
Date: September 2015

Web-Enabled DDS

Version 1.0

OMG Document Number: ptc/2015-09-13
Standard document URL: http://www.omg.org/spec/DDS-WEB
Machine Consumable Files:

Normative:

http://www.omg.org/spec/DDS-WEB/20150901/webdds_rest1.xsd
http://www.omg.org/spec/DDS-WEB/20150901/webdds_websockets1.xsd

http://www.omg.org/spec/DDS-WEB/20131122/webdds_soap1_types.xsd

http://www.omg.org/spec/DDS-WEB/20131122/webdds_soap1.wsdl

http://www.omg.org/spec/DDS-WEB/20131122/webdds_soap1_notify.wsdl

Non-normative:
http://www.omg.org/spec/DDS-WEB/20150901/webdds_rest1_example.xml

http://www.omg.org/spec/DDS-WEB/20150901/webdds_pim_model_v1.eap

This OMG document replaces the submission document (mars/13-05-21, Alpha). It is an OMG Adopted Beta

Specification and is currently in the finalization phase. Comments on the content of this document are welcome,

and should be directed to issues@omg.org by March 31, 2014.

You may view pending issues for this specification from the OMG revision issues web page

http://www.omg.org/issues.

The FTF Recommendation and Report for this specification will be published on September 26, 2014. If you are

reading this after that date, please download the available specification from the OMG Specifications web page

http://www.omg.org/spec/.

http://www.omg.org/spec/DDS-WEB
http://www.omg.org/spec/DDS-WEB/20150901/webdds_rest1.xsd
http://www.omg.org/spec/DDS-WEB/20150901/webdds_websockets1.xsd
http://www.omg.org/spec/DDS-WEB/20131122/webdds_soap1_types.xsd
http://www.omg.org/spec/DDS-WEB/20131122/webdds_soap1.wsdl
http://www.omg.org/spec/DDS-WEB/20131122/webdds_soap1_notify.wsdl
http://www.omg.org/spec/DDS-WEB/20150901/webdds_rest1_example.xml
http://www.omg.org/spec/DDS-WEB/20150901/webdds_pim_model_v1.eap
mailto:issues@omg.org
http://www.omg.org/issues
http://www.omg.org/spec/

Copyright © 2013, eProsima

Copyright © 2014, Object Management Group, Inc. (OMG)

Copyright © 2013, Real-Time Innovations, Inc. (RTI)

Copyright © 2013, THALES

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms, conditions

and notices set forth below. This document does not represent a commitment to implement any portion of this specification in

any company’s products. The information contained in this document is subject to change without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free, paid

up, worldwide license to copy and distribute this document and to modify this document and distribute copies of the modified

version. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed the copyright

in the included material of any such copyright holder by reason of having used the specification set forth herein or having

conformed any computer software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant you a fully-

paid up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use this

specification to create and distribute software and special purpose specifications that are based upon this specification, and to

use, copy, and distribute this specification as provided under the Copyright Act; provided that: (1) both the copyright notice

identified above and this permission notice appear on any copies of this specification; (2) the use of the specifications is for

informational purposes and will not be copied or posted on any network computer or broadcast in any media and will not be

otherwise resold or transferred for commercial purposes; and (3) no modifications are made to this specification. This limited

permission automatically terminates without notice if you breach any of these terms or conditions. Upon termination, you will

destroy immediately any copies of the specifications in your possession or control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may require

use of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a license may be

required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of those patents that are

brought to its attention. OMG specifications are prospective and advisory only. Prospective users are responsible for

protecting themselves against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications regulations and

statutes. This document contains information which is protected by copyright. All Rights Reserved. No part of this work

covered by copyright herein may be reproduced or used in any form or by any means—graphic, electronic, or mechanical,

including photocopying, recording, taping, or information storage and retrieval systems—without permission of the copyright

owner.

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED “AS IS” AND MAY CONTAIN

ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE MAKE

NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS PUBLICATION, INCLUDING

BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF

MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE.

IN NO EVENT SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE COMPANIES LISTED ABOVE BE

LIABLE FOR ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL,

CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS, REVENUE, DATA OR

USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE FURNISHING,

PERFORMANCE, OR USE OF THIS MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you. This

disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph © (1) (ii) of The

Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph ©(1) and (2) of the

Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified in 48 C.F.R. 227-7202-2

of the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of the Federal Acquisition Regulations

and its successors, as applicable. The specification copyright owners are as indicated above and may be contacted through the

Object Management Group, 109 Highland Avenue, Needham, MA 02494, U.S.A.

TRADEMARKS

IMM®, MDA®, Model Driven Architecture®, UML®, UML Cube logo®, OMG Logo®, CORBA® and XMI® are

registered trademarks of the Object Management Group, Inc., and Object Management Group™, OMG™ , Unified Modeling

Language™, Model Driven Architecture Logo™, Model Driven Architecture Diagram™, CORBA logos™, XMI Logo™,

CWM™, CWM Logo™, IIOP™, MOF™, OMG Interface Definition Language (IDL)™, and OMG SysML™ are

trademarks of the Object Management Group. All other products or company names mentioned are used for identification

purposes only, and may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its designees) is

and shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer software to use

certification marks, trademarks or other special designations to indicate compliance with these materials. Software developed

under the terms of this license may claim compliance or conformance with this specification if and only if the software

compliance is of a nature fully matching the applicable compliance points as stated in the specification. Software developed

only partially matching the applicable compliance points may claim only that the software was based on this specification,

but may not claim compliance or conformance with this specification. In the event that testing suites are implemented or

approved by Object Management Group, Inc., software developed using this specification may claim compliance or

conformance with the specification only if the software satisfactorily completes the testing suites.

OMG’s Issue Reporting Procedure

All OMG specifications are subject to continuous review and improvement. As part of this process we

encourage readers to report any ambiguities, inconsistencies, or inaccuracies they may find by

completing the Issue Reporting Form listed on the main web page http://www.omg.org, under

Documents, Report a Bug/Issue (http://www.omg.org/report_issue.htm.)

http://www.omg.org/
http://www.omg.org/report_issue.htm

Web-Enabled DDS, v1.0 i

Table of Contents

Preface ... iii
About the Object Management Group ... iii

OMG ... iii
OMG Specifications .. iii

Issues ... iv
Introduction.. iv
Overview of this Specification .. v

Web-Enabled DDS (WebDDS) Object Model ... v
Platform-Specific Mappings ... vi

1 Scope ... 1
1.1 General ... 1
1.2 WebDDS Object Model .. 1
1.3 Platform-Specific Mappings ... 2
1.4 Example Scenarios... 2

2 Conformance ... 3

3 Normative References .. 3

4 Terms and Definitions .. 4

5 Symbols ... 6

6 Additional Information .. 7
6.1 Changes to Adopted OMG Specifications [optional].. 7
6.2 Acknowledgements ... 7

7 WebDDS Object Model .. 9
7.1 General ... 9
7.2 Model Overview.. 11
7.3 Access Control ... 13

7.3.1 Class WebDDS::Root ... 16
7.3.2 Class WebDDS::AccessController .. 22
7.3.3 Class WebDDS::Client (conceptual) .. 24
7.3.4 Class WebDDS::Application .. 24

7.4 DDS Proxy classes .. 25
7.4.1 ReturnStatus ... 26
7.4.2 Access control and permissions .. 27
7.4.3 Class WebDDS::Application (details) ... 27
7.4.4 Class WebDDS::DomainParticipant ... 33
7.4.5 Class WebDDS::Publisher .. 45
7.4.6 Class WebDDS::Subscriber .. 49
7.4.7 Class WebDDS::DataWriter ... 52
7.4.8 Class WebDDS::DataReader .. 56
7.4.9 Class WebDDS::WaitSet .. 61
7.4.10 Class: WebDDS::QosLibrary .. 63
7.4.11 Class: WebDDS::QosProfile ... 65

8 Web-Enabled DDS Platform-Specific Mappings ... 65
8.1 General ... 65
8.2 Formats and Representations for the REST and SIMPLE-WSDL-SOAP platforms 65

8.2.1 QoS Representations... 65

ii Web-Enabled DDS, v1.0

8.2.2 Type Representations.. 65
8.2.3 Data Representations .. 66
8.2.4 WebDDS Entity Representations ... 66

8.3 REST Platform ... 68
8.3.1 Mapping of WebDDS PIM to Resources .. 68
8.3.2 Mapping rules from WebDDS PIM operations to REST methods ... 69
8.3.3 Complete mapping of WebDDS PIM operations to REST methods .. 70
8.3.4 Object representations used by the REST platform .. 75
8.3.5 HTTP Headers used by the REST platform .. 77

8.4 Simplified SOAP Platform .. 78
8.5 Transport-level and security considerations: HTTP and Web Sockets ... 87

8.5.1 Operation over HTTP and HTTPS .. 87
8.5.2 Operation over Web Sockets (WS) and Secure WebSockets (WSS) .. 88
8.5.3 IANA Considerations ... 97

Annex A - References ... 99

Web-Enabled DDS, v1.0 iii

Preface

About the Object Management Group

OMG

Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-

profit computer industry standards consortium that produces and maintains computer industry

specifications for interoperable, portable and reusable enterprise applications in distributed,

heterogeneous environments. Membership includes Information Technology vendors, end users,

government agencies and academia.

OMG member companies write, adopt, and maintain its specifications following a mature, open

process. OMG’s specifications implement the Model Driven Architecture® (MDA®), maximizing

ROI through a full-lifecycle approach to enterprise integration that covers multiple operating

systems, programming languages, middleware and networking infrastructures, and software

development environments. OMG’s specifications include: UML® (Unified Modeling

Language™); CORBA® (Common Object Request Broker Architecture); CWM™ (Common

Warehouse Metamodel); and industry-specific standards for dozens of vertical markets.

More information on the OMG is available at http://www.omg.org/.

OMG Specifications

As noted, OMG specifications address middleware, modeling, and vertical domain frameworks. A

listing of all OMG Specifications is available from the OMG website at:

http://www.omg.org/spec/index.htm

Specifications are organized by the following categories:

Business Modeling Specifications

Middleware Specifications

• CORBA/IIOP

• Data Distribution Services

• Specialized CORBA

IDL/Language Mapping Specifications

Modeling and Metadata Specifications

• UML, MOF, CWM, XMI

• UML Profile

Modernization Specifications

http://www.omg.org/
http://www.omg.org/spec/index.htm

iv Web-Enabled DDS, v1.0

Platform Independent Model (PIM), Platform Specific Model (PSM), Interface Specifications

• CORBAServices

• CORBAFacilities

OMG Domain Specifications

CORBA Embedded Intelligence Specifications

CORBA Security Specifications

All of OMG’s formal specifications may be downloaded without charge from our website.

(Products implementing OMG specifications are available from individual suppliers.) Copies of

specifications, available in PostScript and PDF format, may be obtained from the Specifications

Catalog cited above or by contacting the Object Management Group, Inc. at:
OMG Headquarters

109 Highland Avenue

Needham, MA 02494

USA

Tel: +1-781-444-0404

Fax: +1-781-444-0320

Email: pubs@omg.org

Certain OMG specifications are also available as ISO standards. Please consult http://www.iso.org.

Issues

The reader is encouraged to report any technical or editing issues/problems with this specification

to http://www.omg.org/report_issue.htm.

Introduction

The OMG DDS specification [1] defines an API that applications can use to publish and subscribe to

data in a “Global Data Space.” The API defined by the DDS specification must be implemented by

means of local interfaces in each of the supported programming languages. This approach limits the

use of DDS to applications that (a) can link into the application the vendor-provided DDS

implementation libraries, and (b) use one of the programming languages supported by the DDS

implementations. In practice, these limitations mean that no standard APIs or mechanisms to access

the DDS Global Data Space from applications running inside a web browser (e.g. JavaScript

applications), or from remote “client” libraries that leverage commonly used scripting languages,

such as PHP, Perl, Ruby, or Python.

Another important usage scenario is that of disconnected or stateless clients. These are typically

implemented as single-command, short-lived processes, for example shell commands or web-server

CGI scripts. Under this usage scenario, a user starts a client application to execute a very simple

action, such as publishing data on a Topic or receiving the latest data on a Topic. The client executes

the action, returns the output (typically to the stdout), and then exits. This is a common scenario

when integrating with web-server applications that use CGI scripts to execute individual actions.

Disconnected or stateless clients are problematic because of the dynamic, one-to-many nature of

publish-subscribe applications and the fact that DDS does not require the presence of a broker or

centralized server. In order to publish or subscribe to data, a DDS application must join a domain,

discover other participants and other publishers and subscribers, exchange the information, and then

remain present long enough for the reliability protocol to ensure that all subscribers receive the

information. This makes the implementation of a short-lived process challenging. How long should

the process wait to discover all subscribers or publishers? The approach is also inefficient. Each time

mailto:pubs@omg.org
http://www.iso.org/
http://www.omg.org/report_issue.htm

Web-Enabled DDS, v1.0 v

the process starts, it must create new DDS entities that then must be discovered by the rest of the

system—only to be destroyed shortly afterwards.

With the increasing adoption of DDS for the integration of large distributed systems, it is desirable to

define standard ways whereby web-based applications can: access DDS; publish and subscribe to

data into the DDS Global Data Space; and benefit from the performance, scalability, and quality of

service offered by DDS implementations. In addition, it is desirable for this approach to support

efficient access to the Global Data Space by disconnected or stateless clients. Note that all these

things were possible before this specification, but the approaches were non-standard.

Overview of this Specification

This specification includes (1) a platform-independent Abstract Interaction Model of how web-

clients should access a DDS System and (2) a set of mappings to specific web platforms that realize

the PIM in terms of standard web technologies and protocols. These allow a web client to participate

in the DDS global data space in a way that is portable across implementations.

Figure 1—Conceptual topology

Web-Enabled DDS (WebDDS) Object Model

The “WebDDS Object Model” is the object exposed to the web-enabled DDS clients. Logically one

can think of this as logical equivalent to the “DDS Object Model”. This specification does not simply

reuse the standard “DDS Object Model” for three reasons:

1. The DDS Object Model is intended for use with a local programming API. For this reason,

the DDS Object Model contains many objects and methods with strongly typed parameters,

as well as a direct callback interface by means of listener objects that the application registers

with the middleware. Such an API is not suitable for web clients that typically prefer more “

resource-oriented interfaces” and also expect a simplified interface with no callbacks and

where all parameters are encoded in text.

2. Web client connectivity is inherently intermittent. By the very nature of the HTTP protocol,

clients are continually being connected and disconnected from the server. Therefore, the Web

Enabled DDS Object must overcome this by introducing a “session,” whose life can span

vi Web-Enabled DDS, v1.0

multiple physical connections.

3. Web clients can access a Web-Enabled DDS service from any location, and therefore it is

desirable to have an access control model that authenticates each client application/principal,

controls whether the principal can access the DDS Global Data Space, and controls which

operations each principal can perform (e.g. which DDS Topics it can read and write).

Platform-Specific Mappings

Web clients accessing data and services over the web typically use a mix of architectural approaches,

technologies, and protocols including: RESTful [2], WSDL/SOAP Web Services [3] [5], HTTP[13],

RSS, ATOM, and/or XMPP [4]. Each of these approaches presents advantages and disadvantages;

selecting which to use is often driven by business requirements. For example:

1. REST is the most universally deployed architectural approach on the Web and is used for

most of the “cloud” services such as those offered by Amazon and Google. It is also simple

and friendly to web browsers, which use bookmarks and links to get to the data directly.

However, it lacks a well-established formal language with which to define interfaces1.

2. Despite being less widely deployed, Web Services have a language (WSDL) that can be used

to formally define interfaces and are supported by the major providers of Enterprise Service

Bus (ESB) infrastructure. However, they are less friendly to web browsers and cannot be

easily called from JavaScript.

3. RSS and Atom are popular protocols for retrieving data. RSS is more established but, unlike

Atom, it only defines how to receive existing data, not how to post new data.

4. XMPP is a simple and popular protocol based on HTTP and XML that was originally

developed for Internet chat applications but that is now becoming popular as a general

protocol for peer-to-peer application communication.

Because of the existence of multiple popular web technologies and protocols (referred to in this

specification as “web platforms”), each with its own strengths and limitations, the Web-Enabled

DDS specification is not tied to or associated with a single web platform. Instead, it maps the

WebDDS Object Model into several web platforms. The intent of this approach is for all platform

mappings to be equivalent and interoperable.

1 The Web Applications Description Language (WADL) (see http://www.w3.org/Submission/wadl/)

has been proposed as a “member submission” to the W3C, but as of 2012 the W3C has stated it “has

no plans to take up work based on this submission” (see

http://www.w3.org/Submission/2009/03/Comment)

http://www.w3.org/Submission/wadl/

Web-Enabled DDS, v1.0 1

1 Scope

1.1 General

The goal of this specification is to define the means for applications using standard web protocols

to participante as first-class citizens as publishers and subscribers of data in the DDS Global Data

space. This participation is realised by exposing a WebDDS Object Model and making it

accessibe as a web service, a REST resources, or some other standard web protocol. Exposing

access via these web-friendly protocols allow applications built on various technology stacks (e.g.

JavaScript, Python, PHP, Perl , etc.) to communicate with native DDS applications.

This specification consists of the following sections:

1.2 WebDDS Object Model

This specification defines a platform-independent WebDDS Object Model using UML. The model

defines the objects, interfaces, and operations to be implemented by the service. This specification

furthermore defines how this model relates to the DDS Object Model as defined in the OMG

Data-Distribution Service Specification [DDS] (we shall refer to this object model as the

“Standard DDS Object Model”). In other words, it defines the effects that each operation

performed on the WebDDS Object Model has, if any, on the related Standard DDS Object Model

Entities.

The WebDDS Object Model both extends and simplifies the Standard DDS Object Model. It

extends the Standard DDS Object Model in order to include an access control model and

application management model to support disconnected clients. It is also a simplification of the

Standard DDS Object Model in order to reduce the number of objects and operations and make it

more suitable for web clients.

2 Web-Enabled DDS, v1.0

Figure 2 — Scope of this specification

1.3 Platform-Specific Mappings

This specification also provides a collection of mappings describing how the Abstract Interaction

Model can be accessed and manipulated using common Web technologies, such as RESTful

services and SOAP Web Services.

 The RESTful Platform mapping defines how to access the Object Model using a

RESTful interface [REST].

 The SOAP Platform mapping defines how to access the Object Model using WSDL

interfaces and SOAP messages [WSDL].

1.4 Example Scenarios

Possible (non-normative) scenarios are:

 As a subscriber, a web page can register a subscription to a particular topic in order to

display it in a web browser.

 As a publisher, a Web application could be used to publish information using a web

browser.

 Based on the given examples, one could design more complex applications by mixing

Web-Enabled DDS, v1.0 3

publishers and subscribers in a single application.

2 Conformance

This specification defines the following conformance profiles:

Table 1 Conformance Profiles

Profile Mandatory or Optional Conformance Sections

REST Mandatory Web-DDS Object Model (Clause 7) and REST
Platform (Sub clause 8.3)

SIMPLE-REST Optional Web-DDS Object Model (Clause 7) and
Simplified REST Platform (Sub clause 8.3.5)

SIMPLE-WSDL-SOAP Optional Web-DDS Object Model (Clause 7) and WSDL
SOAP Platform (Sub clause 8.4)

Conforming implementations must implement the WebDDS Object Model as mapped to the

RESTful Platform.

Conforming implementations may implement one or more additional platform-specific mappings

as described in Clause 8 of this specification. Each of these individually shall represent an

optional compliance point for this specification.

3 Normative References

The following normative documents contain provisions that, through reference in this text,

constitute provisions of this specification. For dated references, subsequent amendments to, or

revisions of, any of these publications do not apply.

 [DDS] Data Distribution Service for Real-Time Systems Specification, version 1.2

http://www.omg.org/spec/DDS/1.2

 [DDS-CCM] [8] DDS for light-weight CCM specification (DDS4CCM) version 1.0.

http://www.omg.org/spec/dds4ccm/1.1/

 [DDS-XTypes] DDS Extensible Types Specification (DDS-XTYPES) version 1.0.

http://www.omg.org/spec/DDS-XTypes/1.0/

 [HTTP] Hypertext Transfer Protocol, version 1.1 (IETF RFC 2616);

http://tools.ietf.org/rfc/rfc2616.txt.

 [HTTP-Auth] “HTTP Authentication: Basic and Digest Access Authentication” IETF RFC 2617

http://tools.ietf.org/html/rfc2617

http://www.omg.org/spec/DDS/1.2
http://www.omg.org/spec/dds4ccm/1.1/
http://www.omg.org/spec/DDS-XTypes/1.0/
http://tools.ietf.org/rfc/rfc2616.txt
http://tools.ietf.org/html/rfc2617

4 Web-Enabled DDS, v1.0

 [WebSockets] The WebSocket Protocol, version 1.1 (IETF RFC 2616);

http://tools.ietf.org/rfc/rfc6455.txt..

 [SOAP] SOAP Version 1.2 Part 1: Messaging Framework (Second Edition);

http://www.w3.org/TR/2007/REC-soap12-part1-20070427/.

 [WSDL] The Web Services Description Language (WSDL), version 1.1; http://www.w3.org/TR/wsdl.

 [XML] Extensible Markup Language (XML), version 1.1, Fifth Edition (W3C

recommendation, November 2008). http://www.w3.org/TR/REC-xml/

4 Terms and Definitions

For the purposes of this specification, the following terms and definitions apply.

ATOM platform

For the purposes of this specification, the name ATOM refers to a pair of related standards: (1) the

Atom Syndication Format, which is an XML language used for web feeds published by the IETF

as RFC 4287 and (2) the Atom Publishing Protocol, which is a simple HTTP-based protocol for

creating and updating web resources published by the IETF as RFC 5023.

Data-Centric Publish-Subscribe (DCPS)

The mandatory portion of the DDS specification used to provide the functionality required for an

application to publish and subscribe to the values of data objects.

Data Distribution Service (DDS)

An OMG distributed data communications specification that allows Quality of Service policies to

be specified for data timeliness and reliability. It is independent of implementation languages.

Data representation

A Data Representation is a serialization format for storing and/or transmitting the state of

structured objects. This term is used per [DDS-XTypes].

DDS world

A “DDS world” consists of a collection of peers communicating over the Data Distribution

Service and the collection of data observable by those peers. See also “web world.”

RESTful platform

As described in a dissertation by Roy Fielding, REST is an “architectural style” that exploits the

existing technology and protocols of the Web, including HTTP (Hypertext Transfer Protocol) and

http://tools.ietf.org/rfc/rfc6455.txt
http://www.w3.org/TR/2007/REC-soap12-part1-20070427/
http://www.w3.org/TR/wsdl
http://www.w3.org/TR/REC-xml/

Web-Enabled DDS, v1.0 5

XML. REST is simpler to use than the well-known SOAP (Simple Object Access Protocol)

approach, which requires writing or using a provided server program (to serve data) and a client

program (to request data).

RSS platform

RSS stands for Really Simple Syndication. RSS is a family of web feed formats used to publish

frequently updated works—such as blog entries, news headlines, audio, and video—in a

standardized format. An RSS document (which is called a “feed” or “channel”) includes full or

summarized text plus metadata such as publishing dates and authorship. Feeds benefit publishers

by letting them syndicate content automatically. They benefit readers who want to subscribe to

timely updates from favored websites or to aggregate feeds from many sites into one place. RSS

feeds can be read using software called an “RSS reader,” “feed reader,” or “aggregator,” which

can be web-based, desktop-based, or mobile-device-based. A standardized XML file format

allows the information to be published once and viewed by many different programs.

Web client

Generic term used to refer to an application that is accessing the Web-Enabled DDS over standard

web protocols, including but not limited to plain HTTP, SOAP over HTTP, RSS over HTTP, etc.

Web-enabled

Generic term used to indicate that a particular technology is accessible by Web Clients by means

of standard web protocols, including but not limited to plain HTTP, SOAP over HTTP, RSS over

HTTP, etc.

Web socket

WebSocket is a web technology providing bi-directional communications over a single TCP

connection. The WebSocket protocol was standardized by the IETF as RFC 6455 in 2011, and the

WebSocket API in Web IDL is being standardized by the W3C.

Web world

A “web world” consists of a collection of client applications communicating with one another

using web protocols, such as SOAP or REST, in conformance with this specification. These

clients communicate with one another and with the DDS world (see “DDS world”) through a

web-enabled DDS gateway.

WSDL platform

As described by the W3C, WSDL is an XML format for describing network services as a set of

endpoints operating on messages containing either document-oriented or procedure-oriented

information. The operations and messages are described abstractly and then bound to a concrete

network protocol and message format to define an endpoint. Related concrete endpoints are

combined into abstract endpoints (services). WSDL is extensible to allow description of endpoints

and their messages regardless of what message formats or network protocols are used to

6 Web-Enabled DDS, v1.0

communicate; however, the only bindings standardized by the W3C describe how to use WSDL in

conjunction with SOAP, HTTP GET/POST, and MIME. For the purposes of this specification, the

term “WDSL platform” shall refer to the set of standard specifications defined by the WS-I Basic

Profile 1.1 specification.

XMPP platform

The Extensible Messaging and Presence Protocol (XMPP) is an open technology for

asynchronous communication that powers a wide range of applications including instant

messaging, presence, multi-party chat, voice and video calls, collaboration, lightweight

middleware, content syndication, and generalized routing of XML data. The base specifications of

the Extensible Messaging and Presence Protocol (XMPP) formalize the core protocols developed

within the Jabber open-source community in 1999. They are published as IETF RFCs 3920 and

3921.

5 Symbols

This specification uses the following symbols and abbreviations:

Table 2 Symbols and Abbreviations

DDS Data Distribution Service

IDL Interface Description Language

XML Extensible Markup Language

XMPP Extensible Messaging and Presence Protocol

Atom Atom Publishing Protocol

RSS Really Simple Syndication

REST Representational State Transfer

HTTP HyperText Transfer Protocol

CCM CORBA Component Model

QoS Quality of Service

RFP Request For Proposal

WSDL Web Services Description Language

http://fr.wikipedia.org/wiki/Extensible_Messaging_and_Presence_Protocol

Web-Enabled DDS, v1.0 7

6 Additional Information

6.1 Changes to Adopted OMG Specifications [optional]

This specification does not extend or modify any existing OMG specifications.

6.2 Acknowledgements

The following companies submitted content that was incorporated into this specification:

 eProsima

 Real-Time Innovations, Inc. (RTI)

 Thales

The following additional companies support this specification:

 General Dynamics

 Twin Oaks Computing, Inc.

8 Web-Enabled DDS, v1.0

Web-Enabled DDS, v1.0 9

7 WebDDS Object Model

7.1 General

The WebDDS Object model acts as a façade to the Standard DDS Object model, exposing a

simplified model to the Web Client applications. The model is simplified by (1) reducing the

number of objects and data-types, by (2) reducing the number of operations, and by (3) making

their use more regular. These simplifications make it better suited to being mapped to web

architectures such as REST. In addition, the WebDDS Object model adds several new objects

necessary to manage the clients, their durable connections to the WebDDS service, and the access

rights they have.

All the operations described in the WebDDS PIM pertain the interaction of a client application

with a single instantiation of the WebDDS service, identified by the HTTP (or HTTPS) URL used

to reach the WebDDS service. The scope of all the operations is therefore limited to its actions on

that one WebDDS service instance. Notwithstanding that, client applications may interact with

each other despite connecting to different WebDDS service instances. These interactions would

happen as a consequence of the WebDDS service instances creating and performing operations on

DDS DomainParticipant entities, which exchange information in accordance to the DDS

specification.

10 Web-Enabled DDS, v1.0

Figure 3— WebDDS Object Model Overview

The WebDDS Object Model is contained in the package WebDDS and acts as a façade to the Standard DDS

Object Model (from the DDS specification, contained in the DDS package).

The remaining of this clause defines the WebDDS object model in detail and the interaction with

entities in the Standard DDS Object Model.

pkg PIM Ov erv iew

WebClient

WebDDS

+ AccessController

+ Application

+ Client

+ DataReader

+ DataWriter

+ DomainParticipant

+ Entity

+ EntityName

+ Publisher

+ Qos

+ QosLibrary

+ QosProfile

+ RegisteredType

+ ReturnStatus

+ Root

+ SessionId

+ Status

+ Subscriber

+ Topic

+ Type

+ WaitSet

DDS

+ Condition

+ ContentFilteredTopic

+ DataReader

+ DataReaderListener

+ DataWriter

+ DataWriterListener

+ DomainEntity

+ DomainParticipant

+ DomainParticipantFactory

+ DomainParticipantListener

+ Entity

+ GuardCondition

+ Listener

+ Publisher

+ PublisherListener

+ QosPolicy

+ QueryCondition

+ ReadCondition

+ SampleInfo

+ Status

+ StatusCondition

+ Subscriber

+ SubscriberListener

+ Topic

+ TopicDescription

+ TopicListener

+ TypeSupport

+ WaitSet

+ Qos

Qos

+ DataReaderQos

+ DataWriterQos

+ DomainParticipantQos

+ PublisherQos

+ SubscriberQos

+ TopicQos

(from DDS)

«use»

«use»

«use»

Web-Enabled DDS, v1.0 11

7.2 Model Overview

Figure 4—WebDDS Object Model Overview

At the highest-level Web-Enabled DDS Object Model consists of 5 classes: The

WebDDS::Root singleton, Client, Application, AccessController, and

DomainParticipant.

The WebDDS::Root singleton is the entry point for the service and functions as a root factory

and container for all the Objects managed by the Web-Enabled DDS Service.

The Client class models the user or principal that executes the client application. Each

Application object is associated with a single Client and gets its access rights from those

assigned to the Client.

The Application class models a software application that uses WebDDS service in order to

publish and subscribe data on one or more DDS Domains. An Application can be associated

with zero of more DomainParticipant objects.

The AccessController is responsible for making decisions regarding the resources and

operations a particular Client is allowed to perform. It contains rules that associate a Client

with privileges which determine which DDS domain an application executing on behalf of a client

class WebDDS_Ov erv iew

Entity

WebDDS::Application

WebDDS::Client «singleton»

WebDDS::Root

WebDDS::

DomainParticipant

WebDDS::AccessController

WebDDS::QosLibrary

- name :string

«value»

WebDDS::Type

- name :string

«use»

0..*

0..*

«use»
0..*

1

0..*

12 Web-Enabled DDS, v1.0

may join, the DDS Topics it can read and write, etc.

The WebDDS DomainParticipant is a proxy for the DDS DomainParticipant and models

the association with a DDS domain and the capability of the Application to publish and subscribe

to Topics on that domain.

Web-Enabled DDS, v1.0 13

7.3 Access Control

Many DDS applications are deployed within isolated or protected networks. In these situations

security and access control can be managed outside the DDS infrastructure.

If DDS applications need to communicate directly over an open or unsecured network, then the

DDS protocol itself needs to be secured. The DDS Security specification [21] addresses how to

secure applications that use directly the DDS API and communicate using the DDS

Interoperability wire protocol (DDS-RTPS).

The situation using Web-Enabled DDS is different. In this situation the security concerns are

limited to the remote access from a client application to the Web Enabled DDS Service, which

acts as a gateway to the DDS network (see Figure 5). This web-client-to-gateway communication

uses standard web protocols (e.g. HTTP) and therefore the security mechanism must be well

aligned with these protocols. Securing access from web clients to the Web Enabled DDS Service

is orthogonal to securing the communications that use the DDS Interoperability wire protocol. For

example the native DDS applications may all reside within a closed network protected by

perimeter security (firewalls, NATs, and other network-level access control mechanisms), or the

native DDS applications may use the security mechanisms eventually specified by the Secure

DDS specification.

For this reason Web-Enabled DDS must provide its own security mechanism that defines how a

web client is authenticated to the Web Enabled DDS Service, the access rights an authenticated

client has to the entities within the Web Enabled DDS Service and how the HTTP communication

is secured.

14 Web-Enabled DDS, v1.0

Figure 5—Web Enabled DDS Service operating as gateway to Protected DDS domain

The remainder of this clause provides a summary of the workflow. A more detailed description of

each interface and its operation is provided in the sections that follow.

The WebDDS::Root singleton is the entry point to the service. Client applications invoke

operations on the WebDDS::Root singleton and related class in order to create applications,

entities, and publish and subscribe information. Each operation receives the client credentials that

validated via the AccessController object, which determines whether the operation can be

performed by the client application.

Web-Enabled DDS, v1.0 15

Figure 6—WebDDS classes involved in client and application management

To understand the purpose of the Application class, it is useful to go back to the traditional

DDS Object Model. The DDS Object Model is intended for use with a local programming API.

Using the DDS programming API applications create DDS entities, which inevitably get

destroyed no later than when the application finishes. Therefore, DDS Entities’ lifetimes are

contained within the application’s own. However, within a web-based distributed system this last

assumption it is not always true. Web client applications may ask web servers to instantiate

server-side entities and store their state on the server side. Web clients will potentially be

disconnected and reconnected from the server. Such server-based entities may therefore have a

lifetime that goes beyond a single client-server session. For this reason the management of server-

based entities that survive temporary disconnects is an important issue addressed by this

specification. This is precisely the purpose of the Application class.

The purpose of the SessonId type is to remember an authenticated client across subsequent

invocations to operations on the service. This is needed so that each operation does not require

re-authentication. By nature of the HTTP (or HTTPS) protocol, the web client connectivity to the

server is intermittent. Even under normal operating conditions successive client operations could

close and re-establish the underlying TCP connections. For this reason the WebDDS maintains a

Session concept that abstracts the duration in which web clients are considered authenticated and

class WebDDS_AppUserAccess

WebDDS::Client

- clientAPIKey :string

Entity

WebDDS::Application

«singleton»

WebDDS::Root

WebDDS::

DomainParticipant

WebDDS::AccessController

+ check_permissions() :ReturnStatus

WebClient

«use»

0..*

«use»

0..*

1

0..*

0..*

16 Web-Enabled DDS, v1.0

bound to their created Applications. During this period, client and server can be considered

connected.

7.3.1 Class WebDDS::Root

The WebDDS::Root singleton directly manages five kinds of objects: Client,

Application, Type, QosLibrary, and AccessController. It serves as the entry

point for the web client application. It provides operations to create new applications, and

determines the operations that can be performed by the client application (by delegating to the

AccessController class).

Figure 7—WebDDS::Root class and operations

7.3.1.1 Operation: create_application

Inputs

 applicationObjectRepresentation (string) a representation of the WebDDS

Application including its name and contained participants and entities. The format of

the representation shall be defined by each PSM. The name of the application shall be

unique within the scope of WebDDS.

class WebDDS_Root

«singleton»

WebDDS::Root

+ create_application() :void

+ delete_application() :void

+ update_application() :void

+ get_applications() :void

+ create_qos_library() :void

+ delete_qos_library() :void

+ update_qos_library() :void

+ get_qos_libraries() :void

+ create_type() :void

+ delete_type() :void

+ update_type() :void

+ get_types() :void

Entity

WebDDS::Application
WebDDS::Client

- clientAPIKey :string

WebDDS::AccessController

«value»

WebDDS::ReturnStatus

- returnCode :int

- returnMessage :string

WebDDS::QosLibrary

- name :string

+ create_qos_profile() :ReturnStatus

+ update_qos_profile() :ReturnStatus

+ delete_qos_profile() :ReturnStatus

+ get_qos_profile() :ReturnStatus

«value»

WebDDS::Type

- name :string

«value»

WebDDS::

QosProfile

- name :string

0..* «use»

0..*1

0..*

Web-Enabled DDS, v1.0 17

Outputs

 returnStatus (ReturnStatus): A numeric code indicating success or failure of the

operation and a textual description in case of failure.

The operation performs the following logical steps:

It checks if there is already a pre-existing WebDDS::Application with specified

applicationName within the WebDDS::Root. If the WebDDS::Application already exists,

it returns the OBJECT_ALREADY_EXISTS error.

It calls the check_permissions operation to verify that the client application is allowed by

the access control policy to create an application. If the verification fails, the operation returns the

PERMISSIONS_ERROR error.

If the applicationObjectRepresentation specified a set of contained participants, the

check_permissions operation is invoked to verify that the client is allowed by the access

control policies to join the DDS domain identified by the domain_id with the requested QoS. If

the verification fails, the operation returns the PERMISSIONS_ERROR error.

7.3.1.2 Operation: delete_application

Inputs:

 applicationName (string): The name of the application.

Outputs:

 returnStatus (ReturnStatus): A numeric code indicating success or failure of the operation

and a textual description in case of failure.

Deletes an existing WebDDS::Application. This operation performs the following logical steps:

It locates a WebDDS::Application associated with the Client with the specified

applicationName. If the application does not exist, it returns the INVALID_OBJECT error.

It calls the check_permissions operation to verify that the client application is allowed by

the access control policies to delete the DDS::Application. If the check fails, it returns

PERMISSIONS_ERROR.

If the verification is successful, it deletes the WebDDS::Application. If this deletion fails it

returns the GENERIC_SERVICE_ERROR error. If the deletion of DDS contained entities fails, it

returns the DDS_ERROR error.

18 Web-Enabled DDS, v1.0

7.3.1.3 Operation: get_applications

Inputs

 applicationNameExpression (string) An expression on the name of the

Application.

Outputs

 returnStatus (ReturnStatus): A numeric code indicating success or failure of the

operation and a textual description in case of failure.

 applicationRepresentationList (string): A representation of a list of

Application objects. The format of the representation shall be defined by each PSM.

This operation returns a representation of the list of all the WebDDS::Application objects

associated with the WebDDS::Client whose name matches the applicationNameExpression.

If the operation fails, it returns GENERIC_SERVICE_ERROR, otherwise it returns OK.

Expression syntax and matching for the publisherNameExpression shall use the syntax and rules

of the POSIX fnmatch() function as specified in POSIX 1003.2-1992, section B.6 [19].

7.3.1.4 Operation: create_qos_library

Inputs

 qosLibraryObjectRepresentation (string) a representation of the WebDDS

QosLibrary object including its qosLibraryName and optionally contained

QosProfiles. The format of the representation shall be defined by each PSM. The

name of the qosLibraryName shall be unique within the scope of other QosProfiles.

Outputs

 returnStatus (ReturnStatus): A numeric code indicating success or failure of the

operation and a textual description in case of failure.

Web-Enabled DDS, v1.0 19

This operation creates a WebDDS::QosLibrary and the contained QosProfiles.

This operation performs the following logical steps:

It checks if there is already a pre-existing WebDDS::QosLibrary of the specified qosLibraryName

within the WebDDS::Root. If a WebDDS::QosLibrary with that name already exists, it

returns the OBJECT_ALREADY_EXISTS error.

The operation creates a WebDDS::QosLibrary and all the contained DDS:QosProfile

objects specified as part of the qosLibraryObjectRepresentation.

If all the creations are successful, the operation returns OK.

7.3.1.5 Operation: delete_qos_library

Inputs

 qosLibraryName (string) the name of the QosLibrary.

Outputs

 returnStatus (ReturnStatus): A numeric code indicating success or failure of the

operation and a textual description in case of failure.

Deletes an existing WebDDS::QosLibrary. This operation performs the following logical

steps:

It locates a WebDDS::QosLibrary within the WebDDS::Root with the specified

qosLibraryName. If the WebDDS::QosLibrary does not exist, it returns the

INVALID_OBJECT error.

It calls the check_permissions operation to verify that the user is allowed by the access

control policies to delete the QosLibrary and contained QosProfiles. If the check fails, it

returns PERMISSIONS_ERROR.

If the verification is successful, it deletes the WebDDS::QosLibrary and all associated

QosProfiles. This deletion has no impact on any existing DDS entities that may have already

been created and reference the deleted QosLibrary and QosProfiles.

If the deletion fails it returns the DDS_ERROR error.

7.3.1.6 Operation: get_qos_libraries

Inputs

 qosLibraryNameExpression (string) An expression on the name of the QosLibrary

objects.

20 Web-Enabled DDS, v1.0

Outputs

 returnStatus (ReturnStatus): A numeric code indicating success or failure of the

operation and a textual description in case of failure.

 qosLibraryObjectRepresentationList (string): A representation of a list of

QosLibrary objects. The format of the representation shall be defined by each PSM.

This operation returns a representation of the list of all the WebDDS::QosLibrary objects

associated with the WebDDS::Root whose name matches the qosLibraryNameExpression. If the

operation fails, it returns GENERIC_SERVICE_ERROR, otherwise it returns OK.

Expression syntax and matching for the qosLibraryNameExpression shall use the syntax and

rules of the POSIX fnmatch() function as specified in POSIX 1003.2-1992, section B.6 [19].

7.3.1.7 Operation: create_type

Inputs

 typeObjectRepresentation (string) a representation of a collection of

modules, declarations, and data-types (see [DDS-XTYPES]). The type representation

include the name of each type. The format of the representation shall be defined by each

PSM.

Outputs

 returnStatus (ReturnStatus): A numeric code indicating success or failure of the

operation and a textual description in case of failure.

This operation creates a collection of WebDDS::Type objects including any nested types.

This operation performs the following logical steps:

For each type it checks whether there is already a pre-existing WebDDS::Type of the same fully-

qualified typeName within the WebDDS::Root. If a WebDDS::Type with that name already exists,

it returns the OBJECT_ALREADY_EXISTS error and no types are created.

The operation creates all the WebDDS::Type objects specified in the

typeObjectRepresentationList. If any of the type creation fails the operation returns

INVALID_INPUT.

If all the creations are successful, the operation returns OK.

7.3.1.8 Operation: delete_type

Inputs

 typeName (string): The name of the data type. This name must be unique within the

scope of the Application object.

Web-Enabled DDS, v1.0 21

Outputs

 returnStatus (ReturnStatus): A numeric code indicating success or failure of the

operation and a textual description in case of failure.

This operation performs the following logical steps:

It locates a pre-existing WebDDS::Type of the specified typeName within the Application. If

the Type is not found, it returns the INVALID_OBJECT error.

It deletes the located WebDDS::Type object. If the operation succeeds it returns OK. Otherwise

it returns GENERIC_SERVICE_ERROR..

7.3.1.9 Operation: get_types

Inputs

 typeNameExpression (string): An expression on the name of the Type objects.

 includeReferencesTypesDepth (int). Indicates whether referenced types should

be included as well and the maximum degree of separation.

Outputs

 returnStatus (ReturnStatus): A numeric code indicating success or failure of the

operation and a textual description in case of failure.

 typeObjectRepresentationList (string): A representation of a list of

WebDDS::Type objects. The format of the representation shall be defined by each PSM.

If the typeNameExpression is a single type name, the operation checks whether there is already a

pre-existing WebDDS::Type of the specified fully-qualified typeName within the

WebDDS::Root. If the WebDDS::Type does not exist, it returns the INVALID_OBJECT error.

If it does exist it returns a typeObjectRepresentationList that includes that type and the types it

references up to a maximum reference distance of includeReferencesTypesDepth.

If the typeNameExpression is an expression, the operation returns a representation of the list of

all the WebDDS::Type objects associated with the WebDDS::Root whose name matches the

typeNameExpression in addition it also returns the types referenced by those in the list types it

references up to a maximum reference distance of includeReferencesTypesDepth. If the operation

fails, it returns GENERIC_SERVICE_ERROR, otherwise it returns OK.

Expression syntax and matching for the typeNameExpression shall use the syntax and rules of the

POSIX fnmatch() function as specified in POSIX 1003.2-1992, section B.6 [19].

22 Web-Enabled DDS, v1.0

7.3.2 Class WebDDS::AccessController

The AccessController class is used to validate that the client application has the necessary

privileges to join the DDS domain and perform the operations it requests.

This class is never used directly by the client applications. It is a class used internally by the Web-

Enabled DDS service to make decisions as to allow or deny the requests originating from the

client applications. For this reason the API or even the explicit existence of this class is not

mandated by this specification. Implementers of this specification may chose to fold the

functionality offered by this class into other classes or parts of their system and it will not be

visible to the client applications.

Following is the normative behavior of the Web-Enabled DDS service related to access control:

 Provide a secure communication channel with the client. For instance, HTTP requests must be per-

formed over HTTPS.

 Provide a way to configure what clients are allowed to use the service.

 Authenticate the client application (based on the credentials passed on every operation) to ensure

it represent the client identified by an API key.

 Provide a way to configure which DDS domains (identified by the numeric DDS domainId) each cli-

ent (identified by an API key) is allowed to join.

 Reject any attempts of a client application to join a domain unless the API key provides permission

to join the domain in the service configuration.

 Provide a way to configure which DDS Topics (identified by the Topic name) each client can publish

on each DDS domain.

 Reject any attempts of a client application to publish to a Topic unless the associated client has

been authenticated and given permission to publish that topicName on that domainId by the ser-

vice configuration.

 Provide a way to configure which DDS Topics (identified by the Topic name) each client can sub-

scribe to on each on each DDS domain.

 Reject any attempts of a client application to subscribe to a Topic unless the associated client has

been authenticated and given permission to subscribe to that topicName and on that domainId by

the service configuration.

Web-Enabled DDS, v1.0 23

The specific means to configure the service (via file, tool, etc.) are left outside this specification,

as they do not affect interoperability with client applications.

The authentication and access control decisions performed by the Web-Enabled DDS service are

modeled by a logical check_permissions operation. This operation is logically invoked at

the point where access control decisions should be made. This operation is “logical” in the sense

that it only used for descriptive purposes. The implementation of the class is not required for

compliance, only externally-observable behavior concerning the authentication and access control

decisions are normative.

The Web-Enabled DDS service, as a first-class participant in the DDS Global Data Space, is

subject to the authentication and access control policies imposed by DDS Security. These are in

addition to any access control restrictions the Web-Enabled DDS service imposes on the client.

Figure 8—The AccessController class (conceptual only)

7.3.2.1 Operation: check_permissions

Inputs

 clientApiKey (string): An identifier for the client performing the operation.

class WebDDS_AccessController

WebDDS::AccessController

+ check_permissions() :ReturnStatus

«singleton»

WebDDS::Root

Entity

WebDDS::Application

WebDDS::

Publisher

WebDDS::

Subscriber

WebDDS::

DomainParticipant

WebDDS::Client

- clientAPIKey :string
0..*

«use»
«use»

«use»

0..*
«use»

0..*

1

0..*

24 Web-Enabled DDS, v1.0

 operationDescription (string): A description of the kind of operation that is being performed.

 operationDetails (string sequence). Representation of the object on which the operation is being

performed and any relevant parameters.

This operation is logically invoked each time the service must decide whether a particular

operation is to be allowed. This specification explicitly documents which operations must perform

this check on the description of the operation itself.

7.3.3 Class WebDDS::Client (conceptual)

The Client class models the client or principal that executes the client application. Each client

application shall execute on behalf of a single Client. The create_application operation

on the WebDDS::Root class authenticates the client application and binds it so a single

Client. The Web-Enabled DDS service associates permissions or access rights to each

Client (see 0).

A Client may create one or more Application objects. The Application objects

represent specific client applications.

The Client class does not have any operations and is therefore not used directly by the client

applications. For this reason implementations may chose to realize it in a variety of ways, or

combine its functionality with other classes. This specification does not mandate a specific

implementation for this class, as long as its observable behavior matches what is descried in this

specification.

7.3.4 Class WebDDS::Application

The Application class models a software application that uses WebDDS service in order to

publish and subscribe data on one or more DDS Domains. Each Application object is bound

with a single Client and gets its access rights from those assigned to the Client.

An Application can be associated with zero or more DomainParticipant objects.

The Application class operations are described in 7.4.

Web-Enabled DDS, v1.0 25

7.4 DDS Proxy classes

The WebDDS object model contains a set of “proxy” classes that collectively define an object

model that is logically equivalent to the DDS Object Model. These proxy classes allow client

applications to participate as first-class citizens on the DDS network. The client applications

instantiate and operate in the proxy objects. Each WebDDS proxy object is backed by one (or

more) DDS objects and operations performed on the proxies are delegated to the actual DDS

objects.

Figure 9—WebDDS classes used to proxy the DDS Objects

The proxy classes are designed as a simplification of the DDS Object Model to (a) reduce the

number of classes and operations and (b) make the operation names and semantics more uniform

across the different classes so that it can be more easily accessed as resources in a REST-style

architecture. The high-level relationship between the proxy classes in the WebDDS Object Model

and the corresponding classes in the DDS Object Model is illustrated in Figure 10.

class WebDDS_ProxyClasses

«singleton»

WebDDS::Root
WebDDS::QosLibrary

«interface»

WebDDS::Entity

- name :string

«value»

WebDDS::Qos

WebDDS::Topic

«value»

WebDDS::Type

- name :string

WebDDS::

DataWriter

«value»

WebDDS::

QosProfile

- name :string

WebDDS::

DataReader

WebDDS::

Subscriber

WebDDS::

DomainParticipant

WebDDS::

Publisher

WebDDS::StatusWebDDS::WaitSet

WebDDS::Application

«use»

«use»

qos
qos_profile0..*

0..*

26 Web-Enabled DDS, v1.0

Figure 10—Mapping of WebDDS Object Model classes to DDS Object Model classes

7.4.1 ReturnStatus

The operations on the WebDDS objects return a ReturnStatus containing an integer

ReturnCode specifying whether the operation succeeded and in the case of failure the reason

for the failure. The set of possible ReturnCode values is shown in Table 3 below.

Table 3 ReturnCode values

Value Meaning

OK The operation succeeded

class WebDDS_DDS-Mapping

WebDDS::

DomainParticipant

WebDDS::Publisher

WebDDS::Subscriber

WebDDS::DataWriter

WebDDS::DataReader

WebDDS::Topic

DDS::DomainParticipantFactory

DDS::DomainParticipant

DDS::Publisher

DDS::Subscriber

DDS::TopicDescription

DDS::Topic

DDS::ContentFilteredTopic

DDS::WaitSetWebDDS::WaitSet

DDS::DataReader

DDS::DataWriter

DDS::Condition

«value»

WebDDS::Qos

«value»

WebDDS::

QosProfile

Qos

+ DataReaderQos

+ DataWriterQos

+ DomainParticipantQos

+ PublisherQos

+ SubscriberQos

+ TopicQos

(from DDS)

Entity

WebDDS::Application

«use»

«use»

«use»

«use»

«use»

«use»

«use»

«use»

«use»
0..*

«use»

«use»

«use»

«use»

0..*

Web-Enabled DDS, v1.0 27

DDS_ERROR An operation on one of the underlying DDS objects returned an
error.

OBJECT_ALREADY_EXISTS Request to create an already existing object

INVALID_INPUT The parameters passed to the operation were incorrect/invalid

INVALID_OBJECT Operation specified a non-existing or invalid Object

ACCESS_DENIED The client API key provided is invalid.

PERMISSIONS_ERROR The operation is not permitted by the access control rules that
apply to the client user.

GENERIC_SERVICE_ERROR Unspecified error.

Specific PSMs may map the GENERIC_SERVICE_ERROR value into more specific

ReturnCode values providing finer details for the PSM.

The description of the PIM operations specifies the ReturnStatus of each operation. As a

shortcut the following terminology is used:

 The operation “returns OK.” This is a shortcut to specify that the operation shall return a

ReturnStatus with the returnCode attribute set to the value OK.

 The operation “returns the XXX error.” This is a shortcut to specify that the operation shall return a

ReturnStatus with the returnCode attribute set to the XXX error and the returnMessage

attribute set to a textual description of the error.

7.4.2 Access control and permissions

The implementation of many of the operations must call check_permissions operations

operation on the WebDDS::AccessControl class to determine whether the operation is

allowed.

The actual representation and parameters to this operation need not be defined by this

specification because this operation is invoked internally by the service and does not affect the

observable client API and behavior. The only observable behavior by the client happens in its call

to other operations of the WebDDS API, which may fail as a result of lack of permissions.

This specification states where the check_permissions operation shall be invoked in order

to specify the operations that can potentially require access permissions. Strictly speaking the

specifics of this call are not normative. Implementations many execute them in different order or

combine them as long as the observable behavior is as specified.

7.4.3 Class WebDDS::Application (details)

This class represents a running client application and serves as the root factory for all the other

objects instantiated by the Web-Enabled DDS service.

28 Web-Enabled DDS, v1.0

Figure 11—Application class with factory operations

7.4.3.1 Operation: create_participant

Inputs

 participantObjectRepresentation (string) a representation of the WebDDS

Participant object including its name and optionally Qos and contained entities. The

format of the representation shall be defined by each PSM. The name of the participant

shall be unique within the scope of the Application object.

Outputs

 returnStatus (ReturnStatus): A numeric code indicating success or failure of the

operation and a textual description in case of failure.

This operation performs the following logical steps:

It checks if there is already a pre-existing WebDDS::DomainParticipant of the specified

participantName within the WebDDS::Application. If the

WebDDS::DomainParticipant already exists, it returns the OBJECT_ALREADY_EXISTS

error.

class WebDDS_Application

Entity

WebDDS::Application

+ create_participant() :ReturnStatus

+ update_participant() :ReturnStatus

+ delete_participant() :ReturnStatus

+ create_waitset() :ReturnStatus

+ update_waitset() :ReturnStatus

+ delete_waitset() :ReturnStatus

WebDDS::DomainParticipant

DDS::DomainParticipant

DDS::

DomainParticipantFactory

WebDDS::AccessController

+ check_permissions() :ReturnStatus

WebDDS::WaitSet

«value»

WebDDS::Type

«value»

WebDDS::

QosProfile

WebDDS::QosLibrary

«use» «use»

«use»

«use»

«use»

«use»

0..*

Web-Enabled DDS, v1.0 29

It calls the check_permissions operation to verify that the client is allowed by the access

control policies to join the DDS domain identified by the domainId with the requested QoS. If

the verification fails, the operation returns the PERMISSIONS_ERROR error.

If the participantObjectRepresentation specifies a set of contained entities, the

check_permissions operation is invoked to verify that the client is allowed by the access

control policies to create those entities with their specified QoS. If the verification fails for any of

them, the WebDDS::DomainParticipant is not created and the operation returns the

PERMISSIONS_ERROR error.

If the permissions checks succeed, the operation creates a WebDDS::DomainParticipant

which in turn creates a DDS::DomainParticipant on the requested domainId using the

specified QoS, It then creates all the WebDDS entities specified as part of the

participantObjectRepresentation and their corresponding DDS Entities.

Each of the DDS Entities is created disabled. If the creation of any DDS Entity fails, then all the

created objects are destroyed and the operation returns the DDS_ERROR error.

If all the creations are successful, the DDS::DomainParticipant and all contained entities

are enabled and the operation returns OK.

7.4.3.2 Operation: update_participant

Inputs

 participantObjectRepresentation (string) a representation of the WebDDS

Participant object including its name and optionally Qos and contained entities. The

format of the representation shall be defined by each PSM. The name of the participant

shall correspond to a previously created participant within the Application object.

Outputs

 returnStatus (ReturnStatus): A numeric code indicating success or failure of the

operation and a textual description in case of failure.

This operation performs the following logical steps:

It locates a WebDDS::DomainParticipant associated with the client with the specified

participantName . If the participant does not exist, it returns the INVALID_OBJECT error.

If the participantObjectRepresentation specifies a QoS or QosProfile the

check_permissions operation to verify that the client is allowed by the access control

policies to change the DDS::DomainParticipant QoS. If the verification is successful, it

updates the QoS of the DomainParticipant. Otherwise it returns the

PERMISSIONS_ERROR error.

If the participantObjectRepresentation specifies a set of contained entities, then the operation

checks if these contained entities already exist within the WebDDS::DomainParticipant.

30 Web-Enabled DDS, v1.0

 For each contained entity that already exists if the participantObjectRepresentation specifies a QoS

the operation shall call the check_permissions operation to verify that the client is allowed by

the access control policies to change the Qos of that entity.

 For each contained entity that does not exist the operation shall call the check_permissions

operation to verify that the client is allowed by the access control policies to create that entity and

set its Qos as specified.

 The above two steps are repeated recursively as a contained entity (such as a Publisher) may itself

contain other entities (such as the DataWriters)

The operation checks if any of the entities contained within the WebDDS::DomainParticipant are

not present in the participantObjectRepresentation. For any such entities, the

operation calls check_permissions operation to verify that the client is allowed by the

access control policies to delete that entity.

If any of the calls to check_permissions fails, any actions performed by this operation are

undone and the operation returns the PERMISSIONS_ERROR error.

If all the calls to check_permissions succeed, the operation performs the appropriate actions

in terms of

(a) Creating the WebDDS objects specified in the

participantObjectRepresentation. This creates any associated DDS

Objects.

(b) Changing the QoS of the DDS Objects associated with previously existing objects

(c) Deleting the WebDDS in the WebDDS::DomainParticipant which do nor appear in the

participantObjectRepresentation.

If any of the above creation, deletion, or QoS-setting operations fails, any actions performed by

this operation are undone and the operation returns the DDS_ERROR error.

If all the creation or QoS-setting operations succeed, the operation returns OK.

7.4.3.3 Operation: delete_participant

Inputs

 participantName (string): The name of the participant.

Outputs

 returnStatus (ReturnStatus): A numeric code indicating success or failure of the

operation and a textual description in case of failure.

Deletes an existing WebDDS::DomainParticipant. This operation performs the following

logical steps:

Web-Enabled DDS, v1.0 31

It locates a WebDDS::DomainParticipant associated with the Client with the specified

participantName . If the participant does not exist, it returns the INVALID_OBJECT error.

It calls the check_permissions operation to verify that the client is allowed by the access

control policies to delete the DDS::DomainParticipant QoS. If the check fails, it returns

PERMISSIONS_ERROR.

If the verification is successful, it deletes the DDS::DomainParticipant associated with the

WebDDS::DomainParticipant. If this deletion fails it returns the DDS_ERROR error.

It deletes the WebDDS::DomainParticipant. If this fails, it returns

GENERIC_SERVICE_ERROR, otherwise the operation returns OK.

7.4.3.4

7.4.3.5

32 Web-Enabled DDS, v1.0

7.4.3.6

7.4.3.7 Operation: create_waitset

Inputs

 waitsetName (string): The name of the WaitSet. This name must be unique within

the scope of the Application object.

 waisetRepresentation (string): A string representation of the WebDDS::WaitSet

which includes the name of the WaitSet and the list of conditions associated with it. The

format of the representation shall be defined by each PSM.

Outputs

 returnStatus (ReturnStatus): A numeric code indicating success or failure of the

operation and a textual description in case of failure.

This operation performs the following logical steps:

It checks if there is already a pre-existing WebDDS::WaitSet of the specified waitsetName

within the Application. If the WaitSet already exists, it returns the

OBJECT_ALREADY_EXISTS error.

It creates a WebDDS::WaitSet which in turn creates a DDS::WaitSet.

It creates the necessary DDS conditions, as specified in the waisetRepresentation and

attaches them to the DDS::WaitSet.

If any of the DDS related operations fails, it returns the DDS_ERROR error. Otherwise it returns

OK.

Web-Enabled DDS, v1.0 33

7.4.3.8 Operation: update_waitset

Inputs

 waitsetRepresentation (string): An XML representation of the WebDDS::WaitSet

including the name and new conditions to associate with the WaitSet.

Outputs

 returnStatus (ReturnStatus): A numeric code indicating success or failure of the

operation and a textual description in case of failure.

This operation performs the following logical steps:

It checks if there is already a pre-existing WebDDS::WaitSet of the specified waitsetName

within the Application. If the WebDDS::WaitSet already exists, it returns the

INVALID_OBJECT error.

It updates the conditions associated with the WebDDS::WaitSet which in turn updates the

corresponding DDS::WaitSet.

If the update operation fails due to a badly formatted waitsetRepresentation, it returns

INVALID_OBJECT error. If it fails due to an error returned by the DDS operation, it returns the

DDS_ERROR error. Otherwise it returns OK.

7.4.3.9 Operation: delete_waitset

Inputs

 waitsetName (string): The name of the participant. This name must be unique within

the scope of the Application object.

Outputs

 returnStatus (ReturnStatus): A numeric code indicating success or failure of the

operation and a textual description in case of failure.

This operation performs the following logical steps:

It locates a pre-existing WebDDS::WaitSet of the specified waitsetName within the

Application. If the WebDDS::WaitSet is not found, it returns the INVALID_OBJECT error.

It deletes the located WebDDS::WaitSet which in turn deletes the related DDS::WaitSet. If

the delete fails due to an error returned by the DDS delete operation, it returns the DDS_ERROR.

Otherwise it returns OK.

7.4.4 Class WebDDS::DomainParticipant

This class is a proxy for a DDS DomainParticipant and serves as the factory for the

34 Web-Enabled DDS, v1.0

WebDDS Topic, Publisher, and Subscriber objects.

Figure 12—Participant class with operations

class WebDDS_Participant

WebDDS::Application

WebDDS::DomainParticipant

+ register_type() :ReturnStatus

+ unregister_type() :ReturnStatus

+ create_topic() :ReturnStatus

+ update_topic() :ReturnStatus

+ delete_topic() :ReturnStatus

+ create_publisher() :ReturnStatus

+ update_publisher() :ReturnStatus

+ delete_publisher() :ReturnStatus

+ create_subscriber() :ReturnStatus

+ update_subscriber() :ReturnStatus

+ delete_subscriber() :ReturnStatus

+ get_topics() :ReturnStatus

+ get_publishers() :ReturnStatus

+ get_subscribers() :ReturnStatus

DDS::DomainParticipant

DDS::

DomainParticipantFactory

WebDDS::AccessController

+ check_permissions() :ReturnStatus

WebDDS::Topic WebDDS::

Publisher

WebDDS::

Subscriber

«interface»

WebDDS::Entity

«value»

WebDDS::Type

WebDDS::

RegisteredType

«use»

«use»

«use»

«use»

«use»

0..*

registeredTypeName

«use» «use»

typeName

Web-Enabled DDS, v1.0 35

Figure 13—Participant class operations related to types and topics

7.4.4.1 Operation: register_type

Inputs

 registeredTypeName (string): The name the DDS::DomainParticipant should

use to refer to this type.

 relatedTypeName (string): The name of the type as specified on a previous successful

call to Application::create_type.

Outputs

 returnStatus (ReturnStatus): A numeric code indicating success or failure of the

operation and a textual description in case of failure.

This operation performs the following logical steps:

It checks if there is already a pre-existing WebDDS::Type of the specified typeName within the

class WebDDS_Topic

WebDDS::Topic

«interface»

WebDDS::Entity

WebDDS::DomainParticipant

+ register_type() :ReturnStatus

+ unregister_type() :ReturnStatus

+ create_topic() :ReturnStatus

+ update_topic() :ReturnStatus

+ delete_topic() :ReturnStatus

«value»

WebDDS::Type

WebDDS::Application

WebDDS::RegisteredType

TopicDescription

DDS::Topic

typeName
0..* «use»

registeredTypeName

«use»

36 Web-Enabled DDS, v1.0

WebDDS Application. If the Type does not exist, it returns the INVALID_OBJECT error.

It checks if the associated DDS::DomainParticipant already has a type registered under the

name registeredTypeName and if this is the case, it returns the

OBJECT_ALREADY_EXISTS error.

It uses the DynamicType facility defined by the DDS-XTYPES specification to create a DDS

TypeSupport for the type represented by registeredTypeName and registers it with the

associated DDS::DomainParticipant. If either operation fails, it returns the DDS_ERROR

error.

If the operation succeeds, it returns OK.

7.4.4.2 Operation: unregister_type

Inputs

 registeredTypeName (string): The registeredTypeName of a previously

registered type as specified on a previous successful call to register_type.

Outputs

 returnStatus (ReturnStatus): A numeric code indicating success or failure of the

operation and a textual description in case of failure.

This operation locates a WebDDS::Type within the WebDDS::DomainParticipant with the

specified registeredTypeName. If the WebDDS::Type does not exist, it returns the

INVALID_OBJECT error.

The operation undoes the actions taken by the register_type operation removing the

WebDDS::Type matching the registeredTypeName. Future calls that refer to a WebDDS::Type

registered under the name registeredTypeName on that Participant shall return an error. The

exception is a new call to the register_type operation.

Calling the operation unregister_type performs no operations on the underlying

DDS::DomainParticipant.

If the operation succeeds it returns OK

7.4.4.3 Operation: create_topic

Inputs

 topicObjectRepresentation (string) a representation of the WebDDS Topic

object including the Topic name (topicName), name of the registered type it is associated

with, and optionally a QoS. The format of the representation shall be defined by each

PSM. The topicName of the Topic shall be unique within the scope of the Participant

object.

Web-Enabled DDS, v1.0 37

Outputs

 returnStatus (ReturnStatus): A numeric code indicating success or failure of the

operation and a textual description in case of failure.

This operation performs the following logical steps:

It checks if there is already a pre-existing WebDDS::Topic of the specified name within the

DDS::DomainParticipant. If the Topic already exists, it returns the

OBJECT_ALREADY_EXISTS error.

It calls the check_permissions operation to verify that the Client is allowed by the access

control policies to create a DDS Topic of the specified name on DDS domain associated with the

WebDDS::Application. If this fails, it returns the PERMISSIONS_ERROR error.

It checks that the WebDDS::DomainParticipant has a type registered with the specified

registeredTypeName . If the DomainParticipant does not have a type registered under the

name registeredTypeName, it returns the INVALID_OBJECT error.

It creates a WebDDS::Topic. If this fails it returns GENERIC_SERVICE_ERROR

It uses the associated DDS::DomainParticipant to create a DDS::Topic with the

associated topicName and type registeredTypeName. If the DDS::DomainParticipant does

not have a type registered under the name registeredTypeName or if the call to create_topic

fails for any other reason, the operation return the DDS_ERROR error.

If the operation succeeds, it returns OK.

7.4.4.4 Operation: update_topic

Inputs

 topicObjectRepresentation (string) a representation of the WebDDS Topic

object including the Topic name (topicName) and optionally a qos or QosProfile. The

format of the representation shall be defined by each PSM. The topicName of the Topic

shall be unique within the scope of the DomainParticipant object.

Outputs

 returnStatus (ReturnStatus): A numeric code indicating success or failure of the

operation and a textual description in case of failure.

This operation performs the following logical steps:

It locates a WebDDS::Topic within the WebDDS::DomainParticipant with the specified

topicName. If the Topic does not exist, it returns the INVALID_OBJECT error.

It calls the check_permissions operation to verify that the client is allowed by the access

control policies to change the DDS::Topic QoS. If the verification is successful, it updates the

38 Web-Enabled DDS, v1.0

QoS of the Topic. Otherwise it returns the PERMISSIONS_ERROR error.

It changes the QoS of the DDS::Topic. If the operation fails, it returns the DDS_ERROR error.

Otherwise it returns OK.

7.4.4.5 Operation: delete_topic

Inputs

 topicName (string): The name of the Topic.

Outputs

 returnStatus (ReturnStatus): A numeric code indicating success or failure of the

operation and a textual description in case of failure.

This operation performs the following logical steps:

It locates a WebDDS::Topic within the WebDDS::DomainParticipant with the specified

topicName. If the Topic does not exist, it returns the INVALID_OBJECT error.

The operation calls the check_permissions operation to verify that the client is allowed by

the access control policies to delete the DDS Topic that topicName. If the verification is not

successful, it returns the PERMISSIONS_ERROR error.

It locates and deletes the DDS::Topic. with name topicName within the

DDS::DomainParticipant associated with the WebDDS::DomainParticipant. If the

DDS::Topic cannot be located or the operation fails, it returns the DDS_ERROR error.

Otherwise it returns OK.

7.4.4.6 Operation: get_topics

Inputs

 topicNameExpression (string): An expression on the name of the Topic.

 registeredTypeNameExpression (string): An expression on the type of the Topic.

Outputs

 returnStatus (ReturnStatus): A numeric code indicating success or failure of the

operation and a textual description in case of failure.

 topicRepresentationList (string): An XML representation of the list of Topics

whose name matches the topicNameExpression. The format of the representation

shall be defined by each PSM.

This operation returns the list of topic names whose name matches the

topicNameExpression and type matches the registeredTypeNameExpression. If

Web-Enabled DDS, v1.0 39

the operation fails, it returns GENERIC_SERVICE_ERROR, otherwise it returns OK.

Expression syntax and matching for the topicNameExpression and typeNameExpression shall

use the syntax and rules of the POSIX fnmatch() function as specified in POSIX 1003.2-1992,

section B.6 [19].

7.4.4.7 Operation: create_publisher

Inputs

 publisherObjectRepresentation (string) a representation of the WebDDS

Publisher object including its publisherName and optionally Qos and contained entities.

The format of the representation shall be defined by each PSM. The name of the Publisher

shall be unique within the scope of the Participant object.

Outputs

 returnStatus (ReturnStatus): A numeric code indicating success or failure of the

operation and a textual description in case of failure.

This operation creates a WebDDS::Publisher and the associated DDS::Publisher with the

desired QoS policies and contained entities.

This operation performs the following logical steps:

It checks if there is already a pre-existing WebDDS::Publisher of the specified

publisherName within the WebDDS::DomainParticipant. If the

WebDDS::Publisher already exists, it returns the OBJECT_ALREADY_EXISTS error.

If the publisherObjectRepresentation specifies a set of contained entities, the

check_permissions operation is invoked to verify that the client is allowed by the access

control policies to create those entities with their specified QoS. If the verification fails for any of

them, the WebDDS::Publisher is not created and the operation returns the

PERMISSIONS_ERROR error.

If the permissions checks succeed, the operation creates a WebDDS::Publisher which in turn

creates a DDS::Publisher using the specified QoS. It then creates all the WebDDS entities

specified as part of the publisherObjectRepresentation and their corresponding DDS Entities.

Each of the DDS Entities is created disabled. If the creation of any DDS Entity fails, then all

the created objects are destroyed and the operation returns the DDS_ERROR error.

If all the creations are successful, the DDS::Publisher and all contained entities are enabled

and the operation returns OK.

40 Web-Enabled DDS, v1.0

7.4.4.8 Operation: update_publisher

Inputs

 publisherObjectRepresentation (string) a representation of the WebDDS

Publisher object including its publisherName and optionally Qos and contained

entities. The format of the representation shall be defined by each PSM. The name of the

Publisher shall correspond to a previously-created Publisher within the

DomainParticipant object.

Outputs

 returnStatus (ReturnStatus): A numeric code indicating success or failure of the

operation and a textual description in case of failure.

This operation updates the QoS and contained entities of an existing Publisher.

This operation performs the following logical steps:

It locates a WebDDS::Publisher within the WebDDS::DomainParticipant with the

specified publisherName. If the WebDDS::Publisher does not exist, it returns the

INVALID_OBJECT error.

If the publisherObjectRepresentation specifies a QoS or QosProfile, the

check_permissions operation to verify that the client is allowed by the access control

policies to change the DDS::Publisher QoS. If the verification is successful, it updates the

QoS of the DDS::Publisher. Otherwise it returns the PERMISSIONS_ERROR error.

If the publisherObjectRepresentation specifies a set of contained entities

(DataWriter objects,) then the operation checks if these contained entities already exist.

 For each contained entity that already exists if the publisherObjectRepresentation specifies a QoS

the operation calls check_permissions operation to verify that the client is allowed by the ac-

cess control policies to change the Qos of that entity.

 For each contained entity that does not exist the operation calls check_permissions operation

to verify that the client is allowed by the access control policies to create that entity and set its Qos

as specified.

The operation checks if any of the entities contained within the WebDDS::Publisher are not

present in the publisherObjectRepresentation. For any such entities, the operation calls the

check_permissions operation to verify that the client is allowed by the access control

policies to delete that entity.

If any of the calls to check_permissions fails, any actions performed by this operation are

undone and the operation returns the PERMISSIONS_ERROR error.

If all the calls to check_permissions succeed, the operation performs the appropriate actions

Web-Enabled DDS, v1.0 41

in terms of

a) Creating the WebDDS objects specified in the publisherObjectRepresentation. This

creates any associated DDS Objects.

b) Changing the QoS of the DDS Objects associated with previously existing objects.

c) Deleting the WebDDS entities in the WebDDS::Publisher which do nor appear in the

participantObjectRepresentation and their peer objects on the associated

DDS::Publisher.

If any of the above creation, deletion, or QoS-setting operations fails, any actions performed by

this operation are undone and the operation returns the DDS_ERROR error.

If all the creation or QoS-setting operations succeed, the operation returns OK.

7.4.4.9 Operation: delete_publisher

Inputs

 publisherName (string): The name of the Publisher.

Outputs

 returnStatus (ReturnStatus): A numeric code indicating success or failure of the

operation and a textual description in case of failure.

Deletes an existing WebDDS::Publisher and the associated DDS:Publisher. This operation

performs the following logical steps:

It locates a WebDDS::Publisher within the WebDDS::DomainParticipant with the

specified publisherName. If the WebDDS::Publisher does not exist, it returns the

INVALID_OBJECT error.

It calls the check_permissions operation to verify that the client is allowed by the access

control policies to delete the entities contained within the WebDDS::Publisher. If the check

fails, it returns PERMISSIONS_ERROR.

If the verification is successful, it deletes the DDS::Publisher associated with the

WebDDS::Publisher. If this deletion fails it returns the DDS_ERROR error.

It deletes the WebDDS::Publisher. If this fails, it returns GENERIC_SERVICE_ERROR,

otherwise the operation returns OK.

7.4.4.10 Operation: get_publishers

Inputs

 publisherNameExpression (string): An expression on the name of the

Publisher.

42 Web-Enabled DDS, v1.0

Outputs

 returnStatus (ReturnStatus): A numeric code indicating success or failure of the

operation and a textual description in case of failure.

 publisherRepresentationList (string): An XML representation of the list of

Publisher objects whose name matches the publisherNameExpression. The

format of the representation shall be defined by each PSM.

This operation returns a representation of the list of all the WebDDS::Publisher objects

belonging to the WebDDS::DomainParticipant whose name matches the

publisherNameExpression. If the operation fails, it returns GENERIC_SERVICE_ERROR,

otherwise it returns OK.

Expression syntax and matching for the publisherNameExpression shall use the syntax and rules

of the POSIX fnmatch() function as specified in POSIX 1003.2-1992, section B.6 [19].

7.4.4.11 Operation: create_subscriber

Inputs

 subscriberObjectRepresentation (string) a representation of the WebDDS

Publisher object including its name and optionally Qos and contained entities. The format

of the representation shall be defined by each PSM. The name of the Subscriber shall be

unique within the scope of the Participant object.

Outputs

 returnStatus (ReturnStatus): A numeric code indicating success or failure of the

operation and a textual description in case of failure.

This operation creates a WebDDS::Subscriber and the associated DDS::Subscriber with

the desired QoS policies and contained entities.

This operation performs the following logical steps:

It checks if there is already a pre-existing WebDDS::Subscriber of the specified

publisherName within the WebDDS::DomainParticipant. If the WebDDS::Subscriber

already exists, it returns the OBJECT_ALREADY_EXISTS error.

If the subscriberObjectRepresentation specifies a set of contained entities, the

check_permissions operation is invoked to verify that the client is allowed by the access

control policies to create those entities with their specified QoS. If the verification fails for any of

them, the WebDDS::Subscriber is not created and the operation returns the

PERMISSIONS_ERROR error.

If the permissions checks succeed, the operation creates a WebDDS::Subscriber which in

turns creates a DDS::Subscriber using the specified QoS. It then creates all the WebDDS

Web-Enabled DDS, v1.0 43

entities specified as part of the subscriberObjectRepresentation and their corresponding DDS

Entities.

Each of the DDS Entities is created disabled. If the creation of any DDS Entity fails then all the

created objects are destroyed and the operation returns the DDS_ERROR error.

If all the creations are successful the DDS::Subscriber and all contained entities are enabled

and the operation returns OK.

7.4.4.12 Operation: update_subscriber

Inputs

 subscriberObjectRepresentation (string) a representation of the WebDDS

Subscriber object including its subscriberName and optionally Qos and contained

entities. The format of the representation shall be defined by each PSM. The name of the

Subscriber shall correspond to a previously-created WebDDS::Subscriber within

the WebDDS::Participant object.

Outputs

 returnStatus (ReturnStatus): A numeric code indicating success or failure of the

operation and a textual description in case of failure.

This operation updates the QoS and contained entities of an existing WebDDS::Subscriber.

This operation performs the following logical steps:

It locates a WebDDS::Subscriber within the WebDDS::DomainParticipant with the

specified subscriberName. If the WebDDS::Subscriber does not exist, it returns the

INVALID_OBJECT error.

If the subscriberObjectRepresentation specifies a QoS or QosProfile, the

check_permissions operation is invoked to verify that the client is allowed by the access

control policies to change the DDS::Subscriber QoS. If the verification is successful, it

updates the QoS of the DDS::Subscriber. Otherwise it returns the PERMISSIONS_ERROR

error.

If the subscriberObjectRepresentation specifies a set of contained entities

(DataReader objects,) then the operation checks if these contained entities already exist.

 For each contained entity that already exists if the subscriberObjectRepresentation specifies a QoS the opera-

tion calls check_permissions operation to verify that the client is allowed by the access control policies

to change the Qos of that entity.

 For each contained entity that does not exist the operation calls check_permissions operation to verify

that the client is allowed by the access control policies to create that entity and set its Qos as specified.

The operation checks if any of the entities contained within the WebDDS::Subscriber are not

44 Web-Enabled DDS, v1.0

present in the subscriberObjectRepresentation. For any such entities, the operation calls the

check_permissions operation to verify that the client is allowed by the access control

policies to delete that entity.

If any of the calls to check_permissions fails, any actions performed by this operation are

undone and the operation returns the PERMISSIONS_ERROR error.

If all the calls to check_permissions succeed, the operation performs the appropriate actions

in terms of

a) Creating the WebDDS objects specified in the subscriberObjectRepresentation. This creates any

associated DDS Objects.

b) Changing the QoS of the DDS Objects associated with previously existing objects.

c) Deleting the WebDDS entities in the WebDDS::Subscriber which do nor appear in the

subscriberObjectRepresentation and their peer objects on the associated DDS::Subscriber.

If any of the above creation, deletion, or QoS-setting operations fails, any actions performed by

this operation are undone and the operation returns the DDS_ERROR error.

If all the creation or QoS-setting operations succeed, the operation returns OK.

7.4.4.13 Operation: delete_subscriber

Inputs

 subscriberName (string): The name of the Subscriber.

Outputs

 returnStatus (ReturnStatus): A numeric code indicating success or failure of the

operation and a textual description in case of failure.

Deletes an existing WebDDS::Subscriber. This operation performs the following logical

steps:

It locates a WebDDS::Subscriber within the WebDDS::DomainParticipant with the

specified subscriberName. If the WebDDS::Subscriber does not exist, it returns the

INVALID_OBJECT error.

It calls the check_permissions operation to verify that the client is allowed by the access

control policies to delete the entities contained within the WebDDS::Subscriber. If the check

fails, it returns PERMISSIONS_ERROR.

If the verification is successful, it deletes the DDS::Subscriber associated with the

WebDDS::Subscriber. If this deletion fails it returns the DDS_ERROR error.

It deletes the WebDDS::Subscriber. If this fails, it returns GENERIC_SERVICE_ERROR,

otherwise the operation returns OK.

Web-Enabled DDS, v1.0 45

7.4.4.14 Operation: get_subscribers

Inputs

 subscriberNameExpression (string): An expression on the name of the

Subscriber.

Outputs

 returnStatus (ReturnStatus): A numeric code indicating success or failure of the

operation and a textual description in case of failure.

 subscriberRepresentationList (string): An XML representation of the list of

Subscriber objects whose name matches the subscriberNameExpression. The

format of the representation shall be defined by each PSM.

This operation returns a representation of the list of all the WebDDS::Subscriber objects

belonging to the WebDDS::DomainParticipant whose name matches the

subscriberNameExpression. If the operation fails, it returns GENERIC_SERVICE_ERROR,

otherwise it returns OK.

Expression syntax and matching for the subscriberNameExpression shall use the syntax and rules

of the POSIX fnmatch() function as specified in POSIX 1003.2-1992, section B.6 [19].

7.4.5 Class WebDDS::Publisher

This class is a proxy for a DDS::Publisher and serves as the factory for the

WebDDS::DataWriter objects.

46 Web-Enabled DDS, v1.0

Figure 14—Publisher class with operations

7.4.5.1 Operation: create_datawriter

Inputs

 datawriterObjectRepresentation (string) a representation of the WebDDS

DataWriter object including its datawriterName and optionally Qos. The format of the

representation shall be defined for each PSM. The name of the DataWriter shall be

unique within the scope of the WebDDS::Publisher object.

class WebDDS_Publisher

WebDDS::

DomainParticipant

WebDDS::Publisher

+ create_datawriter() :ReturnStatus

+ update_datawriter() :ReturnStatus

+ delete_datawriter() :ReturnStatus

+ get_datawriters() :ReturnStatus

DDS::Publisher

«interface»

WebDDS::Entity

- name :string

WebDDS::

DataWriter
DDS::DataWriter

WebDDS::AccessController

«use»

«use»

«use»

«use»

Web-Enabled DDS, v1.0 47

Outputs

 returnStatus (ReturnStatus): A numeric code indicating success or failure of the

operation and a textual description in case of failure.

This operation creates a WebDDS::DataWriter and the associated DDS::DataWriter with

the desired QoS policies.

This operation performs the following logical steps:

It checks if there is already a pre-existing WebDDS::DataWriter with the specified

datawriterName within the WebDDS::Publisher. If the WebDDS::DataWriter already

exists, it returns the OBJECT_ALREADY_EXISTS error.

It invokes the check_permissions operation to verify that the client is allowed by the access

control policies to create the DDS::DataWriter entity with the specified QoS. If the check

fails, the WebDDS::DataWriter is not created and the operation returns the

PERMISSIONS_ERROR error.

If the permissions check succeeds, the operation creates a WebDDS::DataWriter which in

turns creates a DDS::DataWriter using the specified QoS. The created DDS::DataWriter

belongs to the DDS::Publisher associated with the WebDDS::Publisher.

The DDS::DataWriter is created disabled. If the creation fails, then all the created objects are

destroyed and the operation returns the DDS_ERROR error.

If all the creations are successful, the DDS::DataWriter is enabled and the operation returns

OK.

7.4.5.2 Operation: update_datawriter

Inputs

 datawriterObjectRepresentation (string) a representation of the WebDDS

DataWriter object including its datawriterName and optionally Qos. The format of the

representation shall be defined by each PSM. The name of the DataWriter shall

correspond to a previously-created DataWriter within the Publisher object.

Outputs

 returnStatus (ReturnStatus): A numeric code indicating success or failure of the

operation and a textual description in case of failure.

This operation updates the QoS of an existing DDS::DataWriter.

This operation performs the following logical steps:

It locates a WebDDS::DataWriter within the WebDDS::Publisher with the specified

datawriterName. If the WebDDS::DataWriter does not exist, it returns an error.

48 Web-Enabled DDS, v1.0

It uses the check_permissions to verify that the WebDDS::Client has the permissions

required to change the QoS of the associated DDS::DataWriter to the new desired value.

It changes the QoS of the associated DDS::DataWriter. If the specified QoS policies are not

compatible (in the DDS point of view), the operation will return DDS_ERROR and the

DataWriter will be left with its original QoS.

If all the aforementioned actions and checks are successful, the operation returns OK.

7.4.5.3 Operation: delete_datawriter

Inputs

 datawriterName (string): The name of the DataWriter.

Outputs

 returnStatus (ReturnStatus): A numeric code indicating success or failure of the

operation and a textual description in case of failure.

This operation deletes an existing WebDDS::DataWriter and the associated

DDS::DataWriter. This operation performs the following logical steps:

It locates a WebDDS::DataWriter associated with the WebDDS::Publisher with the

specified datawriterName. If the WebDDS::Publisher does not exist, it returns the

INVALID_OBJECT error.

It calls the check_permissions operation to verify that the client is allowed by the access

control policies to delete the DDS::DataWriter associated with the WebDDS::DataWriter.

If the check fails, it returns PERMISSIONS_ERROR.

If the verification is successful, it deletes the DDS::DataWriter associated with the

WebDDS::DataWriter. If this deletion fails, it returns the DDS_ERROR error.

It deletes the WebDDS::DataWriter. If this fails, it returns GENERIC_SERVICE_ERROR,

otherwise the operation returns OK.

7.4.5.4 Operation: get_datawriters

Inputs

 datawriterNameExpression (string): An expression on the name of the

DataWriter.

Outputs

 returnStatus (ReturnStatus): A numeric code indicating success or failure of the

operation and a textual description in case of failure.

Web-Enabled DDS, v1.0 49

 datawriterRepresentationList (string): An XML representation of the list of

DataWriter objects whose name matches the datawriterNameExpression. The

format of the representation shall be defined by each PSM.

This operation returns a representation of the list of all the WebDDS::DataWriter objects

belonging to the WebDDS::Publisher whose name matches the datawriterNameExpression.

If the operation fails, it returns GENERIC_SERVICE_ERROR, otherwise it returns OK.

Expression syntax and matching for the datawriterNameExpression shall use the syntax and rules

of the POSIX fnmatch() function as specified in POSIX 1003.2-1992, section B.6 [19].

7.4.6 Class WebDDS::Subscriber

This class is a proxy for a DDS::Subscriber and serves as the factory for the

WebDDS::DataReader objects.

Figure 15—Subscriber class with operations

class WebDDS_Subscriber

WebDDS::

DomainParticipant

«interface»

WebDDS::Entity

- name :string

WebDDS::Subscriber

+ create_datareader() :ReturnStatus

+ update_datareader() :ReturnStatus

+ delete_datareader() :ReturnStatus

+ get_datareaders() :ReturnStatus

WebDDS::

DataReader

DDS::Subscriber

DDS::DataReader

WebDDS::AccessController

«use»

«use»

«use»

«use»

50 Web-Enabled DDS, v1.0

7.4.6.1 Operation: create_datareader

Inputs

 datareaderObjectRepresentation (string) a representation of the WebDDS

DataReader object including its datareaderName and optionally Qos, ContentFilter,

and Conditions. The format of the representation shall be defined by each PSM. The name

of the DataReader shall be unique within the scope of the WebDDS::Subscriber

object.

Outputs

 returnStatus (ReturnStatus): A numeric code indicating success or failure of the

operation and a textual description in case of failure.

This operation creates a WebDDS::DataReader and the associated DDS::DataReader with

the desired QoS policies.

This operation performs the following logical steps:

It checks if there is already a pre-existing WebDDS::DataReader with the specified

datareaderName within the WebDDS::Subscriber. If the WebDDS::DataReader already

exists, it returns the OBJECT_ALREADY_EXISTS error.

It invokes the check_permissions operation to verify that the client is allowed by the access

control policies to create the DDS::DataReader entity with the specified QoS. If the check

fails, the WebDDS::DataReader is not created and the operation returns the

PERMISSIONS_ERROR error.

It extracts the name of the Topic from the datareaderObjectRepresentation and checks to

determine weather there is an existing WebDDS::Topic with that name. If none is found, it

returns the INVALID_INPUT error.

If the datareaderObjectRepresentation contains a content filter, then DDS::DomainParticipant is

used to create a DDS::ContentFilteredTopic that uses DDS::Topic associated with the

WebDDS::Topic that was found and the filter expression and parameters found within the

datareaderObjectRepresentation. If the creation fails, it returns the DDS_ERROR error.

It creates a WebDDS::DataReader which in turn creates a DDS::DataReader using the

DDS::Topic (or DDS::ContentFilteredTopic) and the specified QoS. The created

DDS::DataReader belongs to the DDS::Subscriber associated with the

WebDDS::Subscriber.

If the datareaderObjectRepresentation contains a status condition, then the DDS::DataReader

set_status_condition is called to match the specified condition.

If the datareaderObjectRepresentation contains a read conditions and/or query conditions, they

are created via appropriate calls to the DDS::DataReader create_read_condition

Web-Enabled DDS, v1.0 51

and/or create_query_condition.

The DDS::DataReader is created disabled. If the creation fails, all the created objects are

destroyed and the operation returns the DDS_ERROR error.

If all the creations are successful, the DDS::DataReader is enabled and the operation returns

OK.

7.4.6.2 Operation: update_datareader

Inputs

 datareaderObjectRepresentation (string) a representation of the WebDDS

DataReader object including its datareaderName and optionally Qos and Conditions.

The format of the representation shall be defined by each PSM. The name of the

DataReader shall correspond to a previously created DataReader within the

Subscriber object.

Outputs

 returnStatus (ReturnStatus): A numeric code indicating success or failure of the

operation and a textual description in case of failure.

This operation updates the QoS of an existing DDS::DataReader.

This operation performs the following logical steps:

It locates a WebDDS::DataReader within the WebDDS::Subscriber with the specified

datareaderName. If the WebDDS::DataReader does not exist, it returns an error.

It uses the check_permissions to verify that the WebDDS::Client has the permissions

required to change the QoS of the associated DDS::DataReader to the new desired value.

It changes the QoS of the associated DDS::DataReader. If the specified QoS policies are not

compatible (in the DDS point of view), the operation will return DDS_ERROR and the

DataReader will be left with its original QoS.

If all the aforementioned actions and checks are successful, the operation returns OK.

7.4.6.3 Operation: delete_datareader

Inputs

 datareaderName (string): The name of the DataReader.

Outputs

 returnStatus (ReturnStatus): A numeric code indicating success or failure of the

operation and a textual description in case of failure.

52 Web-Enabled DDS, v1.0

This operation deletes an existing WebDDS::DataReader and the associated

DDS::DataReader. This operation performs the following logical steps:

It locates a WebDDS::DataWriter associated with the WebDDS::Subscriber with the

specified datareaderName. If the WebDDS::Subscriber does not exist, it returns the

INVALID_OBJECT error.

It calls the check_permissions operation to verify that the client is allowed by the access

control policies to delete the DDS::DataReader associated with the WebDDS::DataReader.

If the check fails, it returns PERMISSIONS_ERROR.

If the verification is successful, it deletes the DDS::DataReader associated with the

WebDDS::DataReader as well as any contained objects such read or query conditions. If this

deletion fails, it returns the DDS_ERROR error.

It deletes the WebDDS::DataReader. If this fails, it returns GENERIC_SERVICE_ERROR,

otherwise the operation returns OK.

7.4.6.4 Operation: get_datareaders

Inputs

 datareaderNameExpression (string): An expression on the name of the

DataReader.

Outputs

 returnStatus (ReturnStatus): A numeric code indicating success or failure of the

operation and a textual description in case of failure.

 datareaderRepresentationList (string): An XML representation of the list of

DataReader objects whose name matches the datareaderNameExpression. The

format of the representation shall be defined by each PSM.

This operation returns a representation of the list of all the WebDDS::DataReader objects

belonging to the WebDDS::Subscriber whose name matches the datareaderNameExpression.

If the operation fails, it returns GENERIC_SERVICE_ERROR, otherwise it returns OK.

Expression syntax and matching for the datareaderNameExpression shall use the syntax and

rules of the POSIX fnmatch() function as specified in POSIX 1003.2-1992, section B.6 [19].

7.4.7 Class WebDDS::DataWriter

This class is a proxy for a DDS::DataWriter and provides the means to write data. The class

provides operations to manage the data-instances written. For example register, unregister, and

dispose data-instances with the semantics defined by the DDS specification.

Web-Enabled DDS, v1.0 53

Figure 16—DataWriter class with operations

7.4.7.1 Operation: create_instance

Inputs

 sampleData (string): A data-sample represented using the XML format as specified by

the DDS-XTYPES. Only the fields of the data that are defined as key in the associated

data type are relevant to this operation.

Outputs

 instanceHandleRepresention (string): An opaque handle that can be used to

refer to the registered instance.

 returnStatus (ReturnStatus): A numeric code indicating success or failure of the

operation and a textual description in case of failure.

class WebDDS_DataWriter

WebDDS::DataWriter

+ create_instance() :ReturnStatus

+ update_instance() :ReturnStatus

+ delete_instance() :ReturnStatus

+ write() :ReturnStatus

DDS::DataWriter

WebDDS::

Publisher

WebDDS::Topic

DDS::Publisher

TopicDescription

DDS::Topic

«interface»

WebDDS::Entity

- name :string

«use»

«use»

«use»

54 Web-Enabled DDS, v1.0

This operation performs the following logical steps:

It constructs a data-object of the appropriate type for the data-writer from the dataSample.

Only the fields that are marked as “key” within the data-type are considered for this. If the

construction results in an error, it returns the INVALID_INPUT error.

It calls the register_instance operation on the DDS::DataWriter associated with the

WebDDS::DataWriter. If this operation fails, it returns the DDS_ERROR error. Otherwise it

returns OK and fills the instanceHandleRepresentation with a representation of the DDS

InstanceHandle_t returned by the register_instance operation.

7.4.7.2 Operation: update_instance

Inputs

 writeSampleInfo (string): An optional XML representation of the

WebDDS::WriteSampleInfo. The writeSampleInfo contains information on the

data-sample, the specific representation shall be defined by each PSM and it may contain a

timestamp, the instanceHandle returned by a previous call to create_instance

or update_instance, and other information as specified by each PSM.

 sampleData (string): A representation of the data-sample. The format of the

representation shall be defined by each PSM.

Outputs

 instanceHandleRepresention (string): An opaque handle that can be used to

refer to the registered instance.

 returnStatus (ReturnStatus): A numeric code indicating success or failure of the

operation and a textual description in case of failure.

This operation performs the following logical steps:

It constructs a data-object of the appropriate type for the data-writer from the dataSample. If

the construction results in an error, it returns the INVALID_INPUT error.

Depending on whether the writeSampleInfo input parameter is present it shall call either the

write or the write_w_timestamp operation on the DDS::DataWriter associated with

the WebDDS::DataWriter. If not present, it calls write and if present, it calls

write_w_timestamp using the timestamp specified within the writeSampleInfo.

If the calls to write or write_w_timestamp return an error, the operation shall return the

DDS_ERROR error. Otherwise it shall return OK and fill the instanceHandleRepresentation

with a representation of the DDS InstanceHandle_t returned by the DDS operation.

Web-Enabled DDS, v1.0 55

7.4.7.3 Operation: delete_instance

Inputs

writeSampleInfo (string): An optional XML representation of the

WebDDS::WriteSampleInfo. The writeSampleInfo contains information on the data-

sample, such as a timestamp, the instanceHandle returned by a previous call to

create_instance or update_instance, it also contains whether the instance should be

unregistered or disposed according to the definitions in the DDS specification [1].

 sampleData (string): A representation of the data. Only the fields of the data that are

defined as key in the associated data type are relevant to this operation. The format of the

representation shall be defined by each PSM. This parameter is optional if the

writeSampleInfo parameter is present.

Outputs

 returnStatus (ReturnStatus): A numeric code indicating success or failure of the

operation and a textual description in case of failure.

This operation shall perform the following logical steps:

If the writeSampleInfo input parameter is present, the operation shall construct the DDS

InstanceHandle_t_from the writeSampleInfo. If this construction fails, it shall return

the INVALID_INPUT error.

If the writeSampleInfo input parameter is not present, the operation shall construct a data-

object of the appropriate type for the data-writer from the sampleData. If the construction

results in an error, it shall return the INVALID_INPUT error.

Depending on whether the writeSampleInfo input parameter is present, the operation shall

call either the dispose or the dispose_w_timestamp operation on the

DDS::DataWriter associated with the WebDDS::DataWriter. If not present, it shall call

dispose and if present it shall call dispose_w_timestamp using the timestamp specified

within the writeSampleInfo.

If the calls to dispose or dispose_w_timestamp return an error, the operation shall return

the DDS_ERROR error. Otherwise it shall return OK.

7.4.7.4 Operation: write

Inputs

 sampleData (string): A data-sample. The format of the representation shall be defined

by each PSM.

56 Web-Enabled DDS, v1.0

Outputs

 returnStatus (ReturnStatus): A numeric code indicating success or failure of the

operation and a textual description in case of failure.

This operation performs the following logical steps:

It constructs a data-object of the appropriate type for the data-writer from the dataSample. If

the construction results in an error, it returns the INVALID_INPUT error.

It calls the write operation on the DDS::DataWriter associated with the

WebDDS::DataWriter.

If the call to write returns an error, the operation returns the DDS_ERROR error. Otherwise it

returns OK.

7.4.8 Class WebDDS::DataReader

This class is a proxy for a DDS::DataReader and provides the means to read data from DDS.

The class provides operations that allow reading all data, as well as reading the data that matches

certain criteria with regards to its contents or instance state. In addition the operation gives the

client the option to leave the data in the Service’s DDS::DataReader (i.e., use the

DDS::DataReader read operation so the same data can be accessed again), or else remove it

from the service’s DDS::DataReader cache (i.e., use the DDS::DataReader take

operation).

Web-Enabled DDS, v1.0 57

Figure 17—DataReader class with operations

7.4.8.1 Operation: get

Inputs

 sampleSelector (string): An optional filter used to select which samples to access

from the DataReader, the syntax used for the sampleSelector is described in 0.

 removeFromReaderCache (boolean): Optional parameter indicating whether the

samples should be removed from the reader cache (equivalent to the DDS::DataReader

take operation) or left in the cache (equivalent to the DDS::DataReader read operation).

If unspecified, it defaults to TRUE meaning samples are removed from the reader cache.

 minSamples (int32): Optional parameter indicating the minimum number of samples to

retrieve. If unspecified, it defaults to one.

class WebDDS_DataReader

WebDDS::

Subscriber

WebDDS::DataReader

+ get() :ReturnStatus

WebDDS::Topic

- registeredTypeName :string

- topicName :string

«interface»

WebDDS::Entity

- name :string

DDS::

TopicDescription

DDS::Topic

DDS::DataReader

DDS::Subscriber

«use»

«use»

«use»

«use»

58 Web-Enabled DDS, v1.0

 maxSamples (int32): Optional parameter indicating the maximum number of samples to

retrieve. If unspecified, it defaults to unlimited.

 maxWait (float): Optional parameter indicating the willingness of the caller to wait until

the specified minSamples are available. The operation shall block until either

minSamples samples are received or the maxWait is exceeded. The representation,

including the units used for this parameter shall be specified by each PSM. The parameter

shall default to zero.

Outputs

 sampleSequence (string): The available data samples along with their respective

metadata (corresponding to the DDS SampleInfo). The format of the representation

shall be defined by each PSM. Each sample in the sequence shall contain the following

information:

o sampleData (string): contains a representation of the data accessed from the

DDS::DataReader .

o readSampleInfo (string): contains are representation of the

DDS::SampleInfo_t accesed fom the DDS::DataReader that is associated

with the sampleData.

 returnStatus (ReturnStatus): A numeric code indicating success or failure of the

operation and a textual description in case of failure.

The get operation shall allow the client application to retrieve data received by the

DDS::DataReader associated with the WebDDS::DataReader. The operation offers various

parameters to control the data retrieved and whether it is left in DDS::DataReader cache or

removed from it. If the operation requests data to be removed from the DDS::DataReader

cache, it invokes a “take” operation on the underlying DDS::DataReader. If it requests that the

data is left, it invokes the “read” operation on the underlying DDS::DataReader.

Note that the underlying DDS::DataReader offers many operations to allow access the

DDS::DataReader data in various ways, one at a time, in sequence, selected by the instance, by

the value of the various state flags (sampleState, instanceState, viewState), by content (via DDS

QueryConditions), etc.

This PIM exposes access to all this functionality using only the “get” operation combined with the

parameters to the call. Some (non-normative) examples follow:

 To read a single sample leaving it in the DataReader cache you can use

removeFromReaderCache=false and maxSamples=1

 To take all the samples for the data instance with a specified instance handle “MyHandle” include

the expression instanceHandle=”MyValue” within the sampleSelector.

Web-Enabled DDS, v1.0 59

 To take all the samples with instanceState “NOT_ALIVE_DISPOSED” include the expression

instanceState =” NOT_ALIVE_DISPOSED” within the sampleSelector.

The syntax used for the sampleSelector is described in 0.

This operation performs the following logical steps:

It parses the sampleSelector to determine if it is a DDS FilterExpression,

MetadataExpression, or both. If there is a parse error, it returns the INVALID_INPUT error.

There are four possible cases depending on whether the sampleSelector is empty, it contains a

FilterExpression, a MetadataExpression, or both.

Case 1: If the sampleSelector is empty, then the operation calls the read or the take operation

on the DDS::DataReader associated with the WebDDS::DataReader. If the parameter

removeFromReaderCache is true, then it calls take. Otherwise it calls read. The

minSamples, maxSamples, and maxWait parameters control the number of samples that must be

obtained from the DataReader prior to returning from the function. These parameters do not

have one-to-one direct correspondence with parameters to the DDS::DataReader read and

take operations. Rather they indicate what the WebDDS::DataReader wrapper logic must do.

For example, if the call to the underlying DDS::DataReader operation does not return the

requested minSamples, then the WebDDS::DataReader shall keep retrying the read/take

operation on the underlying DDS::DataReader and accumulate the results until either the

requested minSamples have been obtained or the maxWait time has been exceeded.

Case 2: If the sampleSelector is a FilterExpression, then the operation uses the

FilterExpression to construct a DDS QueryCondition and uses the operation

read_w_condition or take_w_condition to access the samples from the

DDS::DataReader. Aside from this the logic is the same described in Case 1.

Case 3: If the sampleSelector is a MetadataExpression there are two situations:

3.1 If the MetadataExpression does not contain an InstanceHandleExpr, then the opera-

tion uses the MetadataExpression to deduce the desired sample_state, view_state,

and instance_state. These states are used as parameters to calling read and/or take to

obtain samples that match the desired states. Other than this the logic is the same as in Case 1.

3.2 If the MetadataExpression contains the InstanceHandleExpr, then the Instance-

HandleExpr is analyzed to deduce the desired InstanceHandle objects. The rest of the

MetadataExpression is analyzed as described in case 3.1 to also derive the desired sam-

ple/view/instance states. These parameters are used in multiple calls to read_instance

or take_instance passing each of the desired InstanceHandle objects and the desired

sample/view/instance states. Other than this the logic is the same as in Case 1

60 Web-Enabled DDS, v1.0

Case 4: If the sampleSelector contains both a FilterExpression and a

MetadataExpression then there are two situations:

4.1 If MetadataExpression does not contain an InstanceHandleExpr, then the

operation uses the MetadataExpression to deduce the desired

sample/state/view states. There are two possibilities:

4.1.1 If the logical operation between the MetadataExpression and the

FilterExpression is AND, then the operation constructs a

QueryCondition using the FilterExpression from the sampleSelector and

the desired sample/state/view states and proceeds as in Case 2.

4.1.2 If the logical operation between the MetadataExpression and the

FilterExpression is OR, then the operation constructs a QueryCondition

using the FilterExpression from the sampleSelector and leaving the states as

"any". In addition it also creates a ReadCondition using the desired

sample/view/instance states. The operation uses the two conditions separately

to call read_w_condition (or take_w_condition) separately using the

ReadCondition and QueryCondition and then join the results. The

management of the minSamples and maxWait parameters is the same as per Case 1.

4.2 If the MetadataExpression contains the InstanceHandleExpr, then the

InstanceHandleExpr is analyzed to deduce the desired InstanceHandle objects.

4.2.1 If the logical operation between the MetadataExpression and the

FilterExpression is AND the operation constructs a QueryCondition

using the FilterExpression and the desired sample /view/instance

states similar to 4.1.1. The operation then calls read_instance_w_condition

(or take_instance_w_condition) iterating over each of the instances. The

results are combined. The management of the minSamples and maxWait parameters

is the same as per Case 1.

4.2.2 If the logical operation between the MetadataExpression and the

FilterExpression is OR, then the operation constructs a QueryCondition

and the ReadCondition the same way as in 4.1.2. In addition the operation

analyzes the InstanceHandleExpr to deduce the desired instances. Finally the

operation calls read_instance_w_condition (or

read_instance_w_condition) on each of the instances of interest passing the

ReadCondition and also calls read_w_condition (or

take_w_condition) passing the QueryCondition. The results are combined.

The management of minSamples and maxWait parameters is the same as per Case 1.

Web-Enabled DDS, v1.0 61

7.4.8.1.1 Sample Selector Syntax

The sampleSelector re-uses the same syntax defined for the DDS SQL FilterExpression

(see Annex A of the DDS specification titled “Annex A: Syntax for DCPS Queries and Filters”)

[20], except that the syntax is extended to allow additional selection criteria. The extended syntax

is defined using BNF grammar below:

SampleSelector ::= FilterExpression

 | MetadataExpression

 | FilterExpression ‘AND’ MetadataExpression

 | FilterExpression ‘OR’ MetadataExpression

 .

FilterExpression ::= <<Defined in Annex A of the DDS Spec >>

MetadataExpression ::= MetadataExpression ‘OR’ MetadataExpression

 | MetadataExpression ‘AND’ MetadataExpression

 | InstanceHandleExpr

 | InstanceStateExpr

 | SampleStateExpr

 | ViewStateExpr

 .

InstanceHandleExpr ::= instanceHandle ‘=’ STRING

 .

InstanceStateExpr ::= instanceState ‘=’ InstanceStateValue

 .

SampleStateExpr ::= sampleState ‘=’ SampleStateValue

 .

ViewStateExpr ::= viewState ‘=’ ViewStateValue

 .

InstanceStateValue ::= ‘ALIVE’

 | ‘NOT_ALIVE_DISPOSED’

 | ‘NOT_ALIVE_NO_WRITERS’

 .

SampleStateValue ::= ‘READ’

 | ‘NOT_READ’

 .

ViewStateValue ::= ‘NEW’

 | ‘NOT_NEW’

 .

7.4.9 Class WebDDS::WaitSet

This class is a proxy for a DDS WaitSet and provides the means for a client to wait for specific

conditions such as the arrival of data on certain Topics.

7.4.9.1 Operation: wait

62 Web-Enabled DDS, v1.0

Figure 18—WaitSet class with operations

Inputs

 timeout (float): A timeout in seconds.

Outputs

 conditionNameList (ConditionList): The list of conditions that are active. The

format of the representation shall be defined by each PSM.

 returnStatus (ReturnStatus): A numeric code indicating success or failure of the

operation and a textual description in case of failure.

This operation allows the client application to block waiting for a set of conditions to become

active, or else for a timeout to occur. The operation shall return immediately if any of the

conditions associated with the WaitSet are active at the time the operation is called. If no

conditions are active, it shall wait until either a condition becomes active or else a timeout occurs.

class WebDDS_WaitSet

WebDDS::WaitSet

+ wait() :ReturnStatus

WebDDS::Application

+ create_waitset() :ReturnStatus

+ update_waitset() :ReturnStatus

+ delete_waitset() :ReturnStatus

DDS::WaitSet

DDS::Condition

«interface»

WebDDS::Entity

- name :string

0..*

«use»

«use»

Web-Enabled DDS, v1.0 63

7.4.10 Class: WebDDS::QosLibrary

This class represents a named collection of QosProfiles. It’s purpose is to group

WebDDS::QosProfiles in way that can be easily referenced.

WebDDS::QosLibrary also serves as a factory for QosProfiles.

7.4.10.1 Operation: create_qos_profile

Inputs

 qosProfileRepresentation (string) a representation of a QosProfile that

includes the qosProfileName. The format of the representation shall be defined by each

PSM.

Outputs

 returnStatus (ReturnStatus): A numeric code indicating success or failure of the

operation and a textual description in case of failure.

This operation creates a WebDDS::QosProfile object of the specified qosProfileName.

This operation performs the following logical steps:

For each type it checks whether there is already a pre-existing WebDDS::QosProfile of the

same qosProfileName within the WebDDS::QosLibrary. If a WebDDS::QosProfile with

that name already exists, it returns the OBJECT_ALREADY_EXISTS error and no

QosProfile is created.

The operation creates the WebDDS::QosProfile object specified in the

qosProfileRepresentation. If the creation fails due to some formatting error it returns

INVALID_INPUT. If it fails due to an error in the Qos values (e.g. due to an incompatible Qos) it

returns DDS_ERROR. If it fails for any other reason it returns GENERIC_SERVICE_ERROR

If the QosProfile is created successfully the operation returns OK.

7.4.10.2 Operation: delete_qos_profile

Inputs

 qosProfileName (string)): The name of the QosProfile.

Outputs

 returnStatus (ReturnStatus): A numeric code indicating success or failure of the

operation and a textual description in case of failure.

This operation performs the following logical steps:

It locates a pre-existing WebDDS::QosProfile of the specified qosProfileName within the

64 Web-Enabled DDS, v1.0

QosLibrary. If the QosProfile is not found, it returns the INVALID_OBJECT error.

It deletes the located WebDDS::QosProfile. This deletion does not affect any already-created

DDS Entities that used the deleted QosProfile.

7.4.10.3 Operation: update_qos_profile

Inputs

 qosProfileRepresentation (string) a representation of a QosProfile that

includes the qosProfileName. The format of the representation shall be defined by each

PSM.

Outputs

 returnStatus (ReturnStatus): A numeric code indicating success or failure of the

operation and a textual description in case of failure.

This operation is the logical equivalent to deleting the QosProfile with the specified name and

then creating a new QosProfile with that name.

The operation performs the following logical steps:

It uses the qosProfileName to call delete_qos_profile. It that operation fails then it returns the

same return status that delete_qos_profile returned.

If delete_qos_profile succeeded then it calls create_qos_profile passing the

qosProfileRepresentation and returns the ReturnStatus returned by the

create_qos_profile operation.

7.4.10.4 Operation: get_qos_profiles

Inputs

 qosProfileNameExpession (string): An expression on the name of the

QosProfile objects.

Outputs

 returnStatus (ReturnStatus): A numeric code indicating success or failure of the

operation and a textual description in case of failure.

 qosProfileObjectRepresentationList (ReturnStatus): A representation of a

list of WebDDS::QosProfile objects. The format of the representation shall be

defined by each PSM.

This operation returns a representation of the list of all the WebDDS::QosProfile objects

belonging to the WebDDS::QosLibrary whose name matches the

qosProfileNameExpression. If the operation fails, it returns GENERIC_SERVICE_ERROR,

Web-Enabled DDS, v1.0 65

otherwise it returns OK.

Expression syntax and matching for the qosProfileNameExpression shall use the syntax and rules

of the POSIX fnmatch() function as specified in POSIX 1003.2-1992, section B.6 [19].

7.4.11 Class: WebDDS::QosProfile

This class represents a Qos Profile as defined in the DDS4CCM specification

(http://www.omg.org/spec/dds4ccm/) version 1.1.

A Qos Profile is a named object containing DDS Qos definitions for each kind of DDS Entity:

DomainParticipant, Topic, Publisher, Subscriber, DataWriter, and Data-

Reader. This grouping under a single Qos Profile object enables applications to specify desired

Qos by indicating only the name of the Qos Profile object to use. As DDS Entities are created the

proper Qos is selected based on the kind of DDS entity.

8 Web-Enabled DDS Platform-Specific Mappings

8.1 General

The Web-Enabled DDS specification maps the Object Model to the following two web platforms:

REST and SIMPLE-WSDL-SOAP

 The REST platform maps the WebDDS Object Model into REST resources and operations on those

resources.

 The SIMPLE-WSDL-SOAP has equivalent functionality and purpose to the SIMPLE-REST plat-

form, except it is mapped to a WSDL/SOAP platform

8.2 Formats and Representations for the REST and SIMPLE-WSDL-
SOAP platforms

The REST and SIMPLE-WSDL-SOAP platforms share some common XML-based formats and

representations for the WebDDS Objects. These are described below.

8.2.1 QoS Representations

The following representations of the WebDDS::Qos and the WebDDS::QosProfile objects are

used by one or more of the platforms.

8.2.1.1 XML QoS and QosProfile Representation

Qos and Qos Profiles may be represented in XML as described in the XML QoS Profiles defined

by [DDS-CCM] [9][8].

8.2.2 Type Representations

The following representations of the WebDDS::Type objects are used by one or more of the

66 Web-Enabled DDS, v1.0

platforms.

8.2.2.1 XML Type Representation

Data Types may be represented in XML as described in the XML Type Representation defined by

[DDS-XTYPES].

8.2.3 Data Representations

The following representations of the WebDDS::Data objects are used by one or more of the

platforms.

8.2.3.1 XML Data Representation

Data may be represented in XML as described in the XML Data Representation defined by [DDS-

XTYPES].

8.2.4 WebDDS Entity Representations

The following representations of the WebDDS Entity objects, that is objects of classes that

implement the WebDDS::Entity interface are used by one or more of the platforms.

8.2.4.1 XML Entity Representation

Objects of the classes defined in the WebDDS Object Model that implement the

WebDDS::Entity interface may be represented in XML. Unless defined differently for a

specific PSM the XML representation of these objects uses the XML Data Representation defined

by DDS-XTYPES applied to the objects defined in the following IDL:

1. @Mutable

2. struct named_object {

3. string name;

4. };

5.
6. @Mutable

7. struct entity : named_object {
8. @Optional Qos qos;
9. @Optional string qos_profile;

10. };

11.

12. @Mutable

13. struct topic : entity {

14. @Optional string registered_type_name;

15. };

16.

17. @Mutable

18. struct data_writer : entity {

19. string topic_name;

Web-Enabled DDS, v1.0 67

20. };

21. typedef sequence<data_writer> datawriter_seq;

22.

23. @Mutable

24. struct publisher : entity {
25. @Optional datawriter_seq data_writers;

26. };

27. typedef sequence<publisher> publisher_seq;

28.

29. @Mutable

30. struct condition : named_object {

31. string expression;

32. };

33. typedef sequence<condition> condition_seq;

34.

35. @Mutable

36. struct data_reader : entity {

37. string topic_name;

38. @Optional condition status_condition;

39. @Optional condition_seq read_conditions;

40. @Optional condition_seq query_conditions;

41. };

42. typedef sequence<data_reader> datareader_seq;

43.

44. @Mutable

45. struct subscriber : entity {

46. @Optional datareader_seq data_readers;

47. };

48. typedef sequence<subscriber> subscriber_seq;

49.

50. @Mutable

51. struct wait_set : named_object {
52. sequence<string> condition_name;

53. };

54.

55. @Mutable

56. struct participant : entity {

57. @long domain_id;

58. @Optional publisher_seq publishers;

59. @Optional subscriber_seq subscribers;

60. };
61. typedef sequence<participant> participant_seq;

62.

63. @Mutable

64. struct application : named_object {

65. @Optional participant_seq participants;

66. }

68 Web-Enabled DDS, v1.0

8.3 REST Platform

REST can be seen as a request-reply architecture where a client access and modifies a

representation the state of the server using standardized operations as POST,PUT, GET, and

DELETE on a set of resources addressed by means of URIs.

This specification can be implemented on a REST/HTTP and REST/HTTPS platform by mapping

the objects in the WebDDS PIM into resources and their operation into one of the allowed REST

operations POST,PUT, GET, and DELETE.

8.3.1 Mapping of WebDDS PIM to Resources

Each Object in the WebDDS PIM is mapped into a resource with the URI shown in the table

below. All URI have the prefix “/dds/rest1”. For brevity the prefix is omitted from the URIs in

the table below.

Table 4 Resource URIs for the REST platform

Object Type Resource URI

All resources have the prefix “/dds/rest1”

Application /applications/<appname>

QosProfile /qos_libraries/<qoslibname>/qos_profiles/<profil

e_name>

Type /types/<typename>

WaitSet /applications/<appname>/waitsets/<waitsetname>

Participant /applications/<appname>/domain_participants/<par

tname>

RegisteredType /applications/<appname>/

domain_participants/<partname>/registered_types/

<reg_type_name>

Topic /applications/<appname>/

domain_participants/<partname>/topics/<topicname

>

Publisher /applications/<appname>/

domain_participants/<partname>/publishers/<pubna

me>

Subscriber /applications/<appname>/

domain_participants/<partname>/subscribers/<subn

ame>

DataWriter /applications/<appname>/

domain_participants/<partname>/publishers/<pubna

Web-Enabled DDS, v1.0 69

me>/data_writers/<dwname>

DataReader /applications/<appname>/

domain_participants/<partname>/subscribers/<subn

ame>/data_readers/<drname>

8.3.2 Mapping rules from WebDDS PIM operations to REST methods

The operations on the WebDDS objects are mapped according to the following rules:

 Create operations are mapped into the “POST” method.

 Delete operations are mapped into the “DELETE” HTTP method unless they take parameters in

which case they map to a POST.

 Update operations are mapped into the “PUT” HTTP method.

 Get operations are mapped to the “GET” HTTP method.

 Operations that do not fit into the above categories are mapped into the POST method.

The parameters to the operations in the WebDDS PIM object are mapped according to the

following rules:

 Create (POST) operations receive the parameters in the HTML body. The parameter is the XML

representation of the object being created as defined in 8.2.4.

 Delete operations mapped to DELETE operate just on the URI. DELETE receives no parameters in

the body.

 Delete operations mapped to POST receive the parameters in the HTML body. It receives the XML

representation of the object being deleted minimally containing the name or any fields that form a

unique identifier.

 Update (PUT) operations receive the parameters in the HTML body. The parameter is an XML rep-

resentation of the object. It is the same format as when the object was created

 Get (GET) operations receive the parameters as part of the URI. The parameters follow the resource

name, separated by a “?” character. Each parameter is represented using the format <paramater-

Name>=”<parameterValue>”. Successive parameters are separated by the “&” sign. Non-allowed

characters are encoded using percent-encoding as is customary in URIs.

The WebDDS::ReturnStatus returned by all PIM operations is mapped to the HTTP response

Status line (IETF RFC 2616 [13], Section 6.1) and it shall not appear in the body of the HTTP

response.

The remaining outputs from the PIM operations are returned in the HTTP response body as

specified in 8.3.3.

 The string returnMessage attribute of the WebDDS::ReturnStatus shall be mapped to the Reason-

Phrase in the HTTP Status Line.

 The integer returnCode attribute of the WebDDS::ReturnStatus shall be mapped to the HTTP status

code in accordance with the following rules:

o ReturnCode OK shall be mapped differently depending of the PIM operation:

70 Web-Enabled DDS, v1.0

 The PIM create operations shall map it to HTTP 201 Created

 The PIM delete operations shall map it to HTTP status 204 No Content

 The PIM get operations shall map it to HTTP status 200 OK

 The PIM update operations shall map it to HTTP status 204 No Content

o ReturnCode OBJECT_ALREADY_EXISTS is mapped to HTTP status 409 Conflict

o ReturnCode INVALID_INPUT shall be mapped to HTTP status 422 Unprocessable Enti-

ty (see IETF RFC 4918 [22]).

o ReturnCode INVALID_OBJECT shall be mapped to HTTP status 404 Not Found

o ReturnCode ACCESS_DENIED shall be mapped to HTTP status 401 Unauthorized

o ReturnCode PERMISSIONS_ERROR shall be mapped to HTTP status 403 Forbidden

o ReturnCode GENERIC_SERVICE_ERROR shall be mapped to HTTP status 500 Inter-

nal Server Error.

o ReturnCode DDS_ERROR shall be mapped to HTTP status 500 Internal Server Error.

8.3.3 Complete mapping of WebDDS PIM operations to REST methods

The complete mapping is shown in the table below.

In addition to the HTTP methods specified in the table, the HEAD HTTP method shall be

supported on the same URIs as the GET method. The HEAD method shall behave identically to

the GET method except for it shall return no body.

Table 5 Mapping of PIM operations to REST methods

Operation HTTP
method

URI HTTP request and response bodies

Root::create_applica
tion

POST /applications/ Request body:

applicationRepresentation

Response body:

authenticatedSessionRepresentation

Root::delete_applica
tion

DELETE /applications/<appna
me>

Request body: Empty

Response body: Empty

Root::get_applicatio
ns

GET /applications RequestBody: Empty

ResponseBody:

applicationObjectRepresentationList

Application
::create_participant

POST /applications/<appna
me>/domain_particip
ants

Request body:

participantObjectRepresentation

Response body: Empty

Web-Enabled DDS, v1.0 71

Application

::update_participant

PUT /applications/<appna
me>/
domain_participants/
<partname>

Request body:

participantObjectRepresentation

Response body: Empty

Application

::delete_participant

DELETE /applications/<appna
me>/
domain_participants/
<partname>

Request body: Empty

Response body: Empty

Application

::get_participants

GET /applications/<appna
me>/
domain_participants

Request body: Empty

Response body:

participantObjectRepresentationList

Root::create_type POST /types Request body:

typeObjectRepresentation

Response body: Empty

Root::delete_type DELETE /types/<typename> Request body: Empty

Response body: Empty

Root::get_types GET /types Response body:

typeObjectRepresentationList

Root::create_qos_libr
ary

POST /qos_libraries RequestBody:

qosLibraryObjectRepresentation

ResponseBody: Empty

Root::update_qos_lib
rary

PUT /qos_libraries/<qosLi
bName>

RequestBody:

qosLibraryObjectRepresentation

ResponseBody: Empty

Root::delete_qos_libr
ary

DELETE /qos_libraries/<qosLi
bName>

Request body: Empty

Response body: Empty

Root::get_qos_librari
es

GET /qos_libraries RequestBody: Empty

ResponseBody:

qosLibraryObjectRepresentationList

QosLibrary::create_q
os_profile

POST /qos_libraries/<qosLi
bName>/qos_profiles

RequestBody:

qosProfileObjectRepresentation

72 Web-Enabled DDS, v1.0

ResponseBody: Empty

QosLibrary::update_
qos_profile

PUT /qos_libraries/<qosLi
bName>/qos_profiles
/<qosProfileName>

RequestBody:

qosProfileObjectRepresentation

ResponseBody: Empty

QosLibrary::delete_q
os_profile

DELETE /qos_libraries/<qosLi
bName>/qos_profiles
/<qosProfileName>

Request body: Empty

Response body: Empty

QosLibrary::get_qos_
profiles

GET /qos_libraries/<qosLi
bName>/qos_profiles

RequestBody: Empty

ResponseBody:

qosProfileObjectRepresentationList

Application
::create_waitset

POST /applications/<appna
me>/waitsets

Request body:

waitsetObjectRepresentation

Response body: Empty

Application

::update_waitset

PUT /applications/<appna
me>/waitsets
/<waitsetname>

Request body:

waitsetObjectRepresentation

Response body: Empty

Application

::delete_waitset

DELETE /applications/<appna
me>/waitsets
/<waitsetname>

Request body: Empty

Response body: Empty

Application

::get_waitsets

GET /applications/<appna
me>/waitsets

Response body:

waitsetObjectRepresentationList

Participant
::register_type

POST /applications/<appna
me>/participants/<pa
rtname>/registered_t
ypes/

Request body:

registerTypeObjectRepresentation

Response body: Empty

Participant
::unregister_type

DELETE /applications/<appna
me>/participants/<pa
rtname>/registered_t
ypes/<registered_type
name>

Request body: Empty

Response body: Empty

Participant
::get_registered_type

GET /applications/<appna
me>/participants/<pa

Response body:

registerTypeObjectRepresentationList

Web-Enabled DDS, v1.0 73

s rtname>/registered_t
ypes

Participant
::create_topic

POST /applications/<appna
me>/participants/<pa
rtname>/topics/

Request body:

topicObjectRepresentation

Response body: Empty

Participant
::update_topic

PUT /applications/<appna
me>/participants/<pa
rtname>/topics/<topi
cname>

Request body:

topicObjectRepresentation

Response body: Empty

Participant
::delete_topic

DELETE /applications/<appna
me>/participants/<pa
rtname>/topics/<topi
cname>

Request body: Empty

Response body: Empty

Participant
::get_topics

GET /applications/<appna
me>/participants/<pa
rtname>/topics

Response body:

topicObjectRepresentationList

Participant
::create_publisher

POST /applications/<appna
me>/participants/<pa
rtname>/publishers

Request body:

publisherObjectRepresentation

Response body: Empty

Participant
::update_publisher

PUT /applications/<appna
me>/participants/<pa
rtname>/publishers/
<publishername>

Request body:

publisherObjectRepresentation

Response body: Empty

Participant
::delete_publisher

DELETE /applications/<appna
me>/participants/<pa
rtname>/publishers/
<publishername>

Request body: Empty

Response body: Empty

Participant
::get_publishers

GET /applications/<appna
me>/participants/<pa
rtname>/publishers

Response body:

publisherObjectRepresentationList

Participant
::create_subscriber

POST /applications/<appna
me>/participants/<pa
rtname>/subscribers

Request body:

subscriberObjectRepresentation

Response body: Empty

Participant
::update_subscriber

PUT /applications/<appna
me>/participants/<pa
rtname>/ subscribers

Request body:

subscriberObjectRepresentation

74 Web-Enabled DDS, v1.0

/<subscribername>
Response body: Empty

Participant
::delete_subscriber

DELETE /applications/<appna
me>/participants/<pa
rtname>/ subscribers
/< subscribername>

Request body: Empty

Response body: Empty

Participant
::get_subscribers

GET /applications/<appna
me>/participants/<pa
rtname>/subscribers

Response body:

subscriberObjectRepresentationList

Publisher
::create_datawriter

POST /applications/<appna
me>/participants/<pa
rtname>/publishers/
<publishername>/dat
awriters

Request body:

datawriterObjectRepresentation

Response body (for 201 response):

entityCompactRepresentation

Response body: Empty

Publisher
::update_datawriter

PUT /applications/<appna
me>/participants/<pa
rtname>/publishers/
<publishername>/dat
awriters/<datawriter
name>

Request body:

datawriterObjectRepresentation

Response body: Empty

Publisher
::delete_datawriter

DELETE /applications/<appna
me>/participants/<pa
rtname>/publishers/
<publishername>/dat
awriters/<datawriter
name>

Request body: Empty

Response body: Empty

Publisher
::get_datawriters

GET /applications/<appna
me>/participants/<pa
rtname>/publishers/
<publishername>/dat
awriters

Response body:

datawriterObjectRepresentationList

Subscriber
::create_datareader

POST /applications/<appna
me>/participants/<pa
rtname>/Subscribers
/<Subscribername>/d
atareaders

Request body:

datareaderObjectRepresentation

Response body: Empty

Subscriber
::update_datareader

PUT /applications/<appna
me>/participants/<pa
rtname>/Subscribers
/<Subscribername>/d

Request body:

datareaderObjectRepresentation

Web-Enabled DDS, v1.0 75

atareaders/<dataread
ername> Response body: Empty

Subscriber
::delete_datareader

DELETE /applications/<appna
me>/participants/<pa
rtname>/subscribers/
<Subscribername>/da
tareaders/<datareade
rname>

Request body: Empty

Response body: Empty

Subscriber
::get_datareaders

GET /applications/<appna
me>/participants/<pa
rtname>/subscribers/
<subscribername>/da
tareaders

Response body:

datareaderObjectRepresentationList

DataWriter ::write POST /applications/<appna
me>/participants/<pa
rtname>/publishers/
<publishername>/dat
awriters/<datawriter
name>

Request body:

dataObjectRepresentation

Response body: Empty

DataReader ::read GET /applications/<appna
me>/participants/<pa
rtname>/subscribers/
<subscribername>/da
tareaders/<datareade
rname>

Response body:

readSampleList

Waitset::get GET /applications/<appna
me>/waitsets
/<waitsetname>

Response body:

List of:

conditionNames

8.3.4 Object representations used by the REST platform

The representation for all parameters and return values used in the REST platform is describe in

the table below.

Table 6 Object and parameter representations used by the REST platform

Object Representation Format for the Object Representation

All element type definitions are from file
webdds_rest1.xsd unless explicitly mentioned
otherwise

76 Web-Enabled DDS, v1.0

qosLibraryObjectRepresentation <xs:element name =”qos_library”
type=”qosLibrary”/>

qosLibraryObjectRepresentationList <xs:element name =”qos_library_list”
type=”qosLibraryList”/>

qosProfileObjectRepresentation <xs:element name =”qos_profile”
type=”qosProfile”/>

From dds4ccm DDS_QoSProfile.xsd

qosProfileObjectRepresentationList <xs:element name =”qos_profile_list”
type=”qosProfileList”/>

applicationObjectRepresentation <xs:element name =”application”
type=”application”/>

applicationObjectRepresentationList <xs:element name =”application_list”
type=”applicationList”/>

participantObjectRepresentation <xs:element name =”domain_participant”
type=”domainParticipant”/>

participantObjectRepresentationList <xs:element name =”domain_participant_list”
type=”domainParticipantList”/>

typeObjectRepresentation XML element ”types”

From DDS-XTYPES dds-
xtypes_type_definition.xsd

typeObjectRepresentationList XML element ”types”

From DDS-XTYPES dds-
xtypes_type_definition.xsd

waitsetObjectRepresentation <xs:element name =”waitset” type=”waitset”/>

topicObjectRepresentation <xs:element name =”topic” type=”Topic”/>

topicObjectRepresentationList <xs:element name =”topic_list”
type=”topicList”/>

publisherObjectRepresentation <xs:element name=”publisher”
type=”publisher”/>

publisherObjectRepresentationList <xs:element name=”publisher_list”
type=”publisherList”/>

subscriberObjectRepresentation <xs:element name=”subscriber”
type=”subscriber”/>

Web-Enabled DDS, v1.0 77

subscriberObjectRepresentationList <xs:element name=”subscriber_list”
type=”subscriberList”/>

datawriterObjectRepresentation <xs:element name=”data_writer”
type=”dataWriter”/>

datawriterObjectRepresentationList <xs:element name=”data_writer_list”
type=”dataWriterList”/>

datareaderObjectRepresentation <xs:element name=”data_reader”
type=”dataReader”/>

datareaderObjectRepresentationList <xs:element name=”data_reader_list”
type=”dataReaderList”/>

sampleData <xs:any>

Use the XML Data Representation defined by the
DDS‐XTYPES specification, clause 7.4.2 XML Data
Representation

writeSampleInfo <xs:element name=”write_sample_info”
type=”writeSampleInfo”/>

readSampleSeq <xs:element name=”read_sample_seq”
type=”readSampleSeq”/>

writeSampleSeq <xs:element name=”write_sample_seq”
type=”writeSampleSeq”/>

8.3.5 HTTP Headers used by the REST platform

This sub clause specifies the request headers and reply headers whose presence and behavior is

relied upon by the REST PSM. The use of other standard HTTP headers is not precluded by this

specification, however a compliant implementation is not required to include or interpret those

headers.

8.3.5.1 HTTP Request Headers

The table below lists the HTTP requests headers used by the WebDDS REST platform.

Table 7 HTTP request headers used by the REST platform

Header Required /Optional Description

Accept Required Request a particular content type.

Valid values: application/dds-web+xml

Content- Length Required (except Transfer-length of the message-body

78 Web-Enabled DDS, v1.0

for the GET and
HEAD operations)

Content-Type Optional Valid values: application/dds-web+xml

Cache-Control Required Valid values: as specified in Section 14.9 of IETF 2616.

OMG-DDS-API-Key Required Key that authorizes the client application for the
operation being performed.

8.3.5.2 HTTP Response Headers

The table below lists the HTTP response headers used by the WebDDS REST platform.

Table 8 HTTP response headers used by the REST platform

Header Required /Optional Description

Authentication-Info Required (for
response to login)

Uses to communicate the AuthenticatedSessionToken
(7.3.1.1)

Cache-Control Required Valid values: as specified in Section 14.9 of IETF 2616.

Content- Length Required Transfer-length of the message-body

Content-Type Required Valid values: application/dds-web+xml

Date Optional Valid values: as specified in Section 14.18 of IETF 2616.

Expires Optional Valid values: as specified in Section 14.21 of IETF 2616.

Location Required for
successful
response to POST
operations

URI for the newly created resource

Last-Modified Required for
successful
responses to GET
and HEAD

The last modification time of the resource that is being
accessed

8.4 Simplified SOAP Platform

The Simplified SOAP platform uses a simpler Object Model. The advantage of the approach is the

simplicity.

Web-Enabled DDS, v1.0 79

Figure 19—Simplified WebDDS Object Model used by the Simple WSDL-SOAP Platform

The Object Model used by the Simple WSDL-SOAP platform shares the Root, Client and

AccessController classes with the WebDDS object Model. The remaining classes are

specific to this model.

Most of the logic in the simplified object model is carried out by the

SimpleWebDDS::Application class which combines the functionality offered by the Application,

Participant, Topic, Publisher, Subscriber, DataWriter, and DataReader from the WebDDS object

model.

The Simple WSDL-SOAP platform is defined by mapping to SOAP messages for each of the

operations specified for the WSDDS and the Application classes of the Simplified Object Model.

class SimpleWebDDS_Ov erv iew

SimpleWebDDS::Publication

+ Write() :long

SimpleWebDDS::Subscription

+ Read() :long

SimpleWebDDS::Application

- session_id :long

+ CreatePublication() :void

+ DeletePublication() :void

+ GetPublications() :void

+ Write() :void

+ CreateSubscription() :void

+ DeleteSubscription() :void

+ GetSubscriptions() :void

+ Read() :void

+ AddNotificationEndpoint() :void

+ RemoveNotificationEndpoint() :void

+ GetNotificationEndpoints() :void

WebDDS::User

- userName :string

- accessToken :string

SimpleWebDDS::

PublicationInfo

- domain_id :long

- topic_name :string

- type_name :string

- topic_schema :string

- qos_profile_name :string

- publication_status :long

SimpleWebDDS::SubscriptionInfo

- domain_id :long

- topic_name :string

- type_name :string

- topic_schema :string

- qos_profile_name :string

- content_filter_expression :string

- encoding_style :long

- subscription_status :long

SimpleWebDDS::

SampleData

DDS::SampleInfo SimpleWebDDS::

NotificationEndpoint

- ip_address :long

- ip_port :long

- notification_style :long

- encoding_style :long

+ Notify() :void

WebDDS::AccessController

«singleton»

WebDDS::WSDDS

+ login() :ReturnStatus

+ logout() :ReturnStatus
0..*

«use»

session_id

0..*0..*

0..*

1

80 Web-Enabled DDS, v1.0

This platform relies on WSDL and SOAP and given these are formal languages to define web

interfaces and protocols it can be fully described using just those interfaces.

There are three files that describe this platform: webdds_soap1_types.xsd, webdds_soap1.wsdl,

and webdds_soap1_notify.wsdl.

The webdds_soap1_types.xsd defines general data-types that are used in the other WDSL files.

All the client operations (messages) are defined in the WSDL file webdds_soap1.wsdl

The weddds_soap1_notify.wsdl defines callback operations specified for the

NotificationEndpoint interface. These operations should be implemented in order to

receive notifications of data reception.

The mappings between PIM operations and the SOAP messages is defined in the table below.

Table 9 Mapping between PIM operations and SOAP messages

Operation WSDL Port
Type

(operation)

Related WSDL/SOAP
messages and types

Notes

WSDDS::login Login webdds :loginRequest

webdds loginResponse

WSDDS::logout Logout webdds:logoutRequest

webdds:logoutReply

Application
::create_participant

N/A webdds:
createPublicationRequ
est

webdds:
createSubscriptiontion
Request

The PSM specifies the domain
participant attributes as part of
the parameters that passed to
the PIM CreatePublication and
CreateSubscrioption operations.

The PIM actions specified by the
operation, specifically the
creation of the associated
WebDDS::DomainParticipant,
shall be executed when the
client calls the PSM operations
CreatePublication or
CreateSubscription and
specifies a value for the
domainId parameters that has
not been specified before.

Application

::update_participant

N/A The PSM does not support
updating participants.

Web-Enabled DDS, v1.0 81

Application

::delete_participant

N/A The PSM does not map this
operation explicitly into any
messages.

The PIM actions specified by the
operation, including the
deletion of the associated
WebDDS::DomainParticipant,
shall be executed when the last
entity belonging to that
participant is deleted.

Application

::get_participants

N/A The PSM does not support this
operation.

Application
::create_type

N/A webdds:
createPublicationRequ
est

webdds:
createSubscriptiontion
Request

The PSM specifies the type as
part of the parameters passed
to the PIM CreatePublication
and CreateSubscrioption
operations.

The PIM actions specified by the
operation, specifically the
creation of the WebDDS::Type,
shall be executed when the
client calls the PSM operations
CreatePublication or
CreateSubscription and
specifies a value for
“typeSchema” that has not been
used before for that domainId.

Application
::delete_type

N/A The PSM does not map this
operation explicitly into any
messages.

The PIM actions specified by the
operation shall be executed
when the last created entity
that uses the associated
WebDDS::Type is deleted.

Application
::get_types

N/A The PSM does not support this
operation.

Application
::create_waitset

N/A The PSM does not support this
operation.

Application N/A The PSM does not support this

82 Web-Enabled DDS, v1.0

::update_waitset operation.

Application
::delete_waitset

N/A The PSM does not support this
operation.

Application
::get_waitsets

N/A The PSM does not support this
operation.

Participant
::register_type

N/A webdds:
createPublicationRequ
est

webdds:
createSubscriptiontion
Request

The PSM registers types the
types as a side-effect of the
creation of Data Writes and
Data Readers that use the data-
type.

The PSM shall implement the
PIM actions associated with this
operation when the client calls
the PSM operations
CreatePublication or
CreateSubscription and
specifies a value for “typeName”
that has not been used before
for that domainId.

Participant
::unregister_type

N/A The PSM does not map this
operation explicitly into any
messages.

The PIM actions specified by the
operations shall be executed
when the last entity that uses
the type is deleted.

Participant
::get_registered_type
s

N/A The PSM does not support this
operation.

Participant
::create_topic

N/A webdds:
createPublicationRequ
est

webdds:
createSubscriptiontion
Request

The PSM specifies the Topic as
part of the parameters passed
to the PIM CreatePublication
and CreateSubscrioption
operations.

The PSM shall implement the
PIM actions associated with this
operation, specifically the
creation of the WebDDS::Topic,
when the client calls the PSM
operations CreatePublication or
CreateSubscription and

Web-Enabled DDS, v1.0 83

specifies a value for
“topicName” that has not been
used before for that domainId.

Participant
::update_topic

N/A The PSM does not support this
operation.

Participant
::delete_topic

N/A The PSM does not map this
operation explicitly into any
messages.

The PIM actions specified by the
operations shall be executed
when the last created entity
that uses the associated
WebDDS::Topic is deleted.

Participant
::get_topics

N/A The PSM does not support this
operation.

Participant
::create_publisher

N/A webdds:
createPublicationRequ
est

The PSM creates the
WebDDS::Publisher as needed
to support the PSM
CreatePublication operation.

The details on when the PIM
actions associated with this
operation are executed and the
WebDDS::Publisher created are
left to the implementation as
they do not affect
interoperability.

Participant
::update_publisher

N/A The PSM does not support this
operation.

Participant
::delete_publisher

N/A The PSM does not map this
operation explicitly into any
messages.

The PIM actions specified by the
operation shall be executed
when the last entity that uses
the associated
WebDDS::Publisher is deleted.

Participant
::get_publishers

N/A The PSM does not support this
operation.

Participant
::create_subscriber

N/A webdds:
createSubscriptionReq

The PSM creates the
WebDDS::Subscriber as needed

84 Web-Enabled DDS, v1.0

uest

to support the PSM
CreateSubscription operation.

The details on when the PIM
actions associated with this
operation are executed and the
WebDDS::Subscriber created
are left to the implementation
as they do not affect
interoperability.

Participant
::update_subscriber

N/A The PSM does not support this
operation.

Participant
::delete_subscriber

N/A The PSM does not map this
operation explicitly into any
messages.

The PIM actions specified by the
operation shall be executed
when the last entity that uses
the associated
WebDDS::Subscriber is deleted.

Participant
::get_subscribers

N/A The PSM does not support this
operation.

Publisher
::create_datawriter

CreatePublic
ation

webdds:createPublicati
onRequest

webdds:createPublicati
onResponse

Publisher
::update_datawriter

CreatePublic
ation

webdds:createPublicati
onRequest

webdds:createPublicati
onResponse

The operation
CreatePublication can be used
to modify an already existing
WebDDS::DataWriter if it
already exists or create it if it
does not exist.

Publisher
::delete_datawriter

RemovePubl
ication

webdds:removePublica
tionRequest

webdds:removePublica
tionResponse

Publisher
::get_datawriters

GetPublicati
ons

webdds:getPublication
sRequest

webdds:getPublication
sResponse

Web-Enabled DDS, v1.0 85

Subscriber
::create_datareader

CreateSubsc
ription

webdds:createSubscrip
tionRequest

webdds:createSubscrip
tionResponse

Subscriber
::update_datareader

CreateSubsc
ription

webdds:createSubscrip
tionRequest

webdds:createSubscrip
tionResponse

The operation
CreateSubscription can be used
to modify an already existing
WebDDS::DataReader if it
already exists or create it if it
does not exist.

Subscriber
::delete_datareader

RemoveSubs
cription

webdds:removeSubscri
ptionRequest

webdds:removeSubscri
ptionResponse

Subscriber
::get_datareaders

GetPublicati
ons

webdds:getSubscriptio
nsRequest

webdds:getSubscriptio
nsResponse

DataWriter ::write Write webdds:writeRequest

webdds:writeResponse

DataReader ::read Read webdds:readRequest

webdds:readReply

Waitset::get N/A The PSM does not support this
operation.

N/A AddNotificat
ionEndpoint

webdds:addNotificatio
nEndpointRequest

webdds:addNotificatio
nEndpointResponse

This PSM operation has no
equivalent in the PIM.

The PSM shall retain the
notiificationEndpointInfo
specified as parameter to the
operation and use it to invoke
the Notify operation as defined
in webdds_soap1_notify.wsdl

N/A RemoveNotif
icationEndp
oint

webdds:removeNotific
ationEndpointRequest

webdds:removeNotific
ationEndpointRespons
e

This PSM operation has no
equivalent in the PIM.

This operation shall remove the
state added as a result to a
previous call to

86 Web-Enabled DDS, v1.0

AddNotificationEndpoint and
stop future notifications to that
endpoint.

N/A GetNotificati
onEndpoints

webdds:getNotification
EndpointsRequest

webdds:getNotification
EndpointsResponse

This PSM operation has no
equivalent in the PIM.

This operation shall return a
webdds:
notificationEndpointInfoSeq
containing the notification
endpoints that have been added
(and not deleted) by prior calls
to AddNotificationEndpoint

The operations in the Simplified SOAP PSM all include a returnCode and a returnMessage as part

of the operation return. The PSM’s returnString maps directly to the returnMessage attribute of

the WebDDS::ReturnStatus in the PIM. The PSM’s returnCode maps to the returnCode attribute

of the WebDDS::ReturnStatus in the PIM according to the table below.

Table 10 Mapping of Simplified SOAP PSM ReturnCode to PIM ReturnCode

Simplified SOAP PSM ReturnCode PIM ReturnCode

OK OK

DDS_ERROR DDS_ERROR

SUBSCRIPTION_ALREADY_EXISTS,
PUBLICATION_ALREADY_EXISTS

OBJECT_ALREADY_EXISTS

INVALID_INPUT,
INVALID_IP_ADDRESS,
INVALID_NOTIFICATION_ENDPOINT_PORT_NUMBER,
INVALID_NOTIFICATION_ENDPOINT,
BAD_TYPE_SCHEMA,
BAD_CONTENT_FILTER_EXPRESSION,
BAD_DATA_SAMPLE, QOS_PROFILE_NOT_FOUND,
INCOMPATIBLE_TOPIC,
TOPIC_CREATED_WITH_DIFFERENT_TYPE_SCHEMA,
TOPIC_DEFINED_WITH_DIFFERENT_TYPE_SCHEMA,
TOPIC_DISCOVERED_WITH_DIFFERENT_TYPE_SCHEMA,
AMBIGUOUS_TYPE_DEFINITION_FOUND_ON_DOMAIN,
SUBSCRIPTION_ON_INCOMPATIBLE_STATUS,
PUBLICATION_ON_INCOMPATIBLE_STATUS,
TOPIC_CREATED_WITH_DIFFERENT_TYPE_NAME

INVALID_INPUT

INVALID_SESSION_ID, INVALID_SUBSCRIPTION_ID,
INVALID_PUBLICATION_ID,
INVALID_NOTIFICATION_ENDPOINT_ID,

INVALID_OBJECT

Web-Enabled DDS, v1.0 87

EXPIRED_SESSION

ACCESS_DENIED ACCESS_DENIED

INVALID_SESSION_ID INVALID_SESSION_ID

PERMISSIONS_ERROR,
NO_RIGHTS_JOINING_DOMAIN,
NO_RIGHTS_CREATING_TOPIC,
NO_RIGHTS_CREATING_UNKNOWN_TOPIC,
NO_RIGHTS_SUBSCRIBING,
NO_RIGHTS_PUBLISHING,
NO_RIGHTS_BEING_NOTIFIED

PERMISSIONS_ERROR

SERVER_ERROR,
MAX_SESSION_COUNT_REACHED

GENERIC_SERVICE_ERROR

The full WSDL interfaces are defined in the normative readable files webdds_soap1_types.xsd,

webdds_soap1.xml, and webdds_soap1_notify.xml.

8.5 Transport-level and security considerations: HTTP and Web
Sockets

The PSMs in this specification can operate over an HTTP transport, a secure HTTP transport

(HTTPS), a Web-Sockets transport (WS) or a secure Web-Sockets transport (WSS).

Implementations of this specification shall support operation over HTTP and HTTPS, see section

8.5.1. Optionally implementations may support upgrading the connection to using WebSockets

(WS) and secure WebSockets (WSS), see section 8.5.2.

8.5.1 Operation over HTTP and HTTPS

The WebDDS::Client shall initiate all the HTTP or HTTPS requests.

The HTTP or HTTPS Header Content-Type field shall be set to application/dds-

web+xml.

Operation over HTTP does not provide communication security between the web client and the

Web-Enabled DDS Service. Use of HTTP is only suitable for prototyping or within internal

networks that are secured by other means. HTTPS shall be used by applications that require

secure communication between a web client and the WebDDS Service.

When running over HTTP the use of a Client API Key (see section 7.3) is still required. The

client's API key information shall appear in the HTTP headers using the header field with name

OMG-DDS-API-Key as described in Table 7. Use of the Client API Key with HTTP does

not provide security per se (unless the network and computers have been secured by other means);

moreover it risks having the client API key eavesdropped or spoofed. Nevertheless including the

OMG-DDS-API-Key in the headers is needed to identify the client application. It is also useful

to test client application behavior and permissions prior to deployment over a secure transport. A

88 Web-Enabled DDS, v1.0

potential approach while prototyping over HTTP would be to use a temporary Client API

Key dedicated just to the prototype/test. The temporary key can be invalidated at the Web-DDS

server-side once the application is deployed and replaced by a Client API Key that is never

sent over an insecure transport.

When operating over HTTPS Client applications shall verify that the certificate provided by the

Web-Enabled DDS service instance (the one implementing the HTTP server side) is valid before

establishing a connection. This is normally done (automatically) by the standard TLS transport

used by HTTPS.

All HTTPS requests shall carry the client's API key information in the HTTPS headers using the

HTTPS header field named OMG-DDS-API-Key as described in Table 7.

8.5.2 Operation over Web Sockets (WS) and Secure WebSockets (WSS)

8.5.2.1 Connection Establishment

The WebDDS::Client shall initiate the WebSocket connection advertising the web sockets’

sub-protocol “dds-web”. The WebDDS service: shall accept that sub-protocol.

Non-secured web socket connections shall be identified by the URL schema:
ws://<servername>[:<port>]/dds/v1/<connectionName>

Secure web-socket connections shall be identified by the URL schema:

wss://<servername>[:<port>]/dds/v1/<connectionName>

The <port> element selects an IP port number. The explicit appearance of the <port> within

the URL is optional. If not specified the port number defaults to 80 for the non-secured

connections (ws) and 443 for the secured connections (wss).

The <connectionName> is chosen by the WebDDS::Client and allows the

WebDDS::Client to establish multiple WebSocket connections and associate different

resources to each.

Secure Web-Socket (WSS) client applications shall verify that the certificate provided by the

Web-Enabled DDS service instance (the one implementing the HTTP and WebSockets server

side) is valid before establishing a connection. This is normally done (automatically) by the

standard TLS transport used by HTTPS and WSS.

8.5.2.2 WebDDS messages and encoding

WebDDS::Clients can exchange the following types of messages with the WebDDS service

instances: HELLO, HELLO_OK, HELLO_FAIL, REQUEST, RESPONSE, BIND,

B_REQUEST, Z_REQUEST,, B_PUSH, and Z_PUSH.

All messages shall use Text Data Frames (opcode 0x1. See section 5.6 of IETF RFC 6455).

A WebDDS message may be sent in a single WebSockets frame or split into multiple frames. Each

Web-Enabled DDS, v1.0 89

WebSockets frame shall contain information from a single WebDDS message. All frames of a

single WebDDS message shall be consecutive. That is, it is not allowed to interleave fragments

from multiple WebDDS messages over a single Web Sockets connection.

8.5.2.3 Initial Handshake: HELLO message

The HELLO message shall be the first message sent by the WedDDS::Client on each

established WS or WSS connection. The WebDDS service shall not send any messages or process

any messages over a WS/WSS connection until the HELLO message has been received on that

connection.

The HELLO message shall be sent in a single WebSocket text-data frame. The format is

 the same as the Request Header Fields section in an HTTP message. That is, colon-separated

string name-value pairs, each terminated by a carriage return (CR) and line feed (LF) character

sequence.

The following three HTTP Header fields defined in Table 8 shall appear in the HELLO message:

Accept, Content-Type, and OMG-DDS-API-Key. The possible content for those fields is

as defined in Table 7. In addition there shall be a field with name “Version” and value set to “1”.

The HELLO message may contain additional vendor-specific fields.

The WebDDS service implementation shall process the HELLO message as follows:

 If any of the specified fields are missing the WebDDS service shall send a HELLO_FAIL

message and close the connection.

 The Client API Key present in the field OMG-DDS-API-Key shall be validated. If

validation fails the WebDDS service shall send a HELLO_FAIL message and close the

connection.

 The value of the Content-Type field shall be examined. If the specified content type is

not recognized or not supported the WebDDS service shall send a HELLO_FAIL message

and close the connection.

 The value of the Version field shall be examined. If the specified version is not

supported the WebDDS service shall send a HELLO_FAIL message and close the

connection.

 If all the above checks succeed the WebDDS service shall send a HELLO_OK message.

The HELLO_FAIL message shall be sent in a single WebSocket text-data frame. The format is a

single string that starts with the prefix “HELLO_FAIL:” followed by the reason for the failure.

The HELLO_OK message shall be sent in a single WebSocket text-data frame. The format is a

single string that starts with the prefix “HELLO_OK:” followed by vendor-specific information.

90 Web-Enabled DDS, v1.0

Upon receiving the HELLO_OK message the WebDDS::Client shall consider the connection

successfully established.

8.5.2.4 Message flow: REQUEST and RESPONSE messages

Once the WebSocket connection has been established the WebDDS::Client communicates

with the WebDDS service sending REQUEST messages and receiving RESPONSE messages.

The message content for the REQUEST message is equivalent to the HTTP request messages used

to map the WebDDS PIM to REST methods (see section 8.3.3) except that the REQUEST message

is no longer an HTTP message and hence encodes the information slightly differently.

Similarly the message content for the RESPONSE message is equivalent to the HTTP request

messages used to map the WebDDS PIM to REST methods (see section 8.3.3), albeit with slightly

different encoding.

If the Content-Type specified “application/dds-web+xml” the REQUEST shall be

formatted as the XML element <request> with the syntax defined in the file

webdds_websockets1.xsd. Similarly the RESPONSE message shall be formatted as the

XML element <response> with the syntax also defined in the file

webdds_websockets1.xsd.

The XML <request> element contains up to four children: <id>, <uri>, <method> and

<body>. The mapping to the REST+XML platform protocol, resources and resource

representations to the elements in the REQUEST message is defined in the table below:

Table 11 WebSockets REQUEST message for the XML platform

WebSocket request
child element

Mapping of sub-element content to the REST+XML platform

<id> This element has no correspondence in the REST+XML platform. It is a
string set by the WebDDS client that can be used by the WebDDS client
to relate a response to its corresponding request.

<uri> Maps to the REST resource name. Corresponds to the URI column in
Table 5.

<method> Corresponds to the HTTP method column in Table 5.

<body> Contains the request body. The contents are defined in table file, column
“HTTP request and response bodies”.

The XML <response> element contains three children: <id>, <return_code>, and

<body>. The mapping of the RESPONSE message to the REST+XML platform protocol,

resources and resource representations is defined in the table below:

Web-Enabled DDS, v1.0 91

Table 12 WebSockets RESPONSE message for the XML platform

WebSocket response
child element

Mapping of sub-element content to the REST+XML platform

<id> This element has no correspondence in the REST+XML platform. It is
the string set by the WebDDS client in the request. It is echoed back in
the response so that the client can relate the response to its
corresponding request.

<uri> Maps to the REST resource name. Corresponds to the URI column in
Table 5.

<method> Corresponds to the HTTP method column in Table 5.

Example request to read data from a DataReader:

<request>

 <id>Req-123457</id>

<uri>/applications/MyFirstShapesApplication/domain_participants/SquareR

eaderPartici-

pant/subscribers/SquareSubscriber/data_readers/SquareReader</uri>

 <method>GET</method>

</request>

Example request to write data to a DataWriter:

<request>

 <id>Req-123458</id>

<uri>/applications/MyFirstShapesApplication/domain_participants/MyParti

cipant/publishers/ShapePublisher/data_writers/SquareWriter</uri>

 <method>POST</method>

 <body>

 <write_sample_seq>

 <sample>

 <write_sample_info>

 <source_timestamp>

 <sec>10</sec>

 <nanosec>20</nanosec>

 </source_timestamp>

 </write_sample_info>

 <data>

92 Web-Enabled DDS, v1.0

 <ShapeStruct>

 <color>YELLOW</color>

 <x>10</x>

 <y>20</y>

 </ShapeStruct>

 </data>

 </sample>

 </write_sample_seq>

 </body>

</request>

Example response to read data request:

<response>

 <id>Req-123457</id>

 <return_code>OK</return_code>

 <body>

 <read_sample_seq>

 <sample>

 <read_sample_info>

 <source_timestamp>

 <sec>10</sec>

 <nanosec>0</nanosec>

 </source_timestamp>

 <valid_data>true</valid_data>

 <instance_handle>0</instance_handle>

 <instance_state>ALIVE</instance_state>

 <sample_state>NOT_READ</sample_state>

 <view_state>NEW</view_state>

 </read_sample_info>

 <data>

 <ShapeStruct>

 <color>GREEN</color>

 <x>10</x>

 <y>20</y>

 </ShapeStruct>

 </data>

 </sample>

 </read_sample_seq>

 </body>

</response>

Example response to write data request:

Web-Enabled DDS, v1.0 93

<response>

 <id>Req-123458</id>

 <return_code>OK</return_code>

</response>

8.5.2.5 Read/Write streaming optimization

Improving performance is one of the key motivations for using WebSockets. Writing and reading

data are the most time critical operations performed by a WebDDS::Client.

For this reason this specification defines an optimized protocol for the WebDDS::Client to

write and receive data.

8.5.2.5.1 BIND message

To enable the optimized read/write operation the WebDDS::Client must send a BIND message

to associate a logical “bind_id” with the URI of a specific DataWriter or DataReader.

This association saves having to send the full DataWriter or DataReader URI on each mes-

sage.

When using content of type application/dds-web+xml the BIND request message shall be

formatted as the XML element <bind> defined in webdds_websockets1.xsd. A single

BIND message may be used to bind multiple DataWriters and DataReaders.

Example binding of data writers and readers for optimized read/write using XML:

<bind>

 <bind_datawriter>

 <bind_id>MySquareWriterId</bind_id>

<uri>applications/MyFirstShapesApplication/domain_participants/MyPartic

ipant/publishers/ShapePublisher/data_writers/SquareWriter</uri>

 </bind_datawriter>

 <bind_datareader>

 <bind_id>MySquareReaderId</bind_id>

<uri>/applications/MyFirstShapesApplication/domain_participants/SquareR

eaderPartici-

pant/subscribers/SquareSubscriber/data_readers/SquareReader</uri>

 </bind_datareader>

</bind>

To cancel the binding of a previously-bound resource the WebDDS::Client shall send a BIND

message with the same bind_id and an empty URI.

94 Web-Enabled DDS, v1.0

8.5.2.5.2 B_REQUEST message

Once a DataWriter has been bound the WebDDS::Client can write data to the Da-

taWriter using the optimized B_REQUEST message.

When using content of type “application/dds-web+xml” the B_REQUEST message shall

be formatted as the XML element <b_req> defined in webdds_websockets1.xsd.

The B_REQUEST message contains a bind_id whose value must correspond to a previously

specified bind_id in a BIND message. This identifies the resource that is being referenced in

the request. The B_REQUEST message also contains a “body” element that is set with the same

content that would have been used for the body of the on-optimized REQUEST message.

Example writing data with the optimized B_REQUEST using XML:

<b_req>

 <bind_id>MySquareWriterId</bind_id>

 <body>

 <write_sample_seq>

 <sample>

 <write_sample_info>

 <source_timestamp>

 <sec>10</sec>

 <nanosec>20</nanosec>

 </source_timestamp>

 </write_sample_info>

 <data>

 <ShapeStruct>

 <color>YELLOW</color>

 <x>10</x>

 <y>20</y>

 </ShapeStruct>

 </data>

 </sample>

 </write_sample_seq>

 </body>

</b_req>

8.5.2.5.3 Z_REQUEST message

The Z_REQUEST message may be used as an alternative “compressed” version of the

B_REQUEST. The use of the compressed version uses less space and therefore increases perfor-

mance.

Web-Enabled DDS, v1.0 95

The only difference between the Z_REQUEST message and the corresponding B_REQUEST is

that all XML element names except those nested inside the <data> element have their name

abbreviated:

 Single-word element names defined as those with no underscore character (‘_’) shall be abbrevi-

ated to just the first character of the name.

 Element names with an “_” characters shall be abbreviated to the first letter followed by the first

letter that appears after each underscore character.

For example, element name <body> is abbreviated to and element name

<write_sample_seq> is abbreviated to <wss>.

Example writing data with the optimized Z_REQUEST using XML:

 <bi>MySquareWriterId</bi>

 <wss>

 <s>

 <wsi>

 <st>

 <s>10</s>

 <n>20</n>

 </st>

 </wsi>

 <d>

 <ShapeStruct>

 <color>YELLOW</color>

 <x>10</x>

 <y>20</y>

 </ShapeStruct>

 </d>

 </s>

 </wss>

</br>

8.5.2.5.4 B_PUSH message

Receiving data is one of the most time critical operations performed by a WebDDS::Client.

To minimize the latency on the data received it essential to provide a mechanism for the WebDDS

service to “push” data to the WebDDS::Client when it becomes available. That way the client

avoids having to “poll” for data. For this reason this specification defines the B_PUSH message.

Once a DataReader has been bound to a WebSocket the WebDDS service can push data

96 Web-Enabled DDS, v1.0

received on the DataReader to the WebDDS::Client over the WebSocket using the

B_PUSH message.

When using content of type application/dds-web+xml the B_PUSH message shall be

formatted as the XML element <b_push> defined in webdds_websockets1.xsd.

The B_PUSH message contains a bind_id whose value must correspond to a previously-

specified bind_id in a BIND message. This identifies the resource that is being referenced in

the push. In this case it corresponds to a DataReader. The B_PUSH message also contains a

“body” element that is set with the same content that would have been used for the body of the

response message that would have been sent if the application had issued request using the “GET”

method on that resource.

Example data being pushed from the WebDDS service with the B_PUSH message using

XML:
<b_push>

 <bind_id>MySquareReaderId</bind_id>

 <body>

 <read_sample_seq>

 <sample>

 <read_sample_info>

 <source_timestamp>

 <sec>10</sec>

 <nanosec>0</nanosec>

 </source_timestamp>

 <valid_data>true</valid_data>

 <instance_handle>0</instance_handle>

 <instance_state>ALIVE</instance_state>

 <sample_state>NOT_READ</sample_state>

 <view_state>NEW</view_state>

 </read_sample_info>

 <data>

 <ShapeStruct>

 <color>GREEN</color>

 <x>10</x>

 <y>20</y>

 </ShapeStruct>

 </data>

 </sample>

 </read_sample_seq>

 </body>

</b_push>

8.5.2.5.5 Z_PUSH message

Web-Enabled DDS, v1.0 97

The Z_PUSH message may be used as an alternative “compressed” version of the B_PUSH.

Similar to the motivation for the Z_REQUEST the use of the compressed version of B_PUSH uses

less space and therefore increases performance.

The Z_PUSH message is constructed from the B_PUSH message applying the same rules used to

construct the Z_REQUEST message from the B_REQUEST message.

 Example data being pushed from the WebDDS service with the B_PUSH message using

XML:
<bp>

 <bi>MySquareReaderId</bi>

 <rss>

 <s>

 <rsi>

 <st>

 <s>10</s>

 <n>0</n>

 </st>

 <vd>true</vd>

 <ih>0</ih>

 <is>ALIVE</is>

 <ss>NOT_READ</ss>

 <vs>NEW</vs>

 </rsi>

 <d>

 <ShapeStruct>

 <color>GREEN</color>

 <x>10</x>

 <y>20</y>

 </ShapeStruct>

 </d>

 </s>

 </rss>

</bp>

8.5.3 IANA Considerations

This specification requests IANA to register the WebSocket DDS-WEB sub-protocol under the

“WebSocket Subprotocol Name” registry with the following data:

Table 13 IANA WebSocket Identifier

Subprotocol Identifier
dds-web

98 Web-Enabled DDS, v1.0

Subprotocol Common Name
dds-web

Subprotocol Definition http://www.omg.org/spec/DDS-WEB/

Web-Enabled DDS, v1.0 99

Annex A - References

[1] DDS: Data-Distribution Service for Real-Time Systems version 1.2.

http://www.omg.org/spec/DDS/1.2

[2] Roy Fielding. “Representational State Transfer (REST)”

http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm

[3] Web Services Description Language (WSDL). http://www.w3.org/TR/wsdl20/

[4] Extensible Messaging and Presence Protocol (XMPP): Core. IETF RFC 6120. XMPP

http://xmpp.org/rfcs/rfc6120.html

[5] SOAP Version 1.2 Part 1: Messaging Framework (Second Edition) http://www.w3.org/TR/soap12-

part1/

[6] DDS-RTPS: Data-Distribution Service Interoperability Wire Protocol version 2.1,

http://www.omg.org/spec/DDS-RTPS/2.1/

[7] Uniform Resource Identifier (URI): Generic Syntax. IETF RFC 3986.

http://tools.ietf.org/html/rfc3986

[8] DDS for light-weight CCM specification (DDS4CCM) version 1.0.

http://www.omg.org/spec/dds4ccm/1.1/

[9] DDS XML Schema for QoS Profile.

http://www.omg.org/spec/dds4ccm/20110201/DDS_QoSProfile.xsd

[10] DDS Extensible Types Specification (DDS-XTYPES) version 1.0. http://www.omg.org/spec/DDS-

XTypes/1.0/

[11] DDS-XTypes XML Type Representation, XSD format. http://www.omg.org/spec/DDS-

XTypes/20120202/dds-xtypes_type_definition.xsd

[12] Atom Syndication Format (IETF RFC 4287); http://www.ietf.org/rfc/rfc4287.txt. Atom Publishing

Protocol (IETF RFC 5023); http://tools.ietf.org/rfc/rfc5023.txt

[13] Hypertext Transfer Protocol, version 1.1 (IETF RFC 2616); http://tools.ietf.org/rfc/rfc2616.txt

[14] The WebSocket Protocol, version 1.1 (IETF RFC 6455); http://tools.ietf.org/rfc/rfc6455.txt.

[15] JavaScript Object Notation (IETF RFC 4627); http://www.ietf.org/rfc/rfc4627.txt.

[16] RSS Specification, version 2.0; http://www.rssboard.org/rss-specification.

[17] Extensible Markup Language (XML), version 1.1, Second Edition (W3C recommendation, August

2006).

[18] HTTP Authentication: Basic and Digest Access Authentication. IETF RFC 2617.

http://tools.ietf.org/html/rfc2617

[19] File expression matching syntax for fnmatch() ; POSIX fnmatch API (IEEE 1003.2-1992 section

B.6)

[20] DDS Data-Distribution Service fore Real-Time Systems version 1.2, Annex A: Syntax for DCPS

Queries and Filters. http://www.omg.org/spec/DDS/1.2

[21] DDS Security specification, version 1.0. http://www.omg.org/spec/DDS-SECURITY/

[22] IETF RFC 4918 , “HTTP Extensions for Web Distributed Authoring and Versioning (WebDAV)”

http://tools.ietf.org/html/rfc4918

[23] IETF RFC 2617 “HTTP Authentication: Basic and Digest Access Authentication”

http://tools.ietf.org/html/rfc2617

[24] IETF RFC 6648 “Deprecating the “X-“ Prefix and Similar Constructs in Application Protocol”

http://tools.ietf.org/html/rfc6648

http://www.omg.org/spec/DDS/1.2
http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
http://www.w3.org/TR/wsdl20/
http://xmpp.org/rfcs/rfc6120.html
http://www.w3.org/TR/soap12-part1/
http://www.w3.org/TR/soap12-part1/
http://www.omg.org/spec/DDS-RTPS/2.1/
http://tools.ietf.org/html/rfc3986
http://www.omg.org/spec/dds4ccm/1.1/
http://www.omg.org/spec/dds4ccm/20110201/DDS_QoSProfile.xsd
http://www.omg.org/spec/DDS-XTypes/1.0/
http://www.omg.org/spec/DDS-XTypes/1.0/
http://www.omg.org/spec/DDS-XTypes/20120202/dds-xtypes_type_definition.xsd
http://www.omg.org/spec/DDS-XTypes/20120202/dds-xtypes_type_definition.xsd
http://www.ietf.org/rfc/rfc4287.txt
http://tools.ietf.org/rfc/rfc5023.txt
http://tools.ietf.org/rfc/rfc2616.txt
http://tools.ietf.org/rfc/rfc6455.txt
http://www.ietf.org/rfc/rfc4627.txt
http://www.rssboard.org/rss-specification
http://tools.ietf.org/html/rfc2617
http://www.omg.org/spec/DDS/1.2
http://www.omg.org/spec/DDS-SECURITY/
http://tools.ietf.org/html/rfc4918
http://tools.ietf.org/html/rfc2617
http://tools.ietf.org/html/rfc6648

100 Web-Enabled DDS, v1.0

[25] IETF RFC 5849 “The OAuth 2.0 Authorization Framework, v2-31” http://tools.ietf.org/html/draft-

ietf-oauth-v2-31

[26] OpenID Authentication 2.0 – Final http://openid.net/specs/openid-authentication-2_0.html

http://tools.ietf.org/html/draft-ietf-oauth-v2-31
http://tools.ietf.org/html/draft-ietf-oauth-v2-31
http://openid.net/specs/openid-authentication-2_0.html

	Web-Enabled DDS
	Version 1.0
	OMG Document Number: ptc/2015-09-13
	Copyright © 2013, eProsima
	USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES
	LICENSES
	PATENTS
	GENERAL USE RESTRICTIONS
	DISCLAIMER OF WARRANTY
	RESTRICTED RIGHTS LEGEND
	TRADEMARKS
	COMPLIANCE
	OMG’s Issue Reporting Procedure

	Table of Contents
	Preface
	About the Object Management Group
	OMG
	OMG Specifications

	Business Modeling Specifications
	Middleware Specifications
	IDL/Language Mapping Specifications
	Modeling and Metadata Specifications
	Modernization Specifications
	Platform Independent Model (PIM), Platform Specific Model (PSM), Interface Specifications
	OMG Domain Specifications
	CORBA Embedded Intelligence Specifications
	CORBA Security Specifications
	OMG Headquarters
	Email: pubs@omg.org
	Issues
	Introduction
	Overview of this Specification
	Web-Enabled DDS (WebDDS) Object Model
	Platform-Specific Mappings

	1 Scope
	1.1 General
	1.2 WebDDS Object Model
	1.3 Platform-Specific Mappings
	1.4 Example Scenarios

	2 Conformance
	3 Normative References
	4 Terms and Definitions
	5 Symbols
	6 Additional Information
	6.1 Changes to Adopted OMG Specifications [optional]
	6.2 Acknowledgements

	7 WebDDS Object Model
	7.1 General
	7.2 Model Overview
	7.3 Access Control
	7.3.1 Class WebDDS ::Root
	7.3.1.1 Operation: create_application
	7.3.1.2 Operation : delete_application
	7.3.1.3 Operation: get_applications
	7.3.1.4 Operation: create_qos_library
	7.3.1.5 Operation: delete_qos_library
	7.3.1.6 Operation: get_qos_libraries
	7.3.1.7 Operation : create_type
	7.3.1.8 Operation : delete_type
	7.3.1.9 Operation : get_types

	7.3.2 Class WebDDS::AccessController
	7.3.2.1 Operation: check_permissions

	7.3.3 Class WebDDS ::Client (conceptual)
	7.3.4 Class WebDDS::Application

	7.4 DDS Proxy classes
	7.4.1 ReturnStatus
	7.4.2 Access control and permissions
	7.4.3 Class WebDDS::Application (details)
	7.4.3.1 Operation: create_participant
	7.4.3.2 Operation: update_participant
	7.4.3.3 Operation: delete_participant
	7.4.3.4
	7.4.3.5
	7.4.3.6
	7.4.3.7 Operation: create_waitset
	7.4.3.8 Operation: update_waitset
	7.4.3.9 Operation: delete_waitset

	7.4.4 Class WebDDS::DomainParticipant
	7.4.4.1 Operation: register_type
	7.4.4.2 Operation: unregister_type
	7.4.4.3 Operation: create_topic
	7.4.4.4 Operation: update_topic
	7.4.4.5 Operation: delete_topic
	7.4.4.6 Operation: get_topics
	7.4.4.7 Operation: create_publisher
	7.4.4.8 Operation: update_publisher
	7.4.4.9 Operation: delete_publisher
	7.4.4.10 Operation: get_publishers
	7.4.4.11 Operation: create_subscriber
	7.4.4.12 Operation: update_subscriber
	7.4.4.13 Operation: delete_subscriber
	7.4.4.14 Operation: get_subscribers

	7.4.5 Class WebDDS::Publisher
	7.4.5.1 Operation: create_datawriter
	7.4.5.2 Operation: update_datawriter
	7.4.5.3 Operation: delete_datawriter
	7.4.5.4 Operation: get_datawriters

	7.4.6 Class WebDDS::Subscriber
	7.4.6.1 Operation: create_datareader
	7.4.6.2 Operation: update_datareader
	7.4.6.3 Operation: delete_datareader
	7.4.6.4 Operation: get_datareaders

	7.4.7 Class WebDDS::DataWriter
	7.4.7.1 Operation: create_instance
	7.4.7.2 Operation: update_instance
	7.4.7.3 Operation: delete_instance
	7.4.7.4 Operation: write

	7.4.8 Class WebDDS::DataReader
	7.4.8.1 Operation: get
	7.4.8.1.1 Sample Selector Syntax

	7.4.9 Class WebDDS::WaitSet
	7.4.9.1 Operation: wait

	7.4.10 Class : WebDDS::QosLibrary
	7.4.10.1 Operation : create_qos_profile
	7.4.10.2 Operation : delete_qos_profile
	7.4.10.3 Operation : update_qos_profile
	7.4.10.4 Operation : get_qos_profiles

	7.4.11 Class : WebDDS::QosProfile

	8 Web-Enabled DDS Platform-Specific Mappings
	8.1 General
	8.2 Formats and Representations for the REST and SIMPLE-WSDL-SOAP platforms
	8.2.1 QoS Representations
	8.2.1.1 XML QoS and QosProfile Representation

	8.2.2 Type Representations
	8.2.2.1 XML Type Representation

	8.2.3 Data Representations
	8.2.3.1 XML Data Representation

	8.2.4 WebDDS Entity Representations
	8.2.4.1 XML Entity Representation

	8.3 REST Platform
	8.3.1 Mapping of WebDDS PIM to Resources
	8.3.2 Mapping rules from WebDDS PIM operations to REST methods
	8.3.3 Complete mapping of WebDDS PIM operations to REST methods
	8.3.4 Object representations used by the REST platform
	8.3.5 HTTP Headers used by the REST platform
	8.3.5.1 HTTP Request Headers
	8.3.5.2 HTTP Response Headers

	8.4 Simplified SOAP Platform
	8.5 Transport -level and security considerations: HTTP and Web Sockets
	8.5.1 Operation over HTTP and HTTPS
	8.5.2 Operation over Web Sockets (WS) and Secure WebSockets (WSS)
	8.5.2.1 Connection Establishment
	8.5.2.2 WebDDS messages and encoding
	8.5.2.3 Initial Handshake: HELLO message
	8.5.2.4 Message flow: REQUEST and RESPONSE messages
	8.5.2.5 Read /Write streaming optimization
	8.5.2.5.1 BIND message
	8.5.2.5.2 B _REQUEST message
	8.5.2.5.3 Z _REQUEST message
	8.5.2.5.4 B _PUSH message
	8.5.2.5.5 Z_PUSH message

	8.5.3 IANA Considerations

	Annex A - References

