the
CryptoTransform interface.

This specification does not mandate a specific DDS implementation in terms of the internal logic or
timing when the different operations in the CryptoTransform plugin are invoked. The sequence
charts below just express the requirements in terms of the operations that need to be called and their
interleaving. This specification only requires that by the time the RTPS message appears on the wire
the proper encoding operations have been executed first on each SerializedPayload submessage
element, then on the enclosing RTPS Submessage, and finally on the RTPS Message. Similarly by
the time a received RTPS Message is interpreted the proper decoding operations are executed on the
reverse order. First on the encoded RTPS Message, then on each SecureSubMsg, and finally on
each SecuredPayload submessage element.

8.8.10.1 Encoding/decoding of a single writer message on an RTPS message

The figure below illustrates the functionality of the security plugins with regards to encoding the data,
Submessages and RTPS messages in the situation where the intended RTPS Message contains a
single writer RTPS Submessage.

DDS Security, v1.0 157

Figure 30 – Cryptographic CryptoTransform plugin sequence diagram for encoding/decoding a single DataWriter

submessage

1. The application writes data using a DataWriter belonging to Participant1. The DDS
implementation serializes the data.

2. The DataWriter in Participant1 constructs the SerializedPayload RTPS
submessage element and calls the operation encode_serialized_payload. This
operation creates an RTPS SecData that protects the SerializedPayload potentially
encrypting it, adding a MAC and/or digital signature.

3. This step is notional; the specific mechanism depends on the DDS Implementation.
Participant1 realizes it is time to send the data written by the DataWriter to a remote
DataReader in Participant2.

4. Participant1 constructs the RTPS Data Submessage to send to the DataReader and calls the
operation encode_datawriter_submessage to transform the original Data
submessage to a SecureSubMsg. This same transformation would be applied to any
DataWriter submessage (Data, Gap, Heartbeat, DataFrag, HeartbeatFrag).
The encode_datawriter_submessage receives as parameters the
DatawriterCryptoHandle of the DataWriter and a list of
DatareaderCryptoHandle for all the DataReader entities to which the message
will be sent. Using a list allows the same SecureSubMsg to be sent to all those
DataReader entities.

5. Participant1 constructs the RTPS Message it intends to send to the DataReader (or
readers). It then calls encode_rtps_message to transform the original RTPS Message

sd DDS::Security-Xform-Writer

DDSApplication

«interface»
:CryptoTransform

DDS-Protocol Participant2

DataWriter

(from DDS)

Participant1

DataReader

(from DDS)

«interface»
:CryptoTransform

notify_data()

decode_rtps_message(): Boolean

preprocess_secure_submessage(): Boolean

decode_serialized_payload(): Boolean

encode_serialized_payload(): Boolean

encode_rtps_message(): Boolean

decode_datawriter_submessage(): Boolean

encode_datawriter_submessage(): Boolean

on_data()

send(RTPS encoded message)

write()

158 DDS Security, v1.0

into a new “encoded” RTPS Message with the same RTPS header and a single
SecureSubMsg protecting the contents of the original RTPS Message. The
encode_rtps_message receives as parameters the ParticipantCryptoHandle
of the sending DomainParticipant (Participant1) and a list of
ParticipantCryptoHandle for all the DomainParticipant entities to which the
message will be sent (Participant2). Using a list enables the DomainParticipant to
send the same message (potentially over multicast) to all those DomainParticipant
entities.

6. Participant1 sends the new “encoded” RTPS Message obtained as a result of the previous
step to Participant2.

7. Participant2 receives the “encoded” RTPS Message. Participant2 parses the message and
detects an RTPS SecureSubMsg with the MultiSubmsgFlag (see 7.3.6.2) set to
true. This indicates it shall call the operation decode_rtps_message to transform the
“encoded” RTPS Message into an RTPS Message that decodes the RTPS SecureSubMsg
and proceed to parse that instead.

8. Participant2 parses the RTPS Message resulting from the previous step and encounters an
RTPS SecureSubMsg with the MultiSubmsgFlag (see 7.3.6.2) set to false. This
indicates it shall call the operation prepare_rtps_submessage to determine whether
this is a Writer submessage or a Reader submessage and obtain the
DatawriterCryptoHandle and DatareaderCryptoHandle handles it needs to
decode the message. This function determines it is a Writer submessage.

9. Participant2 calls the operation decode_datawriter_submessage passing in the
RTPS SecureSubMsg and obtains the original Data submessage that was the input to
the encode_datawriter_submessage on the DataWriter side. From the Data
submessage the DDS implementation extracts the SecuredPayload submessage
element. This operation takes as arguments the DatawriterCryptoHandle and
DatareaderCryptoHandle obtained in the previous step.

10. This step is notional; the specific mechanism depends on the DDS Implementation.
Participant2 realizes it is time to notify the DataReader and retrieve the actual data sent by
the DataWriter.

11. Participant2 calls decode_serialized_payload passing in the RTPS
SecuredPayload and obtains the original SerializedPayload submessage
element was the input to the encode_serialized_payload on the DataWriter side.
This operation takes as arguments the DatawriterCryptoHandle and
DatareaderCryptoHandle obtained in step 8.

8.8.10.2 Encoding/decoding of multiple writer messages on an RTPS message

The figure below illustrates the functionality of the security plugins in the situation where the intended
RTPS message contains a multiple DataWriter RTPS Submessages, which can represent
multiple samples, from the same DataWriter or from multiple DataWriter entities, as well as, a mix
of Data, Heartbeat, Gap, and any other DataWriter RTPS Submessage as defined in 7.3.1.

DDS Security, v1.0 159

Figure 31 – Cryptographic CryptoTransform plugin sequence diagram for encoding/decoding multiple DataWriter

submessages

The steps followed to encode and decode multiple DataWriter Submessages within the same RTPS
message are very similar to the ones used for a single Writer message. The only difference is that the
writer side can create multiple RTPS Submessages. In this case, Participant1 creates two Data
Submessages and a Heartbeat Submessage, transforms each separately using the
encode_datawriter_submessage, places them in the same RTPS message and then transforms
the RTPS Message containing all the resulting SecureSubMsg submessages using
encode_rtps_message.

The steps followed to decode the message are the reverse ones.

Note that the DataWriter entities that are sending the submessages and/or the DataReader entities that
are the destination of the different Submessages may be different. In this situation each call to
encode_serialized_payload(), encode_datawriter_submessage(),
decode_datawriter_submessage(), and encode_serialized_payload(), shall
receive the proper DatawriterCryptoHandle and DatareaderCryptoHandle handles.

sd DDS::Security-Xform-Multiwriter

DDSApplication

«interface»
:CryptoTransform

DDS-Protocol Participant2

DataWriter

(from DDS)

Participant1

DataReader

(from DDS)

«interface»
:CryptoTransform

preprocess_secure_submessage(): Boolean

encode_rtps_message(): Boolean

encode_serialized_payload(): Boolean

write()

encode_datawriter_submessage(): Boolean

decode_serialized_payload(): Boolean

decode_datawriter_submessage(): Boolean

write()

decode_datawriter_submessage(): Boolean

decode_rtps_message(): Boolean

encode_serialized_payload(): Boolean

notify_data()

send(RTPS encoded message)

decode_serialized_payload(): Boolean

encode_datawriter_submessage(): Boolean

on_data()

get_data_to_send()

preprocess_secure_submessage(): Boolean

160 DDS Security, v1.0

8.8.10.3 Encoding/decoding of multiple reader messages on an RTPS message

The figure below illustrates the functionality of the security plugins in the situation where the intended
RTPS message contains multiple DataReader RTPS submessages from the same DataReader or
from multiple DataReader entities. These include AckNack and NackFrag RTPS
Submessages as defined in 7.3.1.

Figure 32 -- Cryptographic CryptoTransform plugin sequence diagram for encoding/decoding multiple DataReader

submessages

1. This step is notional; the specific mechanism depends on the DDS Implementation.
Participant2 realizes it is time to send an AckNack or NackFrag submessage from
DataReader to a remote DataWriter.

2. Participant2 constructs the AckNack (or any other DataReader RTPS Submessage)
and calls the operation encode_datareader_submessage. This operation creates an
RTPS SecureSubMsg that protects the original Submessage potentially encrypting it,
adding a MAC and/or digital signature. This operation shall receive as parameter the
DatareaderCryptoHandle of the DataReader that sends the submessage and a list
of DatawriterCryptoHandle handles of all the DataWriter entities to which the
Submessage will be sent.

3. Step 2 may be repeated multiple times constructing various SecureSubMsg submessages
from different DataReader RTPS Submessages. Different submessages may originate
on different DataReader entities and/or be destined for different DataWriter entities.
On each case the encode_datareader_submessage operation shall receive the

sd DDS::Security-Xform-Multireader

DataReader

(from DDS)

DataWriter

(from DDS)

«interface»
:CryptoTransform

DDS-ProtocolParticipant1 Participant2

«interface»
:CryptoTransform

get_acknack_to_send()

decode_datareader_submessage(): Boolean

on_acknack()

encode_rtps_message(): Boolean

encode_datareader_submessage(): Boolean

get_acknack_to_send()

on_acknack()

decode_rtps_message(): Boolean

preprocess_secure_submessage(): Boolean

send(RTPS encoded message)

decode_datareader_submessage(): Boolean

encode_datareader_submessage(): Boolean

preprocess_secure_submessage(): Boolean

DDS Security, v1.0 161

DatareaderCryptoHandle and list of DatawriterCryptoHandle that
correspond to the source and destinations of that particular Submessage.

4. Participant2 constructs the RTPS Message that contains the SecureSubMsg submessages
obtained as a result of the previous steps. It shall then call encode_rtps_message to
transform the “original” RTPS Message into another “encoded” RTPS Message containing
a single SecureSubMsg with the MultiSubmsgFlag (see 7.3.6.2) set to true.

5. Participant2 sends the “encoded” RTPS Message to Participant1 (and any other
destination DomainParticipant).

6. Participant1 receives the “encoded” RTPS Message. The DDS implementation parses the
message and detects an RTPS SecureSubMsg with the MultiSubmsgFlag (see
7.3.6.2) set to true. This indicates it shall call the decode_rtps_message() to
transform the “encoded” RTPS Message into an RTPS Message that decodes the RTPS
SecureSubMsg and proceed to parse that instead.

7. Participant1 parses the RTPS Message resulting from the previous step and encounters an
RTPS SecureSubMsg with the MultiSubmsgFlag (see 7.3.6.2) set to false. This
indicates it shall call prepare_rtps_submessage to determine whether this is a
DataWriter submessage or a DataReader submessage and obtain the
DatawriterCryptoHandle and DatareaderCryptoHandle handles it needs to
decode the message. This function determines it is a DataReader submessage.

8. Participant1 calls decode_datareader_submessage passing in the RTPS
SecureSubMsg and obtains the original AckNack (or proper DataReader Submessage)
submessage that was the input to the encode_datareader_submessage() on the
DataReader side (Participant2). This operation takes as arguments the
DatawriterCryptoHandle and DatareaderCryptoHandle obtained in the
previous step.

9. This step is notional; the specific mechanism depends on the DDS Implementation.
Participant1 realizes it is time to notify the DataReader of the Acknowledgment, negative
acknowledgment or whatever the DataReader Submessage indicated.

10. Each SecureSubMsg encountered within the RTPS Message having the
MultiSubmsgFlag (see 7.3.6.2) set to false is processed in this same way. The
operation prepare_rtps_submessage is first invoked and it indicates it is a
DataReader submessage Participant1 shall call
decode_datareader_submessage() on the submessage.

8.8.10.4 Encoding/decoding of reader and writer messages on an RTPS message

The figure below illustrates the functionality of the security plugins with regards to encoding the data,
Submessages and RTPS messages in the situation where the intended RTPS message contains multiple
RTPS Submessages which can represent a mix of different kinds of DataWriter and DataReader
submessages such as Data, Heartbeat, Gap, AckNack, NackFrag and any other RTPS
Submessage as defined in 7.3.1.

162 DDS Security, v1.0

Figure 33 – Cryptographic CryptoTransform plugin sequence diagram for encoding/decoding multiple DataWriter

and DataReader submessages

1. The application writes data using a DataWriter belonging to Participant1. The DDS
implementation serializes the data.

2. The DataWriter in Participant1 constructs the SerializedPayload RTPS
submessage element and calls the operation encode_serialized_payload. This
operation creates an RTPS SecData that protects the SerializedPayload potentially
encrypting it, adding a MAC and/or digital signature.

3. This step is notional; the specific mechanism depends on the DDS Implementation.
Participant1 realizes it is time to send the data written by the DataWriter to a remote
DataReader.

4. Participant1 constructs the RTPS Data Submessage that it will send to the DataReader
and calls the operation encode_datawriter_submessage to transform the original
Data submessage to a SecureSubMsg.

5. This step is notional. The specifics will depend on the DDS Implementation. Participant1
decides it needs to send a Heartbeat submessage along with the Data submessage. It
constructs the RTPS Heartbeat submessage and calls the operation
encode_datawriter_submessage() to transform the original Heartbeat
submessage to a SecureSubMsg.

sd DDS::Security-Xform-Multi-Reader-Writer

DDSApplication

«interface»
:CryptoTransform

DDS-Protocol Participant2Participant1

:DataReader:DataWriter :DataWriter:DataReader «interface»
:CryptoTransform

encode_rtps_message(): Boolean

decode_datareader_submessage(): Boolean

get_acknack_to_send()

decode_datawriter_submessage(Heartbeat): Boolean

on_heartbeat()

encode_serialized_payload(): Boolean

get_data_to_send()

decode_datawriter_submessage(): Boolean

encode_serialized_payload(): Boolean

decode_rtps_message(): Boolean

send(RTPS encoded message)

on_acknack()

encode_datareader_submessage(AckNack): Boolean

preprocess_secure_submessage(): Boolean

preprocess_secure_submessage(): Boolean

decode_datawriter_submessage(Data): Boolean

decode_datawriter_submessage(): Boolean

on_data()

notify_data()

preprocess_secure_submessage(): Boolean

write()

DDS Security, v1.0 163

6. This step is notional. The specific mechanism depends on the DDS Implementation.
Participant1 decides it also wants to include an RTPS AckNack submessage from a
DataReader that also belongs to Participant1 into the same RTPS Message because it is
destined to the same Participant2.

7. Participant1 constructs the RTPS AckNack submessage and calls
encode_datareader_submessage to transform the original AckNack submessage
to a SecureSubMsg.

8. Participant1 constructs the RTPS Message that contains the SecureSubMsg submessages
obtained as a result of the previous steps. It shall then call encode_rtps_message. To
transform the “original” RTPS Message into another “encoded” RTPS Message containing
a single SecureSubMsg with the MultiSubmsgFlag (see 7.3.6.2) set to true.

9. Participant1 sends the “encoded” RTPS Message to Participant2 (and any other
destination DomainParticipant).

10. Participant2 receives the “encoded” RTPS Message. Participant2 parses the message and
detects an RTPS SecureSubMsg with the MultiSubmsgFlag (see 7.3.6.2) set to
true. This indicates it shall call the decode_rtps_message to transform the
“encoded” RTPS Message into an RTPS Message that decodes the RTPS SecureSubMsg
and proceed to parse that instead.

11. Participant2 parses the RTPS Message resulting from the previous step and encounters an
RTPS SecureSubMsg with the MultiSubmsgFlag (see 7.3.6.2) set to false. This
indicates it shall call prepare_rtps_submessage to determine whether this is a
DataWriter submessage or a DataReader submessage and obtain the
DatawriterCryptoHandle and DatareaderCryptoHandle handles it needs to
decode the message. This function determines it is a DataWriter submessage.

12. Participant1 calls the operation decode_datawriter_submessage passing in the
RTPS SecureSubMsg and obtains the original Data submessage that was the input to
the encode_datawriter_submessage on Participant1. This operation takes as
arguments the DatawriterCryptoHandle and DatareaderCryptoHandle
obtained in the previous step.

13. This step is notional; the specific mechanism depends on the DDS Implementation. The
Participant2 realizes it is time to notify the DataReader of the arrival of data.

14. Participant2 calls decode_serialized_payload passing in the RTPS
SecuredPayload and obtains the original SerializedPayload submessage
element was the input to the encode_serialized_payload on the Participant1 side.
This operation takes as arguments the DatawriterCryptoHandle and
DatareaderCryptoHandle obtained in the step 11.

15. Step 11 is repeated. It is again determined that the next SecureSubMsg is a
DataWriter submessage and the proper DatawriterCryptoHandle and
DatareaderCryptoHandle handles are retrieved.

164 DDS Security, v1.0

16. Step 12 is repeated. Participant2 calls decode_datawriter_submessage passing in
the RTPS SecureSubMsg and it transforms it into the original Heartbeat
submessage.

17. This step is notional; the specific mechanism depends on the DDS Implementation.
Participant2 notifies DataReader of the Heartbeat.

18. Step 11 is repeated. It is determined that the next SecureSubMsg is a DataReader
submessage and the proper DatawriterCryptoHandle and
DatareaderCryptoHandle handles are retrieved.

19. Participant2 calls decode_datareader_submessage passing in the RTPS
SecureSubMsg and obtains the original AckNack submessage that was the input to the
encode_datareader_submessage on Participant1. This operation takes as
arguments the DatawriterCryptoHandle and DatareaderCryptoHandle
obtained in the previous step.

20. This step is notional; the specific mechanism depends on the DDS Implementation.
Participant2 notifies DataWriter of the AckNack.

DDS Security, v1.0 165

9 Builtin Plugins
9.1 Introduction
This specification defines the behavior and implementation of at least one builtin plugin for each kind
of plugin. The builtin plugins provide out-of-the-box interoperability between implementations of this
specification.

The builtin plugins are summarized in the table below:
Table 34 – Summary of the Builtin Plugins

SPI Plugin Name Description

Authentication DDS:Auth:PKI-DH Uses PKI with a pre-configured shared Certificate
Authority.

RSA or DSA and Diffie-Hellman for authentication and
key exchange.

AccessControl DDS:Access:Permissions Permissions document signed by shared Certificate
Authority

Cryptography DDS:Crypto:AES-GCM-
GMAC

AES-GCM (AES using Galois Counter Mode) for
encryption.

AES-GMAC for message authentication.

DataTagging DDS:Tagging:DDS_Discovery Send Tags via Endpoint Discovery

Logging DDS:Logging:DDS_LogTopic Logs security events to a dedicated DDS Log Topic

9.2 Requirements and Priorities (Non-Normative)
The selection of the builtin plugins was driven by several functional, as well as, non-functional
requirements, as described below.

Most DDS users surveyed consider the following functional requirements as essential elements of a
secure DDS middleware:

• Authentication of applications (DDS Domain Participants) joining a DDS Domain.

• Access control of applications subscribing to specific data at the Domain and Topic level.

• Message integrity and authentication.

• Encryption of a data sample using different encryption keys for different Topics.

In addition to these essential needs, many users also required that secure DDS middleware should
provide for:

• Sending digitally signed data samples.

• Sending data securely over multicast.

• Tagging data.

166 DDS Security, v1.0

• Integrating with open standard security plugins.

Other functional requirements which are considered useful but less common were:

• Access control to certain samples within a Topic but not others, with access rights being
granted according to the data-sample contents or the data-sample key.

• Access control to certain attributes within a data sample but not others, such that certain
DataReader entities can only observe a subset of the attributes as defined by their permissions.

• Permissions that control which QoS might be used by a specific DDS Entity:
DomainParticipant, Publisher, DataWriter, Subscriber, or DataReader.

The primary non-functional requirements that informed the selection of the builtin plugins are:

• Performance and Scalability.

• Robustness and Availability.

• Fit to the DDS Data-Centric Information Model.

• Leverage and reuse of existing security infrastructure and technologies.

• Ease of use while supporting common application requirements.

9.2.1 Performance and Scalability

DDS is commonly deployed in systems that demand high performance and need to scale to large
numbers of processes and computers. Different applications vary greatly in the number of processes,
Topics, and/or data-objects belonging to each Topic.

The policy enforcement/decision points as well as the transformations (cipher, decipher, hash)
performed by the plugins should not adversely degrade system performance and scalability beyond
what is tolerable and strictly needed. In practice this means several things for the builtin plugins:

• The use of Asymmetric Key Cryptography shall be limited to the discovery, authentication,
session and shared-secret establishment phase (i.e., when a Participant discovers another
Participant, a DataReader and matching DataWriter). To the extent possible it shall not be used
in the critical path of data distribution.

• The use of ciphers, HMACs, or digital signatures shall be selectable on a per stream (Topic)
basis. In case of encryption, symmetric ciphers should be used for the application data.

• It shall be possible to provide integrity via HMAC techniques without also requiring the data to
be ciphered.

• Multicast shall be supported even for ciphered data.

9.2.2 Robustness and Availability

DDS is deployed in mission-critical systems, which must continue to operate 24/7 despite partial
system malfunction. DDS also operates in fielded environments where specific components or systems
may be subject to accidental failure or active attack. DDS provides a highly robust infrastructure due to
the way the communication model and protocols are defined as they can be (and commonly are)
implemented in a peer-to-peer fashion without any centralized services. For this reason, many DDS
implementations have no single points of failure.

DDS Security, v1.0 167

The builtin plugins should not negate these desirable properties present in the underlying DDS
middleware infrastructure.

In practice, this means that:

• Centralized policy decision points or services should be avoided.

• The individual DDS DomainParticipant components should be self-contained and have what
they need to operate securely even in the presence of system partitions.

• Multi-party key agreement protocols shall be avoided because they can be easily disrupted by
disrupting just one party.

• Security tokens and keys should be compartmentalized as much as possible such that
compromise of an application component is contained to that component itself. For example,
selection of a system-wide secret key for the whole Domain or even for a Topic should be
avoided.

9.2.3 Fitness to the DDS Data-Centric Model

Application developers that use DDS think in terms of the data-centric elements that DDS provides.
That is, they think first and foremost about the Domains (global data spaces) the application must join
and the Topics that the application needs to read and write. Therefore, the builtin plugins should offer
the possibility to control access with this level of granularity.

Users of DDS also think about the data objects (keyed instances) they read and write, the ability to
dispose instances, filter by content, set QoS, and so forth. While it may be useful to offer ways to
provide access controls to this as well, it was considered of lesser priority and potentially conflicting
with the goal of ease of configurability and maintainability.

The semantics of DDS communications require that individual samples can be consumed
independently of each other. Depending on the QoS policy settings samples written by a single
DataWriter may be received and processed out of order relative to the order sent, or may be received
with intermediate gaps resulting from best-effort communication (if selected), or may be filtered by
content, time, or history, etc. For this reason, any encryption and/or digital signature applied to a
sample should be able to be processed in isolation, without requiring the receiver to maintain a specific
context reconstructed from previous samples.

9.2.4 Leverage and Reuse of Existing Security Infrastructure and Technologies

To the extent possible, it is desirable that the builtin plugins leverage and reuse existing IA technology
and tools. This not only reduces the barrier of entry for implementers of the specification, but also
more importantly enhances the quality of the result by allowing the use of proven, peer-reviewed,
and/or already certified approaches. The builtin plugins leverage existing standards and tools for PKI,
ciphers, hashing and digital signing. To the extent possible, ideas and approaches from existing
protocols for key management and secure multicast are also leveraged, although where appropriate
they have been adapted to the data-centric communications model of DDS and the DDS-RTPS wire
protocol.

9.2.5 Ease-of-Use while Supporting Common Application Requirements

It is anticipated that specialized applications may need to develop their own security plugins to either
integrate existing security infrastructure or meet specialized requirements. Therefore the primary

168 DDS Security, v1.0

consumers of the builtin plugins will be users who want to secure their systems but not have complex
needs or significant legacy components. Under these conditions, ease-of-use is essential. A security
infrastructure that is too hard to configure or too complex to understand or maintain is less likely to be
used, or may be used wrongly, resulting in systems that are less secure overall.

The builtin plugins balance rich functionality and ease-of-use, providing for the most common use
cases, in a manner that is easy to understand and use correctly.

9.3 Builtin Authentication: DDS:Auth:PKI-DH
This builtin authentication plugin is referred to as the “DDS:Auth:PKI-DH”.

The DDS:Auth:PKI-DH plugin implements authentication using a trusted Certificate
Authority (CA). It performs mutual authentication between discovered participants using the RSA
or ECDSA Digital Signature Algorithms [11] and establishes a shared secret using Diffie-Hellman
(DH) or Elliptic Curve Diffie-Hellman (ECDH) Key Agreement Methods [12].

The CA could be an existing one. Or a new one could be created for the purpose of deploying
applications on a DDS Domain. The nature or manner in which the CA is selected is not important
because the way it is used enforces a shared recognition by all participating applications.

Prior to a DomainParticipant being enabled the DDS:Auth:PKI-DH plugin associated with the
DomainParticipant must be configured with three things:

1. The X.509 Certificate that defines the Shared Identity CA. This certificate
contains the Public Key of the CA.

2. The Private Key of the DomainParticipant.

3. An X.509 Certificate that chains up to the Shared Identity CA, that binds the
Public Key of the DomainParticipant to the Distinguished Name (subject name)
for the DomainParticipant.

9.3.1 Configuration

The builtin authentication plugin shall be configured using the PropertyQosPolicy of the
DomainParticipantQos. The specific properties used are described in Table 35 below.
Table 35 – Properties used to configure the builtin Authentication plugin

Property Name

(all properties have
“dds.sec.auth” prefix)

Property Value
(all these properties shall have propagate set to FALSE)

URI syntax follows IETF RFC 3986.
URI “data” schema follows IETF RFC 2397
URI “pkcs11” schema follows IETF RFC 7512
Vendors may support additional schemas

identity_ca

URI to the X509 certificate [39] of the Identity CA.
Supported URI schemes: file, data, pkcs11
The file and data schemas shall refer to a X.509 v3 certificate (see X.509
v3 ITU-T Recommendation X.509 (2005) [39]) in PEM format.

Examples:

DDS Security, v1.0 169

file:identity_ca.pem
file:/home/myuser/identity_ca.pem

data:,-----BEGIN CERTIFICATE-----
MIIC3DCCAcQCCQCWE5x+Z … PhovK0mp2ohhRLYI0ZiyYQ==
-----END CERTIFICATE-----

pkcs11:object=MyIdentityCACert;type=cert

private_key

URI to access the private Private Key for the DomainParticipant
Supported URI schemes: file, data, pkcs11
pkcs11 URI follows IETF RFC 7512 “The PKCS #11 URI Scheme”

Examples:
file:identity_ca_private_key.pem
file:/home/myuser/identity_ca_private_key.pem
file:identity_ca_private_key.pem?password=OpenSesame

data:,-----BEGIN RSA PRIVATE KEY-----
MIIEpAIBAAKCAQEA3HIh...AOBaaqSV37XBUJg==
-----END RSA PRIVATE KEY-----

pkcs11:object=MyParticipantPrivateKey;type=private?pin-
value=OpenSesame

password A password used to decrypt the private_key.

The value of the password property shall be interpreted as the Base64
encoding of the AES-128 key that shall be used to decrypt the private_key
using AES128-CBC.

If the password property is not present, then the value supplied in the
private_key property must contain the unencrypted private key.

The password property is only used if the private_key is provided with a
“file:” or a “data:” URI. It does not apply to private keys supplied with the
“pkcs11:” URI.

identity_certificate

URI to a X509 certificate signed by the IdentityCA in PEM format
containing the signed public key for the DomainParticipant
Supported URI schemes: file, data, pkcs11

Examples:

file:participant1_identity_cert.pem

data:,-----BEGIN CERTIFICATE-----
MIIDjjCCAnYCCQDCEu9...6rmT87dhTo=
-----END CERTIFICATE-----

pkcs11:object=MyParticipantIdentityCert;type=cert

170 DDS Security, v1.0

9.3.1.1 Identity CA Certificate

The certificate used to configure the public key of the Identity CA.

The certificate shall be the X.509 v3 Certificate [39] of the issuer of the Identity Certificates in section
9.3.1.3. The certificate can be self-signed if it is a root CA or signed by some other CA public key if it
is a subordinate CA. Regardless of this the Public Key in the Certificate shall be accepted as the one
for the Identity CA trusted to sign DomainParticipant Identity Certificates, see 9.3.1.3.

The public key of the CA shall be either a 2048-bit RSA key [44] or else a 256-bit Elliptic Curve Key
for the prime256v1 curve [41], also known as the NIST P-256 curve [42].

The Identity CA Certificate shall be provided to the plugins using the PropertyQosPolicy on the
DomainParticipantQos as specified in Table 35.

9.3.1.2 Private Key

The Private Key associated with the DomainParticipant. It may be either a 2048-bit RSA private
key or a 256-bit Elliptic Curve Key for use with the prime256v1 curve [41].

The Private Key shall be provided to the plugins using the PropertyQosPolicy on the
DomainParticipantQos as specified in Table 35.

9.3.1.3 Identity Certificate

An X.509 v3 Certificate [39] that chains up to the Identity CA (see 9.3.1.1). The Identity Certificate
binds the Public Key of the DomainParticipant to the Distinguished Name (subject name) for the
DomainParticipant.

9.3.2 DDS:Auth:PKI-DH Types

This sub clause specifies the content and format of the Credential and Token objects used by the
DDS:Auth:PKI-DH plugin.

Credential and Token attributes left unspecified in this specification shall be understood to not
have any required values in this specification. These attributes shall be handled according to the
following rules:

• Plugin implementations may place data in these attributes as long as they also include a property
attribute that allows the implementation to unambiguously detect the presence and interpret these
attributes.

• Attributes that are not understood shall be ignored.
• Property_t and BinaryProperty_t names shall comply with the rules defined in 7.2.1 and

7.2.2, respectively.

The content of the Handle objects is not specified as it represents references to internal state that is
only understood by the plugin itself. The DDS Implementation only needs to hold a reference to the
returned Handle objects returned by the plugin operations and pass these Handle references to other
operations.

9.3.2.1 DDS:Auth:PKI-DH IdentityToken

The DDS:Auth:PKI-DH plugin shall set the attributes of the IdentityToken object as specified in
the table below:

DDS Security, v1.0 171

Table 36 – IdentityToken class for the builtin Authentication plugin

Attribute name Attribute value

class_id “DDS:Auth:PKI-DH:1.0”

properties

(The presence of each of
properties is optional)

name value

dds.cert.sn The subject name of the Identity
Certificate.

dds.cert.algo “RSA-2048” or “EC-prime256v1”

dds.ca.sn The subject name of the Identity CA
Certificate.

dds.ca.algo “RSA-2048” or “EC-prime256v1”

9.3.2.2 DDS:Auth:PKI-DH AuthenticatedPeerCredentialToken

The DDS:Auth:PKI-DH plugin shall set the attributes of the
AuthenticatedPeerCredentialToken object as specified in the table below:
Table 37 – AuthenticatedPeerCredentialToken class for the builtin Authentication plugin

Attribute name Attribute value

class_id “DDS:Auth:PKI-DH:1.0”

properties

name value

c.id Contents of the certificate signed by IdentityCA that was received
from the peer DomainParticipant as part of the authentication
process.

Corresponds to the property with the same name received in the
HandskaheRequestMessageToken or
HandskaheReplyMessageToken.

c.perm Contents of the permissions document signed by the PermissionCA
that that was received from the peer DomainParticipant as part of
the authentication process.

Corresponds to the property with the same name received in the
HandskaheRequestMessageToken or
HandskaheReplyMessageToken.

9.3.2.3 DDS:Auth:PKI-DH HandshakeMessageToken

The DDS:Auth:PKI-DH plugin uses several HandshakeMessageToken object formats:

• HandshakeRequestMessageToken objects
• HandshakeReplyMessageToken objects
• HandshakeFinalMessageToken objects

172 DDS Security, v1.0

9.3.2.3.1 HandshakeRequestMessageToken objects

The attributes in HandshakeRequestMessageToken objects shall be set as specified in the table
below. References to the DomainParticipant within the table refer to the
DomainParticipant that is creating the HandshakeRequestMessageToken.
Table 38 – HandshakeRequestMessageToken for the builtin Authentication plugin

Attribute name Attribute value

class_id “DDS:Auth:PKI-DH:1.0+Req”

binary_properties name value

c.id Contents of the certificate signed by IdentityCA that was
configured using the Participant PropertyQosPolicy with
name “dds.sec.auth.identity_certificate.”

c.perm Contents of the permissions document signed by the
PermissionCA that was configured using the Participant
PropertyQosPolicy with name “dds.sec.access.permissions.”

c.pdata The CDR Big Endian Serialization of the
ParticipantBultinTopicData.

c.dsign_algo Digital signature algorithm identifier.

Either “RSASSA-PSS-SHA256” or “ECDSA-SHA256”

c.kagree_algo Key agreement algorithm identifier.

Either “DH+MODP-2048-256” or “ECDH+prime256v1-
CEUM”

hash_c1 SHA-256 hash of the CDR Big Endian serialization of a
BinaryPropertySeq object containing all the properties
above that start with “c.” placed in the same order as they
appear above.

Inclusion of the hash_c1 property is optional. Its only
purpose is to facilitate troubleshoot interoperability
problems.

dh1 The CDR Big Endian Serialization of a Diffie-Hellman Public
Key chosen by the Participant. This will be used for key
agreement.

challenge1 A Random Challenge generated by the Participant,
compliant with the recommendations of Section 3.2.1 of
FIPS-196 [46]

Plugin implementations may add extra properties as long as the names comply with the rules defined in
in 7.2.1. Plugin implementations shall ignore any properties they do not understand.

DDS Security, v1.0 173

If the Participant Identity uses a RSA Public Key, then the c.dsign_algo shall be “RSASSA-PSS-
SHA256”.

If the Participant Identity uses a EC Public Key, then the c.dsign_algo shall be “ECDSA-SHA256”.

9.3.2.3.2 HandshakeReplyMessageToken

The attributes in the HandshakeReplyMessageToken objects are set as specified in the table
below. References to the DomainParticipant within the table refer to the
DomainParticipant that is creating the HandshakeReplyMessageToken.
Table 39 – HandshakeReplyMessageToken for the builtin Authentication plugin

Attribute name Attribute value

class_id “DDS:Auth:PKI-DH:1.0+Reply”

binary_properties name value

c.id Contents of the certificate signed by IdentityCA that was
configured using the Participant PropertyQosPolicy with
name “dds.sec.auth.identity_certificate.”

c.perm Contents of the permissions document signed by the
PermissionCA that was configured using the Participant
PropertyQosPolicy with name
“dds.sec.access.permissions.”

c.pdata The CDR Big Endian Serialization of the
ParticipantBultinTopicData.

c.dsign_algo Digital signature algorithm identifier.

Either “RSASSA-PSS-SHA256” or “ECDSA-SHA256”

c.kagree_algo Key agreement algorithm identifier.

Either “DH+MODP-2048-256” or “ECDH+prime256v1-
CEUM”

hash_c2 SHA-256 hash of the CDR Big Endian serialization of a
BinaryPropertySeq object containing all the properties
above that start with “c.” placed in the same order as they
appear above.

Inclusion of the hash_c2 property is optional. Its only
purpose is to facilitate troubleshoot interoperability
problems.

dh2 The CDR Big Endian Serialization of a Diffie-Hellman Public
Key chosen by the Participant. This will be used to establish
the shared secret.

hash_c1 The value of the related HandshakeRequestMessageToken
property hash_c1.

174 DDS Security, v1.0

Inclusion of the hash_c1 property is optional. Its only
purpose is to facilitate troubleshoot interoperability
problems.

dh1 The value of the related HandshakeRequestMessageToken
property dh1.

Inclusion of the dh1 property is optional. Its only purpose
is to facilitate troubleshoot interoperability problems.

challenge1 Value of the related HandshakeRequestMessageToken
property challenge1.

challenge2 A Random Challenge generated by the Participant,
compliant with the recommendations of Section 3.2.1 of
FIPS-196 [46].

signature The Digital Signature of the CDR Big Endian serialization of
a BinaryPropertySeq object containing the properties:
hash_c2, challenge2, dh2, challenge1, dh1, and hash_c1,
placed in that order.

All the aforementioned properties shall appear within the
signature even if some of the optional properties do not
appear separately as properties in the
HandshakeReplyMessageToken.

Plugin implementations may add extra properties as long as the names comply with the rules defined in
7.4.3.5. Plugin implementations shall ignore any properties they do not understand.

If the value of the c. kagree_algo property is “DH+MODP-2048-256”, then:

• The Diffie-Hellman Public Key shall be for the 2048-bit MODP Group with 256-bit Prime
Order Subgroup, see IETF RFC 5114 [47], section 2.3.

• The Key Agreement Algorithm shall be the “dhEphem, C(2e, 0s, FFC DH) Scheme” defined
in section 6.1.2.1 of NIST Special Publication 800-56A Revision 2 [48].

Non-normative note: The OpenSSL 1.0.2 operation DH_get_2048_256() retrieves the parameters for
the 2048-bit MODP Group with 256-bit Prime Order Subgroup.

If the value of the c.kagree_algo property is “ECDH+prime256v1-CEUM”, then:

• The Diffie-Hellman Public Key shall be for the NIST’s EC Curve P-256 as defined in appendix
D of FIPS 186-4 [42] also known as prime256v1 in ANSI X9.62-2005 [41].

• The Key Agreement Algorithm shall be the “(Cofactor) Ephemeral Unified Model, C(2e, 0s,
ECC CDH)” defined in section 6.1.2.2 of NIST Special Publication 800-56A Revision 2 [48].
See also section 3.1 “Ephemeral Unified Model” of NIST Suite B Implementer’s Guide to
NIST SP 800-56A [49].

The digital signature shall be computed using the Private Key associated with the DomainParticipant,
which corresponds to the Public Key that appears in the Identity Certificate.

DDS Security, v1.0 175

If the Participant Private Key is an RSA key, then:

• The value of the c.dsign_algo property shall be “RSASSA-PSS-SHA256”.
• The digital signature shall be computed using the RSASSA-PSS algorithm specified in PKCS

#1 (IETF 3447) RSA Cryptography Specifications Version 2.1 [44], using SHA256 as hash
function, and MGF1 with SHA256 (mgf1sha256) as mask generation function.

If the Participant Private Key is an EC key, then:

• The value of the c.dsign_algo shall be “ECDSA-SHA256”.
• The digital signature shall be computed using the ECDSA-SHA256 algorithm specified in

ANSI X9.62-2005 [41].

9.3.2.3.3 HandshakeFinalMessageToken

HandshakeFinalMessageToken objects are used to finish an authentication handshake and
communicate a SharedSecret. References to the DomainParticipant within the table refer to
the DomainParticipant that is creating the HandshakeFinalMessageToken.

The SharedSecret shall be a 256-bit random number generated using a cryptographically-strong
random number generator. Each created HandshakeFinalMessageToken shall have associated a
unique SharedSecret.

The attributes in the HandshakeFinalMessageToken objects shall be set as specified in the table
below.
Table 40 – HandshakeFinalMessageToken for the builtin Authentication plugin

Attribute name Attribute value

class_id “DDS:Auth:PKI-DH:1.0+Final”.

binary_properties name value

hash_c1 The value of the related HandshakeRequestMessageToken
property hash_c1.

Inclusion of the hash_c1 property is optional. Its only purpose
is to facilitate troubleshoot interoperability problems.

hash_c2 The value of the related HandshakeReplyMessageToken
property hash_c2.

Inclusion of the hash_c2 property is optional. Its only purpose
is to facilitate troubleshoot interoperability problems.

dh1 The value of the related HandshakeRequestMessageToken
property dh1.

Inclusion of the dh1 property is optional. Its only purpose is to
facilitate troubleshoot interoperability problems.

dh2 The value of the related HandshakeReplyMessageToken
property dh2.

176 DDS Security, v1.0

Inclusion of the dh2 property is optional. Its only purpose is to
facilitate troubleshoot interoperability problems. |

challenge1 Value of HandshakeRequestMessageToken property
challenge1

challenge2 Value of HandshakeReplyMessageToken property challenge2

signature The Digital Signature of the CDR Big Endian serialization of a
BinaryPropertySeq object containing the properties: hash_c1,
challenge1, dh1, challenge2, dh2, and hash_c2, placed in that
order.

All the aforementioned properties shall appear within the
signature even if some of the optional properties do not appear
separately as properties in the HandshakeFinalMessageToken.

The Diffie Hellman public key shall be for the same algorithm and Domain Parameters that were used
for the HandshakeRequestMessageToken key received as value of the dh2 property. The
parameters and algorithm shall be determined based on the value of the
HandshakeRequestMessageToken parameter with key c.kagree_algo. In other words, it is the
Participant that creates the HandshakeRequestMessageToken the one that controls the key
agreement algorithm used.

The digital signature shall be computed using the Private Key associated with the DomainParticipant,
which corresponds to the Public Key that appears in the Identity Certificate.

If the Participant Private Key is a RSA key, then the digital signature shall be computed using the
RSASSA-PSS algorithm specified in PKCS #1 (IETF 3447) RSA Cryptography Specifications Version
2.1 [44], using SHA256 as hash function, and MGF1 with SHA256 (mgf1sha256) as mask generation
function.

If the Participant Participant Private Key is an EC key, then the digital signature shall be computed
using the ECDSA-SHA256 algorithm specified in ANSI X9.62-2005 [41].

9.3.3 DDS:Auth:PKI-DH plugin behavior

The table below describes the actions that the DDS:Auth:PKI-DH plugin performs when each of the
plugin operations is invoked.
Table 41 – Actions undertaken by the operations of the builtin Authentication plugin

validate_local_ide
ntity

This operation shall receive the participant_key associated with
the local DomainParticipant whose identity is being
validated.

The operation shall receive the DomainParticipantQos
with a PropertyQosPolicy containing the properties defined
in section 9.3.1.

The operation shall verify the validity of the X509 certificate
associated with the property named
dds.sec.auth.identity_certificate using the CA configured by the

DDS Security, v1.0 177

dds.sec.auth.identity_ca property.. The operation shall check a
CRL and/or an OCSP (RFC 2560) responder. This includes
checking the expiration date of the certificate.

If the above check fails the operation shall return
VALIDATION_FAILED.

The operation shall fill the handle with an implementation-
dependent reference that allows the implementation to retrieve at
least the following information:

1. The private key associated with the identity_credential
2. The public key associated with the identity_credential
3. The participant_key

The operation shall return the 16-byte adjusted_participant_key
computed as follows:

• The first bit (bit 0) shall be set to 1.
• The 47 bits following the first bit (bits 1 to 47) shall be set to

the 47 first bits of the SHA-256 hash of the SubjectName
appearing on the identity_credential.

• The following 48 bits (bits 48 to 95) shall be set to the first 48
bits of the SHA-256 hash of the candidate_participant_key.

• The remaining 32 bits (bits 96 to 127) shall be set identical to
the corresponding bits in the candidate_participant_key.

If successful, the operation shall return VALIDATION_OK.

get_identity_token The operation shall receive the handle corresponding to the one
returned by a successful previous call to validate_local_identity.

If the above condition is not met the operation shall return the
exception DDS_SecurityException_PreconditionError.

This operation shall return an IdentityToken object with the
content specified in 9.3.2.1.

set_permissions_cr
edential_and_token

This operation shall store the
PermissionsCredentialToken and the
PermissionsToken internally to the plugin and associate
them with the DomainParticipant represented by the
IdentityHandle.

validate_remote_id
entity

The operation shall receive the IdentityToken of the remote
participant in the argument remote_identity_token.

The contents of the IdentityToken shall be identical to what
would be returned by a call to get_identity_token on the
Authentication plugin of the remote
DomainParticipant associated with the
remote_participant_key.

178 DDS Security, v1.0

The operation shall compare lexicographically the
remote_participant_key with the participant key obtained from
the local_identity_handle.

If the remote_participant_key > local participant_key, the
operation shall return
VALIDATION_PENDING_HANDSHAKE_REQUEST.

If the remote_participant_key < local participant_key, the
operation shall return
VALIDATION_PENDING_HANDSHAKE_MESSAGE.

In both scenarios the remote_identity_handle shall be filled with
a reference to internal plugin information that identifies the
remote participant and associates it to the remote_identity_token
and any additional information required for the challenge
protocol.

begin_handshake_re
quest

The operation shall receive the initiator_identity_handle
corresponding to the local_identity_handle of a previous
invocation to the validate_remote_identity operation that returned
VALIDATION_PENDING_HANDSHAKE_REQUEST.

The operation shall also receive the replier_identity_handle
corresponding to the remote_identity_handle returned by that
same invocation to the validate_remote_identity operation.

The operation shall return the handshake_message containing a
HandshakeRequestMessageToken object with contents as
defined in 9.3.2.3.1.

The operation shall fill the handshake_handle with an
implementation-dependent reference that allows the
implementation to retrieve at least the following information:

1. The local_identity_handle
2. The remote_identity_handle
3. The value attribute of the handshake_message

returned

The operation shall return
VALIDATION_PENDING_HANDSHAKE_MESSAGE.

begin_handshake_
reply

The operation shall receive the replier_identity_handle
corresponding to local_identity_handle of a previous invocation
to the validate_remote_identity operation that returned
VALIDATION_PENDING_CHALLENGE_MESSAGE.

The operation shall also receive the initiator_identity_handle
corresponding to the remote_identity_handle returned by that
same invocation to the validate_remote_identity
operation.

DDS Security, v1.0 179

If any of the above conditions is not met, the operation shall
return the exception DDS_SecurityException_PreconditionError.

The operation shall verify the validity of the
IdentityCredential contained in the property named
“c.id” found in the handshake_message_in
HandshakeRequestMessageToken. This verification shall
be done using the locally configured CA in the same manner as
the validate_local_identity operation.

If the handshake_message_in does not contain the
aforementioned property or the verification fails, then the
operation shall fail and return ValidationResult_Fail.

The operation shall verify that the first bit of the participant_key
of the ParticipantBuiltinTopic data inside the “c.pdata” is set
to 1 and that the following 47 bits match the first 47 bits of the
SHA-256 hash of the SubjectName appearing in the
IdentityCredential. If this verification fails, the operation
shall fail and return ValidationResult_Fail.

The operation shall fill the handshake_message_out with a
HandshakeReplyMessageToken object with the content
specified in 9.3.2.3.2.

The operation shall fill the handshake_handle with an
implementation-dependent reference that allows the
implementation to retrieve at least the following information:

1. The replier_identity_handle
2. The initiator_identity_handle
3. The value attribute of the challenge_message returned
4. The property with name “dds.sec.permissions” found

within the handshake_message_in if present

The operation shall return
VALIDATION_PENDING_CHALLENGE_MESSAGE.

process_handshake

on a handshake_handle

created by

begin_handshake_
request

The operation shall be called with the handshake_handle
returned by a previous call to begin_handshake_request that
returned VALIDATION_PENDING_CHALLENGE_MESSAGE.

The handshake_message_in shall correspond to a
HandshakeReplyMessageToken object received as a reply
to the handshake_message
HandshakeRequestMessageToken object associated with
the handshake_handle.

If any of the above conditons is not met, the operation shall return
the exception DDS_SecurityException_PreconditionError.

The operation shall verify that the contents of the

180 DDS Security, v1.0

handshake_message_in correspond to a
HandshakeReplyMessageToken as described in 9.3.2.3.2.

The operation shall verify the validity of the
IdentityCredential contained in the property named
“c.id” found in the handshake_message_in
HandshakeReplyMessageToken. This verification shall be
done using the locally configured CA in the same manner as the
validate_local_identity operation.

If the handshake_message_in does not contain the
aforementioned property or the verification fails, then the
operation shall fail and return ValidationResult_Fail.

The operation shall check that the challenge1 matches the one
that was sent on the HandshakeRequestMessageToken.

The operation shall validate the digital signature in the
“signature” property, according to the algorithm described in
section 9.3.2.3.2.

If the specified checks do not succeed, the operation shall return
VALIDATION_FAILED.

The operation shall create a
HandshakeFinalMessageToken object as described in
9.3.2.3.3. The operation shall fill the handshake_message_out
with the created HandshakeFinalMessageToken object.

The operation shall store the value of property with name
“dds.sec.” found within the handshake_message_in, if
present and associate it with the handshake_handle as the
PermissionsCertificate of remote
DomainParticipant.

The operation shall use the Diffie Hellman Public Key in the
“dh2” property in combination with the Diffie Hellman Private
Key it used to compute the
HandshakeFinalMessageToken “dh1” property to
compute the shared secret. The algorithm shall be as described in
section 9.3.2.3.2.

On success the operation shall return
VALIDATION_OK_WITH_FINAL_MESSAGE.

process_handshake

on a handshake_handle

created by

begin_handshake_re
ply

The operation shall be called with the handshake_handle
returned by a previous call to begin_handshake_reply that
returned
VALIDATION_PENDING_HANDSHAKE_MESSAGE.

The handshake_message_in shall correspond to the one received
as a reply to the handshake_message_out associated with the

DDS Security, v1.0 181

handshake_handle.

If any of the above conditions is not met, the operation shall
return the exception DDS_SecurityException_PreconditionError.

The operation shall verify that the contents of the
handshake_message_in correspond to a
HandshakeFinalMessageToken object as described in
9.3.2.3.3.

The operation shall check that the challenge1 and challenge2
match the ones that were sent on the
HandshakeReplyMessageToken.

The operation shall validate the digital signature in the
“signature” property, according to the expected contents and
algorithm described in section 9.3.2.3.3.

The operation shall use the Diffie Hellman Public Key in the
“dh1” property in combination with the Diffie Hellman Private
Key it used to compute the
HandshakeReplyMessageToken “dh2” property to
compute the shared secret. The algorithm shall be as described in
section 9.3.2.3.2.

On success the operation shall return VALIDATION_OK.

get_shared_secret This operation shall be called with the handshake_handle that
was previously used to call either process_handshake and for
which the aforementioned operation returned
VALIDATION_OK_WITH_FINAL_MESSAGE or
VALIDATION_OK.

If the above conditon is not met, the operation shall return the
exception DDS_SecurityException_PreconditionError.

The operation shall return a SharedSecretHandle that is
internally associated with the SharedSecret established as part of
the handshake.

On failure the operation shall return nil.

get_authenticated_
peer_credential_to
ken

This operation shall be called with the handshake_handle that
was previously used to call either process_handshake and for
which the aforementioned operation returned
VALIDATION_OK_WITH_FINAL_MESSAGE or
VALIDATION_OK.

If the above conditon is not met, the operation shall return the
exception DDS_SecurityException_PreconditionError.

The operation shall return the
AuthenticatedPeerCredentialToken of the peer
DomainParticipant associated with the handshake_handle.

182 DDS Security, v1.0

If the DomainParticipant initiated the handshake, then the
peer AuthenticatedPeerCredentialToken is
constructed from the HandshakeReplyMessageToken,
otherwise it is constructed from the
HandshakeRequestMessageToken. See section 9.3.2.2.

On failure the operation shall return nil.

set_listener

This operation shall save a reference to the listener object and
associate it with the specified IdentityHandle.

return_identity_to
ken

This operation shall behave as specified in 8.3.2.9.12.

return_peer_permis
sions_credential_t
oken

This operation shall behave as specified in 8.3.2.9.13.

return_handshake_h
andle

This operation shall behave as specified in 8.3.2.9.14.

return_identity_ha
ndle

This operation shall behave as specified in 8.3.2.9.15.

return_sharedsecre
t_handle

This operation shall behave as specified in 8.3.2.9.16.

9.3.4 DDS:Auth:PKI-DH plugin authentication protocol

The operations the Secure DDS implementation executes on the Authentication plugin combined
with the behavior of the DDS:Auth:PKI-DH result in an efficient 3-message protocol that performs
mutual authentication and establishes a shared secret.

The rest of this sub clause describes the resulting protocol.

The authentication protocol is symmetric, that is there are no client and server roles. But only one
DomainParticipant should initiate the protocol. To determine which of the two
DomainParticipant entities shall initiate the protocol, each DomainParticipant compares
its own GUID with that of the other DomainParticipant. The DomainParticipant with the lower
GUID (using lexicographical order) initiates the protocol.

9.3.4.1 Terms and notation

The table below summarizes the terms used in the description of the protocol.
Table 42 – Terms used in the description of the builtin authentication protocol

DDS Security, v1.0 183

Term Meaning

Participant1 The DomainParticipant that initiates the handshake protocol.

It calls begin_handshake_request, sends the
HandshakeRequestMessageToken, receives the
HandshakeReplyMessageToken, and sends the
HandshakeFinalMessageToken).

Participant2 The DomainParticipant that does not initiate the handshake protocol.

It calls begin_handshake_reply, receives the
HandshakeRequestMessageToken , sends the
HandshakeReplyMessageToken, and receives the
HandshakeFinalMessageToken).

PubK_1 The Public Key of Participant1.

PubK_2 The Public Key of Participant2.

PrivK_1 The Private Key of Participant1.

PrivK_2 The Private Key of Participant2.

Cert1 The IdentityCertificate (signed by the shared CA) of
Participant A. It contains PubK_1.

Cert2 The IdentityCertificate (signed by the shared CA) of
Participant 2. It contains PubK_2.

Perm1 Permissions document of Participant1 (signed by Permissions CA).

Perm2 Permissions document of Participant2 (signed by Permissions CA).

Pdata1 ParticipantBultinTopicData of Participant1.

Pdata2 ParticipantBultinTopicData of Participant2.

Dsign_algo1 Token identifying the Digital Signature Algorithm for Participant1.

Dsign_algo2 Token identifying the Digital Signature Algorithm for Participant2.

Kagree_algo1 Token identifying the Key Agreement Algorithm selected by
Participant1 that shall be used to establish the shared secret.

Kagree_algo2 Token identifying the Key Agreement Algorithm used by Participant2.
It shall be set to match the one received from Participant1 in
Kagree_algo1and used to establish the shared secret.

Challenge1 The challenge created by Participant1.

Challenge2 The challenge created by Participant2.

DH1 Diffie-Hellman Public Key generated by Participant1.

184 DDS Security, v1.0

DH2 Diffie-Hellman Public Key generated by Participant2.

SharedSecret The shared secret computed combining DH1 and DH2 with the DH
secret key each participant has.

C1 A shortcut for the list: Cert1, Perm1, Pdata1, Dsign_algo1, Kagree_algo1.

C2 A shortcut for the list: Cert2, Perm2, Pdata2, Dsign_algo2, Kagree_algo2.

The table below summarizes the notation and transformation functions used in the description of the
protocol:
Table 43 – Notation of the operations/transformations used in the description of the builtin authentication protocol

Function / notation meaning

Sign(data) Signs the ‘data’ argument using the Participant Private Key.

Hash(data) Hashes the ‘data’ argument using SHA-256.

data1 | data2 The symbol ‘|’ is used to indicate byte concatenation.

9.3.4.2 Protocol description

The table below describes the resulting 3-way protocol that establishes authentication and a shared
secret between Participant_A and Participant_B.
Table 44 – Description of built-in authentication protocol

Participant A Participant B

Is configured with PrivK_1 and C1 where

C1 = Cert1, Perm1, Pdata1, Dsign_algo1,
Kagree_algo1

Generates a random Challenge1.

Generates DH1.

Sends:

HandshakeRequestMessageToken:
(C1, Hash(C1), Challenge1, DH1)

Note: In the above message Hash(C1) may be
omitted.

Is configured with PrivK_2 and C2 where

C2 = Cert2, Perm2, Pdata2, Dsign_algo2,
Kagree_algo2

 Receives
HandshakeRequestMessageToken

Verifies Cert1 with the configured Identity CA

Verifies Hash(C1)

Generates a random Challenge2

DDS Security, v1.0 185

Generates DH2

Sends:

HandshakeReplyMessageToken:

(C2, Hash(C2),

 Challenge1, Challenge2,

 DH2, Hash(C1), DH1,

 Sign(Hash(C2) | Challenge2

 | DH2 | Challenge1 | DH1

 | Hash(C1)))

Note: In the above message Hash(C2) ,
Hash(C1) and DH1 may be omitted outside the
signature.

Receives HandshakeReplyMessageToken

Verifies Cert2 with the configured Identity CA

Verifies signature against PubK2

Computes shared secret from DH2 and the DH
private key used for DH1

Sends:

HandshakeFinalMessageToken:

(Hash(C1), Hash(C2), DH1, DH2,

 Challenge1, Challenge2,

 Sign(Hash(C1) | Challenge1 | DH1

| Challenge2 | DH2

| Hash(C2)))

Note: In the above message Hash(C1) , Hash(C2),
DH1, and DH2 may be omitted outside the
signature.

Receives
HandshakeFinalMessageToken

Checks Hash(C1) matches the
HandshakeRequestMessageToken

Verifies the signature in
HandshakeFinalMessageToken
against PubK_1

Computes shared secret from DH1 and the DH
private key used for DH2

186 DDS Security, v1.0

9.4 Builtin Access Control: DDS:Access:Permissions
This builtin AccessControl plugin is referred to as the “DDS:Access:Permissions” plugin.

The DDS:Access:Permissions implements the AccessControl plugin API using a permissions
document signed by a shared Certificate Authority (CA).

The shared CA could be an existing one (including the same CA used for the Authentication
plugin), or a new one could be created for the purpose of assigning permissions to the applications on a
DDS Domain. The nature or manner in which the CA is selected is not important because the way it is
used enforces a shared recognition by all participating applications.

Each DomainParticipant has an associated instance of the DDS:Access:Permissions plugin.

9.4.1 Configuration

The DDS:Access:Permissions plugin is configured with three documents:

• The Permissions CA certificate
• The Domain governance signed by the Permissions CA
• The DomainParticipant permissions signed by the Permissions CA

The configuration of the builtin access control plugin shall be done using the PropertyQosPolicy
of the DomainParticipantQos. The specific properties used are described in Table 45 below.
Table 45 – Properties used to configure the builtin AccessControl plugin

Property Name

(all properties have
“dds.sec.access” prefix)

Property Value
(all these properties shall have propagate set to FALSE)

URI syntax follows IETF RFC 3986.
URI “data” schema follows IETF RFC 2397
Vendors may support additional schemas

permissions_ca

URI to a X509 certificate for the PermissionsCA in PEM format.
Supported URI schemes: file, data, pkcs11
The file and data schemas shall refer to a X.509 v3 certificate (see X.509
v3 ITU-T Recommendation X.509 (2005) [39]) in PEM format.

Examples:

file:permissions_ca.pem
file:/home/myuser/ permissions_ca.pem

data:,-----BEGIN CERTIFICATE-----
MIIC3DCCAcQCCQCWE5x+Z … PhovK0mp2ohhRLYI0ZiyYQ==
-----END CERTIFICATE-----

pkcs11:object= MyPermissionsCACert;type=cert

governance

URI to the shared Governance Document signed by the Permissions CA in
S/MIME format
URI schemes: file, data

Example file URIs:

DDS Security, v1.0 187

file:governance.smime
file:/home/myuser/governance.smime

Example data URI:
data:,MIME-Version: 1.0
Content-Type: multipart/signed; protocol="application/x-pkcs7-
signature"; micalg="sha-256"; boundary="----
F9A8A198D6F08E1285A292ADF14DD04F"

This is an S/MIME signed message

------F9A8A198D6F08E1285A292ADF14DD04F
<?xml version="1.0" encoding="UTF-8"?>
<dds xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="omg_shared_ca_governance.xsd">
 <domain_access_rules>
...
 </domain_access_rules>
</dds>
…
------F9A8A198D6F08E1285A292ADF14DD04F
Content-Type: application/x-pkcs7-signature; name="smime.p7s"
Content-Transfer-Encoding: base64
Content-Disposition: attachment; filename="smime.p7s"

MIIDuAYJKoZIhv ...al5s=
------F9A8A198D6F08E1285A292ADF14DD04F—

permissions

URI to the DomainParticipant permissions document signed by the
Permissions CA in S/MIME format
URI schemes: file, data

Example file URIs:
file:participant1_permissions.smime
file:/home/myuser/participant1_permissions.smime

9.4.1.1 Permissions CA Certificate

This is a X.509 certificate that contains the Public Key of the CA that will be used to sign the Domain
Governance and Domain Permissions document. The certificate can be self-signed or signed by some
other CA. Regardless of this the Public Key in the Certificate shall be trusted to sign the
aforementioned Governance and Permissions documents (see 9.4.1.2 and 9.4.1.3).

The Permissions CA Certificate shall be provided to the plugins using the PropertyQosPolicy on
the DomainParticipantQos as specified in Table 45.

9.4.1.2 Domain Governance Document

The domain governance document is an XML document that specifies how the domain should be
secured.

188 DDS Security, v1.0

The domain governance document shall be signed by the Permissions CA. The signed document shall
use S/MIME version 3.2 format as defined in IETF RFC 5761 using SignedData Content Type (section
2.4.2 of IETF RFC 5761) formatted as multipart/signed (section 3.4.3 of IETF RFC 5761). This
corresponds to the mime-type application/pkcs7-signature. Additionally the signer certificate shall be
included within the signature.

The signed governance document shall be provided to the plugins using the PropertyQosPolicy
on the DomainParticipantQos as specified in Table 45.

The governance document specifies which DDS domain IDs shall be protected and the details of the
protection. Specifically this document configures the following aspects that apply to the whole domain:

• Whether the discovery information should be protected and the kind of protection: only message
authentication codes (MACs) or encryption followed by MAC.

• Whether the whole RTPS message should be protected and the kind of protection. This is in
addition to any protection that may occur for individual submessages and for submessage data
payloads.

• Whether the liveliness messages should be protected.
• Whether a discovered DomainParticipant that cannot authenticate or fail the authentication should

be allowed to join the domain and see any discovery data that are configured as ‘unprotected’ and
any Topics that are configured as ‘unprotected’.

• Whether any discovered DomainParticipant that authenticates successfully should be allowed to
join the domain and see the discovery data without checking the access control policies.

In addition, the domain governance document specifies how the information on specific Topics within
the domain should be treated. Specifically:

• Whether the discovery information on specific Topics should be sent using the secure (protected)
discovery writers or using the regular (unprotected) discovery writers.

• Whether read access to the Topic should be open to all or restricted to the DomainParticipants that
have the proper permissions.

• Whether write access to the Topic should be open to all or restricted to the DomainParticipants that
have the proper permissions.

• Whether the metadata information sent on the Topic (sequence numbers, heartbeats, key hashes,
gaps, acknowledgment messages, etc.) should be protected and the kind of protection (MAC or
Encrypt+MAC).

• Whether the payload data sent on the Topic (serialized application level data) should be protected
and the kind of protection (MAC or Encrypt+MAC).

9.4.1.2.1 Protection Kinds

The domain governance document provides a means for the application to configure the kinds of
cryptographic transformation applied to the complete RTPS Message, certain RTPS SubMessages, and
the SerializedPayload RTPS submessage element that appears within the Data and DataFrag
submessages.

The configuration allows specification of three protection levels: NONE, SIGN, ENCRYPT.

NONE indicates no cryptographic transformation is applied.

SIGN indicates the cryptographic transformation shall be purely a message authentication code
(MAC), that is, no encryption is performed. Therefore the resulting

DDS Security, v1.0 189

CryptoTransformIdentifier for the output of the "encode" transformations shall have the
transformation_kind attribute set to the CRYPTO_TRANSFORMATION_KIND variants
AES_128_GMAC or AES_256_GMAC.

ENCRYPT indicates the cryptographic transformation shall be an encryption followed by a message
authentication code (MAC) computed on the ciphertext, also known as Encrypt-then-MAC. Therefore
the resulting CryptoTransformIdentifier for the output of the "encode" transformations shall
have the transformation_kind attribute set to the CRYPTO_TRANSFORMATION_KIND variants
AES_128_GCM or AES_256_GCM.

9.4.1.2.2 Domain Governance document format

The format of this document defined using the following XSD:

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 elementFormDefault="qualified" attributeFormDefault="unqualified">

 <xs:element name="dds" type="DomainAccessRulesNode" />

 <xs:complexType name="DomainAccessRulesNode">
 <xs:sequence minOccurs="1" maxOccurs="1">
 <xs:element name="domain_access_rules"
 type="DomainAccessRules" />
 </xs:sequence>
 </xs:complexType>

 <xs:complexType name="DomainAccessRules">
 <xs:sequence minOccurs="1" maxOccurs="unbounded">
 <xs:element name="domain_rule" type="DomainRule" />
 </xs:sequence>
 </xs:complexType>

 <xs:complexType name="DomainRule">
 <xs:sequence minOccurs="1" maxOccurs="1">
 <xs:element name="domains" type="DomainIdSet" />
 <xs:element name="allow_unauthenticated_participants"
 type="xs:boolean" />
 <xs:element name="enable_join_access_control"
 type="xs:boolean" />
 <xs:element name="discovery_protection_kind"
 type="ProtectionKind" />
 <xs:element name="liveliness_protection_kind"
 type="ProtectionKind" />
 <xs:element name="rtps_protection_kind"
 type="ProtectionKind" />
 <xs:element name="topic_access_rules"
 type="TopicAccessRules" />
 </xs:sequence>
 </xs:complexType>

 <xs:complexType name="DomainIdSet">
 <xs:choice minOccurs="1" maxOccurs="unbounded">

190 DDS Security, v1.0

 <xs:element name="id" type="DomainId" />
 <xs:element name="id_range" type="DomainIdRange" />
 </xs:choice>
 </xs:complexType>

 <xs:simpleType name="DomainId">
 <xs:restriction base="xs:nonNegativeInteger" />
 </xs:simpleType>

 <xs:complexType name="DomainIdRange">
 <xs:choice>
 <xs:sequence/>
 <xs:element name="min" type="DomainId" />
 <xs:element name="max" type="DomainId" minOccurs="0" />
 </xs:sequence/>
 <xs:element name="max" type="DomainId" />
 </xs:choice>
 </xs:complexType>

 <xs:simpleType name="ProtectionKind">
 <xs:restriction base="xs:string">
 <xs:enumeration value="ENCRYPT" />
 <xs:enumeration value="SIGN" />
 <xs:enumeration value="NONE" />
 </xs:restriction>
 </xs:simpleType>
 <!-- DDSSEC-130 -->
 <xs:complexType name="TopicAccessRules">
 <xs:sequence minOccurs="1" maxOccurs="unbounded">
 <xs:element name="topic_rule" type="TopicRule" />
 </xs:sequence>
 </xs:complexType>

 <xs:complexType name="TopicRule">
 <xs:sequence minOccurs="1" maxOccurs="1">
 <xs:element name="topic_expression" type="TopicExpression" />
 <xs:element name="enable_discovery_protection"
 type="xs:boolean" />
 <xs:element name="enable_read_access_control"
 type="xs:boolean" />
 <xs:element name="enable_write_access_control"
 type="xs:boolean" />
 <xs:element name="metadata_protection_kind"
 type="ProtectionKind" />
 <xs:element name="data_protection_kind"
 type="ProtectionKind" />
 </xs:sequence>
 </xs:complexType>

 <xs:simpleType name="TopicExpression">
 <xs:restriction base="xs:string" />
 </xs:simpleType>

</xs:schema>

DDS Security, v1.0 191

9.4.1.2.3 Domain Access Rules Section

The XML domain governance document is delimited by the <dds> XML element tag and contains a
single domain access rules Section delimited by the <domain_access_rules> XML element tag.

The domain access rules Section contains a set of domain rules each delimited by the
<domain_rule> XML element tag.

9.4.1.2.4 Domain Rules

Each domain rule appears within the domain access rules Section delimited by the <domain_rule>
XML element tag.

Each domain rule contains the following elements and sections:

1. Domain id element

2. Discovery Protection Kind element

3. Liveliness Protection Kind element

4. Allow Unauthenticated Join element

5. Enable Join Access Control element

6. Topic Access Rules Section, containing topic rules

The contents and delimiters of each Section are described below.

The domain rules shall be evaluated in the same order as they appear in the document. A rule only
applies to a particular DomainParticipant if the domain Section matches the DDS domain_id to
which the DomainParticipant belongs. If multiple rules match, the first rule that matches is the
only one that applies.
9.4.1.2.4.1 Domains element

This element is delimited by the XML element <domain_id>.

The value in this element identifies the collection of DDS domain_id values to which the rule
applies.

The <domains> element can contain a single domain ID, for example:
 <domains>
 <id>0</id>
 </domains>

Or it can contain a range of domain IDs, for example:
 <domains>
 <id_range>
 <min>10</min>
 <max>20</max>
 </id_range>
 </domains>

Or it can contain a list of domain IDs and domain ID ranges, for example:
 <domains>
 <id>0</id>
 <id_range>

192 DDS Security, v1.0

 <min>10</min>
 <max>20</max>
 </id_range>
 <id>25</id>
 <id>27</id>
 <id_range>
 <min>40</min>
 <max>55</max>
 </id_range>
 </domains>

9.4.1.2.4.2 Allow Unauthenticated Participants element

This element is delimited by the XML element <allow_unauthenticated_participants>.

This element may take the binary values TRUE or FALSE.

If the value is set to FALSE, the ParticipantSecurityAttributes returned by the
get_participant_sec_attributes operation on the AccessControl shall have the
allow_unauthenticated_participants member set to FALSE.

If the value is set to TRUE, the ParticipantSecurityAttributes returned by the
get_participant_sec_attributes operation on the AccessControl shall have the
allow_unauthenticated_participants member set to TRUE.
9.4.1.2.4.3 Enable Join Access Control element

This element is delimited by the XML element <enable_join_access_control>.

This element may take the binary values TRUE or FALSE.

If the value is set to FALSE, the ParticipantSecurityAttributes returned by the
get_participant_sec_attributes operation on the AccessControl shall have the
is_access_protected member set to FALSE.

If the value is set to TRUE, the ParticipantSecurityAttributes returned by the
get_participant_sec_attributes operation on the AccessControl shall have the
is_access_protected member set to TRUE.
9.4.1.2.4.4 Discovery Protection Kind element

This element is delimited by the XML element <discovery_protection_kind>.

The discovery protection element specifies the protection kind (see 9.4.1.2.1) used for the secure
builtin DataWriter and DataReader entities used for discovery:
SEDPbuiltinPublicationsSecureWriter, SEDPbuiltinSubscriptionsSecureWriter,
SEDPbuiltinPublicationsSecureReader, SEDPbuiltinSubscriptionsSecureReader.

The discovery protection kind element may take three possible values: NONE, SIGN, or ENCRYPT.
The resulting behavior for the aforementioned builtin discovery secure entities shall be as specified in
9.4.1.2.1 with regards to the RTPS SubMessages.

The builtin endpoints shall never apply cryptographic transformations to the SecuredPayload
submessage element.

DDS Security, v1.0 193

9.4.1.2.4.5 Liveliness Protection Kind element

This element is delimited by the XML element <liveliness_protection_kind>.

The liveliness protection element specifies the protection kind (see 9.4.1.2.1) used for builtin
DataWriter and DataReader associated with the ParticipantMessageSecure builtin Topic (see
7.4.2): BuiltinParticipantMessageSecureWriter and BuiltinParticipantMessageSecureReader.

The discovery protection kind element may take three possible values: NONE, SIGN, or ENCRYPT.
The resulting behavior for the aforementioned builtin secure entities shall be as specified in 9.4.1.2.1.
9.4.1.2.4.6 RTPS Protection Kind element

This element is delimited by the XML element <rtps_protection_kind>.

The RTPS protection kind element specifies the protection kind (see 9.4.1.2.1) used for the whole
RTPS message.

The RTPS protection kind element may take three possible values: NONE, SIGN, or ENCRYPT. The
resulting behavior for the RTPS message cryptographic transformation shall be as specified in
9.4.1.2.1.

This setting controls the contents of the ParticipantSecurityAttributes returned by the
AccessControl::get_participant_sec_attributes operation on the
DomainParticipant. Specifically the is_rtps_protected attribute in the
ParticipantSecurityAttributes shall be set to FALSE if and only if the value of the
<rtps_protection_kind> element is NONE.
9.4.1.2.4.7 Topic Access Rules Section

This element is delimited by the XML element <topic_access_rules> and contains a sequence of topic
rule elements.

9.4.1.2.5 Topic Rule Section

This element is delimited by the XML element <topic_rule> and appears within the domain rule
Section.

Each topic rule Section contains the following elements:

1. Topic expression

2. Enable Discovery protection

3. Enable Read Access Control element

4. Enable Write Access Control element

5. Metadata protection Kind

6. Data protection Kind

The contents and delimiters of each Section are described below.

The topic expression element within the rules selects a set of Topic names. The rule applies to any
DataReader or DataWriter associated with a Topic whose name matches the Topic expression name.

194 DDS Security, v1.0

The topic access rules shall be evaluated in the same order as they appear within the
<topic_access_rules> Section. If multiple rules match the first rule that matches is the only one that
applies.
9.4.1.2.5.1 Topic expression element

This element is delimited by the XML element <topic_expression>.

The value in this element identifies the set of DDS Topic names to which the rule applies. The rule
will apply to any DataReader or DataWriter associated with a Topic whose name matches the
value.

The Topic name expression syntax and matching shall use the syntax and rules of the POSIX
fnmatch() function as specified in POSIX 1003.2-1992, Section B.6 [38].
9.4.1.2.5.2 Enable Discovery protection element

This element is delimited by the XML element <enable_discovery_protection>.

This element may take the binary values TRUE or FALSE.

The setting controls the contents of the EndpointSecurityAttributes returned by the
AccessControl::get_datawriter_sec_attributes or
AccessControl::get_datareader_sec_attributes operation on an endpoint whose
associated Topic name matches the rule’s topic expression. Specifically the is_discovery_protected
attribute in the EndpointSecurityAttributes shall be set to the binary value specified in the
“enable discovery protection" element.
9.4.1.2.5.3 Enable Read Access Control element

This element is delimited by the XML element <enable_read_access_control>.

This element may take the binary values TRUE or FALSE.

The setting shall control the contents of the EndpointSecurityAttributes returned by the
AccessControl::get_datawriter_sec_attributes operation on any DataWriter
entity whose associated Topic name matches the rule’s topic expression. Specifically the
is_access_protected attribute in the EndpointSecurityAttributes shall be set to the binary
value specified in the “enable read access protection" element.

In addition, this element shall control the AccessControl::check_create_datareader
operation on any DataReader entity whose associated Topic name matches the rule’s topic
expression. Specifically:

• If the value of “enable_read_access_control” element is FALSE, the operation
check_create_datareader shall return TRUE without further checking the Permissions
document.

• If the value of “enable_read_access_control” element is TRUE, the operation
check_create_datareader shall return a value according to what is specified in the
Permissions document, see 9.4.1.3.

9.4.1.2.5.4 Enable Write Access Control element

This element is delimited by the XML element <enable_write_access_control>.

This element may take the binary values TRUE or FALSE.

DDS Security, v1.0 195

The setting controls the contents of the EndpointSecurityAttributes returned by the
AccessControl::get_datareader_sec_attributes operation on any DataReader
entity whose associated Topic name matches the rule’s topic expression. Specifically the
is_access_protected attribute in the EndpointSecurityAttributes shall be set to the binary
value specified in the “enable write access protection" element.

In addition, this element shall control the AccessControl::check_create_datawriter
operation on any DataWriter entity whose associated Topic name matches the rule’s topic
expression. Specifically:

• If the value of “enable_write_access_control” element is FALSE, the operation
check_create_datawriter shall return TRUE without further checking the Permissions
document.

• If the value of “enable_write_access_control” element is TRUE, the operation
check_create_datawriter shall return a value according to what is specified in the
Permissions document, see 9.4.1.3.

9.4.1.2.5.5 Metadata Protection Kind element

This element is delimited by the XML element <metadata_protection_kind>.

This element may take the binary values TRUE or FALSE.

The setting of this element shall specify the protection kind (see 9.4.1.2.1) used for the RTPS
SubMessages sent by any DataWriter and DataReader whose associated Topic name
matches the rule’s topic expression.

The setting of this element shall also control the contents of the EndpointSecurityAttributes
returned by the AccessControl::get_datawriter_sec_attributes and
AccessControl::get_datareader_sec_attributes operation on any DataWriter or
DataReader entity whose associated Topic name matches the rule’s topic expression. Specifically
the is_submessage_protected attribute in the EndpointSecurityAttributes shall be set to
FALSE if the value specified in the <metadata_protection_kind> is NONE and shall be set to TRUE
otherwise.
9.4.1.2.5.6 Data Protection Kind element

This element is delimited by the XML element <data_protection_kind>.

This element may take three possible values: NONE, SIGN, or ENCRYPT.

The setting of this element shall specify the protection kind (see 9.4.1.2.1) used for the RTPS
SerializedPayload submessage element sent by any DataWriter whose associated Topic
name matches the rule’s topic expression.

The setting shall control the contents of the EndpointSecurityAttributes returned by the
AccessControl::get_datawriter_sec_attributes operation on any DataWriter
entity whose associated Topic name matches the rule’s topic expression. Specifically the
is_payload_protected attribute in the EndpointSecurityAttributes shall be set to FALSE if
the value specified in the <data_protection_kind> element is NONE and shall be set to TRUE
otherwise.

196 DDS Security, v1.0

9.4.1.2.6 Application of Domain and Topic Rules

For a given DomainParticipant the Domain Rules shall be evaluated in the same order they
appear in the Governance document. The first Domain Rule having a <domains> element whose value
matches the DomainParticipant domain_id shall be the one applied to the
DomainParticipant.

If no Domain Rule matches the DomainParticipant domain_id the operation under consideration
shall fail with a suitable “permissions error”. If desired, to avoid this situation, a “default” Domain
Rule can be added to the end using the expression:
 <domains>
 <id_range>
 <min>0</min>
 </id_range>
 </domains>

This rule will match any domain_id not matched by the rules that appear before.

For a given Topic, DataWriter or DataReader DDS Entity belonging to a
DomainParticipant the Topic Rules appearing within the Domain Rule that applies to that
DomainParticipant shall be evaluated in the same order they appear in the Governance
document. The first Topic Rule having a <topic_expression> element whose value matches the topic
name associated with the Entity shall be the one applied to the Entity.

If no Topic Rule matches the Entity topic name the operation under consideration shall fail with a
suitable “permissions error”. If desired, to avoid this situation, a “default” Topic Rule can be added to
the end using the expression <topic_expression>*</ topic_expression >. This rule will match any
topic name not matched by the rules that appear before.

9.4.1.2.7 Example Domain Governance document (non normative)

Following is an example permissions document that is written according to the XSD described in the
previous sections.

<?xml version="1.0" encoding="utf-16"?>
<dds xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="omg_shared_ca_domain_governance.xsd">
 <domain_access_rules>
 <domain_rule>
 <domain_id>0</domain_id>

 <allow_unauthenticated_participants>FALSE
</allow_unauthenticated_participants>

 <enable_join_access_control>TRUE
</enable_join_access_control>

 <rtps_protection_kind>SIGN
 </rtps_protection_kind>
 <discovery_protection_kind>ENCRYPT

</discovery_protection_kind>
 <liveliness_protection_kind>SIGN

</liveliness_protection_kind>
 <topic_access_rules>
 <topic_rule>
 <topic_expression>Square*

DDS Security, v1.0 197

</topic_expression>
 <enable_discovery_protection>TRUE

</enable_discovery_protection>
 <enable_read_access_control>TRUE

</enable_read_access_control>
 <enable_write_access_control>TRUE

</enable_write_access_control>
 <metadata_protection_kind>ENCRYPT

</metadata_protection_kind>
 <data_protection_kind>ENCRYPT

</data_protection_kind>
 </topic_rule>

 <topic_rule>
 <topic_expression>Circle</topic_expression>
 <enable_discovery_protection>TRUE

</enable_discovery_protection>
 <enable_read_access_control>FALSE

</enable_read_access_control>
 <enable_write_access_control>TRUE

</enable_write_access_control>
 <metadata_protection_kind>ENCRYPT

</metadata_protection_kind>
 <data_protection_kind>ENCRYPT

</data_protection_kind>
 </topic_rule>

 <topic_rule>
 <topic_expression>Triangle

</topic_expression>
 <enable_discovery_protection>FALSE

</enable_discovery_protection>
 <enable_read_access_control>FALSE

</enable_read_access_control>
 <enable_write_access_control>TRUE

</enable_write_access_control>
 <metadata_protection_kind>NONE

</metadata_protection_kind>
 <data_protection_kind>NONE

</data_protection_kind>
 </topic_rule>

 <topic_rule>
 <topic_expression>*</topic_expression>
 <enable_discovery_protection>TRUE

</enable_discovery_protection>
 <enable_read_access_control>TRUE

</enable_read_access_control>
 <enable_write_access_control>TRUE

</enable_write_access_control>
 <metadata_protection_kind>ENCRYPT

</metadata_protection_kind>
 <data_protection_kind>ENCRYPT

</data_protection_kind>

198 DDS Security, v1.0

 </topic_rule>
 </topic_access_rules>
 </domain_rule>

 </domain_access_rules>
</dds>

9.4.1.3 DomainParticipant permissions document

The permissions document is an XML document containing the permissions of the domain participant
and binding them to the distinguished name of the DomainParticipant as defined in the
DDS:Auth:PKI-DH authentication plugin.

The permissions document shall be signed by the Permissions CA. The signed document shall use
S/MIME version 3.2 format as defined in IETF RFC 5761 using SignedData Content Type (section
2.4.2 of IETF RFC 5761) formatted as multipart/signed (section 3.4.3 of IETF RFC 5761). This
corresponds to the mime-type application/pkcs7-signature. Additionally the signer certificate shall be
included within the signature.

The signed permissions document shall be provided to the plugins using the PropertyQosPolicy
on the DomainParticipantQos as specified in Table 45.

The format of this document is defined using the following XSD.

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified">

 <xs:element name="permissions" type="Permissions"/>

 <xs:complexType name="Permissions">
 <xs:sequence minOccurs="1" maxOccurs="unbounded">
 <xs:element name="grant" type="Grant" />
 </xs:sequence>
 </xs:complexType>

 <xs:complexType name="Grant">
 <xs:sequence minOccurs="1" maxOccurs="1">
 <xs:element name="subject_name" type="xs:string" />
 <xs:element name="validity" type="Validity" />
 <xs:sequence minOccurs="1" maxOccurs="unbounded">
 <xs:choice minOccurs="1" maxOccurs="1">
 <xs:element name="allow_rule" minOccurs="0"
 type="Rule" />
 <xs:element name="deny_rule" minOccurs="0"
 type="Rule" />
 </xs:choice>
 </xs:sequence>
 <xs:element name="default" type="DefaultAction"/>
 </xs:sequence>
 <xs:attribute name="name" type="xs:string" use="required"/>
 </xs:complexType>

DDS Security, v1.0 199

 <xs:complexType name="Validity">
 <xs:sequence minOccurs="1" maxOccurs="1">
 <xs:element name="not_before" type="xs:dateTime" />
 <xs:element name="not_after" type="xs:dateTime" />
 </xs:sequence>
 </xs:complexType>

 <xs:complexType name="Rule">
 <xs:sequence minOccurs="1" maxOccurs="1">
 <xs:element name="domains" type="DomainIdSet" />
 <xs:sequence minOccurs="1" maxOccurs="unbounded">
 <xs:element name="publish" type="Criteria" />
 </xs:sequence>
 <xs:sequence minOccurs="0" maxOccurs="unbounded">
 <xs:element name="subscribe" type="Criteria" />
 </xs:sequence>
 <xs:sequence minOccurs="0" maxOccurs="unbounded">
 <xs:element name="relay" type="Criteria" />
 </xs:sequence>
 </xs:sequence>
 </xs:complexType>

 <xs:complexType name="DomainIdSet">
 <xs:choice minOccurs="1" maxOccurs="unbounded">
 <xs:element name="id" type="DomainId" />
 <xs:element name="id_range" type="DomainIdRange" />
 </xs:choice>
 </xs:complexType>

 <xs:simpleType name="DomainId">
 <xs:restriction base="xs:nonNegativeInteger" />
 </xs:simpleType>

 <xs:complexType name="DomainIdRange">
 <xs:choice>
 <xs:sequence/>
 <xs:element name="min" type="DomainId" />
 <xs:element name="max" type="DomainId" minOccurs="0" />
 </xs:sequence/>
 <xs:element name="max" type="DomainId" />
 </xs:choice>
 </xs:complexType>

 <xs:complexType name="Criteria">
 <xs:all minOccurs="1">
 <xs:element name="topics" minOccurs="0"
 type="TopicExpressionList" />
 <xs:element name="partitions" minOccurs="0"
 type="PartitionExpressionList" />
 <xs:element name="data_tags" minOccurs="0"
 type="DataTags" />
 </xs:sequence>
 </xs:complexType>

200 DDS Security, v1.0

 <xs:complexType name="TopicExpressionList">
 <xs:sequence minOccurs="1" maxOccurs="unbounded">
 <xs:element name="topic" type="TopicExpression" />
 </xs:sequence>
 </xs:complexType>

 <xs:complexType name="PartitionExpressionList">
 <xs:sequence minOccurs="1" maxOccurs="unbounded">
 <xs:element name="partition" type="PartitionExpression" />
 </xs:sequence>
 </xs:complexType>

 <xs:simpleType name="TopicExpression">
 <xs:restriction base="xs:string"/>
 </xs:simpleType>

 <xs:simpleType name="PartitionExpression">
 <xs:restriction base="xs:string"/>
 </xs:simpleType>

 <xs:complexType name="DataTags">
 <xs:sequence minOccurs="1" maxOccurs="unbounded">
 <xs:element name="tag" type="TagNameValuePair"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="TagNameValuePair">
 <xs:sequence minOccurs="1" maxOccurs="unbounded">
 <xs:element name="name" type="xs:string"/>
 <xs:element name="value" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>

 <xs:simpleType name="DefaultAction">
 <xs:restriction base="xs:string">
 <xs:enumeration value="ALLOW"/>
 <xs:enumeration value="DENY"/>
 </xs:restriction>
 </xs:simpleType>

</xs:schema>

9.4.1.3.1 Permissions Section

The XML permissions document contains a permissions Section. This is the portion of the XML
document delimited by the <permissions> XML element tag.

The permissions Section contains a set of grant sections.

9.4.1.3.2 Grant Section

The grant sections appear within the permissions Section delimited by the <grant> XML element tag.

DDS Security, v1.0 201

Each grant Section contains three sections:

1. Subject name Section (subject_name element)

2. Validity Section (validity element)

3. Rules Section (allow, deny and default elements)

The contents and delimiters of each Section are described below.
9.4.1.3.2.1 Subject name Section

This Section is delimited by the XML element <subject_name>.

The subject name Section identifies the DomainParticipant to which the permissions apply. Each
subject name can only appear in a single <permissions> Section within the XML Permissions
document.

The contents of the <subject_name> element shall be the x.509 subject name for the
DomainParticipant as is given in its Authorization Certificate. A permissions Section with a
subject name that does not match the subject name given in the corresponding Authorization certificate
shall be ignored.

The X.509 subject name is a set of name-value pairs. The format of x.509 subject name shall be the
string representation of the X.509 certificate Subject name as defined in IETF RFC 4514 "Lightweight
Directory Access Protocol (LDAP): String Representation of Distinguished Names" [51].

For example:

<subject_name>emailAddress=cto@acme.com, CN=DDS Shapes Demo, OU=CTO Office,
O=ACME Inc., L=Sunnyvale, ST=CA, C=US</subject_name>

9.4.1.3.2.2 Validity Section

This Section is delimited by the XML element <validity>. The contents of this element reflect the
valid dates for the permissions. It contains both the starting date and the end date in GMT formatted as
YYYYMMDDHH.

A permissions Section with a validity date that falls outside the current date at which the permissions
are being evaluated shall be ignored.
9.4.1.3.2.3 Rules Section

This Section contains the permissions assigned to the DomainParticipant. It is described as a set
of rules.

The rules are applied in the same order that appear in the document. If the criteria for the rule matches
the domain_id join and/or publish or subscribe operation that is being attempted, then the allow or
deny decision is applied. If the criteria for a rule does not match the operation being attempted, the
evaluation shall proceed to the next rule. If all rules have been examined without a match, then the
decision specified by the “default” rule is applied. The default rule, if present, must appear after all
allow and deny rules. If the default rule is not present, the implied default decision is DENY.

202 DDS Security, v1.0

The matching criteria for each rule specify the domain_id, topics (published and subscribed), the
partitions (published and subscribed), and the data-tags associated with the DataWriter and
DataReader.

For the grant to match there shall be a match of the topics, partitions, and data-tags criteria. This is
interpreted as an AND of each of the criteria. For a specific criterion to match (e.g., <topics>) it is
enough that one of the topic expressions listed matches (i.e., an OR of the expressions with the
<topics> section).

9.4.1.3.2.3.1 Format of the allow rules

Allow rules appear inside the <allow_rule> XML Element. Each rule contains the domain IDs to
which the rule applies, and the topic names that are allowed to be published and subscribed within
those domains.

9.4.1.3.2.3.1.1 Domains Section

This Section is delimited by the XML element <domain_id>.

The value in this element identifies the collection of DDS domain_id values to which the rule applies.
The syntax is the same as for the domain section of the Governance document. See subclause
9.4.1.2.4.1.

For example:

<domains>
 <id>0</id>
</domains>

9.4.1.3.2.3.1.2 Publish Section

This Section defines the Topic names that the rule allows to be published.

The publish Section shall be delimited by the <publish> XML Element.

The topic names appear in the Section delimited by the <topics> XML element. Topic names may be
given explicitly or by means of Topic name expressions. Each topic name or topic-name expression
appears separately in a <topic> sub-element within the <topics> element.

The Topic name expression syntax and matching shall use the syntax and rules of the POSIX fnmatch()
function as specified in POSIX 1003.2-1992, Section B.6 [38].

The publish Section may also include one or more sections delimited by the <partitions> XML
Element. The <partition> XML Elements contain the DDS Partition names where it is allowed to
publish the specified Topic names. Partition names may be given explicitly or by means of Partition
name expressions. Each partition name or partition-name expression appears separately in a
<partition> sub-element within the <partitions> element.

The Partition name expression syntax and matching shall use the syntax and rules of the POSIX
fnmatch() function as specified in POSIX 1003.2-1992, Section B.6 [38]. If there is no <partitions>
Section then the rule allows publishing only in the "empty string" partition. See PARTITION
QosPolicy entry in Qos Policies table of section 2.2.3 (Supported Qos) of the DDS Specification
version 1.4.

DDS Security, v1.0 203

The publish Section may also include one or more sections delimited by the <data_tags> XML
Element. The <data_tags> XML Elements contain a set of tags that shall be associated with the
DataWriter that publishes the data on the Topic names allowed by the rule.

Example1:
<publish>
 <topics>
 <topic>Circle1</topic>
 </topics>
</publish>

Example2:
<publish>
 <topics>
 <topic>Square</topic>
 </topics>
 <partitions>
 <partition>A_partition</partition>
 </partitions>
</publish>

Example3:
<publish>
 <topics>
 <topic>Cir*</topic>
 </topics>
 <data_tags>
 <tag>
 <name>aTagName1</name>
 <value>aTagValue1</value>
 </tag>
 </data_tags>
</publish>

9.4.1.3.2.3.1.3 Subscribe Section

This Section defines the Topic names that the rule allows to be subscribed.

The subscribe Section shall be delimited by the <subscribe> XML Element.

The topic names appear in the Section delimited by the <topics> XML element. Topic names may be
given explicitly or by means of Topic name expressions. Each topic name or topic-name expression
appears separately in a <topic> sub-element within the <topics> element.

The Topic name expression syntax and matching shall use the syntax and rules of the POSIX fnmatch()
function as specified in POSIX 1003.2-1992, Section B.6 [38].

The subscribe Section may also include one or more sections delimited by the <partitions> XML
Element. The <partition> XML Elements contain the DDS Partition names where it is allowed to
subscribe to the specified Topic names. Partition names may be given explicitly or by means of
Partition name expressions. Each partition name or partition-name expression appears separately in a
<partition> sub-element within the <partitions> element.

204 DDS Security, v1.0

The Partition name expression syntax and matching shall use the syntax and rules of the POSIX
fnmatch() function as specified in POSIX 1003.2-1992, Section B.6 [38]. If there is no <partitions>
Section, then the rule allows subscribing only in the "empty string" partition. See PARTITION
QosPolicy entry in Qos Policies table of section 2.2.3 (Supported Qos) of the DDS Specification
version 1.4.

The subscribe Section may also include one or more sections delimited by the <data_tags> XML
Element. The <data_tags> XML Elements contain a set of tags that shall be associated with the
DataReader that subscribes the data on the Topic names allowed by the rule.

Example1:
<subscribe>
 <topics>
 <topic>Circle1</topic>
 </topics>
</subscribe>

Example2:
<subscribe>
 <topics>
 <topic>Square</topic>
 </topics>
 <partitions>
 <partition>A_partition</partition>
 </partitions>
</subscribe>

Example3:
<subscribe>
 <topics>
 <topic>Cir*</topic>
 <topics>
 <data_tags>
 <tag>
 <name>aTagName1</name>
 <value>aTagValue1</value>
 </tag>
 </data_tags>
</subscribe>

9.4.1.3.2.3.1.4 Example allow rule
 <allow_rule>
 <domains>
 <id>0</id>
 </domains>
 <publish>
 <topics>
 <topic>Cir*</topic>
 </topics>
 <data_tags>

DDS Security, v1.0 205

 <tag>
 <name>aTagName1</name>
 <value>aTagValue1</value>
 </tag>
 </data_tags>
 </publish>
 <subscribe>
 <topics>
 <topic>Sq*</topic>
 </topics>
 <data_tags>
 <tag>
 <name>aTagName1</name>
 <value>aTagValue1</value>
 </tag>
 <tag>
 <name>aTagName2</name>
 <value>aTagValue2</value>
 </tag>
 </data_tags>
 </subscribe>
 <subscribe>
 <topics>
 <topic>Triangle</topic>
 </topics>
 <partitions>
 <partition>P*</partition>
 </partitions>
 </subscribe>
 </allow_rule>

9.4.1.3.2.3.2 Format for deny rules

Deny rules appear inside the <deny_rule> XML Element. Each rule contains the domain IDs to which
the rule applies, and the topic names that are denied to be published and subscribed within those
domains.

Deny rules have the same format as the allow rules. The only difference is how they are interpreted. If
the criteria in the deny rule matches the operation being performed, then the decision is to deny the
operation.

9.4.1.3.2.3.2.1 Example deny rule
 <deny_rule>
 <domains>
 <id>0</id>
 </domains>
 <publish>
 <topics>
 <topic>Circle1</topic>
 </topics>

 </publish>
 <publish>
 <topics>

206 DDS Security, v1.0

 <topic>Square</topic>
 </topics>
 <partitions>
 <partition>A_partition</partition>
 </partitions>
 </publish>
 <subscribe>
 <topics>
 <topic>Square1</topic>
 </topics>
 </subscribe>
 <subscribe>
 <topics>
 <topic>Tr*</topic>
 </topics>
 <partitions>
 <partition>P1*</partition>
 </partitions>
 </subscribe>

 </deny_rule>

9.4.1.4 DomainParticipant example permissions document (non normative)

Following is an example permissions document that is written according to the XSD described in the
previous sections.

<?xml version="1.0" encoding="utf-16"?>

<permissions xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="omg_shared_ca_permissions.xsd">

 <grant name="ShapesPermission">
 <subject_name>emailAddress=cto@acme.com, CN=DDS Shapes Demo, OU=CTO
Office, O=ACME Inc., L=Sunnyvale, ST=CA, C=US</subject_name>

 <validity>
 <!-- Format is YYYYMMDDHH in GMT -->
 <not_before>2013060113</not_before>
 <not_after>2014060113</not_after>
 </validity>

 <deny_rule>
 <domains>
 <id>0</id>
 </domains>
 <publish>
 <topics>
 <topic>Circle1</topic>
 </topics>
 </publish>
 <publish>
 <topics>
 <topic>Square</topic>
 </topics>

DDS Security, v1.0 207

 <partitions>
 <partition>A_partition</partition>
 </partitions>
 </publish>
 <subscribe>
 <topics>
 <topic>Square1</topic>
 </topics>
 </subscribe>
 <subscribe>
 <topics>
 <topic>Tr*</topic>
 </topics>
 <partitions>
 <partition>P1*</partition>
 </partitions>
 </subscribe>
 </deny_rule>

 <allow_rule>
 <domains>
 <id>0</id>
 </domains>
 <publish>
 <topics>
 <topic>Cir*</topic>
 </topics>
 <data_tags>
 <tag>
 <name>aTagName1</name>
 <value>aTagValue1</value>
 </tag>
 </data_tags>
 </publish>
 <subscribe>
 <topics>
 <topic>Sq*</topic>
 </topics>
 <data_tags>
 <tag>
 <name>aTagName1</name>
 <value>aTagValue1</value>
 </tag>
 <tag>
 <name>aTagName2</name>
 <value>aTagValue2</value>
 </tag>
 </data_tags>
 </subscribe>
 <subscribe>
 <topics>
 <topic>Triangle</topic>
 </topics>
 <partitions>

208 DDS Security, v1.0

 <partition>P*</partition>
 </partitions>
 </subscribe>

 <relay>
 <topics>
 <topic>*</topic>
 </topics>
 <partitions>
 <partition>aPartitionName</partition>
 </partitions>
 </relay>
 </allow_rule>

 <default>DENY</default>
 </grant>
</permissions>

9.4.2 DDS:Access:Permissions Types

This sub clause specifies the content and format of the Credential and Token objects used by the
DDS:Access:Permissions plugin.

9.4.2.1 DDS:Access:Permissions PermissionsCredentialToken

The DDS:Access:Permissions plugin shall set the attributes of the
PermissionsCredentialToken object as specified in the table below.
Table 46 PermissionsCredentialToken class for the builtin AccessControl plugin

Attribute name Attribute value

class_id “DDS:Access:PermissionsCredential”

properties name value

dds.perm.cert Contents of the permissions document
signed by the PermissionCA that was
configured using the Participant
PropertyQosPolicy with name
“dds.sec.access.permissions”

9.4.2.2 DDS:Access:Permissions PermissionsToken

The DDS:Access:Permissions plugin shall set the attributes of the PermissionsToken object as
specified in the table below:

DDS Security, v1.0 209

Table 47 PermissionsToken class for the builtin AccessControl plugin

Attribute name Attribute value

class_id “DDS:Access:Permissions”

properties

(The presence of each of these
properties is optional)

name value

dds.perm_ca.sn The subject name of Permissions CA

dds.perm_ca.algo “RSA-2048” or “EC-prime256v1”

9.4.3 DDS:Access:Permissions plugin behavior

The DDS:Access:Permissions shall be initialized to have access to the Permissions CA 2048-bit RSA
public key. As this is a builtin plugin the mechanism for initialization is implementation dependent.

The table below describes the actions that the DDS:Access:Permissions plugin performs when each of
the plugin operations is invoked.
 Table 48 – Actions undertaken by the operations of the bulitin AccessControl plugin

check_create_participant This operation shall use the permissions_handle to retrieve
the cached Permissions and Governance information.

If the Governance specifies any topics on the
DomainParticipant domain_id with
enable_read_access_control set to FALSE or with
enable_write_access_control set to FALSE, then the
operation shall succeed and return TRUE.

If the Permissions document contains a Grant for the
DomainParticipant and the Grant contains an allow
rule on the DomainParticipant domain_id, then the
operation shall succeed and return TRUE.

Otherwise the operation shall return FALSE.

check_create_datawriter This operation shall use the permissions_handle to retrieve
the cached Permissions and Governance information.

If the Governance specifies a topic or topic-expression on
the DomainParticipant domain_id matching the
DataWriter topic with enable_write_access_control set
to FALSE, then the operation shall succeed and return
TRUE.

If the Permissions document contains a Grant for the
DomainParticipant allowing it to publish the Topic
with specified topic_name on all the Publisher’s
PartitionQosPolicy names and with all the tags in the
DataWriter DataTagQosPolicy, then the operation
shall succeed and return TRUE.

210 DDS Security, v1.0

Otherwise the operation shall return FALSE.

check_create_datareader This operation shall use the permissions_handle to retrieve
the cached Permissions and Governance information.

If the Governance specifies a topic or topic-expression on
the DomainParticipant domain_id matching the
DataReader topic with enable_read_access_control set
to FALSE, then the operation shall succeed and return
TRUE.

If the Permissions document contains a Grant for the
DomainParticipant allowing it to subscribe the
Topic with specified topic_name on all the
Subscriber’s PartitionQosPolicy names and with
all the tags in the DataReader DataTagQosPolicy,
then the operation shall succeed and return TRUE.

Otherwise the operation shall return FALSE.

check_create_topic This operation shall use the permissions_handle to retrieve
the cached Permissions and Governance information.

If the Governance specifies a topic or topic-expression on
the DomainParticipant domain_id matching the
Topic name with enable_read_access_control set to
FALSE or with enable_write_access_control set to FALSE,
then the operation shall succeed and return TRUE.

If the Permissions document contains a Grant for the
DomainParticipant allowing it to publish the Topic
with specified topic_name, then the operation shall succeed
and return TRUE.

If the Permissions document contains a Grant for the
DomainParticipant allowing it to subscribe the
Topic with specified topic_name, then the operation shall
succeed and return TRUE.

Otherwise the operation shall return FALSE.

check_local_datawriter_re
gister_instance

This operation shall return TRUE.

check_local_datawriter_di
spose_instance

This operation shall return TRUE.

check_remote_participant This operation shall use the permissions_handle to retrieve
the cached remote DomainParticipant Permissions
and Governance information.

If the Governance specifies any topics on the

DDS Security, v1.0 211

DomainParticipant domain_id with
enable_read_access_control set to FALSE or with
enable_write_access_control set to FALSE, then the
operation shall succeed and return TRUE.

If the Permissions document contains a Grant for the remote
DomainParticipant and the Grant contains an allow
rule on the DomainParticipant domain_id, then the
operation shall succeed and return TRUE.

Otherwise the operation shall return FALSE.

check_remote_datawriter

This operation shall use the permissions_handle to retrieve
the cached remote DomainParticipant Permissions
and Governance information.

If the Governance specifies a topic or topic-expression on
the DomainParticipant domain_id matching the
remote DataWriter topic with
enable_write_access_control set to FALSE, then the
operation shall succeed and return TRUE.

If the remote DomainParticipant Permissions
document contains a Grant allowing it to publish the
DataWriter’s topic_name on all the remote
Publisher’s PartitionQosPolicy names and with
all the tags in the remote DataWriter
DataTagQosPolicy, then the operation shall succeed
and return TRUE.

Otherwise the operation shall return FALSE.

check_remote_datareader This operation shall use the permissions_handle to retrieve
the cached remote DomainParticipant Permissions
and Governance information.

If the Governance specifies a topic or topic-expression on
the DomainParticipant domain_id matching the
remote DataReader topic with
enable_read_access_control set to FALSE, then the
operation shall succeed, set the ‘allow_relay_only’ output
parameter to FALSE, and return TRUE.

If the Permissions document contains a Grant for the remote
DomainParticipant allowing it to subscribe the
DataReader’s topic_name on all the Subscriber’s
PartitionQosPolicy names and with all the tags in the
DataReader DataTagQosPolicy, then the operation
shall succeed, set the ‘allow_relay_only’ output parameter to
FALSE, and return TRUE.

If the Permissions document contains a Grant for the remote

212 DDS Security, v1.0

DomainParticipant allowing it to ‘relay’ the
DataReader’s topic_name, the operation shall return
TRUE and also set the ‘allow_relay_only’ output parameter
to TRUE.

Otherwise the operation shall return FALSE.

check_remote_topic This operation shall use the permissions_handle to retrieve
the cached remote DomainParticipant Permissions
and Governance information.

If the Governance specifies a topic or topic-expression on
the DomainParticipant domain_id matching the
Topic name with enable_read_access_control set to
FALSE or with enable_write_access_control set to FALSE,
then the operation shall succeed and return TRUE.

If the Permissions document contains a Grant for the
DomainParticipant allowing it to publish the Topic
with specified topic_name, then the operation shall succeed
and return TRUE.

If the Permissions document contains a Grant for the
DomainParticipant allowing it to subscribe the
Topic with specified topic_name, then the operation shall
succeed and return TRUE.

Otherwise the operation shall return FALSE.

check_local_datawriter_ma
tch

This operation shall return TRUE.

check_local_datareader_ma
tch

This operation shall return TRUE.

check_remote_datawriter_r
egister_instance

This operation shall return TRUE.

check_remote_datawriter_d
ispose_instance

This operation shall return TRUE.

get_permissions_token This operation shall return the PermissionsToken
formatted as described in 9.4.2.2.

get_permissions_credentia
l_token

This operation shall return the PermissionsToken
formatted as described in 9.4.2.1

set_listener This operation shall save a reference to the listener object
and associate it with the specified PermissionsHandle.

return_permissions_token This operation shall behave as specified in 8.4.2.6.20

DDS Security, v1.0 213

return_permissions_creden
tial_token

This operation shall behave as specified in 8.4.2.6.21

validate_local_permission
s

This operation shall receive the DomainId and
DomainParticipantQos from which it can access the
Identity Certificate, Signed Domain Governance and Signed
Permissions document.

The operation shall check the subject name in the Identity
Certificate matches the one from the Signed Permissions
document.

The operation shall verify the signature of the Signed
Domain Governance and Signed Permissions document by
the configured Permissions CA.

If all of these succeed, the operation shall cache the
Permissions (see 9.4.1.3.1) from the certificate and return an
opaque handle that the plugin can use to refer to the saved
information. Otherwise the operation shall return an error.

validate_remote_permissio
ns

This operation shall invoke the operation
get_authenticated_peer_credential_token
on the auth_plugin passing the remote_identity_handle to
retrieve the AuthenticatedPeerCredentialToken
(see 9.3.2.2) for the remote DomainParticipant.

The AuthenticatedPeerCredentialToken
contains both the Identity Certificate and the Signed
Permissions Document obtained from the remote
DomainParticipant during the Authentication.

The operation shall check the subject name in the Signed
Permissions Document matches the one in the Identity
Certificate.

The operation shall verify the signature of the Signed
Permissions Document by the configured Permissions CA.

If all of these succeed, the operation shall cache the
Permission Section from the Signed Permissions Document
and return an opaque handle that the plugin can use to refer
to the saved information. Otherwise the operation shall
return an error.

get_participant_sec_attri
butes

This operation shall use the permissions_handle to retrieve
the cached Permissions and Governance information.

Based on the Governance document rules for the
DomainParticipant domain_id the operation shall fill
the attributes output parameter. The fields of the
ParticipantSecurityAttributes attributes shall

214 DDS Security, v1.0

be set according to the following rules:

If the Governance document has the element
allow_unauthenticated_participants set to FALSE, the
attributes field allow_unauthenticated_participants shall be
set to FALSE. Otherwise the field shall be set to TRUE.

If the Governance document has the element
enable_join_access_control set to FALSE, the attributes
field is_access_protected shall be set to FALSE. Otherwise
the field shall be set to TRUE.

If the Governance document has the element
rtps_protection_kind set to NONE, the attributes field
is_rtps_protected shall be set to FALSE. Otherwise the field
shall be set to TRUE.

9.5 Builtin Crypto: DDS:Crypto:AES-GCM-GMAC
The builtin Cryptographic plugin is referred to as “DDS:Crypto:AES-GCM-GMAC” plugin.

DDS:Crypto:AES-GCM-GMAC provides authenticated encryption using Advanced Encryption
Standard (AES) in Galois Counter Mode (AES-GCM) [45]. It supports two AES key sizes: 128 bits
and 256 bits. It may also provide additional reader-specific message authentication codes (MACs)
using Galois MAC (AES-GMAC) [45].

The definition of the AES-GCM and AES-GMAC transformations shall be as specified in NIST SP
800-38D [45] specialized to 128-bit and 256-bit AES keys with 96-bit Initialization Vector. The most
relevant aspects are summarized below.

The AES-GCM authenticated encryption operation is a transformation that takes the four inputs and
produces two outputs, symbolically:

C, T = AES-GCM(K, P, AAD, IV)

The AES-GCM inputs are described in Table 49 below.

DDS Security, v1.0 215

Table 49 – AES-GCM transformation inputs

Input Description

K The 128-bit key to be used with the AES-128 block cipher

or the 256-bit key to be used with the AES-256 block cipher.

P The plaintext. This is the data to encrypt and authenticate.

It may be empty in case we only want to authenticate data.

AAD Additional Autenticated Data.

This is data beyond the plaintext that will only be authenticated. I.e. it is not
encrypted.

IV Initialization Vector.

This is a 96-bit NONCE that shall not be repeated for the same key.

The AES-GCM transformation outputs are described in Table 50 below.
Table 50 – AES-GCM trasnsformation outputs

Input Description

C Ciphertext.

This is the encryption of the plaintext “P”.

T Authentication Tag.

This is a Message Authentication Code (MAC) that provides authentication for
the Ciphertext (C) and the Additional Authenticated Data (AAD).

AES-GCM uses AES in counter mode with a specific incrementing function called “inc32” used to
generate the counter blocks. As recommended in section 5.2.1.1 of NIST SP 800-38D [45] the counter
blocks shall be created from the 96-bit Initialization Vector as follows:

• The initial value of the 128-bit counter block is a 128-bit string containing the IV as the leading
96 bits and zeros the remaining right-most 32 bits.

• Incremental values of the 128-bit counter block used to encrypt each block are obtained using
the “inc32” function which increments the right-most 32 bits of the string, regarded as the
binary representation of a big-endian integer, modulo 2^32. The inc32 operation does not touch
the leading 96 bits.

The AES-GMAC transformation is defined as the special case where the plaintext “P” is empty (zero
length). This transformation produces only an AuthenticationTag (Message Authentication Code) on
the AAD data:

T = AES-GMAC(K, AAD, IV) = AES-GCM(K, “”, AAD, IV)

The use of (Galois) counter mode allows authenticated decryption of blocks in arbitrary order. All that
is needed to decrypt and validate the authentication tag are the Key and the Initialization Vector. This is

216 DDS Security, v1.0

very important for DDS because a DataReader may not receive all the samples written by a
matched DataWriter. The use of DDS ContentFilteredTopics as well as DDS QoS policies
such as History (with KEEP_LAST kind), Reliability (with BEST_EFFORTS kind),
Lifespan, and TimeBasedFilter, among others, can result in a DataReader receiving a
subset of the samples written by a DataWriter.

The AES-GCM transformation produces both the ciphertext and a message authentication code (MAC)
using the same secret key. This is sufficient to protext the plaintext and ensure integrity. However there
are situations where multiple MACs are required. For example when a DataWriter shares the same Key
with multiple DataReaders and, in spite of this, the DataWriter needs to ensure message origin
authentication. In this situation the DataWriter should create a separate “reader-specific key” used only
for authentication and append additional reader-specific MACs, each computed with one of the reader-
specific keys.

9.5.1 Configuration

The DDS:Crypto:AES-GCM-GMAC plugin requires no additional configuration as part of this
specification. However this specification reserves all PropertyQos names with the prefix
“dds.sec.crypto.” for use in future revisions of this specification.

9.5.2 DDS:Crypto:AES-GCM-GMAC Types

The Cryptographic plugin defines a set of generic data types to be used to initialize the plugin and
to externalize the properties and material that must be shared with the applications that need to decode
the cipher material, verify signatures, etc.

Each plugin implementation defines the contents of these types in a manner appropriate for the
algorithms it uses. All “Handle” types are local opaque handles that are only understood by the local
plugin objects that create or use them. The remaining types shall be fully specified so that independent
implementations of DDS:Crypto:AES-GCM-GMAC can interoperate.

9.5.2.1 DDS:Crypto:AES-GCM-GMAC CryptoToken

The DDS:Crypto:AES-GCM-GMAC plugin shall set the attributes of the CryptoToken object as
specified in the table below:
Table 51 – CryptoToken class for the builtin Cryptographic plugin

Attribute name Attribute value

class_id “DDS:Crypto:AES_GCM_GMAC”

binary_properties name value

dds.cryp.keymat The result of encrypting the CDR Serialization of the
KeyMaterial_AES_GCM_GMAC structure defined
below.

The encryption uses the logic of the
encode_serialized_payload operation, so the serialized
KeyMaterial is first placed inside a SerializedPayload
submessage element and the output contains the
SecureDataHeader, SecureDataBody, and SecureDataTag.

DDS Security, v1.0 217

The encryption uses the KxKey material derived from the
SharedSecret as described in 9.5.2.1.2.

9.5.2.1.1 KeyMaterial_AES_GCM_GMAC structure

The contents and serialization of the KeyMaterial_AES_GCM_GMAC structure are described by
the Extended IDL below.

Note: The types CryptoTransformationKind and CryptoTransformKeyId were defined
in section 8.5.1.5

/* Valid values for CryptoTransformKind */

/* No encryption, no authentication tag */
#define CRYPTO_TRANSFORMATION_KIND_NONE {0, 0, 0, 0}

/* No encryption.
 One AES128-GMAC authentication tag using the sender_key
 Zero or more AES128-GMAC auth. tags with receiver specfic keys */
#define CRYPTO_TRANSFORMATION_KIND_AES128_GMAC {0, 0, 0, 1}

/* Authenticated Encryption using AES-128 in Galois Counter Mode
 (GCM) using the sender key.
 The authentication tag using the sender_key obtained from GCM
 Zero or more AES128-GMAC auth. tags with receiver specfic keys */
#define CRYPTO_TRANSFORMATION_KIND_AES128_GCM {0, 0, 0, 2}

/* No encryption.
 One AES256-GMAC authentication tag using the sender_key
 Zero or more AES256-GMAC auth. tags with receiver specfic keys */
#define CRYPTO_TRANSFORMATION_KIND_AES256_GMAC {0, 0, 0, 3}

/* Authenticated Encryption using AES-256 in Galois Counter Mode
 (GCM) using the sender key.
 The authentication tag using the sender_key obtained from GCM
 Zero or more AES256-GMAC auth. tags with receiver specfic keys */
#define CRYPTO_TRANSFORMATION_KIND_AES256_GCM {0, 0, 0, 4}

//@Extensibility(FINAL_EXTENSIBILITY)
struct KeyMaterial_AES_GCM_GMAC {
 CryptoTransformKind transformation_kind;
 sequence<octet, 32> master_salt;

 CryptoTransformKeyId sender_key_id;
 sequence<octet, 32> master_sender_key;

 CryptoTransformKeyId receiver_specific_key_id;
 sequence<octet, 32> master_receiver_specific_key;
};

218 DDS Security, v1.0

A zero value for receiver_specific_key_id indicates there is no receiver-specific authentication tags and
shall occur if and only if the length of the master_receiver_specific_key is also zero.

9.5.2.1.2 Key material used by the BuiltinParticipantVolatileMessageSecureWriter and
BuiltinParticipantVolatileMessageSecureReader

The Key Material used by the BuiltinParticipantVolatileMessageSecureWriter and
BuiltinParticipantVolatileMessageSecureReader shall be derived from the SharedSecret obtained
as part of the authentication process. The attributes of the KeyMaterial_AES_GCM_GMAC shall be
set as described in Table 52 below. This uses HMAC-Based Key Derivation (HKDF) recommended in
IETF RFC 5869 [50].
Table 52 – KeyMaterial_AES_GCM_GMAC for BuiltinParticipantVolatileMessageSecureWriter and

BuiltinParticipantVolatileMessageSecureReader

Attribute name Attribute value

transformation_kind CRYPTO_TRANSFORMATION_KIND_AES128_GCM or

CRYPTO_TRANSFORMATION_KIND_AES256_GCM

master_salt HMACsha256 (sha256(Challenge1 | KxSaltCookie | Challenge2) ,
SharedSecret)

The parameters to the above functions are defined in Table 53.

In the case where transformation_kind is
CRYPTO_TRANSFORMATION_KIND_AES128_GCM this is
truncated to the first 128 bits.

sender_key_id 0

master_sender_key HMACsha256 (sha256(Challenge2 | KxKeyCookie | Challenge1) ,
SharedSecret)

The parameters to the above functions are defined in Table 53.

In the case where transformation_kind is
CRYPTO_TRANSFORMATION_KIND_AES128_GCM this is truncated
to the first 128 bits.

receiver_specific_key_id 0

master_receiver_specific_key Zero-length sequence

Table 53 – Terms used in KxKey and KxMacKey derivation formula for the builtin Cryptographic plugin

Term Meaning

Challenge1 The challenge that was sent in the challenge1 attribute of the
HandshakeRequestMessageToken as part of the Authentication
protocol.

This information shall be accessible from the
SharedSecretHandle.

DDS Security, v1.0 219

Challenge2 The challenge that was sent in the challenge2 attribute of the
HandshakeReplyMessageToken as part of the Authentication
protocol.

This information shall be accessible from the
SharedSecretHandle.

SharedSecret The shared secret established as part of the key agreement protocol.

This information shall be accessible from the
SharedSecretHandle.

KxKeyCookie The 16 bytes in the string “key exchange key”

KxSaltCookie The 16 bytes in the string “keyexchange salt”

data1 | data2 | data3 The symbol ‘|’ is used to indicate byte string concatenation

HMACsha256(key, data) Computes the hash-based message authentication code on ‘data’
using the key specified as first argument and a SHA256 hash as
defined in [27].

9.5.2.2 DDS:Crypto:AES-GCM-GMAC CryptoTransformIdentifier

The DDS:Crypto:AES-GCM-GMAC shall set the CryptoTransformIdentifier attributes as
specified in the table below:
Table 54 – CryptoTransformIdentifier class for the builtin Cryptographic plugin

Attribute Value

transformation_kind Set to one of the following values (see section 9.5.2.1.1):

CRYPTO_TRANSFORMATION_KIND_NONE
CRYPTO_TRANSFORMATION_KIND_AES128_GMAC
CRYPTO_TRANSFORMATION_KIND_AES128_GCM
CRYPTO_TRANSFORMATION_KIND_AES256_GMAC
CRYPTO_TRANSFORMATION_KIND_AES256_GCM

The variants containing AES128 in their name indicate that
the encryption and/or authentication use AES with 128-bit
key as the underlaying cryptographic engine. These variants
shall have master_sender_key with 16 octets in length and
master_receiver_specific_key with either zero or 16 octets in
length.

The variants containing AES256 in their name indicate that
the encryption and/or authentication use AES with 256-bit
key as the underlaying cryptographic engine. These variants
shall have master_sender_key with 32 octets in length and
master_receiver_specific_key with either zero or 32 octets in
length.

220 DDS Security, v1.0

The variants with name ending with GCM indicate that the
transformation is the standard authenticated encryption
operation known as AES-GCM (AES using Galois Counter
Mode) where the plaintext is encrypted and followed by an
authentication tag computed using the same secret key. These
variants may contain zero or more receiver-specific
authentication tags. If receiver_specific_key_id is set to zero
there shall be no receiver-specific tags otherwise there shall
be one or more receiver-specific tags.

The variants ending in GMAC indicate that there is no
encryption (i.e., the ciphertext matches the input plaintext) and
there is an authentication tag computed using the sender key
that is shared with all the readers. These variants may contain
zero or more receiver-specific authentication tags. If
receiver_specific_key_id is set to zero there shall be no
receiver-specific tags otherwise there shall be one or more
receiver-specific tags.

transformation_key_id This is set to a different value each time new Key Material is
produced by a DomainParticipant. The algorithm used is
implementation specific but it shall avoid repeating the values
for the same DomainParticipant.

9.5.2.3 DDS:Crypto:AES-GCM-GMAC SecureDataHeader

The DDS:Crypto:AES-GCM-GMAC CryptoTransform interface has several operations that
transform plain text into cipher text. The cipher-text created by these “encode” operations
contains a SecureDataHeader that is interpreted by the corresponding “decode” operations on the
receiving side. The SecureDataHeader structure is described by the Extended IDL below:

@Extensibility(FINAL_EXTENSIBILITY)
struct SecureDataHeader {
 CryptoTransformIdentifier transform_identifier;
 octet session_id[4];
 octet initialization_vector_suffix[8];
};

As indicated by the IDL above, the plugin_sec_header attribute introduced in section 7.3.6.3 consists
of the session_id and the initialization_vector_suffix.

The transformation_indentifier combined with the identity of the sending DomainParticipant
uniquely identifies the KeyMaterial used to transform the plaintext into the cipher text.

The session_id combined with the KeyMaterial uniquely identifies the cryptographic keys used for
the encryption and MAC operations.

The initialization_vector_suffix combined with the session_id uniquely identifies the
Initialization Vector used as part of the AES-GCM and AES-GMAC transformations.

DDS Security, v1.0 221

9.5.2.4 DDS:Crypto:AES-GCM-GMAC SecureDataBody

The DDS:Crypto:AES-GCM-GMAC CryptoTransform interface has operations that transform
plaintext into cipher text. The cipher-text created by some of these “encode” operations contains a
SecureDataBody submessage element (see 7.3.6.1) that is interpreted by the corresponding
“decode” operations on the receiving side.

The SecureDataBody structure is described by the Extended IDL below:

@Extensibility(FINAL_EXTENSIBILITY)
struct SecureDataBody {
 sequence<octet> secure_data;
};

The SecureDataBody structure shall be serialized using Big Endian serialization (a.k.a. network
byte order).

9.5.2.5 DDS:Crypto:AES-GCM-GMAC SecureDataTag

The DDS:Crypto:AES-GCM-GMAC CryptoTransform interface has several operations that
transform plaintext into cipher text. The cipher-text created by these “encode” operations contains a
SecureDataTag that is interpreted by the corresponding “decode” operations on the receiving side.

The SecureDataTag structure is described by the Extended IDL below:

@Extensibility(FINAL_EXTENSIBILITY)
struct ReceiverSpecificMAC {
 CryptoTransformKeyId receiver_mac_key_id;
 octet receiver_mac[16];
};

@Extensibility(FINAL_EXTENSIBILITY)
struct SecureDataTag {
 octet common_mac[16];
 sequence<ReceiverSpecificMAC> receiver_specific_macs;
};

As indicated by the IDL above, the plugin_sec_tag attribute introduced in section 7.3.6.4 consists of
the common_mac and the receiver_specific_macs.

The receiver-specific Message Authentication Codes (MACs) are computed with a secret key that the
sender shares only with one receiver. The receiver-specific MACs provide message origin
authentication to the receiver even when the sender is communicating with multiple receivers via
multicast and shares the same encryption key will all of them.

9.5.3 DDS:Crypto:AES-GCM-GMAC plugin behavior

This plugin implements three interfaces: CryptoKeyFactory, CryptoKeyExchange, and
CryptoTransform. Each is described separately.

222 DDS Security, v1.0

9.5.3.1 CryptoKeyFactory for DDS:Crypto:AES-GCM-GMAC

The table below describes the actions that the DDS:Crypto:AES-GCM-GMAC when each of the
CryptoKeyFactory plugin operations is invoked.
Table 55 – Actions undertaken by the operations of the builtin Cryptographic CryptoKeyFactory plugin

register_local_pa
rticipant

This operation shall create a new KeyMaterial_AES_GCM_GMAC
object and return a handle that the plugin can use to access the created
object. We will refer to this object by the name:
ParticipantKeyMaterial.

The transformation_kind for the ParticipantKeyMaterial
object shall be configurable but the configuration mechanism is not
specified.

register_matched_
remote_participan
t

This operation shall associate the SharedSecret received as an
argument with the local and remote
ParticipantCryptoHandle.

This operation shall create a new KeyMaterial_AES_GCM_GMAC
object and associate it with the local and remote
ParticipantCryptoHandle pair. We will refer to this object by
the name: Participant2ParticipantKeyMaterial.

The transformation_kind, master_salt, and master_sender_key shall
match those of the ParticipantKeyMaterial.

The Participant2ParticipantKeyMaterial shall be used to
authenticate the RTPS messages.

This operation also creates a KeyMaterial_AES_GCM_GMAC object
derived from the SharedSecret passed as a parameter. This key
material shall be associated with the local and remote
ParticipantCryptoHandle pair. We will refer to this key
material as the Participant2ParticipantKxKeyMaterial.
It is used to exchange key material between DomainParticipant
entities.

register_local_da
tawriter

This operation shall create a new KeyMaterial_AES_GCM_GMAC
object and returns a handle that the plugin can use to access the created
object. We will refer to this object by the name:
WriterKeyMaterial.

The transformation_kindfor the WriterKeyMaterial object shall
be configurable but the configuration mechanism is not specified.

register_matched_
remote_datareader

This operation shall create a new KeyMaterial_AES_GCM_GMAC
object and associate it with the local DatawriterCryptoHandle
and remote DatareaderCryptoHandle pair. We will refer to this
object by the name: Writer2ReaderKeyMaterial.

DDS Security, v1.0 223

The transformation_kind, master_salt, and master_sender_key for the
Writer2ReaderKeyMaterial object shall match those in the
DataWriter WriterKeyMaterial.

The Writer2ReaderKeyMaterial shall be sent to the remote
DataReader such that it can process the CryptoTransform encoded
from the DataWriter.

register_local_da
tareader

This operation shall create a new KeyMaterial_AES_GCM_GMAC
object and return a handle that the plugin can use to access the created
object. We will refer to this object by the name:
ReaderKeyMaterial.

The transformation_kindfor the ReaderKeyMaterial object shall
be configurable but the configuration mechanism is not specified.

register_matched_
remote_datawriter

This operation shall create a new KeyMaterial_AES_GCM_GMAC
object and associate it with the local DatareaderCryptoHandle
and remote DatawriterCryptoHandle pair. We will refer to this
object by the name: Reader2WriterKeyMaterial.

The transformation_kind, master_salt, and master_sender_key for the
Reader2WriterKeyMaterial object shall match those in the
DataReader ReaderKeyMaterial.

The Reader2WriterKeyMaterial shall be sent to the remote
DataWriter such that it can process the ciphetext from the
DataReader.

unregister_partic
ipant

Releases any resources allocated on the corresponding call to
register_local_participant, or
register_matched_remote_participant.

unregister_datawr
iter

Releases any resources allocated on the corresponding call to
register_local_datawriter, or
register_matched_remote_datawriter.

unregister_datare
ader

Releases any resources allocated on the corresponding call to
register_local_datareader, or
register_matched_remote_datareader.

9.5.3.2 CryptoKeyExchange for DDS:Crypto:AES-GCM-GMAC

The table below describes the actions that the DDS:Crypto:AES-GCM-GMAC when each of the
CryptoKeyExchange plugin operations is invoked.
Table 56 – Actions undertaken by the operations of the builtin Cryptographic CryptoKeyExchange plugin

create_local_part
icipant_crypto_to
kens

Creates a DDS:Crypto:AES-GCM-GMAC CryptoToken object and
returns it in the output sequence.

The CryptoToken contains the

224 DDS Security, v1.0

Participant2ParticipantKeyMaterial created on the call
to register_matched_remote_participant for the
remote_participant_crypto.

The CryptoToken object shall be protected by the
Participant2ParticipantKxKey.

set_remote_partic
ipant_crypto_toke
ns

Shall receive the sequence containing one CryptoToken object
that was created by the corresponding call to
create_local_participant_crypto_tokens on the
remote side.

The operation uses the Participant2ParticipantKxKey
associated with the local and remote
ParticipantCryptoHandle pair to verify and decode the token
and associates the obtained key material with the CryptoHandle
pair. The decoded key material shall be referred as
RemoteParticipant2ParticipantKeyMaterial.

create_local_data
writer_crypto_tok
ens

Creates a DDS:Crypto:AES-GCM-GMAC CryptoToken object and
returns it in the output sequence.

The CryptoToken contains the Writer2ReaderKeyMaterial
created on the call to
register_matched_remote_datareader for the
remote_datareader_crypto.

The CryptoToken object shall be protected by the
Participant2ParticipantKxKey.

set_remote_datawr
iter_crypto_token
s

Shall receive the sequence containing one CryptoToken object
that was created by the corresponding call to
create_local_datawriter_crypto_tokens on the remote
side.

The operation uses the Participant2ParticipantKxKey
associated with the local and remote
ParticipantCryptoHandle pair to verify and decode the token
and associates the obtained key material with the CryptoHandle
pair. The decoded key material shall be referred as
RemoteWriter2ReaderKeyMaterial.

create_local_data
reader_crypto_tok
ens

Creates a DDS:Crypto:AES-GCM-GMAC CryptoToken object and
returns it in the output sequence.

The CryptoToken contains the Reader2WriterKeyMaterial
created on the call to
register_matched_remote_datawriter for the
remote_datawriter_crypto.

The CryptoToken object shall be protected by the

DDS Security, v1.0 225

Participant2ParticipantKxKey.

set_remote_datare
ader_crypto_token
s

Shall receive the sequence containing one CryptoToken object
that was created by the corresponding call to
create_local_datareader_crypto_tokens on the remote
side.

The operation uses the Participant2ParticipantKxKey
associated with the local and remote
ParticipantCryptoHandle pair to verify and decode the token
and associates the obtained keys with the CryptoHandle pair.
The decoded key material shall be referred as
RemoteReader2WriterKeyMaterial.

return_crypto_tok
ens

Releases the resources associated with the CryptoToken objects
in the sequence.

9.5.3.3 CryptoKeyTransform for DDS:Crypto:AES-GCM-GMAC

9.5.3.3.1 Overview

The table below describes the actions that the DDS:Crypto:AES-GCM-GMAC when each of the
CryptoKeyTransform plugin operations is invoked.
Table 57 – Actions undertaken by the operations of the builtin Cryptographic CryptoKeyTransform plugin

encode_serialized
_payload

Uses the WriterKeyMaterial associated with the
sending_datawriter_crypto to encrypt and/or sign the
input SerializedPayload RTPS SubmessageElement (see
7.3.1).

If the transformation_kind indicates that encryption is performed,
then the output shall be the three RTPS Submessage elements:
SecureDataHeader, SecureDataBody, and SecureDataTag (see
7.3.6.1).

If the transformation_kind indicates that only authentication is
performed, then the output shall be the three RTPS Submessage
elements: SecureDataHeader, SerializedPayload, and
SecureDataTag. Where SerializedPayload is the serialized payload
passed as an input to the operation.

This operation shall always set the receiver_specific_macs attribute
in the SecureDataTag to the empty sequence.

encode_datawriter
_submessage

Uses the WriterKeyMaterial associated with the
sending_datawriter_crypto and the
Writer2ReaderKeyMaterial associated with the
sending_datawriter_crypto and each of the
receiving_datareader_crypto handles to encrypt and/or

226 DDS Security, v1.0

sign the input RTPS Submessage.

If the transformation_kind indicates that encryption is performed,
then the output shall be the three RTPS Submessages:
SecurePrefixSubMsg, SecureBodySubMsg, and
SecurePostfixSubMsg. See 7.3.7.6, 7.3.7.5, and 7.3.7.7.

If the transformation_kind indicates that only authentication is
performed, then the output shall be the three RTPS Submessages:
SecurePrefixSubMsg, InputSubmessage, and
SecurePostfixSubMsg. Where InputSubmessage indicates
the submessage that was passed as input to the operation.

The transformations shall be computed using the
WriterKeyMaterial associated with the
sending_datawriter_crypto.

Depending on the configuration the operation may compute and set
the common_mac and the receiver_specific_macs attributes within
the SecurePostfixSubMsg.

The common_mac shall be computed using the
WriterKeyMaterial associated with the
sending_datawriter_crypto.

If computed, the receiver_specific_macs shall be computed using the
Writer2ReaderKeyMaterial associated with the pair
composed of the sending_datawriter_crypto and each of the
corresponding receiving_datareader_crypto.

encode_datareader
_submessage

Uses the ReaderKeyMaterial associated with the
sending_datareader_crypto and the
Reader2WriterKeyMaterial associated with the
sending_datareader_crypto and each of the
receiving_datareader_crypto handles to encrypt and/or
sign the input RTPS Submessage.

If the transformation_kind indicates that encryption is performed,
then the output shall be the three RTPS Submessages:
SecurePrefixSubMsg, SecureBodySubMsg, and
SecurePostfixSubMsg. See 7.3.7.6, 7.3.7.5, and 7.3.7.7.

If the transformation_kind indicates that only authentication is
performed, then the output shall be the three RTPS Submessages:
SecurePrefixSubMsg, InputSubmessage, and
SecurePostfixSubMsg. Where InputSubmessage indicates
the submessage that was passed as input to the operation.

The transformations shall be computed using the
ReaderKeyMaterial associated with the
sending_datareader_crypto.

DDS Security, v1.0 227

Depending on the configuration the operation may compute and set
the common_digest or the additional_digests.

The common_mac shall be computed using the
ReaderKeyMaterial associated with the
sending_datareader_crypto.

If computed, the receiver_specific_macs shall be computed using the
Reader2WriterKeyMaterial associated with the pair
composed of the sending_datareader_crypto and each of the
corresponding receiving_datawriter_crypto.

228 DDS Security, v1.0

encode_rtps_messa
ge

Transforms the input RTPS Message into an output RTPS Message
that contains the original RTPS Header followed by the
SecureRTPSPrefixSubMsg, one or more RTPS SubMessages,
and the SecureRTPSPostfixSubMsg.

The transformation uses the ParticipantKeyMaterial
associated with the sending_participant_crypto and
Participant2ParticipantKeyMaterial and each of the
receiving_participant_crypto handles.

Let RTPSMessage{RTPSHdr-> InfoSourceSubMsg}
represent the input RTPS Message transformed so that the RTPS
Header is replaced with an RTPS InfoSourceSubMsg containing the
same information as the RTPS Header and the remaining
submessages remain the same.

If the transformation_kind indicates that encryption is performed,
then the output shall be the three RTPS Submessages:
SecureRTPSPrefixSubMsg, SecureBodySubMsg, and
SecureRTPSPostfixSubMsg.

The SecureBodySubMsg shall contain the result of encrypting the
RTPSMessage{RTPSHdr-> InfoSourceSubMsg}.

The SecureRTPSPostfixSubMsg shall contain the
authentication tags computed on the SecureBodySubMsg.

If the transformation_kind indicates that only authentication is
performed then the output shall be the RTPS Submessages:
SecureRTPSPostfixSubMsg, RTPSMessage{RTPSHdr->
InfoSourceSubMsg}, and SecureRTPSPostfixSubMsg.

The SecureRTPSPostfixSubMsg shall contain the
authentication tags computed on the SecurePrefixSubMsg,
RTPSMessage{RTPSHdr-> InfoSourceSubMsg}.

Depending on the configuration the operation may contain only the
common_mac and a non-zero length receiver_specific_macs.

The common_mac shall be computed using the
ParticipantKeyMaterial associated with the
sending_participant_crypto.

If present, the receiver_specific_macs shall be computed using the
Participant2ParticipantKeyMaterial associated with the
pair composed of the sending_participant_crypto and each
of the corresponding receiving_participant_crypto.

decode_rtps_messa
ge

Examines the SecureRTPSPrefixSubMsg to determine the
transformation_kind is one of the recognized kinds. If the kind is not

DDS Security, v1.0 229

recognized, the operation shall fail with an exception.

Uses source and destination DomainParticipant GUIDs in the
RTPS Header to locate the sending_participant_crypto
and receiving_participant_crypto. Then looks whether
the transformation_key_id attribute in the
CryptoTransformIdentifier is associated with those
ParticipantCryptoHandles. If the association is not found
the operation shall fail with an exception.

Uses the RemoteParticipantKeyMaterial and the
RemoteParticipant2ParticopantKeyMaterial associated
with the retrieved ParticipantCryptoHandles to validate the
authentication tags containe in the
SecureRTPSPostfixSubMsg. If the verification fails the
operation shall fail with an exception.

Upon success the returned RTPS Message shall match the input to
the encode_rtps_message operation on the DomainParticipant
that sent the message.

preprocess_secure
_submsg

Examines the RTPS SecureSubmessage to:

1. Determine whether the CryptoTransformIdentifier
the transformation_kind matches one of the recognized
kinds.

2. Classify the RTPS Submessage as a Writer or Reader
Submessage.

3. Retrieve the DatawriterCryptoHandle and
DataReaderCryptoHandle handles associated with the
CryptoTransformIdentifier transformation_key_id.

230 DDS Security, v1.0

decode_datawriter
_submessage

Uses the RemoteDatawriterKeyMaterial and the
RemoteDatawriter2DatareaderKeyMaterial associated
with the CryptoHandles returned by the
preprocess_secure_submessage to verify and decrypt the RTPS
SubMessage that follows the SecurePrefixSubMsg, using the
authentication tags in the SecurePostfixSubMsg. If the
verification or decryption fails, the operation shall fail with an
exception.

If the RemoteDatawriterKeyMaterial specified a
transformation_kind different from
CRYPTO_TRANSFORMATION_KIND_NONE, then the operation shall
check that the received SecurePostfixSubMsg contains a
common_mac and use it to verify the RTPS SubMessage that follows
the SecurePrefixSubMsg. If the common_mac is missing or the
verification fails the operation shall fail with an exception.

If the RemoteDatawriter2DatareaderKeyMaterial
specified a receiver_specific_mac_key_id different from zero, then
the operation shall check that the received
SecurePostfixSubMsg contains a non-zero length
master_receiver_specific_mac_key element containing the
receiver_mac_key_id that is associated with local and remote
CryptoHandles and use it to verify the submessage. If the
receiver_mac_key_id is missing or the verification fails, the
operation shall fail with an exception.

If the RemoteDatawriterKeyMaterial specified a
transformation_kind that performs encryption the operation shall
use the RemoteDatawriterKeyMaterial to decode the data in
the SecureBodySubMsg, obtain an RTPS SubMessage and return
it. Otherwise the RTPS Submessage that follows the
SecurePrefixSubMsg is returned.

Upon success the returned RTPS SubMessage shall match the input
to the encode_datawriter_message operation on the
DomainParticipant that sent the message.

decode_datareader
_submessage

Uses the RemoteDatareaderKeyMaterial and the
RemoteDatareader2DatawriterKeyMaterial associated
with the CryptoHandles returned by the
preprocess_secure_submessage to verify and decrypt the
RTPS SubMessage that follows the SecurePrefixSubMsg, using
the authentication tags in the SecurePostfixSubMsg.If the
verification or decryption fails, the operation shall fail with an
exception.

If the RemoteDatareaderKeyMaterial specified a

DDS Security, v1.0 231

transformation_kind different from
CRYPTO_TRANSFORMATION_KIND_NONE, then the operation shall
check that the received SecurePostfixSubMsg contains a
common_mac and use it to verify the RTPS SubMessage that follows
the SecurePrefixSubMsg. If the common_mac is missing or the
verification fails, the operation shall fail with an exception.

If the RemoteDatareader2DatawriterKeyMaterial
specified a receiver_specific key_id different from zero, then the
operation shall check that the received SecurePostfixSubMsg
contains a non-zero length receiver_specific_macs element
containing the receiver_specific_key_id that is associated with local
and remote CryptoHandles and use it to verify the submesage. If the
receiver_specific_key_id is missing or the verification fails, the
operation shall fail with an exception.

If the RemoteDatareaderKeyMaterial specified a
transformation_kind that performs encryption the operation shall
use the RemoteDatareaderKeyMaterial to decode the data in
the SecureBodySubMs, obtain an RTPS SubMessage and return it.
Otherwise the RTPS Submessage that follows the
SecurePrefixSubMsg is returned.

Upon success the returned RTPS SubMessage shall match the input
to the encode_datareader_message operation on the
DomainParticipant that sent the message.

decode_serialized
_payload

Uses writerGUID and the readerGUID in the RTPS SubMessage to
locate the sending_datawriter_crypto and
receiving_datareader_crypto. Then looks whether the
transformation_key_id attribute in the
CryptoTransformIdentifier in the SecureDataHeader
SubmessageElement is associated with those CryptoHandles. If the
association is not found, the operation shall fail with an exception.

Uses the RemoteDatawriterKeyMaterial associated with the
retrieved CryptoHandles to verify the common_mac and decrypt the
RTPS SecureData SubmessageElement. If the verification or
decryption fails, the operation shall fail with an exception.

If the RemoteDatawriterKeyMaterial specified a
receiver_specific key_id different from zero, then the operation shall
check that the received SecureData SubmessageElement contains a
non-zero length receiver_specific_macs element containing the
receiver_specific_key_id that is associated with the local and remote
CryptoHandles. If the receiver_specific_key_id is missing or the
verification fails, the operation shall fail with an exception.

If the RemoteDatawriterKeyMaterial specified a
transformation_kind that performs encryption, the operation shall

232 DDS Security, v1.0

use the RemoteDatawriterKeyMaterial to decode the data in
the SecureDataBody, obtain a SerializedPayload and
return it. Otherwise the RTPS Submessage Element that follows the
SecureDataHeader is returned as SerializedPayload.

Upon success the returned RTPS SerializedPayload shall
match the input to the encode_serialized_data operation on
the DomainParticipant that sent the message.

9.5.3.3.2 Encode/decode operation virtual machine

The logical operation of the DDS:Crypto:AES-GCM-GMAC is described in terms of a virtual machine
as it performs the encrypt message digest operations. This is not intended to mandate implementations
should follow this approach literally, simply that the observable results for any plaintext are the same
as the virtual machine described here.

For any given cryptographic session the operation of the DDS:Crypto:AES-GCM-GMAC transforms
plaintext into ciphertext can be described in terms of a virtual machine that maintains the following
state:
Table 58 – Terms used in Key Computation and cryptographic transformations formulas for the builtin

cryptographic plugin

State variable Type Meaning

MasterKey 128 bit array for AES128

256 bit array for AES256

The master key from which session
salts, session keys and session hash
keys are derived.

MasterSalt 128 bit array for AES128

256 bit array for AES256

A random vector used in connection
with the MasterKey to create the
SessionKey.

MasterKeyId octet[4] A NONCE value associated with the
master key when it is first created used
to tag the ciphertext to ensure the
correct key is being used during
decryption. It may be used also for the
purposes of re-keying.

MasterReaderSpecificKey 128 bit array for AES128

256 bit array for AES256

The master key from which
SessionReceiverSpecificKey keys are
derived.

InitializationVectorSuffix octet[8] An initially random NONCE used to
create the Initialization Vector needed
by the cryptographic operations. This
value shall be changed each time an
encryption or MAC operation is
performed using the same key.

DDS Security, v1.0 233

SessionId octet[4] An initially random value used to create
the current SessionKey, and
SessionReceiverSpecificKey from the
MasterKey, MasterReceiverSpecificKey,
and Master salts.

The SessionId is incremented each time
a new SessionKey is needed and then
used to derive the new SessionKey and
SessionReceiverSpecificKey from the
MasterKey and
MasterReceiverSpecificKey.

Knowledge of the MasterKey,
MasterSalt, and the SessionId is
sufficient to create the SessionKey.

Knowledge of the
MasterReceiverSpecificKey, MasterSalt,
and the SessionId is sufficient to create
the SessionReceiverSpecificKey.

SessionKey 128 bit array for AES128

256 bit array for AES256

The current key used for creating the
ciphertext and/or the common_mac.

It is constructed from the MasterKey,
MasterSalt, and SessionId.

SessionReceiverSpecificKey 128 bit array for AES128

256 bit array for AES256

The current key used for creating the
receiver_specific_mac.

session_block_counter 64 bit integer A counter that counts the number of
blocks that have been ciphered with the
current SessionKey.

max_blocks_per_session 64 bit integer A configurable property that limits the
number of blocks that can be ciphered
with the same SessionKey. If the
session_block_counter exceeds this
value a new SessionKey, SessionSalt,
and SessionHMACKey are computed
and the session_block_counter is reset
to zero.

All the key material with a name that starts with “Master” corresponds to the
KeyMaterial_AES_GCM_GMAC objects that were created by the CryptoKeyFactory
operations. This key material is not used directly to encrypt or compute MAC of the plaintext. Rather it
is used to create “Session” Key material by means of the algorithms described below. This has the
benefit that the ‘session’ keys used to secure the data stream data can be modified as needed to
maintain the security of the stream without having to perform explicit rekey and key-exchange
operations.

234 DDS Security, v1.0

9.5.3.3.3 Computation of SessionKey and SessionReceiverSpecificKey

The SessionKey and SessionReceiverSpecificKey are computed from the MasterKey,
MasterSalt and the SessionId:

SessionKey := HMAC256(MasterKey,"SessionKey" | MasterSalt | SessionId)

SessionReceiverSpecificKey

 := HMAC256(MasterReaderSpecificKey,

 "SessionReceiverKey" | MasterSalt | SessionId)

HMAC256 is a HMAC-SHA256. In case a 128 key is desired the 256 bit HMAC is truncated to the
first 128 bits.

In the above expressions the symbol ‘|’ indicates concatenation.

9.5.3.3.4 Computation of ciphertext from plaintext

The ciphertext is computed from the plain text using AES in Galois Counter Mode (AES-GCM).

The encryption transforms the plaintext input into ciphertext by performing an encryption operation
using the AES-GCM algorithm in counter mode using the SessionKeys associated with the specified
KeyHandle. The encryption transformation is described in detail in the sections that follow.

The encryption operation uses a 96-bit initialization vector constructed as:

 InitializationVector = SessionId | InitializationVectorSuffix

In the above expression ‘|’ indicates the concatenation of bit strings.

The same InitializationVector is associated with all the session keys (SessionKey and all
SessionReceiverSpecificKeys) associated with a specific Sender. It shall be incremented each time any
of those keys are used to encrypt and/or create a MAC.

The session_block_counter is an internal counter that keeps track of the number of blocks encrypted
with the same session key. The purpose is to ensure that a single session key is not used to encrypt
more than the configured max_blocks_per_session. The session_block_counter and the size of the
plain text shall be used by implementations of the Crypto encode operations to ensure that
max_blocks_per_session will not be exceeded during the encode operation. If the operation detects
that the counter would exceed the maximum then it should modify the SessionId and derive new
session keys prior to transforming any of the input plain text. The change in the SessionId creates new
session keys and thus resets the session_block_counter. This approach ensures that all ciphertext
returned by the operation is encrypted with the same session keys.

The resulting ciphertext will be preceded by a SecureDataHeader that indicates the SessionId and
InitializationVectorSuffix.

The resulting block of bytes from the “encode” operations (encode_serialized_payload,
encode_datawriter_submessage, encode_datareader_submessage, and
encode_rtps_message) is illustrated in the sections that follow:

DDS Security, v1.0 235

9.5.3.3.4.1 Format of the SecureDataHeader Submessage Element

The SecureDataHeader submessage element generated by the DDS:Crypto:AES-GCM-GMAC
shall take the form:

0...2...........8...............16.............24...............32

+---------------+---------------+---------------+---------------+

+ SecureDataHeader: +

+ CryptoTransformIdentifier transformation_id +

| octet[4] transformation_id.transformation_kind |

| octet[4] transformation_id.transformation_key_id |

+ - +

+ plugin_sec_prefix: +

| octet[4] plugin_sec_prefix.session_id |

~ octet[8] plugin_sec_prefix.init_vector_suffix ~

+---------------+---------------+---------------+---------------+

9.5.3.3.4.2 Format of the SecureDataBody Submessage Element

The SecureDataBody submessage element generated by the DDS:Crypto:AES-GCM-GMAC shall
take the form:

0...2...........8...............16.............24...............32

+---------------+---------------+---------------+---------------+

+ SecureDataBody: +

| long secure_data.length = N |
+ - +
| sec_data[0] | sec_data[1] | sec_data[2] | sec_data[3] |

~ . . . ~

| sec_data[N-4] | sec_data[N-3] | sec_data[N-2] | sec_data[N-1] |

+---------------+---------------+---------------+---------------+

Note that the built cipher operations have 16-byte block-size and add padding when needed. Therefore
the secure data.length (“N”) will always be a multiple of 16.

Note that as specified in subclause 9.5.2.4 the secure data.length shall be serialized using Big Endian
representation.
9.5.3.3.4.3 Format of the SecureDataTag Submessage Element

The SecureDataTag submessage element generated by the DDS:Crypto:AES-GCM-GMAC shall
take the form:

236 DDS Security, v1.0

0...2...........8...............16.............24...............32

+---------------+---------------+---------------+---------------+

+ SecureDataTag (= plugin_sec_tag): +

~ octet[16] plugin_sec_tag.common_mac ~

+ - +

+ plugin_sec_tag.receiver_specific_macs: +

| long plugin_sec_tag.receiver_specific_macs.length = N |
| - |
| octet[4] receiver_specific_macs[0].receiver_mac_key_id |

~ octet[16] receiver_specific_macs[0].receiver_mac ~
+ - +

+ . . . +

+ - +

| octet[4] receiver_specific_macs[N-1].receiver_mac_key_id|

~ octet[16] receiver_specific_macs[N-1].receiver_mac ~

+---------------+---------------+---------------+---------------+

9.5.3.3.4.4 Result from encode_serialized_payload

The input to this operation is a SerializedPayload submessage element:

0...2...........8...............16.............24...............32

+---------------+---------------+---------------+---------------+

~ SerializedPayload ~

+---------------+---------------+---------------+---------------+

The output in case the transformation performs authentication only shall be:

0...2...........8...............16.............24...............32

+---------------+---------------+---------------+---------------+

~ SecureDataHeader ~

+---------------+---------------+---------------+---------------+

~ SerializedPayload (unchanged from input) ~

+---------------+---------------+---------------+---------------+

~ SecureDataTag ~

+---------------+---------------+---------------+---------------+

DDS Security, v1.0 237

The common_mac in the SecureDataTag is the authentication tag generated by the AES-GMAC
operation using the SessionKey and the InitializationVector operationg on the
SerializedPayload.

The receiver_specific_macs in the SecureDataTag are the AES-GMAC tags computed on the
common_mac using each of the SessionReceiverSpecificKey and the same InitializationVector.

The output in case the transformation performs encryption and authentication shall be:

0...2...........8...............16.............24...............32

+---------------+---------------+---------------+---------------+

~ SecureDataHeader ~

+---------------+---------------+---------------+---------------+

~ SecureDataBody ~

| secure_data = Encrypt(SerializedPayload) |

+---------------+---------------+---------------+---------------+

~ SecureDataTag ~

+---------------+---------------+---------------+---------------+

In the above Encrypt indicates the cryptographic transformation performed with AES-GCM using the
SessionKey and the InitializationVector operationg on the SerializedPayload.

The common_mac in the SecureDataTag is the authentication tag generated by the same AES-GCM
operation where the Additional Authenticated Data is empty.

The receiver_specific_macs in the SecureDataTag are the AES-GMAC tags computed on the
common_mac using each of the SessionReceiverSpecificKey and the same InitializationVector.

9.5.3.3.4.5 Result from encode_datawriter_submessage and encode_datareader_submessage

The input to this operation is an RTPS submessage:

0...2...........8...............16.............24...............32

+---------------+---------------+---------------+---------------+

| |

~ RTPS SubMessage ~

| |

+---------------+---------------+---------------+---------------+

238 DDS Security, v1.0

The output in case the transformation performs authentication only shall be:

0...2...........8...............16.............24...............32

+---------------+---------------+---------------+---------------+

| SEC_PREFIX | (flags) E| short octetsToNextSubMsg |

+---------------+---------------+---------------+---------------+

~ SecureDataHeader ~

+---------------+---------------+---------------+---------------+

+---------------+---------------+---------------+---------------+

| |

~ RTPS SubMessage (unchanged from input) ~

| |

+---------------+---------------+---------------+---------------+

+---------------+---------------+---------------+---------------+

| SEC_POSTFIX | (flags) E| short octetsToNextSubMsg |

+---------------+---------------+---------------+---------------+

~ SecureDataTag ~

+---------------+---------------+---------------+---------------+

The common_mac in the SecureDataTag is the authentication tag generated by the AES-GMAC
operation using the SessionKey and the InitializationVector operating on the RTPS Submessage.

The receiver_specific_macs in the SecureDataTag are the AES-GMAC tags computed on the
common_mac using each of the SessionReceiverSpecificKey and the same InitializationVector.

DDS Security, v1.0 239

The output in case the transformation performs encryption and authentication shall be:

0...2...........8...............16.............24...............32

+---------------+---------------+---------------+---------------+

| SEC_PREFIX | (flags) E| short octetsToNextSubMsg |

+---------------+---------------+---------------+---------------+

~ SecureDataHeader ~

+---------------+---------------+---------------+---------------+

+---------------+---------------+---------------+---------------+

| SEC_SUB_MSG | (flags) E| short octetsToNextSubMsg |

+---------------+---------------+---------------+---------------+

~ SecureDataBody ~

| secure_data = Encrypt(RTPS SubMsg) |

+---------------+---------------+---------------+---------------+

+---------------+---------------+---------------+---------------+

| SEC_POSTFIX | (flags) E| short octetsToNextSubMsg |

+---------------+---------------+---------------+---------------+

~ SecureDataTag ~

+---------------+---------------+---------------+---------------+

In the above Encrypt indicates the cryptographic transformation performed with AES-GCM using the
SessionKey and the InitializationVector operating on the input RTPS Submessage.

The common_mac in the SecureDataTag is the authentication tag generated by the same AES-GCM
operation where the Additional Authenticated Data is the 4-byte (SEC_SUB_MSG)
SubmessageHeader that preceeds the SecureDataBody.

The receiver_specific_macs in the SecureDataTag are the AES-GMAC tags computed on the
common_mac using each of the SessionReceiverSpecificKey and the same InitializationVector.

240 DDS Security, v1.0

9.5.3.3.4.6 Result from encode_rtps_message

The input to this operation is an RTPS message:

+---------------+---------------+---------------+---------------+

~ RTPSHdr ~

+---------------+---------------+---------------+---------------+

~ SubMsg1 submessage ~

+---------------+---------------+---------------+---------------+

~ SubMsg2 submessage ~

+---------------+---------------+---------------+---------------+

| . . . |

+---------------+---------------+---------------+---------------+

~ SubMsgN submessage ~

+---------------+---------------+---------------+---------------+

The output in case the transformation performs authentication only shall be:

0...2...........8...............16.............24...............32

+---------------+---------------+---------------+---------------+

~ RTPSHdr (unchanged from input) ~

+---------------+---------------+---------------+---------------+

+---------------+---------------+---------------+---------------+

| SRTPS_PREFIX | (flags) E| short octetsToNextSubMsg |

+---------------+---------------+---------------+---------------+

~ SecureDataHeader ~

+---------------+---------------+---------------+---------------+

+---------------+---------------+---------------+---------------+

~ RTPSMessage{ RTPSHdr -> InfoSourceSubMsg } ~

+---------------+---------------+---------------+---------------+

+---------------+---------------+---------------+---------------+

| SRTPS_POSTFIX | flags E| short octetsToNextSubMsg |

+---------------+---------------+---------------+---------------+

~ SecureDataTag ~

+---------------+---------------+---------------+---------------+

DDS Security, v1.0 241

The common_mac in the SecureDataTag is the authentication tag generated by the AES-GMAC
operation using the SessionKey and the InitializationVector operationg on the RTPSMessage{
RTPSHdr -> InfoSourceSubMsg}.

RTPSMessage{ RTPSHdr -> InfoSourceSubMsg}. Represents the original RTPS Message
where the RTPS Header is repaced with an InfoSourceSubMsg with equivalent content.

The receiver_specific_macs in the SecureDataTag are the AES-GMAC tags computed on the
common_mac using each of the SessionReceiverSpecificKey and the same InitializationVector.

The output in case the transformation performs encryption and authentication shall be:

+---------------+---------------+---------------+---------------+

~ RTPSHdr (unchanged from input) ~

+---------------+---------------+---------------+---------------+

+---------------+---------------+---------------+---------------+

| SRTPS_PREFIX | (flags) E| short octetsToNextSubMsg |

+---------------+---------------+---------------+---------------+

~ SecureDataHeader ~

+---------------+---------------+---------------+---------------+

+---------------+---------------+---------------+---------------+

| SEC_SUB_MSG | (flags) E| short octetsToNextSubMsg |

+---------------+---------------+---------------+---------------+

~ SecureDataBody ~

| secure_data = |

| Encrypt(RTPSMessage{RTPSHdr -> InfoSourceSubMsg}) |

+---------------+---------------+---------------+---------------+

+---------------+---------------+---------------+---------------+

| SRTPS_POSTFIX | flags E| short octetsToNextSubMsg |

+---------------+---------------+---------------+---------------+

~ SecureDataTag ~

+---------------+---------------+---------------+---------------+

In the above Encrypt indicates the cryptographic transformation performed with AES-GCM using the
SessionKey and the InitializationVector operating on the RTPSMessage{ RTPSHdr ->
InfoSourceSubMsg}.

The common_mac in the SecureDataTag is the authentication tag generated by the same AES-GCM
operation where the Additional Authenticated Data is the 4-byte (SEC_SUB_MSG)
SubmessageHeader that preceeds the SecureDataBody.

242 DDS Security, v1.0

The receiver_specific_macs in the SecureDataTag are the AES-GMAC tags computed on the
common_mac using each of the SessionReceiverSpecificKey and the same InitializationVector.

9.5.3.3.5 Computation of plaintext from ciphertext

The decrypt operation first checks that the CryptoTransformIdentifier attribute in the
SecureDataHeader has the proper transformation_kind and also uses the
CryptoTransformIdentifier transformation_key_id to locate the MasterKey, and
MasterSalt. In case of a re-key the CryptographicSessionHandle may be associated with
multiple MasterKeyId and this parameter allows selection of the correct one. If the MasterKeyId
is not found associated with the CryptographicSessionHandle the operation shall fail.

The session_id attribute within the SecureDataHeader is used to obtain the proper
SessionReceiverSpecificKeys and SessionKey. Note that this only requires a re-
computation if it has changed from the previously received SessionId for that
CryptographicSessionHandle.

Given the InitializationVector from the SecureDataHeader and the SessionKey the
transformation performed to recover the plaintext from the ciphertext is identical to the one performed
to go plaintext to ciphertext.

9.5.3.3.6 Computation of the message authentication codes

The message digest is computed on the secure_data_header and the ciphertext.

There are two types of message authentication codes (MACs) that may appear.

• The first stored in the common_mac uses the SessionKey. This MAC may be verified by all the
receivers of the message.

• The second type, stored in the receiver_specific_macs contains MACs that use different
SessionReceiverSpecificKey whose CryptoTransformIdentifier appears explicitly in the
receiver_specific_macs. These MACs use receiver-specific keys that are shared with only one
receiver. The key material for these MACs is derived from the
RemoteParticipant2ParticipantKeyMaterial, the
RemoteWriter2ReaderKeyMaterial, or the RemoteReader2WriterKeyMaterial.

9.6 Builtin Logging Plugin
The builtin Logging Plugin is known as the DDS:Logging:DDS_LogTopic.

The DDS:Logging:DDS_LogTopic implements logging by publishing information to a DDS Topic
BuiltinLoggingTopic defined below.

The BuiltinLoggingTopic shall have the Topic name “DDS:Security:LogTopic”.

The BuiltinLoggingTopic shall have the Type BuiltinLoggingType defined in the IDL
below:

enum LoggingLevel {
 EMERGENCY_LEVEL, // System is unusable. Should not continue use.
 ALERT_LEVEL, // Should be corrected immediately
 CRITICAL_LEVEL, // A failure in primary application.
 ERROR_LEVEL, // General error conditions

DDS Security, v1.0 243

 WARNING_LEVEL, // May indicate future error if action not taken.
 NOTICE_LEVEL, // Unusual, but nor erroneous event or condition.
 INFORMATIONAL_LEVEL, // Normal operational. Requires no action.
 DEBUG_LEVEL
};

struct NameValuePair {
 string name;
 string value;
}; //@extensibility(FINAL_EXTENSIBILITY)

typedef sequence<NameValurPair> NameValuePairSeq;

struct BuiltinLoggingType {
 octet facility; // Set to 0x10. Indicates sec/auth msgs
 LoggingLevel severity;
 Time_t timestamp; // Since epoch 1970-01-01 00:00:00 +0000 (UTC)
 string hostname; // IP host name of originator
 string hostip; // IP address of originator
 string appname; // Identify the device or application
 string procid; // Process name/ID for syslog system
 string msgid; // Identify the type of message
 string message; // Free-form message

 // Note that certain string keys (SD-IDs) are reserved by IANA
 map<string, NameValuePairSeq> structured_data;
};//@extensibility(FINAL_EXTENSIBILITY)

Knowledge of the BuiltinLoggingTopic shall be builtin into the DDS:Auth:PKI-DH
AccessControl plugin and it shall be treated according to the following topic rule:

<topic_rule>
 <topic_expression> DDS:Security:LogTopic</topic_expression>
 <enable_discovery_protection>FALSE</enable_discovery_protection>
 <enable_read_access_control>TRUE</enable_read_access_control>
 <enable_write_access_control>FALSE</enable_write_access_control>
 <metadata_protection_kind>SIGN</metadata_protection_kind>
 <data_protection_kind>ENCRYPT</data_protection_kind>
 </topic_rule>

The above rule states that any DomainParticipant with permission necessary to join the DDS
Domain shall be allowed to write the BuiltinLoggingTopic but in order to read the
BuiltinLoggingTopic the DomainParticipant needs to have a grant for the
BuiltinLoggingTopic in its permissions document.

9.6.1 DDS:Logging:DDS_LogTopic plugin behavior

The table below describes the actions that the DDS:Logging:DDS_LogTopic plugin performs when
each of the plugin operations is invoked.
 Table 59 – Actions undertaken by the operations of the builtin Logging plugin

244 DDS Security, v1.0

set_log_options Controls the configuration of the plugin. The LogOptions
parameter shall be used to take the actions described below:

If the distribute parameter is set to TRUE, the
DDS:Logging:DDS_LogTopic shall create a DataWriter
to send the BuiltinLoggingTopic if it is FALSE, it
shall not.

The plugin shall open a file with the name indicated in the
log_file parameter.

The plugin shall remember the value of the log_level so that
it can be used during the log operation.

log This operation shall check if logging was enabled by a prior
call to enable_logging and if not it shall return without
performing any action.

If logging was enabled, it shall behave as described below:

The operation shall compare the value of the the log_level
parameter with the value saved during the
set_log_options operation.

If the log_level parameter value is greater than the one saved
by the set_log_options operation, the operation shall
return without performing any action.

If the log_level parameter value is less than or equal to the
one saved, the log operation shall perform two actions:

• It shall append a string representation of the parameters
passed to the log operation to the end of the file opened
by the set_log_options operation.

• If the value of the distribute option was set on the call to
set_log_options, the plugin shall fill an object of
type BuiltinLoggingType with the values passed
as arguments to the log operation and publish it using
the DataWriter associated with the
BuiltinLoggingTopic created by the
set_log_options operation.

enable_logging This operation shall save the fact that logging was enabled
such that the information can be used by the log operation.

set_listener This operation shall save a reference to the LoggerListener
such that the listener is be notified each time a log message
is produced.

DDS Security, v1.0 245

10 Plugin Language Bindings
10.1 Introduction
Clause 8 defines the plugin interfaces in a programming-language independent manner using UML.
Using the terminology of the DDS specification this UML definition could be considered a Platform
Independent Model (PIM) for the plugin interfaces. The mapping to each specific programming
languages platform could therefore be considered a Platform Specific Model (PSM) for that
programming language.

The mapping of the plugin interfaces to specific programming languages is defined by first defining
the interfaces using OMG-IDL version 3.5 with the additional syntax defined in the DDS-XTYPES
specification and subsequently applying the IDL to language mapping to the target language.

IDL Types lacking the DDS-XTYPES @Extensibility annotation shall be interpreted as having
the extensibility kind EXTENSIBLE_EXTENSIBILITY. This matches the DDS-XTYPES
specification implied extensibility of un-annotated types.

For consistency with the DDS specification, the DDS security specification defines language bindings
to each of the language PSMs specified for DDS, namely:

• C as derived from the IDL to C mapping
• C++ classic, as derived from the IDL to C++ mapping
• Java classic, as derived from the IDL to Java mapping
• C++ modern, aligned with the DDS-STDC++ specification, this is derived from the IDL to C++11

mapping
• Java modern with the DDS-JAVA5+ specification

10.2 IDL representation of the plugin interfaces
For consistency in the resulting APIs, the mapping from the plugin interfaces defined in clause 8 and
the OMG IDL follows the same PIM to PSM mapping rules as the OMG DDS specification (see sub
clause 7.2.2 of the DDS specification version 1.2 [1]). A relevant subset of these rules is repeated here.
In these rules “PIM” refers to the UML description of the interfaces in clause 8 and PSM refers to the
OMG-IDL description of the interfaces that appears in the associated dds_security.idl file.

• The PIM to PSM mapping maps the UML interfaces and classes into IDL interfaces. Plain data
types are mapped into structures.

• ‘Out’ parameters in the PIM are conventionally mapped to ‘inout’ parameters in the PSM in order
to minimize the memory allocation performed by the Service and allow for more efficient
implementations. The intended meaning is that the caller of such an operation should provide an
object to serve as a “container” and that the operation will then “fill in” the state of that objects
appropriately.

The resulting IDL representation of the plugin interfaces appears in the file dds_security.idl which
shall be considered part of the DDS Security specification.

10.3 C language representation of the plugin interfaces
The C language representation of the plugin interfaces shall be obtained applying the IDL to C
mapping [5] to the dds_security.idl file.

246 DDS Security, v1.0

10.4 C++ classic representation of the plugin interfaces
The C++ classic (without the use of the C++ standard library) language representation of the plugin
interfaces shall be obtained using the IDL2C++ mapping [7] to the dds_security.idl file.

10.5 Java classic
The Java classic language representation of the plugin interfaces shall be obtained using the IDL2Java
mapping [6] to the dds_security.idl file.

10.6 C++11 representation of the plugin interfaces
This representation is aligned with the DDS-STDC++ PSM.

The C++ classic language representation of the plugin interfaces shall be obtained using the
IDL2C++11 mapping [8] to the dds_security.idl file with the following exceptions:

1. The IDL module DDS shall be mapped to the C++ namespace dds so it matches the namespace
used by the DDS-STD-C++ PSM.

2. The mapping shall not use any C++11-only feature of the language or the library (e.g., move
constructors, noexcept, override, std::array).

3. Arrays shall map to the dds::core::array template defined in the DDS-STD-C++ PSM.
4. The enumerations shall map to the dds::core::safe_enum template defined in the DDS-STD-

C++ PSM.
5. The IDL DynamicData native type shall be mapped to the C++ type

dds::code::xtypes::DynamicData defined in the DDS-STDC++ PSM.

10.7 Java modern aligned with the DDS-JAVA5+ PSM
The Java classic language representation of the plugin interfaces shall be obtained using the IDL2Java
mapping [6] to the dds_security.idl file with the following exceptions:

1. The IDL module DDS shall be mapped to the Java namespace org.omg.dds so it matches the
namespace used by the DDS-JAVA5+ PSM.

2. The IDL DynamicData native type shall be mapped to the type
org.omg.dds.type.dynamic.DynamicData defined in the DDS-JAVA5+ PSM.

DDS Security, v1.0 247

Annex A - References
[1] DDS: Data-Distribution Service for Real-Time Systems version 1,2.

http://www.omg.org/spec/DDS/1.2/
[2] DDS-RTPS: Data-Distribution Service Interoperability Wire Protocol version 2.1,

http://www.omg.org/spec/DDS-RTPS/2.1/
[3] DDS-XTYPES: Extensible and Dynamic Topic-Types for DDS version 1.0

http://www.omg.org/spec/DDS-XTypes/
[4] OMG-IDL: Interface Definition Language (IDL) version 3.5 http://www.omg.org/spec/IDL35/
[5] IDL2C: IDL to C Language Mapping, Version 1.0. http://www.omg.org/spec/C/1.0/
[6] IDL2Java: IDL To Java Language Mapping, Version 1.3 http://www.omg.org/spec/I2JAV/1.3/
[7] IDL2C++: IDL to C++ Language Mapping (CPP), Version 1.3

http://www.omg.org/spec/CPP/1.3/PDF
[8] IDL2C++11: IDL To C++11 Language Mapping http://www.omg.org/spec/CPP11/
[9] Transport Layer Security, http://en.wikipedia.org/wiki/Transport_Layer_Security
[10] IPSec, http://en.wikipedia.org/wiki/IPsec
[11] DSA, FIPS PUB 186-4 Digital Signature Standard (DSS).

http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
[12] Diffie-Hellman (D-H) Key Agreement Method. IETF RFC 2631.

http://tools.ietf.org/html/rfc2631
[13] J. H. Catch et. al., “A Security Analysis of the CLIQUES Protocol Suite”,

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.2.8964
[14] Erramilli, S.; Gadgil, S.; Natarajan, N., “Efficient assignment of multicast groups to publish-

subscribe information topics in tactical networks”, MILCOM 2008
[15] “RFC 2094 - Group Key Management Protocol (GKMP) Architecture”,

http://www.faqs.org/rfcs/rfc2094.html
[16] Raghav Bhaskar, Daniel Augot, Cedric Adjih, Paul Muhlethaler and Saadi Boudjit, “AGDH

(Asymmetric Group Diffie Hellman): An Efficient and Dynamic Group Key Agreement
Protocol for Ad hoc Networks”, Proceedings of New Technologies, Mobility and Security
(NTMS) conference, Paris, France, May 2007

[17] Qianhong Wu, Yi Mu, Willy Susilo, Bo Qin and Josep Domingo-Ferrer “Asymmetric Group
Key Agreement”, EUROCRYPT 2009

[18] “Secure IP Multicast”,
http://www.cisco.com/en/US/prod/collateral/iosswrel/ps6537/ps6552/prod_presentation0900ae
cd80473105.pdf

[19] Gerardo Pardo-Castellote. “Secure DDS: A Security Model suitable for NetCentric, Publish-
Subscribe, and Data Distribution Systems”, RTESS, Washington DC, July 2007.
http://www.omg.org/news/meetings/workshops/RT-2007/05-2_Pardo-Castellote-revised.pdf

[20] M. Baugher, D. McGrew, M. Naslund, E. Carrara, K. Norrman, “The Secure Real-time
Transport Protocol (SRTP)” IETF RFC 3711, http://tools.ietf.org/html/rfc3711

[21] Baugher, M., Weis, B., Hardjono, T. and H. Harney, "The Group Domain of Interpretation,”
IETF RFC 3547, http://tools.ietf.org/html/rfc3547, July 2003.

[22] P. Zimmerman, A. Johnston, and J. Callas, “ZRTP: Media Path Key Agreement for Secure
RTP”, Internet-Draft, March 2009

[23] F. Andreason, M. Baugher, and D. Wing, “Session description protocol (SDP) security
description for media streams,” IETF RFC 4568, July 2006

[24] D. Ignjatic, L. Dondeti, F. Audet, P. Lin, “MIKEY-RSA-R: An Additional Mode of Key
Distribution in Multimedia Internet KEYing (MIKEY)”, RFC 4738, November 2006.

http://www.omg.org/spec/DDS/1.2/
http://www.omg.org/spec/DDS-RTPS/2.1/
http://www.omg.org/spec/DDS-XTypes/
http://www.omg.org/spec/IDL35/
http://www.omg.org/spec/C/1.0/
http://www.omg.org/spec/I2JAV/1.3/
http://www.omg.org/spec/CPP/1.3/PDF
http://en.wikipedia.org/wiki/Transport_Layer_Security
http://en.wikipedia.org/wiki/IPsec
http://tools.ietf.org/html/rfc2631
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.2.8964
http://www.faqs.org/rfcs/rfc2094.html
http://www.cisco.com/en/US/prod/collateral/iosswrel/ps6537/ps6552/prod_presentation0900aecd80473105.pdf
http://www.cisco.com/en/US/prod/collateral/iosswrel/ps6537/ps6552/prod_presentation0900aecd80473105.pdf
http://www.omg.org/news/meetings/workshops/RT-2007/05-2_Pardo-Castellote-revised.pdf
http://tools.ietf.org/html/rfc3711
http://tools.ietf.org/html/rfc3547

248 DDS Security, v1.0

[25] M. Baugher, A. Rueegsegger, and S. Rowles, “GDOI Key Establishment for the STRP Data
Security Protocol”, http://tools.ietf.org/id/draft-ietf-msec-gdoi-srtp-01.txt, June 2008.

[26] Bruce Schneier (August 2005). "SHA-1 Broken". Retrieved 2009-01-09. "
[27] H. Krawczyk, M. Bellare, and R.Canetti, “HMAC: Keyed-Hashing for Message

Authentication” IETF RFC 2104, http://tools.ietf.org/html/rfc2104
[28] Bellare, Mihir (June 2006). "New Proofs for NMAC and HMAC: Security without Collision-

Resistance". In Dwork, Cynthia. Advances in Cryptology – Crypto 2006 Proceedings. Lecture
Notes in Computer Science 4117. Springer-Verlag.

[29] S. Turner and L. Chen, “Updated Security Considerations for the MD5 Message-Digest and the
HMAC-MD5 Algorithms” IETF RFC 6151, http://tools.ietf.org/html/rfc6151

[30] Cisco, “Implementing Group Domain of Interpretation in a Dynamic Multipoint VPN”,
http://www.cisco.com/en/US/prod/collateral/iosswrel/ps6537/ps6586/ps6660/ps6811/prod_whit
e_paper0900aecd804c363f.html

[31] CiscoIOS Secure Multicast,
http://www.cisco.com/en/US/prod/collateral/iosswrel/ps6537/ps6552/prod_white_paper0900ae
cd8047191e.html

[32] A. Mason. IPSec Overview Part Two: Modes and Transforms.
http://www.ciscopress.com/articles/article.asp?p=25477

[33] R. Canetti, P. Cheng, F. Giraud, D. Pendararkis, J. Rao, P. Rohatgi, and D. Saha, “An IPSec-
based Host Architecture for Secure Internet Multicast”, Proceedings of the 7th Annual Network
and Distributed Systems Security Symposium, San Diego, CA, 2000

[34] T. Aurisch, and C. Karg, “Using the IPSec architecture for secure multicast communications,”
8th International Command and Control Research and Technology Symposium (ICCRTS),
Washington D.C., 2003

[35] J. Zhang and C. Gunter. Application-aware secure multicast for power grid communications,
International Journal of Security and Networks, Vol 6, No 1, 2011

[36] List of reserved RTPS Vendor Ids. http://portals.omg.org/dds/content/page/dds-rtps-vendor-
and-product-ids

[37] PKCS #7: Cryptographic Message Syntax Version 1.5. IETF RFC 2315.
http://tools.ietf.org/html/rfc2315

[38] File expression matching syntax for fnmatch() ; POSIX fnmatch API (IEEE 1003.2-1992
Section B.6)

[39] X.509 v3. ITU-T Recommendation X.509 (2005) | ISO/IEC 9594-8:2005, Information
technology - Open Systems Interconnection - The Directory: Public-key and attribute
certificate frameworks. http://www.itu.int/itu-t/recommendations/rec.aspx?rec=X.509

[40] IETF RFC 5280: Internet X.509 Public Key Infrastructure Certificate and Certificate
Revocation List (CRL) Profile, https://tools.ietf.org/html/rfc5280

[41] ANSI X9.62. ANSI, "Public Key Cryptography For The Financial Services Industry: The
Elliptic Curve Digital Signature Algorithm (ECDSA)", ANSI X9.62, 2005

[42] FIPS 186-4: FIBS Digital Signature Standard (DSS).
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf

[43] PKCS#8: Asymmetric Key Packages. IETF RFC 5958. https://tools.ietf.org/html/rfc5958
[44] PKCS#1: Public-Key Cryptography Standards: RSA Cryptography Specifications Version 2.1

https://tools.ietf.org/html/rfc3447
[45] [NIST SP 800-38D] Recommendation for Block Cipher Modes of Operation: Galois/Counter

Mode (GCM) and GMAC http://csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf
[46] FIPS 196 Entity Authentication Using Public Key Cryptography

http://csrc.nist.gov/publications/fips/fips196/fips196.pdf

http://tools.ietf.org/id/draft-ietf-msec-gdoi-srtp-01.txt
http://tools.ietf.org/html/rfc2104
http://tools.ietf.org/html/rfc6151
http://www.cisco.com/en/US/prod/collateral/iosswrel/ps6537/ps6586/ps6660/ps6811/prod_white_paper0900aecd804c363f.html
http://www.cisco.com/en/US/prod/collateral/iosswrel/ps6537/ps6586/ps6660/ps6811/prod_white_paper0900aecd804c363f.html
http://www.cisco.com/en/US/prod/collateral/iosswrel/ps6537/ps6552/prod_white_paper0900aecd8047191e.html
http://www.cisco.com/en/US/prod/collateral/iosswrel/ps6537/ps6552/prod_white_paper0900aecd8047191e.html
http://portals.omg.org/dds/content/page/dds-rtps-vendor-and-product-ids
http://portals.omg.org/dds/content/page/dds-rtps-vendor-and-product-ids
http://tools.ietf.org/html/rfc2315
https://tools.ietf.org/html/rfc5280
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
https://tools.ietf.org/html/rfc5958
https://tools.ietf.org/html/rfc3447
http://csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf
http://csrc.nist.gov/publications/fips/fips196/fips196.pdf

DDS Security, v1.0 249

[47] IETF RFC 5114 “Additional Diffie-Hellman Groups for Use with IETF
Standards” https://tools.ietf.org/html/rfc5114.

[48] [NIST SP 800-56Ar2] NIST Special Publication 800-56A Revision 2. Recommendation for
Pair-Wise Key Establishment Schemes Using Discrete Logarithm Cryptography
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Ar2.pdf

[49] NIST Suite B Implementer’s Guide to NIST SP 800-56A
https://www.nsa.gov/ia/_files/SuiteB_Implementer_G-113808.pdf

[50] IETF RFC 5869 HMAC-based Extract-and-Expand Key Derivation Function (HKDF)
https://tools.ietf.org/html/rfc5869

[51] IETF RFC 4514 "Lightweight Directory Access Protocol (LDAP): String Representation of
Distinguished Names" https://tools.ietf.org/html/rfc4514

https://tools.ietf.org/html/rfc5114
https://www.nsa.gov/ia/_files/SuiteB_Implementer_G-113808.pdf
https://tools.ietf.org/html/rfc5869

	DDS Security
	Standard document URL: http://www.omg.org/spec/DDS-SECURITY/1.0
	USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES
	LICENSES
	PATENTS
	GENERAL USE RESTRICTIONS
	DISCLAIMER OF WARRANTY
	RESTRICTED RIGHTS LEGEND
	TRADEMARKS
	COMPLIANCE
	OMG’s Issue Reporting Procedure

	Table of Contents
	Tables
	Figures
	Preface
	About the Object Management Group
	OMG
	OMG Specifications
	Business Modeling Specifications
	Middleware Specifications
	IDL/Language Mapping Specifications
	Modeling and Metadata Specifications
	Modernization Specifications
	Platform Independent Model (PIM), Platform Specific Model (PSM), Interface Specifications
	OMG Domain Specifications
	CORBA Embedded Intelligence Specifications
	CORBA Security Specifications
	OMG Headquarters
	Email: pubs@omg.org
	Issues
	1 Scope
	1.1 General
	1.2 Overview of this Specification

	2 Conformance
	2.1 Conformance points
	2.2 Builtin plugin interoperability (mandatory)
	2.3 Plugin framework (mandatory)
	2.4 Plugin Language APIs (optional)
	2.5 Logging and Tagging profile (optional)

	3 Normative References
	4 Terms and Definitions
	5 Symbols
	6 Additional Information
	6.1 Changes to Adopted OMG Specifications
	6.2 Acknowledgments

	7 Support for DDS Security
	7.1 Security Model
	7.1.1 Threats
	7.1.1.1 Unauthorized Subscription
	7.1.1.2 Unauthorized Publication
	7.1.1.3 Tampering and Replay
	7.1.1.4 Unauthorized Access to Data by Infrastructure Services

	7.2 Types used by DDS Security
	7.2.1 Property_t
	7.2.1.1 IDL Representation for Property_t

	7.2.2 BinaryProperty_t
	7.2.2.1 IDL Representation for BinaryProperty_t

	7.2.3 DataHolder
	7.2.3.1 IDL representation for DataHolder

	7.2.4 Token
	7.2.4.1 Attribute: class_id
	7.2.4.2 IDL Representation for Token and Specialized Classes

	7.2.5 PropertyQosPolicy, DomainParticipantQos, DataWriterQos, and DataReaderQos
	7.2.6 ParticipantGenericMessage
	7.2.7 Additional DDS Return Code: NOT_ALLOWED_BY_SEC

	7.3 Securing DDS Messages on the Wire
	7.3.1 RTPS Background (Non-Normative)
	7.3.2 Secure RTPS Messages
	7.3.3 Constraints of the DomainParticipant BuiltinTopicKey_t (GUID)
	7.3.4 Mandatory use of the KeyHash for encrypted messages
	7.3.5 Immutability of Publisher Partition Qos in combination with non-volatile Durability kind
	7.3.6 Platform Independent Description
	7.3.6.1 RTPS Secure Submessage Elements
	7.3.6.1.1 CryptoTransformIdentifier
	7.3.6.1.2 SecureDataBody
	7.3.6.1.3 SecureDataHeader
	7.3.6.1.4 SecureDataTag

	7.3.6.2 RTPS Submessage: SecureSubMsg
	7.3.6.2.1 Purpose
	7.3.6.2.2 Content
	7.3.6.2.3 Validity
	7.3.6.2.4 Logical Interpretation

	7.3.6.3 RTPS Submessage: SecurePrefixSubMsg
	7.3.6.3.1 Purpose
	7.3.6.3.2 Content
	7.3.6.3.3 Validity
	7.3.6.3.4 Logical Interpretation

	7.3.6.4 RTPS Submessage: SecurePostfixSubMsg
	7.3.6.4.1 Purpose
	7.3.6.4.2 Content
	7.3.6.4.3 Validity
	7.3.6.4.4 Logical Interpretation

	7.3.6.5 RTPS Submessage: SecureRTPSPrefixSubMsg
	7.3.6.5.1 Purpose
	7.3.6.5.2 Content
	7.3.6.5.3 Validity
	7.3.6.5.4 Logical Interpretation

	7.3.6.6 RTPS Submessage: SecureRTPSPostfixSubMsg
	7.3.6.6.1 Purpose
	7.3.6.6.2 Content
	7.3.6.6.3 Validity
	7.3.6.6.4 Logical Interpretation

	7.3.7 Mapping to UDP/IP PSM
	7.3.7.1 Mapping of the EntityIds for the Builtin DataWriters and DataReaders
	7.3.7.2 Mapping of the CryptoTransformIdentifier Type
	7.3.7.3 Mapping of the SecureDataHeader SubmessageElement
	7.3.7.4 Mapping of the SecureDataTag SubmessageElement
	7.3.7.5 SecureBodySubMsg Submessage
	7.3.7.5.1 Wire Representation
	7.3.7.5.2 Submessage Id
	7.3.7.5.3 Flags in the Submessage Header

	7.3.7.6 SecurePrefixSubMsg Submessage
	7.3.7.6.1 Wire Representation
	7.3.7.6.2 Submessage Id
	7.3.7.6.3 Flags in the Submessage Header

	7.3.7.7 SecurePostfixSubMsg Submessage
	7.3.7.7.1 Wire Representation
	7.3.7.7.2 Submessage Id
	7.3.7.7.3 Flags in the Submessage Header

	7.3.7.8 SecureRTPSPrefixSubMsg Submessage
	7.3.7.8.1 Wire Representation
	7.3.7.8.2 Submessage Id
	7.3.7.8.3 Flags in the Submessage Header

	7.3.7.9 SecureRTPSPostfixSubMsg Submessage
	7.3.7.9.1 Wire Representation
	7.3.7.9.2 Submessage Id
	7.3.7.9.3 Flags in the Submessage Header

	7.4 DDS Support for Security Plugin Information Exchange
	7.4.1 Secure builtin Discovery Topics
	7.4.1.1 Background (Non-Normative)
	7.4.1.2 Extending the Data Types used by DDS Discovery
	7.4.1.3 Extension to RTPS Standard DCPSParticipants Builtin Topic
	7.4.1.4 New DCPSPublicationsSecure Builtin Topic
	7.4.1.5 New DCPSSubscriptionsSecure Builtin Topic

	7.4.2 New ParticipantMessageSecure builtin Topic
	7.4.3 New ParticipantStatelessMessage builtin Topic
	7.4.3.1 Background: Sequence Number Attacks (non normative)
	7.4.3.2 BuiltinParticipantStatelessMessageWriter and BuiltinParticipantStatelessMessageReader
	7.4.3.3 Contents of the ParticipantStatelessMessage
	7.4.3.4 Destination of the ParticipantStatelessMessage
	7.4.3.5 Reserved values of ParticipantStatelessMessage GenericMessageClassId
	7.4.3.6 Format of data within ParticipantStatelessMessage
	7.4.3.6.1 Data for message class GMCLASSID_SECURITY_AUTH_HANDSHAKE

	7.4.4 New ParticipantVolatileMessageSecure builtin Topic
	7.4.4.1 Background (Non-Normative)
	7.4.4.2 BuiltinParticipantVolatileMessageSecureWriter and BuiltinParticipantVolatileMessageSecureReader
	7.4.4.3 Contents of the ParticipantVolatileSecureMessage
	7.4.4.4 Destination of the ParticipantVolatileSecureMessage
	7.4.4.5 Reserved values of ParticipantVolatileSecureMessage GenericMessageClassId
	7.4.4.6 Format of data within ParticipantVolatileSecureMessage
	7.4.4.6.1 Data for message class GMCLASS_SECURITY_PARTICIPANT_CRYPTO_TOKENS
	7.4.4.6.2 Data for message class GMCLASSID_SECURITY_DATAWRITER_CRYPTO_TOKENS
	7.4.4.6.3 Data for message class GMCLASSID_SECURITY_DATAREADER_CRYPTO_TOKENS

	7.4.5 Definition of the “Builtin Secure Endpoints”

	8 Plugin Architecture
	8.1 Introduction
	8.1.1 Service Plugin Interface Overview
	8.1.2 Plugin Instantiation

	8.2 Common Types
	8.2.1 Security Exception

	8.3 Authentication Plugin
	8.3.1 Background (Non-Normative)
	8.3.2 Authentication Plugin Model
	8.3.2.1 IdentityToken
	8.3.2.2 IdentityHandle
	8.3.2.3 HandshakeHandle
	8.3.2.4 HandshakeMessageToken
	8.3.2.5 AuthenticatedPeerCredentialToken
	8.3.2.6 SharedSecretHandle
	8.3.2.7 Authentication
	8.3.2.7.1 Reliability of the Authentication Handshake

	8.3.2.8 Unauthenticated DomainParticipant entities
	8.3.2.9 Authentication plugin interface
	8.3.2.9.1 Type: ValidationResult_t
	8.3.2.9.2 Operation: validate_local_identity
	8.3.2.9.3 Operation: validate_remote_identity
	8.3.2.9.4 Operation: begin_handshake_request
	8.3.2.9.5 Operation: begin_handshake_reply
	8.3.2.9.6 Operation: process_handshake
	8.3.2.9.7 Operation: get_shared_secret
	8.3.2.9.8 Operation: get_authenticated_peer_ credential_token
	8.3.2.9.9 Operation: get_identity_token
	8.3.2.9.10 Operation: set_permissions_credential_and_token
	8.3.2.9.11 Operation: set_listener
	8.3.2.9.12 Operation: return_identity_token
	8.3.2.9.13 Operation: return_authenticated_peer_credential_token
	8.3.2.9.14 Operation: return_handshake_handle
	8.3.2.9.15 Operation: return_identity_handle
	8.3.2.9.16 Operation: return_sharedsecret_handle

	8.3.2.10 AuthenticationListener
	8.3.2.10.1 Operation: on_revoke_identity

	8.4 Access Control Plugin
	8.4.1 Background (Non-Normative)
	8.4.2 AccessControl Plugin Model
	8.4.2.1 PermissionsToken
	8.4.2.2 PermissionsCredentialToken
	8.4.2.3 PermissionsHandle
	8.4.2.4 ParticipantSecurityAttributes
	8.4.2.5 EndpointSecurityAttributes
	8.4.2.6 AccessControl interface
	8.4.2.6.1 Operation: validate_local_permissions
	8.4.2.6.2 Operation: validate_remote_permissions
	8.4.2.6.3 Operation: check_create_participant
	8.4.2.6.4 Operation: check_create_datawriter
	8.4.2.6.5 Operation: check_create_datareader
	8.4.2.6.6 Operation: check_create_topic
	8.4.2.6.7 Operation: check_local_datawriter_register_instance
	8.4.2.6.8 Operation: check_local_datawriter_dispose_instance
	8.4.2.6.9 Operation: check_remote_participant
	8.4.2.6.10 Operation: check_remote_datawriter
	8.4.2.6.11 Operation: check_remote_datareader
	8.4.2.6.12 Operation: check_remote_topic
	8.4.2.6.13 Operation: check_local_datawriter_match
	8.4.2.6.14 Operation: check_local_datareader_match
	8.4.2.6.15 Operation: check_remote_datawriter_register_instance
	8.4.2.6.16 Operation: check_remote_datawriter_dispose_instance
	8.4.2.6.17 Operation: get_permissions_token
	8.4.2.6.18 Operation: get_permissions_credential_token
	8.4.2.6.19 Operation: set_listener
	8.4.2.6.20 Operation: return_permissions_token
	8.4.2.6.21 Operation: return_permissions_credential_token
	8.4.2.6.22 Operation: get_participant_sec_attributes
	8.4.2.6.23 Operation: get_datarwriter_sec_attributes
	8.4.2.6.24 Operation: get_datareader_sec_attributes

	8.4.2.7 AccessControlListener interface
	8.4.2.7.1 Operation: on_revoke_permissions

	8.5 Cryptographic Plugin
	8.5.1 Cryptographic Plugin Model
	8.5.1.1 CryptoToken
	8.5.1.2 ParticipantCryptoHandle
	8.5.1.3 DatawriterCryptoHandle
	8.5.1.4 DatareaderCryptoHandle
	8.5.1.5 CryptoTransformIdentifier
	8.5.1.5.1 Attribute: transformation_kind
	8.5.1.5.2 Attribute: transformation_key_id

	8.5.1.6 SecureSubmessageCategory_t
	8.5.1.7 CryptoKeyFactory interface
	8.5.1.7.1 Operation: register_local_participant
	8.5.1.7.2 Operation: register_matched_remote_participant
	8.5.1.7.3 Operation: register_local_datawriter
	8.5.1.7.4 Operation: register_matched_remote_datareader
	8.5.1.7.5 Operation: register_local_datareader
	8.5.1.7.6 Operation: register_matched_remote_datawriter
	8.5.1.7.7 Operation: unregister_participant
	8.5.1.7.8 Operation: unregister_datawriter
	8.5.1.7.9 Operation: unregister_datareader

	8.5.1.8 CryptoKeyExchange Interface
	8.5.1.8.1 Operation: create_local_participant_crypto_tokens
	8.5.1.8.2 Operation: set_remote_participant_crypto_tokens
	8.5.1.8.3 Operation: create_local_datawriter_crypto_tokens
	8.5.1.8.4 Operation: set_remote_datawriter_crypto_tokens
	8.5.1.8.5 Operation: create_local_datareader_crypto_tokens
	8.5.1.8.6 Operation: set_remote_datareader_crypto_tokens
	8.5.1.8.7 Operation: return_crypto_tokens

	8.5.1.9 CryptoTransform interface
	8.5.1.9.1 Operation: encode_serialized_payload
	8.5.1.9.2 Operation: encode_datawriter_submessage
	8.5.1.9.3 Operation: encode_datareader_submessage
	8.5.1.9.4 Operation: encode_rtps_message
	8.5.1.9.5 Operation: decode_rtps_message
	8.5.1.9.6 Operation: preprocess_secure_submsg
	8.5.1.9.7 Operation: decode_datawriter_submessage
	8.5.1.9.8 Operation: decode_datareader_submessage
	8.5.1.9.9 Operation: decode_serialized_payload

	8.6 The Logging Plugin
	8.6.1 Background (Non-Normative)
	8.6.2 Logging Plugin Model
	8.6.2.1 LogOptions
	8.6.2.1.1 Attribute: log_level
	8.6.2.1.2 Attribute: log_file
	8.6.2.1.3 Attribute: distribute

	8.6.2.2 Logging
	8.6.2.2.1 Operation: set_log_options
	8.6.2.2.2 Operation: log
	8.6.2.2.3 Operation: enable_logging
	8.6.2.2.4 Operation: set_listener

	8.7 Data Tagging
	8.7.1 Background (Non-Normative)
	8.7.2 DataTagging Model
	8.7.3 DataTagging Types

	8.8 Security Plugins Behavior
	8.8.1 Authentication and AccessControl behavior with local DomainParticipant
	8.8.2 Authentication behavior with discovered DomainParticipant
	8.8.2.1 Behavior when allow_unauthenticated_participants is set to TRUE
	8.8.2.2 Behavior when allow_unauthenticated_participants is set to FALSE

	8.8.3 DDS Entities impacted by the AccessControl operations
	8.8.4 AccessControl behavior with local participant creation
	8.8.5 AccessControl behavior with local domain entity creation
	8.8.6 AccessControl behavior with remote participant discovery
	8.8.7 AccessControl behavior with remote domain entity discovery
	8.8.7.1 AccessControl behavior with discovered endpoints from “Unauthenticated” DomainParticipant
	8.8.7.2 AccessControl behavior with discovered endpoints from “Authenticated” DomainParticipant

	8.8.8 Cryptographic Plugin key generation behavior
	8.8.8.1 Key generation for the BuiltinParticipantVolatileMessageSecureWriter and BuiltinParticipantVolatileMessageSecureReader
	8.8.8.2 Key generation for the DomainParticipant
	8.8.8.3 Key generation for the builtin endpoints
	8.8.8.4 Key generation for the application-defined endpoints

	8.8.9 Cryptographic Plugin key exchange behavior
	8.8.9.1 Key Exchange with discovered DomainParticipant
	8.8.9.2 Key Exchange with remote DataReader
	8.8.9.3 Key Exchange with remote DataWriter

	8.8.10 Cryptographic Plugins encoding/decoding behavior
	8.8.10.1 Encoding/decoding of a single writer message on an RTPS message
	8.8.10.2 Encoding/decoding of multiple writer messages on an RTPS message
	8.8.10.3 Encoding/decoding of multiple reader messages on an RTPS message
	8.8.10.4 Encoding/decoding of reader and writer messages on an RTPS message

	Add a data tag for each data sample.
	9 Builtin Plugins
	9.1 Introduction
	9.2 Requirements and Priorities (Non-Normative)
	9.2.1 Performance and Scalability
	9.2.2 Robustness and Availability
	9.2.3 Fitness to the DDS Data-Centric Model
	9.2.4 Leverage and Reuse of Existing Security Infrastructure and Technologies
	9.2.5 Ease-of-Use while Supporting Common Application Requirements

	9.3 Builtin Authentication: DDS:Auth:PKI-DH
	9.3.1 Configuration
	9.3.1.1 Identity CA Certificate
	9.3.1.2 Private Key
	9.3.1.3 Identity Certificate

	9.3.2 DDS:Auth:PKI-DH Types
	9.3.2.1 DDS:Auth:PKI-DH IdentityToken
	9.3.2.2 DDS:Auth:PKI-DH AuthenticatedPeerCredentialToken
	9.3.2.3 DDS:Auth:PKI-DH HandshakeMessageToken
	9.3.2.3.1 HandshakeRequestMessageToken objects
	9.3.2.3.2 HandshakeReplyMessageToken
	9.3.2.3.3 HandshakeFinalMessageToken

	9.3.3 DDS:Auth:PKI-DH plugin behavior
	9.3.4 DDS:Auth:PKI-DH plugin authentication protocol
	9.3.4.1 Terms and notation
	9.3.4.2 Protocol description

	9.4 Builtin Access Control: DDS:Access:Permissions
	9.4.1 Configuration
	9.4.1.1 Permissions CA Certificate
	9.4.1.2 Domain Governance Document
	9.4.1.2.1 Protection Kinds
	9.4.1.2.2 Domain Governance document format
	9.4.1.2.3 Domain Access Rules Section
	9.4.1.2.4 Domain Rules
	9.4.1.2.4.1 Domains element
	9.4.1.2.4.2 Allow Unauthenticated Participants element
	9.4.1.2.4.3 Enable Join Access Control element
	9.4.1.2.4.4 Discovery Protection Kind element
	9.4.1.2.4.5 Liveliness Protection Kind element
	9.4.1.2.4.6 RTPS Protection Kind element
	9.4.1.2.4.7 Topic Access Rules Section

	9.4.1.2.5 Topic Rule Section
	9.4.1.2.5.1 Topic expression element
	9.4.1.2.5.2 Enable Discovery protection element
	9.4.1.2.5.3 Enable Read Access Control element
	9.4.1.2.5.4 Enable Write Access Control element
	9.4.1.2.5.5 Metadata Protection Kind element
	9.4.1.2.5.6 Data Protection Kind element

	9.4.1.2.6 Application of Domain and Topic Rules
	9.4.1.2.7 Example Domain Governance document (non normative)

	9.4.1.3 DomainParticipant permissions document
	9.4.1.3.1 Permissions Section
	9.4.1.3.2 Grant Section
	9.4.1.3.2.1 Subject name Section
	9.4.1.3.2.2 Validity Section
	9.4.1.3.2.3 Rules Section
	9.4.1.3.2.3.1 Format of the allow rules
	9.4.1.3.2.3.1.1 Domains Section
	9.4.1.3.2.3.1.2 Publish Section
	9.4.1.3.2.3.1.3 Subscribe Section
	9.4.1.3.2.3.1.4 Example allow rule

	9.4.1.3.2.3.2 Format for deny rules
	9.4.1.3.2.3.2.1 Example deny rule

	9.4.1.4 DomainParticipant example permissions document (non normative)

	9.4.2 DDS:Access:Permissions Types
	9.4.2.1 DDS:Access:Permissions PermissionsCredentialToken
	9.4.2.2 DDS:Access:Permissions PermissionsToken

	9.4.3 DDS:Access:Permissions plugin behavior

	9.5 Builtin Crypto: DDS:Crypto:AES-GCM-GMAC
	9.5.1 Configuration
	9.5.2 DDS:Crypto:AES-GCM-GMAC Types
	9.5.2.1 DDS:Crypto:AES-GCM-GMAC CryptoToken
	9.5.2.1.1 KeyMaterial_AES_GCM_GMAC structure
	9.5.2.1.2 Key material used by the BuiltinParticipantVolatileMessageSecureWriter and BuiltinParticipantVolatileMessageSecureReader

	9.5.2.2 DDS:Crypto:AES-GCM-GMAC CryptoTransformIdentifier
	9.5.2.3 DDS:Crypto:AES-GCM-GMAC SecureDataHeader
	9.5.2.4 DDS:Crypto:AES-GCM-GMAC SecureDataBody
	9.5.2.5 DDS:Crypto:AES-GCM-GMAC SecureDataTag

	9.5.3 DDS:Crypto:AES-GCM-GMAC plugin behavior
	9.5.3.1 CryptoKeyFactory for DDS:Crypto:AES-GCM-GMAC
	9.5.3.2 CryptoKeyExchange for DDS:Crypto:AES-GCM-GMAC
	9.5.3.3 CryptoKeyTransform for DDS:Crypto:AES-GCM-GMAC
	9.5.3.3.1 Overview
	9.5.3.3.2 Encode/decode operation virtual machine
	9.5.3.3.3 Computation of SessionKey and SessionReceiverSpecificKey
	9.5.3.3.4 Computation of ciphertext from plaintext
	9.5.3.3.4.1 Format of the SecureDataHeader Submessage Element
	9.5.3.3.4.2 Format of the SecureDataBody Submessage Element
	9.5.3.3.4.3 Format of the SecureDataTag Submessage Element
	9.5.3.3.4.4 Result from encode_serialized_payload
	9.5.3.3.4.5 Result from encode_datawriter_submessage and encode_datareader_submessage
	9.5.3.3.4.6 Result from encode_rtps_message

	9.5.3.3.5 Computation of plaintext from ciphertext
	9.5.3.3.6 Computation of the message authentication codes

	9.6 Builtin Logging Plugin
	9.6.1 DDS:Logging:DDS_LogTopic plugin behavior

	10 Plugin Language Bindings
	10.1 Introduction
	10.2 IDL representation of the plugin interfaces
	10.3 C language representation of the plugin interfaces
	10.4 C++ classic representation of the plugin interfaces
	10.5 Java classic
	10.6 C++11 representation of the plugin interfaces
	10.7 Java modern aligned with the DDS-JAVA5+ PSM

	Annex A - References

