
Date: May 2024

DDS Extensions for Time Sensitive Networking
(DDS-TSN)

Version 1.0 - beta 1

OMG Document Number: ptc/2024-05-16

Normative Reference: http s ://www.omg.org/spec/ DDS-TSN / 1 . 0

This OMG document replaces the submission document (mars/2022-12-03). It is an OMG Adopted Beta Specification and is
currently in the finalization phase. Comments on the content of this document are welcome and should be directed to
issues@omg.org by June 30, 2023.

You may view the pending issues for this specification from the OMG revision issues web page
https://issues.omg.org/issues/lists.

The FTF Recommendation and Report for this specification will be published in December 2023. If you are reading this
after that date, please download the available specification from the OMG Specifications Catalog.

https://www.omg.org/spec/DDS-TSN/1.0
https://www.omg.org/spec/DDS-TSN/1.0
https://www.omg.org/spec/DDS-TSN/1.0
https://www.omg.org/spec/DDS-TSN/1.0
https://www.omg.org/spec/DDS-TSN/1.0
https://www.omg.org/spec/DDS-TSN/1.0
https://www.omg.org/spec/DDS-TSN/1.0
https://www.omg.org/spec/DDS-TSN/1.0

Copyright © 2023, Object Management Group, Inc.
Copyright © 2022, Real-Time Innovations, Inc.
Copyright © 2022, Twin Oaks Computing, Inc.
Copyright © 2022, ZettaScale Technology, Ltd.

USE OF SPECIFICATION – TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms,
conditions and notices set forth below. This document does not represent a commitment to implement any portion of
this specification in any company's products. The information contained in this document is subject to change without
notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free,
paid up, worldwide license to copy and distribute this document and to modify this document and distribute copies of
the modified version. Each of the copyright holders listed above has agreed that no person shall be deemed to have
infringed the copyright in the included material of any such copyright holder by reason of having used the specification
set forth herein or having conformed any computer software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant you a
fully-paid up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use this
specification to create and distribute software and special purpose specifications that are based upon this specification,
and to use, copy, and distribute this specification as provided under the Copyright Act; provided that: (1) both the
copyright notice identified above and this permission notice appear on any copies of this specification; (2) the use of the
specifications is for informational purposes and will not be copied or posted on any network computer or broadcast in
any media and will not be otherwise resold or transferred for commercial purposes; and (3) no modifications are made
to this specification. This limited permission automatically terminates without notice if you breach any of these terms or
conditions. Upon termination, you will destroy immediately any copies of the specifications in your possession or
control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may
require use of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a
license may be required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of
those patents that are brought to its attention. OMG specifications are prospective and advisory only. Prospective users
are responsible for protecting themselves against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications regulations
and statutes. This document contains information which is protected by copyright. All Rights Reserved. No part of this
work covered by copyright herein may be reproduced or used in any form or by any means--graphic, electronic, or
mechanical, including photocopying, recording, taping, or information storage and retrieval systems--without
permission of the copyright owner.

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY CONTAIN
ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE
MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS PUBLICATION,
INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY
OF MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE. IN NO

ii DDS Extensions for Time Sensitive Networking (DDS-TSN) 1.0

EVENT SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE COMPANIES LISTED ABOVE BE
LIABLE FOR ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS, REVENUE, DATA
OR USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE FURNISHING,
PERFORMANCE, OR USE OF THIS MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you. This
disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1) (ii)
of The Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph (c)(1) and
(2) of the Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified in 48
C.F.R. 227-7202-2 of the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of the Federal
Acquisition Regulations and its successors, as applicable. The specification copyright owners are as indicated above and
may be contacted through the Object Management Group, 109 Highland Avenue, Needham, MA 02494, U.S.A.

TRADEMARKS

CORBA®, CORBA logos®, FIBO®, Financial Industry Business Ontology®, FINANCIAL INSTRUMENT GLOBAL
IDENTIFIER®, IIOP®, IMM®, Model Driven Architecture®, MDA®, Object Management Group®, OMG®, OMG
Logo®, SoaML®, SOAML®, SysML®, UAF®, Unified Modeling Language®, UML®, UML Cube Logo®, VSIPL®,
and XMI® are registered trademarks of the Object Management Group, Inc.

For a complete list of trademarks, see: http://www.omg.org/legal/tm_list.htm. All other products or company names
mentioned are used for identification purposes only, and may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its
designees) is and shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer
software to use certification marks, trademarks or other special designations to indicate compliance with these
materials.

Software developed under the terms of this license may claim compliance or conformance with this specification if and
only if the software compliance is of a nature fully matching the applicable compliance points as stated in the
specification. Software developed only partially matching the applicable compliance points may claim only that the
software was based on this specification, but may not claim compliance or conformance with this specification. In the
event that testing suites are implemented or approved by Object Management Group, Inc., software developed using
this specification may claim compliance or conformance with the specification only if the software satisfactorily
completes the testing suites.

DDS Extensions for Time Sensitive Networking (DDS-TSN) 1.0 iii

http://www.omg.org/legal/tm_list.htm

OMG's Issue Reporting Procedure

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage
readers to report any ambiguities, inconsistencies, or inaccuracies they may find by completing the Issue Reporting
Form listed on the main web page http://www.omg.org, under Documents, Report a Bug/Issue.

iv DDS Extensions for Time Sensitive Networking (DDS-TSN) 1.0

Table of Contents
1 Scope..1

2 Conformance...2

3 Normative References..2

4 Terms and Definitions..3

5 Symbols...3

6 Additional Information...4
6.1 Changes to Adopted OMG Specifications...4
6.2 Acknowledgments...5

7 DDS-TSN System Deployment...7
7.1 Overview...7
7.2 Configuration Model (PIM)..8

7.2.1 DDS Application Configuration..8
7.2.2 Deployment Configuration...13
7.2.3 TSN Configuration... 15

7.3 Configuration Representation (PSM)...22
7.3.1 XML PSM... 22
7.3.2 JSON PSM.. 23
7.3.3 YANG PSM.. 23

8 DDSI-RTPS Wire Protocol over TSN..29
8.1 Overview...29
8.2 DDSI-RTPS PIM over TSN..29

8.2.1 Message Module... 29
8.2.2 Discovery Module.. 30
8.2.3 QoS Policies.. 30
8.2.4 Other Considerations...31

8.3 DDSI-RTPS UDP/IP PSM over TSN...31
8.3.1 Stream Identification of UDP Datagrams Encapsulating RTPS Messages......................................32
8.3.2 Stream Transformation of UDP Datagrams Encapsulating RTPS Messages..................................32

8.4 DDSI-RTPS Ethernet PSM over TSN..32

Annex A: DDSI-RTPS Ethernet PSM..33
A.1 Introduction...33
A.2 Notational Conventions...33
A.3 Mapping of the RTPS Types..33
A.4 Mapping of the RTPS Messages...34

A.4.1 Overall Structure.. 34
A.4.2 Mapping of PIM SubmessageElements...34
A.4.3 Additional SubmessageElements..34
A.4.4 Mapping of RTPS Header..34
A.4.5 Mapping of RTPS Submessages...35

A.5 RTPS Message Encapsulation..35
A.6 Mapping of the RTPS Protocol..35

A.6.1 Default Locators.. 35
A.6.2 Data Representation for the Built-in Endpoints..36
A.6.3 ParameterId Definitions used to Represent In-line QoS..36

DDS Extensions for Time Sensitive Networking (DDS-TSN) 1.0 v

Annex B: DDS-TSN Integration Examples...37
B.1 Overview...37

B.1.1 Deployment Configurations...38
B.1.2 Configuration Models... 38

B.2 DDS-TSN Deployment Scenario Using DDSI-RTPS UDP/IP PSM..38
B.2.1 Stream Configuration...38
B.2.2 Host Configuration... 44
B.2.3 DDS Application Configuration and Schedule Execution...44

B.3 DDS-TSN Deployment Scenario Using DDSI-RTPS Ethernet PSM......................................45
B.3.1 Stream Configuration...45
B.3.2 Host Configuration... 50
B.3.3 DDS Application Configuration and Schedule Execution...51

vi DDS Extensions for Time Sensitive Networking (DDS-TSN) 1.0

Table of Figures
Figure 7.1: DDS Application Configuration Model...8
Figure 7.2: Deployment Configuration Model..13
Figure 7.3: TSN Configuration Model..16

DDS Extensions for Time Sensitive Networking (DDS-TSN) 1.0 vii

Table of Tables
Table 5.1: Acronyms... 3
Table 7.1: QoSLibrary Definition... 9
Table 7.2: QoSProfile Definition.. 9
Table 7.3: DomainLibrary Definition..10
Table 7.4: Domain Definition... 10
Table 7.5: RegisteredType Definition...11
Table 7.6: DomainParticipantLibrary Definition...11
Table 7.7: DomainParticipant Definition..12
Table 7.8: ApplicationLibrary Definition...12
Table 7.9: Application Definition..12
Table 7.10: NodeLibrary Definition.. 13
Table 7.11: Node Definition... 14
Table 7.12: DeploymentLibrary Definition...14
Table 7.13: Deployment Definition.. 15
Table 7.14: DeploymentConfiguration Definition...15
Table 7.15: TsnTalker Definition.. 16
Table 7.16: TrafficSpecification Definition...17
Table 7.17: TimeAware Definition.. 18
Table 7.18: NetworkRequirements Definition..18
Table 7.19: DataFrameSpecification Definition...19
Table 7.20: IEEE802MacAddresses Definition..19
Table 7.21: IEEE802VlanTag Definition..20
Table 7.22: IPv4Tuple Definition...20
Table 7.23: IPv6Tuple Definition...21
Table 7.24: TsnListener Definition... 21
Table 7.25: NetworkRequirements Definition..22
Table A.1: PSM mapping of the value types that appear on the wire..33

viii DDS Extensions for Time Sensitive Networking (DDS-TSN) 1.0

Preface

OMG
Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer industry
standards consortium that produces and maintains computer industry specifications for interoperable, portable, and
reusable enterprise applications in distributed, heterogeneous environments. Membership includes Information
Technology vendors, end users, government agencies, and academia.

OMG member companies write, adopt, and maintain its specifications following a mature, open process. OMG’s
specifications implement the Model Driven Architecture® (MDA®), maximizing ROI through a full-lifecycle approach
to enterprise integration that covers multiple operating systems, programming languages, middleware and networking
infrastructures, and software development environments. OMG’s specifications include: UML® (Unified Modeling
Language®); CORBA® (Common Object Request Broker Architecture); CWM™ (Common Warehouse
Metamodel™); and industry-specific standards for dozens of vertical markets.

More information on the OMG is available at http://www.omg.org/.

OMG Specifications
As noted, OMG specifications address middleware, modeling and vertical domain frameworks. All OMG Specifications
are available from the OMG website at:

http://www.omg.org/spec

All of OMG’s formal specifications may be downloaded without charge from our website. (Products implementing
OMG specifications are available from individual suppliers.) Copies of specifications, available in PostScript and PDF
format, may be obtained from the Specifications Catalog cited above or by contacting the Object Management Group,
Inc. at:

OMG Headquarters
109 Highland Avenue
Needham, MA 02494
USA

Tel: +1-781-444-0404
Fax: +1-781-444-0320
Email: pubs@omg.org

Certain OMG specifications are also available as ISO standards. Please consult http://www.iso.org

Issues
The reader is encouraged to report any technical or editing issues/problems with this specification by completing the
Issue Reporting Form listed on the main web page http://www.omg.org, under Documents, Report a Bug/Issue.

DDS Extensions for Time Sensitive Networking (DDS-TSN) 1.0 ix

1 Scope
Data Distribution Service (DDS) is a family of standards from the Object Management Group (OMG) that provide
connectivity, interoperability and portability for Industrial Internet, cyber physical, and mission-critical applications.

Time Sensitive Networking (TSN) is a collection of standards developed by the TSN Task Group of the IEEE 802.1
Work Group. Their purpose is to enable deterministic, highly reliable communication on standard Ethernet. With its
support for different types of Quality of Service (QoS), a single TSN network infrastructure can be used to
communicate mission critical data with real-time delivery requirements side-by-side with non-critical data.

There are several reasons why DDS and TSN are a good fit. Most fundamentally, both technologies provide one-to-
many communications that support different levels of QoS for different streams of data1. Consequently, some of the
basic DDS concepts have similar counterparts in TSN. For example, DDS revolves around a strongly typed data-centric
publish-subscribe model where DataWriters are responsible for updating particular types of data and matching
DataReaders observe those updates. This granularity of interest is called a Topic and typical DDS systems consist of one
to hundreds of them. The combination of a DataWriter with its Topic name can be seen as an identifier of the source of a
DDS data stream. All matching DataReaders are sinks to that same Stream. Similarly, TSN has Talkers that update one
or more streams delivering data to the connected Listeners. TSN Streams are identified by their VLAN Tag and
destination MAC address.

DDS also has quite an extensive set of QoS policies. Their purpose is to instruct the middleware about, among other
things, the importance and urgency of the information in the different DDS data streams. In line with the data-centric
philosophy, QoS policies are applied per data stream. Some of those QoS policies have close similarities to the
mechanisms that define TSN traffic classes (e.g., the Deadline, LatencyBudget and TransportPriority QoS policies).
However, such DDS QoS policies may not be met without a deterministic network infrastructure.

To provide DDS with a deterministic network infrastructure that can guarantee time-critical behavior, this specification
defines a set of mechanisms that allow and simplify the deployment of DDS applications over a TSN-enabled network
infrastructure. Mapping DDS streams to underlying TSN Streams, system designers can rely on a deterministic data
distribution behavior from end-to-end. That is, from the producing application all the way down to the network stack,
over the network, and back up to the consuming application.

This specification covers two fundamental aspects of the integration of DDS and TSN:

• Clause 7 provides a comprehensive configuration model for DDS-TSN applications. It extends the standard
configuration syntax defined in [DDS-XML] and [DDS-JSON] to specify deployment and TSN-specific
settings to configure TSN-enabled equipment to prioritize and schedule time-sensitive DDS traffic.

• Clause 8 defines a set of mechanisms to successfully deploy DDS applications over TSN. That includes rules
and considerations to configure DDS applications that need to comply with a TSN configuration, such as the
most appropriate QoS policies, data modeling considerations, etc.

Moreover, this specification includes two Annexes that provide additional definitions and examples:

• Annex A (Normative) defines a Platform-Specific Model (PSM) for the DDSI-RTPS wire protocol that allows
RTPS Messages (i.e., the messages that encapsulate DDS traffic) to be sent directly over Ethernet frames. This
alternative to the DDSI-RTPS UDP/IP PSM is suitable for some scenarios where the IP stack may introduce
unnecessary delays.

• Annex B (Informative) includes two examples that show how to design, configure, and deploy two DDS
systems over TSN. Each example provides instructions to deploy a set of applications using one of the two
DDSI-RTPS PSMs this specification addresses: UDP/IP and Ethernet.

1 DDS also provides support for many-to-many communications for different streams of data.

DDS Extensions for Time Sensitive Networking (DDS-TSN) 1.0 1

2 Conformance
This document contains no independent conformance points.

3 Normative References
The following normative documents contain provisions which, through reference in this text, constitute provisions of
this specification. For dated references, subsequent amendments to, or revisions of, any of these publications do not
apply.

[802.1AS] IEEE, 802.1AS-2011: Timing and Synchronization for Time-Sensitive Applications in Bridged
Local Area Networks, 2011

[802.1CB] IEEE, 802.1CB-2017: Frame Replication and Elimination for Reliability, 2017

[802.1Q] IEEE, 802.1Q-2022: Bridges and Bridged Networks, 2022

[802.1Qbv] IEEE, 802.1Qbv-2015: Enhancements for Scheduled Traffic, 2015

[802.1Qcc] IEEE, 802.1Qcc-2018: Stream Reservation Protocol (SRP) Enhancements and Performance
Improvements, 2018

[DDS] OMG, Data Distribution Service, Version 1.4, https://www.omg.org/spec/DDS/1.4

[DDS-JSON] OMG, DDS Consolidated JSON Syntax, Version 1.0,
https://www.omg.org/spec/DDS-JSON/1.0

[DDS-SECURITY] OMG, DDS Security, Version 1.1, https://www.omg.org/spec/DDS-SECURITY/1.1

[DDS-XML] OMG, DDS Consolidated XML Syntax, Version 1.0, https://www.omg.org/spec/DDS-XML/1.0

[DDS-XTYPES] OMG, Extensible and Dynamic Topic Types for DDS, Version 1.3,
https://www.omg.org/spec/DDS-XTypes/1.3

[DDSI-RTPS] OMG, Real-Time Publish-Subscribe Protocol DDS Interoperability Wire Protocol, Version
2.5, https://www.omg.org/spec/DDSI-RTPS/2.5

[IDL] OMG, Interface Definition Language, Version 4.2, https://www.omg.org/spec/IDL/4.2

[RFC2460] IETF, RFC 2460, Internet Protocol, Version 6 (IPv6) Specification, 1998

[RFC2474] IETF, RFC 2474, Definition of the Differentiated Services Field (DS Field) in the IPv4 and IPv6
Headers, 1998

[RFC3290] IETF, RFC 3290, An Informal Management Model for Diffserv Routers, 2002

[RFC768] IEEE, RFC 768, User Datagram Protocol, 1980

[RFC791] IETF, RFC 791, Internet Protocol—DARPA Internet Program Protocol Specification, 1981

[RFC7950] IETF, RFC 7950, The YANG 1.1 Data Modeling Language, 2016

[RFC8939] IETF, RFC 8939, Deterministic Networking (DetNet) Data Plane: IP, 2020

2 DDS Extensions for Time Sensitive Networking (DDS-TSN) 1.0

[RFC9023] IETF, RFC 9023, Deterministic Networking (DetNet) Data Plane: IP over IEEE 802.1
Time-Sensitive Networking (TSN), 2021

4 Terms and Definitions
For the purposes of this specification, the following terms and definitions apply.

Data Distribution Service

Data Distribution Service (DDS) is a family of standards from the Object Management Group (OMG) that provide
connectivity, interoperability and portability for Industrial Internet, cyber-physical, and mission-critical applications.
The DDS connectivity standards cover Publish-Subscribe (DDS), Service Invocation (DDS-RPC), Interoperability
(DDSI-RTPS), Information Modeling (DDS-XTYPES), Security (DDS-SECURITY), as well as programming APIs for
C, C++, Java and other languages.

Platform-Independent Model

Platform-Independent Model (PIM) is an abstract definition of a facility, often expressed with the aid of formal or semi-
formal modeling languages such as OMG UML, which does not depend on any particular implementation technology.

Platform-Specific Model

Platform-Specific Model (PSM) is a concrete definition of a facility—typically based on a corresponding PIM—in
which all implementation-specific dependencies have been resolved.

Time Sensitive Networking

Time Sensitive Networking (TSN) is a collection of standards developed by the TSN Task Group of the IEEE 802.1
Working Group. Their purpose is to enable deterministic, highly reliable communication on standard Ethernet. With its
support for different types of Quality of Service (QoS), a single TSN network infrastructure can be used to
communicate mission critical data with real-time delivery requirements side-by-side with non-critical data.

5 Symbols
The acronyms used in this specification are shown in Table 5.1.

Table 5.1: Acronyms

Acronym Meaning

CNC Centralized Network Configuration

CUC Centralized User Configuration

DDS Data Distribution Service

DSCP Differentiated Services Code Point

 IDL Interface Definition Language

DDS Extensions for Time Sensitive Networking (DDS-TSN) 1.0 3

Acronym Meaning

 IEEE Institute of Electrical and Electronics Engineers

 IETF Internet Engineering Task Force

 IP Internet Protocol

 JSON JavaScript Object Notation

 MAC Media Access Control

MTU Maximum Transmission Unit

 OMG Object Management Group

PIM Platform-Independent Model

PSM Platform-Specific Model

QoS Quality of Service

 RTPS Real Time Publish Subscribe

SEDP Simple Endpoint Discovery Protocol

SPDP Simple Participant Discovery Protocol

 TCP Transmission Control Protocol

TSN Time Sensitive Networking

 UDP User Datagram Protocol

 UML Unified Modeling Language

UNI User/Network Configuration Interface

 VLAN Virtual Local Area Network

 XML Extensible Markup Language

 XTYPES Extensible and Dynamic Topic Types

 YANG Yet Another Next Generation

6 Additional Information

6.1 Changes to Adopted OMG Specifications
This specification does not change any adopted OMG specification.

4 DDS Extensions for Time Sensitive Networking (DDS-TSN) 1.0

6.2 Acknowledgments
The following individuals and companies submitted content that was incorporated into this specification:

• Real-Time Innovations, Inc.

• Twin Oaks Computing, Inc.

• ZettaScale Technology Ltd.

Submitting contributors:

• (lead) Fernando Garcia-Aranda—Real-Time Innovations, Inc.

• Reinier Torenbeek—Real-Time Innovations, Inc.

• Clark Tucker—Twin Oaks Computing, Inc.

• Erik Hendriks—ZettaScale Technology Ltd.

DDS Extensions for Time Sensitive Networking (DDS-TSN) 1.0 5

7 DDS-TSN System Deployment

7.1 Overview
TSN is a data-link layer technology that relies on the mechanism of Virtual Local Area Networking (VLAN) defined in
the IEEE 802.1Q standard [802.1Q]. By adding the optional VLAN Tag to a standard 802.3 Ethernet packet, network
equipment, such as switches, can be instructed to follow VLAN procedures. By means of a set of amendments to
[802.1Q], TSN adds support for deterministic communications over Ethernet. For example, [802.1Qbv] (now part of
[802.1Q]) introduced the concept of a network-wide schedule that allows allocating dedicated time slots for the
guaranteed transmission of specific traffic classes—leaving the rest of time slots for the transmission of Ethernet frames
of lower priority traffic classes (on a best effort basis). The aforementioned schedule requires tight synchronization of
all devices, as described in (a revision to) [802.1AS].

In TSN, time-critical communications are carried from Talkers on the sending side to Listeners on the receiving side.
Such information Streams are either one-to-one or one-to-many and may have their own timing and bandwidth
requirements.

TSN supports different configuration models, ranging from fully distributed to fully centralized. Such models allow
users to allocate resources for the transmission of Streams of data between one Talker application and one or more
Listener applications, located in different end stations.

Common to all configuration models is the concept of User/Network Configuration Interface (UNI), which is the
mechanism end stations use to provide data requirements from Talkers and Listeners to the network. The IEEE
802.1Qcc standard [802.1Qcc] (now part of [802.1Q]) defines the TSN UNI in a “schema, encoding, or protocol”
independent manner, and applies it in the different configuration model as follows:

• In the Fully Distributed model ([802.1Q], subclause 46.1.3.1), Talkers and Listeners provide their requirements
directly to their closest Bridge using the TSN UNI. Such information is passed through all the Bridges between
end stations, which configure themselves to accommodate resources for the requested data requirements.

• The Centralized Network/Distributed User Model ([802.1Q], subclause 46.1.3.2) introduces a Centralized
Network Configuration (CNC) entity that has a complete view of the network topology and communicates
with every Bridge involved in the communication using a network management protocol. End stations
communicate their requirements to edge Bridges (i.e., Bridges connected to an end station) using the TSN
UNI. Edge Bridges act as proxies, propagating Talker and Listener requirements using the TSN UNI as well.

• The Fully Centralized Model ([802.1Q], subclause 46.1.3.3) introduces a Centralized User Configuration
(CUC) entity to collect the requirements of end stations using an end station configuration protocol. The CUC
uses the TSN UNI to exchange requirements with the CNC, which like in the case of the Centralized
Network/Distributed User Model is responsible for configuring all Bridges using a network management
protocol. The end station configuration protocol is out of the scope of [802.1Q].

[802.1Q] defines managed objects for the configuration of Bridge features, such as TSN features. However, it does not
specify a single data modeling language or network management protocol to configure Bridge managed objects. The
IETF provides YANG [RFC7950] to model Bridge managed objects, as well as network management protocols that
support YANG, such as NETCONF and RESTCONF. The TSN Task Group provides YANG modules for TSN Bridge
features; for example, [802.1Q] provides YANG data module definitions for TSN UNI ([802.1Q], subclause 46.3).

To accommodate as many use cases as possible, this clause defines a platform-independent DDS-TSN Configuration
Model that can be mapped to different implementations of the TSN UNI, as well as to all three configuration models
described in [802.1Q].

Implementers of this specification may also use the DDS-TSN Configuration Model to build applications or toolchains
capable of processing configuration files describing a complete DDS-TSN deployment, generating code, other
configuration files, or API calls to configure and deploy a statically-defined TSN system.

DDS Extensions for Time Sensitive Networking (DDS-TSN) 1.0 7

7.2 Configuration Model (PIM)
The configuration of a DDS system capable of leveraging a TSN-enabled network needs to address multiple aspects:

• Modeling DDS Applications, including the definition of DDS entities, data types, and QoS policies associated
with them (see subclause 7.2.1).

• Modeling the Nodes where DDS Applications may be deployed (subclause 7.2.2).

• Modeling specific deployment scenarios, matching DDS Applications with Deployment Nodes (see subclause
7.2.2), and defining Talker and Listener requirements to allocate resources for Streams of data encapsulating
time-sensitive DDS samples (see subclause 7.2.3).

Parts of the configuration model, such as the concept of QoS Libraries or DomainParticipant Libraries, were first
introduced in the [DDS-XML] and [DDS-JSON] specifications. These mechanisms can be leveraged by tools capable
of deploying a preconfigured DDS system or capable of taking a snapshot of a running DDS system. This subclause
extends the existing concepts by providing a complete Platform-Independent Model (PIM) to configure DDS
Applications, their deployment topology, and the TSN configuration parameters required by a TSN-enabled system.

7.2.1 DDS Application Configuration

Figure 7.1 defines the entities required to model a standalone DDS system composed of different DDS applications.

In this model, a DDS system is comprised of:

• A Type Library, which contains the definition of all the types available in the DDS system.

• A QoS Library, which organizes QoS profiles associated with different DDS entities.

• A Domain Library, which organizes the entities that model the resources exchanged in a Domain.

• A DomainParticipant Library, which organizes DomainParticipants and their contained DDS entities.

• An Application Library, which organizes DDS Applications that are running or can be deployed on a DDS
system.

7.2.1.1 Type Libraries

The set of types that can be configured and represented in a type library (which comprise all the types in the DDS Type
System) are defined in subclause 7.2.2 of [DDS-XTYPES].

7.2.1.2 QoS Libraries

Table 7.1 and Table 7.2 provide a formal definition of the classes that model a Qos Library.

8 DDS Extensions for Time Sensitive Networking (DDS-TSN) 1.0

Figure 7.1: DDS Application Configuration Model

DDS

ApplicationLibrary

DomainLibrary

TypeLibrary

DomainParticipantLibrary
QosLibrary

+qos_library0..*
+application_library0..*

+types 1

+domain_library 0..* +domain_participant_library0..*

Table 7.1: QoSLibrary Definition

Class QosLibrary

Note QoS Libraries are named collections of Qos Profiles.

Attribute Type Multiplicity Note

name String8 1 Qos Library name.

qos_profile QosProfile 0..* Qos Profiles associated with the Qos Library.

Table 7.2: QoSProfile Definition

Class QoSProfile

Note Qos Profiles group a related set of entity QoS Policies.

Attribute Type Multiplicity Note

domain_participant
_qos

DomainParticipant
Qos

0..* Configures the QoS Policies that are applicable to
a DomainParticipant. See [DDS] (subclauses 2.2.5
and 2.3.3) for a formal definition of the
DomainParticipantQos type.

The model allows the definition of different
domain_participant_qos settings. In that case,
the domain_participant_qos shall provide a
name to identify the specific
DomainParticipantQos configuration.

publisher_qos PublisherQos 0..* Configures the QoS Policies that are applicable to
a Publisher. See [DDS] (subclauses 2.2.5 and
2.3.3) for a formal definition of the
PublisherQos type.

The model allows the definition of different
publisher_qos settings. In that case, the
publisher_qos shall provide a name to identify
the specific PublisherQos configuration.

subscriber_qos SubscriberQos 0..* Configures the QoS Policies that are applicable to
a Subscriber. See [DDS] (subclauses 2.2.5 and
2.3.3) for a formal definition of the
SubscriberQos type.

The model allows the definition of different
subscriber_qos settings. In that case, the
subscriber_qos shall provide a name to identify
the specific SubscriberQos configuration.

DDS Extensions for Time Sensitive Networking (DDS-TSN) 1.0 9

topic_qos TopicQos 0..* Configures the QoS Policies that are applicable to
a Topic. See [DDS] (subclauses 2.2.5 and 2.3.3) for
a formal definition of the TopicQos type.

The model allows the definition of different
topic_qos settings. In that case, the topic_qos
shall provide a name to identify the specific
TopicQos configuration.

datawriter_qos DataWriterQos 0..* Configures the QoS Policies that are applicable to
a DataWriter. See [DDS] (subclauses 2.2.5 and
2.3.3) for a formal definition of the
DataWriterQos type.

The model allows the definition of different
datawriter_qos settings. In that case, the
datawriter_qos shall provide a name to identify
the DataWriterQos configuration.

datareader_qos DataReaderQos 0..* Configures the QoS Policies that are applicable to
a DataReader. See [DDS] (subclauses 2.2.5 and
2.3.3) for a formal definition of the
DataReaderQos type.

The model allows the definition of different
datareader_qos settings. In that case, the
datareader_qos shall provide a name to identify
the DataReaderQos configuration.

7.2.1.3 Domain Libraries

Table 7.3 and Table 7.4 provide a formal definition of the classes that model a Domain Library.

Table 7.3: DomainLibrary Definition

Class DomainLibrary

Note Domain Libraries are named collections of Domains.

Attribute Type Multiplicity Note

name String8 1 Domain Library name.

domain Domain 0..* Domains associated with the Domain Library.

Table 7.4: Domain Definition

Class Domain

Note A Domain defines the resources that are available within a particular DDS Domain. Such
resources include the types that are registered within that Domain, and the Topics that are
published and subscribed to. DomainParticipants may refer to a Domain in their type
definition. This capability enables them to instantiate the entities that are defined within a
Domain, inheriting Topic and Registered Type definitions within the Domain declaration.

10 DDS Extensions for Time Sensitive Networking (DDS-TSN) 1.0

Attribute Type Multiplicity Note

name String8 1 Domain Library name.

registered_type RegisteredType 0..* Defines the types to be registered within the
Domain. These types become available to the
DomainParticipants that are instantiated according
to this Domain definition.

Topic Topic 0..* Configures the DDS Topics to be instantiated
within the DDS Domain. See [DDS] (subclauses
2.2.2.3.1) for a formal definition of the Topic
type. The configuration model shall represent only
the attributes of the Topic type that apply (i.e.,
topic_name and type_name). Therefore, the
operations provided by the Topic type are not part
of the configuration model.

Table 7.5 provides a formal definition of the RegisteredType class.

Table 7.5: RegisteredType Definition

Class RegisteredType

Note A registered type effectively registers a type in the TypeLibrary within a DDS Domain.

Attribute Type Multiplicity Note

name String8 1 Name under which the original type will be
registered within the Domain.

type_ref String8 1 Fully-qualified name (within the context of the
TypeLibrary) of the type to be registered.

7.2.1.4 DomainParticipant Libraries

Table 7.6 and Table 7.7 provide a formal definition of the classes that model a DomainParticipant Library.

Table 7.6: DomainParticipantLibrary Definition

Class DomainParticipantLibrary

Note DomainParticiant Libraries are named collections of DomainParticipants.

Attribute Type Multiplicity Note

name String8 1 DomainParticipantLibray name.

domain_participant DomainParticipant 0..* DomainParticipants that are part of the
DomainParticipantLibrary.

DDS Extensions for Time Sensitive Networking (DDS-TSN) 1.0 11

Table 7.7: DomainParticipant Definition

Class DomainParticipant

Note The DomainParticipant class describes a DDS DomainParticipant. Its definition is
based on that of the DDS DomainParticipant type in [DDS], which specifies a Domain ID
and is composed of DDS Publishers, Subscribers, and Topics. The class definition also
provides the necessary mechanisms to inherit DomainParticipant configurations from other
DomainParticipants through the base_name attribute, and to inherit the properties defined
in a Domain through the domain_ref attribute.

Base DDS::DomainParticipant (as defined in [DDS], subclause 2.2.2.2.1).

Attribute Type Multiplicity Note

name String8 1 DomainParticipant name.

base_name String8 0..1 Fully-qualified name of the DomainParticipant
from which the current DomainParticipant shall
inherit its definition.

domain_ref String8 0..1 Fully-qualified name of the Domain from which
the current DomainParticipant shall inherit its
definition.

7.2.1.5 Application Libraries

Table 7.8 and Table 7.9 provide a formal definition of the classes that model an Application Library.

Table 7.8: ApplicationLibrary Definition

Class ApplicationLibrary

Note Application Libraries are named collections of DDS Applications.

Attribute Type Multiplicity Note

name String8 1 ApplicationLibrary name.

application Application 0..* DDS Applications that are part of the
ApplicationLibrary.

Table 7.9: Application Definition

Class Application

Note Applications are collections of DomainParticipants (and their contained entities) in the
context of a process.

Applications may be associated with a Deployment Node as specified in subclause 7.2.2.

Attribute Type Multiplicity Note

name String8 1 Application name.

12 DDS Extensions for Time Sensitive Networking (DDS-TSN) 1.0

domain_participant DomainParticipant 0..* DomainParticipants that are part of the Application
(see Table 7.7 for the definition of
DomainParticipant).

7.2.2 Deployment Configuration

The deployment configuration model captures the deployment properties of a DDS system. It includes the definition of
a set of Deployment Nodes where DDS Applications can run, explicit deployment configurations modeling
instantiations of DDS Applications in Deployment Nodes, as well as any requirements these applications may pose on
an underlying TSN infrastructure to accommodate resources for time-sensitive information exchange.

Figure 7.2 extends the DDS Application Configuration Model in subclause 7.2.1 to provide a NodeLibrary of Nodes
where Applications can run, and a DeploymentLibrary of Deployment configurations.

7.2.2.1 Node Libraries

Table 7.10 and Table 7.11 provide a formal definition of the NodeLibrary and Node classes.

Table 7.10: NodeLibrary Definition

Class NodeLibrary

DDS Extensions for Time Sensitive Networking (DDS-TSN) 1.0 13

Figure 7.2: Deployment Configuration Model

Application

+ name: String8

Node

+ name: String8
+ hostname: String8
+ mac_address: MacAddress
+ ip4_address: Ipv4Address [0..1]
+ ipv6_address: Ipv6Address [0..1]

NodeLibrary

+ name: String8
DDS

DeploymentLibrary

+ name: String8

Deployment

+ name: String8

ApplicationListDeploymentConfiguration

TsnConfiguration

+node_library

0..*

+application_list1+configuration 0..1

+tsn 0..1

+application_ref

1..*

+node 1..*

+deployment_library 0..*

+deployment 0..*

+node_ref

1

Note NodeLibraries are named collections of deployment Nodes.

Attribute Type Multiplicity Note

name String8 1 NodeLibrary name.

node Node 0..* Nodes that are part of the NodeLibrary.

Table 7.11: Node Definition

Class Node

Note Nodes define hosts where DDS applications may run. They provide the necessary
information to access such nodes, including their Hostname, MAC address, IPv4, and IPv6
address.

Attribute Type Multiplicity Note

name String8 1 Name identifying the deployment Node within the
NodeLibrary.

hostname String8 1 Hostname of the Node.

mac_address MacAddress 1 MAC address associated with the network
interface to be used for DDS traffic.

ipv4_address Ipv4Address 0..1 IPv4 address associated with the network interface
to be used for DDS traffic.

This field is only required when operating over
IPv4 using the DDSI-RTPS UDP/IP PSM (see
subclause 8.3).

ipv6_address Ipv6Address 0..1 IPv6 address associated with the network interface
to be used for DDS traffic.

This field is only required when operating over
IPv6 using the DDSI-RTPS UDP/IP PSM (see
subclause 8.3).

7.2.2.2 DeploymentLibraries

Table 7.12 and Table 7.13 provide a formal definition of the DeploymentLibrary and Deployment classes.

Table 7.12: DeploymentLibrary Definition

Class DeploymentLibrary

Note DeploymentLibraries are named collections of Deployments.

Attribute Type Multiplicity Note

name String8 1 DeploymentLibrary name.

14 DDS Extensions for Time Sensitive Networking (DDS-TSN) 1.0

deployment Deployment 0..* Deployments that are part of the
DeploymentLibrary.

Table 7.13: Deployment Definition

Class Deployment

Note Deployments determine the Node where a list of DDS Applications will run. They also
provide deployment-specific configuration.

Attribute Type Multiplicity Note

name String8 1 Deployment name.

node_ref Node 1 Reference to the Node associated with the specific
deployment definition.

application_list Application 1..* List of Applications that run in the deployment
node.

configuration DeploymentConfigu
ration

0..1 Configurations specific to the deployment of DDS
applications in the deployment Node.

Table 7.14 Provides a formal definition of the DeploymentConfiguration class.

Table 7.14: DeploymentConfiguration Definition

Class DeploymentConfiguration

Note Configuration specific to the deployment of DDS applications in the deployment Node.

Attribute Type Multiplicity Note

tsn TsnConfiguration 0..1 TSN-specific deployment configuration, including
the requirements from TSN Talkers and Listeners,
and their association with DDS DataWriters and
DataReaders.

For a formal definition of TsnConfiguration,
see subclause 7.2.3.

7.2.3 TSN Configuration

On top of the necessary deployment information, a comprehensive user configuration model for DDS shall include
means to provide information relevant to TSN-enabled systems.

Figure 7.3 describes a TSN Configuration that defines TSN Talkers and Listeners, and associates them with time-
sensitive DDS DataWriters and DataReaders. Such configuration provides the underlying TSN-enabled network with
information about time-sensitive DDS traffic, including its size and periodicity, along with potential network
requirements.

DDS Extensions for Time Sensitive Networking (DDS-TSN) 1.0 15

7.2.3.1 TSN Talker

Table 7.15 provides a formal definition of the TsnTalker class.

Table 7.15: TsnTalker Definition

Class TsnTalker

Note TSN Talkers define the characteristics of the traffic sent by time-sensitive DataWriters, as
well as their requirements for the underlying TSN infrastructure. The associated DataWriter
is responsible for sending the traffic according to the specified configuration.

Attribute Type Multiplicity Note

name String8 1 Name identifying the TSN Talker within the TSN
configuration.

stream_name String8 1 Name identifying the TSN Stream the Talker is
associated with.

16 DDS Extensions for Time Sensitive Networking (DDS-TSN) 1.0

Figure 7.3: TSN Configuration Model

TsnConfiguration

TsnTalker

+ name: String8
+ stream_name: String8

TsnListener

+ name: String8
+ stream_name: String8

TimeAware

+ earliest_transmit_offset: UInt32
+ latest_transmit_offset: UInt32
+ jitter: UInt32

DDS::DataWriter

+ name: String8

DDS::DataReader

+ name: String8

NetworkRequirements

+ num_seamless_trees: UInt8
+ max_latency: UInt32

TrafficSpecification

+ periodicity: Duration
+ samples_per_period: UInt16
+ max_bytes_per_sample: UInt16
+ transmission_selection: UInt8

DataFrameSpecification

IPv4Tuple

+ source_ip_address: Ipv4Address
+ destination_ip_address: Ipv4Address
+ dscp: UInt8
+ protocol: UInt16
+ source_port: UInt16
+ destination_port: UInt16

IPv6Tuple

+ source_ip_address: Ipv6Address
+ destination_ip_address: Ipv6Address
+ dscp: UInt8
+ protocol: UInt16
+ source_port: UInt16
+ destination_port: UInt16

IEEE802MacAddresses

+ destination_mac_address: MacAddress
+ source_mac_address: MacAddress

IEEE802VlanTag

+ priority_code_point: UInt8
+ vlan_id: UInt16

+tsn_listener0..*

+datareader_ref 1

+network_requirements

0..1

+time_aware

0..1

+ipv4_tuple 0..1

+mac_address

0..1

+ipv6_tuple 0..1

+tsn_talker 0..*

+data_frame_specification

0..1

+network_requirements

0..1

+traffic_specification

1

+vlan_tag

0..1

+datawriter_ref1

traffic_specificat
ion

TrafficSpecificat
ion

1 Specifies the way the Talker transmits the
information, including information on periodicity,
message size, etc.

network_requiremen
ts

NetworkRequiremen
ts

0..1 Poses user to network requirements for the
underlying TSN infrastructure (e.g., maximum
latency and redundant trees). This group is optional.

data_frame_specifi
cation

DataFrameSpecific
ation

0..1 Indicates the mechanism that the network uses to
identify the Talker’s Stream data. For example,
MAC addresses and VLAN Tags, an IPv4 tuple, or
an IPv6 tuple. This group is optional, as it may not
be required by the TSN configuration model.

datawriter_ref String8 1 Name of the DataWriter associated with the TSN
Talker.

7.2.3.1.1 TrafficSpecification

Table 7.16 provides a formal definition of the TrafficSpecification class.

Table 7.16: TrafficSpecification Definition

Class TrafficSpecification

Note Specifies the way the TSN Talker transmits information. That is, how often it sends data,
how big data samples are, what is the shaper used for the traffic class, etc.

Attribute Type Multiplicity Note

periodicity Duration 1 Cyclic transmission interval of the TSN Talker.

samples_per_period UInt16 1 Number of samples the TSN Talker will transmit in
every period.

max_bytes_per_samp
le

UInt16 1 Maximum size of the DDS sample the TSN Talker
shall transmit per period.

transmission_selec
tion

UInt8 1 Algorithm the Talker uses to transmit the traffic
class. That is, the shaper for the traffic class.

Table 8-6 of [802.1Q] and extensions provide the
appropriate transmission selection algorithm
identifiers. For example:

• Strict Priority: 0

• Credit-based Shaper: 1

• Enhanced Transmission Selection (ETS): 2

• Asynchronous Traffic Shaping (ATS)
Transmission Selection: 3

DDS Extensions for Time Sensitive Networking (DDS-TSN) 1.0 17

time_aware TimeAware 0..1 Indicates whether the Talker is synchronized to a
time in the network. If it is, the configuration
includes the offsets at which the Talker may
transmit its frames, and the maximum difference in
time between those offsets. (See [802.1Q],
subclause 46.2.3.5 b, and Table 7.17 below.)

Table 7.17 provides a formal definition of the TimeAware class.

Table 7.17: TimeAware Definition

Class TimeAware

Note Indicates the offsets at which a Talker may transmit its frame within an interval (earliest and
latest), as well as the maximum difference in time between those offsets and the
synchronized time (jitter). (See [802.1Q], subclause 46.2.3.5 b.)

Attribute Type Multiplicity Note

earliest_transmit_
offset

UInt32 1 Earliest offset within the interval at which the
Talker is capable of starting to transmit. The
earliest transmit offset shall be specified in
nanoseconds (See [802.1Q], subclause 46.2.3.5.5.)

latest_transmit_of
fset

UInt32 1 Latest offset within the interval at which the Talker
is capable of starting to transmit. The latest
transmit offset shall be specified in nanoseconds.
(See [802.1Q], subclause 46.2.3.5.6.)

jitter UInt32 1 Maximum difference in time between transmit
offsets and the synchronized network time. Jitter
shall be specified in nanoseconds (See [802.1Q],
subclause 46.2.3.5.7.)

7.2.3.1.2 NetworkRequirements

Table 7.18 provides a formal definition of the NetworkRequirements class.

Table 7.18: NetworkRequirements Definition

Class NetworkRequirements

Note Poses user to network requirements for the underlying TSN infrastructure.

Attribute Type Multiplicity Note

num_seamless_trees UInt8 1 Number of trees that the network will deliver to
provide seamless redundancy for the Stream. Zero
indicates that no seamless redundancy is required.

NOTE—For more information on the behavior of
num_seamless_trees, see [802.1Q] subclause
46.2.3.6.1.

18 DDS Extensions for Time Sensitive Networking (DDS-TSN) 1.0

max_latency UInt32 1 As defined in [802.1Q], it “specifies latency from
Talker to Listeners(s) for a single frame of the
Stream.” It shall be specified in nanoseconds.

The requirement shall be satisfied by all Listeners
associated with the TSN Stream.

NOTE—For more information on the behavior and
special values for max_latency, see [802.1Q]
subclause 46.2.3.6.2.

7.2.3.1.3 DataFrameSpecification

Table 7.19 provides a formal definition of the DataFrameSpecification class.

Table 7.19: DataFrameSpecification Definition

Class DataFrameSpecification

Note Indicates the mechanism that the network uses to identify the Talker’s Stream data. For
example, MAC addresses and VLAN Tags, an IPv4 tuple, or an IPv6 tuple.

• When operating directly over Ethernet, the DataFrameSpecification
declaration shall define both mac_address and vlan_tag.

• When operating over UDP/IP, the DataFrameSpecification declaration shall
include either ipv4_tuple (if using IPv4) or ipv6_tuple (if using IPv6).

Attribute Type Multiplicity Note

mac_addresses IEEE802MacAddress
es

0..1 IEEE 802 MAC addresses for Stream
Identification.

vlan_tag IEEE802VlanTag 0..1 VLAN Tag (see [802.1Q], Clause 9) for Stream
Identification, excluding the Drop Eligible
Indicator (DEI) field.

ipv4_tuple IPv4Tuple 0..1 Specifies fields in the IPv4 and UDP headers to
identify an IPv4 Stream.

ipv6_tuple IPv6Tuple 0..1 Specifies fields in the IPv6 and UDP headers to
identify an IPv6 Stream.

Table 7.20 provides a formal definition of the IEEE802MacAddresses class.

Table 7.20: IEEE802MacAddresses Definition

Class IEEE802MacAddresses

Note IEEE 802 MAC addresses for Stream Identification.

Attribute Type Multiplicity Note

DDS Extensions for Time Sensitive Networking (DDS-TSN) 1.0 19

destination_mac_ad
dress

MacAddress 1 Destination MAC address.

An address with ones in all bits indicates the
destination MAC address shall be ignored for
Stream Identification.

source_mac_address MacAddress 1 Source MAC address.

An address with ones in all bits indicates the
source MAC address shall be ignored for Stream
Identification.

Table 7.21 provides a formal definition of the IEEE802VlanTag class.

Table 7.21: IEEE802VlanTag Definition

Class DataFrameSpecification

Note VLAN Tag (see [802.1Q], Clause 9) for Stream Identification, excluding the DEI field.

Attribute Type Multiplicity Note

priority_code_poin
t

UInt8 1 Priority Code Point (PCP) field of the VLAN Tag
identifying a traffic class in a Bridge.

Value range: [0, 7].

vlan_id UInt16 1 VLAN ID (VID) field of the VLAN Tag. If
unknown, vlan_id shall be set to 0.

Value range: [0, 4095].

Table 7.22 provides a formal definition of the IPv4Tuple class.

Table 7.22: IPv4Tuple Definition

Class IPv4Tuple

Note Specifies fields in the IPv4 and transport protocol headers to identify an IPv4 Stream.

Attribute Type Multiplicity Note

source_ip_address IPv4Address 1 Source IPv4 address [RFC791]. A 0.0.0.0 address
indicates the source IP address shall be ignored for
Stream Identification.

destination_ip_add
ress

IPv4Address 1 Destination IPv4 address [RFC791].

dscp UInt8 1 Differentiated Services Code Point (DSCP) field,
as defined in [RFC2474].

A dscp field of value 64 indicates that the field
shall be ignored for Stream Identification.

20 DDS Extensions for Time Sensitive Networking (DDS-TSN) 1.0

protocol UInt16 1 The protocol field indicates the encapsulated
next level protocol.

For example, 17 indicates UDP (as specified in
[RFC768]).

source_port UInt16 1 Source port of the protocol (e.g., UDP).

destination_port UInt16 1 Destination port of the protocol (e.g., UDP).

Table 7.23 provides a formal definition of the IPv6Tuple class.

Table 7.23: IPv6Tuple Definition

Class IPv6Tuple

Note Specifies fields in the IPv6 and transport protocol headers to identify an IPv6 Stream.

Attribute Type Multiplicity Note

source_ip_address IPv6Address 1 Source IPv6 address [RFC2460]. A 0:0:0:0:0:0:0:0
address (the unspecified address), indicates the
source IP address shall be ignored for Stream
Identification.

destination_ip_add
ress

IPv6Address 1 Destination IPv6 address [RFC2460].

dscp UInt8 1 Differentiated Services Code Point (DSCP) field,
as defined in [RFC2474].

A dscp field of value 64 indicates that the field
shall be ignored for Stream Identification.

protocol UInt16 1 The protocol field indicates the encapsulated
next level protocol.

For example, 17 indicates UDP (as specified in
[RFC768]).

source_port UInt16 1 Source port of the protocol (e.g., UDP).

destination_port UInt16 1 Destination port of the protocol (e.g., UDP).

7.2.3.2 TSN Listener

Table 7.24 provides a formal definition of the TsnListener class.

Table 7.24: TsnListener Definition

Class TsnListener

Note TSN Listeners define the requirements from time-sensitive DataReaders for the underlying
TSN infrastructure.

DDS Extensions for Time Sensitive Networking (DDS-TSN) 1.0 21

Attribute Type Multiplicity Note

name String8 1 Name identifying the Listener within the
TsnConfiguration.

stream_name String8 1 Name identifying the TSN Stream the Listener is
associated with.

network_requiremen
ts

NetworkRequiremen
ts

0..1 Poses user to network requirements for the
underlying TSN infrastructure (e.g., maximum
latency and redundant trees).

7.2.3.2.1 NetworkRequirements

Table 7.25 provides a formal definition of the NetworkRequirements class.

Table 7.25: NetworkRequirements Definition

Class NetworkRequirements

Note Poses user to network requirements for the underlying TSN infrastructure.

Attribute Type Multiplicity Note

num_seamless_trees UInt8 1 Number of trees that the network will deliver to
provide seamless redundancy for the Stream.

Value 0 indicates that no seamless redundancy is
required.

NOTE—For more information on the behavior of
num_seamless_trees, see [802.1Q] subclause
46.2.3.6.1.

max_latency String8 1 As defined in [802.1Q], it “specifies latency from
Talker to Listeners(s) for a single frame of the
Stream.” It shall be specified in nanoseconds. (See
[802.1Q] subclause 46.2.3.6.2.)

The requirement shall be satisfied only by the
present Listener.

NOTE—For more information on the behavior and
special values for max_latency, see [802.1Q]
subclause 46.2.3.6.2.

7.3 Configuration Representation (PSM)
This subclause specifies a collection of Platform-Specific Models (PSM) representing the configuration model in
different formats.

7.3.1 XML PSM

The syntax to represent the configuration of a DDS system capable of leveraging a TSN-enabled network in XML
format is described in the following normative XML schema files:

22 DDS Extensions for Time Sensitive Networking (DDS-TSN) 1.0

• dds-tsn_definitions_nonamespace.xsd (Normative), contains the XSD type definition for all the types required
to represent the configuration model. It defines no targetNamespace, so that type definitions can be reused
by other schemas following the XML Chameleon Schema Definition pattern as described in [DDS-XML].

• dds-tsn_definitions.xsd (Normative), defines the XML configuration model and sets targetNamespace to
https://www.omg.org/spec/DDS-TSN.

The syntax defined in these XML files is based on the standard DDS System Building Block Set defined in [DDS-
XML] to represent a complete DDS system. In particular, it uses its definitions to model Type Libraries, Qos Libraries,
Domain Libraries, DomainParticipant Libraries, and Application Libraries. The schema files add syntax to describe
Nodes and Deployment configurations, including the appropriate TSN requirements.

The following non-normative files contain an example that applies the XML schema to represent a DDS system to be
deployed on a TSN-enabled network:

• dds-tsn_configuration_example_system_design.xml (Informative)

• dds-tsn_configuration_example_deployment_design.xml (Informative)

7.3.2 JSON PSM

The syntax to represent the configuration of a DDS system capable of leveraging a TSN-enabled network in JSON
format is described in the following normative JSON schema file:

• dds-tsn_definitions.schema.json (Normative), which contains JSON type definitions for all the types required
to represent the configuration model.

The syntax defined in this JSON schema file is based on the standard DDS System Building Block Set defined in
[DDS-JSON] to represent a complete DDS system. In particular, it uses its definitions to model Type Libraries, Qos
Libraries, Domain Libraries, Domain Participant Libraries, and Application Libraries. The schema file adds syntax to
describe Nodes and Deployment configurations, including the appropriate TSN requirements.

The following non-normative files contain an example that applies the JSON schema to represent a DDS system to be
deployed on a TSN-enabled network:

• dds-tsn_configuration_example_system_design.json (Informative)

• dds-tsn_configuration_example_deployment_design.json (Informative)

7.3.3 YANG PSM

This subclause maps the configuration model to YANG data module definitions for TSN user/network configuration. In
particular, it maps the model to the data module definitions to represent Talker, Listener, and Status Groups that are
specified in subclause 46.3 of [802.1Q]. These definitions can be transformed into other platform-specific formats for
existing UNI protocols, such as XML or JSON for RESTCONF.

As mentioned above, the DDS-TSN configuration model provides a Deployment configuration that allows the
representation of TSN requirements for a specific deployment scenario. Such requirements define the TSN Talkers and
Listeners that are responsible for exchanging time-sensitive DDS data, and refer to the DataWriters and DataReaders
that are responsible for the actual information exchange. An application compliant with the mapping rules defined in
this subclause should be capable of parsing a DDS-TSN configuration document, identifying the TSN Talkers and
Listeners involved in the DDS-TSN system (see subclauses 7.2.2 and 7.2.3), and creating the appropriate requests with
Talker and Listener Groups.

NOTE—As specified in subclause 46.2.2 of [802.1Q], the configuration of a TSN system based on the fully centralized
model can be viewed conceptually as a request/response exchange between a CUC and a CNC, where the CUC
transmits a protocol message that contains a Talker or Listener Group (a request), and the CNC sends a protocol

DDS Extensions for Time Sensitive Networking (DDS-TSN) 1.0 23

https://www.omg.org/spec/DDS-TSN

message that contains a Status group (a response). Those interactions are modeled according to the specific UNI
protocol CUCs and CNCs use to communicate with each other.

7.3.3.1 Talker and Listener Groups

To construct request messages containing Talker and Listener Groups using the appropriate YANG data module
definitions, implementers shall identify the DataWriters and DataReaders in the deployment configuration that are
associated with a TsnTalker and a TsnListener configuration, respectively. The specified configuration, along with
the configuration of the Applications, Deployments, and Nodes associated with those DataWriters and DataReaders
will be the input for the subsequent transformation of Deployment configurations to platform-independent YANG
Talker and Listener Group definitions.

Every TSN Stream provided by a TsnTalker shall be identified by its Stream ID, represented in YANG with a
stream-id-type string, according to the following transformation rules.

• stream-id-type (typedef):

◦ The MAC address field—represented by the first six octets of the stream-id-type string—shall be the
MAC address of the Node associated (via node_ref) with the Deployment configuration that
instantiates the TsnTalker.

◦ The Unique ID field—represented by the last two octets of the stream-id-type string—shall be a 16-bit
unsigned integer that uniquely identifies the DataWriter within the Deployment node.

Every TsnTalker in the TSN Deployment configuration shall be mapped to an equivalent Talker Group, represented
as a YANG group-talker grouping according to the following transformation rules:

• group-talker (grouping):

◦ stream-rank (container) shall have a rank of 1.

◦ end-station-interfaces (list) shall contain the MAC address of the Node associated (via
node_ref) with the Deployment configuration that instantiates the TsnTalker.

◦ data-frame-specification (list) is optional. If the TsnTalker’s data_frame_specification
attribute is not present, the Talker shall not provide data-frame-specification. If the TsnTalker’s
data_frame_specification attribute is present, data-frame-specification shall be configured
as follows:

▪ If the DataWriter is configured to send data using the DDSI-RTPS Ethernet PSM, data-frame-
specification shall set:

• group-ieee802-mac-addresses (grouping) with the equivalent fields in the
mac_addresses attribute of the TsnTalker’s data_frame_specification. That is:

◦ destination-mac-address (leaf) with the value of
mac_addresses.destination_mac_address.

◦ source-mac-address (leaf) with the value of
mac_addresses.source_mac_address.

• group-ieee802-vlan-tag (grouping) with the equivalent fields in the vlan_tag attribute
of the TsnTalker’s data_frame_specification:

◦ priority-code-point (leaf) with the value vlan_tag.priority_code_point.

◦ vlan-id (leaf) with the value of vlan_tag.vlan_id.

▪ If the DataWriter is configured to send data using the DDSI-RTPS UDP/IP PSM over IPv4, data-
frame-specification shall set:

24 DDS Extensions for Time Sensitive Networking (DDS-TSN) 1.0

• group-ipv4-tuple (grouping) with the equivalent fields in the ipv4_tuple attribute of the
TsnTalker’s data_frame_specification. That is,

◦ source-ip-address (leaf) with the value of ipv4_tuple.source_ip_address.

◦ destination-ip-address (leaf) with the value of
ipv4_tuple.destination_ip_address.

◦ dscp (leaf) with the value of ipv4_tuple.dscp.

◦ protocol (leaf) with the value of ipv4_tuple.protocol.

◦ source-port (leaf) with the value of ipv4_tuple.source_port.

◦ destination-port (leaf) with the value of ipv4_tuple.destination_port.

• group-ipv6-tuple (grouping) with the equivalent fields in the ipv6_tuple attribute of the
TsnTalker’s data_frame_specification. That is:

◦ source-ip-address (leaf) with the value of ipv6_tuple.source_ip_address.

◦ destination-ip-address (leaf) with the value of
ipv6_tuple.destination_ip_address.

◦ dscp (leaf) with the value of ipv6_tuple.dscp.

◦ protocol (leaf) with the value of ipv6_tuple.protocol.

◦ source-port (leaf) with the value of ipv6_tuple.source_port.

◦ destination-port (leaf) with the value of ipv6_tuple.destination_port.

◦ traffic-specification (container) shall be configured with the equivalent fields in the
TsnTalker’s traffic_specification attribute. The rules to configure equivalent fields are the
following:

▪ interval (container) shall be set to the value of traffic_specification.periodicity,
expressed in terms of a numerator and a denominator (fractions of a second).

▪ max-frames-per-interval (leaf) shall be set to the value of
traffic_specification.samples_per_period.

▪ max-frame-size (leaf) shall be set to the value of
traffic_specification.max_bytes_per_sample.

▪ transmission-selection (leaf) shall be set to the value of
traffic_specification.transmission_selection.

▪ time-aware (container) shall be configured as follows:

• If traffic_specification.time_aware field is unspecified in the TsnTalker, the
following leaf members shall be set to zero: earliest-transmit-offset, latest-
transmit-offset, and jitter.

• Otherwise, earliest-transmit-offset, latest-transmit-offset, and jitter shall be
set to the value of the corresponding field within traffic_specification.time_aware.
That is, earliest_transmit_offset, latest_transmit_offset, and jitter,
respectively.

◦ user-to-network-requirements (container) is optional. If the TsnTalker’s
network_requirements attribute is not present, the Talker shall not provide user-to-network-
requirements. If the TsnTalker’s network_requirements attribute is present, user-to-network-
requirements shall be set with equivalent fields in the TsnTalker’s network_requirements:

▪ num-seamless-trees (leaf) shall be set to the value of
network_requirements.num_seamless_trees.

DDS Extensions for Time Sensitive Networking (DDS-TSN) 1.0 25

▪ max-latency (leaf) shall be set to the value of network_requirements.max_latency.

◦ interface-capabilities (container) shall be configured as follows:

▪ vlan-tag-capable (leaf) shall be set according to the capabilities of the underlying infrastructure,
as specified in subclause 46.2.3.7.1 of [802.1Q].

▪ cb-stream-iden-type-list (leaf-list) and cb-sequence-type-list (leaf-list) shall
be configured according to the [802.1CB] support of the underlying infrastructure, as specified in
subclauses 46.2.3.7.2 and 46.2.3.7.3 of [802.1Q].

Every TsnListener in the TSN Deployment configuration shall be mapped to an equivalent Listener Group,
represented as a YANG group-listener grouping, according to the following transformation rules:

• group-listener (grouping):

◦ end-station-interfaces (list) shall contain the MAC address of the Node associated (via
node_ref) with the Deployment configuration that instantiates the TsnListener.

◦ user-to-network-requirements (container) is optional. If the TsnListener’s
network_requirements attribute is not present, the Listener shall not provide user-to-network-
requirements. If the TsnListener’s network_requirements attribute is present, user-to-
network-requirements shall be configured as follows:

▪ num-seamless-trees (leaf) shall be set to the value of
network_requirements.num_seamless_trees.

▪ max-latency (leaf) shall be set to the value of network_requirements.max_latency.

◦ interface-capabilities (container) shall be configured as follows:

▪ vlan-tag-capable (leaf) shall be set according to the capabilities of the underlying infrastructure,
as specified in subclause 46.2.3.7.1 of [802.1Q].

▪ cb-stream-iden-type-list (leaf-list) and cb-sequence-type-list (leaf-list) shall
be configured according to the [802.1CB] support of the underlying infrastructure, as specified in
subclauses 46.2.3.7.2 and 46.2.3.7.3 of [802.1Q].

7.3.3.2 Reception of Status Group

Upon the reception of a request message containing one or more Talker and Listener Groups, a CNC will respond with a
protocol message including a group-status-stream grouping:

• group-status-stream (grouping):

◦ status-info (container) with the status for every stream configuration in the network, including the
status of Talkers and Listeners, and a failure code indicating if the Stream encountered a failure.

◦ failed-interfaces (list) with the MAC address and interface name of any interface that may have
failed within the physical topology.

The response message may also include a group-status-talker-listener grouping, which provides the status
for a specific Talker or Listener:

• group-status-talker-listener (grouping):

◦ accumulated-latency (leaf) with the worst-case latency in nanoseconds that a Stream frame will
encounter along its path. When delivered to a Talker, accumulated-latency provides the worst-case
latency for all Listeners. In contrast, when delivered to a Listener, accumulated-latency provides the
worst-case latency for that specific Listener.

26 DDS Extensions for Time Sensitive Networking (DDS-TSN) 1.0

◦ interface-configuration (container) provides the appropriate configuration for the interfaces
specified for the Talker or Listener in the end-station-interfaces group. Therefore, the list of
interface configuration values will include zero or more configurations for ieee802-mac-addresses,
ieee802-vlan-tag, ieee802-vlan-tag, or ipv6-tuple. The returned configuration is specific to
each Talker and Listener of the associated Stream.

DDS Extensions for Time Sensitive Networking (DDS-TSN) 1.0 27

8 DDSI-RTPS Wire Protocol over TSN

8.1 Overview
The DDS Interoperability Real-Time Publish-Subscribe wire protocol (DDSI-RTPS) is responsible for delivering DDS
user and discovery data from publishing to subscribing applications. DDSI-RTPS follows a model-driven design, where
a PIM defines the structure and behavior of the RTPS Messages that construct the wire protocol, such that they can be
mapped to different transport protocols or lower layer protocols in specific PSMs. DDSI-RTPS poses little requirements
on the underlying technology. Indeed, it is designed to work on top of transport protocols that are neither connection
oriented nor reliable, such as UDP (see UDP/IP PSM in [DDSI-RTPS]).

In the context of time-sensitive streams of data, information exchanged between Talkers and Listeners may be sent
according to a schedule that requires the definition of a period and a maximum message size (see subclause 7.2.3.1).
The global schedule is guaranteed by the underlying network infrastructure and the configuration of the TSN system.
These characteristics determine the type of DDS information that Talkers and Listeners can exchange using time-critical
Streams, as well as the type of reliability that DDS applications can expect from the network infrastructure.

The purpose of this clause is to define the rules, mechanisms, and behavior of DDS systems configured to operate over
TSN. In this sense, it defines: the subset of RTPS Messages and Submessages that Endpoints may exchange to achieve a
deterministic behavior, considerations and requirements for discovery and user traffic, a set of QoS Policies that DDS
Endpoints may configure to operate in a deterministic manner, and other requirements and considerations related to
DDS Security and data modeling.

8.2 DDSI-RTPS PIM over TSN

8.2.1 Message Module

The message module is the part of the DDSI-RTPS PIM that defines the types and structure of an RTPS Messages. All
RTPS Messages consist of a Header followed by a series of Submessages. The number of Submessages encapsulated in
an RTPS Message is limited by the maximum message size supported by the underlying transport mechanism.

As described in subclause 8.3.7 of [DDSI-RTPS], RTPS Submessages are divided in two groups: Entity Submessages
and Interpreter Submessages. Entity Submessages target an RTPS Entity. In contrast, Interpreter Submessages modify
the RTPS Receiver state and provide a context to process Entity Messages.

To provide a deterministic behavior and a deterministic message size, DataWriters associated with an TsnTalker in the
Deployment configuration (see subclause 7.2.3.1) may need to limit their RTPS Message exchange to RTPS Messages
that include the following RTPS Submessages:

• InfoTimestamp

• Data

• DataFrag

The size of the corresponding RTPS Header, plus the size of InfoTimestamp Submessages and subsequent Data or
DataFrag Submessages that follow it in the RTPS Message need to be accounted for in the configuration of the
max_bytes_per_sample field in Table 7.16.

RTPS Submessages responsible for achieving reliability or in-order delivery, such as Gap, AckNack, NackFrag; as well
as the rest of Interpreter Submessages, may be sent as part of “Best Effort” Streams. However, given the guarantees of
the underlying TSN system, this sort of traffic may be unnecessary for TSN-enabled DataReaders and DataWriters.
Also, retransmissions and other types of aperiodic traffic may fail to meet the schedule and configuration of the TSN
Streams associated with the delivery of time-critical data.

DDS Extensions for Time Sensitive Networking (DDS-TSN) 1.0 29

8.2.2 Discovery Module

The Discovery Module defines the discovery protocols that allow DomainParticipants to discover other
DomainParticipants and their corresponding Endpoints (i.e., DataWriters and DataReaders). As a result of this process,
DataWriters and DataReaders that have discovered matching counterparts can establish communication.

8.2.2.1 Performing Discovery over TSN

The standard Simple Participant Discovery Protocol (SPDP) and Simple Endpoint Discovery Protocol (SEDP) (which
are defined in subclauses 8.5.3 and 8.5.4 of [DDSI-RTPS]) are not considered time-critical. While DomainParticiants
send periodic announcements, the process by which DomainParticiants exchange information about their Endpoints
may not be easily scheduled. Therefore, discovery may need to be performed either:

• Over non-critical channels using non-critical streams, ensuring that it is performed before the TSN scenario is
properly configured (and must adhere to a schedule);

• or preconfigured statically, as specified in subclause 8.5.6 of [DDSI-RTPS].

8.2.2.2 Restricting Discovery for Time-Sensitive Applications

Unless otherwise specified, SPDP and SEDP may match TSN-enabled DDS applications with regular DDS applications
that do not meet the specified TSN requirements. In other words, DataWriters acting as Talkers of a TSN Stream may
discover (and send data to) compatible DataReaders that are not Listeners of that TSN Stream, and DataReaders acting
as Listeners of a TSN Stream may discover (and receive data from) compatible DataWriters that are not acting as the
Talker of that TSN Stream. The reason is that the matching rules for DataReaders and DataWriter are based on Topic
names, associated types, and QoS policies—they are unaware of the underlying TSN requirements. As a consequence, a
DataReader expecting data at a certain rate or within certain latency boundaries may end up receiving data from a
matching DataWriter that does not adhere to that predefined configuration.

Implementers of this specification may apply different techniques to restrict discovery of applications that do not
provide time-sensitive requirements. For instance, the DataWriter and DataReaders associated with the Talker and
Listeners of a TSN Stream, respectively, could use the PARTITION QoS ([DDS], subclause 2.2.3.13) to prevent them
from matching compatible DataReaders and DataWriters that do not belong to that TSN Stream. For that purpose,
implementers may use the stream_name in the TsnTalker and TsnListener configuration class (see subclause
7.2.3) as the partition name. With such configuration, the SEDP will not match DataReaders and DataWriters that are
not reading and writing in that specific partition, guaranteeing that the DataWriter acting as the Talker of a TSN Stream
will only communicate with DataReaders acting as Listeners of that TSN Stream.

8.2.3 QoS Policies

To guarantee low latency and provide a deterministic behavior, users of this specification shall take into account the
exchange of meta traffic, such as acknowledgments and potential repairs, exchanged between DataReaders and
DataWriters that may prevent a publishing application from adhering to a predefined schedule, or to a predetermined
message size. That behavior can be guaranteed using the appropriate QoS Policy settings.

For instance, DataReaders and DataWriters associated with a TSN Stream that have time-critical requirements
disallowing message repairs and support for retransmission of information to late-joining applications, may be
configured according to the following QoS Policies:

• RELIABILITY QoS: BEST_EFFORT

• DURABILITY QoS: VOLATILE

• HISTORY QoS: KEEP_LAST with depth of 1

Such configuration disables the need for sending repairs and acknowledgments and guarantees that data will only be
delivered to DataReaders that have already been discovered, with a predictable message size.

30 DDS Extensions for Time Sensitive Networking (DDS-TSN) 1.0

8.2.4 Other Considerations

8.2.4.1 Data Modeling Considerations

As mentioned above, DDS applications using certain TSN capabilities may need to adhere to a predefined schedule, as
well as to predictable message sizes and publication rates. In that sense, there are two data modeling capabilities that
users of this specification need to account for: the use of unbounded types and the number of instances per Topic.

8.2.4.1.1 Use of Unbounded Types

The DDS Type System defined in [DDS-XTYPES] supports types, such as Sequence, String8, String16, and Map,
for which the bound parameter may be omitted. Such collections are considered unbounded and their size might be
variable throughout the lifetime of the applications that exchange them.

Users of this specification dealing with TSN deployments with requirements for a predictable message size will
therefore need to ensure that Sequences, Strings, and Maps are either bounded or that their upper bound does not
increase beyond the predetermined message size.

8.2.4.1.2 Number of Instances per Topic

Likewise, implementers of time-sensitive DDS applications need to consider the number of instances per Topic and the
rate at which they are updated. Adhering to a predefined schedule requires taking into account the messages sent every
period. In the case of keyed Topics, that implies accounting for the number, size, and update life cycle of all the
instances that are handled by a DataWriter associated with a TSN Talker.

In certain use cases, where instances of a Topic have different life cycles, implementers may need to use a separate
DataWriter for each specific instance, associating each instance-specific DataWriter to a separate TSN Stream.

8.2.4.2 DDS Security Considerations

The DDS Security specification [DDS-SECURITY] defines a security model and a service plugin interface architecture
compliant with DDS and its DDSI-RTPS wire protocol. To accomplish that, it extends the data types used by DDS
discovery and defines new built-in discovery Topics to enable authentication and access control of DDS applications,
and implements mechanisms to secure DDS messages on the wire.

Applications using DDS Security systems often require authentication of the DomainParticipants that are discovered
within a DDS Domain. They may also restrict access to certain Topics, and validate and enforce the permissions of
discovered applications (e.g., if a discovered DomainParticipant can create DataReaders or DataWriters to read or write
certain Topics). The information exchange between the built-in Endpoints of the DomainParticipants to perform such
operations have the same behavior and requirements as regular built-in Endpoints for DDS discovery. Therefore, the
same considerations for discovery traffic, specified in subclause 8.2.2.1, apply to the traffic exchange of the built-in
Endpoints defined in [DDS-SECURITY].

Moreover, DDS Security introduces mechanisms to secure RTPS Messages on the wire. That implies adding secure
Submessage elements, which increases the size of protected messages. Therefore, implementers of this specification
need to take into account the increase in message size introduced by DDS Security to protect (sign or encrypt) user data,
setting the max_bytes_per_sample field in the TsnTalker definition (see Table 7.16) to an appropriate value.

8.3 DDSI-RTPS UDP/IP PSM over TSN
As specified in [802.1Q]: “the goal of TSN configuration is to allow Talkers and Listeners to use their existing transport
layer and application layer protocols for data, rather than requiring a TSN-specific frame format.” That implies
supporting the use of “well-established frame formats, such as TCP, UDP and IEEE 802.1 (MAC addresses and VLAN
identifier)” over TSN. For that purpose, [802.1Q] introduces the concept of Stream Transformation, which: “provides

DDS Extensions for Time Sensitive Networking (DDS-TSN) 1.0 31

features to enable the transformation of the stream’s identification at the user/network boundary, either within an end
station or at the nearest Bridge.”

In the case of the DDSI-RTPS UDP/IP PSM, the implementation of the Stream Identification function needs to pinpoint
RTPS Messages containing data samples associated with TSN Streams. In other words, data samples that a DataWriter
associated with a TSN Talker sends to one or more DataReaders associated with TSN Listeners.

8.3.1 Stream Identification of UDP Datagrams Encapsulating RTPS Messages

To provide the Stream Identification function with sufficient information, this specification recommends the use of the
6-tuple, as defined in [RFC3290] (also adopted in RFCs related to DetNet, such as [RFC9023] and [RFC8939]), to
uniquely identify the RTPS Messages from information available in the following six fields from the IP header and
UDP headers: destination address, source address, IP protocol, source port, destination port, and differentiated services
code point (DSCP).

Implementers of this specification may compute the TSN Streams that are part of the DDS-TSN configuration and
determine a combination of fields from the 6-tuple that uniquely identifies the UDP datagrams encapsulating RTPS
Messages associated with a TSN Stream. For example, the users may:

• Configure the DataWriter associated with a TSN Stream to use a specific source port and source address to
uniquely identify all the RTPS Messages it sends to all matching DataReaders.

• Configure all DataReaders associated with a TSN Stream to listen on a specific destination multicast address
and port to uniquely identify all the RTPS Messages that are sent to those DataReaders.

• Configure a combination of source addresses and ports, or destination addresses and ports, with a DSCP value
to uniquely identify RTPS Messages.

The specific mechanism to configure the source port or source IP address of a DataWriter, the destination port or
destination address of a DataReader, and the value of DSCP in the IP header is out of the scope of this specification.
The mechanism to configure the end station or nearest Bridge to perform the Stream Identification function is also out
of the scope of this specification. It may be derived from the DataFrameSpecification setting specified in
subclause 7.2.3.1.3, or computed by an external entity, such as a CNC or a system integrator. In either case, the resulting
6-tuple shall provide a combination of fields that enables unique identification of UDP datagrams encapsulating the
RTPS Messages that belong to a TSN Stream, differentiating them from other UDP datagrams.

8.3.2 Stream Transformation of UDP Datagrams Encapsulating RTPS Messages

UDP datagrams matching the identification criteria for a TSN Stream shall be treated specially when encapsulated over
Ethernet frames. In other words, the Stream Transformation function either at the end station or at the nearest Bridge
shall use the VLAN Tag and group destination MAC address that have been preestablished to identify the specific TSN
Stream. For example, implementers may apply the IEEE 802.1CB function for Active Destination MAC and VLAN
Stream Identification (see [802.1CB], subclause 6.6), which assigns the VLAN Tag and group destination MAC
address, in combination with the IP Stream Identification function (see [802.1CB], subclause 6.7). As indicated in
[802.1Q], these functions may be implemented both in software and hardware.

8.4 DDSI-RTPS Ethernet PSM over TSN
When operating directly over Ethernet, implementers may also need to apply a Stream Transformation function, either
at the end station or at the nearest Bridge, capable of setting the VLAN Tag and group destination address assigned to a
TSN Stream. This is due to the fact that DDS applications may discover real multicast addresses and may be unaware of
the VLAN Tags and group destination addresses the network uses to identify a TSN Stream. In such cases,
implementers of this specification may use the IEEE 802.1CB function for Active Destination MAC and VLAN Stream
Identification function (see [802.1CB]) to translate the VLAN Tag and group destination address pair to the appropriate
value for Stream Identification.

32 DDS Extensions for Time Sensitive Networking (DDS-TSN) 1.0

Annex A: DDSI-RTPS Ethernet PSM

(normative)

A.1 Introduction
This Platform Specific Model (PSM) maps the DDSI-RTPS Wire Protocol PIM defined in [DDSI-RTPS] to Ethernet.
The goal for this PSM is to provide a mapping with minimal overhead directly on top of Ethernet, without the IP and
UDP headers that are part of the existing UDP/IP PSM.

A.2 Notational Conventions
This PSM uses the same notational contentions defined in subclause 9.2 of [DDSI-RTPS] for the UDP/IP PSM. In
particular:

• It defines all data types under the RTPS namespace.

• It uses OMG IDL [IDL] for definition of types.

• It uses CDR for wire representation.

A.3 Mapping of the RTPS Types
The mapping of RTPS types is the same as the mapping defined in subclause 9.3 of [DDSI-RTPS] for the UDP/IP PSM,
except those noted in Table A.1.

Table A.1: PSM mapping of the value types that appear on the wire

Type Description of the PSM Mapping

Locator_t Mapping of Locator_t is the same as the mapping defined by the UDP/IP PSM in subclause
9.3.2 of [DDSI-RTPS]. That is:

struct Locator_t {
 long locatorKind;
 unsigned long port;
 octet[16] address;
};

This PSM adds the LOCATOR_KIND_ETHERNET to the list of values reserved by the DDSI-
RTPS protocol in subclause 8.2.1.2 of [DDSI-RTPS]. LOCATOR_KIND_ETHERNET shall be
defined as:
const long LOCATOR_KIND_ETHERNET = 0x02000000;

If the Locator_t kind is LOCATOR_KIND_ETHERNET, the port encodes the Ethernet VLAN
ID (VID), the Ethernet Priority Code Point (PCP), and the RTPS logical port. In this case, the
leading 12 bits contain the VLAN ID, followed by 4 bits containing the Priority Code Point (4
bits). The last 2 bytes contain the RTPS logical port.

If the Locator_t kind is LOCATOR_KIND_ETHERNET, the address contains the
corresponding host MAC address. In this case, the leading 10 octets of the address shall be
zero. The last 6 octets are used to store the MAC address. The mapping between the colon-
notation “AA:BB:CC:DD:EE:FF” of a MAC address and its representation in the address
field of a Locator_t is:

address = (0,0,0,0,0,0,0,0,0,0,0xAA,0xBB,0xCC,0xDD,0xEE,0xFF}

DDS Extensions for Time Sensitive Networking (DDS-TSN) 1.0 33

A.4 Mapping of the RTPS Messages

A.4.1 Overall Structure

The RTPS PIM defines the overall structure of a Message, which is composed of a Header and a set of Submessages.

This PSM follows the structure defined by the RTPS UDP/IP PSM in subclause 9.4.1 of [DDSI-RTPS], which aligns
each Submessage on a 32-bit boundary with respect to the start of the Message.
Locator_t:
0...2...........8...............16.............24...............31
+-+
| Header |
+-+
| Submessage |
+-+
...
+-+
| Submessage |
+-+

A Message has a well-known length. This length is not sent explicitly by the DDSI-RTPS protocol but is part of the
underlying mechanism with which Messages are sent. In the case of Ethernet, the length of the Message is the length of
the Ethernet frame’s payload (i.e., the Ethernet MTU).

A.4.2 Mapping of PIM SubmessageElements

This PSM preserves the IDL type and on-the-wire representation defined by the RTPS UDP/IP PSM in subclause 9.4.2
of [DDSI-RTPS] for all SubmessageElements except for LocatorList, which shall be represented as defined below.

A.4.2.1 LocatorList

The PSM mapping for the LocatorList SubmessageElement is the same as that defined in subclause 9.4.2.10 of
[DDSI-RTPS].

Each Locator_t with kind = LOCATOR_KIND_ETHERNET has the following wire representation:

0...2...........8...............16.............24...............31
+-+
| locatorKind = LOCATOR_KIND_ETHERNET |
+-----------------------+-------+---------------+---------------+
| VID (12 bits) | PCP | Logical Port (2 bytes) |
+---------------+-------+-------+---------------+---------------+
|0|0|0|0|0|0|0|0|0|0|0|0|0|0|0|0| |
+-------------------------------+ MAC Address (6 bytes) +
| |
+---------------+---------------+---------------+---------------+

A.4.3 Additional SubmessageElements

This specification does not introduce any additional SubmessageElements to those defined by the RTPS PIM in
subclause 8.3.5 of [DDSI-RTPS].

A.4.4 Mapping of RTPS Header

The mapping of the RTPS Header shall follow the mapping defined by the RTPS UDP/IP PSM in subclause 9.4.4 of
[DDSI-RTPS].

34 DDS Extensions for Time Sensitive Networking (DDS-TSN) 1.0

A.4.5 Mapping of RTPS Submessages

The mapping of the RTPS Header shall follow the mapping defined by the RTPS UDP/IP PSM in subclause 9.4.5 of
[DDSI-RTPS] for the RTPS Submessages defined in the RTPS PIM.

Platform-specific Submessages that apply only to the UDP/IP PSM, such as InfoReplyIp4, shall not be mapped.

A.5 RTPS Message Encapsulation
When RTPS operates over Ethernet, a Message is the contents (payload) of exactly one Ethernet frame.

NOTE—Ethernet frames containing an RTPS Message should be set with an appropriate EtherType indicating the
protocol encapsulated in their payload. Future versions of this specification may mandate the use of an EtherType
registered with the IEEE Registration Authority to identify Ethernet frames encapsulating RTPS Messages.

A.6 Mapping of the RTPS Protocol

A.6.1 Default Locators

A.6.1.1 Discovery traffic

Discovery traffic is the traffic generated by the Participant and Endpoint Discovery Protocols. For the Simple Discovery
Protocols (SPDP and SEDP), discovery traffic is the traffic exchanged between the built-in Endpoints.

The SPDP built-in Endpoints are configured using well-known logical ports (see subclause 8.5.3.4 of [DDSI-RTPS]).
The Ethernet PSM shall map those well-known ports to the logical port numbers, using the number expressions defined
in Table 9.8 of [DDSI-RTPS].

The default logical ports used by the SEDP built-in Endpoints match those used by the SPDP. If a node chooses not to
use the default logical ports for the SEDP, it can include the new logical port numbers as part of the information
exchanged during the SPDP.

A.6.1.2 User Traffic

User traffic is the traffic exchanged between user-defined Endpoints (i.e., non built-in Endpoints). As such, it pertains to
all the traffic not related to discovery. By default, user-defined Endpoints shall use the port number expressions listed in
Table 9.9 of [DDSI-RTPS] to derive the corresponding logical port.

User-defined Endpoints may choose to not use the default ports. In this case, remote Endpoints obtain the port number
as part of the information exchanged during the SEDP.

A.6.1.3 Default Logical Port Numbers

The default logical port numbers are the same as those defined for the UDP/IP PSM in subclause 9.6.1.3 of [DDSI-
RTPS].

A.6.1.4 Default Settings for the Simple Participant Discovery Protocol

A.6.1.4.1 Default multicast address

In order to enable plug-and-play interoperability, the default pre-configured list of locators must include the following
multicast locator:
DefaultMulticastLocator = {
 LOCATOR_KIND_ETHERNET, // locatorKind
 PB + DG * domainId, // port
 01:00:5E::EF:FF:00:01 // address

DDS Extensions for Time Sensitive Networking (DDS-TSN) 1.0 35

}

All Participants must announce and listen on this multicast address.
SPDPbuiltinParticipantWriter.readerLocators CONTAINS DefaultMulticastLocator
SPDPbuiltinParticipantReader.multicastLocatorList CONTAINS DefaultMulticastLocator

A.6.1.4.2 Default Announcement rate

The default rate by which SPDP periodic announcements are sent shall be the default rate defined for the UDP/IP PSM
in subclause 9.6.1.4.2 of [DDSI-RTPS].

A.6.2 Data Representation for the Built-in Endpoints

The IDL and wire representation of the built-in Endpoints are the same as defined in subclause 9.6.2 of the UDP/IP
PSM [DDSI-RTPS].

A.6.3 ParameterId Definitions used to Represent In-line QoS

ParameterIds shall be defined as defined by the RTPS UDP/IP PSM in subclause 9.6.3 of [DDSI-RTPS].

36 DDS Extensions for Time Sensitive Networking (DDS-TSN) 1.0

Annex B: DDS-TSN Integration Examples

(informative)

B.1 Overview
This Annex provides two examples that illustrate how to design and deploy a DDS System over TSN. The first
example, defined in subclause B.2, uses the DDSI-RTPS UDP/IP PSM for communication. The second example,
defined in subclause B.3, uses the DDSI-RTPS Ethernet PSM specified in Annex A.

Both examples comprise five DDS applications that run on five hosts equipped time-sensitive network interfaces:

• Application_1 runs on Host_1, and publishes a Topic called Square.

• Application_2 runs on Host_2, and publishes a Topic called Triangle.

• Application_3 runs on Host_3 and subscribes to the Square Topic.

• Application_4 runs on Host_4 and subscribes to the Triangle Topic.

• Application_5 runs on Host_5 and subscribes to both Square and Triangle2.

The overall configuration of DDS applications, deployment nodes, and TSN endpoints for these examples—which may
be used to deploy and configure all the necessary elements (e.g., processing the files to perform remote configuration
via a CNC, or with static toolchains)—is available in XML and JSON format. To facilitate the separation of DDS
System Design and Deployment Design, the example provides separate design and deployment configuration
documents:

• The DDS System Design document defines the DDS applications that are part of the system, along with the
DomainParticipants they instantiate, and their contained entities (i.e., Topics, Publishers, Subscribers,
DataWriters, and DataReaders), data type declarations, and QoS Libraries.

• The Deployment Design document defines the Hosts where applications may be run, and the Deployment
configurations that determine which applications run on which hosts, and deployment-specific requirements,
such as TSN configurations and assignments of TSN Talkers to DataWriters and TSN Listeners to DataReaders,
respectively.

The following documents combine the configuration for both examples:

• XML format:

◦ dds-tsn_configuration_example_system_design.xml (Informative)

◦ dds-tsn_configuration_example_deployment_design.xml (Informative)

• JSON format:

◦ dds-tsn_configuration_example_system_design.json (Informative)

◦ dds-tsn_configuration_example_deployment_design.json (Informative)

The scenario assumes the presence of an entity capable of reading these configuration files and deploying
Application_1, Application_2, Application_3, Application_4, and Application_5 on Host_1, Host_2,
Host_3, Host_4, and Host_5, respectively. Such an entity is also capable of interpreting the TSN requirements
expressed in the TsnTalker and TsnListener classes of the Deployment configurations, which are associated with
each of the time-critical DataWriters and DataWriters, respectively. Lastly, the scenario assumes the entity is capable of
communicating with a CNC, a toolchain, or any other entity capable of configuring the underlying network.

2 Using two separate DataReaders.

DDS Extensions for Time Sensitive Networking (DDS-TSN) 1.0 37

B.1.1 Deployment Configurations

Each example is composed of five different deployment configurations that determine the DDS applications to be run
on each of the five available hosts. As mentioned above, deployment configurations identify the TSN Talkers and
Listeners that provide the time requirements from DDS entities, and determine the mapping of DataWriters and
DataReaders to TSN Streams. Deployment configurations are organized in DeploymentLibraries. Each example uses a
separate DeploymentLibrary, as they contain Deployment configurations specific to the DDSI-RTPS PSM they use (i.e.,
UDP/IP or Ethernet). These DeploymentLibraries are named MyDeploymentLibraryUdp and
MyDeploymentLibraryEthernet, respectively. Upon the successful deployment of the DDS time-critical
applications, the deployment configurations result in the configuration of two TSN Streams: SquareStream and
TriangleStream.

B.1.2 Configuration Models

Depending on the configuration model, the TSN configuration information needs to be propagated through each Bridge
(fully distributed model) or communicated to a CNC (directly, in the centralized network/distributed user model; or
through a CUC, in the fully centralized model). Alternatively, users of this specification may perform the configuration
manually, using different kinds of interfaces to configure the network and the hosts where applications run. This
example assumes the use of the protocol integration described in subclause 46.2.2 of [802.1Q], but these steps can be
extrapolated to a manual configuration process.

The TSN user/network configuration must account for three high-level groups of configuration information: Talker,
Listener, and Status. The configuration protocol can be seen as a request/response exchange, where an end station or
CUC transmits a request message with a Talker or Listener Group, and a Bridge or a CNC responds with a Status
Group. Operations on the Talker and Listener Groups allow: (1) joining to a Stream to configure and allocate resources
for the Stream to flow from a Talker to one or more Listeners, and (2) leaving a Stream to release resources.

In centralized configuration models, the CNC is responsible for discovering the underlying physical topology, including
end stations and Bridges, and reading the capabilities of each Bridge using remote management protocols. Upon the
reception of join requests including configurations of Streams with Talker and Listener Groups, the CNC configures the
corresponding TSN features for Streams in the path from Talker to Listener. The CNC returns the status of each Stream.
In contrast, in the fully distributed model, the Status response is delivered in a message merged with the Listener
requests, which are propagated through Bridges to the Talker (see [802.1Q], subclause 46.2.2). Manual configurations
need to calculate whether the requirements can be met and propagate the configuration to both Bridges and end stations.

NOTE—The examples follow a custom notation in JSON format to describe Talker, Listener, and Status Groups, which
instantiates the YANG data model defined in subclause 46.3 of [802.1Q] (adding some of the extra fields required to
perform requests, such as stream-id). Users of this specification may translate these Talker, Listener, and Status
Groups to YANG-based protocols or apply them in a manual configuration scheme.

B.2 DDS-TSN Deployment Scenario Using DDSI-RTPS UDP/IP PSM
This example applies the deployment scenario defined in B.1 to a set of DDS applications that use the DDSI-RTPS
UDP/IP PSM over TSN.

B.2.1 Stream Configuration

This example is based on five deployment configurations that define where each application runs. Deployment
configurations for this example are grouped in a DeploymentLibrary named MyDeploymentLibraryUdp. As derived
from the configuration (looking at the TSN Configuration part for each Deployment, which provides the list of Talkers
and Listeners), applications exchange two TSN Streams:

• SquareStream, which is associated with:

38 DDS Extensions for Time Sensitive Networking (DDS-TSN) 1.0

◦ SquareWriterTalker_1—Associated with SquareWriter_1 (whose fully qualified name is
MyApplicationLibrary::Application_1::DomainParticipant_1::Publisher_1::SquareWr

iter_1), which is instantiated by DomainParticipant_1, part of Application_1 running on
Host_1. (See MyDeploymentLibraryUdp::Deployment_Host_1 configuration in the XML or JSON
system design documents.)

◦ SquareReaderListener_3—Associated with SquareReader_3 (whose fully qualified name is
MyApplicationLibrary::Application_3::DomainParticipant_3::Subscriber_3::SquareR

eader_3), which is instantiated by DomainParticipant_3, part of Application_3 running on
Host_3. (See MyDeploymentLibraryUdp::Deployment_Host_3 configuration in the XML or JSON
system design documents.)

◦ SquareReaderListener_5—Associated with SquareReader_5 (whose fully qualified name is
MyApplicationLibrary::Application_5::DomainParticipant_5::Subscriber_5::SquareR

eader_5), which is instantiated by DomainParticipant_5, part of Application_5 running on
Host_5. (See MyDeploymentLibraryUdp::Deployment_Host_5 configuration in the XML or JSON
system design documents.)

• TriangleStream, which is associated with:

◦ TriangleWriterTalker_2—Associated with TriangleWriter_2 (whose fully qualified name is
MyApplicationLibrary::Application_2::DomainParticipant_2::Publisher_2::Triangle

Writer_2), which is instantiated by DomainParticipant_2, part of Application_2 running on
Host_2. (See MyDeploymentLibraryUdp::Deployment_Host_2 configuration in the XML or JSON
system design documents.)

◦ TriangleReaderListener_4—Associated with TriangleReader_4 (whose fully qualified name is
MyApplicationLibrary::Application_4::DomainParticipant_4::Subscriber_4::Triangl

eReader_4), which is instantiated by DomainParticipant_4, part of Application_4 running on
Host_4. (See MyDeploymentLibraryUdp::Deployment_Host_4 configuration in the XML or JSON
system design documents.)

◦ TriangleReaderListener_5—Associated with TriangleReader_5 (its fully qualified name is
MyApplicationLibrary::Application_5::DomainParticipant_5::Subscriber_5::Triangl

eReader_5), which is instantiated by DomainParticipant_5, part of Application_5 running on
Host_5. (See MyDeploymentLibraryUdp::Deployment_Host_5 configuration in the XML or JSON
system design documents.)

With the above information, the requirements for each Stream can be sent through join requests with a Talker and
Listener Group for every Talker and Listener. To define each individual Talker and Listener Group, the example follows
the mapping rules defined in subclause 7.3.3 (which defines the mapping rules using the YANG data modeling syntax).

B.2.1.1 Square Stream Configuration

To configure the system, the first step is to provide the requirements for SquareStream sending join requests with the
Talker Group for SquareWriterTalker_1, and the Listener Groups for SquareReaderListener_3 and
SquareReaderListener_5.

The Talker Group for SquareWriterTalker_1 takes as an input the
MyDeploymentLibraryUdp::Deployment_Host_1 deployment configuration:

{
 "stream-id": "AA-AA-AA-AA-AA-AA-00-01",
 "stream-rank": {
 "rank": 1
 },

DDS Extensions for Time Sensitive Networking (DDS-TSN) 1.0 39

 "end-station-interfaces": [
 {
 "mac-address": "AA-AA-AA-AA-AA-AA"
 }
],
 "data-frame-specification": [
 {
 "ipv4-tuple": {
 "source-ip-address": "0.0.0.0",
 "destination-ip-address": "239.255.255.1",
 "dscp": 0,
 "protocol": 17,
 "source-port": 0,
 "destination-Port": 7421
 }
 }
],
 "traffic-specification": {
 "interval": {
 "numerator": 2,
 "denominator": 1000
 },
 "max-frames-per-interval": 1,
 "max-frame-size": 1000,
 "transmission-selection": 0,
 "time-aware": {
 "earliest-transmit-offset": 0,
 "latest-transmit-offset": 2000000,
 "jitter": 5000
 }
 },
 "user-to-network-requirements": {
 "num-seamless-trees": 1,
 "max-latency": 2000000
 },
 "interface-capabilities": {
 "vlan-tag-capable": true,
 "cb-stream-iden-type-list": []
 "cb-sequence-type-list": []
 }
}

NOTE—DataFrameSpecification provides information to perform Stream Transformation. As specified in
[802.1Q], if the end station is responsible for performing Stream Transformation, the Talker group shall not include the
DataFrameSpecification, because the network will only need to use the destination MAC address and VLAN ID to
identify a Stream. In contrast, if the nearest Bridge is responsible for performing Stream Transformation, the
appropriate DataFrameSpecification must be provided to the CNC, so it can configure IEEE 802.1CB functions in
the nearest Bridge to identify the Stream and perform the appropriate transformations. This example includes a
DataFrameSpecification to show how it is defined, and to provide information for those performing manual
configurations, which may require configuring hosts or Bridges to identify Streams based on a combination of the IPv4
6-tuple.

The Listener Group for SquareReaderListener_3 takes as an input the
MyDeploymentLibraryUdp::Deployment_Host_3 deployment configuration:

{
 "stream-id": "AA-AA-AA-AA-AA-AA-00-01",
 "end-station-interfaces": [
 {
 "mac-address": "CC-CC-CC-CC-CC-CC"

40 DDS Extensions for Time Sensitive Networking (DDS-TSN) 1.0

 }
],
 "user-to-network-requirements": {
 "num-seamless-trees": 1,
 "max-latency": 2000000
 },
 "interface-capabilities": {
 "vlan-tag-capable": true,
 "cb-stream-iden-type-list": []
 "cb-sequence-type-list": []
 }
}

The Listener Group for SquareReaderListener_5 takes as an input the
MyDeploymentLibraryUdp::Deployment_Host_5 deployment configuration:

{
 "stream-id": "AA-AA-AA-AA-AA-AA-00-01",
 "end-station-interfaces": [
 {
 "mac-address": "EE-EE-EE-EE-EE-EE"
 }
],
 "user-to-network-requirements": {
 "num-seamless-trees": 1,
 "max-latency": 2000000
 },
 "interface-capabilities": {
 "vlan-tag-capable": true,
 "cb-stream-iden-type-list": []
 "cb-sequence-type-list": []
 }
}

The schedule for SquareStream resulting from a Status response is shown below:

{
 "stream-id": "AA-AA-AA-AA-AA-AA-00-01",
 "status-info": {
 "talker-status": "ready",
 "listener-status": "ready",
 "failure-code": 0
 },
 "accumulated-latency": 150000,
 "interface-configuration": {
 "interface-list": [
 {
 "ieee802-mac-addresses": {
 "destination-mac-address": "01-00-5E-7F-FF-01",
 "source-mac-address": "AA-AA-AA-AA-AA-AA"
 },
 "ieee802-vlan-tag": {
 "priority-code-point": 3,
 "vlan-id": 4500
 },
 "ipv4-tuple": {
 "source-ip-address": "0.0.0.0",
 "destination-ip-address": "239.255.255.1",
 "dscp": 0,
 "protocol": 17,
 "source-port": 0,
 "destination-port": 7421
 },

DDS Extensions for Time Sensitive Networking (DDS-TSN) 1.0 41

 "time-aware-offset": 25000
 }
]
 }
}

B.2.1.2 Triangle Stream Configuration

The next step is to provide the requirements for TriangleStream sending join requests with the Talker Group for
TriangleWriterTalker_2, and the Listener Groups for TriangleReaderListener_4 and
TriangleReaderListener_5.

The Talker Group for TriangleWriterTalker_2 takes as an input the
MyDeploymentLibraryUdp::Deployment_Host_2 deployment configuration:

{
 "stream-id": "BB-BB-BB-BB-BB-BB-00-01",
 "stream-rank": {
 "rank": 1
 },
 "end-station-interfaces": [
 {
 "mac-address": "BB-BB-BB-BB-BB-BB"
 }
],
 "data-frame-specification": [
 {
 "ipv4-tuple": {
 "source-ip-address": "0.0.0.0",
 "destination-ip-address": "239.255.255.2",
 "dscp": 0,
 "protocol": 17,
 "source-port": 0,
 "destination-Port": 7422
 }
 }
],
 "traffic-specification": {
 "interval": {
 "numerator": 2,
 "denominator": 1000
 },
 "max-frames-per-interval": 1,
 "max-frame-size": 1000,
 "transmission-selection": 0,
 "time-aware": {
 "earliest-transmit-offset": 0,
 "latest-transmit-offset": 2000000,
 "jitter": 5000
 }
 },
 "user-to-network-requirements": {
 "num-seamless-trees": 1,
 "max-latency": 2000000
 },
 "interface-capabilities": {
 "vlan-tag-capable": true,
 "cb-stream-iden-type-list": []
 "cb-sequence-type-list": []
 }
}

42 DDS Extensions for Time Sensitive Networking (DDS-TSN) 1.0

The Listener Group for TriangleReaderListener_4 takes as an input the
MyDeploymentLibraryUdp::Deployment_Host_4 deployment configuration:

{
 "stream-id": "BB-BB-BB-BB-BB-BB-00-01",
 "end-station-interfaces": [
 {
 "mac-address": "DD-DD-DD-DD-DD-DD"
 }
],
 "user-to-network-requirements": {
 "num-seamless-trees": 1,
 "max-latency": 2000000
 },
 "interface-capabilities": {
 "vlan-tag-capable": true,
 "cb-stream-iden-type-list": []
 "cb-sequence-type-list": []
 }
}

The Listener Group for TriangleReaderListener_5 takes as an input the
MyDeploymentLibraryUdp::Deployment_Host_5 deployment configuration:

{
 "stream-id": "BB-BB-BB-BB-BB-BB-00-01",
 "end-station-interfaces": [
 {
 "mac-address": "EE-EE-EE-EE-EE-EE"
 }
],
 "user-to-network-requirements": {
 "num-seamless-trees": 1,
 "max-latency": 2000000
 },
 "interface-capabilities": {
 "vlan-tag-capable": true,
 "cb-stream-iden-type-list": []
 "cb-sequence-type-list": []
 }
}

The schedule for TriangleStream resulting from a Status response is shown below:

{
 "stream-id": "BB-BB-BB-BB-BB-BB-00-01",
 "status-info": {
 "talker-status": "ready",
 "listener-status": "ready",
 "failure-code": 0
 },
 "accumulated-latency": 150000,
 "interface-configuration": {
 "interface-list": [
 {
 "ieee802-mac-addresses": {
 "destination-mac-address": "01-00-5E-7F-FF-02",
 "source-mac-address": "BB-BB-BB-BB-BB-BB"
 },
 "ieee802-vlan-tag": {
 "priority-code-point": 3,
 "vlan-id": 4500
 },

DDS Extensions for Time Sensitive Networking (DDS-TSN) 1.0 43

 "ipv4-tuple": {
 "source-ip-address": "0.0.0.0",
 "destination-ip-address": "239.255.255.2",
 "dscp": 0,
 "protocol": 17,
 "source-port": 0,
 "destination-port": 7422
 },
 "time-aware-offset": 25000
 }
]
 }
}

B.2.2 Host Configuration

After calculating the Stream configuration, each host needs to prepare for the execution of the different applications. In
a fully centralized configuration model that would be the responsibility of the CUC. In other models, either applications
or a system integrator would be responsible for such configuration.

If the host needs to be configured to perform Stream Transformation, the corresponding IEEE 802.1CB functions for
Stream Identification shall be configured to perform the following transformations:

• In Host_1, replace the DestinationMacAddress and VlanTag fields of Ethernet frames encapsulating IP
packets matching the interface-configuration.interface-list[0].ipv4-tuple in the Status
response for SquareStream with the interface-configuration.interface-list[0].ieee802-mac-
addresses.destination-mac-address and interface-configuration.interface-
list[0].ieee802-vlan-tag specified in that same Status response.

• In Host_2, replace the DestinationMacAddress and VlanTag fields of Ethernet frames encapsulating IP
packets matching the interface-configuration.interface-list[0].ipv4-tuple in the Status
response for TriangleStream with the interface-configuration.interface-list[0].ieee802-
mac-addresses.destination-mac-address and interface-configuration.interface-
list[0].ieee802-vlan-tag specified in that same Status response.

• In Host_3, restore the DestinationMacAddress and VlanTag fields of Ethernet frames encapsulating IP packets
matching the interface-configuration.interface-list[0].ip4-tuple in the Status response for
SquareStream to their original value.

• In Host_4, restore the DestinationMacAddress and VlanTag fields of Ethernet frames encapsulating IP packets
matching the interface-configuration.interface-list[0].ip4-tuple in the Status response for
TriangleStream to their original value.

• In Host_5, restore the DestinationMacAddress and VlanTag fields of Ethernet frames encapsulating IP packets
matching the interface-configuration.interface-list[0].ip4-tuple in the Status responses for
SquareStream and TriangleStream to their original value.

If Stream Transformation is performed in the nearest Bridge, then such reconfiguration is unnecessary (the
interface-configuration group will not be part of the Status group).

It is worth noting that, on top of Stream Transformation configuration, the host shall be configured so that each data
sample is sent according to the time-aware-offset indicated in interface-configuration.interface-
list[0] included in the Status response for either Stream.

B.2.3 DDS Application Configuration and Schedule Execution

Once the hosts are configured, everything is ready to begin the publication cycle. It is worth noting that DDS
Applications may need to be adjusted to comply with the Stream schedule. This implies:

• Adjusting the QoS Policies to the suggestions in subclause 8.2.3.

44 DDS Extensions for Time Sensitive Networking (DDS-TSN) 1.0

• Using a dedicated PARTITION QoS to the stream_name to restrict DataReaders and DataWriters from
discovering counterparts unrelated to the TSN Stream (if such restriction is required).

• Configuring the interfaces through which time-sensitive traffic must be sent. If Stream Transformation needs to
be performed, the application shall also configure the fields of the IPv4 tuple specified by the interface-
configuration of the Status response for SquareStream and TriangleStream accordingly (e.g., to use
specific source and destination ports, and source and destination IP addresses).

As prescribed by the configuration, Talkers execute in intervals of 2ms. That implies, processing information in the
application, and invoking the DataWriter’s write() operation every 2ms. The underlying DDS applications copy,
serialize the data input, and send it over the appropriate network interface using the DDSI-RTPS UDP/IP PSM
implementation. The selected interval must be enough to accommodate for the execution of all the steps listed above
within the specified period. The mechanisms to calculate serialization and execution times are out of the scope of this
specification.

B.3 DDS-TSN Deployment Scenario Using DDSI-RTPS Ethernet PSM
This example applies the deployment scenario defined in B.1 to a set of DDS applications that use the DDSI-RTPS
Ethernet PSM (defined in Annex A) over TSN.

B.3.1 Stream Configuration

This example is based on five deployment configurations that define where each application runs. Deployment
configurations for this example are grouped in a DeploymentLibrary named MyDeploymentLibraryEthernet. As
mentioned in subclause B.1.2, looking at the TSN configuration section in each Deployment that contains the list of
TSN Talkers and Listeners and their configuration, two TSN Streams can be identified:

• SquareStream, which is associated with:

◦ SquareWriterTalker_1—Associated with SquareWriter_1 (whose fully qualified name is
MyApplicationLibrary::Application_1::DomainParticipant_1::Publisher_1::SquareWr

iter_1), which is instantiated by DomainParticipant_1, part of Application_1 running on
Host_1. (See MyDeploymentLibraryEthernet::Deployment_Host_1 configuration in the XML or
JSON system design documents.)

◦ SquareReaderListener_3—Associated with SquareReader_3 (whose fully qualified name is
MyApplicationLibrary::Application_3::DomainParticipant_3::Subscriber_3::SquareR

eader_3), which is instantiated by DomainParticipant_3, part of Application_3 running on
Host_3. (See MyDeploymentLibraryEthernet::Deployment_Host_3 configuration in the XML or
JSON system design documents.)

◦ SquareReaderListener_5—Associated with SquareReader_5 (whose fully qualified name is
MyApplicationLibrary::Application_5::DomainParticipant_5::Subscriber_5::SquareR

eader_5), which is instantiated by DomainParticipant_5, part of Application_5 running on
Host_5. (See MyDeploymentLibraryEthernet::Deployment_Host_5 configuration in the XML or
JSON system design documents.)

• TriangleStream, which is associated with:

◦ TriangleWriterTalker_2—Associated with TriangleWriter_2 (whose fully qualified name is
MyApplicationLibrary::Application_2::DomainParticipant_2::Publisher_2::Triangle

Writer_2), which is instantiated by DomainParticipant_2, part of Application_2 running on
Host_2. (See MyDeploymentLibraryEthernet::Deployment_Host_2 configuration in the XML or
JSON system design documents.)

DDS Extensions for Time Sensitive Networking (DDS-TSN) 1.0 45

◦ TriangleReaderListener_4—Associated with TriangleReader_4 (whose fully qualified name is
MyApplicationLibrary::Application_4::DomainParticipant_4::Subscriber_4::Triangl

eReader_4), which is instantiated by DomainParticipant_4, part of Application_4 running on
Host_4. (See MyDeploymentLibraryEthernet::Deployment_Host_4 configuration in the XML or
JSON system design documents.)

◦ TriangleReaderListener_5—Associated with TriangleReader_5 (its fully qualified name is
MyApplicationLibrary::Application_5::DomainParticipant_5::Subscriber_5::Triangl

eReader_5), which is instantiated by DomainParticipant_5, part of Application_5 running on
Host_5. (See MyDeploymentLibraryEthernet::Deployment_Host_5 configuration in the XML or
JSON system design documents.)

With he above information, the requirements for each Stream can be provided sending join requests with a Talker and
Listener Group for every Talker and Listener. To define each individual Talker and Listener Group, the example follows
the mapping rules defined in subclause 7.3.3 (which defines the mapping rules using the YANG data modeling syntax).

B.3.1.1 Square Stream Configuration

To configure the system, the first step is to provide the requirements for SquareStream sending join requests with the
Talker Group for SquareWriterTalker_1, and the Listener Groups for SquareReaderListener_3 and
SquareReaderListener_5.

The Talker Group for SquareWriterTalker_1 takes as an input the
MyDeploymentLibraryEthernet::Deployment_Host_1 configuration:

{
 "stream-id": "AA-AA-AA-AA-AA-AA-00-01",
 "stream-rank": {
 "rank": 1
 },
 "end-station-interfaces": [
 {
 "mac-address": "AA-AA-AA-AA-AA-AA"
 }
],
 "data-frame-specification": [
 {
 "ieee802-mac-addresses": {
 "destination-mac-address": "FF-FF-FF-FF-FF-FF",
 "source-mac-address": "AA-AA-AA-AA-AA-AA",
 },
 "ieee802-vlan-tag": {
 "priority-code-point": 3,
 "vlan-id": 2500
 }
 }
],
 "traffic-specification": {
 "interval": {
 "numerator": 2,
 "denominator": 1000
 },
 "max-frames-per-interval": 1,
 "max-frame-size": 1000,
 "transmission-selection": 0,
 "time-aware": {
 "earliest-transmit-offset": 0,
 "latest-transmit-offset": 2000000,
 "jitter": 5000

46 DDS Extensions for Time Sensitive Networking (DDS-TSN) 1.0

 }
 },
 "user-to-network-requirements": {
 "num-seamless-trees": 1,
 "max-latency": 2000000
 },
 "interface-capabilities": {
 "vlan-tag-capable": true,
 "cb-stream-iden-type-list": []
 "cb-sequence-type-list": []
 }
}

NOTE—DataFrameSpecification provides information to perform Stream Transformation. As specified in
[802.1Q], if the end station is responsible for performing Stream Transformation, the Talker group shall not include the
DataFrameSpecification, because the network will only need to use the destination MAC address and VLAN ID to
identify a Stream. In contrast, if the nearest Bridge is responsible for performing Stream Transformation, the appropriate
DataFrameSpecification must be provided to the CNC, so it can configure IEEE 802.1CB functions in the nearest
Bridge to identify the Stream and perform the appropriate transformations. This example, includes a
DataFrameSpecification to show how it would be defined, and to provide information for those performing
manual configurations, which may require configuring hosts or Bridges to identify Streams based on a combination of
the IPv4 6-tuple.

The Listener Group for SquareReaderListener_3 takes as an input the
MyDeploymentLibraryEthernet::Deployment_Host_3 configuration:

{
 "stream-id": "AA-AA-AA-AA-AA-AA-00-01",
 "end-station-interfaces": [
 {
 "mac-address": "CC-CC-CC-CC-CC-CC"
 }
],
 "user-to-network-requirements": {
 "num-seamless-trees": 1,
 "max-latency": 2000000
 },
 "interface-capabilities": {
 "vlan-tag-capable": true,
 "cb-stream-iden-type-list": []
 "cb-sequence-type-list": []
 }
}

The Listener Group for SquareReaderListener_5 takes as an input the
MyDeploymentLibraryEthernet::Deployment_Host_5 configuration:

{
 "stream-id": "AA-AA-AA-AA-AA-AA-00-01",
 "end-station-interfaces": [
 {
 "mac-address": "EE-EE-EE-EE-EE-EE"
 }
],
 "user-to-network-requirements": {
 "num-seamless-trees": 1,
 "max-latency": 2000000
 },
 "interface-capabilities": {
 "vlan-tag-capable": true,
 "cb-stream-iden-type-list": []

DDS Extensions for Time Sensitive Networking (DDS-TSN) 1.0 47

 "cb-sequence-type-list": []
 }
}

The schedule for SquareStream resulting from a Status response is shown below:

{
 "stream-id": "AA-AA-AA-AA-AA-AA-00-01",
 "status-info": {
 "talker-status": "ready",
 "listener-status": "ready",
 "failure-code": 0
 },
 "accumulated-latency": 150000,
 "interface-configuration": {
 "interface-list": [
 {
 "ieee802-mac-addresses": {
 "destination-mac-address": "EE-DD-CC-BB-AA-00",
 "source-mac-address": "AA-AA-AA-AA-AA-AA"
 },
 "ieee802-vlan-tag": {
 "priority-code-point": 3,
 "vlan-id": 4500
 },
 "time-aware-offset": 25000
 }
]
 }
}

B.3.1.2 Triangle Stream Configuration

The next step is to provide the requirements for TriangleStream sending join requests with the Talker Group for
TriangleWriterTalker_2, and the Listener Groups for TriangleReaderListener_4 and
TriangleReaderListener_5.

The Talker Group for TriangleWriterTalker_2 takes as an input the
MyDeploymentLibraryEthernet::Deployment_Host_2 configuration:

{
 "stream-id": "BB-BB-BB-BB-BB-BB-00-01",
 "stream-rank": {
 "rank": 1
 },
 "end-station-interfaces": [
 {
 "mac-address": "BB-BB-BB-BB-BB-BB"
 }
],
 "data-frame-specification": [
 {
 "ieee802-mac-addresses": {
 "destination-mac-address": "FF-FF-FF-FF-FF-FF",
 "source-mac-address": "BB-BB-BB-BB-BB-BB",
 },
 "ieee802-vlan-tag": {
 "priority-code-point": 3,
 "vlan-id": 2500
 }
 }
],

48 DDS Extensions for Time Sensitive Networking (DDS-TSN) 1.0

 "traffic-specification": {
 "interval": {
 "numerator": 2,
 "denominator": 1000
 },
 "max-frames-per-interval": 1,
 "max-frame-size": 1000,
 "transmission-selection": 0,
 "time-aware": {
 "earliest-transmit-offset": 0,
 "latest-transmit-offset": 2000000,
 "jitter": 5000
 }
 },
 "user-to-network-requirements": {
 "num-seamless-trees": 1,
 "max-latency": 2000000
 },
 "interface-capabilities": {
 "vlan-tag-capable": true,
 "cb-stream-iden-type-list": []
 "cb-sequence-type-list": []
 }
}

The Listener Group for TriangleReaderListener_4 takes as an input the
MyDeploymentLibraryEthernet::Deployment_Host_4 configuration:

{
 "stream-id": "BB-BB-BB-BB-BB-BB-00-01",
 "end-station-interfaces": [
 {
 "mac-address": "DD-DD-DD-DD-DD-DD"
 }
],
 "user-to-network-requirements": {
 "num-seamless-trees": 1,
 "max-latency": 2000000
 },
 "interface-capabilities": {
 "vlan-tag-capable": true,
 "cb-stream-iden-type-list": []
 "cb-sequence-type-list": []
 }
}

The Listener Group for TriangleReaderListener_5 takes as an input the
MyDeploymentLibraryEthernet::Deployment_Host_5 configuration:

{
 "stream-id": "BB-BB-BB-BB-BB-BB-00-01",
 "end-station-interfaces": [
 {
 "mac-address": "EE-EE-EE-EE-EE-EE"
 }
],
 "user-to-network-requirements": {
 "num-seamless-trees": 1,
 "max-latency": 2000000
 },
 "interface-capabilities": {
 "vlan-tag-capable": true,
 "cb-stream-iden-type-list": []

DDS Extensions for Time Sensitive Networking (DDS-TSN) 1.0 49

 "cb-sequence-type-list": []
 }
}

The schedule for TriangleStream resulting from a Status response is shown below:

{
 "stream-id": "BB-BB-BB-BB-BB-BB-00-01",
 "status-info": {
 "talker-status": "ready",
 "listener-status": "ready",
 "failure-code": 0
 },
 "accumulated-latency": 150000,
 "interface-configuration": {
 "interface-list": [
 {
 "ieee802-mac-addresses": {
 "destination-mac-address": "EE-DD-CC-BB-AA-01",
 "source-mac-address": "BB-BB-BB-BB-BB-BB"
 },
 "ieee802-vlan-tag": {
 "priority-code-point": 3,
 "vlan-id": 4500
 },
 "time-aware-offset": 25000
 }
]
 }
}

B.3.2 Host Configuration

After calculating the Stream configuration, each host needs to be prepared for the execution of the different
applications. In a fully centralized configuration model that would be the responsibility of the CUC. In other models,
either applications or a system integrator would be responsible for such configuration.

If the host needs to be configured to perform Stream Transformation, the corresponding IEEE 802.1CB functions for
Stream Identification must be configured to perform the following transformations:

• In Host_1, replace the DestinationMacAddress and VlanTag fields of Ethernet frames matching the
ieee802-mac-addresses and ieee802-vlan-tag in SquareWriterTalker_1 with the value of
interface-configuration.interface-list[0].ieee802-mac-addresses.destination-mac-
address and interface-configuration.interface-list[0].ieee802-vlan-tag in the Status
response for SquareStream.

• In Host_2, replace the DestinationMacAddress and VlanTag fields of Ethernet frames matching the
ieee802-mac-addresses and ieee802-vlan-tag in TriangleWriterTalker_2 with the value of
interface-configuration.interface-list[0].ieee802-mac-addresses.destination-mac-
address and interface-configuration.interface-list[0].ieee802-vlan-tag in the Status
response for TriangleStream..

• In Host_3, restore the MacAddresses and VlanTag fields of Ethernet frames matching the interface-
configuration.interface-list[0].ieee802-mac-addresses.destination-mac-address and
interface-configuration.interface-list[0].ieee802-vlan-tag in the Status response for
SquareStream to their original value.

• In Host_4, restore the MacAddresses and VlanTag fields of Ethernet frames matching the interface-
configuration.interface-list[0].ieee802-mac-addresses.destination-mac-address and
interface-configuration.interface-list[0].ieee802-vlan-tag in the Status response for
TriangleStream to their original value.

50 DDS Extensions for Time Sensitive Networking (DDS-TSN) 1.0

• In Host_5, restore the MacAddresses and VlanTag fields of Ethernet frames matching the interface-
configuration.interface-list[0].ieee802-mac-addresses.destination-mac-address and
interface-configuration.interface-list[0].ieee802-vlan-tag in the Status response for
SquareStream and TriangleStream to their original value.

If Stream Transformation is performed in the nearest Bridge, then such reconfiguration is unnecessary (the
interface-configuration group will not be part of the Status group).

It is worth noting, that on top of Stream Transformation configuration, the host shall be configured so that each data
sample is sent according to the time-aware-offset indicated in interface-configuration.interface-
list[0].

B.3.3 DDS Application Configuration and Schedule Execution

Once the hosts are configured, everything is ready to begin the publication cycle. It is worth noting that DDS
Applications may need to be adjusted to comply with the Stream schedule by:

• Adjusting entity QoS Policies to the suggestions in subclause 8.2.3.

• Using a dedicated PARTITION QoS to the stream_name to restrict DataReaders and DataWriters from
discovering counterparts unrelated to the TSN Stream (if such restriction is required).

• Configuring the interfaces through which time-sensitive traffic must be sent.

As prescribed by the configuration, Talkers execute in intervals of 2ms. That implies, processing information in the
application, and invoking the DataWriter’s write() operation every 2ms. The underlying DDS applications copy,
serialize the data input, and send it over the appropriate network interface using the DDSI-RTPS Ethernet PSM
implementation. The selected interval must be enough to accommodate for the execution of all the steps listed above
within the specified period. The mechanisms to calculate serialization and execution times are out of the scope of this
specification.

DDS Extensions for Time Sensitive Networking (DDS-TSN) 1.0 51

	1 Scope
	2 Conformance
	3 Normative References
	4 Terms and Definitions
	5 Symbols
	6 Additional Information
	6.1 Changes to Adopted OMG Specifications
	6.2 Acknowledgments

	7 DDS-TSN System Deployment
	7.1 Overview
	7.2 Configuration Model (PIM)
	7.2.1 DDS Application Configuration
	7.2.1.1 Type Libraries
	7.2.1.2 QoS Libraries
	7.2.1.3 Domain Libraries
	7.2.1.4 DomainParticipant Libraries
	7.2.1.5 Application Libraries

	7.2.2 Deployment Configuration
	7.2.2.1 Node Libraries
	7.2.2.2 DeploymentLibraries

	7.2.3 TSN Configuration
	7.2.3.1 TSN Talker
	7.2.3.1.1 TrafficSpecification
	7.2.3.1.2 NetworkRequirements
	7.2.3.1.3 DataFrameSpecification

	7.2.3.2 TSN Listener
	7.2.3.2.1 NetworkRequirements

	7.3 Configuration Representation (PSM)
	7.3.1 XML PSM
	7.3.2 JSON PSM
	7.3.3 YANG PSM
	7.3.3.1 Talker and Listener Groups
	7.3.3.2 Reception of Status Group

	8 DDSI-RTPS Wire Protocol over TSN
	8.1 Overview
	8.2 DDSI-RTPS PIM over TSN
	8.2.1 Message Module
	8.2.2 Discovery Module
	8.2.2.1 Performing Discovery over TSN
	8.2.2.2 Restricting Discovery for Time-Sensitive Applications

	8.2.3 QoS Policies
	8.2.4 Other Considerations
	8.2.4.1 Data Modeling Considerations
	8.2.4.1.1 Use of Unbounded Types
	8.2.4.1.2 Number of Instances per Topic

	8.2.4.2 DDS Security Considerations

	8.3 DDSI-RTPS UDP/IP PSM over TSN
	8.3.1 Stream Identification of UDP Datagrams Encapsulating RTPS Messages
	8.3.2 Stream Transformation of UDP Datagrams Encapsulating RTPS Messages

	8.4 DDSI-RTPS Ethernet PSM over TSN

	Annex A: DDSI-RTPS Ethernet PSM
	A.1 Introduction
	A.2 Notational Conventions
	A.3 Mapping of the RTPS Types
	A.4 Mapping of the RTPS Messages
	A.4.1 Overall Structure
	A.4.2 Mapping of PIM SubmessageElements
	A.4.2.1 LocatorList

	A.4.3 Additional SubmessageElements
	A.4.4 Mapping of RTPS Header
	A.4.5 Mapping of RTPS Submessages

	A.5 RTPS Message Encapsulation
	A.6 Mapping of the RTPS Protocol
	A.6.1 Default Locators
	A.6.1.1 Discovery traffic
	A.6.1.2 User Traffic
	A.6.1.3 Default Logical Port Numbers
	A.6.1.4 Default Settings for the Simple Participant Discovery Protocol
	A.6.1.4.1 Default multicast address
	A.6.1.4.2 Default Announcement rate

	A.6.2 Data Representation for the Built-in Endpoints
	A.6.3 ParameterId Definitions used to Represent In-line QoS

	Annex B: DDS-TSN Integration Examples
	B.1 Overview
	B.1.1 Deployment Configurations
	B.1.2 Configuration Models

	B.2 DDS-TSN Deployment Scenario Using DDSI-RTPS UDP/IP PSM
	B.2.1 Stream Configuration
	B.2.1.1 Square Stream Configuration
	B.2.1.2 Triangle Stream Configuration

	B.2.2 Host Configuration
	B.2.3 DDS Application Configuration and Schedule Execution

	B.3 DDS-TSN Deployment Scenario Using DDSI-RTPS Ethernet PSM
	B.3.1 Stream Configuration
	B.3.1.1 Square Stream Configuration
	B.3.1.2 Triangle Stream Configuration

	B.3.2 Host Configuration
	B.3.3 DDS Application Configuration and Schedule Execution

