
Date: September 2017

DDS Security

Version 1.1

OMG Document Number: ptc/17-09-20
Standard document URL: http://www.omg.org/spec/DDS-SECURITY/1.1/

Machine Consumable Files:

Normative:

 http://www.omg.org/spec/DDS-SECURITY/20170901/dds_security_plugins_spis.idl

 http://www.omg.org/spec/DDS-SECURITY/20170901/omg_shared_ca_governance.xsd

 http://www.omg.org/spec/DDS-SECURITY/20170901/omg_shared_ca_permissions.xsd

 http://www.omg.org/spec/DDS-SECURITY/20170901/dds_security_plugins_model.xmi

 Non-normative:
 http://www.omg.org/spec/DDS-SECURITY/20170901/omg_shared_ca_governance_example.xml

 http://www.omg.org/spec/DDS-SECURITY/20170901/omg_shared_ca_permissions_example.xml

IPR mode: Non-Assert

Deleted: August

Deleted: formal/2016-08-01

Deleted: ptc/17-08-09

Deleted: 0

Field Code Changed

Deleted: 20160303

Deleted: 20170801

Field Code Changed

Deleted: 20170901

Deleted: /20170801

Deleted: 20160303

Deleted: 20170901

Deleted: 20170801

Deleted: ¶

Deleted: 20170901

Deleted: 20170801

Deleted: 20160303

Deleted: 8

Deleted:

Deleted: 20160303

Deleted: 8

Deleted: http://www.omg.org/spec/DD
S-
SECURITY/20170801/dds_security_plugin
s_model.eap

http://www.omg.org/spec/DDS-SECURITY/1.1/
http://www.omg.org/spec/DDS-SECURITY/20170901/dds_security_plugins_spis.idl
http://www.omg.org/spec/DDS-SECURITY/20170901/dds_security_plugins_spis.idl
http://www.omg.org/spec/DDS-SECURITY/20170901/dds_security_plugins_spis.idl
http://www.omg.org/spec/DDS-SECURITY/20170901/dds_security_plugins_spis.idl
http://www.omg.org/spec/DDS-SECURITY/20170901/omg_shared_ca_governance.xsd
http://www.omg.org/spec/DDS-SECURITY/20170901/omg_shared_ca_governance.xsd
http://www.omg.org/spec/DDS-SECURITY/20170901/omg_shared_ca_permissions.xsd
http://www.omg.org/spec/DDS-SECURITY/20170901/omg_shared_ca_permissions.xsd
http://www.omg.org/spec/DDS-SECURITY/20170901/omg_shared_ca_permissions.xsd
http://www.omg.org/spec/DDS-SECURITY/20170901/dds_security_plugins_model.xmi
http://www.omg.org/spec/DDS-SECURITY/20170901/dds_security_plugins_model.xmi
http://www.omg.org/spec/DDS-SECURITY/20170901/omg_shared_ca_governance_example.xml
http://www.omg.org/spec/DDS-SECURITY/20170901/omg_shared_ca_governance_example.xml
http://www.omg.org/spec/DDS-SECURITY/20170901/omg_shared_ca_governance_example.xml
http://www.omg.org/spec/DDS-SECURITY/20170801/omg_shared_ca_permissions_example.xml
http://www.omg.org/spec/DDS-SECURITY/20170801/omg_shared_ca_permissions_example.xml
http://www.omg.org/spec/DDS-SECURITY/20170801/omg_shared_ca_permissions_example.xml

Copyright ©2017, Object Management Group, Inc.

Copyright ©2014-2017, PrismTech Group Ltd.

Copyright ©2014-2017, Real-Time Innovations, Inc.

Copyright ©2017, Twin Oaks Computing, Inc.

Copyright ©2017, THALES.

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms,
conditions and notices set forth below. This document does not represent a commitment to implement any

portion of this specification in any company's products. The information contained in this document is subject to

change without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive,
royalty-free, paid up, worldwide license to copy and distribute this document and to modify this document and

distribute copies of the modified version. Each of the copyright holders listed above has agreed that no person

shall be deemed to have infringed the copyright in the included material of any such copyright holder by reason
of having used the specification set forth herein or having conformed any computer software to the

specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant
you a fully-paid up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to

sublicense), to use this specification to create and distribute software and special purpose specifications that are

based upon this specification, and to use, copy, and distribute this specification as provided under the Copyright

Act; provided that: (1) both the copyright notice identified above and this permission notice appear on any
copies of this specification; (2) the use of the specifications is for informational purposes and will not be copied

or posted on any network computer or broadcast in any media and will not be otherwise resold or transferred for

commercial purposes; and (3) no modifications are made to this specification. This limited permission
automatically terminates without notice if you breach any of these terms or conditions. Upon termination, you

will destroy immediately any copies of the specifications in your possession or control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications

may require use of an invention covered by patent rights. OMG shall not be responsible for identifying patents
for which a license may be required by any OMG specification, or for conducting legal inquiries into the legal

validity or scope of those patents that are brought to its attention. OMG specifications are prospective and

advisory only. Prospective users are responsible for protecting themselves against liability for infringement of

patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications

regulations and statutes. This document contains information which is protected by copyright. All Rights

Reserved. No part of this work covered by copyright herein may be reproduced or used in any form or by any

means--graphic, electronic, or mechanical, including photocopying, recording, taping, or information storage

and retrieval systems--without permission of the copyright owner.

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY

CONTAIN ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES

LISTED ABOVE MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO
THIS PUBLICATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR

OWNERSHIP, IMPLIED WARRANTY OF MERCHANTABILITY OR WARRANTY OF FITNESS FOR A

PARTICULAR PURPOSE OR USE. IN NO EVENT SHALL THE OBJECT MANAGEMENT GROUP OR

ANY OF THE COMPANIES LISTED ABOVE BE LIABLE FOR ERRORS CONTAINED HEREIN OR FOR
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, CONSEQUENTIAL, RELIANCE OR COVER DAMAGES,

INCLUDING LOSS OF PROFITS, REVENUE, DATA OR USE, INCURRED BY ANY USER OR ANY

THIRD PARTY IN CONNECTION WITH THE FURNISHING, PERFORMANCE, OR USE OF THIS
MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you.

This disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c)
(1) (ii) of The Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in

subparagraph (c)(1) and (2) of the Commercial Computer Software - Restricted Rights clauses at 48 C.F.R.

52.227-19 or as specified in 48 C.F.R. 227-7202-2 of the DoD F.A.R. Supplement and its successors, or as
specified in 48 C.F.R. 12.212 of the Federal Acquisition Regulations and its successors, as applicable. The

specification copyright owners are as indicated above and may be contacted through the Object Management

Group, 109 Highland Avenue, Needham, MA 02494, U.S.A.

TRADEMARKS

CORBA®, CORBA logos®, FINANCIAL INSTRUMENT GLOBAL IDENTIFIER®, IIOP®, IMM®, Model

Driven Architecture®, MDA®, Object Management Group®, OMG®, OMG Logo®, SoaML®, SOAML®,
SysML®, UAF®, Unified Modeling Language®, UML®, UML Cube logo®, VSIPL®, and XMI® are

registered trademarks of the Object Management Group, Inc.

For a complete list of trademarks, see: http://www.omg.org/legal/tm_list.htm. All other products or company
names mentioned are used for identification purposes only, and may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its

designees) is and shall at all times be the sole entity that may authorize developers, suppliers and sellers of

computer software to use certification marks, trademarks or other special designations to indicate compliance
with these materials.

Software developed under the terms of this license may claim compliance or conformance with this

specification if and only if the software compliance is of a nature fully matching the applicable compliance
points as stated in the specification. Software developed only partially matching the applicable compliance

points may claim only that the software was based on this specification, but may not claim compliance or

Deleted: C®,

Deleted: FIBO®, Financial Industry Business

Ontology®,

http://www.omg.org/legal/tm_list.htm

conformance with this specification. In the event that testing suites are implemented or approved by Object

Management Group, Inc., software developed using this specification may claim compliance or conformance
with the specification only if the software satisfactorily completes the testing suites.

OMG’s Issue Reporting

All OMG specifications are subject to continuous review and improvement. As part of this process we

encourage readers to report any ambiguities, inconsistencies, or inaccuracies they may find by completing the

Issue Reporting Form listed on the main web page: http://issues.omg.org/issues/create-new-issue.

Deleted: ¶
USE OF SPECIFICATION - TERMS,
CONDITIONS & NOTICES¶
¶
The material in this document details an Object
Management Group specification in
accordance with the terms, conditions and
notices set forth below. This document does

not represent a commitment to implement any
portion of this specification in any company's
products. The information contained in this
document is subject to change without notice.¶
¶
¶
LICENSES¶
¶

The companies listed above have granted to
the Object Management Group, Inc. (OMG) a
nonexclusive, royalty-free, paid up, worldwide
license to copy and distribute this document
and to modify this document and distribute
copies of the modified version. Each of the
copyright holders listed above has agreed that
no person shall be deemed to have infringed

the copyright in the included material of any
such copyright holder by reason of having used
the specification set forth herein or having
conformed any computer software to the
specification.¶
Subject to all of the terms and conditions
below, the owners of the copyright in this
specification hereby grant you a fully-paid up,

non-exclusive, nontransferable, perpetual,
worldwide license (without the right to
sublicense), to use this specification to create
and distribute software and special purpose
specifications that are based upon this
specification, and to use, copy, and distribute
this specification as provided under the
Copyright Act; provided that: (1) both the
copyright notice identified above and this

permission notice appear on any copies of this
specification; (2) the use of the specifications
is for informational purposes and will not be
copied or posted on any network computer or
broadcast in any media and will not be
otherwise resold or transferred for commercial
purposes; and (3) no modifications are made to
this specification. This limited permission

automatically terminates without notice if you
breach any of these terms or conditions. Upon
termination, you will destroy immediately any
copies of the specifications in your possession
or control. ¶
¶
¶
PATENTS¶

¶
The attention of adopters is directed to the
possibility that compliance with or adoption of
OMG specifications may require use of an
invention covered by patent rights. OMG shall
not be responsible for identifying patents for
which a license may be required by any OMG
specification, or for conducting legal inquiries

into the legal validity or scope of those patents
that are brought to its attention. OMG
specifications are prospective and advisory
only. Prospective users are responsible for ...

http://issues.omg.org/issues/create-new-issue

DDS Security, v1.1 i

Table of Contents

Preface .. x

1 Scope ... 1

1.1 General ... 1

1.2 Overview of this Specification ... 1

2 Conformance .. 3

2.1 Conformance points ... 3

2.2 Builtin plugin interoperability (mandatory) ... 3

2.3 Plugin framework (mandatory): ... 3

2.4 Plugin Language APIs (optional): .. 3

2.5 Logging and Tagging profile (optional): ... 4

3 Normative References ... 5

4 Terms and Definitions .. 7

5 Symbols .. 11

6 Additional Information .. 13

6.1 Changes to Adopted OMG Specifications ...13

6.2 Acknowledgments ...13

7 Support for DDS Security.. 15

7.1 Security Model..15

7.1.1 Threats ... 15

7.2 Types used by DDS Security ..18

7.2.1 Property_t .. 19

7.2.2 BinaryProperty_t ... 20

7.2.3 DataHolder ... 21

7.2.4 Token .. 21

7.2.5 PropertyQosPolicy, DomainParticipantQos, DataWriterQos, and DataReaderQos 23

7.2.6 ParticipantGenericMessage .. 24

7.2.7 ParticipantSecurityInfo ... 25

7.2.8 EndpointSecurityInfo .. 26

7.2.9 Additional DDS Return Code: NOT_ALLOWED_BY_SECURITY .. 27

Deleted: 2423

Deleted: 2524

Deleted: 2625

Deleted: 2726

Deleted: 2927

ii DDS Security, v1.1

7.3 Securing DDS Messages on the Wire ...27

7.3.1 RTPS Background (Non-Normative) ... 27

7.3.2 Secure RTPS Messages .. 29

7.3.3 Constraints of the DomainParticipant GUID_t (GUID) .. 30

7.3.4 Mandatory use of the KeyHash for encrypted messages ... 31

7.3.5 Immutability of Publisher Partition Qos in combination with non-volatile Durability kind 31

7.3.6 Platform Independent Description .. 32

7.3.7 Mapping to UDP/IP PSM ... 40

7.4 DDS Support for Security Plugin Information Exchange ...45

7.4.1 Secure builtin Discovery Topics .. 45

7.4.2 New DCPSParticipantMessageSecure builtin Topic .. 53

7.4.3 New DCPSParticipantStatelessMessage builtin Topic ... 55

7.4.4 New DCPSParticipantVolatileMessageSecure builtin Topic .. 58

7.4.5 Definition of the “Builtin Secure Endpoints” ... 63

7.4.6 Definition of the “Builtin Secure Discovery Endpoints” ... 63

7.4.7 Definition of the “Builtin Secure Liveliness Endpoints” .. 63

7.4.8 Securing the “Builtin Secure Endpoints” ... 64

8 Plugin Architecture .. 66

8.1 Introduction ...66

8.1.1 Service Plugin Interface Overview ... 66

8.1.2 Plugin Instantiation ... 67

8.2 Common Types ...68

8.2.1 Security Exception ... 68

8.3 Authentication Plugin ..68

8.3.1 Background (Non-Normative) .. 68

8.3.2 Authentication Plugin Model.. 69

8.4 Access Control Plugin...91

8.4.1 Background (Non-Normative) .. 91

8.4.2 AccessControl Plugin Model ... 92

8.5 Cryptographic Plugin ... 122

8.5.1 Cryptographic Plugin Model ... 122

8.6 The Logging Plugin .. 158

Deleted: 2927

Deleted: 2927

Deleted: 3129

Deleted: 3230

Deleted: 3331

Deleted: 3331

Deleted: 3432

Deleted: 4540

Deleted: 5045

Deleted: 5145

Deleted: 6053

Deleted: 6155

Deleted: 6458

Deleted: 6963

Deleted: 7063

Deleted: 7063

Deleted: 7064

Deleted: 7366

Deleted: 7366

Deleted: 7366

Deleted: 7467

Deleted: 7568

Deleted: 7568

Deleted: 7668

Deleted: 7668

Deleted: 7769

Deleted: 10590

Deleted: 10590

Deleted: 10691

Deleted: 143121

Deleted: 143121

Deleted: 183157

DDS Security, v1.1 iii

8.6.1 Background (Non-Normative) .. 158

8.6.2 Logging Plugin Model .. 158

8.7 Data Tagging ... 162

8.7.1 Background (Non-Normative) .. 162

8.7.2 DataTagging Model ... 162

8.8 Security Plugins Behavior ... 162

8.8.1 Authentication and AccessControl behavior with local DomainParticipant 162

8.8.2 Authentication behavior with discovered DomainParticipant ... 165

8.8.3 DDS Entities impacted by the AccessControl operations ... 169

8.8.4 AccessControl behavior with local participant creation ... 172

8.8.5 AccessControl behavior with local domain entity creation .. 172

8.8.6 AccessControl behavior with remote participant discovery .. 174

8.8.7 AccessControl behavior with remote domain entity discovery ... 176

8.8.8 Cryptographic Plugin key generation behavior ... 180

8.8.9 Cryptographic Plugin key exchange behavior .. 183

8.8.10 Cryptographic Plugins encoding/decoding behavior ... 187

9 Builtin Plugins ... 197

9.1 Introduction ... 197

9.2 Requirements and Priorities (Non-Normative) ... 197

9.2.1 Performance and Scalability ... 198

9.2.2 Robustness and Availability .. 198

9.2.3 Fitness to the DDS Data-Centric Model ... 199

9.2.4 Leverage and Reuse of Existing Security Infrastructure and Technologies 199

9.2.5 Ease-of-Use while Supporting Common Application Requirements ... 200

9.3 Builtin Authentication: DDS:Auth:PKI-DH .. 200

9.3.1 Configuration ... 200

9.3.2 DDS:Auth:PKI-DH Types .. 202

9.3.3 DDS:Auth:PKI-DH plugin behavior.. 213

9.3.4 DDS:Auth:PKI-DH plugin authentication protocol... 222

9.4 Builtin Access Control: DDS:Access:Permissions ... 225

9.4.1 Configuration ... 225

9.4.2 DDS:Access:Permissions Types ... 255

Deleted: 183157

Deleted: 183157

Deleted: 189161

Deleted: 189161

Deleted: 189161

Deleted: 190161

Deleted: 190161

Deleted: 194164

Deleted: 199168

Deleted: 203171

Deleted: 203171

Deleted: 207173

Deleted: 209175

Deleted: 214179

Deleted: 217182

Deleted: 222186

Deleted: 232196

Deleted: 232196

Deleted: 232196

Deleted: 233197

Deleted: 233197

Deleted: 234198

Deleted: 234198

Deleted: 235199

Deleted: 235199

Deleted: 235199

Deleted: 237201

Deleted: 248212

Deleted: 257220

Deleted: 260224

Deleted: 260224

Deleted: 297254

iv DDS Security, v1.1

9.4.3 DDS:Access:Permissions plugin behavior .. 263

9.5 Builtin Crypto: DDS:Crypto:AES-GCM-GMAC .. 269

9.5.1 Configuration ... 271

9.5.2 DDS:Crypto:AES-GCM-GMAC Types ... 271

9.5.3 DDS:Crypto:AES-GCM-GMAC plugin behavior .. 277

9.6 Builtin Logging Plugin .. 300

9.6.1 DDS:Logging:DDS_LogTopic plugin behavior ... 301

10 Plugin Language Bindings ... 304

10.1 Introduction ... 304

10.2 IDL representation of the plugin interfaces .. 304

10.3 C language representation of the plugin interfaces ... 305

10.4 C++ classic representation of the plugin interfaces ... 305

10.5 Java classic ... 305

10.6 C++11 representation of the plugin interfaces .. 305

10.7 Java modern aligned with the DDS-JAVA5+ PSM .. 305

Annex A - References .. 306

Deleted: 307263

Deleted: 314269

Deleted: 315271

Deleted: 316271

Deleted: 322277

Deleted: 346300

Deleted: 348301

Deleted: 351304

Deleted: 351304

Deleted: 351304

Deleted: 352305

Deleted: 352305

Deleted: 352305

Deleted: 352305

Deleted: 352305

Deleted: 353306

DDS Security, v1.1 v

Tables

Table 1 – Property_t class .. 19

Table 2 – BinaryProperty_t class .. 20

Table 3 – DataHolder class .. 21

Table 4 – SecureBodySubMsg class ... 34

Table 5 – SecurePrefixSubMsg class .. 35

Table 6 – SecurePostfixSubMsg class .. 37

Table 7 – SecureRTPSPrefixSubMsg class ... 38

Table 8 – SecurePostfixSubMsg class .. 39

Table 9 – EntityId values for secure builtin data writers and data readers ... 41

Table 10 – Additional parameter IDs in ParticipantBuiltinTopicData .. 48

Table 11 – Mapping of the additional builtin endpoints added by DDS security to the

availableBuiltinEndpoints ... 49

Table 12 – Additional parameter IDs in PublicationBuiltinTopicData ... 50

Table 13 – Additional parameter IDs in ParticipantBuiltinTopicDataSecure 51

Table 14 – Additional parameter IDs in PublicationBuiltinTopicDataSecure 52

Table 15 – Additional parameter IDs in SubscriptionBuiltinTopicDataSecure 53

Table 16 – ParticipantVolatileMessageSecure Topic Security Attributes ... 59

Table 17 – ParticipantVolatileMessageSecure Endpoint Security Attributes (Reader and Writer) 59

Table 18 – Non-default Qos policies for BuiltinParticipantVolatileMessageSecureWriter 60

Table 19 – Non-default Qos policies for BuiltinParticipantVolatileMessageSecureReader 60

Table 20 – EndpointSecurityAttributes for all "Builtin Security Endpoints" 64

Table 21 – Purpose of each Security Plugin .. 67

Table 22 – SecurityException class .. 68

Table 23 – Authentication plugin interface ... 74

Table 24 – Values for ValidationResult_t .. 78

Table 25 – Authentication listener class .. 89

Table 26 – Description of the AuthStatusKind values ... 90

Table 27 – Description of the ParticipantSecurityAttributes ... 94

Table 28 – Mapping of fields ParticipantSecurityAttributes to bits in

ParticipantSecurityAttributesMask ... 98

Deleted: 3734

Deleted: 3835

Deleted: 4237

Deleted: 4338

Deleted: 4439

Deleted: 4641

Deleted: 5348

Deleted: 5549

Deleted: 5650

Deleted: 5751

Deleted: 5852

Deleted: 5953

Deleted: 6558

Deleted: 6558

Deleted: 6659

Deleted: 6659

Deleted: 7163

Deleted: 7466

Deleted: 7567

Deleted: 8873

Deleted: 9176

Deleted: 10387

Deleted: 10488

Deleted: 11391

Deleted: 11795

vi DDS Security, v1.1

Table 29 – Description of the TopicSecurityAttributes ... 99

Table 30 – Description of the EndpointSecurityAttributes .. 100

Table 31 – Mapping of fields EndpointSecurityAttributes to bits in EndpointSecurityAttributesMask

 .. 102

Table 32 – AccessControl Interface .. 103

Table 34 – CryptoTransformIdentifier class ... 124

Table 35 – SecureSubmessageCategory_t .. 125

Table 36 – CryptoKeyFactory Interface ... 125

Table 37 – CryptoKeyExchange Interface .. 133

Table 38 – CryptoTransform interface .. 140

Table 39 – LogOptions values .. 159

Table 40 – Logging Interface ... 160

Table 41 – Logger structured_data entries .. 161

Table 42 – Impact of Access Control Operations to the DDS Builtin and Application-defined Entities

 ... 170

Table 43 – Summary of the Builtin Plugins .. 197

Table 44 – Properties used to configure the builtin Authentication plugin ... 201

Table 45 – IdentityToken class for the builtin Authentication plugin... 203

Table 46 – AuthenticatedPeerCredentialToken class for the builtin Authentication plugin 204

Table 47 – AuthenticatedPeerCredentialToken class for the builtin Authentication plugin 204

Table 48 – AuthRequestMessageToken class for the builtin Authentication plugin 205

Table 49 – HandshakeRequestMessageToken for the builtin Authentication plugin 205

Table 50 – HandshakeReplyMessageToken for the builtin Authentication plugin 208

Table 51 – HandshakeFinalMessageToken for the builtin Authentication plugin 211

Table 52 – Actions undertaken by the operations of the builtin Authentication plugin 214

Table 53 – Terms used in the description of the builtin authentication protocol 222

Table 54 – Notation of the operations/transformations used in the description of the builtin

authentication protocol ... 223

Table 55 – Description of built-in authentication protocol .. 224

Table 56 – Properties used to configure the builtin AccessControl plugin ... 226

Table 57 – PermissionsCredentialToken class for the builtin AccessControl plugin 255

Table 58 – PermissionsToken class for the builtin AccessControl plugin .. 256

Deleted: 11896

Deleted: 11997

Deleted: 12299

Deleted: 123100

Deleted: 145120

Deleted: 145121

Deleted: 146121

Deleted: 155129

Deleted: 162136

Deleted: 186154

Deleted: 186154

Deleted: 188156

Deleted: 200164

Deleted: 232191

Deleted: 236195

Deleted: 238197

Deleted: 239198

Deleted: 239198

Deleted: 240199

Deleted: 240199

Deleted: 243200

Deleted: 246203

Deleted: 249204

Deleted: 257212

Deleted: 258214

Deleted: 259215

Deleted: 261217

Deleted: 297245

Deleted: 298245

DDS Security, v1.1 vii

Table 59 – Description of the PluginParticipantSecurityAttributes ... 257

Table 60 – Mapping of PluginParticipantSecurityAttributes to the

PluginParticipantSecurityAttributesMask ... 260

Table 61 – Description of the PluginEndpointSecurityAttributes .. 261

Table 62 – Mapping of fields PluginEndpointSecurityAttributes to the

PluginEndpointSecurityAttributesMask .. 263

Table 63 – Actions undertaken by the operations of the bulitin AccessControl plugin 264

Table 64 – AES-GCM transformation inputs .. 270

Table 65 – AES-GCM trasnsformation outputs .. 270

Table 66 – CryptoToken class for the builtin Cryptographic plugin .. 271

Table 67 – KeyMaterial_AES_GCM_GMAC for BuiltinParticipantVolatileMessageSecureWriter and

BuiltinParticipantVolatileMessageSecureReader ... 273

Table 68 – Terms used in KxKey and KxMacKey derivation formula for the builtin Cryptographic

plugin ... 274

Table 69 – CryptoTransformIdentifier class for the builtin Cryptographic plugin 274

Table 70 – Actions undertaken by the operations of the builtin Cryptographic CryptoKeyFactory plugin

 ... 278

Table 71 – Actions undertaken by the operations of the builtin Cryptographic CryptoKeyExchange

plugin ... 281

Table 72 – Actions undertaken by the operations of the builtin Cryptographic CryptoKeyTransform

plugin ... 283

Table 73 – Terms used in Key Computation and cryptographic transformations formulas for the builtin

cryptographic plugin ... 290

Table 74 – Actions undertaken by the operations of the builtin Logging plugin 302

Deleted: 299246

Deleted: 302249

Deleted: 304250

Deleted: 307252

Deleted: 308253

Deleted: 314259

Deleted: 315259

Deleted: 316260

Deleted: 318262

Deleted: 318262

Deleted: 319263

Deleted: 322266

Deleted: 326269

Deleted: 328270

Deleted: 335277

Deleted: 348288

viii DDS Security, v1.1

Figures

Figure 1 – Overall architecture for DDS Security ... 1

Figure 2 – Threat actors ... 16

Figure 3 – Token Model ... 22

Figure 4 – RTPS message structure .. 28

Figure 5 – Secure Submessage and Secured Payload Model ... 34

Figure 6 – RTPS message transformations ... 36

Figure 7 – Plugin Architecture Model .. 66

Figure 8 – Authentication plugin model ... 69

Figure 9 – Authentication plugin interaction state machine... 72

Figure 10 – AccessControl Plugin Model ... 92

Figure 11 – Cryptographic Plugin Model ... 123

Figure 12 – Effect of encode_serialized_payload within an RTPS message 145

Figure 13 – Effect of encode_datawriter_submessage within an RTPS message 147

Figure 14 – Effect of encode_datareader_submessage within an RTPS message............................... 149

Figure 15 – Possible effect of encode_rtps within an RTPS message .. 150

Figure 16 – Possible effect of decode_rtps within an RTPS message .. 152

Figure 17 – Effect of decode_datawriter_submessage within an RTPS message 154

Figure 18 – Effect of decode_datawriter_submessage within an RTPS message 156

Figure 19 – Effect of decode_serialized_payload within an RTPS message 157

Figure 20 – Logging Plugin Model .. 158

Figure 21 – Authentication and AccessControl sequence diagram with local DomainParticipant 163

Figure 22 – Authentication sequence diagram with discovered DomainParticipant 166

Figure 23 – AccessControl sequence diagram with local entities .. 173

Figure 24 – AccessControl sequence diagram with discovered DomainParticipant 175

Figure 25 – AccessControl sequence diagram with discovered entities when is_read_protected and

is_write_protected are both FALSE ... 178

Figure 26 – AccessControl sequence diagram with discovered entities when is_read_protected==TRUE

and is_write_protected==TRUE .. 179

Figure 27 – Cryptographic KeyExchange plugin sequence diagram with discovered DomainParticipant

 ... 184

Figure 28 – Cryptographic KeyExchange plugin sequence diagram with discovered DataReader 185

Deleted: 2322

Deleted: 3028

Deleted: 3634

Deleted: 4136

Deleted: 7366

Deleted: 7969

Deleted: 8672

Deleted: 11191

Deleted: 143122

Deleted: 168144

Deleted: 169146

Deleted: 171148

Deleted: 173149

Deleted: 175151

Deleted: 178153

Deleted: 180155

Deleted: 182156

Deleted: 185157

Deleted: 192162

Deleted: 197165

Deleted: 206172

Deleted: 208174

Deleted: 211177

Deleted: 213178

Deleted: 218183

Deleted: 220184

DDS Security, v1.1 ix

Figure 29 – Cryptographic KeyExchange plugin sequence diagram with discovered DataWriter 187

Figure 30 – Cryptographic CryptoTransform plugin sequence diagram for encoding/decoding a single

DataWriter submessage ... 188

Figure 31 – Cryptographic CryptoTransform plugin sequence diagram for encoding/decoding multiple

DataWriter submessages ... 191

Figure 32 -- Cryptographic CryptoTransform plugin sequence diagram for encoding/decoding multiple

DataReader submessages .. 192

Figure 33 – Cryptographic CryptoTransform plugin sequence diagram for encoding/decoding multiple

DataWriter and DataReader submessages .. 194

Deleted: 221186

Deleted: 223187

Deleted: 225190

Deleted: 226191

Deleted: 229193

x DDS Security, v1.1

Preface

About the Object Management Group

OMG

Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not -for-profit

computer industry standards consortium that produces and maintains computer industry

specifications for interoperable, portable and reusable enterprise applications in distributed,

heterogeneous environments. Membership includes Information Technology vendors, end users,

government agencies and academia.

OMG member companies write, adopt, and maintain its specifications following a mature, open

process. OMG's specifications implement the Model Driven Architecture® (MDA®), maximizing

ROI through a full-lifecycle approach to enterprise integration that covers multiple operating

systems, programming languages, middleware and networking infrastructures, and software

development environments. OMG’s specifications include: UML® (Unified Modeling Language™);

CORBA® (Common Object Request Broker Architecture); CWM™ (Common Warehouse

Metamodel); and industry-specific standards for dozens of vertical markets.

More information on the OMG is available at http://www.omg.org/.

OMG Specifications

As noted, OMG specifications address middleware, modeling, and vertical domain frameworks. A

listing of all OMG Specifications is available from the OMG website at:

http://www.omg.org/spec/index.htm

Specifications are organized by the following categories:

Business Modeling Specifications

Middleware Specifications

• CORBA/IIOP

• Data Distribution Services

• Specialized CORBA

IDL/Language Mapping Specifications

Modeling and Metadata Specifications

• UML, MOF, CWM, XMI

• UML Profile

Modernization Specifications

Platform Independent Model (PIM), Platform Specific Model (PSM), Interface Specifications

• CORBAServices

• CORBAFacilities

DDS Security, v1.1 xi

OMG Domain Specifications

CORBA Embedded Intelligence Specifications

CORBA Security Specifications

All of OMG’s formal specifications may be downloaded without charge from our website. (Products

implementing OMG specifications are available from individual suppliers.) Copies of specifications,

available in PostScript and PDF format, may be obtained from the Specifications Catalog cited above

or by contacting the Object Management Group, Inc. at:

OMG Headquarters

109 Highland Avenue

Needham, MA 02494

USA

Tel: +1-781-444-0404

Fax: +1-781-444-0320

Email: pubs@omg.org

Certain OMG specifications are also available as ISO standards. Please consult http://www.iso.org.

Issues

The reader is encouraged to report any technical or editing issues/problems with this specification to

http://issues.omg.org/issues/create-new-issue.

Formatted: Spanish (Spain-Traditional
Sort)

Formatted: Font: Not Italic, No underline,
Font color: Black, Spanish
(Spain-Traditional Sort)

Formatted: Spanish (Spain-Traditional
Sort)

DDS Security, v1.1 1

1 Scope

1.1 General

This specification adds several new “DDS Security Support” compliance points (“profile”) to the DDS

Specification. See the compliance levels within the Conformance Clause below.

1.2 Overview of this Specification

This specification defines the Security Model and Service Plugin Interface (SPI) architecture for

compliant DDS implementations. The DDS Security Model is enforced by the invocation of these SPIs

by the DDS implementation. This specification also defines a set of builtin implementations of these

SPIs.

 The specified builtin SPI implementations enable out-of-the box security and interoperability

between compliant DDS applications.

 The use of SPIs allows DDS users to customize the behavior and technologies that the DDS

implementations use for Information Assurance, specifically customization of Authentication,

Access Control, Encryption, Message Authentication, Digital Signing, Logging and Data

Tagging.

Figure 1 – Overall architecture for DDS Security

App.

Other
DDS
System

Secure DDS
middleware

Authentication
Plugin

Access Control
Plugin Cryptographic

Plugin

Secure Kernel

Crypto
Module
(e.g. TPM)

Transport (e.g. UDP)

application componentcertificates

?

Data
cache

Protocol
Engine

Kernel
Policies

DDS Entities

Network
Driver

?

Network

Encrypted DataTAG

Other
DDS
System

Other
DDS
System

App.App.

Logging
Plugin

DataTagging
Plugin

MAC

2 DDS Security, v1.1

This specification defines five SPIs that when combined together provide Information Assurance to

DDS systems:

 Authentication Service Plugin. Provides the means to verify the identity of the application

and/or user that invokes operations on DDS. Includes facilities to perform mutual

authentication between participants and establish a shared secret.

 AccessControl Service Plugin. Provides the means to enforce policy decisions on what DDS

related operations an authenticated user can perform. For example, which domains it can join,

which Topics it can publish or subscribe to, etc.

 Cryptographic Service Plugin. Implements (or interfaces with libraries that implement) all

cryptographic operations including encryption, decryption, hashing, digital signatures, etc. This

includes the means to derive keys from a shared secret.

 Logging Service Plugin. Supports auditing of all DDS security-relevant events

 Data Tagging Service Plugin. Provides a way to add tags to data samples.

DDS Security, v1.1 3

2 Conformance

2.1 Conformance points

This specification defines the following conformance points:

(1) Builtin plugin interoperability (mandatory)

(2) Plugin framework (mandatory)

(3) Plugin language APIs (optional)

(4) Logging and Tagging (optional)

Conformance with the “DDS Security” specification requires conformance with all the mandatory

conformance points.

2.2 Builtin plugin interoperability (mandatory)

This point provides interoperability with all the builtin plugins with the exception of the Logging

plugin. Conformance to this point requires conformance to:

 Clause 7 (the security model and the support for interoperability between DDS Security

implementations).

 The configuration of the plugins and the observable wire-protocol behavior specified in Clause 9

(the builtin-plugins), except for sub clause 9.6. This conformance point does not require

implementation of the APIs between the DDS implementation and the plugins.

2.3 Plugin framework (mandatory):

This point provides the architectural framework and abstract APIs needed to develop new security

plugins and “plug them” into a DDS middleware implementation. Plugins developed using this

framework are portable between conforming DDS implementations. However portability for a specific

programming language also requires conformance to the specific language API (see 2.4).

Conformance to this point requires conformance to:

 Clause 7 (the security model and the support for interoperability between DDS Security

implementations).

 Clause 8 (the plugin model) with the exception of 8.6 and 8.7 (Logging and Data Tagging plugins).

The conformance to the plugin model is at the UML level; it does not mandate a particular language

mapping.

 Clause 9, the builtin-plugins, except for 9.6 (Builtin Logging Plugin).

In addition it requires the conforming DDS implementation to provide a public API to insert the

plugins that conform to the aforementioned sections.

2.4 Plugin Language APIs (optional):

These conformance points provide portability across compliant DDS implementations of the security

plugins developed using a specific programming language.

Conformance to any of the language portability points requires conformance to the (mandatory) plugin

architecture framework point.

4 DDS Security, v1.1

These are 5 “plugin language API” points, each corresponding to a different programming language

used to implement the plugins.

Each language point is a separate independent conformance point. Conformance with the “plugin

language API” point requires conformance with at least one of the 5 language APIs enumerated below:

 C Plugin APIs. Conformance to sub clauses 10.2 and 10.3

 C++ classic Plugin APIs. Conformance to sub clauses 10.2 and 10.4

 Java classic Plugin APIs. Conformance to sub clauses 10.2 and 10.5

 C++11 Plugin APIs. Conformance to sub clauses 10.2 and 10.6

 Java5+ Plugin APIs. Conformance to sub clauses 10.2 and 10.7.

2.5 Logging and Tagging profile (optional):

This point adds support for logging and tagging. Conformance to this point requires conformance to

sub clauses 8.6, 8.7, and 9.6.

DDS Security, v1.1 5

3 Normative References

 DDS: Data-Distribution Service for Real-Time Systems version 1.4.

http://www.omg.org/spec/DDS/1.4

 DDS-RTPS: Data-Distribution Service Interoperability Wire Protocol version 2.2,

http://www.omg.org/spec/DDS-RTPS/2.2/

 DDS-XTYPES: Extensible and Dynamic Topic-Types for DDS version 1.2,

http://www.omg.org/spec/DDS-XTypes/1.2

 OMG-IDL: Interface Definition Language (IDL) version 4.1, http://www.omg.org/spec/IDL/4.1

 HMAC: Keyed-Hashing for Message Authentication. H. Krawczyk, M. Bellare, and R.Canetti,

IETF RFC 2104, http://tools.ietf.org/html/rfc2104

 Updated Security Considerations for the MD5 Message-Digest and the HMAC-MD5 Algorithms,

IETF RFC 6151 https://tools.ietf.org/html/rfc6151

 PKCS #7: Cryptographic Message Syntax Version 1.5. IETF RFC 2315.

http://tools.ietf.org/html/rfc2315

 Public-Key Cryptography Standards (PKCS) #1: RSA Cryptography Specifications Version 2.2.

IETF RFC 8017. https://tools.ietf.org/html/rfc8017

 XSD: XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes,

https://www.w3.org/TR/2012/REC-xmlschema11-2-20120405.

Deleted: 1

Deleted: http://www.omg.org/spec/DDS-

XTypes/1.1/

Deleted: 3.5

Deleted: http://www.omg.org/spec/IDL35/

Deleted: 1

Deleted: 3447

Deleted: 3447

http://www.omg.org/spec/DDS/1.4
http://www.omg.org/spec/DDS-RTPS/2.2/
http://www.omg.org/spec/IDL/4.1
http://www.omg.org/spec/IDL/4.1
http://tools.ietf.org/html/rfc2104
https://tools.ietf.org/html/rfc6151
http://tools.ietf.org/html/rfc2315
https://tools.ietf.org/html/rfc8017
https://www.w3.org/TR/2012/REC-xmlschema11-2-20120405

6 DDS Security, v1.1

DDS Security, v1.1 7

4 Terms and Definitions

For the purposes of this specification, the following terms and definitions apply:

Access Control

Mechanism that enables an authority to control access to areas and resources in a given physical

facility or computer-based information system.

Authentication

Security measure(s) designed to establish the identity of a transmission, message, or originator.

Authorization

Access privileges that are granted to an entity; conveying an “official” sanction to perform a security

function or activity.

Ciphertext

Data in its encrypted or signed form.

Certification authority

The entity in a Public Key Infrastructure (PKI) that is responsible for issuing certificates, and exacting

compliance to a PKI policy.

Confidentiality

Assurance that information is not disclosed to unauthorized individuals, processes, or devices.

Cryptographic algorithm

A well-defined computational procedure that takes variable inputs, including a cryptographic key and

produces an output.

Cryptographic key

A parameter used in conjunction with a cryptographic algorithm that operates in such a way that

another agent with knowledge of the key can reproduce or reverse the operation, while an agent

without knowledge of the key cannot.

Examples include:

1. The transformation of plaintext data into ciphertext.

2. The transformation of ciphertext data into plaintext.

3. The computation of a digital signature from data.

4. The verification of a digital signature.

5. The computation of a message authentication code from data.

6. The verification of a message authentication code from data and a received authentication

code.

Data-Centric Publish-Subscribe (DCPS)

The mandatory portion of the DDS specification used to provide the functionality required for an

application to publish and subscribe to the values of data objects.

8 DDS Security, v1.1

Data Distribution Service (DDS)

An OMG distributed data communications specification that allows Quality of Service policies to be

specified for data timeliness and reliability. It is independent of the implementation language.

[DDSSEC11-115 Add the concept of "data origin authentication" and clarify …]

Data Integrity

Assurance that data has not been altered since creation time.

[DDSSEC11-115 Add the concept of "data origin authentication" and clarify …]

Data-Origin Authentication

A mechanism providing assurance that a party is corroborated as the source of specified data (it

includes data integrity). In this specification it is used to indicate assurance of the DataWriter or

DataReader that originated a message.

Digital signature

The result of a cryptographic transformation of data that, when properly implemented with supporting

infrastructure and policy, provides the services of:

1. origin authentication

2. data integrity

3. signer non-repudiation

Extended IDL

Extended Interface Definition Language (IDL) used to describe data types in a way that can be

represented in a machine neutral format for network communications. This syntax was introduced as

part of the DDS-XTYPES specification [3].

Hashing algorithm

A one-way algorithm that maps an input byte buffer of arbitrary length to an output fixed-length byte

array in such a way that:

(a) Given the output it is computationally infeasible to determine the input.

(b) It is computationally infeasible to find any two distinct inputs that map to the same output.

Information Assurance

The practice of managing risks related to the use, processing, storage, and transmission of information

or data and the systems and processes used for those purposes.

Integrity

Protection against unauthorized modification or destruction of information.

Key management

[DDSSEC11-5 - Miscellaneous typos/inconsistencies]

The handling of cryptographic material (e.g., keys, Initialization Vectors) during their entire life cycle

of from creation to destruction.

Deleted:

Deleted: the keys

DDS Security, v1.1 9

Message authentication code (MAC)

A cryptographic hashing algorithm on data that uses a symmetric key to detect both accidental and

intentional modifications of data.

[DDSSEC11-115 Add the concept of "data origin authentication" and clarify …]

Message-Origin Authentication

A mechanism providing assurance that a party is corroborated as the source of a specified message. In

this specification it is used to indicate assurance of the DomainParticipant that originated the

message.

Non-Repudiation

Assurance that the sender of data is provided with proof of delivery and the recipient is provided with

proof of the sender's identity, so neither can later deny having received or processed the data.

Public key

A cryptographic key used with a public key cryptographic algorithm that is uniquely associated with an

entity and that may be made public. The public key is associated with a private key. The public key

may be known by anyone and, depending on the algorithm, may be used to:

1. Verify a digital signature that is signed by the corresponding private key,

2. Encrypt data that can be decrypted by the corresponding private key, or

3. Compute a piece of shared data.

Public key certificate

A set of data that uniquely identifies an entity, contains the entity's public key and possibly other

information, and is digitally signed by a trusted party, thereby binding the public key to the entity.

Public key cryptographic algorithm

A cryptographic algorithm that uses two related keys, a public key and a private key. The two keys

have the property that determining the private key from the public key is computationally infeasible.

Public Key Infrastructure

A framework that is established to issue, maintain and revoke public key certificates.

Deleted:

10 DDS Security, v1.1

DDS Security, v1.1 11

5 Symbols

This specification does not define any symbols or abbreviations.

12 DDS Security, v1.1

DDS Security, v1.1 13

6 Additional Information

6.1 Changes to Adopted OMG Specifications

This specification does not modify any existing adopted OMG specifications. It reuses and/or adds

functionality on top of the current set of OMG specifications.

 DDS: This specification does not modify or invalidate any existing DDS profiles or compliance

levels. It extends some of the DDS builtin Topics to carry additional information in a

compatible way with existing implementations of DDS.

 DDS-RTPS: This specification does not require any modifications to RTPS; however, it may

impact interoperability with existing DDS-RTPS implementations. In particular, DDS-RTPS

implementations that do not implement the DDS Security specification will have limited

interoperability with implementations that do implement the mechanisms introduced by this

specification. Interoperability is limited to systems configured to allow “unauthorized”

DomainParticipant entities and within those systems, only to Topics configured to be

“unprotected.”

 DDS-XTYPES: This specification depends on the IDL syntax introduced by and the Extended

CDR encoding defined in the DDS-XTYPES specification. It does not require any

modifications of DDS-XTYPES.

 OMG IDL: This specification does not modify any existing IDL-related compliance levels.

6.2 Acknowledgments

The following individials and companies submitted content that was incorporated into this

specification:

Submitting contributors:

 (lead) Gerardo Pardo-Castellote, Ph.D., Real-Time Innovations. gerardo.pardo AT rti.com

 Jaime Martin-Losa, eProsima JaimeMartin AT eprosima.com

 Angelo Corsaro, Ph.D., PrismTech. angelo.corsaro AT prismtech.com

Supporting contributors:

 Char Wales, MITRE charwing AT mitre.org

 Clark Tucker, Twin Oaks Computing, Inc. ctucker AT twinoakscomputing.com

Finalization Task Force members and participants:

 (chair) Gerardo Pardo-Castellote, Ph.D., Real-Time Innovations. gerardo.pardo AT rti.com

 Clark Tucker, Twin Oaks Computing, Inc. ctucker AT twinoakscomputing.com

 Jaime Martin-Losa, eProsima JaimeMartin AT eprosima.com

 Virginie Watine, THALES, virginie.watine AT thalesgroup.com

 Cyril Dangerville, THALES, cyril.dangerville AT thalesgroup.com

14 DDS Security, v1.1

 Angelo Corsaro, Ph.D., PrismTech. angelo.corsaro AT prismtech.com

 Julien Enoch, PrismTech, julien.enoch AT prismtech.com

 Ricardo Gonzalez, eProsima, RicardoGonzalez AT eprosima.com

 Gilles Bessens, Kongsberg Gallium, gilles.bessens AT kongsberggallium.com

 Charles Fudge, NSWC Dalghren, charles.fudge AT navy.mil

 Ron Townsen, General Dynamics AIS, Ronald.Townsen AT gd-ais.com

Revision Task Force members and participants:

 (chair) Gerardo Pardo-Castellote, Ph.D., Real-Time Innovations. gerardo.pardo AT rti.com

 Clark Tucker, Twin Oaks Computing, Inc. ctucker AT twinoakscomputing.com

 Cyril Dangerville, THALES, cyril.dangerville AT thalesgroup.com

 Angelo Corsaro, Ph.D., PrismTech. angelo.corsaro AT prismtech.com

 Julien Enoch, PrismTech, julien.enoch AT prismtech.com

 Jose Maria Lopez-Vega, Ph.D., Real-Time Innovations. jose AT rti.com

 Yusheng Yang, Real-Time Innovations. yusheng AT rti.com

 Charles Fudge, NSWC Dalghren, charles.fudge AT navy.mil

 Ron Townsen, General Dynamics AIS, Ronald.Townsen AT gd-ais.com

Deleted: <#>Jaime Martin-Losa, eProsima
JaimeMartin AT eprosima.com¶

Formatted: Spanish (Spain-Traditional
Sort)

Deleted: e

mailto:julien.enoch@prismtech.com
mailto:julien.enoch@prismtech.com

DDS Security, v1.1 15

7 Support for DDS Security

7.1 Security Model

The Security Model for DDS defines the security principals (users of the system), the objects that are

being secured, and the operations on the objects that are to be restricted. DDS applications share

information on DDS Global Data Spaces (called DDS Domains) where the information is organized

into Topics and accessed by means of read and write operations on data-instances of those Topics.

Ultimately what is being secured is a specific DDS Global Data Space (domain) and, within the

domain, the ability to access (read or write) information (specific Topic or even data-object instances

within the Topic) in the DDS Global Data Space.

Securing DDS means providing:

[DDSSEC11-115 Add the concept of "data origin authentication" and clarify …]

 Confidentiality of the data samples

 Integrity of the data samples and the messages that contain them

 Authentication of DDS writers and readers

 Authorization of DDS writers and readers

 Message-origin authentication

 Data-origin authentication

 (Optional) Non-repudiation of data

To provide secure access to the DDS Global Data Space, applications that use DDS must first be

authenticated, so that the identity of the application (and potentially the user that interacts with it) can

be established. Once authentication has been obtained, the next step is to enforce access control

decisions that determine whether the application is allowed to perform specific actions. Examples of

actions are: joining a DDS Domain, defining a new Topic, reading or writing a specific DDS Topic,

and even reading or writing specific Topic instances (as identified by the values of key fields in the

data). Enforcement of access control shall be supported by cryptographic techniques so that

information confidentiality and integrity can be maintained, which in turn requires an infrastructure to

manage and distribute the necessary cryptographic keys.

7.1.1 Threats

In order to understand the decisions made in the design of the plugins, it is important to understand

some of the specific threats impacting applications that use DDS and DDS Interoperability Wire

Protocol (RTPS).

Most relevant are four categories of threats:

1. Unauthorized subscription

2. Unauthorized publication

3. Tampering and replay

4. Unauthorized access to data

16 DDS Security, v1.1

These threats are described in the context of a hypothetical communication scenario with six actors all

attached to the same network:

 Alice. A DDS DomainParticipant who is authorized to publish data on a Topic T.

 Bob. A DDS DomainParticipant who is authorized to subscribe to data on a Topic T.

 Eve. An eavesdropper. Someone who is not authorized to subscribe to data on Topic T.

However Eve uses the fact that she is connected to the same network to try to see the data.

 Trudy. An intruder. A DomainParticipant who is not authorized to publish on Topic T.

However, Trudy uses the fact that she is connected to the same network to try to send data.

 Mallory. A malicious DDS DomainParticipant. Mallory is authorized to subscribe to data on

Topic T but she is not authorized to publish on Topic T. However, Mallory will try to use

information gained by subscribing to the data to publish in the network and try to convince Bob

that she is a legitimate publisher.

 Trent. A trusted service who needs to receive and send information on Topic T. For example,

Trent can be a persistence service or a relay service. He is trusted to relay information without

having malicious intent. However he is not trusted to see the content of the information.

Figure 2 – Threat actors

7.1.1.1 Unauthorized Subscription

The DomainParticipant Eve is connected to the same network infrastructure as the rest of the agents

and is able to observe the network packets despite the fact that the messages are not intended to be sent

to Eve. Many scenarios can lead to this situation. Eve could tap into a network switch or observe the

communication channels. Alternatively, in situations where Alice and Bob are communicating over

multicast, Eve could simply subscribe to the same multicast address.

Protecting against Eve is reasonably simple. All that is required is for Alice to encrypt the data she

writes using a secret key that is only shared with authorized receivers such as Bob, Trent, and Mallory.

DDS Security, v1.1 17

7.1.1.2 Unauthorized Publication

The DomainParticipant Trudy is connected to the same network infrastructure as the rest of the agents

and is able to inject network packets with any data contents, headers and destination she wishes (e.g.,

Bob). The network infrastructure will route those packets to the indicated destination.

To protect against Trudy, Bob, Trent and Mallory need to realize that the data is not originating from

Alice. They need to realize that the data is coming from someone not authorized to send data on Topic

T and therefore reject (i.e., not process) the packet.

Protecting against Trudy is also reasonably simple. All that is required is for the protocol to require that

the messages include either a hash-based message authentication code (HMAC) or digital signature.

 An HMAC creates a message authentication code using a secret key that is shared with the

intended recipients. Alice would only share the secret key with Bob, Mallory and Trent so that

they can recognize messages that originate from Alice. Since Trudy is not authorized to publish

Topic T, Bob and the others will not recognize any HMACs Trudy produces (i.e., they will not

recognize Trudy’s key).

 A digital signature is based on public key cryptography. To create a digital signature, Alice

encrypts a digest of the message using Alice’s private key. Everybody (including Bob, Mallory

and Trent) has access to Alice’s public key. Similar to the HMAC above, the recipients can

identify messages from Alice, as they are the only ones whose digital signature can be

interpreted with Alice’s public key. Any digital signatures Trudy may use will be rejected by the

recipients, as Trudy is not authorized to write Topic T.

The use of HMACs versus digital signatures presents tradeoffs that will be discussed further in

subsequent sections. Suffice it to say that in many situations the use of HMACs is preferred because

the performance to compute and verify them is about 1000 times faster than the performance of

computing/verifying digital signatures.

7.1.1.3 Tampering and Replay

Mallory is authorized to subscribe to Topic T. Therefore Alice has shared with Mallory the secret key

to encrypt the topic and also, if an HMAC is used, the secret key used for the HMAC.

Assume Alice used HMACs instead of digital signatures. Then Mallory can use her knowledge of the

secret keys used for data encryption and the HMACs to create a message on the network and pretend it

came from Alice. Mallory can fake all the TCP/UDP/IP headers and any necessary RTPS identifiers

(e.g., Alice’s RTPS DomainParticipant and DataWriter GUIDs). Mallory has the secret key that was

used to encrypt the data so she can create encrypted data payloads with any contents she wants. She

has the secret key used to compute HMACs so she can also create a valid HMAC for the new message.

Bob and the others will have no way to see that message came from Mallory and will accept it,

thinking it came from Alice.

So if Alice used an HMAC, the only solution to the problem is that the secret key used for the HMAC

when sending the message to Mallory cannot be the same as the key used for the HMAC when sending

messages to Bob. In other words, Alice must share a different secret key for the HMAC with each

recipient. Then Mallory will not have the HMAC key that Bob expects from Alice and the messages

from Mallory to Bob will not be misinterpreted as coming from Alice.

Recall that Alice needs to be able to use multicast to communicate efficiently with multiple receivers.

Therefore, if Alice wants to send an HMAC with a different key for every receiver, the only solution is

18 DDS Security, v1.1

to append multiple HMACs to the multicast message with some key-id that allows the recipient to

select the correct HMAC to verify.

If Alice uses digital signatures to protect the integrity of the message, then this ‘masquerading’

problem does not arise and Alice can send the same digital signature to all recipients. This makes using

multicast simpler. However, the performance penalty of using digital signatures is so high that in many

situations it will be better to compute and send multiple HMACs as described earlier.

7.1.1.4 Unauthorized Access to Data by Infrastructure Services

Infrastructure services, such as the DDS Persistence Service or relay services need to be able to receive

messages, verify their integrity, store them, and send them to other participants on behalf of the

original application.

These services can be trusted not to be malicious; however, often it is not desirable to grant them the

privileges they would need to understand the contents of the data. They are allowed to store and

forward the data, but not to see inside the data.

Trent is an example of such a service. To support deployment of these types of services, the security

model needs to support the concept of having a participant, such as Trent, who is allowed to receive,

process, and relay RTPS messages, but is not allowed to see the contents of the data within the

message. In other words, he can see the headers and sample information (writer GUID, sequence

numbers, keyhash and such) but not the message contents.

To support services like Trent, Alice needs to accept Trent as a valid destination for her messages on

topic T and share with Trent only the secret key used to compute the HMAC for Trent, but not the

secret key used to encrypt the data itself. In addition, Bob, Mallory and others need to accept Trent as

someone who is able to write on Topic T and relay messages from Alice. This means two things: (1)

accept and interpret messages encrypted with Alice’s secret key and (2) allow Trent to include in his

sample information, the information he got from Alice (writer GUID, sequence number and anything

else needed to properly process the relayed message).

Assume Alice used an HMAC in the message sent to Trent. Trent will have received from Alice the

secret key needed to verify the HMAC properly. Trent will be able to store the messages, but lacking

the secret key used for its encryption, will be unable to see the data. When he relays the message to

Bob, he will include the information that indicates the message originated from Alice and produce an

HMAC with its own secret HMAC key that was shared with Bob. Bob will receive the message, verify

the HMAC and see it is a relayed message from Alice. Bob recognizes Trent is authorized to relay

messages, so Bob will accept the sample information that relates to Alice and process the message as if

it had originated with Alice. In particular, he will use Alice’s secret key to decrypt the data.

If Alice had used digital signatures, Trent would have two choices. If the digital signature only covered

the data and the sample information he needs to relay from Alice, Trent could simply relay the digital

signature as well. Otherwise, Trent could strip out the digital signature and put in his own HMAC.

Similar to before, Bob recognizes that Trent is allowed to relay messages from Alice and will be able

to properly verify and process the message.

7.2 Types used by DDS Security

The DDS security specification includes extensions to the DDS Interoperability Wire Protocol (DDS-

RTPS), as well as, new API-level functions in the form of Security Plugins. The types described in sub

clause 7.2 are used in these extensions.

DDS Security, v1.1 19

7.2.1 Property_t

Section 9.3.2 of the DDS-RTPS specification defines Property_t as a data type that holds a pair of

strings. One string is considered the property “name” and the other is the property “value” associated

with that name.

The DDS Security specification extends the DDS-RTPS definition of Property_t to contain the

additional boolean attribute “propagate” used to indicate whether a property is intended for local use

only or should be propagated by DDS discovery.

The DDS-Security specification uses Property_t sequences as a generic data type to configure the

security plugins, pass metadata and provide an extensible mechanism for vendors to configure the

behavior of their plugins without breaking portability or interoperability.

Property_t objects with names that start with the prefix “dds.sec.” are reserved by this

specification, including future versions of this specification. Plugin implementers can also use this

mechanism to pass metadata and configure the behavior of their plugins. In order to avoid collisions

with the value of the “name” attribute, implementers shall use property names that start with a prefix to

an ICANN domain name they own, in reverse order. For example, the prefix would be “com.acme.”

for plugins developed by a hypothetical vendor that owns the domain “acme.com”.

The names and interpretation of the expected properties shall be specified by each plugin

implementation.

Table 1 – Property_t class

Property_t

Attributes

name String

value String

propagate Boolean

7.2.1.1 IDL Representation for Property_t

The Property_t type may be used for information exchange over the network. When a

Property_t is sent over the network it shall be serialized using Extended CDR format according to

the Extended IDL representation [3] below.

[DDSSEC11-85 Additional typos/inconsistencies]

@extensibility(APPENDABLE)

struct Property_t {

 string name;

 string value;

 @non-serialized boolean propagate;

};

typedef sequence< Property_t > PropertySeq;

Deleted: @Extensibility
(EXTENSIBLE_EXTENSIBILITY)

20 DDS Security, v1.1

7.2.2 BinaryProperty_t

BinaryProperty_t is a data type that holds a string and an octet sequence. The string is

considered the property “name” and the octet sequence the property “value” associated with that name.

Sequences of BinaryProperty_t are used as a generic data type to configure the plugins, pass

metadata and provide an extensible mechanism for vendors to configure the behavior of their plugins

without breaking portability or interoperability.

BinaryProperty_t also contains the boolean attribute “propagate”. Similar to Property_t

this attribute is used to indicate weather the corresponding binary property is intended for local use

only or shall be propagated by DDS discovery.

BinaryProperty_t objects with a “name” attribute that start with the prefix “dds.sec.” are

reserved by this specification, including future versions of this specification.

Plugin implementers may use this mechanism to pass metadata and configure the behavior of their

plugins. In order to avoid collisions with the value of the “name”, attribute implementers shall use

property names that start with a prefix to an ICANN domain name they own, in reverse order. For

example, the prefix would be “com.acme.” for plugins developed by a hypothetical vendor that owns

the domain “acme.com”.

The valid values of the “name” attribute and the interpretation of the associated “value” shall be

specified by each plugin implementation.

Table 2 – BinaryProperty_t class

BinaryProperty_t

Attributes

name String

value OctetSeq

propagate Boolean

7.2.2.1 IDL Representation for BinaryProperty_t

The BinaryProperty_t type may be used for information exchange over the network. When a

BinaryProperty_t is sent over the network, it shall be serialized using Extended CDR format

according to the Extended IDL representation [3] below.

[DDSSEC11-85 Additional typos/inconsistencies]

@extensibility(APPENDABLE)

struct BinaryProperty_t {

 string name;

 OctetSeq value;

 @non-serialized boolean propagate;

};

typedef sequence< BinaryProperty_t > BinaryPropertySeq;

Deleted: @Extensibility
(EXTENSIBLE_EXTENSIBILITY)

DDS Security, v1.1 21

7.2.3 DataHolder

DataHolder is a data type used to hold generic data. It contains various attributes used to store data

of different types and formats. DataHolder appears as a building block for other types, such as

Token and GenericMessageData.

 Table 3 – DataHolder class

DataHolder

Attributes

class_id String

properties PropertySeq

binary_properties BinaryPropertySeq

7.2.3.1 IDL representation for DataHolder

The DataHolder type may be used for information exchange over the network. When a

DataHolder is sent over the network, it shall be serialized using Extended CDR format according to

the Extended IDL representation [3] below.

[DDSSEC11-85 Additional typos/inconsistencies]

@extensibility(APPENDABLE)

struct DataHolder {

 string class_id;

 PropertySeq properties;

 BinaryPropertySeq binary_properties;

};

typedef sequence<DataHolder> DataHolderSeq;

7.2.4 Token

The Token class provides a generic mechanism to pass information between security plugins using

DDS as the transport. Token objects are meant for transmission over the network using DDS either

embedded within the builtin topics sent via DDS discovery or via special DDS Topic entities defined in

this specification.

The Token class is structurally identical to the DataHolder class and therefore has the same

structure for all plugin implementations. However, the contents and interpretation of the Token

objects shall be specified by each plugin implementation.

There are multiple specializations of the Token class. They all share the same format, but are used for

different purposes. This is modeled by defining specialized classes.

[DDSSEC11-82 OCSP stapling to enhance certificate status checking during handshake]

Deleted: @Extensibility
(EXTENSIBLE_EXTENSIBILITY)

22 DDS Security, v1.1

Figure 3 – Token Model

7.2.4.1 Attribute: class_id

When used as a Token class, the class_id attribute in the DataHolder identifies the kind of Token.
Strings with the prefix “dds.sec.” are reserved for this specification, including future versions of

the specification. Implementers of this specification can use this attribute to identify non-standard

tokens. In order to avoid collisions, the class_id they use shall start with a prefix to an ICANN domain

name they own, using the same rules specified in 7.2.1 for property names.

7.2.4.2 IDL Representation for Token and Specialized Classes

The Token class is used to hold information exchanged over the network. When a Token is sent over

the network, it shall be serialized using Extended CDR format according to the Extended IDL

representation below:

[DDSSEC11-82 OCSP stapling to enhance certificate status checking during handshake]

[DDSSEC11-43 Non Recoverable Communication After Asymmetric Liveliness Loss]

typedef DataHolder Token;

typedef Token MessageToken;

typedef MessageToken AuthRequestMessageToken;

typedef MessageToken HandshakeMessageToken;

typedef Token IdentityToken;

typedef Token IdentityStatusToken;

typedef Token PermissionsToken;

typedef Token AuthenticatedPeerCredentialToken;

class Tokens

CryptoToken

Token

«discovery»

IdentityToken

«discovery»

PermissionsToken
MessageTokenPermissionsCredentialToken

DataHolder

- class_id: String

- properties: Property [*]

- binary_properties: BinaryProperty [*]

«discovery»

IdentityStatusToken

AuthRequestMessageToken HandshakeMessageToken

Formatted: Font: (Default) Times New
Roman, 12 pt, Not Bold

Deleted:

class Tokens

CryptoToken

Token

«discovery»

IdentityToken

«discovery»

PermissionsToken
MessageTokenPermissionsCredentialToken

DataHolder

- class_id: String

- properties: Property [*]

- binary_properties: BinaryProperty [*]

«discovery»

IdentityStatusToken

Deleted:

class Tokens

CryptoToken

Token

«discovery»

IdentityToken

«discovery»

PermissionsToken
MessageTokenPermissionsCredentialToken

DataHolder

- class_id: string

- string_properties: Property[]

- binary_properties: BinaryProperty[]

- string_values: string[]

- binary_value1: byte[]

- binary_value2: byte[]

- longlong_values: LongLong[]

Deleted: Token

DDS Security, v1.1 23

typedef Token PermissionsCredentialToken;

typedef Token CryptoToken;

typedef Token ParticipantCryptoToken;

typedef Token DatawriterCryptoToken;

typedef Token DatareaderCryptoToken;

typedef sequence<HandshakeMessageToken> HandshakeMessageTokenSeq;

typedef sequence<CryptoToken> CryptoTokenSeq;

typedef CryptoTokenSeq ParticipantCryptoTokenSeq;

typedef CryptoTokenSeq DatawriterCryptoTokenSeq;

typedef CryptoTokenSeq DatareaderCryptoTokenSeq;

[DDSSEC11-43 Non Recoverable Communication After Asymmetric Liveliness Loss]

7.2.4.3 TokenNIL

This name refers to the Token object having class_id set to the empty string, and both properties and

binary_properties sequences set to the empty sequence.

The TokenNIL object is used to indicate the absence of a Token.

7.2.5 PropertyQosPolicy, DomainParticipantQos, DataWriterQos, and DataReaderQos

This specification also introduces an additional Qos policy called PropertyQosPolicy, which is

defined by the following extended IDL:

[DDSSEC11-85 Additional typos/inconsistencies]

@extensibility(APPENDABLE)

struct PropertyQosPolicy {

 PropertySeq value;

 BinaryPropertySeq binary_value;

};

The PropertyQosPolicy applies to the following DDS entities: DomainParticipant,

DataWriter, and DataReader. To allow configuration of this policy from the DDS API the DDS

Security specification extends the definitions of the DDS defined types DomainParticipantQos,

DataWriterQos, and DataReaderQos with the additional member “property” of type

PropertyQosPolicy as indicated in the extended IDL snippets below.

[DDSSEC11-34 - Add Missing parameters to check_local_(datawriter/datareader)_match APIs]

This specification also introduces a Qos policy called DataTagQosPolicy, defined by the

following IDL:

[DDSSEC11-85 Additional typos/inconsistencies]

@extensibility(APPENDABLE)

struct Tag {

 string name;

 string value;

Deleted: @Extensibility
(EXTENSIBLE_EXTENSIBILITY)

Deleted: @Extensibility
(EXTENSIBLE_EXTENSIBILITY)

24 DDS Security, v1.1

};

typedef sequence<Tag> TagSeq;

@extensibility(APPENDABLE)

struct DataTags {

 TagSeq tags;

};

typedef DataTags DataTagQosPolicy;

@extensibility(MUTABLE)

struct DomainParticipantQos {

 // Existing policies from the DDS specification

 PropertyQosPolicy property;

};

[DDSSEC11-34 - Add Missing parameters to check_local_(datawriter/datareader)_match APIs]

[DDSSEC11-85 Additional typos/inconsistencies]

@extensibility(MUTABLE)

struct DataWriterQos {

 // Existing policies from the DDS specification

 PropertyQosPolicy property;

 DataTagQosPolicy data_tags;

};

@extensibility(MUTABLE)

struct DataReaderQos {

 // Existing policies from the DDS specification

 PropertyQosPolicy property;

 DataTagQosPolicy data_tags;

};

The PropertyQosPolicy shall be propagated via DDS discovery so it appears in the

ParticipantBuiltinTopicData, PublicationBuiltinTopicData, and

SubscriptionBuiltinTopicData (see 7.4.1.3, 7.4.1.7, and 7.4.1.8). This is used by the plugins

to check configuration compatibility. Not all name/value pairs within the underlying PropertySeq

and BinaryPropertySeq are propagated. Specifically only the ones with propagate=TRUE are

propagated via DDS discovery and shall appear in the ParticipantBuiltinTopicData,

PublicationBuiltinTopicData, and SubscriptionBuiltinTopicData.

7.2.6 ParticipantGenericMessage

This specification introduces additional builtin DataWriter and DataReader entities used to send

generic messages between the participants. To support these entities, this specification uses a general-

purpose data type called ParticipantGenericMessage, which is defined by the following

extended IDL:

[DDSSEC11-88 Replace use of BuiltinTopicKey_t with GUID_t_...]

Deleted: @Extensibility
(EXTENSIBLE_EXTENSIBILITY)

Deleted: @Extensibility
(MUTABLE_EXTENSIBILITY)

Deleted: @Extensibility
(MUTABLE_EXTENSIBILITY)

Deleted: @Extensibility
(MUTABLE_EXTENSIBILITY)

DDS Security, v1.1 25

typedef octet[16] GUID_t;

[DDSSEC11-85 Additional typos/inconsistencies]

@extensibility(APPENDABLE)

struct MessageIdentity {

 GUID_t source_guid;

 long long sequence_number;

};

typedef string<> GenericMessageClassId;

@extensibility(APPENDABLE)

struct ParticipantGenericMessage {

 /* target for the request. Can be GUID_UNKNOWN */

 MessageIdentity message_identity;

 MessageIdentity related_message_identity;

 GUID_t destination_participant_guid;

 GUID_t destination_endpoint_guid;

 GUID_t source_endpoint_guid;

 GenericMessageClassId message_class_id;

 DataHolderSeq message_data;

};

The type GUID_t refers to the type defined in the DDS-RTPS specification [2]. See clause 7.3.3 for

additional details on the GUID_t.

[DDSSEC11-137 Missing Mechanism for Detecting Incompatibilities in ParticipantSecurityA…]

7.2.7 ParticipantSecurityInfo

This specification introduces a new set of participant security attributes, described in Section 8.4.2.4.

In order to communicate, two participants need to have a compatible configuration for participant

security attributes. To support making matching decisions upon discovering a remote participant, this

specification defines a new parameter ID for ParticipantBuiltinTopicData topic,

PID_PARTICIPANT_SECURITY_INFO (see Section 7.4.1.4). The type for that Parameter IDs is

defined by the following extended IDL:

typedef unsigned long ParticipantSecurityAttributesMask;

typedef unsigned long PluginParticicipantSecurityAttributesMask;

@extensibility (APPENDABLE)

struct ParticipantSecurityInfo {

 ParticipantSecurityAttributesMask participant_security_atributes;

 PluginParticipantSecurityAttributesMask plugin_participant_security_attributes;

};

#define PARTICIPANT_SECURITY_ATTRIBUTES_FLAG_IS_VALID (0x1 << 31)

Deleted: BuiltinTopicKey_t

Deleted: @Extensibility
(EXTENSIBLE_EXTENSIBILITY)

Deleted: BuiltinTopicKey_t

Deleted: @Extensibility
(EXTENSIBLE_EXTENSIBILITY)

Deleted: BuiltinTopicKey_t

Deleted: destination_participant_
key

Deleted: BuiltinTopicKey_t

Deleted: destination_endpoint_key

Deleted: BuiltinTopicKey_t

Deleted: source_endpoint_key

26 DDS Security, v1.1

The default value for the info ParticipantSecurityInfo sets both masks to zero:

#define PARTICIPANT_SECURITY_ATTRIBUTES_INFO_DEFAULT {0, 0}

A compatible configuration is defined as having the same value for all of the attributes in the

ParticipantSecurityInfo, except that when comparing two masks the most significant bit is

interpreted in a special manner as described below.

The most-significant bit of PluginParticipantSecurityAttributesMask and

ParticipantSecurityAttributesMask is called the is_valid bit and specifies whether the

rest of the mask is valid. If the is_valid is set to zero on either of the masks, the comparison between

the local and remote setting for the ParticipantSecurityInfo shall ignore the attribute. This

allows new implementations to be backwards compatible with old implementations by either not

sending the ParticipantSecurityInfo (the default value of zero has is_valid=0) or sending it

with is_valid.

The value of the plugin_participant_security_attributes shall be defined the security plugin

implementation, and are opaque to the DDS middleware (other than the is_valid bit). They allow the

middleware to make matching decisions using the

PluginParticipantSecurityAttributesMask without interpreting it. The definition for

the builtin plugins is detailed in clause 9.4.2.3.

[DDSSEC11-38 Clarify whether governance settings for a DataWriter and a DataReader_...]

[DDSSEC11-106 Should differences in EndpointSecurityAttributesMask prevent matching?]

7.2.8 EndpointSecurityInfo

[DDSSEC11-106 Should differences in EndpointSecurityAttributesMask prevent matching?]

This specification defines a plugin-independent endpoint security attributes, described in clause

8.4.2.7. Additionally, plugin implementations can also have their own plugin-specific attributes, see

clause 9.4.2.5

In order to communicate, two endpoints need to have a compatible configuration for endpoint security

attributes.

To support making matching decisions upon discovering a remote endpoint, this specification defines a

new parameter ID for PublicationBuiltinTopicData and SubscriptionBuiltinTopicData topics,

PID_ENDPOINT_SECURITY_INFO (see Section 7.4.1.5). The type for that Parameter IDs is defined

by the following extended IDL:

[DDSSEC11-85 Additional typos/inconsistencies]

typedef unsigned long EndpointSecurityAttributesMask;

typedef unsigned long PluginEndpointSecurityAttributesMask;

@extensibility(APPENDABLE)

struct EndpointSecurityInfo {

 EndpointSecurityAttributesMask endpoint_security_attributes;

 PluginEndpointSecurityAttributesMask plugin_endpoint_security_attributes;

};

Deleted: bit set to zero in one or both

attributes

Deleted: AttributesMask

Deleted: introduces

Deleted: new set of

Deleted:

Deleted: Section

Deleted: 8.4.2.5

Deleted: .

Deleted: A compatible configuration means
the endpoint security attributes are the same
for both the local and remote endpoints.

Deleted: ATTRIBUTES_MASK

Deleted: @Extensibility
(EXTENSIBLE_EXTENSIBILITY)

DDS Security, v1.1 27

#define ENDPOINT_SECURITY_ATTRIBUTES_FLAG_IS_VALID (0x1 << 31)

The default value for the EndpointSecurityInfo is both attributes set to the value zero.

#define ENDPOINT_SECURITY_ATTRIBUTES_INFO_DEFAULT {0, 0}

A compatible configuration is defined as having the same value for all of the attributes in the

EndpointSecurityInfo, except that when comparing two masks the most significant bit is

interpreted in a special manner as described below.

The most-significant bit of PluginEndpointSecurityAttributesMask and

EndpointSecurityAttributesMask is called the is_valid bit and specifies whether the rest of

the mask is valid. If the is_valid is set to zero on either of the masks, the comparison between the local

and remote setting for the EndpointSecurityInfo shall ignore the attribute. This allows new

implementations to be backwards compatible with old implementations by either not sending the

EndpointSecurityInfo (the default value of zero has is_valid=0) or sending it with is_valid bit

set to zero in one or both attributes.

The value of the plugin_endpoint_security_attributes shall be defined by the security plugin

implementation, and is opaque to the DDS middleware (other than the is_valid bit). It allows the

middleware to make matching decisions using the

PluginEndpointSecurityAttributesMask without interpreting it. The definition for the

builtin plugins is detailed in clause 9.4.2.5.

[DDSSEC11-24 Rename NOT_ALLOWED_BY_SEC with

NOT_ALLOWED_BY_SECURITY_...]

7.2.9 Additional DDS Return Code: NOT_ALLOWED_BY_SECURITY

The DDS specification defines a set of return codes that may be returned by the operations on the DDS

API (see sub clause 7.1.1 of the DDS specification).

The DDS Security specification add an additional return code NOT_ALLOWED_BY_SECURITY,

which shall be returned by any operation on the DDS API that fails because the security plugins do not

allow it.

7.3 Securing DDS Messages on the Wire

OMG DDS uses the Real-Time Publish-Subscribe (RTPS) on-the-wire protocol [2] for communicating

data. The RTPS protocol includes specifications on how discovery is performed, the metadata sent

during discovery, and all the protocol messages and handshakes required to ensure reliability. RTPS

also specifies how messages are put together.

7.3.1 RTPS Background (Non-Normative)

In a secure system where efficiency and message latency are also considerations, it is necessary to

define exactly what needs to be secured. Some applications may require only the data payload to be

confidential and it is acceptable for the discovery information, as well as, the reliability meta-traffic

(HEARTBEATs, ACKs, NACKs, etc.) to be visible, as long as it is protected from modification. Other

applications may also want to keep the metadata (sequence numbers, in-line QoS) and/or the reliability

traffic (ACKs, NACKs, HEARTBEATs) confidential. In some cases, the discovery information (who is

publishing what and its QoS) may need to be kept confidential as well.

Deleted: The default value for this mask is:¶

#define
ENDPOINT_SECURITY_ATTRIBUTES_M
ASK_DEFAULT 0¶
The mapping of the

EndpointSecurityAttributes to

EndpointSecurityAttributesMask is

as follows:¶
[DDSSEC11-38 Clarify whether governance

settings for a DataWriter and a

DataReader_...]¶

[DDSSEC11-16 AccessControl behavior

does not show

check_local_datawriter/reader ...]¶

Table 4 – Mapping of
EndpointSecurityAtrtibutes to
EndpointSecurityAttributesMask¶

Builtin Endpoint ...

Deleted: are

Deleted: They allow

Deleted: The bit is_valid allows for

determining if the local endpoint has received
the mask for the matched remote endpoint. If
the local endpoint has not received
EndpointSecurityAttributesMask

as part of endpoint discovery, is_valid is
assumed to be false, and the local endpoint
should assume the remote

EndpointSecurityAttributes are the

same as the local ones. This allows new
implementations to be backwards compatible
with old implementations not sending the

EndpointSecurityAttributesMask.

28 DDS Security, v1.1

To help clarify these requirements, sub clause 7.3.1 explains the structure of the RTPS Message and

the different Submessages it may contain.

Figure 4 – RTPS message structure

An RTPS Message is composed of a leading RTPS Header followed by a variable number of RTPS

Submessages. Each RTPS Submessage is composed of a SubmessageHeader followed by a

variable number of SubmessagElements. There are various kinds of SubmessageElements to

communicate things like sequence numbers, unique identifiers for DataReader and DataWriter entities,

SerializedKeys or KeyHash of the application data, source timestamps, QoS, etc. There is one kind of

SubmessageElement called SerializedPayload that is used to carry the data sent by DDS

applications.

For the purposes of securing communications we distinguish three types of RTPS Submessages:

1. DataWriter Submessages. These are the RTPS submessages sent by a DataWriter to one or

more DataReader entities. These include the Data, DataFrag, Gap, Heartbeat, and

HeartbeatFrag submessages.

2. DataReader Submessages. These are the RTPS submessages sent by a DataReader to one or

more DataWriter entities. These include the AckNack and NackFrag submessages.

3. Interpreter Submessages. These are the RTPS submessages that are destined to the Message

Interpreter and affect the interpretation of subsequent submessages. These include all the

“Info” messages.

The only RTPS submessages that contain application data are the Data and DataFrag. The

application data is contained within the SerializedPayload submessage element. In addition to

RTPS SubMessage

RTPS Header

RTPS SubMessage

RTPS SubMessage

RTPS SubMessage

SubMsg Header

SubMsg Element

SubMsg Element

SerializedPayload

RTPS Message

RTPS SubMessage

DDS Security, v1.1 29

the SerializedPayload these submessages contain sequence numbers, inline QoS, the Key Hash,

identifiers of the originating DataWriter and destination DataReader, etc.

The Data, and DataFrag submessages contain a ParameterList submessage element called

inlineQos (see section 8.3.7 of the DDS-RTPS specification version 2.2). The inlineQos holds

metadata associated with the submessage. It is encoded as a ParameterList (see section 9.4.2.11

of the DDS-RTPS specification version 2.2). ParameterList is a list of {paramaterId, length,

value} tuples terminated by a sentinel. One of these parameters is the KeyHash.

The KeyHash parameter may only appear in the Data and DataFrag submessages. Depending on

the data type associated with the DataWriter that wrote the data, the KeyHash parameter contains

either:

 A serialized representation of the values of all the attributes declared as ‘key’ attributes in the

associated data type, or

 An MD5 hash computed over the aforementioned serialized key attributes.

Different RTPS Submessage within the same RTPS Message may originate on different

DataWriter or DataReader entities within the DomainParticipant that sent the RTPS message.

It is also possible for a single RTPS Message to combine submessages that originated on different

DDS DomainParticipant entities. This is done by preceding the set of RTPS Submessages that

originate from a common DomainParticipant with an InfoSource RTPS submessage.

[DDSSEC11-93 Revise version of RTPS and provide rules for plugin versions]

The RTPS header contains the version of the RTPS protocol composed of a Major Version and Minor

Version numbers.

As specified in clause 8.6.1 of the DDS-RTPS specification, changes to the RTPS protocol that do not

break interoperability should increase the Minor Version number. These changes include additional

submessages, additional builtin-endpoints, and additional parameterIds. The DDS Security

specification makes these kinds of changes to the RTPS protocol and therefore must increase the RTPS

minor version number.

7.3.2 Secure RTPS Messages

Sub clause 7.1.1 identified the threats addressed by the DDS Security specification. To protect against

the “Unauthorized Subscription” threat it is necessary to use encryption to protect the sensitive parts of

the RTPS message.

Depending on the application requirements, it may be that the only thing that should be kept

confidential is the content of the application data; that is, the information contained in the

SerializedPayload RTPS submessage element. However, other applications may also consider

the information in other RTPS SubmessageElements (e.g., sequence numbers, KeyHash, and

unique writer/reader identifiers) to be confidential. So the entire Data (or DataFrag) submessage

may need to be encrypted. Similarly, certain applications may consider other submessages such as

Gap, AckNack, Heartbeat, HeartbeatFrag, etc. also to be confidential.

For example, a Gap RTPS Submessage instructs a DataReader that a range of sequence numbers

is no longer relevant. If an attacker can modify or forge a Gap message from a DataWriter, it can

trick the DataReader into ignoring the data that the DataWriter is sending.

30 DDS Security, v1.1

To protect against “Unauthorized Publication” and “Tampering and Replay” threats, messages must be

signed using secure hashes or digital signatures. Depending on the application, it may be sufficient to

sign only the application data (SerializedPayload submessage element), the whole

Submessage, and/or the whole RTPS Message.

To support different deployment scenarios, this specification uses a “message transformation”

mechanism that gives the Security Plugin Implementations fine-grain control over which parts of the

RTPS Message need to be encrypted and/or signed.

The Message Transformation performed by the Security Plugins transforms an RTPS Message into

another RTPS Message. A new RTPS Header may be added and the content of the original RTPS

Message may be encrypted, protected by a Secure Message Authentication Code (MAC), and/or

signed. The MAC and/or signature can also include the RTPS Header to protect its integrity.

[DDSSEC11-88 Replace use of BuiltinTopicKey_t with GUID_t_...]

7.3.3 Constraints of the DomainParticipant GUID_t (GUID)

[DDSSEC11-88 Replace use of BuiltinTopicKey_t with GUID_t_...]

The DDS-RTPS specification [2] states that DDS DomainParticipant entities are identified by a

unique 16-byte GUID with type GUID_t. In this DDS-Security specification the type GUID_t refers

to the same type defined in clauses 8.4.2.1 and 9.3.1 of the DDS-RTPS specification [2]:

// From DDS-RTPS [2] clauses 8.4.2.1 and 9.3.1

typedef octet GuidPrefix_t[12];

struct EntityId_t {

 octet entityKey[3];

 octet entityKind;

};

struct GUID_t {

 GuidPrefix_t prefix;

 EntityId_t entityId;

};

This DomainParticipant GUID is communicated as part of DDS Discovery in the

SPDPdiscoveredParticipantData (see DDS-RTPS specification [2] clauses 8.5.3.2 and 9.3.1.3).

Allowing a DomainParticipant to select its GUID arbitrarily would allow hostile applications to

perform a “squatter” attack, whereby a DomainParticipant with a valid certificate could

announce itself into the DDS Domain with the GUID of some other DomainParticipant. Once

authenticated the “squatter” DomainParticipant would preclude the real DomainParticipant
from being discovered, because its GUID would be detected as a duplicate of the already existing

one.

Deleted: BuiltinTopicKey_t

Deleted: and the DDS Interoperability Wire

Protocol

Deleted: s

Deleted: .

Deleted: This DomainParticipant

GUID is communicated as part of DDS
Discovery in the

ParticipantBuiltinTopicData in the

attribute participant_key of type

BuiltinTopicKey_t defined as:¶
typedef octet

BuiltinTopicKey_t[16];¶

DDS Security, v1.1 31

To prevent the aforementioned “squatter” attack, this specification constrains the GUID that can be

chosen by a DomainParticipant, so that it is tied to the Identity of the DomainParticipant.

This is enforced by the Authentication plugin.

7.3.4 Mandatory use of the KeyHash for encrypted messages

The RTPS Data and DataFrag submessages can optionally contain the KeyHash as an inline Qos

(see sub clause 9.6.3.3, titled “KeyHash (PID_KEY_HASH)”) of the DDS-RTPS specification version

2.3. In this sub clause it is specified that when present, the key hash shall be computed either as the

serialized key or as an MD5 on the serialized key.

The key values are logically part of the data and therefore in situations where the data is considered

sensitive the key should also be considered sensitive.

For this reason the DDS Security specification imposes additional constraints in the use of the key

hash. These constraints apply only to the Data or DataFrag RTPS SubMessages where the

SerializedPayload SubmessageElement is encrypted by the operation

encode_serialized_payload of the CryptoTransform plugin:

(1) The KeyHash shall be included in the Inline Qos.

(2) The KeyHash shall be computed as the 128 bit MD5 Digest (IETF RFC 1321) applied to the

CDR Big- Endian encapsulation of all the Key fields in sequence. Unlike the rule stated in sub

clause 9.6.3.3 of the DDS specification, the MD5 hash shall be used regardless of the

maximum-size of the serialized key.

These rules accomplish two objectives:

(1) Avoid leaking the value of the key fields in situations where the data is considered sensitive

and therefore appears encrypted within the Data or DataFrag submessages.

(2) Enable the operation of infrastructure services without needed to leak to them the value of the

key fields (see 7.1.1.4).

Note that the use of the MD5 hashing function for these purposes does not introduce significant

vulnerabilities. While MD5 is considered broken as far as resistance to collisions (being able to find

two inputs that result in an identical unspecified hash) there are still no known practical preimage

attacks on MD5 (being able to find the input that resulted on a given hash).

7.3.5 Immutability of Publisher Partition Qos in combination with non-volatile
Durability kind

The DDS specification allows the PartitionQos policy of a Publisher to be changed after the

Publisher has been enabled. See sub clause 7.1.3 titled “Supported QoS) of the DDS 1.2

specification.

The DDS Security specification restricts this situation.

The DDS implementation shall not allow a Publisher to change PartitionQos policy after the

Publisher has been enabled if it contains any DataWriter that meets the following two criteria:

(1) The DataWriter either encrypts the SerializedPayload submessage element or

encrypts the Data or DataFrag submessage elements.

(2) The DataWriter has the DurabilityQos policy kind set to something other than

VOLATILE.

32 DDS Security, v1.1

This rule prevents data that was published while the DataWriter had associated a set of

Partitions from being sent to DataReaders that were not matching before the Partition

change and match after the Partition is changed.

7.3.6 Platform Independent Description

[DDSSEC11-93 Revise version of RTPS and provide rules for plugin versions]

7.3.6.1 Change to the RTPS minor version number

Implementations of this specification shall set the RTPS protocol version number present in the RTPS

Header. The RTPS Major version number shall be set to 2 and the RTPS Minor version number shall

be set to 3. Future revisions of the DDS-RTPS specification shall take this fact into consideration.

7.3.6.2 RTPS Secure Submessage Elements

This specification introduces new RTPS SubmessageElements that may appear inside RTPS

Submessages.

7.3.6.2.1 CryptoTransformIdentifier

The CryptoTransformIdentifier submessage element identifies the kind of cryptographic

transformation that was performed in an RTPS Submessage or an RTPS SubmessageElement

and also provides a unique identifier of the key material used for the cryptographic transformation.

The way in which attributes in the CryptoTransformIdentifier are set shall be specified for

each Cryptographic plugin implementation. However, all Cryptographic plugin implementations shall

be set in a way that allows the operations preprocess_secure_submsg,

decode_datareader_submessage, decode_datawriter_submessage, and

decode_serialized_payload to uniquely recognize the cryptographic material they shall use

to decode the message, or recognize that they do not have the necessary key material.

[DDSSEC11-7 Inconsistency in SubMessage and SubMessageElement naming ...]

7.3.6.2.2 CryptoContent

The CryptoContent submessage element is used to wrap a SerializedPayload, an RTPS

Submessage, or a complete RTPS Message. It is the result of applying one of the encoding

transformations on the CryptoTransform plugin.

The specific format of this shall be defined by each Cryptographic plugin implementation.

[DDSSEC11-7 Inconsistency in SubMessage and SubMessageElement naming ...]

7.3.6.2.3 CryptoHeader

The CryptoHeader submessage element is used as prefix to wrap a SerializedPayload, an

RTPS Submessage, or a complete RTPS Message. It is the result of applying one of the encoding

transformations on the CryptoTransform plugin.

The CryptoHeader submessage element shall extend the CryptoTransformIdentifier

element. Consequently, the leading bytes in the CryptoHeader shall encode the

CryptoTransformIdentifier. Therefore, the transformationKind is guaranteed to be the first

Deleted: into consideration

Deleted: SecureDataBody

Deleted: SecureDataBody

Deleted: SecureDataHeader

Deleted: SecureDataHeader

Deleted: ¶

T

Deleted: SecureDataHeader

DDS Security, v1.1 33

element within the CryptoHeader. The specific format of this shall be defined by each

Cryptographic plugin implementation.

[DDSSEC11-7 Inconsistency in SubMessage and SubMessageElement naming ...]

7.3.6.2.4 CryptoFooter

The CryptoFooter submessage element is used as postfix to wrap a SerializedPayload, an

RTPS Submessage, or a complete RTPS Message. It is the result of applying one of the encoding

transformations on the CryptoTransform plugin.

The specific format of this shall be defined by each Cryptographic plugin implementation.

[DDSSEC11-39 Use of Non-Existing Submessage SecureSubMsg and Flag ...]

7.3.6.3 RTPS Submessage: SecureBodySubMsg

This specification introduces a new RTPS submessage: SecureBodySubMsg. The format of the

SecureBodySubMsg complies with the RTPS SubMessage format mandated in the RTPS

specification. It consists of the RTPS SubmessageHeader followed by a set of RTPS

SubmessageElement elements.

Since the SecureBodySubMsg conforms to the general structure of RTPS submessages, it can

appear inside a well-formed RTPS message.

[DDSSEC11-7 Inconsistency in SubMessage and SubMessageElement naming ...]

class SecureSubmessages

RTPS::SubmessageHeader

- submessageId: SubmessageKind
- submessagLengh: ushort
- flags: SubmessageFlag [8]

SecureBodySubMsg

RTPS::Submessage

«interface»
CryptoTransformIdentifier

- transformationKind: octet [4]
- transformationId: octet [4]

CryptoContent

RTPS::SubmessageElement

SecurePrefixSubMsg

SecurePostfixSubMsg

SecureRTPSPrefixSubMsg

SecureRTPSPostfixSubMsg

CryptoHeader

CryptoFooter

0..*

1

«use»

«use»

Deleted: SecureDataHeader

Deleted: SecureDataTag

Deleted: SecureDataTag

Formatted: Font: (Default) Times New
Roman, 12 pt, Not Bold

Deleted:

class SecureSubmessages

RTPS::SubmessageHeader

- submessageId: SubmessageKind

- submessagLengh: ushort

- flags: SubmessageFlag[8]

SecureBodySubMsg

RTPS::Submessage

«interface»

CryptoTransformIdentifier

- transformationKind: long

- transformationId: octet[8]

SecureDataBody

RTPS::SubmessageElement

SecurePrefixSubMsg

SecurePostfixSubMsg

SecureRTPSPrefixSubMsg

SecureRTPSPostfixSubMsg

SecureDataHeader

- transformationId: CryptoTransformIdentifier

- value: octet[*]

SecureDataTag

- common_mac: char[]

- receiver_specific_macs: ReceiverSpecificMAC[]

1

0..*

«use»

«use»

34 DDS Security, v1.1

Figure 5 – Secure Submessage and Secured Payload Model

7.3.6.3.1 Purpose

The SecureBodySubMsg submessage is used to wrap one or more regular RTPS submessages in

such a way that their contents are secured via encryption, message authentication, and/or digital

signatures.

7.3.6.3.2 Content

The elements that form the structure of the RTPS SecureBodySubMsg are described in the table

below.

[DDSSEC11-7 Inconsistency in SubMessage and SubMessageElement naming ...]

Table 4 – SecureBodySubMsg class

Element Type Meaning

SEC_BODY SubmessageKind The presence of this field is
common to RTPS submessages.
It identifies the kind of
submessage.

The value indicates it is a
SecureBodySubMsg

submessageLength ushort The presence of this field is
common to RTPS submessages.
It identifies the length of the
submessage.

EndianessFlag SubmessageFlag Appears in the Submessage
header flags. Indicates
endianess.

crypto_content CryptoContent

Contains the result of
transforming the original
message. Depending on the
plugin implementation and
configuration, it may contain
encrypted content, message
access codes, and/or digital
signatures

7.3.6.3.3 Validity

The RTPS Submessage is invalid if the submessageLength in the Submessage header is too small.

7.3.6.3.4 Logical Interpretation

The SecureBodySubMsg provides a way to secure content inside a legal RTPS submessage.

A SecureBodySubMsg may wrap a single RTPS Submessage or a whole RTPS Message.

Formatted: Table caption, Don't keep with

next, Don't keep lines together

Deleted: 44445

Deleted: SUB_MSG

Deleted: sec_body

Deleted: SecureDataBody

DDS Security, v1.1 35

7.3.6.4 RTPS Submessage: SecurePrefixSubMsg

This specification introduces the RTPS submessage: SecurePrefixSubMsg. The format of the

SecurePrefixSubMsg complies with the RTPS SubMessage format mandated in the RTPS

specification. It consists of the RTPS SubmessageHeader followed by a set of RTPS

SubmessageElement elements.

7.3.6.4.1 Purpose

The SecurePrefixSubMsg submessage is used as prefix to wrap an RTPS submessage in such a

way that its contents are secured via encryption, message authentication, and/or digital signatures.

7.3.6.4.2 Content

The elements that form the structure of the RTPS SecurePrefixSubMsg are described in the table

below.

[DDSSEC11-7 Inconsistency in SubMessage and SubMessageElement naming ...]

Table 5 – SecurePrefixSubMsg class

Element Type Meaning

SEC_PREFIX SubmessageKind The presence of this field is common to
RTPS submessages. It identifies the kind
of submessage.

The value indicates it is a
SecurePrefixSubMsg

submessageLength ushort The presence of this field is common to
RTPS submessages. It identifies the
length of the submessage.

EndianessFlag SubmessageFlag Appears in the Submessage header flags.
Indicates endianess.

transformation_id

CryptoTransformIdentifier

Identfies the kind of transformation
performed on the RTPS Sububmessage
that follows it.

plugin_crypto_header_
extra

octet[]

Provides further information on the
transformation performed. The contents
are specific to the Plugin Implementation
and the value of the transformation_id

7.3.6.4.3 Validity

The RTPS Submessage is invalid if the submessageLength in the Submessage header is too small.

Formatted: Table caption, Don't keep with
next, Don't keep lines together

Deleted: 55556

Deleted: sec

36 DDS Security, v1.1

7.3.6.4.4 Logical Interpretation

The SecurePrefixSubMsg provides a way to prefix secure content inside a legal RTPS

submessage.

A SecurePrefixSubMsg shall be followed by a single RTPS Submessage which itself shall be

followed by a SecurePostfixSubMsg.

[DDSSEC11-85 Additional typos/inconsistencies]

Figure 6 – RTPS message transformations

7.3.6.5 RTPS Submessage: SecurePostfixSubMsg

This specification introduces the RTPS submessage: SecurePostfixSubMsg. The format of the

SecurePostfixSubMsg complies with the RTPS SubMessage format mandated in the RTPS

specification. As such it consists of the RTPS SubmessageHeader followed by a set of RTPS

SubmessageElement elements.

7.3.6.5.1 Purpose

The SecurePostfixSubMsg submessage is used to authenticate the RTPS Submessage that

preceeds it.

RTPS SubMessage

RTPS SubMessage

SerializedPayload

RTPS Header
RTPS Header

Secure encoding

Secure decoding

Message Transformation

SerializedPayload

SecureRTPSPrefix

SecureRTPSPostfix

SecureBody

SecurePrefix

SecurePostfix

SecureBody

SerializedPayload

RTPS SubMessage

RTPS SubMessage

SerializedPayload*

C
ry

p
to

C
o

n
te

n
t

CryptoHeader

CryptoFooter

Formatted: Font: (Default) Courier New,
12 pt, Not Bold

Deleted:

Deleted: 666

Deleted: ¶
¶

DDS Security, v1.1 37

7.3.6.5.2 Content

The elements that form the structure of the RTPS SecurePostfixSubMsg are described in the

table below.

[DDSSEC11-7 Inconsistency in SubMessage and SubMessageElement naming ...]

Table 6 – SecurePostfixSubMsg class

Element Type Meaning

SEC_POSTFIX SubmessageKind The presence of this field is common to RTPS
submessages. It identifies the kind of
submessage.

The value indicates it is a
SecurePostfixSubMsg.

submessageLength ushort The presence of this field is common to RTPS
submessages. It identifies the length of the
submessage.

EndianessFlag SubmessageFlag Appears in the Submessage header flags.
Indicates endianess.

crypto_footer CryptoFooter

Provides information on the results of the
transformation performed, typically a list of
authentication tags. The contents are specific
to the Plugin Implementation and the value
of the transformation_id contained on the
related SecurePrefixSubMsg.

7.3.6.5.3 Validity

The RTPS Submessage is invalid if the submessageLength in the Submessage header is too small.

The RTPS Submessage is invalid if there is no SecurePrefixSubMsg. Immediately before the

RTPS submessage that preceeds the SecurePostfixSubMsg. This SecurePrefixSubMsg is

referred to as the related the SecurePrefixSubMsg.

7.3.6.5.4 Logical Interpretation

The SecurePostfixSubMsg provides a way to authenticate the validity and origin of the RTPS

SubMessage that preceeds the SecurePrefixSubMsg. The Cryptographic transformation applied is

identified in the related SecurePrefixSubMsg.

7.3.6.6 RTPS Submessage: SecureRTPSPrefixSubMsg

This specification introduces the RTPS submessage: SecureRTPSPrefixSubMsg. The format of

the SecurePrefixSubMsg complies with the RTPS SubMessage format mandated in the RTPS

specification. It consists of the RTPS SubmessageHeader followed by a set of RTPS

SubmessageElement elements.

Formatted: Table caption, Don't keep with
next, Don't keep lines together

Deleted: 66667

Deleted: plugin_sec_tag

Deleted: octet[]

38 DDS Security, v1.1

7.3.6.6.1 Purpose

The SecureRTPSPrefixSubMsg submessage is used as prefix to wrap a complete RTPS message

in such a way that its contents are secured via encryption, message authentication, and/or digital

signatures.

7.3.6.6.2 Content

The elements that form the structure of the RTPS SecureRTPSPrefixSubMsg are described in the

table below.

[DDSSEC11-7 Inconsistency in SubMessage and SubMessageElement naming ...]

Table 7 – SecureRTPSPrefixSubMsg class

Element Type Meaning

SRTPS_PREFIX SubmessageKind The presence of this field is
common to RTPS submessages. It
identifies the kind of submessage.

The value indicates it is a
SecureRTPSPrefixSubMsg.

submessageLength ushort The presence of this field is
common to RTPS submessages. It
identifies the length of the
submessage.

EndianessFlag SubmessageFlag Appears in the Submessage header
flags. Indicates endianess.

transformation_id

CryptoTransformIdentifier

Identfies the kind of
transformation performed on the
RTPS Subumessages that follow up
to the SRTPS_POSTFIX
submessage.

plugin_crypto_header_extra octet[]

Provides further information on
the transformation performed. The
contents are specific to the Plugin
Implementation and the value of
the transformation_id.

7.3.6.6.3 Validity

The RTPS Submessage is invalid if the submessageLength in the Submessage header is too small.

The SecureRTPSPrefixSubMsg shall immediately follow the RTPS Header.

7.3.6.6.4 Logical Interpretation

The SecureRTPSPrefixSubMsg provides a way to prefix a list of RTPS Submessages so that they

can be secured.

Formatted: Table caption, Don't keep with
next, Don't keep lines together

Deleted: 77778

Deleted: sec

DDS Security, v1.1 39

A SecureRTPSPrefixSubMsg shall be followed by a list of RTPS Submessages which

themselves shall be followed by a SecureRTPSPostfixSubMsg.

7.3.6.7 RTPS Submessage: SecureRTPSPostfixSubMsg

This specification introduces the RTPS submessage: SecureRTPSPostfixSubMsg. The format of

the SecureRTPSPostfixSubMsg complies with the RTPS SubMessage format mandated in the

RTPS specification. As such it consists of the RTPS SubmessageHeader followed by a set of RTPS

SubmessageElement elements.

7.3.6.7.1 Purpose

The SecureRTPSPostfixSubMsg submessage is used to authenticate the RTPS Submessages that

appear between the preceeding SecureRTPSPostfixSubMsg and the

SecureRTPSPostfixSubMsg.

7.3.6.7.2 Content

The elements that form the structure of the SecureRTPSPostfixSubMsg are described in the table

below.

[DDSSEC11-7 Inconsistency in SubMessage and SubMessageElement naming ...]

Table 8 – SecurePostfixSubMsg class

Element Type Meaning

SRTPS_POSTFIX SubmessageKind The presence of this field is common to
RTPS submessages. It identifies the kind
of submessage.

The value indicates it is a
SecureRTPSPostfixSubMsg.

submessageLength ushort The presence of this field is common to
RTPS submessages. It identifies the
length of the submessage.

EndianessFlag SubmessageFlag Appears in the Submessage header
flags. Indicates endianess.

crypto_footer CryptoFooter

Provides information on the results of
the transformation performed, typically
a list of authentication tags. The
contents are specific to the Plugin
Implementation and the value of the
transformation_id contained on the
related SecureRTPSPrefixSubMsg.

7.3.6.7.3 Validity

The RTPS Submessage is invalid if the submessageLength in the Submessage header is too small.

Formatted: Table caption, Don't keep with
next, Don't keep lines together

Deleted: 88889

Deleted: plugin_sec_tag

Deleted: octet[]

40 DDS Security, v1.1

The RTPS SecureRTPSPostfixSubMsg is invalid if there is no SecureRTPSPrefixSubMsg

following the RTPS Header. This SecureRTPSPrefixSubMsg is referred to as the related

SecureRTPSPrefixSubMsg.

7.3.6.7.4 Logical Interpretation

The SecureRTPSPostfixSubMsg provides a way to authenticate the validity and origin of the list

of RTPS Submessages between the related SecureRTPSPrefixSubMsg and the

SecureRTPSPrefixSubMsg. The Cryptographic transformation applied is identified in the related

SecureRTPSPrefixSubMsg.

7.3.7 Mapping to UDP/IP PSM

The DDS-RTPS specification defines the RTPS protocol in terms of a platform-independent model

(PIM) and then maps it to a UDP/IP transport PSM (see clause 9, “Platform Specific Model (PSM):

UDP/IP” of the DDS-RTPS specification [2]).

Sub clause 7.3.7 does the same thing for the new RTPS submessage elements and submessages

introduced by the DDS Security specification.

7.3.7.1 Mapping of the EntityIds for the Builtin DataWriters and DataReaders

Sub clause 7.4 defines a set of builtin Topics and corresponding DataWriter and DataReader entities

that shall be present on all compliant implementations of the DDS Security specification. The

corresponding EntityIds used when these endpoints are used on the UDP/IP PSM are given in the table

below.

[DDSSEC11-12 - GUIDs for new builtin Topics do not comply with DDS-RTPS – Issue was

processed as urgent issue and already included in 1.0 specification]

DDS Security, v1.1 41

Table 9 – EntityId values for secure builtin data writers and data readers

Entity EntityId_t name EntityId_t value

SEDPbuiltinPublicationsSecure
Writer

ENTITYID_SEDP_BUILTIN_PUBLICATIO
NS_SECURE_WRITER

{{ff, 00, 03}, c2}

SEDPbuiltinPublicationsSecure
Reader

ENTITYID_SEDP_BUILTIN_PUBLICATIO
NS_SECURE_READER

{{ff, 00, 03}, c7}

SEDPbuiltinSubscriptionsSecur
eWriter

ENTITYID_SEDP_BUILTIN_SUBSCRIPTI
ONS_SECURE_WRITER

{{ff, 00, 04}, c2}

SEDPbuiltinSubscriptionsSecur
eReader

ENTITYID_ SEDP_BUILTIN_
SUBSCRIPTIONS_SECURE_READER

{{ff, 00, 04}, c7}

BuiltinParticipantMessageSecu
reWriter

ENTITYID_P2P_BUILTIN_PARTICIPANT_
MESSAGE_SECURE_WRITER

{{ff, 02, 00}, c2}

BuiltinParticipantMessageSecu
reReader

ENTITYID_P2P_BUILTIN_PARTICIPANT_
MESSAGE_SECURE_READER

{{ff, 02, 00}, c7}

BuiltinParticipantStatelessMes
sageWriter

ENTITYID_P2P_BUILTIN_PARTICIPANT_
STATELESS_WRITER

{{00, 02, 01}, c3}

BuiltinParticipantStatelessMes
sageReader

ENTITYID_P2P_BUILTIN_PARTICIPANT_
STATELESS_READER

{{00, 02, 01}, c4}

BuiltinParticipantVolatileMess
ageSecureWriter

ENTITYID_P2P_BUILTIN_PARTICIPANT_
VOLATILE_SECURE_WRITER

{{ff, 02, 02}, c3}

BuiltinParticipantVolatileMess
ageSecureReader

ENTITYID_P2P_BUILTIN_PARTICIPANT_
VOLATILE_SECURE_READER

{{ff, 02, 02}, c4}

SPDPbuiltinParticipantsSecure
Writer

ENTITYID_SPDP_RELIABLE_BUILTIN_P
ARTICIPANT_SECURE_WRITER

{{ff, 01, 01}, c2}

SPDPbuiltinParticipantsSecure
Reader

ENTITYID_SPDP_RELIABLE
_BUILTIN_PARTICIPANT_SECURE_READ
ER

{{ff, 01, 01}, c7}

7.3.7.2 Mapping of the CryptoTransformIdentifier Type

The UDP/IP PSM maps the CryptoTransformIdentifier to the following extended IDL

structure:

[DDSSEC11-85 Additional typos/inconsistencies]

@extensibility(FINAL)

struct CryptoTransformIdentifier {

 octet transformation_kind[4];

Formatted: Table caption, Don't keep with
next, Don't keep lines together

Deleted: 999910

Deleted: @Extensibility(FINAL_EXT
ENSIBILITY)

42 DDS Security, v1.1

 octet transformation_key_id[4];

};

[DDSSEC11-7 Inconsistency in SubMessage and SubMessageElement naming ...]

7.3.7.3 Mapping of the CryptoHeader SubmessageElement

A CryptoHeader SubmessageElement contains the information that identifies a cryptographic

transformation. The CryptoHeader shall start with the CryptoTransformIdentifier and be

followed by a plugin-specific plugin_crypto_header_extra returned by the encoding transformation.

The UDP/IP PSM maps the CryptoHeader to the following extended IDL structure:

[DDSSEC11-85 Additional typos/inconsistencies]

@extensibility(APPENDABLE)

struct CryptoHeader : CryptoTransformIdentifier {

 // Extra plugin-specific information added below

 // CryptoHeader plugin_crypto_header_extra;

};

The UDP/IP wire representation for the CryptoHeader shall be:

0...2...........8...............16.............24...............32

+---------------+---------------+---------------+---------------+

| octet transformation_kind[4] |

+---------------+---------------+---------------+---------------+

+ octet transformation_key_id[4] +

+---------------+---------------+---------------+---------------+

| |

~ octet plugin_crypto_header_extra[] ~

| |

+---------------+---------------+---------------+---------------+

[DDSSEC11-7 Inconsistency in SubMessage and SubMessageElement naming ...]

7.3.7.4 Mapping of the CryptoFooter SubmessageElement

A CryptoFooter SubmessageElement contains the information that authenticates the result of

a cryptographic transformation. The CryptoFooter contains a plugin-specific plugin_crypto_footer

returned by the encoding transformation.

The UDP/IP wire representation for the CryptoFooter shall be:

0...2...........8...............16.............24...............32

+---------------+---------------+---------------+---------------+

| |

~ octet plugin_crypto_footer[] ~

| |

+---------------+---------------+---------------+---------------+

Deleted: SecureDataHeader

Deleted: SecureDataHeader

Deleted: SecuredDataHeader

Deleted: sec

Deleted: @Extensibility(EXTENSIBL
E_EXTENSIBILITY)

Deleted: SecuredDataHeader

Deleted: |
|¶

Deleted: ¶
|

|

Deleted: sec

Deleted:

Deleted: SecureDataTag

Deleted: SecureDataTag

Deleted: SecuredDataTag

Deleted: sec_tag

Deleted: SecureDataTag

Deleted: plugin_sec_tag

Deleted:

DDS Security, v1.1 43

7.3.7.5 SecureBodySubMsg Submessage

7.3.7.5.1 Wire Representation

The UDP/IP wire representation for the SecureBodySubMsg shall be:

[DDSSEC11-39 Use of Non-Existing Submessage SecureSubMsg and Flag ...]

[DDSSEC11-7 Inconsistency in SubMessage and SubMessageElement naming ...]

0...2...........8...............16.............24...............32

+---------------+---------------+---------------+---------------+

| SEC_BODY |X|X|X|X|X|X|X|E| octetsToNextHeader |

+---------------+---------------+---------------+---------------+

| |

+ CryptoContent crypto_content +

| |

+---------------+---------------+---------------+---------------+

7.3.7.5.2 Submessage Id

The SecureBodySubMsg shall have the submessageId set to the value 0x30.

7.3.7.5.3 Flags in the Submessage Header

The SecureBodySubMsg only uses the EndiannessFlag.

7.3.7.6 SecurePrefixSubMsg Submessage

7.3.7.6.1 Wire Representation

The UDP/IP wire representation for the SecurePrefixSubMsg shall be:

[DDSSEC11-7 Inconsistency in SubMessage and SubMessageElement naming ...]

0...2...........8...............16.............24...............32

+---------------+---------------+---------------+---------------+

| SEC_PREFIX |X|X|X|X|X|X|X|E| octetsToNextHeader |

+---------------+---------------+---------------+---------------+

| |

+ CryptoHeader crypto_header +

| |

+---------------+---------------+---------------+---------------+

7.3.7.6.2 Submessage Id

The SecurePrefixSubMsg shall have the submessageId set to the value 0x31 and referred by the

symbolic name SEC_PREFIX.

7.3.7.6.3 Flags in the Submessage Header

The SecurePrefixSubMsg only uses the EndiannessFlag.

Deleted: SecureSubMsgId

Deleted: SecuredPayload

Deleted: payload

Deleted:

Deleted: SecureDataHeader

Deleted: sec_data

44 DDS Security, v1.1

7.3.7.7 SecurePostfixSubMsg Submessage

7.3.7.7.1 Wire Representation

The UDP/IP wire representation for the SecurePostfixSubMsg shall be:

[DDSSEC11-7 Inconsistency in SubMessage and SubMessageElement naming ...]

0...2...........8...............16.............24...............32

+---------------+---------------+---------------+---------------+

| SEC_POSTFIX |X|X|X|X|X|X|X|E| octetsToNextHeader |

+---------------+---------------+---------------+---------------+

| |

+ CryptoFooter crypto_footer +

| |

+---------------+---------------+---------------+---------------+

7.3.7.7.2 Submessage Id

The SecurePostfixSubMsg shall have the submessageId set to the value 0x32 and referred by the

symbolic name SEC_POSTFIX.

7.3.7.7.3 Flags in the Submessage Header

The SecurePostfixSubMsg only uses the EndiannessFlag.

7.3.7.8 SecureRTPSPrefixSubMsg Submessage

7.3.7.8.1 Wire Representation

The UDP/IP wire representation for the SecureRTPSPrefixSubMsg shall be:

[DDSSEC11-7 Inconsistency in SubMessage and SubMessageElement naming ...]

0...2...........8...............16.............24...............32

+---------------+---------------+---------------+---------------+

| SRTPS_PREFIX |X|X|X|X|X|X|X|E| octetsToNextHeader |

+---------------+---------------+---------------+---------------+

| |

+ CryptoHeader crypto_header +

| |

+---------------+---------------+---------------+---------------+

7.3.7.8.2 Submessage Id

The SecureRTPSPrefixSubMsg shall have the submessageId set to the value 0x33 and referred

by the symbolic name SRTPS_PREFIX.

7.3.7.8.3 Flags in the Submessage Header

The SecureRTPSPrefixSubMsg only uses the EndiannessFlag.

Deleted:

Deleted: SecureDataTag

Deleted: sec_data_tag

Deleted:

Deleted: SecureDataHeader

Deleted: sec_data

DDS Security, v1.1 45

7.3.7.9 SecureRTPSPostfixSubMsg Submessage

7.3.7.9.1 Wire Representation

The UDP/IP wire representation for the SecureRTPSPostfixSubMsg shall be:

[DDSSEC11-7 Inconsistency in SubMessage and SubMessageElement naming ...]

0...2...........8...............16.............24...............32

+---------------+---------------+---------------+---------------+

| SRTPS_POSTFIX |X|X|X|X|X|X|X|E| octetsToNextHeader |

+---------------+---------------+---------------+---------------+

| |

+ CryptoFooter crypto_footer +

| |

+---------------+---------------+---------------+---------------+

7.3.7.9.2 Submessage Id

The SecureRTPSPostfixSubMsg shall have the submessageId set to the value 0x34 and referred

by the symbolic name SRTPS_POSTFIX.

7.3.7.9.3 Flags in the Submessage Header

The SecureRTPSPostfixSubMsg only uses the EndiannessFlag.

7.4 DDS Support for Security Plugin Information Exchange

In order to perform their function, the security plugins associated with different DDS

DomainParticipant entities need to exchange information representing things such as Identity

and Permissions of the DomainParticipant entities, authentication challenge messages, tokens

representing key material, etc.

DDS already has several mechanisms for information exchange between DomainParticipant

entities. Notably the builtin DataWriter and DataReader entities used by the Simple Discovery

Protocol (see sub clause 8.5 of the DDS Interoperability Wire Protocol [2]) and the

BuiltinParticipantMessageWriter and BuiltinParticipantMessageReader (see sub clause 9.6.2.1 of the

DDS Interoperability Wire Protocol [2]).

Where possible, this specification tries to reuse and extend existing DDS concepts and facilities so that

they can fulfill the needs of the security plugins, rather than defining entirely new ones. This way, the

Security Plugin implementation can be simplified and it does not have to implement a separate

messaging protocol.

7.4.1 Secure builtin Discovery Topics

7.4.1.1 Background (Non-Normative)

DDS discovery information is sent using builtin DDS DataReaders and DataWriters. These are

regular DDS DataReaders and DataWriters, except they are always present in the system and

their Topic names, associated data types, QoS, and RTPS EntityIds are all specified as part of the

DDS and RTPS specifications, so they do not need to be discovered.

Deleted:

Deleted: SecureDataTag

Deleted: sec_data

Deleted: tag

46 DDS Security, v1.1

The DDS specification defines three discovery builtin Topic entities: the DCPSParticipants used to

discover the presence of DomainParticipants, the DCPSPublications used to discover

DataWriters, and the DCPSSubscriptions used to discover DataReaders (see sub clause 8.5 of

the DDS Interoperability Wire Protocol [2]).

Much of the discovery information could be considered sensitive in secure DDS systems. Knowledge

of things like the Topic names that an application is publishing or subscribing to could reveal

sensitive information about the nature of the application. In addition, the integrity of the discovery

information needs to be protected against tampering, since it could cause erroneous behaviors or

malfunctions.

One possible approach to protecting discovery information would be to require that the discovery

builtin Topic entities always be protected via encryption and message authentication. However, this

would entail the problems explained below.

The DCPSParticipants builtin Topic is used to bootstrap the system, detect the presence of

DomainParticipant entities, and kick off subsequent information exchanges and handshakes. It

contains the bare minimum information needed to establish protocol communications (addresses, port

numbers, version number, vendor IDs, etc.). If this Topic were protected, the Secure DDS system

would have to create an alternative mechanism to bootstrap detection of other participants and gather

the same information—which needs to happen prior to being able to perform mutual authentication and

exchange of key material. This mechanism would, in essence, duplicate the information in the

DCPSParticipants builtin Topic. Therefore, it makes little sense to protect the DCPSParticipants

builtin Topic. A better approach is to augment the information sent using the DCPSParticipants

builtin Topic with any additional data the Secure DDS system needs for bootstrapping

communications (see 7.4.1.3).

Secure DDS systems need to co-exist in the same network and, in some cases, interoperate with non-

secure DDS systems. There may be systems built using implementations compliant with the DDS

Security specification, which do not need to protect their information. Or there may be systems

implemented with legacy DDS implementations that do not support DDS Security. In this situation, the

fact that a secure DDS implementation is present on the network should not impact the otherwise

correct behavior of the non-secure DDS systems. In addition, even in secure systems not all Topics are

necessarily sensitive, so it is desirable to provide ways to configure a DDS Secure system to have

Topics that are “unprotected” and be able to communicate with non-secure DDS systems on those

“unprotected” Topics.

To allow co-existence and interoperability between secure DDS systems and DDS systems that do not

implement DDS security, secure DDS systems must retain the same builtin Topics as the regular DDS

systems (with the same GUIDs, topics names, QoS, and behavior). Therefore, to protect the discovery

and liveliness information of Topics that are considered sensitive, Secure DDS needs to use additional

builtin discovery Topics protected by the DDS security mechanisms.

7.4.1.2 Extending the Data Types used by DDS Discovery

The DDS Interoperability Wire Protocol specifies the serialization of the data types used for the

discovery of builtin Topics (ParticipantBuiltinTopicData, PublicationBuiltinTopicData, and

SubscriptionBuiltinTopicData) using a representation called a ParameterList. Although this

description precedes the DDS-XTYPES specification, the serialization format matches the Extended

CDR representation defined in DDS-XTYPES for data types declared with MUTABLE extensibility.

DDS Security, v1.1 47

This allows the data type associated with discovery topics to be extended without breaking

interoperability.

Given that DDS-XTYPES formalized the ParameterList serialization approach, first defined in the

DDS Interoperability and renamed it to “Extended CDR,” this specification will use the DDS

Extensible Types notation to define the data types associated with the builtin Topics. This does not

imply that compliance to the DDS-XTYPES is required to comply with DDS Security. All that is

required is to serialize the specific data types defined here according to the format described in the

DDS-XTYPES specification.

[DDSSEC11-93 Revise version of RTPS and provide rules for plugin versions]

7.4.1.3 Reserved RTPS parameter IDs

This specification reserves the RTPS Simple Discovery Protocol ParameterIDs in the range: 0x1000 to

0x1FFF and 0x5000 to 0x5FFF.

The second interval covers the same range of parametersID, except they have the must-understand bit

set.

This reserved range applies to RTPS version 2.3 (see 7.3.6.1) and higher minor revisions of RTPS.

Future revisions of the DDS-RTPS specification shall take this fact into consideration.

7.4.1.4 Extension to RTPS Standard DCPSParticipants Builtin Topic

The DDS specification specifies the existence of the DCPSParticipants builtin Topic and a

corresponding builtin DataWriter and DataReader to communicate this Topic. These

endpoints are used to discover DomainParticipant entities.

The data type associated with the DCPSParticipants builtin Topic is ParticipantBuiltinTopicData,

defined in sub clause 7.1.5 of the DDS specification [1].

The DDS Interoperability Wire Protocol specifies the serialization of ParticipantBuiltinTopicData.

The format used is what the DDS Interoperability Wire Protocol calls a ParameterList whereby each

member of the ParticipantBuiltinTopicData is serialized using CDR but preceded in the stream by the

serialization of a short ParameterID identifying the member, followed by another short containing the

length of the serialized member, followed by the serialized member. See sub clause 8.3.5.9 of the DDS

Interoperability Wire Protocol [2]. This serialization format allows the ParticipantBuiltinTopicData to

be extended without breaking interoperability.

This DDS Security specification adds several new members to the ParticipantBuiltinTopicData

structure. The member types and the ParameterIDs used for the serialization are described below.

[DDSSEC11-137 Missing Mechanism for Detecting Incompatibilities in ParticipantSecurityA…]

Deleted: into consideration

48 DDS Security, v1.1

Table 10 – Additional parameter IDs in ParticipantBuiltinTopicData

Member name Member type Parameter ID name Parameter
ID value

identity_token IdentityToken

(see 7.2.4)

PID_IDENTITY_TOKEN 0x1001

permissions_token PermissionsToken

(see 7.2.4)

PID_PERMISSIONS_TOKEN 0x1002

property PropertyQosPolicy PID_PROPERTY_LIST

(See Table 9.12 of DDS-RTPS)

0x0059

(See Table
9.12 of DDS-
RTPS)

security_info ParticipantSecurityInfo
(see 7.2.7)

PID_PARTICIPANT_SECURITY_INFO 0x1005

[DDSSEC11-82 OCSP stapling to enhance certificate status checking during handshake]

[DDSSEC11-85 Additional typos/inconsistencies]

@extensibility(MUTABLE)

struct ParticipantBuiltinTopicData: DDS::ParticipantBuiltinTopicData {

 @id(0x1001) IdentityToken identity_token;

 @id(0x1002) PermissionsToken permissions_token;

 @id(0x1005) ParticipantSecurityInfo security_info;

};

Only the Property_t and BinaryProperty_t elements having the propagate member set to

TRUE are serialized. Furthermore as indicated by the @non-serialized annotation the

serialization of the Property_t and BinaryProperty_t elements shall omit the serialization of

the propagate member. That is they are serialized as if the type definition did not contain the

propagate member. This is consistent with the data-type definition for Property_t specific in the DDS-

RTPS specification (see Table 9.12 of DDS-RTPS). Even if it is not present in the serialized data, the

receiver will set the propagate member to TRUE.

Note that according to DDS-RTPS the PID_PROPERTY_LIST is associated with a single

PropertySeq rather than the PropertyQosPolicy, which is a structure that contains two

sequences. This does not cause any interoperability problems because the containing

ParticipantBuiltinTopicData has mutable extensibility.

The DDS Interoperability Wire Protocol specifies that the ParticipantBuiltinTopicData shall contain

the attribute called availableBuiltinEndpoints that is used to announce the builtin endpoints that are

available in the DomainParticipant. See clause 8.5.3.2 of the DDS Interoperability Wire Protocol

[2]. The type for this attribute is an array of BuiltinEndpointSet_t. For the UDP/IP PSM the

BuiltinEndpointSet_t is mapped to a bitmap represented as type long. Each builtin endpoint is

represented as a bit in this bitmap with the bit values defined in Table 9.4 (clause 9.3.2) of the DDS

Interoperability Wire Protocol [2].

Formatted: Table caption, Don't keep with
next, Don't keep lines together

Deleted: 1010101011

Deleted: MUTABLE_EXTENSIBILITY

Deleted: Secure

Deleted: @ID

Deleted: @ID

Deleted: @ID

DDS Security, v1.1 49

This DDS Security specification reserves additional bits to indicate the presence of the corresponding

built-in end points listed in clause 7.4.5. These bits shall be set on the availableBuiltinEndpoints. The

bit that encodes the presence of each individual endpoint is defined in Table 11 below.

[DDSSEC11-44 Denial of Service Attack to DDS Security Participants by Injecting...]

Table 11 – Mapping of the additional builtin endpoints added by DDS security to the availableBuiltinEndpoints

Builtin Endpoint Bit in the ParticipantBuiltinTopicData
availableBuiltinEndpoints

SEDPbuiltinPublicationsSecureWriter

SEDPbuiltinPublicationsSecureReader

See clause 7.4.1.7

(0x00000001 << 16)

(0x00000001 << 17)

SEDPbuiltinSubscriptionsSecureWriter

SEDPbuiltinSubscriptionsSecureReader

See clause 7.4.1.8

(0x00000001 << 18)

(0x00000001 << 19)

BuiltinParticipantMessageSecureWriter

BuiltinParticipantMessageSecureReader

See clause 7.4.2

(0x00000001 << 20)

(0x00000001 << 21)

BuiltinParticipantStatelessMessageWriter

BuiltinParticipantStatelessMessageReader

See clause 7.4.3

(0x00000001 << 22)

(0x00000001 << 23)

BuiltinParticipantVolatileMessageSecureWriter

BuiltinParticipantVolatileMessageSecureReader

See clause 7.4.4

(0x00000001 << 24)

(0x00000001 << 25)

SPDPbuiltinParticipantSecureWriter

SPDPbuiltinParticipantSecureReader

See clause 7.4.1.6

(0x00000001 << 26)

(0x00000001 << 27)

[DDSSEC11--38 Clarify whether governance settings for a DataWriter and a DataReader_...]

7.4.1.5 Extension to RTPS Standard DCPSPublications and DCPSSubscriptions Builtin Topics

The DDS specification specifies the existence of the DCPSPublications and DCPSSubscriptions builtin

Topics and a corresponding builtin DataWriters and DataReaders to communicate these Topics.

These endpoints are used to discover DataWriter and DataReader entities.

The data type associated with the DCPSPublications and DCPSSubscriptions builtin Topic are

PublicationBuiltinTopicData and SubscriptionBuiltinTopicData, defined in sub clause 7.1.5 of the DDS

specification.

Deleted: Table 11Table 11Table 11Table
1112Table 12

Formatted: Table caption, Don't keep with
next, Don't keep lines together

Deleted: 1111111112

Deleted: 7.4.1.77.4.1.77.4.1.77.4.1.77.4.1.77
.4.1.6

Deleted: 7.4.1.87.4.1.87.4.1.87.4.1.87.4.1.87
.4.1.7

50 DDS Security, v1.1

The DDS Interoperability Wire Protocol specifies the serialization of PublicationBuiltinTopicData and

SubscriptionBuiltinTopicData.

The format used is what the DDS Interoperability Wire Protocol calls a ParameterList whereby each

member of the PublicationBuiltinTopicData and SubscriptionBuiltinTopicData is serialized using CDR

but preceded in the stream by the serialization of a short ParameterID identifying the member, followed by

another short containing the length of the serialized member, followed by the serialized member. See sub clause

8.3.5.9 of the DDS Interoperability Wire Protocol [2]. This serialization format allows the

PublicationBuiltinTopicData and SubscriptionBuiltinTopicData to be extended without breaking
interoperability.

This DDS Security specification adds a new member to the PublicationBuiltinTopicData and

SubscriptionBuiltinTopicData structure. The member types and the ParameterIDs used for the

serialization are described below.

[DDSSEC11-106 Should differences in EndpointSecurityAttributesMask prevent matching?]

[DDSSEC11-85 Additional typos/inconsistencies]

Table 12 – Additional parameter IDs in PublicationBuiltinTopicData

Member name Member type Parameter ID name Param
eter ID
value

security_info EndpointSecurityInfo
(See 7.2.8)

PID_ENDPOINT_SECURITY_INFO 0x100
4

[DDSSEC11-85 Additional typos/inconsistencies]

@extensibility(MUTABLE)

struct PublicationBuiltinTopicData: DDS::PublicationBuiltinTopicData {

 @id(0x1004) EndpointSecurityInfo security_info;

};

@extensibility(MUTABLE)

struct SubscriptionBuiltinTopicData: DDS::SubscriptionBuiltinTopicData {

 @id(0x1004) EndpointSecurityInfo security_info;

};

 [DDSSEC11-44 Denial of Service Attack to DDS Security Participants by Injecting...]

7.4.1.6 New DCPSParticipantSecure Builtin Topic

As described in clause 7.4.1.4, the DCPSParticipants builtin Topic and a corresponding builtin

DataWriter and DataReader are used to discover DomainParticipant entities.

Implementations of the DDS Security shall use that same DCPSParticipants builtin Topic to

announce the DomainParticipant information. This is used for bootstrapping authentication and

allowing discovery of non-secure applications.

Formatted: Table caption, Don't keep with

next, Don't keep lines together

Deleted: 1212121213

Deleted: Secure

Deleted: security_attributes_mask

Deleted: AttributesMask

Deleted: 7.2.87.2.87.2.87.2.87.2.7

Deleted: ATTRIBUTES_MASK

DDS Security, v1.1 51

Implementations of the DDS Security specification shall have an additional builtin Topic referred to

as DCPSParticipantsSecure and associated builtin DataReader and DataWriter entities to

communicate the DomainParticipant information securely.

The Topic name for the DCPSParticipantsSecure Topic shall be “DCPSParticipantsSecure”.

[DDSSEC11-82 OCSP stapling to enhance certificate status checking during handshake]

The data type associated with the DCPSParticipantsSecure Topic shall be

ParticipantBuiltinTopicDataSecure, defined to be the same as the ParticipantBuiltinTopicData

defined in clause 7.4.1.4, except the structure has the additional optional member

identity_status_token with the ParameterId described below.

Table 13 – Additional parameter IDs in ParticipantBuiltinTopicDataSecure

Member name Member type Parameter ID name Parameter ID
value

identity_status_token IdentityStatusToken PID_IDENTITY_STATUS_TOKEN 0x1006

[DDSSEC11-85 Additional typos/inconsistencies]

@extensibility(MUTABLE)

struct ParticipantBuiltinTopicDataSecure: ParticipantBuiltinTopicData {

 @id(0x1006) @optional IdentityStatusToken identity_status_token;

};

The QoS associated with the DCPSParticipantsSecure builtin Topic shall be the same as for the

DCPSPublications and DCPSSubscriptions builtin Topic. Note that is not the same as the

DCPSParticipants Topic. Among other differences, the DCPSParticipantsSecure has

ReliabilityQosPolicy kind set to RELIABLE.

The builtin DataWriter for the DCPSParticipantsSecure Topic shall be referred to as the

SPDPbuiltinParticipantsSecureWriter. The builtin DataReader for the DCPSParticipantsSecure

Topic shall be referred to as the SPDPbuiltinParticipantsSecureReader.

The RTPS EntityId_t associated with the SPDPbuiltinParticipantsSecureWriter and

SPDPbuiltinParticipantsSecureReader shall be as specified in 7.4.5.

The ParticipantBuiltinTopicData contains information, such as participant Locators, which may

change at run-time. These changes shall be sent using the DCPSParticipantsSecure builtin Topic.

The deletion of a DomainParticipant shall also be sent using the DCPSParticipantsSecure builtin

Topic.

After authentication has completed successfully a DomainParticipant shall ignore any changes

to the ParticipantBuiltinTopicData (including dispose messages) received on the DCPSParticipants

builtin Topic from the authenticated DomainParticipant. It may, however, rely on these

messages to maintain the liveliness of the remote DomainParticipant. It should only process

ParticipantBuiltinTopicData messages containing data changes or status changes (dispose or

unregister) if they are received over the DCPSParticipantsSecure builtin Topic.

Deleted: .

Deleted: MUTABLE_EXTENSIBILITY

Deleted: @Optional

52 DDS Security, v1.1

7.4.1.7 New DCPSPublicationsSecure Builtin Topic

The DDS specification specifies the existence of the DCPSPublications builtin Topic with topic

name “DCPSPublications” and corresponding builtin DataWriter and DataReader entities to

communicate on this Topic. These endpoints are used to discover non-builtin DataWriter entities.

The data type associated with the DCPSPublications Topic is PublicationBuiltinTopicData, defined

in sub clause 7.1.5 of the DDS specification.

Implementations of the DDS Security shall use that same DCPSPublications Topic to communicate

the DataWriter information for Topic entities that are not considered sensitive.

Implementations of the DDS Security specification shall have an additional builtin Topic referred to

as DCPSPublicationsSecure and associated builtin DataReader and DataWriter entities to

communicate the DataWriter information for Topic entities that are considered sensitive.

The determination of which Topic entities are considered sensitive shall be specified by the

AccessControl plugin.

The Topic name for the DCPSPublicationsSecure Topic shall be “DCPSPublicationsSecure”.

The data type associated with the DCPSPublicationsSecure Topic shall be

PublicationBuiltinTopicDataSecure, defined to be the same as the PublicationBuiltinTopicData

structure used by the DCPSPublications Topic, except the structure has the additional member

data_tags with the ParameterId described below.

Table 14 – Additional parameter IDs in PublicationBuiltinTopicDataSecure

Member name Member type Parameter ID name Parameter ID value

data_tags DataTags PID_DATA_TAGS 0x1003

[DDSSEC11-85 Additional typos/inconsistencies]

@extensibility(MUTABLE)

struct PublicationBuiltinTopicDataSecure: PublicationBuiltinTopicData {

 @id(0x1003) DataTags data_tags;

};

The QoS associated with the DCPSPublicationsSecure Topic shall be the same as for the

DCPSPublications Topic.

The builtin DataWriter for the DCPSPublicationsSecure Topic shall be referred to as the

SEDPbuiltinPublicationsSecureWriter. The builtin DataReader for the DCPSPublicationsSecure

Topic shall be referred to as the SEDPbuiltinPublicationsSecureReader.

The RTPS EntityId_t associated with the SEDPbuiltinPublicationsSecureWriter and

SEDPbuiltinPublicationsSecureReader shall be as specified in 7.4.5.

7.4.1.8 New DCPSSubscriptionsSecure Builtin Topic

The DDS specification specifies the existence of the DCPSSubscriptions builtin Topic with Topic

name “DCPSSubscriptions” and corresponding builtin DataWriter and DataReader entities to

communicate on this Topic. These endpoints are used to discover non-builtin DataReader entities.

Deleted: ¶

Deleted: data type and

Deleted: s

Deleted: struct Tag {¶
string name;¶

string value;¶

};¶

¶

typedef sequence<Tag> TagSeq;¶

struct DataTags {¶

TagSeq tags;¶

};¶

Deleted: MUTABLE_EXTENSIBILITY

Deleted: @ID

DDS Security, v1.1 53

The data type associated with the DCPSSubscriptions is SubscriptionBuiltinTopicData is defined in

sub clause 7.1.5 of the DDS specification.

Implementations of the DDS Security specification shall use that same DCPSSubscriptions Topic to

send the DataReader information for Topic entities that are not considered sensitive. The

existence and configuration of Topic entities as non-sensitive shall be specified by the

AccessControl plugin.

Implementations of the DDS Security specification shall have an additional builtin Topic referred to

as DCPSSubscriptionsSecure and associated builtin DataReader and DataWriter entities to

communicate the DataReader information for Topic entities that are considered sensitive.

The determination of which Topic entities are considered sensitive shall be specified by the

AccessControl plugin.

The data type associated with the DCPSSubscriptionsSecure Topic shall be

SubscriptionBuiltinTopicDataSecure defined to be the same as the SubscriptionBuiltinTopicData

structure used by the DCPSSubscriptions Topic, except the structure has the additional member

data_tags with the data type and ParameterIds described below.

Table 15 – Additional parameter IDs in SubscriptionBuiltinTopicDataSecure

Member name Member type Parameter ID name Parameter ID value

data_tags DataTags PID_DATA_TAGS 0x1003

[DDSSEC11-85 Additional typos/inconsistencies]

@extensibility(MUTABLE)

struct SubscriptionBuiltinTopicDataSecure: SubscriptionBuiltinTopicData {

 @id(0x1003) DataTags data_tags;

};

The QoS associated with the DCPSSubscriptionsSecure Topic shall be the same as for the

DCPSSubscriptions Topic.

The builtin DataWriter for the DCPSSubscriptionsSecure Topic shall be referred to as the

SEDPbuiltinSubscriptionsSecureWriter. The builtin DataReader for the DCPSPublicationsSecure

Topic shall be referred to as the SEDPbuiltinSubscriptionsSecureReader.

The RTPS EntityId_t associated with the SEDPbuiltinSubscriptionsSecureWriter and

SEDPbuiltinSubscriptionsSecureReader shall be as specified in 7.4.5.

[DDSSEC11-4 - Name of builtin topic is DCPSParticipantMessage …]

7.4.2 New DCPSParticipantMessageSecure builtin Topic

The DDS Interoperability Wire Protocol specifies the BuiltinParticipantMessageWriter and

BuiltinParticipantMessageReader (see sub clauses 8.4.13 and 9.6.2.1 of the DDS Interoperability

Wire Protocol[2]). These entities are used to send information related to the LIVELINESS QoS. This

information could be considered sensitive and therefore secure DDS systems need to provide an

alternative protected way to send liveliness information.

Deleted: MUTABLE_EXTENSIBILITY

Deleted: @ID

54 DDS Security, v1.1

The data type associated with these endpoints is ParticipantMessageData defined in sub clause 9.6.2.1

of the DDS Interoperability Wire Protocol specification [2].

To support coexistence and interoperability with non-secure DDS applications, implementations of the

DDS Security specification shall use the same standard BuiltinParticipantMessageWriter and

BuiltinParticipantMessageReader to communicate liveliness information on Topic entities that are

not considered sensitive.

[DDSSEC11-4 - Name of builtin topic is DCPSParticipantMessage …]

Implementations of the DDS Security specification shall have an additional

DCPSParticipantMessageSecure builtin Topic and associated builtin DataReader and

DataWriter entities to communicate the liveliness information for Topic entities that are

considered sensitive.

The data type associated with the DCPSParticipantMessageSecure Topic shall be the same as the

ParticipantMessageData structure.

The QoS associated with the DCPSParticipantMessageSecure Topic shall be the same as for the

DCPSParticipantMessage Topic as defined in sub clause 8.4.13 of the DDS Interoperability Wire

Protocol [2].

The builtin DataWriter for the DCPSParticipantMessageSecure Topic shall be referred to as the

BuiltinParticipantMessageSecureWriter. The builtin DataReader for the

DCPSParticipantMessageSecure Topic shall be referred to as the

BuiltinParticipantMessageSecureReader.

The RTPS EntityId_t associated with the BuiltinParticipantMessageSecureWriter and

BuiltinParticipantMessageSecureReader shall be as specified in 7.4.5.

[DDSSEC11-17 - Need a way to determine the builtinTopic used for the DataWriter…]

According to clause 8.7.2.2.3 of DDSI-RTPS [2], if the DataWriter LivelinessQos policy is

MANUAL_BY_TOPIC_LIVELINESS_QOS, liveliness is maintained sending data or heartbeats using

the same RTPS DataWriter. The remaining settings for the LivelinessQos policy use the

DCPSParticipantMessage Topic to maintain the DataWriter liveliness.

If a DataWriter LivelinessQos policy is MANUAL_BY_TOPIC_LIVELINESS_QOS,

implementations compliant with DDS-Security shall use the same RTPS DataWriter for the

liveliness heartbeats. The liveliness heartbeats shall be protected using the same means as the regular

DataWriter heartbeats. That is, according to the setting of the

EndpointSecurityAttributes is_submessage_protected attribute.

[DDSSEC11-17 - Need a way to determine the builtinTopic used for the DataWriter…]

[DDSSEC11-16 AccessControl behavior does not show check_local_datawriter/reader ...]

If the DataWriter LivelinessQos policy is AUTOMATIC_LIVELINESS_QOS or

MANUAL_BY_PARTICIPANT_LIVELINESS_QOS, implementations compliant with DDS-Security

shall send the liveliness heartbeats using either the DCPSParticipantMessage Topic or the

DCPSParticipantMessageSecure Topic. The selection shall be done according to the setting of the

TopicSecurityAttributes is_liveliness_protected: It shall use the DCPSParticipantMessage

Deleted: Secure

Deleted: Endpoint

DDS Security, v1.1 55

Topic if is_liveliness_protected is set to false, otherwise it shall use the

DCPSParticipantMessageSecure Topic.

[DDSSEC11-4 - Name of builtin topic is DCPSParticipantMessage …]

7.4.3 New DCPSParticipantStatelessMessage builtin Topic

To perform mutual authentication between DDS DomainParticipant entities, the security plugins

associated with those participants need to be able to send directed messages to each other. As described

in 7.4.3.1 below, the mechanisms provided by existing DDS builtin Topic entities are not adequate

for this purpose. For this reason, this specification introduces a new

DCPSParticipantStatelessMessage builtin Topic and corresponding builtin DataReader and

DataWriter entities to read and write the Topic.

7.4.3.1 Background: Sequence Number Attacks (non normative)

DDS has a builtin mechanism for participant-to-participant messaging: the

BuiltinParticipantMessageWriter and BuiltinParticipantMessageReader (see sub clause 9.6.2.1 of the

DDS Interoperability Wire Protocol [2]). However this mechanism cannot be used for mutual

authentication because it relies on the RTPS reliability protocol and suffers from the sequence-number

prediction vulnerability present in unsecured reliable protocols:

 The RTPS reliable protocol allows a DataWriter to send to a DataReader Heartbeat

messages that advance the first available sequence number associated with the DataWriter. A

DataReader receiving a Heartbeat from a DataWriter will advance its first available

sequence number for that DataWriter and ignore any future messages it receives with sequence

numbers lower than the first available sequence number for the DataWriter. The reliable

DataReader will also ignore duplicate messages for that same sequence number.

 The behavior of the reliability protocol would allow a malicious application to prevent other

applications from communicating by sending Heartbeats pretending to be from other

DomainParticipants that contain large values of the first available sequence number. All the

malicious application needs to do is learn the GUIDs of other applications, which can be done from

observing the initial discovery messages on the wire, and use that information to create fake

Heartbeats.

Stated differently: prior to performing mutual authentication and key exchange, the applications cannot

rely on the use of encryption and message access codes to protect the integrity of the messages.

Therefore, during this time window, they are vulnerable to this kind of sequence-number attack. This

attack is present in most reliable protocols. Stream-oriented protocols such as TCP are also vulnerable

to sequence-number-prediction attacks but they make it more difficult by using a random initial

sequence number on each new connection and discarding messages with sequence numbers outside the

window. This is something that RTPS cannot do given the data-centric semantics of the protocol.

In order to avoid this vulnerability, the Security plugins must exchange messages using writers and

readers sufficiently robust to sequence number prediction attacks. The RTPS protocol specifies

endpoints that meet this requirement: the RTPS StatelessWriter and StatelessReader (see

8.4.7.2 and 8.4.10.2 of the DDS Interoperability Wire Protocol [2]) but there are no DDS builtin

endpoints that provide access to this underlying RTPS functionality.

56 DDS Security, v1.1

7.4.3.2 BuiltinParticipantStatelessMessageWriter and BuiltinParticipantStatelessMessageReader

[DDSSEC11-4 - Name of builtin topic is DCPSParticipantMessage …]

The DDS Security specification defines two builtin Endpoints: the

BuiltinParticipantStatelessMessageWriter and the BuiltinParticipantStatelessMessageReader. These

two endpoints shall be present in compliant implementations of this specification. These endpoints are

used to write and read the builtin DCPSParticipantStatelessMessage Topic.

The BuiltinParticipantStatelessMessageWriter is an RTPS Best-Effort StatelessWriter (see sub

clause 8.4.7.2 of the DDS Interoperability Wire Protocol [2]).

The BuiltinParticipantStatelessMessageReader is an RTPS Best-Effort StatelessReader (see

sub clause 8.4.10.2 of the DDS Interoperability Wire Protocol [2]).

The data type associated with these endpoints is ParticipantStatelessMessage defined

below (see also 7.2.5):

typedef ParticipantStatelessMessage ParticipantGenericMessage;

The RTPS EntityId_t associated with the BuiltinParticipantStatelessMessageWriter and

BuiltinParticipantStatelessMessageReader shall be as specified in 7.4.5.

7.4.3.3 Contents of the ParticipantStatelessMessage

The ParticipantStatelessMessage is intended as a holder of information that is sent point-

to-point from a DomainParticipant to another.

The message_identity uniquely identifies each individual ParticipantStatelessMessage:

[DDSSEC11-88 Replace use of BuiltinTopicKey_t with GUID_t_...]

 The source_guid field within the message_identity shall be set to match the GUID_t of the

BuiltinParticipantStatelessMessageWriter that writes the message.

 The sequence_number field within the message_identity shall start with the value set to one and be

incremented for each different message sent by the BuiltinParticipantStatelessMessageWriter.

The related_message_identity uniquely identifies another ParticipantStatelessMessage that

is related to the message being processed. It shall be set to either the tuple {GUID_UNKNOWN, 0} if

the message is not related to any other message, or else set to match the message_identity of the

related ParticipantStatelessMessage.

The destination_participant_guid shall contain either the value GUID_UNKNOWN (see sub clause

9.3.1.5 of the DDS Interoperability Wire Protocol [2]) or else the GUID_t of the destination

DomainParticipant.

The destination_endpoint_guid provides a mechanism to specify finer granularity on the intended

recipient of a message beyond the granularity provided by the destination_participant_guid. It can

contain either GUID_UNKNOWN or else the GUID of a specific endpoint within destination

DomainParticipant. The targeted endpoint is the one whose Endpoint (DataWriter or

DataReader) GUID_t matches the destination_endpoint_guid.

Deleted: BuiltinTopicKey_t

Deleted: destination_participant_key

Deleted: BuiltinTopicKey_t

Deleted: destination_endpoint_key

Deleted: destination_participant_key

Deleted: BuiltinTopic_t

Deleted: destination_endpoint_key

DDS Security, v1.1 57

The contents message_data depend on the value of the message_class_id and are defined in this

specification in the sub clause that introduces each one of the pre-defined values of the

GenericMessageClassId. See 7.4.3.5 and 7.4.3.6.

7.4.3.4 Destination of the ParticipantStatelessMessage

[DDSSEC11-88 Replace use of BuiltinTopicKey_t with GUID_t_...]

If the destination_participant_guid member is not set to GUID_UNKNOWN, the message written is

intended only for the BuiltinParticipantStatelessMessageReader belonging to the

DomainParticipant with a matching Participant Key.

This is equivalent to saying that the BuiltinParticipantStatelessMessageReader has an implied content

filter with the logical expression:

“destination_participant_guid == GUID_UNKNOWN

 || destination_participant_guid == BuiltinParticipantStatelessMessageReader.participant.guid”

Implementations of the specification can use this content filter or some other mechanism as long as the

resulting behavior is equivalent to having this content filter.

If the destination_endpoint_guid member is not set to GUID_UNKNOWN, the message written

targets the specific endpoint within the destination DomainParticipant with a matching Endpoint

Key.

7.4.3.5 Reserved values of ParticipantStatelessMessage GenericMessageClassId

This specification, including future versions of this specification reserves GenericMessageClassId

values that start with the prefix “dds.sec.” (without quotes) .

The specification defines and uses the following specific values for the GenericMessageClassId:

[DDSSEC11-43 Non Recoverable Communication After Asymmetric Liveliness Loss]

#define GMCLASSID_SECURITY_AUTH_REQUEST \

 “dds.sec.auth_request”

#define GMCLASSID_SECURITY_AUTH_HANDSHAKE \

 “dds.sec.auth”

Additional values of the GenericMessageClassId may be defined with each plugin implementation.

7.4.3.6 Format of data within ParticipantStatelessMessage

Each value for the GenericMessageClassId uses different schema to store data within the

generic attributes in the message_data.

7.4.3.6.1 Data for message class GMCLASSID_SECURITY_AUTH_HANDSHAKE

If GenericMessageClassId is GMCLASSID_SECURITY_AUTH_HANDSHAKE the

message_data attribute shall contain the HandshakeMessageTokenSeq containing one element.

The specific contents of the HandshakeMessageToken element shall be defined by the

Authentication Plugin.

[DDSSEC11-88 Replace use of BuiltinTopicKey_t with GUID_t_...]

Deleted: destination_participant_key

Deleted: destination_participant_key

Deleted: destination_participant_key

Deleted: participant.key

Deleted: destination_endpoint_key

58 DDS Security, v1.1

The destination_participant_guid shall be set to the GUID_t of the destination

DomainParticipant.

The destination_endpoint_guid shall be set to GUID_UNKNOWN. This indicates that there is no

specific endpoint targeted by this message: It is intended for the whole DomainParticipant.

The source_endpoint_guid shall be set to GUID_UNKNOWN.

7.4.3.6.2 Data for message class GMCLASSID_SECURITY_AUTH_REQUEST

If GenericMessageClassId is GMCLASSID_SECURITY_AUTH_REQUEST the message_data

attribute shall contain a AuthRequestMessageTokenSeq containing one element. The specific

contents of the AuthRequestMessageToken element shall be defined by the Authentication

Plugin.

The destination_participant_guid shall be set to the GUID_t of the destination

DomainParticipant.

The destination_endpoint_guid shall be set to GUID_UNKNOWN. This indicates that there is no

specific endpoint targeted by this message: It is intended for the whole DomainParticipant.

The source_endpoint_guid shall be set to GUID_UNKNOWN.

[DDSSEC11-4 - Name of builtin topic is DCPSParticipantMessage …]

7.4.4 New DCPSParticipantVolatileMessageSecure builtin Topic

7.4.4.1 Background (Non-Normative)

In order to perform key exchange between DDS DomainParticipant entities, the security plugins

associated with those participants need to be able to send directed messages to each other using a

reliable and secure channel. These messages are intended only for Participants that are currently in the

system and therefore need a DURABILITY Qos of kind VOLATILE.

[DDSSEC11-4 - Name of builtin topic is DCPSParticipantMessage …]

The existing mechanisms provided by DDS are not adequate for this purpose:

 The new DCPSParticipantStatelessMessage is not suitable because it is a stateless best-effort

channel not protected by the security mechanisms in this specification and therefore requires the

message data to be explicitly encrypted and signed prior to being given to the

ParticipantStatelessMessageWriter.

 The new DCPSParticipantMessageSecure is not suitable because its QoS has DURABILITY kind

TRANSIENT_LOCAL (see sub clause 8.4.13 of the DDS Interoperability Wire Protocol [2]) rather

than the required DURABILITY kind VOLATILE.

For this reason, implementations of the DDS Security specification shall have an additional builtin

Topic DCPSParticipantVolatileMessageSecure and corresponding builtin DataReader and

DataWriter entities to read and write the Topic.

7.4.4.2 BuiltinParticipantVolatileMessageSecureWriter and
BuiltinParticipantVolatileMessageSecureReader

[DDSSEC11-27 Inconsistent Behavior for Secure Volatile Endpoints]

Deleted: destination_participant_key

Deleted: BuiltinTopicKey_t

Deleted: destination_endpoint_key

Deleted: source_endpoint_key

DDS Security, v1.1 59

[DDSSEC11-85 Additional typos/inconsistencies]

The DDS Security specification defines two new builtin Endpoints: The

BuiltinParticipantVolatileMessageSecureWriter and the

BuiltinParticipantVolatileMessageSecureReader. These two endpoints shall be present in compliant

implementations of this specification. These endpoints are used to write and read the builtin

ParticipantVolatileMessageSecure Topic and shall have the TopicSecurityAtributes and

EndpointSecurityAttributes set as specified in the tables below.

[DDSSEC11-16 AccessControl behavior does not show check_local_datawriter/reader ...]

Table 16 – ParticipantVolatileMessageSecure Topic Security Attributes

Attribute Value

is_read_protected false

is_write_protected false

is_discovery_protected false

is_liveliness_protected false

Table 17 – ParticipantVolatileMessageSecure Endpoint Security Attributes (Reader and Writer)

Attribute Value

is_read_protected false

is_write_protected false

is_discovery_protected false

is_liveliness_protected false

is_submessage_protected true

is_payload_protected false

is_key_protected false

The BuiltinParticipantVolatileMessageSecureWriter is an RTPS Reliable StatefulWriter (see sub

clause 8.4.9.2 of the DDS Interoperability Wire Protocol [2]). The DDS DataWriter Qos associated

with the DataWriter shall be as defined in the table below. Any policies that are not shown in the

table shall be set corresponding to the DDS defaults.

Deleted: Message

Deleted: .

Deleted: EndpointSecurityAttribut

es and

Formatted: Table caption, Don't keep with
next, Don't keep lines together

Deleted: 1717171716

Deleted: Endpoint Security Attributes

Deleted: access

60 DDS Security, v1.1

[DDSSEC11-16 AccessControl behavior does not show check_local_datawriter/reader ...]

Table 18 – Non-default Qos policies for BuiltinParticipantVolatileMessageSecureWriter

DataWriter Qos policy Policy Value

RELIABILITY kind= RELIABLE

HISTORY kind= KEEP_ALL

DURABILITY kind= VOLATILE

The BuiltinParticipantVolatileMessageSecureReader is an RTPS Reliable StatefulReader (see sub

clause 8.4.11.2 of the DDS Interoperability Wire Protocol [2]). The DDS DataReader Qos

associated with the DataReader shall be as defined in the table below. Any policies that are not

shown in the table shall be set corresponding to the DDS defaults.

Table 19 – Non-default Qos policies for BuiltinParticipantVolatileMessageSecureReader

DataReader Qos policy Policy Value

RELIABILITY kind= RELIABLE

HISTORY kind= KEEP_ALL

DURABILITY kind= VOLATILE

[DDSSEC11-85 Additional typos/inconsistencies]

The data type associated with these endpoints is ParticipantVolatileMessageSecure

defined as:

typedef ParticipantVolatileMessageSecure ParticipantGenericMessage;

The RTPS EntityId_t associated with the BuiltinParticipantVolatileMessageSecureWriter and

BuiltinParticipantVolatileMessageSecureReader shall be as specified in 7.4.5.

7.4.4.3 Contents of the ParticipantVolatileMessageSecure

[DDSSEC11-85 Additional typos/inconsistencies]

The ParticipantVolatileMessageSecure is intended as a holder of secure information that

is sent point-to-point from a DomainParticipant to another.

[DDSSEC11-88 Replace use of BuiltinTopicKey_t with GUID_t_...]

The destination_participant_guid shall contain either the value GUID_UNKNOWN (see sub clause

9.3.1.5 of the DDS Interoperability Wire Protocol [2] or else the GUID_t of the destination

DomainParticipant.

[DDSSEC11-85 Additional typos/inconsistencies]

The message_identity uniquely identifies each individual
ParticipantVolatileMessageSecure:

Formatted: Table caption, Don't keep with
next

Deleted: 1818181817

Formatted: Table caption

Deleted: 1919191918

Deleted: Message

Deleted: Message

Deleted: Message

Deleted: Message

Deleted: destination_participant_key

Deleted: BuiltinTopicKey_t

Deleted: Message

DDS Security, v1.1 61

 The source_guid field within the message_identity shall be set to match the GUID_t of the

BuiltinParticipantVolatileMessageSecureWriter that writes the message.

 The sequence_number field within the message_identity shall start with the value set to one and be

incremented for each different message sent by the

BuiltinParticipantVolatileMessageSecureWriter.

The related_message_identity uniquely identifies another

ParticipantVolatileMessageSecure that is related to the message being processed. It shall

be set to either the tuple {GUID_UNKNOWN, 0} if the message is not related to any other message, or

else set to match the message_identity of the related ParticipantVolatileMessageSecure.

The contents message_data depend on the value of the message_class_id and are defined in this

specification in the sub clause that introduces each one of the defined values of the

GenericMessageClassId, see 7.4.4.5.

7.4.4.4 Destination of the ParticipantVolatileMessageSecure

[DDSSEC11-85 Additional typos/inconsistencies]

 [DDSSEC11-88 Replace use of BuiltinTopicKey_t with GUID_t_...]

If the destination_participant_guid member is not set to GUID_UNKNOWN, the message written is

intended only for the BuiltinParticipantVolatileMessageSecureReader belonging to the

DomainParticipant with a matching Participant Key.

This is equivalent to saying that the BuiltinParticipantVolatileMessageSecureReader has an implied

content filter with the logical expression:

 “destination_participant_guid == GUID_UNKNOWN

 || destination_participant_guid==BuiltinParticipantVolatileMessageSecureReader.participant.guid”

Implementations of the specification can use this content filter or some other mechanism as long as the

resulting behavior is equivalent to having this filter.

[DDSSEC11-88 Replace use of BuiltinTopicKey_t with GUID_t_...]

If the destination_endpoint_guid member is not set to GUID_UNKNOWN the message written targets

a specific endpoint within the destination DomainParticipant. The targeted endpoint is the one whose

Endpoint Key (DataWriter or DataReader GUID_t) matches the destination_endpoint_guid. This

attribute provides a mechanism to specify finer granularity on the intended recipient of a message

beyond the granularity provided by the destination_participant_guid.

7.4.4.5 Reserved values of ParticipantVolatileMessageSecure GenericMessageClassId

[DDSSEC11-85 Additional typos/inconsistencies]

This specification, including future versions of this specification reserves GenericMessageClassId

values that start with the prefix “dds.sec.” (without the quotes) .

The specification defines and uses the following specific values for the GenericMessageClassId:

#define GMCLASSID_SECURITY_PARTICIPANT_CRYPTO_TOKENS \

 ”dds.sec.participant_crypto_tokens”

#define GMCLASSID_SECURITY_DATAWRITER_CRYPTO_TOKENS \

Deleted: BuiltinTopicKey_t

Deleted: Message

Deleted: Message

Deleted: Message

Deleted: destination_participant_key

Deleted: destination_participant_key

Deleted: destination_participant_key

Deleted:

Deleted:

Deleted: participant.key

Deleted: destination_endpoint_key

Deleted: BuiltinTopic_t

Deleted: destination_endpoint_key

Deleted: destination_participant_key

Deleted: Message

62 DDS Security, v1.1

 ”dds.sec.datawriter_crypto_tokens”

#define GMCLASSID_SECURITY_DATAREADER_CRYPTO_TOKENS \

 ”dds.sec.datareader_crypto_tokens”

Additional values of the GenericMessageClassId may be defined with each plugin implementation.

7.4.4.6 Format of data within ParticipantVolatileMessageSecure

[DDSSEC11-85 Additional typos/inconsistencies]

Each value for the GenericMessageClassId uses different schema to store data within the

generic attributes in the message_data.

7.4.4.6.1 Data for message class GMCLASS_SECURITY_PARTICIPANT_CRYPTO_TOKENS

If GenericMessageClassId is GMCLASSID_SECURITY_PARTICIPANT_CRYPTO_TOKENS,

the message_data attribute shall contain the ParticipantCryptoTokenSeq.

This message is intended to send cryptographic material from one DomainParticipant to another

when the cryptographic material applies to the whole DomainParticipant and not a specific

DataReader or DataWriter within.

The concrete contents of the ParticipantCryptoTokenSeq shall be defined by the

Cryptographic Plugin (CryptoKeyFactory).

[DDSSEC11-88 Replace use of BuiltinTopicKey_t with GUID_t_...]

The destination_participant_guid shall be set to the GUID_t of the destination

DomainParticipant.

The destination_endpoint_guid shall be set to GUID_UNKNOWN. This indicates that there is no

specific endpoint targeted by this message: It is intended for the whole DomainParticipant.

The source_endpoint_guid shall be set to GUID_UNKNOWN.

7.4.4.6.2 Data for message class GMCLASSID_SECURITY_DATAWRITER_CRYPTO_TOKENS

If GenericMessageClassId is GMCLASSID_SECURITY_DATAWRITER_CRYPTO_TOKENS,

the message_data shall contain the DatawriterCryptoTokenSeq.

This message is intended to send cryptographic material from one DataWriter to a DataReader

whom it wishes to send information to. The cryptographic material applies to a specific ‘sending’

DataWriter and it is constructed for a specific ‘receiving’ DataReader. This may be used to send

the crypto keys used by a DataWriter to encrypt data and sign the data it sends to a DataReader.

The concrete contents of the DatawriterCryptoTokenSeq shall be defined by the Cryptographic

Plugin (CryptoKeyFactory).

[DDSSEC11-88 Replace use of BuiltinTopicKey_t with GUID_t_...]

The destination_endpoint_guid shall be set to the GUID_t of the DataReader that should receive

the CryptoToken values in the message.

The source_endpoint_guid shall be set to the GUID_t of the DataWriter that will be using the

CryptoToken values to encode the data it sends to the DataReader.

Deleted: Message

Deleted: destination_participant_key

Deleted: BuiltinTopicKey_t

Deleted: destination_endpoint_key

Deleted: source_endpoint_key

Deleted: destination_endpoint_key

Deleted: BuiltinTopicKey_t

Deleted: source_endpoint_key

Deleted: BuiltinTopicKey_t

DDS Security, v1.1 63

7.4.4.6.3 Data for message class GMCLASSID_SECURITY_DATAREADER_CRYPTO_TOKENS

If GenericMessageClassId is GMCLASSID_SECURITY_DATAWRITER_CRYPTO_TOKENS,

the message_data attribute shall contain the DatareaderCryptoTokenSeq.

This message is intended to send cryptographic material from one DataReader to a DataWriter

whom it wishes to send information to. The cryptographic material applies to a specific ‘sending’

DataReader and it is constructed for a specific ‘receiving’ DataWriter. This may be used to send

the crypto keys used by a DataReader to encrypt data and sign the ACKNACK messages it sends to

a DataWriter.

The concrete contents of the DatareaderCryptoTokenSeq shall be defined by the Cryptographic

Plugin (CryptoKeyFactory).

[DDSSEC11-88 Replace use of BuiltinTopicKey_t with GUID_t_...]

The destination_endpoint_guid shall be set to the GUID_t of the DataWriter that should receive

the CryptoToken values in the message.

The source_endpoint_guid shall be set to the GUID_t of the DataReader that will be using the

CryptoToken values to encode the data it sends to the DataWriter.

7.4.5 Definition of the “Builtin Secure Endpoints”

[DDSSEC11-44 Denial of Service Attack to DDS Security Participants by Injecting...]

The complete list of builtin Endpoints that are protected by the security mechanism introduced in the

DDS Security specification is: SPDPbuiltinParticipantsSecureWriter,

SPDPbuiltinParticipantsSecureReader, SEDPbuiltinPublicationsSecureWriter,

SEDPbuiltinPublicationsSecureReader, SEDPbuiltinSubscriptionsSecureWriter,

SEDPbuiltinSubscriptionsSecureReader, BuiltinParticipantMessageSecureWriter,
BuiltinParticipantMessageSecureReader, BuiltinParticipantVolatileMessageSecureWriter, and

BuiltinParticipantVolatileMessageSecureReader.

This list shall be referred to as the builtin secure endpoints.

[DDSSEC11-137 Missing Mechanism for Detecting Incompatibilities in ParticipantSecurityA…]

7.4.6 Definition of the “Builtin Secure Discovery Endpoints”

The “builtin secure discovery endpoints” is the subset the builtin secure endpoints that are used for

discovery. They are: SPDPbuiltinParticipantsSecureWriter, SPDPbuiltinParticipantsSecureReader,

SEDPbuiltinPublicationsSecureWriter, SEDPbuiltinPublicationsSecureReader,

SEDPbuiltinSubscriptionsSecureWriter, and SEDPbuiltinSubscriptionsSecureReader,

This list shall be referred to as the builtin secure discovery endpoints.

7.4.7 Definition of the “Builtin Secure Liveliness Endpoints”

The “builtin secure liveliness endpoints” is the subset the builtin secure endpoints that are used for

managing automatic liveliness. They are: BuiltinParticipantMessageSecureWriter and

BuiltinParticipantMessageSecureReader.

This list shall be referred to as the builtin secure liveliness endpoints.

Deleted: destination_endpoint_key

Deleted: BuiltinTopicKey_t

Deleted: source_endpoint_key

Deleted: BuiltinTopicKey_t

64 DDS Security, v1.1

[DDSSEC11-94 Unify treatment of builtin endpoints with that of regular endpoints]

7.4.8 Securing the “Builtin Secure Endpoints”

As with application defined Topics, the middleware shall call the operations

get_datawriter_sec_attributes and get_datareader_sec_attributes on the

AccessControl interface to obtain the EndpointSecurityAttributes associated with

DataReader and DataWriter entities on all the “Builtin Secure Endpoints”. The specific values

of the EndpointSecurityAttributes shall be as shown in the Table below:

Table 20 – EndpointSecurityAttributes for all "Builtin Security Endpoints"

Attribute DCPSParticipantSecure,

DCPSPublicationsSecure,

DCPSSubscriptionsSecure

DCPSParticipantMessageS

ecure
DCPSParticipa

ntStatelessMess

age

DCPSParticipantVolatil

eMessageSecure

is_read_pro

tected

false false false false

is_write_pr

otected

false false false false

is_discovery

_protected

N/A N/A N/A N/A

is_liveliness

_protected

N/A N/A N/A N/A

is_submess

age_protect

ed

Set to match
ParticipantSecurit

yAttributes

is_discovery_protected

Set to match
ParticipantSecurity

Attributes

is_liveliness_protected

false true

is_payload_

protected

false false false false

is_key_prot

ected

false false false false

The false settings for the is_read_protected and is_write_protected indicate that these secure builtin

endpoints are not protected by the same AccessControl mechanisms as the regular endpoints (i.e. the

AccessControl plugin is not called). However they are still protected by the access control

mechanism imposed by the DomainParticipant. That is, if

ParticipantSecurityAttributes member is_access_protected is true, then access to the

secure builtin topics is protected.

For a description of the ParticipantSecurityAttributes, see clause 8.4.2.4.

Deleted: returned by the AccessControl

pludin

Deleted: bultin

DDS Security, v1.1 65

66 DDS Security, v1.1

8 Plugin Architecture

8.1 Introduction

8.1.1 Service Plugin Interface Overview

There are five plugin SPIs: Authentication, Access-Control, Cryptographic, Logging, and Data

Tagging.

Figure 7 – Plugin Architecture Model

The responsibilities and interactions between these Service Plugins are summarized in the table below

and detailed in the sections that follow.

class DDS::Ov erv iew

Token

«discovery»

IdentityToken

SecurityPlugin

«interface»

AccessControl

SecurityPlugin

«interface»

Authentication

«primitive»

PermissionsHandle

«primitive»

IdentityHandle

SecurityPlugin

«interface»

Logging

+ enable_logging(): void

+ log(): void

+ set_log_options(): boolean

Token

«discovery»

PermissionsToken

Token

CryptoToken

SecurityPlugin

«interface»

DataTagging

«primitive»

SharedSecretHandle

CryptoKeyExchange

CryptoKeyFactory

CryptoTransform

«interface»

Cryptographic

«create»

«use»

«create»

«create»

«create»

«create»

«use»

«use» «create»

«use»

DDS Security, v1.1 67

Table 21 – Purpose of each Security Plugin

Service Plugin Purpose Interactions

Authentication Authenticate the principal that is

joining a DDS Domain.

Support mutual authentication

between participants and establish a

shared secret.

The principal may be an

application/process or the user associated

with that application or process.

AccessControl Decide whether a principal is

allowed to perform a protected

operation.

Protected operations include joining a

specific DDS domain, creating a Topic,

reading a Topic, writing a Topic, etc.

Cryptography Generate keys. Perform Key

Exchange. Perform the encryption

and decryption operations. Compute

digests, compute and verify

Message Authentication Codes.

Sign and verify signatures of

messages.

This plugin implements 3

complementary interfaces:

CryptoKeyFactory, CryptoKeyExchange,

and CryptoTransform.

Logging Log all security relevant events. This plugin is accessible to all other

plugins such that they can log the

relevant events.

DataTagging Add a data tag for each data sample.

8.1.2 Plugin Instantiation

The Security Plugins shall be configurable separately for each DomainParticipant even when

multiple DomainParticipants are constructed within the same Operating System Process and share the

same Address Space.

A collection of the 5 SPIs intended to be used with the same DomainParticipant is referred to as

a DDS-Security Plugin Suite.

The mechanism used to instantiate the security Service Plugins and associate them with each

DomainParticipant is not defined by the DDS-Security specification.

Implementations of this specification may use vendor-specific configurations to facilitate linking the

Plugin Suite, including providing dynamic loading and linking facilities as well as initializing the

Plugin Suite.

Likewise implementations of this specification may use vendor-specific configurations to bind a Plugin

Suite to the DomainParticipant. However it is required for the Plugin Suite to be initialized and

bound by the time the DomainParticipant is enabled. Therefore this process shall complete either

during the DomainParticipantFactory create_domain_participant or else during the

DomainParticipant enable operations defined in [1]. Note that some of the Plugin Suite

Authentication and AccessControl operations shall also be called during

create_domain_participant or during enable.

Formatted: Table caption, Don't keep with
next, Don't keep lines together

Deleted: 2121212019

68 DDS Security, v1.1

8.2 Common Types

8.2.1 Security Exception

SecurityException is a data type used to hold error information. SecurityException

objects are potentially returned from many of the calls in the Security plugins. They are used to return

an error code and message.

[DDSSEC11-15 SecurityExceptionCode is undefined]

Table 22 – SecurityException class

SecurityException

Attributes

message String

code long

minor_code long

8.3 Authentication Plugin

The Authentication Plugin SPI defines the types and operations necessary to support the authentication

of DDS DomainParticipants.

8.3.1 Background (Non-Normative)

Without the security enhancements, any DDS DomainParticipant is allowed to join a DDS

Domain without authenticating. However, in the case of a secure DDS system, every DDS participant

will be required to authenticate to avoid data contamination from unauthenticated participants.

The DDS protocol uses its native discovery mechanism to detect when participants enter the DDS

Domain.

The discovery mechanism that registers participants with the DDS middleware is enhanced with an

authentication protocol. For protected DDS Domains a DomainParticipant that enables the

authentication plugin will only communicate with another DomainParticipant that has the

authentication plugin enabled.

The plugin SPI is designed to support multiple implementations with varying numbers of message

exchanges. The message exchanges may be used by two DomainParticipant entities to challenge each

other so that their identity can be authenticated. Often a shared secret is also derived from a successful

authentication message exchange. The shared secret can be used to exchange cryptographic materal in

support of encryption and message authentication.

Formatted: Table caption, Don't keep with
next, Don't keep lines together

Deleted: 2222222120

Deleted: SecurityExceptionCode

Deleted: message ...

Deleted: ¶
Page Break

DDS Security, v1.1 69

8.3.2 Authentication Plugin Model

The Authentication Plugin model is presented in the figure below.

[DDSSEC11-82 OCSP stapling to enhance certificate status checking during handshake]

Figure 8 – Authentication plugin model

8.3.2.1 IdentityToken

An IdentityToken contains summary information on the identity of a DomainParticipant in

a manner that can be externalized and propagated via DDS discovery. The specific content of the

IdentityToken shall be defined by each Authentication plugin specialization. The intent is

to provide only summary information on the permissions or derived information such as a hash.

[DDSSEC11-82 OCSP stapling to enhance certificate status checking during handshake]

8.3.2.2 IdentityStatusToken

An IdentityStatusToken contains authentication information of a DomainParticipant in a

manner that can be externalized and propagated via the DCPSParticipantSecure builtin Topic. The

class Authentication

SecurityPlugin

«interface»

Authentication

+ validate_local_identity(): ValidationResult_t

+ get_identity_token(): Boolean

+ get_identity_status_token(): Boolean

+ set_permissions_credential_and_token(): Boolean

+ validate_remote_identity(): ValidationResult_t

+ begin_handshake_request(): ValidationResult_t

+ begin_handshake_reply(): ValidationResult_t

+ process_handshake(): ValidationResult_t

+ get_shared_secret(): SharedSecretHandle

+ get_peer_permissions_credential_token(): Boolean

+ set_listener(): Boolean

+ return_identity_token(): Boolean

+ return_identity_status_token(): Boolean

+ return_peer_permissions_credential_token(): Boolean

+ return_handshake_handle(): Boolean

+ return_identity_handle(): Boolean

+ return_sharedsecret_handle(): Boolean

«primitive»

IdentityHandle

«interface»

AuthenticationListener

+ revoke_identity(): Boolean

+ on_status_changed(): Boolean

Token

«discovery»

IdentityToken

Token

MessageToken

«primitive»

HandshakeHandle

«primitive»

SharedSecretHandle

Token

PermissionsCredentialToken

Property
Token

«discovery»

IdentityStatusToken

«enumeration»

AuthStatusChangeKind

 IDENTITY_STATUS

«create»

«use»

«use»

«create»

«create»

«use»
«create»

«create»

«create»

Formatted: Font: (Default) Times New
Roman, 12 pt, Not Bold

Deleted:

class Authentication

SecurityPlugin

«interface»

Authentication

+ validate_local_identity(): ValidationResult_t

+ get_identity_token(): Boolean

+ set_permissions_credential_and_token(): Boolean

+ validate_remote_identity(): ValidationResult_t

+ begin_handshake_request(): ValidationResult_t

+ begin_handshake_reply(): ValidationResult_t

+ process_handshake(): ValidationResult_t

+ get_shared_secret(): SharedSecretHandle

+ get_peer_permissions_credential_token(): Boolean

+ set_listener(): Boolean

+ return_identity_token(): Boolean

+ return_peer_permissions_credential_token(): Boolean

+ return_handshake_handle(): Boolean

+ return_identity_handle(): Boolean

+ return_sharedsecret_handle(): Boolean

«primitive»

IdentityHandle

«interface»

AuthenticationListener

+ revoke_identity(): Boolean

Token

«discovery»

IdentityToken

Token

MessageToken

«primitive»

HandshakeHandle

«primitive»

SharedSecretHandle

Token

PermissionsCredentialToken

Property

«create»

«create»

«use»

«create»

«use»
«create»

«create»

70 DDS Security, v1.1

specific content of the IdentityStatusToken shall be defined by each Authentication

plugin. The intent is to provide a mechanism that can be used to securely send information to other

participants that are already mutually authenticated. It could be used, for example, to provide an

updated certificate in case the current one has expired.

The information shall be retrieved from the Authentication plugin by calling the operation

get_identity_status_token. And included in the DCPSParticipantSecure builtin Topic.

The Authentication plugin can use the operation on_status_changed on the

AuthenticationListener to notify that there is an updated IdentityStatusToken.

8.3.2.3 IdentityHandle

An IdentityHandle is an opaque local reference to internal state within the Authentication

plugin, which uniquely identifies a DomainParticipant. It is understood only by the

Authentication plugin and references the authentication state of the DomainParticipant.

This object is returned by the Authentication plugin as part of the validation of the identity of a

DomainParticipant and is used whenever a client of the Authentication plugin needs to

refer to the identity of a previously identified DomainParticipant.

8.3.2.4 HandshakeHandle

A HandshakeHandle is an opaque local reference used to refer to the internal state of a possible

mutual authentication or handshake protocol.

[DDSSEC11-43 Non Recoverable Communication After Asymmetric Liveliness Loss]

8.3.2.5 AuthRequestMessageToken

The AuthRequestMessageToken encodes plugin-specific information that the

Authentication plugins associated with two DomainParticipant entities exchange to

bootstrap the mutual authentication handshake. The AuthRequestMessageToken is understood

only by the AuthenticationPlugin implementations on either side of the handshake. The

AuthRequestMessageToken is sent and received by the DDS implementation under the direction

of the AuthenticationPlugins.

The AuthRequestMessageToken has class_id set to

GMCLASSID_SECURITY_AUTH_REQUEST (see 7.4.3.5).

8.3.2.6 HandshakeMessageToken

A HandshakeMessageToken encodes plugin-specific information that the Authentication plugins

associated with two DomainParticipant entities exchange as part of the mutual authentication

handshake. The HandshakeMessageToken is understood only by the

AuthenticationPlugin implementations on either side of the handshake. The

HandshakeMessageToken is sent and received by the DDS implementation under the direction of

the AuthenticationPlugins.

[DDSSEC11-43 Non Recoverable Communication After Asymmetric Liveliness Loss]

The HandshakeMessageToken has class_id set to

GMCLASSID_SECURITY_AUTH_HANDSHAKE (see 7.4.3.5).

Deleted: The mechanism used to
communicate to the Authentication plugin the
updates received from an authenticated
DomainParticipant over the

DCPSParticipantSecure builtin Topic is

currently not specified.¶

DDS Security, v1.1 71

8.3.2.7 AuthenticatedPeerCredentialToken

An AuthenticatedPeerCredentialToken encodes plugin-specific information that the

Authentication plugin obtains from a remote DomainParticipant during the authentication process that

is of interest to the AccessControlPlugin. This information is accessible via the operation

get_authenticated_peer_credential_token.

8.3.2.8 SharedSecretHandle

A SharedSecretHandle is an opaque local reference to internal state within the

AuthenticationPlugin containing a secret that is shared between the

AuthenticationPlugin implementation and the peer AuthenticationPlugin

implementation associated with a remote DomainParticipant. It is understood only by the two

AuthenticationPlugin implementations that share the secret. The shared secret is used to

encode Tokens, such as the CryptoToken, such that they can be exchanged between the two

DomainParticipants in a secure manner.

8.3.2.9 Authentication

This interface is the starting point for all the security mechanisms. When a DomainParticipant

is either locally created or discovered, it needs to be authenticated in order to be able to communicate

in a DDS Domain.

The interaction between the DDS implementation and the Authentication plugin has been designed in a

flexible manner so it is possible to support various authentication mechanisms, including those that

require a handshake and/or perform mutual authentication between participants. It also supports

establishing a shared secret. This interaction is described in the state machine illustrated in the figure

below.

[DDSSEC11-31 Wrong ValidationResult_t VALIDATION_OK_WITH_FINAL_...]

[DDSSEC11-41 Correct Figure 9 to match description of the authentication protocol]

[DDSSEC11-43 Non Recoverable Communication After Asymmetric Liveliness Loss]

72 DDS Security, v1.1

Figure 9 – Authentication plugin interaction state machine

stm AuthBehav ior

Authenticating

[handshake]

[auth_request]

[authentication_timeout]

Choice

Choice

Start

RetryWait1

Choice

HandshakeMessageReceiv ed

HandshakeFinalMessage

HandshakeInitMessageWait

HandshakeMessageWait

HandshakeCompletedOK

Choice

HandshakeMessageSend

Validation_FailedValidation_OK

StartingAuthentication

Choice

HandshakeInitReply

HandshakeInit

Initialized

RetryWait2

RetryWait3 RetryWait4

RetryWait5

Begin
LocalValidationFailed

AuthRequestWaitAuthRequestSend

StartFromDiscovery

StartFromDiscovery

Fork

StartFromAuthRequest

NoAuthRequests

StartFromAuthRequest

Initial

AuthenticationTimeoutWait

Validation_Failed

[VALIDATION_FAILED]

[VALIDATION_PENDING_RETRY]

[VALIDATION_FAILED]

[VALIDATION_OK]

[VALIDATION_PENDING_HANDSHAKE_MESSAGE]

[retry_timeout]

DDS::discov ery()

[VALIDATION_OK_FINAL_MESSAGE]

[VALIDATION_PENDING_HANDSHAKE_MESSAGE]

begin_handshake_reply()

[auth_request_timer]

[VALIDATION_OK]

[VALIDATION_PENDING_HANDSHAKE_REQUEST]

[VALIDATION_PENDING_RETRY]

[retry_timeout]

[VALIDATION_PENDING_RETRY]

[VALIDATION_PENDING_HANDSHAKE_MESSAGE]

DDS::send_message()

[retry_timeout]

DDS::send_message()

[VALIDATION_FAILED]

[VALIDATION_PENDING_RETRY]

v alidate_local_identity()

[VALIDATION_OK]

[VALIDATION_FAILED]

DDS::receiv e_message()

[VALIDATION_OK_FINAL_MESSAGE]

DDS::sav e_auth_request_token()

begin_handshake_request()

DDS::send_message()

get_shared_secret()

DDS::receiv e_message()

[VALIDATION_PENDING_RETRY]

DDS::receiv e_auth_request()

[VALIDATION_OK]

[retry_timeout]

[retry_timeout]

v alidate_remote_identity()

[authentication_timeout]

[VALIDATION_OK]

[VALIDATION_FAILED]

process_handshake()

Formatted: Font: (Default) Times New

Roman, 12 pt, Not Bold

Deleted:

stm AuthBehav ior

Authenticating

[handshake]

[auth_request]

[authentication_timeout]

Choice

Choice

Start

RetryWait1

Choice

HandshakeMessageReceiv ed

HandshakeFinalMessage

HandshakeInitMessageWait

HandshakeMessageWait

HandshakeCompletedOK

Choice

HandshakeMessageSend

Validation_FailedValidation_OK

StartingAuthentication

Choice

HandshakeInitReply

HandshakeInit

Initialized

RetryWait2

RetryWait3 RetryWait4

RetryWait5

Begin
LocalValidationFailed

AuthRequestWaitAuthRequestSend

StartFromAuthRequest

StartFromDiscovery

Fork

StartFromDiscovery

NoAuthRequests

StartFromAuthRequest

Initial

AuthenticationTimeoutWait

Validation_Failed

[VALIDATION_FAILED]

[VALIDATION_PENDING_RETRY]

[VALIDATION_FAILED]

[VALIDATION_OK]

[VALIDATION_PENDING_HANDSHAKE_MESSAGE]

[retry_timeout]

DDS::discov ery()

[VALIDATION_OK_FINAL_MESSAGE]

[VALIDATION_PENDING_HANDSHAKE_MESSAGE]

begin_handshake_reply()

[auth_request_timer]

[VALIDATION_OK]

[VALIDATION_PENDING_HANDSHAKE_REQUEST]

[VALIDATION_PENDING_RETRY]

[retry_timeout]

[VALIDATION_PENDING_RETRY]

[VALIDATION_PENDING_HANDSHAKE_MESSAGE]

DDS::send_message()

[retry_timeout]

DDS::send_message()

[VALIDATION_FAILED]

[VALIDATION_PENDING_RETRY]

v alidate_local_identity()

[VALIDATION_OK]

[VALIDATION_FAILED]

DDS::receiv e_message()

[VALIDATION_OK_FINAL_MESSAGE]

DDS::sav e_auth_request_token()

begin_handshake_request()

DDS::send_message()

get_shared_secret()

DDS::receiv e_message()

[VALIDATION_PENDING_RETRY]

DDS::receiv e_auth_request()

[VALIDATION_OK]

[retry_timeout]

[retry_timeout]

v alidate_remote_identity()

[authentication_timeout]

[VALIDATION_OK]

[VALIDATION_FAILED]

process_handshake()

Deleted:

stm AuthBehav ior

Authenticating

Choice

Choice

Start

RetryWait1

Choice

HandshakeMessageReceiv ed

HandshakeFinalMessage

HandshakeInitMessageWait

HandshakeMessageWait

HandshakeCompletedOK

Choice

HandshakeMessageSend

Validation_FailedValidation_OK

Discov eredRemoteParticipant

Choice

HandshakeInitReply

HandshakeInit

Initialized

RetryWait2

RetryWait3 RetryWait4

RetryWait5

Initial

Begin LocalValidationFailed

[VALIDATION_FAILED]

[VALIDATION_OK_FINAL_MESSAGE]

[VALIDATION_OK_FINAL_MESSAGE]

[VALIDATION_FAILED]

[VALIDATION_OK]

get_shared_secret()

[VALIDATION_PENDING_HANDSHAKE_REQUEST]

DDS::send_message()

process_handshake()

[VALIDATION_PENDING_HANDSHAKE_MESSAGE]

DDS::discov ery()

[VALIDATION_OK]

[retry_timeout]

[retry_timeout]

[VALIDATION_PENDING_RETRY]

DDS::receiv e_message()

[retry_timeout]

[VALIDATION_PENDING_HANDSHAKE_MESSAGE]

begin_handshake_reply()

DDS::receiv e_message()

[VALIDATION_PENDING_RETRY]

[VALIDATION_FAILED]

[VALIDATION_OK]

[VALIDATION_PENDING_RETRY]

[VALIDATION_PENDING_RETRY]

DDS::send_message()

[authentication_timeout]

v alidate_local_identity()

[VALIDATION_OK]

[retry_timeout]

[VALIDATION_PENDING_RETRY][VALIDATION_FAILED]

v alidate_remote_identity()

[VALIDATION_OK]

[retry_timeout]

begin_handshake_request()

[VALIDATION_FAILED]

stm AuthBehav ior

HandshakeInit

HandshakeInitReply

Choice

Initialized

EntryPoint

Validation_OK

Validation_Failed

HandshakeMessageSend

Choice

HandshakeCompletedOK

HandshakeMessageWait

HandshakeInitMessageWait

HandshakeFinalMessage

HandshakeMessageReceiv ed

[VALIDATION_PENDING_HANDSHAKE_REQUEST]

get_shared_secret()

[VALIDATION_OK]

begin_handshake_request()

[VALIDATION_OK]

DDS::receive_message()

DDS::send_message()

[VALIDATION_OK_FINAL_MESSAGE]

begin_handshake_reply()

process_handshake()

validate_remote_identity()

validate_local_identity()

[VALIDATION_PENDING_HANDSHAKE_MESSAGE]

DDS::receive_message()

[VALIDATION_PENDING_HANDSHAKE_MESSAGE]

[VALIDATION_FAILED]

DDS::send_message()

[VALIDATION_FAILED]

stm AuthBehav ior

HandshakeInit

HandshakeInitReply

Choice

Initialized

EntryPoint

Validation_OK

Validation_Failed

HandshakeMessageSend

Choice

HandshakeCompletedOK

HandshakeMessageWait

HandshakeInitMessageWait

HandshakeFinalMessage

HandshakeMessageReceiv ed

[VALIDATION_FAILED]

begin_handshake_reply()

[VALIDATION_PENDING_HANDSHAKE_REQUEST] [VALIDATION_PENDING_HANDSHAKE_MESSAGE]

[VALIDATION_OK] [VALIDATION_FAILED]

validate_remote_identity()

begin_handshake_request()

DDS::send_message()

process_handshake()

[VALIDATION_OK]

[VALIDATION_PENDING_HANDSHAKE_MESSAGE]

[VALIDATION_OK_WITH_FINAL_MESSAGE]

get_shared_secret()

DDS::receive_message()

DDS::receive_message()

DDS::send_message()

validate_local_identity()

DDS Security, v1.1 73

8.3.2.9.1 Reliability of the Authentication Handshake

[DDSSEC11-43 Non Recoverable Communication After Asymmetric Liveliness Loss]

In order to be sufficiently robust to avert sequence number attacks (7.4.3.1), the Authentication

Handshake uses the BuiltinParticipantStatelessMessageWriter and

BuiltinParticipantStatelessMessageReader endpoints (7.4.3) with GenericMessageClassId set

to GMCLASSID_SECURITY_AUTH_REQUEST or

GMCLASSID_SECURITY_AUTH_HANDSHAKE (7.4.3.5). These stateless endpoints send

messages best-effort without paying attention to any sequence number information to remove

duplicates or attempt ordered delivery. Despite this, the Authentication Handshake needs to be able to

withstand the message loss that may occur on the network.

In order to operate robustly in the presence of message loss and sequence number attacks DDS

Security implementations shall follow the rules below:

1. The DDS security implementation shall pass to the AuthenticationPlugin any message received

by the BuiltinParticipantStatelessMessageReader that has a GenericMessageClassId

set to GMCLASSID_SECURITY_AUTH_REQUEST or

GMCLASSID_SECURITY_AUTH_HANDSHAKE.

2. Any time the state-machine indicates that a message shall be sent using the

BuiltinParticipantStatelessMessageWriter and a reply message needs to be received by the

BuiltinParticipantStatelessMessageReader, the DDS implementation shall cache the message

that was sent and set a timer. If a correct reply message is not received when the timer expires,

the state-machine shall send the same message again. This process shall be repeated multiple

times until a correct message is received.

3. Whenever a message is sent using the BuiltinParticipantStatelessMessageWriter, a reply

message is received by the BuiltinParticipantStatelessMessageReader. The reply is then

passed to the AuthenticationPlugin. If the plugin operation returns VALIDATION_NOT_OK,

the implementation transitions back to the previous state that caused the message to be sent and

resends the same message.

Rule #2 makes authentication robust to message loss.

Rule #3 makes authentication robust to an attacker trying to disrupt an authentication exchange by

sending bad replies.

Example application of rule #2: Assume the DDS implementation transitioned to the

HandshakeMessageSend state, sent the message M1 and is now in the HandshakeMessageWait state

waiting for the reply. If no reply is received within an implementation-specific retry-time, the same

message M1 shall be sent again and the process repeated until either a reply is received or an

implementation-specific timeout elapses (or a maximum number of retries is reached).

Example application of rule #3: Assume the DDS implementation transitioned to the

HandshakeMessageSend state, sent the message M2, transitions to HandshakeMessageWait, receives

the reply, transitions to HandshakeMessageReceived, calls process_handshake() and the operation

returns VALIDATION_NOT_OK. In this situation the DDS implementation shall transition back to

HandshakeMessageSend and resent M2 again.

8.3.2.10 Unauthenticated DomainParticipant entities

The term “Unauthenticated” DomainParticipant entity refers to a discovered

DomainParticipant that cannot be authenticated by the Authentication plugin. This can be either

74 DDS Security, v1.1

because they lack support for the Authentication plugin being used, have incompatible plugins,

or simply fail the authentication protocol.

8.3.2.11 Authentication plugin interface

The Authentication plugin shall have the operations shown in the table below.

[DDSSEC11-46 Add serialized_participant_data to begin_handshake_request_...]

[DDSSEC11-88 Replace use of BuiltinTopicKey_t with GUID_t_...]

[DDSSEC11-85 Additional typos/inconsistencies]

[DDSSEC11-82 OCSP stapling to enhance certificate status checking during handshake]

[DDSSEC11-43 Non Recoverable Communication After Asymmetric Liveliness Loss]

Table 23 – Authentication plugin interface

Authentication

No Attributes

Operations

validate_local_iden

tity

 ValidationResult_t

out:

local_identity_handle

IdentityHandle

out:

adjusted_participant_guid

GUID_t

domain_id DomainId_t

participant_qos DomainParticipantQos

candidate_participant_gui

d

GUID_t

out: exception SecurityException

get_identity_token Boolean

out: identity_token IdentityToken

handle IdentityHandle

out: exception SecurityException

get_identity_status

_token

 Boolean

out:

identity_status_token

IdentityStatusToken

handle IdentityHandle

out: exception SecurityException

Formatted: Table caption

Deleted: 2323232221

Deleted: adjusted_participant_key

Deleted: BuiltinTopicKey_t

Deleted: candidate_participant_ke
y

Deleted: BuiltinTopicKey_t

Deleted: exception

Deleted: exception

Deleted: exception

DDS Security, v1.1 75

76 DDS Security, v1.1

set_permissions_cre

dential_and_token

 Boolean

handle IdentityHandle

permissions_credential_to

ken

PermissionsCredentia

lToken

permissions_token PermissionsToken

out: exception SecurityException

validate_remote_ide

ntity

 ValidationResult_t

out:

remote_identity_handle

IdentityHandle

out:

local_auth_request_token

AuthRequestMessageTo

ken

remote_auth_request_token AuthRequestMessageTo

ken

local_identity_handle IdentityHandle

remote_identity_token IdentityToken

remote_participant_guid GUID_t

out: exception SecurityException

begin_handshake_req

uest

 ValidationResult_t

out: handshake_handle HandshakeHandle

out: handshake_message HandshakeMessageToke

n

initiator_identity_handle IdentityHandle

replier_identity_handle IdentityHandle

serialized_local_particip

ant_data

octet[]

out: exception SecurityException

Deleted: exception

Deleted: remote_participant_key

Deleted: BuiltinTopicKey_t

DDS Security, v1.1 77

begin_handshake_rep

ly

 ValidationResult_t

out: handshake_handle HandshakeHandle

out:

handshake_message_out

HandshakeMessageToke

n

handshake_message_in HandshakeMessageToke

n

initiator_identity_handle IdentityHandle

replier_identity_handle IdentityHandle

serialized_local_particip

ant_data

octet[]

out: exception SecurityException

process_handshake ValidationResult_t

out:

handshake_message_out

HandshakeMessageToke

n

handshake_message_in HandshakeMessageToke

n

handshake_handle HandshakeHandle

out: exception SecurityException

get_shared_secret SharedSecretHandle

handshake_handle HandshakeHandle

out: exception SecurityException

get_authenticated_p

eer_credential_toke

n

 Boolean

out:

peer_credential_token

AuthenticatedPeerCre

dentialToken

handshake_handle HandshakeHandle

out: exception SecurityException

set_listener

 Boolean

listener AuthenticationListen

er

out: exception SecurityException

78 DDS Security, v1.1

return_identity_tok

en

 Boolean

token IdentityToken

out: exception SecurityException

return_identity_sta

tus_token

 Boolean

 token IdentityStatusToken

 out: exception SecurityException

return_authenticate

d_peer_credential_t

oken

 Boolean

peer_credential_token AuthenticatedPeerCre

dentialToken

out: exception SecurityException

return_handshake_ha

ndle

 Boolean

handshake_handle HandshakeHandle

out: exception SecurityException

return_identity_han

dle

 Boolean

identity_handle IdentityHandle

out: exception SecurityException

return_sharedsecret

_handle

 Boolean

sharedsecret_handle SharedSecretHandle

out: exception SecurityException

8.3.2.11.1 Type: ValidationResult_t

Enumerates the possible return values of the validate_local_identity and

validate_remote_identity operations.

Table 24 – Values for ValidationResult_t

ValidationResult_t

VALIDATION_OK Indicates the validation has succeeded

VALIDATION_FAILED Indicates the validation has failed

VALIDATION_PENDING_

RETRY

Indicates that validation is still proceeding. The operation shall be

retried at a later point in time.

Formatted: Table caption

Deleted: 2424242322

DDS Security, v1.1 79

VALIDATION_PENDING_

HANDSHAKE_REQUEST

Indicates that validation of the submitted IdentityToken requires

sending a handshake message. The DDS Implementation shall call the

operation begin_handshake_request and send the

HandshakeMessageToken obtained from this call using the

BuiltinParticipantMessageWriter with

GenericMessageClassId set to
GMCLASSID_SECURITY_AUTH_HANDSHAKE.

VALIDATION_PENDING_

HANDSHAKE_MESSAGE

Indicates that validation is still pending. The DDS Implementation

shall wait for a message on the BuiltinParticipantMessageReader

and, once this is received, call process_handshake to pass the

information received in that message.

VALIDATION_OK_FINAL

_MESSAGE

Indicates that validation has succeeded but the DDS Implementation

shall send a final message using the

BuiltinParticipantMessageWriter with

GenericMessageClassId set to
GMCLASSID_SECURITY_AUTH_HANDSHAKE.

8.3.2.11.2 Operation: validate_local_identity

Validates the identity of the local DomainParticipant. The operation returns as an output

parameter the IdentityHandle, which can be used to locally identify the local Participant to the

Authentication Plugin.

[DDSSEC11-88 Replace use of BuiltinTopicKey_t with GUID_t_...]

In addition to validating the identity, this operation also returns the DomainParticipant GUID_t

that shall be used by the DDS implementation to uniquely identify the DomainParticipant on the

network.

This operation shall be called before the DomainParticipant is enabled. It shall be called either

by the implementation of DomainParticipantFactory create_domain_participant or

DomainParticipant enable [1].

If an error occurs, this method shall return VALIDATION_FAILED and fill the

SecurityException.

The method shall return either VALIDATION_OK if the validation succeeds, or

VALIDATION_FAILED if it fails, or VALIDATION_PENDING_RETRY if the verification has not

finished.

If VALIDATION_PENDING_RETRY has been returned, the operation shall be called again after a

configurable delay to check the status of verification. This shall continue until the operation returns

either VALIDATION_OK (if the validation succeeds), or VALIDATION_FAILED. This approach

allows non-blocking interactions with services whose verification may require invoking remote

services.

Parameter (out) local_identity_handle: A handle that can be used to locally refer to the

Authenticated Participant in subsequent interactions with the Authentication plugin. The nature

of the handle is specific to each Authentication plugin implementation. The handle will only be

meaningful if the operation returns VALIDATION_OK.

Deleted: BuiltinTopicKey_t

80 DDS Security, v1.1

[DDSSEC11-88 Replace use of BuiltinTopicKey_t with GUID_t_...]

[DDSSEC11-85 Additional typos/inconsistencies]

Parameter (out) adjusted_participant_guid: The GUID_t that the DDS implementation shall use to

uniquely identify the DomainParticipant on the network. The returned

adjusted_participant_guid shall be the one that eventually appears in the participant_guid attribute of

the ParticipantBuiltinTopicData sent via discovery.

Parameter domain_id: The DDS Domain Id of the DomainParticipant.

Parameter participant_qos: The DomainParticipantQos of the DomainParticipant.

Parameter candidate_participant_guid: The GUID_t that the DDS implementation would have

used to uniquely identify the DomainParticipant if the Security plugins were not enabled.

Parameter exception: A SecurityException object.

Return: The operation shall return

 VALIDATION_OK if the validation was successful.

 VALIDATION_FAILED if it failed.

 VALIDATION_PENDING_RETRY if verification has not completed and the operation should be

retried later.

8.3.2.11.3 Operation: validate_remote_identity

Initiates the process of validating the identity of the discovered remote DomainParticipant,

represented as an IdentityToken object. The operation returns the ValidationResult_t

indicating whether the validation succeeded, failed, or is pending a handshake. If the validation

succeeds, an IdentityHandle object is returned, which can be used to locally identify the remote

DomainParticipant to the Authentication plugin.

If the validation can be performed with the information passed and succeeds, the operation shall return

VALIDATION_OK. If it can be performed with the information passed and it fails, it shall return

VALIDATION_FAILED.

The validation of a remote participant might require the remote participant to perform a handshake. In

this situation, the validate_remote_identity operation shall return

VALIDATION_PENDING_HANDSHAKE_REQUEST or

VALIDATION_PENDING_HANDSHAKE_MESSAGE.

If the operation returns VALIDATION_PENDING_HANDSHAKE_REQUEST, then the DDS

implementation shall call the operation begin_handshake_request to continue the validation

process.

[DDSSEC11-85 Additional typos/inconsistencies]

If the operation returns VALIDATION_PENDING_HANDSHAKE_MESSAGE, then the DDS

implementation shall wait until it receives a ParticipantStatelessMessage from the remote

participant identified by the remote_participant_guid using the contents described in 8.3.2.11.5 and

then call the operation begin_handshake_reply.

Deleted: adjusted_participant_key

Deleted: BuiltinTopicKey_t

Deleted: adjusted_participant_key

Deleted: participant_key

Deleted: candidate_participant_key

Deleted: BuiltinTopicKey_t

Deleted: remote_participant_key

Deleted: 8.3.2.11.58.3.2.11.58.3.2.11.58.3.2.1
1.58.3.2.9.5

DDS Security, v1.1 81

If an error occurs, this method shall return VALIDATION_FAILED and fill the

SecurityException.

[DDSSEC11-21 - Normative IDL does not match the documentation …]

Parameter (out) remote_identity_handle: A handle that can be used to locally refer to the remote

Authenticated Participant in subsequent interactions with the AuthenticationPlugin. The nature

of the remote_identity_handle is specific to each AuthenticationPlugin implementation. The

handle will only be provided if the operation returns something other than VALIDATION_FAILED.

[DDSSEC11-43 Non Recoverable Communication After Asymmetric Liveliness Loss]

Parameter (out) local_auth_request_token: An AuthRequestMessageToken to be sent using

the BuiltinParticipantStatelessMessageWriter. The contents shall be specified by each plugin

implementation. If the returned token is TokenNIL (see 7.2.4.3), the

AuthRequestMessageToken shall not be sent.

Parameter remote_auth_request_token: The AuthRequestMessageToken received from the

remote DomainParticipant that caused the authentication to begin. This token shall be NIL if the

authentication was not initiated by the reception of an AuthRequestMessageToken.

Parameter remote_identity_token: A token received as part of

ParticipantBuiltinTopicData, representing the identity of the remote

DomainParticipant.

Parameter local_identity_handle: A handle to the local DomainParticipant requesting the

remote participant to be validated. The local handle shall be the result of an earlier call to

validate_local_identity.

[DDSSEC11-88 Replace use of BuiltinTopicKey_t with GUID_t_...]

Parameter remote_participant_guid: GUID_t uniquely identifying the remote participant.

Parameter exception: A SecurityException object.

[DDSSEC11-85 Additional typos/inconsistencies]

Return: The operation shall return:

 VALIDATION_OK if the validation was successful.

 VALIDATION_FAILED if it failed.

 VALIDATION_PENDING_HANDSHAKE_REQUEST if validation has not completed. If this is

returned, the DDS implementation shall call begin_handshake_request, to continue the

validation.

 VALIDATION_PENDING_HANDSHAKE_MESSAGE if validation has not completed. If this is

returned, the DDS implementation shall wait for a message on the

BuiltinParticipantMessageReader with the message_identity containing a source_guid that

matches the remote_participant_guid and a message_class_id set to

GMCLASSID_SECURITY_AUTH_HANDSHAKE.

 VALIDATION_PENDING RETRY if the validation has not completed. If this is returned, the

operation should be called again at a later point in time to check the validation status.

Moved (insertion) [2]

Moved up [2]: Parameter (out)

remote_identity_handle: A handle that can be
used to locally refer to the remote
Authenticated Participant in subsequent
interactions with the

AuthenticationPlugin. The nature of

the remote_identity_handle is specific to

each AuthenticationPlugin

implementation. The handle will only be
provided if the operation returns something
other than VALIDATION_FAILED.¶

Deleted: key

Deleted: BuiltinTopicKey_t

Deleted: remote_participant_key

82 DDS Security, v1.1

8.3.2.11.4 Operation: begin_handshake_request

This operation is used to initiate a handshake. It shall be called by the DDS middleware solely as a

result of having a previous call to validate_remote_identity returning

VALIDATION_PENDING_HANDSHAKE_REQUEST.

This operation returns a HandshakeMessageToken that shall be used to send a handshake to the

remote participant identified by the replier_identity_handle.

The contents of the HandshakeMessageToken are specified by the plugin implementation.

If an error occurs, this method shall return VALIDATION_FAILED and fill the

SecurityException.

Parameter (out) handshake_handle: A handle returned by the Authentication plugin used to

keep the state of the handshake. It is passed to other operations in the Authentication plugin.

Parameter (out) handshake_message_token: A HandshakeMessageToken to be sent using the

BuiltinParticipantMessageWriter. The contents shall be specified by each plugin implementation.

Parameter initiator_identity_handle: Handle to the local participant that originated the handshake.

Parameter replier_identity_handle: Handle to the remote participant whose identity is being

validated.

[DDSSEC11-46 Add serialized_participant_data to begin_handshake_request_...]

Parameter serialized_local_participant_data: CDR Big Endian Serialization for the

ParticipantBuiltInTopicDataSecure object associated with the local

DomainParticipant.

Parameter exception: A SecurityException object.

[DDSSEC11-88 Replace use of BuiltinTopicKey_t with GUID_t_...]

Return: The operation shall return:

 VALIDATION_OK if the validation was successful.

 VALIDATION_FAILED if it failed.

 VALIDATION_PENDING_HANDSHAKE_MESSAGE if validation has not completed. If this is

returned, the DDS implementation shall send the handshake_message_out using the

BuiltinParticipantMessageWriter and then wait for the reply message on the

BuiltinParticipantMessageReader. The DDS implementation shall set the

ParticipantStatelessMessage participantGuidPrefix message_class_id to

GMCLASSID_SECURITY_AUTH_HANDSHAKE and fill the message_data with the

handshake_message HandshakeMessageToken and set the destination_participant_guid to

match the DDS GUID_t of the destination DomainParticipant. When the reply message is

received the DDS implementation shall call the operation begin_handshake_reply, to

continue the validation.

 VALIDATION_OK_FINAL_MESSAGE if the validation succeeded. If this is returned, the DDS

implementation shall send the returned handshake_message using the

BuiltinParticipantMessageReader.

 VALIDATION_PENDING RETRY if the validation has not completed. If this is returned, the DDS

implementation shall call the operation again at a later point in time to check the validation status.

Deleted: destination_participant_key

Deleted: BuiltinTopicKey_t

DDS Security, v1.1 83

In the cases where the return code indicates that a message shall be sent using the

BuiltinParticipantMessageWriter, the DDS implementation shall set the

ParticipantStatelessMessage as follows:

[DDSSEC11-42 Table 51 CryptoToken should specify endianness of binary properties...]

[DDSSEC11-88 Replace use of BuiltinTopicKey_t with GUID_t_...]

 The message_class_id shall be set to GMCLASSID_SECURITY_AUTH_HANDSHAKE.

 The destination_participant_guid shall be set to match the DDS GUID_t of the destination

DomainParticipant.

 The message_identity shall be set to have the source_guid matching the DDS GUID_t of the

DomainParticipant that is sending the message and the sequence_number to the value in the

previous message sent by the BuiltinParticipantMessageWriter, incremented by one.

 The related_message_identity shall be set with source_guid as GUID_UNKNOWN and

sequence_number to zero.

 The message_data shall be filled with the handshake_message HandshakeMessageToken.

8.3.2.11.5 Operation: begin_handshake_reply

This operation shall be invoked by the DDS implementation in reaction to the reception of the initial

handshake message that originated on a DomainParticipant that called the

begin_handshake_request operation. It shall be called by the DDS implementation solely as a

result of having a previous call to validate_remote_identity returns

VALIDATION_PENDING_HANDSHAKE_MESSAGE and having received a message on the

BuiltinParticipantMessageReader with attributes set as follows:

[DDSSEC11-88 Replace use of BuiltinTopicKey_t with GUID_t_...]

 message_class_id GMCLASSID_SECURITY_AUTH_HANDSHAKE

 message_identity source_guid matching the GUID_t of the DomainParticipant associated

with the initiator_identity_handle

 destination_participant_guid matching the GUID_t of the receiving DomainParticipant

This operation generates a handshake_message_out in response to a received

handshake_message_in. Depending on the return value of the operation, the DDS implementation

shall send the handshake_message_out using the BuiltinParticipantMessageWriter to the participant

identified by the initiator_identity_handle.

The contents of the handshake_message_out HandshakeMessageToken are specified by the

plugin implementation.

If an error occurs, this method shall return VALIDATION_FAILED and fill the

SecurityException.

Parameter (out) handshake_handle: A handle returned by the Authentication Plugin used to keep the

state of the handshake. It is passed to other operations in the Plugin.

Parameter (out) handshake_message_out: A HandshakeMessageToken containing a message

to be sent using the BuiltinParticipantMessageWriter. The contents shall be specified by each plugin

implementation.

Deleted: destination_participant_key

Deleted: BuiltinTopicKey_t

Deleted: BuiltinTopicKey_t

Deleted: CDR serialization of the

Deleted: BuiltinTopicKey_t

Deleted: destination_participant_key

Deleted: BuiltinTopicKey_t

84 DDS Security, v1.1

Parameter handshake_message_in: A HandshakeMessageToken containing a message received

from the BuiltinParticipantMessageReader. The contents shall be specified by each plugin

implementation.

Parameter initiator_identity_handle: Handle to the remote participant that originated the handshake.

Parameter replier_identity_handle: Handle to the local participant that is initiating the handshake

response.

[DDSSEC11-46 Add serialized_participant_data to begin_handshake_request_...]

Parameter serialized_local_participant_data: CDR Big Endian Serialization for the

ParticipantBuiltInTopicDataSecure object associated with the local

DomainParticipant.

Parameter exception: A SecurityException object.

Return: The operation shall return:

 VALIDATION_OK if the validation was successful.

 VALIDATION_FAILED if it failed.

 VALIDATION_PENDING_HANDSHAKE_MESSAGE if validation has not completed. If this is

returned, the DDS implementation shall send the handshake_message_out using the

BuiltinParticipantMessageWriter and then wait for a reply message on the

BuiltinParticipantMessageReader from that remote DomainParticipant.

 VALIDATION_OK_FINAL_MESSAGE if the validation succeeded. If this is returned, the DDS

implementation shall send the returned handshake_message_out using the

BuiltinParticipantMessageWriter.

 VALIDATION_PENDING RETRY if the validation has not completed. If this is returned, the DDS

implementation shall call the operation again at a later point in time to check the validation status.

In cases where the return code indicates that a message shall be sent using the

BuiltinParticipantMessageWriter, the DDS implementation shall set the

ParticipantStatelessMessage as follows:

[DDSSEC11-42 Table 51 CryptoToken should specify endianness of binary properties...]

[DDSSEC11-88 Replace use of BuiltinTopicKey_t with GUID_t_...]

 The message_class_id shall be set to GMCLASSID_SECURITY_AUTH_HANDSHAKE.

 The destination_participant_guid shall be set to match the DDS GUID_t of the destination

DomainParticipant.

 The message_identity shall be set to have the source_guid matching the DDS GUID_t of the

DomainParticipant that is sending the message and the sequence_number to the value in the

previous message sent by the BuiltinParticipantMessageWriter, incremented by one.

 The related_message_identity shall be set to match the message_identity of the

ParticipantStatelessMessage received that triggered the execution of the

begin_handshake_reply operation.

 The message_data shall be filled with the handshake_message_out HandshakeMessageToken.

Deleted: destination_participant_key

Deleted: BuiltinTopicKey_t

Deleted: BuiltinTopicKey_t

Deleted: CDR serialization of the

DDS Security, v1.1 85

8.3.2.11.6 Operation: process_handshake

This operation is used to continue a handshake. It shall be called by the DDS middleware solely as a

result of having a previous call to begin_handshake_request or begin_handshake_reply that returned

VALIDATION_PENDING_HANDSHAKE_MESSAGE and having also received a

ParticipantStatelessMessage on the BuiltinParticipantMessageReader with attributes set

as follows:

[DDSSEC11-88 Replace use of BuiltinTopicKey_t with GUID_t_...]

 message_class_id GMCLASSID_SECURITY_AUTH_HANDSHAKE

 message_identity source_guid matching the GUID_t of the peer DomainParticipant

associated with the handshake_handle

 related_message_identity matching the message_identity of the last

ParticipantStatelessMessage sent to the peer DomainParticipant associated with the

handshake_handle.

 destination_participant_guid matching the GUID_t of the receiving DomainParticipant.

This operation generates a handshake_message_out HandshakeMessageToken in response to a

received handshake_message_in HandshakeMessageToken. Depending on the return value of

the function the DDS implementation shall send the handshake_message_out using the

BuiltinParticipantMessageWriter to the peer participant identified by the handshake_handle.

The contents of the handshake_message_out HandshakeMessageToken are specified by the

plugin implementation.

If an error occurs, this method shall return VALIDATION_FAILED and fill the

SecurityException.

Parameter (out) handshake_message_out: A HandshakeMessageToken containing the

message_data that should be placed in a ParticipantStatelessMessage to be sent using the

BuiltinParticipantMessageWriter. The contents shall be specified by each plugin implementation.

Parameter handshake_message_in: The HandshakeMessageToken contained in the

message_data attribute of the ParticipantStatelessMessage received. The interpretation of

the contents shall be specified by each plugin implementation.

Parameter handshake_handle: Handle returned by a corresponding previous call to

begin_handshake_request or begin_handshake_reply.

Parameter exception: A SecurityException object.

Return: The operation shall return:

 VALIDATION_OK if the validation was successful.

 VALIDATION_FAILED if it failed.

 VALIDATION_PENDING_HANDSHAKE_MESSAGE if validation has not completed. If this is

returned, the DDS implementation shall send a ParticipantStatelessMessage continuing

the returned handshake_message_out using the BuiltinParticipantMessageWriter and then wait

for a reply message on the BuiltinParticipantMessageReader from that remote

DomainParticipant.

Deleted: BuiltinTopicKey_t

Deleted: destination_participant_key

Deleted: BuiltinTopicKey_t

Deleted: n

86 DDS Security, v1.1

 VALIDATION_OK_FINAL_MESSAGE if the validation succeeded. If this is returned, the DDS

implementation shall send a ParticipantStatelessMessage containing the returned

handshake_message_out using the BuiltinParticipantMessageWriter but not wait for any replies.

 VALIDATION_PENDING RETRY if the validation has not completed. If this is returned, the DDS

implementation shall call the operation again at a later point in time to check the validation status.

In the cases where the return code indicates that a ParticipantStatelessMessage shall be

sent using the BuiltinParticipantMessageWriter the DDS implementation shall set the fields of the

ParticipantStatelessMessage as follows:

[DDSSEC11-42 Table 51 CryptoToken should specify endianness of binary properties...]

[DDSSEC11-88 Replace use of BuiltinTopicKey_t with GUID_t_...]

 The message_class_id shall be set to GMCLASSID_SECURITY_AUTH_HANDSHAKE.

 The destination_participant_guid shall be set to match the DDS GUID_t of the destination

DomainParticipant.

 The message_identity shall be set to have the source_guid matching the DDS GUID_t of the

DomainParticipant that is sending the message and the sequence_number to the value in the

previous message sent by the BuiltinParticipantMessageWriter, incremented by one.

 The related_message_identity shall be set to match the message_identity of the

ParticipantStatelessMessage received that triggered the execution of the

begin_handshake_reply operation.

 The message_data shall be filled with the handshake_message_out HandshakeMessageToken.

8.3.2.11.7 Operation: get_shared_secret

Retrieves the SharedSecretHandle resulting with a successfully completed handshake.

This operation shall be called by the DDS middleware on each HandshakeHandle after the

handshake that uses that handle completes successfully, that is after the last ‘handshake’ operation

called on that handle (begin_handshake_request, begin_handshake_reply, or

process_handshake) returns VALIDATION_OK or VALIDATION_OK_FINAL_MESSAGE.

The retrieved SharedSecretHandle shall be used by the DDS middleware in conjunction with the

CryptoKeyExchange interface of the Cryptographic Plugin to exchange cryptographic key

material with other DomainParticipant entities.

If an error occurs, this method shall return the NILHandle and fill the SecurityException.

Parameter handshake_handle: Handle returned by a corresponding previous call to

begin_handshake_request or begin_handshake_reply, which has successfully completed the

handshake operations.

Parameter exception: A SecurityException object.

8.3.2.11.8 Operation: get_authenticated_peer_ credential_token

Retrieves the AuthenticatedPeerCredentialToken resulting with a successfully completed

authentication of a discovered DomainParticipant.

This operation shall be called by the DDS middleware on each HandshakeHandle after the

handshake that uses that handle completes successfully, that is after the last ‘handshake’ operation

Deleted: destination_participant_key

Deleted: BuiltinTopicKey_t

Deleted: BuiltinTopicKey_t

Deleted: CDR serialization of the

DDS Security, v1.1 87

called on that handle (begin_handshake_request, begin_handshake_reply, or

process_handshake) returns VALIDATION_OK or VALIDATION_OK_FINAL_MESSAGE.

If an error occurs, this method shall return false and fill the SecurityException.

Parameter peer_credential_token (out): A placeholder for the returned

AuthenticatedPeerCredentialToken.

Parameter handshake_handle: HandshakeHandle returned by a corresponding previous call to

begin_handshake_request or begin_handshake_reply, which has successfully

completed the handshake operations.

Parameter exception: A SecurityException object.

8.3.2.11.9 Operation: get_identity_token

Retrieves an IdentityToken used to represent on the network the identity of the

DomainParticipant identified by the specified IdentityHandle.

Parameter identity_token (out): The returned IdentityToken.

Parameter handle: The handle used to locally identify the DomainParticipant for which an

IdentityToken is desired. The handle must have been returned by a successful call to

validate_local_identity, otherwise the operation shall return false and fill the

SecurityException.

Parameter exception: A SecurityException object.

Return: If an error occurs, this method shall return false and fill the SecurityException.

otherwise it shall return the IdentityToken.

[DDSSEC11-82 OCSP stapling to enhance certificate status checking during handshake]

8.3.2.11.10 Operation: get_identity_status_token

Retrieves an AuthenticationToken used to represent on the network the authentication state of

the DomainParticipant identified by the specified IdentityHandle.

Parameter identity_token (out): The returned IdentityStatusToken.

Parameter handle: The handle used to locally identify the DomainParticipant for which an

IdentityStatusToken is desired. The handle must have been returned by a successful call to

validate_local_identity, otherwise the operation shall return false and fill the

SecurityException.

Parameter exception: A SecurityException object.

Return: If an error occurs, this method shall return false and fill the SecurityException.

otherwise it shall return the IdentityStatusToken.

8.3.2.11.11 Operation: set_permissions_credential_and_token

Associates the PermissionsCredentialToken (see 8.4.2.2) returned by the AccessControl

plugin operation get_permissions_credential_token with the local

DomainParticipant identified by the IdentityHandle.

88 DDS Security, v1.1

This operation shall be called by the middleware after calling validate_local_identity and

prior to any calls to validate_remote_identity.

Parameter handle: The handle used to locally identify the DomainParticipant whose

PermissionsCredential is being supplied. The handle must have been returned by a successful

call to validate_local_identity, otherwise the operation shall return false and fill the

SecurityException.

Parameter permissions_credential_token: The PermissionsCredentialToken associated

with the DomainParticipant identified by the IdentityHandle. The

permissions_credential_token must have been returned by a successful call to

get_permissions_credential_token, on the AccessControl plugin. Otherwise the

operation shall return false and fill the SecurityException.

Parameter exception: A SecurityException object.

Return: If an error occurs, this method shall return false, otherwise it shall return true.

8.3.2.11.12 Operation: set_listener

Sets the AuthenticationListener that the Authentication plugin will use to notify the

DDS middleware infrastructure of events relevant to the Authentication of DDS Participants.

If an error occurs, this method shall return false and fill the SecurityException.

Parameter listener: An AuthenticationListener object to be attached to the

Authentication object. If this argument is nil, it indicates that there shall be no listener.

Parameter exception: A SecurityException object, which provides details in case the operation

returns false.

8.3.2.11.13 Operation: return_identity_token

Returns the IdentityToken object to the plugin so it can be disposed of.

Parameter token: An IdentityToken issued by the plugin on a prior call to

get_identity_token.

Parameter exception: A SecurityException object, which provides details in the case this

operation returns false.

[DDSSEC11-82 OCSP stapling to enhance certificate status checking during handshake]

8.3.2.11.14 Operation: return_identity_status_token

Returns the IdentityStatusToken object to the plugin so it can be disposed of.

Parameter token: An IdentityStatusToken issued by the plugin on a prior call to

get_identity_status_token.

Parameter exception: A SecurityException object, which provides details in the case this

operation returns false.

DDS Security, v1.1 89

8.3.2.11.15 Operation: return_authenticated_peer_credential_token

Returns the AuthenticatedPeerCredentialToken object to the plugin so it can be disposed

of.

Parameter peer_credential_token: An AuthenticatedPeerCredentialToken issued by the

plugin on a prior call to get_authenticated_peer_credential_token.

Parameter exception: A SecurityException object, which provides details in the case this

operation returns false.

8.3.2.11.16 Operation: return_handshake_handle

Returns the HandshakeHandle object to the plugin so it can be disposed of.

Parameter handshake_handle: A HandshakeHandle issued by the plugin on a prior call to

begin_handshake_request or begin_handshake_reply.

Parameter exception: A SecurityException object, which provides details in the case this

operation returns false.

8.3.2.11.17 Operation: return_identity_handle

Returns the IdentityHandle object to the plugin so it can be disposed of.

Parameter identity_handle: An IdentityHandle issued by the plugin on a prior call to

validate_local_identity or validate_remote_identity.

Parameter exception: A SecurityException object, which provides details in the case this

operation returns false.

8.3.2.11.18 Operation: return_sharedsecret_handle

Returns the SharedSecretHandle object to the plugin so it can be disposed of.

Parameter sharedsecret_handle: An IdentityHandle issued by the plugin on a prior call to

get_shared_secret.

Parameter exception: A SecurityException object, which provides details in the case this

operation returns false.

8.3.2.12 AuthenticationListener

The AuthenticationListener provides the means for notifying the DDS middleware

infrastructure of events relevant to the authentication of DDS DomainParticipant entities. For

example, identity certificates can expire; in this situation, the AuthenticationPlugin shall call

the AuthenticationListener to notify the DDS implementation that the identity of a specific

DomainParticipant is being revoked.

[DDSSEC11-82 OCSP stapling to enhance certificate status checking during handshake]

Table 25 – Authentication listener class

AuthenticationListener

No Attributes

Formatted: Table caption

Deleted: 2525252423

90 DDS Security, v1.1

Operations

on_revoke_identity Boolean

plugin Authentication

handle IdentityHandle

out: exception SecurityException

on_status_changed void

plugin Authentication

handle IdentityHandle

status_kind AuthStatusKind

out: exception SecurityException

[DDSSEC11-82 OCSP stapling to enhance certificate status checking during handshake]

8.3.2.12.1 Enumeration: AuthStatusKind

The AuthStatusKind enumerates the kind of changes to the status of the Authentication

plugin or underlying Identity that are notified via the AuthenticationListener operation

on_status_changed. The possible values are described in the table below:

Table 26 – Description of the AuthStatusKind values

Value Meaning

IDENTITY_STATUS Indicates a change to an identity status.

Identity Status changes are represented externally to the
Authentication plugin with an

IdentityStatusToken that can be retrieved via the
operation get_identity_status_token on the

Authentication interface.

The changed IdentityStatusToken shall be
propagated by the DDS implementation to the other
DomainParticipants using the

DCPSParticipantsSecure builtin Topic.

8.3.2.12.2 Operation: on_revoke_identity

Revokes the identity of the participant identified by the IdentityHandle. The corresponding

IdentityHandle becomes invalid. As a result of this, the DDS middleware shall terminate any

communications with the DomainParticipant associated with that handle.

If an error occurs, this method shall return false.

Parameter plugin: An Authentication plugin object that has this listener allocated.

Deleted: exception

Deleted: exception

Formatted: Table caption, Don't keep with
next, Don't keep lines together

Deleted: 26262625

DDS Security, v1.1 91

Parameter handle: An IdentityHandle object that corresponds to the Identity of a DDS

Participant whose identity is being revoked.

[DDSSEC11-82 OCSP stapling to enhance certificate status checking during handshake]

8.3.2.12.3 Operation: on_status_changed

Informs the DomainParticipant that a status associated with the Authentication plugin or an

Identity managed by the plugin has changed.

Depending on the kind of status the DDS implementation may need to take specific actions to retrieve

information on the changed status and propagate it to other DomainParticipant entities. The

actions that shall be taken for each kind of status are described in clause 8.3.2.12.1 .

8.4 Access Control Plugin

The Access Control Plugin API defines the types and operations necessary to support an access control

mechanism for DDS DomainParticipants.

8.4.1 Background (Non-Normative)

Once a DomainParticipant is authenticated, its permissions need to be validated and enforced.

Permissions or access rights are often described using an access control matrix where the rows are

subjects (i.e., users), the columns are objects (i.e., resources), and a cell defines the access rights that a

given subject has over a resource. Typical implementations provide either a column-centric view (i.e.,

access control lists) or a row-centric view (i.e., a set of capabilities stored with each subject). With the

proposed AccessControl SPI, both approaches can be supported.

Before we can describe the access control plugin SPI, we need to define the permissions that can be

attached to a DomainParticipant. Every DDS application uses a DomainParticipant to

access or produce information on a Domain; hence the DomainParticipant has to be allowed to

run in a certain Domain. Moreover, a DomainParticipant is responsible for creating

DataReaders and DataWriters that communicate over a certain Topic. Hence, a

DomainParticipant has to have the permissions needed to create a Topic, to publish through its

DataWriters certain Topics, and to subscribe via its DataReaders to certain Topics. There

is a very strong relationship between the AccessControl plugin and the Cryptographic plugin

because encryption keys need to be generated for DataWriters based on the

DomainParticipant’s permissions.

Deleted: 8.3.2.12.18.3.2.12.18.3.2.12.18.3.2.1
2.18.3.2.11.1

Deleted: ¶
Page Break

92 DDS Security, v1.1

8.4.2 AccessControl Plugin Model

The AccessControl plugin model is presented in the figure below.

[DDSSEC11-72 EndpointSecurity's is_payload_protected is Insufficient...]

[DDSSEC11-112 No mechanism to free ParticipantSecurityAttributes …]

[DDSSEC11-106 Should differences in EndpointSecurityAttributesMask prevent matching?]

Figure 10 – AccessControl Plugin Model

8.4.2.1 PermissionsToken

A PermissionsToken contains summary information on the permissions for a

DomainParticipant in a manner that can be externalized and propagated over DDS discovery.

class AccessControl

SecurityPlugin

«interface»

AccessControl

+ validate_local_permissions(): PermissionsHandle

+ validate_remote_permissions(): PermissionsHandle

+ check_create_participant(): Boolean

+ check_create_datawriter(): Boolean

+ check_create_datareader(): Boolean

+ check_create_topic(): Boolean

+ check_local_datawriter_register_instance(): Boolean

+ check_local_datawriter_dispose_instance(): Boolean

+ check_remote_participant(): Boolean

+ check_remote_datawriter(): Boolean

+ check_remote_datareader(): Boolean

+ check_remote_topic(): Boolean

+ check_local_datawriter_match(): Boolean

+ check_local_datareader_match(): Boolean

+ check_remote_datawriter_register_instance(): Boolean

+ check_remote_datawriter_dispose_instance(): Boolean

+ get_permissions_token(): Boolean

+ get_permissions_credential_token(): Boolean

+ get_participant_sec_attributes(): Boolean

+ get_topic_security_attributes(): Boolean

+ get_datawriter_sec_attributes(): Boolean

+ get_datareader_sec_attributes(): Boolean

+ set_listener(): Boolean

+ return_permissions_token(): Boolean

+ return_permissions_credential_token(): Boolean

+ return_participant_sec_attributes(): Boolean

+ return_datawriter_sec_attributes(): Boolean

+ return_datareader_sec_attributes(): Boolean

«primitive»

PermissionsHandle

«interface»

AccessControlListener

+ revoke_persimissions(): Boolean

Token

«discovery»

PermissionsToken

«primitive»

IdentityHandle

ParticipantSecurityAttributes

+ allow_unauthenticated_participants: Boolean

+ is_access_protected: Boolean

+ is_rtps_protected: Boolean

+ is_discovrey_protected: Boolean

+ is_liveliness_protected: Boolean

+ ac_participant_properties: Property [0..*]

EndpointSecurityAttributes

+ is_submessage_protected: Boolean

+ is_payload_protected: Boolean

+ is_key_protected: Boolean

+ ac_endpoint_properties: Property [0..*]

Property

TopicSecurityAttributes

+ is_read_protected: Boolean

+ is_write_protected: Boolean

+ is_discovery_protected: Boolean

+ is_liveliness_protected: Boolean

«primitive»

PluginEndpointSecurityAttributesMask

«primitive»

PluginParticipantSecurityAttributesMask

«create»

«create»

«create»

+plugin_participant_attributes

«use»

«create»

«create»

+plugin_endpoint_attributes

Formatted: Font: (Default) Times New

Roman, 8 pt, Not Bold, Font color: Pink,
Pattern: Clear (Light Yellow)

Deleted:

class AccessControl

SecurityPlugin

«interface»

AccessControl

+ validate_local_permissions(): PermissionsHandle

+ validate_remote_permissions(): PermissionsHandle

+ check_create_participant(): Boolean

+ check_create_datawriter(): Boolean

+ check_create_datareader(): Boolean

+ check_create_topic(): Boolean

+ check_local_datawriter_register_instance(): Boolean

+ check_local_datawriter_dispose_instance(): Boolean

+ check_remote_participant(): Boolean

+ check_remote_datawriter(): Boolean

+ check_remote_datareader(): Boolean

+ check_remote_topic(): Boolean

+ check_local_datawriter_match(): Boolean

+ check_local_datareader_match(): Boolean

+ check_remote_datawriter_register_instance(): Boolean

+ check_remote_datawriter_dispose_instance(): Boolean

+ get_permissions_token(): Boolean

+ get_permissions_credential_token(): Boolean

+ get_participant_sec_attributes(): Boolean

+ get_topic_security_attributes(): Boolean

+ get_datawriter_sec_attributes(): Boolean

+ get_datareader_sec_attributes(): Boolean

+ set_listener(): Boolean

+ return_permissions_token(): Boolean

+ return_permissions_credential_token(): Boolean

+ return_participant_sec_attributes(): Boolean

+ return_datawriter_sec_attributes(): Boolean

+ return_datareader_sec_attributes(): Boolean

«primitive»

PermissionsHandle

«interface»

AccessControlListener

+ revoke_persimissions(): Boolean

Token

«discovery»

PermissionsToken

«primitive»

IdentityHandle
ParticipantSecurityAttributes

+ is_access_protected: Boolean

+ is_rtps_protected: Boolean

EndpointSecurityAttributes

+ is_submessage_protected: Boolean

+ is_payload_protected: Boolean

+ is_key_protected: Boolean

+ ac_endpoint_properties: Property [0..*]

Property

TopicSecurityAttributes

+ is_read_protected: Boolean

+ is_write_protected: Boolean

+ is_discovery_protected: Boolean

+ is_liveliness_protected: Boolean

PluginSpecificAttributes

- value: int

«primitive»

PluginEndpointSecurityAttributeMask

«create»

«create»

«create»

«use»

«create»

«create»

+plugin_specific_attributes

Deleted:

class AccessControl

SecurityPlugin

«interface»

AccessControl

+ validate_local_permissions(): PermissionsHandle

+ validate_remote_permissions(): PermissionsHandle

+ check_create_participant(): Boolean

+ check_create_datawriter(): Boolean

+ check_create_datareader(): Boolean

+ check_create_topic(): Boolean

+ check_local_datawriter_register_instance(): Boolean

+ check_local_datawriter_dispose_instance(): Boolean

+ check_remote_participant(): Boolean

+ check_remote_datawriter(): Boolean

+ check_remote_datareader(): Boolean

+ check_remote_topic(): Boolean

+ check_local_datawriter_match(): Boolean

+ check_local_datareader_match(): Boolean

+ check_remote_datawriter_register_instance(): Boolean

+ check_remote_datawriter_dispose_instance(): Boolean

+ get_permissions_token(): Boolean

+ get_permissions_credential_token(): Boolean

+ get_participant_sec_attributes(): Boolean

+ get_datawriter_sec_attributes(): Boolean

+ get_datareader_sec_attributes(): Boolean

+ set_listener(): Boolean

+ return_permissions_token(): Boolean

+ return_permissions_credential_token(): Boolean

+ return_participant_sec_attributes(): Boolean

+ return_datawriter_sec_attributes(): Boolean

+ return_datareader_sec_attributes(): Boolean

«primitive»

PermissionsHandle

«interface»

AccessControlListener

+ revoke_persimissions(): Boolean

Token

«discovery»

PermissionsToken

«primitive»

IdentityHandle

ParticipantSecurityAttributes

+ is_access_protected: Boolean

+ is_rtps_protected: Boolean

EndpointSecurityAttributes

+ is_access_protected: Boolean

+ is_discovery_protected: Boolean

+ is_submessage_protected: Boolean

+ is_payload_protected: Boolean

- is_key_protected: Boolean

Property

«create»

«create»«use»

«create»

«create»

class AccessControl

SecurityPlugin

«interface»

AccessControl

+ validate_local_permissions(): PermissionsHandle

+ validate_remote_permissions(): PermissionsHandle

+ check_create_participant(): Boolean

+ check_create_datawriter(): Boolean

+ check_create_datareader(): Boolean

+ check_create_topic(): Boolean

+ check_local_datawriter_register_instance(): Boolean

+ check_local_datawriter_dispose_instance(): Boolean

+ check_remote_participant(): Boolean

+ check_remote_datawriter(): Boolean

+ check_remote_datareader(): Boolean

+ check_remote_topic(): Boolean

+ check_local_datawriter_match(): Boolean

+ check_local_datareader_match(): Boolean

+ check_remote_datawriter_register_instance(): Boolean

+ check_remote_datawriter_dispose_instance(): Boolean

+ get_permissions_token(): Boolean

+ get_permissions_credential_token(): Boolean

+ get_participant_sec_attributes(): Boolean

+ get_datawriter_sec_attributes(): Boolean

+ get_datareader_sec_attributes(): Boolean

+ set_listener(): Boolean

+ return_permissions_token(): Boolean

+ return_permissions_credential_token(): Boolean

«primitive»

PermissionsHandle

«interface»

AccessControlListener

+ revoke_persimissions(): Boolean

Token

«discovery»

PermissionsToken

«primitive»

IdentityHandle

ParticipantSecurityAttributes

+ is_access_protected: Boolean

+ is_rtps_protected: Boolean

EndpointSecurityAttributes

+ is_access_protected: Boolean

+ is_discovery_protected: Boolean

+ is_submessage_protected: Boolean

+ is_payload_protected: Boolean

- is_key_protected: Boolean

Property

«create»

«create»«use»

«create»

«create»

class AccessControl

SecurityPlugin

«interface»

AccessControl

+ validate_local_permissions(): PermissionsHandle

+ validate_remote_permissions(): PermissionsHandle

+ check_create_participant(): Boolean

+ check_create_datawriter(): Boolean

+ check_create_datareader(): Boolean

+ check_create_topic(): Boolean

+ check_local_datawriter_register_instance(): Boolean

+ check_local_datawriter_dispose_instance(): Boolean

+ check_remote_participant(): Boolean

+ check_remote_datawriter(): Boolean

+ check_remote_datareader(): Boolean

+ check_remote_topic(): Boolean

+ check_local_datawriter_match(): Boolean

+ check_local_datareader_match(): Boolean

+ check_remote_datawriter_register_instance(): Boolean

+ check_remote_datawriter_dispose_instance(): Boolean

+ get_permissions_token(): Boolean

+ get_permissions_credential_token(): Boolean

+ get_participant_sec_attributes(): Boolean

+ get_datawriter_sec_attributes(): Boolean

+ get_datareader_sec_attributes(): Boolean

+ set_listener(): Boolean

+ return_permissions_token(): Boolean

+ return_permissions_credential_token(): Boolean

«primitive»

PermissionsHandle

«interface»

AccessControlListener

+ revoke_persimissions(): Boolean

Token

«discovery»

PermissionsToken

«primitive»

IdentityHandle

ParticipantSecurityAttributes

+ is_access_protected: Boolean

+ is_rtps_protected: Boolean

EndpointSecurityAttributes

+ ia_access_protected: Boolean

+ is_discovery_protected: Boolean

+ is_submessage_protected: Boolean

+ is_payload_protected: Boolean

Property

«create»

«create»

«create»«use»

«create»

DDS Security, v1.1 93

The specific content of the PermissionsToken shall be defined by each

AccessControlPlugin specialization. The intent is to provide only summary information on the

permissions or derived information such as a hash.

8.4.2.2 PermissionsCredentialToken

A PermissionsCredentialToken encodes the permissions and access information for a

DomainParticipant in a manner that can be externalized and sent over the network. The

PermissionsCredential is used by the AccessControl plugin to verify the permissions of a

peer DomainParticipant and perform all the access-control decisions related to that peer

DomainParticipant, including determining whether it can join a domain, match specific local

DataWriters or DataReaders, etc.

The PermissionsCredentialToken is intended for dissemination during the authentication

handshake. The specific content of the PermissionsCredentialToken shall be defined by each

AccessControl plugin specialization and it may not be used by some AccessControl plugin

specializations.

8.4.2.3 PermissionsHandle

A PermissionsHandle is an opaque local reference to internal state within the AccessControl

plugin. It is understood only by the AccessControl plugin and characterizes the permissions

associated with a specific DomainParticipant. This object is returned by the AccessControl

plugin as part of the validation of the permissions of a DomainParticipant and is used whenever

a client of the AccessControl plugin needs to refer to the permissions of a previously validated

DomainParticipant.

8.4.2.4 ParticipantSecurityAttributes

The ParticipantSecurityAttributes describe how the middleware should protect the

DomainParticipant. This is a structured type whose members are described in the table below:

[DDSSEC11-17 - Need a way to determine the builtinTopic used for the DataWriter…]

[DDSSEC11-45 discovery_protection_kind is Underspecified]

[DDSSEC11-55 Confusing Sentence about Builtin Endpoints Payload Encryption]

[DDSSEC11-14 Clarify conditions for calling the operations on AccessControlPlugin]

[DDSSEC11-137 Missing Mechanism for Detecting Incompatibilities in ParticipantSecurityA…]

94 DDS Security, v1.1

Table 27 – Description of the ParticipantSecurityAttributes

Member Type Meaning

allow_unauth
enticated_par
ticipants

Boolean Indicates whether the matching of the DomainParticipant with a
remote DomainParticipant requires successful authentication.

If allow_unauthenticated_participants is TRUE, the
DomainParticipant shall allow matching other
DomainParticipants—even if the remote DomainParticipant cannot
authenticate—as long as there is no already a valid authentication
with the same DomainParticipant's GUID. Additionally, a
DomainParticipant that later authenticates would kick out the
unauthenticated DomainParticipant if it has the same GUID.

If allow_unauthenticated_participants is FALSE, the
DomainParticipant shall enforce the authentication of remote
DomainParticipants and disallow matching those that cannot be
successfully authenticated.

is_access_pro
tected

Boolean Indicates whether the matching of the DomainParticipant with a
remote DomainParticipant requires authorization by the
AccessControl plugin.

If is_access_protected is TRUE, then the DDS middleware shall call
and get_authenticated_peer_credential_token,
validate_remote_permissions, and

check_remote_participant operations on the matched and
authenticated remote DomainParticipant. Any failure in these calls
will result in failing to authorize the remote participant, which shall
be removed by the local participant.

If is_access_protected is FALSE, then the DDS middleware shall call
get_authenticated_peer_credential_token and

validate_remote_permissions operations on the matched
and authenticated remote DomainParticipant. However, a HandleNIL
return from these operations will not prevent authorization..

is_rtps_prote
cted

Boolean Indicates whether the whole RTPS Message needs to be transformed
by the CryptoTransform operation encode_rtps_message.

If is_rtps_protected is TRUE then:

(1) allow_unauthenticated_participants must be FALSE.

(2) The DDS middleware shall call the operations on the
CryptoKeyFactory for the DomainParticipant.

(3) The DDS middleware shall call the operations on the
CryptoKeyExchange for matched DomainParticipants that have been
authenticated.

Deleted: ¶

Deleted: 2727272624

Deleted:

Deleted:

Deleted: .

Deleted: Page Break

Deleted: en

Deleted: ¶
If is_access_protected is FALSE, the
DomainParticipant shall allow matching of a
remote DomainParticipant without checking
authorization with the AccessControl plugin.¶
If is_access_protected is TRUE, the
DomainParticipant shall check that the
remote DomainParticipant is authorized to
join the Domain by calling the operations in
the AccessControl plugin. Only remote
DomainParticipants for which authorization
is successful are allowed match the local
DomainParticipant

Deleted: 1

Deleted: 2

DDS Security, v1.1 95

(4) The RTPS messages sent by the DomainParticipant to matched
DomainParticipants that have been authenticated shall be
transformed using the CryptoTransform operation
encode_rtps_message and the messages received from the matched
authenticated DomainParticipants shall be transformed using the
CryptoTransform operation decode_rtps_message, except for RTPS
messages that contain submessages for any of the following builtin
topics "DCPSParticipants", "DCPSParticipantStatelessMessage", or
"DCPSParticipantVolatileMessageSecure". These RTPS messages
shall not be transformed by
encode_rtps_message/decode_rtps_message operations.

(5) RTPS messages that contain submessages for the builtin topics
"DCPSParticipants", "DCPSParticipantStatelessMessage", or
"DCPSParticipantVolatileMessageSecure" cannot contain
submessages for any other builtin topic or application-defined topic.

If is_rtps_protected is FALSE then the above actions shall not be
taken.

is_discovery_
protected

Boolean Indicates the DDS middleware shall call the operations on the
CryptoKeyFactory, CryptoKeyExchange, and

CryptoTransform for the DCPSPublicationsSecure and
DCPSSubscriptionsSecure entities:

If is_discovery_protected is TRUE then the CryptoKeyFactory,
CryptoKeyExchange operations shall be called for the
DCPSPublicationsSecure and DCPSSubscriptionsSecure entities to
create the associated cryptographic material and send it to the
matched entities.

If is_discovery_protected is FALSE then the CryptoKeyFactory,
CryptoKeyExchange and CryptoTransform operations will
not be called.

If is_discovery_protected is TRUE, the submessages sent by the
DCPSPublicationsSecure and DCPSSubscriptionsSecure
DataWriters shall be transformed using the CryptoTransform

operation encode_datawriter_submessage and the messages

received from the matched DataReaders shall be transformed
using the CryptoTransform operation

decode_datareader_submessage.

If is_discovery_protected is TRUE, the submessages sent by the
DCPSPublicationsSecure and DCPSSubscriptionsSecure
DataReaders shall be transformed using the CryptoTransform

operation encode_datareader_submessage and the messages
received from the matched DataWriters shall be transformed

using the CryptoTransform operation

Deleted: 3

Deleted: I

96 DDS Security, v1.1

decode_datawriter_submessage.

Independent of the setting of is_discovery_protected, the
CryptoTransform operations encode_serialized_payload
and decode_serialized_payload shall never be called for the
DCPSPublicationsSecure and DCPSSubscriptionsSecure entities.

DDS Security, v1.1 97

is_liveliness_
protected

Boolean Indicates the DDS middleware shall call the operations on the
CryptoKeyFactory, CryptoKeyExchange, and

CryptoTransform for the BuiltinParticipantMessageSecure
entities:

If is_liveliness_protected is TRUE then the CryptoKeyFactory,
CryptoKeyExchange operations shall be called for the
BuiltinParticipantMessageSecure entities to create the associated
cryptographic material and send it to the matched entities.

If is_liveliness_protected is FALSE then the CryptoKeyFactory,
CryptoKeyExchange and CryptoTransform operations will not be
called.

If is_liveliness_protected is TRUE, the submessages sent by the
BuiltinParticipantMessageSecure DataWriter shall be

transformed using the CryptoTransform operation
encode_datawriter_submessage and the messages received

from the matched DataReaders shall be transformed using the
CryptoTransform operation

decode_datareader_submessage.

If is_liveliness_protected is TRUE, the submessages sent by the
BuiltinParticipantMessageSecure DataReader shall be
transformed using the CryptoTransform operation

encode_datareader_submessage and the messages received
from the matched DataWriters shall be transformed using the

CryptoTransform operation
decode_datawriter_submessage.

Independent of the setting of is_liveliness_protected, the
CryptoTransform operations encode_serialized_payload

and decode_serialized_payload shall never be called for the
BuiltinParticipantMessageSecure entities.

plugin_partici
pant_attribut
es

PluginP
articipa
ntSecuri
tyAttrib
utesMas
k

This field is a holder for plugin-specific information that is
propagated via discovery as part of the ParticipantSecurityInfo (see
7.2.7).

The definition for the builtin plugins can be found in clause 9.4.2.4.

ac_participan
t_properties

Propert
ySeq

Additional properties to add to the participant_properties parameter
passed to the CryptoKeyFactory operation

register_local_participant. See 8.5.1.7.1.

The returned ac_participant_properties and their interpretation shall
be specified by each plugin implementation.

[DDSSEC11-137 Missing Mechanism for Detecting Incompatibilities in ParticipantSecurityA…]

98 DDS Security, v1.1

8.4.2.5 Definition of the ParticipantSecurityAttributesMask

The ParticipantSecurityAttributesMask is used to encode the value of the

ParticipantSecurityAttributes in a compact way such that it can be included in the

ParticipantSecurityInfo, see 7.2.8.

The mapping of the ParticipantSecurityAttributes to

ParticipantSecurityAttributesMask shall be as follows:

Table 28 – Mapping of fields ParticipantSecurityAttributes to bits in ParticipantSecurityAttributesMask

Field in
ParticipantSecurityAttributes

Corresponding bit in the
ParticipantSecurityAttributesMask

allow_unauthenticated_participants No mapping, this attribute is not checked
remotely.

is_access_protected No mapping, this attribute is not checked
remotely.

is_rtps_protected #define
PARTICIPANT_SECURITY_ATTRIBUTES_FLAG_IS_
RTPS_PROTECTED (0x00000001 << 0)

is_discovery_protected #define
PARTICIPANT_SECURITY_ATTRIBUTES_FLAG_IS_
DISCOVERY_PROTECTED (0x00000001 << 1)|

is_liveliness_protected #define
PARTICIPANT_SECURITY_ATTRIBUTES_FLAG_IS_
LIVELINESS_PROTECTED (0x00000001 << 2)

is_valid #define
PARTICIPANT_SECURITY_ATTRIBUTES_FLAG_IS_
VALID (0x00000001 << 31)|

[DDSSEC11-16 AccessControl behavior does not show check_local_datawriter/reader ...]

8.4.2.6 TopicSecurityAttributes

The TopicSecurityAttributes describe how the middleware shall protect the Entity. This is a

structured type, whose members are described in the table below:

Formatted: Table caption, Don't keep with
next, Don't keep lines together

Deleted: 2828282725

DDS Security, v1.1 99

Table 29 – Description of the TopicSecurityAttributes

Member Type Meaning

is_read_protected Boolean Indicates if read access to the Topic is protected. If

is_read_protected is FALSE, then local DataReader

creation and remote DataReader matching can proceed

without further access-control mechanisms imposed.

Otherwise, they shall be checked using the

AccessControl operations.

is_write_protected Boolean Indicates if read access to the Topic is protected. If

is_write_protected is FALSE, then local DataWriter

creation and remote DataWriter matching can proceed

without further access-control mechanisms imposed.

Otherwise, they shall be checked using the

AccessControl operations.

is_discovery_protected Boolean Indicates the discovery information for the entity shall
be sent using a secure builtin discovery topics or the
regular builtin discovery topics:

If is_discovery_protected is TRUE then discovery
information for that entity shall be sent using the
SEDPbuiltinPublicationsSecureWriter
SEDPbuiltinSubscriptionsSecureWriter.

If is_discovery_protected is FALSE then discovery
information for that entity shall be sent using the
SEDPbuiltinPublicationsWriter or
SEDPbuiltinSubscriptionsWriter.

is_liveliness_protected Boolean The value of this attribute matters only if the
DataWriter LivelinessQos policy is
AUTOMATIC_LIVELINESS_QOS or
MANUAL_BY_PARTICIPANT_LIVELINESS_QOS. In this
case it indicates whether the liveliness information for
the entity shall be sent using the
BuiltinParticipantMessage or the
BuiltinParticipantMessageSecure builtin Topic.

If is_liveliness_protected is TRUE then the liveliness
heartbeats are sent using the
BuiltinParticipantMessageSecure builtin Topic.
Otherwise they are sent using the
BuiltinParticipantMessage builtin Topic.

8.4.2.7 EndpointSecurityAttributes

[DDSSEC11-16 AccessControl behavior does not show check_local_datawriter/reader ...]

Formatted: Table caption, Don't keep with
next, Don't keep lines together

Deleted: 2929292826

100 DDS Security, v1.1

The EndpointSecurityAttributes describe how the middleware shall protect the Entity. This

is a structured type, derived from TopicSecurityAttributes, whose additional members are described in

the table below:

[DDSSEC11-17 - Need a way to determine the builtinTopic used for the DataWriter…]

[DDSSEC11-72 EndpointSecurity's is_payload_protected is Insufficient...]

Table 30 – Description of the EndpointSecurityAttributes

Member Type Meaning

is_submessage_protected Boolean Indicates the DDS middleware shall call
the operations on the CryptoKeyFactory,
CryptoKeyExchange, and
CryptoTransform for the entity:

If is_submessage_protected is TRUE, then
the CryptoKeyFactory,
CryptoKeyExchange operations shall be
called for that entity to create the
associated cryptographic material and
send it to the matched entities.

If is_submessage_protected is FALSE, then
the CryptoKeyFactory,
CryptoKeyExchange and
CryptoTransform operations are called
only if is_payload_protected is TRUE.

If is_submessage_protected is TRUE and
the entity is a DataWriter, the
submessages sent by the DataWriter
shall be transformed using the
CryptoTransform operation
encode_datawriter_submessage and the
messages received from the matched
DataReaders shall be transformed using
the CryptoTransform operation
decode_datareader_submessage.

 If is_submessage_protected is TRUE and
the entity is a DataReader, the
submessages sent by the DataReader
shall be transformed using the
CryptoTransform operation
encode_datareader_submessage and the
messages received from the matched
DataWriters shall be transformed using
the CryptoTransform operation
decode_datawriter_submessage.

Formatted: Table caption, Don't keep with
next, Don't keep lines together

Deleted: 3030302925

Deleted: is_access_protected ...

DDS Security, v1.1 101

is_payload_protected Boolean Indicates the DDS middleware shall call
the operations on the CryptoKeyFactory,
CryptoKeyExchange, and
CryptoTransform for the entity.

If is_payload_protected is TRUE, then the
CryptoKeyFactory, CryptoKeyExchange
operations shall be called for that
entitity to create the associated
cryptographic material and send it to
the matched entities.

If is_payload_protected is FALSE, then the
CryptoKeyFactory, CryptoKeyExchange
and CryptoTransform operations are
called only if is_payload_protected is
TRUE.

If is_ payload_protected is TRUE and the
entity is a DataWriter, the serialized
data sent by the DataWriter shall be
transformed by calling
encode_serialized_payload.

If is_ payload_protected is TRUE and the
entity is a DataReader, the serialized
data received by the DataReader shall be
transformed by calling
decode_serialized_payload

is_key_protected Indicates that the content of the
Instance Key is sensitive.

If is_key_protected is TRUE, then the DDS
middleware shall compute the KeyHash
for the Instance Key as described in
section 7.3.4.

If is_key_protected is FALSE, then the
DDS middleware should the compute
the KeyHash for the Instance Key as
described in clause 9.6.3.3 of the DDS-
RTPS specification [2].

plugin_endpoint_attr
ibutes

PluginEndpointSpecificAttribu
tesMask

This field is a holder for plugin-specific
information that is propagated via
discovery as part of the
EndpointSecurityInfo (see 7.2.8).

The definition for the builtin plugins can

102 DDS Security, v1.1

be found in 0

ac_endpoint_properti
es

PropertySeq Additional properties to add to the
datawriter_properties or
datareader_properties passed to the
CryptoKeyFactory operations
register_local_datawriter and

register_local_datareader.

The returned ac_endpoint_properties
and their interpretation shall be
specified by each plugin
implementation.

[DDSSEC11-106 Should differences in EndpointSecurityAttributesMask prevent matching?

Moved section added by DDSSEC11-38 as 7.2.7 and modified by DDSSC-106 to 8.4.2.8]

8.4.2.8 Definition of the EndpointSecurityAttributesMask

[DDSSEC11-38 Clarify whether governance settings for a DataWriter and a DataReader_...]

The EndpointSecurityAttributesMask is used to encode the value of the

EndpointSecurityAttributes in a compact way such that it can be included in the

EndpointSecurityInfo, see 7.2.8

The mapping of the EndpointSecurityAttributes to

EndpointSecurityAttributesMask shall be as defined in the table below:

[DDSSEC11-106 Should differences in EndpointSecurityAttributesMask prevent matching? This

text was originally created by DDSSEC11-38 in section 7.2.7 it was modified by DDSSEC11-16

and moved to 8.4.2.8 with additional modifications by DDSSEC-106]

[DDSSEC11-38 Clarify whether governance settings for a DataWriter and a DataReader_...]

[DDSSEC11-16 AccessControl behavior does not show check_local_datawriter/reader ...]

[DDSSEC11-106 Should differences in EndpointSecurityAttributesMask prevent matching?]

Table 31 – Mapping of fields EndpointSecurityAttributes to bits in EndpointSecurityAttributesMask

Field in
EndpointSecurityAtt
ributes

Corresponding bit in the EndpointSecurityAttributesMask

is_read_protected #define ENDPOINT_SECURITY_ATTRIBUTES_FLAG_IS_READ_PROTECTED
(0x00000001 << 0)

is_write_protected #define
ENDPOINT_SECURITY_ATTRIBUTES_FLAG_IS_WRITE_PROTECTED
(0x00000001 << 1)

is_discovery_protect
ed

#define
ENDPOINT_SECURITY_ATTRIBUTES_FLAG_IS_DISCOVERY_PROTECTED
(0x00000001 << 2)

Deleted: 09.4.2.6

Deleted: is_liveliness_protected ...

Deleted: 7.2.87.2.87.2.87.2.87.2.7

Formatted: Table caption, Don't keep with
next, Don't keep lines together

Deleted: 3131313027

DDS Security, v1.1 103

is_submessage_prot
ected

#define
ENDPOINT_SECURITY_ATTRIBUTES_FLAG_IS_SUBMESSAGE_PROTECTED
(0x00000001 << 3)

is_payload_protecte
d

#define
ENDPOINT_SECURITY_ATTRIBUTES_FLAG_IS_PAYLOAD_PROTECTED
(0x00000001 << 4)

is_key_protected #define ENDPOINT_SECURITY_ATTRIBUTES_FLAG_IS_KEY_PROTECTED
(0x00000001 << 5)

is_liveliness_protect
ed

#define
ENDPOINT_SECURITY_ATTRIBUTES_FLAG_IS_LIVELINESS_PROTECTED
(0x00000001 << 6)

is_valid #define ENDPOINT_SECURITY_ATTRIBUTES_FLAG_IS_VALID
(0x00000001 << 31)

8.4.2.9 AccessControl interface

[DDSSEC11-34 - Add Missing parameters to check_local_(datawriter/datareader)_match APIs]

[DDSSEC11-35 - Fix get_*_token in Table 23 To Be Consistent]

[DDSSEC11-112 No mechanism to free ParticipantSecurityAttributes …]

[DDSSEC11-16 AccessControl behavior does not show check_local_datawriter/reader ...]

Table 32 – AccessControl Interface

AccessControl

No Attributes

Operations

validate_local_perm

issions

 PermissionsHandle

auth_plugin AuthenticationPlugin

identity IdentityHandle

domain_id DomainId_t

participant_qos DomainParticipantQos

out: exception SecurityException

validate_remote_per

missions

 PermissionsHandle

auth_plugin AuthenticationPlugin

local_identity_han

dle

IdentityHandle

Formatted: Table caption

Deleted: 3232323126

104 DDS Security, v1.1

remote_identity_ha

ndle

IdentityHandle

remote_permissions

_token

PermissionsToken

remote_credential_

token

AuthenticatedPeerCredenti

alToken

out: exception SecurityException

check_create_partic

ipant

 Boolean

permissions_handle PermissionsHandle

domain_id DomainId_t

qos DomainParticipantQoS

out: exception SecurityException

DDS Security, v1.1 105

check_create_datawr

iter

 Boolean

permissions_handle PermissionsHandle

domain_id DomainId_t

topic_name String

qos DataWriterQoS

partition PartitionQosPolicy

data_tag DataTag

out: exception SecurityException

check_create_datare

ader

 Boolean

permissions_handle PermissionsHandle

domain_id DomainId_t

topic_name String

qos DataReaderQoS

partition PartitionQosPolicy

data_tag DataTag

out: exception SecurityException

check_create_topic Boolean

permissions_handle PermissionsHandle

domain_id DomainId_t

topic_name String

qos TopicQoS

out: exception SecurityException

check_local_datawri

ter_register_instan

ce

 Boolean

permissions_handle PermissionsHandle

writer DataWriter

key DynamicData

out: exception SecurityException

106 DDS Security, v1.1

check_local_datawri

ter_dispose_instanc

e

 Boolean

permissions_handle PermissionsHandle

writer DataWriter

key DynamicData

out: exception SecurityException

check_remote_partic

ipant

 Boolean

permissions_handle PermissionsHandle

domain_id DomainId_t

participant_data ParticipantBuiltinTopicDa

taSecure

out: exception SecurityException

check_remote_datawr

iter

 Boolean

permissions_handle PermissionsHandle

domain_id DomainId_t

publication_data PublicationBuiltinTopicDa

taSecure

out: exception SecurityException

check_remote_datare

ader

 Boolean

permissions_handle PermissionsHandle

domain_id DomainId_t

subscription_data SubscriptionBuiltinTopicD

ataSecure

out: relay_only Boolean

out: exception SecurityException

check_remote_topic Boolean

permissions_handle PermissionsHandle

DomainId_t domain_id

topic_data TopicBuiltinTopicData

out: exception SecurityException

DDS Security, v1.1 107

check_local_datawri

ter_match

 Boolean

writer_permissions

_handle

PermissionsHandle

reader_permissions

_handle

PermissionsHandle

publication_data PublicationBuiltInTopicDa

taSecure

subscription_data PublicationBuiltinTopicDa

taSecure

out: exception SecurityException

check_local_datarea

der_match

 Boolean

reader_permissions

_handle

PermissionsHandle

writer_permissions

_handle

PermissionsHandle

subscriber_partiti

on

PartitionQosPolicy

publication_data PublicationBuiltInTopicDa

taSecure

subscription_data PublicationBuiltinTopicDa

taSecure

out: exception SecurityException

check_remote_datawr

iter_register_insta

nce

 Boolean

permissions_handle PermissionsHandle

reader DataReader

publication_handle InstanceHandle_t

key DynamicData

instance_handle InstanceHandle_t

out: exception SecurityException

Deleted: writer_data_tag

Deleted: DataTag

Deleted: reader_data_tag

Deleted: DataTag

Deleted: reader_data_tag

Deleted: DataTag

Deleted: writer_data_tag

Deleted: DataTag

108 DDS Security, v1.1

check_remote_datawr

iter_dispose_instan

ce

 Boolean

permissions_handle PermissionsHandle

reader DataReader

publication_handle InstanceHandle_t

key DynamicData

out: exception SecurityException

get_permissions_tok

en

 Boolean

out:

permissions_token

PermissionsToken

handle PermissionsHandle

out: exception SecurityException

get_permissions_cre

dential_token

 Boolean

out:

permissions_creden

tial_token

PermissionsCredentialToke

n

handle PermissionsHandle

out: exception SecurityException

set_listener Boolean

listener AccessControlListener

out: exception SecurityException

return_permissions_

token

 Boolean

token PermissionsToken

out: exception SecurityException

return_permissions_

credential_token

 Boolean

permissions_creden

tial_token

PermissionsCredentialToke

n

out: exception SecurityException

get_participant_sec

_attributes

 Boolean

permissions_handle PermissionsHandle

out: attributes ParticipantSecurityAttrib

utes

out: exception SecurityException

Deleted: PermissionsToken

Deleted: exception

Deleted: PermissionsCredentialTok
en

DDS Security, v1.1 109

get_topic_sec_attri

butes

 Boolean

permissions_handle PermissionsHandle

topic_name string

out: attributes EndpointSecurityAttribute

s

out: exception SecurityException

get_datawriter_sec_

attributes

 Boolean

permissions_handle PermissionsHandle

topic_name string

partition PartitionQosPolicy

data_tag DataTagQosPolicy

out: attributes EndpointSecurityAttribute

s

out: exception SecurityException

get_datareader_sec_

attributes

 Boolean

permissions_handle PermissionsHandle

topic_name string

partition PartitionQosPolicy

data_tag DataTagQosPolicy

out: attributes EndpointSecurityAttribute

s

out: exception SecurityException

return_participant_

sec_attributes

 Boolean

attributes ParticipantSecurityAttrib

utes

out: exception SecurityException

return_datawriter_s

ec_attributes

 Boolean

attributes EndpointSecurityAttribute

s

out: exception SecurityException

110 DDS Security, v1.1

8.4.2.9.1 Operation: validate_local_permissions

Validates the permissions of the local DomainParticipant. The operation returns a

PermissionsHandle object, if successful. The PermissionsHandle can be used to locally

identify the permissions of the local DomainParticipant to the AccessControl plugin.

This operation shall be called before the DomainParticipant is enabled. It shall be called either

by the implementation of DomainParticipantFactory create_domain_participant or

DomainParticipant enable [1].

If an error occurs, this method shall return HandleNIL.

Parameter auth_plugin: The Authentication plugin, which validated the identity of the local

DomainParticipant. If this argument is nil, the operation shall return HandleNIL.

Parameter identity: The IdentityHandle returned by the authentication plugin from a successful

call to validate_local_identity.

Parameter domain_id: The DDS Domain Id of the DomainParticipant.

Parameter participant_qos: The DomainParticipantQos of the DomainParticipant.

Parameter exception: A SecurityException object, which provides details, in case this operation

returns HandleNIL.

8.4.2.9.2 Operation: validate_remote_permissions

Validates the permissions of the previously authenticated remote DomainParticipant, given the

PermissionsToken object received via DDS discovery and the

PermissionsCredentialToken obtained as part of the authentication process. The operation

returns a PermissionsHandle object, if successful.

If an error occurs, this method shall return HandleNIL.

Parameter auth_plugin: The Authentication plugin, which validated the identity of the remote

DomainParticipant. If this argument is nil, the operation shall return HandleNIL.

Parameter local_identity_handle: The IdentityHandle returned by the authentication plugin.

Parameter remote_identity_handle: The IdentityHandle returned by a successful call to the

validate_remote_identity operation on the Authentication plugin.

return_datareader_s

ec_attributes

 Boolean

attributes EndpointSecurityAttribute

s

out: exception SecurityException

DDS Security, v1.1 111

Parameter remote_permissions_token: The PermissionsToken of the remote

DomainParticipant received via DDS discovery inside the permissions_token member of the

ParticipantBuiltinTopicData. See 7.4.1.3.

Parameter remote_credential_token: The AuthenticatedPeerCredentialToken of the

remote DomainParticipant returned by the operation

get_authenticated_peer_credential_token on the Authentication plugin.

Parameter exception: A SecurityException object, which provides details, in case this

operation returns HandleNIL.

8.4.2.9.3 Operation: check_create_participant

Enforces the permissions of the local DomainParticipant. When the local

DomainParticipant is created, its permissions must allow it to join the DDS Domain specified

by the domain_id. Optionally the use of the specified value for the DomainParticipantQoS must

also be allowed by its permissions. The operation returns a Boolean value.

This operation shall be called before the DomainParticipant is enabled. It shall be called either

by the implementation of DomainParticipantFactory create_domain_participant or

DomainParticipant enable [1].

If an error occurs, this method shall return false.

Parameter permissions_handle: The PermissionsHandle object associated with the local

DomainParticipant. If this argument is nil, the operation shall return false.

Parameter domain_id: The domain id where the local DomainParticipant is about to be

created. If this argument is nil, the operation shall return false.

Parameter qos: The QoS policies of the local DomainParticipant. If this argument is nil, the

operation shall return false.

Parameter exception: A SecurityException object, which provides details in case this operation

returns false.

8.4.2.9.4 Operation: check_create_datawriter

Enforces the permissions of the local DomainParticipant. When the local

DomainParticipant creates a DataWriter for topic_name with the specified

DataWriterQos associated with the data_tag, its permissions must allow this. The operation

returns a Boolean object.

If an error occurs, this method shall return false.

Parameter permissions_handle: The PermissionsHandle object associated with the local

DomainParticipant. If this argument is nil, the operation shall return false.

Parameter domain_id: The DomainId_t of the local DomainParticipant to which the local

DataWriter will belong.

Parameter topic_name: The topic name that the DataWriter is supposed to write. If this argument

is nil, the operation shall return false.

112 DDS Security, v1.1

Parameter qos: The QoS policies of the local DataWriter. If this argument is nil, the operation

shall return false.

Parameter partition: The PartitionQosPolicy of the local Publisher to which the

DataWriter will belong.

Parameter data_tag: The data tags that the local DataWriter is requesting to be associated with its

data. This argument can be nil if it is not considered for access control.

Parameter exception: A SecurityException object, which provides details in case this operation

returns false.

8.4.2.9.5 Operation: check_create_datareader

Enforces the permissions of the local DomainParticipant. When the local

DomainParticipant creates a DataReader for a Topic for topic_name with the specified

DataReaderQos qos associated with the data_tag, its permissions must allow this. The operation

returns a Boolean value.

If an error occurs, this method shall return false.

Parameter permissions_handle: The PermissionsHandle object associated with the local

DomainParticipant. If this argument is nil, the operation shall return false.

Parameter domain_id: The DomainId_t of the local DomainParticipant to which the local

DataReader will belong.

Parameter topic_name: The topic name that the DataReader is supposed to read. If this argument

is nil, the operation shall return false.

Parameter qos: The QoS policies of the local DataReader. If this argument is nil, the operation

shall return false.

Parameter partition: The PartitionQosPolicy of the local Subscriber to which the

DataReader will belong.

Parameter data_tag: The data tags that the local DataReader is requesting read access to. This

argument can be nil if it is not considered for access control.

Parameter exception: A SecurityException object, which provides details in case this operation

returns false.

8.4.2.9.6 Operation: check_create_topic

Enforces the permissions of the local DomainParticipant. When an entity of the local

DomainParticipant creates a Topic with topic_name and TopicQos qos its permissions

must allow this. The operation returns a Boolean value.

If an error occurs, this method shall return false.

Parameter permissions_handle: The PermissionsHandle object associated with the local

DomainParticipant. If this argument is nil, the operation shall return false.

DDS Security, v1.1 113

Parameter domain_id: The DomainId_t of the local DomainParticipant that creates the

Topic.

Parameter topic_name: The topic name to be created. If this argument is nil, the operation shall

return false.

Parameter qos: The QoS policies of the local Topic. If this argument is nil, the operation shall return

false.

Parameter exception: A SecurityException object, which provides details in case this operation

returns false.

8.4.2.9.7 Operation: check_local_datawriter_register_instance

Enforces the permissions of the local DomainParticipant. In case the access control requires a

finer granularity at the instance level, this operation enforces the permissions of the local

DataWriter. The key identifies the instance being registered and permissions are checked to

determine if registration of the specified instance is allowed. The operation returns a Boolean value.

If an error occurs, this method shall return false.

Parameter permissions_handle: The PermissionsHandle object associated with the local

DomainParticipant. If this argument is nil, the operation shall return false.

Parameter writer: DataWriter object that registers the instance. If this argument is nil, the

operation shall return false.

Parameter key: The key of the instance for which the registration permissions are being checked. If

this argument is nil, the operation shall return false.

Parameter exception: A SecurityException object, which provides details in case this operation

returns false.

8.4.2.9.8 Operation: check_local_datawriter_dispose_instance

Enforces the permissions of the local DomainParticipant. In case the access control requires a

finer granularity at the instance level, this operation enforces the permissions of the local

DataWriter. The key has to match the permissions for disposing an instance. The operation returns

a Boolean object.

If an error occurs, this method shall return false.

Parameter permissions_handle: The PermissionsHandle object associated with the local

DomainParticipant. If this argument is nil, the operation shall return false.

Parameter writer: DataWriter object that registers the instance. If this argument is nil, the

operation shall return false.

Parameter key: The key identifies the instance being registered and the permissions are checked to

determine if disposal of the specified instance is allowed. If this argument is nil, the operation shall

return false.

Parameter exception: A SecurityException object, which provides details in case this operation

returns nil.

114 DDS Security, v1.1

8.4.2.9.9 Operation: check_remote_participant

Enforces the permissions of the remote DomainParticipant. When the remote

DomainParticipant is discovered, the domain_id and, optionally, the

DomainParticipantQoS are checked to verify that joining that DDS Domain and using that QoS

is allowed by its permissions. The operation returns a Boolean result.

If an error occurs, this method shall return false.

Parameter permissions_handle: The PermissionsHandle object associated with the remote

DomainParticipant. If this argument is nil, the operation shall return false.

Parameter domain_id: The domain id where the remote DomainParticipant is about to be

created. If this argument is nil, the operation shall return false.

Parameter participant_data: The ParticipantBuiltInTopicDataSecure object associated

with the remote DomainParticipant. If this argument is nil, the operation shall return false.

Parameter exception: A SecurityException object, which provides details in case this operation

returns nil.

8.4.2.9.10 Operation: check_remote_datawriter

Enforces the permissions of a remote DomainParticipant.

This operation shall be called by a DomainParticipant prior to matching a local DataReader

belonging to that DomainParticipant with a DataWriter belonging to a different (peer)

DomainParticipant.

This operation shall also be called whenever a DomainParticipant detects a QoS change for a

DataWriter belonging to a different (peer) DomainParticipant that is matched with a local

DataReader.

This operation verifies that the peer DomainParticipant has the permissions necessary to publish

data on the DDS Topic with name topic_name using the DataWriterQoS that appears in

publication_data. The operation returns a Boolean value.

If an error occurs, this method shall return false.

Parameter permissions_handle: The PermissionsHandle object associated with the remote

DomainParticipant. If this argument is nil, the operation shall return false.

Parameter domain_id: The domain id of the DomainParticipant to which the remote

DataWriter belongs.

Parameter publication_data: The PublicationBuiltInTopicDataSecure object associated

with the remote DataWriter. If this argument is nil, the operation shall return false.

Parameter exception: A SecurityException object, which provides details in case this operation

returns false.

8.4.2.9.11 Operation: check_remote_datareader

Enforces the permissions of a remote DomainParticipant.

DDS Security, v1.1 115

This operation shall be called by a DomainParticipant prior to matching a local DataWriter

belonging to that DomainParticipant with a DataReader belonging to a different (peer)

DomainParticipant.

This operation shall also be called whenever a DomainParticipant detects a QoS change for a

DataReader belonging to a different (peer) DomainParticipant that is matched with a local

DataWriter.

This operation verifies that the peer DomainParticipant has the permissions necessary to

subscribe to data on the DDS Topic with name topic_name using the DataReaderQoS that

appears in subscription_data. The operation returns a Boolean value and also sets the relay_only

output parameter.

If the operation returns true, the DDS middleware shall allow the local DataWriter to match with

the remote DataReader, if it returns false, it shall not allow it.

If the operation returns true, the relay_only parameter shall be remembered by the DDS middleware

and passed to the register_matched_remote_datareader operation on the

CryptoKeyFactory.

If an error occurs, this method shall return false.

Parameter permissions_handle: The PermissionsHandle object associated with the local

DomainParticipant. If this argument is nil, the operation shall return false.

Parameter domain_id: The domain id of the DomainParticipant to which the remote

DataReader belongs.

Parameter subscription_data: The SubscriptionBuiltInTopicDataSecure object

associated with the remote DataReader. If this argument is nil, the operation shall return false.

Parameter (out) relay_only: Boolean indicating whether the permissions of the remote

DataReader are restricted to relaying the information (understanding sequence numbers and other

SubmessageHeader information) but not decoding the data itself. This parameter is only

meaningful if the operation returns true.

Parameter exception: A SecurityException object, which provides details in case this operation

returns false.

8.4.2.9.12 Operation: check_remote_topic

Enforces the permissions of the remote DomainParticipant. When the remote

DomainParticipant creates a certain topic, the topic_name and optionally the TopicQoS

extracted from the topic_data are verified to ensure the remote DomainParticipant permissions

allow it to create the DDS Topic with the specified QoS. The operation returns a Boolean value.

If an error occurs, this method shall return false.

Parameter permissions_handle: The PermissionsHandle object associated with the remote

DomainParticipant. If this argument is nil, the operation shall return false.

Parameter topic_data: The TopicBuiltInTopicData object associated with the Topic. If this

argument is nil, the operation shall return false.

116 DDS Security, v1.1

Parameter exception: A SecurityException object, which provides details in case this operation

returns false.

8.4.2.9.13 Operation: check_local_datawriter_match

Provides the means for the AccessControl plugin to enforce access control rules that are based on

the DataTag associated with DataWriter and a matching DataReader.

The operation shall be called for any local DataWriter that matches a DataReader. The

operation shall be called after the operation check_local_datawriter has been called on the

local DataWriter and either check_local_datareader or check_remote_datareader

has been called on the DataReader.

This operation shall also be called when a local DataWriter, matched with a DataReader,

detects a change on the Qos of the DataReader.

The operation shall be called only if the aforementioned calls to check_local_datawriter and

check_local_datareader or check_remote_datareader are returned successfully.

The operation returns a Boolean value. If an error occurs, this method shall return false and the

SecurityException filled.

Parameter writer_permissions_handle: The PermissionsHandle object associated with the

DomainParticipant that contains the local DataWriter. If this argument is nil, the operation

shall return false.

Parameter reader_permissions_handle: The PermissionsHandle object associated with the

remote DomainParticipant. If this argument is nil, the operation shall return false.

[DDSSEC11-34 - Add Missing parameters to check_local_(datawriter/datareader)_match APIs]

Parameter publication_data: The PublicationBuiltInTopicDataSecure object associated

with the local DataWriter. If this argument is nil, the operation shall return false.

Parameter subscription_data: The SubscriptionBuiltInTopicDataSecure object

associated with the matched DataReader. If this argument is nil, the operation shall return false.

Parameter exception: A SecurityException object, which provides details in case this operation

returns false.

8.4.2.9.14 Operation: check_local_datareader_match

Provides the means for the AccessControl plugin to enforce access control rules that are based on

the DataTag associated with a DataReader and a matching DataWriter.

The operation shall be called for any local DataReader that matches a DataWriter. The

operation shall be called after the operation check_local_datareader has been called on the

local DataReader and either check_local_datawriter or check_remote_datawriter

has been called on the DataWriter.

This operation shall also be called when a local DataReader, matched with a DataWriter, detects

a change on the Qos of the DataWriter.

Deleted: Parameter publisher_partition:

The PartitionQosPolicy of the

Publisher that contains the local

DataWriter.¶

Parameter writer_data_tag: The DataTag

associated with the local DataWriter.¶

Parameter reader_data_tag: The DataTag

associated with the matched DataReader.

DDS Security, v1.1 117

The operation shall be called only if the aforementioned calls to check_local_datareader and

check_local_datawriter or check_remote_datawriter are returned successfully.

The operation returns a Boolean value. If an error occurs, this method shall return false and the

SecurityException filled.

Parameter writer_permissions_handle: The PermissionsHandle object associated with the

DomainParticipant that contains the local DataReader. If this argument is nil, the operation

shall return false.

Parameter reader_permissions_handle: The PermissionsHandle object associated with the

remote DomainParticipant. If this argument is nil, the operation shall return false.

[DDSSEC11-34 - Add Missing parameters to check_local_(datawriter/datareader)_match APIs]

Parameter subscription_data: The SubscriptionBuiltInTopicDataSecure object

associated with the local DataReader. If this argument is nil, the operation shall return false.

Parameter publication_data: The PublicationBuiltInTopicDataSecure object associated

with the matched DataWriter. If this argument is nil, the operation shall return false.

Parameter exception: A SecurityException object, which provides details in case this operation

returns false.

8.4.2.9.15 Operation: check_remote_datawriter_register_instance

Enforces the permissions of the remote DomainParticipant. In case the access control requires a

finer granularity at the instance level, this operation enforces the permissions of the remote

DataWriter. The key has to match the permissions for registering an instance. The operation

returns a Boolean value.

If an error occurs, this method shall return false.

Parameter permissions_handle: The PermissionsHandle object associated with the remote

DomainParticipant. If this argument is nil, the operation shall return false.

Parameter reader: The local DataReader object that is matched to the remote DataWriter that

registered an instance.

Parameter publication handle: Handle that identifies the remote DataWriter.

Parameter key: The key of the instance that needs to match the permissions for registering an

instance. If this argument is nil, the operation shall return false.

Parameter exception: A SecurityException object, which provides details in case this operation

returns false.

8.4.2.9.16 Operation: check_remote_datawriter_dispose_instance

Enforces the permissions of the remote DomainParticipant. In case the access control requires a

finer granularity at the instance level, this operation enforces the permissions of the remote

DataWriter. The key has to match the permissions for disposing an instance. The operation returns

a Boolean value.

Deleted: Parameter subscriber_partition:

The PartitionQosPolicy of the

Subscriber that contains the local

DataReader.¶

Parameter writer_data_tag: The DataTag

associated with the local DataWriter.¶

Parameter reader_data_tag: The DataTag

associated with the matched DataReader.

118 DDS Security, v1.1

If an error occurs, this method shall return false.

Parameter permissions_handle: The PermissionsHandle object associated with the remote

DomainParticipant. If this argument is nil, the operation shall return false.

Parameter reader: The local DataReader object that is matched to the Publication that disposed an

instance.

Parameter publication handle: Handle that identifies the remote Publication.

Parameter key: The key of the instance that needs to match the permissions for disposing an

instance. If this argument is nil, the operation shall return false.

Parameter exception: A SecurityException object, which provides details in case this operation

returns false.

8.4.2.9.17 Operation: get_permissions_token

Retrieves a PermissionsToken object. The PermissionsToken is propagated via DDS

discovery to summarize the permissions of the DomainParticipant identified by the specified

PermissionsHandle.

If an error occurs, this method shall return false.

Parameter permissions_token (out): The returned PermissionsToken.

Parameter handle: The handle used to locally identify the permissions of the DomainParticipant for

which a PermissionsToken is desired. If this argument is nil, the operation shall return nil.

Parameter exception: A SecurityException object, which provides details in case this operation

returns false.

8.4.2.9.18 Operation: get_permissions_credential_token

Retrieves a PermissionsCredentialToken object that can be used to represent on the network

the permissions of the DomainParticipant identified by the specified PermissionsHandle.

If an error occurs, this method shall return false.

Parameter permissions_credential_token (out): The returned

PermissionsCredentialToken.

Parameter handle: The PermissionsHandle used to locally identify the permissions of the

DomainParticipant for which a PermissionsCredentialToken is desired. If this

argument is nil, the operation shall return nil.

Parameter exception: A SecurityException object, which provides details in case this operation

returns false.

8.4.2.9.19 Operation: set_listener

Sets the listener for the AccessControl plugin.

If an error occurs, this method shall return false.

DDS Security, v1.1 119

Parameter listener: An AccessControlListener object to be attached to the

AccessControl plugin. If this argument is nil, the operation returns false.

Parameter exception: A SecurityException object, which provides details in case this operation

returns false.

8.4.2.9.20 Operation: return_permissions_token

Returns the PermissionsToken to the plugin for disposal.

Parameter token: A PermissionsToken to be disposed of. It should correspond to the

PermissionsToken returned by a prior call to get_permissions_token on the same plugin.

Parameter exception: A SecurityException object, which provides details in case this operation

returns false.

8.4.2.9.21 Operation: return_permissions_credential_token

Returns the PermissionsCredentialToken to the plugin for disposal.

Parameter permissions_credential_token: A PermissionsCredentialToken to be disposed

of. It should correspond to the PermissionsCredentialToken returned by a prior call to

get_permissions_credential_token on the same plugin.

Parameter exception: A SecurityException object, which provides details in case this operation

returns false.

8.4.2.9.22 Operation: get_participant_sec_attributes

Retrieves the ParticipantSecurityAttributes, which describe how the DDS middleware

should enforce the security and integrity of the information produced and consumed via the

DomainParticipant.

This operation shall be called by the DDS middleware as part of the creation or enabling of the DDS

DomainParticipant.

If an error occurs, this method shall return false.

Parameter permissions_handle: The PermissionsHandle object associated with the local

DomainParticipant. If this argument is nil, the operation shall return false.

Parameter (out) attributes: The returned ParticipantSecurityAttributes.

Parameter exception: A SecurityException object, which provides details in case this operation

returns false.

[DDSSEC11-16 AccessControl behavior does not show check_local_datawriter/reader ...]

8.4.2.9.23 Operation: get_topic_sec_attributes

Retrieves the TopicSecurityAttributes, which describes how the DDS middleware should

enforce the security and integrity of the information related to the DDS Topic.

This operation shall be called by the DDS middleware as part of the creation or enabling of a DDS

Topic. The operation shall be called before calling check_create_topic,

120 DDS Security, v1.1

check_create_datawriter, check_create_datareader,

check_remote_datawriter, check_remote_datareader,

check_remote_datawriter_match, or check_remote_datareader_match.

If an error occurs, this method shall return false.

Parameter permissions_handle: The PermissionsHandle object associated with the local

DomainParticipant. If this argument is nil, the operation shall return false.

Parameter topic_name: The name of the Topic. If this argument is nil, the operation shall return

false.

Parameter (out) attributes: The returned TopicSecurityAttributes.

Parameter exception: A SecurityException object, which provides details in case this operation

returns false.

8.4.2.9.24 Operation: get_datarwriter_sec_attributes

Retrieves the EndpointSecurityAttributes, which describes how the DDS middleware

should enforce the security and integrity of the information related to the DDS DataWriter

endpoint.

This operation shall be called by the DDS middleware as part of the creation or enabling of a DDS

DataWriter. The operation shall be called after calling check_create_datawriter.

If an error occurs, this method shall return false.

Parameter permissions_handle: The PermissionsHandle object associated with the local

DomainParticipant. If this argument is nil, the operation shall return false.

Parameter topic_name: The name of the Topic associated with the DataWriter. If this argument

is nil, the operation shall return false.

Parameter partition: The PartitionQosPolicy of the local Publisher to which the

DataWriter belongs.

Parameter data_tag: The DataTagQosPolicy associated with the DataWriter. This argument

can be nil.

Parameter (out) attributes: The returned EndpointSecurityAttributes.

Parameter exception: A SecurityException object, which provides details in case this operation

returns false.

8.4.2.9.25 Operation: get_datareader_sec_attributes

Retrieves the EndpointSecurityAttributes, which describes how the DDS middleware

should enforce the security and integrity of the information related to the DDS DataReader

endpoint.

This operation shall be called by the DDS middleware as part of the creation or enabling of a DDS

DataReader. The operation shall be called after calling check_create_datareader.

DDS Security, v1.1 121

If an error occurs, this method shall return false.

Parameter permissions_handle: The PermissionsHandle object associated with the local

DomainParticipant. If this argument is nil, the operation shall return false.

Parameter topic_name: The name of the Topic associated with the DataReader. If this argument

is nil, the operation shall return false.

Parameter partition: The PartitionQosPolicy of the local Subscriber to which the

DataReader belongs.

Parameter data_tag: The data tag associated with the DataReader. This argument can be nil.

Parameter (out) attributes: The returned EndpointSecurityAttributes.

Parameter exception: A SecurityException object, which provides details in case this operation

returns false.

[DDSSEC11-112 No mechanism to free ParticipantSecurityAttributes …]

8.4.2.9.26 Operation: return_participant_sec_attributes:

Returns the ParticipantSecurityAttributes to the plugin for disposal.

Parameter attributes: The ParticipantSecurityAttributes to return.

Parameter exception: A SecurityException object, which provides details in case this operation

returns false.

[DDSSEC11-112 No mechanism to free ParticipantSecurityAttributes …]

8.4.2.9.27 Operation: return_datawriter_sec_attributes:

Returns the EndpointSecurityAttributes to the plugin for disposal.

Parameter attributes: The EndpointSecurityAttributes to return.

Parameter exception: A SecurityException object, which provides details in case this operation

returns false.

[DDSSEC11-112 No mechanism to free ParticipantSecurityAttributes …]

8.4.2.9.28 Operation: return_datareader_sec_attributes:

Returns the EndpointSecurityAttributes to the plugin for disposal.

Parameter attributes: The EndpointSecurityAttributes to return.

Parameter exception: A SecurityException object, which provides details in case this operation

returns false.

122 DDS Security, v1.1

8.4.2.10 AccessControlListener interface

The purpose of the AccessControlListener is to be notified of all status changes for different

identities. For example, permissions can change; hence, the AccessControlListener is notified

and enforces the new permissions.

Table 33 – AccessControlListener interface

AccessControlListener

No Attributes

Operations

on_revoke_permissions Boolean

plugin AccessControl

handle PermissionsHandle

8.4.2.10.1 Operation: on_revoke_permissions

DomainParticipants’ Permissions can be revoked/changed. This listener provides a callback for

permission revocation/changes.

If an error occurs, this method shall return false.

Parameter plugin: The correspondent AccessControl object.

Parameter handle: A PermissionsHandle object that corresponds to the Permissions of a DDS

Participant whose permissions are being revoked.

8.5 Cryptographic Plugin

The Cryptographic plugin defines the types and operations necessary to support encryption,

digest, message authentication codes, and key exchange for DDS DomainParticipants,

DataWriters and DDS DataReaders.

Users of DDS may have specific cryptographic libraries they use for encryption, as well as, specific

requirements regarding the algorithms for digests, message authentication, and signing. In addition,

applications may require having only some of those functions performed, or performed only for certain

DDS Topics and not for others. Therefore, the plugin API has to be general enough to allow flexible

configuration and deployment scenarios.

8.5.1 Cryptographic Plugin Model

The Cryptographic plugin model is presented in the figure below. It combines related

cryptographic interfaces for key creation, key exchange, encryption, message authentication, hashing,

and signature.

Deleted: 3333333227

Formatted: Keep with next, Adjust space

between Latin and Asian text, Tab stops:
Not at 0.07" + 0.2" + 0.35" + 0.62" +
0.75" + 1.25" + 2.25" + 2.75" + 3.25" +
3.75" + 4.25" + 4.75" + 5.25" + 5.75"

Deleted: ¶
Page Break

DDS Security, v1.1 123

Figure 11 – Cryptographic Plugin Model

8.5.1.1 CryptoToken

This class represents a generic holder for key material. A CryptoToken object contains all the

information necessary to construct a set of keys to be used to encrypt and/or sign plain text

transforming it into cipher-text or to reverse those operations.

The format and interpretation of the CryptoToken depends on the implementation of the

Cryptographic plugin. Each plugin implementation shall fully define itself, so that applications are able

to interoperate. In general, the CryptoToken will contain one or more keys and any other necessary

material to perform crypto-transformation and/or verification, such as, initialization vectors (IVs),

salts, etc.

8.5.1.2 ParticipantCryptoHandle

The ParticipantCryptoHandle object is an opaque local reference that represents the key

material used to encrypt and sign whole RTPS Messages. It is used by the operations

encode_rtps_message and decode_rtps_message.

class Cryptographic

«interface»

Cryptographic

«interface»

CryptoKeyFactory

+ register_local_participant(): ParticipantCryptoHandle

+ register_matched_remote_participant(): ParticipantCryptoHandle

+ register_local_datawriter(): DatawriterCryptoHandle

+ register_matched_remote_datareader(): DatareaderCryptoHandle

+ register_local_datareader(): DatareaderCryptoHandle

+ register_matched_remote_datawriter(): DatawriterCryptoHandle

+ unregister_participant(): Boolean

+ unregister_datawriter(): Boolean

+ unregister_datareader(): Boolean

«primitive»

ParticipantCryptoHandle

«primitive»

DatawriterCryptoHandle

«primitive»

DatareaderCryptoHandle

«interface»

CryptoKeyExchange

+ create_local_participant_crypto_tokens(): Boolean

+ set_remote_participant_crypto_tokens(): Boolean

+ create_local_datawriter_crypto_tokens(): Boolean

+ set_remote_datawriter_crypto_tokens(): Boolean

+ create_local_datareader_crypto_tokens(): Boolean

+ set_remote_datareader_crypto_tokens(): Boolean

+ return_cypto_tokens(): Boolean

«interface»

CryptoTransform

+ encode_serialized_payload(): Boolean

+ encode_datawriter_submessage(): Boolean

+ encode_datareader_submessage(): Boolean

+ encode_rtps_message(): Boolean

+ decode_rtps_message(): Boolean

+ preprocess_secure_submessage(): Boolean

+ decode_datawriter_submessage(): Boolean

+ decode_datareader_submessage(): Boolean

+ decode_serialized_payload(): Boolean

Token

CryptoToken

«primitive»

IdentityHandle

«primitive»

PermissionsHandle

«dataType»

CryptoTransformIdentifier

- transformation_kind_id: octet[4]

- transformation_key_id: octet[4]

«primitive»

SharedSecretHandle

Property

SubmessageElement

SecureDataTag

- common_mac: char[]

- receiver_specific_macs: ReceiverSpecificMAC[]

«use»

124 DDS Security, v1.1

8.5.1.3 DatawriterCryptoHandle

The DatawriterCryptoHandle object is an opaque local reference that represents the key

material used to encrypt and sign RTPS submessages sent from a DataWriter. This includes the RTPS

submessages Data, DataFrag, Gap, Heartbeat, and HeartbeatFrag, as well as, the

SerializedPayload submessage element that appears in the Data and DataFrag submessages.

It is used by the operations encode_datawriter_submessage,

decode_datawriter_submessage, encode_serialized_payload, and

decode_serialized_payload.

8.5.1.4 DatareaderCryptoHandle

The DatareaderCryptoHandle object is an opaque local reference that represents the key

material used to encrypt and sign RTPS Submessages sent from a DataReader. This includes the

RTPS Submessages AckNack and NackFrag.

It is used by the operations encode_datareader_submessage,

decode_datareader_submessage.

8.5.1.5 CryptoTransformIdentifier

The CryptoTransformIdentifier object used to uniquely identify the transformation applied

on the sending side (encoding) so that the receiver can locate the necessary key material to perform the

inverse transformation (decoding). The generation of CryptoTransformIdentifier is

performed by the Cryptographic plugin.

To enable interoperability and avoid misinterpretation of the key material, the structure of the

CryptoTransformIdentifier is defined for all Cryptographic plugin implementations as

follows:

typedef octet CryptoTransformKind[4];

typedef octet CryptoTransformKeyId[4];

struct CryptoTransformIdentifier {

 CryptoTransformKind transformation_kind;

 CryptoTransformKeyId transformation_key_id;

};

Table 34 – CryptoTransformIdentifier class

CryptoTransformIdentifier

Attributes

transformation_kind CryptoTransformKind

transformation_key_id CryptoTransformKeyId

8.5.1.5.1 Attribute: transformation_kind

Uniquely identifies the type of cryptographic transformation.

Values of transformation_kind having the first two octets set to zero are reserved by this

specification, including future versions of this specification.

Formatted: Table caption

Deleted: 3434343328

DDS Security, v1.1 125

Implementers can use the transformation_kind attribute to identify non-standard cryptographic

transformations. In order to avoid collisions, the first two octets in the transformation_kind

shall be set to a registered RTPS VendorId [36]. The RTPS VendorId used shall either be one

reserved to the implementer of the Cryptographic Plugin, or else the implementer of the

Cryptographic Plugin shall secure permission from the registered owner of the RTPS

VendorId to use it.

8.5.1.5.2 Attribute: transformation_key_id

Uniquely identifies the key material used to perform a cryptographic transformation within the scope

of all Cryptographic Plugin transformations performed by the DDS DomainParticipant that

creates the key material.

In combination with the sending DomainParticipant GUID, the transformation_key_id

attribute allows the receiver to select the proper key material to decrypt/verify a message that has been

encrypted and/or signed. The use of this attribute allows a receiver to be robust to dynamic changes in

keys and key material in the sense that it can identify the correct key or at least detect that it does not

have the necessary keys and key material.

The values of the transformation_key_id are defined by the Cryptographic plugin

implementation and understood only by that plugin.

8.5.1.6 SecureSubmessageCategory_t

Enumerates the possible categories of RTPS submessages.

Table 35 – SecureSubmessageCategory_t

SecureSubmessageCategory_t

INFO_SUBMESSAGE Indicates an RTPS Info submessage: InfoSource, InfoDestination, or

InfoTimestamp.

DATAWRITER_SUMBES

SAGE

Indicates an RTPS submessage that was sent from a DataWriter: Data,

DataFrag, HeartBeat, Gap.

DATAREADER_SUMBES

SAGE

Indicates an RTPS submessage that was sent from a DataReader:

AckNack, NackFrag.

8.5.1.7 CryptoKeyFactory interface

This interface groups the operations related to the creation of keys used for encryption and digital

signing of both the data written by DDS applications and the RTPS submessage and message headers,

used to implement the discovery protocol, distribute the DDS data, implement the reliability protocol,

etc.

[DDSSEC11-3 How does the built-in Cryptographic plugin know whether to just Sign …]

Table 36 – CryptoKeyFactory Interface

CryptoKeyFactory

No Attributes

Operations

Formatted: Table caption

Deleted: 3535353429

Formatted: Table caption, Don't keep with
next

Deleted: 3636363530

126 DDS Security, v1.1

register_local_partic

ipant

 ParticipantCryptoHandle

participant_ide

ntity

IdentityHandle

participant_per

missions

PermissionsHandle

participant_pro

perties

PropertySeq

participant_sec

urity_attribute

s

ParticipantSecurityAttrib

utes

out: exception SecurityException

register_matched_remo

te_participant

 ParticipantCryptoHandle

local_participa

nt_crypto_handl

e

ParticipantCryptoHandle

remote_particip

ant_identity

IdentityHandle

remote_particip

ant_permissions

PermissionsHandle

shared_secret SharedSecretHandle

out: exception SecurityException

register_local_datawr

iter

 DatawriterCryptoHandle

participant_cry

pto

ParticipantCryptoHandle

datawriter_prop

erties

PropertySeq

datawriter_secu

rity_attributes

EndpointSecurityAttribute

s

out: exception SecurityException

DDS Security, v1.1 127

register_matched_remo

te_datareader

 DatareaderCryptoHandle

local_datawrite

r_crypto_handle

DatawriterCryptoHandle

remote_particip

ant_crypto

ParticipantCryptoHandle

shared_secret SharedSecretHandle

relay_only Boolean

out: exception SecurityException

register_local_datare

ader

 DatareaderCryptoHandle

participant_cry

pto

ParticipantCryptoHandle

datareader_prop

erties

PropertySeq

datareader_secu

rity_attributes

EndpointSecurityAttribute

s

out: exception SecurityException

register_matched_remo

te_datawriter

 DatawriterCryptoHandle

local_datareade

r_crypto_handle

DatareaderCryptoHandle

remote_particip

ant_crypt

ParticipantCryptoHandle

shared_secret SharedSecretHandle

out: exception SecurityException

unregister_participan

t

 Boolean

participant_cry

pto_handle

ParticipantCryptoHandle

out: exception SecurityException

unregister_datawriter Boolean

datawriter_cryp

to_handle

DatawriterCryptoHandle

out: exception SecurityException

128 DDS Security, v1.1

8.5.1.7.1 Operation: register_local_participant

Registers a local DomainParticipant with the Cryptographic Plugin. The

DomainParticipant must have been already authenticated and granted access to the DDS

Domain. The operation shall create any necessary key material that is needed to Encrypt and Sign

secure messages that are directed to other DDS DomainParticipant entities on the DDS Domain.

Parameter participant_identity: An IdentityHandle returned by a prior call to

validate_local_identity. If this argument is nil, the operation returns HandleNIL.

Parameter participant_permissions: A PermissionsHandle returned by a prior call to

validate_local_permissions. If this argument is nil, the operation returns HandleNIL.

[DDSSEC11-3 How does the built-in Cryptographic plugin know whether to just Sign …]

Parameter participant_properties: This parameter shall contain all the properties in the

PropertyQosPolicy of the local DomainParticipant whose name has the prefix

“dds.sec.crypto.” The purpose of this parameter is to allow configuration of the Cryptographic

Plugin by the DomainParticipant, e.g., selection of the cryptographic algorithm, key size, or

even setting of the key. The use of this parameter depends on the particular implementation of the

plugin and shall be specified for each implementation. Properties not understood by the plugin

implementation shall be silently ignored.

Parameter participant_security_attributes: The ParticipantSecurityAttributes returned

by the AccessControl get_participant_sec_attributes operation.

Parameter exception: A SecurityException object, which provides details in case this operation

returns HandleNIL.

8.5.1.7.2 Operation: register_matched_remote_participant

Registers a remote DomainParticipant with the Cryptographic Plugin. The remote

DomainParticipant must have been already Authenticated and granted Access to the DDS

Domain. The operation performs two functions:

1. It shall create any necessary key material needed to decrypt and verify the signatures of

messages received from that remote DomainParticipant and directed to the local

DomainParticipant.

2. It shall create any necessary key material that will be used by the local DomainParticipant

when encrypting or signing messages that are intended only for that remote

DomainParticipant.

Parameter local_participant_crypto_handle: A ParticipantCryptoHandle returned by a prior

call to register_local_participant. If this argument is nil, the operation returns false.

unregister_datareader Boolean

datareader_cryp

to_handle

DatareaderCryptoHandle

out: exception SecurityException

Deleted: combine the

PropertyQosPolicy of the local

DomainParticipant with the

ac_participant_properties in the
ParticipantSecurityAttributes

returned by the AccessControl
get_participant_sec_attributes

operation. In addition to the properties in the
ac_ participant_properties, the

participant_properties shall include

DDS Security, v1.1 129

Parameter remote_participant_identity: An IdentityHandle returned by a prior call to

validate_remote_identity. If this argument is nil, the operation returns nil.

Parameter participant_permissions: A PermissionsHandle returned by a prior call to

validate_remote_permissions. If this argument is nil, the operation returns nil

Parameter shared_secret: The SharedSecretHandle returned by a prior call to

get_shared_secret as a result of the successful completion of the Authentication handshake

between the local and remote DomainParticipant entities.

Parameter exception: A SecurityException object, which provides details in case this operation

returns false.

8.5.1.7.3 Operation: register_local_datawriter

Registers a local DataWriter with the Cryptographic Plugin. The fact that the DataWriter

was successfully created indicates that the DomainParticipant to which it belongs was

authenticated, granted access to the DDS Domain, and granted permission to create the DataWriter

on its Topic.

This operation shall create the cryptographic material necessary to encrypt and/or sign the data written

by the DataWriter and returns a DatawriterCryptoHandle to be used for any cryptographic

operations affecting messages sent or received by the DataWriter.

If an error occurs, this method shall return false. If it succeeds, the operation shall return an opaque

handle that can be used to refer to that key material.

Parameter participant_crypto: A ParticipantCryptoHandle returned by a prior call to

register_local_participant. It shall correspond to the ParticipantCryptoHandle

of the DomainParticipant to which the DataWriter belongs. If this argument is nil, the

operation returns false.

[DDSSEC11-3 How does the built-in Cryptographic plugin know whether to just Sign …]

Parameter local_datawriter_properties: This parameter shall contain all the properties in the

PropertyQosPolicy of the local DataWriter whose name has the prefix “dds.sec.crypto.”

The purpose of this parameter is to allow configuration of the Cryptographic Plugin by the

DataWriter, e.g., selection of the cryptographic algorithm, key size, or even setting of the key. The

use of this parameter depends on the particular implementation of the plugin and shall be specified for

each implementation. Properties not understood by the plugin implementation shall be silently ignored.

Parameter datawriter_security_attributes: The EndpointSecurityAttributes returned by

the AccessControl get_datawriter_sec_attributes operation.

Parameter exception: A SecurityException object, which provides details in case this operation

returns false.

8.5.1.7.4 Operation: register_matched_remote_datareader

Registers a remote DataReader with the Cryptographic Plugin. The remote DataReader

shall correspond to one that has been granted permissions to match with the local DataWriter.

Deleted: combine PropertyQosPolicy

of the local DataWriter with the

ac_endpoint_properties in the
EndpointSecurityAttributes

returned by the AccessControl
get_datawriter_sec_attributes

operation. In addition to the properties in the
ac_endpoint_properties, the

local_datawriter_properties shall include

130 DDS Security, v1.1

This operation shall create the cryptographic material necessary to encrypt and/or sign the RTPS

submessages (Data, DataFrag, Gap, Heartbeat, HeartbeatFrag) sent from the local

DataWriter to that DataReader. It shall also create the cryptographic material necessary to

process RTPS Submessages (AckNack, NackFrag) sent from the remote DataReader to the

DataWriter.

The operation shall associate the value of the relay_only parameter with the returned

DatawriterCryptoHandle. This information shall be used in the generation of the KeyToken

objects to be sent to the DataReader.

Parameter local_datawriter_crypto_handle: A DatawriterCryptoHandle returned by a prior

call to register_local_datawriter. If this argument is nil, the operation returns

HandleNIL.

Parameter remote_participant_crypto: A ParticipantCryptoHandle returned by a prior call

to register_matched_remote_participant. It shall correspond to the

ParticipantCryptoHandle of the DomainParticipant to which the remote DataReader

belongs. If this argument is nil, the operation returns HandleNIL.

Parameter shared_secret: The SharedSecretHandle returned by a prior call to

get_shared_secret as a result of the successful completion of the Authentication handshake

between the local and remote DomainParticipant entities.

Parameter relay_only: Boolean indicating whether the cryptographic material to be generated for the

remote DataReader shall contain everything, or only the material necessary to relay (store and

forward) the information (i.e., understand the SubmessageHeader) without being able to decode

the data itself (i.e., decode the SecureData).

Parameter exception: A SecurityException object, which provides details in case this operation

returns HandleNIL.

8.5.1.7.5 Operation: register_local_datareader

Registers a local DataReader with the Cryptographic Plugin. The fact that the DataReader

was successfully created indicates that the DomainParticipant to which it belongs was

authenticated, granted access to the DDS Domain, and granted permission to create the DataReader

on its Topic.

This operation shall create the cryptographic material necessary to encrypt and/or sign the messages

sent by the DataReader when the encryption/signature is independent of the targeted

DataWriter.

If successful, the operation returns a DatareaderCryptoHandle to be used for any cryptographic

operations affecting messages sent or received by the DataWriter.

Parameter participant_crypto: A ParticipantCryptoHandle returned by a prior call to

register_local_participant. It shall correspond to the ParticipantCryptoHandle

of the DomainParticipant to which the DataReader belongs. If this argument is nil, the

operation returns HandleNIL.

[DDSSEC11-3 How does the built-in Cryptographic plugin know whether to just Sign …]

DDS Security, v1.1 131

Parameter local_datareader_properties: This parameter shall contain all the properties in the

PropertyQosPolicy of the local DataReader whose name has the prefix “dds.sec.crypto.”

The purpose of this parameter is to allow configuration of the Cryptographic Plugin by the

DataReader, e.g., selection of the cryptographic algorithm, key size, or even setting of the key. The

use of this parameter depends on the particular implementation of the plugin and shall be specified for

each implementation. Properties not understood by the plugin implementation shall be silently ignored.

Parameter datareader_security_attributes: The EndpointSecurityAttributes returned by

the AccessControl get_datareader_sec_attributes operation.

Parameter exception: A SecurityException object, which provides details in case this operation

returns HandleNIL.

8.5.1.7.6 Operation: register_matched_remote_datawriter

Registers a remote DataWriter with the Cryptographic Plugin. The remote DataWriter

shall correspond to one that has been granted permissions to match with the local DataReader.

This operation shall create the cryptographic material necessary to decrypt and/or verify the signatures

of the RTPS submessages (Data, DataFrag, Heartbeat, HeartbeatFrag, Gap) sent from the

remote DataWriter to the DataReader. The operation shall also create the cryptographic material

necessary to encrypt and/or sign the RTPS submessages (AckNack, NackFrag) sent from the local

DataReader to the remote DataWriter.

Parameter local_datareader_crypto_handle: A DatareaderCryptoHandle returned by a prior

call to register_local_datareader. If this argument is nil, the operation returns nil.

Parameter remote_participant_crypto: A ParticipantCryptoHandle returned by a prior call

to register_matched_remote_participant. It shall correspond to the

ParticipantCryptoHandle of the DomainParticipant to which the remote

DataWriter belongs. If this argument is nil, the operation returns nil.

Parameter shared_secret: The SharedSecretHandle returned by a prior call to

get_shared_secret as a result of the successful completion of the Authentication handshake

between the local and remote DomainParticipant entities.

Parameter exception: A SecurityException object, which provides details in case this operation

returns HandleNIL.

8.5.1.7.7 Operation: unregister_participant

Releases the resources, associated with a DomainParticipant that the Cryptographic plugin

maintains. After calling this function, the DDS Implementation shall not use the

participant_crypto_handle anymore.

The DDS Implementation shall call this function when it determines that there will be no further

communication with the DDS DomainParticipant associated with the

participant_crypto_handle. Specifically, it shall be called when the application deletes a

local DomainParticipant and also when the DDS Discovery mechanism detects that a matched

DomainParticipant is no longer in the system.

Deleted: combine PropertyQosPolicy

of the local DataReader with the

ac_endpoint_properties in the
EndpointSecurityAttributes

returned by the AccessControl
get_datareader_sec_attributes

operation. In addition to the properties in the
ac_endpoint_properties, the

local_datareader_properties shall include

132 DDS Security, v1.1

Parameter participant_crypto_handle: A ParticipantCryptoHandle returned by a prior call

to register_local_participant, or register_matched_remote_participant if

this argument is nil, the operation returns false.

Parameter exception: A SecurityException object, which provides details in case this operation

returns false.

8.5.1.7.8 Operation: unregister_datawriter

Releases the resources, associated with a DataWriter that the Cryptographic plugin maintains. After

calling this function, the DDS Implementation shall not use the datawriter_crypto_handle

anymore.

The DDS Implementation shall call this function when it determines that there will be no further

communication with the DDS DataWriter associated with the datawriter_crypto_handle.

Specifically it shall be called when the application deletes a local DataWriter and also when the

DDS Discovery mechanism detects that a matched DataWriter is no longer in the system.

Parameter datawriter_crypto_handle: A ParticipantCryptoHandle returned by a prior call to

register_local_datawriter, or register_matched_remote_datawriter if this

argument is nil, the operation returns false.

Parameter exception: A SecurityException object, which provides details in case this operation

returns false.

8.5.1.7.9 Operation: unregister_datareader

Releases the resources, associated with a DataReader, that the Cryptographic plugin maintains.

After calling this function, the DDS Implementation shall not use the

datareader_crypto_handle anymore.

The DDS Implementation shall call this function when it determines that there will be no further

communication with the DDS DataReader associated with the datareader_crypto_handle.

Specifically it shall be called when the application deletes a local DataReader and also when the

DDS Discovery mechanism detects that a matched DataReader is no longer in the system.

Parameter datareader_crypto_handle: A ParticipantCryptoHandle returned by a prior call to

register_local_datareader, or register_matched_remote_datareader if this

argument is nil, the operation returns false.

Parameter exception: A SecurityException object, which provides details in case this operation

returns false.

DDS Security, v1.1 133

8.5.1.8 CryptoKeyExchange Interface

The key exchange interface manages the creation of keys and assist in the secure distribution of keys

and key material.

Table 37 – CryptoKeyExchange Interface

CryptoKeyExchange

No Attributes

Operations

create_local_partici

pant_crypto_tokens

 Boolean

out:

local_participan

t_crypto_tokens

ParticipantCryptoTokenSeq

local_participan

t_crypto

ParticipantCryptoHandle

remote_participa

nt_crypto

ParticipantCryptoHandle

out: exception SecurityException

set_remote_participa

nt_crypto_tokens

 Boolean

local_participan

t_crypto

ParticipantCryptoHandle

remote_participa

nt_crypto

ParticipantCryptoHandle

remote_participa

nt_tokens

ParticipantCryptoTokenSeq

out: exception SecurityException

create_local_datawri

ter_crypto_tokens

 Boolean

out:

local_datawriter

_crypto_tokens

DatawriterCryptoTokenSeq

local_datawriter

_crypto

DatawriterCryptoHandle

remote_datareade

r_crypto

DatareaderCryptoHandle

out: exception SecurityException

Formatted: Table caption

Deleted: 3737373631

134 DDS Security, v1.1

8.5.1.8.1 Operation: create_local_participant_crypto_tokens

This operation creates a sequence of CryptoToken tokens containing the information needed to

correctly interpret cipher text encoded using the local_participant_crypto. That is, the CryptoToken

sequence contains the information needed to decrypt any data encrypted using the

local_participant_crypto, as well as, verify any signatures produced using the

local_participant_crypto.

The returned CryptoToken sequence contains opaque data, which only the plugins understand. The

returned CryptoToken sequence is intended for transmission in “clear text” to the remote

set_remote_datawrite

r_crypto_tokens

 Boolean

local_datareader

_crypto

DatareaderCryptoHandle

remote_datawrite

r_crypto

DatawriterCryptoHandle

remote_datawrite

r_tokens

DatawriterCryptoTokenSeq

out: exception SecurityException

create_local_datarea

der_crypto_tokens

 Boolean

out:

local_datareader

_crypto_tokens

DatareaderCryptoTokenSeq

local_datareader

_crypto

DatareaderCryptoHandle

remote_datawrite

r_crypto

DatawriterCryptoHandle

out: exception SecurityException

set_remote_datareade

r_crypto_tokens

 Boolean

local_datawriter

_crypto

DatawriterCryptoHandle

remote_datareade

r_crypto

DatareaderCryptoHandle

remote_datareade

r_tokens

DatareaderCryptoTokenSeq

out: exception SecurityException

return_crypto_tokens Boolean

crypto_tokens CryptoTokenSeq

out: exception SecurityException

DDS Security, v1.1 135

DomainParticipant associated with the remote_participant_crypto so that the remote

DomainParticipant has access to the necessary key material. For this reason, the

CryptoKeyExchange plugin implementation may encrypt the sensitive information inside the

CryptoToken using shared secrets and keys obtained from the remote_participant_crypto. The

specific ways in which this is done depend on the plugin implementation.

[DDSSEC11-85 Additional typos/inconsistencies]

The DDS middleware implementation shall call this operation for each remote

DomainParticipant that matches a local DomainParticipant. That is, remote participants

that have been successfully authenticated and granted access by the AccessControl plugin. The

returned ParticipantCryptoTokenSeq shall be sent to the remote DomainParticipant

using the BuiltinParticipantVolatileMessageSecureWriter with kind set to

GMCLASSID_SECURITY_PARTICIPANT_CRYPTO_TOKENS (see 7.4.3.5). The returned

ParticipantCryptoTokenSeq sequence shall appear in the message_data attribute of the

ParticipantVolatileMessageSecure (see 7.4.4).

Parameter local_participant_crypto_tokens (out): The returned

ParticipantCryptoTokenSeq.

Parameter local_participant_crypto: A ParticipantCryptoHandle, returned by a previous

call to register_local_participant, which corresponds to the DomainParticipant that

will be encrypting and signing messages.

Parameter remote_participant_crypto: A ParticipantCryptoHandle, returned by a previous

call to register_matched_remote_participant, that corresponds to the

DomainParticipant that will be receiving the messages from the local DomainParticipant

and will be decrypting them and verifying their signature.

Parameter exception: A SecurityException object, which provides details in case this operation

returns false.

8.5.1.8.2 Operation: set_remote_participant_crypto_tokens

This operation shall be called by the DDS implementation upon reception of a message on the

BuiltinParticipantVolatileMessageSecureReader with kind set to

GMCLASSID_SECURITY_PARTICIPANT_CRYPTO_TOKENS (see 7.4.3.5).

The operation configures the Cryptographic plugin with the key material necessary to interpret

messages encoded by the remote DomainParticipant associated with the

remote_participant_crypto and destined to the local DomainParticipant associated with the

local_participant_crypto. The interpretation of the CryptoToken sequence is specific to each

Cryptographic plugin implementation. The CryptoToken sequence may contain information

that is encrypted and/or signed. Typical implementations of the Cryptographic plugin will use the

previously configured shared secret associated with the local and remote

ParticipantCryptoHandle to decode the CryptoToken sequence and retrieve the key

material within.

Parameter remote_participant_crypto: A ParticipantCryptoHandle, returned by a previous

call to register_matched_remote_participant, that corresponds to the

Deleted: Message

136 DDS Security, v1.1

DomainParticipant that will be sending the messages from the local DomainParticipant

and will be encrypting/signing them with the key material encoded in the CryptoToken sequence.

Parameter local_participant_crypto: A ParticipantCryptoHandle, returned by a previous

call to register_local_participant, that corresponds to the DomainParticipant that

will be receiving messages from the remote DomainParticipant and will need to decrypt and/or

verify their signature.

Parameter remote_participant_tokens: A ParticipantCryptoToken sequence received via

the BuiltinParticipantVolatileMessageSecureReader. The CryptoToken sequence shall correspond

to the one returned by a call to create_local_participant_crypto_tokens performed by

the remote DomainParticipant on the remote side.

Parameter exception: A SecurityException object, which provides details in case this operation

returns false.

8.5.1.8.3 Operation: create_local_datawriter_crypto_tokens

This operation creates a DatawriterCryptoTokenSeq containing the information needed to

correctly interpret cipher text encoded using the local_datawriter_crypto. That is, the

CryptoToken sequence contains that information needed to decrypt any data encrypted using the

local_datawriter_crypto as well as verify any signatures produced using the local_datawriter_crypto.

The returned CryptoToken sequence contains opaque data, which only the plugins understand. The

returned CryptoToken sequence shall be sent to the remote DataReader associated with the

remote_datareader_crypto so that the remote DataReader has access to the necessary key

material.

[DDSSEC11-7 Inconsistency in SubMessage and SubMessageElement naming ...]

The operation shall take into consideration the value of the relay_only parameter associated with the

DatawriterCryptoHandle (see 8.5.1.7.4) this parameter shall control whether the Tokens

returned contain all the cryptographic material needed to decode/verify both the RTPS SubMessage

and the CryptoContent submessage element within or just part of it.

If the value of the relay_only parameter was FALSE, the Tokens returned contain all the cryptographic

material.

If the value of the relay_only parameter was TRUE, the Tokens returned contain only the

cryptographic material needed to verify and decode the RTPS SubMessage but not the CryptoContent

submessage element within.

[DDSSEC11-88 Replace use of BuiltinTopicKey_t with GUID_t_...]

[DDSSEC11-85 Additional typos/inconsistencies]

The DDS middleware implementation shall call this operation for each remote DataReader that

matches a local DataWriter. The returned CryptoToken sequence shall be sent by the DDS

middleware to the remote DataReader using the BuiltinParticipantVolatileMessageSecureWriter

with kind set to GMCLASSID_SECURITY_DATAWRITER_CRYPTO_TOKENS(see 7.4.3.5). The

returned DatawriterCryptoToken shall appear in the message_data attribute of the

ParticipantVolatileMessageSecure (see 7.4.4.2). The source_endpoint_guid attribute shall be set to

Deleted: SecuredPayload

Deleted: SecuredPayload

Deleted: Message

Deleted: source_endpoint_key

DDS Security, v1.1 137

the GUID_t of the local DataWriter and the destination_endpoint_guid attribute shall be set to the

GUID_t of the remote DataReader.

Parameter local_datawriter_crypto_tokens: The returned DatawriterCryptoTokenSeq.

Parameter local_datawriter_crypto: A DatawriterCryptoHandle, returned by a previous call

to register_local_datawriter that corresponds to the DataWriter that will be encrypting

and signing messages.

Parameter remote_datareader_crypto: A DatareaderCryptoHandle, returned by a previous

call to register_matched_remote_datareader, that corresponds to the DataReader that

will be receiving the messages from the local DataWriter and will be decrypting them and

verifying their signature.

Parameter exception: A SecurityException object, which provides details in case this operation

returns false.

8.5.1.8.4 Operation: set_remote_datawriter_crypto_tokens

This operation shall be called by the DDS implementation upon reception of a message on the

BuiltinParticipantVolatileMessageSecureReader with kind set to

GMCLASSID_SECURITY_DATAWRITER_CRYPTO_TOKENS (see 7.4.3.5).

The operation configures the Cryptographic plugin with the key material necessary to interpret

messages encoded by the remote DataWriter associated with the

remote_datawriter_crypto and destined to the local DataReader associated with the

local_datareader_crypto. The interpretation of the DatawriterCryptoTokenSeq

sequence is specific to each Cryptographic plugin implementation. The CryptoToken sequence

may contain information that is encrypted and/or signed. Typical implementations of the

Cryptographic plugin will use the previously configured shared secret associated with the remote

DatawriterCryptoHandle and local DatareaderCryptoHandle to decode the

CryptoToken sequence and retrieve the key material within.

Parameter remote_datawriter_crypto: A DatawriterCryptoHandle, returned by a previous

call to register_matched_remote_datawriter, that corresponds to the DataWriter that

will be sending the messages to the local DataReader and will be encrypting/signing them with the

key material encoded in the CryptoToken.

Parameter local_datareader_crypto: A DatareaderCryptoHandle, returned by a previous call

to register_local_datareader, that corresponds to the DataReader that will be receiving

messages from the remote DataWriter and will need to decrypt and/or verify their signature.

Parameter remote_datawriter_tokens: A CryptoToken sequence received via the

BuiltinParticipantVolatileMessageSecureReader. The DatawriterCryptoToken shall

correspond to the one returned by a call to create_local_datawriter_crypto_tokens

performed by the remote DataWriter on the remote side.

Parameter exception: A SecurityException object, which provides details in case this operation

returns false.

Deleted: BuiltinTopicKey_t

Deleted: destination_endpoint_key

Deleted: BuiltinTopicKey_t

138 DDS Security, v1.1

8.5.1.8.5 Operation: create_local_datareader_crypto_tokens

This operation creates a DatareaderCryptoTokenSeq containing the information needed to

correctly interpret cipher text encoded using the local_datareader_crypto. That is, the CryptoToken

sequence contains that information needed to decrypt any data encrypted using the

local_datareader_crypto as well as verify any signatures produced using the local_datareader_crypto.

The returned CryptoToken sequence contains opaque data, which only the plugins understand. The

returned CryptoToken sequence shall be sent to the remote DataWriter associated with the

remote_datawriter_crypto so that the remote DataWriter has access to the necessary key material.

For this reason, the CryptoKeyExchange plugin implementation may encrypt the sensitive

information inside the CryptoToken sequence using shared secrets and keys obtained from the

remote_datawriter_crypto. The specific ways in which this is done depend on the plugin

implementation.

[DDSSEC11-88 Replace use of BuiltinTopicKey_t with GUID_t_...]

[DDSSEC11-85 Additional typos/inconsistencies]

The DDS middleware implementation shall call this operation for each remote DataWriter that

matches a local DataReader. The returned DatareaderCryptoTokenSeq shall be sent by the

DDS middleware to the remote DataWriter using the

BuiltinParticipantVolatileMessageSecureWriter with kind set to

GMCLASSID_SECURITY_DATAREADER_CRYPTO_TOKENS(see 7.4.4.2). The returned

DatareaderCryptoTokenSeq shall appear in the message_data attribute of the

ParticipantVolatileMessageSecure (see 7.4.4.2). The source_endpoint_guid attribute

shall be set to the GUID_t of the local DataReader and the destination_endpoint_guid attribute

shall be set to the GUID_t of the remote DataWriter.

Parameter local_datareader_crypto_tokens (out): The returned DatareaderCryptoTokenSeq.

Parameter local_datareader_crypto: A DatareaderCryptoHandle, returned by a previous call

to register_local_datareader, that corresponds to the DataReader that will be encrypting

and signing messages.

Parameter remote_datawriter_crypto: A DatawriterCryptoHandle, returned by a previous

call to register_matched_remote_datawriter, that corresponds to the DataWriter that

will be receiving the messages from the local DataReader and will be decrypting them and

verifying their signature.

Parameter exception: A SecurityException object, which provides details in case this operation

returns false.

8.5.1.8.6 Operation: set_remote_datareader_crypto_tokens

This operation shall be called by the DDS implementation upon reception of a message on the

BuiltinParticipantVolatileMessageSecureReader with kind set to

GMCLASSID_SECURITY_DATAREADER_CRYPTO_TOKENS(see 7.4.4.2).

The operation configures the Cryptographic plugin with the key material necessary to interpret

messages encoded by the remote DataReader associated with the remote_datareader_crypto and

destined to the local DataWriter associated with the local_datawriter_crypto. The interpretation of

Deleted: Message

Deleted: source_endpoint_key

Deleted: BuiltinTopicKey_t

Deleted: destination_endpoint_key

Deleted: BuiltinTopicKey_t

DDS Security, v1.1 139

the DatareaderCryptoTokenSeq is specific to each Cryptographic plugin implementation.

The CryptoToken sequence may contain information that is encrypted and/or signed. Typical

implementations of the Cryptographic plugin will use the previously configured shared secret

associated with the remote DatareaderCryptoHandle and local

DatawriterCryptoHandle to decode the CryptoToken sequence and retrieve the key material

within.

Parameter remote_datareader_crypto: A DatareaderCryptoHandle, returned by a previous

call to register_matched_remote_datareader, that corresponds to the DataReader that

will be sending the messages to the local DataWriter and will be encrypting/signing them with the

key material encoded in the CryptoToken sequence.

Parameter local_datawriter_crypto: A DatawriterCryptoHandle returned by a previous call

to register_local_datawriter, that corresponds to the DataWriter that will be receiving

messages from the remote DataReader and will need to decrypt and/or verify their signature.

Parameter remote_datareader_tokens: A CryptoToken sequence received via the

BuiltinParticipantVolatileMessageSecureReader. The DatareaderCryptoToken shall

correspond to the one returned by a call to create_local_datareader_crypto_tokens

performed by the remote DataReader on the remote side.

Parameter exception: A SecurityException object, which provides details in case this operation

returns false.

8.5.1.8.7 Operation: return_crypto_tokens

Returns the tokens in the CryptoToken sequence to the plugin so the plugin can release any

information associated with it.

Parameter crypto_tokens: Contains CryptoToken objects issued by the plugin on a prior call to

one of the following operations:

 create_local_participant_crypto_tokens

 create_local_datawriter_crypto_tokens

 create_local_datareader_crypto_tokens

Parameter exception: A SecurityException object, which provides details in case this operation

returns false.

8.5.1.9 CryptoTransform interface

This interface groups the operations related to encrypting/decrypting, as well as, computing and

verifying both message digests (hashes) and Message Authentication Codes (MAC).

MACs may be used to verify both the (data) integrity and the authenticity of a message. The

computation of a MAC (also known as a keyed cryptographic hash function), takes as input a secret

key and an arbitrary-length message to be authenticated, and outputs a MAC. The MAC value protects

both a message's data integrity, as well as, its authenticity by allowing verifiers (who also possess the

secret key) to detect any changes to the message content.

140 DDS Security, v1.1

A Hash-based Message Authentication Code (HMAC) is a specialized way to compute MACs. While

an implementation of the plugin is not forced to use HMAC, and could use other MAC algorithms, the

API is chosen such that plugins can implement HMAC if they so choose.

The operations in the CryptoTransform Plugin are defined to be quite generic, taking an input

byte array to transform and producing the transformed array of bytes as an output. The DDS

implementation is only responsible for calling the operations in the CryptoTransform plugin at the

appropriate times as it generates and processes the RTPS messages, substitutes the input bytes with the

transformed bytes produced by the CryptoTransform operations, and proceeds to generate/send or

process the RTPS message as normal but with the replaced bytes. The decision of the kind of

transformation to perform (encrypt and/or produce a digest and/or a MAC and/or signature) is left to

the plugin implementation.

[DDSSEC11-66 Allow an Endpoint to configure a maximum number of "receiver-specific" …]

Table 38 – CryptoTransform interface

CryptoTransform

No Attributes

Operations

encode_serialized_pa

yload

 Boolean

out:

encoded_buffer

octet[]

out:

extra_inline_qos

octet[]

plain_buffer octet[]

sending_datawrit

er_crypto

DatawriterCryptoHandle

out: exception SecurityException

encode_datawriter_su

bmessage

 Boolean

out:

encoded_rtps_sub

message

octet[]

plain_rtps_subme

ssage

octet[]

sending_datawrit

er_crypto

DatawriterCryptoHandle

receiving_datare

ader_crypto_list

DatareaderCryptoHandle[]

inout:

receiving_datare

long

Formatted: Table caption, Don't keep with
next

Deleted: 3838383732

DDS Security, v1.1 141

ader_crypto_list

_index

out: exception SecurityException

142 DDS Security, v1.1

encode_datareader_su

bmessage

 Boolean

out:

encoded_rtps_sub

message

octet[]

plain_rtps_subme

ssage

octet[]

sending_dataread

er_crypto

DatareaderCryptoHandle

receiving_datawr

iter_crypto_list

DatawriterCryptoHandle[]

out: exception SecurityException

encode_rtps_message

 Boolean

out:

encoded_rtps_mes

sage

octet[]

plain_rtps_messa

ge

octet[]

sending_particip

ant_crypto

ParticipantCryptoHandle

receiving_partic

ipant_crypto_lis

t

ParticipantCryptoHandle[]

inout:

receiving_partic

ipant_crypto_lis

t_index

long

out: exception SecurityException

decode_rtps_message Boolean

out:

plain_buffer

octet[]

encoded_buffer octet[]

receiving_partic

ipant_crypto

ParticipantCryptoHandle

sending_particip

ant_crypto

ParticipantCryptoHandle

out: exception SecurityException

DDS Security, v1.1 143

preprocess_secure_su

bmsg

 Boolean

out:

datawriter_crypt

o

DatawriterCryptoHandle

out:

datareader_crypt

o

DatareaderCryptoHandle

out:

secure_submessag

e_category

DDS_SecureSumessageCatego

ry_t

in:

encoded_rtps_sub

message

octet[]

receiving_partic

ipant_crypto

ParticipantCryptoHandle

sending_particip

ant_crypto

ParticipantCryptoHandle

out: exception SecurityException

decode_datawriter_su

bmessage

 Boolean

out:

plain_rtps_subme

ssage

octet[]

encoded_rtps_sub

message

octet[]

receiving_datare

ader_crypto

DatareaderCryptoHandle

sending_datawrit

er_crypto

DatawriterCryptoHandle

out: exception SecurityException

144 DDS Security, v1.1

8.5.1.9.1 Operation: encode_serialized_payload

This operation shall be called by the DDS implementation as a result of the application calling the

write operation on the DataWriter associated with the DatawriterCryptoHandle specified in the

sending_datawriter_crypto parameter.

[DDSSEC11-7 Inconsistency in SubMessage and SubMessageElement naming ...]

The operation receives the data written by the DataWriter in serialized form wrapped inside the

RTPS SerializedPayload submessage element and shall output an RTPS CryptoContent

submessage element and a extra_inline_qos containing InlineQos formatted as a ParameterList,

see section 7.3.1.

If the returned extra_inline_qos is not empty, the parameters contained shall be added to the list of

inlineQos parameters present in the (Data or DataFrag) submessage. If the (Data or DataFrag)

submessage did not already have an inlineQos, then the inlineQos submessage element shall be added

and the submessage flags modified accordingly.

The DDS implementation shall call this operation for all outgoing RTPS Submessages with

submessage kind Data and DataFrag. The DDS implementation shall substitute the

decode_datareader_su

bmessage

 Boolean

out:

plain_rtps_subme

ssage

octet[]

encoded_rtps_sub

message

octet[]

receiving_datawr

iter_crypto

DatawriterCryptoHandle

sending_dataread

er_crypto

DatareaderCryptoHandle

out: exception SecurityException

decode_serialized_pa

yload

 Boolean

out:

plain_buffer

octet[]

encoded_buffer octet[]

inline_qos octet[]

receiving_datare

ader_crypto

DatareaderCryptoHandle

sending_datawrit

er_crypto

DatawriterCryptoHandle

out: exception SecurityException

Deleted: SecuredPayload

DDS Security, v1.1 145

SerializedPayload submessage element within the aforementioned RTPS submessages with the

CryptoContent produced by this operation.

The implementation of encode_serialized_payload can perform any desired cryptographic

transformation of the SerializedPayload using the key material in the

sending_datawriter_crypto, including encryption, addition of a MAC, and/or signature. The

encode_serialized_payload shall include in the extra_inline_qos or the CryptoContent

the CryptoTransformIdentifier and the additional information needed to identify the key

used and decode the CryptoContent submessage element.

[DDSSEC11-85 Additional typos/inconsistencies]

Figure 12 – Effect of encode_serialized_payload within an RTPS message

If an error occurs, this method shall return false.

Parameter encoded_buffer: The output containing the CryptoContent RTPS submessage element,

which shall be used to replace the input plain_buffer.

Parameter extra_inline_qos: The output containing additional parameters to be added to the inlineQos

ParamaterList in the submessage.

Parameter plain_buffer: The input containing the SerializedPayload RTPS submessage

element.

Parameter sending_datawriter_crypto: The DatawriterCryptoHandle returned by a previous

call to register_local_datawriter for the DataWriter that wrote the

SerializedPayload.

Parameter exception: A SecurityException object, which provides details in case this operation

returns false.

RTPS SubMessage

SerializedPayload

RTPS Header

encode_serialized_payload

RTPS SubMessage

RTPS Header

RTPS SubMessage

RTPS SubMessage

SerializedPayload*

C
ry

p
to

C
o

n
te

n
t CryptoHeader

CryptoFooter

Deleted: SecuredPayload

Deleted: SecuredPayload

Deleted: SecuredPayload

Formatted: Font: (Default) Times New

Roman, 8 pt, Not Bold, Font color: Pink,
Pattern: Clear (Light Yellow)

Deleted:

Deleted: SecuredPayload

146 DDS Security, v1.1

8.5.1.9.2 Operation: encode_datawriter_submessage

This operation shall be called by the DDS implementation whenever it has constructed an RTPS

submessage of kind Data, DataFrag, Gap, Heartbeat, or HeartbeatFrag.

The operation receives the DatawriterCryptoHandle of the DataWriter that is sending the

submessage, as well as, a list of DatareaderCryptoHandle corresponding to all the

DataReader entities to which the submessage is being sent.

[DDSSEC11-27 Inconsistent Behavior for Secure Volatile Endpoints]

In the case of BuiltinParticipantVolatileMessageSecureWriter (identified through the

DatawriterCryptoHandle), the DatareaderCryptoHandle list has ONE element

containing KxKey material derived from the SharedSecret as described in 9.5.2.1.2.

The operation receives the complete RTPS submessage as it would normally go onto the wire in the

parameter rtps_submessage and shall output one or more RTPS Submessages in the output

parameter encoded_rtps_submessage. The DDS implementation shall substitute the original RTPS

submessage that was passed in the rtps_submessage with the RTPS Submessages returned in the

encoded_rtps_submessage output parameter in the construction of the RTPS message that is

eventually sent to the intended recipients.

The implementation of encode_datawriter_submessage can perform any desired

cryptographic transformation of the RTPS Submessage using the key material in the

sending_datawriter_crypto; it can also add one or more MACs and/or signatures. The fact that the

cryptographic material associated with the list of intended DataReader entities is passed in the

parameter receiving_datareader_crypto_list allows the plugin implementation to include MACs that

may be computed differently for each DataReader.

The implementation of encode_datawriter_submessage shall include, within the RTPS

Submessages, the CryptoTransformIdentifier containing any additional information

necessary for the receiving plugin to identify the DatawriterCryptoHandle associated with the

DataWriter that sent the message, as well as, the DatareaderCryptoHandle associated with the

DataReader that is meant to process the submessage. How this is done depends on the plugin

implementation.

A typical implementation of encode_datawriter_submessage may output a

SecurePrefixSubMsg followed by a SecureBodySubMsg, followed by a

SecurePostfixSubMsg.

If an error occurs, this method shall return false.

[DDSSEC11-85 Additional typos/inconsistencies]

DDS Security, v1.1 147

Figure 13 – Effect of encode_datawriter_submessage within an RTPS message

Parameter encoded_rtps_submessage: The output containing one or more RTPS submessages, which

shall be used to replace the input rtps_submessage.

Parameter plain_rtps_submessage: The input containing the RTPS submessage created by a

DataWriter. This submessage will be one of following kinds: Data, DataFrag, Gap, Heartbeat,

and HeartbeatFrag.

Parameter sending_datawriter_crypto: The DatawriterCryptoHandle returned by a previous

call to register_local_datawriter for the DataWriter whose GUID is inside the rtps_submessage.

Parameter receiving_datareader_crypto_list: The list of DatareaderCryptoHandle returned by

previous calls to register_matched_remote_datareader for the DataReader entities to

which the submessage will be sent.

[DDSSEC11-66 Allow an Endpoint to configure a maximum number of "receiver-specific" …]

Parameter receiving_datareader_crypto_list_index: Index to the first element of the

receiving_datareader_crypto_list that should be used. This parameter allows the

encode_datawriter_submessage operation to be invoked multiple times for a given

plain_rtps_submessage, iterating over elements in the receiving_datawriter_crypto_list. Each iteration

prepares the encoded_rtps_submessage for a different set of data readers and advances the

receiving_datareader_crypto_list_index.

The receiving_datareader_crypto_list_index shall be set to 0 to start the iteration on a

plain_rtps_submessage. Subsequent calls may use a non-zero value of the index. If the index is non-

zero, then the plain_rtps_submessage shall be set to the empty sequence and the

encoded_rtps_submessage shall be the one returned by a previous call to the

encode_datawriter_submessage. The calls with non-zero values of the

receiving_datareader_crypto_list_index modify the encoded_rtps_submessage, replacing the

receiver-specifc parts of the encoded_rtps_submessage.

The operation fills the receiving_datawriter_crypto_list_index with the next index to use in

subsequent calls to encode_datawriter_submessage. The value

RTPS SubMessage

RTPS Header RTPS Header

RTPS SubMessage

RTPS SubMessage

RTPS SecurePrefix

RTPS SecurePostfix

RTPS SecureBody

RTPS SubMessage*

Formatted: Font: (Default) Times New
Roman, 12 pt, Not Bold

Deleted:

148 DDS Security, v1.1

receiving_datawriter_crypto_list_index = Length(receiving_datawriter_crypto_list) indicates that the

iteration over the receiving_datawriter_crypto_list is complete.

Parameter exception: A SecurityException object, which provides details in case this operation

returns false.

8.5.1.9.3 Operation: encode_datareader_submessage

This operation shall be called by the DDS implementation whenever it has constructed an RTPS

submessage of kind AckNack or NackFrag.

The operation receives the DatareaderCryptoHandle of the DataReader that is sending the

submessage, as well as, a list of DatawriterCryptoHandle corresponding to all the DataWriter

entities to which the submessage is being sent.

[DDSSEC11-27 Inconsistent Behavior for Secure Volatile Endpoints]

In the case of BuiltinParticipantVolatileMessageSecureReader (identified through the

DatawriterCryptoHandle), the DatawriterCryptoHandle list has ONE element

containing KxKey material derived from the SharedSecret as described in 9.5.2.1.2.

The operation receives the complete RTPS submessage as it would normally go onto the wire in the

parameter rtps_submessage and shall output one or more RTPS Submessages in the output

parameter encoded_rtps_submessage. The DDS implementation shall substitute the original RTPS

submessage that was passed in the rtps_submessage with the Submessages returned in the

encoded_rtps_submessage output parameter in the construction of the RTPS message that is

eventually sent to the intended recipients.

The implementation of encode_datareader_submessage can perform any desired

cryptographic transformation of the RTPS Submessage using the key material in the

sending_datareader_crypto, it can also add one or more MACs, and/or signatures. The fact

that the cryptographic material associated with the list of intended DataWriter entities is passed in

the parameter receiving_datawriter_crypto_list allows the plugin implementation to

include one of MAC that may be computed differently for each DataWriter.

The implementation of encode_datareader_submessage shall include within the

encoded_rtps_submessage the CryptoTransformIdentifier containing any additional

information necessary for the receiving plugin to identify the DatareaderCryptoHandle

associated with the DataReader that sent the message as well as the DatawriterCryptoHandle

associated with the DataWriter that is meant to process the submessage. How this is done depends on

the plugin implementation.

A typical implementation of encode_datareader_submessage may output a

SecurePrefixSubMsg followed by a SecureBodySubMsg, followed by a

SecurePostfixSubMsg.

If an error occurs, this method shall return false.

[DDSSEC11-85 Additional typos/inconsistencies]

DDS Security, v1.1 149

Figure 14 – Effect of encode_datareader_submessage within an RTPS message

Parameter encoded_rtps_submessage: The output containing one or more RTPS submessages, which

shall be used to replace the input rtps_submessage.

Parameter plain_rtps_submessage: The input containing the RTPS submessage created by a

DataReader. This submessage will be one of following kinds: AckNack, NackFrag.

Parameter sending_datareader_crypto: The DatareaderCryptoHandle returned by a previous

call to register_local_datareader for the DataReader whose GUID is inside the rtps_submessage.

Parameter receiving_datawriter_crypto_list: The list of DatawriterCryptoHandle returned by

previous calls to register_matched_remote_datawriter for the DataWriter entities to

which the submessage will be sent.

Parameter exception: A SecurityException object, which provides details in case this operation

returns false.

8.5.1.9.4 Operation: encode_rtps_message

This operation shall be called by the DDS implementation whenever it has constructed an RTPS

message prior to sending it on the wire.

The operation receives the ParticipantCryptoHandle of the DomainParticipant that is sending

the submessage, as well as, a list of ParticipantCryptoHandle corresponding to all the

DomainParticipant entities to which the submessage is being sent.

The operation receives the complete RTPS message as it would normally go onto the wire in the

parameter plain_rtps_message and shall also output an RTPS message in the output parameter

encoded_rtps_message. The DDS implementation shall substitute the original RTPS message that was

passed in the plain_rtps_message with the encoded_rtps_message returned by this operation and

proceed to send it to the intended recipients.

This operation may optionally not perform any transformation of the input RTPS message. In this case,

the operation shall return false but not set the exception object. In this situation the DDS

implementation shall send the original RTPS message.

RTPS SubMessage

RTPS Header RTPS Header

RTPS SubMessage

RTPS SubMessage

RTPS SecurePrefix

RTPS SecurePostfix

RTPS SecureBody

RTPS SubMessage*

Formatted: Font: (Default) Times New
Roman, 12 pt, Not Bold

Deleted:

150 DDS Security, v1.1

The implementation of encode_rtps_message may perform any desired cryptographic

transformation of the whole RTPS Message using the key material in the

sending_participant_crypto, it can also add one or more MACs, and/or signatures. The fact

that the cryptographic material associated with the list of intended DataWriter entities is passed in the

parameter receiving_participant_crypto_list allows the plugin implementation to

include one of MAC that may be computed differently for each destination DomainParticipant.

The implementation of encode_rtps_message shall include within the encoded_rtps_message

the CryptoTransformIdentifier containing any additional information beyond the one shared

via the CryptoToken that would be needed to identify the key used and decode the

encoded_rtps_message back into the original RTPS message.

A typical implementation of encode_rtps_message to provide authentication only may output

the RTPS Header followed by a SecureRTPSPrefixSubMsg followed by a

InfoSourceSubMsg (containing the information in the original RTPS Header so it can be

authenticated), followed by the submessages included in the input plain_rtps_message, followed by a

SecureRTPSPostfixSubMsg.

If an error occurs, this method shall return false and set the exception object.

[DDSSEC11-85 Additional typos/inconsistencies]

Figure 15 – Possible effect of encode_rtps within an RTPS message

Parameter encoded_rtps_message: The output containing the encoded RTPS message.

Parameter plain_rtps_message: The input containing the RTPS messages the DDS implementation

intended to send.

RTPS SubMessage

RTPS SubMessage

RTPS Header encode_rtps_message

RTPS SubMessage

RTPS Header(*)

RTPS SecureRTPSPrefix

RTPS SecureRTPSPostfix

INFO_SRC*

RTPS SubMessage*

RTPS SubMessage*

RTPS SubMessage*

RTPS SecureBody

Formatted: Font: (Default) Times New
Roman, 12 pt, Not Bold

Deleted:

DDS Security, v1.1 151

Parameter sending_participant_crypto: The ParticipantCryptoHandle returned by a

previous call to register_local_participant for the DomainParticipant whose GUID is inside the RTPS

Header.

Parameter receiving_participant_crypto_list: The list of ParticipantCryptoHandle returned

by previous calls to register_matched_remote_participant for the DomainParticipant

entities to which the message will be sent.

[DDSSEC11-66 Allow an Endpoint to configure a maximum number of "receiver-specific" …]

Parameter receiving_participant_crypto_list_index: Index to the first element of the

receiving_participant_crypto_list that should be used. This parameter allows the

encode_rtps_message operation to be invoked multiple times for a given plain_rtps_message,

iterating over elements in the receiving_receiving_participant_crypto_list. Each iteration prepares the

encoded_rtps_message for a different set of receiving domain participants and advances the

receiving_participant_crypto_list_index.

The receiving_participant_crypto_list_index shall be set to 0 to start the iteration on a

plain_rtps_message. Subsequent calls may use a non-zero value of the index. If the index is non-zero,

then the plain_rtps_message shall be set to the empty sequence and the encoded_rtps_message shall

be the one returned by a previous call to the encode_rtps_message. The calls with non-zero

values of the receiving_participant_crypto_list_index modify the encoded_rtps_message, replacing

the receiver-specifc parts of the encoded_rtps_message.

The operation fills the receiving_participant_crypto_list_index with the next index to use in

subsequent calls to encode_rtps_message. The value receiving_participant_crypto_list_index =

Length(receiving_participant_crypto_list) indicates that the iteration over the

receiving_participant_crypto_list is complete.

Parameter exception: A SecurityException object, which provides details in case this operation

returns false.

8.5.1.9.5 Operation: decode_rtps_message

This operation shall be called by the DDS implementation whenever it receives an RTPS message prior

to parsing it.

This operation shall reverse the transformation performed by the encode_rtps_message

operation, decrypting the content if appropriate and verifying any MACs or digital signatures that were

produced by the encode_rtps_message operation.

If an error occurs, this method shall return an exception.

[DDSSEC11-85 Additional typos/inconsistencies]

152 DDS Security, v1.1

Figure 16 – Possible effect of decode_rtps within an RTPS message

Parameter plain_rtps_message: The output containing the decoded RTPS message. The output

message shall contain the original RTPS message.

Parameter encoded_rtps_message: The input containing the encoded RTPS message the DDS

implementation received.

Parameter receiving_participant_crypto: The ParticipantCryptoHandle returned by previous

calls to register_local_participant for the DomainParticipant entity that received

the RTPS message.

Parameter sending_participant_crypto: The ParticipantCryptoHandle returned by a

previous call to register_matched_remote_participant for the DomainParticipant

that sent the RTPS message whose GUID is inside the RTPS Header.

Parameter exception: A SecurityException object, which provides details in case this operation

returns false.

8.5.1.9.6 Operation: preprocess_secure_submsg

[DDSSEC11-39 Use of Non-Existing Submessage SecureSubMsg and Flag ...]

RTPS SubMessage

RTPS SubMessage

SerializedPayload

RTPS Header
RTPS Header

Secure encoding

Secure decoding

Message Transformation

SerializedPayload

SecureRTPSPrefix

SecureRTPSPostfix

SecureBody

SecurePrefix

SecurePostfix

SecureBody

SerializedPayload

RTPS SubMessage

RTPS SubMessage

SerializedPayload*

C
ry

p
to

C
o

n
te

n
t

CryptoHeader

CryptoFooter

Formatted: Font: (Default) Times New
Roman, 12 pt, Not Bold

Deleted:

DDS Security, v1.1 153

This operation shall be called by the DDS implementation as a result of a DomainParticipant

receiving an RTPS.

The purpose of the operation is to determine whether the secure submessage was produced as a result

of a call to encode_datawriter_submessage or a call to

encode_datareader_submessage, and to retrieve the appropriate

DatawriterCryptoHandle and DatareaderCryptoHandle needed to decode the

submessage.

If the operation returns successfully, the DDS implementation shall call the appropriate decode

operation based on the returned SecureSubmessageCategory_t:

 If the returned SecureSubmessageCategory_t equals DATAWRITER_SUBMESSAGE,

then the DDS Implementation shall call decode_datawriter_submessage.

 If the returned SecureSubmessageCategory_t equals DATAREADER_SUBMESSAGE,

then the DDS Implementation shall call decode_datareader_submessage.

 If the returned SecureSubmessageCategory_t equals INFO_SUBMESSAGE, then the DDS

Implementation proceeds normally to process the submessage without further decoding.

[DDSSEC11-39 Use of Non-Existing Submessage SecureSubMsg and Flag ...]

Parameter secure_submessage_category: Output SecureSubmessageCategory_t. It shall be

set to DATAWRITER_SUBMESSAGE if the SecurePrefixSubMsg was created by a call to

encode_datawriter_submessage or set to DATAREADER_SUBMESSAGE if the

SecurePrefixSubMsg was created by a call to encode_datareader_submessage. If none

of these conditions apply, the operation shall return false.

Parameter datawriter_crypto: Output DatawriterCryptoHandle. The setting depends on the

returned value of secure_submessage_category:

 If secure_submessage_category is DATAWRITER_SUBMESSAGE, the

datawriter_crypto shall be the DatawriterCryptoHandle returned by a previous call

to register_matched_remote_datawriter for the DataWriter that wrote the RTPS

Submessage.

 If secure_submessage_category is DATAREADER_SUBMESSAGE, the

datawriter_crypto shall be the DatawriterCryptoHandle returned by a previous call

to register_local_datawriter for the DataWriter that is also the destination of the RTPS

Submessage.

Parameter datareader_crypto: Output DatareaderCryptoHandle. The setting depends on the

returned value of secure_submessage_category:

 If secure_submessage_category is DATAWRITER_SUBMESSAGE, the

datareader_crypto shall be the DatareaderCryptoHandle returned by a previous call

to register_local_datareader for the DataReader that is the destination of the RTPS

Submessage.

 If secure_submessage_category is DATAREADER_SUBMESSAGE, the

datareader_crypto shall be the DatareaderCryptoHandle returned by a previous call

to register_matched_remote_datareader for the DataReader that wrote the RTPS

Submessage.

Deleted: SecureSubMsg with the

MultiSubmsgFlag (see 7.3.6.2) set to
false

154 DDS Security, v1.1

Parameter encoded_rtps_message: The input containing the received RTPS message.

Parameter receiving_participant_crypto: The ParticipantCryptoHandle returned by previous

calls to register_local_participant for the DomainParticipant that received the RTPS

message.

Parameter sending_participant_crypto: The ParticipantCryptoHandle returned by a

previous call to register_matched_remote_participant for the DomainParticipant whose

GUID is inside the RTPS Header.

Parameter exception: A SecurityException object, which provides details in case this operation

returns false.

8.5.1.9.7 Operation: decode_datawriter_submessage

[DDSSEC11-39 Use of Non-Existing Submessage SecureSubMsg and Flag ...]

This operation shall be called by the DDS implementation as a result of receiving a

SecurePrefixSubMsg whenever the preceding call to preprocess_secure_submessage

identified the SecureSubmessageCategory_t as DATAWRITER_SUBMESSAGE.

This operation shall reverse the transformation performed by the

encode_datawriter_submessage operation, decrypting the content if appropriate and

verifying any MACs or digital signatures that were produced by the

encode_datawriter_submessage operation.

[DDSSEC11-39 Use of Non-Existing Submessage SecureSubMsg and Flag ...]

The DDS implementation shall substitute the RTPS SecurePrefixSubMsg and any associated

submessages following (for example, SecureBodySubMsg and SecurePostfixSubMsg) within

the received submessages with the RTPS Submessage produced by this operation.

If an error occurs, this method shall return false.

[DDSSEC11-85 Additional typos/inconsistencies]

Figure 17 – Effect of decode_datawriter_submessage within an RTPS message

RTPS SubMessage

RTPS Header RTPS Header

RTPS SubMessage

RTPS SubMessage

RTPS SecurePrefix

RTPS SecurePostfix

RTPS SecureBody

RTPS SubMessage*

Deleted: with the MultiSubmsgFlag set

to false

Deleted: submessage

Formatted: Font: (Default) Times New
Roman, 12 pt, Not Bold

Deleted:

DDS Security, v1.1 155

Parameter plain_rtps_submessage: The output containing the RTPS submessage created by a

DataWriter. This submessage will be one of following kinds: Data, DataFrag, Gap, Heartbeat,

and HeartbeatFrag.

[DDSSEC11-39 Use of Non-Existing Submessage SecureSubMsg and Flag ...]

Parameter encoded_rtps_submessage: The input containing the RTPS SecurePrefixSubMsg and

any associated submessages following (for example, SecureBodySubMsg and

SecurePostfixSubMsg), which were created by a call to

encode_datawriter_submessage.

Parameter receiving_datareader_crypto: The DatareaderCryptoHandle returned by the

preceding call to preprocess_secure_submessage performed on the received

SecurePrefixSubMsg. It shall contain the DatareaderCryptoHandle corresponding to the

DataReader that is receiving the RTPS Submessage.

Parameter sending_datawriter_crypto: The DatawriterCryptoHandle returned by the

preceding call to preprocess_secure_submsg performed on the received

SecurePrefixSubMsg. It shall contain the DatawriterCryptoHandle corresponding to the

DataWriter that is sending the RTPS Submessage.

Parameter exception: A SecurityException object, which provides details in case this

operation returns false.

8.5.1.9.8 Operation: decode_datareader_submessage

[DDSSEC11-39 Use of Non-Existing Submessage SecureSubMsg and Flag ...]

This operation shall be called by the DDS implementation as a result of receiving a

SecurePrefixSubMsg whenever the preceding call to preprocess_secure_submessage

identified the SecureSubmessageCategory_t as DATAREADER_SUBMESSAGE.

This operation shall reverse the transformation performed by the

encode_datareader_submessage operation, decrypting the content if appropriate and

verifying any MACs or digital signatures that were produced by the

encode_datareader_submessage operation.

[DDSSEC11-39 Use of Non-Existing Submessage SecureSubMsg and Flag ...]

The DDS implementation shall substitute the RTPS SecurePrefixSubMsg and any associated

submessages following (for example, SecureBodySubMsg and SecurePostfixSubMsg) within

the received submessages with the RTPS Submessage produced by this operation.

If an error occurs, this method shall return false.

[DDSSEC11-85 Additional typos/inconsistencies]

Deleted: submessage

Deleted: was

Deleted: with the MultiSubmsgFlag set

to false

Deleted: submessage

156 DDS Security, v1.1

Figure 18 – Effect of decode_datawriter_submessage within an RTPS message

Parameter plain_rtps_submessage: The output containing the RTPS submessage created by a

DataReader. This submessage will be one of following kinds: AckNack, NackFrag.

[DDSSEC11-39 Use of Non-Existing Submessage SecureSubMsg and Flag ...]

Parameter encoded_rtps_submessage: The input containing the RTPS SecurePrefixSubMsg and

any associated submessages following (for example, SecureBodySubMsg and

SecurePostfixSubMsg), which was created by a call to

encode_datareader_submessage.

Parameter receiving_datawriter_crypto: The DatawriterCryptoHandle returned by the

preceding call to preprocess_secure_subessage performed on the received

SecurePrefixSubMsg. It shall contain the DatawriterCryptoHandle corresponding to the

DataWriter that is receiving the RTPS Submessage.

Parameter sending_datareader_crypto: The DatareaderCryptoHandle returned by the

preceding call to preprocess_secure_submessage performed on the received

SecurePrefixSubMsg. It shall contain the DatareaderCryptoHandle corresponding to the

DataReader that is sending the RTPS Submessage.

8.5.1.9.9 Operation: decode_serialized_payload

[DDSSEC11-7 Inconsistency in SubMessage and SubMessageElement naming ...]

This operation shall be called by the DDS implementation as a result of a DataReader receiving a

Data or DataFrag submessage containing a CryptoContent RTPS submessage element (instead

of the normal SerializedPayload).

The operation shall receive in the inline_qos parameter the InlineQos RTPS SubmessageElement

that appeared in the RTPS Data submessage that carried the SerializedPayload.

The DDS implementation shall substitute the CryptoContent submessage element within the

received submessages with the SerializedPayload produced by this operation.

RTPS SubMessage

RTPS Header RTPS Header

RTPS SubMessage

RTPS SubMessage

RTPS SecurePrefix

RTPS SecurePostfix

RTPS SecureBody

RTPS SubMessage*

Formatted: Font: (Default) Times New
Roman, 12 pt, Not Bold

Deleted:

Deleted: submessage

Deleted: SecuredPayload

Deleted: SecuredPayload

DDS Security, v1.1 157

The implementation of decode_serialized_payload shall undo the cryptographic

transformation of the SerializedPayload that was performed by the corresponding call to

encode_serialized_payload on the DataWriter side. The DDS implementation shall use the

available information on the remote DataWriter that wrote the message and the receiving DataReader

to locate the corresponding DatawriterCryptoHandle and DatareaderCryptoHandle and

pass them as parameters to the operation. In addition, it shall use the

CryptoTransformIdentifier present in the CryptoContent to verify that the correct key

us available and obtain any additional data needed to decode the CryptoContent.

[DDSSEC11-85 Additional typos/inconsistencies]

Figure 19 – Effect of decode_serialized_payload within an RTPS message

If an error occurs, this method shall return false.

Parameter plain_buffer: The output containing the SerializedPayload RTPS submessage

element, which shall be used to replace the input plain_buffer.

Parameter encoded_buffer: The input containing the CryptoContent RTPS submessage element.

Parameter receiving_reader_crypto: The DatareaderCryptoHandle returned by a previous call

to register_local_datareader for the DataReader that received the Submessage

containing the CryptoContent.

Parameter sending_datawriter_crypto: The DatawriterCryptoHandle returned by a previous

call to register_matched_remote_datawriter for the DataWriter that wrote the

CryptoContent.

Parameter exception: A SecurityException object, which provides details in case this operation

returns false.

RTPS SubMessage

SerializedPayload

RTPS Header

decode_serialized_payload

RTPS SubMessage

RTPS Header

RTPS SubMessage

RTPS SubMessage

SerializedPayload*

C
ry

p
to

C
o

n
te

n
t CryptoHeader

CryptoFooter

Deleted: SecuredPayload

Deleted: SecuredPayload

Formatted: Font: (Default) Times New

Roman, 8 pt, Not Bold, Font color: Pink,
Pattern: Clear (Light Yellow)

Deleted:

Deleted: SecuredPayload

Deleted: SecuredPayload

Deleted: SecuredPayload

158 DDS Security, v1.1

8.6 The Logging Plugin

The Logging Control Plugin API defines the types and operations necessary to support logging of

security events for a DDS DomainParticipant.

8.6.1 Background (Non-Normative)

The Logging plugin provides the capability to log all security events, including expected behavior

and all security violations or errors. The goal is to create security logs that can be used to support

audits. The rest of the security plugins will use the logging API to log events.

The Logging plugin will add an ID to the log message that uniquely specifies the

DomainParticipant. It will also add a time-stamp to each log message.

The Logging API has two options for collecting log data. The first is to log all events to a local file

for collection and storage. The second is to distribute log events securely over DDS.

8.6.2 Logging Plugin Model

The logging model is shown in the figure below.

[DDSSEC11-29 Inconsistent Definition of BuiltinLoggingType]

Figure 20 – Logging Plugin Model

class Logging

SecurityPlugin

«interface»

Logging

+ enable_logging(): void

+ log(): void

+ set_log_options(): boolean

«primitive»

LogOptions

«interface»

LoggerListener

+ log_message(): Integer

BuiltinLoggingType

- facil ity: octet

- severity: int

- timestamp: Time_t

- hostname: string

- hostip: string

- appname: string

- procid: string

- msgid: string

- message: string

- structured_data: map<string, NameValuePairSeq>

NameValuePair

- name: string

- value: string

Formatted: Font: (Default) Times New
Roman, 12 pt, Not Bold

Deleted:

class Logging

SecurityPlugin

«interface»

Logging

+ enable_logging(): void

+ log(): void

+ set_log_options(): boolean

«primitive»

LogOptions

«interface»

LoggerListener

+ log_message(): int

BuiltinLoggingType

- facil ity: string

- severity: int

- timestamp: Time_t

- hostname: byte

- hostip: string

- procname: string

- procid: int

- msgid: int

- message: string

- structured_data: map<string, NameValuePair>

NameValuePair

- name: string

- value: string

DDS Security, v1.1 159

8.6.2.1 LogOptions

The LogOptions let the user control the log level and where to log. The options must be set before

logging starts and may not be changed at run-time after logging has commenced. This is to ensure that

an attacker cannot temporarily suspend logging while they violate security rules, and then start it up

again.

The options specify if the messages should be logged to a file and, if so, the file name. The

LogOptions also specify whether the log messages should be distributed to remote services or only

kept locally.

Table 39 – LogOptions values

LogOptions

Attributes

log_level Long

log_file String

distribute Boolean

8.6.2.1.1 Attribute: log_level

Specifies what level of log messages will be logged. Messages at or below the log_level are logged.

The levels are as follows, from low to high:

 FATAL_LEVEL – security error causing a shutdown or failure of the Domain Participant

 SEVERE_LEVEL – major security error or fault

 ERROR_LEVEL – minor security error or fault

 WARNING_LEVEL – undesirable or unexpected behavior

 NOTICE_LEVEL – important security event

 INFO_LEVEL – interesting security event

 DEBUG_LEVEL – detailed information on the flow of the security events

 TRACE_LEVEL – even more detailed information

8.6.2.1.2 Attribute: log_file

Specifies the full path to a local file for logging events. If the file already exists, the logger will append

log messages to the file. If it is NULL, then the logger will not log messages to a file.

8.6.2.1.3 Attribute: distribute

Specifies whether the log events should be distributed over DDS. If it is TRUE, each log message at or

above the log_level is published as a DDS Topic.

Formatted: Table caption, Don't keep with
next

Deleted: 3939393833

160 DDS Security, v1.1

8.6.2.2 Logging

Table 40 – Logging Interface

8.6.2.2.1 Operation: set_log_options

Sets the options for the logger. This must be called before enable_logging; it is an error to set the

options after logging has been enabled.

If the options are not successfully set, then the method shall return false.

Parameter options: the LogOptions object with the required options.

Parameter exception: A SecurityException object, which provides details in case this operation

returns false.

8.6.2.2.2 Operation: log

Log a message. The logger shall log the message if its log_level is at or above the level set in the

LogOptions. The Logger shall add to the message the RTPS GUID of the DomainParticipant

whose operations are being logged.

The Logger shall populate the facility, severity, and timestamp, fields. The Logger may populate

the hostname, hostip, appname, procid fields as appropriate. The Logger shall add an entry to the

structured_data field with the key “DDS”. This NameValuePair sequence shall include the

following name-value pairs:

Logging

No Attributes

Operations

set_log_options Boolean

options LogOptions

out: exception SecurityException

log void

log_level long

message String

category String

out:exception SecurityException

enable_logging void

out: exception SecurityException

set_listener Boolean

 listener LoggerListener

 out: exception SecurityException

Formatted: Table caption, Don't keep with
next, Don't keep lines together

Deleted: 4040403934

DDS Security, v1.1 161

Table 41 – Logger structured_data entries

Name Value

guid RTPS GUID of the DDS entity that triggered the log message

domain_id Domain Id of the DomainParticipant that triggered the log

message

plugin_class Identifier of the type of security plugin: Authentication,
AccessControl, Cryptographic, etc.

plugin_method Security plugin method name that triggered the log
message

The Logger may add more entries as appropriate for the error condition.

Parameter log_level: The level of the log message. It must correspond to one of the levels defined in

8.6.2.1.1.

Parameter message: The log message.

Parameter category: A category for the log message. This can be used to specify which security

plugin generated the message.

Parameter exception: A SecurityException object that will return an exception if there is an

error with logging.

8.6.2.2.3 Operation: enable_logging

Enables logging. After this method is called, any call to log shall log the messages according to the

options. After this method is called, the options may not be modified. This is to ensure that the logger

cannot be temporarily suspended to cover up an attack.

If the options are not successfully set, then the method shall return false.

Parameter options: the LogOptions object with the required options.

Parameter exception: A SecurityException object, which provides details in case this operation

returns false.

8.6.2.2.4 Operation: set_listener

Sets the LoggerListener that the Logger plugin will use to notify the application of log events.

If an error occurs, this method shall return false and fill the SecurityException.

Parameter listener: A LoggerListener object to be attached to the Logger object. If this

argument is NIL, it indicates that there shall be no listener.

Parameter exception: A SecurityException object, which provides details in case the operation

returns FALSE.

Formatted: Table caption, Don't keep with
next, Don't keep lines together

Deleted: 4141414035

162 DDS Security, v1.1

8.7 Data Tagging

Data tagging is the ability to add a security label or tag to data. This is often used to specify a

classification level of the data including information about its releasability. In a DDS context, it could

have several uses:

 It can be used for access control – access control would be granted based on the tag.

 It could be used for message prioritization.

 It could not be used by the middleware, and instead used by the application or other service.

8.7.1 Background (Non-Normative)

There are four different approaches to data tagging:

1. DataWriter tagging: data received from a certain DataWriter has the tag of the

DataWriter. This solution does not require the tag to be added to each individual sample.

2. Data instance tagging: each instance of the data has a tag. This solution does not require the tag to

be added to each individual sample.

3. Individual sample tagging: every DDS sample has its own tag attached.

4. Per-field sample tagging: very complex management of the tags.

This specification supports DataWriter tagging. This was considered the best choice as it meets the

majority of uses cases. It fits into the DDS paradigm, as the metadata for all samples from a

DataWriter is the same. It is also the highest performance, as the tag only needs to be exchanged

once when the DataWriter is discovered, not sent with each sample.

This approach directly supports typical use cases where each application or DomainParticipant

writes data on a Topic with a common set of tags (e.g., all at the same specified security level). For

use cases where an application creates data at different classifications, that application can create

multiple DataWriters with different tags.

8.7.2 DataTagging Model

The DataWriter tag will be associated with every sample written by the DataWriter. The

DataWriter DataTag is implemented as an immutable DataWriterQos. The DataWriter

DataTag shall be propagated via in the PublicationBuiltinTopicData as part of the DDS

discovery protocol.

The DataReader DataTag is implemented as an immutable DataReaderQos. The DataReader

DataTag shall be propagated via in the SubscriptionBuiltinTopicData as part of the DDS

discovery protocol.

8.8 Security Plugins Behavior

In the previous sub clauses, the functionality and APIs of each plugin have been described. This sub

clause provides additional information on how the plugins are integrated with the middleware.

8.8.1 Authentication and AccessControl behavior with local DomainParticipant

The figure below illustrates the functionality of the security plugins with regards to a local

DomainParticipant.

Deleted: ¶
<#>DataTagging Types¶

The following data types are used for the
DataTag included as part of both DataReader
and DataWriter Qos.¶

typedef DataTags DataTagQosPolicy;

DDS Security, v1.1 163

In this sub clause the term “DDS application” refers to the application code that calls the DDS API.

The term “DDS middleware” refers to a DDS Implementation that complies with the DDS Security

specification.

[DDSSEC11-82 OCSP stapling to enhance certificate status checking during handshake]

Figure 21 – Authentication and AccessControl sequence diagram with local DomainParticipant

This behavior sequence is triggered when the DDS application initiates the creation of a local

DomainParticipant by calling the create_participant operation on the

DomainParticipantFactory. The following are mandatory steps that the DDS middleware

shall perform prior to creating the DomainParticipant. The steps need not occur exactly as

described as long as the observable behavior matches the one described below.

[DDSSEC11-24 Rename NOT_ALLOWED_BY_SEC with

NOT_ALLOWED_BY_SECURITY_...]

[DDSSEC11-88 Replace use of BuiltinTopicKey_t with GUID_t_...]

The DDS middleware shall validate the identity of the application attempting to create the

DomainParticipant by calling the Authentication::validate_local_identity

operation, passing the domain_id, the DomainParticipantQos, and a

sd DDS::Security-Participant

Authentication

DDS-DiscoveryDDSApplication

Participant

(from DDS)

AccessControl

check_create_participant(): Boolean

get_participant_sec_attributes(): Boolean

get_permissions_credential_token(): Boolean

validate_local_identity(): ValidationResult_t

get_identity_token(): Boolean

«create»

validate_local_permissions(): PermissionsHandle

set_permissions_credential_and_token(): Boolean

configure(IdentityToken, IdentityStstusToken, PermissionsToken)

get_identity_status_token(): Boolean

get_permissions_token(): Boolean

Formatted: Font: (Default) Times New
Roman, 12 pt, Not Bold

Deleted:

sd DDS::Security-Participant

Authentication

DDS-DiscoveryDDSApplication

Participant AccessControl

«create»
validate_local_identity() :ValidationResult_t

validate_local_permissions() :PermissionsHandle

check_create_participant() :Boolean

get_identity_token() :Boolean

get_permissions_token() :Boolean

get_permissions_credential_token() :Boolean

set_permissions_credential_and_token() :Boolean

get_participant_sec_attributes() :Boolean

configure(IdentityToken, PermissionsToken)

164 DDS Security, v1.1

candidate_participant_guid. The Authentication plugin validates the identity of the local

DomainParticipant and returns an IdentityHandle for the holder of the identity

(DomainParticipant), which will be necessary for interacting with the access control plugin. The

validate_local_identity operation also returns an adjusted_participant_guid. If the identity

is not successfully validated, the DDS middleware shall not create the DomainParticipant and

the create_participant operation shall return NIL and set the return code to

NOT_ALLOWED_BY_SECURITY.

[DDSSEC11-82 OCSP stapling to enhance certificate status checking during handshake]

1. The DDS middleware shall validate that the DDS application has the necessary permissions

to join DDS domains by calling the

AccessControl::validate_local_permissions operation. The Access

Control plugin shall validate the permissions and issue a signed PermissionsHandle

for the holder of the identity (DomainParticipant). If the permissions are not

validated, the DomainParticipant shall not be created, the create_participant

operation shall return NIL and set the return code to NOT_ALLOWED_BY_SECURITY.

2. The DDS middleware shall verify that the DDS application has the necessary permissions

to join the specific Domain identified by the domainId by calling the operation

AccessControl::check_create_participant. If this operation returns FALSE,

the DomainParticipant shall not be created, the create_participant operation

shall return NIL and set the return code to NOT_ALLOWED_BY_SECURITY.

3. The DDS middleware shall call the get_identity_token operation to obtain the

IdentityToken object corresponding to the received IdentityHandle. The

IdentityToken object shall be placed in the ParticipantBuiltinTopicData sent via

discovery, see 7.4.1.3.

4. The DDS middleware shall call the get_identity_status_token operation to

obtain the IdentityStatusToken object corresponding to the received

IdentityHandle. If the returned IdentityStatusToken object is different than

TokenNIL, it shall be placed in the ParticipantBuiltinTopicDataSecure sent via secure

discovery, see 7.4.1.6.

5. The middleware shall call the get_permissions_token operation on the

AccessControl plugin to obtain the PermissionsToken object corresponding to the

received PermissionsHandle. The PermissionsToken shall be placed in the

ParticipantBuiltinTopicData sent via discovery, see 7.4.1.3.

6. The middleware calls the get_permissions_credential_token operation on

the AccessControl plugin, which returns the PermissionsCredentialToken

object corresponding to the received PermissionsHandle. The

PermissionsCredentialToken object is necessary to configure the

Authentication plugin.

7. The middleware calls the set_permissions_credential_and_token operation

on the Authentication plugin such that it can be sent during the authentication

handshake.

Deleted: candidate_participant_key

Deleted: adjusted_participant_key

DDS Security, v1.1 165

8. The middleware calls the get_participant_sec_attributes operation on the

AccessControl plugin to obtain the ParticipantSecurityAttributes such

that it knows how to handle remote participants that fail to authenticate.

9. The DomainParticipant’s IdentityToken, and PermissionsToken are used

to configure DDS discovery such that they are propagated inside the identity_token and the

permissions_token members of the ParticipantBuiltinTopicData. The

DomainParticipant’s IdentityStatusToken, is used to configure DDS

discovery such it is propagated inside the identity_status_token member of the

ParticipantBuiltinTopicDataSecure. This operation is internal to the DDS implementation

and therefore this API is not specified by the DDS Security specification. It is mentioned

here to provide guidance to implementers.

8.8.2 Authentication behavior with discovered DomainParticipant

Depending on the ParticipantSecurityAttributes returned by the AccessControl

operation get_participant_sec_attributes the DomainParticipant may allow

remote DomainParticipants that lack the ability to authenticate (e.g., do not implement DDS

Security) to match.

8.8.2.1 Behavior when allow_unauthenticated_participants is set to TRUE

If the ParticipantSecurityAttributes returned by the operation

get_participant_sec_attributes has the member

allow_unauthenticated_participants set to TRUE, the DomainParticipant shall

allow matching remote DomainParticipant entities that are not able to authenticate. Specifically:

 Discovered DomainParticipant entities that do not implement the DDS Security specification

or do not contain compatible Security Plugins shall be matched without the

DomainParticipant attempting to authenticate them and shall be treated as “Unauthenticated”

DomainParticipant entities.

 Discovered DomainParticipant entities that do implement the DDS Security specification and

declare compatible Security Plugins but fail the Authentication protocol shall be matched and

treated as “Unauthenticated” DomainParticipants entities.

For any matched “Unauthenticated” DomainParticipant entities, the DomainParticipant

shall match only the regular builtin Endpoints (ParticipantMessage, DCPSParticipants,

DCPSPublications, DCPSSubscriptions) and not the builtin secure Endpoints (see 7.4.5 for the

complete list).

For any matched authenticated DomainParticipant entities, the DomainParticipant

shall match all the builtin endpoints.

8.8.2.2 Behavior when allow_unauthenticated_participants is set to FALSE

If the ParticipantSecurityAttributes has the member

allow_unauthenticated_participants set to FALSE, the DomainParticipant shall

reject remote DomainParticipant entities that are not able to authenticate. Specifically:

166 DDS Security, v1.1

 Discovered DomainParticipant entities that do not implement the DDS Security specification

or do not contain compatible Security Plugins shall be rejected without the

DomainParticipant attempting to authenticate them.

 Discovered DomainParticipant entities that do implement the DDS Security specification,

declare compatible Security Plugins but fail the Authentication protocol shall be rejected.

 Discovered DomainParticipant entities that do implement the DDS Security specification and

declare compatible Security Plugins automatically "match" the ParticipantStatelessMessage builtin

endpoints to allow the authentication handshake to proceed.

 Discovered DomainParticipant entities that do implement the DDS Security specification,

declare compatible Security Plugins, and pass the Authentication protocol successfully shall be

matched and the DomainParticipant shall also match all the builtin endpoints of the

discovered DomainParticipant, except for the ParticipantStatelessMessage builtin endpoints,

which were already matched prior to the Authentication protocol.

The figure below illustrates the behavior of the security plugins with regards to a discovered

DomainParticipant that also implements the DDS Security specification and announces

compatible security plugins. The exact operations depend on the plugin implementations. The

sequence diagram shown below is just indicative of one possible sequence of events and matches what

the builtin DDS:Auth:PKI-DH plugin (see 9.3.3) does.

[DDSSEC11-31 Wrong ValidationResult_t VALIDATION_OK_WITH_FINAL_...]

[DDSSEC11-25 Correct VALIDATION_PENDING_CHALLENGE_MESSAGE]

Figure 22 – Authentication sequence diagram with discovered DomainParticipant

sd DDS::Security-RemoteParticipant

DDS-DiscoveryParticipant1 Participant2DDS-Protocol

«interface»

:Authentication

«interface»

:Authentication

process_handshake():

VALIDATION_OK_FINAL_MESSAGE

get_peer_permissions_credential_token():

Boolean

get_peer_permissions_credential_token():

Boolean

validate_remote_identity():

VALIDATION_PENDING_HANDSHAKE_MESSAGE

begin_handshake_reply(out: messageToken2, in:

messageToken1):

VALIDATION_PENDING_HANDSHAKE_MESSAGE

validate_remote_identity():

VALIDATION_PENDING_HANDSHAKE_REQUEST

process_handshake(): OK

discoveredParticipant(Participant2,

IdentityToken2, PermissionsToken2)

send(messageToken1)

begin_handshake_request(out: messageToken1):

VALIDATION_PENDING_HANDSHAKE_MESSAGE

send(messageToken3)

get_shared_secret(): SharedSecret

send(messageToken2)

get_shared_secret(): SharedSecret

discoveredParticipant(Participant1,

IdentityToken1, PermissionsToken1)

Formatted: Font: (Default) Times New
Roman, 12 pt, Not Bold

Deleted:

sd DDS::Security-RemoteParticipant

DDS-DiscoveryParticipant1 Participant2DDS-Protocol

«interface»

:Authentication

«interface»

:Authentication

discoveredParticipant(Participant1,

IdentityToken1, PermissionsToken1)

validate_remote_identity() :

PENDING_HANDSHAKE_MESSAGEdiscoveredParticipant(Participant2,

IdentityToken2, PermissionsToken2)

validate_remote_identity() :

PENDING_HANDSHAKE_REQUEST

begin_handshake_request(out: messageToken1) :

PENDING_HANDSHAKE_MESSAGE

send(messageToken1)

begin_handshake_reply(out: messageToken2,

in: messageToken1) :

PENDING_HANDSHAKE_MESSAGE
send(messageToken2)

process_handshake() :

OK_WITH_FINAL_MESSAGE

send(messageToken3)

process_handshake() :OK
get_shared_secret() :SharedSecret

get_peer_permissions_credential_token() :

Boolean

get_shared_secret() :SharedSecret

get_peer_permissions_credential_token() :

Boolean

DDS Security, v1.1 167

[DDSSEC11-31 Wrong ValidationResult_t VALIDATION_OK_WITH_FINAL_...]

[DDSSEC11-21 - Normative IDL does not match the documentation …]

[DDSSEC11-25 Correct VALIDATION_PENDING_CHALLENGE_MESSAGE]

[DDSSEC11-88 Replace use of BuiltinTopicKey_t with GUID_t_...]

1. Participant2 discovers Participant1via the discovery protocol. The

BuiltinParticipantTopicData contains the IdentityToken and

PermissionsToken of Participant1.

2. Participant2 calls the validate_remote_identity operation to validate the identity

of Participant1 passing the local IdentityHandle of Participant2 and the remote

IdentityToken and GUID_t of Participant1 received via discovery and obtains an

IdentityHandle for Participant1, needed for further operations involving Participant1.

The operation returns VALIDATION_PENDING_HANDSHAKE_MESSAGE indicating

that further handshake messages are needed to complete the validation and that Participant2

should wait for a HandshakeMessageToken to be received from Participant1.

Participant2 waits for this message.

3. Participant1 discovers Participant2 via the DDS discovery protocol. The

BuiltinParticipantTopicData contains the IdentityToken and

PermissionsToken of Participant2.

4. Participant1 calls the operation validate_remote_identity to validate the identity

of Participant2 passing the IdentityToken and PermissionsToken of Participant2

received via discovery and obtains an IdentityHandle for Participant2, needed for

further operations involving Participant2. The operation returns

VALIDATION_PENDING_HANDSHAKE_REQUEST indicating further handshake

messages are needed and Participant1 should initiate the handshake.

5. Participant1 calls begin_handshake_request to begin the requested handshake. The

operation outputs a HandshakeHandle and a HandshakeMessageToken

(messageToken1). The operation returns

VALIDATION_PENDING_HANDSHAKE_MESSAGE indicating authentication is not

complete and the returned messageToken1 needs to be sent to Participant2 and a reply

should be expected.

6. Participant1 sends the HandshakeMessageToken (messageToken1) to Participant2

using the BuiltinParticipantMessageWriter.

7. Participant2 receives the HandshakeMessageToken (messageToken1) on the

BuiltinParticipantMessageReader. Participant2 determines the message originated from a

remote DomainParticipant (Participant1) for which it had already called

validate_remote_identity where the function had returned

VALIDATION_PENDING_HANDSHAKE_REPLY.

8. Participant2 calls begin_handshake_reply passing the received

HandshakeMessageToken (messageToken1). The Authentication plugin

Deleted: PermissionsToken

168 DDS Security, v1.1

processes the HandshakeMessageToken (messageToken1) and outputs a

HandshakeMessageToken (messageToken2) in response and a HandshakeHandle.

The operation begin_handshake_reply returns

VALIDATION_PENDING_HANDSHAKE_MESSAGE, indicating authentication is not

complete and an additional message needs to be received.

9. Participant2 sends the HandshakeMessageToken (messageToken2) back to

Participant1 using the BuiltinParticipantMessageWriter.

10. Participant1 receives the HandshakeMessageToken (messageToken2) on the

BuiltinParticipantMessageReader. Participant1 determines this message originated from a

remote DomainParticipant (Participant2) for which it had already called

validate_remote_identity where the function had returned

VALIDATION_PENDING_HANDSHAKE_REQUEST.

11. Participant1 calls process_handshake passing the received

HandshakeMessageToken (messageToken2). The Authentication plugin processes

messageToken2, verifies it is a valid reply to the messageToken1 it had sent and outputs the

HandshakeMessageToken messageToken3 in response. The process_handshake

operation returns VALIDATION_OK_FINAL_MESSAGE, indicating authentication is

complete but the returned HandshakeMessageToken (messageToken3) must be sent to

Participant2.

12. Participant1 sends the HandshakeMessageToken (messageToken3) to Participant2

using the BuiltinParticipantMessageWriter.

13. Participant2 receives the HandshakeMessageToken (messageToken3) on the

BuiltinParticipantMessageReader. Participant2 determines this message originated from a

remote DomainParticipant (Participant1) for which it had already called the

operation begin_handshake_reply where the call had returned

VALIDATION_PENDING_HANDSHAKE_MESSAGE.

14. Participant2 calls the process_handshake operation, passing the received

HandshakeMessageToken (messageToken3). The Authentication plugin processes the

messageToken2, verifies it is a valid reply to the messageToken2 it had sent and returns

OK, indicating authentication is complete and no more messages need to be sent or

received.

15. Participant1, having completed the authentication of Participant2, calls the operation

get_shared_secret to retrieve the SharedSecret, which is used with the other

Plugins to create Tokens to exchange with Participant2.

16. Participant1, having completed the authentication of Participant2, calls the operation

get_authenticated_peer_credential_token to retrieve the

AuthenticatedPeerCredentialToken associated with Participant2, which is

used with the AccessControl plugin to determine the permissions that Participant1 will

grant to Participant2.

17. Participant2, having completed the authentication of Participant1, calls the operation

get_shared_secret to retrieve the SharedSecret, which is used with the other

Plugins to create Tokens to exchange with Participant1.

Deleted: _WITH

DDS Security, v1.1 169

18. Participant2, having completed the Authentication of Participant1, calls the operation

get_authenticated_peer_credential_token to retrieve the

AuthenticatedPeerCredentialToken associated with Participant2 which is used

with the AccessControl plugins to determine the permissions that Participant2 will

grant to Participant1.

8.8.3 DDS Entities impacted by the AccessControl operations

There are six types of DDS Entities: DomainParticipant, Topic, Publisher,

Subscriber, DataReader, and DataWriter. All these except the DomainParticipant are

defined as the DDS Domain Entities (subclause 2.2.2.1.2 of DDS [1]).

[DDSSEC11-4 - Name of builtin topic is DCPSParticipantMessage …]

The Domain Entities created by a DomainParticipant can be grouped into four categories:

 DDS-RTPS Protocol [2] Builtin Entities. These are domain entities used to read and write the

four builtin Topics: DCPSParticipants, DCPSTopics, DCPSPublications,

DCPSSubscriptions.

 Builtin Secure Entities. These are the Domain Entities related to the Builtin Secure

Endpoints defined in Section 7.4.5. These Entities are used to read and write the four

builtin secure topics: DCPSPublicationsSecure, DCPSSubscriptionsSecure,

DCPSParticipantMessageSecure, and DCPSParticipantVolatileMessageSecure.

 Other builtin Entities defined by the DDS-Security specification not included in the

“Builtin Secure Endpoints”. These are the BuiltinParticipantStatelessMessageWriter and the

BuiltinParticipantStatelessMessageReader.

 Application-defined Entities. These are any non-builtin Domain Entities.

The AccessControl plugin shall impact only the Builtin Secure Entities and the application-

defined Entities. It shall not impact the builtin entities defined by the DDS-RTPS Protocol

specification nor the BuiltinParticipantStatelessMessageWriter or the

BuiltinParticipantStatelessMessageReader.

AccessControl plugin operations can be grouped into 5 groups:

[DDSSEC11-112 No mechanism to free ParticipantSecurityAttributes …]

1. Group1. Operations related to DomainParticipant. These are: validate_local_permissions,

validate_remote_permissions, check_create_participant, get_permissions_token,

get_permissions_credential_token, set_listener, return_permissions_token,

return_permissions_credential_token, get_participant_sec_attributes,

return_participant_sec_attributes.

2. Group2. Operations related to the creation of local Domain Entities. These are:

check_create_topic, check_create_datawriter, check_create_datareader,

get_datawriter_sec_attributes, get_datareader_sec_attributes, return_datawriter_sec_attributes,

return_datareader_sec_attributes.

3. Group3. Operations related to write activities of local Domain Entities. These are:

check_local_datawriter_register_instance and check_local_datawriter_dispose_instance.

4. Group4. Operations related to discovery and match of remote Domain Entities. These are:

check_remote_topic, check_remote_datawriter, check_remote_datareader,

check_local_datawriter_match, and check_local_datareader_match.

170 DDS Security, v1.1

5. Group5. Operations related to the write activities of remote Domain Entities. These are:

check_remote_datawriter_register_instance and check_remote_datawriter_dispose_instance.

Table 42 below summarizes the DDS Entities affected by each operation group.

Table 42 – Impact of Access Control Operations to the DDS Builtin and Application-defined Entities

Entity
Category

Entity Impact by AccessControl operation in group

Group1 Group2 Group3 Group4 Group5

DomainPar
ticipant

 All created Yes No No No No

DDS-RTPS
Protocol
Builtin
Entities

See RTPS Protocol
specification [2]

Yes,
indirectly

No No No No

Deleted: Table 42Table 42Table 42Table 41

Formatted: Table caption

Deleted: 4242424136

DDS Security, v1.1 171

Builtin
Secure
Entities

SEDPbuiltinPublicat
ionsSecureWriter

SEDPbuiltinPublicat
ionsSecureReader

SEDPbuiltinSubscrip
tionsSecureWriter

SEDPbuiltinSubscrip
tionsSecureReader

BuiltinParticipantM
essageSecureWriter

BuiltinParticipantM
essageSecureReader

BuiltinParticipantVo
latileMessageSecure
Writer

BuiltinParticipantVo
latileMessageSecure
Reader

Yes,
indirectly

Only

get_datawriter_
sec_attributes

and

get_datareader_
sec_attributes

No

No

No

Other
builtin
Entities
defined by
DDS-
Security

BuiltinParticipantSt
atelessMessageWrit
er

BuiltinParticipantSt
atelessMessageRead
er

Yes,
indirectly

No No No No

Application
-defined
Domain
Entities

Publisher,
Subscriber

Yes,
indirectly

Yes, indirectly No Yes,
indirectly

No

Topic,

DataWriter,

DataReader

Yes,
indirectly

Yes Yes Yes Yes

The DomainParticipant entities are only impacted by AccessControl plugin operations in

Group1. The DomainParticipant is not created unless allowed by the AccessControl plugin.

Also the matching of a remote DomainParticipant must be allowed by the AccessControl

plugin. The full interaction is described in subclauses 8.8.1 and 8.8.6.

The DDS-RTPS Builtin Entities are impacted indirectly by AccessControl plugin operations in

Group1 in the sense that if the sense that the creation of the Entities is dependent on the successful

creation of the local DomainParticipant which is controlled by the Group1 operations. Likewise

the match of the remote entities is dependent on the successful match of a remote

DomainParticipant, which is also controlled by the Group1 operations.

Deleted: ¶
¶
¶
¶

172 DDS Security, v1.1

The DDS-RTPS Builtin Entities shall not be impacted by any of the operations in Group2, Group3,

Group4, or Group5.

The Secure Builtin Entities are impacted indirectly by AccessControl plugin operations in Group1

in the same way as the DDS-RTPS Builtin Entities.

The Secure Builtin Entities are impacted only by the get_datawriter_sec_attributes and

get_datareader_sec_attributes operations in Group2. They shall not be impacted by any

other Group2 operations. This means that the Secure Builtin Entities shall be created unconditionally

when the DomainParticipant is created. During the creation process of DataWriter entities the

get_datawriter_sec_attributes shall be called and likewise during the creation process of

DataReader entities the get_datareader_sec_attributes shall be called. The purpose of

calling these get_xxx_sec_attributes operations is to obtain the information necessary to call

the Cryptographic plugin operations on these endpoints.

The BuiltinParticipantStatelessMessageWriter and BuiltinParticipantStatelessMessageReader are

only indirectly impacted by the Group2 operations in that they are tied to the successful creation of the

DomainParticipant. They are not impacted by the successful match of remote entities not any

other AccessControl plugin operations in any Group. DDS Secure implementations shall create

these endpoints unconditionally for all created DomainParticipant. Being stateless these

endpoints are not “matched” to remote endpoints in the sense of being aware and maintaining the state

and presence of the remote endpoints. Nevertheless they are able to send exchange information in a

stateless, best-efforts manner.

The Application-defined Publisher and Subscriber Entities are impacted indirectly by

AccessControl plugin operations in Group1 only by the fact that they depend on the successful

creation of the DomainParticipant. They are impacted indirectly by operations in Group2 by the

fact that the PartitionQos settings of the Publisher (or Subscriber) may cause the

AccessControl plugin to prevent the creation of DataWriter (or DataReader) entities

belonging to them. Likewise they are impacted indirectly by operations in Group4 in that the

PartitionQos settings of the remote Publisher (or Subscriber) may cause the

AccessControl plugin to prevent matching of remote DataWriter (or DataReader)

entities. They are not impacted by operations in Group3 or Group5.

The Application-defined Topic, DataWriter and DataReader entities are impacted indirectly by

AccessControl plugin operations in Group1 the same way the The DDS-RTPS Builtin Entities are.

These Entities are impacted by the AccessControl plugin operations in Group2, Group3,

Group4, and Group5. This is described in subclauses 8.8.5 and 8.8.7.

8.8.4 AccessControl behavior with local participant creation

The functionality of the AccesControl plugin with regards to the creation of local DDS

DomainParticipant entities was illustrated in Figure 21 and described in 8.8.1. Subclause 8.8.1

covered Authentication and AccessControl plugin behavior simultanepusly because these

two plugins interact with each other.

8.8.5 AccessControl behavior with local domain entity creation

The figure below illustrates the functionality of the security plugins with regards to the creation of

local DDS domain entities: Topic, DataWriter, and DataReader entities.

DDS Security, v1.1 173

[DDSSEC11-16 AccessControl behavior does not show check_local_datawriter/reader ...]

Figure 23 – AccessControl sequence diagram with local entities

[DDSSEC11-16 AccessControl behavior does not show check_local_datawriter/reader ...]

1. The DDS application initiates the creation of a new Topic for the

DomainParticipant.

2. The middleware calls AccessControl::get_topic_sec_attributes to obtain

the TopicSecurityAttributes for the Topic being created.

3. The middleware verifies the DomainParticipant is allowed to create a Topic with

name topicName. Operation AccessControl::check_create_topic() is

called for this verification. If the verification fails, the Topic object is not created.

4. The DDS application initiates the creation of a local DataWriter.

5. The middleware verifies that the DataWriter has the right permissions to publish on

Topic topicName. Operation AccessControl::check_create_datawriter()

is called for this verification. As an optional behavior, check_create_datawriter ()

can also verify if the DataWriter is allowed to tag data with dataTag. If the

verification doesn’t succeed, the DataWriter is not created. As an optional behavior,

sd DDS::Security-LocalParticipantAccess

DDSApplication

DataWriter

(from DDS)

DataReader

(from DDS)

AccessControlTopic

(from DDS)

DDS-SecureDiscoveryDDS-RegularDiscovery

configure()

get_topic_security_attributes(): Boolean

«create»

dispose_instance()

register_instance()

get_datareader_sec_attributes():

Boolean

«create»

«create»

get_datawriter_sec_attributes(): Boolean

check_create_topic(): Boolean

check_local_datawriter_dispose_instance(): Boolean

check_local_datawriter_register_instance(): Boolean

configure()

check_create_datareader(): Boolean

check_create_datawriter(): Boolean

Formatted: Font: (Default) Times New
Roman, 12 pt, Not Bold

Deleted:

sd DDS::Security-LocalParticipantAccess

DDSApplication

DataWriter

(from DDS)

DataReader

(from DDS)

AccessControlTopic

(from DDS)

DDS-SecureDiscoveryDDS-RegularDiscovery

configure()

register_instance()

check_create_topic(): Boolean

«create»

check_create_datawriter(): Boolean

«create»

check_local_datawriter_dispose_instance(): Boolean

get_datareader_sec_attributes(): Boolean

dispose_instance()

get_datawriter_sec_attributes(): Boolean

check_local_datawriter_register_instance(): Boolean

check_create_datareader(): Boolean

configure()

«create»

174 DDS Security, v1.1

check_create_datawriter() can also check the QoS associated with the

DataWriter and grant permissions taking that into consideration.

6. The middleware calls AccessControl::get_datawriter_sec_attributes to

obtain the EndpointSecurityAttributes for the created DataWriter.

7. This sequence diagram illustrates the situation where the TopicSecurityAttributes

for the created DataWriter has the is_discovery_protected attribute set to FALSE. In this

situation the middleware configures Discovery to use regular (not secure) publications

discovery endpoint (DCPSPublications) to propagate the

PublicationBuiltinTopicData for the created DataWriter.

8. The DDS application initiates the creation of a local DataReader.

9. The middleware verifies that the DataReader has the right permissions to subscribe on

Topic topicName. Operation AccessControl::check_create_datareader()

is called for this verification. As an optional behavior, check_create_datareader()

can also verify if the DataReader is allowed to receive data tagged with dataTag. If

the verification doesn’t succeed, the DataReader is not created. As an optional behavior

check_create_datareader() can also check the QoS associated with the

DataReader and grant permissions taking that into consideration.

10. The middleware calls the operation

AccessControl::get_datareader_sec_attributes to obtain the

EndpointSecurityAttributes for the created DataReader entity.

11. This sequence diagram illustrates the situation where the TopicSecurityAttributes

for the topic (a different topic than in the earlier steps) has the is_discovery_protected

attribute set to TRUE. In this situation the middleware configures Discovery to use the

secure subscriptions discovery endpoint (DCPSSecureSubscriptions) to propagate the

SubscriptionBuiltinTopicData for the created DataReader.

12. The DDS application initiates the registration of a data instance on the DataWriter.

13. The middleware verifies that the DataWriter has the right permissions to register the

instance. The operation

AccessControl::check_local_datawriter_register_instance() is

called for this verification. If the verification doesn’t succeed, the instance is not registered.

14. The DDS application initiates the disposal of an instance of the DataWriter.

15. The middleware verifies that the DataWriter has the right permissions to dispose the

instance. The operation

AccessControl::check_local_datawriter_dispose_instance() is

called for this verification. If the verification doesn’t succeed, the instance is not disposed.

8.8.6 AccessControl behavior with remote participant discovery

[DDSSEC11-14 Clarify conditions for calling the operations on AccessControlPlugin]

If the ParticipantSecurityAttributes object returned by the AccessControl operation

get_participant_sec_attributes has the allow_unauthenticated_participants attribute set

Deleted: EndpointSecurityAttrib
utes

Deleted: EndpointSecurityAttrib

utes for the created DataReader

Deleted: is_access_protected

DDS Security, v1.1 175

to TRUE, the DomainParticipant may discover DomainParticipants that cannot be authenticated

because they either lack support for the authentication protocol or they fail the authentication protocol.

These “Unauthenticated” DomainParticipant entities shall be matched and considered

“Unauthenticated” DomainParticipant entities. Local DomainParticipant will not perform any

further participant AccessControl validation with unauthenticated participants (i.e.,

validate_remote_permissions and check_remote_participant will not be called).

[DDSSEC11-14 Clarify conditions for calling the operations on AccessControlPlugin]

If the DomainParticipant discovers a DomainParticipant entity that it can authenticate

successfully, and is_access_protected is TRUE, then it shall validate with the AccessControl plugin

that it has the permissions necessary to join the DDS domain. This is done by successfully calling to

get_authenticated_peer_credential_token on the Authentication plugin, then to

validate_remote_permissions and check_remote_participant in the

AccessControl plugin:

 If the validation succeeds, the discovered DomainParticipant shall be considered “Authenticated”

and all the builtin Topics automatically matched.

 If the validation fails, the discovered DomainParticipant shall be considered ignored and all the

builtin Topics should not be matched.

[DDSSEC11-14 Clarify conditions for calling the operations on AccessControlPlugin]

If the DomainParticipant discovers a DomainParticipant entity that it can authenticate

successfully, and is_access_protected is FALSE, then validation will succeed with no access control

checking. In this case, only get_authenticated_peer_credential_token and

validate_remote_permissions are called, and a HandleNIL return will not impact the

validation result.

The figure below illustrates the functionality of the security plugins with regards to the discovery of

remote DomainParticipant entity that has been successfully authenticated by the Authentication

plugin.

Figure 24 – AccessControl sequence diagram with discovered DomainParticipant

sd DDS::Security-RemoteParticipantAccess

Participant1

AccessControl

DDS-Discovery Participant2

discoveredParticipant(Participant2)

Authentication Process() :

PermissionsCredentialTokenvalidate_remote_permissions(PermissionsCredentialToken) :

PermissionsHandle

check_remote_participant(PermissionsHandle) :Boolean

discoveredTopic()
check_remote_topic(PermissionsHandle) :Boolean

Deleted: FALSE

176 DDS Security, v1.1

1. The DomainParticipant Participant1 discovers the DomainParticipant

(Participant2) via the discovery protocol and successfully authenticates Participant2 and

obtains the AuthenticatedPeerCredentialToken as described in 8.8.2.

2. Participant1 calls the operation validate_remote_permissions to validate the

permissions of Participant2, passing the PermissionsToken obtained via discovery

from Participant2 and the AuthenticatedPeerCredentialToken returned by the

operation get_authenticated_peer_credential_token on the

Authentication plugin. The operation validate_remote_permissions returns

a PermissionsHandle, which the middleware will use whenever an access control

decision must be made for the remote DomainParticipant.

3. Participant1 calls the operation check_remote_participant to verify the remote

DomainParticipant (Participant2) is allowed to join the DDS domain with the

specified domainId, passing the PermissionsHandle returned by the

validate_remote_permissions operation. If the verification fails, the remote

DomainParticipant is ignored and all the endpoints corresponding to the builtin

Topics are unmatched.

4. Participant1 discovers that DomainParticipant (Participant2) has created a new DDS

Topic.

5. Participant1 verifies that the remote DomainParticipant (Participant2) has the

permissions needed to create a DDS Topic with name topicName. The operation

check_remote_topic is called for this verification. If the verification fails, the

discovered Topic is ignored.

8.8.7 AccessControl behavior with remote domain entity discovery

This sub clause describes the functionality of the AccessControl plugin relative to the discovery of

remote domain entities, that is, Topic, DataWriter, and DataReader entities.

If the ParticipantSecurityAttributes object returned by the AccessControl operation

get_participant_sec_attributes has the is_access_protected attribute set to

FALSE, the DomainParticipant may have matched a remote “Unauthenticated”

DomainParticipant, i.e., a DomainParticipant that has not authenticated successfully and

may therefore discover endpoints via the regular (non-secure) discovery endpoints from an

“Unauthenticated” DomainParticipant.

8.8.7.1 AccessControl behavior with discovered endpoints from “Unauthenticated” DomainParticipant

If the DomainParticipant discovers endpoints from an “Unauthenticated”

DomainParticipant it shall:

[DDSSEC11-16 AccessControl behavior does not show check_local_datawriter/reader ...]

 Reject (do not try to match) local endpoints for which the related TopicSecurityAttributes

have the attribute is_read_protected or is_write_protected set to TRUE.

 Proceed to try matching without checking with the AccessControl plugin the local

DataWriter endpoints for which the related TopicSecurityAttributes object returned

DDS Security, v1.1 177

by the operation get_topic_sec_attributes have the attribute is_read_protected set to

FALSE.

 Proceed to try matching without checking with the AccessControl plugin the local

DataReader endpoints for which the related TopicSecurityAttributes object returned

by the operation get_topic_sec_attributes have the attribute is_write_protected set to

FALSE.

[DDSSEC11-14 Clarify conditions for calling the operations on AccessControlPlugin]

8.8.7.2 AccessControl behavior with discovered endpoints from “Authenticated” DomainParticipant

If the DomainParticipant discovers endpoints from an “authenticated” DomainParticipant

it shall:

[DDSSEC11-16 AccessControl behavior does not show check_local_datawriter/reader ...]

 Perform the AccessControl checks for discovered endpoints that would match local

DataWriters for whom the is_read_protected attribute is set to TRUE, and only proceed to try

matching the discovered endpoints for whom the access control checks succeed.

 Perform the AccessControl checks for discovered endpoints that would match local

DataReader for whom the is_write_protected attribute is set to TRUE, and only proceed to try

matching the discovered endpoints for whom the access control checks succeed.

 Proceed to try matching without checking with the AccessControl plugin the local

DataWriters for whom the related TopicSecurityAttributes object returned by the

operation get_topic_sec_attributes has the is_read_protected attribute set to FALSE.

 Proceed to try matching without checking with the AccessControl plugin the local

DataReaders for whom the related TopicSecurityAttributes object returned by the

operation get_topic_sec_attributes has the is_write_protected attribute set to FALSE.

[DDSSEC11-16 AccessControl behavior does not show check_local_datawriter/reader ...]

The figure below illustrates the behavior relative to discovered endpoints coming from an

“Authenticated” DomainParticipant that would match local endpoints for which the

is_read_protected and is_write_protected attributes are set to FALSE.

[DDSSEC11-16 AccessControl behavior does not show check_local_datawriter/reader ...]

Deleted: Match automatically the local

DataWriter endpoints for whom the

EndpointSecurityAttributes object

returned by the operation
get_datawriter_sec_attributes

have the attribute is_access_protected set to
FALSE.¶
<#>Match automatically the local

DataReader endpoints for whom the

EndpointSecurityAttributes object

returned by the operation
get_datareader_sec_attributes

have the attribute is_access_protected set to
FALSE.¶
Do not match automatically the remaining
local endpoints for whom the

EndpointSecurityAttributes have

the attribute is_access_protected set to
TRUE.

Deleted: Note that, as specified in 8.8.2.2, a

DomainParticipant for whom the
ParticipantSecurityAttributes

object returned by the AccessControl

operation
get_participant_sec_attributes

has the is_access_protected attribute

set to TRUE, cannot be matched with an

“Unauthenticated” DomainParticipant

and therefore cannot discover any endpoints
from an “Unauthenticated”

DomainParticipant.

Deleted: <#>Match automatically the local
endpoints for whom the

EndpointSecurityAttributes object

returned by the operation

get_datawriter_sec_attributes or
get_datareader_sec_attributes

has the is_access_protected attribute set to
FALSE.¶
<#>Perform the AccessControl checks for
discovered endpoints that would match local

endpoints for whom the is_access_protected
attribute is set to TRUE, and only match the
discovered endpoints for whom the access
control checks succeed.¶

¶

Deleted: whom the is_access_protected
attribute

178 DDS Security, v1.1

Figure 25 – AccessControl sequence diagram with discovered entities when is_read_protected and
is_write_protected are both FALSE

[DDSSEC11-16 AccessControl behavior does not show check_local_datawriter/reader ...]

1. DataReader1 discovers via the discovery protocol that a remote DataWriter

(DataWriter2) on a Topic with name topicName. The DataReader1 shall not call any

operations on the AccessControl plugin and shall proceed to match DataWriter2

subject to the matching criteria specified in the DDS and DDS-XTypes specifications.

2. DataReader1 receives a Sample from DataWriter2 with DDS ViewState NEW,

indicating this is the first sample for that instance received by the DataReader. This

sample shall be processed according to the DDS specification without any calls to the

AccessControl plugin.

3. DataReader1 receives a Sample from DataWriter2 with DDS InstanceState

NOT_ALIVE_DISPOSED, indicating the remote DataWriter disposed an instance. This

sample shall be processed according to the DDS specification without any calls to the

AccessControl plugin.

4. DataReader1 receives a Sample from DataWriter2 with DDS ViewState NOT_NEW.

DataReader1 shall operate according to the DDS and DDS-RTPS specifications without

any calls to the AccessControl plugin.

5. DataReader1 receives an RTPS HeartBeat message or an RTPS Gap message from

DataWriter2. In both these cases DataReader1 shall operate according to the DDS and

DDS-RTPS specifications without any calls to the AccessControl plugin.

6. DataWriter1 discovers via the discovery protocol that a remote DataReader

(DataReader2) on a Topic with name topicName. DataWriter1 shall not call any

operations on the AccessControl plugin and shall match DataReader2 subject to the

matching criteria specified in the DDS and DDS-XTypes specifications.

sd DDS::Security-RemoteEndpoint-UnprotectedAccess

AccessControl

DDS-Discovery DDS-ProtocolDataReader1 DataWriter1

E ntities with

is_ access_ protected = FALS E

discoveredDatawriter()

newInstance()

disposedInstance()

Sample()

RTPS_Heartbeat_Gap()

discoveredDatareader()

RTPS_AckNack()

Deleted: is_access_protected

Deleted: ==

Deleted:

check_remote_datawriter to verify

that Participant2 has the permissions

needed to publish the DDS Topic with

name topicName.

DDS Security, v1.1 179

7. DataWriter1 receives an RTPS AckNack message from DataReader2. DataWriter1 shall

operate according to the DDS and DDS-RTPS specifications without any calls to the

AccessControl plugin.

[DDSSEC11-16 AccessControl behavior does not show check_local_datawriter/reader ...]

The figure below illustrates the behavior relative to discovered endpoints coming from an

“Authenticated” DomainParticipant that would match local endpoints for which both

is_read_protected and is_write_protected attributes are set to TRUE.

Figure 26 – AccessControl sequence diagram with discovered entities when is_read_protected==TRUE and
is_write_protected==TRUE

1. DataReader1 discovers via the discovery protocol a remote DataWriter (DataWriter2)

on a Topic with name topicName that matches the DataReader1 Topic topicName.

2. DataReader1 shall call the operation check_remote_datawriter to verify that

Participant2 (the DomainParticipant to whom DataWriter2 belongs) has the

permissions needed to publish the DDS Topic with name topicName. As an optional

behavior, the same operation can also verify if the DataWriter2 is allowed to tag data with

dataTag that are associated with it.

1. If the verification doesn’t succeed, the DataWriter2 is ignored.

2. If the verification succeeds, DataReader1 shall proceed to match DataWriter2 subject to

the matching criteria specified in the DDS and DDS-XTypes specifications.

3. DataReader1 receives a Sample from DataWriter2 with DDS ViewState NEW, indicating

this is the first sample for that instance received by the DataReader. This sample shall be

processed according to the DDS specification without any calls to the AccessControl

plugin.

sd DDS::Security-RemoteEndpoint-ProtectedAccess

AccessControl

DDS-Discovery DDS-ProtocolDataReader2 DataWriter2

Topic with

is_read_protected=TRUE and

is_write_protected=TRUE

check_remote_datawriter(): Boolean

RTPS_AckNack()

discoveredDatareader()

Sample()

disposedInstance()

newInstance()

discoveredDatawriter()

check_remote_datareader(): Boolean

RTPS_Heartbeat_Gap()

check_remote_datawriter_dispose_instance(): Boolean

check_remote_datawriter_register_instance(): Boolean

Deleted: whom the is_access_protected
attribute

Formatted: Font: (Default) Times New
Roman, 12 pt, Not Bold

Deleted:

sd DDS::Security-RemoteEndpoint-ProtectedAccess

AccessControl

DDS-Discovery DDS-ProtocolDataReader2 DataWriter2

E ntities with

is_ access_ protected=T RUE

discoveredDatawriter()
check_remote_datawriter() :Boolean

newInstance()check_remote_datawriter_register_instance() :Boolean

disposedInstance()check_remote_datawriter_dispose_instance() :Boolean

Sample()

RTPS_Heartbeat_Gap()

discoveredDatareader()

check_remote_datareader() :Boolean

RTPS_AckNack()

Deleted: is_access_protected==TRU
E

180 DDS Security, v1.1

4. DataReader1 shall call the operation

check_remote_datawriter_register_instance to verify that Participant2

has the permissions needed to register the instance. If the verification doesn’t succeed, the

sample shall be ignored.

5. DataReader1 receives a Sample from DataWriter2 with DDS InstanceState

NOT_ALIVE_DISPOSED, indicating the remote DataWriter disposed an instance.

6. DataReader1 shall call the operation

check_remote_datawriter_dispose_instance to verify that Participant2 has

the permissions needed to dispose the instance. If the verification doesn’t succeed, the

instance disposal shall be ignored.

7. DataReader1 receives a Sample from DataWriter2 with DDS ViewState NOT_NEW,

indicating this DataReader1 already received samples on that instance. This sample shall be

processed according to the DDS specification without any calls to the AccessControl

plugin.

8. DataReader1 receives an RTPS HeartBeat message or an RTPS Gap message from

DataWriter2. In both these cases DataReader1 shall operate according to the DDS and

DDS-RTPS specifications without any calls to the AccessControl plugin.

9. DataWriter1 discovers via the discovery protocol a remote DataReader (DataReader2)

on a Topic with name topicName that matches the DataReader1 Topic topicName.

10. DataWriter1 shall call the operation check_remote_datareader to verify that

Participant2 (the DomainParticipant to whom DataReader2 belongs) has the permissions

needed to subscribe the DDS Topic with name topicName. As an optional behavior, the

same operation can also verify if the DataReader2 is allowed to read data with dataTag

that are associated with DataWriter1.

1. If the verification doesn’t succeed, DataReader2 is ignored.

2. If the verification succeeds, DataWriter1 shall proceed to match DataReader2 subject to

the matching criteria specified in the DDS and DDS-XTypes specifications.

11. DataWriter1 receives an RTPS AckNack message from DataReader2. DataWriter1 shall

operate according to the DDS and DDS-RTPS specifications without any calls to the

AccessControl plugin.

8.8.8 Cryptographic Plugin key generation behavior

Key Generation is potentially needed for:

 The DomainParticipant as a whole

 Each DomainParticipant match pair

 Each builtin secure endpoint (DataWriter or DataReader)

 Each builtin secure endpoint match pair

 Each application secure endpoint (DataWriter or DataReader)

 Each application secure endpoint match pair

8.8.8.1 Key generation for the BuiltinParticipantVolatileMessageSecureWriter and
BuiltinParticipantVolatileMessageSecureReader

The BuiltinParticipantVolatileMessageSecureWriter and

BuiltinParticipantVolatileMessageSecureReader endpoints are special in that they are the ones used

to securely send the Crypto Tokens. Therefore the key material needed to secure this channel has to be

derivable from the SharedSecret without having access to Crypto Tokens returned by the

DDS Security, v1.1 181

create_local_datawriter_crypto_tokens or

create_local_datareader_crypto_tokens. Effectively this means the key material used

for key-exchange is always derived from the SharedSecret.

For the BuiltinParticipantVolatileMessageSecureWriter the creation of the key material necessary to

communicate with a matched BuiltinParticipantVolatileMessageSecureReader shall complete during

the operation register_matched_remote_datareader and the DDS middleware shall not

call the operation create_local_datawriter_crypto_tokens or the operation

set_remote_datareader_crypto_tokens on the CryptoKeyExchange.

For the BuiltinParticipantVolatileMessageSecureReader the creation of the key material necessary to

communicate with a matched BuiltinParticipantVolatileMessageSecureWriter shall complete during

the operation register_matched_remote_datawriter and the DDS middleware shall not

call the operation create_local_datareader_crypto_tokens or the operation

set_remote_datawriter_crypto_tokens on the CryptoKeyExchange.

The DDS implementation shall add a property with name “dds.sec.builtin_endpoint_name” and

value “BuiltinParticipantVolatileMessageSecureWriter” to the Property_t passed to the operation

register_local_datawriter when it registers the

BuiltinParticipantVolatileMessageSecureWriter with the CryptoKeyFactory.

The DDS implementation shall add a property with name “dds.sec.builtin_endpoint_name” and

value “BuiltinParticipantVolatileMessageSecureReader” to the Property_t passed to the operation

register_local_datareader when it registers the

BuiltinParticipantVolatileMessageSecureReader with the CryptoKeyFactory.

Setting the Property_t as described above allows the CryptoKeyFactory to recognize the

BuiltinParticipantVolatileMessageSecureWriter and the

BuiltinParticipantVolatileMessageSecureReader.

8.8.8.2 Key generation for the DomainParticipant

For each local DomainParticipant that is successfully created the DDS implementation shall call

the operation register_local_participant on the KeyFactory.

For each discovered DomainParticipant that has successfully authenticated and has been

matched to the local DomainParticipant the DDS middleware shall call the operation

register_matched_remote_participant on the KeyFactory. Note that this operation

takes as one parameter the SharedSecret obtained from the Authentication plugin.

8.8.8.3 Key generation for the builtin endpoints

For each DataWriter belonging to list of “Builtin Secure Endpoints”, see 7.4.5, with the exception

of the BuiltinParticipantVolatileMessageSecureWriter, the DDS middleware shall call the operation

register_local_datawriter on the KeyFactory to obtain the

DatawriterCryptoHandle for the builtin DataWriter.

For each DataReader belonging to list of “Builtin Secure Endpoints”, see 7.4.5, with the exception

of the BuiltinParticipantVolatileMessageSecureReader, the DDS middleware shall call the operation

register_local_datareader on the KeyFactory to obtain the

DatareaderCryptoHandle for the corresponding builtin DataReader.

182 DDS Security, v1.1

For each discovered DomainParticipant that has successfully authenticated and has been

matched to the local DomainParticipant the DDS middleware shall:

1. Call the operation KeyFactory::register_matched_remote_datawriter for each

local DataWriter belonging to the “Builtin Secure Endpoints” passing it the local

DataWriter and the corresponding remote DataReader belonging to the “Builtin Secure

Endpoints” of the discovered DomainParticipant.

2. Call the operation KeyFactory::register_matched_remote_datareader for each

local DataReader belonging to the “Builtin Secure Endpoints” passing it the local

DataReader , the corresponding remote DataWriter belonging to the “Builtin Secure

Endpoints” of the discovered DomainParticipant, and the SharedSecret obtained

from the Authentication plugin.

8.8.8.4 Key generation for the application-defined endpoints

Recall that for each application-defined (non-builtin) DataWriter and DataReader successfully

created by the DDS Application the DDS middleware has an associated

EndpointSecurityAttributes object which is the one returned by the

AccessControl::get_datawriter_sec_attributes or

AccessControl::get_datareader_sec_attributes.

For each non-builtin DataWriter for whom the associated EndpointSecurityAttributes

object has either the member is_submessage_protected or the member is_payload_protected set to

TRUE, the DDS middleware shall:

1. Call the operation register_local_datawriter on the KeyFactory to obtain the

DatawriterCryptoHandle for the DataWriter.

2. Call the operation register_matched_remote_datareader for each discovered

DataReader that matches the DataWriter.

For each non-builtin DataReader for whom the associated EndpointSecurityAttributes

object has either the member is_submessage_protected or the member is_payload_protected set to

TRUE, the DDS middleware shall:

1. Call the operation register_local_datareader on the KeyFactory to obtain the

DatareaderCryptoHandle for the DataReader.

2. Call the operation register_matched_remote_datawriter for each discovered

DataWriter that matches the DataReader.

[DDSSEC11-66 Allow an Endpoint to configure a maximum number of "receiver-specific" …]

8.8.8.5 Limiting message-size overhead caused by receiver specific key material

The use of receiver-specific key material increases the message size in situations where the same

encoded message is sent to multiple receivers. For example, when using a multicast transport. In the

presence of large numbers or receivers this "per-receiver" overhead may cause a single RTPS

submessage with all the receiver-specific authentication codes to exceed the maximum transport MTU.

This would cause problems, as RTPS submessages cannot be fragmented.

To overcome this kind of situation implementations may use different strategies.

DDS Security, v1.1 183

1. An implementation may limit the number of different receiver-specific key material it

generates. For example, it may reuse the same receiver-specific key for multiple receivers. This

would limit the overhead at the cost of weakening the origin authentication.

2. An implementation may impose a limit on the number of receiver-specific macs attached to a

single message. This would require DDS implementations to construct multiple messages, each

with a different set of receiver-specific authentication codes. This use-case is facilitated by the

encode_datawriter_submessage and encode_rtps_message CryptoTransform operations.

The selection between and configuration of these choices is implementation specific, as it does not

affect interoperability.

8.8.9 Cryptographic Plugin key exchange behavior

Cryptographic key exchange is potentially needed for:

 Each DomainParticipant match pair.

 Each builtin secure endpoint match pair.

 Each application secure endpoint match pair.

8.8.9.1 Key Exchange with discovered DomainParticipant

Cryptographic key exchange shall occur between each DomainParticipant and each discovered

DomainParticipant that has successfully authenticated. This key exchange propagates the key

material related to encoding/signing/decoding/verifying the whole RTPS message. In other words the

key material needed to support the CryptoTransform operations encode_rtps_message and

decode_rtps_message.

Given a local DomainParticipant the DDS middleware shall:

1. Call the operation create_local_participant_crypto_tokens on the

KeyFactory for each discovered DomainParticipant that has successfully

authenticated and has been matched to the local DomainParticipant. This operation takes

as parameters the local and remote ParticipantCryptoHandle.

2. Send the ParticipantCryptoTokenSeq returned by operation

create_local_participant_crypto_tokens to the discovered

DomainParticipant using BuiltinParticipantVolatileMessageSecureWriter.

The discovered DomainParticipant shall call the operation

set_remote_participant_crypto_tokens passing the

ParticipantCryptoTokenSeq received by the

BuiltinParticipantVolatileMessageSecureReader.

The figure below illustrates the functionality of the Cryptographic KeyExchange plugins with regards

to the discovery and match of an authenticated remote DomainParticipant entity.

184 DDS Security, v1.1

Figure 27 – Cryptographic KeyExchange plugin sequence diagram with discovered DomainParticipant

1. Participant2 discovers the DomainParticipant (Participant1) via the DDS discovery

protocol. This sequence is not described here as it equivalent to the sequence that

Participant1 performs when it discovers Participant2.

2. Participant1 discovers the DomainParticipant (Participant2) via the DDS discovery

protocol. Participant2 is authenticated and its permissions are checked as described in 8.8.2

and 8.8.6. This is not repeated here. The authentication and permissions checking resulted

in the creation of an IdentityHandle, a PermissionsHandle, and a

SharedSecretHandle for Participant2.

3. Participant1 calls the operation register_matched_remote_participant on the

Cryptographic plugin (CryptoKeyFactory interface) to store the association of the

remote identity and the SharedSecret.

4. Participant1 calls the operation create_local_participant_crypto_tokens

on the Cryptographic plugin (CryptoKeyExchange interface) to obtain a collection

of CriptoToken (cryptoTokensParticipant1ForParticipant2) to send to the remote

DomainParticipant (Participant2).

5. Participant1 sends the collection of CryptoToken objects

(cryptoTokensParticipant1ForParticipant2) to Participant2 using the

BuiltinParticipantVolatileMessageSecureWriter.

6. Participant2 receives the CryptoToken objects

(cryptoTokensParticipant1ForParticipant2) and calls the operation

set_remote_participant_crypto_tokens()to register the CryptoToken

sequence with the DomainParticipant. This will enable the Cryptographic plugin

on Participant2 to decode and verify MACs on the RTPS messages sent by Participant1 to

Participant2.

sd DDS::Security-Kx-Participant

DDS-Discovery DDS-ProtocolParticipant1 Participant2

«interface»

:CryptoKeyExchange

«interface»

CryptoKeyFactory

«interface»

:CryptoKeyExchange

discoveredParticipant(Participant1)

discoveredParticipant(Participant2)

register_matched_remote_participant() :ParticipantCryptoHandle

create_local_participant_crypto_tokens()

:Boolean

send(BuiltinParticipantVolatileMessageSecureWriter)

receive(BuiltinParticipantVolatileMessageSecureReader)

set_remote_participant_crypto_tokens() :

Boolean

DDS Security, v1.1 185

8.8.9.2 Key Exchange with remote DataReader

Cryptographic key exchange shall occur between each builtin secure DataWriter and the matched

builtin secure DataReader entities of authenticated matched DomainParticipant entities, see

7.4.5, with the exception of the BuiltinParticipantVolatileMessageSecureReader.

Cryptographic key exchange shall also occur between each application DataWriter whose

EndpointSecurityAttributes object has either the is_submessage_protected or the

is_payload_protected members set to TRUE, and each of its matched DataReader entities.

Given a local DataWriter that is either a builtin secure DataWriter or an application

DataWriter meeting the condition stated above the DDS middleware shall:

1. Call the operation create_local_datawriter_crypto_tokens on the

KeyFactory for each matched DataReader. This operation takes as parameters the local

DatawriterCryptoHandle and the remote DatareaderCryptoHandle.

2. Send the DatawriterCryptoTokenSeq returned by operation create_local_

datawriter_crypto_tokens to the discovered DomainParticipant using

BuiltinParticipantVolatileMessageSecureWriter.

The matched DataReader shall call the operation

set_remote_datawriter_crypto_tokens passing the DatawriterCryptoTokenSeq

received by the BuiltinParticipantVolatileMessageSecureReader.

The figure below illustrates the functionality of the Cryptographic KeyExchange plugin with regards

to the discovery and match of a local secure DataWriter and a matched DataReader.

Figure 28 – Cryptographic KeyExchange plugin sequence diagram with discovered DataReader

1. Participant2 discovers a DataWriter (Writer1) belonging to Participant1 that matches a

local DataReader (Reader2) according to the constraints in the DDS security specification.

2. Participant1 discovers a DataReader (Reader2) belonging to Participant2 that matches a

local DataWriter (Writer1) according to the constraints in the DDS security specification.

sd DDS::Security-Kx-Reader

Participant1 DDS-Discovery DDS-Protocol Participant2

«interface»

CryptoKeyExchange

«interface»

CryptoKeyFactory

discoveredDatawriter(Participant1, Writer1)

discoveredDatareader(Participant2, Reader2)

register_matched_remote_datareader() :DatareaderCryptoHandle

create_local_datawriter_crypto_tokens() :Boolean

send(BuiltinParticipantVolatileSecureMessage) receive(BuiltinParticipantVolatileSecureMessage)

set_remote_datawriter_crypto_tokens() :Boolean

186 DDS Security, v1.1

3. Participant1 calls the operation register_matched_remote_datareader as

stated in 8.8.8.

4. Participant1 calls the operation create_local_datawriter_crypto_tokens on

the CryptoKeyExchange to obtain a collection of CriptoToken objects

(cryptoTokensWriter1ForReader2).

5. Participant1 sends the collection of CryptoToken objects

(cryptoTokensWriter1ForReader2) to Participant2 using the

BuiltinParticipantVolatileMessageSecureWriter.

6. Participant2 receives the CryptoToken objects (cryptoTokensWriter1ForReader2) and

calls the operation set_remote_ datawriter_crypto_tokens()to register the

CryptoToken sequence with the DataWriter (Writer1). This will enable the

Cryptographic plugin on Participant2 to decode and verify MACs on the RTPS

submessages and data payloads sent from Writer1to Reader2.

8.8.9.3 Key Exchange with remote DataWriter

Cryptographic key exchange shall occur between each builtin secure DataReader and the matched

builtin secure DataWriter entities of authenticated matched DomainParticipant entities, see

7.4.5, with the exception of the BuiltinParticipantVolatileMessageSecureReader.

Cryptographic key exchange shall also occur between each application DataReader whose

EndpointSecurityAttributes object has the is_submessage_protected member set to TRUE,

and each of its matched DataWriter entities.

Given a local DataReader that is either a builtin secure DataReader or an application

DataReader meeting the condition stated above the DDS middleware shall:

1. Call the operation create_local_datareader_crypto_tokens on the

KeyFactory for each matched DataWriter. This operation takes as parameters the local

DatareaderCryptoHandle and the remote DatawriterCryptoHandle.

2. Send the DatareaderCryptoTokenSeq returned by operation create_local_

datareader_crypto_tokens to the discovered DomainParticipant using

BuiltinParticipantVolatileMessageSecureWriter.

The matched DataWriter shall call the operation

set_remote_datareader_crypto_tokens passing the DatareaderCryptoTokenSeq

received by the BuiltinParticipantVolatileMessageSecureReader.

The figure below illustrates the functionality of the Cryptographic KeyExchange plugin with regards

to the discovery and match of a local secure DataReader and a matched DataWriter.

Cryptographic key exchange shall occur between each DataReader whose

EndpointSecurityAttributes has the is_submessage_protected members set to TRUE and

each of its matched DataWriter entities.

DDS Security, v1.1 187

Figure 29 – Cryptographic KeyExchange plugin sequence diagram with discovered DataWriter

1. Participant1 discovers a DataReader (Reader2) belonging to Participant2 that matches a

local DataWriter (Writer1) according to the constraints in the DDS security specification.

2. Participant2 discovers a DataWriter (Writer1) belonging to Participant1 that matches a

local DataReader (Reader2) according to the constraints in the DDS security specification.

3. Participant2 calls the operation register_matched_remote_datawriter as stated

in 8.8.8.

4. Participant2 calls the operation create_local_datareader_crypto_tokens on

the CryptoKeyExchange to obtain a collection of CriptoToken objects

(cryptoTokensReader2ForWriter1).

5. Participant2 sends the collection of CryptoToken objects

(cryptoTokensReader2ForWriter1) to Participant1 using the

BuiltinParticipantVolatileMessageSecureWriter.

6. Participant1 receives the CryptoToken objects (cryptoTokensReader2ForWriter1) and

calls the operation set_remote_ datareader_crypto_tokens()to register the

CryptoToken sequence with the DataWriter (Writer1). This will enable the

Cryptographic plugin on Participant1 to decode and verify MACs on the RTPS

submessages sent from Reader2 to Writer1.

8.8.10 Cryptographic Plugins encoding/decoding behavior

This sub clause describes the behavior of the DDS implementation related to the

CryptoTransform interface.

[DDSSEC11-39 Use of Non-Existing Submessage SecureSubMsg and Flag ...]

sd DDS::Security-Kx-Writer

Participant1 DDS-Discovery DDS-Protocol Participant2

«interface»

CryptoKeyExchange

«interface»

CryptoKeyFactory

discoveredDatareader(Participant2, Reader2)

discoveredDatawriter(Participant1, Writer1)

register_matched_remote_datawriter() :DatawriterCryptoHandle

create_local_datareader_crypto_tokens() :Boolean

send(BuiltinParticipantVolatileSecureMessageWriter)

receive(receive(BuiltinParticipantVolatileSecureMessageReader)

set_remote_datareader_crypto_tokens() :Boolean

188 DDS Security, v1.1

[DDSSEC11-7 Inconsistency in SubMessage and SubMessageElement naming ...]

This specification does not mandate a specific DDS implementation in terms of the internal logic or

timing when the different operations in the CryptoTransform plugin are invoked. The sequence

charts below just express the requirements in terms of the operations that need to be called and their

interleaving. This specification only requires that by the time the RTPS message appears on the wire

the proper encoding operations have been executed first on each SerializedPayload submessage

element, then on the enclosing RTPS Submessage, and finally on the RTPS Message. Similarly by

the time a received RTPS Message is interpreted the proper decoding operations are executed on the

reverse order. First on the encoded RTPS Message, then on each set of secured submessages starting

with either a SecureRTPSPrefixSubMsg or SecurePrefixSubMsg, and finally on each

CryptoContent submessage element.

8.8.10.1 Encoding/decoding of a single writer message on an RTPS message

The figure below illustrates the functionality of the security plugins with regards to encoding the data,

Submessages and RTPS messages in the situation where the intended RTPS Message contains a

single writer RTPS Submessage.

Figure 30 – Cryptographic CryptoTransform plugin sequence diagram for encoding/decoding a single DataWriter
submessage

[DDSSEC11-39 Use of Non-Existing Submessage SecureSubMsg and Flag ...]

[DDSSEC11-7 Inconsistency in SubMessage and SubMessageElement naming ...]

sd DDS::Security-Xform-Writer

DDSApplication

«interface»

:CryptoTransform

DDS-Protocol Participant2

DataWriter

(from DDS)

Participant1

DataReader

(from DDS)

«interface»

:CryptoTransform

notify_data()

decode_rtps_message(): Boolean

preprocess_secure_submessage(): Boolean

decode_serialized_payload(): Boolean

encode_serialized_payload(): Boolean

encode_rtps_message(): Boolean

decode_datawriter_submessage(): Boolean

encode_datawriter_submessage(): Boolean

on_data()

send(RTPS encoded message)

write()

Deleted: SecureSubMsg

Deleted: SecuredPayload

DDS Security, v1.1 189

1. The application writes data using a DataWriter belonging to Participant1. The DDS

implementation serializes the data.

2. The DataWriter in Participant1 constructs the SerializedPayload RTPS

submessage element and calls the operation encode_serialized_payload. This

operation creates an RTPS SecData that protects the SerializedPayload potentially

encrypting it, adding a MAC and/or digital signature.

3. This step is notional; the specific mechanism depends on the DDS Implementation.

Participant1 realizes it is time to send the data written by the DataWriter to a remote

DataReader in Participant2.

4. Participant1 constructs the RTPS Data Submessage to send to the DataReader and calls the

operation encode_datawriter_submessage to transform the original Data

submessage to a set of secure submessages (SecurePrefixSubMsg, original plain text

submessage or SecureBodySubMsg, and optional SecurePostfixSubMsg). This

same transformation would be applied to any DataWriter submessage (Data, Gap,

Heartbeat, DataFrag, HeartbeatFrag). The

encode_datawriter_submessage receives as parameters the

DatawriterCryptoHandle of the DataWriter and a list of

DatareaderCryptoHandle for all the DataReader entities to which the message

will be sent. Using a list allows the same set of secure submessages to be sent to all those

DataReader entities.

5. Participant1 constructs the RTPS Message it intends to send to the DataReader (or

readers). It then calls encode_rtps_message to transform the original RTPS Message

into a new “encoded” RTPS Message with the same RTPS header and a set of secure

submessages protecting the contents of the original RTPS Message. The

encode_rtps_message receives as parameters the ParticipantCryptoHandle

of the sending DomainParticipant (Participant1) and a list of

ParticipantCryptoHandle for all the DomainParticipant entities to which the

message will be sent (Participant2). Using a list enables the DomainParticipant to

send the same message (potentially over multicast) to all those DomainParticipant

entities.

6. Participant1 sends the new “encoded” RTPS Message obtained as a result of the previous

step to Participant2.

7. Participant2 receives the “encoded” RTPS Message. Participant2 parses the message and

detects a SecureRTPSPrefixSubMsg. This indicates it shall call the operation

decode_rtps_message to to process the prefix, body and optional postfix submessage.

If decode_rtps_message is successful, the result is an RTPS Message that can be

processed further.

8. Participant2 parses the RTPS Message resulting from the previous step and encounters an

RTPS SecurePrefixSubMsg. This indicates it shall call the operation

prepare_rtps_submessage to determine whether this is a Writer submessage or a

Reader submessage and obtain the DatawriterCryptoHandle and

DatareaderCryptoHandle handles it needs to decode the message. This function

determines it is a Writer submessage.

Deleted: SecureSubMsg

Deleted: SecureSubMsg

Deleted: single SecureSubMsg

Deleted: n

Deleted: RTPS

Deleted: SecureSubMsg with the

MultiSubmsgFlag (see 7.3.6.2) set to
true

Deleted: transform

Deleted: the “encoded” RTPS Message
into an RTPS Message that decodes the

RTPS SecureSubMsg and proceed to

parse that instead.

Deleted: with the MultiSubmsgFlag

(see 7.3.6.2) set to false

190 DDS Security, v1.1

9. Participant2 calls the operation decode_datawriter_submessage passing in a data

stream that includes the SecurePrefixSubMsg, a plain text submessage or a

SecureBodySubMsg, and an optional SecurePostfixSubMsg. The

decode_datawriter_submessage operation also requires the

DatawriterCryptoHandle and DatareaderCryptoHandle obtained in the

previous step. The operation, if successful, will return the original Data submessage that

was input to encode_datawriter_submessage on the DataWriter side. From the

Data submessage the DDS implementation extracts the CryptoContent submessage

element.

10. This step is notional; the specific mechanism depends on the DDS Implementation.

Participant2 realizes it is time to notify the DataReader and retrieve the actual data sent by

the DataWriter.

11. Participant2 calls decode_serialized_payload passing in the RTPS

CryptoContent and obtains the original SerializedPayload submessage element

was the input to the encode_serialized_payload on the DataWriter side. This

operation takes as arguments the DatawriterCryptoHandle and

DatareaderCryptoHandle obtained in step 8.

8.8.10.2 Encoding/decoding of multiple writer messages on an RTPS message

The figure below illustrates the functionality of the security plugins in the situation where the intended

RTPS message contains a multiple DataWriter RTPS Submessages, which can represent

multiple samples, from the same DataWriter or from multiple DataWriter entities, as well as, a mix

of Data, Heartbeat, Gap, and any other DataWriter RTPS Submessage as defined in 7.3.1.

Deleted: the RTPS SecureSubMsg

and obtains the original Data submessage

that was the input to the
encode_datawriter_submessage

on the DataWriter side. From the Data

submessage the DDS implementation

extracts the SecuredPayload

submessage element. This operation takes

as arguments the

DatawriterCryptoHandle and

DatareaderCryptoHandle obtained

in the previous step.

Deleted: SecuredPayload

DDS Security, v1.1 191

Figure 31 – Cryptographic CryptoTransform plugin sequence diagram for encoding/decoding multiple DataWriter
submessages

[DDSSEC11-39 Use of Non-Existing Submessage SecureSubMsg and Flag ...]

The steps followed to encode and decode multiple DataWriter Submessages within the same RTPS

message are very similar to the ones used for a single Writer message. The only difference is that the

writer side can create multiple RTPS Submessages. In this case, Participant1 creates two Data

Submessages and a Heartbeat Submessage, transforms each separately using the

encode_datawriter_submessage, places them in the same RTPS message and then transforms

the RTPS Message containing all the resulting secured submessages using

encode_rtps_message.

The steps followed to decode the message are the reverse ones.

Note that the DataWriter entities that are sending the submessages and/or the DataReader entities that

are the destination of the different Submessages may be different. In this situation each call to

encode_serialized_payload(), encode_datawriter_submessage(),

decode_datawriter_submessage(), and encode_serialized_payload(), shall

receive the proper DatawriterCryptoHandle and DatareaderCryptoHandle handles.

sd DDS::Security-Xform-Multiwriter

DDSApplication

«interface»

:CryptoTransform

DDS-Protocol Participant2

DataWriter

(from DDS)

Participant1

DataReader

(from DDS)

«interface»

:CryptoTransform

preprocess_secure_submessage(): Boolean

encode_rtps_message(): Boolean

encode_serialized_payload(): Boolean

write()

encode_datawriter_submessage(): Boolean

decode_serialized_payload(): Boolean

decode_datawriter_submessage(): Boolean

write()

decode_datawriter_submessage(): Boolean

decode_rtps_message(): Boolean

encode_serialized_payload(): Boolean

notify_data()

send(RTPS encoded message)

decode_serialized_payload(): Boolean

encode_datawriter_submessage(): Boolean

on_data()

get_data_to_send()

preprocess_secure_submessage(): Boolean

Deleted: SecureSubMsg

192 DDS Security, v1.1

8.8.10.3 Encoding/decoding of multiple reader messages on an RTPS message

The figure below illustrates the functionality of the security plugins in the situation where the intended

RTPS message contains multiple DataReader RTPS submessages from the same DataReader or

from multiple DataReader entities. These include AckNack and NackFrag RTPS

Submessages as defined in 7.3.1.

Figure 32 -- Cryptographic CryptoTransform plugin sequence diagram for encoding/decoding multiple DataReader
submessages

[DDSSEC11-39 Use of Non-Existing Submessage SecureSubMsg and Flag ...]

1. This step is notional; the specific mechanism depends on the DDS Implementation.

Participant2 realizes it is time to send an AckNack or NackFrag submessage from

DataReader to a remote DataWriter.

2. Participant2 constructs the AckNack (or any other DataReader RTPS Submessage)

and calls the operation encode_datareader_submessage. This operation creates

creates multiple submessages: a SecurePrefixSubMsg, a plain text submessage or a

SecureBodySubMsg, and optionally a SecurePostfixSubMsg. This operation shall

receive as parameter the DatareaderCryptoHandle of the DataReader that sends

the submessage and a list of DatawriterCryptoHandle handles of all the

DataWriter entities to which the Submessage will be sent.

3. Step 2 may be repeated multiple times constructing various secured submessages from

different DataReader RTPS Submessages. Different submessages may originate on

different DataReader entities and/or be destined for different DataWriter entities. On

sd DDS::Security-Xform-Multireader

DataReader

(from DDS)

DataWriter

(from DDS)

«interface»

:CryptoTransform

DDS-ProtocolParticipant1 Participant2

«interface»

:CryptoTransform

get_acknack_to_send()

decode_datareader_submessage(): Boolean

on_acknack()

encode_rtps_message(): Boolean

encode_datareader_submessage(): Boolean

get_acknack_to_send()

on_acknack()

decode_rtps_message(): Boolean

preprocess_secure_submessage(): Boolean

send(RTPS encoded message)

decode_datareader_submessage(): Boolean

encode_datareader_submessage(): Boolean

preprocess_secure_submessage(): Boolean

Deleted: an RTPS SecureSubMsg that

protects the original Submessage

potentially encrypting it, adding a MAC
and/or digital signature

Deleted: SecureSubMsg

DDS Security, v1.1 193

each case the encode_datareader_submessage operation shall receive the

DatareaderCryptoHandle and list of DatawriterCryptoHandle that

correspond to the source and destinations of that particular Submessage.

4. Participant2 constructs the RTPS Message that contains the submessages obtained as a

result of the previous steps. It shall then call encode_rtps_message to transform the

“original” RTPS Message into a SecureRTPSPrefixSubMsg followed by either 1) an

INFO_SRC SubMsg and the contents of the RTPS Message or 2) a SecureBodySubMsg

(with INFO_SRC and encoded content), and finally a SecureRTPSPostfixSubMsg.

5. Participant2 sends the “encoded” RTPS Message to Participant1 (and any other

destination DomainParticipant).

6. Participant1 receives the “encoded” RTPS Message. Participant parses the message and

detects an RTPS SecureRTPSPrefixSubMsg. This indicates it should call the

operation decode_rtps_message to process the prefix, body and optional postfix

submessage. If decode_rtps_message is successful, the result is an RTPS Message

that can be processed further.

7. Participant1 parses the RTPS Message resulting from the previous step and encounters an

RTPS SecurePrefixSubMsg. This indicates it shall call the operation

preprocess_secure_submessage to determine whether this is a Writer

submessage or a Reader submessage and obtain the DatawriterCryptoHandle and

DatareaderCryptoHandle handles it needs to decode the message. This function

determines it is a DataReader submessage.

8. Participant1 calls decode_datareader_submessage passing in a data stream that

includes the SecurePrefixSubMsg, a plain text submessage or a

SecureBodySubMsg, and an optional SecurePostfixSubMsg. The

decode_datareader_submessage operation also requires the

DatawriterCryptoHandle and DatareaderCryptoHandle obtained in the

previous step. The operation, if successful, will return the original AckNack (or proper

DataReader submessage) submessage that was input to encode_datareader_submessage on

the DataReader side.

9. This step is notional; the specific mechanism depends on the DDS Implementation.

Participant1 realizes it is time to notify the DataReader of the Acknowledgment, negative

acknowledgment or whatever the DataReader Submessage indicated.

10. Each RTPS SecurePrefixSubMsg encountered within the RTPS Message is processed

in this same way. The operation preprocess_rtps_submessage is first invoked and

if it indicates it is a DataReader submessage Participant1 shall call

decode_datareader_submessage() on the submessage.

8.8.10.4 Encoding/decoding of reader and writer messages on an RTPS message

The figure below illustrates the functionality of the security plugins with regards to encoding the data,

Submessages and RTPS messages in the situation where the intended RTPS message contains multiple

RTPS Submessages which can represent a mix of different kinds of DataWriter and DataReader

Deleted: SecureSubMsg

Deleted: another “encoded” RTPS

Message containing a single

SecureSubMsg with the

MultiSubmsgFlag (see 7.3.6.2) set to
true

Deleted: The DDS implementation

Deleted: with the MultiSubmsgFlag

(see 7.3.6.2) set to true

Deleted: shall

Deleted: ()

Deleted: transform the “encoded” RTPS

Message into an RTPS Message that

decodes the RTPS SecureSubMsg and

proceed to parse that instead

Deleted: with the MultiSubmsgFlag

(see 7.3.6.2) set to false

Deleted: prepare_rtps

Deleted: Data

Deleted: Data

Deleted:

Deleted: the RTPS SecureSubMsg

and obtains the original AckNack (or

proper DataReader Submessage)
submessage that was the input to the
encode_datareader_submessage(

) on the DataReader side (Participant2).

Deleted: This

Deleted: operation

Deleted: takes as arguments the

DatawriterCryptoHandle and

DatareaderCryptoHandle obtained

in the previous step

Deleted: having the

MultiSubmsgFlag (see 7.3.6.2) set to
false

Deleted: prepare

194 DDS Security, v1.1

submessages such as Data, Heartbeat, Gap, AckNack, NackFrag and any other RTPS

Submessage as defined in 7.3.1.

Figure 33 – Cryptographic CryptoTransform plugin sequence diagram for encoding/decoding multiple DataWriter
and DataReader submessages

[DDSSEC11-39 Use of Non-Existing Submessage SecureSubMsg and Flag ...]

[DDSSEC11-7 Inconsistency in SubMessage and SubMessageElement naming ...]

1. The application writes data using a DataWriter belonging to Participant1. The DDS

implementation serializes the data.

2. The DataWriter in Participant1 constructs the SerializedPayload RTPS

submessage element and calls the operation encode_serialized_payload. This

operation creates an RTPS SecData that protects the SerializedPayload potentially

encrypting it, adding a MAC and/or digital signature.

3. This step is notional; the specific mechanism depends on the DDS Implementation.

Participant1 realizes it is time to send the data written by the DataWriter to a remote

DataReader.

4. Participant1 constructs the RTPS Data Submessage that it will send to the DataReader

and calls the operation encode_datawriter_submessage to transform the original

Data submessage to a set of secured submessages.

sd DDS::Security-Xform-Multi-Reader-Writer

DDSApplication

«interface»

:CryptoTransform

DDS-Protocol Participant2Participant1

:DataReader:DataWriter :DataWriter:DataReader «interface»

:CryptoTransform

encode_rtps_message(): Boolean

decode_datareader_submessage(): Boolean

get_acknack_to_send()

decode_datawriter_submessage(Heartbeat): Boolean

on_heartbeat()

encode_serialized_payload(): Boolean

get_data_to_send()

decode_datawriter_submessage(): Boolean

encode_serialized_payload(): Boolean

decode_rtps_message(): Boolean

send(RTPS encoded message)

on_acknack()

encode_datareader_submessage(AckNack): Boolean

preprocess_secure_submessage(): Boolean

preprocess_secure_submessage(): Boolean

decode_datawriter_submessage(Data): Boolean

decode_datawriter_submessage(): Boolean

on_data()

notify_data()

preprocess_secure_submessage(): Boolean

write()

Deleted: SecureSubMsg

DDS Security, v1.1 195

5. This step is notional. The specifics will depend on the DDS Implementation. Participant1

decides it needs to send a Heartbeat submessage along with the Data submessage. It

constructs the RTPS Heartbeat submessage and calls the operation

encode_datawriter_submessage() to transform the original Heartbeat

submessage to a set of secured submessages.

6. This step is notional. The specific mechanism depends on the DDS Implementation.

Participant1 decides it also wants to include an RTPS AckNack submessage from a

DataReader that also belongs to Participant1 into the same RTPS Message because it is

destined to the same Participant2.

7. Participant1 constructs the RTPS AckNack submessage and calls

encode_datareader_submessage to transform the original AckNack submessage

to a set of secured submessages.

8. Participant1 constructs the RTPS Message that contains the submessages obtained as a

result of the previous steps. It shall then call encode_rtps_message. To transform the

“original” RTPS Message into SecureRTPSPrefixSubMsg followed by either 1) an

INFO_SRC SubMsg and the contents of the RTPS Message or 2) a

SecureBodySubMsg (with INFO_SRC and encoded content), and finally a

SecureRTPSPostfixSubMsg.

9. Participant1 sends the “encoded” RTPS Message to Participant2 (and any other

destination DomainParticipant).

10. Participant2 receives the “encoded” RTPS Message. Participant2 parses the message and

detects an RTPS SecureRTPSPrefixSubMsg. This indicates it should call the

operation decode_rtps_message to to process the prefix, body and optional postfix

submessage. If decode_rtps_message is successful, the result is an RTPS Message

that can be processed further.

11. Participant2 parses the RTPS Message resulting from the previous step and encounters an

RTPS SecurePrefixSubMsg. This indicates it shall call

preprocess_secure_submessage to determine whether this is a Writer

submessage or a Reader submessage and obtain the DatawriterCryptoHandle and

DatareaderCryptoHandle handles it needs to decode the message. This function

determines it is a DataWriter submessage.

12. Participant1 calls the operation decode_datawriter_submessage, passing in a data

stream that includes the SecurePrefixSubMsg, a plain text submessage or a

SecureBodySubMsg, and an optional SecurePostfixSubMsg. The

decode_datawriter_submessage operation also requires the

DatawriterCryptoHandle and DatareaderCryptoHandle obtained in the

previous step. The operation, if successful, will return the original DataWriter submessage

that was input to encode_datawriter_submessage on the Participant1 side.

13. This step is notional; the specific mechanism depends on the DDS Implementation. The

Participant2 realizes it is time to notify the DataReader of the arrival of data.

14. Participant2 calls decode_serialized_payload passing in the RTPS

CryptoContent and obtains the original SerializedPayload submessage element

Deleted: SecureSubMsg

Deleted: SecureSubMsg

Deleted: SecureSubMsg

Deleted: another “encoded” RTPS
Message containing a single

SecureSubMsg with the

MultiSubmsgFlag (see 7.3.6.2) set to
true

Deleted: with the MultiSubmsgFlag

(see 7.3.6.2) set to true

Deleted: shall

Deleted: transform the “encoded” RTPS

Message into an RTPS Message that

decodes the RTPS SecureSubMsg and

proceed to parse that instead

Deleted: with the MultiSubmsgFlag

(see 7.3.6.2) set to false

Deleted: prepare

Deleted: rtps

Deleted: Data

Deleted: Data

Deleted:

Deleted: the RTPS SecureSubMsg

and obtains the original Data submessage

that was the input to the
encode_datawriter_submessage

on Participant1. This operation takes as
arguments the

DatawriterCryptoHandle and

DatareaderCryptoHandle obtained

in the previous step

Deleted: SecuredPayload

196 DDS Security, v1.1

was the input to the encode_serialized_payload on the Participant1 side. This

operation takes as arguments the DatawriterCryptoHandle and

DatareaderCryptoHandle obtained in the step 11.

15. Step 11 is repeated. It is again determined that the next set of secured submessages are a

DataWriter submessage and the proper DatawriterCryptoHandle and

DatareaderCryptoHandle handles are retrieved.

16. Step 12 is repeated. Participant2 calls decode_datawriter_submessage passing in

a data stream that includes the SecurePrefixSubMsg, a plain text submessage or a

SecureBodySubMsg, and an optional SecurePostfixSubMsg. This transforms the

submessages into the original Heartbeat submessage.

17. This step is notional; the specific mechanism depends on the DDS Implementation.

Participant2 notifies DataReader of the Heartbeat.

18. Step 11 is repeated. It is determined that the next set of submessages are a DataReader

submessage and the proper DatawriterCryptoHandle and

DatareaderCryptoHandle handles are retrieved.

19. Participant2 calls decode_datareader_submessage passing in a data stream that

includes the SecurePrefixSubMsg, a plain text submessage or a

SecureBodySubMsg, and an optional SecurePostfixSubMsg. The result of this

operation is the original AckNack submessage that was the input to the

encode_datareader_submessage on Participant1. This operation takes as

arguments the DatawriterCryptoHandle and DatareaderCryptoHandle

obtained in the previous step.

20. This step is notional; the specific mechanism depends on the DDS Implementation.

Participant2 notifies DataWriter of the AckNack.

Deleted: SecureSubMsg is

Deleted: the RTPS SecureSubMsg

and it transforms it

Deleted: SecureSubMsg is a

DataReader submessage

Deleted: the RTPS SecureSubMsg and

obtains

Deleted: ¶
¶

DDS Security, v1.1 197

9 Builtin Plugins

9.1 Introduction

This specification defines the behavior and implementation of at least one builtin plugin for each kind

of plugin. The builtin plugins provide out-of-the-box interoperability between implementations of this

specification.

The builtin plugins are summarized in the table below:

Table 43 – Summary of the Builtin Plugins

SPI Plugin Name Description

Authentication DDS:Auth:PKI-DH Uses PKI with a pre-configured shared Certificate
Authority.

RSA or DSA and Diffie-Hellman for authentication and
key exchange.

AccessControl DDS:Access:Permissions Permissions document signed by shared Certificate

Authority

Cryptography DDS:Crypto:AES-GCM-
GMAC

AES-GCM (AES using Galois Counter Mode) for

encryption.

AES-GMAC for message authentication.

DataTagging DDS:Tagging:DDS_Discovery Send Tags via Endpoint Discovery

Logging DDS:Logging:DDS_LogTopic Logs security events to a dedicated DDS Log Topic

9.2 Requirements and Priorities (Non-Normative)

The selection of the builtin plugins was driven by several functional, as well as, non-functional

requirements, as described below.

Most DDS users surveyed consider the following functional requirements as essential elements of a

secure DDS middleware:

[DDSSEC11-115 Add the concept of "data origin authentication" and clarify …]

 Authentication of applications (DDS Domain Participants) joining a DDS Domain.

 Access control of applications subscribing to specific data at the Domain and Topic level.

 Message integrity and data-origin authentication.

 Encryption of a data sample using different encryption keys for different Topics.

In addition to these essential needs, many users also required that secure DDS middleware should

provide for:

 Sending digitally signed data samples.

 Sending data securely over multicast.

Formatted: Table caption

Deleted: 4343434237

Field Code Changed

Formatted: Spanish (Spain-Traditional
Sort)

Formatted: Spanish (Spain-Traditional

Sort)

198 DDS Security, v1.1

 Tagging data.

 Integrating with open standard security plugins.

Other functional requirements which are considered useful but less common were:

 Access control to certain samples within a Topic but not others, with access rights being

granted according to the data-sample contents or the data-sample key.

 Access control to certain attributes within a data sample but not others, such that certain

DataReader entities can only observe a subset of the attributes as defined by their permissions.

 Permissions that control which QoS might be used by a specific DDS Entity:

DomainParticipant, Publisher, DataWriter, Subscriber, or DataReader.

The primary non-functional requirements that informed the selection of the builtin plugins are:

 Performance and Scalability.

 Robustness and Availability.

 Fit to the DDS Data-Centric Information Model.

 Leverage and reuse of existing security infrastructure and technologies.

 Ease of use while supporting common application requirements.

9.2.1 Performance and Scalability

DDS is commonly deployed in systems that demand high performance and need to scale to large

numbers of processes and computers. Different applications vary greatly in the number of processes,

Topics, and/or data-objects belonging to each Topic.

The policy enforcement/decision points as well as the transformations (cipher, decipher, hash)

performed by the plugins should not adversely degrade system performance and scalability beyond

what is tolerable and strictly needed. In practice this means several things for the builtin plugins:

 The use of Asymmetric Key Cryptography shall be limited to the discovery, authentication,

session and shared-secret establishment phase (i.e., when a Participant discovers another

Participant, a DataReader and matching DataWriter). To the extent possible it shall not be used

in the critical path of data distribution.

 The use of ciphers, HMACs, or digital signatures shall be selectable on a per stream (Topic)

basis. In case of encryption, symmetric ciphers should be used for the application data.

 It shall be possible to provide integrity via HMAC techniques without also requiring the data to

be ciphered.

 Multicast shall be supported even for ciphered data.

9.2.2 Robustness and Availability

DDS is deployed in mission-critical systems, which must continue to operate 24/7 despite partial

system malfunction. DDS also operates in fielded environments where specific components or systems

may be subject to accidental failure or active attack. DDS provides a highly robust infrastructure due to

the way the communication model and protocols are defined as they can be (and commonly are)

DDS Security, v1.1 199

implemented in a peer-to-peer fashion without any centralized services. For this reason, many DDS

implementations have no single points of failure.

The builtin plugins should not negate these desirable properties present in the underlying DDS

middleware infrastructure.

In practice, this means that:

 Centralized policy decision points or services should be avoided.

 The individual DDS DomainParticipant components should be self-contained and have what

they need to operate securely even in the presence of system partitions.

 Multi-party key agreement protocols shall be avoided because they can be easily disrupted by

disrupting just one party.

 Security tokens and keys should be compartmentalized as much as possible such that

compromise of an application component is contained to that component itself. For example,

selection of a system-wide secret key for the whole Domain or even for a Topic should be

avoided.

9.2.3 Fitness to the DDS Data-Centric Model

Application developers that use DDS think in terms of the data-centric elements that DDS provides.

That is, they think first and foremost about the Domains (global data spaces) the application must join

and the Topics that the application needs to read and write. Therefore, the builtin plugins should offer

the possibility to control access with this level of granularity.

Users of DDS also think about the data objects (keyed instances) they read and write, the ability to

dispose instances, filter by content, set QoS, and so forth. While it may be useful to offer ways to

provide access controls to this as well, it was considered of lesser priority and potentially conflicting

with the goal of ease of configurability and maintainability.

The semantics of DDS communications require that individual samples can be consumed

independently of each other. Depending on the QoS policy settings samples written by a single

DataWriter may be received and processed out of order relative to the order sent, or may be received

with intermediate gaps resulting from best-effort communication (if selected), or may be filtered by

content, time, or history, etc. For this reason, any encryption and/or digital signature applied to a

sample should be able to be processed in isolation, without requiring the receiver to maintain a specific

context reconstructed from previous samples.

9.2.4 Leverage and Reuse of Existing Security Infrastructure and Technologies

To the extent possible, it is desirable that the builtin plugins leverage and reuse existing IA technology

and tools. This not only reduces the barrier of entry for implementers of the specification, but also

more importantly enhances the quality of the result by allowing the use of proven, peer-reviewed,

and/or already certified approaches. The builtin plugins leverage existing standards and tools for PKI,

ciphers, hashing and digital signing. To the extent possible, ideas and approaches from existing

protocols for key management and secure multicast are also leveraged, although where appropriate

they have been adapted to the data-centric communications model of DDS and the DDS-RTPS wire

protocol.

200 DDS Security, v1.1

9.2.5 Ease-of-Use while Supporting Common Application Requirements

It is anticipated that specialized applications may need to develop their own security plugins to either

integrate existing security infrastructure or meet specialized requirements. Therefore the primary

consumers of the builtin plugins will be users who want to secure their systems but not have complex

needs or significant legacy components. Under these conditions, ease-of-use is essential. A security

infrastructure that is too hard to configure or too complex to understand or maintain is less likely to be

used, or may be used wrongly, resulting in systems that are less secure overall.

The builtin plugins balance rich functionality and ease-of-use, providing for the most common use

cases, in a manner that is easy to understand and use correctly.

9.3 Builtin Authentication: DDS:Auth:PKI-DH

This builtin authentication plugin is referred to as the “DDS:Auth:PKI-DH”.

The DDS:Auth:PKI-DH plugin implements authentication using a trusted Certificate

Authority (CA). It performs mutual authentication between discovered participants using the RSA

or ECDSA Digital Signature Algorithms [11] and establishes a shared secret using Diffie-Hellman

(DH) or Elliptic Curve Diffie-Hellman (ECDH) Key Agreement Methods [12].

The CA could be an existing one. Or a new one could be created for the purpose of deploying

applications on a DDS Domain. The nature or manner in which the CA is selected is not important

because the way it is used enforces a shared recognition by all participating applications.

Prior to a DomainParticipant being enabled the DDS:Auth:PKI-DH plugin associated with the

DomainParticipant must be configured with three things:

1. The X.509 Certificate that defines the Shared Identity CA. This certificate

contains the Public Key of the CA.

2. The Private Key of the DomainParticipant.

3. An X.509 Certificate that chains up to the Shared Identity CA, that binds the

Public Key of the DomainParticipant to the Distinguished Name (subject name)

for the DomainParticipant.

9.3.1 Configuration

The builtin authentication plugin shall be configured using the PropertyQosPolicy of the

DomainParticipantQos. The specific properties used are described in Table 44 below. Deleted: Table 44Table 44Table 44Table
4338Table 38

DDS Security, v1.1 201

Table 44 – Properties used to configure the builtin Authentication plugin

Property Name

(all properties have

“dds.sec.auth” prefix)

Property Value

(all these properties shall have propagate set to FALSE)

URI syntax follows IETF RFC 3986.

URI “data” schema follows IETF RFC 2397

URI “pkcs11” schema follows IETF RFC 7512

Vendors may support additional schemas

identity_ca

URI to the X509 certificate [39] of the Identity CA.
Supported URI schemes: file, data, pkcs11
The file and data schemas shall refer to a X.509 v3 certificate (see X.509
v3 ITU-T Recommendation X.509 (2005) [39]) in PEM format.

Examples:

file:identity_ca.pem
file:/home/myuser/identity_ca.pem

data:,-----BEGIN CERTIFICATE-----
MIIC3DCCAcQCCQCWE5x+Z … PhovK0mp2ohhRLYI0ZiyYQ==
-----END CERTIFICATE-----

pkcs11:object=MyIdentityCACert;type=cert

private_key

URI to access the private Private Key for the DomainParticipant
Supported URI schemes: file, data, pkcs11
pkcs11 URI follows IETF RFC 7512 “The PKCS #11 URI Scheme”

Examples:
file:identity_ca_private_key.pem
file:/home/myuser/identity_ca_private_key.pem
file:identity_ca_private_key.pem?password=OpenSesame

data:,-----BEGIN RSA PRIVATE KEY-----
MIIEpAIBAAKCAQEA3HIh...AOBaaqSV37XBUJg==
-----END RSA PRIVATE KEY-----

pkcs11:object=MyParticipantPrivateKey;type=private?pin-
value=OpenSesame

password A password used to decrypt the private_key.

The value of the password property shall be interpreted as the Base64
encoding of the AES-128 key that shall be used to decrypt the private_key
using AES128-CBC.

If the password property is not present, then the value supplied in the
private_key property must contain the unencrypted private key.

The password property is only used if the private_key is provided with a
“file:” or a “data:” URI. It does not apply to private keys supplied with the
“pkcs11:” URI.

Formatted: Table caption, Don't keep with
next

Deleted: 4444444338

202 DDS Security, v1.1

identity_certificate

URI to a X509 certificate signed by the IdentityCA in PEM format
containing the signed public key for the DomainParticipant
Supported URI schemes: file, data, pkcs11

Examples:

file:participant1_identity_cert.pem

data:,-----BEGIN CERTIFICATE-----
MIIDjjCCAnYCCQDCEu9...6rmT87dhTo=
-----END CERTIFICATE-----

pkcs11:object=MyParticipantIdentityCert;type=cert

9.3.1.1 Identity CA Certificate

The certificate used to configure the public key of the Identity CA.

The certificate shall be the X.509 v3 Certificate [39] of the issuer of the Identity Certificates in section

9.3.1.3. The certificate can be self-signed if it is a root CA or signed by some other CA public key if it

is a subordinate CA. Regardless of this the Public Key in the Certificate shall be accepted as the one

for the Identity CA trusted to sign DomainParticipant Identity Certificates, see 9.3.1.3.

The public key of the CA shall be either a 2048-bit RSA key [44] or else a 256-bit Elliptic Curve Key

for the prime256v1 curve [41], also known as the NIST P-256 curve [42].

The Identity CA Certificate shall be provided to the plugins using the PropertyQosPolicy on the

DomainParticipantQos as specified in Table 44.

9.3.1.2 Private Key

The Private Key associated with the DomainParticipant. It may be either a 2048-bit RSA private

key or a 256-bit Elliptic Curve Key for use with the prime256v1 curve [41].

The Private Key shall be provided to the plugins using the PropertyQosPolicy on the

DomainParticipantQos as specified in Table 44.

9.3.1.3 Identity Certificate

An X.509 v3 Certificate [39] that chains up to the Identity CA (see 9.3.1.1). The Identity Certificate

binds the Public Key of the DomainParticipant to the Distinguished Name (subject name) for the

DomainParticipant.

9.3.2 DDS:Auth:PKI-DH Types

This sub clause specifies the content and format of the Credential and Token objects used by the

DDS:Auth:PKI-DH plugin.

Credential and Token attributes left unspecified in this specification shall be understood to not

have any required values in this specification. These attributes shall be handled according to the

following rules:

Deleted: Table 44Table 44Table 44Table
4338Table 38

Deleted: Table 44Table 44Table 44Table
4338Table 38

DDS Security, v1.1 203

 Plugin implementations may place data in these attributes as long as they also include a property

attribute that allows the implementation to unambiguously detect the presence and interpret these

attributes.

 Attributes that are not understood shall be ignored.

 Property_t and BinaryProperty_t names shall comply with the rules defined in 7.2.1 and

7.2.2, respectively.

The content of the Handle objects is not specified as it represents references to internal state that is

only understood by the plugin itself. The DDS Implementation only needs to hold a reference to the

returned Handle objects returned by the plugin operations and pass these Handle references to other

operations.

9.3.2.1 DDS:Auth:PKI-DH IdentityToken

The DDS:Auth:PKI-DH plugin shall set the attributes of the IdentityToken object as specified in

the table below:

Table 45 – IdentityToken class for the builtin Authentication plugin

Attribute name Attribute value

class_id “DDS:Auth:PKI-DH:1.0”

properties

(The presence of each of

properties is optional)

name value

dds.cert.sn The subject name of the Identity
Certificate.

dds.cert.algo “RSA-2048” or “EC-prime256v1”

dds.ca.sn The subject name of the Identity CA
Certificate.

dds.ca.algo “RSA-2048” or “EC-prime256v1”

[DDSSEC11-93 Revise version of RTPS and provide rules for plugin versions]

The value of the class_id shall be interpreted as composed of three parts: a PluginClassName, a

MajorVersion and a MinorVersion according to the following format:

<PluginClassName>:<MajorVersion>.<MinorVersion>. The PluginClassName is

separated from the MajorVersion by the last ':' character in the class_id. The MajorVersion and

MinorVersion are separated by a '.' character. Accordingly this version of the specification has

PluginClassName equal to "DDS:Auth:PKI-DH", MajorVersion set to 1, and MinorVersion set to 0.

9.3.2.2 DDS:Auth:PKI-DH IdentityStatusToken

The DDS:Auth:PKI-DH plugin shall set the attributes of the IdentityStatusToken object as

specified in the table below:

Formatted: Table caption

Deleted: 4545454439

204 DDS Security, v1.1

Table 46 – AuthenticatedPeerCredentialToken class for the builtin Authentication plugin

Attribute name Attribute value

class_id “DDS:Auth:PKI-DH:1.0”

properties

(The presence

of each of

properties is

optional)

name value

ocsp_st
atus

A DER-encoded OCSP response (using the ASN.1 type OCSPResponse
defined in clause 4.2.1 of RFC 2560 [52]) that provides the status of
the identity certificate of the DomainParticipant.

9.3.2.3 DDS:Auth:PKI-DH AuthenticatedPeerCredentialToken

The DDS:Auth:PKI-DH plugin shall set the attributes of the

AuthenticatedPeerCredentialToken object as specified in the table below:

Table 47 – AuthenticatedPeerCredentialToken class for the builtin Authentication plugin

Attribute name Attribute value

class_id “DDS:Auth:PKI-DH:1.0”

properties

name value

c.id Contents of the certificate signed by IdentityCA that was received
from the peer DomainParticipant as part of the authentication
process.

Corresponds to the property with the same name received in the
HandskaheRequestMessageToken or
HandskaheReplyMessageToken.

c.perm Contents of the permissions document signed by the PermissionCA
that that was received from the peer DomainParticipant as part of
the authentication process.

Corresponds to the property with the same name received in the
HandskaheRequestMessageToken or
HandskaheReplyMessageToken.

[DDSSEC11-43 Non Recoverable Communication After Asymmetric Liveliness Loss]

9.3.2.4 DDS:Auth:PKI-DH AuthRequestMessageToken

The DDS:Auth:PKI-DH plugin shall set the attributes of the AuthRequestMessageToken object

as specified in the table below:

Formatted: Table caption, Don't keep with
next

Deleted: 4646464544

Formatted: Table caption

Deleted: 4747474640

DDS Security, v1.1 205

Table 48 – AuthRequestMessageToken class for the builtin Authentication plugin

Attribute name Attribute value

class_id “DDS:Auth:PKI-DH:1.0+AuthReq”

properties

name value

future_
challen
ge

A 256-bit NONCE generated by the Participant, compliant with
Section 8.6.7 of NIST Recommendation for Random Number
Generation Using Deterministic Random Bit Generators [46].

The value shall match what will be sent on the challenge1 property
of the HandshakeRequestMessageToken or the challenge2

property of the HandshakeReplyMessageToken.

9.3.2.5 DDS:Auth:PKI-DH HandshakeMessageToken

The DDS:Auth:PKI-DH plugin uses several HandshakeMessageToken object formats:

 HandshakeRequestMessageToken objects

 HandshakeReplyMessageToken objects

 HandshakeFinalMessageToken objects

9.3.2.5.1 HandshakeRequestMessageToken objects

The attributes in HandshakeRequestMessageToken objects shall be set as specified in the table

below. References to the DomainParticipant within the table refer to the

DomainParticipant that is creating the HandshakeRequestMessageToken.

[DDSSEC11-52 Specify Authentication Challenge Length]

[DDSSEC11-23 FIPS-196 reference to wrong chapter]

[DDSSEC11-82 OCSP stapling to enhance certificate status checking during handshake]

[DDSSEC11-43 Non Recoverable Communication After Asymmetric Liveliness Loss]

Table 49 – HandshakeRequestMessageToken for the builtin Authentication plugin

Attribute name Attribute value

class_id “DDS:Auth:PKI-DH:1.0+Req”

binary_properties name value

c.id Contents of the certificate signed by IdentityCA that was
configured using the Participant PropertyQosPolicy with
name “dds.sec.auth.identity_certificate”

c.perm Contents of the permissions document signed by the
PermissionCA that was configured using the Participant
PropertyQosPolicy with name “dds.sec.access.permissions”

Formatted: Table caption, Don't keep with
next

Deleted: 48484847

Deleted: the on

Formatted: Table caption

Deleted: 4949494841

206 DDS Security, v1.1

c.pdata The CDR Big Endian Serialization of the
ParticipantBuiltinTopicData

c.dsign_algo Digital signature algorithm identifier.

Either “RSASSA-PSS-SHA256” or “ECDSA-SHA256”

Deleted: Bultin

DDS Security, v1.1 207

 c.kagree_algo Key agreement algorithm identifier.

Either “DH+MODP-2048-256” or “ECDH+prime256v1-
CEUM”

hash_c1 SHA-256 hash of the CDR Big Endian serialization of a
BinaryPropertySeq object containing all the properties
above that start with “c.” placed in the same order as they
appear above.

Inclusion of the hash_c1 property is optional. Its only
purpose is to facilitate troubleshoot interoperability
problems.

dh1 The CDR Big Endian Serialization of a Diffie-Hellman Public
Key chosen by the Participant. This will be used for key
agreement.

challenge1 A 256-bit NONCE generated by the Participant, compliant
with Section 8.6.7 of NIST Recommendation for Random
Number Generation Using Deterministic Random Bit
Generators [46].

If the validate_remote_identity returned a non-NIL
AuthRequestMessageToken, then the value shall match

what was sent on the AuthRequestMessageToken
future_challenge property.

 ocsp_status Inclusion of this property is optional.

A DER-encoded OCSP response (using the ASN.1 type
OCSPResponse defined in clause 4.2.1 of RFC 2560 [52])
that provides the status of the identity certificate in the c.id
property.

Plugin implementations may add extra properties as long as the names comply with the rules defined in

in 7.2.1. Plugin implementations shall ignore any properties they do not understand.

If the Participant Identity uses a RSA Public Key, then the c.dsign_algo shall be “RSASSA-PSS-

SHA256”.

If the Participant Identity uses a EC Public Key, then the c.dsign_algo shall be “ECDSA-SHA256”.

9.3.2.5.2 HandshakeReplyMessageToken

The attributes in the HandshakeReplyMessageToken objects are set as specified in the table

below. References to the DomainParticipant within the table refer to the

DomainParticipant that is creating the HandshakeReplyMessageToken.

[DDSSEC11-52 Specify Authentication Challenge Length]

[DDSSEC11-23 FIPS-196 reference to wrong chapter]

[DDSSEC11-82 OCSP stapling to enhance certificate status checking during handshake]

Deleted: Random Challenge

Deleted: the recommendations of

Deleted: 3.2.1

Deleted: FIPS-196

208 DDS Security, v1.1

[DDSSEC11-43 Non Recoverable Communication After Asymmetric Liveliness Loss]

Table 50 – HandshakeReplyMessageToken for the builtin Authentication plugin

Attribute name Attribute value

class_id “DDS:Auth:PKI-DH:1.0+Reply”

binary_properties name value

c.id Contents of the certificate signed by IdentityCA that was
configured using the Participant PropertyQosPolicy with
name “dds.sec.auth.identity_certificate”

c.perm Contents of the permissions document signed by the
PermissionCA that was configured using the Participant
PropertyQosPolicy with name “dds.sec.access.permissions”

c.pdata The CDR Big Endian Serialization of the
ParticipantBuiltinTopicData

c.dsign_algo Digital signature algorithm identifier.

Either “RSASSA-PSS-SHA256” or “ECDSA-SHA256”

c.kagree_algo Key agreement algorithm identifier.

Either “DH+MODP-2048-256” or “ECDH+prime256v1-
CEUM”

hash_c2 SHA-256 hash of the CDR Big Endian serialization of a
BinaryPropertySeq object containing all the properties
above that start with “c.” placed in the same order as they
appear above.

Inclusion of the hash_c2 property is optional. Its only
purpose is to facilitate troubleshoot interoperability
problems.

dh2 The CDR Big Endian Serialization of a Diffie-Hellman Public
Key chosen by the Participant. This will be used to establish
the shared secret.

hash_c1 The value of the related HandshakeRequestMessageToken
property hash_c1.

Inclusion of the hash_c1 property is optional. Its only
purpose is to facilitate troubleshoot interoperability
problems.

dh1 The value of the related HandshakeRequestMessageToken
property dh1.

Inclusion of the dh1 property is optional. Its only purpose
is to facilitate troubleshoot interoperability problems.

Formatted: Table caption

Deleted: 5050504942

Deleted: Bultin

DDS Security, v1.1 209

challenge1 Value of the related HandshakeRequestMessageToken
property challenge1.

210 DDS Security, v1.1

 challenge2 A 256-bit NONCE generated by the Participant, compliant
with Section 8.6.7 of NIST Recommendation for Random
Number Generation Using Deterministic Random Bit
Generators [46].

If the validate_remote_identity returned a non-NIL
AuthRequestMessageToken, then the value shall
match what was sent on the
AuthRequestMessageToken future_challenge property.

ocsp_status Inclusion of this property is optional.

A DER-encoded OCSP response (using the ASN.1 type
OCSPResponse defined in clause 4.2.1 of RFC 2560 [52])
that provides the status of the identity certificate in the c.id
property.

signature The Digital Signature of the CDR Big Endian serialization of
a BinaryPropertySeq object containing the properties:
hash_c2, challenge2, dh2, challenge1, dh1, and hash_c1,
placed in that order.

All the aforementioned properties shall appear within the
signature even if some of the optional properties do not
appear separately as properties in the
HandshakeReplyMessageToken.

Plugin implementations may add extra properties as long as the names comply with the rules defined in

7.4.3.5. Plugin implementations shall ignore any properties they do not understand.

If the value of the c. kagree_algo property is “DH+MODP-2048-256”, then:

 The Diffie-Hellman Public Key shall be for the 2048-bit MODP Group with 256-bit Prime

Order Subgroup, see IETF RFC 5114 [47], section 2.3.

 The Key Agreement Algorithm shall be the “dhEphem, C(2e, 0s, FFC DH) Scheme” defined

in section 6.1.2.1 of NIST Special Publication 800-56A Revision 2 [48].

Non-normative note: The OpenSSL 1.0.2 operation DH_get_2048_256() retrieves the parameters for

the 2048-bit MODP Group with 256-bit Prime Order Subgroup.

If the value of the c.kagree_algo property is “ECDH+prime256v1-CEUM”, then:

 The Diffie-Hellman Public Key shall be for the NIST’s EC Curve P-256 as defined in appendix

D of FIPS 186-4 [42] also known as prime256v1 in ANSI X9.62-2005 [41].

 The Key Agreement Algorithm shall be the “(Cofactor) Ephemeral Unified Model, C(2e, 0s,

ECC CDH)” defined in section 6.1.2.2 of NIST Special Publication 800-56A Revision 2 [48].

See also section 3.1 “Ephemeral Unified Model” of NIST Suite B Implementer’s Guide to

NIST SP 800-56A [49].

[DDSSEC11-49 Apply sha256 to derived shared secret]

Regardless of the key agreement algorithm, the SharedSecret (see Table 53) shall be computed as

the SHA256 hash of the derived shared secret computed by the key agreement algorithm. [Non-

Deleted: Random

Deleted: Challenge

Deleted: the recommendations of Section
3.2.1 of FIPS-196

Deleted: Table 53Table 53Table 53Table
5245Table 45

DDS Security, v1.1 211

normative: This is done to accommodate the use of cryptographic libraries that do not provide direct

access to the derived shared secret and only allow retrieval of the SHA256 of the shared secret.]

The digital signature shall be computed using the Private Key associated with the DomainParticipant,

which corresponds to the Public Key that appears in the Identity Certificate.

If the Participant Private Key is a RSA key, then:

 The value of the c.dsign_algo property shall be “RSASSA-PSS-SHA256”.

 The digital signature shall be computed using the RSASSA-PSS algorithm specified in PKCS

#1 (IETF 3447) RSA Cryptography Specifications Version 2.1 [44], using SHA256 as hash

function, and MGF1 with SHA256 (mgf1sha256) as mask generation function.

If the Participant Private Key is an EC key, then:

 The value of the c.dsign_algo shall be “ECDSA-SHA256”.

 The digital signature shall be computed using the ECDSA-SHA256 algorithm specified in

ANSI X9.62-2005 [41].

9.3.2.5.3 HandshakeFinalMessageToken

[DDSSEC11-49 Apply sha256 to derived shared secret]

HandshakeFinalMessageToken objects are used to finish an authentication handshake.

The attributes in the HandshakeFinalMessageToken objects shall be set as specified in the table

below.

References to the DomainParticipant within the table refer to the DomainParticipant that

is creating the HandshakeFinalMessageToken.

Table 51 – HandshakeFinalMessageToken for the builtin Authentication plugin

Attribute name Attribute value

class_id “DDS:Auth:PKI-DH:1.0+Final”.

binary_properties name value

hash_c1 The value of the related HandshakeRequestMessageToken
property hash_c1.

Inclusion of the hash_c1 property is optional. Its only purpose
is to facilitate troubleshoot interoperability problems.

hash_c2 The value of the related HandshakeReplyMessageToken
property hash_c2.

Inclusion of the hash_c2 property is optional. Its only purpose
is to facilitate troubleshoot interoperability problems.

dh1 The value of the related HandshakeRequestMessageToken
property dh1.

Inclusion of the dh1 property is optional. Its only purpose is to
facilitate troubleshoot interoperability problems.

Deleted: and communicate a
SharedSecret

Deleted:

Moved down [1]: References to the

DomainParticipant within the table refer

to the DomainParticipant that is creating

the HandshakeFinalMessageToken.

Deleted: ¶

The SharedSecret shall be a 256-bit

random number generated using a
cryptographically-strong random number
generator. Each created

HandshakeFinalMessageToken shall

have associated a unique SharedSecret.

Moved (insertion) [1]

Formatted: Table caption

Deleted: 5151515043

212 DDS Security, v1.1

DDS Security, v1.1 213

 dh2 The value of the related HandshakeReplyMessageToken
property dh2.

Inclusion of the dh2 property is optional. Its only purpose is to
facilitate troubleshoot interoperability problems. |

challenge1 Value of HandshakeRequestMessageToken property
challenge1

challenge2 Value of HandshakeReplyMessageToken property challenge2

signature The Digital Signature of the CDR Big Endian serialization of a
BinaryPropertySeq object containing the properties: hash_c1,
challenge1, dh1, challenge2, dh2, and hash_c2, placed in that
order.

All the aforementioned properties shall appear within the
signature even if some of the optional properties do not appear
separately as properties in the HandshakeFinalMessageToken.

The Diffie Hellman public key shall be for the same algorithm and Domain Parameters that were used

for the HandshakeRequestMessageToken key received as value of the dh2 property. The

parameters and algorithm shall be determined based on the value of the

HandshakeRequestMessageToken parameter with key c.kagree_algo. In other words, it is the

Participant that creates the HandshakeRequestMessageToken the one that controls the key

agreement algorithm used.

The digital signature shall be computed using the Private Key associated with the DomainParticipant,

which corresponds to the Public Key that appears in the Identity Certificate.

If the Participant Private Key is a RSA key, then the digital signature shall be computed using the

RSASSA-PSS algorithm specified in PKCS #1 (IETF 3447) RSA Cryptography Specifications Version

2.1 [44], using SHA256 as hash function, and MGF1 with SHA256 (mgf1sha256) as mask generation

function.

If the Participant Participant Private Key is an EC key, then the digital signature shall be computed

using the ECDSA-SHA256 algorithm specified in ANSI X9.62-2005 [41].

9.3.3 DDS:Auth:PKI-DH plugin behavior

The table below describes the actions that the DDS:Auth:PKI-DH plugin performs when each of the

plugin operations is invoked.

[DDSSEC11-31 Wrong ValidationResult_t VALIDATION_OK_WITH_FINAL_...]

[DDSSEC11-47 Need to specify format of SubjectName used for …]

[DDSSEC11-25 Correct VALIDATION_PENDING_CHALLENGE_MESSAGE]

[DDSSEC11-46 Add serialized_participant_data to begin_handshake_request_...]

[DDSSEC11-88 Replace use of BuiltinTopicKey_t with GUID_t_...]

[DDSSEC11-85 Additional typos/inconsistencies]

214 DDS Security, v1.1

[DDSSEC11-93 Revise version of RTPS and provide rules for plugin versions]

[DDSSEC11-82 OCSP stapling to enhance certificate status checking during handshake]

Table 52 – Actions undertaken by the operations of the builtin Authentication plugin

validate_local_ide

ntity

This operation shall receive the participant_guid associated with

the local DomainParticipant whose identity is being

validated.

The operation shall receive the DomainParticipantQos

with a PropertyQosPolicy containing the properties defined

in section 9.3.1.

The operation shall verify the validity of the X509 certificate

associated with the property named

dds.sec.auth.identity_certificate using the CA configured by the

dds.sec.auth.identity_ca property.. The operation shall check a

CRL and/or an OCSP (RFC 2560 [52]) responder. This includes

checking the expiration date of the certificate.

If the above check fails the operation shall return

VALIDATION_FAILED.

The operation shall fill the handle with an implementation-

dependent reference that allows the implementation to retrieve at

least the following information:

1. The private key associated with the identity_credential

2. The public key associated with the identity_credential

3. The participant_guid

The operation shall return the 16-byte adjusted_participant_guid

GUID consisting of the same EntityId_t and a GuidPrefix_t

computed as follows:

 The first bit (bit 0) shall be set to 1.

 The 47 bits following the first bit (bits 1 to 47) shall be set to

the 47 first bits of the SHA-256 hash of the ASN.1 DER

encoding of the SubjectName [40] appearing on the

identity_credential.

 The following 48 bits (bits 48 to 95) shall be set to the first 48

bits of the SHA-256 hash of the candidate_participant_guid.

If successful, the operation shall return VALIDATION_OK.

Formatted: Table caption

Deleted: 5252525144

Deleted: participant_key

Deleted: participant_key

Deleted: adjusted_participant_key

Deleted: candidate_participant_key

Deleted: <#>The remaining 32 bits (bits 96
to 127) shall be set identical to the

corresponding bits in the
candidate_participant_key.¶

DDS Security, v1.1 215

get_identity_token The operation shall receive the handle corresponding to the one

returned by a successful previous call to validate_local_identity.

If the above condition is not met the operation shall return the

exception DDS_SecurityException_PreconditionError.

This operation shall return an IdentityToken object with the

content specified in 9.3.2.1.

set_permissions_cr

edential_and_token

This operation shall store the

PermissionsCredentialToken and the

PermissionsToken internally to the plugin and associate

them with the DomainParticipant represented by the

IdentityHandle.

validate_remote_id

entity

The operation shall receive the IdentityToken of the remote

participant in the argument remote_identity_token.

The contents of the IdentityToken shall be identical to what

would be returned by a call to get_identity_token on the

Authentication plugin of the remote

DomainParticipant associated with the

remote_participant_guid.

The operation shall compare the class_id of the local

identity_token with that of the remote_identity_token. If the

PluginClassName or the MajorVersion are different, it shall

return VALIDATION_FAILED.

If the remote_auth_request_token is NIL, the operation shall

generate a local_auth_request_token

AuthRequestMessageToken (see 9.3.2.4), otherwise the

local_auth_request_token shall be set to TokenNIL. Note that

a local_auth_request_token is returned as an out parameter.

The operation shall compare lexicographically the

remote_participant_guid with the participant key obtained from

the local_identity_handle.

If the remote_participant_guid > local_participant_guid, the

operation shall return

VALIDATION_PENDING_HANDSHAKE_REQUEST.

If the remote_participant_guid < local_participant_guid, the

operation shall return

VALIDATION_PENDING_HANDSHAKE_MESSAGE.

In both scenarios the remote_identity_handle shall be filled with

a reference to internal plugin information that identifies the

remote participant and associates it to the contents of the

remote_identity_token, the local_auth_request_token, the

Deleted: remote_participant_key

Deleted: remote_participant_key

Deleted: remote_participant_key

Deleted: local participant_key

Deleted: remote_participant_key

Deleted: local participant_key

216 DDS Security, v1.1

remote_auth_request_token and any additional information

required for the challenge protocol.

begin_handshake_re

quest

The operation shall receive the initiator_identity_handle

corresponding to the local_identity_handle of a previous

invocation to the validate_remote_identity operation that returned

VALIDATION_PENDING_HANDSHAKE_REQUEST.

The operation shall also receive the replier_identity_handle

corresponding to the remote_identity_handle returned by that

same invocation to the validate_remote_identity operation.

The operation shall also receive the

serialized_local_participant_data associated with the local

DomainParticipant. This will be used to set the value of the

property named “c.pdata”.

The operation shall return the handshake_message containing a

HandshakeRequestMessageToken object with contents as

defined in 9.3.2.5.1.

The operation shall check the content of the

local_auth_request_token associated with the

remote_identity_handle. If the token was different from

TokenNIL, the operation shall use the value of property named

“future_challenge” found in the

local_auth_request_token to fill the property named

“challenge1” of the handshake_message returned.

The operation shall fill the handshake_handle with an

implementation-dependent reference that allows the

implementation to retrieve at least the following information:

1. The local_identity_handle

2. The remote_identity_handle

3. The value attribute of the handshake_message

returned

The operation shall return

VALIDATION_PENDING_HANDSHAKE_MESSAGE.

begin_handshake_re

ply

The operation shall receive the replier_identity_handle

corresponding to local_identity_handle of a previous invocation

to the validate_remote_identity operation that returned

VALIDATION_PENDING_HANDSHAKE_MESSAGE.

The operation shall also receive the initiator_identity_handle

corresponding to the remote_identity_handle returned by that

same invocation to the validate_remote_identity

Deleted: 9.3.2.5.19.3.2.5.19.3.2.5.19.3.2.5.19.

3.2.3.1

Deleted: CHALLENGE

DDS Security, v1.1 217

operation.

The operation shall also receive the

serialized_local_participant_data associated with the local

DomainParticipant. This will be used to set the value of the

property named “c.pdata”.

If any of the above conditions is not met, the operation shall

return the exception DDS_SecurityException_PreconditionError.

The operation shall check the content of the

remote_auth_request_token associated with the

remote_identity_handle. If the token was different from

TokenNIL, the operation shall verify that the property named

“future_challenge” found in that token is the same value

as the property named “challenge1” found in the

handshake_message_in

HandshakeRequestMessageToken. If the condition is not

met, the operation shall return VALIDATION_FAILED.

The operation shall check the content of the

local_auth_request_token associated with the

remote_identity_handle. If the token was different from

TokenNIL, the operation shall use the value of property named

“future_challenge” found in the

local_auth_request_token to fill the property named

“challenge2” of the handshake_message returned.

The operation shall verify the validity of the

IdentityCredential contained in the property named

“c.id” found in the handshake_message_in

HandshakeRequestMessageToken. This verification shall

be done using the locally configured CA in the same manner as

the validate_local_identity operation.

If the handshake_message_in does not contain the

aforementioned property or the verification fails, then the

operation shall fail and return ValidationResult_Fail.

If the property ocsp_status is present, the operation shall verify

that the OCSP response included in the property corresponds to

the identity in the c.id property. The operation shall use the OCSP

response to verify the status of the IdentityCredential. If

that status is good and the validity interval has not been exceeded

it shall accept that as proof that the IdentityCredential is still

valid. If the status is revoked, the operation shall fail and return

ValidationResult_Fail. If the status is different from the

aforementioned ones it shall behave as if the ocsp_status

property was not present.

If the property ocsp_status is not present, the operation shall use

218 DDS Security, v1.1

its own means to determine the status of the

IdentityCredential. This may performing an OCSP query

or consulting a CRL list. The specific behavior is implementation

specific.

The operation shall verify that the first bit of the participant_guid

of the ParticipantBuiltinTopic data inside the “c.pdata” is set

to 1 and that the following 47 bits match the first 47 bits of the

SHA-256 hash of the SubjectName appearing in the

IdentityCredential. If this verification fails, the operation

shall fail and return ValidationResult_Fail.

The operation shall fill the handshake_message_out with a

HandshakeReplyMessageToken object with the content

specified in 9.3.2.5.2.

The operation shall fill the handshake_handle with an

implementation-dependent reference that allows the

implementation to retrieve at least the following information:

1. The replier_identity_handle

2. The initiator_identity_handle

3. The value attribute of the challenge_message returned

4. The property with name “dds.sec.permissions” found

within the handshake_message_in if present

The operation shall return

VALIDATION_PENDING_HANDSHAKE_MESSAGE.

process_handshake

on a handshake_handle

created by

begin_handshake_re

quest

The operation shall be called with the handshake_handle

returned by a previous call to begin_handshake_request that

returned

VALIDATION_PENDING_HANDSHAKE_MESSAGE.

The handshake_message_in shall correspond to a

HandshakeReplyMessageToken object received as a reply

to the handshake_message

HandshakeRequestMessageToken object associated with

the handshake_handle.

If any of the above conditons is not met, the operation shall return

the exception DDS_SecurityException_PreconditionError.

The operation shall verify that the contents of the

handshake_message_in correspond to a

HandshakeReplyMessageToken as described in 9.3.2.5.2.

The operation shall check the content of the

remote_auth_request_token associated with the

remote_identity_handle. If the token was different from

TokenNIL, the operation shall verify that the property named

“future_challenge” found in that token is the same value

Deleted: participant_key

Deleted: 9.3.2.5.29.3.2.5.29.3.2.5.29.3.2.5.29.

3.2.3.2

Deleted: CHALLENGE

Deleted: CHALLENGE

Deleted: 9.3.2.5.29.3.2.5.29.3.2.5.29.3.2.5.29.

3.2.3.2

DDS Security, v1.1 219

as the property named “challenge2” found in the

handshake_message_in HandshakeReplyMessageToken.

If the condition is not met, the operation shall return

VALIDATION_FAILED.

The operation shall verify the validity of the

IdentityCredential contained in the property named

“c.id” found in the handshake_message_in

HandshakeReplyMessageToken. This verification shall be

done using the locally configured CA in the same manner as the

validate_local_identity operation.

If the handshake_message_in does not contain the

aforementioned property or the verification fails, then the

operation shall fail and return ValidationResult_Fail.

If the property ocsp_status is present, the operation shall verify

that the OCSP response included in the property corresponds to

the identity in the c.id property. The operation shall use the OCSP

response to verify the status of the IdentityCredential. If

that status is good and the validity interval has not been exceeded

it shall accept that as proof that the IdentityCredential is still

valid. If the status is revoked, the operation shall fail and return

ValidationResult_Fail. If the status is different from the

aforementioned ones it shall behave as if the ocsp_status

property was not present.

If the property ocsp_status is not present, the operation shall use

its own means to determine the status of the

IdentityCredential. This may performing an OCSP query

or consulting a CRL list. The specific behavior is implementation

specific.

The operation shall check that the challenge1 matches the one

that was sent on the HandshakeRequestMessageToken.

The operation shall validate the digital signature in the

“signature” property, according to the algorithm described in

section 9.3.2.5.2.

If the specified checks do not succeed, the operation shall return

VALIDATION_FAILED.

The operation shall create a

HandshakeFinalMessageToken object as described in

9.3.2.5.3. The operation shall fill the handshake_message_out

with the created HandshakeFinalMessageToken object.

The operation shall store the value of property with name

“dds.sec.” found within the handshake_message_in, if

present and associate it with the handshake_handle as the

PermissionsCertificate of remote

Deleted: 9.3.2.5.29.3.2.5.29.3.2.5.29.3.2.5.29.
3.2.3.2

Deleted: 9.3.2.5.39.3.2.5.39.3.2.5.39.3.2.5.39.
3.2.3.3

220 DDS Security, v1.1

DomainParticipant.

The operation shall use the Diffie Hellman Public Key in the

“dh2” property in combination with the Diffie Hellman Private

Key it used to compute the

HandshakeFinalMessageToken “dh1” property to

compute the shared secret. The algorithm shall be as described in

section 9.3.2.5.2.

On success the operation shall return

VALIDATION_OK_FINAL_MESSAGE.

process_handshake

on a handshake_handle

created by

begin_handshake_re

ply

The operation shall be called with the handshake_handle

returned by a previous call to begin_handshake_reply that

returned

VALIDATION_PENDING_HANDSHAKE_MESSAGE.

The handshake_message_in shall correspond to the one received

as a reply to the handshake_message_out associated with the

handshake_handle.

If any of the above conditions is not met, the operation shall

return the exception DDS_SecurityException_PreconditionError.

The operation shall verify that the contents of the

handshake_message_in correspond to a

HandshakeFinalMessageToken object as described in

9.3.2.5.3.

The operation shall check that the challenge1 and challenge2

match the ones that were sent on the
HandshakeReplyMessageToken.

The operation shall validate the digital signature in the

“signature” property, according to the expected contents and

algorithm described in section 9.3.2.5.3.

The operation shall use the Diffie Hellman Public Key in the

“dh1” property in combination with the Diffie Hellman Private

Key it used to compute the

HandshakeReplyMessageToken “dh2” property to

compute the shared secret. The algorithm shall be as described in

section 9.3.2.5.2.

On success the operation shall return VALIDATION_OK.

Deleted: 9.3.2.5.29.3.2.5.29.3.2.5.29.3.2.5.29.

3.2.3.2

Deleted: WITH_

Deleted: 9.3.2.5.39.3.2.5.39.3.2.5.39.3.2.5.39.
3.2.3.3

Deleted: 9.3.2.5.39.3.2.5.39.3.2.5.39.3.2.5.39.
3.2.3.3

Deleted: 9.3.2.5.29.3.2.5.29.3.2.5.29.3.2.5.29.
3.2.3.2

DDS Security, v1.1 221

get_shared_secret This operation shall be called with the handshake_handle that

was previously used to call either process_handshake and for

which the aforementioned operation returned

VALIDATION_OK_FINAL_MESSAGE or VALIDATION_OK.

If the above conditon is not met, the operation shall return the

exception DDS_SecurityException_PreconditionError.

The operation shall return a SharedSecretHandle that is

internally associated with the SharedSecret established as part of

the handshake.

On failure the operation shall return nil.

get_authenticated_

peer_credential_to

ken

This operation shall be called with the handshake_handle that

was previously used to call either process_handshake and for

which the aforementioned operation returned

VALIDATION_OK_FINAL_MESSAGE or VALIDATION_OK.

If the above conditon is not met, the operation shall return the

exception DDS_SecurityException_PreconditionError.

The operation shall return the

AuthenticatedPeerCredentialToken of the peer

DomainParticipant associated with the handshake_handle.

If the DomainParticipant initiated the handshake, then the

peer AuthenticatedPeerCredentialToken is

constructed from the HandshakeReplyMessageToken,

otherwise it is constructed from the

HandshakeRequestMessageToken. See section 0.

On failure the operation shall return nil.

set_listener

This operation shall save a reference to the listener object and

associate it with the specified IdentityHandle.

return_identity_to

ken

This operation shall behave as specified in 8.3.2.11.13.

return_peer_permis

sions_credential_t

oken

This operation shall behave as specified in 8.3.2.11.15.

return_handshake_h

andle

This operation shall behave as specified in 8.3.2.11.16.

return_identity_ha

ndle

This operation shall behave as specified in 8.3.2.11.17.

return_sharedsecre

t_handle

This operation shall behave as specified in 8.3.2.11.18.

Deleted: _WITH

Deleted: _WITH

Deleted: 8.3.2.11.138.3.2.11.138.3.2.11.138.3

.2.11.138.3.2.9.12

Deleted: 8.3.2.11.158.3.2.11.158.3.2.11.158.3
.2.11.158.3.2.9.13

Deleted: 8.3.2.11.168.3.2.11.168.3.2.11.168.3
.2.11.168.3.2.9.14

Deleted: 8.3.2.11.178.3.2.11.178.3.2.11.178.3
.2.11.178.3.2.9.15

Deleted: 8.3.2.11.188.3.2.11.188.3.2.11.188.3
.2.11.188.3.2.9.16

222 DDS Security, v1.1

9.3.4 DDS:Auth:PKI-DH plugin authentication protocol

The operations the Secure DDS implementation executes on the Authentication plugin combined

with the behavior of the DDS:Auth:PKI-DH result in an efficient 3-message protocol that performs

mutual authentication and establishes a shared secret.

The rest of this sub clause describes the resulting protocol.

The authentication protocol is symmetric, that is there are no client and server roles. But only one

DomainParticipant should initiate the protocol. To determine which of the two

DomainParticipant entities shall initiate the protocol, each DomainParticipant compares

its own GUID with that of the other DomainParticipant. The DomainParticipant with the lower

GUID (using lexicographical order) initiates the protocol.

9.3.4.1 Terms and notation

The table below summarizes the terms used in the description of the protocol.

[DDSSEC11-49 Apply sha256 to derived shared secret]

Table 53 – Terms used in the description of the builtin authentication protocol

Term Meaning

Participant1 The DomainParticipant that initiates the handshake protocol.

It calls begin_handshake_request, sends the

HandshakeRequestMessageToken, receives the
HandshakeReplyMessageToken, and sends the

HandshakeFinalMessageToken).

Participant2 The DomainParticipant that does not initiate the handshake protocol.

It calls begin_handshake_reply, receives the

HandshakeRequestMessageToken , sends the
HandshakeReplyMessageToken, and receives the

HandshakeFinalMessageToken).

PubK_1 The Public Key of Participant1.

PubK_2 The Public Key of Participant2.

PrivK_1 The Private Key of Participant1.

PrivK_2 The Private Key of Participant2.

Cert1 The IdentityCertificate (signed by the shared CA) of
Participant A. It contains PubK_1.

Cert2 The IdentityCertificate (signed by the shared CA) of
Participant 2. It contains PubK_2.

Perm1 Permissions document of Participant1 (signed by Permissions CA).

Perm2 Permissions document of Participant2 (signed by Permissions CA).

Formatted: Table caption

Deleted: 5353535245

DDS Security, v1.1 223

Pdata1 ParticipantBuiltinTopicData of Participant1.

Pdata2 ParticipantBuiltinTopicData of Participant2.

Dsign_algo1 Token identifying the Digital Signature Algorithm for Participant1.

Dsign_algo2 Token identifying the Digital Signature Algorithm for Participant2.

Kagree_algo1 Token identifying the Key Agreement Algorithm selected by
Participant1 that shall be used to establish the shared secret.

Kagree_algo2 Token identifying the Key Agreement Algorithm used by Participant2.
It shall be set to match the one received from Participant1 in
Kagree_algo1and used to establish the shared secret.

Challenge1 The challenge created by Participant1.

Challenge2 The challenge created by Participant2.

DH1 Diffie-Hellman Public Key generated by Participant1.

DH2 Diffie-Hellman Public Key generated by Participant2.

DHSharedSecret The shared secret computed combining DH1 and DH2 with the DH
secret key each participant has.

SharedSecret The SHA256 Hash of the DHSharedSecret.

C1 A shortcut for the list: Cert1, Perm1, Pdata1, Dsign_algo1, Kagree_algo1.

C2 A shortcut for the list: Cert2, Perm2, Pdata2, Dsign_algo2, Kagree_algo2.

The table below summarizes the notation and transformation functions used in the description of the

protocol:

Table 54 – Notation of the operations/transformations used in the description of the builtin authentication protocol

Function / notation meaning

Sign(data) Signs the ‘data’ argument using the Participant Private Key.

Hash(data) Hashes the ‘data’ argument using SHA-256.

data1 | data2 The symbol ‘|’ is used to indicate byte concatenation.

Deleted: Bultin

Deleted: Bultin

Formatted: Table caption

Deleted: 5454545346

224 DDS Security, v1.1

9.3.4.2 Protocol description

The table below describes the resulting 3-way protocol that establishes authentication and a shared

secret between Participant_A and Participant_B.

Table 55 – Description of built-in authentication protocol

Participant A Participant B

Is configured with PrivK_1 and C1 where

C1 = Cert1, Perm1, Pdata1, Dsign_algo1,

Kagree_algo1

Generates a random Challenge1.

Generates DH1.

Sends:

HandshakeRequestMessageToken:

(C1, Hash(C1), Challenge1, DH1)

Note: In the above message Hash(C1) may be
omitted.

Is configured with PrivK_2 and C2 where

C2 = Cert2, Perm2, Pdata2, Dsign_algo2,

Kagree_algo2

 Receives
HandshakeRequestMessageToken

Verifies Cert1 with the configured Identity CA

Verifies Hash(C1)

Generates a random Challenge2

Generates DH2

Sends:

HandshakeReplyMessageToken:

(C2, Hash(C2),

 Challenge1, Challenge2,

 DH2, Hash(C1), DH1,

 Sign(Hash(C2) | Challenge2

 | DH2 | Challenge1 | DH1

 | Hash(C1)))

Note: In the above message Hash(C2) ,
Hash(C1) and DH1 may be omitted outside the
signature.

Formatted: Table caption

Deleted: 5555555447

DDS Security, v1.1 225

Receives HandshakeReplyMessageToken

Verifies Cert2 with the configured Identity CA

Verifies signature against PubK2

Computes shared secret from DH2 and the DH
private key used for DH1

Sends:

HandshakeFinalMessageToken:

(Hash(C1), Hash(C2), DH1, DH2,

 Challenge1, Challenge2,

 Sign(Hash(C1) | Challenge1 | DH1

| Challenge2 | DH2

| Hash(C2)))

Note: In the above message Hash(C1) , Hash(C2),
DH1, and DH2 may be omitted outside the
signature.

Receives
HandshakeFinalMessageToken

Checks Hash(C1) matches the
HandshakeRequestMessageToken

Verifies the signature in
HandshakeFinalMessageToken

against PubK_1

Computes shared secret from DH1 and the DH
private key used for DH2

9.4 Builtin Access Control: DDS:Access:Permissions

This builtin AccessControl plugin is referred to as the “DDS:Access:Permissions” plugin.

The DDS:Access:Permissions implements the AccessControl plugin API using a permissions

document signed by a shared Certificate Authority (CA).

The shared CA could be an existing one (including the same CA used for the Authentication

plugin), or a new one could be created for the purpose of assigning permissions to the applications on a

DDS Domain. The nature or manner in which the CA is selected is not important because the way it is

used enforces a shared recognition by all participating applications.

Each DomainParticipant has an associated instance of the DDS:Access:Permissions plugin.

9.4.1 Configuration

The DDS:Access:Permissions plugin is configured with three documents:

 The Permissions CA certificate

 The Domain governance signed by the Permissions CA

 The DomainParticipant permissions signed by the Permissions CA

226 DDS Security, v1.1

The configuration of the builtin access control plugin shall be done using the PropertyQosPolicy

of the DomainParticipantQos. The specific properties used are described in Table 56 below.

Table 56 – Properties used to configure the builtin AccessControl plugin

Property Name

(all properties have

“dds.sec.access” prefix)

Property Value

(all these properties shall have propagate set to FALSE)

URI syntax follows IETF RFC 3986.

URI “data” schema follows IETF RFC 2397

Vendors may support additional schemas

permissions_ca

URI to a X509 certificate for the PermissionsCA in PEM format.
Supported URI schemes: file, data, pkcs11
The file and data schemas shall refer to a X.509 v3 certificate (see X.509
v3 ITU-T Recommendation X.509 (2005) [39]) in PEM format.

Examples:

file:permissions_ca.pem
file:/home/myuser/ permissions_ca.pem

data:,-----BEGIN CERTIFICATE-----
MIIC3DCCAcQCCQCWE5x+Z … PhovK0mp2ohhRLYI0ZiyYQ==
-----END CERTIFICATE-----

pkcs11:object= MyPermissionsCACert;type=cert

governance

URI to the shared Governance Document signed by the Permissions CA in
S/MIME format
URI schemes: file, data

Example file URIs:
file:governance.smime
file:/home/myuser/governance.smime

Example data URI:
data:,MIME-Version: 1.0
Content-Type: multipart/signed; protocol="application/x-pkcs7-
signature"; micalg="sha-256"; boundary="----
F9A8A198D6F08E1285A292ADF14DD04F"

This is an S/MIME signed message

------F9A8A198D6F08E1285A292ADF14DD04F
<?xml version="1.0" encoding="UTF-8"?>
<dds xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="omg_shared_ca_governance.xsd">
 <domain_access_rules>
...
 </domain_access_rules>
</dds>
…

Deleted: Table 56Table 56Table 56Table
5548Table 48

Formatted: Table caption

Deleted: 5656565548

DDS Security, v1.1 227

------F9A8A198D6F08E1285A292ADF14DD04F
Content-Type: application/x-pkcs7-signature; name="smime.p7s"
Content-Transfer-Encoding: base64
Content-Disposition: attachment; filename="smime.p7s"

MIIDuAYJKoZIhv ...al5s=
------F9A8A198D6F08E1285A292ADF14DD04F—

permissions

URI to the DomainParticipant permissions document signed by the
Permissions CA in S/MIME format
URI schemes: file, data

Example file URIs:
file:participant1_permissions.smime
file:/home/myuser/participant1_permissions.smime

9.4.1.1 Permissions CA Certificate

This is a X.509 certificate that contains the Public Key of the CA that will be used to sign the Domain

Governance and Domain Permissions document. The certificate can be self-signed or signed by some

other CA. Regardless of this the Public Key in the Certificate shall be trusted to sign the

aforementioned Governance and Permissions documents (see 9.4.1.2 and 9.4.1.3).

The Permissions CA Certificate shall be provided to the plugins using the PropertyQosPolicy on

the DomainParticipantQos as specified in Table 56.

9.4.1.2 Domain Governance Document

The domain governance document is an XML document that specifies how the domain should be

secured.

The domain governance document shall be signed by the Permissions CA. The signed document shall

use S/MIME version 3.2 format as defined in IETF RFC 5761 using SignedData Content Type (section

2.4.2 of IETF RFC 5761) formatted as multipart/signed (section 3.4.3 of IETF RFC 5761). This

corresponds to the mime-type application/pkcs7-signature. Additionally the signer certificate shall be

included within the signature.

The signed governance document shall be provided to the plugins using the PropertyQosPolicy

on the DomainParticipantQos as specified in Table 56.

The governance document specifies which DDS domain IDs shall be protected and the details of the

protection. Specifically this document configures the following aspects that apply to the whole domain:

 Whether the discovery information should be protected and the kind of protection: only message

authentication codes (MACs) or encryption followed by MAC.

 Whether the whole RTPS message should be protected and the kind of protection. This is in

addition to any protection that may occur for individual submessages and for submessage data

payloads.

 Whether the liveliness messages should be protected.

 Whether a discovered DomainParticipant that cannot authenticate or fail the authentication should

be allowed to join the domain and see any discovery data that are configured as ‘unprotected’ and

any Topics that are configured as ‘unprotected’.

Deleted: Table 56Table 56Table 56Table

5548Table 48

Deleted: Table 56Table 56Table 56Table
5548Table 48

228 DDS Security, v1.1

 Whether any discovered DomainParticipant that authenticates successfully should be allowed to

join the domain and see the discovery data without checking the access control policies.

In addition, the domain governance document specifies how the information on specific Topics within

the domain should be treated. Specifically:

 Whether the discovery information on specific Topics should be sent using the secure (protected)

discovery writers or using the regular (unprotected) discovery writers.

 Whether read access to the Topic should be open to all or restricted to the DomainParticipants that

have the proper permissions.

 Whether write access to the Topic should be open to all or restricted to the DomainParticipants that

have the proper permissions.

[DDSSEC11-5 - Miscellaneous typos/inconsistencies]

 Whether the metadata information sent on the Topic (sequence numbers, heartbeats, key hashes,

gaps, acknowledgment messages, etc.) should be protected and the kind of protection (MAC or

Encrypt then MAC).

 Whether the payload data sent on the Topic (serialized application level data) should be protected

and the kind of protection (MAC or Encrypt then MAC).

[DDSSEC11-11 - How is single-MAC versus MAC-per-reader configured]

9.4.1.2.1 Basic Protection Kinds

The domain governance document provides a means for the application to configure the kinds of

cryptographic transformation applied to the complete RTPS Message, certain RTPS SubMessages, and

the SerializedPayload RTPS submessage element that appears within the Data and DataFrag

submessages.

The configuration allows specification of three protection levels: NONE, SIGN, ENCRYPT.

NONE indicates no cryptographic transformation is applied.

SIGN indicates the cryptographic transformation shall be purely a message authentication code

(MAC), that is, no encryption is performed. Therefore the resulting

CryptoTransformIdentifier for the output of the "encode" transformations shall have the

transformation_kind attribute set to the CRYPTO_TRANSFORMATION_KIND variants

AES_128_GMAC or AES_256_GMAC.

ENCRYPT indicates the cryptographic transformation shall be an encryption followed by a message

authentication code (MAC) computed on the ciphertext, also known as Encrypt-then-MAC. Therefore

the resulting CryptoTransformIdentifier for the output of the "encode" transformations shall

have the transformation_kind attribute set to the CRYPTO_TRANSFORMATION_KIND variants

AES_128_GCM or AES_256_GCM.

[DDSSEC11-11 - How is single-MAC versus MAC-per-reader configured]

9.4.1.2.2 Protection Kinds

This configuration allows specification of two protection levels beyond the ones provided by the Basic

Protection Kind (9.4.1.2.1): SIGN_WITH_ORIGIN_AUTHENTICATION and

ENCRYPT_WITH_ORIGIN_AUTHENTICATION.

Deleted: +

Deleted: +

DDS Security, v1.1 229

SIGN_WITH_ORIGIN_AUTHENTICATION indicates the cryptographic transformation shall be

purely a set of message authentication codes (MAC), that is, no encryption is performed. This

cryptographic transformation shall create a first “common authenticationcode” similar to the case

where Protection Kind is SIGN. In addition the cryptographic transformation shall create additional

authentication codes, each produced with a different secret key. Each of these additional secret keys

shall be shared only with a subset of the receivers. In the limit case each secret key is shared with only

one receiver. The additional MACs prove to the receiver that the sender originated the message,

preventing other receivers from impersonating the sender.

The resulting CryptoTransformIdentifier for the output of the "encode" transformations shall

have the transformation_kind attribute set to the CRYPTO_TRANSFORMATION_KIND variants

AES_128_GMAC or AES_256_GMAC.

ENCRYPT_WITH_ORIGIN_AUTHENTICATION indicates the cryptographic transformation

shall be an encryption followed by a message authentication code (MAC) computed on the ciphertext,

followed by additional authentication codes, Each of the additional authentication codes shall use a

different secret key. The encryption and first (common) authentication code is similar to ones produced

when the Protection Kind is ENCRYPT. The additional authentication codes are similar to the ones

produced when the Protection Kind is SIGN_WITH_ORIGIN_AUTHENTICATION.

The resulting CryptoTransformIdentifier for the output of the "encode" transformations shall

have the transformation_kind attribute set to the CRYPTO_TRANSFORMATION_KIND variants

AES_128_GCM or AES_256_GCM.

9.4.1.2.3 Domain Governance document format

The format of this document defined using the following XSD:

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

 elementFormDefault="qualified" attributeFormDefault="unqualified">

 <xs:element name="dds" type="DomainAccessRulesNode" />

 <xs:complexType name="DomainAccessRulesNode">

 <xs:sequence minOccurs="1" maxOccurs="1">

 <xs:element name="domain_access_rules"

 type="DomainAccessRules" />

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="DomainAccessRules">

 <xs:sequence minOccurs="1" maxOccurs="unbounded">

 <xs:element name="domain_rule" type="DomainRule" />

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="DomainRule">

 <xs:sequence minOccurs="1" maxOccurs="1">

 <xs:element name="domains" type="DomainIdSet" />

 <xs:element name="allow_unauthenticated_participants"

230 DDS Security, v1.1

 type="xs:boolean" />

 <xs:element name="enable_join_access_control"

 type="xs:boolean" />

 <xs:element name="discovery_protection_kind"

 type="ProtectionKind" />

 <xs:element name="liveliness_protection_kind"

 type="ProtectionKind" />

 <xs:element name="rtps_protection_kind"

 type="ProtectionKind" />

 <xs:element name="topic_access_rules"

 type="TopicAccessRules" />

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="DomainIdSet">

 <xs:choice minOccurs="1" maxOccurs="unbounded">

 <xs:element name="id" type="DomainId" />

 <xs:element name="id_range" type="DomainIdRange" />

 </xs:choice>

 </xs:complexType>

 <xs:simpleType name="DomainId">

 <xs:restriction base="xs:nonNegativeInteger" />

 </xs:simpleType>

 <xs:complexType name="DomainIdRange">

 <xs:choice>

 <xs:sequence/>

 <xs:element name="min" type="DomainId" />

 <xs:element name="max" type="DomainId" minOccurs="0" />

 </xs:sequence/>

 <xs:element name="max" type="DomainId" />

 </xs:choice>

 </xs:complexType>

 <!-- DDSSEC11-11 -->

 <xs:simpleType name="ProtectionKind">

 <xs:restriction base="xs:string">

 <xs:enumeration value="ENCRYPT_WITH_ORIGIN_AUTHENTICATION" />

 <xs:enumeration value="SIGN_WITH_ORIGIN_AUTHENTICATION" />

 <xs:enumeration value="ENCRYPT" />

 <xs:enumeration value="SIGN" />

 <xs:enumeration value="NONE" />

 </xs:restriction>

 </xs:simpleType>

 <!-- DDSSEC11-11 -->

 <xs:simpleType name="BasicProtectionKind">

 <xs:restriction base="ProtectionKind">

 <xs:enumeration value="ENCRYPT" />

 <xs:enumeration value="SIGN" />

 <xs:enumeration value="NONE" />

 </xs:restriction>

 </xs:simpleType>

DDS Security, v1.1 231

 <!-- DDSSEC-130 -->

 <xs:complexType name="TopicAccessRules">

 <xs:sequence minOccurs="1" maxOccurs="unbounded">

 <xs:element name="topic_rule" type="TopicRule" />

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="TopicRule">

 <xs:sequence minOccurs="1" maxOccurs="1">

 <xs:element name="topic_expression" type="TopicExpression" />

 <xs:element name="enable_discovery_protection"

 type="xs:boolean" />

 <!-- DDSSEC11-85 -->

 <xs:element name="enable_liveliness_protection"

 type="xs:boolean" />

 <xs:element name="enable_read_access_control"

 type="xs:boolean" />

 <xs:element name="enable_write_access_control"

 type="xs:boolean" />

 <xs:element name="metadata_protection_kind"

 type="ProtectionKind" />

 <!-- DDSSEC11-11 -->

 <xs:element name="data_protection_kind"

 type="BasicProtectionKind" />

 </xs:sequence>

 </xs:complexType>

 <xs:simpleType name="TopicExpression">

 <xs:restriction base="xs:string" />

 </xs:simpleType>

</xs:schema>

9.4.1.2.4 Domain Access Rules Section

The XML domain governance document is delimited by the <dds> XML element tag and contains a

single domain access rules Section delimited by the <domain_access_rules> XML element tag.

The domain access rules Section contains a set of domain rules each delimited by the

<domain_rule> XML element tag.

9.4.1.2.5 Domain Rules

Each domain rule appears within the domain access rules Section delimited by the <domain_rule>

XML element tag.

Each domain rule contains the following elements and sections:

[DDSSEC11-85 Additional typos/inconsistencies]

1. Domains element

2. Allow Unauthenticated Participants element

3. Enable Join Access Control element

232 DDS Security, v1.1

4. Discovery Protection Kind element

5. Liveliness Protection Kind element

6. RTPS Protection Kind element

7. Topic Access Rules Section

The contents and delimiters of each Section are described below.

The domain rules shall be evaluated in the same order as they appear in the document. A rule only

applies to a particular DomainParticipant if the domain Section matches the DDS domain_id to

which the DomainParticipant belongs. If multiple rules match, the first rule that matches is the

only one that applies.

9.4.1.2.5.1 Domains element

[DDSSEC11-19 Invalid domain_id tag used in multiple sections…]

This element is delimited by the XML element <domains>.

The value in this element identifies the collection of DDS domain_id values to which the rule

applies.

The <domains> element can contain a single domain ID, for example:
 <domains>

 <id>0</id>

 </domains>

Or it can contain a range of domain IDs, for example:
 <domains>

 <id_range>

 <min>10</min>

 <max>20</max>

 </id_range>

 </domains>

Or it can contain a list of domain IDs and domain ID ranges, for example:
 <domains>

 <id>0</id>

 <id_range>

 <min>10</min>

 <max>20</max>

 </id_range>

 <id>25</id>

 <id>27</id>

 <id_range>

 <min>40</min>

 <max>55</max>

 </id_range>

 </domains>

9.4.1.2.5.2 Allow Unauthenticated Participants element

This element is delimited by the XML element <allow_unauthenticated_participants>.

This element may take the binary values TRUE or FALSE.

Deleted: Domain id element

Deleted: <#>Discovery Protection Kind
element ¶
<#>Liveliness Protection Kind element ¶
<#>Allow Unauthenticated Join element¶
<#>Enable Join Access Control element¶
<#>Topic Access Rules Section, containing
topic rules¶

Deleted: _id

DDS Security, v1.1 233

If the value is set to FALSE, the ParticipantSecurityAttributes returned by the

get_participant_sec_attributes operation on the AccessControl shall have the

allow_unauthenticated_participants member set to FALSE.

If the value is set to TRUE, the ParticipantSecurityAttributes returned by the

get_participant_sec_attributes operation on the AccessControl shall have the

allow_unauthenticated_participants member set to TRUE.

9.4.1.2.5.3 Enable Join Access Control element

This element is delimited by the XML element <enable_join_access_control>.

This element may take the binary values TRUE or FALSE.

If the value is set to FALSE, the ParticipantSecurityAttributes returned by the

get_participant_sec_attributes operation on the AccessControl shall have the

is_access_protected member set to FALSE.

If the value is set to TRUE, the ParticipantSecurityAttributes returned by the

get_participant_sec_attributes operation on the AccessControl shall have the

is_access_protected member set to TRUE.

9.4.1.2.5.4 Discovery Protection Kind element

This element is delimited by the XML element <discovery_protection_kind>.

[DDSSEC11-11 - How is single-MAC versus MAC-per-reader configured]

The discovery protection element specifies the protection kind (see 9.4.1.2.2) used for the secure

builtin DataWriter and DataReader entities used for discovery:

[DDSSEC11-44 Denial of Service Attack to DDS Security Participants by Injecting...]

SPDPbuiltinParticipantsSecureWriter, SEDPbuiltinPublicationsSecureWriter,

SEDPbuiltinSubscriptionsSecureWriter, SPDPbuiltinParticipantsSecureReader,

SEDPbuiltinPublicationsSecureReader, SEDPbuiltinSubscriptionsSecureReader.

[DDSSEC11-11 - How is single-MAC versus MAC-per-reader configured]

The discovery protection kind element may take five possible values: NONE, SIGN, ENCRYPT,

SIGN_WITH_ORIGIN_AUTHENTICATION, or ENCRYPT_WITH_ORIGIN_AUTHENTICATION.

The resulting behavior for the aforementioned builtin discovery secure entities shall be as specified in

9.4.1.2.2 with regards to the RTPS SubMessages.

[DDSSEC11-7 Inconsistency in SubMessage and SubMessageElement naming ...]

[DDSSEC11-55 Confusing Sentence about Builtin Endpoints Payload Encryption]

[DDSSEC11-45 discovery_protection_kind is Underspecified]

[DDSSEC11-137 Missing Mechanism for Detecting Incompatibilities in ParticipantSecurityA…]

This setting controls the contents of the ParticipantSecurityAttributes and

PluginParticipantSecurityAttributes returned by the

AccessControl::get_participant_sec_attributes operation on the

DomainParticipant. Specifically:

Deleted: 9.4.1.2.1

Deleted: three

Deleted: or

Deleted: 9.4.1.2.1

Deleted: The builtin endpoints shall never

apply cryptographic transformations to the

SecuredPayload submessage element.

234 DDS Security, v1.1

- The attribute is_discovery_protected attribute in the ParticipantSecurityAttributes

shall be set to FALSE if the value specified in the <discovery_protection_kind> element is

NONE and to TRUE otherwise.

- The attribute is_discovery_encrypted in the

PluginParticipantSecurityAttributes (see 9.4.2.5) shall be set to TRUE if the

value specified in the <discovery_protection_kind> is ENCRYPT or

ENCRYPT_WITH_ORIGIN_AUTHENTICATION and to FALSE otherwise.

- The attribute is_discovery_origin_authenticated in the

PluginParticipantSecurityAttributes (see 9.4.2.5) shall be set to TRUE if the

value specified in the <discovery_protection_kind> is

SIGN_WITH_ORIGIN_AUTHENTICATION or

ENCRYPT_WITH_ORIGIN_AUTHENTICATION and to FALSE otherwise.

9.4.1.2.5.5 Liveliness Protection Kind element

This element is delimited by the XML element <liveliness_protection_kind>.

[DDSSEC11-11 - How is single-MAC versus MAC-per-reader configured]

The liveliness protection element specifies the protection kind (see 9.4.1.2.2) used for builtin

DataWriter and DataReader associated with the ParticipantMessageSecure builtin Topic (see

7.4.2): BuiltinParticipantMessageSecureWriter and BuiltinParticipantMessageSecureReader.

[DDSSEC11-5 - Miscellaneous typos/inconsistencies]

[DDSSEC11-17 - Need a way to determine the builtinTopic used for the DataWriter…]

[DDSSEC11-11 - How is single-MAC versus MAC-per-reader configured]

The liveliness protection kind element may five three possible values: NONE, SIGN, ENCRYPT,

SIGN_WITH_ORIGIN_AUTHENTICATION, or ENCRYPT_WITH_ORIGIN_AUTHENTICATION.

[DDSSEC11-137 Missing Mechanism for Detecting Incompatibilities in ParticipantSecurityA…]

This setting controls the contents of the ParticipantSecurityAttributes and

PluginParticipantSecurityAttributes returned by the

AccessControl::get_participant_sec_attributes operation on the

DomainParticipant. Specifically:

- The attribute is_liveliness_protected in the ParticipantSecurityAttributes shall be

set to FALSE if the value specified in the <liveliness_protection_kind> element is NONE and

to TRUE otherwise.

- The attribute is_liveliness_encrypted in the

PluginParticipantSecurityAttributes (see 9.4.2.5) shall be set to TRUE if the

value specified in the < liveliness_protection_kind> is ENCRYPT or

ENCRYPT_WITH_ORIGIN_AUTHENTICATION and to FALSE otherwise.

- The attribute is_liveliness_origin_authenticated in the

PluginParticipantSecurityAttributes (see 9.4.2.5) shall be set to TRUE if the

value specified in the < liveliness_protection_kind> is

SIGN_WITH_ORIGIN_AUTHENTICATION or

ENCRYPT_WITH_ORIGIN_AUTHENTICATION and to FALSE otherwise.

Deleted: the

Deleted: and only if

Deleted: of

Formatted: Keep with next

Deleted: 9.4.1.2.1

Deleted: discovery

Deleted: take

Deleted: or

DDS Security, v1.1 235

9.4.1.2.5.6 RTPS Protection Kind element

This element is delimited by the XML element <rtps_protection_kind>.

[DDSSEC11-11 - How is single-MAC versus MAC-per-reader configured]

The RTPS protection kind element specifies the protection kind (see 9.4.1.2.2) used for the whole

RTPS message.

[DDSSEC11-11 - How is single-MAC versus MAC-per-reader configured]

The RTPS protection kind element may take five possible values: NONE, SIGN, ENCRYPT,

SIGN_WITH_ORIGIN_AUTHENTICATION, or ENCRYPT_WITH_ORIGIN_AUTHENTICATION.

The resulting behavior for the RTPS message cryptographic transformation shall be as specified in

9.4.1.2.2.

[DDSSEC11-17 - Need a way to determine the builtinTopic used for the DataWriter…]

[DDSSEC11-137 Missing Mechanism for Detecting Incompatibilities in ParticipantSecurityA…]

This setting controls the contents of the ParticipantSecurityAttributes and

PluginParticipantSecurityAttributes returned by the

AccessControl::get_participant_sec_attributes operation on the

DomainParticipant. Specifically:

- The attribute is_rtps_protected attribute in the ParticipantSecurityAttributes shall

be set to FALSE if the value specified in the <rtps_protection_kind> element is NONE and to

TRUE otherwise.

- The attribute is_rtps_encrypted in the PluginParticipantSecurityAttributes (see

9.4.2.5) shall be set to TRUE if the value specified in the < rtps_protection_kind> is

ENCRYPT or ENCRYPT_WITH_ORIGIN_AUTHENTICATION and to FALSE otherwise.

- The attribute is_rtps_origin_authenticated in the

PluginParticipantSecurityAttributes (see 9.4.2.5) shall be set to TRUE if the

value specified in the <rtps_protection_kind> is

SIGN_WITH_ORIGIN_AUTHENTICATION or

ENCRYPT_WITH_ORIGIN_AUTHENTICATION and to FALSE otherwise.

9.4.1.2.5.7 Topic Access Rules Section

This element is delimited by the XML element <topic_access_rules> and contains a sequence of topic

rule elements.

9.4.1.2.6 Topic Rule Section

This element is delimited by the XML element <topic_rule> and appears within the domain rule

Section.

[DDSSEC11-17 - Need a way to determine the builtinTopic used for the DataWriter…]

Each topic rule Section contains the following elements:

1. Topic expression

2. Enable Discovery protection

3. Enable Liveliness protection

Deleted: The resulting behavior for the
aforementioned builtin secure entities shall be
as specified in 9.4.1.2.29.4.1.2.1.¶

Deleted: 9.4.1.2.1

Deleted: three

Deleted: or

Deleted: 9.4.1.2.1

Deleted:

Deleted: Specifically the
is_livelinessrtps_protected attribute in the
ParticipantSecurityAttributes

shall be set to FALSE if and only if the
value of the
<rtpsliveliness_protection_kind> element
is NONE.

236 DDS Security, v1.1

4. Enable Read Access Control element

5. Enable Write Access Control element

6. Metadata protection Kind

7. Data protection Kind

The contents and delimiters of each Section are described below.

The topic expression element within the rules selects a set of Topic names. The rule applies to any

DataReader or DataWriter associated with a Topic whose name matches the Topic expression name.

The topic access rules shall be evaluated in the same order as they appear within the

<topic_access_rules> Section. If multiple rules match the first rule that matches is the only one that

applies.

9.4.1.2.6.1 Topic expression element

This element is delimited by the XML element <topic_expression>.

The value in this element identifies the set of DDS Topic names to which the rule applies. The rule

will apply to any DataReader or DataWriter associated with a Topic whose name matches the

value.

The Topic name expression syntax and matching shall use the syntax and rules of the POSIX

fnmatch() function as specified in POSIX 1003.2-1992, Section B.6 [38].

9.4.1.2.6.2 Enable Discovery protection element

This element is delimited by the XML element <enable_discovery_protection>.

[DDSSEC11-16 AccessControl behavior does not show check_local_datawriter/reader ...]

This element may take the boolean values TRUE or FALSE.

The setting controls the contents of the TopicSecurityAttributes returned by the

AccessControl::get_topic_sec_attributes on a Topic whose associated Topic

name matches the rule’s topic expression. Specifically the is_discovery_protected attribute in the

TopicSecurityAttributes shall be set to the boolean value specified in the

<enable_discovery_protection> element.

[DDSSEC11-17 - Need a way to determine the builtinTopic used for the DataWriter…]

9.4.1.2.6.3 Enable Liveliness Protection element

This element is delimited by the XML element <enable_liveliness_protection>.

[DDSSEC11-16 AccessControl behavior does not show check_local_datawriter/reader ...]

This element may take the boolean values TRUE or FALSE.

The setting controls the contents of the TopicSecurityAttributes returned by the

AccessControl::get_topic_sec_attributes operation on a Topic whose associated

Topic name matches the rule’s topic expression. Specifically the is_liveliness_protected attribute in

the TopicSecurityAttributes shall be set to the boolean value specified in the

<enable_liveliness_protection> element.

Deleted: binary

Deleted: EndpointSecurityAttribut
es

Deleted: datawriter

Deleted: or
AccessControl::get_datareader_s

ec_attributes operation

Deleted: an

Deleted: endpoint

Deleted: EndpointSecurityAttribut
es

Deleted: binary

Deleted: “enable discovery protection"

Deleted: binary

Deleted: EndpointSecurityAttribut
es

Deleted: datawriter

Deleted: or
AccessControl::get_datareader_s

ec_attributes

Deleted: an endpoint

Deleted: Topic

Deleted: EndpointSecurityAttribut
es

Deleted: binary

DDS Security, v1.1 237

9.4.1.2.6.4 Enable Read Access Control element

This element is delimited by the XML element <enable_read_access_control>.

[DDSSEC11-16 AccessControl behavior does not show check_local_datawriter/reader ...]

This element may take the boolean values TRUE or FALSE.

The setting shall control the contents of the TopicSecurityAttributes returned by the

AccessControl::get_topic_sec_attributes operation on any Topic whose associated

Topic name matches the rule’s topic expression. Specifically the is_read_protected attribute in the

TopicSecurityAttributes shall be set to the boolean value specified in the

<enable_read_access_control> element.

In addition, this element shall control the AccessControl::check_create_datareader

operation on any DataReader entity whose associated Topic name matches the rule’s topic

expression. Specifically:

 If the value of <enable_write_access_control> element is FALSE, the operation

check_create_datareader shall return TRUE without further checking the Permissions

document.

 If the value of <enable_write_access_control> element is TRUE, the operation

check_create_datareader shall return a value according to what is specified in the

Permissions document, see 9.4.1.3.

9.4.1.2.6.5 Enable Write Access Control element

This element is delimited by the XML element <enable_write_access_control>.

[DDSSEC11-16 AccessControl behavior does not show check_local_datawriter/reader ...]

This element may take the boolean values TRUE or FALSE.

The setting shall control the contents of the TopicSecurityAttributes returned by the

AccessControl::get_topic_sec_attributes operation on any Topic whose associated

Topic name matches the rule’s topic expression. Specifically the is_write_protected attribute in the

TopicSecurityAttributes shall be set to the binary value specified in the

<enable_write_access_control> element.

In addition, this element shall control the AccessControl::check_create_datawriter

operation on any DataWriter entity whose associated Topic name matches the rule’s topic

expression. Specifically:

 If the value of <enable_write_access_control> element is FALSE, the operation

check_create_datawriter shall return TRUE without further checking the Permissions

document.

 If the value of <enable_write_access_control> element is TRUE, the operation

check_create_datawriter shall return a value according to what is specified in the

Permissions document, see 9.4.1.3.

9.4.1.2.6.6 Metadata Protection Kind element

This element is delimited by the XML element <metadata_protection_kind>.

[DDSSEC11-5 - Miscellaneous typos/inconsistencies]

Deleted: binary

Deleted: EndpointSecurityAttribut
es

Deleted: datawriter

Deleted: DataWriter

Deleted: entity

Deleted: access

Deleted: EndpointSecurityAttribut
es

Deleted: binary

Deleted: “enable read access protection"

Deleted: binary

Deleted: controls

Deleted: EndpointSecurityAttribut
es

Deleted: datareader

Deleted: DataReader

Deleted: entity

Deleted: access

Deleted: EndpointSecurityAttribut
es

Deleted: “enable write access protection"

238 DDS Security, v1.1

[DDSSEC11-11 - How is single-MAC versus MAC-per-reader configured]

This element may take the Protection Kind values NONE, SIGN, ENCRYPT,

SIGN_WITH_ORIGIN_AUTHENTICATION, or ENCRYPT_WITH_ORIGIN_AUTHENTICATION.

The setting of this element shall specify the protection kind (see 9.4.1.2.2) used for the RTPS

SubMessages sent by any DataWriter and DataReader whose associated Topic name

matches the rule’s topic expression.

[DDSSEC11-106 Should differences in EndpointSecurityAttributesMask prevent matching?]

The setting of this element shall also control the contents of the EndpointSecurityAttributes

and PluginEndpointSecurityAttributes returned by the

AccessControl::get_datawriter_sec_attributes and

AccessControl::get_datareader_sec_attributes operation on any DataWriter or

DataReader entity whose associated Topic name matches the rule’s topic expression. Specifically:

- The attribute is_submessage_protected in the EndpointSecurityAttributes shall be

set to FALSE if the value specified in the <metadata_protection_kind> is NONE and shall be

set to TRUE otherwise.

- The attribute is_submessage_encrypted in the PluginEndpointSecurityAttributes

(see 9.4.2.5) shall be set to TRUE if the value specified in the <metadata_protection_kind> is

ENCRYPT or ENCRYPT_WITH_ORIGIN_AUTHENTICATION and to FALSE otherwise.

- The attribute is_submessage_origin_authenticated in the

PluginEndpointSecurityAttributes (see 9.4.2.5) shall be set to TRUE if the value

specified in the <metadata_protection_kind> is

SIGN_WITH_ORIGIN_AUTHENTICATION or

ENCRYPT_WITH_ORIGIN_AUTHENTICATION and to FALSE otherwise.

9.4.1.2.6.7 Data Protection Kind element

This element is delimited by the XML element <data_protection_kind>.

[DDSSEC11-11 - How is single-MAC versus MAC-per-reader configured]

This element may take the Basic Protection Kind values: NONE, SIGN, or ENCRYPT.

The setting of this element shall specify the basic protection kind (see 9.4.1.2.1) used for the RTPS

SerializedPayload submessage element sent by any DataWriter whose associated Topic

name matches the rule’s topic expression.

[DDSSEC11-72 EndpointSecurity's is_payload_protected is Insufficient...]

[DDSSEC11-106 Should differences in EndpointSecurityAttributesMask prevent matching?]

The setting shall control the contents of the EndpointSecurityAttributes and

PluginEndpointSecurityAttributes returned by the

AccessControl::get_datawriter_sec_attributes operation on any DataWriter

entity whose associated Topic name matches the rule’s topic expression. Specifically the

PluginEndpointSecurityAttributes attributes is_payload_protected and is_key_protected,

as well as the PluginEndpointSecurityAttributes attribute is_payload_encrypted (see 0):

 If the value specified in the <data_protection_kind> element is NONE, then

is_payload_protected, is_key_protected and is_payload_encrypted shall be set to FALSE.

Deleted: binary

Deleted: TRUE

Deleted: or

Deleted: FALSE

Deleted: 9.4.1.2.1

Deleted: t

Deleted: attribute

Deleted: 9.4.2.59.4.2.59.4.2.59.4.2.59.4.2.3

Deleted: three

Deleted: possible

Deleted:

Deleted: 09.4.2.6

Deleted: attribute in the

EndpointSecurityAttributes shall be

set to FALSE if the value specified in the
<data_protection_kind> element is NONE
and shall be set to TRUE otherwise.
Specifically the value of the fields
is_payload_protected and is_key_protected

Deleted: both

Deleted: and

DDS Security, v1.1 239

 If the value specified in the <data_protection_kind> element is SIGN, then

is_payload_protected shall be set to TRUE. The attributes is_key_protected and

is_payload_encrypted shall be set to FALSE.

 If the value specified in the <data_protection_kind> element is ENCRYPT, then

is_payload_protected, is_key_protected, and is_payload_encrypted shall be set to TRUE.

9.4.1.2.7 Application of Domain and Topic Rules

For a given DomainParticipant the Domain Rules shall be evaluated in the same order they

appear in the Governance document. The first Domain Rule having a <domains> element whose value

matches the DomainParticipant domain_id shall be the one applied to the

DomainParticipant.

If no Domain Rule matches the DomainParticipant domain_id the operation under consideration

shall fail with a suitable “permissions error”. If desired, to avoid this situation, a “default” Domain

Rule can be added to the end using the expression:
 <domains>

 <id_range>

 <min>0</min>

 </id_range>

 </domains>

This rule will match any domain_id not matched by the rules that appear before.

For a given Topic, DataWriter or DataReader DDS Entity belonging to a

DomainParticipant the Topic Rules appearing within the Domain Rule that applies to that

DomainParticipant shall be evaluated in the same order they appear in the Governance

document. The first Topic Rule having a <topic_expression> element whose value matches the topic

name associated with the Entity shall be the one applied to the Entity.

If no Topic Rule matches the Entity topic name the operation under consideration shall fail with a

suitable “permissions error”. If desired, to avoid this situation, a “default” Topic Rule can be added to

the end using the expression <topic_expression>*</ topic_expression >. This rule will match any

topic name not matched by the rules that appear before.

9.4.1.2.8 Example Domain Governance document (non normative)

Following is an example permissions document that is written according to the XSD described in the

previous sections.

[DDSSEC11-5 - Miscellaneous typos/inconsistencies]

[DDSSEC11-19 Invalid domain_id tag used in multiple sections…]
<?xml version="1.0" encoding="utf-8"?>

<dds xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:noNamespaceSchemaLocation="http://www.omg.org/spec/DDS-

Security/20170801/omg_shared_ca_domain_governance.xsd">

 <domain_access_rules>

 <domain_rule>

 <domains>

 <id>0</id>

 <id_range>

 <min>10</min>

 <max>20</max>

Deleted: and

Deleted: both

Deleted: and

Deleted:

Deleted: 16

240 DDS Security, v1.1

 <id_range>

 </domains>

 <allow_unauthenticated_participants>FALSE

 </allow_unauthenticated_participants>

 <enable_join_access_control>TRUE</enable_join_access_control>

 <rtps_protection_kind>SIGN</rtps_protection_kind>

 <discovery_protection_kind>ENCRYPT</discovery_protection_kind>

 <liveliness_protection_kind>SIGN</liveliness_protection_kind>

 <topic_access_rules>

 <topic_rule>

 <topic_expression>Square*</topic_expression>

 <enable_discovery_protection>TRUE

 </enable_discovery_protection>

 <enable_read_access_control>TRUE

 </enable_read_access_control>

 <enable_write_access_control>TRUE

 </enable_write_access_control>

 <metadata_protection_kind>ENCRYPT

 </metadata_protection_kind>

 <data_protection_kind>ENCRYPT

 </data_protection_kind>

 </topic_rule>

 <topic_rule>

 <topic_expression>Circle</topic_expression>

 <enable_discovery_protection>TRUE

 </enable_discovery_protection>

 <enable_read_access_control>FALSE

 </enable_read_access_control>

 <enable_write_access_control>TRUE

 </enable_write_access_control>

 <metadata_protection_kind>ENCRYPT

 </metadata_protection_kind>

 <data_protection_kind>ENCRYPT

 </data_protection_kind>

 </topic_rule>

 <topic_rule>

 <topic_expression>Triangle

 </topic_expression>

 <enable_discovery_protection>FALSE

 </enable_discovery_protection>

 <enable_read_access_control>FALSE

 </enable_read_access_control>

 <enable_write_access_control>TRUE

 </enable_write_access_control>

 <metadata_protection_kind>NONE

 </metadata_protection_kind>

 <data_protection_kind>NONE

 </data_protection_kind>

 </topic_rule>

 <topic_rule>

 <topic_expression>*</topic_expression>

Deleted:
<domain_id>0</domain_id>¶

DDS Security, v1.1 241

 <enable_discovery_protection>TRUE

 </enable_discovery_protection>

 <enable_read_access_control>TRUE

 </enable_read_access_control>

 <enable_write_access_control>TRUE

 </enable_write_access_control>

 <metadata_protection_kind>ENCRYPT

 </metadata_protection_kind>

 <data_protection_kind>ENCRYPT

 </data_protection_kind>

 </topic_rule>

 </topic_access_rules>

 </domain_rule>

 </domain_access_rules>

</dds>

9.4.1.3 DomainParticipant permissions document

The permissions document is an XML document containing the permissions of the domain participant

and binding them to the distinguished name of the DomainParticipant as defined in the

DDS:Auth:PKI-DH authentication plugin.

The permissions document shall be signed by the Permissions CA. The signed document shall use

S/MIME version 3.2 format as defined in IETF RFC 5761 using SignedData Content Type (section

2.4.2 of IETF RFC 5761) formatted as multipart/signed (section 3.4.3 of IETF RFC 5761). This

corresponds to the mime-type application/pkcs7-signature. Additionally the signer certificate shall be

included within the signature.

The signed permissions document shall be provided to the plugins using the PropertyQosPolicy

on the DomainParticipantQos as specified in Table 56.

The format of this document is defined using the following XSD.

[DDSSEC11-6 - Permissions XSD and XML files are inconsistent with …]

[DDSSEC11-57 Evaluation of data_tags when checking Permissions is unclear]

[DDSSEC11-56 Permissions grant rule with no specified topic]

<?xml version="1.0" encoding="utf-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

 elementFormDefault="qualified" attributeFormDefault="unqualified">

 <xs:element name="dds" type="PermissionsNode" />

 <xs:complexType name="PermissionsNode">

 <xs:sequence minOccurs="1" maxOccurs="1">

 <xs:element name="permissions" type="Permissions" />

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="Permissions">

 <xs:sequence minOccurs="1" maxOccurs="unbounded">

 <xs:element name="grant" type="Grant" />

 </xs:sequence>

Deleted: Table 56Table 56Table 56Table
5548Table 5548Table 48

242 DDS Security, v1.1

 </xs:complexType>

 <xs:complexType name="Grant">

 <xs:sequence minOccurs="1" maxOccurs="1">

 <xs:element name="subject_name" type="xs:string" />

 <xs:element name="validity" type="Validity" />

 <xs:sequence minOccurs="1" maxOccurs="unbounded">

 <xs:choice minOccurs="1" maxOccurs="1">

 <xs:element name="allow_rule" minOccurs="0" type="Rule" />

 <xs:element name="deny_rule" minOccurs="0" type="Rule" />

 </xs:choice>

 </xs:sequence>

 <xs:element name="default" type="DefaultAction" />

 </xs:sequence>

 <xs:attribute name="name" type="xs:string" use="required" />

 </xs:complexType>

 <xs:complexType name="Validity">

 <xs:sequence minOccurs="1" maxOccurs="1">

 <xs:element name="not_before" type="xs:dateTime" />

 <xs:element name="not_after" type="xs:dateTime" />

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="Rule">

 <xs:sequence minOccurs="1" maxOccurs="1">

 <xs:element name="domains" type="DomainIdSet" />

 <xs:sequence minOccurs="0" maxOccurs="unbounded">

 <xs:element name="publish" type="Criteria" />

 </xs:sequence>

 <xs:sequence minOccurs="0" maxOccurs="unbounded">

 <xs:element name="subscribe" type="Criteria" />

 </xs:sequence>

 <xs:sequence minOccurs="0" maxOccurs="unbounded">

 <xs:element name="relay" type="Criteria" />

 </xs:sequence>

 </xs:sequence>

 </xs:complexType>

<xs:complexType name="DomainIdSet">

 <xs:choice minOccurs="1" maxOccurs="unbounded">

 <xs:element name="id" type="DomainId" />

 <xs:element name="id_range" type="DomainIdRange" />

 </xs:choice>

 </xs:complexType>

<xs:simpleType name="DomainId">

 <xs:restriction base="xs:nonNegativeInteger" />

 </xs:simpleType>

<xs:complexType name="DomainIdRange">

 <xs:choice>

 <xs:sequence>

 <xs:element name="min" type="DomainId" />

 <xs:element name="max" type="DomainId" minOccurs="0" />

DDS Security, v1.1 243

 </xs:sequence>

 <xs:element name="max" type="DomainId" />

 </xs:choice>

 </xs:complexType>

 <xs:complexType name="Criteria">

 <xs:all minOccurs="1">

 <!-- DDSSEC11-56 -->

 <xs:element name="topics" minOccurs="1"

 type="TopicExpressionList" />

 <xs:element name="partitions" minOccurs="0"

 type="PartitionExpressionList" />

 <xs:element name="data_tags" minOccurs="0" type="DataTags" />

 </xs:all>

 </xs:complexType>

<xs:complexType name="TopicExpressionList">

 <xs:sequence minOccurs="1" maxOccurs="unbounded">

 <xs:element name="topic" type="TopicExpression" />

 </xs:sequence>

 </xs:complexType>

<xs:complexType name="PartitionExpressionList">

 <xs:sequence minOccurs="1" maxOccurs="unbounded">

 <xs:element name="partition" type="PartitionExpression" />

 </xs:sequence>

 </xs:complexType>

 <xs:simpleType name="TopicExpression">

 <xs:restriction base="xs:string" />

 </xs:simpleType>

 <xs:simpleType name="PartitionExpression">

 <xs:restriction base="xs:string" />

 </xs:simpleType>

 <xs:complexType name="DataTags">

 <xs:sequence minOccurs="1" maxOccurs="unbounded">

 <xs:element name="tag" type="TagNameValuePair" />

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="TagNameValuePair">

 <xs:sequence minOccurs="1" maxOccurs="unbounded">

 <xs:element name="name" type="xs:string" />

 <xs:element name="value" type="xs:string" />

 </xs:sequence>

 </xs:complexType>

 <xs:simpleType name="DefaultAction">

 <xs:restriction base="xs:string">

 <xs:enumeration value="ALLOW" />

 <xs:enumeration value="DENY" />

 </xs:restriction>

 </xs:simpleType>

Deleted: 0

244 DDS Security, v1.1

</xs:schema>

9.4.1.3.1 Permissions Section

The XML permissions document contains a permissions Section. This is the portion of the XML

document delimited by the <permissions> XML element tag.

The permissions Section contains a set of grant sections.

9.4.1.3.2 Grant Section

The grant sections appear within the permissions Section delimited by the <grant> XML element tag.

Each grant Section contains three sections:

1. Subject name Section (subject_name element)

2. Validity Section (validity element)

3. Rules Section (allow, deny and default elements)

The contents and delimiters of each Section are described below.

9.4.1.3.2.1 Subject name Section

This Section is delimited by the XML element <subject_name>.

The subject name Section identifies the DomainParticipant to which the permissions apply. Each

subject name can only appear in a single <permissions> Section within the XML Permissions

document.

The contents of the <subject_name> element shall be the x.509 subject name for the

DomainParticipant as is given in its Authorization Certificate. A permissions Section with a

subject name that does not match the subject name given in the corresponding Authorization certificate

shall be ignored.

The X.509 subject name is a set of name-value pairs. The format of x.509 subject name shall be the

string representation of the X.509 certificate Subject name as defined in IETF RFC 4514 "Lightweight

Directory Access Protocol (LDAP): String Representation of Distinguished Names" [51].

For example:
<subject_name>emailAddress=cto@acme.com, CN=DDS Shapes Demo, OU=CTO Office,

O=ACME Inc., L=Sunnyvale, ST=CA, C=US</subject_name>

9.4.1.3.2.2 Validity Section

[DDSSEC11-6 - Permissions XSD and XML files are inconsistent with …]

This Section is delimited by the XML element <validity>. The contents of this element reflect the

valid dates for the permissions. It contains both the starting date and the end date using the format

defined by dateTime data type as specified in sub clause 3.3.7 of [XSD]. Time zones that aren't

specified are considered UTC.

A permissions Section with a validity date that falls outside the current date at which the permissions

are being evaluated shall be ignored.

Formatted: OMG_SPEC_xmlcode,
Widow/Orphan control, Adjust space
between Latin and Asian text, Adjust
space between Asian text and numbers

Deleted: <?xml version="1.0"
encoding="UTF-8"?>¶

<xs:schema

xmlns:xs="http://www.w3.org/200

1/XMLSchema"¶

elementFormDefault="qualified"¶

attributeFormDefault="unqualifi

ed">¶

¶

 <xs:element

name="permissions"

type="Permissions"/>¶

¶

 <xs:complexType

name="Permissions">¶

 <xs:sequence

minOccurs="1"

maxOccurs="unbounded">¶

 <xs:element

name="grant" type="Grant" />¶

 </xs:sequence>¶

 </xs:complexType>¶

 ¶

 <xs:complexType

name="Grant"> ¶

 <xs:sequence

minOccurs="1" maxOccurs="1">¶

 <xs:element

name="subject_name"

type="xs:string" />¶

 <xs:element

name="validity" type="Validity"

/>¶

 <xs:sequence

minOccurs="1"

maxOccurs="unbounded">¶

 <xs:choice

minOccurs="1" maxOccurs="1">¶

 <xs:element

name="allow_rule" minOccurs="0"¶

type="Rule" />¶

 <xs:element

name="deny_rule" minOccurs="0" ¶

type="Rule" />¶

 </xs:choice>¶

 </xs:sequence>¶ ...

Formatted: Font: (Default) Courier New

Deleted: of the XML schema standard

Deleted: in GMT any timezone formatted as
CCYY-MM-DDThh:mm:ss[Z|(+|-)hh:mm].
The time zone may be specified as Z (UTC) or
(+|-)hh:mm. Time zones that aren't specified
are considered UTC

Deleted: YYYYMMDDHH

Deleted: .

DDS Security, v1.1 245

9.4.1.3.2.3 Rules Section

This Section contains the permissions assigned to the DomainParticipant. It is described as a set

of rules.

The rules are applied in the same order that appear in the document. If the criteria for the rule matches

the domain_id join and/or publish or subscribe operation that is being attempted, then the allow or

deny decision is applied. If the criteria for a rule does not match the operation being attempted, the

evaluation shall proceed to the next rule. If all rules have been examined without a match, then the

decision specified by the “default” rule is applied. The default rule, if present, must appear after all

allow and deny rules. If the default rule is not present, the implied default decision is DENY.

The matching criteria for each rule specify the domain_id, topics (published and subscribed), the

partitions (published and subscribed), and the data-tags associated with the DataWriter and

DataReader.

For the grant to match there shall be a match of the topics, partitions, and data-tags criteria. This is

interpreted as an AND of each of the criteria. For a specific criterion to match (e.g., <topics>) it is

enough that one of the topic expressions listed matches (i.e., an OR of the expressions with the

<topics> section).

9.4.1.3.2.3.1 Format of the allow rules

[DDSSEC11-57 Evaluation of data_tags when checking Permissions is unclear]

Allow rules appear inside the <allow_rule> XML Element. Each rule contains a Domains Section;

(9.4.1.3.2.3.1.1), followed by a set of allowed actions. There are three kinds of allowed actions:

publish, subscribe and relay.

9.4.1.3.2.3.1.1 Domains Section

[DDSSEC11-19 Invalid domain_id tag used in multiple sections…]

This Section is delimited by the XML element <domains>.

The value in this element identifies the collection of DDS domain_id values to which the rule applies.

The syntax is the same as for the domain section of the Governance document. See subclause

9.4.1.2.5.1.

For example:
<domains>

 <id>0</id>

</domains>

[DDSSEC11-57 Evaluation of data_tags when checking Permissions is unclear]

9.4.1.3.2.3.1.2 Format of the Allowed Actions sections

The sections for each of the three action kinds have similar format. The only difference is the name of

the XML element used to delimit the action:

 The Allow Publish Action is delimited by the <publish> XML element

 The Allow Subscribe Action is delimited by the <subscribe> XML element

Deleted: the domain IDs to which the rule

applies, and the topic names that are allowed to
be published and subscribed within those
domains.

Deleted: _id

246 DDS Security, v1.1

 The Allow Relay Action is delimited by the <relay> XML element

Each allowed action logically contains three orthogonal conditions. These cover the topic name,

partitions, and data-tags. All these conditions must be met for the allowed action to apply. Note that

some of these conditions may not appear explicitly in the XML file. In this case a specified default

value is assumed and applied as if the condition had been explicitly listed.

Each of these three conditions appears in a separate section:

 Allowed Topics Condition section

 Allowed Partitions Condition section

 Allowed Data Tags Condition section

Example:
<publish> <!— delimits the publish action -->

 <topics> <!— delimits the topic condition -->

 <topic>Square</topic>

 </topics>

 <partitions> <!— delimits the partition condition -->

 <partition>A_partition</partition>

 </partitions>

 <!— data tags condition absent so use default -->

</publish>

[DDSSEC11-57 Evaluation of data_tags when checking Permissions is unclear]

9.4.1.3.2.3.1.3 Allowed Topic condition section

The topic condition section is delimited by the <topics> XML element. It defines the DDS Topic

names that must be matched for the allow rule to apply. Topic names may be given explicitly or by

means of Topic name expressions. Each topic name or topic-name expression appears separately in a

<topic> sub-element within the <topics> element.

The Topic name expression syntax and matching shall use the syntax and rules of the POSIX fnmatch()

function as specified in POSIX 1003.2-1992, Section B.6 [38].

[DDSSEC11-57 Evaluation of data_tags when checking Permissions is unclear]

In order for an action (e.g. a publish action) to be allowed it must meet the topic condition. For this to

happen the Topic name associated with the intended action must match one the topics or topic

expressions explicitly listed in the topic condition section.

The topic condition section must always be present; therefore there is no default specfied.

Example (appearing within a <allow_rule> and within a publish, subscribe, or relay action):
 <topics>

 <topic>Square</topic>

 <topic>B*</topic>

 </topics>

The above topic condition would match Topic “Square” and any topic that starts with a “B”.

9.4.1.3.2.3.1.4 Allowed Partitions condition section

Deleted: ¶
Publish Section

Deleted: This Section defines the Topic
names that the rule allows to be published. ¶
The publish Section shall be delimited by the
<publish> XML Element.¶

Deleted: names appear

Deleted: in the Section

Deleted:

Deleted: ¶

DDS Security, v1.1 247

The allowed partitions condition section is delimited by the <partitions> XML element. It limits the

set DDS Partitions names that may be associated with the (publish, subscribe, relay) action for the rule

to apply. Partition names may be given explicitly or by means of Partition name expressions. Each

partition name or partition-name expression appears separately in a <partition> sub-element within

the <partitions> element.

The Partition name expression syntax and matching shall use the syntax and rules of the POSIX

fnmatch() function as specified in POSIX 1003.2-1992, Section B.6 [38].

[DDSSEC11-57 Evaluation of data_tags when checking Permissions is unclear]

In order for an action (e.g. a publish action) to meet the allowed partitions condition that appears

within an allow rule, the set of the Partitions associated with the DDS entity (DataWriter or

DataReader) attempting the (publish, subscribe, or relay) action must be contained in the set of

partitions defined by the allowed partitions condition section.

If there is no <partitions> Section within an allow rule, then the default "empty string" partition is

assumed. See PARTITION QosPolicy entry in Qos Policies table of section 2.2.3 (Supported Qos) of

the DDS Specification version 1.4. This means that the allow rule (e.g. publish) would only allow a

DataWriter to publish on the “empty string” partition.

Example (appearing within a <allow_rule> and within a <publish> action):
 <partitions>

 <partition>A</partition>

 <partition>B</partition>

 </partitions>

The above allowed partitions condition would be matched if the partitions associated with the DDS

Entity attempting to perform the action (e.g. publish action) is a subset of the set {A, B}. So it would

be OK to publish in partition A, in B, or in {A, B} but not in {A, B, C}.

For legacy reasons DDS-Security implementations shall provide a way to select an alternative “legacy

matching” behavior. The “legacy matching behavior” shall match the allowed partitions condition

condition as long as one or more of the Partitions associated with DDS Entity attempting to perform

the action (e.g. DataWriter for a publish action) matches one of the partitions in the allowed partitions

condition. The same allowed partitions condition section above would be matched if the partitions

associated with the DDS DataWriter include A or B. So it would be OK to publish in A, in B, or in {A,

B} and also in {A, B, C}.

9.4.1.3.2.3.1.5 Allowed Data tags condition section

The allowed data tags condition section is delimited by the < data_tags> XML element. It limits the

set DDS Data Tags that may be associated with the (publish, subscribe, relay) action for the rule to

apply. The <data_tags> XML Element contain a set of tags.

In order for an action (e.g. a publish action) to meet the allowed data tags condition the set of the Data

Tags associated with the DDS Entity performing the action (e.g. a DataWriter for a publish action)

must be contained in the set of data tags defined by the allowed data tags condition section.

If there is no <data_tags> section then the default empty set is assumed. This means that the allow

action (e.g. publish action) would only allow publishing if there are no data tags associated with the

DDS Endpoint (DataWriter for a publish action).

Deleted: The publish Section may also

include one or more sections delimited by the
<partitions> XML Element. The <partition>
XML Elements contain the DDS Partition
names where it is allowed to publish the
specified Topic names.

Deleted: rule allows publishing only in the

Deleted: The publish Section may also

include one or more sections delimited by the
<data_tags> XML Element.

Deleted: s

Deleted: that shall be associated with the
DataWriter that publishes the data on the Topic
names allowed by the rule

248 DDS Security, v1.1

Example (appearing within a <allow_rule> and within a <publish> action):
 <data_tags>

 <tag>

 <name>aTagName1</name>

 <value>aTagValue1</value>

 </tag>

 </data_tags>

The above allowed data tags condition would be matched if the data tags associated with the DDS

Entity performing the action (e.g. DataWriter for publish action) are a subset of the set { (aTagName1,

aTagValue)} } . So it would be OK to publish using a DataWriter with no associated data-tags, or a

DataWriter with a single tag with name “aTagName1” and value “aTagValue1”.

9.4.1.3.2.3.1.6 Example allow rule

 <allow_rule>

 <domains>

 <id>0</id>

 </domains>

 <publish>

 <topics>

 <topic>Cir*</topic>

 </topics>

 <data_tags>

 <tag>

 <name>aTagName1</name>

 <value>aTagValue1</value>

 </tag>

 </data_tags>

 </publish>

 <subscribe>

 <topics>

 <topic>Sq*</topic>

 </topics>

 <data_tags>

 <tag>

 <name>aTagName1</name>

 <value>aTagValue1</value>

 </tag>

 <tag>

 <name>aTagName2</name>

 <value>aTagValue2</value>

 </tag>

 </data_tags>

 </subscribe>

 <subscribe>

 <topics>

 <topic>Triangle</topic>

 </topics>

 <partitions>

 <partition>P*</partition>

 </partitions>

 </subscribe>

 </allow_rule>

Deleted: ¶
Example1: ¶
<publish>¶

 <topics>¶

 <topic>Circle1</topic>¶

 </topics>¶

</publish>¶

¶
Example2:¶
<publish>¶

 <topics>¶

 <topic>Square</topic>¶

 </topics>¶

 <partitions>¶

<partition>A_partition</partiti

on>¶

 </partitions>¶

</publish>¶

¶
Example3:¶
<publish>¶

 <topics>¶

 <topic>Cir*</topic>¶

 </topics>¶

 <data_tags>¶

 <tag>¶

<name>aTagName1</name>¶

<value>aTagValue1</value> ¶

 </tag>¶

 </data_tags> ¶

</publish>¶

<#>Subscribe Section¶
This Section defines the Topic names that the
rule allows to be subscribed. ¶
The subscribe Section shall be delimited by the

<subscribe> XML Element.¶
The topic names appear in the Section
delimited by the <topics> XML element. Topic
names may be given explicitly or by means of
Topic name expressions. Each topic name or
topic-name expression appears separately in a
<topic> sub-element within the <topics>
element.¶

The Topic name expression syntax and
matching shall use the syntax and rules of the
POSIX fnmatch() function as specified in
POSIX 1003.2-1992, Section B.6 [38].¶
The subscribe Section may also include one or
more sections delimited by the <partitions>
XML Element. The <partition> XML
Elements contain the DDS Partition names

where it is allowed to subscribe to the specified
Topic names. Partition names may be given
explicitly or by means of Partition name
expressions. Each partition name or partition-
name expression appears separately in a
<partition> sub-element within the
<partitions> element.¶
The Partition name expression syntax and
matching shall use the syntax and rules of the

POSIX fnmatch() function as specified in
POSIX 1003.2-1992, Section B.6 [38]. If there
is no <partitions> Section, then the rule ...

DDS Security, v1.1 249

9.4.1.3.2.3.2 Format for deny rules

[DDSSEC11-57 Evaluation of data_tags when checking Permissions is unclear]

Deny rules appear inside the <deny_rule> XML Element. Each rule contains a Domains Section;

(9.4.1.3.2.3.1.1), followed by a set of denied actions. There are three kinds of denied actions: publish,

subscribe and relay.

Deny rules have the same format as the allow rules. The only difference is how they are interpreted. If

the criteria in the deny rule matches the operation being performed, then the decision is to deny the

operation.

[DDSSEC11-57 Evaluation of data_tags when checking Permissions is unclear]

9.4.1.3.2.3.2.1 Domains Section

This Section is delimited by the XML element <domains>. The value in this element identifies the

collection of DDS domain_id values to which the rule applies. The syntax is the same as for the

domain section of the Governance document. See subclause 9.4.1.2.5.1.

For example:
<domains>

 <id>0</id>

</domains>

[DDSSEC11-57 Evaluation of data_tags when checking Permissions is unclear]

9.4.1.3.2.3.2.2 Format of the Denied Actions sections

The sections for each of the three action kinds have similar format. The only difference is the name of

the XML element used to delimit the action:

 The Deny Publish Action is delimited by the <publish> XML element

 The Deny Subscribe Action is delimited by the <subscribe> XML element

 The Deny Relay Action is delimited by the <relay> XML element

Each denied action logically contains three orthogonal deny conditions. These cover the topic name,

partitions, and data-tags. All these conditions must be met for the denied action to apply. Note that

some of these conditions may not appear explicitly in the XML file. In this case a specified default

value is assumed and applied as if the condition had been explicitly listed.

Each of these three conditions appears in a separate section:

 Denied Topics Condition section

 Denied Partitions Condition section

 Denied Data Tags Condition section

Deleted: the domain IDs to which the rule

applies, and the topic names that are denied to
be published and subscribed within those
domains.

Formatted: Keep with next

250 DDS Security, v1.1

Example (appearing within a <deny_rule>):
<publish> <!— delimits the publish action -->

 <topics> <!— delimits the topic condition -->

 <topic>Square</topic>

 </topics>

 <partitions> <!— delimits the partition condition -->

 <partition>A_partition</partition>

 </partitions>

 <!— data tags condition absent so use default -->

</publish>

[DDSSEC11-57 Evaluation of data_tags when checking Permissions is unclear]

9.4.1.3.2.3.2.3 Denied Topic condition section

The denied topic condition section is delimited by the <topics> XML element. It has the same format

and interpretation as the allowed topic condition section for the allowed actions, see 9.4.1.3.2.3.1.3.

In order for an action (e.g. a publish action) to be denied it must meet the denied topic condition. For

this to happen the Topic name associated with the intended action must match one the topics or topic

expressions explicitly listed in the denied topic condition section.

[DDSSEC11-57 Evaluation of data_tags when checking Permissions is unclear]

9.4.1.3.2.3.2.4 Denied Partitions condition section

The denied partitions condition section is delimited by the <partitions> XML element. It defines the

DDS Partitions names that when associated with the (publish, subscribe, relay) cause the deny action

for the rule to apply. Partition names may be given explicitly or by means of Partition name

expressions. Each partition name or partition-name expression appears separately in a <partition>

sub-element within the <partitions> element.

In order for an action (e.g. a publish action) to be denied it must meet the denied partitions condition.

For this to happen one of more of the partition names associated with the DDS Entity performing the

action (e.g. a DataWriter for the publish action) must match one the partitions or partition expressions

explicitly listed in the partitions condition section.

If there is no <partitions> section then the "*" partition expression is assumed. This means that the

deny action (e.g. deny publish action) would apply independent of the partition associated with the

DDS Endpoint (DataWriter for the publish action).

Example (appearing within a <deny_rule> and within a <publish> action):
 <partitions>

 <partition>A</partition>

 <partition>B</partition>

 </partitions>

The above denied partitions condition would be matched if the partitions associated with the DDS

Entity performing the action (e.g. DataWriter for a publish action) intersect the set {A, B}. So it would

be OK to publish in C, but not in {A}, {A, B}, or {A, B, C}.

[DDSSEC11-57 Evaluation of data_tags when checking Permissions is unclear]

9.4.1.3.2.3.2.5 Data tags condition section

DDS Security, v1.1 251

The denied data tags condition section is delimited by the <data_tags> XML element. It defines the

DDS tags names and values that when associated with the (publish, subscribe, relay) cause the deny

action for the rule to apply.

In order for an action (e.g. a publish action) to be denied it must meet the denied data tags condition.

For this to happen the DDS Entity associated with the action (e.g. DataWriter for a publish action)

must have a data tag name and value pair associated that matches one the data tags explicitly listed in

the denied data tags condition section.

If there is no <data_tags> section then the “set of all possible tags” set is assumed as default. This

means that the deny action (e.g. deny publish action) would apply independent of the data tags

associated with the DDS Endpoint (e.g. DataWriter for a publish action).

Example (appearing within a <deny_rule> and within a <publish> action):
 <data_tags>

 <tag>

 <name>aTagName1</name>

 <value>aTagValue1</value>

 </tag>

 </data_tags>

The above denied data tags condition would be matched if the data tags associated with the DDS

Entity performing the action (e.g. DataWriter for a publish action) intersect the set { (aTagName1,

aTagValue1) }. So it would not deny publishing using a DataWriter with no associated data-tags, or a

DataWriter with a single tag with name “aTagName2”, or a DataWriter with a single tag with name

“aTagName1” and value “aTagValue2”. But it would deny publishing using a DataWriter with with

two associated data-tags { (aTagName1, aTagValue1), (aTagName2, aTagValue2)}.

[DDSSEC11-57 Evaluation of data_tags when checking Permissions is unclear]

9.4.1.3.2.3.2.6 Example deny rule

 <allow_rule>

 <domains>

 <id>0</id>

 </domains>

 <publish>

 <topics>

 <topic>Cir*</topic>

 </topics>

 <data_tags>

 <tag>

 <name>aTagName1</name>

 <value>aTagValue1</value>

 </tag>

 </data_tags>

 </publish>

 <subscribe>

 <topics>

 <topic>Sq*</topic>

 </topics>

 <data_tags>

 <tag>

 <name>aTagName1</name>

 <value>aTagValue1</value>

Deleted:

252 DDS Security, v1.1

 </tag>

 <tag>

 <name>aTagName2</name>

 <value>aTagValue2</value>

 </tag>

 </data_tags>

 </subscribe>

 <subscribe>

 <topics>

 <topic>Triangle</topic>

 </topics>

 <partitions>

 <partition>P*</partition>

 </partitions>

 </subscribe>

 </allow_rule>

[DDSSEC11-57 Evaluation of data_tags when checking Permissions is unclear]

9.4.1.3.2.3.2.7 Example deny rule

 <deny_rule>

 <domains>

 <id>0</id>

 </domains>

 <publish>

 <topics>

 <topic>Circle1</topic>

 </topics>

 </publish>

 <publish>

 <topics>

 <topic>Square</topic>

 </topics>

 <partitions>

 <partition>A_partition</partition>

 </partitions>

 </publish>

 <subscribe>

 <topics>

 <topic>Square1</topic>

 </topics>

 </subscribe>

 <subscribe>

 <topics>

 <topic>Tr*</topic>

 </topics>

 <partitions>

 <partition>P1*</partition>

 </partitions>

 <data_tags>

 <tag>

 <name>aTagName1</name>

 <value>aTagValue1</value>

DDS Security, v1.1 253

 </tag>

 <tag>

 <name>aTagName2</name>

 <value>aTagValue2</value>

 </tag>

 </data_tags>

 </subscribe>

 </deny_rule>

9.4.1.4 DomainParticipant example permissions document (non normative)

Following is an example permissions document that is written according to the XSD described in the

previous sections.

[DDSSEC11-5 - Miscellaneous typos/inconsistencies]

[DDSSEC11-6 - Permissions XSD and XML files are inconsistent with …]

[DDSSEC11-56 Permissions grant rule with no specified topic]

<?xml version="1.0" encoding="UTF-8"?>

<dds xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:noNamespaceSchemaLocation="http://www.omg.org/spec/DDS-

Security/20170801/omg_shared_ca_permissions.xsd">

 <permissions>

 <grant name="ShapesPermission">

 <subject_name>emailAddress=cto@acme.com, CN=DDS Shapes Demo, OU=CTO

Office, O=ACME Inc., L=Sunnyvale, ST=CA, C=US</subject_name>

 <validity>

 <!-- Format is CCYY-MM-DDThh:mm:ss[Z|(+|-)hh:mm] The time zone may

 be specified as Z (UTC) or (+|-)hh:mm. Time zones that aren't

 specified are considered UTC.

 -->

 <not_before>2013-10-26T00:00:00</not_before>

 <not_after>2018-10-26T22:45:30</not_after>

 </validity>

 <allow_rule>

 <domains>

 <id>0</id>

 </domains>

 <!-- DDSSEC11-56 - deleted invalid elements -->

 </allow_rule>

 <deny_rule>

 <domains>

 <id>0</id>

 </domains>

 <publish>

 <topics>

 <topic>Circle1</topic>

 </topics>

 </publish>

 <publish>

 <topics>

 <topic>Square</topic>

 </topics>

Deleted: 60303

Deleted: <publish></publish>¶
 <subscribe />

254 DDS Security, v1.1

 <partitions>

 <partition>A_partition</partition>

 </partitions>

 </publish>

 <subscribe>

 <topics>

 <topic>Square1</topic>

 </topics>

 </subscribe>

 <subscribe>

 <topics>

 <topic>Tr*</topic>

 </topics>

 <partitions>

 <partition>P1*</partition>

 </partitions>

 </subscribe>

 </deny_rule>

 <allow_rule>

 <domains>

 <id>0</id>

 </domains>

 <publish>

 <topics>

 <topic>Cir*</topic>

 </topics>

 <data_tags>

 <tag>

 <name>aTagName1</name>

 <value>aTagValue1</value>

 </tag>

 </data_tags>

 </publish>

 <subscribe>

 <topics>

 <topic>Sq*</topic>

 </topics>

 <data_tags>

 <tag>

 <name>aTagName1</name>

 <value>aTagValue1</value>

 </tag>

 <tag>

 <name>aTagName2</name>

 <value>aTagValue2</value>

 </tag>

 </data_tags>

 </subscribe>

 <subscribe>

 <topics>

 <topic>Triangle</topic>

 </topics>

 <partitions>

 <partition>P*</partition>

DDS Security, v1.1 255

 </partitions>

 <data_tags>

 <tag>

 <name>aTagName1</name>

 <value>aTagValue1</value>

 </tag>

 </data_tags>

 </subscribe>

 <relay>

 <topics>

 <topic>*</topic>

 </topics>

 <partitions>

 <partition>aPartitionName</partition>

 </partitions>

 </relay>

 </allow_rule>

 <default>DENY</default>

 </grant>

 </permissions>

</dds>

9.4.2 DDS:Access:Permissions Types

This sub clause specifies the content and format of the Credential and Token objects used by the

DDS:Access:Permissions plugin.

9.4.2.1 DDS:Access:Permissions PermissionsCredentialToken

The DDS:Access:Permissions plugin shall set the attributes of the

PermissionsCredentialToken object as specified in the table below.

Table 57 – PermissionsCredentialToken class for the builtin AccessControl plugin

Attribute name Attribute value

class_id “DDS:Access:PermissionsCredential”

properties name value

dds.perm.cert Contents of the permissions document
signed by the PermissionCA that was
configured using the Participant
PropertyQosPolicy with name
“dds.sec.access.permissions”

9.4.2.2 DDS:Access:Permissions PermissionsToken

The DDS:Access:Permissions plugin shall set the attributes of the PermissionsToken object as

specified in the table below:

[DDSSEC11-93 Revise version of RTPS and provide rules for plugin versions]

Deleted: <?xml version="1.0"
encoding="utf-16"?>¶

¶

<permissions

xmlns:xsi="http://www.w3.org/20

01/XMLSchema-instance"¶

xsi:noNamespaceSchemaLocation="

omg_shared_ca_permissions.xsd">¶

¶

 <grant

name="ShapesPermission">¶

<subject_name>emailAddress=cto@

acme.com, CN=DDS Shapes Demo,

OU=CTO Office, O=ACME Inc.,

L=Sunnyvale, ST=CA,

C=US</subject_name>¶

 ¶

 <validity>¶

 <!-- Format is

YYYYMMDDHH in GMT -->¶

<not_before>2013060113</not_bef

ore>¶

<not_after>2014060113</not_afte

r>¶

 </validity> ¶

 ¶

 <deny_rule>¶

 <domains>¶

 <id>0</id>¶

 </domains> ¶

 <publish>¶

 <topics>¶

<topic>Circle1</topic>¶

 </topics>¶

 </publish>¶

 <publish>¶

 <topics>¶

<topic>Square</topic>¶

 </topics>¶

 <partitions>¶

<partition>A_partition</partiti

on>¶

 </partitions>¶

 </publish>¶

 <subscribe>¶

 <topics>¶

<topic>Square1</topic>¶

 </topics>¶

 </subscribe>¶

 <subscribe>¶

 <topics>¶

 ...

Formatted: Table caption, Don't keep with
next

Deleted: 5757575649

Deleted:

256 DDS Security, v1.1

Table 58 – PermissionsToken class for the builtin AccessControl plugin

Attribute name Attribute value

class_id “DDS:Access:Permissions:1.0”

properties

(The presence of each of these

properties is optional)

name value

dds.perm_ca.sn The subject name of Permissions CA

dds.perm_ca.algo “RSA-2048” or “EC-prime256v1”

The value of the class_id shall be interpreted as composed of three parts: a PluginClassName, a

MajorVersion and a MinorVersion according to the same format described in clause 9.3.2.1.

Accordingly this version of the specification has PluginClassName equal to

“DDS:Access:Permissions”, MajorVersion set to 1, and MinorVersion set to 0.

If the MajorVersion and MinorVersion are missing from the class_id, it shall be interpreted as being

MajorVersion 1 and MinorVersion 0.

[DDSSEC11-137 Missing Mechanism for Detecting Incompatibilities in ParticipantSecurityA…]

9.4.2.3 PluginParticipantSecurityAttributes

The PluginParticipantSecurityAttributes describe plugin-specific behavior of the

builtin DDS:Crypto:AES:GCM-GMAC Crypto affecting the key material and transformations for the

RTPS messages and the RTPS submessages related to the builtin Topics.

This is a structured type, whose members are described in the table below:

Formatted: Table caption, Don't keep with
next, Don't keep lines together

Deleted: 5858585750

Deleted:

DDS Security, v1.1 257

Table 59 – Description of the PluginParticipantSecurityAttributes

Member Type Meaning

is_rtps_encrypted Boolean This field is only used if the ParticipantSecurityAttributes
field is_rtps_protected is TRUE. Otherwise it has no effect and
it shall be set to FALSE.

This field indicates to the DDS:Crypto:AES:GCM-GMAC plugin
whether the RTPS message shall be protected using
authenticated encryption or only an authentication code.

If is_rtps_encrypted is TRUE, the CryptoKeyFactory
register_local_participant operation shall create
key material for performing a GCM authenticated encryption
and the CryptoTransform encode_rtps_message
operation shall apply the GCM authenticated encryption
transformation.

If is_rtps_encrypted is FALSE operation the aforementioned
operations shall create key material for performing a GMAC
authentication and the CryptoTransform
encode_rtps_message operation shall apply the GMAC
authentication transformation.

is_discovery_encrypte
d

Boolean This field is only used if the ParticipantSecurityAttributes
field is_discovery_protected is TRUE. Otherwise it has no effect
and it shall be set to FALSE.

This field indicates to the DDS:Crypto:AES:GCM-GMAC plugin
whether the submessages related to the builtin secure
discovery endpoints (see 7.4.6) shall be protected using
authenticated encryption or only an authentication code.

If is_discovery_encrypted is TRUE, the CryptoKeyFactory
register_local_datawriter (in the case of a

DataWriter endpoint) or register_local_datareader
(in the case of a DataReader endpoint) operation for the
builtin secure discovery endpoints shall create key
material for performing a GCM authenticated encryption and
the CryptoTransform encode_datawriter_submessage

and encode_datareader_submessage operations shall
apply the GCM authenticated encryption transformation.

If is_discovery_encrypted is FALSE operation the
aforementioned operations shall create key material for
performing a GMAC authentication and the CryptoTransform
encode_rtps_submessage and
encode_datawriter_submessage operations shall
apply the GMAC authentication transformation.

Formatted: Table caption, Don't keep with
next, Don't keep lines together

Deleted: 5959595854

258 DDS Security, v1.1

is_liveliness_encrypte
d

Boolean This field is only used if the ParticipantSecurityAttributes
field is_liveliness_protected is TRUE. Otherwise it has no effect
and it shall be set to FALSE.

This field indicates to the DDS:Crypto:AES:GCM-GMAC plugin
whether the submessages related to the builtin secure
liveliness endpoints (see 7.4.7) shall be protected using
authenticated encryption or only an authentication code.

If is_liveliness_encrypted is TRUE, the CryptoKeyFactory
register_local_datawriter (in the case of a

DataWriter endpoint) or register_local_datareader
(in the case of a DataReader endpoint) operation for the
builtin secure liveliness endpoints shall create key
material for performing a GCM authenticated encryption and
the CryptoTransform encode_datawriter_submessage

and encode_datareader_submessage operations shall
apply the GCM authenticated encryption transformation.

If is_liveliness_encrypted is FALSE operation the
aforementioned operations shall create key material for
performing a GMAC authentication and the CryptoTransform
encode_datawriter_submessage and
encode_datareader_submessage operations shall
apply the GMAC authentication transformation.

is_rtps_origin_authent
icated

Boolean This field is only used if the ParticipantSecurityAttributes
field is_rtps_protected is TRUE. Otherwise it has no effect and
it shall be set to FALSE.

This field indicates to the DDS:Crypto:AES:GCM-GMAC plugin
whether the RTPS messages shall have additional
authentication codes constructed using receiver-specific keys.

If is_rtps_origin_authenticated is TRUE, the CryptoKeyFactory
register_matched_remote_participant operation
shall create additional receiver-specific key material for
performing a GMAC authenticatication. The CryptoTransform
encode_rtps_message operation shall add additional
GMAC authentication codes using the receiver-specific key
material.

If is_rtps_origin_authenticated is FALSE, the aforementioned
operations shall not create additional key material and the
CryptoTransform encode_rtps_message shall not add
additional GMAC authentication codes.

DDS Security, v1.1 259

is_discovery_origin_au
thenticated

Boolean This field is only used if the ParticipantSecurityAttributes
field is_discovery_protected is TRUE. Otherwise it has no effect
and it shall be set to FALSE.

This field indicates to the DDS:Crypto:AES:GCM-GMAC plugin
whether the RTPS submessage from or to the builtin secure
discovery endpoints shall have additional authentication
codes constructed using receiver-specific keys.

If is_discovery_origin_authenticated is TRUE, the
CryptoKeyFactory register_matched_datareader (in
the case of a DataWriter endpoint) or
register_matched_datawriter (in the case of a
DataReader endpoint) operation shall create additional
receiver-specific key material for performing a GMAC
authentication. The CryptoTransform
encode_datawriter_submessage and
encode_datareader_submessage operations shall add
additional GMAC authentication codes using the receiver-
specific key material.

If is_discovery_origin_authenticated is FALSE, the
aforementioned operations shall not create additional key
material and the CryptoTransform
encode_datawriter_submessage and
encode_datareader_submessage operations shall not
add additional GMAC authentication codes.

is_liveliness_origin_au
thenticated

Boolean This field is only used if the ParticipantSecurityAttributes
field is_liveliness_protected is TRUE. Otherwise it has no effect
and it shall be set to FALSE.

This field indicates to the DDS:Crypto:AES:GCM-GMAC plugin
whether the RTPS submessage from or to the builtin secure
liveliness endpoints shall have additional authentication
codes constructed using receiver-specific keys.

If is_liveliness_origin_authenticated is TRUE, the
CryptoKeyFactory register_matched_datareader (in
the case of a DataWriter endpoint) or
register_matched_datawriter (in the case of a
DataReader endpoint) operation shall create additional
receiver-specific key material for performing a GMAC
authenticatication. The CryptoTransform
encode_datawriter_submessage and
encode_datareader_submessage operations shall add
additional GMAC authentication codes using the receiver-
specific key material.

260 DDS Security, v1.1

If is_liveliness_origin_authenticated is FALSE, the
aforementioned operations shall not create additional key
material and the CryptoTransform
encode_datawriter_submessage and

encode_datareader_submessage operations shall not
add additional GMAC authentication codes.

[DDSSEC11-137 Missing Mechanism for Detecting Incompatibilities in ParticipantSecurityA…]

9.4.2.4 Definition of the PluginParticipantSecurityAttributesMask

The PluginParticipantSecurityAttributesMask is used to encode the value of the

PluginParticipantSecurityAttributes in a compact way such that it can be included in

the ParticipantSecurityInfo, see 7.2.7.

As described in section 7.2.7, in order to communicate, two DomainParticipants need to have the same

ParticipantSecurityInfo. As as consequence the

PluginParticipantSecurityAttributesMask must also be the same.

The default value for the mask is:

#define PLUGIN_PARTICIPANT_SECURITY_ATTRIBUTES_MASK_DEFAULT 0

The mapping of the PluginParticipantSecurityAttributes to

PluginParticipantSecurityAttributesMask is as follows:

Table 60 – Mapping of PluginParticipantSecurityAttributes to the PluginParticipantSecurityAttributesMask

Field in
PluginParticipantSe
curityAttributes

Corresponding bit in the
PluginParticipantSecurityAttributesMask

is_rtps_encrypted #define

PLUGIN_PARTICIPANT_SECURITY_ATTRIBUTES_FLAG_IS_RTPS_

ENCRYPTED (0x00000001 << 0)

is_discovery_encrypt
ed

#define

PLUGIN_PARTICIPANT_SECURITY_ATTRIBUTES_FLAG_BUILTIN_

IS_DISCOVERY_ENCRYPTED (0x00000001 << 1)

is_liveliness_encrypt
ed

#define

PLUGIN_PARTICIPANT_SECURITY_ATTRIBUTES_FLAG_IS_LIVEL

INESS_ENCRYPTED (0x00000001 << 2)

is_rtps_origin_authe
nticated

#define

PLUGIN_PARTICIPANT_SECURITY_ATTRIBUTES_FLAG_IS_RTPS_

ORIGIN_AUTHENTICATED (0x00000001 << 3)

is_discovery_origin_
authenticated

#define

PLUGIN_PARTICIPANT_SECURITY_ATTRIBUTES_FLAG_IS_DISCO

VERY_ORIGIN_AUTHENTICATED (0x00000001 << 4)

Formatted: Table caption, Don't keep with
next, Don't keep lines together

Deleted: 6060605955

DDS Security, v1.1 261

is_liveliness_origin_a
uthenticated

#define

PARTICIPANT_SECURITY_ATTRIBUTES_FLAG_IS_LIVELINESS_O

RIGIN_AUTHENTICATED (0x00000001 << 5)

9.4.2.5 PluginEndpointSecurityAttributes

The PluginEndpointSecurityAttributes describe plugin-specific behavior of the builtin

DDS:Crypto:AES:GCM-GMAC Crypto affecting the key material and transformations for endpoints

(DataWriters and DataReaders) submessages and submessage payloads.

This is a structured type, whose members are described in the table below:

[DDSSEC11-137 Missing Mechanism for Detecting Incompatibilities in ParticipantSecurityA…]

Table 61 – Description of the PluginEndpointSecurityAttributes

Member Type Meaning

is_submessage_encrypted Boolean This field is only used if the EndpointSecurityAttributes
field is_submessage_protected is TRUE. Otherwise it has no
effect and it shall be set to FALSE.

This field indicates to the DDS:Crypto:AES:GCM-GMAC
plugin whether the submessage shall be protected using
authenticated encryption or only an authentication code.

If is_submessage_encrypted is TRUE, the CryptoKeyFactory
register_local_datawriter (in the case of a

DataWriter endpoint) or
register_local_datareader (in the case of a

DataReader endpoint) operation shall create key
material for performing a GCM authenticated encryption
and the CryptoTransform operation
encode_datawriter_submessage (in the case of a
DataWriter endpoint) or

encode_datareader_submessage (in the case of a
DataReader) shall apply the GCM authenticated
encryption transformation.

If is_submessage_encrypted is FALSE operation the
aforementioned operations shall create key material for
performing a GCM authenticated encryption and the
CryptoTransform operation
encode_datawriter_submessage (in the case of a
DataWriter endpoint) or

encode_datareader_submessage (in the case of a
DataReader) shall apply the GCM authenticated

Formatted: Table caption, Don't keep with
next, Don't keep lines together

Deleted: 6161616053

262 DDS Security, v1.1

encryption transformation.

is_submessage_origin_aut
henticated

Boolean This field is only used if the EndpointSecurityAttributes
field is_submessage_protected is TRUE. Otherwise it has no
effect and it shall be set to FALSE.

This field indicates to the DDS:Crypto:AES:GCM-GMAC
plugin whether the submessage shall have additional
authentication codes constructed using receiver-specific
keys.

If is_submessage_origin_authenticated is TRUE, the
CryptoKeyFactory register_matched_datareader
(in the case of a DataWriter endpoint) or
register_matched_datawriter (in the case of a
DataReader endpoint) operation shall create additional
receiver-specific key material for performing a GMAC
authenticatication. The CryptoTransform operation
encode_datawriter_submessage (in the case of a
DataWriter endpoint) or

encode_datareader_submessage (in the case of a
DataReader) shall add additional GMAC authentication
codes using the receiver-specific key material.

If is_submessage_origin_authenticated is FALSE, the
aforementioned operations shall not create additional key
material and the CryptoTransform operation
encode_datawriter_submessage (in the case of a

DataWriter endpoint) or
encode_datareader_submessage (in the case of a

DataReader) shall not add additional GMAC
authentication codes.

is_payload_encrypted Boolean This field is only used if the EndpointSecurityAttributes
field is_payload_protected is TRUE. Otherwise it has no
effect and it shall be set to FALSE.

This field indicates to the DDS:Crypto:AES:GCM-GMAC
plugin whether the payload shall be protected using
authenticated encryption or only an authentication code.

If is_payload_encrypted is TRUE, the CryptoKeyFactory
register_local_datawriter (in the case of a
DataWriter endpoint) or
register_local_datareader (in the case of a
DataReader endpoint) operation shall create key material
for performing a GCM authenticated encryption and the
CryptoTransform encode_serialized_payload

Deleted: Page Break

DDS Security, v1.1 263

operation shall apply the GCM authenticated encryption
transformation.

If is_payload_encrypted is FALSE operation the
aforementioned operations shall create key material for
performing a GCM authenticated encryption and the
CryptoTransform encode_serialized_payload
operation shall apply the GCM authenticated encryption
transformation.

[DDSSEC11-137 Missing Mechanism for Detecting Incompatibilities in ParticipantSecurityA…]

9.4.2.6 Definition of the PluginEndpointSecurityAttributesMask

The PluginEndpointSecurityAttributesMask is used to encode the value of the

PluginEndpointSecurityAttributes in a compact way such that it can be included in the

EndpointSecurityInfo, see 7.2.8.

As described in section 7.2.8, in order to communicate, two endpoints need to have the same

EndpointSecurityAttributesMask. As as consequence the

PluginEndpointSecurityAttributesMask must also be the same.

The default value for the mask is:

#define PLUGIN_ENDPOINT_SECURITY_ATTRIBUTES_MASK_DEFAULT 0

The mapping of the PluginEndpointSecurityAttributes to

PluginEndpointSecurityAttributesMask is as follows:

Table 62 – Mapping of fields PluginEndpointSecurityAttributes to the PluginEndpointSecurityAttributesMask

Field in
PluginEndpointSecurityAttr

ibutes

Corresponding bit in the
PluginEndpointSecurityAttributesMask

is_submessage_encrypted #define

PLUGIN_ENDPOINT_SECURITY_ATTRIBUTES_FLAG

_IS_SUBMESSAGE_ENCRYPTED (0x00000001 << 0)

is_payload_encrypted #define
PLUGIN_ENDPOINT_SECURITY_ATTRIBUTES_FLAG

_IS_PAYLOAD_ENCRYPTED (0x00000001 << 1)

is_submessage_origin_authenticated #define
PLUGIN_ENDPOINT_SECURITY_ATTRIBUTES_FLAG

_IS_SUBMESSAGE_ORIGIN_AUTHENTICATED
(0x00000001 <<2)

9.4.3 DDS:Access:Permissions plugin behavior

The DDS:Access:Permissions shall be initialized to have access to the Permissions CA 2048-bit RSA

public key. As this is a builtin plugin the mechanism for initialization is implementation dependent.

Deleted: 7.2.87.2.87.2.87.2.87.2.7

Deleted: 7.2.87.2.87.2.87.2.87.2.7

Formatted: Table caption, Don't keep with
next, Don't keep lines together

Deleted: 6262626154

264 DDS Security, v1.1

The table below describes the actions that the DDS:Access:Permissions plugin performs when each of

the plugin operations is invoked.

[DDSSEC11-93 Revise version of RTPS and provide rules for plugin versions]

[DDSSEC11-112 No mechanism to free ParticipantSecurityAttributes …]

[DDSSEC11-85 Additional typos/inconsistencies]

 Table 63 – Actions undertaken by the operations of the bulitin AccessControl plugin

check_create_participant This operation shall use the permissions_handle to retrieve

the cached Permissions and Governance information.

If the Governance specifies any topics on the

DomainParticipant domain_id with

enable_read_access_control set to FALSE or with

enable_write_access_control set to FALSE, then the

operation shall succeed and return TRUE.

If the ParticipantSecurityAttributes has

is_access_protected set to FALSE, then the operation shall

succeed and return TRUE.

Otherwise the operation shall return FALSE.

check_create_datawriter This operation shall use the permissions_handle to retrieve

the cached Permissions and Governance information.

If the Governance specifies a topic or topic-expression on

the DomainParticipant domain_id matching the

DataWriter topic with enable_write_access_control set

to FALSE, then the operation shall succeed and return

TRUE.

If the Permissions document contains a Grant for the

DomainParticipant allowing it to publish the Topic

with specified topic_name on all the Publisher’s

PartitionQosPolicy names and with all the tags in the

DataWriter DataTagQosPolicy, then the operation

shall succeed and return TRUE.

Otherwise the operation shall return FALSE.

check_create_datareader This operation shall use the permissions_handle to retrieve

the cached Permissions and Governance information.

If the Governance specifies a topic or topic-expression on

the DomainParticipant domain_id matching the

DataReader topic with enable_read_access_control set

to FALSE, then the operation shall succeed and return

TRUE.

If the Permissions document contains a Grant for the

Formatted: Table caption, Don't keep with
next

Deleted: 6363636251

Deleted: If the Permissions document
contains a Grant for the

DomainParticipant and the Grant

contains an allow rule on the

DomainParticipant domain_id, then the

operation shall succeed and return TRUE.¶

DDS Security, v1.1 265

DomainParticipant allowing it to subscribe the

Topic with specified topic_name on all the

Subscriber’s PartitionQosPolicy names and with

all the tags in the DataReader DataTagQosPolicy,

then the operation shall succeed and return TRUE.

Otherwise the operation shall return FALSE.

check_create_topic This operation shall use the permissions_handle to retrieve

the cached Permissions and Governance information.

If the Governance specifies a topic or topic-expression on

the DomainParticipant domain_id matching the

Topic name with enable_read_access_control set to

FALSE or with enable_write_access_control set to FALSE,

then the operation shall succeed and return TRUE.

If the Permissions document contains a Grant for the

DomainParticipant allowing it to publish the Topic

with specified topic_name, then the operation shall succeed

and return TRUE.

If the Permissions document contains a Grant for the

DomainParticipant allowing it to subscribe the

Topic with specified topic_name, then the operation shall

succeed and return TRUE.

Otherwise the operation shall return FALSE.

check_local_datawriter_re

gister_instance

This operation shall return TRUE.

check_local_datawriter_di

spose_instance

This operation shall return TRUE.

check_remote_participant This operation shall use the permissions_handle to retrieve

the cached local DomainParticipant Governance and

the remote DomainParticipant Permissions

information.

If the ParticipantSecurityAttributes has

is_access_protected set to FALSE, then the operation shall

succeed and return TRUE.

If the PluginClassName or the MajorVersion of the local

permissions_token differ from those in the

remote_permissions_token, the operation shall return

FALSE.

If the Permissions document contains a Grant for the remote

DomainParticipant and the Grant contains an allow

rule on the DomainParticipant domain_id, then the

operation shall succeed and return TRUE.

Deleted: remote

Deleted: and Governance

Deleted: If the Governance specifies any

topics on the DomainParticipant

domain_id with enable_read_access_control
set to FALSE or with
enable_write_access_control set to FALSE,

then the operation shall succeed and return
TRUE.¶

266 DDS Security, v1.1

Otherwise the operation shall return FALSE.

check_remote_datawriter

This operation shall use the permissions_handle to retrieve

the cached local DomainParticipant Governance and

the remote DomainParticipant Permissions

information.

If the Governance specifies a topic or topic-expression on

the DomainParticipant domain_id matching the

remote DataWriter topic with

enable_write_access_control set to FALSE, then the

operation shall succeed and return TRUE.

If the PluginClassName or the MajorVersion of the local

permissions_token differ from those in the

remote_permissions_token, the operation shall return

FALSE.

If the remote DomainParticipant Permissions

document contains a Grant allowing it to publish the

DataWriter’s topic_name on all the remote

Publisher’s PartitionQosPolicy names and with

all the tags in the remote DataWriter

DataTagQosPolicy, then the operation shall succeed

and return TRUE.

Otherwise the operation shall return FALSE.

check_remote_datareader This operation shall use the permissions_handle to retrieve

the cached local DomainParticipant Governance and

the remote DomainParticipant Permissions

information.

If the Governance specifies a topic or topic-expression on

the DomainParticipant domain_id matching the

remote DataReader topic with

enable_read_access_control set to FALSE, then the

operation shall succeed, set the ‘allow_relay_only’ output

parameter to FALSE, and return TRUE.

If the PluginClassName or the MajorVersion of the local

permissions_token differ from those in the

remote_permissions_token, the operation shall return

FALSE.

If the Permissions document contains a Grant for the remote

DomainParticipant allowing it to subscribe the

DataReader’s topic_name on all the Subscriber’s

PartitionQosPolicy names and with all the tags in the

DataReader DataTagQosPolicy, then the operation

Deleted: remote

Deleted: and Governance

Deleted: remote

Deleted: and Governance

DDS Security, v1.1 267

shall succeed, set the ‘allow_relay_only’ output parameter to

FALSE, and return TRUE.

If the Permissions document contains a Grant for the remote

DomainParticipant allowing it to ‘relay’ the

DataReader’s topic_name, the operation shall return

TRUE and also set the ‘allow_relay_only’ output parameter

to TRUE.

Otherwise the operation shall return FALSE.

check_remote_topic This operation shall use the permissions_handle to retrieve

the cached local DomainParticipant Governance and

the remote DomainParticipantPermissions

information.

If the Governance specifies a topic or topic-expression on

the DomainParticipant domain_id matching the

Topic name with enable_read_access_control set to

FALSE or with enable_write_access_control set to FALSE,

then the operation shall succeed and return TRUE.

If the PluginClassName or the MajorVersion of the local

permissions_token differ from those in the

remote_permissions_token, the operation shall return

FALSE.

If the Permissions document contains a Grant for the

DomainParticipant allowing it to publish the Topic

with specified topic_name, then the operation shall succeed

and return TRUE.

If the Permissions document contains a Grant for the

DomainParticipant allowing it to subscribe the

Topic with specified topic_name, then the operation shall

succeed and return TRUE.

Otherwise the operation shall return FALSE.

check_local_datawriter_ma

tch

This operation shall return TRUE.

check_local_datareader_ma

tch

This operation shall return TRUE.

check_remote_datawriter_r

egister_instance

This operation shall return TRUE.

check_remote_datawriter_d

ispose_instance

This operation shall return TRUE.

Deleted: remote

Deleted: and Governance

268 DDS Security, v1.1

get_permissions_token This operation shall return the PermissionsToken

formatted as described in 9.4.2.2.

get_permissions_credentia

l_token

This operation shall return the PermissionsToken

formatted as described in 9.4.2.1

set_listener This operation shall save a reference to the listener object

and associate it with the specified PermissionsHandle.

return_permissions_token This operation shall behave as specified in 8.4.2.9.20

return_permissions_creden

tial_token

This operation shall behave as specified in 8.4.2.9.21

validate_local_permission

s

This operation shall receive the DomainId and

DomainParticipantQos from which it can access the

Identity Certificate, Signed Domain Governance and Signed

Permissions document.

The operation shall check the subject name in the Identity

Certificate matches the one from the Signed Permissions

document.

The operation shall verify the signature of the Signed

Domain Governance and Signed Permissions document by

the configured Permissions CA.

If all of these succeed, the operation shall cache the

Permissions (see 9.4.1.3.1) from the certificate and return an

opaque handle that the plugin can use to refer to the saved

information. Otherwise the operation shall return an error.

validate_remote_permissio

ns

This operation shall invoke the operation
get_authenticated_peer_credential_token

on the auth_plugin passing the remote_identity_handle to

retrieve the AuthenticatedPeerCredentialToken

(see 0) for the remote DomainParticipant.

The AuthenticatedPeerCredentialToken

contains both the Identity Certificate and the Signed

Permissions Document obtained from the remote

DomainParticipant during the Authentication.

The operation shall check the subject name in the Signed

Permissions Document matches the one in the Identity

Certificate.

The operation shall verify the signature of the Signed

Permissions Document by the configured Permissions CA.

If all of these succeed, the operation shall cache the

Permission Section from the Signed Permissions Document

Deleted: 8.4.2.9.208.4.2.9.208.4.2.9.208.4.2.9

.208.4.2.6.20

Deleted: 8.4.2.9.218.4.2.9.218.4.2.9.218.4.2.9
.218.4.2.6.21

DDS Security, v1.1 269

and return an opaque handle that the plugin can use to refer

to the saved information. Otherwise the operation shall

return an error.

get_participant_sec_attri

butes

This operation shall use the permissions_handle to retrieve

the cached Permissions and Governance information.

Based on the Governance document rules for the

DomainParticipant domain_id the operation shall fill

the attributes output parameter. The fields of the

ParticipantSecurityAttributes attributes shall

be set according to the following rules:

If the Governance document has the element

allow_unauthenticated_participants set to FALSE, the

attributes field allow_unauthenticated_participants shall be

set to FALSE. Otherwise the field shall be set to TRUE.

If the Governance document has the element

enable_join_access_control set to FALSE, the attributes

field is_access_protected shall be set to FALSE. Otherwise

the field shall be set to TRUE.

If the Governance document has the element

rtps_protection_kind set to NONE, the attributes field

is_rtps_protected shall be set to FALSE. Otherwise the field

shall be set to TRUE.

return_participant_sec_at

tributes

This operation shall behave as specified in 8.4.2.9.26.

return_datawriter_sec_att

ributes

This operation shall behave as specified in 8.4.2.9.27.

.return_datareader_sec_at

tributes

This operation shall behave as specified in 8.4.2.9.28.

9.5 Builtin Crypto: DDS:Crypto:AES-GCM-GMAC

The builtin Cryptographic plugin is referred to as “DDS:Crypto:AES-GCM-GMAC” plugin.

DDS:Crypto:AES-GCM-GMAC provides authenticated encryption using Advanced Encryption

Standard (AES) in Galois Counter Mode (AES-GCM) [45]. It supports two AES key sizes: 128 bits

and 256 bits. It may also provide additional reader-specific message authentication codes (MACs)

using Galois MAC (AES-GMAC) [45].

The definition of the AES-GCM and AES-GMAC transformations shall be as specified in NIST SP

800-38D [45] specialized to 128-bit and 256-bit AES keys with 96-bit Initialization Vector. The most

relevant aspects are summarized below.

The AES-GCM authenticated encryption operation is a transformation that takes the four inputs and

produces two outputs, symbolically:

Deleted: 8.4.2.9.268.4.2.9.268.4.2.9.268.4.2.9
.268.4.2.6.25

Deleted: 8.4.2.9.278.4.2.9.278.4.2.9.278.4.2.9
.278.4.2.6.26

Deleted: 8.4.2.9.288.4.2.9.288.4.2.9.288.4.2.9

.288.4.2.6.27

270 DDS Security, v1.1

C, T = AES-GCM(K, P, AAD, IV)

The AES-GCM inputs are described in Table 64 below.

Table 64 – AES-GCM transformation inputs

Input Description

K The 128-bit key to be used with the AES-128 block cipher

or the 256-bit key to be used with the AES-256 block cipher.

P The plaintext. This is the data to encrypt and authenticate.

It may be empty in case we only want to authenticate data.

AAD Additional Authenticated Data.

This is data beyond the plaintext that will only be authenticated. I.e. it is not
encrypted.

IV Initialization Vector.

This is a 96-bit NONCE that shall not be repeated for the same key.

The AES-GCM transformation outputs are described in Table 65 below.

Table 65 – AES-GCM trasnsformation outputs

Input Description

C Ciphertext.

This is the encryption of the plaintext “P”.

T Authentication Tag.

This is a Message Authentication Code (MAC) that provides authentication for
the Ciphertext (C) and the Additional Authenticated Data (AAD).

AES-GCM uses AES in counter mode with a specific incrementing function called “inc32” used to

generate the counter blocks. As recommended in section 5.2.1.1 of NIST SP 800-38D [45] the counter

blocks shall be created from the 96-bit Initialization Vector as follows:

 The initial value of the 128-bit counter block is a 128-bit string containing the IV as the leading

96 bits and zeros the remaining right-most 32 bits.

 Incremental values of the 128-bit counter block used to encrypt each block are obtained using

the “inc32” function which increments the right-most 32 bits of the string, regarded as the

binary representation of a big-endian integer, modulo 2^32. The inc32 operation does not touch

the leading 96 bits.

The AES-GMAC transformation is defined as the special case where the plaintext “P” is empty (zero

length). This transformation produces only an AuthenticationTag (Message Authentication Code) on

the AAD data:

Deleted: Table 64Table 64Table 64Table

6352Table 52

Formatted: Table caption, Don't keep with
next, Don't keep lines together

Deleted: 6464646352

Deleted: Table 65Table 65Table 65Table
6453Table 53

Formatted: Table caption, Don't keep with
next, Don't keep lines together

Deleted: 6565656453

DDS Security, v1.1 271

T = AES-GMAC(K, AAD, IV) = AES-GCM(K, “”, AAD, IV)

The use of (Galois) counter mode allows authenticated decryption of blocks in arbitrary order. All that

is needed to decrypt and validate the authentication tag are the Key and the Initialization Vector. This is

very important for DDS because a DataReader may not receive all the samples written by a

matched DataWriter. The use of DDS ContentFilteredTopics as well as DDS QoS policies

such as History (with KEEP_LAST kind), Reliability (with BEST_EFFORTS kind),

Lifespan, and TimeBasedFilter, among others, can result in a DataReader receiving a

subset of the samples written by a DataWriter.

The AES-GCM transformation produces both the ciphertext and a message authentication code (MAC)

using the same secret key. This is sufficient to protext the plaintext and ensure integrity. However there

are situations where multiple MACs are required. For example when a DataWriter shares the same Key

with multiple DataReaders and, in spite of this, the DataWriter needs to ensure message-origin

authentication. In this situation the DataWriter should create a separate “reader-specific key” used only

for authentication and append additional reader-specific MACs, each computed with one of the reader-

specific keys.

9.5.1 Configuration

The DDS:Crypto:AES-GCM-GMAC plugin requires no additional configuration as part of this

specification. However this specification reserves all PropertyQos names with the prefix

“dds.sec.crypto.” for use in future revisions of this specification.

9.5.2 DDS:Crypto:AES-GCM-GMAC Types

The Cryptographic plugin defines a set of generic data types to be used to initialize the plugin and

to externalize the properties and material that must be shared with the applications that need to decode

the cipher material, verify signatures, etc.

Each plugin implementation defines the contents of these types in a manner appropriate for the

algorithms it uses. All “Handle” types are local opaque handles that are only understood by the local

plugin objects that create or use them. The remaining types shall be fully specified so that independent

implementations of DDS:Crypto:AES-GCM-GMAC can interoperate.

9.5.2.1 DDS:Crypto:AES-GCM-GMAC CryptoToken

The DDS:Crypto:AES-GCM-GMAC plugin shall set the attributes of the CryptoToken object as

specified in the table below:

[DDSSEC11-27 Inconsistent Behavior for Secure Volatile Endpoints]

[DDSSEC11-42 Table 51 CryptoToken should specify endianness of binary properties...]

Table 66 – CryptoToken class for the builtin Cryptographic plugin

Attribute name Attribute value

class_id “DDS:Crypto:AES_GCM_GMAC”

binary_properties name value

Deleted:

Formatted: Table caption

Deleted: 6666666554

Formatted: Spanish (Spain-Traditional
Sort)

272 DDS Security, v1.1

dds.cryp.keymat The Big Endian CDR Serialization of the
KeyMaterial_AES_GCM_GMAC structure defined
below.

9.5.2.1.1 KeyMaterial_AES_GCM_GMAC structure

The contents and serialization of the KeyMaterial_AES_GCM_GMAC structure are described by

the Extended IDL below.

Note: The types CryptoTransformationKind and CryptoTransformKeyId were defined

in section 8.5.1.5.

[DDSSEC11-85 Additional typos/inconsistencies]

/* Valid values for CryptoTransformKind */

/* No encryption, no authentication tag */

#define CRYPTO_TRANSFORMATION_KIND_NONE {0, 0, 0, 0}

/* No encryption.

 One AES128-GMAC authentication tag using the sender_key

 Zero or more AES128-GMAC auth. tags with receiver specfic keys */

#define CRYPTO_TRANSFORMATION_KIND_AES128_GMAC {0, 0, 0, 1}

/* Authenticated Encryption using AES-128 in Galois Counter Mode

 (GCM) using the sender key.

 The authentication tag using the sender_key obtained from GCM

 Zero or more AES128-GMAC auth. tags with receiver specfic keys */

#define CRYPTO_TRANSFORMATION_KIND_AES128_GCM {0, 0, 0, 2}

/* No encryption.

 One AES256-GMAC authentication tag using the sender_key

 Zero or more AES256-GMAC auth. tags with receiver specfic keys */

#define CRYPTO_TRANSFORMATION_KIND_AES256_GMAC {0, 0, 0, 3}

/* Authenticated Encryption using AES-256 in Galois Counter Mode

 (GCM) using the sender key.

 The authentication tag using the sender_key obtained from GCM

 Zero or more AES256-GMAC auth. tags with receiver specfic keys */

#define CRYPTO_TRANSFORMATION_KIND_AES256_GCM {0, 0, 0, 4}

@extensibility(FINAL)

struct KeyMaterial_AES_GCM_GMAC {

 CryptoTransformKind transformation_kind;

 sequence<octet, 32> master_salt;

 CryptoTransformKeyId sender_key_id;

 sequence<octet, 32> master_sender_key;

Deleted: result of encrypting the

Deleted: ¶
The encryption uses the logic of the
encode_serialized_payload operation, so the
serialized KeyMaterial is first placed inside a
SerializedPayload submessage element and
the output contains the SecureDataHeader,
SecureDataBody, and SecureDataTag.¶
The encryption uses the KxKey material
derived from the SharedSecret as described
in 9.5.2.1.2.

Deleted: //

Deleted: E

Deleted: _EXTENSIBILITY

DDS Security, v1.1 273

 CryptoTransformKeyId receiver_specific_key_id;

 sequence<octet, 32> master_receiver_specific_key;

};

[DDSSEC11-11 - How is single-MAC versus MAC-per-reader configured]

typedef

sequence<KeyMaterial_AES_GCM_GMAC> KeyMaterial_AES_GCM_GMAC_Seq;

A zero value for receiver_specific_key_id indicates there is no receiver-specific authentication tags and

shall occur if and only if the length of the master_receiver_specific_key is also zero.

9.5.2.1.2 Key material used by the BuiltinParticipantVolatileMessageSecureWriter and
BuiltinParticipantVolatileMessageSecureReader

The Key Material used by the BuiltinParticipantVolatileMessageSecureWriter and

BuiltinParticipantVolatileMessageSecureReader shall be derived from the SharedSecret obtained

as part of the authentication process. The attributes of the KeyMaterial_AES_GCM_GMAC shall be

set as described in Table 67 below. This uses HMAC-Based Key Derivation (HKDF) recommended in

IETF RFC 5869 [50].

[DDSSEC11-53 Specify a transformation_kind for …]

Table 67 – KeyMaterial_AES_GCM_GMAC for BuiltinParticipantVolatileMessageSecureWriter and
BuiltinParticipantVolatileMessageSecureReader

Attribute name Attribute value

transformation_kind CRYPTO_TRANSFORMATION_KIND_AES256_GCM

master_salt HMACsha256 (sha256(Challenge1 | KxSaltCookie | Challenge2) ,

SharedSecret)

The parameters to the above functions are defined in Table 68.

In the case where transformation_kind is

CRYPTO_TRANSFORMATION_KIND_AES128_GCM this is

truncated to the first 128 bits.

sender_key_id 0

master_sender_key HMACsha256 (sha256(Challenge2 | KxKeyCookie | Challenge1) ,
SharedSecret)

The parameters to the above functions are defined in Table 68.

In the case where transformation_kind is
CRYPTO_TRANSFORMATION_KIND_AES128_GCM this is truncated

to the first 128 bits.

receiver_specific_key_id 0

master_receiver_specific_key Zero-length sequence

Deleted: Table 67Table 67Table 67Table
6655Table 55

Formatted: Table caption

Deleted: 6767676655

Deleted: CRYPTO_TRANSFORMATION_KIN
D_AES128_GCM or¶

Deleted: Table 68Table 68Table 68Table
6756Table 56

Deleted: Table 68Table 68Table 68Table
6756Table 56

274 DDS Security, v1.1

Table 68 – Terms used in KxKey and KxMacKey derivation formula for the builtin Cryptographic plugin

Term Meaning

Challenge1 The challenge that was sent in the challenge1 attribute of the
HandshakeRequestMessageToken as part of the Authentication
protocol.

This information shall be accessible from the
SharedSecretHandle.

Challenge2 The challenge that was sent in the challenge2 attribute of the
HandshakeReplyMessageToken as part of the Authentication
protocol.

This information shall be accessible from the
SharedSecretHandle.

SharedSecret The shared secret established as part of the key agreement protocol.

This information shall be accessible from the
SharedSecretHandle.

KxKeyCookie The 16 bytes in the string “key exchange key”

KxSaltCookie The 16 bytes in the string “keyexchange salt”

data1 | data2 | data3 The symbol ‘|’ is used to indicate byte string concatenation

HMACsha256(key, data) Computes the hash-based message authentication code on ‘data’
using the key specified as first argument and a SHA256 hash as
defined in [27].

9.5.2.2 DDS:Crypto:AES-GCM-GMAC CryptoTransformIdentifier

The DDS:Crypto:AES-GCM-GMAC shall set the CryptoTransformIdentifier attributes as

specified in the table below:

Table 69 – CryptoTransformIdentifier class for the builtin Cryptographic plugin

Attribute Value

transformation_kind Set to one of the following values (see section 9.5.2.1.1):

CRYPTO_TRANSFORMATION_KIND_NONE

CRYPTO_TRANSFORMATION_KIND_AES128_GMAC

CRYPTO_TRANSFORMATION_KIND_AES128_GCM

CRYPTO_TRANSFORMATION_KIND_AES256_GMAC

CRYPTO_TRANSFORMATION_KIND_AES256_GCM

The variants containing AES128 in their name indicate that
the encryption and/or authentication use AES with 128-bit
key as the underlaying cryptographic engine. These variants

Formatted: Table caption

Deleted: 6868686756

Field Code Changed

Formatted: Spanish (Spain-Traditional

Sort)

Formatted: Spanish (Spain-Traditional

Sort)

Formatted: Table caption

Deleted: 6969696857

DDS Security, v1.1 275

shall have master_sender_key with 16 octets in length and
master_receiver_specific_key with either zero or 16 octets in
length.

The variants containing AES256 in their name indicate that
the encryption and/or authentication use AES with 256-bit
key as the underlaying cryptographic engine. These variants
shall have master_sender_key with 32 octets in length and
master_receiver_specific_key with either zero or 32 octets in
length.

The variants with name ending with GCM indicate that the
transformation is the standard authenticated encryption
operation known as AES-GCM (AES using Galois Counter
Mode) where the plaintext is encrypted and followed by an
authentication tag computed using the same secret key. These
variants may contain zero or more receiver-specific
authentication tags. If receiver_specific_key_id is set to zero
there shall be no receiver-specific tags otherwise there shall
be one or more receiver-specific tags.

The variants ending in GMAC indicate that there is no
encryption (i.e., the ciphertext matches the input plaintext) and
there is an authentication tag computed using the sender key
that is shared with all the readers. These variants may contain
zero or more receiver-specific authentication tags. If
receiver_specific_key_id is set to zero there shall be no
receiver-specific tags otherwise there shall be one or more
receiver-specific tags.

transformation_key_id This is set to a different value each time new Key Material is
produced by a DomainParticipant. The algorithm used is
implementation specific but it shall avoid repeating the values
for the same DomainParticipant.

[DDSSEC11-7 Inconsistency in SubMessage and SubMessageElement naming ...]

9.5.2.3 DDS:Crypto:AES-GCM-GMAC CryptoHeader

The DDS:Crypto:AES-GCM-GMAC CryptoTransform interface has several operations that

transform plain text into cipher text. The cipher-text created by these “encode” operations

contains a CryptoHeader that is interpreted by the corresponding “decode” operations on the

receiving side.

The CryptoHeader structure is described by the Extended IDL below:

[DDSSEC11-54 Specify Endianness to be Used in Ciphertext]

[DDSSEC11-85 Additional typos/inconsistencies]

// Serialized as Big Endian

@extensibility(FINAL)

Deleted: SecureDataHeader

Deleted: SecureDataHeader

Deleted: SecureDataHeader

Deleted: @Extensibility(FINAL_EXT
ENSIBILITY)

276 DDS Security, v1.1

struct CryptoHeader {

 CryptoTransformIdentifier transform_identifier;

 octet session_id[4];

 octet initialization_vector_suffix[8];

};

[DDSSEC11-7 Inconsistency in SubMessage and SubMessageElement naming ...]

As indicated by the IDL above, the plugin_crypto_header_extra attribute introduced in section

7.3.6.4.2 consists of the session_id and the initialization_vector_suffix.

The transformation_indentifier combined with the identity of the sending DomainParticipant

uniquely identifies the KeyMaterial used to transform the plaintext into the cipher text.

The session_id combined with the KeyMaterial uniquely identifies the cryptographic keys used for

the encryption and MAC operations.

The initialization_vector_suffix combined with the session_id uniquely identifies the

Initialization Vector used as part of the AES-GCM and AES-GMAC transformations.

The CryptoHeader structure shall be serialized using Big Endian serialization (a.k.a. network byte

order).

[DDSSEC11-7 Inconsistency in SubMessage and SubMessageElement naming ...]

9.5.2.4 DDS:Crypto:AES-GCM-GMAC CryptoContent

The DDS:Crypto:AES-GCM-GMAC CryptoTransform interface has operations that transform

plaintext into cipher text. The cipher-text created by some of these “encode” operations contains a

CryptoContent submessage element (see 7.3.6.2) that is interpreted by the corresponding “decode”

operations on the receiving side.

The CryptoContent structure is described by the Extended IDL below:

[DDSSEC11-54 Specify Endianness to be Used in Ciphertext]

[DDSSEC11-7 Inconsistency in SubMessage and SubMessageElement naming ...]

[DDSSEC11-85 Additional typos/inconsistencies]

// Serialized as Big Endian

@extensibility(FINAL)

struct CryptoContent {

 sequence<octet> crypto_content;

};

The CryptoContent structure shall be serialized using Big Endian serialization (a.k.a. network byte

order).

[DDSSEC11-7 Inconsistency in SubMessage and SubMessageElement naming ...]

Deleted: SecureDataHeader

Deleted: plugin_sec_header

Deleted: SecureDataBody

Deleted: SecureDataBody

Deleted: 0

Deleted: SecureDataBody

Deleted: @Extensibility(FINAL_EXT
ENSIBILITY)

Deleted: SecureDataBody

Deleted: secure_data

Deleted: SecureDataBody

DDS Security, v1.1 277

9.5.2.5 DDS:Crypto:AES-GCM-GMAC CryptoFooter

The DDS:Crypto:AES-GCM-GMAC CryptoTransform interface has several operations that

transform plaintext into cipher text. The cipher-text created by these “encode” operations contains a

CryptoFooter that is interpreted by the corresponding “decode” operations on the receiving side.

The CryptoFooter structure is described by the Extended IDL below:

[DDSSEC11-54 Specify Endianness to be Used in Ciphertext]

[DDSSEC11-7 Inconsistency in SubMessage and SubMessageElement naming ...]

[DDSSEC11-85 Additional typos/inconsistencies]

// Serialized as Big Endian

@extensibility(FINAL)

struct ReceiverSpecificMAC {

 CryptoTransformKeyId receiver_mac_key_id;

 octet receiver_mac[16];

};

// Serialized as Big Endian

@extensibility(FINAL)

struct CryptoFooter {

 octet common_mac[16];

 sequence<ReceiverSpecificMAC> receiver_specific_macs;

};

As indicated by the IDL above, the crypto_footer attribute introduced in section 7.3.6.5 consists of the

common_mac and the receiver_specific_macs.

The receiver-specific Message Authentication Codes (MACs) are computed with a secret key that the

sender shares only with one receiver. The receiver-specific MACs provide message-origin

authentication to the receiver even when the sender is communicating with multiple receivers via

multicast and shares the same encryption key will all of them.

The ReceiverSpecificMAC and CryptoFooter structures shall be serialized using Big Endian

serialization (a.k.a. network byte order).

9.5.3 DDS:Crypto:AES-GCM-GMAC plugin behavior

This plugin implements three interfaces: CryptoKeyFactory, CryptoKeyExchange, and

CryptoTransform. Each is described separately.

9.5.3.1 CryptoKeyFactory for DDS:Crypto:AES-GCM-GMAC

The table below describes the actions that the DDS:Crypto:AES-GCM-GMAC when each of the

CryptoKeyFactory plugin operations is invoked.

[DDSSEC11-8 - Crypto factory plugin implementation key generation]

[DDSSEC11-11 - How is single-MAC versus MAC-per-reader configured]

Deleted: SecureDataTag

Deleted: SecureDataTag

Deleted: SecureDataTag

Deleted: @Extensibility(FINAL_EXT
ENSIBILITY)

Deleted: @Extensibility(FINAL_EXT
ENSIBILITY)

Deleted: SecureDataTag

Deleted: plugin_sec_tag

Deleted:

278 DDS Security, v1.1

[DDSSEC11-85 Additional typos/inconsistencies]

Table 70 – Actions undertaken by the operations of the builtin Cryptographic CryptoKeyFactory plugin

register_local_pa

rticipant
This operation shall create a new KeyMaterial_AES_GCM_GMAC

object and return a handle that the plugin can use to access the created

object. We will refer to this object by the name:

ParticipantKeyMaterial.

The transformation_kind for the ParticipantKeyMaterial

object determines whether the transformation performs authentication

only (GMAC) or authenticated encryption (GCM). The selection

between these two options shall be done according to the setting of the

RTPS Protection Kind (see 9.4.1.2.5.6).

The transformation_kind also determines whether the encryption

and/or authentication uses 128-bit or 256-bit keys. This aspect shall be

configurable but the configuration mechanism is not specified.

register_matched_

remote_participan

t

This operation shall associate the SharedSecret received as an
argument with the local and remote
ParticipantCryptoHandle.

This operation shall create a new KeyMaterial_AES_GCM_GMAC

object and associate it with the local and remote

ParticipantCryptoHandle pair. We will refer to this object by

the name: Participant2ParticipantKeyMaterial.

The Participant2ParticipantKeyMaterial

transformation_kind, master_salt, and master_sender_key, and

sender_key_id shall match those of the

ParticipantKeyMaterial.

If the RTPS Protection Kind (see 9.4.1.2.5.6) does not specify the use of

origin authentication, then the receiver_specific_key_id shall be set to

zero and the master_receiver_specific key shall be set to the empty

sequence.

If the RTPS Protection Kind (see 9.4.1.2.5.6) specifies the use of origin

authentication, then a new secret key

(MasterReceiverParticipantSpecificKey) shall be

created, the receiver_specific_key_id shall be set to identify this new

key, and the master_receiver_specific key field shall contain
MasterReceiverParticipantSpecificKey.

The Participant2ParticipantKeyMaterial shall be used to

transform and authenticate the RTPS messages.

The Participant2ParticipantKeyMaterial shall be sent to

the remote DomainParticipant using the operations of the

Formatted: Table caption

Deleted: 7070706958

DDS Security, v1.1 279

CryptoKeyExchange.

This operation also creates a KeyMaterial_AES_GCM_GMAC object

derived from the SharedSecret passed as a parameter. This key

material shall be associated with the local and remote

ParticipantCryptoHandle pair. We will refer to this key

material as the Participant2ParticipantKxKeyMaterial.

It is used to exchange key material between DomainParticipant

entities.

register_local_da

tawriter

This operation shall create a new
KeyMaterial_AES_GCM_GMAC_Seq object and returns a handle

that the plugin can use to access the created object. We will refer to this

object by the name: WriterKeyMaterialSeq. The sequence may

contain one or two elements depending on the settings of the Metadata

Protection Kind (see 9.4.1.2.6.6) and Data Protection Kind (see

9.4.1.2.6.7).

If the Metadata Protection Kind is different from NONE, then the

operation shall create a KeyMaterial_AES_GCM_GMAC to use for

the encode_datawriter_submessage operation. In addition,

this key material shall appear as the first element in the

KeyMaterial_AES_GCM_GMAC_Seq.

If the Data Protection Kind is different from NONE, then the operation

shall create a KeyMaterial_AES_GCM_GMAC to use for the

encode_serialized_payload operation.

In the case where both meta-data protection and data protection are the

same, it is allowed for an implementation to reuse the same key

material for both. In this case the

KeyMaterial_AES_GCM_GMAC_Seq would contain only one

element. This “key reuse” aspect shall be configurable but the

configuration mechanism is not specified.

The transformation_kind for the KeyMaterial_AES_GCM_GMAC

objects determines whether the transformation performs authentication

only (GMAC) or encryption followed by authentication (GCM). The

selection between these two options for each created

KeyMaterial_AES_GCM_GMAC object shall be done according to

the setting of corresponding Protection Kind.

The transformation_kind for the KeyMaterial_AES_GCM_GMAC

objects also determines whether the encryption and/or authentication

uses 128-bit or 256-bit keys. This aspect shall be configurable but the

configuration mechanism is not specified.

register_matched_

remote_datareader

This operation shall create a new
KeyMaterial_AES_GCM_GMAC_Seq object and associate it with

the local DatawriterCryptoHandle and remote

DatareaderCryptoHandle pair. We will refer to this object by the

Deleted: there is

280 DDS Security, v1.1

name: Writer2ReaderKeyMaterialSeq.

The first elements of the Writer2ReaderKeyMaterialSeq shall

contain the elements of the WriterKeyMaterialSeq.

Additional elements depend on whether the Metadata Protection Kind

(see 9.4.1.2.6.6) specified the use of origin authentication.

If the Metadata Protection Kind (see 9.4.1.2.6.6) specified the use of

origin authentication, the first element of the

Writer2ReaderKeyMaterialSeq shall contain a non-zero

receiver_specific_key_id that identifies a new key created by this
operation. The new key

(MasterReceiverREndpointSpecificKey) shall be stored in

the master_receiver_specific_key. This master_receiver_specific_key

shall be shared only with that one specific remote DataReader so
that it can be used to authenticate the DataWriter that originated
the message.

The Writer2ReaderKeyMaterialSeq shall be sent to the remote

DataReader such that it can process the CryptoTransform encoded

from the DataWriter.

register_local_da

tareader

This operation shall create a new KeyMaterial_AES_GCM_GMAC

object and return a handle that the plugin can use to access the created

object. We will refer to this object by the name:

ReaderKeyMaterial.

The transformation_kind for the ReaderKeyMaterial object

determines whether the transformation performs authentication only

(GMAC) or encryption followed by authentication (GCM). The

selection between these two options shall be done according to the

setting of the Data Protection Kind (see 9.4.1.2.6.7).

The transformation_kind also determines whether the encryption

and/or authentication uses 128-bir or 256-bit keys. This aspect shall be

configurable but the configuration mechanism is not specified.

Deleted: transformation_kind, master_salt,
and master_sender_key, and sender_key_id

for the Writer2ReaderKeyMaterial

object shall match those in the DataWriter

Deleted: ., except for the modifications
specified below:.

Deleted:

DDS Security, v1.1 281

register_matched_

remote_datawriter

This operation shall create a new KeyMaterial_AES_GCM_GMAC

object and associate it with the local DatareaderCryptoHandle

and remote DatawriterCryptoHandle pair. We will refer to this

object by the name: Reader2WriterKeyMaterial.

The transformation_kind, master_salt, and master_sender_key, and

sender_key_id for the Reader2WriterKeyMaterial object shall

match those in the DataReader ReaderKeyMaterial.

If the Metadata Protection Kind (see 9.4.1.2.6.6) does not specify the

use of origin authentication, then the receiver_specific_key_id shall be

set to zero and the master_receiver_specific key shall be set to the

empty sequence.

If the Metadata Protection Kind (see 9.4.1.2.6.6) specifies the use of

origin authentication, then a new secret key

(MasterReceiverWEndpointSpecificKey) shall be created,

the receiver_specific_key_id shall be set to identify this new key, and

the master_receiver_specific key field shall contain
MasterReceiverWEndpointSpecificKey.

The Reader2WriterKeyMaterial shall be sent to the remote

DataWriter such that it can process the ciphetext from the

DataReader.

unregister_partic

ipant

Releases any resources allocated on the corresponding call to
register_local_participant, or

register_matched_remote_participant.

unregister_datawr

iter

Releases any resources allocated on the corresponding call to
register_local_datawriter, or

register_matched_remote_datawriter.

unregister_datare

ader

Releases any resources allocated on the corresponding call to
register_local_datareader, or

register_matched_remote_datareader.

9.5.3.2 CryptoKeyExchange for DDS:Crypto:AES-GCM-GMAC

The table below describes the actions that the DDS:Crypto:AES-GCM-GMAC when each of the

CryptoKeyExchange plugin operations is invoked.

[DDSSEC11-27 Inconsistent Behavior for Secure Volatile Endpoints]

Table 71 – Actions undertaken by the operations of the builtin Cryptographic CryptoKeyExchange plugin

create_local_part

icipant_crypto_to

kens

Creates a DDS:Crypto:AES-GCM-GMAC CryptoToken object and
returns it in the output sequence.

The CryptoToken contains the

Participant2ParticipantKeyMaterial created on the call
to register_matched_remote_participant for the

Formatted: Table caption

Deleted: 7171717059

282 DDS Security, v1.1

remote_participant_crypto.

set_remote_partic

ipant_crypto_toke

ns

Shall receive the sequence containing one CryptoToken object
that was created by the corresponding call to
create_local_participant_crypto_tokens on the
remote side.

create_local_data

writer_crypto_tok

ens

Creates a DDS:Crypto:AES-GCM-GMAC CryptoToken object and
returns it in the output sequence.

The CryptoToken contains the Writer2ReaderKeyMaterial
created on the call to
register_matched_remote_datareader for the
remote_datareader_crypto.

set_remote_datawr

iter_crypto_token

s

Shall receive the sequence containing one CryptoToken object
that was created by the corresponding call to
create_local_datawriter_crypto_tokens on the remote
side.

create_local_data

reader_crypto_tok

ens

Creates a DDS:Crypto:AES-GCM-GMAC CryptoToken object and
returns it in the output sequence.

The CryptoToken contains the Reader2WriterKeyMaterial
created on the call to
register_matched_remote_datawriter for the

remote_datawriter_crypto.

set_remote_datare

ader_crypto_token

s

Shall receive the sequence containing one CryptoToken object
that was created by the corresponding call to
create_local_datareader_crypto_tokens on the remote
side.

return_crypto_tok

ens
Releases the resources associated with the CryptoToken objects
in the sequence.

9.5.3.3 CryptoKeyTransform for DDS:Crypto:AES-GCM-GMAC

9.5.3.3.1 Overview

The table below describes the actions that the DDS:Crypto:AES-GCM-GMAC when each of the

CryptoKeyTransform plugin operations is invoked.

[DDSSEC11-27 Inconsistent Behavior for Secure Volatile Endpoints]

[DDSSEC11-58 Clarify the receiver-specific MACs described in the Table 57 …]

[DDSSEC11-7 Inconsistency in SubMessage and SubMessageElement naming ...]

[DDSSEC11-123 Inconsistent IDL encode_serialized_data and decode_serialized_data]

[DDSSEC11-85 Additional typos/inconsistencies]

Deleted: ¶

The CryptoToken object shall be
protected by the
Participant2ParticipantKxKey.

Deleted: ¶

The operation uses the
Participant2ParticipantKxKey

associated with the local and remote
ParticipantCryptoHandle pair to
verify and decode the token and associates
the obtained key material with the
CryptoHandle pair. The decoded key
material shall be referred as
RemoteParticipant2ParticipantKe

yMaterial.

Deleted: ¶

The CryptoToken object shall be
protected by the
Participant2ParticipantKxKey.

Deleted: ¶

The operation uses the
Participant2ParticipantKxKey

associated with the local and remote
ParticipantCryptoHandle pair to
verify and decode the token and associates
the obtained key material with the
CryptoHandle pair. The decoded key
material shall be referred as
RemoteWriter2ReaderKeyMaterial.

Deleted: ¶

The CryptoToken object shall be
protected by the
Participant2ParticipantKxKey.

Deleted: ¶

The operation uses the
Participant2ParticipantKxKey

associated with the local and remote
ParticipantCryptoHandle pair to
verify and decode the token and associates
the obtained keys with the CryptoHandle
pair. The decoded key material shall be
referred as
RemoteReader2WriterKeyMaterial.

DDS Security, v1.1 283

Table 72 – Actions undertaken by the operations of the builtin Cryptographic CryptoKeyTransform plugin

encode_serializ

ed_payload
Uses the WriterKeyMaterial associated with the

sending_datawriter_crypto to encrypt and/or sign the input
SerializedPayload RTPS SubmessageElement (see 7.3.1).

If the transformation_kind indicates that encryption is performed, then
the output shall be the three RTPS Submessage elements:
CryptoHeader, CryptoContent, and CryptoFooter (see 9.4.2.5 and
9.5.3.3.4.4).

If the transformation_kind indicates that only authentication is
performed, then the output shall be the three RTPS Submessage
elements: CryptoHeader, SerializedPayload, and CryptoFooter. Where
SerializedPayload is the serialized payload passed as an input to the
operation.

This operation shall always set the receiver_specific_macs attribute in
the CryptoFooter to the empty sequence.

encode_datawrit

er_submessage
Uses the WriterKeyMaterial associated with the

sending_datawriter_crypto and the
Writer2ReaderKeyMaterial associated with the

sending_datawriter_crypto and each of the
receiving_datareader_crypto handles to encrypt and/or sign
the input RTPS Submessage.

If the transformation_kind indicates that encryption is performed, then
the output shall be the three RTPS Submessages:
SecurePrefixSubMsg, SecureBodySubMsg, and
SecurePostfixSubMsg. See 7.3.7.6, 7.3.7.5, and 7.3.7.7.

If the transformation_kind indicates that only authentication is
performed, then the output shall be the three RTPS Submessages:
SecurePrefixSubMsg, InputSubmessage, and
SecurePostfixSubMsg. Where InputSubmessage indicates the
submessage that was passed as input to the operation.

The transformations shall be computed using the
WriterKeyMaterial associated with the
sending_datawriter_crypto.

Depending on the configuration the operation may compute and set the
common_mac and the receiver_specific_macs attributes within the
SecurePostfixSubMsg.

The common_mac shall be computed using the WriterKeyMaterial
associated with the sending_datawriter_crypto.

If computed, the receiver_specific_macs shall be computed using the
Writer2ReaderKeyMaterial associated with the pair composed

Formatted: Table caption

Deleted: 7272727160

Deleted: SecureDataHeader

Deleted: SecureDataBody

Deleted: SecureDataTag

Deleted: 0

Deleted: SecureDataHeader

Deleted: SecureDataTag

Deleted: SecureDataTag

284 DDS Security, v1.1

of the sending_datawriter_crypto and each of the

corresponding receiving_datareader_crypto.

In the case of BuiltinParticipantVolatileMessageSecureWriter, the
receiving_datareader_crypto_list has ONE element containing KxKey

material derived from the SharedSecret as described in 9.5.2.1.2.

DDS Security, v1.1 285

encode_dataread

er_submessage
Uses the ReaderKeyMaterial associated with the

sending_datareader_crypto and the
Reader2WriterKeyMaterial associated with the

sending_datareader_crypto and each of the

receiving_datareader_crypto handles to encrypt and/or sign
the input RTPS Submessage.

If the transformation_kind indicates that encryption is performed, then
the output shall be the three RTPS Submessages:
SecurePrefixSubMsg, SecureBodySubMsg, and
SecurePostfixSubMsg. See 7.3.7.6, 7.3.7.5, and 7.3.7.7.

If the transformation_kind indicates that only authentication is
performed, then the output shall be the three RTPS Submessages:
SecurePrefixSubMsg, InputSubmessage, and

SecurePostfixSubMsg. Where InputSubmessage indicates the
submessage that was passed as input to the operation.

The transformations shall be computed using the
ReaderKeyMaterial associated with the
sending_datareader_crypto.

Depending on the configuration the operation may compute and set the
common_digest or the additional_digests.

The common_mac shall be computed using the ReaderKeyMaterial

associated with the sending_datareader_crypto.

If computed, the receiver_specific_macs shall be computed using the
Reader2WriterKeyMaterial associated with the pair composed

of the sending_datareader_crypto and each of the
corresponding receiving_datawriter_crypto.

In the case of BuiltinParticipantVolatileMessageSecureReader, the
receiving_datawriter_crypto_list has ONE element containing KxKey

material derived from the SharedSecret as described in 9.5.2.1.2.

286 DDS Security, v1.1

encode_rtps_mes

sage

Transforms the input RTPS Message into an output RTPS Message that
contains the original RTPS Header followed by the
SecureRTPSPrefixSubMsg, one or more RTPS SubMessages, and
the SecureRTPSPostfixSubMsg.

The transformation uses the ParticipantKeyMaterial associated
with the sending_participant_crypto and

Participant2ParticipantKeyMaterial and each of the
receiving_participant_crypto handles.

Let RTPSMessage{RTPSHdr-> InfoSourceSubMsg} represent
the input RTPS Message transformed so that the RTPS Header is
replaced with an RTPS InfoSourceSubMsg containing the same
information as the RTPS Header and the remaining submessages
remain the same.

If the transformation_kind indicates that encryption is performed, then
the output shall be the three RTPS Submessages:
SecureRTPSPrefixSubMsg, SecureBodySubMsg, and
SecureRTPSPostfixSubMsg.

The SecureBodySubMsg shall contain the result of encrypting the
RTPSMessage{RTPSHdr-> InfoSourceSubMsg}.

The SecureRTPSPostfixSubMsg shall contain the authentication
tags computed on the SecureBodySubMsg.

If the transformation_kind indicates that only authentication is
performed then the output shall be the RTPS Submessages:
SecureRTPSPostfixSubMsg, RTPSMessage{RTPSHdr->

InfoSourceSubMsg}, and SecureRTPSPostfixSubMsg.

The SecureRTPSPostfixSubMsg shall contain the authentication

tags computed on the SecurePrefixSubMsg,
RTPSMessage{RTPSHdr-> InfoSourceSubMsg}.

Depending on the configuration the operation may contain only the
common_mac and a non-zero length receiver_specific_macs.

The common_mac shall be computed using the
ParticipantKeyMaterial associated with the
sending_participant_crypto.

If present, the receiver_specific_macs shall be computed using the
Participant2ParticipantKeyMaterial associated with the

pair composed of the sending_participant_crypto and each of
the corresponding receiving_participant_crypto.

DDS Security, v1.1 287

decode_rtps_mes

sage
Examines the SecureRTPSPrefixSubMsg to determine the
transformation_kind is one of the recognized kinds. If the kind is not
recognized, the operation shall fail with an exception.

Uses source and destination DomainParticipant GUIDs in the RTPS

Header to locate the sending_participant_crypto and
receiving_participant_crypto. Then looks whether the
transformation_key_id attribute in the
CryptoTransformIdentifier is associated with those

ParticipantCryptoHandles. If the association is not found the
operation shall fail with an exception.

Uses the RemoteParticipantKeyMaterial and the
RemoteParticipant2ParticipantKeyMaterial associated

with the retrieved ParticipantCryptoHandles to validate the
authentication tags contained in the SecureRTPSPostfixSubMsg. If

the RemoteParticipant2ParticipantKeyMaterial specified a
receiver_specific_key_id different from zero, the operation shall check
that the received SecureRTPSPostfixSubMsg contains a
receiver_specific_macs element containing the receiver_specific_key_id
associated with local and remote CryptoHandles and use it to verify
the submessage. If the receiver_specific_key_id is missing or the
verification fails the operation shall fail with an exception.

Upon success the returned RTPS Message shall match the input to the
encode_rtps_message operation on the DomainParticipant that
sent the message.

preprocess_secu

re_submsg

Examines the RTPS SecureSubmessage to:

1. Determine whether the CryptoTransformIdentifier the
transformation_kind matches one of the recognized kinds.

2. Classify the RTPS Submessage as a Writer or Reader
Submessage.

3. Retrieve the DatawriterCryptoHandle and
DataReaderCryptoHandle handles associated with the
CryptoTransformIdentifier transformation_key_id.

Deleted: o

Deleted: If

288 DDS Security, v1.1

decode_datawrit

er_submessage

Uses the RemoteDatawriterKeyMaterial and the

RemoteDatawriter2DatareaderKeyMaterial associated with
the CryptoHandles returned by the
preprocess_secure_submessage to verify and decrypt the RTPS

SubMessage that follows the SecurePrefixSubMsg, using the
authentication tags in the SecurePostfixSubMsg. If the verification
or decryption fails, the operation shall fail with an exception.

If the RemoteDatawriterKeyMaterial specified a
transformation_kind different from
CRYPTO_TRANSFORMATION_KIND_NONE, then the operation shall
check that the received SecurePostfixSubMsg contains a
common_mac and use it to verify the RTPS SubMessage that follows the
SecurePrefixSubMsg. If the common_mac is missing or the
verification fails the operation shall fail with an exception.

If the RemoteDatawriter2DatareaderKeyMaterial specified a
receiver_specific_key_id different from zero, then the operation shall
check that the received SecurePostfixSubMsg contains a non-zero
length receiver_specific_macs element containing the
receiver_specific_key_id that is associated with local and remote
CryptoHandles and use it to verify the submessage. If the
receiver_mac_key_id is missing or the verification fails, the operation
shall fail with an exception.

If the RemoteDatawriterKeyMaterial specified a
transformation_kind that performs encryption the operation shall use
the RemoteDatawriterKeyMaterial to decode the data in the
SecureBodySubMsg, obtain an RTPS SubMessage and return it.
Otherwise the RTPS Submessage that follows the
SecurePrefixSubMsg is returned.

Upon success the returned RTPS SubMessage shall match the input to
the encode_datawriter_message operation on the
DomainParticipant that sent the message.

In the case of BuiltinParticipantVolatileMessageSecureReader, the
sending_datawriter_crypto contains the KxKey material derived from

the SharedSecret as described in 9.5.2.1.2

decode_dataread

er_submessage

Uses the RemoteDatareaderKeyMaterial and the

RemoteDatareader2DatawriterKeyMaterial associated with
the CryptoHandles returned by the
preprocess_secure_submessage to verify and decrypt the RTPS

SubMessage that follows the SecurePrefixSubMsg, using the
authentication tags in the SecurePostfixSubMsg.If the
verification or decryption fails, the operation shall fail with an
exception.

Deleted: _mac

Deleted: master_

Deleted: _key

Deleted: mac

DDS Security, v1.1 289

If the RemoteDatareaderKeyMaterial specified a
transformation_kind different from
CRYPTO_TRANSFORMATION_KIND_NONE, then the operation shall
check that the received SecurePostfixSubMsg contains a
common_mac and use it to verify the RTPS SubMessage that follows the
SecurePrefixSubMsg. If the common_mac is missing or the
verification fails, the operation shall fail with an exception.

If the RemoteDatareader2DatawriterKeyMaterial specified a
receiver_specific_key_id different from zero, then the operation shall
check that the received SecurePostfixSubMsg contains a non-zero
length receiver_specific_macs element containing the
receiver_specific_key_id that is associated with local and remote
CryptoHandles and use it to verify the submesage. If the
receiver_specific_key_id is missing or the verification fails, the
operation shall fail with an exception.

If the RemoteDatareaderKeyMaterial specified a
transformation_kind that performs encryption the operation shall use
the RemoteDatareaderKeyMaterial to decode the data in the

SecureBodySubMs, obtain an RTPS SubMessage and return it.
Otherwise the RTPS Submessage that follows the
SecurePrefixSubMsg is returned.

Upon success the returned RTPS SubMessage shall match the input to
the encode_datareader_message operation on the
DomainParticipant that sent the message.

In the case of BuiltinParticipantVolatileMessageSecureWriter, the
sending_datareader_crypto contains the KxKey material derived from
the SharedSecret as described in 9.5.2.1.2

decode_serializ

ed_payload

Uses writerGUID and the readerGUID in the RTPS SubMessage to locate
the sending_datawriter_crypto and

receiving_datareader_crypto. Then looks whether the
transformation_key_id attribute in the
CryptoTransformIdentifier in the CryptoHeader
SubmessageElement is associated with those CryptoHandles. If the
association is not found, the operation shall fail with an exception.

Uses the RemoteDatawriterKeyMaterial associated with the
retrieved CryptoHandles to verify the common_mac and decrypt the
RTPS SecureData SubmessageElement. If the verification or decryption
fails, the operation shall fail with an exception.

If the RemoteDatawriterKeyMaterial specified a
receiver_specific_key_id different from zero, then the operation shall
check that the received SecureData SubmessageElement contains a
non-zero length receiver_specific_macs element containing the

Deleted:

Deleted: SecureDataHeader

Deleted:

290 DDS Security, v1.1

receiver_specific_key_id that is associated with the local and remote
CryptoHandles. If the receiver_specific_key_id is missing or the
verification fails, the operation shall fail with an exception.

If the RemoteDatawriterKeyMaterial specified a
transformation_kind that performs encryption, the operation shall use
the RemoteDatawriterKeyMaterial to decode the data in the

CryptoContent, obtain a SerializedPayload and return it.
Otherwise the RTPS Submessage Element that follows the
CryptoHeader is returned as SerializedPayload.

Upon success the returned RTPS SerializedPayload shall match
the input to the encode_serialized_payload operation on the
DomainParticipant that sent the message.

9.5.3.3.2 Encode/decode operation virtual machine

The logical operation of the DDS:Crypto:AES-GCM-GMAC is described in terms of a virtual machine

as it performs the encrypt message digest operations. This is not intended to mandate implementations

should follow this approach literally, simply that the observable results for any plaintext are the same

as the virtual machine described here.

For any given cryptographic session the operation of the DDS:Crypto:AES-GCM-GMAC transforms

plaintext into ciphertext can be described in terms of a virtual machine that maintains the following

state:

[DDSSEC11-60 Wrong description of max_blocks_per_session]

[DDSSEC11-85 Additional typos/inconsistencies]

Table 73 – Terms used in Key Computation and cryptographic transformations formulas for the builtin
cryptographic plugin

State variable Type Meaning

MasterKey 128 bit array for
AES128

256 bit array for
AES256

The master key from which session
salts, session keys and session hash
keys are derived.

MasterSalt 128 bit array for
AES128

256 bit array for
AES256

A random vector used in connection
with the MasterKey to create the
SessionKey.

MasterKeyId octet[4] A NONCE value associated with the
master key when it is first created
used to tag the ciphertext to ensure

Deleted: SecureDataBody

Deleted: SecureDataHeader

Deleted: data

Formatted: Table caption

Deleted: 7373737261

DDS Security, v1.1 291

the correct key is being used during
decryption. It may be used also for
the purposes of re-keying.

MasterReceiverSpecificKey 128 bit array for
AES128

256 bit array for
AES256

The master key from which
SessionReceiverSpecificKey keys are
derived.

InitializationVectorSuffix octet[8] An initially random NONCE used to
create the Initialization Vector
needed by the cryptographic
operations. This value shall be
changed each time an encryption or
MAC operation is performed using
the same key.

SessionId octet[4] An initially random value used to
create the current SessionKey, and
SessionReceiverSpecificKey from the
MasterKey,
MasterReceiverSpecificKey, and
Master salts.

The SessionId is incremented each
time a new SessionKey is needed and
then used to derive the new
SessionKey and
SessionReceiverSpecificKey from the
MasterKey and
MasterReceiverSpecificKey.

Knowledge of the MasterKey,
MasterSalt, and the SessionId is
sufficient to create the SessionKey.

Knowledge of the
MasterReceiverSpecificKey,
MasterSalt, and the SessionId is
sufficient to create the
SessionReceiverSpecificKey.

SessionKey 128 bit array for
AES128

256 bit array for
AES256

The current key used for creating the
ciphertext and/or the common_mac.

It is constructed from the MasterKey,
MasterSalt, and SessionId.

SessionReceiverSpecificKey 128 bit array for
AES128

The current key used for creating the
receiver_specific_mac.

Deleted: Reader

292 DDS Security, v1.1

256 bit array for
AES256

session_block_counter 64 bit integer A counter that counts the number of
blocks that have been ciphered with
the current SessionKey.

max_blocks_per_session 64 bit integer A configurable property that limits
the number of blocks that can be
ciphered with the same SessionKey.
If the session_block_counter exceeds
this value a new SessionKey and
SessionReceiverSpecificKey are
computed and the
session_block_counter is reset to
zero.

All the key material with a name that starts with “Master” corresponds to the

KeyMaterial_AES_GCM_GMAC objects that were created by the CryptoKeyFactory

operations. This key material is not used directly to encrypt or compute MAC of the plaintext. Rather it

is used to create “Session” Key material by means of the algorithms described below. This has the

benefit that the ‘session’ keys used to secure the data stream data can be modified as needed to

maintain the security of the stream without having to perform explicit rekey and key-exchange

operations.

9.5.3.3.3 Computation of SessionKey and SessionReceiverSpecificKey

The SessionKey and SessionReceiverSpecificKey are computed from the MasterKey,

MasterSalt and the SessionId:

[DDSSEC11-85 Additional typos/inconsistencies]

SessionKey := HMAC256(MasterKey,"SessionKey" | MasterSalt | SessionId)

SessionReceiverSpecificKey

 := HMAC256(MasterReceiverSpecificKey,

 "SessionReceiverKey" | MasterSalt | SessionId)

HMAC256 is a HMAC-SHA256. In case a 128 key is desired the 256 bit HMAC is truncated to the

first 128 bits.

In the above expressions the symbol ‘|’ indicates concatenation.

9.5.3.3.4 Computation of ciphertext from plaintext

The ciphertext is computed from the plain text using AES in Galois Counter Mode (AES-GCM).

The encryption transforms the plaintext input into ciphertext by performing an encryption operation

using the AES-GCM algorithm in counter mode using the SessionKeys associated with the specified

KeyHandle. The encryption transformation is described in detail in the sections that follow.

Deleted: ,

Deleted: SessionSalt,

Deleted: SessionHMACKey

Deleted: MasterReaderSpecificKey

DDS Security, v1.1 293

The encryption operation uses a 96-bit initialization vector constructed as:

 InitializationVector = SessionId | InitializationVectorSuffix

In the above expression ‘|’ indicates the concatenation of bit strings.

The same InitializationVector is associated with all the session keys (SessionKey and all

SessionReceiverSpecificKeys) associated with a specific Sender. It shall be incremented each time any

of those keys are used to encrypt and/or create a MAC.

The session_block_counter is an internal counter that keeps track of the number of blocks encrypted

with the same session key. The purpose is to ensure that a single session key is not used to encrypt

more than the configured max_blocks_per_session. The session_block_counter and the size of the

plain text shall be used by implementations of the Crypto encode operations to ensure that

max_blocks_per_session will not be exceeded during the encode operation. If the operation detects

that the counter would exceed the maximum then it should modify the SessionId and derive new

session keys prior to transforming any of the input plain text. The change in the SessionId creates new

session keys and thus resets the session_block_counter. This approach ensures that all ciphertext

returned by the operation is encrypted with the same session keys.

[DDSSEC11-7 Inconsistency in SubMessage and SubMessageElement naming ...]

The resulting ciphertext will be preceded by a CryptoHeader that indicates the SessionId and

InitializationVectorSuffix.

The resulting block of bytes from the “encode” operations (encode_serialized_payload,

encode_datawriter_submessage, encode_datareader_submessage, and

encode_rtps_message) is illustrated in the sections that follow:

9.5.3.3.4.1 Format of the CryptoHeader Submessage Element

The CryptoHeader submessage element generated by the DDS:Crypto:AES-GCM-GMAC shall

take the form:

0...2...........8...............16.............24...............32

+---------------+---------------+---------------+---------------+

+ CryptoHeader: +

+ CryptoTransformIdentifier transformation_id +

| octet[4] transformation_id.transformation_kind |

| octet[4] transformation_id.transformation_key_id |

+ - +

+ plugin_sec_prefix: +

| octet[4] plugin_sec_prefix.session_id |

~ octet[8] plugin_sec_prefix.init_vector_suffix ~

+---------------+---------------+---------------+---------------+

[DDSSEC11-54 Specify Endianness to be Used in Ciphertext]

[DDSSEC11-7 Inconsistency in SubMessage and SubMessageElement naming ...]

Note that as specified in subclause 0 the CryptoHeader shall be serialized using Big Endian

representation.

9.5.3.3.4.2 Format of the CryptoContent Submessage Element

[DDSSEC11-7 Inconsistency in SubMessage and SubMessageElement naming ...]

Deleted: SecureDataHeader

Deleted: SecureDataHeader

Deleted: SecureDataHeader

Deleted: SecureDataHeader

Deleted: SecureDataBody

294 DDS Security, v1.1

The CryptoContent submessage element generated by the DDS:Crypto:AES-GCM-GMAC shall

take the form:

0...2...........8...............16.............24...............32

+---------------+---------------+---------------+---------------+

+ CryptoContent: +

| long crypto_content.length = N |

+ - +

|crypto_ct[0] |crypto_ct[1] |crypto_ct[2] |crypto_ct[3] |

~ . . . ~

|crypto_ct[N-4] |crypto_ct[N-3] |crypto_ct[N-2] |crypto_ct[N-1] |

+---------------+---------------+---------------+---------------+

[DDSSEC11-85 Additional typos/inconsistencies]

Note that the cipher operations have 16-byte block-size and add padding when needed. Therefore the

secure data.length (“N”) will always be a multiple of 16.

Note that as specified in subclause 9.5.2.4 the secure data.length shall be serialized using Big Endian

representation.

[DDSSEC11-7 Inconsistency in SubMessage and SubMessageElement naming ...]

9.5.3.3.4.3 Format of the CryptoFooter Submessage Element

The CryptoFooter submessage element generated by the DDS:Crypto:AES-GCM-GMAC shall

take the form:

[DDSSEC11-7 Inconsistency in SubMessage and SubMessageElement naming ...]

0...2...........8...............16.............24...............32

+---------------+---------------+---------------+---------------+

+ CryptoFooter (= plugin_sec_tag): +

~ octet[16] plugin_sec_tag.common_mac ~

+ - +

+ plugin_sec_tag.receiver_specific_macs: +

| long plugin_sec_tag.receiver_specific_macs.length = N |

| - |

| octet[4] receiver_specific_macs[0].receiver_mac_key_id |

| octet[16] receiver_specific_macs[0].receiver_mac ~

+ - +

+ . . . +

+ - +

| octet[4] receiver_specific_macs[N-1].receiver_mac_key_id|

~ octet[16] receiver_specific_macs[N-1].receiver_mac ~

+---------------+---------------+---------------+---------------+

[DDSSEC11-54 Specify Endianness to be Used in Ciphertext]

[DDSSEC11-7 Inconsistency in SubMessage and SubMessageElement naming ...]

Note that as specified in subclause 9.5.2.5 the CryptoHeader shall be serialized using Big Endian

representation.

Deleted: SecureDataBody

Deleted: SecureDataBody

Deleted: secure_data

Deleted:

Deleted: sec

Deleted: data

Deleted: sec_data

Deleted: sec_data

Deleted:

Deleted: sec_data

Deleted: sec

Deleted: data

Deleted:

Deleted: sec_data

Deleted: sec_data

Deleted: sec_data

Deleted: built

Deleted: SecureDataTag

Deleted: SecureDataTag

Deleted: SecureDataTag

DDS Security, v1.1 295

9.5.3.3.4.4 Result from encode_serialized_payload

The input to this operation is a SerializedPayload submessage element:

0...2...........8...............16.............24...............32

+---------------+---------------+---------------+---------------+

~ SerializedPayload ~

+---------------+---------------+---------------+---------------+

The output in case the transformation performs authentication only shall be:

0...2...........8...............16.............24...............32

+---------------+---------------+---------------+---------------+

~ CryptoHeader ~

+---------------+---------------+---------------+---------------+

~ SerializedPayload (unchanged from input) ~

+---------------+---------------+---------------+---------------+

~ CryptoFooter ~

+---------------+---------------+---------------+---------------+

[DDSSEC11-7 Inconsistency in SubMessage and SubMessageElement naming ...]

[DDSSEC11-85 Additional typos/inconsistencies]

The common_mac in the CryptoFooter is the authentication tag generated by the AES-GMAC

transformation using the SessionKey and the InitializationVector operating on the

SerializedPayload.

The receiver_specific_macs in the CryptoFooter are the AES-GMAC tags computed on the

common_mac using each of the SessionReceiverSpecificKey and the same InitializationVector.

The output in case the transformation performs encryption and authentication shall be:

0...2...........8...............16.............24...............32

+---------------+---------------+---------------+---------------+

~ CryptoHeader ~

+---------------+---------------+---------------+---------------+

~ CryptoContent ~

| crypto_content = Encrypt(SerializedPayload) |

+---------------+---------------+---------------+---------------+

~ CryptoFooter ~

+---------------+---------------+---------------+---------------+

[DDSSEC11-85 Additional typos/inconsistencies]

In the above Encrypt indicates the cryptographic transformation performed with AES-GCM using the

SessionKey and the InitializationVector operating on the SerializedPayload.

The common_mac in the CryptoFooter is the authentication tag generated by the same AES-

GCM where the Additional Authenticated Data is empty.

The receiver_specific_macs in the CryptoFooter are the AES-GMAC tags computed on the

common_mac using each of the SessionReceiverSpecificKey and the same InitializationVector.

Deleted: SecureDataHeader

Deleted: SecureDataTag

Deleted: SecureDataTag

Deleted: AES-GMAC operation

Deleted: operationg

Deleted: SecureDataTag

Deleted: SecureDataHeader

Deleted: SecureDataBody

Deleted: secure_data

Deleted:

Deleted: SecureDataTag

Deleted: operationg

Deleted: SecureDataTag

Deleted: AES-GCM operation

Deleted: SecureDataTag

296 DDS Security, v1.1

9.5.3.3.4.5 Result from encode_datawriter_submessage and encode_datareader_submessage

The input to this operation is an RTPS submessage:

0...2...........8...............16.............24...............32

+---------------+---------------+---------------+---------------+

| |

~ RTPS SubMessage ~

| |

+---------------+---------------+---------------+---------------+

The output in case the transformation performs authentication only shall be:

[DDSSEC11-7 Inconsistency in SubMessage and SubMessageElement naming ...]

0...2...........8...............16.............24...............32

+---------------+---------------+---------------+---------------+

| SEC_PREFIX | (flags) E| short octetsToNextSubMsg |

+---------------+---------------+---------------+---------------+

~ CryptoHeader ~

+---------------+---------------+---------------+---------------+

+---------------+---------------+---------------+---------------+

| |

~ RTPS SubMessage (unchanged from input) ~

| |

+---------------+---------------+---------------+---------------+

+---------------+---------------+---------------+---------------+

| SEC_POSTFIX | (flags) E| short octetsToNextSubMsg |

+---------------+---------------+---------------+---------------+

~ CryptoFooter ~

+---------------+---------------+---------------+---------------+

[DDSSEC11-85 Additional typos/inconsistencies]

The common_mac in the CryptoFooter is the authentication tag generated by the AES-GMAC

transformation using the SessionKey and the InitializationVector operating on the RTPS

Submessage.

The receiver_specific_macs in the CryptoFooter are the AES-GMAC tags computed on the

common_mac using each of the SessionReceiverSpecificKey and the same InitializationVector.

The output in case the transformation performs encryption and authentication shall be:

[DDSSEC11-39 Use of Non-Existing Submessage SecureSubMsg and Flag ...]

[DDSSEC11-7 Inconsistency in SubMessage and SubMessageElement naming ...]

Deleted: SecureDataHeader

Deleted: SecureDataTag

Deleted: SecureDataTag

Deleted: AES-GMAC operation

Deleted: operationg

Deleted: SecureDataTag

DDS Security, v1.1 297

0...2...........8...............16.............24...............32

+---------------+---------------+---------------+---------------+

| SEC_PREFIX | (flags) E| short octetsToNextSubMsg |

+---------------+---------------+---------------+---------------+

~ CryptoHeader ~

+---------------+---------------+---------------+---------------+

+---------------+---------------+---------------+---------------+

| SEC_BODY | (flags) E| short octetsToNextSubMsg |

+---------------+---------------+---------------+---------------+

~ CryptoContent ~

| crypto_content = Encrypt(RTPS SubMsg) |

+---------------+---------------+---------------+---------------+

+---------------+---------------+---------------+---------------+

| SEC_POSTFIX | (flags) E| short octetsToNextSubMsg |

+---------------+---------------+---------------+---------------+

~ CryptoFooter ~

+---------------+---------------+---------------+---------------+

In the above Encrypt indicates the cryptographic transformation performed with AES-GCM using the

SessionKey and the InitializationVector operating on the input RTPS Submessage.

[DDSSEC11-39 Use of Non-Existing Submessage SecureSubMsg and Flag ...]

[DDSSEC11-60 Wrong description of max_blocks_per_session]

[DDSSEC11-7 Inconsistency in SubMessage and SubMessageElement naming ...]

[DDSSEC11-85 Additional typos/inconsistencies]

The common_mac in the CryptoFooter is the authentication tag generated by the same AES-GCM

transformation where the Additional Authenticated Data is empty.

The receiver_specific_macs in the CryptoFooter are the AES-GMAC tags computed on the

common_mac using each of the SessionReceiverSpecificKey and the same InitializationVector.

Deleted: SecureDataHeader

Deleted: SUB_MSG

Deleted: SecureDataBody

Deleted: secure_data

Deleted:

Deleted: SecureDataTag

Deleted: SecureDataTag

Deleted: AES-GCM operation

Deleted: the 4-byte (SEC_SUB_MSG)

SubmessageHeader that preceeds the
SecureDataBody

Deleted: SecureDataTag

298 DDS Security, v1.1

9.5.3.3.4.6 Result from encode_rtps_message

The input to this operation is an RTPS message:

+---------------+---------------+---------------+---------------+

~ RTPSHdr ~

+---------------+---------------+---------------+---------------+

~ SubMsg1 submessage ~

+---------------+---------------+---------------+---------------+

~ SubMsg2 submessage ~

+---------------+---------------+---------------+---------------+

| . . . |

+---------------+---------------+---------------+---------------+

~ SubMsgN submessage ~

+---------------+---------------+---------------+---------------+

The output in case the transformation performs authentication only shall be:

0...2...........8...............16.............24...............32

+---------------+---------------+---------------+---------------+

~ RTPSHdr (unchanged from input) ~

+---------------+---------------+---------------+---------------+

+---------------+---------------+---------------+---------------+

| SRTPS_PREFIX | (flags) E| short octetsToNextSubMsg |

+---------------+---------------+---------------+---------------+

~ CryptoHeader ~

+---------------+---------------+---------------+---------------+

+---------------+---------------+---------------+---------------+

~ RTPSMessage{ RTPSHdr -> InfoSourceSubMsg } ~

+---------------+---------------+---------------+---------------+

+---------------+---------------+---------------+---------------+

| SRTPS_POSTFIX | flags E| short octetsToNextSubMsg |

+---------------+---------------+---------------+---------------+

~ CryptoFooter ~

+---------------+---------------+---------------+---------------+

[DDSSEC11-85 Additional typos/inconsistencies]

The common_mac in the CryptoFooter is the authentication tag generated by the AES-GMAC

transformation using the SessionKey and the InitializationVector operating on the RTPSMessage{

RTPSHdr -> InfoSourceSubMsg}.

RTPSMessage{ RTPSHdr -> InfoSourceSubMsg}. Represents the original RTPS Message

where the RTPS Header is repaced with an InfoSourceSubMsg with equivalent content.

The receiver_specific_macs in the CryptoFooter are the AES-GMAC tags computed on the

common_mac using each of the SessionReceiverSpecificKey and the same InitializationVector.

Deleted: SecureDataHeader

Deleted: SecureDataTag

Deleted: SecureDataTag

Deleted: AES-GMAC operation

Deleted: operationg

Deleted: SecureDataTag

DDS Security, v1.1 299

The output in case the transformation performs encryption and authentication shall be:

[DDSSEC11-39 Use of Non-Existing Submessage SecureSubMsg and Flag ...]

[DDSSEC11-7 Inconsistency in SubMessage and SubMessageElement naming ...]

+---------------+---------------+---------------+---------------+

~ RTPSHdr (unchanged from input) ~

+---------------+---------------+---------------+---------------+

+---------------+---------------+---------------+---------------+

| SRTPS_PREFIX | (flags) E| short octetsToNextSubMsg |

+---------------+---------------+---------------+---------------+

~ CryptoHeader ~

+---------------+---------------+---------------+---------------+

+---------------+---------------+---------------+---------------+

| SEC_BODY | (flags) E| short octetsToNextSubMsg |

+---------------+---------------+---------------+---------------+

~ CryptoContent ~

| crypto_content = |

| Encrypt(RTPSMessage{RTPSHdr -> InfoSourceSubMsg}) |

+---------------+---------------+---------------+---------------+

+---------------+---------------+---------------+---------------+

| SRTPS_POSTFIX | flags E| short octetsToNextSubMsg |

+---------------+---------------+---------------+---------------+

~ CryptoFooter ~

+---------------+---------------+---------------+---------------+

[DDSSEC11-85 Additional typos/inconsistencies]

In the above Encrypt indicates the cryptographic transformation performed with AES-GCM using the

SessionKey and the InitializationVector operating on the RTPSMessage{ RTPSHdr ->

InfoSourceSubMsg}.

[DDSSEC11-60 Wrong description of max_blocks_per_session]

[DDSSEC11-7 Inconsistency in SubMessage and SubMessageElement naming ...]

The common_mac in the CryptoFooter is the authentication tag generated by the same CM where the

Additional Authenticated Data is empty.

The receiver_specific_macs in the CryptoFooter are the AES-GMAC tags computed on the

common_mac using each of the SessionReceiverSpecificKey and the same InitializationVector.

9.5.3.3.5 Computation of plaintext from ciphertext

[DDSSEC11-85 Additional typos/inconsistencies]

The decrypt operation first checks that the CryptoTransformIdentifier attribute in the

CryptoHeader has the proper transformation_kind and also uses the

CryptoTransformIdentifier transformation_key_id to locate the MasterKey, and

MasterSalt. In case of a re-key the crypto handle (ParticipantCryptoHandle,

DatawriterCryptoHandle, or DatareaderCryptoHandle) may be associated with

multiple MasterKeyId and this parameter allows selection of the correct one. If the MasterKeyId

is not found associated with the crypto handle the operation shall fail.

Deleted: SecureDataHeader

Deleted: SUB_MSG

Deleted: SecureDataBody

Deleted: secure_data

Deleted:

Deleted: SecureDataTag

Deleted: operationg

Deleted: SecureDataTag

Deleted: AES-GCM operation

Deleted: the 4-byte (SEC_SUB_MSG)

SubmessageHeader that preceeds the
SecureDataBody

Deleted: SecureDataTag

Deleted: SecureDataHeader

Deleted: CryptographicSessionHand
le

Deleted: CryptographicSessionHand
le

300 DDS Security, v1.1

The session_id attribute within the CryptoHeader is used to obtain the proper

SessionReceiverSpecificKeys and SessionKey. Note that this only requires a re-

computation if it has changed from the previously received SessionId for that crypto handle.

Given the InitializationVector from the CryptoHeader and the SessionKey the

transformation performed to recover the plaintext from the ciphertext is identical to the one performed

to go plaintext to ciphertext.

9.5.3.3.6 Computation of the message authentication codes

[DDSSEC11-7 Inconsistency in SubMessage and SubMessageElement naming ...]

The message digest is computed on the crypto_header and the ciphertext.

There are two types of message authentication codes (MACs) that may appear.

 The first stored in the common_mac uses the SessionKey. This MAC may be verified by all the

receivers of the message.

 The second type, stored in the receiver_specific_macs contains MACs that use different

SessionReceiverSpecificKey whose CryptoTransformIdentifier appears explicitly in the

receiver_specific_macs. These MACs use receiver-specific keys that are shared with only one

receiver. The key material for these MACs is derived from the

RemoteParticipant2ParticipantKeyMaterial, the

RemoteWriter2ReaderKeyMaterial, or the RemoteReader2WriterKeyMaterial.

9.6 Builtin Logging Plugin

The builtin Logging Plugin is known as the DDS:Logging:DDS_LogTopic.

The DDS:Logging:DDS_LogTopic implements logging by publishing information to a DDS Topic

BuiltinLoggingTopic defined below.

The BuiltinLoggingTopic shall have the Topic name “DDS:Security:LogTopic”.

The BuiltinLoggingTopic shall have the Type BuiltinLoggingType defined in the IDL

below:

[DDSSEC11-85 Additional typos/inconsistencies]

enum LoggingLevel {

 EMERGENCY_LEVEL, // System is unusable. Should not continue use.

 ALERT_LEVEL, // Should be corrected immediately

 CRITICAL_LEVEL, // A failure in primary application.

 ERROR_LEVEL, // General error conditions

 WARNING_LEVEL, // May indicate future error if action not taken.

 NOTICE_LEVEL, // Unusual, but nor erroneous event or condition.

 INFORMATIONAL_LEVEL, // Normal operational. Requires no action.

 DEBUG_LEVEL

};

@extensibility(FINAL)

struct NameValuePair {

 string name;

Deleted: SecureDataHeader

Deleted: CryptographicSessionHand
le

Deleted: SecureDataHeader

Deleted: secure_data

DDS Security, v1.1 301

 string value;

};

[DDSSEC11-5 - Miscellaneous typos/inconsistencies]

[DDSSEC11-48 Wrong Facility Value for Logging Plugin]

[DDSSEC11-85 Additional typos/inconsistencies]

typedef sequence<NameValuePair> NameValuePairSeq;

@extensibility(FINAL)

struct BuiltinLoggingType {

 octet facility; // Set to 0x0A (10). Indicates sec/auth msgs

 LoggingLevel severity;

 Time_t timestamp; // Since epoch 1970-01-01 00:00:00 +0000 (UTC)

 string hostname; // IP host name of originator

 string hostip; // IP address of originator

 string appname; // Identify the device or application

 string procid; // Process name/ID for syslog system

 string msgid; // Identify the type of message

 string message; // Free-form message

 // Note that certain string keys (SD-IDs) are reserved by IANA

 map<string, NameValuePairSeq> structured_data;

};

Knowledge of the BuiltinLoggingTopic shall be builtin into the DDS:Auth:PKI-DH

AccessControl plugin and it shall be treated according to the following topic rule:
<topic_rule>

 <topic_expression> DDS:Security:LogTopic</topic_expression>
 <enable_discovery_protection>FALSE</enable_discovery_protection>

 <enable_read_access_control>TRUE</enable_read_access_control>

 <enable_write_access_control>FALSE</enable_write_access_control>

 <metadata_protection_kind>SIGN</metadata_protection_kind>

 <data_protection_kind>ENCRYPT</data_protection_kind>

 </topic_rule>

The above rule states that any DomainParticipant with permission necessary to join the DDS

Domain shall be allowed to write the BuiltinLoggingTopic but in order to read the

BuiltinLoggingTopic the DomainParticipant needs to have a grant for the

BuiltinLoggingTopic in its permissions document.

9.6.1 DDS:Logging:DDS_LogTopic plugin behavior

The table below describes the actions that the DDS:Logging:DDS_LogTopic plugin performs when

each of the plugin operations is invoked.

Deleted:
//@extensibility(FINAL_EXTENSIB

ILITY)

Deleted: r

Deleted: //@extensibility(FINAL_E
XTENSIBILITY)

302 DDS Security, v1.1

 Table 74 – Actions undertaken by the operations of the builtin Logging plugin

set_log_options Controls the configuration of the plugin. The LogOptions

parameter shall be used to take the actions described below:

If the distribute parameter is set to TRUE, the

DDS:Logging:DDS_LogTopic shall create a DataWriter

to send the BuiltinLoggingTopic if it is FALSE, it

shall not.

The plugin shall open a file with the name indicated in the

log_file parameter.

The plugin shall remember the value of the log_level so that

it can be used during the log operation.

log This operation shall check if logging was enabled by a prior

call to enable_logging and if not it shall return without

performing any action.

If logging was enabled, it shall behave as described below:

The operation shall compare the value of the the log_level

parameter with the value saved during the

set_log_options operation.

If the log_level parameter value is greater than the one saved

by the set_log_options operation, the operation shall

return without performing any action.

If the log_level parameter value is less than or equal to the

one saved, the log operation shall perform two actions:

 It shall append a string representation of the parameters

passed to the log operation to the end of the file opened

by the set_log_options operation.

 If the value of the distribute option was set on the call to

set_log_options, the plugin shall fill an object of

type BuiltinLoggingType with the values passed

as arguments to the log operation and publish it using

the DataWriter associated with the

BuiltinLoggingTopic created by the

set_log_options operation.

enable_logging This operation shall save the fact that logging was enabled

such that the information can be used by the log operation.

set_listener This operation shall save a reference to the LoggerListener

such that the listener is be notified each time a log message

is produced.

Formatted: Table caption

Deleted: 7474747362

DDS Security, v1.1 303

304 DDS Security, v1.1

10 Plugin Language Bindings

10.1 Introduction

Clause 8 defines the plugin interfaces in a programming-language independent manner using UML.

Using the terminology of the DDS specification this UML definition could be considered a Platform

Independent Model (PIM) for the plugin interfaces. The mapping to each specific programming

languages platform could therefore be considered a Platform Specific Model (PSM) for that

programming language.

The mapping of the plugin interfaces to specific programming languages is defined by first defining

the interfaces using OMG-IDL version 3.5 with the additional syntax defined in the DDS-XTYPES

specification and subsequently applying the IDL to language mapping to the target language.

[DDSSEC11-85 Additional typos/inconsistencies]

IDL Types lacking the DDS-XTYPES @extensibility annotation shall be interpreted as having

the extensibility kind APPENDABLE. This matches the DDS-XTYPES specification implied

extensibility of un-annotated types.

For consistency with the DDS specification, the DDS security specification defines language bindings

to each of the language PSMs specified for DDS, namely:

 C as derived from the IDL to C mapping

 C++ classic, as derived from the IDL to C++ mapping

 Java classic, as derived from the IDL to Java mapping

 C++ modern, aligned with the DDS-STDC++ specification, this is derived from the IDL to C++11

mapping

 Java modern with the DDS-JAVA5+ specification

10.2 IDL representation of the plugin interfaces

For consistency in the resulting APIs, the mapping from the plugin interfaces defined in clause 8 and

the OMG IDL follows the same PIM to PSM mapping rules as the OMG DDS specification (see sub

clause 7.2.2 of the DDS specification version 1.2 [1]). A relevant subset of these rules is repeated here.

In these rules “PIM” refers to the UML description of the interfaces in clause 8 and PSM refers to the

OMG-IDL description of the interfaces that appears in the associated dds_security.idl file.

 The PIM to PSM mapping maps the UML interfaces and classes into IDL interfaces. Plain data

types are mapped into structures.

 ‘Out’ parameters in the PIM are conventionally mapped to ‘inout’ parameters in the PSM in order

to minimize the memory allocation performed by the Service and allow for more efficient

implementations. The intended meaning is that the caller of such an operation should provide an

object to serve as a “container” and that the operation will then “fill in” the state of that objects

appropriately.

The resulting IDL representation of the plugin interfaces appears in the file dds_security.idl which

shall be considered part of the DDS Security specification.

Deleted: E

Deleted: EXTENSIBLE_EXTENSIBILITY

DDS Security, v1.1 305

10.3 C language representation of the plugin interfaces

The C language representation of the plugin interfaces shall be obtained applying the IDL to C

mapping [5] to the dds_security.idl file.

10.4 C++ classic representation of the plugin interfaces

The C++ classic (without the use of the C++ standard library) language representation of the plugin

interfaces shall be obtained using the IDL2C++ mapping [7] to the dds_security.idl file.

10.5 Java classic

The Java classic language representation of the plugin interfaces shall be obtained using the IDL2Java

mapping [6] to the dds_security.idl file.

10.6 C++11 representation of the plugin interfaces

This representation is aligned with the DDS-STDC++ PSM.

The C++ classic language representation of the plugin interfaces shall be obtained using the

IDL2C++11 mapping [8] to the dds_security.idl file with the following exceptions:

1. The IDL module DDS shall be mapped to the C++ namespace dds so it matches the namespace

used by the DDS-STD-C++ PSM.

2. The mapping shall not use any C++11-only feature of the language or the library (e.g., move

constructors, noexcept, override, std::array).

3. Arrays shall map to the dds::core::array template defined in the DDS-STD-C++ PSM.

4. The enumerations shall map to the dds::core::safe_enum template defined in the DDS-STD-

C++ PSM.

5. The IDL DynamicData native type shall be mapped to the C++ type

dds::code::xtypes::DynamicData defined in the DDS-STDC++ PSM.

10.7 Java modern aligned with the DDS-JAVA5+ PSM

The Java classic language representation of the plugin interfaces shall be obtained using the IDL2Java

mapping [6] to the dds_security.idl file with the following exceptions:

1. The IDL module DDS shall be mapped to the Java namespace org.omg.dds so it matches the

namespace used by the DDS-JAVA5+ PSM.

2. The IDL DynamicData native type shall be mapped to the type

org.omg.dds.type.dynamic.DynamicData defined in the DDS-JAVA5+ PSM.

306 DDS Security, v1.1

Annex A - References

[1] DDS: Data-Distribution Service for Real-Time Systems version 1,2.

http://www.omg.org/spec/DDS/1.2/

[2] DDS-RTPS: Data-Distribution Service Interoperability Wire Protocol version 2.1,

http://www.omg.org/spec/DDS-RTPS/2.1/

[3] DDS-XTYPES: Extensible and Dynamic Topic-Types for DDS version 1.0

http://www.omg.org/spec/DDS-XTypes/

[4] OMG-IDL: Interface Definition Language (IDL) version 3.5 http://www.omg.org/spec/IDL35/

[5] IDL2C: IDL to C Language Mapping, Version 1.0. http://www.omg.org/spec/C/1.0/

[6] IDL2Java: IDL To Java Language Mapping, Version 1.3 http://www.omg.org/spec/I2JAV/1.3/

[7] IDL2C++: IDL to C++ Language Mapping (CPP), Version 1.3

http://www.omg.org/spec/CPP/1.3/PDF

[8] IDL2C++11: IDL To C++11 Language Mapping http://www.omg.org/spec/CPP11/

[9] Transport Layer Security, http://en.wikipedia.org/wiki/Transport_Layer_Security

[10] IPSec, http://en.wikipedia.org/wiki/IPsec

[11] DSA, FIPS PUB 186-4 Digital Signature Standard (DSS).

http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf

[12] Diffie-Hellman (D-H) Key Agreement Method. IETF RFC 2631.

http://tools.ietf.org/html/rfc2631

[13] J. H. Catch et. al., “A Security Analysis of the CLIQUES Protocol Suite”,

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.2.8964

[14] Erramilli, S.; Gadgil, S.; Natarajan, N., “Efficient assignment of multicast groups to publish-

subscribe information topics in tactical networks”, MILCOM 2008

[15] “RFC 2094 - Group Key Management Protocol (GKMP) Architecture”,

http://www.faqs.org/rfcs/rfc2094.html

[16] Raghav Bhaskar, Daniel Augot, Cedric Adjih, Paul Muhlethaler and Saadi Boudjit, “AGDH

(Asymmetric Group Diffie Hellman): An Efficient and Dynamic Group Key Agreement

Protocol for Ad hoc Networks”, Proceedings of New Technologies, Mobility and Security

(NTMS) conference, Paris, France, May 2007

[17] Qianhong Wu, Yi Mu, Willy Susilo, Bo Qin and Josep Domingo-Ferrer “Asymmetric Group

Key Agreement”, EUROCRYPT 2009

[18] “Secure IP Multicast”,

http://www.cisco.com/en/US/prod/collateral/iosswrel/ps6537/ps6552/prod_presentation0900ae

cd80473105.pdf

[19] Gerardo Pardo-Castellote. “Secure DDS: A Security Model suitable for NetCentric, Publish-

Subscribe, and Data Distribution Systems”, RTESS, Washington DC, July 2007.

http://www.omg.org/news/meetings/workshops/RT-2007/05-2_Pardo-Castellote-revised.pdf

[20] M. Baugher, D. McGrew, M. Naslund, E. Carrara, K. Norrman, “The Secure Real-time

Transport Protocol (SRTP)” IETF RFC 3711, http://tools.ietf.org/html/rfc3711

[21] Baugher, M., Weis, B., Hardjono, T. and H. Harney, "The Group Domain of Interpretation,”

IETF RFC 3547, http://tools.ietf.org/html/rfc3547, July 2003.

[22] P. Zimmerman, A. Johnston, and J. Callas, “ZRTP: Media Path Key Agreement for Secure

RTP”, Internet-Draft, March 2009

[23] F. Andreason, M. Baugher, and D. Wing, “Session description protocol (SDP) security

description for media streams,” IETF RFC 4568, July 2006

[24] D. Ignjatic, L. Dondeti, F. Audet, P. Lin, “MIKEY-RSA-R: An Additional Mode of Key

Distribution in Multimedia Internet KEYing (MIKEY)”, RFC 4738, November 2006.

http://www.omg.org/spec/DDS/1.2/
http://www.omg.org/spec/DDS-RTPS/2.1/
http://www.omg.org/spec/DDS-XTypes/
http://www.omg.org/spec/IDL35/
http://www.omg.org/spec/C/1.0/
http://www.omg.org/spec/I2JAV/1.3/
http://www.omg.org/spec/CPP/1.3/PDF
http://en.wikipedia.org/wiki/Transport_Layer_Security
http://en.wikipedia.org/wiki/IPsec
http://tools.ietf.org/html/rfc2631
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.2.8964
http://www.faqs.org/rfcs/rfc2094.html
http://www.cisco.com/en/US/prod/collateral/iosswrel/ps6537/ps6552/prod_presentation0900aecd80473105.pdf
http://www.cisco.com/en/US/prod/collateral/iosswrel/ps6537/ps6552/prod_presentation0900aecd80473105.pdf
http://www.omg.org/news/meetings/workshops/RT-2007/05-2_Pardo-Castellote-revised.pdf
http://tools.ietf.org/html/rfc3711
http://tools.ietf.org/html/rfc3547

DDS Security, v1.1 307

[25] M. Baugher, A. Rueegsegger, and S. Rowles, “GDOI Key Establishment for the STRP Data

Security Protocol”, http://tools.ietf.org/id/draft-ietf-msec-gdoi-srtp-01.txt, June 2008.

[26] Bruce Schneier (August 2005). "SHA-1 Broken". Retrieved 2009-01-09. "

[27] H. Krawczyk, M. Bellare, and R.Canetti, “HMAC: Keyed-Hashing for Message

Authentication” IETF RFC 2104, http://tools.ietf.org/html/rfc2104

[28] Bellare, Mihir (June 2006). "New Proofs for NMAC and HMAC: Security without Collision-

Resistance". In Dwork, Cynthia. Advances in Cryptology – Crypto 2006 Proceedings. Lecture

Notes in Computer Science 4117. Springer-Verlag.

[29] S. Turner and L. Chen, “Updated Security Considerations for the MD5 Message-Digest and the

HMAC-MD5 Algorithms” IETF RFC 6151, http://tools.ietf.org/html/rfc6151

[30] Cisco, “Implementing Group Domain of Interpretation in a Dynamic Multipoint VPN”,

http://www.cisco.com/en/US/prod/collateral/iosswrel/ps6537/ps6586/ps6660/ps6811/prod_whit

e_paper0900aecd804c363f.html

[31] CiscoIOS Secure Multicast,

http://www.cisco.com/en/US/prod/collateral/iosswrel/ps6537/ps6552/prod_white_paper0900ae

cd8047191e.html

[32] A. Mason. IPSec Overview Part Two: Modes and Transforms.

http://www.ciscopress.com/articles/article.asp?p=25477

[33] R. Canetti, P. Cheng, F. Giraud, D. Pendararkis, J. Rao, P. Rohatgi, and D. Saha, “An IPSec-

based Host Architecture for Secure Internet Multicast”, Proceedings of the 7
th

 Annual Network

and Distributed Systems Security Symposium, San Diego, CA, 2000

[34] T. Aurisch, and C. Karg, “Using the IPSec architecture for secure multicast communications,”

8
th
 International Command and Control Research and Technology Symposium (ICCRTS),

Washington D.C., 2003

[35] J. Zhang and C. Gunter. Application-aware secure multicast for power grid communications,

International Journal of Security and Networks, Vol 6, No 1, 2011

[36] List of reserved RTPS Vendor Ids. http://portals.omg.org/dds/content/page/dds-rtps-vendor-

and-product-ids

[37] PKCS #7: Cryptographic Message Syntax Version 1.5. IETF RFC 2315.

http://tools.ietf.org/html/rfc2315

[38] File expression matching syntax for fnmatch() ; POSIX fnmatch API (IEEE 1003.2-1992

Section B.6)

[39] X.509 v3. ITU-T Recommendation X.509 (2005) | ISO/IEC 9594-8:2005, Information

technology - Open Systems Interconnection - The Directory: Public-key and attribute

certificate frameworks. http://www.itu.int/itu-t/recommendations/rec.aspx?rec=X.509

[40] IETF RFC 5280: Internet X.509 Public Key Infrastructure Certificate and Certificate

Revocation List (CRL) Profile, https://tools.ietf.org/html/rfc5280

[41] ANSI X9.62. ANSI, "Public Key Cryptography For The Financial Services Industry: The

Elliptic Curve Digital Signature Algorithm (ECDSA)", ANSI X9.62, 2005

[DDSSEC11-52 Specify Authentication Challenge Length]

[42] FIPS 186-4: FIPS Digital Signature Standard (DSS).

http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf

[43] PKCS#8: Asymmetric Key Packages. IETF RFC 5958. https://tools.ietf.org/html/rfc5958

[44] PKCS#1: Public-Key Cryptography Standards: RSA Cryptography Specifications Version 2.1

https://tools.ietf.org/html/rfc3447

[45] [NIST SP 800-38D] Recommendation for Block Cipher Modes of Operation: Galois/Counter

Mode (GCM) and GMAC http://csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf

Deleted: B

http://tools.ietf.org/id/draft-ietf-msec-gdoi-srtp-01.txt
http://tools.ietf.org/html/rfc2104
http://tools.ietf.org/html/rfc6151
http://www.cisco.com/en/US/prod/collateral/iosswrel/ps6537/ps6586/ps6660/ps6811/prod_white_paper0900aecd804c363f.html
http://www.cisco.com/en/US/prod/collateral/iosswrel/ps6537/ps6586/ps6660/ps6811/prod_white_paper0900aecd804c363f.html
http://www.cisco.com/en/US/prod/collateral/iosswrel/ps6537/ps6552/prod_white_paper0900aecd8047191e.html
http://www.cisco.com/en/US/prod/collateral/iosswrel/ps6537/ps6552/prod_white_paper0900aecd8047191e.html
http://portals.omg.org/dds/content/page/dds-rtps-vendor-and-product-ids
http://portals.omg.org/dds/content/page/dds-rtps-vendor-and-product-ids
http://tools.ietf.org/html/rfc2315
https://tools.ietf.org/html/rfc5280
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
https://tools.ietf.org/html/rfc5958
https://tools.ietf.org/html/rfc3447
http://csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf

308 DDS Security, v1.1

[DDSSEC11-23 FIPS-196 reference to wrong chapter]

[46] [NIST SP 800-90A-R1] NIST Special Publication 800-90A Revision 1. Recommendation for

Random Number Generation Using Deterministic Random Bit Generators.

http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90Ar1.pdf

[47] IETF RFC 5114 “Additional Diffie-Hellman Groups for Use with IETF

Standards” https://tools.ietf.org/html/rfc5114.

[48] [NIST SP 800-56Ar2] NIST Special Publication 800-56A Revision 2. Recommendation for

Pair-Wise Key Establishment Schemes Using Discrete Logarithm Cryptography

http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Ar2.pdf

[49] NIST Suite B Implementer’s Guide to NIST SP 800-56A

https://www.nsa.gov/ia/_files/SuiteB_Implementer_G-113808.pdf

[50] IETF RFC 5869 HMAC-based Extract-and-Expand Key Derivation Function (HKDF)

https://tools.ietf.org/html/rfc5869

[51] IETF RFC 4514 "Lightweight Directory Access Protocol (LDAP): String Representation of

Distinguished Names" https://tools.ietf.org/html/rfc4514

[DDSSEC11-82 OCSP stapling to enhance certificate status checking during handshake]

[52] IETF RFC 2560 “X.509 Internet Public Key Infrastructure Online Certificate Status Protocol –

OCSP” https://tools.ietf.org/html/rfc2560

[53] IETF RFC 6066 “Transport Layer Security (TLS) Extensions: Extension Definitions”

https://tools.ietf.org/html/rfc6066

[54] IETF RFC 2560 “The Transport Layer Security (TLS) Multiple Certificate Status Request

Extension” https://tools.ietf.org/html/rfc6961

Deleted: <#>FIPS 196 Entity
Authentication Using Public Key
Cryptography
http://csrc.nist.gov/publications/fips/fips196/
fips196.pdf¶

http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90Ar1.pdf
https://tools.ietf.org/html/rfc5114
https://www.nsa.gov/ia/_files/SuiteB_Implementer_G-113808.pdf
https://tools.ietf.org/html/rfc5869
https://tools.ietf.org/html/rfc4514
https://tools.ietf.org/html/rfc2560
https://tools.ietf.org/html/rfc6066
https://tools.ietf.org/html/rfc6961

	DDS Security
	Table of Contents
	Tables
	Figures
	Preface
	1 Scope
	1.1 General
	1.2 Overview of this Specification

	2 Conformance
	2.1 Conformance points
	2.2 Builtin plugin interoperability (mandatory)
	2.3 Plugin framework (mandatory):
	2.4 Plugin Language APIs (optional):
	2.5 Logging and Tagging profile (optional):

	3 Normative References
	4 Terms and Definitions
	5 Symbols
	6 Additional Information
	6.1 Changes to Adopted OMG Specifications
	6.2 Acknowledgments

	7 Support for DDS Security
	7.1 Security Model
	7.1.1 Threats
	7.1.1.1 Unauthorized Subscription
	7.1.1.2 Unauthorized Publication
	7.1.1.3 Tampering and Replay
	7.1.1.4 Unauthorized Access to Data by Infrastructure Services

	7.2 Types used by DDS Security
	7.2.1 Property_t
	7.2.1.1 IDL Representation for Property_t

	7.2.2 BinaryProperty_t
	7.2.2.1 IDL Representation for BinaryProperty_t

	7.2.3 DataHolder
	7.2.3.1 IDL representation for DataHolder

	7.2.4 Token
	7.2.4.1 Attribute: class_id
	7.2.4.2 IDL Representation for Token and Specialized Classes
	7.2.4.3 TokenNIL

	7.2.5 PropertyQosPolicy, DomainParticipantQos, DataWriterQos, and DataReaderQos
	7.2.6 ParticipantGenericMessage
	7.2.7 ParticipantSecurityInfo
	7.2.8 EndpointSecurityInfo
	7.2.9 Additional DDS Return Code: NOT_ALLOWED_BY_SECURITY

	7.3 Securing DDS Messages on the Wire
	7.3.1 RTPS Background (Non-Normative)
	7.3.2 Secure RTPS Messages
	7.3.3 Constraints of the DomainParticipant GUID_t (GUID)
	7.3.4 Mandatory use of the KeyHash for encrypted messages
	7.3.5 Immutability of Publisher Partition Qos in combination with non-volatile Durability kind
	7.3.6 Platform Independent Description
	7.3.6.1 Change to the RTPS minor version number
	7.3.6.2 RTPS Secure Submessage Elements
	7.3.6.2.1 CryptoTransformIdentifier
	7.3.6.2.2 CryptoContent
	7.3.6.2.2 CryptoContent
	7.3.6.2.3 CryptoHeader
	7.3.6.2.3 CryptoHeader
	7.3.6.2.4 CryptoFooter
	7.3.6.2.4 CryptoFooter

	7.3.6.3 RTPS Submessage: SecureBodySubMsg
	7.3.6.3.1 Purpose
	7.3.6.3.2 Content
	7.3.6.3.3 Validity
	7.3.6.3.4 Logical Interpretation

	7.3.6.4 RTPS Submessage: SecurePrefixSubMsg
	7.3.6.4.1 Purpose
	7.3.6.4.2 Content
	7.3.6.4.3 Validity
	7.3.6.4.4 Logical Interpretation

	7.3.6.5 RTPS Submessage: SecurePostfixSubMsg
	7.3.6.5.1 Purpose
	7.3.6.5.2 Content
	7.3.6.5.3 Validity
	7.3.6.5.4 Logical Interpretation

	7.3.6.6 RTPS Submessage: SecureRTPSPrefixSubMsg
	7.3.6.6.1 Purpose
	7.3.6.6.2 Content
	7.3.6.6.3 Validity
	7.3.6.6.4 Logical Interpretation

	7.3.6.7 RTPS Submessage: SecureRTPSPostfixSubMsg
	7.3.6.7.1 Purpose
	7.3.6.7.2 Content
	7.3.6.7.3 Validity
	7.3.6.7.4 Logical Interpretation

	7.3.7 Mapping to UDP/IP PSM
	7.3.7.1 Mapping of the EntityIds for the Builtin DataWriters and DataReaders
	7.3.7.2 Mapping of the CryptoTransformIdentifier Type
	7.3.7.3 Mapping of the CryptoHeader SubmessageElement
	7.3.7.4 Mapping of the CryptoFooter SubmessageElement
	7.3.7.5 SecureBodySubMsg Submessage
	7.3.7.5.1 Wire Representation
	7.3.7.5.2 Submessage Id
	7.3.7.5.3 Flags in the Submessage Header

	7.3.7.6 SecurePrefixSubMsg Submessage
	7.3.7.6.1 Wire Representation
	7.3.7.6.2 Submessage Id
	7.3.7.6.3 Flags in the Submessage Header

	7.3.7.7 SecurePostfixSubMsg Submessage
	7.3.7.7.1 Wire Representation
	7.3.7.7.2 Submessage Id
	7.3.7.7.3 Flags in the Submessage Header

	7.3.7.8 SecureRTPSPrefixSubMsg Submessage
	7.3.7.8.1 Wire Representation
	7.3.7.8.2 Submessage Id
	7.3.7.8.3 Flags in the Submessage Header

	7.3.7.9 SecureRTPSPostfixSubMsg Submessage
	7.3.7.9.1 Wire Representation
	7.3.7.9.2 Submessage Id
	7.3.7.9.3 Flags in the Submessage Header

	7.4 DDS Support for Security Plugin Information Exchange
	7.4.1 Secure builtin Discovery Topics
	7.4.1.1 Background (Non-Normative)
	7.4.1.2 Extending the Data Types used by DDS Discovery
	7.4.1.3 Reserved RTPS parameter IDs
	7.4.1.4 Extension to RTPS Standard DCPSParticipants Builtin Topic
	7.4.1.5 Extension to RTPS Standard DCPSPublications and DCPSSubscriptions Builtin Topics
	7.4.1.6 New DCPSParticipantSecure Builtin Topic
	1.1.1.1
	1.1.1.1
	7.4.1.7 New DCPSPublicationsSecure Builtin Topic
	7.4.1.8 New DCPSSubscriptionsSecure Builtin Topic

	7.4.2 New DCPSParticipantMessageSecure builtin Topic
	7.4.3 New DCPSParticipantStatelessMessage builtin Topic
	7.4.3.1 Background: Sequence Number Attacks (non normative)
	7.4.3.2 BuiltinParticipantStatelessMessageWriter and BuiltinParticipantStatelessMessageReader
	7.4.3.3 Contents of the ParticipantStatelessMessage
	7.4.3.4 Destination of the ParticipantStatelessMessage
	7.4.3.5 Reserved values of ParticipantStatelessMessage GenericMessageClassId
	7.4.3.6 Format of data within ParticipantStatelessMessage
	7.4.3.6.1 Data for message class GMCLASSID_SECURITY_AUTH_HANDSHAKE
	7.4.3.6.2 Data for message class GMCLASSID_SECURITY_AUTH_REQUEST

	7.4.4 New DCPSParticipantVolatileMessageSecure builtin Topic
	7.4.4.1 Background (Non-Normative)
	7.4.4.2 BuiltinParticipantVolatileMessageSecureWriter and BuiltinParticipantVolatileMessageSecureReader
	7.4.4.3 Contents of the ParticipantVolatileMessageSecure
	7.4.4.4 Destination of the ParticipantVolatileMessageSecure
	7.4.4.5 Reserved values of ParticipantVolatileMessageSecure GenericMessageClassId
	7.4.4.6 Format of data within ParticipantVolatileMessageSecure
	7.4.4.6.1 Data for message class GMCLASS_SECURITY_PARTICIPANT_CRYPTO_TOKENS
	7.4.4.6.2 Data for message class GMCLASSID_SECURITY_DATAWRITER_CRYPTO_TOKENS
	7.4.4.6.3 Data for message class GMCLASSID_SECURITY_DATAREADER_CRYPTO_TOKENS

	7.4.5 Definition of the “Builtin Secure Endpoints”
	7.4.6 Definition of the “Builtin Secure Discovery Endpoints”
	7.4.7 Definition of the “Builtin Secure Liveliness Endpoints”
	7.4.8 Securing the “Builtin Secure Endpoints”

	8 Plugin Architecture
	8.1 Introduction
	8.1.1 Service Plugin Interface Overview
	8.1.2 Plugin Instantiation

	8.2 Common Types
	8.2.1 Security Exception

	8.3 Authentication Plugin
	8.3.1 Background (Non-Normative)
	8.3.2 Authentication Plugin Model
	8.3.2.1 IdentityToken
	8.3.2.2 IdentityStatusToken
	1.1.1.1
	1.1.1.1
	8.3.2.3 IdentityHandle
	8.3.2.4 HandshakeHandle
	8.3.2.5 AuthRequestMessageToken
	8.3.2.6 HandshakeMessageToken
	8.3.2.7 AuthenticatedPeerCredentialToken
	8.3.2.8 SharedSecretHandle
	8.3.2.9 Authentication
	8.3.2.9.1 Reliability of the Authentication Handshake

	8.3.2.10 Unauthenticated DomainParticipant entities
	8.3.2.11 Authentication plugin interface
	8.3.2.11.1 Type: ValidationResult_t
	8.3.2.11.2 Operation: validate_local_identity
	8.3.2.11.3 Operation: validate_remote_identity
	8.3.2.11.4 Operation: begin_handshake_request
	8.3.2.11.5 Operation: begin_handshake_reply
	8.3.2.11.6 Operation: process_handshake
	8.3.2.11.7 Operation: get_shared_secret
	8.3.2.11.8 Operation: get_authenticated_peer_ credential_token
	8.3.2.11.9 Operation: get_identity_token
	8.3.2.11.10 Operation: get_identity_status_token
	8.3.2.11.11 Operation: set_permissions_credential_and_token
	8.3.2.11.12 Operation: set_listener
	8.3.2.11.13 Operation: return_identity_token
	8.3.2.11.14 Operation: return_identity_status_token
	8.3.2.11.15 Operation: return_authenticated_peer_credential_token
	8.3.2.11.16 Operation: return_handshake_handle
	8.3.2.11.17 Operation: return_identity_handle
	8.3.2.11.18 Operation: return_sharedsecret_handle

	8.3.2.12 AuthenticationListener
	8.3.2.12.1 Enumeration: AuthStatusKind
	8.3.2.12.2 Operation: on_revoke_identity
	8.3.2.12.3 Operation: on_status_changed

	8.4 Access Control Plugin
	8.4.1 Background (Non-Normative)
	8.4.2 AccessControl Plugin Model
	8.4.2.1 PermissionsToken
	8.4.2.2 PermissionsCredentialToken
	8.4.2.3 PermissionsHandle
	8.4.2.4 ParticipantSecurityAttributes
	8.4.2.5 Definition of the ParticipantSecurityAttributesMask
	8.4.2.6 TopicSecurityAttributes
	8.4.2.7 EndpointSecurityAttributes
	8.4.2.8 Definition of the EndpointSecurityAttributesMask
	8.4.2.9 AccessControl interface
	8.4.2.9.1 Operation: validate_local_permissions
	8.4.2.9.2 Operation: validate_remote_permissions
	8.4.2.9.3 Operation: check_create_participant
	8.4.2.9.4 Operation: check_create_datawriter
	8.4.2.9.5 Operation: check_create_datareader
	8.4.2.9.6 Operation: check_create_topic
	8.4.2.9.7 Operation: check_local_datawriter_register_instance
	8.4.2.9.8 Operation: check_local_datawriter_dispose_instance
	8.4.2.9.9 Operation: check_remote_participant
	8.4.2.9.10 Operation: check_remote_datawriter
	8.4.2.9.11 Operation: check_remote_datareader
	8.4.2.9.12 Operation: check_remote_topic
	8.4.2.9.13 Operation: check_local_datawriter_match
	8.4.2.9.14 Operation: check_local_datareader_match
	8.4.2.9.15 Operation: check_remote_datawriter_register_instance
	8.4.2.9.16 Operation: check_remote_datawriter_dispose_instance
	8.4.2.9.17 Operation: get_permissions_token
	8.4.2.9.18 Operation: get_permissions_credential_token
	8.4.2.9.19 Operation: set_listener
	8.4.2.9.20 Operation: return_permissions_token
	8.4.2.9.21 Operation: return_permissions_credential_token
	8.4.2.9.22 Operation: get_participant_sec_attributes
	8.4.2.9.23 Operation: get_topic_sec_attributes
	8.4.2.9.24 Operation: get_datarwriter_sec_attributes
	8.4.2.9.25 Operation: get_datareader_sec_attributes
	8.4.2.9.26 Operation: return_participant_sec_attributes:
	8.4.2.9.27 Operation: return_datawriter_sec_attributes:
	8.4.2.9.28 Operation: return_datareader_sec_attributes:

	8.4.2.10 AccessControlListener interface
	8.4.2.10.1 Operation: on_revoke_permissions

	8.5 Cryptographic Plugin
	8.5.1 Cryptographic Plugin Model
	8.5.1.1 CryptoToken
	8.5.1.2 ParticipantCryptoHandle
	8.5.1.3 DatawriterCryptoHandle
	8.5.1.4 DatareaderCryptoHandle
	8.5.1.5 CryptoTransformIdentifier
	8.5.1.5.1 Attribute: transformation_kind
	8.5.1.5.2 Attribute: transformation_key_id

	8.5.1.6 SecureSubmessageCategory_t
	8.5.1.7 CryptoKeyFactory interface
	8.5.1.7.1 Operation: register_local_participant
	8.5.1.7.2 Operation: register_matched_remote_participant
	8.5.1.7.3 Operation: register_local_datawriter
	8.5.1.7.4 Operation: register_matched_remote_datareader
	8.5.1.7.5 Operation: register_local_datareader
	8.5.1.7.6 Operation: register_matched_remote_datawriter
	8.5.1.7.7 Operation: unregister_participant
	8.5.1.7.8 Operation: unregister_datawriter
	8.5.1.7.9 Operation: unregister_datareader

	8.5.1.8 CryptoKeyExchange Interface
	8.5.1.8.1 Operation: create_local_participant_crypto_tokens
	8.5.1.8.2 Operation: set_remote_participant_crypto_tokens
	8.5.1.8.3 Operation: create_local_datawriter_crypto_tokens
	8.5.1.8.4 Operation: set_remote_datawriter_crypto_tokens
	8.5.1.8.5 Operation: create_local_datareader_crypto_tokens
	8.5.1.8.6 Operation: set_remote_datareader_crypto_tokens
	8.5.1.8.7 Operation: return_crypto_tokens

	8.5.1.9 CryptoTransform interface
	8.5.1.9.1 Operation: encode_serialized_payload
	8.5.1.9.2 Operation: encode_datawriter_submessage
	8.5.1.9.3 Operation: encode_datareader_submessage
	8.5.1.9.4 Operation: encode_rtps_message
	8.5.1.9.5 Operation: decode_rtps_message
	8.5.1.9.6 Operation: preprocess_secure_submsg
	8.5.1.9.7 Operation: decode_datawriter_submessage
	8.5.1.9.8 Operation: decode_datareader_submessage
	8.5.1.9.9 Operation: decode_serialized_payload

	8.6 The Logging Plugin
	8.6.1 Background (Non-Normative)
	8.6.2 Logging Plugin Model
	8.6.2.1 LogOptions
	8.6.2.1.1 Attribute: log_level
	8.6.2.1.2 Attribute: log_file
	8.6.2.1.3 Attribute: distribute

	8.6.2.2 Logging
	8.6.2.2.1 Operation: set_log_options
	8.6.2.2.2 Operation: log
	8.6.2.2.3 Operation: enable_logging
	8.6.2.2.4 Operation: set_listener

	8.7 Data Tagging
	8.7.1 Background (Non-Normative)
	8.7.2 DataTagging Model

	8.8 Security Plugins Behavior
	8.8.1 Authentication and AccessControl behavior with local DomainParticipant
	8.8.2 Authentication behavior with discovered DomainParticipant
	8.8.2.1 Behavior when allow_unauthenticated_participants is set to TRUE
	8.8.2.2 Behavior when allow_unauthenticated_participants is set to FALSE

	8.8.3 DDS Entities impacted by the AccessControl operations
	8.8.4 AccessControl behavior with local participant creation
	8.8.5 AccessControl behavior with local domain entity creation
	8.8.6 AccessControl behavior with remote participant discovery
	8.8.7 AccessControl behavior with remote domain entity discovery
	8.8.7.1 AccessControl behavior with discovered endpoints from “Unauthenticated” DomainParticipant
	8.8.7.2 AccessControl behavior with discovered endpoints from “Authenticated” DomainParticipant

	8.8.8 Cryptographic Plugin key generation behavior
	8.8.8.1 Key generation for the BuiltinParticipantVolatileMessageSecureWriter and BuiltinParticipantVolatileMessageSecureReader
	8.8.8.2 Key generation for the DomainParticipant
	8.8.8.3 Key generation for the builtin endpoints
	8.8.8.4 Key generation for the application-defined endpoints
	8.8.8.5 Limiting message-size overhead caused by receiver specific key material

	8.8.9 Cryptographic Plugin key exchange behavior
	8.8.9.1 Key Exchange with discovered DomainParticipant
	8.8.9.2 Key Exchange with remote DataReader
	8.8.9.3 Key Exchange with remote DataWriter

	8.8.10 Cryptographic Plugins encoding/decoding behavior
	8.8.10.1 Encoding/decoding of a single writer message on an RTPS message
	8.8.10.2 Encoding/decoding of multiple writer messages on an RTPS message
	8.8.10.3 Encoding/decoding of multiple reader messages on an RTPS message
	8.8.10.4 Encoding/decoding of reader and writer messages on an RTPS message

	9 Builtin Plugins
	9.1 Introduction
	9.2 Requirements and Priorities (Non-Normative)
	9.2.1 Performance and Scalability
	9.2.2 Robustness and Availability
	9.2.3 Fitness to the DDS Data-Centric Model
	9.2.4 Leverage and Reuse of Existing Security Infrastructure and Technologies
	9.2.5 Ease-of-Use while Supporting Common Application Requirements

	9.3 Builtin Authentication: DDS:Auth:PKI-DH
	9.3.1 Configuration
	9.3.1.1 Identity CA Certificate
	9.3.1.2 Private Key
	9.3.1.3 Identity Certificate

	9.3.2 DDS:Auth:PKI-DH Types
	9.3.2.1 DDS:Auth:PKI-DH IdentityToken
	9.3.2.2 DDS:Auth:PKI-DH IdentityStatusToken
	9.3.2.3 DDS:Auth:PKI-DH AuthenticatedPeerCredentialToken
	9.3.2.4 DDS:Auth:PKI-DH AuthRequestMessageToken
	9.3.2.5 DDS:Auth:PKI-DH HandshakeMessageToken
	9.3.2.5.1 HandshakeRequestMessageToken objects
	9.3.2.5.2 HandshakeReplyMessageToken
	9.3.2.5.3 HandshakeFinalMessageToken

	9.3.3 DDS:Auth:PKI-DH plugin behavior
	9.3.4 DDS:Auth:PKI-DH plugin authentication protocol
	9.3.4.1 Terms and notation
	9.3.4.2 Protocol description

	9.4 Builtin Access Control: DDS:Access:Permissions
	9.4.1 Configuration
	9.4.1.1 Permissions CA Certificate
	9.4.1.2 Domain Governance Document
	9.4.1.2.1 Basic Protection Kinds
	9.4.1.2.2 Protection Kinds
	9.4.1.2.3 Domain Governance document format
	9.4.1.2.4 Domain Access Rules Section
	9.4.1.2.5 Domain Rules
	9.4.1.2.5.1 Domains element
	9.4.1.2.5.2 Allow Unauthenticated Participants element
	9.4.1.2.5.3 Enable Join Access Control element
	9.4.1.2.5.4 Discovery Protection Kind element
	9.4.1.2.5.5 Liveliness Protection Kind element
	1.1.1.1.1.1
	1.1.1.1.1.1
	9.4.1.2.5.6 RTPS Protection Kind element
	9.4.1.2.5.7 Topic Access Rules Section

	9.4.1.2.6 Topic Rule Section
	9.4.1.2.6.1 Topic expression element
	9.4.1.2.6.2 Enable Discovery protection element
	9.4.1.2.6.3 Enable Liveliness Protection element
	9.4.1.2.6.4 Enable Read Access Control element
	9.4.1.2.6.5 Enable Write Access Control element
	9.4.1.2.6.6 Metadata Protection Kind element
	9.4.1.2.6.7 Data Protection Kind element

	9.4.1.2.7 Application of Domain and Topic Rules
	9.4.1.2.8 Example Domain Governance document (non normative)

	9.4.1.3 DomainParticipant permissions document
	9.4.1.3.1 Permissions Section
	9.4.1.3.2 Grant Section
	9.4.1.3.2.1 Subject name Section
	9.4.1.3.2.2 Validity Section
	9.4.1.3.2.3 Rules Section
	9.4.1.3.2.3.1 Format of the allow rules
	9.4.1.3.2.3.1.1 Domains Section
	9.4.1.3.2.3.1.2 Format of the Allowed Actions sections
	1.1.1.1.1.1.1.1 Allowed Topic condition section
	9.4.1.3.2.3.1.3
	9.4.1.3.2.3.1.3
	9.4.1.3.2.3.1.4 Allowed Partitions condition section
	9.4.1.3.2.3.1.5 Allowed Data tags condition section
	9.4.1.3.2.3.1.6 Example allow rule

	9.4.1.3.2.3.2 Format for deny rules
	9.4.1.3.2.3.2.1 Domains Section
	9.4.1.3.2.3.2.2 Format of the Denied Actions sections
	9.4.1.3.2.3.2.3 Denied Topic condition section
	9.4.1.3.2.3.2.4 Denied Partitions condition section
	9.4.1.3.2.3.2.5 Data tags condition section
	9.4.1.3.2.3.2.6 Example deny rule
	9.4.1.3.2.3.2.7 Example deny rule

	9.4.1.4 DomainParticipant example permissions document (non normative)

	9.4.2 DDS:Access:Permissions Types
	9.4.2.1 DDS:Access:Permissions PermissionsCredentialToken
	9.4.2.2 DDS:Access:Permissions PermissionsToken
	9.4.2.3 PluginParticipantSecurityAttributes
	9.4.2.4 Definition of the PluginParticipantSecurityAttributesMask
	9.4.2.5 PluginEndpointSecurityAttributes
	9.4.2.6 Definition of the PluginEndpointSecurityAttributesMask

	9.4.3 DDS:Access:Permissions plugin behavior

	9.5 Builtin Crypto: DDS:Crypto:AES-GCM-GMAC
	9.5.1 Configuration
	9.5.2 DDS:Crypto:AES-GCM-GMAC Types
	9.5.2.1 DDS:Crypto:AES-GCM-GMAC CryptoToken
	9.5.2.1.1 KeyMaterial_AES_GCM_GMAC structure
	9.5.2.1.2 Key material used by the BuiltinParticipantVolatileMessageSecureWriter and BuiltinParticipantVolatileMessageSecureReader

	9.5.2.2 DDS:Crypto:AES-GCM-GMAC CryptoTransformIdentifier
	9.5.2.3 DDS:Crypto:AES-GCM-GMAC CryptoHeader
	9.5.2.4 DDS:Crypto:AES-GCM-GMAC CryptoContent
	9.5.2.5 DDS:Crypto:AES-GCM-GMAC CryptoFooter

	9.5.3 DDS:Crypto:AES-GCM-GMAC plugin behavior
	9.5.3.1 CryptoKeyFactory for DDS:Crypto:AES-GCM-GMAC
	9.5.3.2 CryptoKeyExchange for DDS:Crypto:AES-GCM-GMAC
	9.5.3.3 CryptoKeyTransform for DDS:Crypto:AES-GCM-GMAC
	9.5.3.3.1 Overview
	9.5.3.3.2 Encode/decode operation virtual machine
	9.5.3.3.3 Computation of SessionKey and SessionReceiverSpecificKey
	9.5.3.3.4 Computation of ciphertext from plaintext
	9.5.3.3.4.1 Format of the CryptoHeader Submessage Element
	9.5.3.3.4.2 Format of the CryptoContent Submessage Element
	9.5.3.3.4.3 Format of the CryptoFooter Submessage Element
	9.5.3.3.4.4 Result from encode_serialized_payload
	9.5.3.3.4.5 Result from encode_datawriter_submessage and encode_datareader_submessage
	9.5.3.3.4.6 Result from encode_rtps_message

	9.5.3.3.5 Computation of plaintext from ciphertext
	9.5.3.3.6 Computation of the message authentication codes

	9.6 Builtin Logging Plugin
	9.6.1 DDS:Logging:DDS_LogTopic plugin behavior

	10 Plugin Language Bindings
	10.1 Introduction
	10.2 IDL representation of the plugin interfaces
	10.3 C language representation of the plugin interfaces
	10.4 C++ classic representation of the plugin interfaces
	10.5 Java classic
	10.6 C++11 representation of the plugin interfaces
	10.7 Java modern aligned with the DDS-JAVA5+ PSM

	Annex A - References

